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Abstract

Constructing spline models for isogeometric analysis is important in integrating design

and analysis. Converting designed CAD (Computer Aided Design) models with B-reps

to analysis-suitable volumetric T-spline is fundamental for the integration. In this thesis,

we work on two directions to achieve this: (a) using Boolean operations and skeletons to

build polycubes for feature-preserving high-genus volumetric T-spline construction; and

(b) developing weighted T-splines with arbitrary degree for T-spline surface and volume

modeling which can be used for analysis.

In this thesis, we first develop novel algorithms to build feature-preserving polycubes

for volumetric T-spline construction. Then a new type of T-spline named the weighted

T-spline with arbitrary degree is defined. It is further used in converting CAD models

to analysis-suitable volumetric T-splines. An algorithm is first developed to use Boolean

operations in CSG (Constructive Solid Geometry) to generate polycubes robustly, then the

polycubes are used to generate volumetric rational solid T-splines. By solving a harmonic

field with proper boundary conditions, the input surface is automatically decomposed into

regions that are classified into topologically either a cube or a torus. Two Boolean operations,

union and difference, are performed with the primitives and polycubes are generated by

parametric mapping. With polycubes, octree subdivision is carried out to obtain a volumetric

T-mesh. The obtained T-spline surface is C2-continuous everywhere except the local region

surrounding irregular nodes, where the surface continuity is elevated from C0 to G1. Bézier

elements are extracted from the constructed solid T-spline models, which are further used in

isogeometric analysis. The Boolean operations preserve the topology of the models inherited

from design and can generate volumetric T-spline models with better quality.

Furthermore, another algorithm is developed which uses skeleton as a guidance to the

polycube construction. From the skeleton of the input model, initial cubes in the interior are

first constructed. By projecting corners of interior cubes onto the surface and generating a

new layer of boundary cubes, the entire interior domain is split into different cubic regions.
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With the splitting result, octree subdivision is performed to obtain T-spline control mesh or

T-mesh. Surface features are classified into three groups: open curves, closed curves and

singularity features. For features without introducing new singularities like open or closed

curves, we preserve them by aligning to the parametric lines during subdivision, performing

volumetric parameterization from frame field, or modifying the skeleton. For features

introducing new singularities, we design templates to handle them. With a valid T-mesh, we

calculate rational trivariate T-splines and extract Bézier elements for isogeometric analysis.

Weighted T-spline basis functions are designed to satisfy partition of unity and linear

independence. The weighted T-spline is proved to be analysis-suitable. Compared to

standard T-splines, weighted T-splines have less geometrical constraint and can decrease

the number of control points significantly. Trimmed NURBS surfaces of CAD models are

reparameterized with weighted T-splines by a new edge interval extension algorithm, with

bounded surface error introduced. With knot interval duplication, weighted T-splines are

used to deal with extraordinary nodes. With Bézier coefficient optimization, the surface

continuity is elevated from C0 to G1 for the one-ring neighborhood elements. Parametric

mapping and sweeping methods are developed to construct volumetric weighted T-splines

for isogeometric analysis.

Finally, we develop an algorithm to construct arbitrary degree T-splines. The difference

between odd degree and even degree T-splines are studied in detail. The methods to extract

knot intervals, calculate new weights to handle extraordinary nodes, and extract Bézier

elements for analysis are investigated with arbitrary degrees. Hybrid degree weighted T-

spline is generated at designated region with basis functions of different degrees, for the

purpose of performing local p-refinement. We also study the convergence rate for T-spline

models of different degrees, showing that hybrid degree weighted T-splines have better

performance after p-refinement.

In summary, we develop novel methods to construct volumetric T-splines based on

polycube and sweeping methods. Arbitrary degree weighted T-spline is proposed, with
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proved analysis-suitable properties. Weighted T-spline basis functions are used to reparame-

terize trimmed NURBS surfaces, handling extraordinary nodes, based on which surface and

volumetric weighted T-spline models are constructed for isogeometric analysis.

Keywords: Volumetric T-spline Construction, Feature Preservation, Weighted T-spline,

Extraordinary Node, Arbitrary Degree, Isogeometric Analysis
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ment; (b) Bézier elements without feature alignment; (c) T-mesh with feature
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(j) and (l); their corresponding Bézier element representations are given in

(i), (k) and (m). Template 3 is applied to the left eye region, while Template

2 is applied to the right eye region. . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Trimmed NURBS surface. (a) The input NURBS and a trimming curve; (b)

the control mesh of (a); and (c) the trimmed NURBS surface. . . . . . . . 60

5.2 T-spline local refinement by subdividing one element into four smaller

ones. (a) The original NURBS surface; (b) the obtained T-spline surface

after subdividing one element with T-spline basis functions not satisfying

partition of unity; and (c) the obtained standard T-spline surface by applying

the topological constraint [80] to the T-mesh. . . . . . . . . . . . . . . . . 60

5.3 T-spline generated with four levels of local refinement with the algorithm

given in [80]. (a) T-mesh; and (b) the obtained standard T-spline surface. . 61

5.4 Children of N1(ξ) and N2(ξ). (a) N1(ξ) (the black curve) and its five children

weighted by refinement coefficients (the red, blue, orange, purple and green

curves); and (b) N2(ξ) (the black curve) and its four weighted children

(the red, blue, orange and purple curves). The black squares represent the

inserted knots for refinement. . . . . . . . . . . . . . . . . . . . . . . . . 64

xxi



5.5 Children basis support before and after refinement. (a) T-mesh with level-`

(` ≥ 0) knot intervals; (b) the same domain with level-(`+ 1) knot intervals.

Purple circles represent the basis functions defined in this local domain;

(c) the green knot has 25 children basis functions (red circles); and (d)

after subdividing the blue element, the green knot has only 9 children basis

functions (blue circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 (a) A local domain with the indexing of Ni(ξ,η); (b) the same domain after

subdividing the blue element with the indexing of Nr
j(ξ,η); (c) one level

higher knot intervals and partial indexing of Nc
k(ξ,η); (d) children basis

functions with the indexing of Nr
6(ξ,η); (e) 9 refinement coefficients of

Nr
6(ξ,η); (f) 9 weighted coefficients of Nw

6 (ξ,η); (g) shape of Nr
6(ξ,η); and

(h) shape of Nw
6 (ξ,η). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Results of four levels of refinement. (a-d) T-meshes with different refinement

levels from 1 to 4; and (e-h) the corresponding weighted T-spline surfaces. 71

5.8 Edge interval extension for trimming curve reconstruction. (a) Preserved

elements (blue) and removed elements (yellow) determined by the input

trimming curve, and the red edges represent the initial control polygon of

the trimming curve; (b) the first configuration of preserved elements which

does not need a configuration modification; (c) the second configuration of

preserved elements that needs a configuration modification, where (e j, e j+1)

are two involved elements, (i−1, i, i+1, i+2) are four corner indices, and (s j,

s j+1, t j, t j+1) are four edge intervals; and (d) the connectivity modification

result of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xxii



5.9 Reparameterization of the trimmed surface for the T-mesh given in Fig.

5.7(d). (a) Deleting removed elements; (b) modifying the topology of

preserved elements and extending edge intervals to align with the boundary

of the rectangular parametric domain; and (c) reparameterized trimmed

surface using the weighted T-spline. . . . . . . . . . . . . . . . . . . . . . 74

5.10 Reparameterization of trimmed surface with three corners trimmed off (the

degenerated element is marked in green). (a) Deleting removed elements; (b)

modifying the topology of preserved elements and extending edge intervals

to align with the boundary of the rectangular parametric domain; and (c)

reparameterized trimmed surface using the weighted T-spline. . . . . . . . 75

5.11 Influence of the edge interval extension to the basis function. (a) A basis

function N(ξ) defined on Ξ; (b) a basis function Ne(ξ) defined on Ξe; and

(c) the difference between these two basis functions Ne(ξ)−N(ξ). . . . . . 76

5.12 Reparameterization of trimmed NURBS patch with one trimmed-off corner.

(a) Deleting removed elements; (b) modifying the topology of preserved

elements and extending edge intervals to align with the boundary of the

rectangular parametric domain; and (c) the reparameterized trimmed surface

using the weighted T-spline. . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.13 Reparameterization of a trimmed NURBS patch with no corner trimmed-off.

(a) Deleting removed elements; (b) modifying the topology of preserved

elements and extending edge intervals to align with the boundary of the

rectangular parametric domain; and (c) reparameterized trimmed surface

using the weighted T-spline. . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.14 Reparameterized trimmed surfaces with the standard T-spline. (a-d) show

the surfaces with two, three, one and zero trimmed-off corners, respectively. 78

xxiii



5.15 Surface error of the weighted T-spline surfaces compared with the input

NURBS surface. (a) The surface refined by a trimming curve with two

trimmed-off corners as in Fig. 5.9; (b) zoom-in picture of the region with

maximum error in (a); (c) the surface refined by a trimming curve with one

or three trimmed-off corners as in Figs. 5.10 and 5.12; and (d) the surface

refined by a trimming curve with no trimmed-off corner as in Fig. 5.13. . . 79

5.16 Surface error of trimmed surfaces compared to the input NURBS surface. (a-

d) Reparameterized standard T-spline surfaces with two, one, three and zero

trimmed-off corners, respectively; and (e-h) the corresponding weighted

T-spline surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.17 T-spline basis function N(ξ) (the black curve) defined on the knot vector

{0,1,2,3,4} and the extracted seven weighted Bézier basis functions
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for a Bézier element (light green) in the second-ring neighborhood, 16 basis

functions (orange circles) have support over it. . . . . . . . . . . . . . . . 85

5.20 Gap-free requirement for a T-mesh with an extraordinary node PE and n

spoke nodes Pi
S . Two first-ring neighborhood T-mesh elements ei−1 and ei

share one red edge, and their extracted Bézier elements should be gap-free
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6.3 Locally h-refined T-splines with Bézier representation. (a) p = 2; and (b)

p = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Local p-refinement of B-splines of p = 3. (a) The mesh of B-spline in the

index space, where the orange edge has knot interval value 0, and the black

edges have knot interval value 1; (b) the mesh in the parametric space,

where the green edge is set as the hybrid boundary; (c) the red squares

represent the anchors to define cubic basis functions; (d) for the green

edge, the corresponding anchors to define supporting cubic and quartic

basis functions of are represented with the crossed-out red squares and

blue circles, respectively; (e) quartic basis functions are defined on the

p-refined region; and (f) the resulting anchors to define cubic and quartic

basis functions . Both cubic and quartic basis functions have support over

the magenta transition region. . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 (a) Cubic basis functions (red), where the dashed red basis functions are

removed; (b) quartic basis functions (blue) are defined on the p-refined
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Chapter 1

Introduction

1.1 Motivation

To integrate engineering design and analysis, isogeometric analysis was proposed which uti-

lizes the same basis for both geometrical representation and numerical analysis. Pioneering

research has demonstrated the efficiency and accuracy of isogeometric analysis. However,

boundary representation with NURBS surfaces is commonly used in design, while polygonal

meshes are mainly used in analysis. The integration requires one reparameterization step

to generate spline models from the boundary representations. Besides, the designed CAD

models are mostly not water-tight, which need to be reparameterized with T-splines for

analysis. Furthermore, not all T-spline models can be used in isogeometric analysis, and

only a subset of T-splines possess analysis-suitable properties. To facilitate isogeometric

analysis, a fundamental step is to automatically construct analysis-suitable spline models.

However, due to the technical challenges, very few research has been done in this area.

T-spline, as one superior alternative to NURBS, has more flexibility for both geometric

modeling and analysis. It allows local refinement and works for non-rectangular domain

in 2D and non-cubic domain in 3D. The localization of T-spline basis functions makes it

possible for complicated geometry modeling and volumetric spline construction. However,
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not all T-splines are analysis-suitable. Only a subset of standard T-splines with geometrical

constraints can be used directly in analysis. Developing new types of analysis-suitable

T-spline basis functions with little constraints on geometric modeling is one crucial step in

the design and analysis integration study.

Polycubes have been used to generate solid T-spline models for analysis, but they only

work for certain types of geometry. In this thesis, we intend to make the construction of

trivariate solid T-spline from the polygonal meshes more robust and adaptive for complex

geometries with feature preservation. Besides, a new type of T-spline, named the weighted

T-spline, is developed with analysis-suitable properties. Based on weighted T-splines, the

reparameterization of trimmed NURBS surfaces and handling of extraordinary nodes are

studied. Most T-spline models used in analysis are cubic. However, complex analysis

problems such as vibration of shell structures requires higher degree T-spline models. The

construction of arbitrary degree T-spline models is also an open problem.

T-spline modeling can be used in various analysis fields, such as linear elasticity, heat

transfer and fluid-structure interaction problems. After demonstrating the advantage of using

T-spline models in analysis, the next step would be using complex T-spline models in more

complicated analysis applications.

1.2 Problem Statement

In this thesis, the detailed algorithms are presented for volumetric T-spline construction for

isogeometric analysis. There are four main problems:

• Using Boolean operations in volumetric T-spline construction. Boolean opera-

tions in CAD design are used in the polycube construction for volumetric T-splines.

Input models are first split into different regions, represented with two types of prim-

itives: cube and torus. Two Boolean operations (union and difference) are used to

construct polycubes from the split regions. Smoothing and optimization are used to
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improve the quality of the T-meshes. With a degree elevation technique, the surface

continuity near the extraordinary node is increased from C0 to G1.

• Skeleton based feature-preserving T-mesh construction. Skeletons of the input

models are used as a guidance to the polycube construction. Interior and boundary

cubes are constructed from the skeleton, with limited number of singularity points

introduced. The generated T-mesh follows the topology of the input model. Surface

features are classified into three types: open curve, closed curve, and singularity

features. Parametric mapping, volumetric parameterization, skeleton modification and

templates are the developed algorithms to preserve them during T-mesh construction.

• Analysis-suitable weighted T-spline. A new type of T-spine, named the weighted T-

spline, is developed for modeling and analysis. The weighted T-spline basis functions

are designed to satisfy partition of unity and linear independence. The weighted

T-splines are demonstrated to be analysis-suitable. Compared to standard T-splines,

for the same level of refinement, weighted T-spines use fewer control points and with

less geometric constraints to the control mesh. An edge interval extension algorithm is

introduced to reparameterize trimmed NURBS surfaces. Weighted T-splines can also

be used to deal with extraordinary nodes with designed knot interval duplication, with

G1 surface continuity across the edges shared by two one-ring neighboring elements.

Parametric mapping and sweeping methods are developed to construct volumetric

weighed T-splines for analysis.

• Hybrid degree T-spline surface construction for isogeometric analysis. T-spline

basis functions with arbitrary degree are investigated in detail. Knot interval extraction,

T-junction extension, and Bézier extraction are studied and compared for odd degree

and even degree T-splines. Hybrid degree weighted T-splines with multiple degree

basis functions are developed for the p-refinement of designated local region. To

achieve the same convergence rate in analysis, even degree T-spline models need
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fewer degrees of freedom than the one degree higher odd degree models. Hybrid

degree weighted T-splines can achieve better performance with local p-refinement in

analysis.

1.3 Contributions

This thesis focuses on surface and volumetric T-spline modeling. Two polycube-based

algorithms are developed for volumetric T-spline construction. Based on weighted T-splines,

schemes are developed to reparameterize trimmed NURBS surfaces, handle extraordinary

nodes and perform local p-refinement. This thesis has five main contributions:

• Developed a novel method using Boolean operations to generate polycubes for volu-

metric T-spline construction;

• Developed a robust algorithm to use skeletons of input models as a guidance for

generating feature-preserving T-meshes;

• Propose a weighted T-spline basis concept which can generate analysis-suitable basis

functions for T-spline modeling;

• Developed an algorithm for reparameterizing trimmed NURBS surfaces with T-spline

surfaces with bounded surface error, and handling extraordinary nodes; and

• Developed an algorithm with efficient data structures for arbitrary degree T-splines

and hybrid degree weighted T-splines construction for complex surface models.

1.4 Publication

During my Ph.D. study, I have co-authored five journal papers, five conference papers, one

book chapter, with another four journal papers in preparation. I will finish these four journal

papers with our collaborators and submit them out before my graduation.
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1.5 Outline of Dissertation

Following the introduction, Chapter 2 gives a background literature review. Chapter 3 specif-

ically discusses using Boolean operations to construct polycubes for solid T-splines. Chapter

4 presents an algorithm for skeleton based polycube construction with feature preservation.

In Chapter 5, weighted T-splines are developed with analysis-suitable properties, and are

used to reparameterize trimmed NURBS surfaces, handle extraordinary nodes and generate

volumetric T-splines. Chapter 6 discusses arbitrary-degree T-spline modeling, hybrid degree

weighted T-splines and their application in isogeometric analysis.
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Chapter 2

Literature Review

2.1 T-splines

T-spline is a new type of mathematical tool for geometrical modeling [85]. It is developed

based on and compatible with NURBS [69]. NURBS is the standard form for representing

free-form curves and surfaces in design and manufacturing. However, there are two draw-

backs: 1) they do not allow local refinement. When refining a NURBS patch, the refinement

is performed globally and redundant control points are inserted; 2) all the control points

must lie in a rectangular grid topologically, and for complicate geometries, multiple NURBS

patches are used. Also non-water-tight problem exists in the multiple patch NURBS models.

To overcome these drawbacks and provide a better tool for design, T-spline is developed [85].

Different from NURBS, T-splines allow T-junctions and extraordinary nodes. For T-spline

surfaces, a T-junction terminates a row or column of control points in the control grid. With

T-junctions, local refinement can be carried out within desired region. An extraordinary

node has valence other than four and is not a T-junction. They ensure that the control mesh

can be non-rectangular or non-cubic region. Generally, NURBS are recognized as a subset

of T-splines, which have rectangular control mesh without T-junctions.
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T-spline simplification and local refinement were first discussed in [83], introducing the

nesting property and refinement matrix. Then the coarsening of T-spline was studied in

[93] as the reverse of T-spline local refinement. The linear independence of T-spline basis

functions [16, 53] presents the topological constraints to the T-mesh configuration. The

T-spline-to-NURBS transformation matrix should be in full rank for linearly independent

T-splines [53]. An optimized T-junction extension algorithm was developed for local

refinement of analysis-suitable T-splines [80]. Some adaptive refinement schemes have a

linear computational complexity [64], preserving linear independence of the basis functions.

Such scheme was further extended to volumetric T-splines [63]. Hierarchical T-splines

were proposed in [27], together with its analysis-suitability and refinability. Truncated

hierarchical basis functions were also studied to perform local refinement while ensuring

partition of unity and linear independence, such as truncated hierarchical B-splines (THB)

[32], and truncated hierarchical Catmull-Clark surfaces (THCCs) [94].

T-spline models were first constructed with cubic basis functions. Then T-splines were

extended to arbitrary odd and even degrees [29], as well as mixed degrees in two parametric

directions. Analysis-suitable T-splines of arbitrary degrees were first proposed in [14, 27],

in which T-junction extensions from different parametric directions should not meet each

other. Cubic analysis-suitable T-splines were then studied in [51, 49], characterizing the

refineability and linear independence. Analysis-suitable T-spline spaces were characterized

as spaces of piecewise polynomials with appropriate linear constraints on the sub-domain

interfaces [15].

2.2 Isogeometric Analysis

Isogeometric analysis uses the same basis functions for geometric modeling and numerical

analysis. Isogeometric analysis using NURBS models was first introduced in [40], demon-

strating its high accuracy and robustness. A Bézier extraction method was proposed for
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NURBS based isogeometric analysis, providing an element structure similar with conven-

tional finite element method [78]. T-splines were introduced into isogeometric analysis

[9, 2, 25] with its local refinement property. The detailed data structure for isogeometric

analysis using T-splines was studied in [79]. The T-spline basis functions was proved to

satisfy analysis-suitable properties for analysis such as non-negativity, partition of unity and

linear independence [66]. Error estimation of local h-refinement [8] provides a theoretical

foundation to the evaluation of accuracy and convergence rate of isogeometric analysis.

Isogeometric analysis was first used to solve linear elasticity and heat transfer problems

[9]. Isogeometric analysis using NURBS models were then used to analyze blood flow

in patient-specific vascular structures [98]. Isogeometric analysis in structure vibrations

were studied with structural models including rods, thin beams, membranes, and thin

plates [23]. NURBS represented circular geometries was used to study the flows about

rotating components with a stationary flow domain without geometric incompatibility

[13]. Frictionless contact problems between deformable bodies can also be solved with

isogeometric analysis [24]. Isogeometric analysis can also be solve fluid-structure interaction

problems. The theory was first introduced in [10], then its application was studied in arterial

blood flow [11], and wind turbines [12]. Taking the advantage of higher degree basis

functions, isogeometric collocation methods were developed, showing better accuracy

compared to Galerkin method [6, 3]. Even order NURBS and T-splines have the same

convergence rate with the one degree higher odd degree NURBS and T-spline models [76]

in solving fluid-structure interactions [17] and higher order boundary-value problems [18].

2.3 Surface and Volumetric T-Spline Modeling

The main obstacle in isogeometric analysis using T-splines is how to robustly construct

surface and volumetric T-spine models. Different approaches have been developed for

surface and volumetric T-spline modeling. By locally inserting T-junctions, T-spline can
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be constructed while ensuring that the refined T-spline surface is still analysis-suitable

[80]. Quad meshes were recognized as initial T-meshes to constructed standard T-spline

surfaces with template method [91]. The template method was further extended to 3D, which

converts hexahedral meshes to volumetric T-splines [92]. Periodic Global Parameterization

was proposed to convert triangular meshes to T-splines [48]. Solid T-splines were constructed

by parametric mapping of tetrahedral meshes generated by Meccano method from the input

surface mesh [26]. In [88], a parametric mapping between a polycube and a surface geometry

was presented to construct trivariate T-splines from input triangular meshes. Polycubes

and parametric mapping were used together to generate solid T-spline models [101, 90].

T-spline surfaces were directly used to construct conformal volumetric T-splines of genus

zero [102]. A generalized polycube method using T shape templates was introduced to

handle high-genus models and extraordinary nodes for T-spline construction [88]. The

generalized polycubes were further extended to generate volumetric splines from surface

meshes, with no singularity and controllable number of ill-points [47].

2.4 Hexahedral Meshing and Volumetric Parameteriza-

tion

Since T-mesh can be recognized as hexahedral mesh which allows T-junctions, we may

apply hex meshing algorithms to solid T-spline construction. Octree-based methods were

developed to generate adaptive hex dual-meshes [7, 77, 96, 100], and improved to preserve

sharp features [60, 74]. These grid-based methods are robust, but they yield many singular

points on the surface. And the resulting mesh is highly influenced by the orientation of the

grid. Polycubes were used in hexahedral meshing with better quality [35, 95]. A constrained

discrete optimization technique was developed for better mesh segmentation and volumetric

parameterization using polycubes [59]. In [95], hex remeshing was performed based on

polycube construction and optimization. L1 based polycubes for complex geometries were
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proposed for hex meshing [38]. Harmonic volumetric mapping was employed in hex

meshing with better boundary feature capture [52]. CubeCover method uses 3D frame fields

to perform volumetric parameterization and all-hex mesh generation [67] . This method

was then extended [54] with developed algorithm to generate a singularity-restricted frame

field for all-hex meshing. A boundary aligned cross-field was studied in [39], which uses

spherical harmonics to represent the 3D field. The field was then improved with singularity

correction for hex mesh extraction [41]. However, performing volumetric parameterization

from frame field is not robust, especially for complex geometries.

2.5 Converting CAD models to Spline Models for Analysis

Algorithms have been developed to build water-tight T-spline surfaces [84] and volumetric

T-splines [102]. But there is no algorithms that can directly convert designed CAD models

from design software to T-spline models for analysis. The main reason is that most CAD

models are represented with boundary NURBS patches, and they are not water-tight. In

addition, Boolean operations in design result in trimmed NURBS patches which do not have

a tensor product representation. For these trimmed surfaces, the original NURBS surfaces,

the trimming curves and the trimming operations are stored in the output files (i.e. the

IGES files). Such data storage format prohibits the direct use of CAD models in analysis.

Isogeometric analysis for trimmed CAD models was studied in [43], in which high order

triangular mesh was used instead of NURBS along the trimming curve. This method is

further extended to arbitrary complex topology [44]. Edge graphs were used to split the

CAD model into four types of base hex, which can then be used for volumetric NURBS

and T-spline construction [42, 65]. The method can work with both convex and non-convex

edges, but the splitting result may have large distortions.
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2.6 Degree Elevation of B-splines

To construct T-splines of arbitrary degree, we also study the degree elevation of B-splines.

