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Abstract
A massive amount of data is being generated at an unprecedented level from

a diversity of sources, including social media, internet services, biological studies,
physical infrastructure monitoring and many others. The necessity of analyzing such
complex data has led to the birth of an emerging framework, graph signal processing.
This framework offers an unified and mathematically rigorous paradigm for the anal-
ysis of high-dimensional data with complex and irregular structure. It extends fun-
damental signal processing concepts such as signals, Fourier transform, frequency
response and filtering, from signals residing on regular lattices, which have been
studied by the classical signal processing theory, to data residing on general graphs,
which are called graph signals.

In this thesis, we consider five fundamental tasks on graphs from the perspec-
tive of graph signal processing: representation, sampling, recovery, detection and
localization. Representation, aiming to concisely model shapes of graph signals,
is at the heart of the proposed techniques. Sampling followed by recovery, aiming
to reconstruct an original graph signal from a few selected samples, is applicable
in semi-supervised learning and user profiling in online social networks. Detection
followed by localization, aiming to identify and localize targeted patterns in noisy
graph signals, is related to many real-world applications, such as localizing virus
attacks in cyber-physical systems, localizing stimuli in brain connectivity networks,
and mining traffic events in city street networks, to name just a few. We illustrate
the power of the proposed tools on two real-world problems: fast resampling of 3D
point clouds and mining of urban traffic data.
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Chapter 1

Introduction

1.1 Motivation

Data Science. Datasets collected from physical and engineering applications in fields like social
activity, cell biology, economy and security are becoming larger and more complex. In many
cases, the data is analyzed manually or by ad-hoc methods that extract only superficial informa-
tion and can possibly lead to subjective or non-reproducible conclusions. There is thus an urgent
need to develop methodologies that formalize complex data analysis.

Graph signal processing. The emerging framework of graph signal processing has offered
a new paradigm for the analysis of high-dimensional data with complex and irregular struc-
ture [1,2]. The theory extends fundamental signal processing concepts including signals, Fourier
transform, frequency response, low- and high-pass filtering, from signals residing on regular
lattices, which have been studied by the classical signal processing theory, to data residing on
general graphs. Furthermore, signal processing on graphs formulates and offers solutions to a
number of tasks in data science, such as data compression, sampling, recovery, detection, local-
ization, etc..

GOAL: Develop the fundamentals of data representation, sampling, recovery, detec-
tion and localization on graphs to solve graph structure related real-world problems.

In this thesis, we pursue our above-stated goal by answering, in a mathematically rigorous
manner, the following fundamental questions:

Aim 1. How to properly represent graph signals?
We will extend relevant transforms and representation techniques for time signals and images
such as Fourier and wavelet bases and dictionaries to those for general graph signals. The gener-
alized representations will be consistent with the classical signal processing theory to the extent
possible and will address additional challenges presented by graph structures and properties.

Aim 2. How to properly sample and recover graph signals?
We will extend relevant sampling and recovery strategies for time signals and images such as uni-
form, experimentally designed, and active (feedback-driven) sampling to those for general graph
signals. The generalized sampling and recovery strategies will be consistent with the classical

3



signal processing theory and will address additional challenges presented by graph structures and
properties.

Aim 3. How to properly detect and localize graph signals?
We will extend relevant detection and localization algorithms for time signals and images. The
generalized detection and localization algorithms will be consistent with the classical signal pro-
cessing theory and will address additional challenges presented by graph structures and proper-
ties.

Broader Impact. The proposed tools are based on a combination of signal processing, ma-
chine learning, data mining and network science. The goal is to provide solutions for graph
structure related real-world applications. For example,

• designing optimized routes for autonomous vehicles in a traffic network
• labeling a huge number of unlabeled facial images with few queries
• identifying the most representative individuals in Facebook or Twitter
• distinguishing the key features in a LinkedIn user profiles that lead to a connection
• understanding the brain activity in the brain connectivity network

As researchers in numerous fields are collecting and studying unprecedented amounts of data,
analysis and processing of that data is a task that requires enormous resources and may unveil
only the superficial information. A rigorous mathematical framework is thus needed that will
allow researchers to formulate data analysis problems in a principled way and provide a set of
methodologies that are applicable to datasets of different origin, nature, and contents. Classical
signal processing provides a unified way to process time signals and images. Similarly, graph
signal processing aims to provide a unified way to process data with complex structure and to
offer a set of standard signal processing tools—among others filtering, frequency analysis and
sampling—that are instantiated and applied to data from different domains.

The Need for Signal Representations on Graphs. Signal representations provide a suc-
cinct way to capture valuable hidden information in the data and lay a foundation for solving
numerous problems in data analysis and processing. Compared to time signals and images, sig-
nals supported on complex, irregular graph structures have richer hidden information and require
more advanced representation techniques. A good representation lays a foundation to uncover
hidden patterns and structure within data and is beneficial for related tasks including approxima-
tion, compression, sampling, recovery, denoising, detection, localization, and many others.

The Need for Signal Sampling and Recovery on Graphs. As one of the most fundamental
tasks, sampling followed by recovery considers selecting few representative data samples from
a large dataset that capture most of the original information from those samples and reconstruct-
ing the original data distribution based on those samples. In contrast to the sampling of time
signals and images, where Nyquist sampling is the norm, we aim to design more efficient sam-
pling strategies than the existing ones for time signals and images by taking advantage of the
underlying complex, irregular graph structures. These sampling strategies can be considered as
extensions of the Nyquist sampling for regular domains. A good sampling strategy is beneficial
for active learning and dimensionality reduction. For example, in semi-supervised/active learn-
ing, we want to label some data samples as the training data. A sampling strategy helps choose
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the most representative training data and lead to better learning performance. A good recovery
strategy is beneficial for prediction, completion and denoising. For example, we want to monitor
the health status of bridges based on the noisy measurements from sensor networks. Similarly,
in the Netflix problem, users typically rate only a few movies. To recommend movies based on a
users preferences, we want to predict the users’ preference for unrated items. This is equivalent
to complete a matrix of graph signals from a few random, noisy samples.

The Need for Signal Detection and Localization on Graphs. Detection followed by lo-
calization has been intensely studied in classical signal/image processing from various aspects
over the past few decades. For example, impulse detection localizes impulses in a noisy sig-
nal [3]; change-point detection identifies times when the probability distribution of a stochastic
process or time series changes [4]; support recovery of sparse signals localizes sparse activations
with a limited number of samples [5,6]; foreground detection localizes foreground in a video se-
quence [7]; cell detection and segmentation localize cells in microscopy images [8] and matched
filtering localizes radar signals in the presence of additive stochastic noise [9, 10]. In a big data
era, a massive amount of data are generated, which makes pattern discovery more challenging
and meaningful. For example, do users from Carnegie Mellon University form social commu-
nities on Facebook? do researchers from signal processing community tightly cooperate with
each other? do Chinese restaurants in Manhattan cluster together? These seemingly different
problems share common structure: some attribute may be localized on a large-scale graph; in
other words, a graph signal may exhibit some structure-related property. Graph signal detection
aims to distinguish which graph signal is structure-related and graph signal localization aims
to find the precise supports of targeted patterns. A good detection and localization strategy is
beneficial for many important applications, such as detecting virus attacks in cyber-physical sys-
tems, localizing stimulus in brain connectivity networks, and mining traffic events in city street
networks.

1.2 Thesis Contribution
The core contribution of this thesis is to deal with five tasks on graphs, including representation,
sampling, recovery, detection and localization, from a perspective of signal processing.
• representation: we consider three graph signal models: smooth, piecewise-constant and

piecewise-smooth graph signals. For each graph signal model, we propose a corresponding
graph dictionary to achieve efficient and provably effective approximation;

• sampling: we design provably effective sampling strategies to select the most informative
samples from smooth graph signals, which also presents a comprehensive explanation for
when and why sampling for semi-supervised learning with graphs works;

• recovery: we formulate a general optimization problem to recover one or multiple smooth
graph signals from noisy, corrupted, or incomplete measurements. We further provide
corresponding solutions and theoretical analysis;

• detection: we formulate a statistical hypothesis test to decide whether a given graph signal
is localized or not. We propose two statistics, including graph wavelet statistic and graph
scan statistic, which are provably effective to detect localized graph signals;
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• localization: we formulate a general optimization problem to find the supports of localized
graph signals. We further propose a computationally efficient solver, which is parameter-
free, scalable and robust to noise.

1.3 Thesis Outline
This thesis is divided in six parts: introduction and required background on data science with
graphs; representations of graph signals; sampling and recovery of graph signals; detection and
localization of graph signals; two case studies with applications to resampling of 3D point clouds
and mining of urbafilters n traffic data; and concluding remarks and further work.

In Part I, we introduce graph theory, graph mining, network science and graph signal pro-
cessing. In Part II, we present our work on representations of smooth graph signals (Chapter 3),
piecewise-constant graph signals (Chapter 4) and piecewise-smooth graph signals (Chapter 5).
In Part III, we present our work on sampling of bandlimited graph signals (Chapter 6), sampling
of approximated-bandlimited graph signals (Chapter 7), and recovery of smooth graph signals
(Chapter 8). In Part IV, we present our work on detection of localized graph signals (Chapter
9), localization of localized graph signals (Chapter 10). In Part V, we present our work on fast
resampling of 3D point clouds (Chapter 11), pattern mining in urban traffic data (Chapter 12).
We conclude in Part IV.
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Chapter 2

Background

Graphs are generic forms to represent the inter-dependencies by the introduction of edges be-
tween the related objects. It provide a powerful machinery for effectively capturing both short-
and long-range correlations among objects. There is a long history about graphs. The earliest
known work in this field is the famous seven bridges of Königsberg written by Leonhard Euler in
1736. Euler’s mathematical description of vertices and edges was the foundation of graph theory.
Nowadays, graphs are broadly interested in a wide range of disciplines, such as physics, biology,
social sciences, information systems and many others.

In this chapter, we first briefly introduce graph-related topics and then introduce graph signal
processing, which lays a foundation of this thesis.

2.1 Graph Theory

In mathematics, graph theory is the study of graphs, which are structures used to model pairwise
relations between objects. A graph is made up of nodes, which are connected by edges. A graph
may be either directed (each edge has a direction), or undirected (there is no distinction between
the two nodes associated with each edge). A graph may be either weighted (edges have weights
or values) or unweighted (edge weights are binary).

Graph theory introduces basic concepts in graphs, such as degree, path, walk, cycle, tree,
geodesic distance, complement graph, clique, bipartite graph, subgraph and many others [11,12].
Graph theorists have been studying various types of graphs, such as planer graphs (each node
has a coordinate in the plane and there is no cross edges in the plane), interval graphs (arising
in scheduling), symmetric graphs (hypercubes and those from group theory), routing networks
(from communications), random graphs, and computational graphs that are used in designing al-
gorithms or simulations [13]. Some prevailing topics in graph theory includes subgraph match-
ing problem [14], graph coloring [15], shortest/longest path algorithms [16], minimum graph
cuts [17], maximum flow [18], graph drawing [19].
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2.2 Spectral Graph Theory
Spectral graph theory studies the properties and structure of a graph from its graph spectrum;
that is, it is about the eigenvalues and eigenvectors of matrices associated with graphs, and their
applications [20]. Graph theory emphasizes the analysis in the graph vertex domain and spectral
graph theory emphasizes the analysis in the graph spectral domain, which corresponds to the
properties of eigenvalues and eigenvectors of the graph Laplacian matrix.

Spectral graph theory is related to the physics in resistor networks and spring networks [21].
A resistor network is a combination of several resistors that are configured into a pattern. Cor-
responding edge weights are determined by the resistance. The relation between voltage and
current can be linked by a graph Laplacian matrix induced by effective resistance. A spring
network is a combination of several springs. Each edge corresponds to a spring. When we nail
down some nodes and minimize the total potential energy, the solution is also related to the graph
Laplacian matrix. Spectral graph theory is also widely used in spectral clustering [22], spectral
layout [23], graph sparsification [24] and Laplacian-related linear programming [25]. Some
fundamental ideas in spectral graph theory includes spectral decomposition, Rayleigh quotient,
Cheegers inequality, random walks and heat kernels.

2.3 Network Science
From a perspective of physics, network science studies complex networks as a new class of
objects and phenomena in networks as a new class of universe behaves [26]. In terms of termi-
nology, graphs are the mathematical abstraction of networks and networks are practical imple-
mentation of graphs.

Several types of networks are intensely studied recently, including the Internet, telephone
network, power grids, transportation network, online social network, citation network, bio-
logical network and economic network. Empirical study of those networks summarizes their
structure and physical behaviors, such as the six degrees of separation and the power-law phe-
nomenon. Various network models are proposed to mathematically model the network structure,
such as Erdős-Rényi random model, Watts-Strogatz small work model and preferential attach-
ment model. To quantify the network property, network-related measures and metrics are also
proposed, such as degree centrality, betweenness centrality and closeness centrality. Some pre-
vailing topics include epidemics process on networks [27], community detection [28] and dy-
namics on networks [29].

2.4 Graph Mining
From a perspective of computer science, structure mining or structured data mining is the process
of finding and extracting useful information from semi-structured data sets. Graph mining, se-
quential pattern mining and molecule mining are special cases of structured data mining. Graph
mining investigates the modeling, managing, and mining of large-scale graphs and networks in
bioinformatics, social networks, and computer systems [30]. Its applications range from commu-
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nity detection in social networks, malicious program analysis in computer security, to searches
for functional modules in biological pathways and structural analysis in chemical compounds.
Some prevailing topics include anomaly detection [31], graph visualization, graph summariza-
tion [32], fraud user detection [33], ego-network analysis [34] and user behavior modeling [35].

2.5 Graph Signal Processing
Graph signal processing [1, 36] is both a generalization of and an axiomatic framework to clas-
sical discrete signal processing. Graph signal processing deals with signals with an underlying
complex and irregular structure. The framework models that underlying structure by a graph and
signals by graph signals, generalizing concepts and tools from classical discrete signal processing
to graph signal processing.

Recent additions to the toolbox include graph-based transforms [37–40], representations for
graph signals [41–43], uncertainty principles on graphs [44–46], graph filter bank design [47–
51], graph clustering [52–54], stationary graph signal processing [55–57], graph signal denois-
ing [47, 58, 59], sampling of graph signals [60–64], recovery of graph signals [65–69], graph
topology learning [70–74], and many others.

Graphs
Let G = (V , E ,W) be a directed, weighted graph, where V = {vi}Ni=1 is the set of nodes,
E = {ei}Ei=1 is the set of weighted edges, and W ∈ RN×N is the weighted adjacency matrix.
When there is an edge e = (i, j) connecting the ith node and the jth node, the entry Wi,j

is the edge weight, measuring the inter-dependency between the ith and the jth nodes. The
connectivities and edge weights are either dictated by the physics of the problem at hand or
inferred from the data. In most tasks in graph signal processing, we consider a fixed and given
graph.

Graph signals
A graph signal is a map from a set of nodes V into a set of real numbers R. Given a fixed ordering
of nodes, we assign a signal coefficient to each node, we write a graph signal as a vector,

x = [x1, x2, · · · , xN ]T ∈ RN ,

with xi the signal coefficient corresponding to the node vi.
The examples of graph signals exist in numerous engineering and science fields. Time series,

such as acoustic data, vibration data and financial data, are indexed by time stamps and are
signals supported on a directed cyclic graph. Each node corresponds to a time stamp, and each
value is related to the value at the previous time stamp, reflecting the causality of a time series.
This relation is asymmetric, hence all edges are directed and have the same weight. Images are
indexed by pixels and are signals supported on a lattice graph. Each node corresponds to a pixel,
and each pixel value (intensity) is related to the values of the four adjacent pixels. This relation
is symmetric, hence all edges are undirected and have the same weight, with possible exceptions
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of boundary nodes that may have directed edges and/or different edge weights, depending on
boundary conditions. In online social networks and recommender systems, we may be interested
in analyzing attributes describing the users. Those attributes are signals supported on relational
graphs, where nodes correspond to users and edges correspond to the relationship between users.
In city street networks, we may be interested in analyzing traffic data and census data describing
human mobility patterns. Those data are signals supported on a city street graph, where nodes
correspond to intersections and edges correspond to the road segments connecting intersections.

Graph elementary operators
Graph elementary operators are elementary tools to process graph signals with priors on graph
structure. Graph elementary operators build basic interactions between graph signals and graphs.

Graph shift operator. In discrete signal processing, a time shift (delay) is a basic nontrivial
operation performed on a signal. Let x ∈ RN be a time series. The shifted signal is

x̃ = Cx, (2.1)

where time shift operator C is the N ×N cyclic permutation matrix

C =


0 0 · · · 0 1
1 0 · · · 0 0
... . . . . . . ...

...
0 0 · · · 1 0

 . (2.2)

The cyclic permutation matrix C is exactly the adjacency matrix of the directed cyclic graph.
Graph signal processing extends the concept of time shift to general graphs by defining graph

shift [36]. A graph shift operator A ∈ RN×N is a local operation that replaces a signal coefficient
at a node with a weighted linear combination of coefficients at its neighboring nodes. Let x ∈ RN

be a graph signal. The shifted graph signal is

x̃ = Ax, (2.3)

where the ith element x̃i =
∑

j Ai,j xj is a weighted linear combination of the signal coefficients
at the neighbors of the ith node. The graph shift (2.3) is a natural generalization of the time
shift (2.1). It can be interpreted as a first-order interpolation, weighted averaging, or regression on
graphs, which is a widely used in graph regression, distributed consensus, telecommunications,
Markov processes and other approaches.

A graph shift operator is chosen according to practical needs. Some common choices of a
graph shift are weighted adjacency matrix W, normalized adjacency matrix Wnorm = D−

1
2 W D−

1
2 ,

transition matrix P = D−1 W, where the degree matrix D is a diagonal matrix whose ith diagonal
element di is equal to the sum of the weights of all the edges incident to the ith node.

Graph Laplacian operator. A graph Laplacian operator, defined as L = D−W ∈ RN×N ,
is a local difference operation that replaces a signal coefficient at a node with a weighted differ-
ence [37]. Let x ∈ RN be a graph signal. The graph signal operated by the graph Laplacian
operator is

x̃ = Lx, (2.4)
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where the ith element x̃i =
∑

j Ai,j (xi − xj) is a weighted difference between the signal coeffi-
cient at the ith node and signal coefficients at the neighbors of the ith node. The graph Laplacian
operator is valid only when all the edge weights are nonnegative.

Graph difference operator. A graph incidence matrix is a matrix that shows the relationship
between nodes and edges. Let ∆ ∈ RE×N be a graph incidence matrix, or a graph difference
operator [1], where E is the number of edges. Each row of ∆ corresponds to a directed edge
associated with two nodes. For example, if ei is a directed edge that starts from the jth node to
the kth node, the elements of the ith row of ∆ are

∆i,` =


√
|Wj,k |, ` = j;

−
√
|Wj,k |, ` = k;

0, otherwise,
(2.5)

where W is the weighted adjacency matrix. For a unweighted graph, in the row of edge e, there
is one 1 in the column corresponding to one node of e and one −1 in the column corresponding
to the other node of e, and all other columns have 0. The graph incidence operator is unique up
to negation of any of the rows, since negating the entries of a row corresponds to reversing the
direction of an edge.

The graph difference operator compares the differences between the signal coefficients at all
the adjacent nodes and the output ∆x is an edge signal recording those differences. The ith
element of ∆x,

(∆x)i =
√
|Wj,k | (xj − xk) ,

is the difference between two adjacent signal coefficients associated with the ith edge, where the
ith edge connects the jth node to the kth node.

Graph Fourier transform
Mathematically, a Fourier transform with respect to a set of operators is the expansion of a signal
into a basis of the operators’ eigenfunctions. Recall that the ith Fourier coefficient of a finite time
series of length N is

x̂k =
1√
N

N−1∑
i=0

xie
−j 2π

N
ik,

and the time signal’s discrete Fourier transform is written in vector form as

x̂ = DFTN x,

where DFTN is theN×N discrete Fourier transform matrix with the (i, k)th entry 1/Nexp(−j2πik/N),
which also corresponds to the eigendecomposition of the time shift operator (2.2)

C = DFT−1
N

e
−j 2π·0

N

. . .

e−j
2π·(N−1)

N

DFTN .
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The graph Fourier transform generalizes the discrete Fourier transform and is used to repre-
sent the graph signal in the graph spectral domain. Let a graph shift operator A be diagonalizable.
We consider its eigendecomposition as

A = V Λ V−1, (2.6)

where the columns vi of V ∈ CN×N are the eigenvectors of A, and Λ ∈ CN×N is the diagonal
matrix of corresponding eigenvalues λ1, · · · , λN of A. If A is not diagonalizable, the Jordan
decomposition is used [75].

The graph Fourier transform of x ∈ RN is

x̂ =
[
x̂1 · · · x̂N

]
= V−1 x = Fx, (2.7)

where F = V−1 is the graph Fourier transform matrix.
The values x̂i in (2.7) are the signal’s expansion in the eigenvector basis and represent the

graph frequency content of the signal x. The eigenvalues λi of the graph shift operator A rep-
resent graph frequencies, and the eigenvectors vi represent the corresponding graph frequency
components.

The inverse graph Fourier transform reconstructs the graph signal from its frequency content
by combining graph frequency components weighted by the coefficients of the signal’s graph
Fourier transform:

x = F−1 x̂ = V x̂. (2.8)

Graph spectral analysis
In discrete signal processing, frequency contents of time series and digital images are described
by complex or real sinusoids that oscillate at different rates. These rates provide an intuitive,
physical interpretation of low and high frequencies: low-frequency components oscillate less
and high-frequency ones oscillate more.

In analogy to discrete signal processing, frequency components on graphs can also be char-
acterized as low and high frequencies. In particular, this is achieved by ordering the graph fre-
quency components according to how much they change across the graph; that is, how much the
signal coefficients of a frequency component differ at connected nodes. The amount of change is
calculated using the graph total variation [76]. The `p-norm based graph total variation defined
as,

Sp(x) =

∥∥∥∥x− 1

|λmax(A)|
Ax

∥∥∥∥p
p

, (2.9)

where p ≥ 1 and λmax(A) is the eigenvalue of A with the largest magnitude. We can show that
when the eigenvalues of the graph shift A are sorted in a nonincreasing order λ1 ≥ λ2 ≥ . . . ≥
λN , the variations of the corresponding eigenvectors follow a nondecreasing order Sp(v1) ≤
Sp(v2) ≤ . . . ≤ Sp(vN). The variations of graph Fourier basis vectors thus allow us to provide
the ordering: the Fourier basis vectors with small variations are considered as low-frequency
components while the vectors with large variations are considered as high-frequency compo-
nents [76].
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Based on the above discussion, the eigenvectors associated with large eigenvalues of the
graph shift represent low-frequency components and the eigenvectors associated with small
eigenvalues of the graph shift represent high-frequency components. In the following discus-
sion, we assume all graph Fourier bases are ordered from low frequencies to high frequencies.

Graph filters
In signal processing, a filter is a system H(·) that takes a graph signal x as an input and outputs

y = H(x).

Among the most widely used filters are linear shift-invariant ones. A filter is linear, if for
a linear combination of inputs, it produces the same combination of outputs: H(αx1 + βx2) =
αH(x1) + β H(x2). Filters H1(·) and H2(·) are commutative, or shift-invariant, if the order of
their application to a signal does not change the output: H1(H2(·)) = H2(H1(·)). Every linear,
shift-invariant filter is a polynomial in the time shift [2]; that is, the output signal is given by the
product

y = h(C)x ∈ RN .

of the input signal x and the matrix

h(C) =
N−1∑
i=0

hi C
i

=


h0 hN−1 · · · h1

h0
. . . . . . ...

h0
. . . . . . hN−1

hN−1 · · · h1 h0


Graph signal processing extends the concept of filters to general graphs by defining graph

filters. A linear, shift-invariant graph filter has the form

h(A) =
L−1∑
`=0

h` A` = h0 I+h1 A + . . .+ hL−1 AL−1, (2.10)

where hi are filter coefficients and L is the length of this graph filter. Its output is given by the
matrix-vector product

y = h(A)x ∈ RN . (2.11)

Graph filters have a number of important properties. An inverse of a graph filter, if it exists,
is also a graph filter that can be found by solving a system of at most N linear equations. Also,
the number of taps in a graph filter is not larger than the degree of the minimal polynomial of A,
which provides an upper bound on the complexity of their computation.

To express the frequency content of graph signals, the graph Fourier transform also charac-
terizes the effect of filters on the frequency content of signals. The filtering operation (2.11) can
be written as

y = h(A)x = h(F−1 Λ F)x = F−1 h(Λ) Fx, (2.12)
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where h(Λ) is a diagonal matrix with values h(λk) =
∑L−1

`=0 h`λ
`
k on the diagonal. As follows

from (2.12),
y = h(A)x ⇐⇒ ŷ = h(Λ)x̂, (2.13)

where x̂ = Fx and ŷ = Fy. That is, the frequency content of a filtered signal is modified by
multiplying its frequency content elementwise by h(λk). These values represent the graph fre-
quency response of the graph filter (2.10). The relation (2.13) is a generalization of the classical
convolution theorem to graphs: filtering a graph signal in the graph domain is equivalent in the
frequency domain to multiplying the signal’s spectrum by the frequency response of the graph
filter.
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Part II

Representations of Graph Signals
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Overview of Representations
The task of representations has always been at the heart of most signal processing techniques. It
considers describing similar signals by using a mathematical model. In classical signal process-
ing, space-time-frequency representations lay the foundation for analyzing time-series signals
and images. In this chapter, we discuss the representations of graph signals. This topic has been
studied in the previous literature for a while [37, 42, 77–79]; however, most proposed represen-
tations do not target on any specific graph signal model. Here we rigorously define graph signal
models and design the corresponding graph dictionaries.

There are mainly two approaches to design a representation for graph signals: one is based
on the graph Fourier domain and the other one is based on the graph vertex domain. The repre-
sentations based on the graph Fourier domain are based on the spectral properties of the graph.
The most fundamental representation based on the graph Fourier domain is the graph Fourier
basis, which is the eigenvectors of a matrix that represents a graph structure [1, 2]. Based on the
graph Fourier basis, people propose various versions of multiresolution transforms on graphs,
including diffusion wavelets [77], spectral graph wavelets [37], graph quadrature mirror filter
banks [47], windowed graph Fourier transform [79], polynomial graph dictionary [42]. The
representations based on the graph vertex domain are based on the connectivity properties of
the graph. Some examples include multiscale wavelets on trees [80], graph wavelets for spatial
analysis [81], spanning tree wavelet basis [78].

Figure 2.1: The central concept here is the graph signal model, which is abstracted from given
data and is represented by some dictionary.

We consider a representation-based framework with three components, including graph sig-
nal model, representative dictionary and related tasks. As shown in Figure 2.1, when studying
a task with a graph, we first model the given data with some graph signal model. The model
describes data by capturing its important properties. Those properties can be obtained from ob-
servations, domain knowledge, or statistical learning algorithms. We then use a representative
dictionary to represent the graph signal model. This lays a core idea of the thesis, which are
essentially special cases that follow this general framework. In the following discussion, we go
through each component one by one.
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Graph Signal Models
In classical signal processing, people often work with signals with some specific properties,
instead of arbitrary signals. For example, smooth signals have been studied extensively over
decades; sparse signals are intensively studied recently. Here we also need a graph signal model
to describe a class of graph signals with specific properties. In general, there are two approaches
to mathematically model a graph signal, including a descriptive approach and a generative ap-
proach.

For the descriptive approach, we describe the properties of a graph signal by bounding the
output of some operator. Let x ∈ RN be a graph signal, f(·) be a function operating on x, we
define a class of graph signals by restricting

f(x) ≤ C, (2.14)

where C is some constant. For example, we define smooth graph signals by restricting xT Lx be
small [82].

For the generative approach, we describe the properties of a graph signal by using a graph
dictionary. Let D ∈ RN×S be a graph dictionary whose columns represent elementary structure-
related patterns. We define a class of graph signals by restricting

x = D a ∈ RN ,

where a ∈ RS is a vector of expansion coefficients. For the descriptive approach, we do not
need to know everything about a graph signal, instead, we just need to its output of some opera-
tor; for the generative approach, we need to reconstruct a graph signal, which requires to know
everything about a graph signal.

Graph Dictionary
For a certain graph signal model, we aim to find some dictionary to provide accurate and concise
representations.

Design. In general, there are two approaches to design a graph dictionary, including a passive
approach and a active one.

For the passive approach, the graph dictionary is designed only based on the graph structure;
that is,

D = g(A) ∈ RN×S,

where g(·) is some function on the graph shift operator A. For example, D can be the eigenvector
matrix of A, which is the graph Fourier basis. In classical signal processing, the Fourier basis,
wavelet bases, wavelet frames, and Gabor frames are all constructed using this approach, where
the graph is a line graph or a lattice graph [83].

For the active approach, the graph dictionary is designed based on both graph structure and a
set of given graph signals; that is,

D = g(A,X) ∈ RN×S,
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where X is a matrix representation of a set of given graph signals. We can fit to those given graph
signals and provide a specialized dictionary. Some related works see [42, 70].

Properties. The same class of graph signals can be modeled by various dictionaries. For
example, whenever D is an identity matrix, it can represent arbitrary graph signals, but may
not be appealing to represent a non-sparse signals. Depending on the application, we may have
different requirements for the constructed graph dictionary. Here are some standard properties
of a graph dictionary D, we aim to study.
• Frame bounds. For any x in a certain graph signal model,

α1 ‖x‖2 ≤ ‖Dx‖2 ≤ α2 ‖x‖2 ,

where α1, α2 are some constants;
• Sparse representations. For any x ∈ RN in a certain graph signal model, there exists a

sparse coefficient a ∈ RM with ‖a‖0 ≤ C, which satisfies

‖x−D a‖2
2 ≤ ε,

where C, ε are some constants;
• Uncertainty principles. For any x in a certain graph signal model, the following is satisfied

‖a1‖0 + ‖a2‖0 ≥ C,

where ‖x−D1 a1‖2
2 ≤ ε and ‖x−D2 a2‖2

2 ≤ ε, and D =
[
D1 D2

]
.

Tasks
We mainly consider three standard tasks in signal processing, approximation, sampling followed
with recovery and detection followed with localization. In this chapter, we will consider approx-
imation. The latter two will be the focus of Parts III and IV.

Approximation. Approximation is a standard task to evaluate a representation. The goal is
to use a few expansion coefficients to approximate a graph signal. We consider approximating a
graph signal x by using a linear combination of a few atoms from D and solving the following
sparse coding problem,

a∗ = arg mina d(x′,x), (2.15)
subject to : x′ = D a,

‖a‖0 ≤ K,

where d(·, ·) is some evaluation metric and K is a predefined sparsity level. The objective func-
tion measures the difference between the original signal and the approximated one, which eval-
uates how well the designed graph dictionary represents a given graph signal. The same formu-
lation can also be used for denoising graph signals.

Sampling & Recovery. The goal is to recover an original graph signal from a few samples.
We consider a general sampling and recovery setting. We consider any decrease in dimension
via a linear operator as sampling, and, conversely, any increase in dimension via a linear operator
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as recovery [84]. Let F ∈ RN×N be a sampling pattern matrix, which is constrained by a given
application and the sampling operator is

Ψ = C F ∈ RM×N ,

where C ∈ RM×N selects rows from F. For example, when we choose the kth row of F as the
ith sample, the ith row of C is

Ci,j =

{
1, j = k;
0, otherwise.

There are three sampling strategies: (1) uniform sampling when designing C, , where row
indices are chosen from from {0, 1, · · · , N − 1} independently and uniformly; and experimen-
tally design sampling, where row indices can be chosen beforehand; and active sampling, where
we will use feedback as samples are sequentially collected to decide the next row to be sampled.
Each sampling strategy can be implemented by two approaches, including a random approach
and a deterministic one. The sampling pattern matrix F constraints the following sampling pat-
terns: when F is an identity matrix, Ψ is a subsampling operator; when F is a Gaussian random
matrix, Ψ is a compressed sampling operator.

In the sampling phase, we take samples with the sampling operator Ψ,

y = Ψx + ε,

is a vector of samples and ε is noise. In the recovery phase, we reconstruct the graph signal by
using a recovery operator Φ,

x′ = Φy,

where x′ recovers x either exactly or approximately. The evaluation metric can be the mean
square error or other metrics. Without any property of x, it is hopeless to design an efficient
sampling and recovery strategy. Here we focus on a special graph signal model, which can be
described by a graph dictionary. The prototype of designing sampling and recovery strategies is

Ψ∗(D),Φ∗(D) = arg min
Ψ,Φ

max
a

d(x′,x),

subject to x′ = Φy,

x = D a,

where d(·, ·) is some evaluation metric. The optimization problem shows that for any graph
signal x generated based on the graph dictioanry D, we want to find a pair of sampling and
recovery strategies to minimize the reconstruction error. The optimal sampling and recovery
strategies Ψ∗,Φ∗ are influenced by the given graph dictionary D. We often consider fixing either
the sampling strategy or the recovery strategy and optimizing over the other one.

Detection & Localization. The goal is to identify targeted patterns in a graph signal. We
consider targeted patterns are structure-related; that is, those structure-related patterns are gener-
ated from a graph dictionary,

XK = {x ∈ RN : x = D a, a ∈ RS, ‖a‖0 ≤ K},
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A graph dictionary D may promote various structure-related patterns. For example, when D is
an identity matrix, we detect impulses on graphs; when D is the graph Fourier basis, we detect
activated graph frequencies.

Given a noisy observation of graph signal y ∈ RN , graph signal detection aims to test the
null against the alternative hypotheses:

H0 : y ∼ f(0, ε),

H1 : y ∼ f(x, ε) with x ∈ XK .

where ε is noise and f(·, ·) is a link function. For example, f(x, ε) = x + w ∈ RN corre-
sponds to a Gaussian noise model, where w ∼ N (0, ε) is a Gaussian random variable; f(x, ε) =
Bernoulli(x + ε) ∈ RN corresponds to a Bernoulli noise model, where each element f(x, ε)i
is a vector of Bernoulli random variables with mean (x + ε)i. Let this test be a mapping
T (y) = {0, 1}, where 1 indicates that we reject the null.

Given a noisy observation of graph signal y = f(x, ε) ∈ RN , where x =
∑K

i=1 aΩidΩi ∈
XK , graph signal detection aims to recover each activated atom, dΩi . The prototype of designing
localization strategies is to solve the following optimization problem

a∗ = arg min
‖a‖0≤K

d(x′,y),

subject to x′ = D a,

where d(·, ·) is some evaluation metric. This formulation is similar to graph signal approxi-
mation; however, the goal is slightly different: localization aims to identify which atoms are
activated (recover a), and approximation aims to reconstruct the original graph signal (recover
D a). When the size of graph dictionary grows exponentially with the size of graph, the graph
dictionary cannot be explicitly expressed, which makes precise localization challenging.

2.5.1 Roadmap

Smooth Piecewise-constant Piecewise-smooth
graph signal graph signal graph signal

Representation Section 3 Section 4 Section 5
Sampling Sections 6 & 7
Recovery Section 8
Detection Section 9
Localization Section 10

Table 2.1: Roadmap.

Table 2.1 presents a roadmap. We are going to study the following five tasks (rows): repre-
sentation, sampling, recovery, detection and localization, for each of three types of graph signals
(columns): smooth graph signals, piecewise-constant graph signals and piecewise-smooth graph
signals. In Sections 3, 4 and 5, we consider the representations of smooth, piecewise-constant
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and piecewise-smooth graph signals, respectively. In Sections 6 and 7, we consider the sam-
pling strategies for smooth graph signals. In Section 8, we consider the recovery strategies for
smooth graph signals. In Section 9, we consider the detection strategies for piecewise-constant
graph signals. In Section 10, we consider the localization strategies for piecewise-constant graph
signals.
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Chapter 3

Representations of Smooth Graph Signals

3.1 Introduction
In signal processing, smoothness means adjacent signal coefficients have similar values. This
concept is widely used in numerous applications. For example, in the task of denoising, we
smooth a signal/image to create an approximating function that captures important patterns and
leave out noise.

Mathematically, various smoothness criteria are defined, typically with respect to some norm.
For example, the Sobolev space is a vector space of functions equipped with a norm that is
a combination of Lp-norms of the function itself and its derivatives up to a given order, the
Lipschitz space is a vector space of functions equipped with the Lipschitz norm, and the Besov
space a vector space of functions equipped with the Besov norm [85]. A relaxed smoothness
criterion is bounded variation. A continuous function has bounded variation if the length of
its graph on any finite interval is finite [84]. Certain natural representations from harmonic
analysis are the optimal representation for objects in the corresponding functional classes. For
example, Fourier series are optimal representations for L2 Sobolev classes, wavelets are optimal
representations for Lp Sobolev, Hölder, Triebel and Besov classes [86].

In this chapter, we introduce smoothness criteria for graph signals in a similar vein. We then
discuss the corresponding representation for each smoothness criterion. Similar concepts are
proposed or hinted in many previous works [1, 80]. The goal here is to provide a summary and
comparison.

3.2 Graph Signal Models
We introduce four smoothness criteria for graph signals. We start with the pairwise Lipschitz
smooth criterion.
Definition 1. A graph signal x with unit norm is pairwise Lipschitz smooth with parameter C
when it satisfies

|xi − xj| ≤ C d(vi, vj), for all i, j = 0, 1, . . . , N − 1,

with d(vi, vj) the distance between the ith and the jth nodes.
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We can choose the geodesic distance, the diffusion distance [87], or some other distance metric
for d(·, ·). Similarly to the traditional Lipschitz criterion [88], the pairwise Lipschitz smoothness
criterion emphasizes pairwise smoothness, which zooms into the difference between each pair of
adjacent nodes.
Definition 2. A graph signal x with unit norm is total Lipschitz smooth with parameter C when
it satisfies ∑

(i,j)∈E

Wi,j(xi − xj)2 ≤ C,

where W ∈ RN×N is the adjacency matrix.
The total Lipschitz smoothness criterion generalizes the pairwise Lipschitz smoothness criterion
while still emphasizing pairwise smoothness, but in a less restricted manner; it is also known as
the Laplacian smoothness criterion [89].
Definition 3. A graph signal x with unit norm is local normalized neighboring smooth with
parameter C when it satisfies

∑
i

xi − 1∑
j:(i,j)∈E Wi,j

∑
j:(i,j)∈E

Wi,j xj

2

≤ C.

The local normalized neighboring smoothness criterion compares each node to the local normal-
ized average of its immediate neighbors.
Definition 4. A graph signal x with unit norm is global normalized neighboring smooth with
parameter C when it satisfies

∑
i

xi − 1

|λ(W)
max|

∑
j:(i,j)∈E

Wi,j xj

2

≤ C.

The global normalized neighboring smoothness criterion compares each node to the global nor-
malized average of its immediate neighbors. The difference between the local normalized neigh-
boring smoothness criterion and the global normalized neighboring smoothness criterion is the
normalization factor. For the local normalized neighboring smoothness criterion, each node has
its own normalization factor; for the global normalized neighboring smoothness criterion, all
nodes have the same normalization factor.

The four criteria quantify smoothness in different ways: the pairwise and the total Lipschitz
ones focus on the variation of two signal coefficients connected by an edge with the pairwise
Lipschitz one more restricted, while the local and global neighboring smoothness criterion focus
on comparing a node to the average of its neighbors.

3.3 Graph Dictionary Construction
As shown in (2.14), The graph signal models in Definitions 1, 2, 3, 4 are introduced in a de-
scriptive approach. Following these, we are going to translate the descriptive approach into a
generative approach; that is, we represent the corresponding signal classes satisfying each of the
four criteria by some representative graph dictionary.
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3.3.1 Design
We first construct polynomial graph signals that satisfy the Lipschitz smoothness criterion.
Definition 5. A graph signal x is polynomial with degree K when

x = Dpoly(K) a =
[
1 D(1) D(2) . . . D(K)

]
a ∈ RN ,

where a ∈ RKN+1 and Dpoly(K) is a graph polynomial dictionary with D
(k)
i,j = dk(vi, vj). Denote

this class by PL(K).