Degree elevation of B-spline curves was first studied in [70] presenting an algorithm to

elevate the degree by one. Efficient algorithms were developed to raise the degree of B-spline

curves and surfaces [19, 20]. They present a solution to the problem of representing a curve

of degree m with the linear combination of curves of degree m+1. Then a fast algorithm was

developed to elevate the degree by arbitrary times [71]. A software-engineering approach

was presented for degree elevation of B-spline curves [68], which provides competitive

performance in speed and numerical accuracy. Bézier basis functions were also used for the

degree elevation of B-splines, which first raise the degree of extracted Bézier elements and

then remove unnecessary knots to obtain the desired surface continuity [69].
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Chapter 3

Volumetric T-spline Construction Using

Boolean Operations

In this chapter, we present a novel algorithm for constructing a volumetric T-spline from

input surface triangle meshes inspired by Boolean operations. By solving a harmonic field

with proper boundary conditions, the input surface is automatically decomposed into regions

that are classified into two groups represented, topologically, by either a cube or a torus.

We perform two Boolean operations (union and difference) with the primitives and convert

them into polycubes through parametric mapping. With these polycubes, octree subdivision

is carried out to obtain a volumetric T-mesh, and sharp features detected from the input

model are also preserved. An optimization is then performed to improve the quality of

the volumetric T-spline. The obtained T-spline surface is C2 everywhere except the local

region surrounding irregular nodes, where the surface continuity is elevated from C0 to G1.

The extracted trivariate Bézier elements from the volumetric T-spline can be directly in

isogeometric analysis.

The Boolean operation method preserves the topology of the input models, and can

decrease the number of extraordinary nodes on the surface. The generated polycubes follow

the designing process, and preserve the topology feature of the input.
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3.1 Algorithm Overview

Polycube-based methods for volume parameterization [90, 89, 46] perform domain de-

composition by splitting the model into hexahedral regions that map to cubes. However,

sometimes the models are so complicated that it is difficult to split the domain automatically.

Inspired by CSG Boolean operations, here we propose to use Boolean operations to build

the polycubes. As shown in Fig. 3.1, there are three main stages to construct a trivariate

solid T-spline from the given CAD model: curve extraction, domain decomposition and

Boolean operations, and volumetric T-spline construction.

The first stage initializes all the necessary boundary information for the following stages.

We first classify the curve information from the CAD model into two groups, and then use a

commercial software (in this case, Abaqus) to generate the surface mesh.

Based on the curve information and surface mesh, we perform domain decomposition

and Boolean operations to generate polycubes. A harmonic field with proper boundary

conditions is computed to automatically split the surface model into different components,

topologically equivalent to either a cube or a torus. Each torus is composed topologically of

four cubes. All cubes generated by the domain decomposition are then combined together

and holes (represented topologically as cubes) are subtracted. We will refer to the resulting

configuration as a polycube, realizing that we take some liberties in using the term in this

way. The CAD surface is then mapped onto the polycube surface.

The volumetric T-spline is obtained by performing an octree subdivision on the polycube.

Here we use a separate octree for each cube and force two neighboring cubes to have the

same parameterization at the shared boundary. All the detected sharp feature information is

preserved in this step. Pillowing, smoothing and optimization are then used to improve the

quality of the T-mesh. To obtain a gap-free T-mesh, we apply templates [91, 92] to each

irregular node in the T-mesh. Finally, volumetric T-spline is generated and Bézier elements

are extracted for isogeometric analysis.
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Figure 3.1: Three stages of volumetric T-spline construction using Boolean operations.

3.2 Curve Extraction

Most CAD models contain sharp edges or features. It is best if these features map to edges

of the polycube (although we do not require that each edge of the polycube maps to a feature

in the CAD model). We need to identify which of these curves are best represented as

polycube edges during the Boolean difference stage of the algorithm. The edges which are

used to represent the polycube edges are feature curves and the remaining edges we call

difference curves. For example in Fig. 3.2, the model is the subtraction of a cylinder from a

cube. The blue lines are the feature curves of the model, and the red lines are the difference

curves.

Curve Classification: We classify the input boundary information into three groups:

corners, curves, and patches. All the surface models are formed by these three groups.

Curves are the parametric boundary lines on the surface. In Fig 3.2, there are 14 curves:

C1 ∼ C14 (blue and red lines), which are the edges of the cube and the cylinder. Corners

are the intersection points of the curves, which are also the corners of the cubes (the eight

blue dots V1 ∼ V8). Several curves connecting consecutively form the boundary of a surface
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patch. In Fig. 3.2, there are 7 patches: six cube faces and one circumferential surface of the

cylinder (the gray and red surfaces, S 1 ∼ S 7). In this model, curves C1 ∼ C12 are feature

curves. Curves C13 ∼C14 are difference curves. These curves contain the input sharp feature

information and will be used to split one model into different components. The criterion to

classify the curves into different groups is whether the feature curves can be easily used in

the following parametric mapping.

Sharp Feature Detection: There are two types of sharp features in the designed models:

sharp curves and sharp corners. Sharp curves are those curves across which the surface

continuity is C0, and the sharp corners are the intersection points of the sharp curves. For

example in Fig. 3.2, all the 12 edges of the cube (C1 ∼C12) and the top and bottom outlines

of the cylinder (C13 ∼ C14) are sharp curves, and the 8 corners of the cube (V1 ∼ V8) are

sharp corners.

Figure 3.2: Classification of curve information. Blue line: feature curves; and red lines:
difference curves.

3.3 Domain Decomposition and Boolean operations

To perform Boolean operations, we first split the model into different hexahedral components,

and then use primitives to represent them.

18



(a) (b) (c)

Figure 3.3: Splitting one torus model into four cubes. (a) Set the top and bottom points
with max and min temperature respectively, calculate the harmonic temperature field, and
find out critical points (extreme and saddle points); (b) recalculate the harmonic field by
setting the whole cross section to be max/min temperature; and (c) split the model with
isoparametric and gradient lines.

3.3.1 Domain Decomposition

For simple CAD models, we can directly use the feature curves to generate the polycube

edges, and use the difference curves to define virtual components. Here a virtual component

is a component which does not exist in the real model, but it can be deduced from the

design process and boundary information. These virtual components are the result of CSG

difference operation in design. For example in Fig. 3.2, the feature and difference curves

can split the model into one cube and one virtual cylinder.

Different from pants decomposition of surfaces [37], which relies more on the topology

of the models, we use harmonic fields to split a complex geometry into coherent regions

[101, 90]. Temperature distribution is an example of a harmonic field. The idea is to assign

high and low temperature values to two different points on the model, and the harmonic field

computed with those two boundary conditions will express the steady-state temperature

distribution across the model. For example in Fig. 3.3, we use the following five steps to

split the torus model into four hexahedral components:

1. First we find out the geometrically highest/lowest points, and assign them the max

and min temperature respectively;
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2. A harmonic field is calculated by solving a heat transfer problem using a discretized

Laplace operator over the surface mesh, see Fig. 3.3(a);

3. We find out the critical points in the field, which are Min, Max, and two saddle points

(C1, C2). They form two cross sections;

4. We assign min temperature to one cross section, and max temperature to the other

one. The harmonic field is recalculated using the new boundary conditions and the

temperature distribution is shown in Fig. 3.3(b); and

5. Four equally-spaced points are selected on each cross section curve (black curves) in

Fig. 3.3(b), which will be set as the cube corners. Then we trace the gradient lines

and finally split them into four parts to obtain all the red curves in Fig. 3.3(c).

Discussion: By using a harmonic field with proper boundary conditions, we can in many

cases automatically split a complex geometry into multiple hexahedral components. The

proper boundary condition can produce one harmonic field with isoparametric lines and

gradient lines for better domain splitting results which follow the geometry. Finding a proper

boundary condition often requires user interactions. Sometimes we may need to compute the

harmonic field several times before we can obtain an optimal domain decomposition result.

For example we compute the field twice for the torus model. Proper boundary conditions

may not be easy to find, in this paper we assume they are given by the user.

(a) (b)

Figure 3.4: Two primitives from the physical space to the parametric space. (a) Cube; and
(b) torus.
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(a) (b)

(c) (d)

Figure 3.5: Boolean operations of cubes and torus with different sizes and relative position.
(a) Four cases for the union operation of two cubes; (b) four cases for the difference operation
of two cubes; (c) the union operation of a cube and a torus; and (d) the difference operation
of a cube and a torus.

3.3.2 Two Primitives

Primitives are basic objects in design and geometrical modeling. Typical primitives in CSG

include cuboids, cylinders, prisms, pyramids, spheres and cones. In our algorithm, we only

use two primitives: the cube and the torus. Furthermore, unlike conventional CSG, our

primitives are used in a topological sense, so, for example, the edges of our cubes do not

need to have the same length. Fig. 3.4 shows how to map these two primitives from the

physical space to the parametric space. It is easy to map one of our cubes to a unit cube. For

a torus, we use four consecutive unit cubes to represent it, with the left face of the first cube

connecting to the right face of the last cube.

3.3.3 Two Boolean Operations

There are two basic Boolean operations in our polycube generation: union and difference.

We develop templates to handle the Boolean operations among the primitives: union of

two cubes, difference of two cubes, union of a cube and a torus, difference of a cube and

a torus. Since two cubes may have different sizes and relative position, we have multiple
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Figure 3.6: Steps to perform the difference operation. Holes are filled to create a virtual
component (virtual cylinder).

cases for the union and difference operations between them, see Fig. 3.5(a-b). As for the

operations between a cube and a torus, we will select one representative cube out of the

four cubes of the torus (the red cube in Fig. 3.5(c, d)), and then use it to perform all the

Boolean operations with other cubes. Of the two Boolean operations, difference is a special

one in our polycube generation. Based on difference curves, we build virtual components.

As shown in Fig. 3.6, after finding out the boundary of the cylinder in the input model,

we fill the holes on the surface mesh by adding new triangles. Then a virtual cylinder is

reconstructed and we carry out all the following work using the new mesh. After building

T-meshes, elements inside the filled holes will be deleted by using the difference operation.

Discussion: The torus primitive and the difference operation are two new features in our

polycube generation, which provide more convenience and flexibility in handling designed

CAD models. Since torus shape components are common in CAD models, representing

them with four consecutive cubes connected with each other can produce elements following

the circumferential directions without distortion. The resulting T-splines will have better

surface continuity and high quality elements.
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There is a special situation we should discuss here. Let us take a cube and subtract a

cylinder from it (Fig.3.2). Topologically, it can be represented either as cube-minus-cylinder

using the difference operation, or as a torus. Our algorithm can represent the object in

either way. If the inner and outer boundaries of the object have no sharp corner, then we

consider it more like a torus or hollow cylinder and choose the torus primitive. Otherwise, if

sharp corner happens in the inner and/or outer boundaries, we choose to use the difference

operation to handle it.

3.4 Volumetric T-spline Construction

To construct volumetric T-splines, we first need to generate the T-spline control mesh, or

T-mesh. There are five main steps in this stage: adaptive octree subdivision and mapping,

sharp feature preservation, pillowing and quality improvement, handling irregular nodes,

trivariate T-spline construction and Bézier extraction.

3.4.1 Adaptive Octree Subdivision and Mapping

An initial T-mesh is generated by applying an adaptive octree subdivision to the polycubes

and mapping to the boundary [30, 101]. For each cube, we create one hexahedral root

element, and then we subdivide one element into eight smaller ones recursively to obtain the

T-mesh after mapping. For each boundary element, we check the local Euclidean distance

from the T-mesh boundary to the input boundary, and subdivide the element if the distance

is greater than a given threshold ε. Each obtained T-mesh node has both parametric and

physical coordinates. The parametric coordinates represent its position in the polycubes.

For each boundary node, the physical coordinates are its corresponding position on the

input boundary. The physical coordinates of each interior node are calculated by a linear

interpolation. The linear interpolation can be expressed as p =
∑

piwi/
∑

wi , where pi are
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the physical coordinates of a neighboring node and wi is the interpolation weight. T-junctions

are introduced if two neighboring elements have different subdivision levels.

3.4.2 Sharp Feature Preservation and Quality Improvement

Sharp Feature Preservation: To preserve the detected sharp features, we duplicate their

corresponding parametric lines in the polycubes [91]. It aims to decrease the local boundary

surface continuity across the sharp curves to C0 by repeating knots. As shown in Fig. 3.7, a

sharp curve (blue curve) is shared by two neighboring surface patches. We duplicate the

sharp curve on each patch (green curves), and connect corresponding points using edges

with zero parametric length (red short edges). Then the spline surface is C0-continuous

across the sharp curves. In Fig. 3.7(a-b), a sharp corner is shared by three sharp curves. By

duplicating each sharp curve on its neighboring surface patches, the sharp corner is also

preserved.

(a) (b) (c)

Figure 3.7: Preserving sharp corner and sharp curve. (a) Sharp corner (red corner) and sharp
curves (blue curves) before preservation; (b) preserving sharp features by duplicating sharp
curves (green curves) and inserting zero-length edges (red edges); and (c) Bézier element
representation of the model.

Quality Improvement: To improve the initial T-mesh quality, we adopt pillowing,

smoothing and optimization techniques. Pillowing is a sheet insertion technique that inserts

one layer around the boundary [62, 75, 97], which guarantees each element has at most one

face lying on the boundary and also improves the surface continuity across the polycube

edges from C0 to C2. The sharp feature information on the input surface can also be
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(a) (b) (c) (d)

Figure 3.8: Pillowing along the circumferential direction of a cylinder. (a-b) A solid cylinder
before (a) and after (b) pillowing; (c-d) a cube with a cylindrical hole before (c) and after
(d) pillowing.

transferred to the new surface. When the corner of one cube lies on a smooth sharp curve,

the parametric mapping method may generate poor quality elements around that. Fig. 3.8(a)

shows the T-mesh of a solid cylinder model. On its top face the four cube corners of the

polycube have bad quality (green elements). To deal with this situation, we insert one new

layer around the circumferential direction, see the magenta layer in Fig. 3.8(b). This method

can also be applied to the surface of virtual cylinders, see Fig. 3.8(c-d). Since after pillowing

there are one layer of elements with zero volume and zero Jacobian value, smoothing and

optimization [101] are used to improve the T-mesh quality.

There are four types of nodes in the T-mesh: sharp corners, sharp curve nodes, surface

nodes and interior nodes. In smoothing, they are relocated in different ways. Sharp corners

are fixed; sharp curve nodes move along the curve direction; surface nodes can only move

on the surface; and interior nodes move towards its mass center. In optimization, each node

is moved toward an optimal position that maximizes the worst Jacobian. The Jacobian is

defined based on trilinear basis functions of T-mesh elements. For a T-mesh element, the

Jacobian is defined as
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where Ni is a trilinear shape function. The scaled Jacobian is

Js =
J

‖ JM(·,0) ‖ ‖ JM(·,1) ‖ ‖ JM(·,2) ‖
, (3.2)

where JM(·,0), JM(·,1) and JM(·,2) represent the first, second and last column of the

Jacobian matrix, JM, respectively. The objective function is equivalent to the maximization

of the minimum scaled Jacobian. To get better optimization results, we further improve our

optimization method in two ways: (1) optimize the Jacobian value defined based on Bézier

basis functions; and (2) optimize the step size when moving the control nodes. Due to the

enhanced robustness of high order basis functions, distorted T-meshes may still be used in

isogeometric analysis [55], and the scaled Jacobian value is one quantitative standard to

evaluate the quality of T-splines. The Jacobian is evaluated at the Gaussian integration points

and the corner points of one element. In step size optimization, the objective function is

f (δ) = min(1− J′s(δ)), where J′s is the new Jacobian value with respect to updated coordinates,

and δ is the optimized step size. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

[36] is used to perform the optimization.

3.4.3 Irregular Nodes and Volumetric T-spline Construction

Extraordinary nodes or partial extraordinary nodes [101] are two types of irregular nodes in T-

spline construction. These irregular nodes will reduce the continuity in its neighborhood and

increase the degrees of freedom during analysis. Different templates have been developed to

handle the irregular nodes. The basic idea is to insert zero parametric length edges around
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the irregular nodes to make sure the extracted knot interval is correct. In referring knot

vectors, knot values are repeated whenever an irregular node is met. The detailed templates

and knot insertion algorithm are explained in [91, 92].

The rational solid T-spline was defined in [92]. Its basis function has the property

of partition of unity by definition, which makes it suitable for analysis. With the valid

T-mesh, referred local knot vectors and the definition of rational basis functions, we can

construct desired volumetric T-splines. Since the volumetric T-spline is defined on local knot

vectors, we extract Bézier representation of solid T-spline for isogeometric analysis. The

transformation matrix M from T-spline basis functions to Bézier basis functions is calculated

by the Oslo knot insertion algorithm [34]. When calculating the matrix M, we find out that

it is unique and always full rank, which means that the T-spline basis functions are linearly

independent. With the extracted Bézier elements, we can perform isogeometric analysis on

the volumetric T-spline models.

(a) (b)

Figure 3.9: Surface continuity elevation of sphere model. (a) Before continuity elevation
(the surface continuity is C0 in the two ring neighborhood of one irregular node); and (b)
after degree elevation (the surface continuity is G1).

3.4.4 Surface Continuity Elevation

The continuity around the extraordinary and partial extraordinary nodes is C0 after applying

the templates. While C0 smoothness is sufficient for many types of analyses, it has been

shown that increased smoothness in the FE basis improves solution accuracy and robustness
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[28, 23]. Additionally, on the surface of the geometry, it is important to recover the

smoothness present in the original CAD surface geometry. For these reasons, we use a

continuity elevation technique [81] to improve the surface continuity around irregular nodes,

and extend this technique into volumetric T-spline with the following four steps.

1. First we find out all the irregular nodes on the surface which do not lie on the sharp

feature;

2. Templates are applied to these nodes, yielding C0-continuity in their two-ring neigh-

borhoods;

3. Bézier control nodes are calculated with the basis function transformation matrix M;

and

4. All the Bézier control nodes on the surface form the control net of the surface patches.

For each irregular node on the surface, we apply the constrained optimization frame-

work [81] to the Bézier control nodes in its two-ring neighborhood, then the local

surface continuity around irregular nodes is elevated from C0 to G1.

Fig. 3.9 shows the surface continuity elevation result of a sphere model. In our volumetric

T-spline construction, only the control nodes on the surface have non-zero basis functions on

the T-spline surface, which ensures that we only have to optimize the Bézier control nodes

on the surface to improve the surface continuity.

Table 3.1: Statistics of all the tested models.
Model T-mesh T-mesh Irregular nodes Bézier Jacobian Modeling

nodes elements (surface, interior) elements (worst, best) Time (s)
Torus 5,920 3,072 (0, 128) 3,072 (0.42, 1.00) 11.8
Eight 8,347 3,472 (8, 196) 4,096 (0.31, 1.00) 15.6
Rod 27,282 13,136 (24, 448) 27,296 (0.34, 1.00) 99.2

Assembly 29,850 9,248 (48, 692) 11,776 (0.32, 1.00) 87.1
Cross-hole 29,058 9,864 (32, 680) 9,920 (0.43, 1.00) 84.4

Joint 22,402 8,808 (32, 455) 8,808 (0.30, 1.00) 70.1
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.10: Torus model. (a) Splitting result; (b) Boolean operation and parametric mapping
result; (c) T-mesh; (d) solid T-spline; (e) solid T-spline with Bézier representation; (f) some
elements are removed to show the interior of (e); and (g) analysis result.

(c)

(a) (d) (b) (e)

Figure 3.11: Distribution of irregular nodes on the T-spline surface of the Eight model. (a)
Polycube method in [90] with details in (c); (b) Boolean operation method with details in
(d); and (e) smooth surface with continuity elevation.
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3.5 Results and Isogeometric Analysis

We have applied the construction algorithm to several models. Fig. 3.10 shows the result of

our torus primitive. It has no irregular nodes on the surface, and the generated elements have

high quality with the minimum Jacobian of 0.42. For the eight model in Figs. 3.11-3.12,

we compute the harmonic field twice to obtain the desired domain decomposition result.

Similar to Fig. 3.3, we first set the bottom and top points with the min and max temperature

respectively, compute the harmonic field and critical points to define three cross sections.

As shown in Fig. 3.12(a), we then set two cross sections with the min temperature and the

middle cross section with the max temperature, and obtain a new harmonic field. By tracing

its isoparametric lines and gradient directions, we can split the two torus regions. For the

middle regions, the isoparametric and gradient lines cannot provide proper decomposition

result, so we use the shortest distance method to find the splitting curves. Finally we obtain

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12: Eight model. (a) Temperature field to split the two torus regions; (b) splitting
result; (c) Boolean operations; (d) mapping result; (e) solid T-spline; (f) solid T-spline with
Bézier representation; (g) elements are removed to show the interior of (f); and (h) analysis
result.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3.13: Rod model. (a) One temperature field to split the bottom torus region; (b)
splitting result;(c) Boolean operations; (d) parametric mapping result (the torus primitive is
used in the bottom component, and the difference operation is used to create the small hole
in the top component); (e) solid T-spline; (f) solid T-spline with T-mesh; (g) solid T-spline
with Bézier representation; (h) some elements are removed to show the interior of (g); and
(i) analysis result.

the splitting result as shown in Fig. 3.12(b). The parametric mapping result, the Boolean

operations and the constructed volumetric T-spline model are shown in Fig. 3.12(c-g). We

also compared our result with the result from another polycube method [90]. Our method

yields fewer number of irregular nodes on the surface (8 vs. 16) with a better min Jacobian

(0.31 vs. 0.10).

With the degree elevation technique, the eight model is smooth everywhere on the

surface (Fig. 3.11(e)). In the rod model (Fig. 3.13), CAD assembly model (Fig. 3.16),

cross-hole model (Fig. 3.14), and joint model (Fig. 3.15), we compute the harmonic field to

split the torus or hole region. For the other regions, we trace the shortest distance among the
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3.14: Cross-hole model. (a) One temperature field to split the two hole region; (b)
splitting result; (c) Boolean operations; (d) parametric mapping result; (e) solid T-spline; (f)
zoom in to show the continuity elevation of (e); (g) solid T-spline with Bézier representation;
(h) some elements are removed to show the interior of (g); and (i) analysis result.

corners to split the model. Both the torus primitive and the difference operation are used here

in addition to the union of cubes, yielding good surface continuity and high quality elements.

We have also developed a 3D isogeometric analysis solver for static mechanics analysis [90].

For the Torus, Eight, CAD assembly, Cross-hole and Joint models, We fix the bottom and

apply a displacement load on the top part. Differently for the rod model, we fix the two flat

faces of the torus shape region and apply a displacement load on the top of the model, then

solve the linear elasticity problem. The analysis results show the displacement distribution

along the Z direction. For the CAD assembly model, we also solved the same problem with

Abaqus using tetrahedral mesh and finite element method (Fig. 3.16(g)). Comparison shows

that our volumetric T-splines can produce results with similar displacement distribution.

Our analysis results are very preliminary and comprehensive studies need to take place to

verify the analysis suitability of the volumetric models produced by our procedures. Specific

issues that need to be addressed are the effect of three-dimensional extraordinary points and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15: Joint model. (a) One temperature field to split the half torus region; (b) splitting
result; (c) Boolean operations; (d) parametric mapping result; (e) solid T-spline; (f) solid
T-spline and T-mesh; (g) solid T-spline with Bézier representation; (h) some elements are
removed to show the interior of (g); and (i) analysis result.

T-junctions on convergence. We note that these issues have not been studied at all in the

volumetric case and represent important computational and mathematical problems. We

hope to have more to say about them in the future.

3.6 Conclusion

In this chapter we have presented a novel algorithm to use Boolean operations to generate

trivariate volumetric T-splines from input models. With proper boundary conditions, a

harmonic field is computed to split the input geometry into hexahedral components. In
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(a) (b) (c)

(d) (e) (f) (g)

(d) (e) (f) (g)

Figure 3.16: CAD Assembly. (a) Surface mesh of the model; (b) temperature field to split
the top torus region; (c) splitting result; (d) Boolean operations; (e) mapping result (torus
primitive is used for the top component, and difference operation is used to create four
holes in the bottom base component); (f) subdivision result; (g) solid T-spline with T-mesh;
(h) solid T-spline with Bézier representation; (i) some elements are removed to show the
interior of (h); (j) analysis result. To solve the traditional linear elasticity problem, we fix the
bottom and apply a displacement load on the top part (Young’s modulus: 200GPa, density:
7900kg/m3, Poisson’s ratio: 0.3); and (k) Abaqus analysis result.

addition to the cube, a new primitive (torus) is introduced in the polycube construction. After

that, we perform the union and difference Boolean operations to convert the components into

primitives and then map them onto the polycube. Through octree subdivision and mapping,

we obtain the initial T-mesh. After making the T-mesh valid, we construct solid T-spline

and extract their Bézier representation.
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Chapter 4

Skeleton-based T-mesh Construction

This section presents a novel algorithm which uses skeleton-based polycube generation

to construct feature-preserving T-meshes. From the skeleton of the input model, we first

construct initial cubes in the interior. By projecting corners of interior cubes onto the

surface and generating a new layer of boundary cubes, we split the entire interior domain

into different cubic regions. With the splitting result, we perform octree subdivision to

obtain T-spline control mesh or T-mesh. Surface features are classified into three groups:

open curves, closed curves and singularity features. For features without introducing new

singularities like open or closed curves, we preserve them by aligning to the parametric lines

during subdivision, performing volumetric parameterization from frame field, or modifying

the skeleton. For features introducing new singularities, we design templates to handle them.

With a valid T-mesh, we calculate rational trivariate T-splines and extract Bézier elements

for isogeometric analysis.

4.1 Algorithm Overview

The overview of our algorithm is shown in Fig. 4.1. We use polycubes to split the domain

and perform parametric mapping to construct the T-mesh. With the skeleton generated from

a mean curvature flow algorithm [86], we split the skeleton into different branches. Each
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Figure 4.1: Overview of feature preservation in skeleton-based polycube construction and
volumetric parameterization.

branch yields one interior cube and several boundary cubes. These cubes split the domain

into different cubic regions. From the input model, we classify the surface features into

three groups and preserve them with different approaches.

Polycube Construction. We use the generalized cube definition here. For a generalized

cube, it is one boxed region enclosed by six surface patches. There are two kinds of cubes

here, interior cube and boundary cube. We first construct interior cubes directly from the

skeleton branches, and then project their corners onto the surface to generate new boundary

cubes. Interior and boundary cubes are combined together to split the whole model into

different cubic regions. Since for the boundary cubes, there are at most one face on the

surface, all the singularity edges from the cubes stay in the interior.

Feature Preservation. The input surface features are classified into three groups: open

curve, closed curve and singularity feature. Here, the open curve is required to satisfy the

condition that it can be mapped onto one certain parametric line. We use parametric mapping

and volumetric parameterization from frame field to preserve such features. The closed curve
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is required to topologically enclose a disc area and each closed curve can be mapped onto a

unit square. To preserve such features, the skeleton is modified to add or remove branches.

The singular feature is a singular point on the surface. It can be a sharp corner, saddle

point of a function, or point with discontinuous curvatures. We develop three templates to

insert new singularity points on the surface. With the modified polycube containing surface

features, we construct T-meshes by octree subdivision and projection [101, 56].

Solid T-spline Construction. From the T-mesh, we build rational solid T-splines [92].

The basis function of rational solid T-splines has the property of partition of unity by

definition, which makes it suitable for analysis. Different templates are developed to deal

with the singular nodes in the T-mesh, to make it valid for gap-free solid T-spline calculation.

From the valid T-mesh, we extract the local knot vectors [85, 91] and construct solid T-

splines. The Oslo knot insertion algorithm [34, 91] is used to calculate the transformation

matrix from rational T-spline basis functions to Bézer basis functions. This matrix is then

used to extract Bézier elements from T-splines, which can be directly used for isogeometric

analysis.

4.2 Skeleton-based Polycube Construction

Skeletons are simplified 1D representation of 3D objects, which can reflect the geometry

and topology. They contain geometrical information for volumetric parameterization and

can be used to assist our polycube construction.

4.2.1 Skeleton Generation and Splitting

There are different algorithms developed to extract skeletons from surface meshes, such as

mesh contraction [5], mean curvature flow [86], and the generalized sweeping method [61].

In this paper, we use the algorithm given in [86]. With the skeleton, we first split it into

different branches. For each branch, we define a B-spline curve and calculate the tangent
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(a) (b) (c)

Figure 4.2: Polycube generation for Bunny model. (a) Skeleton splitting results; (b)
generating interior cubes by shifting the skeleton branches; and (c) updated interior cubes
by iteratively enlarging the cross-sections and smoothing.

direction at each point. We decide if it needs further splitting by calculating the angle change

of the tangent directions at each point compared to the starting point: θ = acos(~t0 ·~ti). A

predefined threshold θ0 = 30◦ is used here. Some user interactions may be involved to

simplify the skeleton in this step, such as cleaning up small branches, combining nearby

bifurcations to trifurcations, or making the local branching region coplanar. Fig. 4.2(a)

shows the extracted skeleton and splitting result of the Bunny model.

4.2.2 Interior Cube Construction

To construct a generalized cube from one skeleton branch, we need to generate its 6 bounding

patches. These patches can be either planar or curved surfaces. We first shift the branches

about itself 8 times to generate 20 curves, as shown in Fig. 4.3(a). For each point on the

skeleton, we generate one plane perpendicular to the skeleton, and then calculate 8 equally-

spaced direction vectors on this plane to perform the shifting. Sometimes this method may

produce interior cubes with improper orientations, which can be adjusted interactively to

yield good parameterization results. The black curve is the original branch, the 8 blue

curves are generated from shifting, and the 8 green curves and 4 red curves are generated

by connecting the starting/ending points of the shifted curves. These curves are defined as

quadratic B-spline curves. With four B-spline curves, we define one Coons patch [21]. So
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for a skeleton, we generate 6 patches from the 20 curves. With these 6 patches, we define a

cubic domain.

(a) (b) (c)

Figure 4.3: Construction of interior cubes. (a) Generate an interior cube by shifting the
skeleton; (b) use half planes to deal with bifurcation; and (c) trifurcation.

Deal with Branches. To join cubes from different branches together at the bifurcation or

trifurcation, we split the cube patches to half planes and combine them together. The detailed

algorithm was present in [98, 99]. During this process, singularities will be introduced to

the polycubes along the shared edges of the half planes. Fig. 4.3(b) and (c) show how to

combine the cubes at the bifurcation and trifurcation situations. Instead of Coons patches,

the half planes at the intersection region are defined as planar patches, and points on the

plane are calculated from a linear interpolation of the corner points. Fig. 4.2(b) shows the

generated interior cubes of the Bunny model.

After all the interior cubes are connected properly, we iteratively enlarge each cross-

section of the cubes to adapt to the input model. For each node, we project it onto the

surface along the radial direction from the cross-section center. Smoothing is performed to

reduce the distortion from enlargement [96]. The enlarged and smoothed interior cubes of

the Bunny model are shown in Fig. 4.2(c).

4.2.3 Boundary Cube Construction

With the interior cubes constructed, we can generate the boundary cubes to split the whole

model. The boundary cubes are generated by projecting the patches of the interior cubes
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onto the surface. The detailed steps are explained as follows with one patch of a sphere

model in Fig. 4.4 as an example.

1. Project corners onto the surface. For one corner ci of the interior cube, if shared by

one cube, the projection direction is defined as
−→
d = −(−→u +−→v +−→w) (Fig. 4.4(b)), where

−→u ,−→v ,−→w are the unit direction vectors along the edges at ci. If shared by two cubes,

the direction is
−→
d = −(2−→u +−→v1 +−→v2 +2−→w) (Fig. 4.4 (c)). For bifurcation or trifurcation,

the projection direction is perpendicular to the plane defined by the skeleton branches

at that intersection point.

2. Generate curves. Suppose the corresponding point of ci on the surface is c′i , see

Fig. 4.4(a). The curve connecting ci and c′i is named a connecting curve (blue curves).

For one curve of the interior cube (black curves), we can find out one projected curve

on the surface (red curves) by finding the geodesic shortest path between the projected

corners. After projecting 4 corners of the interior patch, we define 4 connecting curves

and 4 projected curves. Intersections are not allowed between any pair of boundary

curves except at the endpoints. So when finding the path, vertices lying on the path

between two projected corners will not be revisited. If the projected corners are far

away from each other, or the geometry changes severely, we can project the middle or

quarter points of the interior curves onto the surface, and use them to help find the path.

However, if the projected corners are crowded or the valence of the projected corners

is low, we may locally subdivide the input mesh to ensure there is no intersection

among the paths.

3. Build patches. We define a connecting Coons patch with an interior curve, its

corresponding boundary curve and two connecting curves (light green patches in

Fig. 4.4(a)). Four connecting patches will be generated after the projection of an

interior patch. The four boundary curves define one boundary patch (yellow patch in
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Fig. 4.4(a)). For the boundary patch, instead of using Coons patch, we directly use

the surface region surrounded by these four curves.

4. Generate boundary cubes. With each interior patch, its corresponding boundary

patch and four connecting patches, we define the enclosed domain as a boundary cube.

(a) (b) (c)

Figure 4.4: Construct boundary cubes from an interior cube. (a) Sphere model with one
patch of the interior cube projected onto the surface; (b) projection direction of an interior
cube corner; and (c) the projection direction if a corner is shared by two cubes.

For an interior cube, depending on whether the bounding patches are shared by other

cubes, it can generate at most 6 new boundary cubes. For one boundary cube, it shares one

interior patch with the interior cube from which it is derived, and has only one bounding

patch on the surface. We can calculate a series of points on the Coons patches by giving m×n

pairs of parametric values, and use them for parametric mapping and octree subdivision.

The connecting patches may be distorted if the surface is bumpy or has a lot of features. We

can optimize the control points of interior and boundary curves. To perform optimization,

we should first unify the number of control nodes on the two opposite sides of one patch,

then generate one coarse hex mesh. With this hex mesh, we optimize the control points

by moving them toward the direction which can produce the maximum scaled Jacobian

using BFGS method [101, 36]. Fig.4.5(a) shows the four connecting patches generated and

optimized from one interior cube of the Bunny model.

With the interior and boundary cubes, we can split the model into different sub-domains.

This domain splitting result follows the skeleton of the input model and thus the generated
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T-mesh follows the topology of the input. If we want to change the orientation or the

number of cubes, we can simply modify the skeleton at the beginning. In addition, the

location of the projected cube corners on the surface can be optimized to help generate better

parameterization results [87].

The projection curve searching in step 2 is crucial to our surface decomposition. Our

method works well in general, but some improved surface splitting methods like the greedy

strategy [50] can help generate better results for very complicated models.

4.2.4 Singularity of Polycubes

An interior cube edge is a singular edge if it is not shared by 4 cubes. All the control nodes

lying on these singular edges are singular nodes. The singular graph of the T-mesh is the

graph which connects all the singular nodes. This graph satisfies the constraint that the

singular graph of a hex mesh should not start or end in the interior of the volume[72, 67].

After polycube construction, the singular graph is fixed. We can predict the positions of

singular points generated from octree subdivision. Fig.4.5(b) shows the singular graph of

the Bunny model.

With the proposed method to generate the interior and boundary polycubes, the singu-

larity graph follows the topology of the geometry. Most of the singularities are embedded

(a) (b)

Figure 4.5: Four connecting patches of Bunny model after optimization (blue and green
patches); and (b) its singular graph (red dots represent singular points on the surface).
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into the interior except a few singular points on the surface. Since singularities in the

solid T-spline are critical to obtain good results in isogeometric analysis, we would like to

introduce as few singular points as possible. This method performs well except those CAD

models with surface singularities, since no singular edge can be generated on the surface

with our method.

4.3 Feature Preservation

Surface features, such as smooth curves, sharp curves, and singular points, play an important

role in representing the surface details. In our algorithm, feature preservation is carried out

during T-mesh construction. For each cube, we project it onto a unit cube in the parametric

domain and perform octree subdivision to generate the T-mesh. This T-mesh contains all the

information from the input. The detailed projection and subdivision algorithm was present

in [101, 90]. The main difference between our T-mesh generation method and previous

research on skeleton-based volumetric composition and structured grid generation [22]

is that our T-mesh allows T-junctions, and there is no singular edge lying on the surface.

We classify surface features into three different groups: open curves, closed curves and

singularity points. They are dealt with different approaches.

4.3.1 Open Curves

In this section, two methods are developed to preserve open curves: parametric mapping and

volumetric parameterization from frame field. We require that the open curves preserved

here can be mapped onto parametric lines. For curves with self-intersection or spiral shape,

we have no way to map them onto any parametric line in our algorithm, so we cannot

preserve them.

Parametric Mapping. For an open curve feature, we align it to a certain parametric

line during parametric mapping. By doing this the generated T-mesh contains a sequence
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Figure 4.6: Feature alignment during parametric mapping.

of nodes to follow this curve. If one feature line crosses two different boundary cubes,

we would constrain that the shared point on the boundary of these two cubes should be

mapped to the same parametric value. Then there would be no discontinuity in the resulting

subdivision between the two cubes. The detailed steps are as follows (Fig. 4.6):

1. For a feature curve s, we first find out the patch p containing it in the cube C and

map patch p to a unit square p′ in the parametric domain. The feature curve s will be

mapped to curve s′ on p′;

2. Calculate the average angle θ̄ between the tangent direction at each point and the u

axis. If θ̄ < π/4, we align p′ to the v direction. Otherwise we align it to the u direction;

3. Set the coordinate at the aligned direction to be the same value for all the points lying

on p, calculate the parametric coordinate at the other direction by a chord length

parameterization, and then perform surface mapping again to get results with aligned

features.

For an open curve within one surface patch, if the tangent directions at the two end

points vary a lot (e.g., they form an angle greater than 60◦), or the curve intersects with two

adjacent boundaries of one patch, we may need to map half of the curve to the parametric u

direction and the other half to the v direction. The turning point is C0-continuous along the

curve.

It is convenient to perform the alignment during parametric mapping. However, it is

difficult to propagate this feature information into the interior of the T-mesh. This is because
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nodes on the surface are calculated from mapping and projection, but nodes in the interior

are from a linear interpolation [101]. So the deeper into the interior, the less influence the

feature information has. As a consequence, it may yield distorted T-mesh elements even

with smoothing performed. To resolve this issue, in the following we use parameterization

from 3D frame field to preserve these open curve features.

(a) (b) (c) (d)

Figure 4.7: Feature alignment for the Bunny model. (a) T-mesh without feature alignment;
(b) Bézier elements without feature alignment; (c) T-mesh with feature alignment; and (d)
Bézier elements with feature alignment.

(a) (b) (c) (d)

Figure 4.8: Feature alignment of a sphere model. (a, b) Bézier representation of solid T-spline
from mapping and its interior elements; and (c, d) result from frame field parameterization
and its interior.

Frame Field. A volume parameterization of geometry V from frame field can be

recognized as an atlas of maps f : V→ R3, p 7→ (u,v,w)T . f is a piecewise linear field in

each input tetrahedral mesh element. The integer grids in R3 would induce a hex tessellation
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of the geometry. The volume parametrization from the field [67] is performed by:

min
∑

t
vol ·Dt, (4.1)

where

Dt = ‖c∇ f (u)−Ut‖
2 + ‖c∇ f (v)−Vt‖

2 + ‖c∇ f (w)−Wt‖
2, (4.2)

vol is the volume of a tetrahedron, c is the length scale of parameterization, and {Ut,Uv,Uw}

are the initialized frame field.

For a detected feature curve lying in cube C, we use the six patches of the cube to

generate a high quality uniform tetrahedral mesh using TetGen [1] and apply a frame field to

it. We initialize the frame field cube by cube. For each cube, we first initialize the cross field

on the bounding patches with one direction following the patch normal, and then propagate it

to the interior. Field optimization is also performed after the propagation by minimizing one

energy function given in [54]. The energy function quantitatively evaluates the smoothness

of the frame field between each pair of neighboring tetrahedral elements by calculating the

difference along each corresponding parametric direction. The permutation matrix [67]

between any pair of neighboring tetrahedral elements is set to be the identity matrix if they

are in the same cube. The permutation matrix among different cubes is set properly to ensure

that the shared cube edges are singular edges. During frame field initialization, the feature

line information is used to guide the field. Then we perform volumetric parameterization to

get an all-hex mesh. This mesh will be used as the initial T-mesh, combined with other cubes

for subdivision to generate the T-mesh for the whole model. For one cube, if subdivided by

n times without T-junctions, there will be 2n + 1 control points at one parametric direction.

To make the parameterization result compatible with the subdivision of neighboring cubes,

we adjust the length scale c and modify the isoparametric line spacing to perform remeshing.

Fig. 4.7 shows the Bunny model without and with feature alignment. An open curve is

preserved on the back of the Bunny. Fig. 4.8 shows the result of a sphere model with an
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Skeleton modification of a torus model. The skeleton is shown in (a), (b) and
(c), where (a) shows the original skeleton, (b) shows the skeleton with one new branch
inserted to form bifurcation and (c) shows the skeleton with two new branches inserted to
form trifurcation; the corresponding T-spline models with Bézier representation are shown
in (d), (e) and (f) respectively.

open curve feature aligned from direct mapping and frame field parameterization. Compared

to direct mapping, the frame field parameterization method has the following advantages:

(i) the change of the element size is gradual, and the influence of the feature line to its

surrounding elements is smoother; and (ii) the feature information can propagate further

into the interior. As shown in Fig. 4.8(d), the feature curve even influences the subdivision

of the interior cube.

4.3.2 Skeleton Modification and Boolean operations

The domain splitting and polycube construction result depend on the skeleton. By modifying

the skeleton, we can change the ways of domain splitting and the design of polycube. Since

the patches of interior cubes are projected onto the surface to generate boundary cubes, we

can generate one boundary cube with the enclosed region by the closed curve as its boundary
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patch. To build this boundary cube for the closed curve and preserve such a feature, we

should add one new branch to the skeleton.

(a) (b) (c) (d)

Figure 4.10: Skeleton modification for a closed curve on a torus model. (a) Original model;
(b) preserving one feature region by adding one new branch; (c) removing all the elements
generated from the new branch; and (d) extruding the feature curve region.

To add a new branch, we find out the center point of the enclosed surface region and

connect it to the skeleton. With this branch, a new bifurcation is introduced to the skeleton.

After building a new interior cube from the new branch, its four corners away from the

bifurcation are projected back onto the closed curve on the surface. These four projected

corners split the close curve into four consecutive ones. The region enclosed by the closed

curve is defined as a boundary patch and a boundary cube is built. With the modified

polycube, we can preserve the closed curves during the following subdivision.

Fig. 4.9 shows a torus model with skeleton modification. The original skeleton of the

torus model is one circle. We modify it by adding one or two new branches. The results

show that by modifying the skeleton, we can not only change the domain splitting, but also

change the number of singular points on the surface. When one new branch is added, six

new singular points are introduced on the surface, two from the bifurcation part and four

from the corners of the new branch. Fig. 4.9(e-f) shows the constructed T-spline models.

Fig. 4.10(b) shows the torus model with one closed curve feature preserved on the surface.

The closed curve feature will impact both the elements inside the enclosed region, and those

from the neighboring cubes.
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Boolean Operations. By combining feature alignment and skeleton modification to-

gether, we can perform different kinds of Boolean operations on the generated model, like

union and subtraction. Fig. 4.10(c) shows the modified torus model with all the elements in

the feature curve region removed. Fig. 4.10(d) shows the new torus model with the closed

curve region extruded from the surface. With Boolean operations, we can simplify the

modeling process with proper skeleton modification.

4.3.3 Singularity Modification

After generating the interior and boundary cubes, the topology of the singular graph is fixed.

If there are other singular points on the surface to be preserved, we may have to regenerate

our polycube. As indicated in Section 4.3.2, modifying the skeleton can change the number

of the singular nodes on the surface, but this modification also changes the structure of the

polycubes.

To preserve surface singularities without changing the polycube, we design some tem-

plates which follow the property of singularity distribution in hex meshes. As indicated

in [67], the singular graph should not start or end in the interior of the hex meshes. So

the designed template should provide a singular edge path connecting the desired surface

singularity to the existing singular graph in the interior. We develop three templates to

insert surface singularities. These templates can be applied to boundary cubes or elements

containing the desired singularity. The cube or element will be split into smaller elements

and new singularities are introduced on the surface and in the interior.

The templates are designed with the following two constraints: (a) the introduced face

singularities should only lie on the boundary patch of the polycube, or the boundary face of

the element; and (b) the four edges of the face containing the face singularity should not be

singular edges. These two constraints ensure that the templates will only change the interior

region of the cube or element without influencing its neighbors. We design three templates,

each of which changes the surface singularity of the polycube differently.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k)

Figure 4.11: Designing three templates by mirroring, combining and simplifying the primi-
tives. (a-c) Template 1; (d-g) Template 2; and (h-k) Template 3.

Template 1 is derived from a 2-refinement splitting primitive of unstructured hex

meshes [74]. It introduces three singular nodes on three different faces, see Fig. 4.11(a).

We combine four of them together and perform simplification whenever possible. The

initial primitive is first extended by combining it with its mirror image corresponding to one

face containing face singularity. The face singularity is therefore wrapped into the interior.

Simplification is performed by merging elements together, see Fig. 4.11(b). The simplified

mesh is combined with its mirror image again with further simplification to get the final

template, as shown in Fig. 4.11(c).

This template introduces four new singular points on the surface of the initial cube.

During mapping we align the singular points in this template with the desired singular points

on the surface. This template may change the property of the original four corners on the
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surface. If these corners are regular points, they will become irregular after applying the

template. Otherwise they will switch from singular to regular.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: New singularity insertion of a sphere model, where (a-d) show the singular
graph of the T-mesh, and (e-h) show the T-spline with Bézier element representation. The
original sphere model is in (a), Template 1 is applied to (b), Template 2 is applied to (c), and
Template 3 is applied to (d).

Template 2 uses two of the 13 meshable primitives introduced in [73, 72]. Fig. 4.11(d)

shows two of the solid primitives combined together and their splitting pattern. The splitting

pattern of these two primitives guarantees that there is no gap when matching them together.

The built cube from the combination has three singular points on three different faces. We

use the same merging-simplifying technique to wrap undesired face singular points into

the interior. The final template is shown in Fig. 4.11(g). This template will insert four new

collinear singularity points on the surface. The four corners of the original cube are changed

in the same way as Template 1.

Template 3 is different from Template 2 in choosing meshable primitives, see

Fig. 4.11(h). As shown in Fig. 4.11(k), this template will insert eight new singularity points

on the surface. Four of them are collinear and the other four form one surrounding circle.

The original four corners of the cube are not influenced by this template.
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Table 4.1: Statistics of all the tested models.
Model T-mesh Irregular nodes Bézier Scaled Jacobian Hausdorff Time Preserved

nodes (S, I) elements (min, ave, max) Distance (s) feature

Bunny 12,503 (14, 95) 16,622 (0.20, 0.68, 1.00) 2.57e-2 73.8 –
Bunny (F) 12,758 (14, 96) 17,013 (0.20, 0.62, 1.00) 2.30e-2 74.5 OC
Amphora 24,894 (8, 319) 26,686 (0.12, 0.65, 1.00) 1.23e-2 182.3 –

Amphora (F) 34,543 (12, 419) 40,145 (0.12, 0.65, 1.00) 8.7e-3 253.7 CC
Kitten 20,281 (28, 279) 24,502 (0.15, 0.71, 1.00) 1.49e-2 115.3 OC, SG
Rod 21,536 (18, 391) 11,898 (0.35, 0.79, 1.00) 6.5e-3 106.7 OC, CC

Hanger 19,897 (16, 571) 6,564 (0.30, 0.72, 1.00) 5.1e-3 75.6 OC

Note: OC: open curve, CC: closed curve, SG: singularity, F: stands models with preserved feature, S:
nodes on the surface, and I: nodes in the interior.

We applied all the three templates to a sphere model to show how they change the

singularity points on the surface and the singular graph in the interior. Fig. 4.12 shows the

singular graph (blue curves) of the T-mesh with singular points (red point) on the surface,

and solid T-spline results. Template 1 does not change the total number of singular points

on the surface, but shrink the region enclosed by the four singular nodes. Template 2 erases

the original four singular nodes, and introduces four new collinear singular points. Template

3 does not influence the original four singular points, with four collinear singular points

and the other four forming one circular region. All the singular points on the surface are

connected to the singular graph in the interior.

For a singular point in T-mesh, it decreases the continuity of T-spline from C2 to C0

within its two ring neighborhood. Which template should be chosen to preserve certain

surface singularity depends on the size of the two-ring neighborhood influenced by the

singular point, and whether the singular information is allowed to propagate outward. The

singularity points we insert on the surface are either valence 3 or valence 5. Our templates

cannot handle higher-valence singularities.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.13: Amphora model. (a) Input boundary triangle mesh; (b) skeleton splitting result;
(c) singular graph; (d) constructed solid T-spline and T-mesh; (e) solid Bézier elements; and
(f) the cross-section. A designed dolphin shape closed curve is preserved and (g) singular
graph after skeleton modification; (h) solid T-spline and T-mesh; and (i) Bézier elements.

4.4 Results and Discussion

We have tested our algorithm on different models. The statistics is given in Tab. 1. We

can observe that the generated elements are of good quality. All the models were scaled to

make the maximum edge length of the bounding box equal to 1.0. We then calculated the

Hausdorff distance between our generated surface and the input boundary. From Tab. 1, we

can observe that our resulting parameterization has good surface accuracy. Closed and open

curve features were tested in Figs. 4.13 and 4.16. We also modified the singularities on the

surface of the Kitten model to preserve certain singularities. Boolean operations and sharp

feature preservation were tested in Figs. 4.15 and 4.14.