Figure 3.1: Different origins lead to different coordinate systems; white, blue, and green denote
the origin, nodes with geodesic distance 1 from the origin, and nodes with geodesic distance 2
from the origin, respectively.

In classical signal processing, polynomial time signals can be expressed as xn =
∑K

k=0 akn
k,

n = 1, . . . , N ; we can rewrite this as in the above definition as x = DK a, with (DK)n,k = nk.
The columns of DK are denoted as D(k), k = 0, . . . , K, and called atoms; the elements of each
atom D(k) are nk. Since polynomial time signals are shift-invariant, we can set any time point as
the origin; such signals are thus characterized by K + 1 degrees of freedom ak, k = 0, . . . , K.
This is not true for graph signals, however; they are not shift-invariant and any node can serve
as the origin (see Figure 3.1). In the above definition, D(k) are now matrices with the number of
atoms equal to the number of nodes N (with each atom corresponding to the node serving as the
origin). The dictionary DK thus contains KN + 1 atoms.

We now show that graph polynomial dictionary represents the pairwise Lipschiz smooth
signals.
Theorem 1. PL(1) is a subset of the pairwise Lipschitz smooth with some parameter C.

Proof. Let x ∈ PL(1), that is,
x =

[
1 D(1)

]
a,

Then, we write the pairwise Lipschitz smooth criterion as

|xi − xj| = |
∑
k

(d(vk, vi)− d(vk, vj)) ak|

≤
∑
k

|d(vk, vi)− d(vk, vj)||ak|

≤
∑
k

|ak||d(vi, vj)| = ‖a‖1 |d(vi, vj)|.
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The parameter C = ‖a‖1, which corresponds to the energy of the original graph signal.

We now construct bandlimited signals that satisfy the total Lipschitz, local normalized neigh-
boring and global normalized neighboring smoothness smoothness criteria.
Definition 6. A graph signal x is bandlimited with respect to a graph Fourier basis V with
bandwidth K when

x = V(K) a,

where a ∈ RK and V(K) is a submatrix containing the first K columns of V. Denote this class
by BLV(K) [90].

When V is the eigenvector matrix of the unnormalized graph Laplacian matrix, we denote it
as VL and can show that signals in BLVL

(K) are total Lipschitz smooth; when V is the eigenvec-
tor matrix of the transition matrix, we denote it as VP and can show that signals in BLVP

(K) are
local normalized neighboring smooth; when V is the eigenvector matrix of the weighted adja-
cency matrix, we denote it as VW and can show that signals in BLVW

(K) are global normalized
neighboring smooth.

We now show that the graph Fourier basis of the graph Laplacian represents the total Lipschiz
smooth signals.
Theorem 2. For any K ∈ {1, · · · , N}, BLVL

(K) is a subset of the total Lipschitz smooth with
parameter C, when C ≥ λ

(L)
k .

Proof. Let x be a graph signal with bandwidth K, that is,

x =
K∑
k=1

x̂kv
(L)
k ,

Then, we write the total Lipschitz smooth criterion as∑
(i,j)∈E

Wi,j(xi − xj)2 = xT Lx

= (
K∑
k=1

x̂kv
(L)
k )T (

K−1∑
k=0

x̂kλkv
(L)
k ) =

K∑
k=1

λ
(L)
k x̂2

k

≤ λ
(L)
K

K∑
k=1

x̂2
k = λ

(L)
K .

We now show that the graph Fourier basis of the transition matrix represents the local nor-
malized neighboring smooth signals.
Theorem 3. For anyK ∈ {1, · · · , N}, BLVP

(K) is a subset of the local normalized neighboring
smooth with parameter C, when C ≥ (1− λ(P)

K )2.
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Proof. Let x be a graph signal with bandwidth K, that is,

x =
K∑
k=1

x̂kv
(P)
k ,

Then, we write the local normalized neighboring smooth criterion as

∣∣∣∣∣xi − 1∑
j∈Ni Wi,j

∑
j∈Ni

Wi,j xj

∣∣∣∣∣
=

∣∣∣∣∣∣
(

K∑
k=1

x̂kv
(P)
k

)
i

−
∑
j∈Ni

Pi,j

(
K∑
k=1

x̂kv
(P)
k

)
j

∣∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

x̂k

(
(v

(P)
k )i −

∑
j∈Ni

Pi,j(v
(P)
k )j

)∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

x̂k(1− λk)(v(P)
k )i

∣∣∣∣∣
≤ (1− λ(P)

K )

∣∣∣∣∣
K−1∑
k=0

x̂k(v
(P)
k )i

∣∣∣∣∣ = (1− λ(P)
K )|xi|.

The last equality follows from the fact that v(P)
k and λ(P)

k are eigenvectors and eigenvalues of P.

∑
i

(
xi −

1∑
j∈Ni

∑
j∈Ni

Wi,j xj

)2

=
N∑
i=1

|xi −
1∑

j∈Ni Wi,j

∑
j∈Ni

Wi,j xj|2

≤
N−1∑
i=0

(1− λ(P)
K )2|xi|2 = (1− λ(P)

K )2.

We now show that the graph Fourier basis of the adjacency matrix represents the global
normalized neighboring smooth signals.
Theorem 4. For any K ∈ {1, · · · , N}, BLVW

(K) is a subset of the global normalized neigh-
boring smooth with parameter C, when C ≥ (1− λ(W)

K /|λmax(W)|)2.
The proof is similar to Theorem 3. Note that for graph Laplacian, the eigenvalues are sorted

in an ascending order; for the transition matrix and the adjacency matrix, the eigenvalues are
sorted in a descending order.

Each of these three models generates smooth graph signals according to one of the four cri-
teria in Definitions 1, 2, 3 and 4: PL(K) models Lipschitz smooth signals; BLVL

(K) models
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total Lipschitz smooth signals; BLVP
(K) with models the local normalized neighboring smooth

signals; and BLVW
(K) models the global normalized neighboring smooth signals; the corre-

sponding graph representation dictionaries are Dpoly(K), VL, VP, and VW.

(a) v(W)
1 . (b) v(W)

2 . (c) v(W)
3 . (d) v(W)

4 .

(e) v(L)
1 . (f) v(L)

2 . (g) v(L)
3 . (h) v(L)

4 .

(i) v(P)
1 . (j) v(P)

2 . (k) v(P)
3 . (l) v(P)

4 .

Figure 3.2: Graph Fourier bases of a geometric graph. VW localizes in some small regions; VL

and VP have similar behaviors.

3.3.2 Properties
We next study the properties of graph representation dictionaries for smooth graph signals, espe-
cially for graph Fourier bases VL, VP, and VW. We first visualize them in Figures 3.2. Figure 3.2
compares the first four graph Fourier basis vectors of VL, VP and VW in a geometric graph. We
see that VW tends to localize in some small regions; VL and VP have similar behaviors.

We then check the properties mentioned in Section II.
Frame Bound. Graph polynomial dictionary is highly redundant and the frame bound is

loose. When the graph is undirected, the adjacency matrix is symmetric, then VL and VW are
orthonormal. It is hard to draw any meaningful conclusion when the graph is directed; we leave
it for the future work.
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Sparse Representations. Graph polynomial dictionary provides sparse representations for
polynomial graph signals. On the other hand, the graph Fourier bases provide sparse representa-
tions for the bandlimited graph signals. For approximately bandlimited graph signals, there are
some residuals coming from the high-frequency components.

Uncertainty Principles. In classical signal processing, it is well known that signals cannot
localize in both time and frequency domains at the same time [84, 91]. Some previous works
extend this uncertainty principle to graphs by studying how well a graph signal exactly localize
in both the graph vertex and graph spectrum domain [44, 45]. Here we study how well a graph
signal approximately localize in both the graph vertex and graph spectrum domain. We will see
that the localization depends on the graph Fourier basis.
Definition 7. A graph signal x is ε-vertex concentrated on a graph vertex set Γ when it satisfies

‖x− IΓ x‖2
2 ≤ ε,

where IΓ ∈ RN×N is a diagonal matrix, with (IΓ)i,i = 1 when i ∈ Γ and 0, otherwise.
The vertex set Γ represents a region that supports the main energy of signals. When |Γ| is

small, a ε-vertex concentrated signal is approximately sparse.
Definition 8. A graph signal x is ε-spectrum concentrated on a graph spectrum band Ω when it
satisfies

‖x− VΩ UΩ x‖2
2 ≤ ε,

where VΩ ∈ RN×|Ω| is a submatrix of V with columns selected by Ω and UΩ ∈ R|Ω|×N is a
submatrix of V with rows selected by Ω.

The graph spectrum band Ω provides a bandlimited space that supports the main energy of
signals. An equivalent formulation is ‖x̂− IΩ x̂‖2

2 ≤ ε. Definition 8 is a simpler version of the
approximately bandlimited space in [92].

We next show an uncertainty principle of the graph vertex and spectrum domains.
Theorem 5. Let a unit norm signal x supported on an undirected graph be εΓ-vertex concentrated
and εΩ-spectrum concentrated at the same time. Then,

|Γ| · |Ω| ≥ (1− (εΩ + εΓ))2

‖UΩ‖2
∞

.

Proof. We first show ‖VΩ UΩ IΓ‖2 ≤ ‖UΩ‖∞
√
|Γ| · |Ω|.

(VΩ UΩ IΓ x)s =
∑
k∈Ω

Vs,k

(∑
i∈Γ

Uk,i xi

)

=
∑
i∈Γ

(∑
k∈Ω

Vs,k Uk,i

)
xi =

∑
i

q(s, i)xi,

where

q(s, i) =

{ ∑
k∈Ω Vs,k Uk,i, i ∈ Γ;

0, otherwise.
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Let y(i) be a graph signal with y(i)
s = q(s, i). Then, (ŷ(i))k = 1k∈Ω Uk,i. We then have

‖VΩ UΩ IΓ‖2
2 ≤ ‖VΩ UΩ IΓ‖2

HS

=
∑
i∈Γ

∑
s

|q(s, i)|2 =
∑
i∈Γ

∥∥y(i)
∥∥2

2

=
∑
i∈Γ

∥∥∥ŷ(i)

∥∥∥2

2
=
∑
i∈Γ

∑
k

(1k∈Ω Uk,i)
2

≤ ‖UΩ‖2
∞

∑
i∈Γ

∑
k

1k∈Ω = ‖UΩ‖2
∞ |Γ| · |Ω|.

We then show that ‖VΩ UΩ IΓ x‖2 ≥ 1− (εΩ + εΓ). Based on the assumption, we have

‖x− VΩ UΩ IΓ x‖2

= ‖x− IΓ x‖2 + ‖IΓ x− VΩ UΩ IΓ x‖2

≤ εΩ + εΓ.

Since x has a unit norm, by the triangle inequality, we have

‖VΩ UΩ IΓ‖2 ≥ 1− (εΩ + εΓ).

Finally, we combine two results and obtain

|Γ| · |Ω| ≥ ‖VΩ UΩ IΓ‖2
2

‖UΩ‖2
∞

>
(1− (εΩ + εΓ))2

‖UΩ‖2
∞

We see that the lower bound involves with the maximum magnitude of UΩ. In classical signal
processing, U is the discrete Fourier transform matrix, so ‖UΩ‖∞ = 1/

√
N ; the lower bound is

O(N) and signals cannot localize in both time and frequency domain. However, for complex and
irregular graphs, the energy of a graph Fourier basis vector may concentrate on a few elements,
that is, ‖UΩ‖∞ = O(1), as shown in Figures 3.2(a)(b)(c)(d). It is thus possible that graph signals
can be localized in both the vertex and spectrum domain. We now illustrate this localization
phenomenon

Localization Phenomenon. A part of this section has been shown in [93]. We show it here
for the completeness. The localization of a graph signal means that most elements in a graph
signal are zeros, or have small values; only a small number of elements have large magnitudes
and the corresponding nodes are clustered in one subgraph with a small diameter.

Prior work uses inverse participation ratio (IPR) to quantify localization [94]. The IPR of a
graph signal x ∈ RN is

IPR =

∑N
i=1 x

4
i

(
∑N

i=1 x
2
i )

2
.

A large IPR indicates that x is localized, while a small IPR indicates that x is not localized.
The range of IPR is from 0 to 1. For example, x = [1/

√
N, 1/

√
N, · · · , 1/

√
N ]T is the most
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delocalized vector with IPR = 1/N , while x = [1, 0, · · · , 0]T is the most localized vector with
IPR = 1. IPR has some shortcomings: a) IPR only promotes sparsity, that is, a high IPR does
not necessarily mean that the nonzero elements concentrate in a clustered subgraph, which is the
essence of localization (Figure 3.3); b) IPR does not work well for large-scale datasets. When
N is large, even if only a small set of elements are non zero, IPR tends to be small.

(a) clustered graph signal. (b) unclustered graph signal.

Figure 3.3: Sparse graph signal. Colored nodes indicate large nonzero elements.

To solve this, we propose a novel measure to quantify the localization of a graph signal. We
use energy concentration ratio (ECR) to quantify the energy concentration property. The ECR is
defined as

ECR =
S∗

N
,

where S∗ is the smallest S that satisfies ‖xS‖2
2 ≥ 95% ‖x‖2

2 , with xS the first S elements with
the largest magnitude in x. This indicates that 95% energy of a graph signal is concentrated in
the first S∗ elements with largest magnitude. ECR ranges from 0 to 1: when the signal is energy-
concentrated, the ECR is small; when the energy of the signal is evenly distributed, the ECR is
1.

We next use normalized geodesic distance (NGD) to quantify the clustered property. LetM
be the set of nodes that possesses 95% energy of the whole signal. The normalized geodesic
distance is defined as:

NGD =
1

D

∑
i,j∈M,i 6=j d(vi, vj)

n(n− 1)/2
,

where D is the diameter of the graph, d(vi, vj) is the geodesic distance between nodes i and j.
Here we use the normalized average geodesic distance as a measure to determine whether the
nodes are highly connected. We use the average geodesic distance instead of the largest geodesic
distance to avoid the influence of outliers. The NGD ranges from 0 to 1: when the nodes are
clustered in a small subgraph, the NGD is small; when the nodes are dispersive, the NGD is
large.

We use ECR and NGD together to determine the localization of graph signals. When the two
measures are small, the energy of the signal is concentrated in a small set of highly connected
nodes, which can be interpreted as localization.
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Each graph Fourier basis vector is regarded as a graph signal. When most basis vectors in the
graph Fourier basis are localized, that is, the corresponding ECRs and NGDs are small, we call
that graph Fourier basis localized.

We now investigate the localization phenomenon of graph Fourier bases of several real-world
networks, including the arXiv general relativity and quantum cosmology (GrQc) collaboration
network [95], arXiv High Energy Physics - Theory (Hep-Th) collaboration network [95] and the
Facebook ‘friend circles’ network [95]. We find similar localization phenomena among different
datasets. Due to the limited space, we only show the result of arXiv GrQc collaboration network.
The arXiv GrQc network represents the collaborations between authors based on the submitted
papers in general relativity and quantum cosmology category of arXiv. When the author i and
author j coauthored a paper, the graph contains an undirected edge between node i and j. The
graph contains 5242 nodes and 14496 undirected edges. Since the graph is not connected, we
choose a connect component with 4158 nodes and 13422 edges.

We investigate the Fourier bases of the weighted adjacency matrix, the transition matrix and
the unnormalized graph Laplacian matrix in the arXiv GrQc network. Figure 3.4 illustrates the
ECRs and NGDs of the first 50 graph Fourier basis vectors (low-frequency components) and the
last 50 graph Fourier basis vectors (high-frequency components) of the three graph representation
matrices, where the ECR and NGD are plotted as a function of the index of the corresponding
graph Fourier basis vectors. We find that a large number of graph Fourier basis vectors has small
ECRs and NGDs, which indicates that graph Fourier basis vectors of various graph represen-
tation matrices are localized. Among various graph representation matrices, the graph Fourier
basis vectors of graph Laplacian matrix tend to be more localized, especially in high-frequency
components. In low-frequency components, the graph Fourier basis vectors of adjacency matrix
are more localized.

To combine the uncertainty principle previously, when the graph Fourier basis shows local-
ization phenomenon, it is possible that a graph signal can be localized in both graph vertex and
spectrum domain. Based the graph Fourier basis of the graph Laplacian, a high-frequency ban-
dlimited signals can be well localized in the graph vertex domain; based on the graph Fourier
basis of adjacency matrix, a low-frequency bandlimited signals can be well localized in the graph
vertex domain. The Fourier transform is famous for capturing the global behaviors and works as
a counterpart of the delta functions; however, this may not be true on graphs. The study of new
role of the graph Fourier transform will be an interesting future work.

3.3.3 Tasks
As mentioned in Section II, we focus on two tasks: approximation and sampling following with
recovery.

Approximation

We compare the graph Fourier bases based on different graph structure matrices.
Algorithm. We consider nonlinear approximation for the graph Fourier bases, that is, after

expanding with a representation, we should choose the K largest-magnitude expansion coeffi-
cients so as to minimize the approximation error. Let {φk ∈ RN}Nk=1 and {φ̂k ∈ RN}Nk=1 be a
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Figure 3.4: Localization of graph Fourier bases of various graph representation matrices in
the arXiv GrQc network. In low-frequency components, Fourier basis vectors of the adjacency
matrix are localized; in high-frequency components, Fourier basis vectors of graph Laplacian
matrix are localized.

pair of biorthonormal basis and x ∈ RN be a signal. Here the graph Fourier transform matrix
U = {φ̂k}Nk=1 and the graph Fourier basis V = {φk}Nk=1. The nonlinear approximation to x is

x∗ =
∑
k∈IK

〈
x, φ̂k

〉
φk, (3.1)

where IK is the index set of the K largest-magnitude expansion coefficients. When a basis
promotes sparsity for x, only a few expansion coefficients are needed to obtain a small approxi-
mation error. Note that (3.1) is a special case of (2.15) when the distance metric d(·, ·) is the `2

norm and D is a basis.
Since the the graph polynomial dictionary is redundant, we solve the following sparse coding
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problem,

x∗ = arg mina

∥∥x−Dpoly(2) a
∥∥2

2
, (3.2)

subject to : ‖a‖0 ≤ K,

where Dpoly(2) is the graph polynomial dictionary with order 2 and a are expansion coefficients.
The idea is to use a linear combination of a few atoms from Dpoly(2) to approximate the orig-
inal signal. When D is an orthonormal basis, the closed-form solution is exactly (3.1). We
solve (2.15) by using the orthogonal matching pursuit, which is a greedy algorithm [96]. Note
that (3.2) is a special case of (2.15) when the distance metric d(·, ·) is the `2 norm.

3.4 Experimental Results
We test the four representations on two datasets, including the Minnesota road graph [97] and
the U.S city graph [98].

The Minnesota road graph is a standard dataset including 2642 intersections and 3304 roads
[97]. we construct a graph by modeling the intersections as nodes and the roads as undirected
edges. We collect a dataset recording the wind speeds at those 2642 intersections [99]. The data
records the hourly measurement of the wind speed and direction at each intersection. In this
paper, we present the data of wind speed on January 1st, 2015. Figure 3.5(a) shows a snapshot
of the wind speeds on the entire Minnesota road. The expansion coefficients obtained by using
four representations are shown in Figure 3.5(b), (c), (d) and (e). The energies of the frequency
coefficients of VW, VL and VP mainly concentrate on the low-frequency bands; VL and VP are
more concentrated; Dpoly(2) is redundant and the corresponding expansion coefficients DT

poly(2) x
are not sparse.

To make a more serious comparison, we evaluate the approximation error by using the nor-
malized mean square error, that is,

Normalized MSE =
‖x∗ − x‖2

2

‖x‖2
2

, (3.3)

where x∗ is the approximation signal and x is the original signal. Figure 3.5(f) shows the ap-
proximation errors given by the four representations. The x-axis is the number of coefficients
used in approximation, which is K in (3.1) and (2.15) and the y-axis is the approximation error,
where lower means better. We see that VL and Dpoly(2) tie VP; all of them are much better than
VW. This means that the wind speeds on the Minnesota road graph are well modeled by pairwise
Lipschitz smooth, total Lipschitz smooth and local normalized neighboring smooth criteria. The
global normalized neighboring smooth criterion is not appropriate for this dataset.

The U.S weather station graph is a network representation of 150 weather stations across the
U.S. We assign an edge when two weather stations are within 500 miles. The graph includes 150
nodes and 1033 undirected, unweighted edges. Each weather station has 365 days of recordings
(one recording per day), for a total of 365 graph signals. As an example, see Figure 3.6(a). The
expansion coefficients obtained by using four representations are shown in Figure 3.6(b), (c), (d)
and (e). Similarly to the wind speed dataset, the energies of the frequency coefficients of VW, VL
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and VP are mainly concentrated on the low-frequency bands; VL and VP are more concentrated;
Dpoly(2) is redundant and the corresponding expansion coefficients DT

poly(2) x are not sparse.
The evaluation metric of the approximation error is also the normalized mean square error.

Figure 3.6(f) shows the approximation errors given by the four representations. The results are
averages over 365 graph signals. Again, we see that VL, Dpoly(2) and VP perform similarly; all of
them are much better than VW. This means that the wind speeds on the Minnesota road graph are
well modeled by pairwise Lipschitz smooth, total Lipschitz smooth and local normalized neigh-
boring smooth criteria. The global normalized neighboring smooth criterion is not appropriate
for this dataset.

The results from two real-world datasets suggest that we should consider using pairwise
Lipschitz smooth, total Lipschitz smooth and local normalized neighboring smooth criteria to
model real-world smooth graph signals. In terms of the representation dictionary, among VL,
Dpoly(2) and VP, Dpoly(2) is redundant; VP is not orthonormal. We thus prefer using VL because
it is an orthonormal basis.

3.5 Conclusions
For smooth graph signals, we introduce four smoothness criterion and construct corresponding
representations. We propose a generalized uncertainty principle on graphs and show the local-
ization phenomenon of graph Fourier bases. We finally compare the empirical approximation
performance of the proposed graph dictionary in two real datasets.

35



1

2

3

4

5

6

7

8

Expansion coefficient
0 2000 4000

Magnitude

120

130

140

150

160

170

180

190

(a) Wind speed. (b) Coefficients of Dpoly(2).

Frequency coefficient
0 1000 2000

Magnitude

10

20

30

40

Frequency coefficient
0 1000 2000

Magnitude

50

100

150

(c) Coefficients of VW. (d) Coefficients of VL.

Frequency coefficient
0 1000 2000

Magnitude

50

100

150

# coefficients
0 20 40

log(Normalized MSE)

-5

-4

-3

-2

-1 V
W

V
L

V
P

D
poly(2)

(e) Coefficients of VP. (f) Approximation error.

Figure 3.5: Approximation of wind speed. VL and Dpoly(2) tie VP; all of them are much better
than VW.
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(a) Temperature. (b) Coefficients of Dpoly(2).
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Figure 3.6: Approximation of temperature. VL ties VP; both are slightly better than Dpoly(2) and
are much better than VW.
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Chapter 4

Representations of Piecewise-constant
Graph Signals

4.1 Introduction

In classical signal processing, a piecewise-constant signal means a signal that is locally constant
over connected regions separated by lower-dimensional boundaries. This class of signals de-
scribes the phenomenon of abrupt changes in the mean level of a signal. It is often related to step
functions, square waves and Haar wavelets and is widely used in signal processing [84]. In im-
age processing, piecewise-constant signals are often used to model edges. A piecewise-constant
interpolation provides a simple, yet effective approximation to any function: a finer piece leads
to a better approximation. Piecewise-constant signals are the opposite of smooth signals. While
smooth signals emphasize global trends and slow transitions, piecewise-constant graph signals
emphasize localized behaviors and fast transitions.

As a counterpart of piecewise-constant signal on graphs, a piecewise-constant graph signal
is a graph signal that is locally constant over each connected subgraph [1]. In other words, a
piecewise-constant graph signal can be expressed as a linear combination of several indicator
functions that activate non-overlapping subgraphs. Piecewise-constant graph signals capture the
large variations at the boundaries between pieces and ignore small variations within pieces, they
allow us to find supports of localized patterns in the graph vertex domain. This is similar to what
piecewise-constant time series achieve in classical signal processing. In the piecewise-constant
graph signal, each piece indicates a localized pattern that exhibits homogeneous internal behavior
and the number of pieces indicates the number of localized patterns. As an example, Figure 4.1
shows that a piecewise-constant graph signal can approximate well a real signal, taxi-pickup
distribution in Manhattan.

Piecewise-constant graph signals have been used in many applications without having been
explicitly defined; for example, in community detection, community labels form a piecewise-
constant graph signal for a social network; in semi-supervised learning, classification labels form
a piecewise-constant graph signal for a graph constructed from the dataset.

In this chapter, we define a piecewise-constant graph signal model and propose a graph dic-
tionary that promotes sparsity in representations.
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(a) Taxi-pickup distribution. (b) Nonlinear approximation
(best 50 graph frequencies).

(c) Piecewise-constant approximation (d) Zoom-in comparison
(50 pieces). real vs. PC approximation.

Figure 4.1: Piecewise-constant approximation well represents irregular, nonsmooth graph sig-
nals by capturing the large variations on the boundary of pieces and ignoring small variations
inside pieces. Plot (a) shows Taxi-pickup distribution at 7 pm on Jan 1st, 2015 in Manhattan.
Visually, the distribution is well approximated by a piecewise-constant (PC) graph signal with
50 pieces in Plot (c). On the other hand, the graph frequency based approximation in Plot (b)
fails to capture localized variations.

4.2 Graph Signal Models

We introduce two definitions for piecewise-constant graph signals: one comes from the descrip-
tive approach and the other one comes from the generative approach; we also show the connec-
tion between the two.

Recall that the graph difference operator (2.5) compares the signal coefficients of all the
adjacent nodes and the output ∆x is an edge signal representing the difference of x. The ith
element of ∆x,

(∆x)i = sgn(Wj,k)
√
|Wj,k | (xk − xj) ,

assigns the difference between two adjacent signal coefficients to the ith edge, where the ith
edge connects the jth node to the kth node (j < k). For example, when x = ei, ‖∆x‖0 is the
total out degree of the ith node; when x = 1, ‖∆x‖0 = 0. The term ‖∆x‖pp also measures
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the smoothness of x. When G is an undirected graph, ‖∆x‖2
2 = xT Lx, where L is the graph

Laplacian matrix, which measures the total Lipschiz smoothness as shown in Definition 2. When
the graph is unweighted and all the edge weights are nonnegative, the elements of the ith row of
∆ are simply

∆i,` =


1, ` = k;
−1, ` = j;

0, otherwise.

The class of piecewise-constant graph signals is a complement of the class of smooth graph
signals, because many real-world graph signals contain localized information, which are hardly
captured by smooth graph signals. Smooth graph signals emphasize the slow transitions over
nodes; and piecewise-constant graph signals emphasize fast transitions on the graph vertex do-
main.

We now define piecewise-constant graph signals by using local sets, which have been used
previously in graph cuts and graph signal reconstruction [22, 66].
Definition 9. Let {Sc}Cc=1 be the partition of the node set V . We call {Sc}Cc=1 local sets when
they satisfy that the subgraph corresponding to each local set is connected, that is, when GSc is
connected for all c.

We can represent a local set S by using a local-set-based graph signal, 1S ∈ RN , where

(1S)i =

{
1, vi ∈ S;
0, otherwise.

For a local-set-based graph signal, ‖∆1S‖0 measures how hard it is to cut the boundary edges
between S and V\S to make GS an isolated subgraph.
Definition 10. A graph signal x is local-set-based piecewise-constant on {Sc}Cc=1 when

x =
C∑
c=1

ac1Sc ,

where {Sc}Cc=1 forms a valid series of local sets. Denote this class by PC(C).
When the value of the graph signal on each local set is different, ‖∆x‖0 counts the total

number of edges connecting nodes between local sets. Definition 10 only restricts the number
of pieces C. We can put more restrictions on the shape of each local set. For example, we want
a piecewise-constant graph signal to satisfy ‖∆x‖0 ≤ K, where K is some constant. When
(∆x)i 6= 0, the ith edge connects two nodes with different values. This requires that local
sets form sub-graphs that do not have many in-between connections. We call this small-cut
piecewise-constant graph signals

4.3 Graph Dictionary Construction
We now discuss representations for piecewise-constant graph signals based on a designed mul-
tiresolution local sets. The corresponding representation dictionary has a reasonable size and
provides sparse representations for arbitrary piecewise-constant graph signals.
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We aim to construct a series of local sets in a multiresolution fashion. We first define the
multiresolution analysis on graphs.
Definition 11. A general multiresolution analysis on graphs consists of a sequence of embedded
closed subspaces V0 ⊂ V1 ⊂ V2 · · · ⊂ VK , such that
• upward completeness

⋃K
i=0 Vi = RN ;

• downward completeness
⋂K
i=0 Vi = {c1V , c ∈ R};

• there exists an orthonormal basis {Φ}i for VK .
Compared with the original multiresolution analysis [100], the complete space here is RN

instead of L2(R) because of the discrete nature of a graph; we remove scale invariance and
translation invariance because the rigorous definitions of scaling and translation for graphs are
still unclear. This is the reason we call it general multiresolution analysis on graphs.

General Construction. The intuition behind the proposed construction is to build the con-
nection between the subspaces and local sets: a bigger subspace corresponds to a finer resolu-
tion in the graph vertex domain, or more localized local sets. We initialize S0,1 = V to cor-
respond to the 0th level subspace V0, that is, V0 = {c01S0,1 , c0 ∈ R}. We then partition S0,1

into two disjoint local sets S1,1 and S1,2, corresponding to the first level subspace V1, where
V1 = {c11S1,1 + c21S1,2 , c1, c2 ∈ R}. We then recursively partition each larger local set into two
smaller local sets. For the ith level subspace, we have Vi =

∑2i

j=1 cj1Si,j and then, we partition
Si,j into Si+1,2j−1, Si+1,2j for all j = 1, 2, . . . , 2i. We call Si,j the parent set of Si+1,2j−1, Si+1,2j

and Si+1,2j−1, Si+1,2j are the children sets of Si,j . When |Si,j| ≤ 1, Si+1,2j−1 = Si,j and
Si+1,2j = ∅. At the finest resolution, each local set corresponds to an individual node or an empty
set. In other words, we build a binary decomposition tree that partitions a graph structure into
multiple local sets. The ith level of the decomposition tree corresponds to the ith level subspace.
The depth of the decomposition T depends on how local sets are partitioned; T ranges from N
to dlogNe, where N corresponds to partitioning one node at a time and dlogNe corresponds to
an even partition at each level.

It is clear that the proposed construction of local sets satisfies three requirements in Defini-
tion 11. The initial subspace V0 has the coast resolution. Through partitioning, local sets zoom
into increasingly finer resolutions in the graph vertex domain. The subspace VT with finest res-
olution zoom into each individual node and covers the entire RN . Classical scale invariance
requires that when f(t) ∈ V0, then f(2mt) ∈ Vm, which is ill-posed in the graph domain because
graphs are finite and discrete; the classical translation invariance requires that when f(t) ∈ V0,
then f(t− n) ∈ V0, which is again ill-posed, this time because graphs are irregular. The essence
of scaling and translation invariance, however, is to use the same function and its scales and
translates to span different subspaces, which is what the proposed construction promotes. The
scaling function is 1S; the hierarchy of partition is similar to the scaling and translation, that is,
when 1Si,j ∈ Vi, then 1Si+1,2j−1

,1Si+1,2j
∈ Vi+1, and when 1Si+1,2j−1

∈ Vi+1 then 1Si+1,2j
∈ Vi+1.

To summarize the construction, we build a local set decomposition tree by recursively parti-
tioning a local set into two disjoint local sets until that all the local sets are individual nodes.
We now show a toy example in Figure 4.2. In Partition 1, we partition the entire node set
S0,1 = V = {1, 2, 3, 4} into two disjoint local sets S1,1 = {1, 2}, S1,2 = {3, 4}. Thus, V1 =
{c11S1,1 + c21S1,2 , c1, c2 ∈ R}. Similarly, in Partition 2, we partition S1,1 into two disjoint con-
nected sets S2,1 = {1}, S2,2 = {2}; in Partition 3, we partition S1,2 into S2,3 = {3}, S2,4 = {4}.
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Figure 4.2: Local set decomposition. In each partition, we decompose a node set into two dis-
joint connected sets and generate a basis vector to the wavelet basis. S0,1 is at Level 0, S1,1, S1,2

are at Level 1, and S2,1, S2,2, S2,3, S2,4 are at Level 2.

Thus, V2 = {c11S2,1 + c21S2,2 + c31S2,3 + c41S2,4 , c1, c2, c3, c4 ∈ R} = R4.
Graph Partition Algorithm. The graph partition is the key step to constructing local sets. In

Corollary 1, we will show that any even partition can minimize the worst case when representing
piecewise-constant graph signals. This suggests that when representing small-cut piecewise-
constant graph signals, the sizes of the local sets matter and the shapes do not matter. Here we
introduce three heuristic algorithms to implement graph partition.

The first one is based on spectral clustering [22]. We first obtain the graph Laplacian matrix
of a local set and compute the eigenvector corresponding to the second smallest eigenvalue of the
graph Laplacian matrix. We then set the median number of the eigenvector as the threshold; we
put the nodes whose corresponding values in the eigenvector are no smaller than the threshold
into one child local set and put the nodes whose corresponding values in the eigenvector are
smaller than the threshold into the other child local set. This method guarantees that two child
local sets have the same number of nodes, but does not guarantee that each child local set is
connected.

The second one is based on spanning tree. To partition a local set, we first obtain the max-
imum spanning tree of the subgraph and then find a balance node in the spanning tree. The
balance node partition the spanning tree into two subtrees with the closet number of nodes [78].
We remove the balance node from the spanning tree, the resulting largest connected component
form one child local set and the other nodes including the balance node forms the other child
local set. This method guarantees that two child local sets are connected, but does not guarantees
that they have the same number of nodes. When the original subgraph is highly connected, the
spanning tree loses some connection information and the shape of the local set may not capture
the community in the subgraph.

The third one is based on the 2-means clustering. We first randomly select two nodes as
the community center and assign every other node to its nearest community center based on the
geodesic distance. We then recompute the community center for each community by minimizing
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the summation of the geodesic distances to all the other nodes in the community and assign
node to its nearest community center again. We keep doing this until the community centers
converge after a few iterations. This method is inspired from the classical k-means clustering; it
also guarantees that two child local sets are connected, but does not guarantees that they have the
same number of nodes.

The proposed construction of local sets does not restrict to any particular graph partition
algorithm; depending on the applications, the partition step can also be implemented by many
other existing graph partition algorithms.

Dictionary Representations. We collect local sets by level in ascending order in a dictionary,
with atoms corresponding to each local set, that is, DLSPC = {1Si,j}

i=T,j=2i

i=0,j=1 . We call it the local-
set-based piecewise-constant dictionary. After removing empty sets, the dictionary has 2N − 1
atoms, that is, DLSPC ∈ RN×(2N−1); each atom is a piecewise-constant graph signal with various
sizes and localizing various parts of a graph. Since the size of the proposed dictionary is linear
with the number of nodes, this method is easy to scale.

Wavelet Basis. We construct a wavelet basis based on the local-set-based piecewise-constant
dictionary. We combine two local sets partitioned from the same parent local set to form a basis
vector. Let the local sets Si+1,2j−1, Si+1,2j have the same parent local set Si,j , the basis vector
combing these two local sets is√

|Si+1,2j−1||Si+1,2j|
|Si+1,2j−1|+ |Si+1,2j|

(
1

|Si+1,2j−1|
1Si+1,2j−1

− 1

|Si+1,2j|
1Si+1,2j

)
.

To represent in a matrix form, the wavelet basis is

WLSPC = DLSPC D2,

where the downsampling matrix

D2 =



1
‖d1‖2

0 · · · 0

0 g(d2,d3) · · · 0
0 −g(d3,d2) · · · 0
0 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · g(d2N−2,d2N−1)
0 0 · · · −g(d2N−1,d2N−2)


∈ R(2N−1)×N ,

with di is the ith column of DLSPC, and

g(di,dj) =

√
‖dj‖0

(‖di‖0 + ‖dj‖0) ‖di‖0

.
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The downsampling matrix U2 combines two consecutive column vectors in DLSPC to form one
column vector in WLSPC and the function g(·, ·) reweighs the column vectors in DLSPC to ensure
that each column vector in WLSPC has norm 1 and sums to 0.

Another explanation is that when we recursively partition a node set into two local sets, each
partition generates a wavelet basis vector. We still use Figure 4.2 as an example. In Partition 1,
we partition the entire node set S0,1 = {1, 2, 3, 4} into S1,1 = {1, 2}, S1,2 = {3, 4} and generate
a basis vector √

|S1,1||S1,2|
|S1,1|+ |S1,2|

(
1

|S1,1|
1S1,1 −

1

|S1,2|
1S1,2

)
=

1

2

[
1 1 −1 −1

]
;

in Partition 2, we partition S1,1 into two disjoint connected sets S2,1 = {1}, S2,2 = {2} and
generate a basis vector √

|S2,1||S2,2|
|S2,1|+ |S2,2|

(
1

|S2,1|
1S2,1 −

1

|S2,2|
1S2,2

)
=

1√
2

[
1 −1 0 0

]
;

in Partition 3, we partition S1,2 into S2,3 = {3}, S2,4 = {4} and generate a basis vector√
|S2,3||S2,4|
|S2,3|+ |S2,4|

(
1

|S2,3|
1S2,3 −

1

|S2,4|
1S2,4

)
=

1√
2

[
0 0 1 −1

]
.

We summarize the construction of the local-set-based wavelet basis in Algorithm 1.
We now analyze some properties of the proposed construction of the local sets and wavelet

basis.
Theorem 6. The proposed construction of local sets satisfies the general multiresolution analysis
on graphs.

We have shown this in the previous section. We list here for completeness. We next show
that the local-set-based wavelet basis is a valid orthonormal basis.
Theorem 7. The local-set-based wavelet basis constructs an orthonormal basis.

We show that the local-set-based wavelet basis is a good representation for piecewise-constant
graph signals through promoting the sparsity.
Theorem 8. Let W be the output of Algorithm 1 and T be the maximum level of the decompo-
sition in Algorithm 1 . For all x ∈ RN , we have∥∥WT

LSPC x
∥∥

0
≤ 1 + ‖∆x‖0 T.
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Algorithm 1 Local-set-based Wavelet Basis Construction

Input G(V, E ,A) graph
Output WLSPC wavelet basis

Function
initialize a stack of node sets S and a set of vectors W
push S = V into S
add w = 1√

|S|
1S into WLSPC

while the cardinality of the largest element of S is bigger than 1
pop up one element from S as S
partition S into two disjoint connected sets S1, S2

push S1, S2 into S
add w =

√
|S1||S2|
|S1|+|S2|

(
1
|S1|1S1

− 1
|S2|1S2

)
into WLSPC

end
return WLSPC

The maximum level of the decomposition is determined by the choice of graph partition
algorithm. Theorem 8 shows that what it matters is the cardinality of each local set, instead of
the shape. To achieve the best sparse representation, we should partition each local set as evenly
as possible. Note that when the partition is perfectly even, the resulting wavelet basis is the same
with the classical Haar wavelet basis.
Corollary 1. Let the local-set-based wavelet basis evenly partition the node set each time. We
have ∥∥WT

LSPC x
∥∥

0
≤ 1 + ‖∆x‖0 dlogNe.

We see that the local-set-based piecewise-constant wavelet basis provides a sparse represen-
tation for the piecewise-constant graph signals. Note that the graph difference operator provides
more sparse representation than the local-set-based wavelet basis, however, the graph difference
operator is not necessarily a one-to-one mapping and is bad at reconstruction. This is because
the graph difference operator only focuses on the pairwise relationship. On the other hand, the
local-set-based wavelet basis is good at reconstruction and provides multiresolution view in the
graph vertex domain.

The even partition minimizes the worst case; it does not necessarily mean that the even parti-
tion is good for all the applications. For example, a graph has two communities, a huge one and
a tiny one, which implies that a piecewise-constant graph signal sits on a part of either of two
communities. In this case, we cut a few edges to partition two communities and assign a local
set for each of them, instead of partitioning the huge community to make sure that two local sets
have same cardinality.