For the Kitten model in Fig. 4.16, we have preserved detailed feature information,

comparing to the result in [90], which uses a harmonic field to split the domain and build
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.14: Hanger Model. (a) Skeleton splitting result, only the two ring regions are used;
(b) the initial T-mesh with open curves (red) preserved, and the extrusion paths (green); (c)
using extrusion and union to get the final T-mesh; (d) singular graph of the final T-mesh; (e)
the final T-mesh with constructed solid T-spline; (f) the extracted solid Bézier elements; and
(g) some Bézier elements are removed to show the cross-section.

polycubes. For the mouth region, we preserved the feature lines of the mouth by aligning

it to parametric lines. For the left eye, we used Template 3 and for the right eye we used

Template 2. The singularity information in the left eye region are constrained in the area,

while in the right eye region it is propagated outward. For the Rod model in Fig. 4.15, we

used Boolean operations during the T-mesh construction. We only used the skeleton of

the torus region and the middle cylindrical region to build the polycube. With the initial

subdivision result, we performed extrusion and subtracted one small cylindrical region from

it. All the points on the extruded surface were projected back to the input surface to get

the final T-mesh. Sharp features were also preserved. We treated these sharp features as

open curves, aligned them to certain parametric lines, and duplicated them in the T-mesh

[56]. For the circular closed curve at the torus region, we split it into multiple open curves

because it spans multiple cubes, and then aligned each open curve to the parametric line.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 4.15: Rod model. (a) Skeleton splitting result; (b) initial T-mesh; (c) singular graph
of the final T-mesh; (d) final T-mesh with solid T-spline; (e) the extracted solid Bézier
elements; and (f) some Bézier elements are removed to show the cross-section. (g-k) show
the Boolean operations to the T-mesh; (g) T-mesh from subdivision with selected extrusion
region; (h) the extrusion result; (i) Boolean subtraction result by removing elements in the
cylindrical hole region; (j) projecting the nodes from extrusion back to the input surface;
and (k) pillowing to improve the element quality.

For the Hanger model in Fig. 4.14, since the components connecting the two hollow

cylinders are thin, constructing interior and boundary cubes for them will lead to very thin

elements. Therefore we only use the skeletons to generate the two hollow cylinders and

preserve the intersection curves between the cylinders and the connecting components, as

shown in Fig. 4.14(b). Then we found the extrusion paths for the corners of the intersection

curves, and generated a group of elements to union the two cylinders together. The surfaces

generated from extrusion were projected back to the input boundary. In this way, the sharp

feature information of the model was preserved.

Tab. 4.1 indicates that the developed algorithm is fast in generating complicated vol-

umetric T-spline models. Only around 100s is needed to generate one model with about
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 4.16: Kitten model. (a) The input boundary triangle mesh; (b) skeleton splitting
result; (c) singular graph; (d) the constructed solid T-spline and T-mesh; (e) the extracted
solid Bézier elements; (f) some Bézier elements are removed to show the cross-section; and
(g) the extracted solid Bézier elements from [90]. The zoom-in pictures of the mouth, left eye
and right eye are given in (h), (j) and (l); their corresponding Bézier element representations
are given in (i), (k) and (m). Template 3 is applied to the left eye region, while Template 2 is
applied to the right eye region.
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20,000 nodes. The Boolean operation algorithm introduced in Chapter 3 has similar speed.

But constructing volumetric T-splines within a few seconds for interactive design and

modification is not possible yet. Since isogeometric analysis using volumetric T-spline

models is more time consuming, volumetric T-spline construction is not the bottleneck for

design-through-analysis methodology so far. To improve the modeling speed in the future,

we can combine skeleton-based polycube construction with Boolean operations in-depth to

construct the models incrementally without reconstructing the whole geometry after design

modification.

4.5 Conclusion

In conclusion, we have developed a new algorithm to build feature-preserving T-meshes

using skeleton-based polycube generation. Surface features are classified into open curves,

closed curves and singular features. Parametric mapping, volumetric parameterization

from frame field, skeleton modification and singularity modification are the corresponding

methods to preserve them. The constructed solid T-spline follows the topology of the input

model and detailed features are preserved. In the future, we are planning to combine medial

axis and medial surfaces together to assist polycube construction. Since more geometrical

and topological information is contained in medial axis and medial surfaces, the generated

polycubes can better represent the geometry, and may introduce fewer singularities in the

interior.
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Chapter 5

Weighted T-splines

Partition of unity and linearly independence properties are the prerequisites for isogeometric

analysis. Only a restricted type of T-splines can be used in analysis, such as a subset of

standard T-splines named analysis-suitable T-splines [80]. One way to ensure the constructed

T-spline analysis-suitable is to apply topological constraints to the control mesh, that is, the

T-junction extensions from different parametric directions cannot intersect with each other

[80].

To build T-spline models with less geometrical constraints for isogeometric analysis,

in this chapter we present a new type of T-spline, named the weighted T-spline. Weighted

T-spline basis functions satisfy partition of unity and are proved to be linearly independent.

Interval duplication algorithm is developed for handling extraordinary nodes. Compared with

standard T-splines, the weighted T-splines introduce fewer control points for the same level

of local refinement with a bounded surface error. With weighted T-spline, we reparameterize

the B-reps of CAD models and build volumetric T-spline for analysis. Interval duplication

method is developed to handle extraordinary nodes with weighted T-splines. The surface

continuity around the extraordinary nodes are increased to GC1 with optimization method.

Sweeping and parametric methods are also developed to generate volumetric weighted

T-splines.
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(a) (b) (c)

Figure 5.1: Trimmed NURBS surface. (a) The input NURBS and a trimming curve; (b) the
control mesh of (a); and (c) the trimmed NURBS surface.

5.1 Weighted T-splines

T-spline can be used to reconstruct designed NURBS surface patches with local refinement.

Quadtree subdivision with constraints is a commonly used refinement method. NURBS

satisfy partition of unity and can represent constant during analysis. However, the T-spline

resulting from quadtree subdivision may not be suitable for analysis because they cannot

always satisfy partition of unity. Fig. 5.2(a) shows one NURBS surface. After subdividing

an element in the center, we obtain a refined T-spline surface, as shown in Fig. 5.2(b).

T-spline basis functions do not satisfy partition of unity anymore.

To resolve this problem, local refinement of analysis-suitable T-splines was studied in

[80]. The topological constraint to the T-mesh configuration was applied to ensure that after

(a) (b) (c)

Figure 5.2: T-spline local refinement by subdividing one element into four smaller ones.
(a) The original NURBS surface; (b) the obtained T-spline surface after subdividing one
element with T-spline basis functions not satisfying partition of unity; and (c) the obtained
standard T-spline surface by applying the topological constraint [80] to the T-mesh.
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refinement, the resulting T-spline is a standard one and it can still be used in analysis. A

T-junction extension algorithm was also introduced to the locally subdivided T-mesh. Fig.

5.2(c) shows the obtained standard T-spline surface, which preserves the geometry and is

analysis-suitable.

Even though the algorithm given in [80] prevents excessive propagation of refinement,

there are still a lot of new control points introduced. This becomes more significant when

the to-be-refined local region is large, and the refinement level is high. Here the refinement

level refers to the quadtree subdivision level. For instance, given the NURBS surface in

Fig. 5.1(a), we use the trimming curve in Fig. 5.1(b) to decide the to-be-refined region. The

T-mesh after four levels of refinement following the refinement algorithm in [80] is shown

in Fig. 5.3(a), and the resulting standard T-spline surface is shown in Fig. 5.3(b). We can

observe that to meet the topological constraint, some elements far away from the trimming

curve also need to be refined.

(a) (b)

Figure 5.3: T-spline generated with four levels of local refinement with the algorithm given
in [80]. (a) T-mesh; and (b) the obtained standard T-spline surface.

If we modify the T-spline basis functions defined on the locally subdivided T-mesh (e.g.,

Fig. 5.2(b)) such that they satisfy partition of unity and are linearly independent, we can

release the topological constraints to the T-mesh and introduce fewer control points. To

address this issue, in the following we will present a new technique named the weighted

T-spline.
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5.1.1 Weighted T-spline Basis Functions

The definition of the weighted T-spline is based on the concept of T-spline and its refinability

property. We calculate and assign a new weight to each children of the identified T-spline

basis functions. There are mainly three steps to construct the weighted T-spline.

• Quadtree Subdivision in Parametric Space (Step 1). Based on the local refinement

constraints, we apply quadtree subdivision in the parametric space and obtain the

corresponding T-spline basis functions;

• Calculation of Weights (Step 2). Identify the basis functions that do not satisfy

partition of unity, and calculate a new weight for each involved children basis function;

and

• Calculation of Control Points in Physical Space (Step 3). Calculate the control

points of the refined T-mesh in physical space by using a transformation matrix and

solving linear equations.

Quadtree Subdivision in Parametric Space (Step 1). First, we need to identify to-

be-refined regions, which can be defined using trimming curves or the surface error. We

compute a group of sampling points on the trimming curve adaptive to its local curvature,

and mark elements with more than one sampling point as to-be-refined. Then we perform

quadtree subdivision on all to-be-refined elements until no such element exists in the T-mesh.

To ensure that the refinement is highly localized, we require that the local refinement should

satisfy the following two refinement constraints:

i. The local refinement is based on strongly balanced quadtree subdivision, which means

that the refinement level between any two neighboring elements cannot be greater

than one; and

ii. For any basis function, the level difference between any pair of its supported elements

cannot be greater than two.
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After subdividing to-be-refined elements, we check the refinement level of each element

and further subdivide those elements that violate the first constraint. Meanwhile, the knot

vectors are obtained for each vertex, and their corresponding basis functions are defined.

Then we check the second constraint and if it is not satisfied, we subdivide the supported

element at the lower level. The two constraints are checked iteratively until they are satisfied

everywhere.

A new set of T-spline basis functions is defined on the refined T-mesh in the parametric

domain, which generally does not satisfy partition of unity. However, partition of unity is a

prerequisite for both geometric design and analysis. To address this issue, instead of using

standard T-splines, we next develop the weighted T-spline basis functions.

Calculation of Weights (Step 2). T-spline basis functions are defined on local knot

vectors inferred from the T-mesh [79]. Its refinability property is briefly reviewed here

as it is fundamental to our weight calculation. T-spline basis functions inherit the re-

finability property directly from B-spline basis functions. Consider a local knot vec-

tor Ξi = {ξi,1, ξi,2, ξi,3, ξi,4, ξi,5} on which a basis function Ni(ξ) is defined. By inserting

k (k ≥ 1) knots into Ξi, a new knot vector Ξ̄i can be obtained that Ξ̄i = {ξ̄i,1, ξ̄i,2, . . . , ξ̄i,k+5}

where ξ̄i,1 = ξi,1 and ξ̄i,k+5 = ξi,5. Based on each local knot vector {ξ̄i,p, ξ̄i,p+1, . . . , ξ̄i,p+4}

(1 ≤ p ≤ k + 1) in Ξ̄i, one children basis function Nc
i,p(ξ) is defined. Refinability indicates

that Ni(ξ) can be represented by a linear combination of Nc
i,p(ξ), and we have

Ni(ξ) =

k+1∑
p=1

ci,pNc
i,p(ξ), (5.1)

where ci,p (ci,p > 0) are the refinement coefficients obtained from knot insertion [34] and

Nc
i,p(ξ) are called children of Ni(ξ).

The input T-mesh supports non-uniform knot interval configurations. We always bisect

non-zero intervals to perform local refinement. An interval of 1/2n of the input is called

a level-n knot interval. For the refinement of a basis function, if it is defined on uniform-
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(a) (b)

Figure 5.4: Children of N1(ξ) and N2(ξ). (a) N1(ξ) (the black curve) and its five children
weighted by refinement coefficients (the red, blue, orange, purple and green curves); and
(b) N2(ξ) (the black curve) and its four weighted children (the red, blue, orange and purple
curves). The black squares represent the inserted knots for refinement.

level knot intervals, we bisect all the intervals. Otherwise, we refine it by inserting knots

to make all the intervals equal to its existing highest level knot interval. For example,

the basis function N1(ξ) (the black curve in Fig. 5.4(a)) is defined on a uniform knot

vector Ξ1 = {0,1,2,3,4}. By bisecting all the knot intervals of Ξ1, we insert four knots

{0.5,1.5,2.5,3.5}. According to Eqn. (5.1), we have all the five refined knot vectors with

the level-1 knot interval 0.5, where five children basis functions are defined (the red, blue,

orange, purple and green curves in Fig. 5.4(a)). The corresponding refinement coefficients

are 0.125,0.5,0.75,0.5,0.125, respectively.

Consider another basis function N2(ξ) defined on a non-uniform knot vector Ξ2 =

{0,1,2,3,3.5} as shown in Fig. 5.4(b). We insert three knots {0.5,1.5,2.5} to make all the

knot intervals equal to the level-1 knot interval 0.5. We obtain four refined knot vectors, and

N2(ξ) has only four children basis functions; see the red, blue, orange, purple and green

curves in Fig. 5.4(b). The refinement coefficients are 0.4,0.725,0.5,0.125, respectively.

Based on the refinability, we develop the weighted basis functions by recalculating a new

weight for each children basis function to satisfy partition of unity.
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Given the jth basis function Nr
j(ξ,η) defined on the locally refined T-mesh, refinability

indicates

Nr
j(ξ,η) =

∑
q

cr
j,qNc

j,q(ξ,η), (5.2)

where Nc
j,q(ξ,η) is the qth children basis function of Nr

j(ξ,η). The weighted T-spline basis

function with respect to Nr
j(ξ,η) is defined as

Nw
j (ξ,η) =

∑
q

h j,qNc
j,q(ξ,η), (5.3)

where h j,q is the weighting coefficient. Different from the truncation operations in [32, 33,

94], which directly discard the identified children basis functions, weighted T-spline basis

functions calculate a new weight for each children basis function. For all h j,q, we have

0 < h j,q ≤ c j,q.

Next we discuss how to calculate the weighting coefficient h j,q. Suppose T is the T-mesh

with basis functions satisfying partition of unity. Tr is the T-mesh obtained by locally

refining T. According to partition of unity and refinability, we have

m∑
i=1

Ni(ξ,η) =

m∑
i=1

∑
p

ci,pNc
i,p(ξ,η) = 1, (5.4)

where Ni(ξ,η) is a basis function defined on T, Nc
i,p(ξ,η) is its pth children basis function,

and m is the number of basis functions on T. For Tr, there are n (n > m) basis functions

Nr
j(ξ,η) defined on it and we have

n∑
j=1

Nr
j(ξ,η) =

n∑
j=1

∑
q

cr
j,qNc

j,q(ξ,η), (5.5)

where Nc
j,q(ξ,η) is the qth children basis function of Nr

j(ξ,η). Note that partition of unity is

not satisfied in general.
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(a) (b) (c) (d)

Figure 5.5: Children basis support before and after refinement. (a) T-mesh with level-`
(` ≥ 0) knot intervals; (b) the same domain with level-(`+ 1) knot intervals. Purple circles
represent the basis functions defined in this local domain; (c) the green knot has 25 children
basis functions (red circles); and (d) after subdividing the blue element, the green knot has
only 9 children basis functions (blue circles).

Nc
i,p(ξ,η) and Nc

j,q(ξ,η) are defined on the uniform knot vectors with the same knot

interval (without considering the boundary), therefore the set of all Nc
i,p(ξ,η) equals to the

set of all Nc
j,q(ξ,η), denoted as Nc. For example, Fig. 5.5(a) represents a T-mesh with the

level-` (` ≥ 0) knot intervals and Fig. 5.5(b) shows the same domain with the level-(`+ 1)

knot intervals. Suppose N1(ξ,η) is the basis function associated with the green knot in Fig.

5.5(c). N1(ξ,η) has 25 children basis functions defined on the uniform level-(`+ 1) knot

intervals; see the 25 red circles. After subdividing the blue element, the local knot vector of

the green knot is changed, so N1(ξ,η) changes to Nr
1(ξ,η). Nr

1(ξ,η) has only 9 children basis

functions defined on the uniform level-(`+ 1) knot intervals (blue circles in Fig. 5.5(d)).

Therefore, we can express Ni(ξ,η) as

Ni(ξ,η) =

nc∑
k=1

Ri,kNc
k (ξ,η), (5.6)

where Nc
k ∈ N

c, and nc is the dimension of Nc. We have

Ri,k =


ci,p if Nc

k (ξ,η) = Nc
i,p(ξ,η);

0 otherwise.
(5.7)
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Similarly for Nr
j(ξ,η), we have

Nr
j(ξ,η) =

nc∑
k=1

Rr
j,kNc

k (ξ,η), (5.8)

where

Rr
j,k =


cr

j,q if Nc
k (ξ,η) = Nc

j,q(ξ,η);

0 otherwise.
(5.9)

Let

h j,q = skRr
j,k, (5.10)

where

sk =

m∑
i=1

Ri,k

n∑
j=1

Rr
j,k

. (5.11)

According to Eqns. (5.3), (5.9) and (5.10), the weighted basis function Nw
j (ξ,η) with respect

to Nr
j(ξ,η) is expressed as

Nw
j (ξ,η) =

∑
q

h j,qNc
j,q(ξ,η) =

nc∑
k=1

skRr
j,kNc

k (ξ,η). (5.12)

From Eqns. (5.6) and (5.12), we can obtain

n∑
j=1

Nw
j (ξ,η)−

m∑
i=1

Ni(ξ,η) =

n∑
j=1

nc∑
k=1

skRr
j,kNc

k (ξ,η)−
m∑

i=1

nc∑
k=1

Ri,kNc
k (ξ,η)

=

nc∑
k=1

Nc
k (ξ,η)

sk

n∑
j=1

Rr
j,k −

m∑
i=1

Ri,k


= 0.

(5.13)

Therefore
n∑

j=1
Nw

j (ξ,η) =
∑m

i=1 Ni(ξ,η) = 1, and thus partition of unity is satisfied for the

weighted T-spline basis functions.
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Example 3.1. Fig. 5.6(a) shows a local domain of T-mesh T where Ni(ξ,η) are defined.

After subdividing one element, we get the T-mesh Tr in Fig. 5.6(b), where Nr
j(ξ,η) are

defined. Note that in this local domain, T only has level-` knot intervals and Tr has both

level-` and level-(`+ 1) knot intervals.

Fig. 5.6(c) shows the same domain with the level-(`+ 1) knot intervals everywhere

and Nc
k(ξ,η) are defined on it. Here we take the Nr

6(ξ,η) as an example to show how to

develop its weighted basis function Nw
6 (ξ,η). Nr

6(ξ,η) has 9 children basis function Nc
k (ξ,η),

where k = 1,2, . . . ,9 (shown in Fig. 5.6(d)). In T, Ni(ξ,η) (i = 1,2, . . . ,16) has children basis

functions Nc
k(ξ,η). We have

m∑
i=1

Ri,k =
16∑
i=1

Ri,k = 1 since Ri,k = 0 for i = 17, . . . ,m. We can

obtain
n∑

j=1
Rr

j,k from Eqn. (5.9) and the corresponding sk from Eqn. (5.11). The coefficients

Rr
6,k of Nc

k(ξ,η) are shown in Fig. 5.6(e). We can obtain the weighted coefficients h j,q by

Eqn. (5.10), shown in Fig. 5.6(f). Nr
6(ξ,η) and Nw

6 (ξ,η) are plotted in Fig. 5.6(g, h). For

reference, see Tab. 1 for the values of
m∑

i=1
Ri,k,

n∑
j=1

Rr
j,k, sk, Rr

6,k and h j,q (=sk ·Rr
6,k), where

k = 1,2, . . . ,9.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: (a) A local domain with the indexing of Ni(ξ,η); (b) the same domain after
subdividing the blue element with the indexing of Nr

j(ξ,η); (c) one level higher knot intervals
and partial indexing of Nc

k (ξ,η); (d) children basis functions with the indexing of Nr
6(ξ,η);

(e) 9 refinement coefficients of Nr
6(ξ,η); (f) 9 weighted coefficients of Nw

6 (ξ,η); (g) shape of
Nr

6(ξ,η); and (h) shape of Nw
6 (ξ,η).
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Table 5.1: The calculated
m∑

i=1
Ri,k,

n∑
j=1

Rr
j,k, sk, Rr

6,k and h j,q in Example 3.1.

k
m∑

i=1
Ri,k

n∑
j=1

Rr
j,k sk Rr

6,k h j,q (=sk ·Rr
6,k)

1 1.0 1.000625000 0.999375390 0.022500000 0.022485946
2 1.0 1.002500000 0.997506234 0.090000000 0.089775561
3 1.0 1.003125000 0.996884735 0.112500000 0.112149532
4 1.0 1.002500000 0.997506234 0.090000000 0.089775561
5 1.0 1.010000000 0.990099009 0.360000000 0.356435643
6 1.0 1.012500000 0.987654320 0.450000000 0.444444444
7 1.0 1.003125000 0.996884735 0.112500000 0.112149532
8 1.0 1.012500000 0.987654320 0.450000000 0.444444444
9 1.0 1.015625000 0.984615384 0.562500000 0.553846153

Remark 3.1. Since Ni(ξ,η) satisfy partition of unity, we have
m∑

i=1
Ri,k = 1 and

sk = (
n∑

j=1
Rr

j,k)−1. When sk = 1, we have h j,q = cr
j,q. In the second constraint of refinement,

for any basis function we require the level difference between any pair of its supported

elements is at most two. Therefore, the knot interval level difference of Nr
j(ξ,η) should also

be at most two. In this way the refinement is highly localized. In each refinement, we only

need to compute the weighted basis functions near T-junctions.

Calculation of Control Points in Physical Space (Step 3). We first calculate the

control points Pr
j associated with each refined basis function Nr

j(ξ,η) using the knot insertion

algorithm. Then for each T-mesh element, we identify all the T-spline basis functions with

support on it and check the partition of unity property. Each refined basis function Nr
j(ξ,η)

violating this property is identified and replaced by its corresponding weighted basis function

Nw
j (ξ,η). For these weighted basis functions, we calculate the associated control points

separately. Denoting Iw as the index set of the weighted T-spline basis functions, we enforce

that ∑
i∈Iw

Pw
i Nw

i (ξ j,η j) = S0(ξ j,η j) (5.14)
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holds for all j ∈ Iw, where Pw
i are the unknown control points, (ξ j,η j) are the parametric

coordinates, and S0 is the input surface. We can obtain Pw
i by solving a linear system

constructed from Eqn. (5.14).

Taking the trimming curve in Fig. 5.1(b) as a guidance, we locally refine the input

NURBS surface. Fig. 5.7(a-d) shows the T-meshes of Fig. 5.1(b) with refinement levels

from one to four. The corresponding weighted T-spline surfaces are shown in Fig. 5.7(e-h).

For the fourth level of refinement, compared to the standard T-splines in Fig. 5.3, the number

of control points is decreased from 1356 to 1016 by 25%, and the number of elements is

decreased from 1142 to 813 by 29%. We can observe that the weighted T-splines have the

following two obvious advantages in contrast with standard T-splines: (i) less topological

constraint is applied to the local refinement of the T-mesh and T-junction extension is not

necessary; and (ii) fewer control points are required for the same level of refinement.

Remark 3.2. Like hierarchical B-splines and T-splines, the weighted T-splines also

support local refinement. In (truncated) hierarchical B-splines and T-splines, higher level

control points have influence on a smaller local region, and in order to satisfy partition

of unity, some children basis functions are discarded in reconstructing a basis function.

Differently, the weighted T-splines involve a single level of T-mesh only where all control

points have similar influence, and partition of unity is guaranteed by computing a new

weight for each basis function instead of discarding children basis functions.

5.1.2 Linear Independence of Weighted T-spline Basis Functions

The basis functions need to be linearly independent for analysis. We use the following

three propositions to prove that the weighted T-spline basis functions defined on the locally

subdivided T-mesh are linearly independent.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: Results of four levels of refinement. (a-d) T-meshes with different refinement
levels from 1 to 4; and (e-h) the corresponding weighted T-spline surfaces.

Proposition 5.1.1 The necessary and sufficient condition for T-spline basis functions to be

linearly independent is that the T-spline-to-NURBS transformation matrix M is in full rank.

This proposition can be easily obtained from by Theorem 1 in [53]. That is, the linear

independence property of T-spline basis functions can be easily determined by checking the

rank of M.

Proposition 5.1.2 T-spline basis functions defined on the locally-refined T-mesh via

quadtree subdivision with the two constraints in Section 5.1.1 are linearly independent,

provided that the initial T-mesh is linearly independent.

proof 5.1.3 Refining a T-mesh element with quadtree subdivision is equivalent to adding

one vertical line first and then two short horizontal lines. As proved in [16], by inserting a

new vertical parametric line to a linearly independent T-mesh, the T-spline basis functions

are still linearly independent on the refined T-mesh. Similarly, the T-mesh remains linearly

independent by inserting a new horizontal parametric line. Therefore, the T-spline basis

functions are linearly independent after quadtree subdivision.
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Proposition 5.1.4 Let Nr denote the T-spline basis functions defined on the refined T-mesh,

and Nw the weighted T-spline basis functions. If Nr is linearly independent, then Nw is also

linearly independent.

proof 5.1.5 From Eqn. (5.8), we have

Nr = MrNc, (5.15)

in the matrix form, where Mr is the transformation matrix with the jth row, the kth column

entry Rr
j,k. As Nr is linearly independent and Nc represents a vector of NURBS basis

functions. According to Proposition 5.1.1, Mr is in full rank. Eqn. (5.12) can also be

expressed in the matrix form

Nw = SMrNc, (5.16)

where S = diag(s1, s2, . . . , snc) (sk > 0). Considering that S is a full rank diagonal matrix,

and Mr is in full rank, therefore SMr is also in full rank. According to Proposition 5.1.1, Nw

is linearly independent, and the weighted T-spline basis functions on locally refined T-mesh

are linearly independent.

With weighted T-spline basis functions, we can enforce partition of unity without

modifying either the topology or the linear independence of the T-mesh. Thus, more

flexibility is given to the T-mesh construction compared to standard T-splines.

5.2 Reparameterization of Trimmed NURBS Patches

Boolean operations introduce trimming curves to the NURBS surfaces, which make the

B-reps (boundary-representation) of designed models not watertight. Trimming curves are

important surface features that need to be preserved during reparameterization. Watertight

NURBS patches were studied in [84], where redundant control points were introduced to

reconstruct the intersection curves and merge different NURBS patches together. Taking
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advantage of the local refinement property, we can use T-splines to reparameterize the

trimmed NURBS patches.

The input trimming curve is used to determine the region that needs local refinement.

For example for the trimmed NURBS patch in Fig. 5.1(c), we use the trimming curve and

the original NURBS patch (Fig. 5.1(a)) to reparameterize it. We compute n sampling points

on the trimming curve. We take the input NURBS control mesh as our initial T-mesh, and

refine it until in the parametric domain, there are no two sampling points falling inside the

same element. After the refinement, we obtain the final T-mesh shown in Fig. 5.7(a-d).

5.2.1 Edge Interval Extension

With the refined T-mesh, the trimming curve determines the preserved and removed elements.

The preserved elements are used to reconstruct the trimmed surface. By connecting all the

edges shared by the preserved and removed elements, we obtain the initial control polygon

for the trimming curve. In Fig. 5.8(a), the removed elements are marked in yellow, the

preserved elements are marked in blue, and the red edges are the initial control polygon.

(a) (b) (c) (d)

Figure 5.8: Edge interval extension for trimming curve reconstruction. (a) Preserved
elements (blue) and removed elements (yellow) determined by the input trimming curve,
and the red edges represent the initial control polygon of the trimming curve; (b) the first
configuration of preserved elements which does not need a configuration modification; (c)
the second configuration of preserved elements that needs a configuration modification,
where (e j, e j+1) are two involved elements, (i−1, i, i + 1, i + 2) are four corner indices, and
(s j, s j+1, t j, t j+1) are four edge intervals; and (d) the connectivity modification result of (c).
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Edge Interval Extension. The input trimming curve is the boundary of the trimmed

surface. So the trimming curve needs to be defined on the boundary of the parametric domain.

Directly throwing away the removed elements results in zigzag lines in the parametric

domain (see Fig. 5.9(a)), which follow two parametric directions. However, a boundary

requires only one parametric direction, so we have to change the connectivity of the initial

control polygon.

There are two configurations of preserved elements containing the boundary edges,

as shown in Fig. 5.8(b-c), where the red lines represent the boundary edges. Suppose

the boundary is defined along the η direction. For the configuration in Fig. 5.8(b), the

edges already follow the η direction, so we do not need to modify its connectivity. For the

configuration in Fig. 5.8(c), (s j, t j) are the edge intervals of element e j, and (s j+1, t j+1)

are the edge intervals of element e j+1. We delete boundary edges (i, i + 1), (i + 1, i + 2) and

connect (i, i + 2) as a new boundary edge. Knot i + 2 is set as the new corner of element

e j, and knot i + 1 is added as one T-junction to e j. A valid T-mesh requires that the sum of

knot intervals on opposing edges of any element must be the same [85]. Therefore, we also

change the knot interval of edge (i−1, i) to (s j + s j+1). The knot interval of edge (i, i + 2) is

t j. The connectivity modification result is shown in Fig. 5.8(d).

(a) (b) (c)

Figure 5.9: Reparameterization of the trimmed surface for the T-mesh given in Fig. 5.7(d).
(a) Deleting removed elements; (b) modifying the topology of preserved elements and
extending edge intervals to align with the boundary of the rectangular parametric domain;
and (c) reparameterized trimmed surface using the weighted T-spline.
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We go through the boundary edges, modify the connectivity for the configuration in Fig.

5.8(c), and then obtain the updated control polygon for the trimming curve. The trimming

curve is now defined on the boundary of the rectangular parametric domain. For example,

after applying edge interval extension to Fig. 5.9(a), we obtain one rectangular parametric

domain with the right boundary (red) corresponding to the trimming curve; see Fig. 5.9(b).

To exactly reconstruct the trimming curve, we need to recalculate their coordinates by

applying the knot insertion algorithm to the input trimming curve. The reparametrized

weighted T-spline surface of the trimmed surface is shown in Fig. 5.9(c).

Degenerated T-mesh Element. When three corners are trimmed off from the original

NURBS surface, there will be one degenerated T-mesh element generated, where two

control points have the same coordinates. Fig. 5.10(a) shows the preserved elements in

the parametric domain, and the element marked in green corresponds to the degenerated

element. The rectangular parametric domain obtained from edge interval extension is shown

in Fig. 5.10(b). The green element can be mapped onto the green region on the T-spline

surface in Fig. 5.10(c). Although two control points of the degenerated element have the

same coordinates, we can still compute the weighted T-spline basis functions and use them

in analysis. The Jacobian at its Gaussian quadrature points are all positive.

(a) (b) (c)

Figure 5.10: Reparameterization of trimmed surface with three corners trimmed off (the
degenerated element is marked in green). (a) Deleting removed elements; (b) modifying
the topology of preserved elements and extending edge intervals to align with the boundary
of the rectangular parametric domain; and (c) reparameterized trimmed surface using the
weighted T-spline.
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(a) (b) (c)

Figure 5.11: Influence of the edge interval extension to the basis function. (a) A basis
function N(ξ) defined on Ξ; (b) a basis function Ne(ξ) defined on Ξe; and (c) the difference
between these two basis functions Ne(ξ)−N(ξ).

Influence of Edge Interval Extension. Even though the trimming curve can be exactly

reparameterized by edge interval extension, the basis functions are changed. For example,

consider two knot vectors, Ξ = {0,1,2,3,4} and Ξe = {0,1,2,3,13}. The basis functions

defined on Ξ and Ξe are N(ξ) and Ne(ξ) respectively, as shown in Fig. 5.11(a, b). We also

plot their difference Ne(ξ)−N(ξ) in Fig. 5.11(c). We can observe that Ne(ξ)−N(ξ) = 0 for

ξ ∈ [0,1], which means that modifying the last knot interval does not influence Ne(ξ) on

its first knot interval, while Ne(ξ) is influenced on the other three knot intervals. In other

words, the edge interval extension only influences Ne(ξ) on the three-ring elements around

the trimming curve. In addition, we obtain the distorted curves around the trimming curve,

shown in Fig. 5.9(c) and Fig. 5.10(c).

Remark 4.1. The edge intervals can be extended in either parametric direction. We

choose the direction which minimizes the longest extended knot interval. In this way, we try

to reduce the distortion introduced around the trimming curve.

5.2.2 Four Types of Trimmed NURBS Patches

Depending on the number of trimmed-off corners, we study four common types of trimmed

NURBS patches in design, as shown in Figs. 5.9, 5.10, 5.12, and 5.13. The weighted

T-spline with edge interval extension is applied for the reconstruction. The statistics of the
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results are given in Tab. 5.2. The reparameterization results using standard T-splines are

also given in Fig. 5.14 for comparison.

As shown in Tab. 2, compared with standard T-splines, the weighted T-splines decrease

the number of control points and T-mesh elements. In these four trimmed patches, the

number of control points is decreased by 19% ∼ 31%, and the number of T-mesh elements is

decreased by 14% ∼ 33%. This is because in the weighted T-splines, T-junction extensions

are not required to satisfy partition of unity. However the number of extracted Bézier

elements is not decreased much (2% ∼ 16%). The reason is that for standard T-splines, after

T-junction extension, most of the T-mesh elements can only yield one Bézier element. With

the weighted T-splines, many T-mesh elements yield multiple Bézier elements.

Table 5.2: Statistics of four types of trimmed NURBS surfaces and comparison with standard
T-splines.

Trimmed-off T-mesh Node # T-mesh Element # Bézier Element # Surface Error
Corner # (WTSP, STSP, %) (WTSP, STSP, %) (WTSP, STSP, %) (Non-Trimmed, Trimmed)

Zero (401, 523, 19%) (608, 747, 23%) (684, 702, 2%) (0.31%, 0.50% )
One (464, 609, 31%) (295, 431, 23%) (524, 597, 14%) (0.34%, 0.34% )
Two (729, 931, 28%) (487, 680, 33%) (781, 911, 16%) (0.30%, 0.43% )

Three (342, 399, 20%) (203, 253, 14%) (343, 351, 2%) (0.20%, 0.23% )

Note: WTSP stands for the weighted T-spline and STSP stands for the standard T-spline. Symbol “#”
represents number and “%” represents the reduced percentage of the nodes or elements.

(a) (b) (c)

Figure 5.12: Reparameterization of trimmed NURBS patch with one trimmed-off corner.
(a) Deleting removed elements; (b) modifying the topology of preserved elements and
extending edge intervals to align with the boundary of the rectangular parametric domain;
and (c) the reparameterized trimmed surface using the weighted T-spline.
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(a) (b) (c)

Figure 5.13: Reparameterization of a trimmed NURBS patch with no corner trimmed-off.
(a) Deleting removed elements; (b) modifying the topology of preserved elements and
extending edge intervals to align with the boundary of the rectangular parametric domain;
and (c) reparameterized trimmed surface using the weighted T-spline.

(a) (b) (c) (d)

Figure 5.14: Reparameterized trimmed surfaces with the standard T-spline. (a-d) show the
surfaces with two, three, one and zero trimmed-off corners, respectively.

5.2.3 Surface Error

In the reparameterized trimmed surface, the surface error is introduced by the weighted

T-spline basis functions and trimming curve reconstruction. The introduced relative surface

error is defined as

err =
(Pw(ξ,η)−P0(ξ,η)) ·n

min{E}
, (5.17)

where Pw(ξ,η), P0(ξ,η) represent a point on the weighted T-spline surface and the input

NURBS surface respectively, n is the surface normal, and min{E} is the minimum edge

length connecting to this point. Fig. 5.15 shows the error distribution on the weighted

T-spline surfaces by locally refining the input NURBS along the trimming curve, where
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the maximum error is 0.3%. We can observe that the surface error is localized around the

T-junctions in a coarse region (Fig. 5.15(b)). More levels of refinement reduce the error.

(a) (b) (c) (d)

Figure 5.15: Surface error of the weighted T-spline surfaces compared with the input
NURBS surface. (a) The surface refined by a trimming curve with two trimmed-off corners
as in Fig. 5.9; (b) zoom-in picture of the region with maximum error in (a); (c) the surface
refined by a trimming curve with one or three trimmed-off corners as in Figs. 5.10 and 5.12;
and (d) the surface refined by a trimming curve with no trimmed-off corner as in Fig. 5.13.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.16: Surface error of trimmed surfaces compared to the input NURBS surface.
(a-d) Reparameterized standard T-spline surfaces with two, one, three and zero trimmed-off

corners, respectively; and (e-h) the corresponding weighted T-spline surfaces.

After we reparameterize the trimming curve by edge interval extension, the three-ring

elements around the trimming curve introduce surface error. To evaluate the error, for each

point on the reparameterized T-spline surface we measure its shortest distance to the input

NURBS surface. Then the relative surface error is obtained by dividing the distance with the

minimum edge length of the element, where the preimage of the surface point locates. Four

types of NURBS patches are reparameterized by the weighted T-splines and the standard
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T-splines, and the surface error is shown in Fig. 5.16. The standard T-spline surface only

introduces surface error around the trimming curve, whereas the weighted T-spline surface

introduces surface error around the trimming curve and T-junctions. The surface error

introduced by trimming curve and the weighted T-spline basis functions are of the same

scale, ≤ 0.5% as shown in Tab. 5.2 (the last column).

5.3 Handling Extraordinary Nodes with Weighted T-

spline

To obtain gap-free T-spline surfaces of arbitrary topologies, handling extraordinary nodes

of the T-mesh is a prerequisite. In this section, we first introduce a new knot interval

duplication method to assign knot interval vectors to vertices. Based on the assigned knot

intervals, bicubic T-spline basis functions are defined, and a gap-free weighted T-spline

surface is obtained. Then surface continuity elevation is performed to ensure that the

extracted first-ring Bézier elements are G1-continuous.

Instead of using children basis function, here we use Bézier basis functions to define

weighted T-spline basis functions. Based on the Bézier extraction algorithm [79], Nr(ξ,η)

can also be represented as a linear combination of Bézier basis functions. We have

Nr(ξ,η) =
∑

i

ciBi(ξ,η), (5.18)

where ci are the Bézier extraction coefficients, or weights, and Bi(ξ,η) are Bézier basis

functions. ci are obtained from knot insertion algorithm [34]. To explain Bézier extraction, a

T-spline basis function N(ξ) together with seven extracted Bézier basis functions are shown

in Fig. 5.17. N(ξ) is defined on knot vector {0,1,2,3,4}. Seven Bézier basis functions

can be extracted from N(ξ), defined on knot vectors {0,1,1,1,2}, {1,1,1,2,2}, {1,1,2,2,2},

{1,2,2,2,3}, {2,2,2,3,3}, {2,2,3,3,3}, and {2,3,3,3,4} respectively.
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0 1 2 3 4

Figure 5.17: T-spline basis function N(ξ) (the black curve) defined on the knot vector
{0,1,2,3,4} and the extracted seven weighted Bézier basis functions (curves rendered with
different colors). The seven weighted Bézier basis functions are defined on {0,1,1,1,2},
{1,1,1,2,2}, {1,1,2,2,2}, {1,2,2,2,3}, {2,2,2,3,3}, {2,2,3,3,3} and {2,3,3,3,4}, and the
weights are 1/6,1/3,2/3,2/3,2/3,1/3 and 1/6, respectively.

Analogous to the weight recalculating method to enforce partition of unity [57], a

different weighted T-spline basis function can be defined by recalculating the weights of

extracted Bézier basis functions. So the corresponding weighted T-spline of Nr(ξ,η) can be

represented as

N̂w(ξ,η) =
∑

i

ĉiBi(ξ,η), (5.19)

where ĉi are the modified weightes. Eqn. (5.19) will be used to define weighted T-spline

basis functions to deal with extraordinary nodes, and we will discuss how to compute ĉi in

Section 5.4.

5.4 Weighted T-spline Surface Calculation

To obtain gap-free T-spline surfaces of arbitrary topologies, handling extraordinary nodes

of the T-mesh is a prerequisite. In this section, we first introduce a new knot interval

duplication method to assign knot interval vectors to vertices. Based on the assigned knot

interval vectors, bicubic T-spline basis functions are defined, and a gap-free weighted T-

81



spline surface is obtained. Then surface continuity elevation is performed to ensure that the

extracted first-ring Bézier elements are G1-continuous.

5.4.1 Topological Constraints and Knot Interval Duplication

A local knot interval vector in the ξ direction is a sequence of knot intervals ∆Ξ =

{∆ξ1,∆ξ2, · · · ,∆ξp+1}, and its corresponding knot vector is a non-decreasing knot sequence

Ξ = {ξ1, ξ2, · · · , ξp+2} such that ∆ξi = ξi+1− ξi. Each vertex in the T-mesh is assigned with

a knot interval vector along each parametric direction, based on which knot vectors and

T-spline basis functions are defined. For vertices near extraordinary nodes, knot intervals

cannot be directly obtained in the canonical way. Here we develop a new method to as-

sign knot intervals to such vertices. Necessary terminologies are defined first to assist our

explanation.

A spoke edge is an edge touching an extraordinary node. A spoke node is the vertex

other than the extraordinary node on a spoke edge. All the other nodes besides extraordinary

nodes and spoke nodes in the T-mesh are regular nodes. For a first-ring neighboring T-mesh

element of an extraordinary node, the only regular node in this element is a corner node.

For example in Fig. 5.18(a), the red circle is an extraordinary node, the green circle is a

spoke node, and the black circle is a corner node. Three topological constraints are applied

to the local region around the extraordinary nodes:

(1) No other extraordinary nodes are allowed within the four-ring neighborhood of an

extraordinary node;

(2) No T-junctions are allowed within the four-ring neighborhood of an extraordinary

node; and

(3) The knot intervals of all the spoke edges of an extraordinary node are non-zero.

These topological constraints are the foundation of our method to obtain a gap-free

T-spline surface. They ensure that the resulting T-spline surface around an extraordinary
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(a) (b)

(c) (d) (e)

Figure 5.18: Knot interval extraction near the extraordinary node. (a) Corner nodes (the
black circles), spoke nodes (the green circles), extraordinary node (the red circle) and
spoke edges (the blue edges) in the T-mesh configuration; (b) corner node with ordinary
knot intervals; (c) spoke node with extended knot intervals; (d) extraordinary node with
knot intervals duplicated with respect to elements in the green region; and (e) the same
extraordinary node with knot intervals duplicated with respect to the elements in the purple
region.

node is not influenced by other extraordinary nodes or T-junctions. For elements beyond the

two-ring neighborhood of any extraordinary node, we assume analysis-suitable requirements

are satisfied, and weighted T-spline basis functions [57] are employed to calculate analysis-

suitable T-splines.

To define T-spline basis functions of degree p, each vertex in the T-mesh is assigned

with a pair of local knot interval vectors to define their local knot vectors. How to extract

knot intervals from the T-mesh was explained in [79]. For each vertex, we shoot rays in

each parametric direction until p− 1 vertices or perpendicular edges are intersected. A

knot interval is the parametric distance between two consecutive intersections. Thus we

obtain a knot interval vector in each direction. Zero knot intervals are appended when a
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boundary is crossed before p−1 intersections are found. However, this method fails when

the ray encounters an extraordinary node before p− 1 intersections. The reason is that

the parametric direction cannot be determined for the ray. In [91], zero knot intervals are

appended for this situation, resulting in repeated knots in the knot vectors.

Here we explain our interval duplication method to assign knot intervals to the vertices,

which is based on the ray-shooting method. The basic idea is to set the current knot interval

equal to the previous one whenever the ray encounters an extraordinary node. There are

three different cases.

Regular Node (Case 1). Knot intervals are extracted by shooting rays in each parametric

direction. They are not influenced by the extraordinary nodes. For example, the extracted

knot interval vectors for the regular node (the black circle) in Fig. 5.18(b) are {ξ1, ξ2, ξ3, ξ4}

and {η1,η2,η3,η4}.

Spoke Node (Case 2). Interval duplication is used in this case. When the ray encounters

an extraordinary node, it stops. For non-determined interval, we set it equal to the previous

interval. For example for the spoke node (the green circle) in Fig. 5.18(c), the first three

intervals are found by the ray-shooting method, {ξ1, ξ2, ξ3}. The ray stops at the extraordinary

node (the red circle). We set the last interval equal to ξ3. The full knot interval for this spoke

node in ξ direction is {ξ1, ξ2, ξ3, ξ3}.

Extraordinary Node (Case 3). Similar to spoke nodes, the previous interval value is

duplicated when an extraordinary node is encountered. The interval duplication depends on

the local parametric directions. For example, the red circle is an extraordinary node in Fig.

5.18(d) and (e). For the elements in the green region with the given local coordinate system,

the obtained knot intervals by shooting rays are {ξ3, ξ4} and {η3,η4}. Via interval duplication,

the final knot intervals for this extraordinary node are {ξ3, ξ3, ξ3, ξ4} and {η3,η3,η3,η4}. For
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(a) (b) (c)

Figure 5.19: Basis functions with support over a Bézier element. (a) For a Bézier element
(light blue) in the first-ring neighborhood of an extraordinary node with valance-3, 14 basis
functions (cyan circles) have support over it; and (b-c) for a Bézier element (light green) in
the second-ring neighborhood, 16 basis functions (orange circles) have support over it.

the elements in the purple region, the knot intervals of the same extraordinary node are

{ξ1, ξ2, ξ2, ξ2} and {η3,η3,η3,η4}.

Remark 5.4.1. The knot intervals are duplicated in such a way that there are no knots

with the same value in the knot vectors, and the basis functions defined upon them are all

cubic polynomials.

With the introduced interval duplication method, we define T-spline basis functions for

all the vertices. For a vertex A, its associated basis function is denoted as NA. If NA has

non-zero basis function value over the region covered by a T-mesh element, then NA has

support over the corresponding Bézier element. The support of an extraordinary node or a

spoke node is its two-ring neighborhood. The number of T-spline basis functions that have

support over the two-ring neighboring Bézier elements of an extraordinary node varies. For

example for the element with a valance-3 extraordinary node in Fig. 5.19, 14 T-spline basis

functions (marked with cyan circles) have support over the first-ring neighboring Bézier

elements (light blue), shown in Fig. 5.19(a). For the second-ring neighboring elements like

the light green elements in Fig. 5.19(b-c), 16 basis functions have support over it.

Gap-free Requirement. For bicubic T-spline surfaces with extraordinary nodes, two-

ring neighboring elements are influenced by the extraordinary nodes. For each influenced
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T-mesh element, only one Bézier element is extracted under the topological constraints

given in Section 5.4.1. In the following when checking the T-spline surface continuity, we

check the continuity across the boundary shared by the extracted Bézier elements. To obtain

a gap-free surface, Bézier elements extracted from two adjacent first-ring neighborhood

T-mesh elements should be at least C0-continuous across the shared boundary. For example

in Fig. 5.20, there is a valence-n extraordinary node PE , n spoke nodes (P1
S ∼ Pn

S ) and n

first-ring neighborhood elements. T-mesh element ei and ei−1 share one spoke edge PEPi
S

(the red edge) in the T-mesh. The Bézier elements extracted from them need to meet along

the shared boundary.

Figure 5.20: Gap-free requirement for a T-mesh with an extraordinary node PE and n spoke
nodes Pi

S . Two first-ring neighborhood T-mesh elements ei−1 and ei share one red edge, and
their extracted Bézier elements should be gap-free along the shared boundary.

5.4.2 Gap-free Surface Calculation

For the region beyond the two-ring neighborhood of an extraordinary node, the knot interval

extraction, T-spline basis definition and Bézier element extraction follow the canonical

T-spline manner [79]. For the first-ring neighboring T-mesh elements, there are two steps

to calculate the weighted T-spline surface and extract Bézier elements. For each Bézier

element, we find T-spline basis functions with support on it based on the defined local

coordinate system, and calculate the corresponding Bézier coefficients. Then the gap-free

requirement is applied by modifying the Bézier coefficients.
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Bézier Coefficient Calculation. Taking the valance-n extraordinary node PE in Fig.

5.21(a) as an example, ei is a first-ring neighborhood T-mesh element, and ei
b is the Bézier

element extracted from it; PEPi
S is a spoke edge with edge interval ai; Pi

C is the corner node

of ei. As shown in Fig. 5.21(b), we define the local parametric coordinate system of ei by

setting PE as the origin, PEPi
S following the ξ direction, PEPi+1

S following the η direction,

PEPi+2
S following the −ξ direction and PEPi−1

S following the −η direction. Then the spoke

nodes Pi−1
S ∼ Pi+2

S , the corner nodes Pi−2
C ∼ Pi+1

C are selected and assigned with parametric

coordinates. All other spoke nodes and corner nodes are not assigned with parametric

coordinates, even through their basis functions have support on ei
b. The reason is that in the

defined local parametric coordinate system, we cannot reach these nodes from the origin by

moving along mesh edges following the ξ or η directions. Regular nodes with support over

ei
b are also assigned with local parametric coordinates.