4.4 Experimental Results
Approximation is a standard task to evaluate a representation and it is similar to compression.
The goal is to use a few expansion coefficients to approximate a graph signal. We compare
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the graph Fourier transform [2], the windowed graph Fourier transform [79], the local-set-based
wavelet basis and dictionary. The graph Fourier transform is the eigenvector matrix of the graph
shift and the windowed graph Fourier transform provides vertex-frequency analysis on graphs.
For the local-set-based piecewise-constant wavelet basis and dictionary, we also consider three
graph partition algorithms, including spectral clustering, spanning tree and 2-means.

Algorithm. Since the graph Fourier transform and the local-set-based wavelet bases are
orthonormal bases, we consider nonlinear approximation for the graph Fourier bases, that is,
after expanding in with a representation, we should choose the K largest-magnitude expansion
coefficients so as to minimize the approximation error. Let {φk ∈ RN}Nk=1 and {φ̂k ∈ RN}Nk=1 be
a pair of biorthonormal basis and x ∈ RN be a signal. Here the graph Fourier transform matrix
U = {φ̂k}Nk=1 and the graph Fourier basis V = {φk}Nk=1. The nonlinear approximation to x is

x∗ =
∑
k∈IK

〈
x, φ̂k

〉
φk, (4.1)

where IK is the index set of the K largest-magnitude expansion coefficients. When a basis
promotes sparsity for x, only a few expansion coefficients are needed to obtain a small approxi-
mation error. Note that (4.1) is a special case of (2.15) when the distance metric d(·, ·) is the `2

norm and D is an orthonormal basis.
Since the the windowed graph dictionary and the local-set-based piecewise-constant dictio-

naries are redundant, we solve the following sparse coding problem,

x′ = arg mina ‖x−D a‖2
2 , (4.2)

subject to : ‖a‖0 ≤ K,

where D is a redundant dictionary and a is a sparse code. The idea is to use a linear combination
of a few atoms from D to approximate the original signal. When D is an orthonormal basis, the
closed-form solution is exactly (4.1). We solve (2.15) by using the orthogonal matching pursuit,
which is a greedy algorithm [96]. Note that (4.2) is a special case of (2.15) when the distance
metric d(·, ·) is the `2 norm.

Experiments. We test the four representations on two datasets, including the Minnesota road
graph [97] and the U.S city graph [98].

For the Minnesota road graph, we simulate a piecewise-constant graph signal by randomly
picking 5 nodes as community centers and assigning each other node to its nearest community
center based on the geodesic distance. We assign a random integer to each community. The
simulated graph signal is shown in Figure 4.3. The signal contains 5 piecewise constants and
84 inconsistent edges. The frequency coefficients and the wavelet coefficients obtained by using
three graph partition algorithms are shown in Figure 4.3(b), (c), (d) and (e). The sparsities of
the wavelet coefficients for spectral clustering, spanning tree, and 2-means are 364, 254, and
251, respectively; the proposed wavelet bases provide much better sparse representations than
the graph Fourier transform.

The evaluation metric of the approximation error is the normalized mean square error, that
is,

Normalized MSE =
‖x′ − x‖2

2

‖x‖2
2

,
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where x′ is the approximation signal and x is the original signal. Figure 4.3(f) shows the ap-
proximation errors given by the four representations. The x-axis is the number of coefficients
used in approximation, which is K in (4.1) and (2.15) and the y-axis is the approximation error,
where lower means better. We see that the local-set-based wavelet with spectral clustering and
local-set-based dictionary with spectral clustering provides much better performances and the
windowed graph Fourier transform catches up with graph Fourier transform around 15 expan-
sion coefficients. Figure 4.3(g) and (h) compares the local-set-based wavelets and dictionaries
with three different partition algorithms, respectively. We see that the spanning tree and 2-means
have similar performances, which are better than spectral clustering. This is consistent with the
sparsities of the wavelet coefficients, where the wavelet coefficients of spanning tree and 2-means
are more sparse than those of spectral clustering.

The U.S city graph is a network representation of 150 weather stations across the U.S. We
assign an edge when two weather stations are within 500 miles. The graph includes 150 nodes
and 1033 undirected, unweighted edges. Based on the geographical area, we partition the nodes
into four communities, including the north area (N), the middle area (M), the south area (S), and
the west area (W). The corresponding piecewise-constant graph signal is

x = 1N + 2 · 1M + 3 · 1S + 4 · 1W . (4.3)

The graph signal is shown in Figure 4.4(a), where dark blue indicates the north area, the light
indicates the middle area, the dark yellow indicates the south area and the light yellow indicates
the west area. The signal contains 4 piecewise constants and 144 inconsistent edges.

The frequency coefficients and the wavelet coefficients obtained by using three graph par-
tition algorithms are shown in Figure 4.4(b), (c), (d) and (e). The sparsities of the wavelet
coefficients for spectral clustering, spanning tree, and 2-means are 45, 56, and 41, respectively;
the proposed wavelet bases provide much better sparse representations than the graph Fourier
transform.

The evaluation metric of the approximation error is also the normalized mean square er-
ror. Figure 4.4(f) shows the approximation errors given by the four representations. Similarly
to Figure 4.4(d), the local-set-based wavelet with spectral clustering and local-set-based dic-
tionary with spectral clustering provides much better performances and the windowed graph
Fourier transform catches up with graph Fourier transform around 25 expansion coefficients.
Figure 4.4(g) and (h) compares the local-set-based wavelets and dictionaries with three different
graph partition algorithms, respectively. We see that the spectral clustering provides the best
performance.

To summarize the task of approximation, the proposed local set based representations provide
a reliable approximation to a piecewise-constant graph signal because of the sparsity promotion.

4.5 Conclusions
For piecewise-constant graph signals, we define the piecewise-constant graph signals and con-
struct the multiresolution local sets, a local-set-based piecewise-constant dictionary and local-
set-based piecewise-constant wavelet basis, which are provably useful to provide a multiresolu-
tion analysis on graphs and promote sparsity for piecewise-constant graph signals. We finally
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compare the empirical approximation performance of the proposed graph dictionary in two sim-
ulated datasets.
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Figure 4.3: Approximation on the Minnesota road graph.
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Chapter 5

Representations of Piecewise-smooth
Graph Signals

5.1 Introduction
A signal is piecewise-smooth when it can be broken into distinct pieces and on each piece the
signal is smooth [101]. Conceptually, a piecewise-smooth signal is a combination of smooth
signal and piecewise-constant signal. Images are often modeled as piecewise-smooth functions
because objects are well captured within pieces and edges are well captured by the boundaries
between pieces [102, 103].

To be able to deal with as wide a class of real-world graphs signals as possible, we combine
smooth and piecewise-constant graph signals into piecewise-smooth graph signals. In many
previous works, graph filter banks are proposed to analyze piecewise-smooth graph signals [47,
50, 51]; however, the concept of piecewise-smooth graph signals does not explicitly defined.

In this chapter, we define a piecewise-smooth graph signal model and propose a graph dic-
tionary that promotes sparsity in representations.

5.2 Graph Signal Models
Based on smooth graph signal models, we have two types of piecewise-smooth signal models,
including the piecewise-polynomial class and the piecewise-bandlimited class.
Definition 12. A graph signal x is piecewise-polynomial with C pieces and degree K when

x =
C∑
c=1

x(c)1Sc ,

where x(c) is a kth order polynomial signal on the subgraphGSc with x(c)
i = ac+

∑
j∈Sc

∑K
k=1 ak,j,cd

k(vi, vj).
Denote this class by PPL(C,K).
PPL(1, K) is the polynomial class with degree K, PL(K) from Definition 5, and PPL(C, 0) is
the piecewise-constant class with C pieces, PC(C) from Definition 10. The degrees of freedom
for a local set Sc at the polynomial degree k is the number of origins, that is,

∥∥[ak,1,c ak,2,c . . . ak,|Sc|,c
]∥∥

0
.
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Definition 13. A graph signal x is piecewise-bandlimited with C pieces and bandwidth K when

x =
C∑
c=1

x(c)1Sc ,

where x(c) is a bandlimited signal on the subgraph GSc with x(c)
i =

∑K
k=0 ak,c V

(c)
i,k , and V(c) is a

graph Fourier basis of GSc . Denote this class by PBLV(C,K).
We use zero padding to ensure V(c) ∈ RN×N for each GSc . Still, V(c) can be the eigenvector
matrix of the adjacency matrix, graph Laplacian matrix or the transition matrix.

5.3 Graph Dictionary Construction
The representations of piecewise-smooth graph signals is based on the local-set piecewise-constant
dictionary. To represent piecewise-smooth graph signals, we use multiple atoms for each local
set. We take the piecewise-polynomial signals as an example. For each local set,

DSi,j =
[
1 D

(1)
Si,j

D
(2)
Si,j

. . . D
(K)
Si,j

]
,

where (D
(k)
Si,j

)m,n = dk(vm, vn), when vm, vn ∈ Si,j; and 0, otherwise. The number of atoms

in D
(k)
Si,j

is 1 + K|Si,j|. We collect the sub-dictionaries for all the multiresolution local sets to

form the local-set-based piecewise-polynomial dictionary, that is, DLSPP = {DSi,j}
T,2i

i=0,j=1.
The number of atoms in DLSPS is O(KNT ), where K is the maximum degree of polynomial, N
is the size of the graph and T is the maximum level of the decomposition. When we use even
partitioning, the total number of atoms is O(KN logN).

Similarly, to model piecewise-bandlimited signals, we replace DSi,j by the graph Fourier ba-
sis of each subgraph GSi,j to form the local-set-based piecewise-bandlimited dictionary. The to-
tal number of atoms of the corresponding DLSPB is thenO(NT ). Both local-set-based piecewise-
polynomial dictionary and local-set-based piecewise-bandlimited dictionary are called local-set-
based piecewise-smooth dictionary, denoted as DLSPS.

Recall that for piecewise-constant signals, we use the sparse coding to do exact approxima-
tion. To minimize the approximation error in the worst case, we want even partition. However,
for piecewise-smooth signals, we cannot use the sparse coding to do exact approximation. To
minimize the approximation error, both the sizes and the shapes of the local sets matter for
piecewise-smooth graph signals.
Theorem 9. (The local-set based piecewise-smooth dictionary promotes the sparsity for
piecewise-smooth graph signals.) For all x ∈ PBLVL(C,K), where VL is the graph Fourier
basis of the graph Laplacian matrix L, we have ‖a∗‖0 ≤ 2KT ‖∆xPC‖0, where T is the maxi-
mum level of the decomposition, xPC is a piecewise-constant signal that corresponds the same
local sets with x and

a∗ = arg min
a
‖a‖0 ,

subject to ‖x−DLSPS a‖2
2 ≤ εpar ‖x‖2

2 ,
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where εpar is a constant determined by the graph partitioning algorithm,

εpar =
(λKx

Tx− xT Lcut x)

minSc λ
(Sc)
K+1 ‖x‖

2
2

with λ(Sc)
K+1 be the K + 1th eigenvalue of the graph Laplacian matrix of GSc and

xT Lcut x =
∑

i,j∈(E/∪cESc )

Wi,j(xi − xj)2.

A small εpar requires that the local sets have strong internal connections and weak external
connections. It is hard to design the graph partitioning algorithm by minimizing εpar, but εpar can
be a quantitative metric to evaluate the graph partitioning algorithm.

We further use the local-set piecewise-smooth dictionary to detect piecewise-smooth signals
from random noises.
Theorem 10. We consider statistically testing the null and alternative hypothesis,

H0 : y ∼ N (0, σ2 I),

H1 : y ∼ N (x, σ2 I), x ∈ PBLVL(C,K).

We solve the following optimization problem

a∗y = arg min
a
‖y −DLSPB a‖2

2

subject to ‖a‖0 ≤ 2KT ‖∆xPC‖0 ,

by using the matching pursuit algorithm. We reject the null if
∥∥a∗y∥∥∞ > σ

√
2 log(KNT/δ). If

‖x‖2

σ
≥ C

√
2KT ‖∆xPC‖0

√
8 log(

KNT

δ
),

where C = max|Ω|≤2KT‖∆xPC‖0 ‖(DLSPB)Ω‖2 /(1 −
√
εpar) with εpar is a constant related to the

graph partition algorithm. Then under H0, P(Reject) ≤ δ, and under H1, P(Reject) ≤ δ.

5.4 Experimental Results
Similarly to experiments for piecewise-constant graph signals in Chapter 4, we still test the rep-
resentations on two datasets, the Minnesota road graph [97] and the U.S city graph [98]. On the
Minnesota road graph, we simulate 100 piecewise-constant graph signals as follows: we random
choose three nodes as cluster centers and assign all other nodes to their nearest cluster centers
based on the geodesic distance. We assign a random integer to each cluster. We further obtain
100 piecewise-polynomial graph signals by element-wise multiplying a polynomial function,
−d2(v0, v) + 12d(v0, v), where v0 is a reference node that assigns randomly. As an example, see
Figure 5.1(a).
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Figure 5.1: Graph signal.

On the U.S city graph, we use the real temperature measurements. The graph includes 150
weather stations and each weather station has 365 days of recordings (one recording per day),
for a total of 365 graph signals. As an example, see Figure 5.1(b).

The approximation error is measured by the normalized mean square error. Figure 5.2 shows
the averaged approximation errors. LSPC denotes local-set-based piecewise-constant dictio-
nary and LSPS denotes local-set-based piecewise-smooth dictionary. For the windowed graph
Fourier transform, we use 15 filters; for LSPS, three piecewise-smooth models provide tight per-
formances; here we show the results of the piecewise-polynomial smooth model with degree
K = 2. We see that the local-set-based dictionaries perform better than the windowed graph
Fourier transform; local-set-based piecewise-smooth dictionary is slightly better than local-set-
based piecewise-constant dictionary; even though the windowed graph Fourier transform is solid
in theory, provides highly redundant representations and is useful for visualization, it does not
well approximate complex graph signals.

5.5 Conclusions
For piecewise-smooth graph signals, we define the piecewise-smooth graph signals and construct
a local-set-based piecewise-smooth dictionary, which promotes sparsity for piecewise-smooth
graph signals. We then study how the proposed local-set-based piecewise-smooth dictionary
works in approximation. We finally compare the empirical approximation performance of the
proposed graph dictionary in two simulated datasets.
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Figure 5.2: Approximation error. Approximation ratio is the percentage of used coefficients ( s
in (4.2)).
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Part III

Sampling and Recovery of Graph Signals
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Overview of Sampling and Recovery

In classical signal processing, sampling and recovery are key techniques to link continuous-
time signals (functions of a real variable) and discrete-time signals (sequences indexed by inte-
gers) [84, 104]. Sampling produces a sequence from a function, and recovery produces a func-
tion from a sequence. The ability to sample a function, manipulate the resulting sequence with a
discrete-time system, and then recover a function, is the foundation of digital signal processing.
Conversely, the ability to recover a sequence to create a function, manipulate the resulting func-
tion with a continuous-time system, and then sample to produce a sequence, is the foundation of
digital communications.

In this part, we consider sampling and recovery of graph signals. In general, graph signal
sampling is a reduction of a graph signal to a small number of measurements, and graph signal
recovery is a reconstruction of a graph signal from noisy, missing, or corrupted measurements.
Many types of sampling are considered in literature. For example, subsampling selects one
node in each measurement [62, 90, 105]; local sampling selects a set of nodes in each measure-
ment [64]; and dynamic sampling considers time-evolving graph signals and selects one node
at different time stamps in each measurement [63]. Here we focus on subsampling. The re-
covery techniques is usually related to the sampling procedure because the sampling procedure
determines the property of the measurements.

The main application of sampling and recovery of graph signals is semi-supervised learning
with graphs. Semi-supervised learning is a machine learning technique to train classifiers with
both labeled and unlabeled data by assuming that unlabeled data can provide distribution infor-
mation to build a stronger classifier [106]. Many algorithms for semi-supervised learning are
based on graphs that are constructed from a given dataset [106], often by modeling each node
as a data sample and connecting two nodes by an edge if the distance between their features is
in a given range, which is similar to the construction of random geometric graphs. Based on
the assumption that adjacent nodes have similar labels, semi-supervised learning diffuses label
probabilities from labeled data to unlabeled data along the graph structure and classifies un-
labeled data according to those label probabilities. In this case, graph signal sampling actively
selects the most informative data samples as training data and query their labels; and graph signal
recovery finds the labels of unlabeled data based on both graph structure and labeled data.

Mathematically, suppose that we want to sample M coefficients of a graph signal x ∈ RN

to produce a sampled signal xM ∈ RM (M < N ), where M = (M0, · · · ,MM−1) denotes
the sequence of sampled indices, and Mi ∈ {0, 1, · · · , N − 1}. When samples are corrupted
by noise, we consider a noisy sampled signal y = xM + ε ∈ RM , where ε is noise. We then
interpolate y to get x′ ∈ RN , which recovers x either exactly or approximately. The sampling
operator Ψ is a linear mapping from RN to RM , defined as

Ψi,j =

{
1, j =Mi;
0, otherwise, (5.1)

and the interpolation operator Φ is a linear mapping from RM to RN (see Figure 5.3),

61



Figure 5.3: Sampling followed by recovery.

sampling : y = Ψx + ε ≡ xM + ε ∈ RM , (5.2)
recovery : x′ = Φy = Φ (Ψx + ε) ∈ RN , (5.3)

where x′ ∈ RN recovers x either exactly or approximately. In general, it is hard to recover x.
Here we focus on a graph signal model promoted by a graph dictionary,

XK = {x ∈ RN : x = D a, a ∈ RS, ‖a‖0 ≤ K},

where D ∈ RN×S is a graph dictionary. The prototype of designing sampling and recovery
strategies is

Ψ∗(D),Φ∗(D) = arg min
Ψ,Φ

max
‖a‖0≤K

d(x′,x),

subject to x′ = Φy,

x = D a,

where d(·, ·) is some evaluation metric. For any graph signal x ∈ XK , we want to find a pair
of sampling and recovery strategies to minimize the reconstruction error. The minmax error is
adopted to guarantee the sampling and recovery strategies work for any graph signal from XK .
The optimal sampling and recovery strategies Ψ∗,Φ∗ are influenced by the given graph dictionary
D. We often consider fixing either the sampling strategy or the recovery strategy and optimizing
over the other one.

We consider three different sampling strategies:
• uniform sampling means that sample indices are chosen from {0, 1, . . . , N − 1} indepen-

dently and randomly;
• experimentally designed sampling means that sample indices can be chosen beforehand;

and
• active sampling means that sample indices can be chosen as a function of the sample points

and the samples collected up to that instance, that is,Mi depends only on {Mj, yj}j<i.
It is clear that uniform sampling is a subset of experimentally designed sampling, which is again
a subset of active sampling.
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Chapter 6

Sampling of Bandlimited Graph Signals

6.1 Introduction
As the bridge connecting sequences and functions, classical sampling theory shows that a ban-
dlimited function can be perfectly recovered from its sampled sequence if the sampling rate is
high enough [107]. More generally, we can treat any decrease in dimension via a linear oper-
ator as sampling, and, conversely, any increase in dimension via a linear operator as interpola-
tion [84, 108]. Formulating a sampling theory in this context is equivalent to moving between
higher- and lower-dimensional spaces.

A sampling theory for graphs has interesting applications. For example, given a graph repre-
senting friendship connectivity on Facebook, we can sample a fraction of users and query their
hobbies and then recover all users’ hobbies. The task of sampling of graph signals is, however,
not well understood [60,65], because graph signals lie on complex, irregular structures. It is even
more challenging to find a graph structure that is associated with the sampled signal coefficients;
in the Facebook example, we sample a small fraction of users and an associated graph structure
would allow us to infer new connectivity between those sampled users, even when they are not
directly connected in the original graph.

Previous works on sampling theory [60, 61, 109] consider graph signals that are uniquely
sampled onto a given subset of nodes. This approach is hard to apply to directed graphs. It also
does not explain which graph structure supports these sampled coefficients.

In this chapter, we propose a novel sampling framework for graph signals. Here, the band-
width definition is based on the number of non-zero signal coefficients in the graph Fourier
domain. Since each signal coefficient in the graph Fourier domain corresponds to a graph fre-
quency, the bandwidth definition is also based on the number of graph frequencies. This makes
the proposed sampling framework strongly connected to linear algebra, that is, we are allowed
to use simple tools from linear algebra to perform sampling on complex, irregular graphs.

6.2 Problem Formulation
Following the discussion in prologue of Part III, we aim to use a sampling operator Ψ (5.1) to
measure a graph signal x ∈ RN and produce a sampled signal xM ∈ RM (M < N ). We then
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use a recovery operator Φ to interpolate xM and get x′ ∈ RN , which recovers x either exactly or
approximately. Even in the noiseless case, perfect recovery happens for all x only when ΦΨ is
the identity matrix. This is not possible in general because rank(ΦΨ) ≤M < N ; it is, however,
possible to do this for signals with specific structure that we will define as bandlimited graph
signals, as in classical discrete signal processing.

We now define a class of bandlimited graph signals, which makes perfect recovery possible.

Definition 14. A graph signal is called bandlimited when there exists a K ∈ {0, 1, · · · , N − 1}
such that its graph Fourier transform x̂ satisfies

x̂k = 0 for all k ≥ K.

The smallest suchK is called the bandwidth of x. A graph signal that is not bandlimited is called
a full-band graph signal.

Note that the bandlimited graph signals here do not necessarily mean low-pass, or smooth.
Since we do not specify the ordering of frequencies, we can reorder the eigenvalues and permute
the corresponding eigenvectors in the graph Fourier transform matrix to choose any band in
the graph Fourier domain. The bandlimited graph signals are smooth only when we sort the
eigenvalues in a descending order. The bandlimited restriction here is equivalent to limiting the
number of non-zero signal coefficients in the graph Fourier domain with known supports. This
generalization is potentially useful to represent non-smooth graph signals.

Definition 15. The set of graph signals in RN with bandwidth of at most K is a closed subspace
denoted BLK(V−1), with V−1 as in (2.6).

When defining the bandwidth, we focus on the number of graph frequencies, while previous
works [60] focus on the value of graph frequencies. There are two shortcomings to using the
values of graph frequencies: (a) When considering the values of graph frequencies, we ignore the
discrete nature of graphs; because graph frequencies are discrete, two cut-off graph frequencies
on the same graph can lead to the same bandlimited space. For example, assume a graph has
graph frequencies 0, 0.1, 0.4, 0.6 and 2; when we set the cut-off frequency to either 0.2 or 0.3,
they lead to the same bandlimited space; (b) The values of graph frequencies cannot be compared
between different graphs. Since each graph has its own graph frequencies, a same value of the
cut-off graph frequency on two graphs can mean different things. For example, one graph has
graph frequencies as 0, 0.1, 0.2, 0.4 and 2, and another has graph frequencies 0, 1.1, 1.6, 1.8, and
2; when we set the cut-off frequency to 1, that is, we preserve all the graph frequencies that are
no greater than 1, first graph preserves three out of four graph frequencies and the second graph
only preserves one out of four. The values of graph frequencies thus do not necessarily give a
direct and intuitive understanding about the bandlimited space. Another key advantage of using
the number of graph frequencies is to build a strong connection to linear algebra allowing for
the use of simple tools from linear algebra in sampling and interpolation of bandlimited graph
signals.
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6.3 Methodology

6.3.1 Sampling Theory for Graph Signals

In Theorem 5.2 in [84], the authors show the recovery for vectors via projection, which lays the
theoretical foundation for the classical sampling theory. Following the theorem, we obtain the
following result, the proof of which can be found in [108].
Theorem 11. Let Ψ satisfy

rank(Ψ V(K)) = K,

where V(K) ∈ CN×K denotes the firstK columns of V. For all x ∈ BLK(V−1), perfect recovery,
x = ΦΨx, is achieved by choosing

Φ = V(K) U,

with U Ψ V(K) a K ×K identity matrix.
Theorem 11 is applicable for all graph signals that have a few non-zero elements in the graph

Fourier domain with known supports, that is, K < N .
Similarly to the classical sampling theory, the sampling rate has a lower bound for graph

signals as well, that is, the sample size M should be no smaller than the bandwidth K. When
M < K, rank(U Ψ V(K)) ≤ rank(U) ≤ M < K, and thus, U Ψ V(K) can never be an identity
matrix. For U Ψ V(K) to be an identity matrix, U is the inverse of Ψ V(K) when M = K; it is a
pseudo-inverse of Ψ V(K) when M > K, where the redundancy can be useful for reducing the
influence of noise. For simplicity, we only consider M = K and U invertible. When M > K,
we simply select K out of M sampled signal coefficients to ensure that the sample size and the
bandwidth are the same.

From Theorem 11, we see that an arbitrary sampling operator may not lead to perfect re-
covery even for bandlimited graph signals. When the sampling operator Ψ satisfies the full-rank
assumption (6.1), we call it a qualified sampling operator. To satisfy (6.1), the sampling operator
should select at least one set of K linearly-independent rows in V(K). Since V is invertible, the
column vectors in V are linearly independent and rank(V(K)) = K always holds; in other words,
at least one set of K linearly-independent rows in V(K) always exists. Since the graph shift A is
given, one can find such a set independently of the graph signal. Given such a set, Theorem 11
guarantees perfect recovery of bandlimited graph signals. To find linearly-independent rows in
a matrix, fast algorithms exist, such as QR decomposition; see [75, 84]. Since we only need to
know the graph structure to design a qualified sampling operator, this follows the experimentally
designed sampling. We will expand this topic in Section 6.3.5.

6.3.2 Sampled Graph Signal

We just showed that perfect recovery is possible when the graph signal is bandlimited. We now
show that the sampled signal coefficients form a new graph signal, whose corresponding graph
shift can be constructed from the original graph shift.

Although the following results can be generalized to M > K easily, we only consider
M = K for simplicity. Let the sampling operator Ψ and the interpolation operator Φ satisfy
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Figure 6.1: Sampling followed by interpolation. The arrows indicate that the edges are directed.

the conditions in Theorem 11. For all x ∈ BLK(V−1), we have

x = ΦΨx = ΦxM
(a)
= V(K) UxM
(b)
= V(K) x̂(K),

where x̂(K) denotes the first K coefficients of x̂, (a) follows from Theorem 11 and (b) from
Definition 14. We thus get

x̂(K) = UxM,

and

xM = U−1 UxM = U−1 x̂(K).

From what we have seen, the sampled signal coefficients xM and the frequency content x̂(K)

form a Fourier pair because xM can be constructed from x̂(K) through U−1 and x̂(K) can also be
constructed from xM through U. This implies that, according to the spectral decomposition (2.6),
xM is a graph signal associated with the graph Fourier transform matrix U and a new graph shift

AM = U−1 Λ(K) U ∈ CK×K ,

where Λ(K) ∈ CK×K is a diagonal matrix that samples the first K eigenvalues of Λ. This leads
to the following theorem.
Theorem 12. Let x ∈ BLK(V−1) and let

xM = Ψx ∈ RK

be its sampled version, where Ψ is a qualified sampling operator. Then, the graph shift associated
with the graph signal xM is

AM = U−1 Λ(K) U ∈ CK×K , (6.1)

with U = (Ψ V(K))
−1.

From Theorem 12, we see that the graph shift AM is constructed by sampling the rows of the
eigenvector matrix and sampling the first K eigenvalues of the original graph shift A. We simply
say that AM is sampled from A, preserving certain information in the graph Fourier domain.

Since the bandwidth of x is K, the first K coefficients in the frequency domain are x̂(K) =
x̂M, and the other N − K coefficients are x̂(−K) = 0; in other words, the frequency contents
of the original graph signal x and the sampled graph signal xM are equivalent after performing
their corresponding graph Fourier transforms.

Similarly to Theorem 11, by reordering the eigenvalues and permuting the corresponding
eigenvectors in the graph Fourier transform matrix, Theorem 12 is applicable to all graph signals
that have limited support in the graph Fourier domain.
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6.3.3 Property of A Sampled Graph Signal
We argued that AM = U−1 Λ(K) U is the graph shift that supports the sampled signal coefficients
xM following from a mathematical equivalence between the graph Fourier transform for the
sampled graph signal and the graph shift. We, in fact, implicitly proposed an approach to sam-
pling graphs. Since sampled graphs always lose information, we now study which information
AM preserves.
Theorem 13. For all x ∈ BLK(V−1),

xM − AM xM = Ψ (x− Ax) .

Proof.

xM − AM xM = U−1 x̂M − U−1 Λ(K) U U−1 x̂M

= Ψ V(K)(I−Λ(K))x̂(K)

= Ψ (x− Ax) ,

where the last equality follows from x ∈ BLK(V−1).

The term x − Ax measures the difference between the original graph signal and its shifted
version. This is also called the first-order difference of x, while the term Ψ (x− Ax) measures
the first-order difference of x at sampled indices. Furthermore, ‖x− Ax‖pp is the graph total vari-
ation based on the `p-norm, which is a quantitative characteristic that measures the smoothness
of a graph signal [76]. When using a sampled graph to represent the sampled signal coefficients,
we lose the connectivity information between the sampled nodes and all the other nodes; despite
this, AM still preserves the first-order difference at sampled indices. Instead of focusing on pre-
serving connectivity properties as in prior work [24], we emphasize the interplay between signals
and structures.

6.3.4 Example
We consider a five-node directed graph with graph shift

A =


0 2

5
2
5

0 1
5

2
3

0 1
3

0 0
1
2

1
4

0 1
4

0
0 0 1

2
0 1

2
1
2

0 0 1
2

0

 .
The corresponding inverse graph Fourier transform matrix is

V =


0.45 0.19 0.25 0.35 −0.40
0.45 0.40 0.16 −0.74 0.18
0.45 0.08 −0.56 0.29 0.36
0.45 −0.66 −0.41 −0.47 −0.57
0.45 −0.60 0.66 0.13 0.59

 ,
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and the frequencies are

Λ = diag
[
1 0.39 −0.12 −0.44 −0.83

]
.

Let K = 3; generate a bandlimited graph signal x ∈ BL3(V−1) as

x̂ =
[
0.5 0.2 0.1 0 0

]T
,

with
x =

[
0.29 0.32 0.18 0.05 0.17

]T
,

and the first-order difference of x is

x− Ax =
[
0.05 0.07 −0.05 −0.13 0.0002

]T
.

We can check the first three columns of V to see that all sets of three rows are independent.
According to the sampling theorem, we can then recover x perfectly by sampling any three of
its coefficients; for example, sample the first, second and the fourth coefficients. Then, M =

(1, 2, 4), xM =
[
0.29 0.32 0.05

]T , and the sampling operator

Ψ =

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


is qualified. We recover x by using the following interpolation operator (see Figure 6.1)

Φ = V(3)(Ψ V(3))
−1 =


1 0 0
0 1 0
−2.7 2.87 0.83

0 0 1
5.04 −3.98 −0.05

 .
The inverse graph Fourier transform matrix for the sampled signal is

U−1 = Ψ V(3) =

 0.45 0.19 0.25
0.45 0.40 0.16
0.45 −0.66 −0.41

 ,
and the sampled frequencies are

Λ(3) =

 1 0 0
0 0.39 0
0 0 −0.12

 .
The sampled graph shift is then constructed as

AM = U−1 Λ(3) U =

 0.07 0.75 0.32
−0.23 0.96 0.28

1.17 −0.56 0.39

 .
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Figure 6.2: Sampling a graph.

The first-order difference of xM is

xM − AM xM =
[
0.05 0.07 −0.13

]T
= Ψ(x− Ax).

We see that the sampled graph shift contains self-loops and negative weights and seems to be
dissimilar to A, but AM preserves a part of the frequency content of A because U−1 is sampled
from V and Λ(3) is sampled from A. AM also preserves the first-order difference of x, which
validates Theorem 13.

6.3.5 Sampling with A Qualified Sampling Operator
As shown in Section 6.3.1, only a qualified sampling operator (6.1) can lead to perfect recovery
for bandlimited graph signals. Since a qualified sampling operator (6.1) is designed via the
graph structure, it belongs to experimentally designed sampling. The design consist in finding K
linearly independent rows in V(K), which gives multiple choices. In this section, we propose an
optimal approach to designing a qualified sampling operators by minimizing the effect of noise
for general graphs. We then show that for some specific graphs, random sampling also leads to
perfect recovery with high probability.

6.3.6 Experimentally Designed Sampling
We now show how to design a qualified sampling operator on any given graph that is robust to
noise. We then compare this optimal sampling operator with a random sampling operator on a
sensor network.

Optimal Sampling Operator

As mentioned in Section 6.3.1, at least one set of K linearly-independent rows in V(K) always
exists. When we have multiple choices of K linearly-independent rows, we aim to find the
optimal one to minimize the effect of noise.

We consider a model where noise e is introduced during sampling as follows,

y = Ψx + e,
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where Ψ is a qualified sampling operator. The recovered graph signal, x′e, is then

x′e = Φy = ΦΨx + Φe = x + Φe.

To bound the effect of noise, we have

‖x′ − x‖2 = ‖Φe‖2 =
∥∥V(K) U e

∥∥
2

≤
∥∥V(K)

∥∥
2
‖|U‖2 ‖e‖2 ,

where the inequality follows from the definition of the spectral norm. Since
∥∥V(K)

∥∥
2

and ‖e‖2

are fixed, we want U to have a small spectral norm. From this perspective, for each feasible Ψ,
we compute the inverse or pseudo-inverse of Ψ V(K) to obtain U; the best choice comes from the
U with the smallest spectral norm. This is equivalent to maximizing the smallest singular value
of Ψ V(K),

Ψopt = arg max
Ψ

σmin(Ψ V(K)), (6.2)

where σmin denotes the smallest singular value. The solution of (6.2) is optimal in terms of min-
imizing the effect of noise; we simply call it optimal sampling operator. Since we restrict the
form of Ψ in (5.1), (6.2) is non-deterministic polynomial-time hard. To solve (6.2), we can use a
greedy algorithm as shown in Algorithm 2. In a previous work, the authors solved a similar op-
timization problem for matrix approximation and showed that the greedy algorithm gives a good
approximation to the global optimum [110]. Note thatM is the sampling sequence, indicating
which rows to select, and (V(K))M denotes the sampled rows from V(K). When increasing the
number of samples, the smallest singular value of Ψ V(K) grows, and thus, redundant samples
make the algorithm robust to noise.

Algorithm 2 Optimal Sampling Operator via Greedy Algorithm

Input V(K) the first K columns of V
M the number of samples

Output M sampling set

Function
while |M| < M
m = arg maxi σmin

(
(V(K))M+{i}

)
M←M+ {m}

end
returnM

6.3.7 Relations & Extensions

We now discuss three topics: relation to the sampling theory for finite discrete-time signals,
relation to compressed sensing, and how to handle a full-band graph signal.
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6.3.8 Relation to Sampling Theory for Finite Discrete-Time Signals

We call the graph that supports a finite discrete-time signal a finite discrete-time graph, which
specifies the time-ordering from the past to future. The finite discrete-time graph can be repre-
sented by the cyclic permutation matrix [76, 84],

A =


0 0 · · · 1
1 0 · · · 0
... . . . . . . 0
0 · · · 1 0

 = V Λ V−1, (6.3)

where the eigenvector matrix

V =
[
v0 v1 · · · vN−1

]
=
[

1√
N

(W jk)∗
]
j,k=0,···N−1

(6.4)

is the Hermitian transpose of the N -point discrete Fourier transform matrix, V = DFT∗, V−1 is
the N -point discrete Fourier transform matrix, V−1 = DFT, and the eigenvalue matrix is

Λ = diag
[
W 0 W 1 · · · WN−1

]
, (6.5)

where W = e−2πj/N . We see that Definitions 14, 15 and Theorem 11 are immediately applicable
to finite discrete-time signals and are consistent with sampling of such signals [84].
Definition 16. A discrete-time signal is called bandlimited when there existsK ∈ {0, 1, · · · , N−
1} such that its discrete Fourier transform x̂ satisfies

x̂k = 0 for all k ≥ K.

The smallest such K is called the bandwidth of x. A discrete-time signal that is not bandlimited
is called a full-band discrete-time signal.
Definition 17. The set of discrete-time signals in CN with bandwidth of at most K is a closed
subspace denoted BLK(DFT), with DFT the discrete Fourier transform matrix.

With this definition of the discrete Fourier transform matrix, the highest frequency is in the
middle of the spectrum (although this is just a matter of ordering). From Definitions 16 and 17,
we can permute the rows in the discrete Fourier transform matrix to choose any frequency band.
Since the discrete Fourier transform matrix is a Vandermonde matrix, any K rows of DFT∗(K)

are independent [75, 84]; in other words, rank(ΨDFT∗(K)) = K always holds when M ≥ K.
We apply now Theorem 11 to obtain the following result.
Corollary 2. Let Ψ satisfy that the sampling number is no smaller than the bandwidth, M ≥ K.
For all x ∈ BLK(DFT), perfect recovery, x = ΦΨx, is achieved by choosing

Φ = DFT∗(K) U,

with U ΨDFT∗(K) aK×K identity matrix, and DFT∗(K) denotes the firstK columns of DFT∗.
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From Corollary 2, we can perfectly recover a discrete-time signal when it is bandlimited.
Similarly to Theorem 12, we can show that a new graph shift can be constructed from the

finite discrete-time graph. Multiple sampling mechanisms can be used to sample a new graph
shift; an intuitive one is as follows: let x ∈ CN be a finite discrete-time signal, where N is even.
Reorder the frequencies in (6.5), by putting the frequencies with even indices first,

Λ̃ = diag
[
λ0 λ2 · · · λN−2 λ1 λ3 · · · λN−1

]
.

Similarly, reorder the columns of V in (6.4) by putting the columns with even indices first

Ṽ =
[
v0 v2 · · · vN−2 v1 v3 · · · vN−1

]
.

One can check that ṼΛ̃Ṽ
−1

is still the same cyclic permutation matrix. Suppose we want to
preserve the first N/2 frequency components in Λ̃; the sampled frequencies are then

Λ̃(N/2) = diag
[
λ0 λ2 · · · λN−2

]
.

Let a sampling operator Ψ choose the first N/2 rows in Ṽ(N/2),

ΨṼ(N/2) =
[

1√
N

(W 2jk)∗
]
j,k=0,···N/2−1

,

which is the Hermitian transpose of the discrete Fourier transform of size N/2 and satisfies
rank(ΨṼ(N/2)) = N/2 in Theorem 12. The sampled graph Fourier transform matrix U =

(ΨṼ(N/2)))
−1 is the discrete Fourier transform of size N/2. The sampled graph shift is then

constructed as
AM = U−1 Λ̃(N/2) U,

which is exactly the N/2 × N/2 cyclic permutation matrix. Hence, we have shown that by
choosing an appropriate sampling mechanism, a smaller finite discrete-time graph is obtained
from a larger finite discrete-time graph by using Theorem 12. We note that using a different
ordering or sampling operator would result in a graph shift that can be different and non-intuitive.
This is simply a matter of choosing different frequency components.

6.3.9 Relation to Compressed Sensing
Compressed sensing is a sampling framework to recover sparse signals with a few measure-
ments [111]. The theory asserts that a few samples guarantee the recovery of the original signals
when the signals and the sampling approaches are well-defined in some theoretical aspects. To
be more specific, given the sampling operator Ψ ∈ RM×N ,M � N , and the sampled signal
xM = Ψx, a sparse signal x ∈ RN is recovered by solving

min
x
‖x‖0, subject to xM = Ψx. (6.6)

Since the l0 norm is not convex, the optimization is a non-deterministic polynomial-time hard
problem. To obtain a computationally efficient algorithm, the l1-norm based algorithm, known as
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basis pursuit or basis pursuit with denoising, recovers the sparse signal with small approximation
error [112].