There are 16 vertices assigned with parametric coordinates, shown in Fig. 5.21(a) with

circles rendered in different colors. The red circle represents the extraordinary node; the

green circles represent the selected spoke nodes; the purple circles represent the selected

corner nodes and the orange circles represent the selected regular nodes. Based on the

assigned knot intervals, we define local knot vectors and T-spline basis functions for the 16

selected vertices. The T-spline surface can be represented as

S i =
∑

j

P jN j(ξ,η) =
∑

j

P j

16∑
k=1

Mi
j,kBk(ξ,η) = PT

i MiB =

16∑
k=1

Qi
kBk(ξ,η), (5.20)

where P j are the selected vertices (or control points), N j(ξ,η) are the corresponding T-spline

basis functions which have support over ei, Bk(ξ,η) are Bézier basis functions, Mi
j,k is the

Bézier extraction matrix obtained from Eqn. (5.1), and Qi
k are the Bézier control points.
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(c)

(a) (b) (d)

(g)

(e) (f) (h)

Figure 5.21: Local parametric coordinate system, selected supporting T-spline basis
functions, the order of calculated Bézier control points and coefficients for T-mesh element
ei and ei−1. (a) T-mesh element ei with its selected basis functions marked with circles.
Red, green, purple and orange circles represent selected basis functions defined on the
extraordinary node, spoke nodes, corner nodes and regular nodes, respectively; (b) the local
parametric coordinate system of ei, where ai represent the assigned intervals to the edges;
(c) the order of calculated control points of Bézier element ei

b extracted from ei; (d) the
overall coefficient order of ei

b; (e) element ei−1 with its selected basis functions; (f) the local
coordinate system of ei−1; (g) the order of control points of Bézier element ei−1

b extracted
from ei−1; and (h) the overall coefficient order of ei−1

b .

Here S i denotes the T-spline surface calculated from ei. We have

Qi
k =

∑
j

P jMi
j,k. (5.21)
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Let k = α×4 +β, Eqn. (5.20) is rewritten as

S i =

16∑
k=1

Qi
kBk(ξ,η) =

4∑
α=1

4∑
β=1

Qi
αβBαβ(ξ,η). (5.22)

Each Bézier control point Qi
αβ has a corresponding overall coefficient

ci
αβ =

∑
j

Mi
j,α×4+β. (5.23)

Qi
αβ have the same order with ci

αβ, as shown in Fig. 5.21(c) and (d), respectively.

Similarly for element ei−1, which shares the spoke edge PEPi
S with ei, its local parametric

coordinate system, the selected T-spline basis functions, the order of Bézier control points

and the overall Bézier coefficients are shown in Fig. 5.21(e-h). The spoke node Pi−2
S and the

corner node Pi−3
C (marked with solid dots in Fig. 5.21(a)) are not selected for ei to assign

with local parametric coordinates. But they are selected for ei−1. Similarly, Pi+2
S and Pi+1

C

are selected for ei, but not for ei−1.

Note that if PE is valance-3, Pi+2
S and Pi−1

S coincide. This means that in ei, Pi−1
S is

assigned with two local parametric coordinates, (0,−ai−1) and (−ai+2,0), to obtain the knot

vectors. There are two basis functions defined on Pi−1
S . With this duplication, we can always

define 16 T-spline basis functions with support over one first-ring element. In addition, we

have the following proposition.

Proposition 5.4.1 The Bézier elements extracted from the first-ring T-mesh elements do not

meet with its adjacent first-ring neighbors.

proof 5.4.2 Bézier elements ei
b and ei−1

b are extracted from ei and ei−1 respectively. Assume

they meet along the shared boundary, then we have

Qi
α1 = Qi−1

1α , 1 ≤ α ≤ 4. (5.24)
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Based on the local parametric coordinate system of ei and ei−1, vertices Pi+2
S and Pi+1

C

(marked with empty circles in Fig. 5.21(a) and solid dots in Fig. 5.21(e)) have contribution

to Qi
11, but not to Qi−1

11 . Pi−2
S and Pi−3

C (marked with solid dots in Fig. 5.21(a) and empty

circles in Fig. 5.21(e)) have contribution to Qi−1
11 , but not to Qi

11. Then Qi
11 , Qi−1

11 , which

contradicts the assumption of meeting along the shared boundary. Thus, we prove this

proposition.

Bézier Coefficient Modification. We modify the Bézier coefficients to make the result-

ing T-spline surface gap-free. Based on the local coordinate systems and assigned knot

intervals, it is easy to obtain that Pi+2
S and Pi+1

C only contribute to Qi
11, while Pi−2

S and Pi−3
C

only contribute to Qi−1
11 . So we have

Qi
α1 = Qi−1

1α , 2 ≤ α ≤ 4. (5.25)

We only need to modify Qi
11 and Qi−1

11 to ensure ei
b and ei−1

b meet along their shared

boundary. From Eqn. (5.20), suppose the contribution of Ni+2
S and Ni+1

C to ci
11 are Mi

I(Ni+2
S ),1

and Mi
I(Ni+1

C ),1
respectively. The contribution of Ni−2

S and Ni−3
C to ci−1

11 are Mi−1
I(Ni−2

S ),1
and

Mi−1
I(Ni−3

C ),1
respectively, where I(N j) is the mapping of the basis function N j to its local index

in Eqn. (5.20). Qi
11 and Qi−1

11 should be modified as

Qi
11 = Qi

11 + Pi−2
S Mi−1

I(Ni−2
S ),1

+ Pi−3
C Mi−1

I(Ni−3
C ),1

, (5.26)

and

Qi−1
11 = Qi−1

11 + Pi+2
S Mi

I(Ni+2
S ),1

+ Pi+1
C Mi

I(Ni+1
C ),1

. (5.27)

This modification can be recognized as adding Pi−2
S and Pi−3

C , which were selected for ei−1

only, to the extraction of ei
b. Similarly, Pi+2

S and Pi+1
C are added to the extraction of ei−1

b .

Analogously, to constrain that all the first-ring Bézier elements meet at their shared

corner, all the spoke nodes and corner nodes that are not selected for the extraction of ei
b
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should be added back. Qi
11 is modified as

Q̄i
11 = Qi

11 +

n∑
j=1, j,i

P̄S C M j
I(N̄S C),1

, (5.28)

where P̄S C are the basis functions defined on the corner nodes and the spoke nodes not

selected in the Bézier extraction of ei, and N̄S C are the associated T-spline basis functions.

Note that Q̄i
11 is constant for all the first-ring Bézier elements. In Eqn. (5.23), since only

ci
11 and ci−1

11 are modified, Mi is modified by adding new rows with non-zero entry only at

the first position.

Based on the assigned knot intervals and local coordinate systems, there are always

16 T-spline basis functions selected for the extraction of one Bézier element. All the 16

basis functions are defined on local knot vectors without repeating knots. The T-spline

basis functions are linearly independent and satisfy partition of unity before coefficient

modification. Then from Eqn. (5.20) and Theorem 1 in [53], Mi is in full-rank and ci
11 = 1.

Only the extraordinary node, spoke nodes and corner nodes have contribution to ci
11. After

Bézier coefficient modification, ci
11 is changed to

c̄i
11 = ci

11 +

n∑
j=1, j,i

M j
I(N̄S C),1

= 1 +

n∑
j=1, j,i

M j
I(ÑS C),1

= Mi
I(NE),1 + Mi

I(N̄S C),1 +

n∑
j=1, j,i

M j
I(N̄S C),1

= Mi
I(NE),1 +

n∑
j=1

M j
I(NS C),1 > 1,

(5.29)

where NE is the basis function at the extraordinary node PE , ÑS C are the basis functions

defined on the corner nodes and spoke nodes selected for ei, and NS C are the basis functions

defined on all the spoke nodes and corner nodes. To enforce c̄i
11 = 1, we let

c̄i
11 = Mi

I(NE),1 +γ

n∑
j=1

M j
I(NS C),1 = 1, (5.30)
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where

γ =
1−Mi

I(NE),1
n∑

j=1
M j

I(NS C),1

. (5.31)

Eqns. (5.30)-(5.31) are used to modify the first column of Mi. In the following we check

the continuity between the first-ring and second-ring neighboring Bézier elements.

Proposition 5.4.3 The Bézier elements extracted from the first-ring and second-ring T-mesh

elements are C1-continuous across their shared boundary.

proof 5.4.4 In Fig. 5.21(a), T-mesh elements ei and e j share one cyan edge. Bézier elements

ei
b and e j

b are extracted from them. For ei
b, its first derivative at the boundary shared with e j

b

is ∂bi(ξ,η)
∂ξ |η=1, or bi

ξ(ξ). We adopt the notation

〈δ1, δ2, · · · , δp+1〉
p(ξ) =

p+1∑
k=1

δkBp
k (ξ), (5.32)

where Bp
k (ξ) is a Bernstein polynomial of degree p. Then we have

bi
ξ(ξ) = 3〈Qi

31−Qi
41,Q

i
32−Qi

42,Q
i
33−Qi

43,Q
i
34−Qi

44〉
3(ξ). (5.33)

Here we check the contribution from the extraordinary node PE to bi
ξ(ξ). NE is the basis

function at the extraordinary node PE . Since η = 1, we only check NE in the ξ direction.

Based on the local parametric coordinate system of ei, the knot vector to define NE in the ξ

direction is {−2ai,−ai,0,ai,ai + a j}. From Eqns. (5.20), (5.21) and (5.33), the contribution

of PE to bi
ξ(ξ) is

3PE〈c̃i
31− c̃i

41, c̃
i
32− c̃i

42, c̃
i
33− c̃i

43, c̃
i
34− c̃i

44〉
3(ξ), (5.34)

where c̃i
3α and c̃i

4α are the contribution of NE to ci
3α and ci

4α (1 ≤ α ≤ 4). In the ξ direction,

Bézier basis functions B1α, B2α, B3α and B4α are defined on knot vectors {−ai,0,0,0,ai},
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{0,0,0,ai,ai}, {0,0,ai,ai,ai}, {0,ai,ai,ai,ai + a j}, respectively. Based on knot insertion algo-

rithm, we have c̃i
3α = 2c̃i

4α. Eqn. (5.34) changes to

−3〈PE c̃i
41,PE c̃i

42,PE c̃i
43,PE c̃i

44〉
3(ξ). (5.35)

The contribution of all other T-spline basis functions to bi
ξ(ξ) has the same expression. Based

on Eqn. (5.21), Eqn. (5.33) changes to

bi
ξ(ξ) = −3〈Qi

41,Q
i
42,Q

i
43,Q

i
44〉

3(ξ). (5.36)

This method can also be used to obtain the the first derivative at the shared boundary

from Bézier element e j
b. For the local parametric coordinate system of e j, Pi

S is set as the

origin. Its two parametric directions follow the ξ and η directions of ei. The first derivative

at the boundary shared with ei
b is ∂b j(ξ,η)

∂ξ |η=0, or b j
ξ(ξ). We have

b j
ξ(ξ) = −3〈Q j

11,Q
j
12,Q

j
13,Q

j
14〉

3(ξ). (5.37)

Since Qi
4α = Q j

α1 (1 ≤ α ≤ 4), we have bi
ξ(ξ) = b j

ξ(ξ). Therefore ei
b and e j

b are C1-continuous

across the shared boundary.

Note that Bézier coefficient modification only changes Qi
11. The C1 continuity between

ei and e j remains the same after the modification. With the modified Bézier coefficients, the

T-spline surface is defined as

S i = PiM̂iB, (5.38)
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where Pi are the control points including all the spoke nodes and corner nodes, M̂i is the

modified extraction matrix.

Remark 5.4.2. T-spline basis functions defined by the linear combination of Bézier

basis functions with modified coefficients are still analysis-suitable. The new Bézier trans-

formation matrix M̂i is obtained by first adding new rows with non-zero entry only at the

first position with Eqn. (5.28). Then the first column of the resulting matrix is further

modified based on Eqns. (5.30) and (5.31). These two matrix operations do not change

the matrix rank. So M̂i is in full rank and the modified T-spline basis functions remain

analysis-suitable.

For a second-ring neighboring Bézier element, there are always 16 T-spline basis func-

tions with support over it, as shown in Fig. 5.19(b-c). We can define the local coordinate

system, and each selected vertex is assigned with local parametric coordinates. The T-spline

surface is calculated with Eqn. (5.20), and no Bézier coefficient modification is necessary.

So the corresponding Bézier extraction over these elements is the same with the canonical

manner. The resulting surface continuity of second-ring neighboring Bézier elements and

beyond is C2.

5.4.3 Surface Continuity Elevation

To obtain higher surface smoothness for the first-ring Bézier elements, we adopt the op-

timization method introduced in [81] to perform continuity elevation. The necessary and

sufficient condition for two adjacent Bézier elements to be G1-continuous is that they share

the same tangent plane across the boundary [103]. Degree elevation is first performed to

obtain biquartic Bézier coefficients. These coefficients are then optimized to satisfy the G1

continuity requirement.

For an extraordinary node of valance-n, there are 20n + 1 unique Bézier coefficients and

20n constraint equations derived to satisfy the G1 continuity requirement. These constraint
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(a) (b) (c) (d)

Figure 5.22: Result of degree elevation for a T-spline model with two extraordinary nodes.
(a) Calculated T-spline surface; (b) extracted Bézier elements, where red and yellow edges
represent Bézier element boundaries with G1-continuity and C1-continuity across them
respectively; (c) zoom-in of the first-ring neighborhood of the valance-5 extraordinary node;
and (d) extracted Bézier elements of the first-ring neighborhood.

equations are used to assemble the constraint matrix Gi and the corresponding right hand

side vector gi. Besides, there are 40n fairing equations to obtain the fairing matrix Fi and

the right hand side vector fi. The detailed expressions of the constraint and fairing equations

are given in [81]. We obtain the optimized Bézier coefficients by solving

min ‖ Fiĉi− fi ‖2, (5.39)

where

ĉi = argmin
j
‖G jĉ j−g j ‖2 . (5.40)

The optimization procedure handles extraordinary nodes with different valance numbers

correctly. In Fig. 5.22, a T-spline model with two extraordinary nodes of valance 3 and 5 is

shown. The calculated T-spline surface is G1-continuous across the red edges, C1-continuous

across the yellow edges, and C2-continuous anywhere else.

5.4.4 Comparison with Other Methods

We compare our interval duplication algorithm with three other methods: the template

method, the capping method, and the optimization method. The surface continuity, Bézier
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Table 5.3: Comparison of four methods dealing with extraordinary nodes regarding surface
continuity of edges in Fig. 5.22(b), Bézier extraction Matrix, and T-mesh modification.

Method Surface Continuity across Edges Bézier Extraction T-mesh
Red Yellow 2nd-ring Matrix Calculation Modification

Template C0 C0 C0 Knot Insertion YES
Capping G1 C1 C1 NONE NO

Optimization G1 C1 C1 Linear Interpolation NO
Interval Duplication G1 C1 C2 Knot Insertion NO

extraction matrix, and T-mesh modification properties of these four methods are listed in

Tab. 5.3.

Template Method. Zero-interval edges are inserted around the extraordinary nodes

[91], ensuring that the calculated T-spline surface is always gap-free. With this method, an

extraordinary node can be within three-ring neighborhood of another one. But the drawback

is that repeated knots are introduced to the knot vectors, and the surface continuity is C0

between first-ring Bézier element pairs and second-ring Bézier element pairs. Furthermore,

new control points are introduced for the insertion of zero-length intervals, which increases

the total degrees of freedom for analysis.

Capping Method. The Bézier control points are directly calculated from T-spline

control points [82]. They satisfy consistency conditions, resulting in G1-continuous Bézier

elements within the first-ring neighborhood. However, the transformation matrix from

T-spline basis functions to Bézier basis functions cannot be obtained, which limits its direct

usage in isogeometric analysis.

Optimization. The main difference between our method and the optimization method in

[81] lies in the way to generate the gap-free T-spline surface before coefficient optimization.

In the optimization method, a linear interpolation scheme is introduced to calculate Bézier

control points from T-spline control points. Furthermore, the surface between the second-

ring Bézier elements is C2-continuous in our results, better than C1-continuous from the

optimization method.
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(a) Sphere model.

(b) Eight model.

(c) Tetra model.

(d) Genus-three model.

Figure 5.23: Calculated T-spline of four models. For each model, the final T-spline
surface with extracted Bézier elements are shown first, followed by the zoom-in first-ring
neighborhood of a selected extraordinary node before and after continuity elevation. The
first-ring neighborhood Bézier elements are given in the end.
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Remark 5.4.3. From comparison we can conclude that our knot interval duplication

method coupled with Bézier coefficients modification results in the best surface continuity

within two-ring neighborhood. No T-mesh modification is needed for the initial Bézier

extraction matrix calculation. The resulting T-spline can be directly used in isogeometric

analysis.

We tested our method on four models, including the Sphere, Eight, Tetra and Genus-three

models, see Fig. 5.23. There are eight valance-3 extraordinary nodes on the Sphere model,

eight valance-5 extraordinary nodes on the Eight model, eight valance-6 extraordinary nodes

on the Tetra model, and four valance-8 extraordinary nodes on the Genus-three model. For

each model, the final T-spline surface with Bézier element representation is shown first,

followed by the zoom-in first-ring neighborhood of a selected extraordinary node. The

surface rendering difference shows the surface change before and after degree elevation.

The first-ring neighboring Bézier elements are given in the end. Our method can handle

extraordinary nodes with different valance numbers correctly to generate gap-free T-spline

surfaces. With Bézier coefficient optimization, the surface continuity is increased to G1

within the one-ring neighborhood.

5.5 Isogeometric Analysis Results

5.5.1 Analysis with Reparameterized NURBS Surfaces

The weighted T-spline basis functions can be used in isogeometric analysis, as they satisfy

partition of unity and are linearly independent. This can be first verified with the following

patch test. We solve a 2D linear elasticity problem on a unit square. The problem setting is

shown in Fig. 5.24(a). On the right boundary, the Dirichlet boundary condition is strongly

imposed along the x direction by 0.01. The left and bottom boundaries are fixed in the x and

y directions, respectively. We obtain linearly distributed displacement along the x direction

and uniform σx within the model, achieving the machine precision.
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(a) (b) (c) (d)

Figure 5.24: Patch test with the weighted T-spline in a 2D linear elasticity problem. (a)
Problem setting; and (b-d) analysis results with contours showing the distributions of Ux,
Uy and σx, respectively.

We also solve one benchmark problem here. We analyze the infinite plate with circular

hole under a constant far-field in-plane tension (Tx) in the x-direction, as shown in Fig.

5.25(a). The analytical solution [4] is



σr,r =
Tx

2
(1−

R2

r2 ) +
Tx

2
(1−4

R2

r2 + 3
R4

r4 )cos2θ;

σθ,θ =
Tx

2
(1 +

R2

r2 )−
Tx

2
(1 + 3

R4

r4 )cos2θ;

σr,θ = −
Tx

2
(1 + 2

R2

r2 −3
R4

r4 )sin2θ.

(5.41)

Due to the symmetry of the plate, only a quarter is used for analysis (Fig. 5.25(b)). For the

modeling of the quarter plate, we first generate one NURBS patch, and then trim off its left

bottom corner with an arc. Then we use the weighted T-spline with edge interval extension

to reparameterize this trimmed patch. The designed NURBS patch, the trimming curve and

three T-meshes at different refinement levels are shown in Fig. 5.26(a-d). The extracted

Bézier elements are shown in Fig. 5.26(e-g).

The σxx contours from different T-meshes are given in Fig. 5.27(a-c). The calculated

stress concentration σxx = 30 locates at r = R, θ = π/2, which exactly matches the analytical

solution. The error of the analysis result is assessed with the L2 norm of stress σxx. For

comparison, we also use NURBS and the standard T-splines to solve this problem; see Fig.

5.28. The error with respect to different DOFs is given in Fig. 5.27(d). We can observe
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(a) (b)

Figure 5.25: An infinite plate with a circular hole under the Newman boundary condition.
(a) Problem definition; and (b) a quarter of the plate for modeling and analysis with problem
set.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.26: A quarter of the plate with the weighted T-spline representation. (a) Designed
NURBS patch with the trimming curve (red); (b-d) T-meshes with 2, 3 and 4 levels of
refinement, respectively; and (e-g) the corresponding Bézier elements with 2, 3 and 4 levels
of refinement, respectively.
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(a) (b) (c) (d)

Figure 5.27: Analysis results of an infinite plate with a circular hole under a constant far-field
in-plane tension in the x-direction. Contours in (a-c) show the distribution of σxx from
meshes with 2, 3 and 4 refinement levels, respectively; and (d) shows the L2 norm error of
stress σxx with respect to the degrees of freedom (DOF).

(a) (b) (c)

(d) (e) (f)

Figure 5.28: The NURBS and standard T-spline models used to solve the benchmark
problem. (a-c) The NURBS meshes with 2, 3 and 4 levels of refinement, and (d-f) Bézier
elements of the standard T-splines with 2, 3 and 4 levels of refinement.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.29: Solving the Poisson’s equation on trimmed surfaces. (a-d) Results by using
standard T-splines; and (e-h) the corresponding results by using weighted T-splines under
the same boundary condition.

that the weighted T-splines yield simulation results of the same accuracy with fewer control

points.

To test our four types of trimmed curve surfaces in Figs. 5.9, 5.10, 5.12 and 5.13, we

solve the Poisson’s equation ∆u = 0 over them and the simulation results are shown in Fig.

5.29. Dirichlet boundary conditions with maximum (1.0) and minimum (-1.0) values are

assigned to selected geometric boundary edges. The surfaces are reparameterized with both

the standard T-spline and the weighted T-spline. For the same trimmed surface with the

same boundary conditions, these two T-spline surfaces can produce solutions at the same

level of accuracy, while the weighted T-splines need fewer control points and fewer T-spline

elements, see Tab. 5.2.

5.5.2 Analysis with Surfaces with Extraordinary Nodes

A benchmark problem is to solve the Laplace equation ∆u = 0 over an L-shaped domain

[−1,1]2\[0,1]2 with Dirichlet boundary conditions. The analytical solution with polar
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coordinates (r, θ) is

u(r, θ) = r2/3sin(2θ/3−π/3), r > 0 and π/2 ≤ θ ≤ 2π. (5.42)

The geometry and problem setting are shown in Fig. 5.30(a). The initial mesh has four

extraordinary nodes, two of which are valance-3 and the other two are valance-5. Fig.

5.30(b) shows the solution to the problem. The L2-norm error is evaluated at each element

compared to the analytical solution. The initial mesh with elemental error is shown in Fig.

5.30(c). Large error locates at the singular corner and along the boundaries. We performed

both uniform and adaptive refinements. The final error distribution of the two refinement

methods is given in Fig. 5.30(d, e). The convergence curves are shown in Fig. 5.30(f).

Comparison shows that adaptive refinement can achieve the same accuracy with fewer

degrees of freedom.

(a) (b) (c)

(d) (e) (f)

Figure 5.30: Laplace equation on the L-shaped domain solved with weighted T-splines.
(a) Geometry and problem settings of the domain; (b) solved result over the domain; (c-f)
L2-error distribution over the initial mesh, adaptively refined mesh, and uniformly refined
mesh; (f) convergence curves of the two refinement methods.
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5.6 Volumetric Weighted T-splines

The definition of weighted T-splines can be easily extended to 3D. By adding one more

dimension, volumetric weighted T-spline is defined as

V(ξ,η,ζ) =
∑

PiNw
i (ξ,η,ζ), (5.43)

where Pi are the control points, and Nw
i (ξ,η,ζ) are the associated weighted T-spline basis

functions. From the T-mesh, we define basis functions based on the extracted knot vectors.

The identification and modification of weighted T-spline basis functions are analogous to the

2D situations, which was explained in [57]. We have developed two methods to construct

volumetric weighted T-splines: parametric mapping and sweeping.

Parametric Mapping Method. This method works for genus-zero models. The input

is a water-tight T-spline surface containing eight extraordinary nodes with an isoparametric

line connecting each pair. The parametric mapping method was introduced in [102], which

adopts one cube as the parametric domain and uses octree subdivision to obtain the T-

mesh. Two boundary layers are inserted to make sure the calculated volumetric T-spline

is conformal to the input. However, extraordinary nodes are introduced in the interior. We

use the same subdivision procedure to build the initial T-mesh. After subdivision, we pillow

the six patches one by one. One boundary layer with zero-interval value is generated. The

eight extraordinary nodes eventually become the eight corners of the cube and there is no

extraordinary node in the final T-mesh. Then basis functions are defined and volumetric

weighted T-splines are calculated.

Sweeping Method. This method builds solid models by sweeping a surface along a

designed path. A T-spline surface is first designed with Bézier extraction matrix calculated.

Then one sweeping path is designed, represented as a NURBS curve. The control points of

the volumetric T-spline are directly obtained by sweeping the control points of the T-spline

surface following the path. The Bézier extraction matrices of the volume are then computed
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using the extracted Bézier transformation matrix of the surface and the path. Finally the

volumetric T-splines are obtained with Bézier element representation, which can be further

used in analysis.

We tested the parametric mapping method with a Boat model, shown in Fig. 5.31. The

generated volumetric T-spline is conformal to the input surface. Compared with the method

developed in [102], less nodes (1,639 vs 2,582) are required. No extraordinary nodes are

introduced in the interior. The cross-sections of the boat model generated using these two

methods are compared in Fig. 5.31(e, f) to show the difference.

Torus and Wrench models were generated to test the sweeping method, shown in Figs.

5.32 and 5.33. For the Torus model, one circular plane is first generated with four valance-3

extraordinary nodes introduced in the interior. The sweeping path is an NURBS circular

curve, shown in Fig. 5.32(a). The generated volumetric T-spline is shown in Fig. 5.32(b),

with cross-section shown in Fig. 5.32(c).