In the standard compressed sensing theory, signals have to be sparse or approximately sparse
to guarantee accurate recovery properties. In [113], the authors proposed a general way to per-
form compressed sensing with non-sparse signals using dictionaries. Specifically, a general sig-
nal x ∈ RN is recovered by

min
x
‖Dx|0, subject to xM = Ψx, (6.7)

where D is a dictionary designed to make Dx sparse. When specifying x to be a graph signal,
and D to be the appropriate graph Fourier transform of the graph on which the signal resides,
Dx represents the frequency content of x, which is sparse when x is of limited bandwidth.
Equation (6.7) recovers a bandlimited graph signal from a few sampled signal coefficients via an
optimization approach. The proposed sampling theory deals with the cases where the frequencies
corresponding to non-zero elements are known, and can be reordered to form a bandlimited graph
signal. Compressed sensing deals with the cases where the frequencies corresponding to non-
zero elements are unknown, which is a more general and harder problem. If we have access to
the position of the non-zero elements, the proposed sampling theory uses the smallest number of
samples to achieve perfect recovery.

6.3.10 Graph Downsampling & Graph Filter Banks
In classical signal processing, sampling refers to sampling a continuous function and downsam-
pling refers to sampling a sequence. Both concepts use fewer samples to represent the overall
shape of the original signal. Since a graph signal is discrete in nature, sampling and downsam-
pling are the same. Previous works implemented graph downsampling via graph coloring [47]
or minimum spanning tree [114].

The proposed sampling theory provides a family of qualified sampling operators (6.1) with
an optimal sampling operator as in (6.2). To downsample a graph by 2, one can set the bandwidth
to a half of the number of nodes, that is, K = N/2, and use (6.2) to obtain an optimal sampling
operator. An example for the finite discrete-time signals was shown in Section 6.3.8.

As shown in Theorem 11, perfect recovery is achieved when graph signals are bandlimited.
To handle full-band graph signals, we propose an approach based on graph filter banks, where
each channel does not need to recover perfectly but in conjunction they do.

Let x be a full-band graph signal, which, without loss of generality, we can express without
loss of generality as the addition of two bandlimited signals supported on the same graph, that
is, x = xl + xh, where

xl = Pl x, xh = Ph x,

and

Pl = V

[
IK 0
0 0

]
V−1, Ph = = V

[
0 0
0 IN−K

]
V−1 .

We see that xl contains the firstK frequencies, xh contains the otherN−K frequencies, and each
is bandlimited. We do sampling and interpolation for xl and xh in two channels, respectively.
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Figure 6.3: Graph filter bank that splits the graph signal into two bandlimited graph signals. In
each channel, we perform sampling and interpolation, following Theorem 11. Finally, we add
the results from both channels to obtain the original full-band graph signal.

Take the first channel as an example. Following Theorems 11 and 12, we use a qualified sampling
operator Ψl to sample xl, and obtain the sampled signal coefficients as xlMl = Ψlxl, with the
corresponding graph as AMl . We can recover xl by using interpolation operator Φl as xl =
ΦlxlMl . Finally, we add the results from both channels to obtain the original full-band graph
signal (also illustrated in Figure 6.3). The main benefit of working with a graph filter bank is
that, instead of dealing with a long graph signal with a large graph, we are allowed to focus on
the frequency bands of interests and deal with a shorter graph signal with a small graph in each
channel.

We do not restrict the samples from two bands, xlMl and xhMh the same size because we
can adaptively design the sampling and interpolation operators based on their own sizes. This is
similar to the filter banks in the classical literature where the spectrum is not evenly partitioned
between the channels [115]. We see that the above idea can easily be generalized to multiple
channels by splitting the original graphs signal into multiple bandlimited graph signals; instead
of dealing with a huge graph, we work with multiple small graphs, which makes computation
easier.

6.4 Experimental Results
We now show an example where we analyze graph signals by using the proposed graph filter
banks. We consider that the weather stations across the U.S. form a graph and temperature values
measured at each weather station in one day form a graph signal. Suppose that a high-frequency
component represents some pattern of weather change; we want to detect this pattern given the
temperature values. We can decompose a graph signal of temperature values into a low-frequency
channel (largest 15 frequencies) and a high-frequency channel (smallest 5 frequencies). In each
channel, we sample the bandlimited graph signal to obtain a sparse and loseless representation.
Figure 6.4 shows a comparison between temperature values on January 1st, 2013 and May 1st,
2013. We intentionally added some high-frequency component to the temperature values on
January 1st, 2013. We see that the high-frequency channel in Figure 6.4 (a) detects the change,
while the high-frequency channel in Figure 6.4 (b) does not.

Directly using the graph frequency components can also detect the high-frequency compo-
nents, but the graph frequency components cannot be easily visualized. Since the graph structure
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and the decomposed channels are fixed, the optimal sampling operator and corresponding inter-
polation operator in each channel can be designed in advance, which means that we just need to
look at the sampled coefficients of a fixed set of nodes to check whether a channel is activated.
The graph filter bank is thus fast and visualization friendly.

(a) Temperature on January 1st, 2013 with high-frequency pattern.

(b) Temperature on May 1st, 2013.

Figure 6.4: Graph filter banks analysis.

The proposed sampling theory on graphs can be applied to semi-supervised learning, whose
goal is to classify data with a few labeled and a large number of unlabeled samples [106]. One
approach is based on graphs, where the labels are often assumed to be smooth on graphs. From
a perspective of signal processing, smoothness can be expressed as lowpass nature of the signal.
Recovering smooth labels on graphs is then equivalent to interpolating a low-pass graph signal.
We now look at two examples, including classification of online blogs and handwritten digits.
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Sampling Online Blogs

We first aim to investigate the success rate of perfect recovery by using random sampling, and
then classify the labels of the online blogs. We consider a dataset of N = 1224 online political
blogs as either conservative or liberal [116]. We represent conservative labels as +1 and liberal
ones as −1. The blogs are represented by a graph in which nodes represent blogs, and directed
graph edges correspond to hyperlink references between blogs. The graph signal here is the label
assigned to the blogs, called the labeling signal. We use the spectral decomposition in (2.6) for
this online-blog graph to get the graph frequencies in a descending order and the corresponding
graph Fourier transform matrix. The labeling signal is a full-band signal, but approximately
bandlimited.

To investigate the success rate of perfect recovery by using random sampling, we vary the
bandwidth K of the labeling signal with an interval of 1 from 1 to 20, randomly sample K rows
from the first K columns of the graph Fourier transform matrix, and check whether the K ×K
matrix has full rank. For each bandwidth, we randomly sample 10,000 times, and count the
number of successes to obtain the success rate. Figure 6.5 (a) shows the resulting success rate.
We see that the success rate decreases as we increase the bandwidth; it is above 90%, when the
bandwidth is no greater than 20. It means that we can achieve perfect recovery by using random
sampling with a fairly high probability. As the bandwidth increases, even if we get an equal
number of samples, the success rate still decreases, because when we take more samples, it is
easier to get a sample correlated with the previous samples.
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(a) Success rate as a function of bandwidth. (b) Classification accuracy as a function of the number of samples.

Figure 6.5: Classification for online blogs. When increasing the bandwidth, it is harder to find
a qualified sampling operator. The experimentally designed sampling with the optimal sampling
operator outperforms random sampling.

Since a qualified sampling operator is independent of graph signals, we precompute the quali-
fied sampling operator for the online-blog graph, as discussed in Section 6.3.1. When the labeling
signal is bandlimited, we can sample M labels from it by using a qualified sampling operator,
and recover the labeling signal by using the corresponding interpolation operator. In other words,
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we can design a set of blogs to label before querying any label. Most of the time, however, the
labeling signal is not bandlimited, and it is not possible to achieve perfect recovery. Since we
only care about the sign of the labels, we use only the low frequency content to approximate the
labeling signal; after that, we set a threshold to assign labels. To minimize the influence from the
high-frequency content, we can use the optimal sampling operator in Algorithm 2.

We solve the following optimization problem to recover the low frequency content,

x̂opt(K) = arg min
x̂(K)∈RK

∥∥sgn(Ψ V(K) x̂(K))− xM
∥∥2

2
, (6.8)

where Ψ ∈ RM×N is a sampling operator, xM ∈ RM is a vector of the sampled labels whose
element is either +1 or −1, and sgn(·) sets all positive values to +1 and all negative values to
−1. Note that without sgn(∗), the solution of (6.8) is (Ψ V(K))

−1xM in Theorem 11, which
perfectly recovers the labeling signal when it is bandlimited. When the labeling signal is not
bandlimited, the solution of (6.8) approximates the low-frequency content. The `2 norm (6.8)
can be relaxed by the logit function and solved by logistic regression [117]. The recovered labels
are then xopt = sgn(V(K) x̂

opt
(K)).

Figure 6.5 (b) compares the classification accuracies between optimal sampling and random
sampling by varying the sample size with an interval of 1 from 1 to 20. We see that the optimal
sampling significantly outperforms random sampling, and random sampling does not improve
with more samples, because the interpolation operator (6.8) assumes that the sampling operator
is qualified, which is not always true for random sampling as shown in Figure 6.5 (a). Note
that classification accuracy for the optimal sampling is as high as 94.44% by only sampling two
blogs, and the classification accuracy gets slightly better as we increases the number of samples.
Compared with the previous results [118], to achieve around 94% classification accuracy,
• harmonic functions on graph samples 120 blogs;
• graph Laplacian regularization samples 120 blogs;
• graph total variation regularization samples 10 blogs; and
• the proposed optimal sampling operator (6.2) samples 2 blogs.
The improvement comes from the fact that, instead of sampling randomly as in [118], we use

the optimal sampling operator to choose samples based on the graph structure.

Classification for Handwritten Digits

We aim to use the proposed sampling theory to classify handwritten digits and achieve high
classification accuracy with fewer samples.

We work with two handwritten digit datasets, the MNIST [119] and the USPS [120]. Each
dataset includes ten classes (0-9 digit characters). The MNIST dataset includes 60,000 samples in
total. We randomly select 1000 samples for each digit character, for a total of N = 10, 000 digit
images; each image is normalized to 28 × 28 = 784 pixels. The USPS dataset includes 11,000
samples in total. We use all the images in the dataset; each image is normalized to 16×16 = 256
pixels.

Since same digits produce similar images, it is intuitive to build a graph to reflect the rela-
tional dependencies among images. For each dataset, we construct a 12-nearest neighbor graph
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(a) MNIST. (b) USPS.

Figure 6.6: Graph representations of the MNIST and USPS datasets. For both datasets, the
nodes (digit images) with the same digit characters are shown in the same color and the big black
dots indicate 10 sampled nodes by using the optimal sampling operators in Algorithm 2.

to represent the digit images. The nodes represent digit images and each node is connected to
12 other nodes that represent the most similar digit images; the similarity is measured by the
Euclidean distance. The graph shift is constructed as Ai,j = Pi,j /

∑
i Pi,j , with

Pi,j = exp

(
−N2 ‖fi − fj‖2∑

i,j ‖fi − fj‖2

)
,

with fi a vector representing the digit image. The graph shift is asymmetric, representing a
directed graph, which cannot be handled by graph Laplacian-based methods.

Similarly to Section 6.4, we aim to label all the digit images by actively querying the labels of
a few images. To handle 10-class classification, we form a ground-truth matrix X of size N×10.
The element Xi,j is +1, indicating the membership of the ith image in the jth digit class, and
is −1 otherwise. We obtain the optimal sampling operator Ψ as shown in Algorithm 2. The
querying samples are then XM = Ψ X ∈ RM×10. We recover the low frequency content as

X̂
opt

(K) = arg min
X̂(K)∈RK×10

∥∥∥sgn(Ψ V(K) X̂(K))− XM

∥∥∥2

2
. (6.9)

We solve (6.9) approximately by using logistic regression and then obtain the estimated label
matrix Xopt = V(K) X̂

opt

(K) ∈ RN×10, whose element (Xopt)i,j shows a confidence of labeling the
ith image as the jth digit. We finally label each digit image by choosing the one with largest
value in each row of Xopt.

The graph representations of the MNIST and USPS datasets, and the optimal sampling sets
are shown in Figure 6.6. The coordinates of nodes come from the corresponding rows of the first
three columns of the inverse graph Fourier transform. We see that the images with the same digit
characters form clusters, and the optimal sampling operator chooses representative samples from
different clusters.
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Figure 6.7: Classification accuracy of the MNIST and USPS datasets as a function of the number
of querying samples.

Figure 6.7 shows the classification accuracy by varying the sample size with an interval of 10
from 10 to 100 for both datasets. For the MNIST dataset, we query 0.1% − 1% images; for the
USPS dataset, we query 0.09%− 0.9% images. We achieve around 90% classification accuracy
by querying only 0.5% images for both datasets. Compared with the previous results [61], in the
USPS dataset, given 100 samples,
• local linear reconstruction is around 65%;
• normalized cut based active learning is around 70%;
• graph sampling based active semi-supervised learning is around 85%; and
• the proposed optimal sampling operator (6.2) with the interpolation operator (6.9) achieves

91.69%.

6.5 Conclusions
In this chapter, we proposed a novel sampling framework for graph signals that follows the same
paradigm as classical sampling theory and strongly connects to linear algebra. We showed that
perfect recovery is possible when graph signals are bandlimited. The sampled signal coefficients
then form a new graph signal, whose corresponding graph structure is constructed from the
original graph structure, preserving the first-order difference of the original graph signal. We
studied a qualified sampling operator for both random sampling and experimentally designed
sampling. We further established the connection to the sampling theory for finite discrete-time
signal processing and previous works on the sampling theory on graphs, and showed how to
handle full-band graphs signals by using graph filter banks. We showed applications to semi-
supervised classification of online blogs and digit images, where the proposed sampling and
interpolation operators perform competitively.
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Chapter 7

Sampling of Approximately Bandlimited
Graph Signals

7.1 Introduction

Chapter 6 considers sampling bandlimited graph signals under the experimentally designed sam-
pling. It shows that for a noiseless bandlimited graph signal, experimentally designed sampling
guarantees perfect recovery while uniform sampling cannot.

In this chapter, we extend this discussion to approximately bandlimited graph signals and
build a theoretical foundation to understand sampling and recovery of this class under uniform
sampling, experimentally designed sampling and active sampling. We propose a recovery strat-
egy to compare uniform sampling and experimentally designed sampling; this recovery strategy
is an unbiased estimator for low-frequency components and achieves the optimal rate of conver-
gence under some assumptions on the graph structures. In spirit, our work follows previous work
that studied the theoretical capabilities of passive and active sampling for recovering functions
from samples [121,122]; the difference is that we consider a discrete setting and deal with irreg-
ular structures. For a smooth function, active sampling, experimentally designed sampling and
uniform sampling have the same performance from a statistical perspective [121, 123]. For ap-
proximately bandlimited graph signals, however, we will see that while active sampling achieves
the same rate of convergence as experimentally designed sampling, experimentally designed
sampling fundamentally outperforms uniform sampling when the graph is irregular.

7.2 Problem Formulation

The bandlimited graph signals in Definition 14 is rather restrictive, making it impractical in
real-world applications. We thus propose another class of smooth graph signals that relaxes the
requirement of bandlimitedness, but still promotes smoothness.
Definition 18. A graph signal x ∈ RN is approximately bandlimited on a graph A ∈ RN×N with
parameters β ≥ 1 and µ ≥ 0 , when there exists a K ∈ {0, 1, · · · , N − 1} such that the graph
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Fourier transform x̂ satisfies

N−1∑
k=K

(1 + k2β)x̂2
k ≤ µ ‖x‖2

2 . (7.1)

Denote this class of graph signals by ABLA(K, β, µ).

The approximately bandlimited class allows for a tail after the first K frequency components
, whose shape and decay are controlled by µ and β; the smaller the µ, the less energy from the
high-frequency components is allowed in the tail, and the larger the β, the higher the penalty
on the energy from those high-frequency components. The class of ABLA(K) is similar to
the ellipsoid constraints in previous literature [124], where all the frequency components are
considered in the constraints; in other words, ABLA(K) poses fewer restrictions on the low-
frequency components. Many real graph signals exhibit the approximately bandlimited property;
for example, Figures 7.1 and 7.2 show that the temperature readings across the U.S and wind
speeds across Minnesota are approximately bandlimited graph signals. We have found that the
approximately bandlimited class is more powerful than the bandlimited class when representing
real graph signals.
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(a) Temperature. (b) Frequency content.

Figure 7.1: Temperature readings across the U.S is an approximately bandlimited graph signal.
After the first ten frequency components (black dashed line), energy decays fast.

The goal in this chapter is to study the fundamental limitations of these three sampling strate-
gies when recovering approximately bandlimited graph signals. This study is related to many
real-world applications. For example, in semi-supervised learning, datasets are modeled as a
graph with data samples as nodes and similarities between those data samples as edges. Fea-
tures and labels associated with data samples form approximately bandlimited graph signals. We
aim to select data samples as labeled data and recover the labels for the unlabeled data. The
sampling strategy helps select the most informative data samples and minimizes the recovery
error. Some other applications include route planning based on wind speed [99], sensor position
selection [125] and compressive spectral clustering [126].
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Figure 7.2: Wind speed across Minnesota is an approximately bandlimited graph signal. After
the first 100 frequency components ( black dashed line), energy decays fast.

7.3 Methodology

7.3.1 Fundamental Limits of Sampling Strategies

In this section, we study the fundamental limitations of the three sampling strategies for recov-
ering ABLA(K, β, µ) by showing minimax lower bounds. We do this by following the minimax
decision rule and finding tight lower bounds for the minimax risk over all possible recovery
strategies [127]. In other words, we try to minimize the recovery error in the worst case and use
a tight lower bound to describe this minimax error.

We start by introducing some notation [121].
Definition 19. For a recovery strategy (x∗,M), and a vector x ∈ RN , the recovery strategy risk
is

R(x∗,M,x) = Ex,M[d2(x∗,x)],

where Ex,M is the expectation with respect to the probability measure of {xi, yi}i∈M and d(x∗,x)
is the error metric. Here we use the `2 norm ‖x∗ − x‖2. The maximum risk of a recovery strategy
is supx∈RN R(x∗,M,x).

The lower bounds we present will be of the form

inf
(x∗,M)∈Θ

sup
x∈RN

Ex,M[d2(x∗,x)] ≥ cφ2
m, for all m ≥ m0, (7.2)

where inf is the infimum (greatest lower bound) and sup is the supremum (least upper bound),
m is the number of samples, m0 ∈ N, c > 0 is a constant, φm is a positive sequence converging
to zero, and Θ is the set of all recovery strategies. The sequence φ2

m is denoted as a lower rate of
convergence.

The upper bounds on the maximum risk are usually obtained through explicit recovery strate-
gies, as will be shown in Section 7.3.2. The upper bounds we present will be of the form

inf
(x∗,M)∈Θ

sup
x∈RN

Ex,M[d2(x∗,x)] ≤ Cφ2
m, for all m ≥ m0, (7.3)
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where C > 0 is a constant. If (7.2) and (7.3) both hold, then φm is said to be the optimal rate of
convergence and there is no recovery strategy that asymptotically outperforms the proposed one.
When talking about optimal rates of convergence, we bound the sequence by a polynomial and
make statements of the form: Given γ1 < γ < γ2, a rate of convergence φ2

m is equivalent to m−γ

if and only if m−γ2 < φ2
m < m−γ1 for n large enough.

Note that the general bounds are for arbitrary graphs and thus involve parameters that depend
on the graph structure; given the graph structure, we can specify the parameters and show explicit
rates of convergence, as we will do in Section 7.3.6.

Let V(2,K) be the sub-matrix of V, consisting of the Kth to the (2K − 1)th columns of V.
Theorem 14. Given the class ABLA(K, β, µ):
(1) Under uniform sampling,

inf
(x∗,M)∈Θu

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖2

2

‖x‖2
2

)

≥ max
K≤κ0≤N

c1µ

κ2β
0

(
1− cµ ‖x‖2

2

σ2κ2β+2
0 N

∥∥V(2,κ0)

∥∥2

F
m

)
,

where c1 > 0 , 0 < c < 1, and Θu denotes the set of all recovery strategies based on uniform
sampling;
(2) Under experimentally designed sampling,

inf
(x∗,M)∈Θe

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖2

2

‖x‖2
2

)

≥ max
K≤κ0≤N

c1µ

κ2β
0

(
1− cµ ‖x‖2

2

σ2κ2β+2
0

∥∥V(2,κ0)

∥∥2

∞,2m

)
,

where c1 > 0 , 0 < c < 1, and Θe denotes the set of all recovery strategies based on experimen-
tally designed sampling;
(3) Under active sampling,

inf
(x∗,M)∈Θa

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖2

2

‖x‖2
2

)

≥ max
K≤κ0≤N

c1µ

κ2β
0

(
1− cµ ‖x‖2

2

σ2κ2β+2
0

∥∥V(2,κ0)

∥∥2

∞,2m

)
,

where c1 > 0 , 0 < c < 1, and Θa denotes the set of all recovery strategies based on active
sampling.

See Appendix 14.1 for the proof of these results. From Theorem 14, we see that experimen-
tally designed sampling has the same minimax lower bound as active sampling, which means
that collecting the feedback before taking samples does not fundamentally improve the recov-
ery performance. We also see that the three minimax lower bounds depend on the properties
of V(2,κ0), which depend on the graph structure. When each row of V(2,κ0) has roughly similar
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energy,
∥∥V(2,κ0)

∥∥2

F
and N

∥∥V(2,κ0)

∥∥2

∞,2 are similar; when the energy is concentrated in a few

rows, N
∥∥V(2,κ0)

∥∥2

∞,2 is much larger than
∥∥V(2,κ0)

∥∥2

F
; in other words, the minimax lower bound

for experimentally designed sampling is tighter than that for uniform sampling. This happens
in many real-world graphs that have complex, irregular structure. The minimax lower bounds
thus show the potential advantage of experimentally designed sampling and active sampling over
uniform sampling. We will elaborate on this in Sections 7.3.6 and 7.4.

7.3.2 Recovery Strategy

In the previous section, we presented the minimax lower bounds for each of the three sampling
strategies and showed that active sampling cannot fundamentally perform better than experimen-
tally designed sampling. We now propose a recovery strategy for both uniform sampling and
experimentally designed sampling and evaluate its statistical properties.

7.3.3 Algorithm

To analyze uniform sampling and experimentally designed sampling in a similar manner, we con-
sider sampling score-based sampling that unifies both sampling strategies. Sampling score-based
sampling means that the sample indices are chosen from an importance sampling distribution that
is proportional to some sampling score. Let {πi}Ni=1 be a set of sampling scores, where πi denotes
the probability to choose the ith sample in each random trial. When the sampling score for each
node is the same, we get uniform sampling; when the sampling score for each node is designed
based on the graph structure, we get experimentally designed sampling.

For ABLA(K), most of the energy is concentrated in the first K frequency components and
the graph signal can be approximately recovered by using those. We consider the following
recovery strategy to estimate those frequency components by projecting samples onto the ban-
dlimited space spanned by the first K frequency components.
Algorithm 1. We sample a graph signal m times. Each time, we independently choose a node
Mj = i, j = 1, . . . ,m, with probability πi, and take a measurement yMj

. Let Ψ ∈ Rm×N

be the sampling operator, V(K) ∈ RN×K be the first K columns of V, and D ∈ RN×N be a
diagonal rescaling matrix with Di,i = 1/

√
mπi. We recover the original graph signal by solving

the following optimization problem:

x∗SP = V(K) arg min
x̂(K)

∥∥ΨTΨ D2 ΨTy − V(K) x̂(K)

∥∥2

2

(7.4)
= V(K) U(K) ΨTΨ D2 ΨTy, (7.5)

where y is a vector representation of the samples (11.2).
We call Algorithm 1 sampled projection (SampleProj) because we reweigh and project the

samples onto the bandlimited space. ΨTy ∈ RN rescales the sampled signal y ∈ Rm through
zero padding. The rescaling matrix D2 compensates for non-uniform weights in sampling and
equalizes samples from different sampling scores. The term ΨTΨ D2 ΨTy denotes the equalized
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and zero-padding samples. The objective function (7.4) minimizes the distance between our esti-
mate and the samples. The intuition behind the solution (7.5) is that we project the equalized and
zero-padding samples onto a bandlimited space spanned by V(K) to remove aliasing. The term
U(K) ΨTΨ D2 ΨTy is an unbiased estimator for the first K frequency components, which will be
shown later. Thus, in expectation, the recovered graph signal x∗SP is a linear approximation of
any graph signal x. When x is bandlimited, x∗SP perfectly recovers x; when x is approximately
bandlimited, x∗SP has a bias due to the existence of high-frequency components.

It is also intuitive to consider the following recovery strategy [128],

x∗LS = V(K) arg min
x̂(K)

∥∥D ΨTy −D ΨTΨ V(K) x̂(K)

∥∥2

2

= V(K)

(
D2 ΨTΨ V(K)

)†
D ΨTy,

where we fit the sampled elements of the recovered graph signal to the samples by solving the
least squares problem and (·)† is the pseudo-inverse operator [84]. The corresponding expected
recovered graph signal is

Ex∗LS = V(K) x̂(K) + V(K) P V(−K) x̂(−K),

where P =
(
D2 ΨTΨ V(K)

)†
D ΨTΨ =

(
U(K) ΨTΨ D2 ΨTΨ V(K)

)−1
U(K) ΨTΨ D2 ΨTΨ, V(−K)

chooses the last K columns of V, and x̂(−K) chooses the last K columns of x. When x is ban-
dlimited, x∗LS perfectly recovers x; when x is approximately bandlimited, however, x∗LS is a
mixture of low-frequency and high-frequency components and it is hard to show its statistical
properties. Moreover, it is less computationally efficient to compute x∗LS than x∗SP because of the
presence of the inverse term.

Since the definitions of the bandlimited class and the approximately bandlimited class, and
the proposed sampling strategies are all based on the graph Fourier transform instead of on graph
shift, all the proposed methods work for other versions of the graph Fourier transform as well.

7.3.4 Statistical Analysis
We study the statistical properties of Algorithm 1 by providing the bias, covariance, mean square
error (MSE), and an optimal sampling distribution.

The following lemma shows that the sampled projection estimator is an unbiased estimator
of the first K frequency components for any sampling scores.
Lemma 1. The sampled projection estimator with bandwidth K and arbitrary sampling scores
is an unbiased estimator of the first K frequency components, that is,

Ex∗ = V(K) U(K) x, for all x,

where x∗ is the solution of Algorithm 1.
Lemma 2 gives the exact covariance of the sampled projection estimator.

Lemma 2. The covariance of sampled projection estimator x∗ has the following property:

Tr(Covar [x∗]) = E ‖x∗ − E [x∗]‖2
2

= Tr
(
U(K) WC V(K)

)
− 1

m

∥∥x̂(K)

∥∥2

2
,
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where Tr(·) is the trace operator and WC is a diagonal matrix with (WC)i,i = (x2
i + σ2)/(mπi).

Theorem 15 shows the exact MSE of sampled projection estimator and an upper bound.
Theorem 15. For x ∈ ABLA(K, β, µ), let x∗ be the sampled projection estimator with band-
width κ ≥ K. Then,

E ‖x∗ − x‖2
2

=
∥∥V(−κ) x̂(−κ)

∥∥2

2
+ Tr

(
U(κ) WC V(κ)

)
− 1

m

∥∥x̂(κ)

∥∥2

2

≤ µ

1 + κ2β
‖x‖2

2 + Tr
(
U(κ) WC V(κ)

)
. (7.6)

We merge the proofs of Lemmas 7, 2 and Theorem 15 in Appendix 14.2. The main idea
follows from the bias-variance tradeoff. The bias term µ/(1 + κ2β) ‖x‖2

2 comes from the high-
frequency components and Tr

(
U(κ) WC V(κ)

)
comes from the covariance. The last inequality in

Theorem 15 comes from relaxing the bias term and omitting a constant, which has nothing to do
with the sampling scores. Thus, optimizing the upper bound over sampling scores is equivalent
to optimizing the exact MSE.

We next study the MSEs of sampled projection estimator based on both uniform sampling
and experimentally designed sampling.
Corollary 3. The upper bound of MSE of uniform sampling is

E ‖x∗ − x‖2
2 ≤

µ

1 + κ2β
‖x‖2

2 +
N

m

κ∑
k=1

N∑
i=1

U2
k,i

(
x2
i + σ2

)
.

The upper bound just specifies that the sampling score be πi = 1/N for all i. For experimen-
tally designed sampling, we are allowed to study the graph structure and design sample indices.
In the following corollary, we show a set of optimal sampling scores of the sampled projection
estimator by minimizing the upper bound of MSE.
Corollary 4. The optimal sampling score of the sampled projection estimator with bandwidth
κ ≥ K is

πi ∝

√√√√( κ∑
k=1

U2
k,i

)
(x2

i + σ2).

The corresponding upper bound of MSE is

E ‖x∗ − Ex∗‖2
2

≤ µ

1 + κ2β
‖x‖2

2 +
1

m

 N∑
i=1

√√√√ κ∑
k=1

U2
k,i (x

2
i + σ2)

2

.

Proof. To obtain the optimal sampling score for the estimator, we minimize the MSE given in
Theorem 15 and solve the following optimization problem.

min
πi

Tr
(
U(κ) WC V(κ)

)
,

subject to
∑
i

πi = 1, πi ≥ 0.
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The objective function is the variance term of the MSE derived in Theorem 15. Since the bias
term has nothing to do with the sampling score, minimizing the variance term is equivalent to
minimizing the MSE. The constraints require {πi}Ni=1 to be a valid probability distribution. The
Lagrangian function is then

L(πi, η0, ηi) =
N∑
i=1

(
x2
i + σ2

mπi

κ∑
k=1

U2
k,i

)

+η0

(
N∑
i=1

πi − 1

)
+

N∑
i=1

ηiπi,

where η0, ηi are Lagrangian multipliers. We set the derivative of the Lagrangian function to zero,

dL

dπi
= −x

2
i + σ2

mπ2
l

κ∑
k=1

U2
k,i +η0 + ηi = 0,

and obtain the optimal sampling score

πi ∝

√√√√( κ∑
k=1

U2
k,i

)
(x2

i + σ2). (7.7)

Substituting the optimal sampling score πi to the upper bound of the MSE (7.6),

E ‖x∗ − Ex∗‖2
2

(a)

≤ µ

1 + κ2β
‖x‖2

2

+
1

m

N∑
i=1

∑κ
k=1 U2

k,i(x
2
i + σ2)√∑κ

k=1 U2
k,i (x

2
i + σ2)

N∑
i=1

√√√√ κ∑
k=1

U2
k,i (x

2
i + σ2)

=
µ

1 + κ2β
‖x‖2

2 +
1

m

 N∑
i=1

√√√√ κ∑
k=1

U2
k,i (x

2
i + σ2)

2

,

where (a) follows from substituting the optimal sampling score (7.7) into the upper bound of the
MSE (7.6).

We see that the optimal sampling score includes a trade-off between signal and noise. In
practice, we cannot access x and thus need to approximate the ratio between each xi and σ2. For
active sampling, we can collect feedback to approximate each signal coefficient xi; for experi-
mentally designed sampling, we approximate beforehand; one way is to use the graph structure
to sketch the shape of x. We first use the Cauchy-Schwarz inequality to bound xi,

|xi| = |vTi x̂| ≤ ‖vi‖2 ‖x̂‖2 = ‖vi‖2 ‖x‖2 ,
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where vi is the ith row of V. Thus, in the upper bound, we have a tradeoff between signal and
noise: when the signal-to-noise ratio (SNR) ‖x‖2 /σ

2 is small, the approximate optimal sampling
score is

πi ∝
∥∥vi,(K)

∥∥
2

=

√√√√ κ∑
k=1

U2
k,i,

which is the square root of the leverage score of V(K).
When the SNR ‖x‖2 /σ

2 is large, the approximate optimal sampling score is

πi ∝

√√√√( κ∑
k=1

U2
k,i

)
‖vi‖2

2.

For approximately bandlimited signals, when β is large and µ is small, the main energy
concentrates in the first K frequency components, ‖vi‖2 is concentrated in

∥∥vi,(K)

∥∥
2
, where

vi,(K) is the first K elements in vi. Specifically,

|xi| = |vTi x̂| = |vTi,(K)x̂(K) + vTi,(−K)x̂(−K)|
≤

∥∥vi,(K)

∥∥
2

∥∥x̂(K)

∥∥
2

+
∥∥vi,(−K)

∥∥
2

∥∥x̂(−K)

∥∥
2

≤
∥∥vi,(K)

∥∥
2

∥∥x̂(K)

∥∥
2

+
∥∥vi,(−K)

∥∥
2

√
µ

1 +K2β
‖x‖2

≈
∥∥vi,(K)

∥∥
2

∥∥x̂(K)

∥∥
2
.

In this case, when the SNR ‖x‖2 /σ
2 is large, the approximate optimal sampling score is

πi ∝
∥∥vi,(K)

∥∥2

2
=

κ∑
k=1

U2
k,i,

which is the leverage score of V(K).

7.3.5 Relation to the Sampling Theory on Graphs
Sampling theory on graphs in Chapter 6 considers a bandlimited graph signal under the experi-
mentally designed sampling. It shows that for a noiseless bandlimited graph signal, experimen-
tally designed sampling guarantees perfect recovery while uniform sampling cannot, which also
implies that active sampling cannot perform better than experimentally designed sampling. The
recovery strategy is to solve the following optimization problem,

x∗ST = arg min
x∈BLA(K)

‖Ψx− y‖2
2 = V(K)(Ψ V(K))

†y, (7.8)

where Ψ is the sampling operator (5.1) and y is a vector representation of the samples (11.2).
When the original graph signal is bandlimited, the estimator (7.8) is unbiased and its MSE comes
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solely from the variance term caused by noise, that is,

E ‖x∗ST − x‖2
2

= E
∥∥V(K)(Ψ V(K))

†(Ψx + ε)− x
∥∥2

2

= E
∥∥V(K)(Ψ V(K))

†ε
∥∥2

2
= E

∥∥(Ψ V(K))
†ε
∥∥2

2
.

In [90], the authors propose an optimal sampling operator based on minimizing
∥∥(Ψ V(k))

†
∥∥2

2
.

The sample set is deterministic and the procedure is computationally efficient when the sample
size is small. Compared with sampling score-based sampling, however, the optimal sampling
operator is computationally inefficient when the sample size is large. When the original graph
signal is not bandlimited, similarly to x∗LS, the solution of (7.8) is biased, that is,

Ex∗ = V(K)(Ψ V(K))
†E(Ψx + ε)

= V(K)(Ψ V(K))
†Ψ
(
V(K) x̂(K) + V(−K) x̂(−K)

)
= V(K) x̂(K) + V(K)(Ψ V(K))

†V(−K) x̂(−K).

We see that the high-frequency components V(−K) x̂(−K) are projected on the low-frequency
space spanned by V(K), which causes aliasing.

7.3.6 Optimal Rates of Convergence
In this section, we introduce two types of graphs and show that the proposed recovery strate-
gies achieve the optimal rates of convergence on both. Type-1 graphs model regular graphs,
where the corresponding graph Fourier bases are not sparse and elements have similar mag-
nitudes; examples are circulant graphs and nearest-neighbor graphs [129]. Since the energy
is evenly spread over the graph Fourier basis, each element contains similar amount of informa-
tion; for such graphs, experimentally designed sampling performs similarly to uniform sampling.
Type-2 graphs model irregular graphs, where the corresponding graph Fourier bases are sparse
and elements do not have similar magnitudes; examples are small-world graphs and scale-free
graphs [26]. Since the energy is concentrated in a few elements in the graph Fourier basis, these
elements are more informative and should be selected. For such graphs, experimentally designed
sampling outperforms uniform sampling.

7.3.7 Type-1 Graphs
Definition 20. A graph A ∈ RN×N is of Type-1, when its graph Fourier basis satisfies

|Vi,j | = O(N−1/2), for all i, j = 0, 1, · · · , N − 1.

For a Type-1 graph, elements in V have roughly similar magnitudes, that is, the energy is
evenly spread over V.

Based on Theorem 15, we can specify the parameters for a Type-1 graph and show the fol-
lowing results.
Corollary 5. Let A ∈ RN×N be a Type-1 graph, for the class ABLA(K, β, µ).
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• Let x∗ be the sampled projection estimator with the bandwidth κ ≥ K and uniform sam-
pling; we have

E

(
‖x∗ − x‖2

2

‖x‖2
2

)
≤ C m−

2β
2β+1 ,

where C is a positive constant, m is the number of samples (5.1), β is the spectral decay
factor in the approximately bandlimited class (7.1), and the rate is achieved when κ is of
the order of m1/(2β+1) and upper bounded by N ;

• Let x∗ be the sampled projection estimator with the bandwidth κ ≥ K and the optimal
sampling score in Corollary 4; we have

E

(
‖x∗ − x‖2

2

‖x‖2
2

)
≤ C m−

2β
2β+1 ,

where C is a positive constant, and the rate is achieved when κ is of the order of m1/(2β+1)

and upper bounded by N .
When m� N , we set κ = N , the bias term is then zero, and both upper bounds are actually

C m−1. We see that uniform sampling and optimal sampling score based sampling have the same
convergence rate, that is, experimentally designed sampling does not perform better than uniform
sampling for the Type-1 graphs.

Based on Theorem 14 and Corollary 5, we conclude the following.
Corollary 6. Let A ∈ RN×N be a Type-1 graph, for the class ABLA(K, β, µ).
• Under uniform sampling,

cm−
2β

2β+1 ≤
inf

(x∗,M)∈Θu

sup
x∈ABLA(K,β,µ)

Ex,M
(
‖x∗ − x‖2

2

)
≤ C m−

2β
2β+1 ,

where constant C > c > 0, and the rate is achieved when κ is of the order of m1/(2β+1)

and upper bounded by N ;
• Under experimentally designed sampling,

cm−
2β

2β+1 ≤
inf

(x∗,M)∈Θe

sup
x∈ABLA(K,β,µ)

Ex,M
(
‖x∗ − x‖2

2

)
≤ C m−

2β
2β+1 ,

where constant C > c > 0, and the rate is achieved when κ is of the order of m1/(2β+1)

and upper bounded by N .
We merge the proofs of Corollaries 5 and 6 in Appendix 14.3.
We see that under both random and experimentally designed sampling, the lower and upper

bounds have the same rate of convergence, which achieves the optimum. In addition, random and
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experimentally designed sampling have the same optimal rate of convergence and we can thus
conclude that experimentally designed sampling does not perform asymptotically better than
uniform sampling for the Type-1 graphs. The sampled projection estimator attains the optimal
rate of convergence.

7.3.8 Type-2 Graphs
Definition 21. A graph A ∈ RN×N is of Type-2, when its graph Fourier basis satisfies

|vi,T | = O(1), and |vi,T+1| � O(1), for all i = 0, · · · , N − 1,

where vi,T is the T th largest elements in the ith column of V and T � N is some constant.
A Type-2 graph requires that each column vector of V be approximately sparse. When we

take a few columns from V to form a submatrix, the energy in the submatrix concentrates in a
few rows of the submatrix. This is equivalent to the sampling scores being approximately sparse.
Simulations show that star graphs, scale-free graphs and small-world graphs approximately fall
into this type of graphs.

Based on Theorem 15, we can specify the parameters for a Type-2 graph and show the fol-
lowing results.
Corollary 7. Let A ∈ RN×N be a Type-2 graph, for the class ABLA(K, β, µ).
• Let x∗ be the sampled projection estimator with the bandwidth κ ≥ K and uniform sam-

pling; we have

E

(
‖x∗ − x‖2

2

‖x‖2
2

)
≤ C m−

2β
2β+γ ,

where C is a positive constant, and the rate is achieved when κ is of the order of m1/(2β+γ),
γ = log(N)/ log(κ) ≥ 1;

• Let x∗ be the sampled projection estimator with the bandwidth κ ≥ K and optimal sam-
pling score based sampling; we have

E

(
‖x∗ − x‖2

2

‖x‖2
2

)
≤ C m−

2β
2β+1 ,

where C is a positive constant, the rate is achieved when κ is of the order of m1/(2β+1) and
upper bounded by N .

Based on Theorem 14 and Corollary 7, we conclude the following.
Corollary 8. Let A ∈ RN×N be a Type-2 graph with parameterK0, for the class ABLA(K, β, µ).
• Under uniform sampling,

cm−
2β

2β+1 ≤

inf
(x∗,M)∈Θu

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖2

2

‖x‖2
2

)
≤ C m−

2β
2β+γ ,
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where constant C > c > 0, and the rate is achieved when κ is of the order of m1/(2β+γ)

and γ = log(N)/ log(κ) ≥ 1;
• Under experimentally designed sampling, there exists a γ > 1,

cm−
2β

2β+1 ≤

inf
(x∗,M)∈Θe

sup
x∈ABLA(K,β,µ)

Ex,M

(
‖x∗ − x‖2

2

‖x‖2
2

)
≤ C m−

2β
2β+1 ,

where C is a positive constant, the rate is achieved when κ is of the order of m1/(2β+1) and
upper bounded by N .

We merge the proofs of Corollaries 7 and 8 in Appendix 14.4.
We see that under both uniform and experimentally designed sampling, the lower and upper

bounds have the same rate of convergence, which achieves the optimum. However, experimen-
tally designed sampling has a larger optimal rate of convergence, and we can thus conclude
that experimentally designed sampling exhibits asymptotically better performance than uniform
sampling for a Type-2 graph. The sampled projection estimator attains the optimal rate of con-
vergence.

7.4 Experimental Results
In this section, we validate the proposed recovery strategy on five specific graphs: a ring graph,
an Erdős-Rényi graph, a random geometric graph, a small-world graph and a power-law graph.
Based on the graph structure, we roughly label each as a Type-1 or Type-2, and then, for each,
we compare the empirical performance of the proposed recovery strategy based on uniform and
experimentally designed sampling. For experimentally designed sampling, we use both the lever-
age score of V(K) (approximately optimal in the noiseless case) and the square root of the lever-
age score of V(K) (approximately optimal in the noisy case). In the experiments, the graph
Fourier basis is the eigenvector matrix of the adjacency matrix. We find similar results when the
graph Fourier basis is the eigenvector matrix of the graph Laplacian matrix.

7.4.1 Simulated Graphs
We now introduce the five graphs, each with 10, 000 nodes, used in our experiments.

Ring graph with k-nearest neighbors. A ring graph is a graph where each node connects
to its k-nearest neighbors. We use a ring graph where each node connects to exactly four nearest
neighbors. The eigenvectors are similar to the discrete cosine transform and the energy evenly
spreads to each element in V [129] ; this is thus a Type-1 graph. Figure 7.3 illustrates some
properties of the ring graph: Figure 7.3(a) shows the graph plot (for easier visualization, only 20
nodes are shown and with enough zoom, one can clearly see that each node connects to exactly
four nearest neighbors; Figure 7.3(b) shows the histogram of the degrees that concentrate on 4,
as expected; and Figure 7.3(c) shows the histogram of the leverage scores of V(20), which are the
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optimal sampling scores when the SNR is large. Note that we set the bandwidth K = 20 to show
the low-frequency band of the graph Fourier transform matrix. We see that the leverage scores
concentrate around 10−4; this means that each node has the same probability to be chosen and
uniform sampling is approximately the optimal sampling strategy.
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(a) Graph plot. (b) Histogram of the degrees. (c) Histogram of the leverage scores.

Figure 7.3: Properties of a ring graph. Plot (c) shows the histogram of the leverage scores, which
are optimal sampling scores when the SNR is large.

Erdős-Rényi graph. An Erdős-Rényi graph is a random graph where each pair of nodes is
connected with some probability [26]. We use a graph where each pair of nodes is connected
with probability of 0.01, that is, each node has 100 neighbors in expectation. Figure 7.4 illus-
trates some properties of the Erdős-Rényi graph. Figure 7.4(a) shows the graph plot (for easier
visualization, only 100 nodes are shown); Figure 7.4(b) shows the histogram of the degrees that
concentrate around 100, as expected; and Figure 7.4(c) shows the histogram of the leverage
scores of V(20), which are the optimal sampling scores when the SNR is large. We see that the
leverage scores concentrate around 10−4; this means that each node has the same probability to
be chosen and uniform sampling is approximately the optimal sampling strategy, similarly to the
ring graph. Based on the above, an Erdős-Rényi graph is approximately a Type-1 graph.

Random geometric graph. A random geometric graph is a spatial graph where each of the
nodes is assigned random coordinates in the box [0, 1]d and an edge appears when the distance
between two nodes is in a given range [130]. We used a graph lying in the box [0, 1]2, and two
nodes are connected when the Euclidean distance is less than 0.03. Figure 7.5 illustrates some
properties of the random geometric graph: Figure 7.5(a) shows the graph plot; Figure 7.5(b)
shows the histogram of the degrees that concentrate around 30, as expected (this matches previ-
ous assertion that given proper parameters, the degree distribution of a random geometric graph
is the same as that of an Erdős-Rényi graph [130]); Figure 7.5(c) shows the histogram of the
leverage scores of V(20), which are the optimal sampling scores when the SNR is large; and Fig-
ure 7.5(d) shows the histogram of the leverage score on a log-scale. We see that the histogram
of the leverage scores is skewed; this means that a few nodes are more important than other
nodes during sampling and have much higher probabilities to be chosen. In [130], the authors
show that the cluster properties are different for a random geometric graph and an Erdős-Rényi
graph. The proposed sampling scores capture these cluster properties through the decomposition
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(a) Graph plot. (b) Histogram of the degrees. (c) Histogram of the leverage scores.

Figure 7.4: Properties of an Erdős-Rényi graph. Plot (c) shows the histogram of the leverage
scores, which are the optimal sampling scores when the SNR is large.

of the graph adjacency matrix. Based on the above, a random geometric graph is approximately
a Type-2 graph.

Small-world graph. A small-world graph is a graph where most nodes are not neighbors of
one another, but can be reached from any other node by a small number of hops (steps) [26,131].
It is well known that many real-world graphs, including social networks, the connectivity of the
Internet, and gene networks show small-world graph characteristics. We use a graph generated
from the WattsStrogatz model, where a ring graph is first built, followed by the rewiring of the
edges with probability 0.01%. Figure 7.6 illustrates some properties of the small-world graph:
Figure 7.6(a) shows the graph plot; Figure 7.6(b) shows the histogram of the degrees that con-
centrate around 2 (a few nodes have 6 neighbors because of rewiring); Figure 7.6(c) shows the
histogram of the leverage scores of V(20), which are the optimal sampling scores when the SNR
is large; and Figure 7.6(d) shows the histogram of the leverage scores on a log-scale. We see that
the histogram of the leverage scores is skewed; this means that a few nodes are more important
than others during sampling and have much higher probabilities to be chosen, similarly to the
random geometric graph. Based on the above, a small-world graph is approximately a Type-2
graph.

Power-law graph. A power-law graph is a graph where the more connected a node is, the
more likely it is to receive new links, known as a preferential attachment graph [26, 131]. It is
well known that the degree distribution of a preferential attachment graph follows the power law.
We use a graph generated from the Barabási-Albert model, where new nodes are added to the
network one at a time. Each new node is connected to one existing node with a probability that
is proportional to the number of links that the existing nodes already have. Figure 7.7 illustrates
some properties of the small-world graph: Figure 7.7(a) shows the graph plot; Figure 7.7(b)
shows the histogram of the degrees that is skewed, which clearly follows the power law; Fig-
ure 7.7(c) shows the histogram of the leverage scores of V(20), which are the optimal sampling
scores when the SNR is large; and Figure 7.7(d) shows the histogram of the leverage scores on
a log-scale. We see that the histogram of the leverage scores is skewed; this means that a few
nodes are more important than others during sampling and have much higher probabilities to be
chosen, similarly to the random geometric graph and the small-world graph. Based on the above,
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Figure 7.5: Properties of a random geometric graph. Plot (c) shows the histogram of the lever-
ages score, which are the optimal sampling scores when the SNR is large. Plot (d) shows the log-
scale histogram of the leverage scores, which confirms that the leverage scores approximately
follow a power-law distribution.

a power-law graph is approximately a Type-2 graph.
Types. Based on our observation of the graph Fourier transform matrices of each graph,

the ring graph and the Erdős-Rényi graph approximately satisfy the requirement to be the Type-
1 graph, while the random geometric graph, the small-world graph and the power-law graph
approximately satisfy the requirement to be the Type-2 graph. We thus expect that the experi-
mentally designed sampling has similar performance to uniform sampling for the ring graph and
the Erdős-Rényi graph, while it outperforms uniform sampling for the random geometric graph,
the small-world graph and the power-law graph.

7.4.2 Simulated Graph Signals
For each graph A, we generate 1,000 graph signals through the following two steps: We first
generate the graph frequency components as

x̂k

{
∼ N (1, 0.52) when k < K;
= K2β/k2β when k ≥ K.

(7.9)
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Figure 7.6: Properties of a small-world graph. Plot (c) shows the histogram of the leverage
score, which is the optimal sampling score when the SNR is large. Plot (d) shows the log-scale
histogram of the leverage scores, which confirms that the leverage scores approximately follow
a power-law distribution.

We then normalize x̂ to have unit norm, and obtain x = V x̂. It is clear that x ∈ ABLA(K, β, µ),
whereK = 10 and β varies as 0.5 and 1. During sampling, we simulate noise ε ∼ N (0, σ2), vary
the sample size m from 1, 000 to 20, 000, and vary σ2 from low noise level 10−4 (‖x‖2 / ‖ε‖2 =
100) to high noise level 0.02 (‖x‖2 / ‖ε‖2 = 0.5). During recovery, we set the bandwidth K =
max(10,m1/2β+1) as suggested in Corollaries 6 and 8.

7.4.3 Results

We compare four sampling strategies, including uniform sampling (in blue), leverage score based
sampling (in orange), square root of the leverage score based sampling (in purple), and degree
based sampling (in red). Note that the last three sampling strategies all belong to experimentally
designed sampling because they are designed based on the structure of the graph. As shown in
Section 7.3.4, leverage score based sampling is approximately optimal when the SNR is large,
square root of the leverage score based sampling is approximately the optimal when the SNR
is small. We also use the degrees as the sampling scores because previous works show that
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Figure 7.7: Properties of a power-law graph. Plot (c) shows the histogram of the leverage
score, which is the optimal sampling score when the SNR is large. Plot (d) shows the log-scale
histogram of the leverage scores, which confirms that the leverage scores approximately follow
a power-law distribution.

the largest eigenvectors of adjacency matrices often have most of their mass localized on high-
degree nodes [94, 132], which implies the high correlation between degree and leverage score.
We evaluate the recovery performance by using the MSE,

MSE = ‖x∗ − x‖2
2 ,

where x∗ is the recovered graph signal and x is the original graph signal. The simulation results
for the ring graph, the Erdős-Rényi graph, the random geometric graph, the small-world graph
and the power-law graph are shown in Figures 7.8, 7.9, 7.10, 7.11 and 7.12, respectively. We
summarize the important points below.
• All of the sampling strategies perform similarly on the ring graph and the Erdős-Rényi

graph, matching Corollary 6.
• Experimentally designed sampling outperforms uniform sampling on the random geomet-

ric graph, the small-world graph and the power-law graph, matching Corollary 8. Espe-
cially for the small-world graph and the power-law graph, uniform sampling is much worse
than experimentally designed sampling.
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• Leverage score based sampling outperforms all other sampling strategies when the noise
level is low.

• Square root of the leverage score based sampling outperforms all other sampling strategies
when the noise level is high.

• Degree based sampling outperforms uniform sampling because of its correlation to the
leverage score based sampling, but for the small-world graph, degree based sampling is
still much worse than leverage score based sampling.

• When β is larger, the recovery performance is better because less energy is concentrated
in the high-frequency band for approximately bandlimited graph signals.

• When σ2 is smaller, the recovery performance is better because of less noise.
• The degree distribution is not a reliable indicator of when experimentally designed sam-

pling outperforms uniform sampling. The degree distributions of the Erdős-Rényi graph
and the random geometric graph are similar, but experimentally designed sampling only
outperforms uniform sampling on the random geometric graph. This implies that the first-
order information provided by the degree is not sufficient in designing samples.
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Figure 7.8: MSE comparison for the ring graph for uniform sampling (in blue), leverage score
based sampling (in orange), square root of the leverage score based sampling (in purple) and
degree based sampling (in red).
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Figure 7.9: MSE comparison for the Erdős-Rényi graph for uniform sampling (in blue), leverage
score based sampling (in orange), square root of the leverage score based sampling (in purple)
and degree based sampling (in red).

7.4.4 Discussion

Graph Fourier basis is critical for understanding the graph structure. For example, given the
graph Fourier basis, Theorem 14 shows that active sampling does not fundamentally outperform
experimentally designed sampling while Corollary 8 shows that experimentally designed sam-
pling fundamentally outperforms uniform sampling on type-2 graphs. In other words, graph
Fourier basis is critical for choosing samples.

For irregular (Type-2) graphs, using experimentally designed sampling to choose anchor
points can fundamentally aid semi-supervised learning (not true for regular, Type-1 graphs),
a technique for training classifiers with both labeled and unlabeled data. Semi-supervised learn-
ing assumes that unlabeled data can provide distribution information to build a stronger classi-
fier [106]. Many algorithms for semi-supervised learning are based on graphs that are constructed
from a given dataset [106], often by modeling each node as a data sample and connecting two
nodes by an edge if the distance between their features is in a given range, which is similar
to the construction of random geometric graphs. Based on the assumption that adjacent nodes
have similar labels, semi-supervised learning diffuses label probabilities from labeled data to
unlabeled data along the graph structure and classifies unlabeled data according to those label
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Figure 7.10: MSE comparison for the random geometric graph for uniform sampling (in blue),
leverage score based sampling (in orange), square root of the leverage score based sampling (in
purple) and degree based sampling (in red).

probabilities. While in some works [89, 133], training data is selected uniformly and randomly,
in others, algorithms are designed adapted to the structure [61, 134], which is essentially equiv-
alent to experimentally designed sampling we propose. In other words, experimentally designed
sampling is used implicitly without being able to articulate when and why it works; this paper, on
the other hand, provides a comprehensive explanation of why experimentally designed sampling
helps semi-supervised learning through showing the lower and upper bounds of three sampling
strategies.

7.5 Conclusions

In this chapter, we built a theoretical foundation for the recovery of approximately bandlimited
graph signals, which generalizes the class of bandlimited graph signals, under uniform sam-
pling, experimentally designed sampling and active sampling. We showed that experimentally
designed sampling and active sampling have the same fundamental limitations, and can outper-
form uniform sampling on irregular graphs. We proposed a recovery strategy and analyze its
statistical properties. We showed that the proposed recovery strategy attains the optimal rates of
convergence on two specific types of graphs. To validate the recovery strategy, we test it on five
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(a) β = 0.5, σ2 = 10−4. (b) β = 1, σ2 = 10−4.
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Figure 7.11: MSE comparison for the small-world graph for uniform sampling (in blue), lever-
age score based sampling (in orange), square root of the leverage score based sampling (in pur-
ple) and degree based sampling (in red).

specific types of graphs: a ring graph with k nearest neighbors, an Erdős-Rényi graph, a random
geometric graph, a small-world graph and a power-law graph, and show that experimental re-
sults match the proposed theory well. This chapter also provides a comprehensive explanation
for why experimentally designed sampling works for semi-supervised learning with graphs and
shows the critical role of the graph Fourier basis in analyzing graph structures.
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Figure 7.12: MSE comparison for the power-law graph for uniform sampling (in blue), leverage
score based sampling (in orange), square root of the leverage score based sampling (in purple)
and degree based sampling (in red).
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Chapter 8

Recovery of Smooth Graph Signals

8.1 Introduction

In this chapter, we we consider the classical signal processing task of signal recovery within
the context of graphs. Graph signal recovery attempts to recover one or multiple graph signals
that are assumed to be smooth with respect to underlying graphs, from noisy, missing, or cor-
rupted measurements. The smoothness constraint assumes that the signal samples at neighboring
vertices are similar [76].

Most signal recovery problems in the current literature include image denoising [88,135], sig-
nal inpainting [136–138], and sensing [111,139], but are limited to signals with regular structure,
such as time series. For example, Image denoising recovers an image from noisy observations.
Standard techniques include Gaussian smoothing, Wiener local empirical filtering, and wavelet
thresholding methods (see [135] and references therein); signal inpainting reconstructs lost or
deteriorated parts of signals, including images and videos. Standard techniques include total
variation-based methods [136–138, 140], image model-based methods [141], and sparse repre-
sentations [142]; compressed sensing acquires and reconstructs signals by taking only a limited
number of measurements [143, 144]. It assumes that signals are sparse and finds solutions to
underdetermined linear systems by `1 techniques; matrix completion recovers the entire matrix
from a subset of its entries by assuming that the matrix is of low rank. It was originally pro-
posed in [145] and extensions include a noisy version in [146,147] and decentralized algorithms
via graphs [148]; and robust principal component analysis recovers a low-rank matrix from cor-
rupted measurements [143, 144]; it separates an image into two parts: a smooth background and
a sparse foreground. In contrast to principal component analysis, it is robust to grossly corrupted
entries.

Existing work related to signal recovery based on spectral graph theory includes: 1) inter-
polation of bandlimited graph signals to recover bandlimited graph signals from a set with spe-
cific properties, called the uniqueness set [65, 109]. Extensions include the sampling theorem
on graphs [60] and fast distributed algorithms [66]; and 2) smooth regularization on graphs to
recover smooth graph signals from random samples [82, 149, 150].

We propose a graph signal model, cast graph signal recovery as an optimization problem,
and provide a general solution by using the alternating direction method of multipliers. We
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show that many classical recovery problems, such as signal inpainting [136–138], matrix com-
pletion [145, 146], and robust principal component analysis [143, 144], are related to the graph
signal recovery problem. We propose theoretical solutions and new algorithms for graph signal
inpainting, graph signal matrix completion, and anomaly detection of graph signals, all applica-
ble to semi-supervised classification, regression, and matrix completion. Finally, we validate the
proposed methods on real-world recovery problems, including online blog classification, bridge
condition identification, temperature estimation, recommender system, and expert opinion com-
bination.

8.2 Problem Formulation
Following the discussion in prologue of Part III, we aim to use a recovery operator Φ to recover
a graph signal from noisy, missing, or corrupted measurements. This is hard in general; it is,
however, possible to do this for signals with specific structure, such as smooth graph signals.
Signal smoothness is a qualitative characteristic that expresses how much signal samples vary
with respect to the underlying signal representation domain. To quantify it, we uses the `p-norm
based graph total variation (2.9)1 We normalize the graph shift to guarantee that the shifted signal
is properly scaled with respect to the original one. When p = 2, we call (2.9) the quadratic form
of graph total variation.

We now formulate the general recovery problem for graph signals to unify multiple signal
completion and denoising problems and generalize them to arbitrary graphs. In the sections that
follow, we consider specific cases of the graph signal recovery problem, propose appropriate
solutions, and discuss their implementations and properties.

Let x(`) ∈ CN , 1 ≤ ` ≤ L, be graph signals residing on the graph G = (V ,A), and let X be
the N × L matrix of graph signals,

X =
[
x(1) x(2) . . . x(L)

]
. (8.1)

Assume that we do not know these signals exactly, but for each signal we have a correspond-
ing measurement t(`). Since each t(`) can be corrupted by noise and outliers, we consider the
N × L matrix of measurements to be

T =
[
t(1) t(2) . . . t(L)

]
= X + W +E , (8.2)

where matrices W and E contain noise and outliers, respectively. Note that an outlier is an
observation point that is distant from other observations, which may be due to variability in the
measurement. We assume that the noise coefficients in W have small magnitudes, i.e., they
can be upper-bounded by a small value, and that the matrix E is sparse, containing few non-
zero coefficients of large magnitude. Furthermore, when certain nodes on a large graph are
not accessible, the measurement t(`) may be incomplete. To reflect this, we denote the sets of
indices of accessible and inaccessible nodes as M and U , respectively. Note that inaccessible

1 For simplicity, throughout this paper we assume that the graph shift A has been normalized to satisfy
|λmax(A)| = 1.
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nodes denote that values on those nodes are far from the ground-truth because of corruption, or
because we do not have access to them.

Signal recovery from inaccessible measurements requires additional knowledge of signal
properties. In this work, we make the following assumptions: (a) the signals of interest x(`), are
smooth with respect to the representation graphG = (V ,A); we express this by requiring that the
variation of recovered signals be small; (b) since the signals of interest x(`) are all supported on
the same graph structure, we assume that these graph signals are similar and provide redundant
information; we express this by requiring that the matrix of graph signals X has low rank; (c)
the outliers happen with a small probability; we express this by requiring that the matrix E be
sparse; and (d) the noise has small magnitude; we express this by requiring that the matrix W be
upper-bounded. We thus formulate the problem as follows:

X̂, Ŵ, Ê = arg min
X,W,E

α S2(X) + β rank(X) + γ ‖E‖0 ,

(8.3)
subject to ‖W‖2

F ≤ ε2, (8.4)
TM = (X + W +E)M, (8.5)

where X̂, Ŵ, Ê denote the optimal solutions of the graph signal matrix, the noise matrix, and the
outlier matrix, respectively, ε controls the noise level, α, β, γ are tuning parameters, and

S2(X) =
L∑
`=1

S2(x(`)) = ‖X−A X‖2
F ,

where ‖·‖F denotes the Frobenius norm and represents the cumulative quadratic form of the
graph total variation (2.9) for all graph signals, and ‖E‖0 is the `0-norm that is defined as the
number of nonzero entries in E . The general problem (8.3) recovers the graph signal matrix (8.1)
from the noisy measurements (8.2), possibly when only a subset of nodes is accessible.

Instead of using the graph total variation based on `1 norm [76], we use the quadratic form of
the graph total variation (2.9) for two reasons. First, it is computationally easier to optimize than
the `1-norm based graph total variation. Second, the `1-norm based graph total variation, which
penalizes less transient changes than the quadratic form, is good at separating smooth from non-
smooth parts of graph signals; the goal here, however, is to force graph signals at each node to be
smooth. We thus use the quadratic form of the graph total variation in this paper and, by a slight
abuse of notation, call it graph total variation for simplicity.

8.3 Methodology
The minimization problem (8.3) with conditions (8.4) and (8.5) reflects all of the above assump-
tions: (a) minimizing the graph total variation S2(X) forces the recovered signals to be smooth
and to lie in the subspace of “low” graph frequencies [76]; (b) minimizing the rank of X forces
the graph signals to be similar and provides redundant information; (c) minimizing the `0-norm
‖E‖0 forces the outlier matrix to have few non-zero coefficients; (d) condition (8.4) captures the
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assumption that the coefficients of W have small magnitudes; and (e) condition (8.5) ensures that
the solution coincides with the measurements on the accessible nodes.

Unfortunately, solving (8.3) is hard because of the rank and the `0-norm [151,152]. To solve
it efficiently, we relax and reformulate (8.3) as follows:

X̂, Ŵ, Ê = arg min
X,W,E

α S2(X) + β ‖X‖∗ + γ ‖E‖1 ,

(8.6)
subject to ‖W‖2

F ≤ ε2, (8.7)
TM = (X + W +E)M. (8.8)

In (8.6), we replace the rank of X with the nuclear norm, ‖X‖∗, defined as the sum of all the
singular values of X, which still promotes low rank [145, 146]. We further replace the `0-norm
of E with the `1-norm, which still promotes sparsity of E [151, 152]. The minimization prob-
lems (8.3) and (8.6) follow the same assumptions and promote the same properties, but (8.3) is
an ideal version, while (8.6) is a practically feasible version, because it is a convex problem and
thus easier to solve. We call (8.6) the graph signal recovery (GSR) problem; see Table 8.1.

To solve (8.6) efficiently, we use the alternating direction method of multipliers (ADMM) [153].
ADMM is an algorithm that is intended to take advantage of both the decomposability and the
superior convergence properties of the method of multipliers. In ADMM, we first formulate an
augmented function and then iteratively update each variable in an alternating or sequential fash-
ion, ensuring the convergence of the method [153]. We leave the derivation to the Appendix, and
summarize the implementation in Algorithm 3. Note that in Algorithm 3, Y1,Y2 are Lagrangian

Algorithm 3 Graph Signal Recovery

Input T matrix of measurements
Output X̂ matrix of graph signals

Ŵ matrix of outliers
Ê matrix of noise

Function GSR(T)
while the stopping criterion is not satisfied
while the stopping criterion is not satisfied
X← Dβη−1

(
X +t(T−W−E − C−η−1(Y1 + Y2)− Z)

)
end
W← η(T−X−E − C−η−1 Y1)/(η + 2)
while the stopping criterion is not satisfied
E ← Θγη−1

(
X +t(T−X−W−C−η−1 Y1)

)
end
Z← (I+2αη−1(I−A)∗(I−A))−1(X−η−1 Y2)
CM ← 0,CU ← (T−X−W−E − η−1 Y1)U ,
Y1 ← Y1−η(T−X−W−E − C)
Y2 ← Y2−η(X−Z)

end
return X̂← X, Ŵ←W, Ê ← E

multipliers, η is pre-defined, the step size t is chosen from backtracking line search [154], and
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operators Θτ and Dτ are defined for τ ≥ 0 as follows: Θτ (X) “shrinks” every element of X by τ
so that the (n,m)th element of Θτ (X) is

Θτ (X)n,m =


Xn,m−τ, when Xn,m ≥ τ,

Xn,m +τ, when Xn,m ≤ −τ,
0, otherwise.

(8.9)

Similarly, Dτ (X) “shrinks” the singular values of X,

Dτ (X) = U Θτ (Σ) Q∗, (8.10)

where X = U Σ Q∗ denotes the singular value decomposition of X [84] and ∗ denotes the Her-
mitian transpose. The following stopping criterion is used in the paper: the difference of the
objective function between two consecutive iterations is smaller than 10−8. The bulk of the com-
putational cost is in the singular value decomposition (8.10) when updating X, which is also
involved in the standard implementation of matrix completion.

We now review several well-known algorithms for signal recovery, including signal inpaint-
ing, matrix completion, and robust principal component analysis, and show how they can be for-
mulated as special cases of the graph signal recovery problem (8.3). In Sections 8.3.1 and 8.3.2,
we show graph counterparts of the signal inpainting and matrix completion problems by mini-
mizing the graph total variation. In Section 8.3.3, we show anomaly detection on graphs, which
is inspired by robust principal component analysis.

Signal inpainting. Signal inpainting is a process of recovering inaccessible or corrupted sig-
nal samples from accessible samples using regularization [136–138, 140], that is, minimization
of the signal’s total variation. The measurement is typically modeled as

t = x + w ∈ RN , (8.11)

where x is the true signal, and w is the noise. Assuming we can access a subset of indices,
denoted asM, the task is then to recover the entire true signal x, based on the accessible mea-
surement tM. We assume that the true signal x is smooth, that is, its variation is small. The
variation is expressed by a total variation function

TV (x) =
N∑
i=1

|xi − xi−1 mod N |. (8.12)

We then recover the signal x by solving the following optimization problem:

x̂ = arg min
x

TV(x), (8.13)

subject to ‖(x− t)M‖2
2 ≤ ε2. (8.14)

The condition (8.14) controls how well the accessible measurements are preserved. Both the
`1 norm based graph total variation and the quadratic form of the graph total variation (2.9) are
used. Thus, (8.13) is a special case of (8.6) when the graph shift is the cyclic permutation matrix,

109



α = 1, L = 1, β = γ = 0, E = 0, and conditions (8.7) and (8.8) are combined into the single
condition (8.14); see Table 8.1.

Matrix completion. Matrix completion recovers a matrix given a subset of its elements,
usually, a subset of rows or columns. Typically, the matrix has a low rank, and the missing part
is recovered through rank minimization [145–147]. The matrix is modeled as

T = X + W ∈ RN×L, (8.15)

where X is the true matrix and W is the noise. Assuming we can access a subset of indices,
denoted asM, the matrix X is recovered from (8.15) as the solution with the lowest rank:

X̂ = arg min
X
‖X‖∗ , (8.16)

subject to ‖(X−T)M‖2
2 ≤ ε2; (8.17)

this is a special case of (8.6) with α = γ = 0, β = 1, E = 0, and conditions (8.7) and (8.8) are
combined into the single condition (8.17); see Table 8.1. This also means that the values in the
matrix are associated with a graph that is represented by the identity matrix, that is, we do not
have any prior information about the graph structure.

Robust principal component analysis. Similarly to matrix completion, robust principal
component analysis is used for recovering low-rank matrices. The main difference is the as-
sumption that all matrix elements are measurable but corrupted by outliers [143, 144]. In this
setting, the matrix is modeled as

T = X +E ∈ RN×L, (8.18)

where X is the true matrix, and E is a sparse matrix of outliers.
The matrix X is recovered from (8.18) as the solution with the lowest rank and fewest outliers:

X̂, Ê = arg min
X,E

β ‖X‖∗ + γ ‖E‖1 ,

subject to T = X +E ;

this is a special case of (8.6) with α = ε = 0, W = 0, andM contains all the indices; see Ta-
ble 8.1. Like before, this also means that the matrix is associated with a graph that is represented
by the identity matrix, that is, we do not have any prior information about the graph structure.

8.3.1 Graph Signal Inpainting

We now discuss in detail the problem of signal inpainting on graphs. Parts of this section have
appeared in [118], and we include them here for completeness.

As discussed in the previous section, signal inpainting (8.13) seeks to recover the missing
entries of the signal x from incomplete and noisy measurements under the assumption that two
consecutive signal samples in x have similar values. Here, we treat x as a graph signal that
is smooth with respect to the corresponding graph. We thus update the signal inpainting prob-
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lem (8.13), and formulate the graph signal inpainting problem2 as

x̂ = arg min
x

S2(x), (8.19)

subject to ‖(x− t)M‖2
2 ≤ ε2; (8.20)

this is a special case of (8.6) with L = 1, β = γ = 0; see Table 8.1.
Solutions. In general, graph signal inpainting (8.19) can be solved by using Algorithm 3.

However, in special cases, there exist closed-form solutions that do not require iterative algo-
rithms.

Noiseless inpainting

Suppose that the measurement t in (8.11) does not contain noise. In this case, w = 0, and we
solve (8.19) for ε = 0:

x̂ = arg min
x

S2(x), (8.21)

subject to xM = tM.

We call the problem (8.21) graph signal inpainting via total variation minimization (GTVM) [118].
Let Ã = (I−A)∗(I−A). By reordering nodes, write Ã in block form as

Ã =

[
ÃMM ÃMU
ÃUM ÃUU

]
,

and set the derivative of (8.21) to 0; the closed-form solution is

x̂ =

[
tM

−Ã
−1

UUÃUMtM

]
.

When ÃUU is not invertible, a pseudoinverse should be used.

Unconstrained inpainting

The graph signal inpainting (8.19) can be formulated as an unconstrained problem by merging
condition (8.20) with the objective function:

x̂ = arg min
x
‖(x− t)M‖2

2 + α S2(x), (8.22)

where the tuning parameter α controls the trade-off between the two parts of the objective func-
tion. We call (8.22) the graph signal inpainting via total variation regularization (GTVR).

2If we build a graph to model a dataset by representing signals or images in the dataset as nodes and the simi-
larities between each pair of nodes as edges, the corresponding labels or values associated with nodes thus form a
graph signal, and the proposed inpainting algorithm actually tackles semi-supervised learning with graphs [106].
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GTVR is a convex quadratic problem that has a closed-form solution. Setting the derivative
of (8.22) to zero, we obtain the closed-form solution

x̂ =

([
IMM 0

0 0

]
+ αÃ

)−1 [
tM
0

]
,

where IMM is an identity matrix. When the term in parentheses is not invertible, a pseudoinverse
should be adopted.

Theoretical analysis. Let x0 denote the true graph signal that we are trying to recover.
Assume that S2 (x0) = η2 and x0 satisfies (8.20), so that ‖x0

M − tM‖2
2 ≤ ε2. Similarly to (8.22),

we write A in a block form as

A =

[
AMM AMU
AUM AUU

]
.

The following results, proven in [118], establish an upper bound on the error of the solution to
graph signal inpainting (8.19).
Lemma 3. The error ‖x0 − x̂‖2 of the solution x̂ to the graph signal inpainting problem (8.19)
is bounded as ∥∥x0 − x̂

∥∥
2
≤ q

2

∥∥(x0 − x̂)U
∥∥

2
+ p|ε|+ |η|,

where

p =

∣∣∣∣∣∣∣∣[IMM+ AMM
AUM

]∣∣∣∣∣∣∣∣
2

, q =

∣∣∣∣∣∣∣∣[ AMU
IUU + AUU

]∣∣∣∣∣∣∣∣
2

,

and ‖·‖2 for matrices denotes the spectral norm.
Theorem 16. If q < 2, then the error on the inaccessible part of the solution x̂ is bounded as∥∥(x0 − x̂)U

∥∥
2
≤ 2p|ε|+ 2|η|

2− q
.

The condition q < 2 may not hold for some matrices; however, if A is symmetric, we have
q ≤ ‖I+ A‖2 ≤ ‖I‖2 + ‖A‖2 = 2, since ‖A‖2 = 1. Since q is related to the size of the
inaccessible part, when we take a larger number of measurements, q becomes smaller, which
leads to a tighter upper bound. Also, note that the upper bound is related to the smoothness
of the true graph signal and the noise level of the accessible part. A central assumption of any
inpainting technique is that the true signal x0 is smooth. If this assumption does not hold, then
the upper bound is large and useless. When the noise level of the accessible part is smaller, the
measurements from the accessible part are closer to the true values, which leads to a smaller
estimation error.

8.3.2 Graph Signal Matrix Completion
We now consider graph signal matrix completion—another important subproblem of the general
graph signal recovery problem (8.3).

Matrix completion seeks to recover missing entries of matrix X from the incomplete and
noisy measurement matrix (8.15) under the assumption that X has low rank. Since we view X
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as a matrix of graph signals (see (8.1)), we also assume that the columns of X are smooth graph
signals. In this case, we update the matrix completion problem (8.16) and formulate the graph
signal matrix completion problem as

X̂ = argminX S2(X) + β ‖X‖∗ , (8.23)
subject to ‖(X−T)M‖2

F ≤ ε2;

this is a special case of (8.6) with α = 1, γ = 0; see Table 8.1.
Solutions. In addition to Algorithm 3 that can be used to solve the graph signal matrix

completion problem (8.23), there exist alternative approaches that we discuss next.

Minimization

Here we consider the noise-free case. Suppose the measurement matrix T in (8.15) does not
contain noise. We thus solve (8.23) for W = 0 and ε = 0,

X̂ = argminX, S2(X) + β ‖X‖∗ , (8.24)
subject to XM = TM .

We call (8.24) graph signal matrix completion via total variation minimization (GMCM). This is
a constrained convex problem that can be solved by projected generalized gradient descent [154].
We first split the objective function into two components, a convex, differential component, and
a convex, nondifferential component; based on these two components, we formulate a proximity
function and then solve it iteratively. In each iteration, we solve the proximity function with an
updated input and project the result onto the feasible set. To be more specific, we split the objec-
tive function (8.24) into a convex, differentiable component S2(X), and a convex, nondifferential
component β ‖X‖∗. The proximity function is then defined as

proxt(X) = arg min
Z

1

2t
‖X−Z‖2 + β ‖X‖∗

= Dtβ(Z),

where D(·) is defined in (8.10). In each iteration, we first solve for the proximity function and
project the result onto the feasible set as

X← proj (proxt (X−t∇ S2(X))) ,

where t is the step size that is chosen from the backtracking line search [154], and proj(X)
projects X to the feasible set so that the (n,m)th element of proj(X) is

proj(X)n,m =

{
Tn,m, when (n,m) ∈M,

Xn,m, when (n,m) ∈ U .

For implementation details, see Algorithm 4. The bulk of the computational cost of Algorithm 4
is in the singular value decomposition (8.10) when updating X, which is also involved in the
standard implementation of matrix completion.
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Algorithm 4 Graph Signal Matrix Completion via Total Variation Minimization

Input T matrix of measurements
X̂ matrix of graph signals

Function GMCM(T)
initialize X, such that XM = TM holds
while the stopping criterion is not satisfied

Choose step size t from backtracking line search

X← proj
(

Dtβ(X−2tÃ X)
)

end
return X̂← X

Regularization

The graph signal matrix completion (8.23) can be formulated as an unconstrained problem,

X̂ = argminX, ‖XM−TM‖2
F + α S2(X) + β ‖X‖∗ . (8.25)

We call (8.25) graph signal matrix completion via total variation regularization (GMCR). This is
an unconstrained convex problem and can be solved by generalized gradient descent. Similarly to
projected generalized gradient descent, generalized gradient descent also formulates and solves
a proximity function. The only difference is that generalized gradient descent does not need to
project the result after each iteration to a feasible set. To be more specific, we split the objective
funtion (8.24) into a convex, differentiable component ‖XM−TM‖2

F + α S2(X), and a convex,
non-differential component β ‖X‖∗. The proximity function is then defined as

proxt(X) = arg min
Z

1

2t
‖X−Z‖2 + β ‖X‖∗

= Dtβ(Z), (8.26)

where D(·) is defined in (8.10). In each iteration, we first solve for the proximity function as

X← proxt
(
X−t∇

(
‖XM−TM‖2

F + α S2(X)
))
, (8.27)

where t is the step size that is chosen from the backtracking line search [154]; for implemen-
tation details, see Algorithm 5. The bulk of the computational cost of Algorithm 5 is in the
singular value decomposition (8.10) when updating X, which is also involved in the standard
implementation of matrix completion.

Theoretical analysis. We now discuss properties of the proposed algorithms. The key in
classical matrix completion is to minimize the nuclear norm of a matrix. Instead of considering
general matrices, we only focus on graph signal matrices, whose corresponding algorithm is to
minimize both the graph total variation and the nuclear norm. We study the connection between
graph total variation and nuclear norm of a matrix to reveal the underlying mechanism of our
algorithm.

Let X be a N × L matrix of rank r with singular value decomposition X = U Σ Q∗, where
U =

[
u1 u2 . . . ur

]
, Q =

[
q1 q2 . . . qr

]
, and Σ is a diagonal matrix with σi along the

diagonal, i = 1, · · · , r.
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Algorithm 5 Graph Signal Matrix Completion via Total Variation Regularization

Input T matrix of measurements
X̂ matrix of graph signals

Function GMCR(T)
initialize X
while the stopping criterion is not satisfied

Choose step size t from backtracking line search

X← Dtβ

(
X−2t(XM−TM)− 2αtÃ X

)
end
return X̂← X

Lemma 4.

S2(X) =
r∑
i=1

σ2
i ‖(I−A)ui‖2

2.

Proof.

S2(X) = ‖X−A X‖2
F

(a)
= ‖(I−A) U Σ Q∗‖2

F ,

= Tr

(
Q Σ U∗(I−A)∗(I−A) U Σ Q∗

)
,

(b)
= Tr

(
Σ U∗(I−A)∗(I−A) U Σ Q∗Q

)
,

= ‖(I−A) U Σ‖2
F

(c)
=

r∑
i=1

σ2
i ‖(I−A)ui‖2

2,

where (a) follows from the singular value decomposition; (b) from the cyclic property of the
trace operator; and (c) from Σ being a diagonal matrix.

From Lemma 4, we see that graph total variation is related to the rank of X; in other words,
lower rank naturally leads to smaller graph total variation.
Theorem 17.

S2(X) ≤ S2(U) ‖X‖2
∗ .

Proof. From Lemma 4, we have

S2(X) = ‖(I−A) U Σ‖2
F

(a)

≤ ‖(I−A) U‖2
F ‖Σ‖

2
F ,

(b)

≤ ‖(I−A) U‖2
F ‖Σ‖

2
∗ = ‖U−A U‖2

F ‖X‖
2
∗ ,

where (a) follows from the submultiplicativity of the Frobenius norm; and (b) from the norm
equivalence [84].
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Graph signal recovery problem X̂, Ŵ, Ê = arg minX,W,E∈RN×L α S2(X) + β ‖X‖∗ + γ ‖E‖1 ,
subject to ‖W‖2F ≤ ε2,TM = (X + W +E)M.

Signal inpainting L = 1, β = 0, γ = 0, graph shift is the cyclic permutation matrix.
Matrix completion α = 0, or graph shift is the identity matrix, γ = 0
Robust principal component analysis α = 0, or graph shift is the identity matrix, ε = 0,M is all the indices in T.
Graph signal inpainting L = 1, β = 0, γ = 0
Graph signal matrix completion α = 1, γ = 0
Anomaly detection L = 1, β = 0,M is all indices in T
Robust graph signal inpainting L = 1, β = 0

Table 8.1: The table of algorithms.