The Wrench model in Fig. 5.33 was generated by sweeping the T-spline surface designed

in Rhino. The T-spline surface contains two valance-3 extraordinary nodes and two valance-6

extraordinary nodes. Its sweeping path is shown in Fig. 5.33(a) and the obtained volumetric

(a) (b) (c)

(d) (e) (f)

Figure 5.31: Boat model generated from parametric mapping method. (a) T-mesh of input
T-spline surface; (b) weighted T-spline surface; (c) volumetric weighted T-spline with Bézier
representation; (d) volumetric weighted T-spline with T-mesh; (e) some Bézier elements are
removed to show the cross-section; and (e) the same boat model generated by the algorithm
given in [102], which pillowed two layers and introduced extraordinary nodes in the interior.
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(a) (b) (c)

Figure 5.32: Torus model generated from Sweeping method. (a) Circular cross-section with
the Sweeping path; (b) the volumetric T-spline of Torus model; and (c) cutting the torus
model to show the interior.

(a) (b)

(c) (d)

Figure 5.33: Wrench model generated from Sweeping method. (a) 2D Wrench model with
Sweeping path; (b) the volumetric T-spline of Wrench model; isogeometric analysis result
with contour showing Ux and σxx is given in (c) and (d).

T-spline is given in Fig. 5.33(b). With the developed T-spline IGA software framework [45],

we performed linear elasticity analysis in Abaqus. The contours of displacement Ux and

stress σxx are given in Fig. 5.33(c, d), respectively. The sweeping method can also be used

to construct complicated high genus models. Besides, only partial extraordinary nodes are

introduced to the volumetric weighted T-splines.
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5.7 Conclusion

In conclusion, in this chapter, we have proposed one new type of T-spline, named weighted

T-spline. It is used to reparameterize trimmed NURBS surfaces, handle extraordinary nodes,

and generate volumetric T-spline from CAD models. The weighted T-splines satisfy partition

of unity and support local refinement. Weighted T-spline basis functions are proved to be

linearly independent. Comparisons with standard T-splines show that weighted T-spline can

decrease the required number of control points and T-mesh elements for the same level of

refinement. Specific weight adjusting algorithm was developed to deal with the extraordinary

nodes for weighted T-spline. The surface is gap-free and the continuity is decreased to

C0. After continuity elevation, the surface continuity is at least G1. Parametric mapping

and sweeping methods are developed to generate volumetric weighted T-splines from CAD

models, which provides conformal volumetric weighted T-splines for isogeometric analysis.
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Chapter 6

Hybrid Degree Weighted T-splines

Arbitrary degree T-splines were first studied in [29], which compares the difference between

even degree and odd degree T-splines. Analysis-suitable T-splines of arbitrary degree were

studied in detail [14, 51, 49, 27], where admissible meshes are given. In this chapter, we

study weighted T-spline basis functions of both odd and even degree in detail. With a de-

signed T-mesh splitting scheme, hybrid-degree weighted T-splines are proposed, supporting

both local p-refinement and local h-refinement. The local p-refinement introduces a limited

number of new control points to the T-mesh. Basis functions of different degrees are defined

over the domain. The degree of basis functions of the refined region and transition region

is elevated by one after local p-refinement. An L-shaped domain is parameterized with

odd-, even- and hybrid-degree weighted T-splines. The Laplace equation is solved over

this domain, showing the advantage of hybrid-degree T-splines. High-genus surfaces with

extraordinary nodes are also parameterized with hybrid-degree weighted T-splines.

6.1 Arbitrary Degree T-splines

T-splines of arbitrary degree are briefly reviewed here. For further details, we suggest the

readers refer to [85, 83, 9, 18]. T-splines discussed here have the same degree in the two

parametric directions. We classify them into even- and odd-degree T-splines. T-splines with
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(a) (b) (c) (d) (e)

Figure 6.1: (a) T-mesh with two selected T-junctions marked with blue squares. The T-
meshes with extensions of these two T-junctions are given in (b) when p = 2 and (c) when
p = 3. The solid red lines represent edge extensions, and the dashed red lines represent face
extensions. (d) and (e) show the elemental T-mesh when p = 2 and p = 3, respectively.

p = 2 and p = 3 are used as examples to explain the definitions and show the comparison.

T-splines of higher degree can be deduced analogously.

6.1.1 T-spline Basics

A T-mesh contains all the topological information of a T-spline and is composed of vertices,

edges and faces. Knot intervals are non-negative real numbers assigned to T-mesh edges.

A valid T-mesh configuration requires that the sum of knot intervals assigned to opposite

edges of a face stays the same. To maintain the open knot vector property, T-meshes have

bp/2c rings of edges with zero-length knot intervals, where the b·c represents the integer

part of a real number. For example, Fig. 6.1(a) shows a T-mesh with one ring of edges with

zero-length knot intervals. The unshaded faces have edges with zero-length intervals. This

T-mesh can be used to define basis functions of either p = 2 or p = 3.

T-junctions are the interior vertices of valance-3 and analogous to hanging nodes in

finite element meshes. The blue squares in Fig. 6.1(a) are two selected T-junctions. T-

junction extension was first discussed in [53], including face extension and edge extension.

A face extension is a line obtained by moving from the T-junction along the missing edge

direction until b(p + 1)/2c orthogonal edges are encountered. An edge extension is a line

obtained by moving opposite to the face extension direction until bp/2c orthogonal edges are

encountered. For example in Fig. 6.1(b, c), the face extensions are marked with dashed red

110



(a) (b)

Figure 6.2: Three basis functions of different degrees are given with their local knot vectors
and supported regions shaded with light blue. (a) p = 2 with blue dots representing the
anchors; and (b) p = 3 with red dots representing the anchors.

lines, and edge extensions are marked with solid red lines when p = 2 and p = 3. For general

analysis-suitable T-splines of arbitrary degree, it is required that T-junction extensions cannot

meet with each other from different parametric directions [14]. Edge and face extensions are

used to check if analysis-suitable requirements are satisfied by the T-mesh. By only drawing

all the face extensions and excluding faces with zero-length interval edges in the T-mesh,

we obtain the elemental T-meshes as shown in Fig. 6.1(d, e).

Anchors are used to determine the local knot vectors and each anchor is associated

with one T-spline basis function. For even degree T-splines, anchors are placed at the

centers of the faces. As shown in Fig. 6.2(a), each blue dot represents an anchor. For odd

degree T-splines, anchors are placed at each vertex, represented with red dots in Fig. 6.2(b).

Local knot interval vectors are inferred from the T-mesh. A local knot interval vector in

the ξ direction is a sequence of knot intervals ∆Ξ̂ = {∆ξ̂1,∆ξ̂2, · · · ,∆ξ̂p+1}. There are p + 1

interval values in each local knot interval vector. The corresponding local knot vector is a

non-decreasing knot sequence Ξ̂ = {̂ξ1, ξ̂2, · · · , ξ̂p+2} such that ∆ξ̂i = ξ̂i+1− ξ̂i. Each anchor is

assigned with two local knot vectors along two parametric directions.

To obtain local knot interval vectors, we shoot rays in each parametric direction (both

positive and negative) to place a segment centered in the anchor crossing exactly p + 2
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orthogonal edges. Note that “centered in the anchor” means that the segment crosses the

same number of orthogonal edges on the left- and right-hand sides of the anchor, and spans

a particular set of p + 1 edges. The knot interval values of the spanned edges are placed

into the local knot interval vector consecutively. Zero-length edges are appended when a

boundary is crossed before enough orthogonal edges are found.

Based on the local knot interval vectors, local knot vectors are obtained and T-spline

basis functions are defined. If a T-spline basis function has non-zero value over one region

covered in the T-mesh, then it has support over the geometry in the physical domain extracted

from that region. The light blue regions in Fig. 6.2 show the support of different T-spline

basis functions associated with the selected anchors.

T-splines of arbitrary degree are defined element-wise. For element e in the elemental

T-mesh, suppose Ne = {Ne
i (ξ,η)}n

e

i=1 is the vector of T-spline basis functions having support

over e. Ne
i (ξ,η) is the basis function mapped to the parent element �= [−1,1]2 with the affine

map introduced in [79]. Then the T-spline geometry is defined by the element geometric

map, xe : �→Ωe, from the parent element domain to the physical domain as

xe =

ne∑
i=1

wiPe
i Ne

i (ξ,η)

ne∑
i=1

wiNe
i (ξ,η)

, (6.1)

where Pe
i is the corresponding control point of the basis function Ne

i (ξ,η), and we
i is the

corresponding weight. Note that Pe
i , we

i are all mapped from global to local numbering by

the IEN array [79] such that Pe
i = PIEN(i,e) and we

i = wIEN(i,e). The element control points

form a matrix Pe of dimension ne×ds, where ds is the spatial dimension. Analysis-suitable T-

splines of arbitrary degree satisfy polynomial partition of unity, which means
ne∑

i=1
Ne

i (ξ,η) = 1.

When we
i = 1.0 for any Pe

i , Eqn. (6.1) is simplified as

xe =

ne∑
i=1

Pe
i Ne

i (ξ,η). (6.2)
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In the following, we set the weights of all the control points to be 1.0 for the sake of brevity.

6.1.2 Bézier Element Extraction

Based on the Bézier extraction algorithm [79, 34], T-spline basis functions can be represented

as linear combinations of Bézier basis functions. Each element in the elemental T-mesh

corresponds to one Bézier element. The eth Bézier element in the physical domain can be

represented as

xe =

ne∑
i=1

Pe
i Ne

i (ξ,η) =

ne∑
i=1

Pe
i

(p+1)2∑
j=1

Me
i jB j(ξ,η), (6.3)

where B j(ξ,η) is the jth Bézier basis function defined on the parent element, and Me
i j is the

Bézier extraction coefficient. By converting Eqn. (6.3) to matrix format, we have

xe = (Pe)T Ne = (Pe)T MeB, (6.4)

where Pe is the matrix of control points, Me is the Bézier extraction matrix, and B is the

vector of Bézier basis functions. Eqn. (6.4) is the Bézier element representation of T-splines.

Fig. 6.3 shows a rectangular domain parameterized with locally h-refined T-splines and

Bézier element representations when p = 2 and p = 3.

(a) (b)

Figure 6.3: Locally h-refined T-splines with Bézier representation. (a) p = 2; and (b) p = 3.
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6.1.3 Arbitrary-Degree Weighted T-splines

The subset of ASTS is defined based on a simple topological constraint, namely, horizontal

T-junction extensions cannot meet with vertical T-junction extensions. If the quadtree subdi-

vision algorithm is applied to a T-mesh, the resulting T-mesh may violate the topological

constraint mentioned above and polynomial partition of unity may not be satisfied. However,

polynomial partition of unity can be recovered through the use of weighted T-splines [57].

Weighted T-splines enable to use more simple and localized h-refinement strategies over

the T-mesh such as, e.g., quadtree subdivision. For a T-spline basis function N j(ξ,η) with

corresponding control point P j obtained from the knot insertion algorithm, if partition of

unity is satisfied in all the support of N j(ξ,η), then the weighted T-spline basis function

N̂ j(ξ,η) equals to N j(ξ,η) and P̂ j equals to P j. Otherwise for N j(ξ,η), the weighting

coefficients of children basis functions [57] or extracted Bézier basis functions [58] are

modified to obtain N̂ j(ξ,η). The control points associated with modified basis functions are

computed by solving a linear system [57]. The detailed weighting coefficient modification

algorithm is explained as follows.

Given a T-mesh, the weighted T-spline of degree p on the eth Bézier element is defined

as

xe =

ne∑
j=1

P̂e
jN̂

e
j (ξ,η) =

ne∑
j=1

P̂e
j

(p+1)2∑
k=1

M̂e
jkBk(ξ,η) = (P̂e)T M̂eB, (6.5)

where N̂e(ξ,η) are the weighted T-spline basis functions with support over this Bézier

element, P̂e
j are the corresponding control points. M̂e is the matrix which transfers weighted

T-spline basis functions to Bézier basis functions. Bk(ξ,η) is the Bézier basis function. The

IEN array is also used here to handle the mapping from global to local numbering.

To obtain M̂e, we first calculate the Bézier transformation matrix Me for regular T-

spline basis functions Ne
j (ξ,η). Note that with Me, partition of unity may not be satisfied

everywhere. For a Bézier basis function Bk(ξ,η), the summation of calculated weighting
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coefficients (
ne∑
j=1

Me
jk) from Ne

j (ξ,η) may not be 1.0. We modify Me to M̂e such that

M̂e
jk =

Me
jk

ne∑
i=1

Me
ik

. (6.6)

Consequently, the regular T-spline basis functions are replaced with weighted T-spline basis

functions and
ne∑
j=1

M̂e
jk = 1, k = 1,2, · · · , (p + 1)2 (6.7)

is always satisfied. Since Bézier basis functions satisfy partition of unity, we have

ne∑
j=1

N̂e
j (ξ,η) =

ne∑
j=1

(p+1)2∑
k=1

M̂e
jkBk(ξ,η) = 1, (6.8)

and weighted T-splines always satisfy polynomial partition of unity.

Note that we are normalizing each column of Me to obtain M̂e according to Eqn. (6.6).

This modification only involves elementary matrix operation and does not change the rank

of the matrix. Since Me is in full-rank, M̂e is also in full-rank. So the weighted T-splines of

arbitrary degree are linearly independent [53, 57, 58].

6.2 Hybrid-Degree Weighted T-splines

In this section, we introduce our algorithm to construct hybrid-degree weighted T-splines

by means of local p-refinement. We first introduce hybrid-degree B-spline curves, and then

generalize the ideas to hybrid-degree weighted T-spline surfaces.

6.2.1 Hybrid-Degree B-spline Curves

Generally for B-splines, global degree elevation increases the degree of all the ba-

sis functions. Suppose a cubic B-spline is defined on the open knot vector U =
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{u0,u0,u0,u0,u1,u2, ...,un,un,un,un}. There are n + 3 basis functions. To elevate them to

quartic, each unique knot value in U is duplicated once to form a new open knot vector

U = {u0,u0,u0,u0,u0,u1,u1,u2,u2, ...,un,un,un, un,un}, based on which 2n + 3 new quartic

B-spline basis functions are defined. The detailed algorithm can be found in [69]. B-spline

global degree elevation can increase the degree of basis functions without modifying the

geometry [69]. The disadvantages are that a lot of new control points are calculated and the

interelement continuity is not increased.

To construct hybrid-degree B-spline curves by means of local p-refinement, we define

the spline basis functions on local knot vectors instead of using a global knot vector, which

is analogous to what is done in T-splines. Fig. 6.4(a) shows part of a cubic B-spline curve

in the index space, where the orange edge has knot interval value 0 and the black edges

have knot interval value 1. The B-spline in the parametric space is given in Fig. 6.4(b) with

parametric values. The red squares in Fig. 6.4(c) represent the anchors to define cubic basis

functions before p-refinement. To perform local p-refinement, we define basis functions of

degree p + 1 only on the refined region.

Knot Insertion. A Hybrid boundary is the edge where we add knots to its ends so as

to stitch the p-refined region with the rest of the curve. In Fig. 6.4(b), suppose we want to

perform local p-refinement to the region u ≤ 4, then the edge marked in green is the hybrid

boundary.

There are four cubic basis functions (N3
i (u),4 ≤ i ≤ 7) that have support over the green

edge before p-refinement. They are defined on local knot vectors {0,1,2,3,4}, {1,2,3,4,5},

{2,3,4,5,6}, {3,4,5,6,7}, respectively. The corresponding anchors are represented with

crossed-out red squares in Fig. 6.4(d). To perform local p-refinement, two new knots (3

and 4) are inserted. There are five quartic basis functions (N4
i (u),5 ≤ i ≤ 9) with support

over the green edge (see Fig. 6.5(b)). They are defined on local knot vectors {0,1,2,3,3,4},

{1,2,3,3,4,4}, {2,3,3,4,4,5}, {3,3,4,4,5,6}, {3,4,4,5,6,7}, respectively, and the correspond-
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Local p-refinement of B-splines of p = 3. (a) The mesh of B-spline in the
index space, where the orange edge has knot interval value 0, and the black edges have knot
interval value 1; (b) the mesh in the parametric space, where the green edge is set as the
hybrid boundary; (c) the red squares represent the anchors to define cubic basis functions; (d)
for the green edge, the corresponding anchors to define supporting cubic and quartic basis
functions of are represented with the crossed-out red squares and blue circles, respectively;
(e) quartic basis functions are defined on the p-refined region; and (f) the resulting anchors
to define cubic and quartic basis functions . Both cubic and quartic basis functions have
support over the magenta transition region.

ing anchors are represented with blue circles in Fig. 6.4(d). To preserve the open knot vector

property, zero knot is also inserted, shown in Fig. 6.4(e, f).

Definition of Basis Functions. We disactivate the basis functions of degree p having

support over the p-refined region and activate basis functions of degree p+1 that have support

over this region. In the p-refined region (u ≤ 4), quartic basis functions are defined. The

final anchors to define basis functions over the whole domain are shown in Fig. 6.4(f). The

defined basis functions before and after local p-refinement as depicted in Fig. 6.4 are shown

in Fig. 6.5(a, b). In Fig. 6.5(a), the dashed red lines are the removed cubic basis functions

from the p-refined region. The solid blue lines in Fig. 6.5(b) show the newly defined quartic

basis functions in the p-refined region.

Transition Region. A Transition region connects the refined region and the unchanged

region. Only basis functions of degree p + 1 have support over the refined region (0 ≤ u ≤ 4

in Fig. 6.5(b)). Only basis functions of degree p have support over the unchanged region

(u ≥ 7 in Fig. 6.5(b)). Basis functions of both degree p and p + 1 have support over the

transition region (4 ≤ u ≤ 7 in Fig. 6.5(b)). We use hybrid-degree B-splines to represent

117



(a) (b)

4 5 4 5 4 5

(c) (d) (e)

Figure 6.5: (a) Cubic basis functions (red), where the dashed red basis functions are removed;
(b) quartic basis functions (blue) are defined on the p-refined region; (c) quartic Bézier basis
functions over region 4 ≤ u ≤ 5; (d) weighted Bézier basis functions obtained from Eqn.
(6.13); and (e) the difference between (c) and (d).

the geometry over this region. Let us take the edge at 4 ≤ u ≤ 5 as an example. There is

one cubic basis function (N3
8 (u)) and three quartic basis functions (N4

i (u),7 ≤ i ≤ 9) having

support over it, shown in Fig. 6.5(b). To define the geometry, we have

x = P3
8N3

8 (u) +

9∑
i=7

P4
i N4

i (u), (6.9)

where P3
8, P4

i are the corresponding control points of the basis functions N3
8(u) and N4

i (u)

respectively. P3
8 is the 8th vertex in the control polygon of the original cubic B-spline. P4

i are

the center points of each control polygon edge, which are obtained by linear interpolation

of the two vertices of the polygon edge. By representing the B-spline basis functions with
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Bézier basis functions, we have

x = Pe,p
8

4∑
j=1

Me,p
8 j Bp

j (u) +

9∑
i=7

Pe,p+1
i

5∑
k=1

Me,p+1
ik Bp+1

k (u)

=

4∑
j=1

Qe,p
j Bp

j (u) +

5∑
k=1

Qe,p+1
k Bp+1

k (u),

(6.10)

where p = 3, Me,p
8 j and Me,p+1

ik are the Bézier extraction coefficients. Qe,p
j and Qe,p+1

k are the

Bézier control points. Based on the degree elevation algorithm for Bézier elements [69], we

have

Qe,p+1
i = (1−

i−1
p + 1

)Qe,p
i +

i−1
p + 1

Qe,p
i−1, i = 1,2, · · · , p + 2. (6.11)

When i = 1, i−1
p+1 = 0 and when i = p + 2, 1− i−1

p+1 = 0. The undefined Qe,p
0 and Qe,p

p+2 do not

jeopardize the integrity of Eqn. (6.11) and we set them as 0. We move the superscript p of

control points and Bézier extraction matrix to subscript for convenience, and convert Eqn.

(6.10) to matrix format

xe = (Pe
p)T Me

pBp + (Pe
p+1)T Me

p+1Bp+1 = (Qe
p)T Bp + (Qe

p+1)T Bp+1. (6.12)

With Eqn. (6.11), Eqn. (6.12) is converted to

xe = (Qe
p)T Tp+1

p Bp+1 + (Qe
p+1)T Bp+1 = (Pe

p)T Me
pTp+1

p Bp+1 + (Pe
p+1)T Me

p+1Bp+1

= ((Pe
p)T Me

pTp+1
p + (Pe

p+1)T Me
p+1)Bp+1 = RT M

e
p+1Bp+1,

(6.13)

where Tp+1
p is obtained from Eqn. (6.11), R are the control points. M

e
p+1 is the transforma-

tion matrix, and Bp+1 represent Bézier basis functions.

Partition of unity is not satisfied here. We recover partition of unity through the use

of weighted T-splines as explained in Section 6.1.3. Fig. 6.5(c) shows the five quartic

Bézier basis functions. The calculated weights of the five Bézier basis functions obtained

from M
e
p+1 are 1.0,1.0,0.95833,0.95833 and 1.0, respectively. The weighted Bézier basis
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functions are shown in Fig. 6.5(d). The differences are shown in Fig. 6.5(e). Finally Eqn.

(6.13) is converted to

xe = RT M̂e
p+1Bp+1, (6.14)

which is used to define the hybrid-degree weighted B-splines over the transition region.

Remark 6.2.1. The hybrid B-spline defined over the transition region is of degree p + 1,

since we performed degree elevation to the Bézier basis functions of degree p. But the

surface continuity is Cp−1, which is the same as the unchanged region. The reason is that

basis functions of degree p have support over this region.

6.2.2 Local p-refinement of T-splines

To explain local p-refinement of T-splines, we define the graph connecting all the faces to

introduce new zero-length edges as the hybrid boundary. There are two types of hybrid

boundaries, namely the interior boundary and the extended boundary. Interior boundaries

are the loops within the domain. Extended boundaries contain faces lying on the boundary of

the geometry. We constrain that the hybrid boundaries cannot be reached by face extension

of any T-junction. In this way, T-junctions do not influence the faces lying on the hybrid

boundaries.

There are mainly three steps to perform local p-refinement. We first determine the local

parametric directions to split the faces on the hybrid boundaries. Then we split the faces

along the detected directions to introduce zero-length interval edges to the T-mesh. After

the splitting we define higher order basis functions over the p-refined region. The last step is

to decide the active original basis functions and calculate the new control points.

Here we take the T-mesh in Fig. 6.6(a) as an example. Since there is only one ring of

edges with zero-length intervals on the boundary of the T-mesh, both basis functions of

p = 3 and p = 2 can be defined on it. The three steps are explained mainly based on odd
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)
Figure 6.6: Local p-refinement of T-splines with p = 3 and p = 2. (a) Interior boundary
marked in light green; (b) T-mesh splitting result of (a); (c) extended boundary marked in
light blue; (d) T-mesh splitting result of (c) when p = 3; The yellow faces on the domain
boundary are split to preserve the open knot vector property; (e) T-mesh splitting result of
(c) when p = 2; (f-i) selected anchors to define active basis functions, where the adjacent
region is marked in cyan, the red and blue dots represent anchors located at corners and
centers of T-mesh faces, respectively, with p = 3 in (f, g) and p = 2 in (h, i); (j-m) the hybrid
T-splines with Bézier representation, where the transition region is marked in purple, and
the p-refined region is marked in pink, with p = 3 in (j, k) and p = 2 in (l, m).

degree T-splines. Even degree T-splines are used to explain the difference and show the

comparison.

Local Splitting Direction Detection (Step 1). Fig. 6.6(a) and (c) show the interior and

extended hybrid boundaries of the T-mesh, marked in light green and light blue, respectively.

We split the faces on the hybrid boundaries to introduce zero-length interval edges across

them. For a pair of neighboring faces sharing an edge on the hybrid boundary, the splitting

direction is perpendicular to that edge. If a face has edges of two different directions shared

by other faces on the hybrid boundary, it should be split in both directions. For example the
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faces on the corners of the hybrid boundaries in Fig. 6.6(a) and (c) should be split in both

directions.

T-mesh Splitting and Basis Function Definition (Step 2). With the detected splitting

directions, we split the faces on the hybrid boundaries as shown in Fig. 6.6(b). If one face

should be split in one direction, we split it into three new faces. The new face in the middle

has the same edge interval values as the original faces, see the light green faces. The other

two have zero-length interval across the splitting direction, see the unshaded faces. If a face

should be split in both directions, nine new faces are generated. The one in the middle has

the same interval values as the original one. The other ones have either two or four edges

with zero-length interval.