In Theorem 4, we see that the graph total variation is related to two quantities: the nuclear
norm of X and the graph total variation of the left singular vectors of X. The first quantity reveals
that minimizing the nuclear norm potentially leads to minimizing the graph total variation. We
can thus rewrite the objective function (8.23) as

S2(X) + β ‖X‖∗ ≤ S2(U) ‖X‖2
∗ + β ‖X‖∗ .

If the graph shift is built from insufficient information, we just choose a larger β to force the
nuclear norm to be small, which causes a small graph total variation in return. The quantity
S2(U) measures the smoothness of the left singular vectors of X on a graph shift A; in other
words, when the left singular vectors are smooth, the graph signal matrix is also smooth. We can
further use this quantity to bound the graph total variation of all graph signals that belong to a
subspace spanned by the left singular vectors.
Theorem 18. Let a graph signal x belong to the space spanned by U, that is, x = U a, where a
is the vector of representation coefficients. Then,

S2(x) ≤ S2(U) ‖a‖2
2

Proof.

S2(x) = ‖x− Ax‖2
2 = ‖(I−A) U a‖2

2

(a)

≤ ‖(I−A) U‖2
2 ‖a‖

2
2

(b)

≤ ‖(I−A) U‖2
F ‖a‖

2
2 .

where (a) follows from the submultiplicativity of the spectral norm; and (b) from the norm equiv-
alence [84].

Theorem 18 shows that a graph signal is smooth when it belongs to a subspace spanned by
the smooth left singular vectors.

8.3.3 Anomaly Detection
We now consider anomaly detection of graph signals, another important subproblem of the gen-
eral recovery problem (8.3).

116



Robust principal component analysis seeks to detect outlier coefficients from a low-rank
matrix. Here, anomaly detection of graph signals seeks to detect outlier coefficients from a
smooth graph signal. We assume that the outlier is sparse and contains few non-zero coefficients
of large magnitude. To be specific, the measurement is modeled as

t = x + e ∈ RN , (8.28)

where x is a smooth graph signal that we seek to recover, and the outlier e is sparse and has large
magnitude on few nonzero coefficients. The task is to detect the outlier e from the measurement
t. Assuming that x is smooth, that is, its variation is small, and e is sparse, we propose the ideal
optimization problem as follows:

x̂, ê = arg min
x,e
‖e‖0 (8.29)

subject to S2(x) ≤ η2,

t = x + e.

To solve it efficiently, instead of dealing with the `0 norm, we relax it to the `1 norm and refor-
mulate (8.29) as follows:

x̂, ê = arg min
x,e
‖e‖1 (8.30)

subject to S2(x) ≤ η2, (8.31)
t = x + e; (8.32)

this is a special case of (8.6) with L = 1, β = 0,M contains all indices in t, and choosing α
properly to ensure that (8.30) holds, see Table 8.1. In Section 8.3.3, we show that, under these
assumptions, both (8.29) and (8.30) lead to perfect outlier detection.

Solutions. The minimization problem (8.30) is convex, and it is numerically efficient to solve
for its optimal solution.

We further formulate an unconstrained problem as follows:

ê = arg min
e

S2(t− e) + β ‖e‖1 . (8.33)

We call (8.33) anomaly detection via `1 regularization (AD). In (8.33), we merge conditions (8.31)
and (8.32) and move them from the constraint to the objective function. We solve (8.33) by us-
ing generalized gradient descent, as discussed in Section 8.3.2. For implementation details, see
Algorithm 6.

Theoretical analysis. Let x0 be the true graph signal, represented as x0 = V a0 =
∑N−1

i=0 a0
ivi,

where V is defined in (2.6), e0 be the outliers that we are trying to detect, represented as
e0 =

∑
i∈E biδi, where δi is impulse on the ith node, and E contains the outlier indices, that

is, E ⊂ {0, 1, 2, · · ·N − 1}, and t = x0 + e0 be the measurement.
Lemma 5. Let x̂, ê be the solution of (8.29), and let x̂ = V â =

∑N−1
i=0 âivi. Then,

ê = V(a0 − â) +
∑
i∈E

biδi.
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Algorithm 6 Anomaly detection via `1 regularization

Input t input graph signals
Output ê outlier signals

Function AD(x)
initialize e
while the stopping criterion is not satisfied

Choose step size t from backtracking line search

e← Θtβ

(
e− 2tÃ(t− e)

)
end
return ê← e

Proof.

ê
(a)
= t− x̂

(b)
= x0 + e0 − x̂

(c)
= V a0 +

∑
i∈E

biδi − V â,

where (a) follows from the feasibility of x̂, ê in (8.30); (b) from the definition of t; and (c) from
the definitions of x0 and x̂.

Lemma 5 provides another representation of the outliers, which is useful in the following
theorem.

Let K = (I−Λ)T VT V(I−Λ), the K norm as ‖x‖K =
√
xT Kx, and Kη = {a ∈ RN :

‖a‖K ≤ η, for all a 6= 0}.
Lemma 6. Let x = V a satisfy (8.31), (8.32), and a 6= 0. Then, a ∈ Kη.

Proof.

S2(x) = ‖x− Ax‖2
2 = ‖V a− A V a‖2

2 ,
(a)
= ‖V a− V Λa‖2

2 = aT (I−Λ)T VT V(I−Λ)a,

(b)
= aT K a

(c)

≤ η2,

where (a) follows from the eigendecomposition; (b) from the definition of the K norm; and (c)
from the feasibility of x.

Lemma 6 shows that the frequency components of the solution from (8.29) and (8.30) belong
to a subspace, which is useful in the following theorem.
Theorem 19. Let S2(x0) ≤ η2, x0 6= 0, ‖e0‖0 ≤ k, and x̂, ê be the solution of (8.29) with x̂ 6= 0.
Let K2η have the following property:

‖V a‖0 ≥ 2k + 1 for all a ∈ K2η,

where k ≥ ‖e0‖0. Then, perfect recovery is achieved,

x̂ = x0, ê = e0.
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Proof. Since both x0 = V a0 and x̂ = V â are feasible solutions of (8.29), by Lemma 6, we
then have that a0, â ∈ Kη. We next bound their difference, a0 − â, by the triangle inequality, as
‖a0 − â‖K ≤ ‖a0‖K + ‖â‖K ≤ 2η.

If a0 6= â, then a0 − â ∈ K2η, so that ‖V(a0 − â)‖0 ≥ 2k + 1. From Lemma 5, we have
‖ê‖0 =

∥∥V(a0 − â) +
∑

i∈E biei
∥∥

0
≥ k+ 1. The last inequality comes from the fact that at most

k indices can be canceled by the summation.
On the other hand, ê is the optimum of (8.29), thus, ‖ê‖0 ≤ ‖e0‖0 = k, which leads to a

contradiction.
Therefore, â = a0 and ê = e0.

Theorem 19 shows the condition that leads to perfect outlier detection by following (8.29).
The key is that the outliers are sufficiently sparse and the smooth graph signal is not sparse.
Theorem 20. Let S2(x0) ≤ η2, x0 6= 0, ‖e0‖0 ≤ k, and x̂, ê be the solution of (8.30) with x̂ 6= 0.
Let K2η have the following property:

‖(V a)Ec‖1 > ‖(V a)E‖1 for all a ∈ K2η

where Ec ∩ E is the empty set, Ec ∪ E = {0, 1, 2, · · ·N − 1}. Then, perfect recovery is achieved,

x̂ = x0, ê = e0.

Proof. From Lemma 5, we have

‖ê‖1 =

∥∥∥∥∥V(a0 − â) +
∑
i∈E

biδi

∥∥∥∥∥
1

=

∥∥∥∥∥(V(a0 − â)
)
Ec +

(
V(a0 − â)

)
E +

∑
i∈E

biδi

∥∥∥∥∥
1

=
∥∥(V(a0 − â)

)
Ec
∥∥

1
+

∥∥∥∥∥(V(a0 − â)
)
E +

∑
i∈E

biδi

∥∥∥∥∥
1

Denote (V(a0 − â))E =
∑

i∈E diδi, we further have

‖ê‖1 =
∥∥(V(a0 − â)

)
Ec
∥∥

1
+

∥∥∥∥∥∑
i∈E

(di + bi)δi

∥∥∥∥∥
1

=
∥∥(V(a0 − â)

)
Ec
∥∥

1
+
∑
i∈E

|di + bi|

If a0 6= â, then a0−â ∈ K2η. By the assumption, we have ‖(V(a0 − â))Ec‖1 > ‖(V(a0 − â))E‖1 =∥∥∑
i∈E diδi

∥∥
1

=
∑

i∈E |di|. We thus obtain

‖ê‖1 =
∥∥(V(a0 − â)

)
Ec
∥∥

1
+
∑
i∈E

|di + bi|

>
∑
i∈E

(|di|+ |di + bi|) ≥
∑
i∈E

|bi|.
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On the other hand, ê is the optimum of (8.30), so ‖ê‖1 ≤ ‖e0‖1 =
∥∥∑

i∈E biδi
∥∥

1
=
∑

i∈E |bi|,
which leads to a contradiction.

Therefore, â = a0 and ê = e0.

Theorems 19 and 20 show that under appropriate assumptions, (8.29), (8.30) detects the
outliers perfectly. Note that the assumptions on K in Theorems 19 and 20 are related to two
factors: the upper bound on smoothness, η, and the eigenvector matrix, V. The volume of K2η

is determined by the upper bound on smoothness, η. The mapping properties of V are also
restricted by Theorems 19 and 20. For instance, in Theorem 19, the eigenvector matrix should
map each element in K2η to a non-sparse vector.

Robust graph signal inpainting. One problem with the graph signal inpainting in Sec-
tion 8.3.1 is that it tends to trust the accessible part, which may contain sparse, but large-
magnitude outliers. Robust graph signal inpainting should prevent the solution from being influ-
enced by the outliers. We thus consider the following optimization problem:

x̂, ŵ, ê = arg min
x,w,e

α S2(x) + γ ‖e‖0 , (8.34)

subject to ‖w‖2
F < η2 (8.35)

tM = (x + w + e)M; (8.36)

this is a special case of (8.3) with L = 1, β = 0; see Table 8.1.
Similarly to (8.6), instead of dealing with the `0 norm, we relax it to be the `1 norm and

reformulate (8.34) as an unconstrained problem,

x̂, ê = arg min
x,e
‖tM − (x + e)M‖2 + α S2(x) + γ ‖e‖1 . (8.37)

We call problem (8.37) the robust graph total variation regularization (RGTVR) problem. In (8.37),
we merge conditions (8.35) and (8.36) and move them from the constraint to the objective func-
tion. Note that (8.37) combines anomaly detection and graph signal inpainting to provide a
twofold inpainting. The first level detects the outliers in the accessible part and provides a clean
version of the accessible measurement; the second level uses the clean measurement to recover
the inaccessible part. We solve (8.37) by using ADMM. For implementation details, see Algo-
rithm 7.

8.4 Experimental Results

We now evaluate the proposed methods on several real-world recovery problems. Further, we
apply graph signal inpainting and robust graph signal inpainting to online blog classification and
bridge condition identification for indirect bridge structural health monitoring; We apply graph
signal matrix completion to temperature estimation and expert opinion combination.

Datasets. We use the following datasets in the experiments:
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Algorithm 7 Robust Graph Total Variation Regularization

Input t input graph signal
Output ê outlier graph signal

x̂ output graph signal

Function RGTVR(t)
while the stopping criterion is not satisfied

x←
(
I+2αη−1Ã

)−1
(t− e−w − c− η−1λ)

w← η(t− x−w − c− η−1λ)/(η + 2)
e← Θγη−1 (t− x− e− c− η−1λ)
λ← λ− η(t− x− e−w − c)
cM ← 0, cU ← (t− x−w − e− η−1λ)U ,

end
return ê← e, x̂← x

Online blogs

We consider the problem of classifying N = 1224 online political blogs as either conservative
or liberal [116]. We represent conservative labels as +1 and liberal ones as −1. The blogs are
represented by a graph in which nodes represent blogs, and directed graph edges correspond to
hyperlink references between blogs. For a node vn, its outgoing edges have weights 1/ deg(vn),
where deg(vn) is the out-degree of vn (the number of outgoing edges). The graph signal here is
the label assigned to the blogs.

Acceleration signals

We next consider the bridge condition identification problem [155, 156]. To validate the feasi-
bility of indirect bridge structural health monitoring, a lab-scale bridge-vehicle dynamic system
was built. Accelerometers were installed on a vehicle that travels across the bridge; accelera-
tion signals were then collected from those accelerometers. To simulate the severity of different
bridge conditions on a lab-scale bridge, masses with various weights were put on the bridge. We
collected 30 acceleration signals for each of 31 mass levels from 0 to 150 grams in steps of 5
grams, to simulate different degrees of damages, for a total of 930 acceleration signals. For more
details on this dataset, see [157].

The recordings are represented by an 8-nearest neighbor graph, in which nodes represent
recordings, and each node is connected to eight other nodes that represent the most similar
recordings. The graph signal here is the mass level over all the acceleration signals. The graph
shift A is formed as Ai,j = Pi,j /

∑
i Pi,j , with

Pi,j = exp

(
−N2 ‖fi − fj‖2∑

i,j ‖fi − fj‖2

)
,

and fi is a vector representation of the features of the ith recording. Note that P is a symmetric
matrix that represents an undirected graph and the graph shift A is an asymmetric matrix that
represents a directed graph, which is allowed by the framework of DSPG. From the empirical
performance, we find that a directed graph provides much better results than an undirected graph.
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Temperature data

We consider 150 weather stations in the United States that record their local temperatures [2].
Each weather station has 365 days of recordings (one recording per day), for a total of 54,750
measurements. The graph representing these weather stations is obtained by measuring the
geodesic distance between each pair of weather stations. The nodes are represented by an 8-
nearest neighbor graph, in which nodes represent weather stations, and each node is connected
to eight other nodes that represent the eight closest weather stations. The graph signals here are
the temperature values recorded in each weather station.

The graph shift A is formed as Ai,j = Pi,j /
∑

i Pi,j , with

Pi,j = exp

(
− N2di,j∑

i,j di,j

)
,

where di,j is the geodesic distance between the ith and the jth weather stations. Similarly to
the acceleration signals, we normalize P to obtain a asymmetric graph shift, which represents a
directed graph, to achieve better empirical performance.

Jester dataset 1

The Jester joke data set [158] contains 4.1 × 106 ratings of 100 jokes from 73,421 users. The
graph representing the users is obtained by measuring the `1 norm of existing ratings between
each pair of jokes. The nodes are represented by an 8-nearest neighbor graph in which nodes
represent users and each node is connected to eight other nodes that represent similar users. The
graph signals are the ratings of each user. The graph shift A is formed as

Pi,j = exp

(
−N2 ‖fi − fj‖1∑

i,j ‖fi − fj‖1

)
,

where fi is the vector representation of the existing ratings for the ith user. Similarly to acceler-
ation signals, we normalize P to obtain an asymmetric graph shift, which represents a directed
graph, to achieve better empirical performance.

Evaluation score. To evaluate the performance of the algorithms, we use the following four
metrics: accuracy (ACC), mean square error (MSE), root mean square error (RMSE), and mean
absolute error (MAE), defined as

ACC =
1

N

N∑
i=1

1(xi = x̂i),

MSE =
1

N

N∑
i=1

(xi − x̂i)2,

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 =
√

MSE,

MAE =

∑N
i=1 |xi − x̂i|

N
,
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where xi is the ground-truth for the ith sample, x̂i is the estimate for the ith sample, and 1 is the
indicator function, 1(x) = 1, for x = 0, and 0 otherwise.

In the following applications, the tuning parameters for each algorithm are chosen by cross-
validation; that is, we split the accessible part into a training part and a validation part. We
train the model with the training part and choose the tuning parameter that provides the best
performance in the validation part.

Applications of graph signal inpainting. Parts of this subsection have appeared in [118];
we include them here for completeness. We apply the proposed graph signal inpainting algo-
rithm to online blog classification and bridge condition identification. We compare the proposed
GTVR (8.22) with another regression model based on graphs, graph Laplacian regularization
regression (LapR) [82, 149, 150]. As described in Section 10.1, the main difference between
LapR and GTVR is that a graph Laplacian matrix in LapR is restricted to be symmetric and only
represents an undirected graph; a graph shift in GTVR can be either symmetric or asymmetric.

Online blog classification

We consider a semi-supervised classification problem, that is, classification with few labeled data
and a large amount of unlabeled data [106]. The task is to classify the unlabeled blogs. We adopt
the dataset of blogs as described in Section 8.4. We randomly labeled 0.5%, 1%, 2%, 5%, and
10% of blogs, called the labeling ratio. We then applied the graph signal inpainting algorithms
to estimate the labels for the remaining blogs. Estimated labels were thresholded at zero, so that
positive values were set to +1 and negative to −1.

Classification accuracies of GTVR and LapR were then averaged over 30 tests for each label-
ing ratio and are shown in Figure 8.1. We see that GTVR achieves significantly higher accuracy
than LapR for low labeling ratios. The failure of LapR at low labeling ratios is because an
undirected graph fails to reveal the true structure.

Figure 8.1 also shows that the performance of GTVR saturates at around 95%. Many of
the remaining errors are misclassification of blogs with many connections to the blogs from a
different class, which violates the smoothness assumption underlying GTVR. Because of the
same reason, the performance of a data-adaptive graph filter also saturates at around 95% [159].
To improve on this performance may require using a more sophisticated classifier that we will
pursue in future work.

Bridge condition identification

We consider a semi-supervised regression problem, that is, regression with few labeled data and
a large amount of unlabeled data [106]. The task is to predict the mass levels of unlabeled
acceleration signals. We adopt the dataset of acceleration signals as described in Section 8.4. We
randomly assigned known masses to 0.5%, 1%, 2%, 5%, and 10% of acceleration signals and
applied the graph signal inpainting algorithms to estimate the masses for remaining nodes.

Figure 8.2 shows MSEs for estimated masses averaged over 30 tests for each labeling ratio.
The proposed GTVR approach yields significantly smaller errors than LapR for low labeling
ratios. Similarly to the conclusion of online blog classification, a direct graph adopted in GTVR
reveals a better structure.
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Figure 8.1: Accuracy comparison of online blog classification as a function of labeling ratio.

We observe that the performance of GTVR saturates at 3 in terms of MSE. This may be the
result of how we obtain the graph. Here we construct the graph by using features from principal
component analysis of the data. Since the data is collected with a real lab-scale model, which is
complex and noisy, the principal component analysis may not extract all the useful information
from the data, limiting the performance of the proposed method even with larger number of
samples.

Applications of graph signal matrix completion. We now apply the proposed algorithm
to temperature estimation, recommender systems and expert opinion combination of online
blog classification. We compare the proposed GMCR (8.25) with matrix completion algo-
rithms. Those algorithms include SoftImpute [160], OptSpace [147], singular value thresh-
olding (SVT) [161], weighted non-negative matrix factorization (NMF) [162], and graph-based
weighted nonnegative matrix factorization (GWNMF) [163]. Similarly to the matrix completion
algorithm described in Section 8.3, SoftImpute, OptSpace, and SVT minimize the rank of a ma-
trix in similar, but different ways. NMF is based on matrix factorization, assuming that a matrix
can be factorized into two nonnegative, low-dimensional matrices; GWNMF extends NMF by
further constructing graphs on columns or rows to represent the internal information. In con-
trast to the proposed graph-based methods, GWNMF considers the graph structure in the hidden
layer. For a fair comparison, we use the same graph structure for GWNMF and GMCM. NMF
and GWNMF solve non-convex problems and get local minimum.

Temperature estimation

We consider matrix completion, that is, estimation of the missing entries in a data matrix [145].
The task is to predict missing temperature values in an incomplete temperature data matrix where
each column corresponds to the temperature values of all the weather stations from each day. We
adopt the dataset of temperature data described in Section 8.4 [2]. In each day of temperature
recording, we randomly hide 50%, 60%, 70%, 80%, 90% measurements and apply the proposed
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Figure 8.2: MSE comparison for the bridge condition identification as a function of labeling
ratio.

matrix completion methods to estimate the missing measurements. To further test the recovery
algorithms with different amount of data, we randomly pick 50 out of 365 days of recording
and conduct the same experiment for 10 times. In this case, we have a graph signal matrix with
N = 150, and L = 50, or L = 365.

Figures 8.3 and 8.4 show RMSEs and MAEs for estimated temperature values averaged over
10 tests for each labeling ratio. We see that GTVM, as a pure graph-based method (8.21), per-
forms well when the labeling ratio is low. When the labeling ratio increases, the performance of
GTVM does not improve as much as the matrix completion algorithms, because it cannot learn
from the graph signals. For both evaluation scores, RMSE and MAE, GMCR outperforms all
matrix completion algorithms because it combines the prior information on graph structure with
the low-rank assumption to perform a twofold learning scheme.

Rating completion for recommender system

We consider another matrix completion problem in the context of recommender systems based
on the Jester dataset 1 [158]. The task is to predict missing ratings in an incomplete user-joke
rating matrix where each column corresponds to the ratings of all the jokes from each user. Since
the number of users is large compared to the number of jokes, following the protocol in [164],
we randomly select 500 users for comparison purposes. For each user, we extract two ratings at
random as test data for 10 tests. In this case, we have a graph signal matrix with N = 100, and
L = 500.

Figures 8.5 and 8.6 show RMSEs and MAEs, defined in the evaluation score section, for es-
timated temperature values averaged over 10 tests. We see that graph-based methods (GWNMF
and GMCR) take the advantage of exploiting the internal information of users and achieve
smaller error. For RMSE, GMCR provides the best performance; for MAE, GWNMF provides
the best performance.
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Figure 8.3: RMSE of temperature estimation for 50 recordings and 365 recordings.

Combining expert opinions

In many real-world classification problems, the opinion of experts determines the ground truth.
At times, these are hard to obtain; for instance, when a dataset is too large, obtaining the opinion
of experts is too expensive, or experts differ among themselves, which happens, for example, in
biomedical image classification [165]. In this case, a popular solution is to use multiple experts,
or classifiers, to label dataset elements and then combine their opinions into the final estimate
of the ground truth [166]. As we demonstrate here, opinion combining can be formulated and
solved as graph signal matrix denoising.

We consider the online blog classification problem. We hide the ground truth and sim-
ulate K = 100 experts labeling 1224 blogs. Each expert labels each blog as conservative
(+1) or liberal (−1) to produce an opinion vector tk ∈ {+1,−1}1224. Note that labeling
mistakes are possible. We combine opinions from all the experts and form an opinion matrix
T ∈ {+1,−1}1224×100, whose kth column is tk. We think of T as a graph signal matrix with
noise that represents the experts’ errors. We assume some blogs are harder to classify than others
(for instance, the content in a blog is ambiguous, which is hard to label), we split the dataset of
all the blogs into “easy” and “hard” blogs and assume that there is a 90% chance that an expert
classifies an “easy” blog correctly and only a 30% chance that an expert classifies a “hard” blog
correctly. We consider four cases of “easy” blogs making up 55%, 65%, 75%, and 85% of the
entire dataset.

A baseline solution is to average (AVG) all the experts opinions into vector tavg = (
∑

k tk)/K
and then use the sign sign(tavg) vector as the labels to blogs. We compare the baseline solution
with the GTVR solution (8.22) and GMCR. In GTVR, we first denoise every signal tk and then
compute the average of denoised signals t̃avg = (

∑
k t̃k)/K and use sign(̃tavg) as labels to blogs.

Using the proposed methods, we obtain a denoised opinion matrix. We average the opinions
from all the experts into a vector and use its signs as the labels to blogs. Note that, for GTVR
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Figure 8.4: MAE of temperature estimation for 50 recordings and 365 recordings.
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Figure 8.5: RMSE of the rating completion in Jester 1 dataset.

and GMCR, the accessible part is all the indices in the opinion matrix T; since each entry in T
can be wrong, no ground-truth is available for cross-validation. We vary the tuning parameter
and report the best results. Figure 8.7 shows the accuracy of estimating the ground-truth. We see
that, through promoting the smoothness in each column, GTVR improves the accuracy; GMCR
provides the best results because of its twofold learning scheme. Note that Figure 8.7 does not
show that the common matrix completion algorithms provide the same “denoised” results as the
baseline solution.

Applications of robust graph signal inpainting. We now apply the proposed robust graph
signal inpainting algorithm to online blog classification and bridge condition identification. In
contrast to what is done in the applications of graph signal inpainting, we manually add some
outliers to the accessible part and compare the algorithm to common graph signal inpainting
algorithms.
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Figure 8.6: MAE of the rating completion in Jester 1 dataset.
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Figure 8.7: Accuracy of combining expert opinions.

Online blog classification

We consider semi-supervised online blog classification as described in Section 8.4. To validate
the robustness of detecting outliers, we randomly mislabel a fraction of the labeled blogs, feed
them into the classifiers together with correctly labeled signals, and compare the fault tolerances
of the algorithms. Figure 8.8 shows the classification accuracies when 1%, 2%, and 5% of blogs
are labeled, with 16.66% and 33.33% of these labeled blogs mislabeled in each labeling ratio.
We see that, in each case, RGTVR provides the most accurate classification.

Bridge condition identification

We consider a semi-supervised regression problem and adopt the dataset of acceleration signals
as described in Section 8.4. To validate the robustness of facing outliers, we randomly mislabel
a fraction of labeled acceleration signals, feed them into the graph signal inpainting algorithm
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(a) mislabeled ratio: 16.67%. (b) mislabeled ratio: 33.33%.

Figure 8.8: Robustness to mislabeled blogs: accuracy comparison with labeling ratio of 1%, 2%
and 5%, and mislabeling ratio of 16.66% and 33.33% in each labeling ratio.

together with correctly labeled acceleration signals, and compare the fault tolerances of the al-
gorithms. Figure 8.9 shows MSEs when 1%, 2%, and 5% of signals are labeled, with 16.66%
and 33.33% of these labeled signals mislabeled in each labeling ratio. We see that, in each case,
RGTVR provides the smallest error.

8.5 Conclusions
In this chapter, we formulated graph signal recovery as an optimization problem and provided a
general solution by using the alternating direction method of multipliers. We showed that several
existing recovery problems, including signal inpainting, matrix completion, and robust principal
component analysis, are related to the proposed graph signal recovery problem. We further con-
sidered three subproblems, including graph signal inpainting, graph signal matrix completion,
and anomaly detection of graph signals. For each subproblem, we provided specific solutions
and theoretical analysis. Finally, we validated the proposed methods on real-world recovery
problems, including online blog classification, bridge condition identification, temperature esti-
mation, recommender system, and expert opinion combination of online blog classification.
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Figure 8.9: Robustness to mislabeled signals: MSE comparison with labeling ratio of 1%, 2%,
and 5%, and mislabeling ratio of 16.66% and 33.33% in each labeling ratio.
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Part IV

Detection and Localization of Graph
Signals
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Overview of Detection and Localization
Detecting and localizing targeted patterns in data are vital tasks with numerous high-impact
applications, especially in a big data era. The massive amount of data are generated from vari-
ous sources, including online social networks, citation networks, biological networks, physical
infrastructures and many others. For example, Google, Yahoo!, Microsoft, and other Internet-
based companies have data that is measured in exabytes (1018 bytes). Social media, such as
Facebook, YouTube and Twitter, have exploded beyond anyone’s wildest imagination [167]. It
makes pattern discovery and detection more challenging and meaningful.

Detection is not a new topic in the signal processing community. The task of finding acti-
vated supports of signals/images has been intensely studied in classical signal/image processing
from various aspects over the past few decades. For example, impulse detection considers local-
izing impulses in a noisy signal [3]; change-point detection identifies times when the probability
distribution of a stochastic process or time series changes [4]; support recovery of sparse sig-
nals localizes sparse activations with a limited number of samples [5, 6]; foreground detection
localizes foreground in a video sequence [7]; cell detection and segmentation localizes cells in
microscopy images [8] and matched filtering localizes radar signals in the presence of additive
stochastic noise [9, 10]. Needless to say, detection is significant; however, detection is not well
defined in many tasks. For example, it is debatable to provide a precise definition for anomalies
in anomaly detection and communities in community detection.

In this part, we consider detection and localization of graph signals. In general, graph signal
detection is to identify whether or not a graph signal contains a structure-related pattern, and
graph signal localization is to find the exact supports of a structure-related pattern. They are
relevant to many applications including identifying clustered attributes in social networks, special
events in the urban traffic networks, unusual brain activity in the brain connectivity networks, and
viruses in cyber-physical systems.

Mathematically, we consider a class of graph signals with structure-related patterns as

XK = {x ∈ RN : x = D a, a ∈ RS, ‖a‖0 ≤ K},

where D ∈ RN×S is a graph dictionary where each atom represents a structure-related pattern.
Given a noisy observation of graph signal y ∈ RN , the goal of detection is to test the null against
the alternative hypotheses:

H0 : y ∼ f(0, ε),

H1 : y ∼ f(x, ε) with x ∈ XK .

where ε is noise and f(·, ·) is a link function. For example, f(x, ε) = x + ε ∈ RN is a deter-
ministic linear mapping; f(x, ε) = Bernoulli(x + ε) ∈ RN is a stochastic mapping, where each
element f(x, ε)i is a Bernoulli random variable with mean (x + ε)i. Let this test be a mapping
T (y) = {0, 1}, where 1 indicates that we reject the null. It is imperative that we control both
the probability of false alarm, and the false acceptance of the null. To this end, we define the
detection risk to be

R(T ) = E0[T ] + sup
x∈Xk

Ex[1− T ],
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where Ex denotes the expectation with respect to y ∼ Bernoulli(x). These terms are also
known as the probability of type 1 and type 2 error respectively. We will say that H0 and H1 are
asymptotically distinguishable by a test T , if limN∈∞R(T ) = 0, whereN is the number of nodes
in a graph. If such a test exists thenH0 andH1 are asymptotically distinguishable, otherwise they
are asymptotically indistinguishable.

Given a noisy observation of graph signal y = f(x, ε) ∈ RN , where x =
∑K

i=1 aΩidΩi ∈
XK , the goal of localization is to recover each activated atom, dΩi .

The prototype of designing localization strategies is to solve the following optimization prob-
lem

a∗ = arg min
‖a‖0≤K

d(x′,y),

subject to x′ = D a,

where d(·, ·) is some evaluation metric. For example, when D is an identity matrix, we localize
impulses on graphs; when D is the graph Fourier basis, we localize activation in the graph Fourier
domain. This formulation is similar to graph signal approximation; however, the goal is slightly
different: localization aims to identify which atoms are activated (recover a), and approximation
aims to reconstruct the original graph signal (recover D a). When the size of graph dictionary
grows exponentially with the size of graph, the graph dictionary cannot be explicitly expressed,
which makes precise localization challenging.
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Chapter 9

Detection of Localized Graph Signals

9.1 Introduction

In this chapter, we consider detecting localized categorical attributes on a graph. A categorical
attribute is defined as a variable that can be put into a countable number of categories or groups.
It can be represented by several binary attributes and is widely used in numerous data and graph
mining applications [31]. We model a categorical attribute by binary graph signals1: when a
signal coefficient is one, the corresponding node is activated by the attribute, and vice versa. A
localized categorical attribute, or a localized pattern2, is defined as an attribute whose activated
nodes form a subgraph that can be easily separated from the rest of nodes. In practice, detecting a
localized pattern is nontrivial because an observed attribute is often corrupted by noise. The goal
of localized pattern detection is to identify the localized pattern hidden in a noisy attribute with
the aid of graph topology. This task is relevant to many real-world applications including iden-
tifying localized attributes in online social networks, activity in the brain connectivity networks
and viruses in cyber-physical systems.

In classical signal processing, a localized signal is constant over local connected regions sep-
arated by lower-dimensional boundaries. It is often related to concepts such as impulse function,
step function, square wave and Haar basis [84]. Detecting localized signals has been consid-
ered from many aspects, such as signal/noise discrimination [168], edge detection [169], pattern
matching [10] and support recovery of sparse signals [5, 6]. This paper considers a counterpart
problem on graphs. A localized graph signal is constant over a subgraph that is easily sepa-
rated from the rest of the nodes. Similarly to classical localized signals, a localized graph signal
emphasizes fast transitions (corresponding to boundaries) and localization on the graph vertex
domain (corresponding to signals being nonzero in a local neighborhood).

This localized pattern detection task is related, yet different from conventional community
detection in network science [28, 170, 171]. The goal of community detection is to identify
modules and hierarchical organization by using only the information encoded in the graph topol-
ogy [172]. While a module is vaguely defined, it is usually considered as a node set with dense
internal and sparse external connections. The difference between the two is that community de-

1Graph signals and attributes are same in this context.
2A localized pattern is used to represent a noiseless localized attribute.
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tection considers detecting patterns in graph topology while localized pattern detection considers
detecting patterns in an attribute. For example, suppose that we want to identify whether users
from Carnegie Mellon University form a localized pattern on Facebook. The binary answer to
Is this user from Carnegie Mellon University? is a binary attribute on a graph, which activates a
subgraph with few external connections. We thus consider that activated users form a localized
pattern; see Figure 9.1.

(a) Attribute graph. (b) Two communities.

(c) Binary attribute from CMU?. (c) Binary attribute male?.

Figure 9.1: Detecting localized categorical attributes. Plot (a) shows a graph with two attributes;
Plot (b) shows two communities in the graph; Plot (c) shows the attribute Is this user from
Carnegie Mellon University? forms a localized graph signal; and Plot (d) shows the attribute Is
this user male? forms a nonlocalized graph signal. The goal of community detection is to identify
subgraphs as shown in Plot (b), but the goal of the localized pattern detection is to identify if a
binary attribute is localized as shown in Plots (c) and (d).

To describe the localization level of an attribute, we consider external rather than internal
connections of the subgraph activated by the attribute, leading to scalable detection algorithms.
Specifically, the localization level of a localized pattern is defined as the difficulty of separating
the corresponding subgraph from the rest of the nodes, which is quantified by the total varia-
tion on graphs. We then formulate hypothesis tests to decide whether a categorical attribute is
localized. We propose two statistics: graph wavelet statistic and graph scan statistic. Similarly
to detecting transient changes in time-series signals by using wavelet techniques, we design a
graph wavelet statistic based on a Haar-like graph wavelet basis. Since the graph wavelet basis
is preconstructed, the computational cost is linear with the number of nodes. We also formulate
a generalized likelihood test and propose a graph scan statistic, which can be efficiently solved
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by a standard graph-cut algorithm. The intuition behind the proposed statistics is to find the un-
derlying localized pattern in a graph, which is equivalent to denoising the given attribute based
on the graph structure, and then calculating the statistic values based on the denoised attribute.
We validate the proposed hypothesis tests on both simulated and real data. Experimental results
demonstrate the effectiveness and robustness of the proposed methods.

This detection problem shares similar characteristics to many detection problems in current
graph-related literature, such as detecting a smooth graph signal or a localized graph signal un-
der a specific noise model. For example, [173, 174] detects a cluster in a lattice graph that
exhibits unusual behavior; [175] constructs a generalized likelihood test to detect smooth graph
signals; [176] considers a general graph-structured normal means test; in [78], the uniform span-
ning tree wavelet statistic is constructed to approximate epsilon scan statistic; and in [177, 178],
the Lovasz extended scan statistic and spectral relaxation are considered as the relaxations of the
combinatorial scan statistic.

The uniform spanning tree wavelet statistic and the Lovasz extended scan statistic lay a foun-
dation for this paper. Here, we extend the noise model from the Gaussian to the Bernoulli model;
that is, we deal with binary values instead of real values. This extension is needed because
categorical attributes are widely used in numerous tasks in data/graph mining. Intuitively, we
can treat our input, a binary value, as the outcome of a real value after hard thresholding. Be-
cause hard thresholding causes information loss, real-valued attributes are more informative than
binary-valued attributes; in other words, handling binary-valued attributes is a nontrivial task.

Our detection problem is also related to community detection. As one of the key topics
in network science and graph mining, community detection aims to extract tightly connected
subgraphs in networks, also known as graph partitioning and graph clustering [22, 28, 179]. The
traditional community detection algorithms focus on the graph structure only [170, 180]. Some
recent studies tried to combine the knowledge of both graph structure and node attributes [181].
Useful node attributes not only improve the accuracy in community detection, but also provide
the interpretation of detected communities. However, as some attributes may be irrelevant for
some communities, community detection accuracy may suffer. It is also computational inefficient
to include a large number of attributes in the training phase [182]. In the paper, we aim to find
useful attributes for improving community detection and interpretation.

9.2 Problem Formulation
In the task of detecting a localized graph signal, we aim to identify whether a noisy graph signal
has a localized pattern. Mathematically, given a noisy binary graph signal (or attribute) y, the
general statistical testing formulation is:

H0 : y ∼ f(0, ε0), (9.1)
H1 : y ∼ f(s, ε) with s ∈ S,

where S is a predefined class of localized patterns, f(·, ·) is a link function and 0 < ε, ε0 < 1
are noise levels. The null hypothesis represents a scattered pattern and the alternative hypothesis
represents a localized pattern. Two key factors about the statistical testing (9.1) are the noise
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model and the localized pattern, and we can make independent assumptions on these two. For
example, noise can follow Gaussian or Bernoulli distribution and the localization level can be
described by small cut costs or cliques [26].

Let this test be a mapping T (y) = {0, 1}, where 1 indicates that we reject the null hypothesis.
It is imperative that we control both the probability of false alarm and the false acceptance of the
null hypothesis. To this end, we define the risk to be

R(T ) = E0[T ] + sup
s∈S

Es[1− T ],

where E denotes the expectation. These two terms are also known as the probability of type-1
and type-2 errors, respectively. We will say that H0 and H1 are asymptotically distinguishable
by a test T , if limN→∞R(T ) = 0, where N is the number of nodes. In other words, when the
number of nodes goes to infinity and the detection risk goes to zero,H0 andH1 are asymptotically
distinguishable; otherwise they are asymptotically indistinguishable.

Bernoulli noise model. In this paper, we are particularly concerned with a specific version
of (9.1):

H0 : y ∼ Bernoulli(ε01V), (9.2)
H1 : y ∼ Bernoulli(µ1C + ε1C) for all ‖∆1C‖p ≤ ρ,

where µ is signal strength, ε is noise level, ε0 = ε + |C| (µ− ε) /N , and ρ is the number of
external edges of a localized pattern, which reflects the shapes of candidate localized patterns
and characterizes the alternative hypothesis H1. Here, the signals under both H0 and H1 have
the same mean. The link function follows from a Bernoulli noise model

f(s, ε) = Bernoulli(s + ε1V) ∈ RN ,

where each element f(s, ε)i is a Bernoulli random variable with mean (s + ε)i and the class of
localized graph signals is

S =

{
s : s = (µ− ε)1C , C ∈ C

}
with C =

{
C ⊆ V : ‖∆1C‖p ≤ ρ

}
, where 0 < µ − ε < 1 controls the signal strength and ρ, p

control the cut cost of the activated node set. The class C specifies the localized patterns that the
user is testing for. Quantity ρ is a user-defined parameter: when ρ is large, we consider a relaxed
scenario where all candidate localized patterns are allowed to have any number of external edges,
and the test will always succeed; when ρ is small, we consider a constrained scenario where all
candidate localized patterns have few external edges. Note that the Bernoulli model here is
similar to the setting in community detection with categorical attributes [31, 181]. For example,
suppose that we want to identify whether users who graduated from Carnegie Mellon University
form social communities on Facebook. The binary value Is this user from Carnegie Mellon
University? is an attribute on Facebook and forms a binary graph signal. When this attribute
leads to a community, we should find a subgraph such that (1) most nodes are activated within
the subgraph and few nodes are activated outside the subgraph; (2) the connection between this
subgraph and its complement is weak. We describe a binary attribute by the Bernoulli noise
model and a localized pattern by a graph signal with small total-variation.
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9.3 Methodology

In this section, we propose two statistics for hypothesis testing (9.2): graph wavelet statistic and
graph scan statistic. The first statistic is based on a graph wavelet basis; when a given attribute
has large graph wavelet coefficients, this attribute agrees with the graph structure and is localized.
The second statistic is based on matching all the possible node sets to a given attribute via solving
an optimization problem; when we find such a feasible node set, this attribute is localized. The
first method is more efficient as the graph wavelet basis is pre-constructed, while the second is
more accurate as we adaptively search for localized patterns.

9.3.1 Graph Wavelet Statistic

In classical signal processing, we detect transient changes in a time-series signal by projecting
the signal on the wavelet basis [84]. When a coefficient in a high-frequency band is large, there
exists a transient change. Similarly, we construct a Haar-like graph wavelet basis to detect the
boundary between the activated nodes and nonactivated nodes. When the boundary exists, we
reject the null hypothesis.

The construction of the graph wavelet basis is shown in Chapter 4. The main idea is to
recursively partition a local parent set into two disjoint local child sets with similar sizes. Each
partition generates two basis vectors that represent the two local child sets. We start from the
entire node set V , corresponding to the coarsest resolution in the graph vertex domain. In the
end, each local set is either an individual node or an empty set, corresponding to the finest
resolution in the graph vertex domain. The construction of the graph wavelet basis is similar in
spirit to the construction of the standard Haar wavelet basis, which is generated by using a general
dyadic splitting scheme [183]. We simply split the graph into two subgraphs with roughly equal
sizes, irrespective of the connections between them; we do not assume that the graph contains
communities with balanced sizes. This construction is multiresolution in nature, as the graph
wavelet basis vectors have self-similarity relations and have supports of different sizes.

To ensure the detection property of the graph wavelet basis, we impose three requirements
on each partition: (1) the two local child sets are disjoint; (2) the union of two local child sets is
the local parent set; and (3) the cardinalities of the two local child sets are as close as possible.
The first two requirements lead to the orthogonality of the graph wavelet basis and the third
requirement promotes the sparsity for all graph signals with small `0-norm-based total variation.
In general, any algorithm that satisfies these three requirements can be used to generate a graph
wavelet basis; [93] introduces three such algorithms. Theorem 9 will show that such basis has
similar detection performance.

Recall that Theorem 7 shows the graph wavelet basis is orthornormal shows that the graph
wavelet basis preserves the energy of any input graph signal. Theorem 8 shows that the total
decomposition level T is crucial for the upper bound on sparsity, which corresponds to the worst
case in a sparse representation. We consider the worst case because the graph wavelet basis is
constructed before obtaining any graph signal and we need to ensure that the graph it works for
arbitrary graph signals. Wavelet representation pushes the energy of a graph signal into a few
wavelet coefficients. Let W denote the graph wavelet basis (we use WLSPC in Chapter 4). We
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where W(−1) ∈ RN×(N−1) is W without the first constant column. The first constant column
is removed since it only calculates the mean of y, which is not informative for detection. The
inequality (a) follows from the basic norm inequality, and (b) from Theorems 7 and 8 will show
that the largest nontrivial wavelet coefficient is an important metric in distinguishing whether y
is a localized attribute or not. We see that the lower bound on the largest nontrivial wavelet coef-
ficient is related to the total decomposition level. To lift the largest nontrivial wavelet coefficient
up, we need to minimize the total decomposition level T , which, in turn, is minimized when we
partition each local set evenly, with T = O(log2N).

We use the graph wavelet basis to detect the localized patterns; similarly to classical image
processing, the graph wavelet basis is only activated by the boundaries in a graph signal. For
a localized graph signal with a small `0-norm-based total variation, the corresponding graph
wavelet coefficients are sparse and the energy of the original graph signal concentrates in a few
graph wavelet coefficients. However, for a noisy graph signal with a large `0-norm-based total
variation, the energy of the original graph signal spreads over all the graph wavelet coefficients.

Each graph wavelet basis vector compares the absolute difference between the average val-
ues of the input graph signal in two local sets. For example, yT (1S1/|S1| − 1S2/|S2|) is the
difference of the average values of y in the node sets S1 and S2. When one local set captures
significantly larger average value than the other local set, that local set detects an activated re-
gion. Because of the multiresolution construction, the graph wavelet basis searches for activated
regions of various sizes. Thus, the maximum value of the graph wavelet coefficient dentifies
whether the original graph signal has a structure-correlated pattern.

Mathematically, given a noisy observation y, the graph wavelet statistic is the maximum
absolute value of the nontrivial graph wavelet coefficients,

ŵ =
∥∥WT

(−1) y
∥∥
∞
. (9.3)

Remember that we remove the first constant column from W whose corresponding wavelet co-
efficient is trivially the mean of y. When ŵ is larger than some threshold, we detect the activated
node set and reject the null hypothesis. To analyze the detection error, we use the following
theorem.
Theorem 21. Let the graph wavelet statistic be ŵ in (9.3) and let

µ− ε ≥

√
1 + ρ logN(

√
logN + 2

√
2 log(2

δ
))√

|C|
(

1− |C|
N

) . (9.4)

Under the statistical test (9.2) with p = 0, rejecting the null hypothesis for all ŵ > τ , with
τ =
√

logN +
√

2 log(2/δ), implies that, under H0, P{reject} ≤ δ, and under H1, P{reject} ≥
(1− δ)4.
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See the proof of Theorem 21 in Appendix 14.5. The main idea is to show that under the
null hypothesis, each graph wavelet coefficient is a sub-Gaussian random variable, which means
that its statistical performance is similar to a Gaussian random variable [184]; and under the
alternative hypothesis, the maximum value of the graph wavelet coefficients is large because the
energy of the original graph signal concentrates in a few graph wavelet coefficients.

Since the distribution of graph wavelet statistic does not have an analytical form, it is hard
to calculate the exact p-value. Instead, we can use the sub-Gaussianity to provide an upper
bound of the p-value. Given graph wavelet statistic ŵ =

∥∥WT
(−1) y

∥∥
∞

, the upper bound of p-

value is e−
1
2(ŵ−

√
logN)

2

. Let our test be level α. When α is larger than the upper bound of
p-value, α is definitely larger than the exact p-value. Thus, we reject the null hypothesis for all

α ≥ e−
1
2(ŵ−

√
logN)

2

. The threshold is only related to the size of graph N .
The assumption (9.4) shows that the key to detect the activation is the difference between µ

and ε. Such a difference is related to the properties of the ground-truth activated node set. When
the size of the ground-truth activated node set is larger and the ground-truth activated node set
has a small `0-norm-based total variation, it is easier for graph wavelet statistic to detect the
activation.
Corollary 9. H0 and H1 are asymptotically distinguishable by the graph wavelet statistic when√

|C|(µ− ε) = O (
√
ρ logN) .

The sufficient condition is |C| ≥ O(ρ log2N) assuming µ, ε constant.
Corollary 9 builds a mathematical relationship between the size of a localized pattern and

asymptotic distinguishability; it is easier to detect a larger localized pattern with small ρ. The
cut cost ρ is the number of external edges of a localized pattern, which determines the shape
of candidate localized patterns we are testing for. When ρ is small, we consider a constrained
scenario where all candidate localized patterns have few external edges. When ρ is large, we
need to search over more candidate localized patterns and requires greater |C| to increase the
signal-to-noise ratio, which is (µ− ε) here.

The computational bottleneck of constructing the graph wavelet basis is the graph partition
algorithm as shown in Figure 4.2. Let the computational cost of the graph partition algorithm
be of the order O(h(N)), where h(·) is a polynomial function. The total computational cost to
construct a graph wavelet basis behaves asO

(∑logN
i=0 2ih(N/2i)

)
; for example, when the cost of

a graph partition algorithm is of the order O(N logN), the total computational cost to construct
a graph wavelet basis behaves as O(N log2N). Since the graph wavelet basis is constructed only
based on the graph structure, the construction is performed only once and works for any graph
signal supported on this graph. The total computational cost to obtain the graph wavelet statistic
only involves a matrix-vector multiplication and a search for the maximum value. The graph
wavelet statistic is thus scalable to large-scale graphs.

9.3.2 Graph Scan Statistic
Previously, we construct a graph wavelet statistic to test if a given graph signal has a structure-
correlated pattern. The graph wavelet statistic is efficient, but the construction of the graph
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wavelet basis is independent from the given graph signal. Now we aim to propose a data-adaptive
approach, which scans all feasible node sets based on the given graph signal.

For the simplicity of derivation, we assume that ε0 = ε in (9.2). This implies that the average
value under H1 is larger than the average value under H0. A naive approach is to use the average
of the observation as the statistic. Here we propose a graph scan statistic that works better
than this naive approach. The intuition behind the proposed statistics is that given the noisy
observation y, we search for the activated node set C. If we can find such C, we reject the null
hypothesis, and vice versa.

If we knew the true activated node set C ∈ C, an intuitive idea is to test the null hypothesis
H0 : s = 0 against the alternative H1 : s = µ1C by using the likelihood ratio test. Given the
observation y, based on the Bernoulli noise model, the likelihood is

P(y|H1) =
∏
i∈C

µyi(1− µ)1−yi
∏
i∈C

εyi(1− ε)1−yi

and the maximum likelihood estimator is µ̂ = 1TCy/|C|. The likelihood ratio is∏
i∈V ε

yi(1− ε)1−yi∏
i∈C µ̂

yi(1− µ̂)1−yi
∏

i∈C ε
yi(1− ε)1−yi

=
∏
i∈C

(
ε

µ̂

)yi ( 1− ε
1− µ̂

)1−yi
.

The log likelihood ratio is ∑
i∈C

yi log

(
ε

µ̂

)
+
∑
i∈C

(1− yi) log

(
1− ε
1− µ̂

)
= |C|

(
µ̂ log

(
ε

µ̂

)
+ (1− µ̂) log

(
1− ε
1− µ̂

))
= −|C|KL(µ̂||ε).

In practice, however, the true active node set C is unknown. In this case, we are concerned
with the generalized likelihood ratio

ĝ = max
C
|C|KL

(
1TCy

|C|
||ε
)

(9.5)

subject to ‖∆1C‖1 ≤ ρ.

When 1TCy/|C| is much larger than the background randomness ε, the node set C is activated.
We call ĝ graph scan statistic. This is the Bernoulli version of [177, 178]. To maximize the
objective in (9.5), the activated region C should tradeoff between its size and the average value
inside: when |C| is large, the average value inside C tend to be small; on the other hand, when
C fits the activated nodes in y, the average value is large; however, due to the cut cost constraint,
C can only fit a few scattered nodes and |C| is small. The goal of the graph scan statistic is to
search a node set with both large cardinality and large average value.

When ĝ is larger than some threshold, we detect the activated node set and reject the null
hypothesis. To analyze the detection error, we have the following theorem.

142



Theorem 22. Let the graph scan statistic be ĝ in (9.5) and let

µ− ε ≥ 2
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.

Under the statistical test (9.2) with p = 1, rejecting the null hypothesis for all ĝ > τ , with
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,

implies that, under H0, P{reject} ≤ δ, and under H1, P{reject} ≥ 1− δ.
See the proof of Theorem 22 in Appendix 14.6. The main idea is to show that under the

null hypothesis, 1TC(y − ε)/
√
|C| is a sub-Gaussian random variable; and under the alterna-

tive hypothesis, the maximum likelihood estimator 1TCy/|C| is close to µ with high probability.
Similarly to the graph wavelet statistic, the assumption (9.6) shows that the key to detect the
activation is related to the properties of the ground-truth activated node set. When the size of
the ground-truth activated node set is larger and the ground-truth activated node set has a small
`1-norm-based total variation, it is easier for graph scan statistic to detect the activation.

Similarly to the graph wavelet statistic, given graph scan statistic ĝ, the upper bound of p-

value is e−
1
2

(√
ĝ
8
−2 log 2−
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. Let our test be level α. We reject the null

hypothesis at all α ≥ e
− 1

2
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ĝ
8
−2 log 2−

(√
ρ+
√

1
2

logN
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. The threshold is only related to
the size of graph N and the cut cost ρ, which is a user-defined parameter.

There are two advantages of graph scan statistic over graph wavelet statistic: graph scan
statistic is data adaptive and is flexible to consider edge weights. Instead of using a pre-constructed
graph wavelet basis, graph scan statistic actively searches for the activated node set. Thus, graph
scan statistic not only detects whether the structure-correlated activated node set exists, but also
localizes these regions. Graph scan statistic also considers the edge weights by using the `1-
norm-based total variation. It is more general compared to `0-norm-based total variation used in
graph wavelet statistic. Note that the `1-norm-based total variation and the `0-norm-based total
variation are the same when we only consider binary edge weights. Thus, all the results based
on the `1-norm can be directly applied to the `0-norm.
Corollary 10. H0 and H1 are asymptotically distinguishable by the graph scan statistic when√

|C|(µ− ε) = O
(

max(
√
ρ,
√

logN)
√

logN
)
.

The sufficient condition is |C| ≥ O(max(ρ, logN) logN) assuming µ, ε constant.
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As mentioned earlier, a naive statistic is the average value of the observation. The naive
statistic requires |C| ≥ O(

√
N), which is asymptotically much worse than the proposed graph

scan statistic. Similarly to the graph wavelet statistic, for the graph scan statistic, it is easier to
detect a larger localized pattern with small ρ.

Practical algorithms. In the previous analysis, we used the global optimum of (9.5), ĝ; how-
ever, we will show that this global optimum is hard to obtain because the optimization problem
is combinatorial. We consider two practical methods to compute the graph scan statistic. The
first method obtains a local optimum of the original optimization problem and the second method
obtains a global optimum of a relaxed optimization problem.

In the first method, we reformulate (9.5) and solve

ĝ = max
t

max
x

tKL

(
xTy

t
||ε
)

(9.7)

subject to x ∈ {0, 1}N , ‖∆x‖1 ≤ ρ,1Tx ≤ t,

where x is an auxiliary graph signal to denote 1C and t denotes |C|. Since ε is a small constant,
for each t, we optimize over x to make xTy/t as far away from ε as possible, which is equivalent
to maximizing xTy within the feasible region.3 We thus solve

x∗t = arg min
x
−xTy, (9.8)

subject to x ∈ {0, 1}N , ‖∆x‖1 ≤ ρ,1Tx ≤ t.

The corresponding Lagrangian function is

L(η1, η2,x) = −xTy + η1(1Tx− t) + η2 (‖∆x‖1 − ρ) .

The Lagrange dual function is

Q(η1, η2) = min
x∈{0,1}N

L(η1, η2,x)

= min
x∈{0,1}N

(
−xTy + η11

Tx + η2 ‖∆x‖1

)
− η1t− η2ρ

= q(η1, η2)− η1t− η2ρ.

For given η1, η2, the function q(η1, η2) can be efficiently solved by s-t graph cuts [179, 185]. We
then maximizeQ(η1, η2) by using the simulated annealing and obtain x∗t as the optimum of (9.8).
Finally, we optimize over t by evaluating each pair of t and x∗t in the objective function (9.7).
Since x takes only binary values, the optimization problem (9.8) is not convex. However, because
optimizing q(η1, η2) is a standard graph-cut problem, many previous works show that even the
local minimum provides decent results [185] and the computation is remarkably efficient. We call
the solution local graph scan statistic because it is a local optimum of the original optimization
problem (9.7) by using the graph cuts.

3We implicitly assume that 1TCy/|C| > ε.
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In the second method, we compute the graph scan statistic in a convex fashion by relaxing
the original combinatorial optimization problem (9.7) as follows:

r̂ = max
t

max
x

tKL

(
xTy

t
||ε
)

(9.9)

subject to x ∈ [0, 1]N , ‖∆x‖1 ≤ ρ,1Tx ≤ t.

The only difference between (9.7) and (9.9) is that we relax the the feasible set of x from {0, 1}N
to be a convex set [0, 1]N . We call r̂ convex graph scan statistic. When r̂ is larger than some
threshold, we detect the activated node set and reject the null hypothesis. To analyze the property
of the convex relaxation, we have the following theorem.
Theorem 23. Let the graph scan statistic be r̂ in (9.9) and let
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Under the statistical test (9.2) with p = 1, rejecting the null hypothesis for all r̂ > τ , with
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implies that, under H0, P{reject} ≤ δ, and under H1, P{reject} ≥ 1− δ.
See the proof of Theorem 23 in Appendix 14.7. The main idea is to show that under the

null hypothesis, xT (y− ε)/
√
1Tx is a sub-Gaussian random variable with mean zero; and under

the alternative hypothesis, the maximum likelihood estimator 1TCy/|C| is a sub-Gaussian random
variable with mean µ. Similarly to the graph wavelet statistic and the original graph scan statistic,
the assumption (9.10) shows that the key to detect the activation is related to the properties of the
ground-truth activated node set.
Corollary 11. H0 and H1 are asymptotically distinguishable by the convex graph scan statistic
when √

|C|(µ− ε) = O
(

max(
√
ρ,
√

logN)
√

logN
)
.

The sufficient condition is |C| ≥ O(max(ρ, logN) logN) assuming µ, ε constant.
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To compute the convex graph scan statistic, for a given t, we solve

x∗t = arg min
x
−xTy, (9.11)

subject to x ∈ [0, 1]N , ‖∆x‖1 ≤ ρ,1Tx ≤ t.

The objective function is linear and all the constraints are convex, so (9.11) can be easily solved
by a convex optimization solver. In the earlier method, the search over η1, η2 is nonconvex and
only guarantees a local minimum, but here the search is convex. Finally, we optimize over t by
evaluating each pair of t and x∗t in the objective function (9.9). Because of the convex relaxation,
the final solution of x is not binary and a higher value of xi indicates a higher confidence that the
ith node is activated.

We summarize the above two methods to compute the graph scan statistic in Algorithm 8. In
practice, the convex graph scan statistic outperforms the local graph scan statistic, but the local
graph scan statistic is more appealing to deal with a large-scale graph.

Algorithm 8 Graph Scan Statistic

Input y input graph signal
ε noise level

Output x∗ activated local set

Function
For a given t,

solve (9.7) by the graph cuts (local graph scan statistic)
or solve (9.9) by the convex optimization solver (convex graph scan statistic)

end

search over t, return the largest tKL
(

x∗
t
Ty
t ||ε

)
and x∗t as x∗

9.3.3 Discussion
Here we compare the proposed statistics.
• From an intuitive perspective, graph wavelet statistic selects a feature by projecting given

attributes to a pre-constructed graph wavelet basis and is a data-independent and discrim-
inative approach, which works only for detection.4 Graph scan statistic searches over
graphs and localizes the activated region and is a data-dependent and generative approach,
which works for both detection and localization.

• From a statistical perspective, graph wavelet statistic and graph scan statistic require that
the size of activated region be larger than O(ρ log2N), O(max(ρ, logN) logN), respec-
tively, as shown in Corollaries 9, 10 and 11. Recall that we have two noise levels ε0 and
ε in (9.2). In general, we set ε0 = ε + |C| (µ− ε) /N to make sure that both hypotheses
have the same mean. To derive the graph scan statistic, we need the equality assumption,
that is, ε0 = ε. However, the graph scan statistic empirically works well when ε0 and ε are
not equal, which will be shown in Section 9.4.

4It is also possible to use graph wavelet basis to do nonlinear approximation to localize the activated region, but
this is beyond the scope of this paper.
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• From a computational perspective, graph wavelet statistic is the cheapest to compute.
Graph scan statistic can be implemented by two methods: the local graph scan statistic
is also efficient by using efficient graph cuts and the convex graph scan statistic costs the
most because it needs to solve a series of convex optimization problems.

• From the empirical performance, the convex graph scan statistic usually provides the best
performance. Graph wavelet statistic provides slightly worse results. Because the graph
cuts only provide a local solution, the computation of the local graph scan statistic is sen-
sitive to the parameters and the initial conditions.

9.4 Experimental Results
We now evaluate our proposed methods on three datasets. We first study how detection perfor-
mance changes according to parameters on a simulated dataset. Our observation is that the size
of the ground-truth activated node set is crucial to the detection, which is consistent with Theo-
rems 21, 22 and 23. We also show that our proposed methods can be applied to real-world prob-
lems of different domains. Here we consider two problems: air pollution detection and attribute
ranking for community detection. Experimental results validate the efficiency and effectiveness
of our proposed methods.

9.4.1 Simulations
We generate simulated data on the Minnesota road graph [97] and study how the parameters,
including the signal strength µ, the noise level ε and the activation size |C|, influence the detection
performance. The Minnesota road graph is a standard dataset including 2642 nodes and 3304
undirected edges [97]. We generate two binary graph signals as follows: we randomly choose
one node as a node center and assign all other nodes that are within k steps to the community
center to an activated node set, where k varies from 6 to 12. Figures 9.2 (a) and (b) show these
two binary graph signals, where the nodes in yellow indicates the activated nodes and the nodes
in blue indicates the nonactivated nodes. Using these two binary graph signals as templates, we
then generate two classes of random graph signals: for attributes under H1, each node inside
the activated region is activated with probability µ and each node outside the activated region
is activated with probability ε. Both µ and ε vary from 0.05 to 0.95 with interval of 0.1. For
each combination of µ and ε, we generate corresponding attributes under H0, the activation
probability for each node is ε0 = (µ|C|+ ε(N − |C|))/N . We run 100 random tests to compute
the statistics and quantify the performance by the area under the receiver operating characteristic
curve (AUC) [117]. To construct the graph wavelet basis, we compare three graph partition
algorithms proposed in [93]. Since three algorithms provide similar performances, we only report
the results given by the balanced partition in the maximum spanning tree [93].

Figures 9.2 (c), (e) and (g) show AUCs of the graph wavelet statistic, the local graph scan
statistic (LGSS) and the convex graph scan statistic (CGSS) for the small activated region, where
the step k = 6. For example, each block in Figure 9.2 (c) corresponds to the AUC of the graph
wavelet statistic given a pair of µ and ε. A whiter block indicates a higher AUC and a better
performance. Note that when µ is smaller than ε, we did not run the experiments and directly set
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the corresponding AUC to zero. We see that the graph wavelet statistic has a similar performance
with the convex graph scan statistic and both outperform the local graph scan statistic. Figures 9.2
(d), (f) and (h) show AUCs of the graph wavelet statistic, the local graph scan statistic and the
convex graph scan statistic for the large activated region, where the step k = 12. We see that
the convex graph scan statistic perform the best and the graph wavelet statistic has a slightly
better performance than the local graph scan statistic. Comparing the results from two activated
regions (left column versus right column in Figure 9.2), we see that all the methods perform better
when the activated region is large. For example, both Figures 9.2 (c) and (d) use graph wavelet
statistic. Given a fixed pair of µ and ε, a large activated region has a larger AUC, indicating
higher probability to be detection.

To have a clearer understanding of how the proposed statistics work, we set the signal strength
µ = 0.35 and the noise level ε = 0.15. Figures 9.3 (b) and (c) show the attribute under H1 and
H0 given the ground-truth activated region in Figure 9.3 (a). When we compare the attributes
under H1 and H0, it is clear that distinguishing H1 from H0 is not trivial.

Figures 9.3 (d), (f) and (h) compare the activated regions detected by graph wavelet basis,
local graph scan statistic and convex graph scan statistic under H1. The graph wavelet basis
compares the average values between the nodes in yellow and the nodes in blue. When the
difference is large, the activated region is detected. Ideally, we want all the nodes in blue are
activated and all the nodes in yellow are nonactivated. Considering the graph wavelet basis is
designed before obtaining any data, it captures the activated region fairly well. As expected, local
graph scan statistic and convex graph scan statistic perform similarly and capture the activated
region well. We also show the noisy attribute and the activated regions detected by graph wavelet
basis, local graph scan statistic and convex graph scan statistic under H0 in Figures 9.3 (c), (e),
(g) and (i). The graph wavelet basis, local graph scan statistic and convex graph scan statistic
cannot detect regions that are close to the true activated region from the pure noisy attribute.

Attribute under H0 Attribute under H1

Figure 9.3 (b) Figure 9.3 (c)

Modularity 1.5763 −3.5837
Cut cost 872 901
Wavelet 1.118 1.8688
LGSS 409.2793 553.5842
CGSS 416.4342 561.4883

Table 9.1: Facts about the data in Figures 9.3 (b) and (c).

Table 9.1 shows some facts about data in Figures 9.3 (b) and (c), including modularity, the
number of cuts, graph wavelet statistic, graph scan statistic and convex graph scan statistic.
Modularity is a popular metric to measure the strength of communities [26]. Networks with
high modularity have dense connections within communities but sparse connections in different
communities. Mathematically, the modularity of a binary attribute 1C ∈ RN is

Modularity =
∑

(i,j)∈E

(
Ai,j −

didj
M

)
(1C)i(1C)j

E
,
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where di is the degree of the ith node, E =
∑

i di is the total number of edges, and (1C)i = 1
when the ith node is activated; otherwise, (1C)i = 0. A large modularity means the activated
nodes are strongly connected.

Graph cuts measure the cost to separate a community from the other nodes. Mathematically,
the number of cuts of the binary attribute 1C ∈ RN is Cut = ‖∆1C‖0). A small cut cost means
the activated nodes are easily separated from the nonactivated nodes.

We expect that under H1, modularity is larger, indicating dense internal connections, and the
number of cuts is smaller, indicating few external connections. From Table 9.1, however, we
see that attributes under H0 and H1 contain similar number of activated nodes, the modularity
under H1 is smaller than the modularity under H0, indicating the activated nodes under H0 have
even stronger internal connections. The number of cuts under H0 is smaller than the number
of cuts under H1, indicating the activated nodes under H0 are easier to be separated from the
nonactivated nodes. It is clear that both modularity and number of cuts fail when the noise level
is high. On the other hand, the graph wavelet statistic, local graph scan statistic and convex graph
scan statistic under H1 are much higher than those under H0, indicating these three proposed
statistics succeed even when the noise level is high. Graph wavelet statistic is robust because it
selects a useful feature by using the graph wavelet basis. The graph scan statistic also is robust
is because it localizes the true activated region first, which is equivalent to denoise the attribute
based on the graph structure. Based on the denoised attribute, we compute the statistic values
and the results are more robust. In other words, graph wavelet statistic extracts features from
original attributes and is a discriminative approach to detect and graph scan statistic recovers a
denoised attributes and is a generative approach.

In terms of the computational complexity, for each random test, it takes around 30 seconds
to construct the graph wavelet basis, around 0.01 seconds to calculate the graph wavelet statis-
tic, around 5 seconds to calculate the local graph scan statistic, around 10 seconds to calculate
the convex graph scan statistic. Overall, the proposed statistics provide efficient and effective
performances.

9.4.2 High Air Pollution Detection
Our first real-world example is on air pollution detection; we are particularity interested in the
particle pollution as indicated by the fine particulate matter (PM 2.5), particles that are 2.5 mi-
crometers in diameter or smaller, and can only be seen with an electron microscope. These tiny
particles are produced from all types of combustion, including motor vehicles, power plants, res-
idential wood burning, forest fires, agricultural burning, and some industrial processes. High PM
2.5 causes an increasing mortality rate for patients suffering from heart and lung diseases [186].
We aim to provide an efficient and effective approach of detecting high PM 2.5 regions, which
can guide authorities in designing remedial measures.

The dataset comes from [187] and includes 756 operating sensors that record the daily aver-
age at various locations; Figure 9.4 (a) shows the daily distribution of PM 2.5 on July 1st, 2014,
in the mainland U.S. We construct a ten-nearest neighbor graph where each sensor is a node
and connects to ten neighboring sensors. In Figure 9.4 (b), the sensors whose measurements are
above 15 are marked in yellow, which are relatively high-pollution cities.

When high-pollution cities are spread, the high pollution may cause by random events or
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measurement failures, which makes the detection sensitive to noise. When high-pollution cities
are clustered together, it indicates that an area consistently suffers from high pollution, which
makes the detection robust. The meaning of using detection algorithms here is to answer whether
the high-pollution cities are clustered and further provide a more robust high-pollution detector.
In Figure 9.4 (b), the high-pollution cities seem to concentrate in the middle-east part of the
U.S. Now we verify if these high-pollution cities are clustered together, by performing the graph
wavelet statistic, graph scan statistic and convex graph scan statistic on this data. To make a
comparison, we also simulate 1, 000 graph signals that have the same number of high-pollution
cities, but are scattered across the U.S. Figures 9.4 (e), (f) and (g) show the statistical values. For
each plot, the red dashed line shows the statistical value for the real pollution graph signal as
shown in Figure 9.4 (b) and the black curves show the empirical histogramsof statistical values
under 1, 000 random trials. We see that the statistical values of the real graph signals are always
much larger than those of the scattered simulated graph signals for all three statistics, which
means that it is easy to reject the null hypothesis and confirm that the high-pollution cities in
Figure 9.4 (b) form a local cluster. Figures 9.4 (c) and (d) show the activated regions detected by
the graph scan statistic and the convex graph scan statistic, respectively. We see that these two
detected activated regions are similar and confirm that the mid-east region has a relatively high
pollution.

We did the same experiments for the data collected on December 1st, 2014, as shown in Fig-
ure 9.5 (a). The dataset includes 837 operating sensors (the operating sensors are different every
day) and we still construct a ten-nearest neighbor graph. We see that the high-pollution cities
are more scattered, but some of them seems to cluster in the northwestern corner. Figures 9.5
(e), (f) and (g) show that the statistical values of the real data are still larger than those of the
scattered simulated graph signals for all three statistics most of the time, which confirms that the
high-pollution cities cluster together. Again, the two detected activated regions in Figures 9.5 (c)
and (d) confirm that the northwestern corner has a relatively high pollution.

9.4.3 Ranking Attributes for Community Detection
Relevant node attributes improve the accuracy of community detection and interpreting the de-
tected communities, but irrelevant attributes may harm the accuracy and cause computational
inefficiency. By using proposed statistics, we can quantify the usefulness of each attribute. As a
localized attribute tends to be related to a community structure, our methods can serve as a filter
to select out those most useful attributes to benefit community detection.

We use the IEEE Xplore database to find working collaborations among scholars. The raw
files were downloaded from [188]. We first construct three bipartite networks: a network of
papers and journals, a network of papers and authors, and a network of papers and keywords
(keywords are automatically assigned by IEEE). We focus on papers in ten journals: IEEE
Transactions on Magnetics, Information Theory, Nuclear Science, Signal Processing, Electron
Devices, Communications, Applied Superconductivity, Automatic Control, Microwave Theory
and Techniques and Antennas and Propagation.

We project the bipartite network of papers and authors onto authors to create a co-authorship
network where two authors are connected when they co-author at least four papers. We keep the
largest connected component of the co-authorship network. As explained in more detail below,
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we project the network of papers and journals and the network of papers and authors onto the
authors in the the largest connected component to create the author-journal matrix, where rows
denote authors and columns denote journals. We project the network of papers and keywords and
a network of papers and authors onto the authors in the largest connected component to create
the author-keyword matrix, where rows denote authors and columns denote keywords.

The entire dataset includes the co-authorship network with 7,330 authors and 108,719 co-
authorships, the author-journal matrix with ten journals, and the author-keyword matrix with
3,596 keywords. In other words, we have a graph with 7,330 nodes, 108,719 edges and 3,596
corresponding attributes. We want to detect different academic communities based on graph
structure and attributes. The academic communities can be defined based on the journals. Thus,
ten journals correspond to ten ground-truth communities: when authors publish at least ten papers
in a same journal, we assign them to a community. For example, authors who publish at least ten
papers in the IEEE Transactions on Signal Processing form the signal processing community. In
this community, some keywords are frequently used, such as ‘filtering’, ‘Fourier transform’ and
‘wavelets’. By using those keywords, the quality of community detection may be improved.

The goal is to rank all keywords based on their contribution to community detection, where
the magnitude or value (if negative is meaningful) of the corresponding statistic is used to deter-
mine the rank. We consider four ranking methods: graph wavelet statistic based ranking, local
graph scan statistic based ranking, modularity-based ranking and cut-based ranking. We did not
use the convex graph scan statistic due to computational complexity. For the first two ranking
methods, we compute the statistical value and rank the keywords according to the statistical
value in a descending order. This is because a larger statistic means a larger probability that this
keyword forms a community. For the modularity-based ranking, we compute the modularity of
each keyword and rank the keywords according to modularity in a descending order. For the
cut-based ranking, we compute the cut cost of each keyword and rank the keywords according to
the number of cuts in a ascending order.

To quantify the real community detection power of keywords, we compare each keyword
to the ground-truth community and compute the correspondence by using the average F1 score,
suggested in [180, 181]. Mathematically, let C∗ be a set of the ground-truth communities and Ĉ
be a set of the activated node sets provided by the node attributes. Each node set Ĉi ∈ Ĉ collects
the nodes that have the same attribute. The average F1 score is

1

2|C∗|
∑
Ci∈C∗

F1(Ci, Ĉg(i)) +
1

2|Ĉ|

∑
Ĉi∈Ĉ

F1(Ĉg′(i), Ĉi),

where the best matching g and g′ is defined as follows:

g(i) = arg max
j
F1(Ci, Ĉj) and g′(i) = arg max

j
F1(Cj, Ĉi),

where F1(Ci, Ĉj) is the harmonic mean of precision and recall. A large average F1 score means
that the community induced by a keyword agrees with the community induced by journal papers.
We also compute the average F1 score of each keyword and rank the keywords according to the
average F1 scores in a descending order, which is the ground-truth ranking. We compare the
four estimated rankings with the ground-truth ranking by using the Spearman’s rank correlation
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coefficient [189]. The Spearman correlation coefficient is defined as the Pearson correlation
coefficient between the ranked variables,

correlation = 1− 6
∑
|pi − qi|2

N(N2 − 1)
,

where pi − qi is the difference between two rankings. The Spearman correlation coefficients
of modularity-based ranking, cut-based ranking, graph wavelet statistic based ranking and local
graph scan statistic based ranking are shown in Figure 9.6. We see that the graph wavelet statistic
and local graph scan statistic outperform other methods. Cut-based ranking performs poorly
because it may rank infrequent keywords higher. To account for this effect, we also consider the
average modularity, which is the modularity divided by the number of activated authors, and the
average cuts, which are the number of cuts divided by the number of activated authors. We see
that the average cuts perform much better than the total cuts.

Figure 9.7 compares the average F1 scores as a function of individual keywords ordered by
the six ranking methods. The x-axis is the ranking provided by the proposed ranking methods
and the y-axis is the average F1 score of the corresponding keyword. For example, since the
local graph scan statistic ranks Maximum likelihood detection in the first place, we put the cor-
responding average F1 score as the first element on the red curve (leftmost). We expect that the
curve goes down as the rank grows because a good ranking method ranks the important keywords
higher. We also use cluster affiliation model for big networks (BIGCLAM, shown in black), a
large-scale overlapping community detection algorithm to provide a baseline [180]. We see that
the local graph scan statistic is slightly better than the graph wavelet statistic and both of them
outperform the other methods, which is consistent with the results given by the Spearman cor-
relation coefficients in Figure 9.6. Average cuts rank important keywords lower, causing the F1
score to increase as the rank decreases. The average cuts fail because small average cuts may
come from just a few activations. For example, a keyword activating only one author has a small
cut number, although this keyword is actually trivial. Surprisingly, using high ranking keywords
selected by LGSS and wavelets works even better than BIGCLAM on the task of community
detection. The reason may be that in this co-authorship network, only some keywords are infor-
mative and strongly related to the journals, which are the ground-truth communities, while most
keywords may provide trivial or misleading information.

9.5 Conclusions
In this chapter, we formulated hypothesis tests to decide whether the observations activate a
community in a graph that is corrupted by Bernoulli noise. We modeled the observations as a
binary graph signal: when the signal coefficient is positive, we say that the corresponding node
is activated; when the activated nodes form a cluster, we say that the graph signal contains a
structure-correlated activation. We proposed two statistics for testing: graph wavelet statistic and
graph scan statistic. Both are shown to be efficient and statistically effective to detect activations.
The intuition behind these statistics is to localize the underlying localized pattern first, which is
equivalent to denoising a given attribute based on graph structure. Theorems 21, 22 and 23 show
that the key to distinguishing the activation is the difference between the signal strength and the
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noise level, and structural properties of the signal. Specifically, when the size of the ground-truth
activated node set is larger and the ground-truth activated node set is easier to be separated from
the other nodes, it is less difficult to detect the activation.

We validated the effectiveness and robustness of the proposed methods on simulated data
first; experimental results match the theorems well. We further validated the proposed methods
on two real-world applications: high air pollution detection and attribute ranking; experimental
results show the proposed statistics are effective and efficient.
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(a) Activation (small). (b) Activation (large).

(c) Graph wavelet statistic (small). (d) Graph wavelet statistic (large).

(e) LGSS (small). (f) LGSS (large).

(g) CGSS (small). (h) CGSS (large).

Figure 9.2: Comparison of graph wavelet statistic and graph scan statistic on the simulated
dataset. The left column shows the results for a small activated region and the right column
shows the results for a large activated region. All methods perform better when an activated
region is larger. For a same activated region, all methods perform better when µ− ε is larger.
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(a) Original attribute. (b) Attribute under H1. (c) Attribute under H0.

(d) Activated wavelet basis vector under H1 (e) Activation (LGSS) under H1 (f) Activation (CGSS) under H1

(g) Activated wavelet basis vector under H0 (h) Activation (LGSS) under H0 (i) Activattion (CGSS) under H0

Figure 9.3: Illustration of how the proposed statistics work. Under H1, the graph wavelet
statistic, local graph scan statistic and convex graph scan statistic denoise the given attribute
and localize the true community. Under H0, the graph wavelet basis, local graph scan statistic
and convex graph scan statistic cannot localize the true community. The denoising procedure is
the key to robustness. Graph wavelet statistic extracts features from original attributes and is a
discriminative approach. (d) shows a graph wavelet basis vector corresponding to the maximum
absolute value of the graph wavelet coefficients. Graph scan statistic recovers denoised attributes
and is a generative approach. (e) and (f) show the activation recovered by graph scan statistics.
For CGSS, due to the convex relaxation, the recovered activated region is not binary. A higher
value of xi indicates a higher confidence that the ith node is activated.
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(a) Original data.

(b) Thresholding (> 15). (c) Activation detected by LGSS. (d) Activation detected by CGSS.
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(e) Graph wavelet statistic. (f) LGSS. (g) CGSS.

Figure 9.4: Detecting the high-pollution region on July 1st, 2014. The proposed statistics aim to
answer whether the high-pollution cities are clustered and further provide high-pollution regions.
Plot (b) shows high-pollution cities. Plots (c) and (d) show the high-pollution regions recovered
by the graph scan statistics. Plots (e), (f) and (g) show that graph wavelet statistic and graph scan
statistic successfully detect the high-pollution regions from random attributes. For each plot, the
red dashed line shows the statistical value for the real pollution graph signal as shown in Plot
(b) and the black curves show the empirical histograms of statistical values under 1, 000 random
trials. Note that graph wavelet statistic only answers whether the high-pollution regions exist,
but cannot localize where these regions are.
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(a) Original data.

(b) Thresholding (> 15). (c) Activation detected by LGSS. (d) Activation detected by CGSS.
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(e) Graph wavelet statistic. (f) LGSS. (g) CGSS.

Figure 9.5: Detecting the high-pollution region on December 1st, 2014. Plot (b) shows high-
pollution cities. Plots (c) and (d) show the high-pollution regions recovered by the graph scan
statistics. Plots (e), (f) and (g) show that graph wavelet statistic and graph scan statistic detect
the high-pollution regions from random attributes with high probabilities. For each plot, the red
dashed line shows the statistical value for the real pollution graph signal as shown in Plot (b) and
the black curves show the empirical histograms of statistical values under 1, 000 random trials.
From the gaps between the statistical values under two hypotheses, we see that CGSS provides
the most decisive conclusion.
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Figure 9.6: Comparison of Spearman’s rank correlation coefficients. A larger Spearman’s rank
correlation coefficient means higher correlation to the ground-truth ranking.

Figure 9.7: Comparison of the average F1 score as a function of the top k ranked keywords.
A higher average F1 score means better detection performance by using each individual key-
word. The black horizontal line shows the performance of BIGCLAM, a large-scale overlapping
community detection algorithm.