In the p-refined region, if there are faces on the boundary of the domain, then the open

knot vector property should be satisfied after T-mesh splitting. When performing local

p-refinement to T-splines of odd degree, one new boundary layer with zero-length interval

edges is introduced. For T-mesh in Fig. 6.6(c), if p = 3, there is one layer of faces with

zero-length intervals. After refining it to p = 4, there should be two layers. We equally split

the faces on the geometric boundary to two smaller ones. The splitting follows the direction

of the geometry boundary. If the face is at the corner of the geometry, it is equally split into

four smaller ones. In Fig. 6.6(d), those faces marked in yellow are the newly generated

faces with zero-length intervals. If p is even, no boundary face splitting is required to satisfy

the open knot vector property. In Fig. 6.6(e), faces on the geometric boundary remain

unchanged, except those on the extended hybrid boundary.

After T-mesh splitting, we place anchors on both the corners and the centers of T-mesh

faces. Local knot vectors are inferred for each anchor. For an anchor at the corner, a T-spline

basis function of odd degree is defined. Whereas for an anchor at the center, a T-spline basis

function of even degree is defined.

We define an adjacent region as the first-ring neighborhood of the hybrid boundary

beyond the p-refined region. In Fig. 6.6(f - i), the adjacent regions are marked in cyan.

122



All the basis functions of degree p + 1 in the p-refined region are set as active. All basis

functions of degree p beyond the adjacent region are also set as active. When p is odd, the

basis functions of degree p + 1 at the face center in the adjacent region are set as active. In

Fig. 6.6(f, g), the anchors to define active cubic basis functions are represented with red

dots. The anchors to define active p-refined quartic basis functions are represented with

blue dots. When p is even, the basis functions of degree p + 1 at the corners shared by the

adjacent region and the hybrid boundary are set as active. In Fig. 6.6(h, i), the anchors to

define active quadratic basis functions are represented with blue dots, and the anchors to

define active cubic basis functions are represented with red dots.

Control Point Calculation (Step 3). Local p-refinement may slightly change the

geometry. The refinement algorithms introduced in [69] to calculate control points cannot be

used here because zero-length interval edges are only introduced along the hybrid boundary.

Here we introduce a direct way to calculate the new control points from the original ones by

linear interpolation.

We place five control points on each T-mesh element. Four are at the corners and the last

one is in the center. If p is odd, we use corner points to interpolate the center control points

for the new basis functions of degree p + 1. For example in Fig. 6.7(a), a center control

point C1 is calculated by

C1 =
P1 + P2 + P3 + P4

4
, (6.15)

where P1 ∼ P4 are four control points at the corners. If p is even, we use center points to

perform the interpolation. In Fig. 6.7(b), a corner control point P1 is calculated by

P1 =
∆ξ2∆η2C1 +∆ξ1∆η2C2 +∆ξ1∆η1C3 +∆ξ2∆η1C4

(∆ξ1 +∆ξ2)(∆η1 +∆η2)
, (6.16)

where C1 ∼ C4 are four control points at the centers of the elements which share P1. After

the T-mesh splitting and control point calculation, we can define the hybrid-degree weighted

T-splines.

123



(a) (b)

Figure 6.7: Interpolation scheme to obtain new control points. (a) Using corner control
points to calculate the center control point; and (b) using center control points to calculate
the corner control point.

6.2.3 Hybrid-Degree Weighted T-spline Construction

We define the hybrid-degree weighted T-splines with Bézier element representation. In the

p-refined region, only basis functions of degree p + 1 have support over extracted Bézier

elements. In the unchanged region, only basis functions of degree p have support over

extracted Bézier elements. Both basis functions of degree p and p + 1 have support over

the Bézier elements extracted from the transition region. There are b(p + 1)/2c+ 1 rings of

elements in the transition region (see Fig. 6.6(j-m)).

Bézier elements in the p-refined or unchanged region are calculated using Eqn. (6.4).

Over the transition region, the hybrid-degree T-spline for the eth element is defined as

xe =
∑

m
Pe

mNe,p
m (ξ,η) +

∑
n

Ce
nNe,p+1

n (ξ,η) (6.17)

when p is odd, and

xe =
∑

m
Ce

mNe,p
m (ξ,η) +

∑
n

Pe
nNe,p+1

n (ξ,η) (6.18)

when p is even. In Eqns. (6.17)-(6.18), Pe
m, Pe

n are the corner control points, and Ce
n, Ce

m are

the center control points. Ne,p
m (ξ,η) and Ne,p+1

n (ξ,η) are the active T-spline basis functions

defined on the T-mesh after refinement. We first derive the expression for T-splines of hybrid

degrees when p is odd.
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With the Bézier extraction algorithm, Eqn. (6.17) is converted to

xe =
∑

m
Pe

m

(p+1)2∑
j=1

Me,p
m j Bp

j (ξ,η) +
∑

n
Ce

n

(p+2)2∑
k=1

Me,p+1
nk Bp+1

k (ξ,η)

=

p+1∑
α=1

p+1∑
β=1

Qe,p
α,βBp

α,β(ξ,η) +

p+2∑
α=1

p+2∑
β=1

Qe,p+1
α,β Bp+1

α,β (ξ,η),

(6.19)

where Me,p
m j and Me,p+1

nk are the Bézier extraction coefficients. Bp
j (ξ,η) and Bp+1

k (ξ,η) are

Bézier basis functions of degree p and p + 1. We have j = (α− 1)× (p + 1) + β, and k =

(α−1)× (p + 2) +β. Qe,p
α,β and Qe,p+1

α,β are the Bézier control points.

We elevate the Bézier basis functions of degree p to p + 1 by extending Eqn. (6.11) to

2D such that
Qe,p+1
α,β = (1−

α−1
p + 1

)((1−
β−1
p + 1

)Qe,p
α,β+

β−1
p + 1

Qe,p
α,β−1)

+
α−1
p + 1

((1−
β−1
p + 1

)Qe,p
α−1,β+

β−1
p + 1

Qe,p
α−1,β−1),

(6.20)

where α = 1,2, · · · , p + 2, and β = 1,2, · · · , p + 2. Similarly, the undefined Qe,p
0,β, Qe,p

α,0, Qe,p
p+2,β

and Qe,p
α,p+2 do not jeopardize the integrity of Eqn. (6.20) since they all have 0 coefficients,

and they are set as 0. To obtain the matrix format of Eqn. (6.19), we move superscript p of

Bézier control points and Bézier extraction matrix to subscript for convenience. We have

xe = (Pe)T Me
pBp + (Ce)T Me

p+1Bp+1 = (Qe
p)T Bp + (Qe

p+1)T Bp+1. (6.21)

With Eqn. (6.20), Eqn. (6.21) is converted to

xe = (Qe
p)T Tp+1

p Bp+1 + (Qe
p+1)T Bp+1 = (Pe)T Me

pTp+1
p Bp+1 + (Ce)T Me

p+1Bp+1

= ((Pe)T Me
pTp+1

p + (Ce)T Me
p+1)Bp+1 = (Re)T M

e
p+1Bp+1,

(6.22)

where

Re =

 Pe

Ce

 , M
e
p+1 =

Me
pTp+1

p

Me
p+1

 . (6.23)
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Re are the control points, M
e
p+1 is the Bézier extraction matrix, and Tp+1

p is obtained from

Eqn. (6.20). Analogously we can get the same expression for Eqn. (6.18) when p is even,

except that

Re =

Ce

Pe

 . (6.24)

As in Section 6.2.1, partition of unity is not satisfied necessarily. We use weighted

T-splines in order to restore partition of unity, namely, M
e
p+1 is changed to M̂e

p+1 by normal-

izing each column of M̂e
p+1 with Eqn. (6.6). Thus the hybrid-degree weighted T-spline is

defined as

xe = (Re)T M̂e
p+1Bp+1. (6.25)

The calculated hybrid T-splines with different hybrid boundaries of p = 3 and p = 2 are

given in Fig. 6.6(j - m).

With the developed way to introduce zero-interval length edges and define basis functions

of degree p + 1, the calculated T-spline surface is Cp-continuous at the p-refined region

except the hybrid boundaries. It is Cp−1-continuous at the unchanged region, the transition

region, and the hybrid boundaries.

Remark 6.2.2. For now, the degree difference of basis functions over the transition

region is one. It is also possible to make the hybrid-degree weighted T-splines more general

by introducing further p-refined basis functions to support the transition region, such as basis

functions of degree p + 2, or even higher. For the transition regions, the surface continuity is

determined by the basis function with the lowest degree. The degree of extracted Bézier

element is determined by the basis function with the highest degree.

Handling Extraordinary Nodes. Hybrid-degree weighted T-splines can also be used

to perform local p-refinement to arbitrary topology surfaces with extraordinary nodes. Till

now, the developed algorithms to deal with extraordinary nodes always use cubic basis

functions [92, 81, 58]. Since extraordinary nodes influence their two-ring neighborhoods,
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we can apply interior boundaries to enclose the two-ring neighborhood of each extraordinary

node. Then beyond the hybrid boundaries, we define T-splines of p = 2 or p = 4. In this way,

we can define hybrid T-spline surfaces of odd and even degrees on arbitrary shape topology.

However, directly using even degree basis functions to deal with extraordinary nodes is still

an open problem.

Remark 6.2.3. The main limitation of hybrid-degree weighted T-splines is that the

geometry may be slightly changed after the local p-refinement. The reason is that we are

defining basis functions of higher degree without sacrificing the surface continuity, and basis

functions of different degree have support over the transition region. Zero-length interval

edges are only introduced to the hybrid boundaries, not to all the faces in the p-refined

region. If we introduce the zero-length interval edges to all the p-refined region, the surface

change will only exist in the transition region. However this limitation will not bring trouble

to analysis of 2D flat surfaces or 3D solids if the local p-refinement is performed such that

the geometry boundary is not modified.

6.3 Results and Discussion

Here we first test hybrid-degree weighted T-splines with a common patch test of linear

elasticity. Then, we use odd-, even- and hybrid-degree weighted T-splines to solve a classical

benchmark problem that can be physically interpreted as a steady heat conduction. Finally,

four other hybrid-degree weighted T-spline surfaces are given.

6.3.1 Isogeometric Analysis using Hybrid-Degree Weighted T-splines

We perform a patch test on a unit square. The Young’s modulus is E = 1.0, and the Poisson’s

ratio is ν = 0.3. Regarding the boundary conditions, the displacement in x direction is set to

be 0 and 0.1 on the left and right boundaries, respectively. The displacement in y direction

is set to be 0 on the bottom boundary and homogeneous Neumann boundary conditions are
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Patch test with weighted hybrid-degree T-spline with interior hybrid boundary
(a-c) and extended hybrid boundary (d-f). (a, d) Displacement along x direction; (b, e)
displacement in y direction; and (c, f) stress in x direction.

imposed elsewhere. Hybrid-degree weighted T-splines with interior and extended hybrid

boundaries as shown in Fig. 6.6(a, c) are tested here. The results are shown in Fig. 6.8.

We obtain linearly distributed displacement along x and y directions and uniform stress in

x direction. The analysis results give the exact solution to the problem up to the machine

precision.

The second problem solved here is a heat transfer problem defined over an L-shaped

domain governed by the Laplace equation ∆u = 0 with homogeneous Dirichlet boundary

conditions on the re-entrant edges. Proper Neumann boundary conditions are imposed on

the remaining boundaries so that the exact solution in polar coordinates (r, θ) is

u(r, θ) = r2/3 sin(2θ/3), r > 0 and 0 ≤ θ ≤ 3π/2. (6.26)

The problem setting is shown in Fig. 6.9(a). The domain is parameterized with locally

h-refined T-splines of p = 3 and p = 4 first. Then the hybrid-degree weighted T-splines are
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Figure 6.9: Isogeometric analysis of the Laplace equation over an L-shaped domain with
re-entrant corner. (a) Geometry and problem settings; (b) Bézier elements with 4 levels of
local h-refinement and local p-refinement with hybrid degrees p = 3,4 near the re-entrant
corner; (c) solution field over the domain; (d) convergence curves of the three meshes.

obtained by performing local p-refinement to the T-spline with p = 3 near the re-entrant

corner. Fig. 6.9(b) shows the refined meshes with hybrid degrees p = 3,4, respectively.

Fig. 6.9(c) shows the solution over the domain. Fig 6.9(d) shows the relative error of H1

semi-norm with respect to the square root of degrees of freedom. With local p-refinement,

hybrid-degree weighted T-splines perform better than T-splines of p = 3. Hybrid-degree

weighted T-splines generate results as good as T-splines of p = 4. The reason is that the

maximal error happens at the re-entrant corner where the first partial derivatives of the

solution field have a singularity. Therefore, we extract Bézier elements of p = 4 from

hybrid-degree weighted T-splines for the region close to the re-entrant corner in order to
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(a) (b)

Figure 6.10: Open surface hybrid-degree weighted T-spline models. (a) A square model
with extended hybrid boundaries and the difference before (white lines) and after refinement
(black lines); and (b) a circle model with interior hybrid boundaries and the difference before
(white lines) and after refinement (black lines).

improve the performance. In conclusion, local p-refinement gives additional flexibility to

T-splines in order to enhance its efficiency in analysis.

Remark 6.3.1. Note that both h- and p-refinement are performed close to the singularity

in the second problem. This is done in order to decrease the relative error of the H1 seminorm

which is concentrated near the singularity. However, in more complex settings, such as

compressible gas dynamics, other hp-refinement strategies are known to perform better [31].

It is quite widespread to use local h-refinement where the solution is rough and to use local

p-refinement in the rest of the domain where the solution is smooth.

6.3.2 Open and Closed Hybrid-Degree Weighted T-spline Surfaces

Here we show four hybrid-degree weighted T-spline surfaces, including two open surfaces

as shown in Fig. 6.10 and two high genus closed T-spline surfaces as shown in Fig. 6.11.

A square model is shown in Fig. 6.10(a), with a combination of degrees 2, 3, 4 and

5 basis functions, marked with different colors. Extended hybrid boundaries exist in this

model. Hybrid-degree weighted T-splines can combine basis functions of different degrees

using different layers of transition regions. In Fig. 6.10(b), a circle model is provided with a

combination of degrees 3, 4 and 5 basis functions. Interior hybrid boundaries exist in this

model. There are 4 valance-3 extraordinary nodes. T-splines of p = 3 are used to handle
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Tetra model (a-c) and Genus-three model (d-f) of hybrid-degree weighted
T-splines. (a, d) Original model of degree 3; (b, e) local p-refinement results, where the
white and black lines show the difference of Bézier elements before and after refinement;
and (c, f) show the zoom-in of (b, e).

the extraordinary nodes. After local p-refinement with hybrid-degree weighted T-splines,

the surface is changed along the radial direction near the hybrid boundaries. In Fig. 6.10,

the white and black lines show the difference before and after local p-refinement. For open

surface models, with the scheme to calculate the control points, the local region around the

hybrid boundaries in the interior of the geometry is changed. The boundary of the geometry

remains unchanged after refinement.

Two closed surface models with extraordinary nodes are given in Fig. 6.11. The Tetra

model in Fig. 6.11(a) has eight valance-6 extraordinary nodes. The original T-spline surface

is of degree 3. After local p-refinement, the hybrid-degree weighted T-spline is shown in

Fig. 6.11(b), with the comparison before and after refinement. Fig. 6.11(d-f) shows the

Genus-three model before and after local p-refinement. In this model, we set the two-ring

neighborhood of the four valance-8 extraordinary nodes as degree 3. For all the other regions,

the surface is of degree 4. With hybrid-degree weighted T-splines, we can generate T-spline

surfaces with basis functions of different degrees in one model.
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6.4 Conclusions and Future Work

In conclusion, in this chapter we develop a new algorithm to generate hybrid-degree weighted

T-splines which can be used in isogeometric analysis. Weighted T-splines of arbitrary degree

are proposed which satisfy all the analysis-suitable requirements. Hybrid-degree weighted T-

splines are developed with two types of hybrid boundaries for local p-refinement. Both odd-

and even-degree T-spline basis functions are defined. The p-refined regions and unchanged

regions are connected via transition regions. Both p-refined basis functions and original basis

functions have support over the transition regions, over which the hybrid-degree weighted

T-splines are defined. The transition region has basis functions of the same degree as the

p-refined region, and the same surface continuity as the unchanged region. Bézier elements

of different degrees are extracted for isogeometric analysis. The Laplace equation is solved

on an L-shaped domain, which is parameterized with odd-, even-, and hybrid-degree T-

splines. Hybrid T-splines provide better performance after local p-refinement. In the future,

we are planning to develop a better control point calculation algorithm to decrease the

surface change after local p-refinement.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we develop algorithms for volumetric T-spline construction and arbitrary

degree weighted T-spline modeling. Boolean operations and skeletons are used to generate

polycubes for complicated volumetric T-spline models. Weighted T-splines are developed

with less topological constraints to the T-mesh while meeting all the analysis-suitable

requirements.

In the Boolean operation method, a harmonic field is computed to split the input geometry

into hexahedral components. Two primitives, cube and torus, are used for the representation

of components with cubes. With union and difference operations, the final polycube can

be properly constructed. Then the T-mesh construction for volumetric T-splines is straight

forward with the final polycubes. By introducing Boolean operations, we can construct

T-splines in the same way with CAD design. Fewer extraordinary nodes are introduced.

But there are certain types of models that it cannot handle, such as a tetrahedron or a cone.

Another limitation of this algorithm is that we only use scaled Jacobian values to optimize

the T-mesh, which would not improve the shape of the T-mesh.
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Skeleton contains the extracted topological and geometrical information of 3D models,

based on which the generated polycubes can better preserve geometric features from the

input. Detailed algorithms have been developed to preserve different types of surface

features. The constructed T-mesh contains all the surface information from the input, and

transfers them to the final volumetric T-splines. Surface features are classified into three

types: open curve, closed curve, and singularity features. Parametric mapping, volumetric

parameterization, skeleton modification and templates are the developed algorithms to

preserve them during T-mesh construction. The main drawback of this algorithm is that we

have to perform pre-processing with the skeleton to make it valid for polycube construction.

In addition, we cannot perform volumetric parameterization from frame field for the whole

domain due to the limitations of singularity restricted field and flip-over issues discussed in

[54]. For complex CAD models, since we are enclosing all the singularities into the interior,

the resulting T-mesh quality may not be good in some situations compared to volumetric

polycube parameterization methods which allow boundary singular edges.

Weighted T-splines are developed for T-spline surface and volume modeling with less

geometrical constraints. It is proved to be analysis suitable. Weighted T-spline models

can be easily constructed by simply performing quadtree/octree subdivision to the T-mesh.

Both children basis functions and Bézier basis functions can be used to calculate the new

weights of T-spline basis functions to enforce partition of unity. An edge interval extension

algorithm is developed to reparameterize trimmed NURBS surfaces with T-splines. The

reparameterization results can exactly reconstruct the trimming curves from the input,

providing the foundation to generate water-tight T-spline surfaces from designed CAD

models. An interval duplication method is developed to handle extraordinary nodes with

better surface continuity. With parametric mapping and sweeping methods, a group of

complicated volumetric T-splines can be generated.

Isogeometric collocation methods require at least C2-continuous basis functions, and

these methods show better performance with higher degree basis functions in isogeometric
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analysis. Arbitrary degree T-spline modeling is studied to serve isogeometric analysis. The

differences between even degree T-splines and odd degree T-splines are investigated in

detail. Efficient data structure and knot interval extraction are developed to make arbitrary

degree T-spline modeling possible. Localized hybrid T-splines are introduced, with weighted

T-spline basis functions used to enforce partition of unity. Hybrid T-splines provide an

elegant way to improve the analysis accuracy by performing local p-refinement. Surfaces

with extraordinary nodes can also be handled with hybrid T-splines, which makes T-spline

modeling more flexible for arbitrary degree basis functions.

Weighted T-splines have one limitation that the geometry is modified after recalculating

the weighting coefficients. The surface change is introduced in reparameterizing trimmed

NURBS surfaces, handling extraordinary nodes and calculating the transition regions.

One promising solution to this problem is using truncated T-splines, which have released

constraint on the T-mesh and do not change the geometry.

7.2 Future Work

Handling Extraordinary Nodes. For now the best surface continuity around extraordinary

nodes is G1. To use T-spline models in isogeometric collocation analysis, at least C2-

continuity is required. Developing new algorithms to handle extraordinary nodes with better

surface continuity requires further study. Furthermore, in volumetric T-splines, the template

method introduces redundant control points which not only decrease the continuity, but also

result in ill-conditioned stiffness matrix for analysis. One possible solution is to extend the

linear interpolation method developed in [81] to volumetric T-splines. However, due to the

high complexity of the T-mesh topology around extraordinary nodes, further study is still

required.

Volumetric T-spline Construction: Our volumetric T-spline construction algorithms de-

pend on the input. If the input is partially changed, we have to reconstruct the T-splines
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for the whole geometry. One interesting direction in volumetric T-spline construction is

incremental modeling, which involves Boolean operations in-depth and only reconstructs

required region when necessary. Besides, even though we can generate a group of volumetric

T-spline models using the polycube and sweeping methods, it is still not possible to generate

volumetric T-splines directly from complex CAD models. One reason is that the CAD

models are not water-tight. Cleaning up the data from CAD files is always tedious and time

consuming. One possible solution is to improve the design software and propose one new

file format defined specifically for T-splines. AutoCAD and Rhino are two CAD software

solutions that support T-splines. Popularizing T-spline in design industry and analysis needs

more efforts from both research institutions and industrial companies.

Isogeometric Analysis Using T-splines: Isogeometric analysis using T-splines has been

performed in different research fields. New algorithms have been developed for both

geometrical modeling and numerical integration. One promising direction for isogeometric

analysis is to apply it to dynamic problems. It can also be applied in adaptive manufacturing

and 3D printing, which calls for integration of design and analysis to obtain optimal designed

shape. This will also give rise to the challenges for new spline modeling techniques.
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Bézier patches. Computer Aided Geometric Design, 9(5):321–335, 1992.

144


	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions
	1.4 Publication
	1.5 Outline of Dissertation

	2 Literature Review
	2.1 T-splines
	2.2 Isogeometric Analysis
	2.3 Surface and Volumetric T-Spline Modeling
	2.4 Hexahedral Meshing and Volumetric Parameterization
	2.5 Converting CAD models to Spline Models for Analysis
	2.6 Degree Elevation of B-splines

	3 Volumetric T-spline Construction Using Boolean Operations
	3.1 Algorithm Overview
	3.2 Curve Extraction
	3.3 Domain Decomposition and Boolean operations
	3.3.1 Domain Decomposition
	3.3.2 Two Primitives
	3.3.3 Two Boolean Operations

	3.4 Volumetric T-spline Construction
	3.4.1 Adaptive Octree Subdivision and Mapping
	3.4.2 Sharp Feature Preservation and Quality Improvement
	3.4.3 Irregular Nodes and Volumetric T-spline Construction
	3.4.4 Surface Continuity Elevation

	3.5 Results and Isogeometric Analysis
	3.6 Conclusion

	4 Skeleton-based T-mesh Construction
	4.1 Algorithm Overview
	4.2 Skeleton-based Polycube Construction
	4.2.1 Skeleton Generation and Splitting
	4.2.2 Interior Cube Construction
	4.2.3 Boundary Cube Construction
	4.2.4 Singularity of Polycubes

	4.3 Feature Preservation
	4.3.1 Open Curves
	4.3.2 Skeleton Modification and Boolean operations
	4.3.3 Singularity Modification

	4.4 Results and Discussion
	4.5 Conclusion

	5 Weighted T-splines
	5.1 Weighted T-splines
	5.1.1 Weighted T-spline Basis Functions
	5.1.2 Linear Independence of Weighted T-spline Basis Functions

	5.2 Reparameterization of Trimmed NURBS Patches
	5.2.1 Edge Interval Extension
	5.2.2 Four Types of Trimmed NURBS Patches
	5.2.3 Surface Error

	5.3 Handling Extraordinary Nodes with Weighted T-spline
	5.4  Weighted T-spline Surface Calculation
	5.4.1 Topological Constraints and Knot Interval Duplication
	5.4.2 Gap-free Surface Calculation
	5.4.3 Surface Continuity Elevation
	5.4.4 Comparison with Other Methods

	5.5 Isogeometric Analysis Results
	5.5.1 Analysis with Reparameterized NURBS Surfaces
	5.5.2 Analysis with Surfaces with Extraordinary Nodes

	5.6 Volumetric Weighted T-splines
	5.7 Conclusion

	6 Hybrid Degree Weighted T-splines
	6.1 Arbitrary Degree T-splines
	6.1.1 T-spline Basics
	6.1.2 Bézier Element Extraction
	6.1.3 Arbitrary-Degree Weighted T-splines

	6.2 Hybrid-Degree Weighted T-splines
	6.2.1 Hybrid-Degree B-spline Curves
	6.2.2 Local p-refinement of T-splines
	6.2.3 Hybrid-Degree Weighted T-spline Construction

	6.3 Results and Discussion
	6.3.1 Isogeometric Analysis using Hybrid-Degree Weighted T-splines
	6.3.2 Open and Closed Hybrid-Degree Weighted T-spline Surfaces

	6.4 Conclusions and Future Work

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