158



Chapter 10

Localization of Localized Graph Signals

10.1 Introduction
The task of finding activated supports of signals/images has been intensely studied in classical
signal/image processing from various aspects over the past few decades. For example, impulse
detection considers localizing impulses in a noisy signal [3]; support recovery of sparse signals
considers localizing sparse activations with a limited number of samples [5, 6]; foreground de-
tection considers localizing foreground in a video sequence [7]; cell detection and segmentation
considers localizing cells in microscopy images [8] and matched filtering consider localizing
radar signals in the presence of additive stochastic noise [9, 10].

In this chapter, we consider a counterpart problem on graphs, localizing activated supports
of signals in a large-scale graph. The aim of graph signal localization is to identify one set
of connected nodes where the graph signal switches values—we call an activated piece. For
example, given a graph signal in Figure 10.1(a), we are looking for an underlying activated piece
as in Figure 10.1(b). As the original signal is noisy, this task is related but not equivalent to
denoising. Denoising aims to obtain a noiseless graph signal (see Figure 10.1(c)), which is not
necessarily localized. In this paper, we focus on localizing activated pieces in noisy piecewise-
constant signals in which case localization is in fact equivalent to denoising.

(a) Signal. (b) Activated piece. (c) Noiseless signal.

Figure 10.1: Signal localization on graphs. Given a signal (a), the aim is to identify an activated
piece (b) while denoising aims to obtain a noiseless signal (c). When smooth background is
ignored, localization is equivalent to denoising.
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Note that most of the work in the graph signal processing area happens in the graph frequency
domain; we here choose to work in the graph vertex domain because it provides better localiza-
tion in the graph vertex domain and is easier for visualization and explanation than the graph
frequency domain. For example, in classical image processing, most methods for edge detection
and image segmentation work in the space domain, instead of the frequency domain.

This task is relevant to many real-world applications from localizing virus attacks in cyber-
physical systems to activity in brain connectivity networks, to traffic events in city road networks.
Similarly to classical localization problems, the key issue is to separate localized activated pat-
terns from background noise on graphs; in other words, we aim to find the supports of localized
activated patterns on graphs.

In the previous literature, signal localization has been considered from many aspects. From
a signal processing perspective, people studied signal/noise discrimination [168], matched filter-
ing [9, 10] and support recovery of sparse signals [5, 6]; from a image processing perspective,
people studied object detection in natural and biomedical images [169], and foreground detec-
tion in a video sequence [7]; and from a data mining perspective, people studied anomaly detec-
tion [190, 191]. Within the context of graphs, much of the literature considers detecting smooth
or piecewise-constant graph signals from signals corrupted by Gaussian noise [78,173,175,177,
178]. A recent work [192] considers detecting localized graph signals corrupted by Bernoulli
noise.

10.2 Problem Formulation

Consider localizing an activated piece C ∈ C (where C is the set containing all the pieces) in a
noisy, piecewise-constant graph signal

x = µ1C + ε, (10.1)

where 1C is the indicator function, µ is the signal strength and ε ∼ N (0, σ2 IN) is Gaussian
noise. We consider two cases: µ = 1 and µ arbitrary.

Previous works formulate this as a detection problem via a scan statistic searching for a most
probable anomaly set, which is similar to localizing an activated piece. However, such a method
is either computationally inefficient or hindered by strong assumptions. For example, in [173],
the authors analyze the theoretical performance of detecting paths, blobs and spatial temporal
sets by exhaustive search, which is clearly inefficient. In [177, 178, 192], the authors aim to
detect a node set with a specific cut number, resulting in a computationally efficient algorithm,
but limited by strong assumptions.

Our goal is to develop an algorithm to efficiently localize an activated piece with a general
shape. The maximum likelihood estimator of the one-piece-localization problem under Gaussian
noise is

min
µ,C
‖x− µ1C‖2

2 , subject to C ∈ C. (10.2)
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10.3 Methodology

10.3.1 Localization with unit magnitude
Consider first (10.1) with a unit-magnitude signal, that is, µ = 1. Then (10.2) reduces to

min
C
‖x− 1C‖2

2 , subject to C ∈ C. (10.3)

This optimization problem is at the core of this paper. In the following context, we first consider
a hard thresholding algorithm as a baseline and then we study two typical and complementary
classes of a connected component, including ball-shaped class and elongated-shaped class, where
we have fast algorithms to solve (10.3). In the end, we will combine both solvers to obtain a
general solver.

Hard thresholding based localization. The difficulty in solving (10.3) comes from the
constraint, which forces the activated nodes to form a connected subgraph (piece). Since we do
not restrict the size and shape of a piece, searching over all the pieces to find the global optimum
is an NP-complete problem. We consider a simple algorithm that solves (10.3) in two steps: we
first optimize the objective function and then project the solution onto the feasible set in (10.3).
This simple algorithm guarantees to satisfy the constraints, but is not necessarily the optimal
solution. The objective function can be formulated as

min
C
‖x− 1C‖2

2 = min
t∈{0,1}N

‖x− t‖2
2 = min

ti∈{0,1}

N∑
i=1

(xi − ti)2,

where t ∈ RN is a vector representation of a node set C. Since each ti is independent, we can
optimize each individual element to obtain t∗i = 1, when xi > 1/2; and 0, otherwise. In other
words, the optimum of the objective function is

{vi ∈ V | xi >
1

2
} = min

C
‖x− 1C‖2

2 .

This step is nothing but global hard thresholding. We then project this solution onto the feasible
set; that is, we solve

C∗thr = PC

(
arg min

C
‖x− 1C‖2

2

)
(10.4)

= PC

(
{vi ∈ V | xi >

1

2
}
)
,

where the projection operator PC(C) extracts the largest connected component (piece) in a node
setC. Thus, this solver simply performs hard thresholding and then finds a connected component
among the nodes with nonzero elements on it.

Cut-based localization for ball-shaped class. The key idea in (10.4) is to partition all the
nodes into two categories according to a given graph signal: activated nodes and inactivated
nodes. This is similar to graph cuts: cutting a series of edges with minimum cost and obtain-
ing two isolated components. The difference is that one optimizes edge weights in graph cuts,
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while (10.3) optimizes signal coefficients. Inspired by [177, 192], we add the number of edges
connecting activated nodes and inactivated nodes to the objective function to induce a connected
component.

A signal ∆1C ∈ RM records the first-order differences within 1C . The number of edges
connecting C and C is

‖∆1C‖0 = ‖A1C‖1 − 1TC A1C ,

where A is the adjacency matrix, ‖A1C‖1 is the sum of the degrees of the nodes in C and
1TC A1C is the inner connection of nodes within C. When there are no edges connecting the
activated nodes, ‖∆1C‖0 = ‖A1C‖1. When all the activated nodes are well connected and
form a piece, 1TC A1C is often large and ‖∆1C‖0 �

∑
i∈C di with di the degree of the ith node.

Thus, minimizing ‖∆1C‖0 induces C to be a piece. We thus solve

Cλ = PC

(
arg min

C
‖x− 1C‖2

2 + λ ‖∆1C‖0

)
, (10.5a)

C∗cut = arg min
Cλ
‖x− 1Cλ‖

2
2 . (10.5b)

Given a λ, (10.5a) solves the regularized optimization problem and extracts the largest connected
component. In (10.5b), we optimize over λ and obtain a solution. The previous hard thresholding
solution (10.4) is a subcase of (10.5b) when we force λ = 0. Computationally, we can solve
the regularized optimization problem in (10.5a) by using the Boykov-Kolmogorov graph cuts
algorithm [179, 185]. We call this cut-based localization.

To understand the regularized problem (10.5a) better, we have

min
C
‖x− 1C‖2

2 + λ ‖∆1C‖0

= min
t∈{0,1}N

‖x− t‖2
2 + λ ‖∆t‖0

= min
ti∈{0,1}

∑
i

(xi − ti)2 + λ
∑

j∈Nei(i)

|ti − tj|

 ,

where Nei(i) is the neighborhood of the ith node. That is, we have t∗i = 1 when

(xi − 1)2 + λ
∑

j∈Nei(i)

|xj − 1| < x2
i + λ

∑
j∈Nei(i)

|xj|.

The solution is

(t∗cut)i =

{
1, xi >

1
2

+ λ
2

(α0 − α1) ;
0, otherwise, (10.6)

where α1 counts the neighbors of xi equaling to 1 and α0 counts the neighbors of xi equal to 0.
From the above derivation, we see that (10.6) is nothing but an adaptive local thresholding. In
other words, the value of each element depends on the values of its neighbors. This explains why
cut-based localization outperforms hard thresholding.

Path-based localization for enlongated-shaped class. Cut-based localization is an effi-
cient solver to localize activated nodes that can be easily separated from inactivated ones. The
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difficulty of separating these two classes is described by the cut number, which is good at pro-
moting ball-shaped pieces, but not good at promoting elongated-shaped pieces. For example,
to solve (10.3), we introduced ‖∆1C‖0 in (10.5a) to promote fewer connections between acti-
vated nodes and inactivated ones. This is because when C is a piece, 1TC A1C is large. When
nodes in C are fully connected, C forms a ball-shaped piece (see Figures 10.2 (a)–(b)) and
1TC A1C = |C|(|C|−1)/2; however, when nodes in C are weakly connected, for example, when
C forms an elongated-shaped piece, 1TC A1C = |C| − 1. In other words, (10.5a) is better suited
to capturing ball-shaped pieces than elongated-shaped pieces.

To address elongated-shaped pieces, we consider two methods. The first method promotes an
elongated-shaped piece based on convex optimization. We first restrict ‖A1C‖∞, the maximum
degree of the nodes in the activated piece to be at most 2, pushing a piece has an elongated shape,
and then solve the following optimization problem,

min
C
‖x− 1C‖2

2 , subject to ‖A1C‖∞ ≤ 2.

In other words, the constraint requires that each activated node connect to at most two activated
nodes, which promotes elongated-shaped pieces. To solve this combinatorial problem efficiently,
we relax it to a convex problem,

t∗p1 = arg min
t∈RN

‖x− t‖2
2 ,

subject to ‖A t‖∞ ≤ 2 and 0 ≤ t ≤ 1.

We then set various thresholds for t∗p1 , extract the largest connected component, optimize over
the threshold to obtain a solution,

Cλ = PC

(
1t∗p1≥λ

)
,

C∗p1 = arg min
Cλ
‖x− 1Cλ‖

2
2 . (10.7)

The solution promotes an elongated shape, but does not restrict to an exact path.
The second method searches for an exact path based on the shortest path algorithm. We

consider the following optimization problem.

C∗p2 = arg min
C is a path

‖x− 1C‖2
2 + λ|C|, (10.8)

where the regularization parameter λ > 2xmax − 1 with xmax the maximum element in x, guar-
anteeing that shortest path algorithm will work later. The optimization problem (10.8) can be
implemented in two steps as follows

min
all pairs of s,t

(
min

C connects s,t
‖x− 1C‖2

2 + λ|C|
)
.

In the first step, we fix two end points s and t and find the optimal path C connecting s and t; in
the second step, we enumerate all pairs of end points and find the globally optimal path. We will
show that the first step can be solved exactly by the shortest path algorithm.
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The objective function of (10.8) can be rewritten as

‖x− 1C‖2
2 + λ|C|

= xTx− 21TCx + (1 + λ)1TC1

= xTx + 21TCy,

where y = 1+λ
2
1−x. Since C is the only variable, minimizing (10.8) is equivalent to minimizing

1TCy.
We consider a graph with edge weight

Wi,j =

{ yi+yj
2
, (i, j) ∈ E ;
∞, otherwise.

Let C be a path connecting two end points s and t. The path weight of C is∑
i,j∈C

Wi,j =
∑
k∈C

yk −
ys + yt

2

= 1TCy −
ys + yt

2
.

This indicates that given two end points s and t, minimizing 1TCy is equivalent to minimizing
the path weight. Since λ > 2xmax − 1, all the edge weights are non-negative. We can then use
the shortest path algorithm to efficiently compute the short paths between all pairs of nodes [16].
Graph coarsening techniques can be used to reduce the number of nodes and boost the speed [193,
194].

Finally, the elongated-shaped piece is obtained by choosing the one with a smaller objective
value in (10.3).

C∗path = arg min
C∈{C∗p1 ,C

∗
p1
}
‖x− 1C‖2

2 . (10.9)

We call this path-based localization.
Combined solvers. We combine the cut-based localization C∗cut and the path-based localiza-

tion C∗path by choosing the one with a smaller objective value. The final solution to localize a
general-shape piece is

C∗ = Loc1(x) = arg min
C∈{C∗cut,C∗path}

‖x− 1C‖2
2 , (10.10)

where Loc1(·) is the operator that finds an activated piece with unit magnitude. This solution
is not the global optimum of (10.3); it considers two typical and complementary subsets in the
feasible set, and combines a graph-cut solver, a convex programming solver and a shortest-path
solver, all of which are efficient. Note that detection or localization techniques usually need to
set thresholds; however, this localization solver (10.10) is parameter-free and directly output the
supports of a localized pattern. In Section 10.4, we validate it empirically.
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10.3.2 Localization with unknown magnitude
We next consider a more general case where the magnitude of the activated piece is unknown,
(10.1), with the associated optimization problem (10.2).

We iteratively solve C and µ until convergence; that is, given C, we optimize over µ and then
given µ, we optimize over C. In the kth iteration,

µ(k) = min
µ
‖x− µ1C(k)‖2

2 =
xT1C(k)

1T
C(k)1C(k)

,

C(k) = Loc1(
1

µ
x).

We obtain a pair of local optima by alternatively minimizing these two variables. We denote this
solver by

µ∗, C∗ = Locunknown(x). (10.11)

10.4 Experimental Results
We test our localization solver on two graphs: the Minnesota road network and the Manhattan
street network. On each graph, we consider localizing two classes of simulated graph signals
with different activated sizes under various noise levels.

10.4.1 Minnesota road network
We model the Minnesota road network as a graph with intersections as nodes and road segments
between intersections as edges. The graph includes 2, 642 nodes and 3, 342 undirected edges.
We simulate two classes of one-piece graph signals: a ball-shaped class and an elongated-shaped
class.

Ball-shaped class. To generate a ball-shaped piece, we randomly choose one node as a node
center and assign all the other nodes that are within k steps of the node center to an activated
node set, where the radius k is either 5 or 10. Figures 10.2(a)–(b) show examples of ball-shaped
pieces with radii k = 5 and 10 (left and right columns, respectively). The nodes in green (lighter)
indicate the activated nodes and the nodes in black (darker) indicate the inactivated nodes. We
aim to localize the activated pieces from noisy one-piece graph signals. We vary the noise vari-
ance σ2 from 0.1 to 1 with interval 0.1 and at each randomly generate 1, 000 noisy one-piece
graph signals.

We measure the quality of the localization with two measures: the Hamming distance and
the F1 score. The Hamming distance is equivalent to the Manhattan distance between two binary
graph signals, that is, it counts the total number of mismatches between the two,

dH(Ĉ, C) =
∥∥1Ĉ − 1C

∥∥
1

= |C ∪ Ĉ| − |C ∩ Ĉ|,

where C is the ground truth for the activated piece and Ĉ is the localized piece. The lower the
Hamming distance the better the quality: the Hamming distance reaches its minimum value at
dH(Ĉ, C) = 0.
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The F1 score is the harmonic mean of the precision and recall, and measures the matching
accuracy,

F1(Ĉ, C) = 2
precision(Ĉ, C) recall(Ĉ, C)

precision(Ĉ, C) + recall(Ĉ, C)
,

where precision is the fraction of retrieved instances that are relevant (true positives over the
sum of true positives and false positives), while recall is the fraction of relevant instances that
are retrieved (true positive over the sum of true positives and false negatives) [195]. Thus, with
true positives = |C ∩ Ĉ|, sum of true positives and false positives = |Ĉ| and the sum of the true
positives and false negatives = |C|, we have

F1(Ĉ, C) = 2
|C ∩ Ĉ|
|C|+ |Ĉ|

=
2|C ∩ Ĉ|

dH(Ĉ, C) + |C ∩ Ĉ|
.

The higher the F1 score the better the quality: the F1 score reaches its maximum value at F1 = 1
and minimum value at F1 = 0.

The Hamming distance emphasizes the difference between two sets while the F1 score em-
phasizes their agreement; the higher the F1 score, or the lower the Hamming distance, the better
the localization quality.

Figures 10.2(c)–(d) show the F1 scores and Figures 10.2(e)–(f) the Hamming distances of
localizing ball-shaped pieces with radii k = 5 and 10 (left and right columns, respectively) as
functions of the noise variance. Each figure compares four methods: hard thresholding (10.4)
(hard, grey-solid line), path-based localization (10.9) (path, yellow-circle line), cut-based local-
ization (10.5b) (cut number, purple-square line), combined localization (10.10) (combine, red-
solid line), local-set-based piecewise-constant dictionary (LSPC, green-square line) [93], trend
filtering on graphs (TF) [196] and graph Laplacian denoising (gLap) [1]. LSPC is a predesigned
graph dictionary and we use the matching pursuit algorithm to choose one atom to localize an ac-
tivated piece. Trend filtering on graphs and graph Laplacian denoising are denoising algorithms,
which solve the following two optimization problems, respectively,

TF(λ) : min
t
‖x− t‖2

2 + λ ‖∆t‖1 ,

gLap(λ) : min
t
‖x− t‖2

2 + λtT L t,

where λ is a tuning parameter, ∆ is the graph incidence matrix (2.5) and L is the graph Laplacian
matrix. ‖∆t‖1 promotes localized adaptivity and tT L t promotes smoothness. When λ is small,
both solutions are close to the noisy graph signal; when λ is large, both solutions are regularized
to be either localized or smooth. We expect that a small λ works better in a noiseless case and
a large λ works better in a noisy case. After obtaining the denoised solution t∗, we implement
hard thresholding with threshold µ/2 = 0.5 to localize the activated piece. To test the sensitivity
to the tuning parameter, we also vary λ as either 0.5 or 5 in our experiments. Trend filtering on
graphs and graph Laplacian denoising involve two tuning parameters: regularization parameter
λ and threshold; however, both methods do not provide a principle to choose those parameters in
practice. On the other hand, the proposed localization method (10.10) is parameter-free.
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We observe that: (1) Cut-based localization provides the most robust performances; hard
thresholding is a special case of cut-based localization, path-based localization is designed for
capturing elongated-shaped pieces, LSPC is a data-independent dictionary and cannot adapt the
shape of its atom to the given piece, Graph Laplacian denoising with careful parameter selection
works well for large activated pieces, but it still fails to localize small activated pieces as the
smooth assumption cannot capture localized variation. Trending filtering on graphs works well
in denoising of a piecewise-constant graph signal; however, it may not work well in localization
as the output is real and the threshold is hard to decide. Here the threshold is µ/2 = 0.5,
which sometimes works well and sometimes rules out the entire output. We also see that both
graph Laplacian denoising and trending filtering on graphs are sensitive to the tuning parameter
λ. Comparing to other methods, the advantages of cut-based localization are parameter-free,
scalable and robust to noise. (2) The noise level influences the localization performance; as it
grows, the F1 score decreases and the Hamming distance increases. (3) The size of the activated
piece influences the localization; localizing a piece with radius 10 is easier than localizing a piece
with radius 5; this was also observed in [192].

Elongated-shape class. To generate an elongated path, we randomly choose two nodes
as starting and ending nodes and compute the shortest path between these two. We look at
two categories of path lengths: shorter than 15 and longer than 80 1. Figures 10.3(a)–(b) show
examples of paths with lengths 15 and 91 (left and right columns, respectively). We aim to
localize the activated pieces from noisy path graph signals. We vary the noise variance σ2 from
0.1 to 1 with interval 0.1 and at each randomly generate 1, 000 noisy path graph signals at each
noise level. We measure the quality of the localization by the Hamming distance and F1 score.

Elongated-shape class. To generate an elongated path, we randomly choose two nodes as
starting and ending nodes and compute the shortest path between these two. We look at two
categories of path lengths: the first class has length between 10 to 15 and the second class has
length longer than 80 2. Figures 10.3(a)–(b) show examples of paths with lengths 15 and 91 (left
and right columns, respectively). We aim to localize activated paths with activated magnitude
µ = 1 from noisy path graph signals. We vary the noise variance σ2 from 0.1 to 1 with interval 0.1
and at each randomly generate 1, 000 noisy path graph signals at each noise level. We measure
the quality of the localization by the Hamming distance and F1 score.

Figures 10.3(c)–(d) show the F1 scores and Figures 10.3(e)–(f) the Hamming distances of
localizing elongated-shaped pieces with lengths 15 and 91 (left and right columns, respectively)
as functions of the noise variance. We compare the same six methods as in Figure 10.2: hard
thresholding (grey-solid line), path-based localization (10.9) (yellow-circle line), cut-based lo-
calization (10.5b) (purple-square line), combined localization (10.10) (red-solid line), local-set-
based piecewise-constant ( LSPC, green-square line), trending filtering on graphs ( TF(λ =
0.5) light-blue-circle line, TF(λ = 5) dark-blue-dashed line) and graph Laplacian denoising (
gLap(λ = 0.5) light-brown-circle line, gLap(λ = 5) dark-brown-dashed line).

We observe that: (1) Path-based localization performs the best, which is also parameter-
free, scalable and robust to noise. (2) When the path is short, cut-based localization and path-
based localization provide similar performance; when the path is long, path-based localization

1The path length is measured by the geodesic distance between the two end nodes.
2The path length is measured by the geodesic distance between the two end nodes.
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significantly outperforms cut-based localization. (3) The noise level influences the localization
performance; as it grows, the F1 score decreases and the Hamming distance increases. (4) The
path length influences the localization performance. Similarly to what we observed in the ball-
shaped case, it is much harder to localize a short path because a small activation provides less
information.

10.4.2 Manhattan street network
We model the Manhattan street network as a graph with intersections as nodes and city streets
as edges. The graph includes 13, 679 nodes and 17, 163 undirected edges. We generate two
classes of one-piece graph signals: Central Park and 5th Avenue. Central Park is considered a
ball-shaped piece and 5th Avenue is considered a path. We then compare the results with those
from the Minnesota road network to validate our conclusions.

Central Park. Figures 10.4(a)–(d) show a piece activating the nodes in Central Park, a noisy
version with noise variance σ2 = 1, the activated piece provided by cut-based localization and
the activated piece provided by path-based localization, respectively. We see that, even when the
graph signal is corrupted by a high level of noise, cut-based localization still provides accurate
localization, while path-based localization fails to localize Central Park. Figures 10.4(e)–(f)
show the F1 score and Hamming distance when localizing Central Park as a function of the noise
level, respectively. The results are averaged over 1, 000 runs. We see that, when the noise level is
low, cut-based localization significantly outperforms the other methods, which is consistent with
what we observed with the Minnesota road network. LSPC is less sensitive to noise and slightly
outperforms the other methods when the noise level is high. Since LSPC is data-independent, it
chooses the most relevant predesigned atom to fit a noisy signal; on the other hand, as a data-
adaptive method, cut-based localization designs an atom from the noisy signal and it easily fits
noisy data. Overall, the localization performance of LSPC highly depends on the shape of its
atoms: when LSPC has a predesigned atom matching the ground truth, it is robust to noise
and provides effective localization performance; when LSPC does not have a predesigned atom
matching the ground truth, it fails to localize well.

5th Avenue. Figures 10.5(a)–(d) show a piece activating the nodes along 5th Avenue, a noisy
version with noise variance σ2 = 1, the activated piece provided by cut-based localization and
the activated piece provided by path-based localization, respectively. When the graph signal is
corrupted by a high level of noise, both cut-based localization and path-based localization fail
to localize 5th Avenue. Figures 10.5(e)–(f) show the F1 score and Hamming distance when
localizing 5th Avenue as a function of the noise level, respectively. The results are averaged
over 1, 000 runs. We see that the path-based localization significantly outperforms all the other
localization methods under various noise levels. This is similar to what we observed with the
Minnesota road network.

10.5 Conclusions
We aimed to find the supports of localized activated patterns on graphs. Its counterpart prob-
lems in classical signal/image processing, such as impluse detection, foreground detection and
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wavelet construction, are intensely studied over the past few decades. We modeled localized
patterns by piecewise-constant graph signals, where each piece indicates a localized pattern that
exhibits homogeneous internal behavior and the number of pieces indicates the number of lo-
calized patterns. We proposed a specific graph signal model, an optimization problem and a
computationally efficient solver. The proposed solvers directly find the the supports of arbitrary
localized activated patterns without tuning any threshold, which is a notorious issue in many
localization problems. We then conducted an extensive empirical study to validate the proposed
methods on simulated data. The results show the effectiveness and robustness of the proposed
methods.
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Radius 5. Radius 10.

(a)–(b) Ball-shaped piece.
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(c)–(d) F1 score.
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(e)–(f) Hamming distance.

Figure 10.2: Localizing ball-shaped pieces in the Minnesota road network as a function of
the noise level using hard thresholding (blue dashed line), cut-based localization (red solid
line), path-based localization (yellow-circle line) and local-set-based piecewise-constant (purple-
square line). Cut-based localization provides the best performance.
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Length 15. Length 91.

(a)–(b) Path.
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(c)–(d) F1 score.
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Figure 10.3: Localizing paths in the Minnesota road network as a function of noise level using
hard thresholding (blue dashed line), cut-based localization (red solid line), path-based localiza-
tion (yellow-circle line) and local-set-based piecewise-constant (purple-square line). Path-based
localization provides the best performance.

171



(a) Signal. (b) Noisy signal.

(c) Activated piece (cut). (d) Activated piece (path).
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Figure 10.4: Localizing (a) Central Park in the Manhattan street network as a function of the
noise level from (b) its noisy version. (c) Activated piece obtained by cut-based localization
with F1 = 0.81 and dH = 214. (d) Activated piece obtained by path-based localization with
F1 = 0.24 and dH = 586. Cut-based localization outperforms path-based localization.
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(a) Signal. (b) Noisy signal.

(c) Activated piece (cut). (d) Activated piece (path).
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Figure 10.5: Localizing (a) 5th Avenue in the Manhattan street network as a function of the
noise level from (b) its noisy version. (c) Activated piece obtained by cut-based localization
with F1 = 0.24 and dH = 144. (d) Activated piece obtained by path-based localization with
F1 = 0.85 and dH = 43. Path-based localization outperforms cut-based localization.
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Chapter 11

3D Point Cloud Processing

11.1 Introduction

With the recent development of 3D sensing technologies, 3D point clouds have become an im-
portant and practical representation of 3D objects and surrounding environments in many appli-
cations, such as virtual reality, mobile mapping, scanning of historical artifacts, 3D printing and
digital elevation models [197]. A large number of 3D points on an object’s surface measured
by a sensing device are called a 3D point cloud. Other than 3D coordinates, a 3D point cloud
may also comprise some attributes, such as color, temperature and texture. Based on storage
order and spatial connectivity between 3D points, there are two types of point clouds: organized
point clouds and unorganized point clouds [198]. 3D points collected by a camera-like 3D sen-
sor or a 3D laser scanner are typically arranged on a grid, like pixels in an image; we call those
point clouds organized. For complex objects, we need to scan these objects from multiple view
points and merge all collected points, which intermingles the order of sensing; we call those
point clouds unorganized. It is easier to process an organized point cloud than an unorganized
point cloud as the underlying grid produces a natural spatial connectivity and reflects the order
of sensing. To make it general, we consider unorganized point clouds in this paper.

3D point cloud processing has become an important component in many 3D imaging and
vision systems. It broadly includes compression [199–202], visualization [203, 204], surface
reconstruction [205, 206], rendering [207, 208], editing [209, 210] and feature extraction [211–
215]. A challenge in 3D point cloud processing is how to handle a large number of incoming
3D points [216,217]. In many applications, such as digital documentation of historical buildings
and terrain visualization, we need to store billions of incoming 3D points; additionally, real-time
sensing systems generate millions of data points per second. A large-scale point cloud makes
storage and subsequent processing inefficient.

To solve this problem, an approach is to consider efficient data structures to represent 3D
point clouds. For example, [218, 219] partitions the 3D space into voxels and discretizes point
clouds over voxels; a drawback is that to achieve a fine resolution, a dense grid is required, which
causes space inefficiency. [220, 221] presents an octree representation of point clouds, which is
space efficient, but suffers from discretization errors. [222, 223] presents a probabilistic genera-
tive model to model the distribution of point clouds; drawbacks are that those parametric models
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(a) Uniform resampling. (b) Contour-enhanced resampling.

Figure 11.1: Proposed resampling strategy enhances contours of a point cloud. Plots (a) and
(b) resamples 2% points from a 3D point cloud of a building containing 381, 903 points. Plot
(b) is more visual-friendly than Plot (a). Note that the proposed resampling strategy is able to to
enhance any information depending on users’ preferences.

may not capture the true surface, and it is inefficient to infer parameters in the probabilistic
generative model.

Another approach is to consider reducing the number of points through mesh simplification.
The main idea is to construct a triangular or polygonal mesh for 3D point clouds, where nodes
are 3D points (need not be from the input points) and edges are connectivities between those
points respecting certain restrictions (e.g., belonging to a manifold). The mesh is simplified by
reducing the number of nodes or edges; that is, several nodes are merged into one node with local
structure preserved. Surveys of many such methods can be found in [224–226]. Drawbacks of
this approach are that mesh construction requires costly computation, and mesh simplification
changes the positions of original points, which causes distortion.

In this chapter, we consider resampling 3D point clouds; that is, we design application-
dependent resampling strategies to preserve application-dependent information. For example,
conventional contour detection in 3D point clouds requires careful and costly computation to
obtain surface normals and classification models [223, 227]. We efficiently resample a small
subset of points that is sensitive to the required contour information, making the subsequent pro-
cessing cheaper without losing accuracy; see Figure 11.1 for an example. Since the original 3D
point cloud is sampled from an object, we call this task resampling. This approach reduces the
number of 3D points without changing the locations of original 3D points. After resampling,
we unavoidably lose information in the original 3D point cloud. Our goal here is to design
application-dependent resampling strategies to preserve application-dependent information.

We use a graph to capture local dependencies among points, representing a discrete version
of the surface of an original object. The advantage of using a graph is to capture both local and
global structure of point clouds. Each of the 3D coordinates and other attributes associated with
3D points is a graph signal indexed by the nodes of the underlying graph. We thus formulate a
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resampling problem as graph signal sampling. However, graph sampling methods usually select
samples in a deterministic fashion, which solve nonconvex optimization problems to obtain sam-
ples sequentially and require costly computation [45, 62, 90, 228]. To reduce the computational
cost, we propose an efficient randomized resampling strategy to select a subset of points. The
main idea is to generate subsamples according to a non-uniform resampling distribution, which
is both fast and provably preserves application-dependent information in the original 3D point
cloud.

11.2 Problem Formulation
In this section, we start with formulating a task of resampling a 3D point cloud. We then intro-
duce graph signal processing, which lays a foundation for our proposed methods.

11.2.1 Resampling a Point Cloud
We consider a matrix representation of a point cloud with N points and K attributes,

X =
[
s1 s2 . . . sK

]
=


xT1
xT2
...

xTN

 ∈ RN×K , (11.1)

where si ∈ RN represents the ith attribute and xi ∈ RK represents the ith point. Depending
on sensing device, attributes can be 3D coordinates, RGB colors, textures, and many others.
To distinguish 3D coordinates and other attributes, Xc ∈ RN×3 represents 3D coordinates and
Xo ∈ RN×(K−3) represents other attributes.

The number of points N is usually large. For example, a 3D scan of a building usually needs
billions of 3D points. It is challenging to work with a large-scale point cloud from both storage
and data analysis perspectives. In many applications, however, we are interested in a subset of 3D
points with particular properties, such as key points in point cloud registration and contour points
in contour detection. To reduce the storage and computational cost, we consider resampling a
subset of representative 3D points from the original 3D point cloud to reduce the scale. The
procedure of resampling is to resampleM (M < N) points from a point cloud, or select M rows
from the point cloud matrix X. The resampled point cloud is

XM = Ψ X ∈ RM×K , (11.2)

whereM = (M1, . . . ,MM) denotes the sequence of resampled indices, called resampled set,
Mi ∈ {1, . . . , N} with |M| = M and the resampling operator Ψ is a linear mapping from RN

to RM as defined in (5.1).
The efficiency of the proposed resampling strategy is critical. Since we work with a large-

scale point cloud, we want to avoid expensive computation. To implement resampling in an
efficient way, we consider a randomized resampling strategy. It means that the resampled indices
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are chosen according to a resampling distribution. Let {πi}Ni=1 be a series of resampling proba-
bilities, where πi denotes the probability to select the ith sample in each random trial. Once the
resampling distribution is chosen, it is efficient to generate samples. The goal here is to find a
resampling distribution that preserves information in the original point cloud.

The invariant property of the proposed resampling strategy is also critical. When we shift,
rotate or scale a point cloud, the intrinsic distribution of 3D points does not changed and the
proposed resampling strategy should not change.
Definition 22. A resampling strategy is shift-invariant when a sampling distribution π is designed
for a point cloud, X =

[
Xc Xo

]
, then the same sampling distribution π is designed for its shifted

point cloud,
[
Xc +1aT Xo

]
, where a ∈ R3.

Definition 23. A resampling strategy is rotation-invariant when a sampling distribution π is
designed for a point cloud, X =

[
Xc Xo

]
, then the same sampling distribution π is designed for

its rotated point cloud,
[
Xc R Xo

]
, where R ∈ R3×3 is a 3D rotation matrix.

Definition 24. A resampling strategy is scale-invariant when a sampling distribution π is de-
signed for a point cloud, X =

[
Xc Xo

]
, then the same sampling distribution π is designed for

its rotated point cloud,
[
cXc Xo

]
, where constant c > 0.

Our aim is to guarantee that the proposed resampling strategy is shift, rotation and scale
invariant.

11.3 Methodology

11.3.1 Resampling based on Feature Extraction
During resampling, we reduce the number of points and unavoidably lose information in a point
cloud. Our goal is to design an application-dependent resampling strategy, preserving selected
information depending on particular needs. Those information are described by features. When
detecting contours, we usually need careful and intensive computation, such as calculating sur-
face normals and classifying points [223,227]. Instead of working with a large number of points,
we consider efficiently sampling a small subset of points that captures the required contour infor-
mation, making the subsequent computation much cheaper without losing contour information.
We also need to guarantee that the proposed resampling strategy is shift/rotation/scale-invariant
for robustness. We will show that some features naturally provide invariance and other may not.
We will handle the invariance by considering a general objective function.

Feature-Extraction based Formulation

Let f(·) be a feature-extraction operator that extracts targeted information from a point cloud
according to particular needs; that is, the features f(X) ∈ RN×K are extracted from a point
cloud X ∈ RN×K1. Depending on an application, those features can be edges, key points and
flatness [212–215, 229]. In this section, we consider feature-extraction operator at an abstract
level and use graph filters to implement a feature-extraction operator in the next section.

1 For simplicity, we consider the number of features to be the same as the number of attributes. The proposed
method also works when the number of features and the number of attributes are different.
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To evaluate the performance of a resampling operator, we quantify how much features are lost
during resampling; that is, we sample features, and then interpolate to get back original features.
The features are considered to reflect the targeted information contained in each 3D point. The
performance is better when the recovery error is smaller. Mathematically, we resample a point
cloud M times. At the jth step, we independently choose a pointMj = i with probability πi.
Let Ψ ∈ RM×N be the resampling operator (5.1) and S ∈ RN×N be a diagonal rescaling matrix
with Si,i = 1/

√
Mπi. We quantify the performance of a resampling operator as follows:

Df(X)(Ψ) =
∥∥S ΨTΨf(X)− f(X)

∥∥2

2
, (11.3)

where ‖·‖2 is the spectral norm. ΨTΨ ∈ RN×N is a zero-padding operator, which a diagonal
matrix with diagonal elements (ΨTΨ)i,i > 0 when the ith point is sampled, and 0, otherwise.
The zero-padding operator ΨTΨ ensures the resampled points and the original point cloud have
the same size. S is used to compensate non-uniform weights during resampling. S ΨT is the
most naive interpolation operator that reconstructs the original feature f(X) from its resampled
version Ψf(X) and S ΨTΨf(X) represents the preserved features after resampling in a zero-
padding form. Lemma 7 shows that S aids to provide an unbiased estimator.
Lemma 7. Let f(X) ∈ RN×K be features extracted from a point cloud X. Then,

EΨ∼π
(
ΨTΨf(X)

)
∝ π � f(X),

EΨ∼π
(
S ΨTΨf(X)

)
= f(X),

where EΨ∼π means the expectation over samples, which are generated from a distribution Π
independently and randomly, and � is row-wise multiplication.

See Appendix 14.8 for the proof of these results.
The evaluation metric Df(X)(Ψ) measures the reconstruction error; that is, how much feature

information is lost after resampling without using sophisticated interpolation operator. When
Df(X)(Ψ) is small, preserved features after resampling are close to the original features, meaning
that little information is lost. The expectation EΨ∼π

(
Df(X)(Ψ)

)
is the expected error caused by

resampling and quantifies the performance of a resampling distribution π. Our goal is to mini-
mize EΨ∼π

(
Df(X)(Ψ)

)
over π to obtain an optimal resampling distribution in terms of preserving

features f(X). We now derive the mean square error of the objective function (11.3).
Theorem 24. The mean square error of the objective function (11.3) is

EΨ∼πDf(X)(Ψ) = Tr
(
f(X) Q f(X)T

)
, (11.4)

where Q ∈ RN×N is a diagonal matrix with Qi,i = 1/πi − 1.
See Appendix 14.9 for the proof of these results.
We now consider the invariance property of resampling. The sufficient condition for the

shift/rotation/scale-invariance of a resampling strategy is that the evaluation metric (11.3) be
shift/ rotation/scale-invariance. Recall that a 3D point cloud is X =

[
Xc Xo

]
, where Xc ∈ RN×3

represent 3D coordinates and Xo ∈ RN×(K−3) to represent other attributes.
Definition 25. A feature-extraction operator f(·) is shift-invariant when the features extracted
from a point cloud and its shifted version are same; that is, f(

[
Xc Xo

]
) = f(

[
Xc +1aT Xo

]
)

with shift a ∈ R3.
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Definition 26. A feature-extraction operator f(·) is rotation-invariant when the features extracted
from a point cloud and its rotated version are same; that is, f(

[
Xc Xo

]
) = f(

[
Xc R Xo

]
) with

R ∈ R3×3 is a 3D rotation matrix.
Definition 27. A feature-extraction operator f(·) is scale-invariant when features extracted from
a point cloud and its scaled version are same; that is, f(

[
Xc Xo

]
) = f(

[
cXc Xo

]
) with con-

stant c > 0.
When f(·) is shift/rotation/scale-invariant, (11.3) does not change through shifting, rotat-

ing or scaling, leading to a shift/rotation/scale-invariant resampling strategy and it is sufficient to
minimize EΨ∼π

(
Df(X)(Ψ)

)
to obtain a resampling strategy; however, when f(·) is shift/rotation/scale-

variance, (11.3) may change through shifting, rotating or scaling, leading to a shift/rotation/scale-
variant resampling strategy.

To handle shift variance, we can recenter a point cloud to the origin before processing; that is,
we normalize the mean of 3D coordinates to zeros. To handle scale variance, we can normalize
the magnitude of the 3D coordinates before processing; that is, we normalize the spectral norm
‖Xc‖2 = c with constant c > 0. The choice of c depends on users’ preference and we will show
that c is a trade-off between 3D coordinates and the values of other attributes. From now on,
we first recenter a point cloud to the origin and then normalize its magnitude to guarantee the
shift/scale invariance of any 3D point cloud.

To handle rotation variance of f(·), we consider the following evaluation metric:

Df (Ψ) = max
X′c:‖X′c‖2=c

D
f
([

X′c Xo

]) (Ψ)

= max
X′c:‖X′c‖2=c

∥∥(S ΨTΨ− I
)
f
([

X′c Xo

])∥∥2

F
,

(11.5)

where constant c = ‖Xc‖2 is the normalized spectral norm of 3D coordinates.
Unlike Df(X)(Ψ) (11.3), to remove the influence of rotation, the evaluation metric Df (Ψ)

considers the worst possible reconstruction error caused by rotation. In (11.5), we consider 3D
coordinates as variables due to rotation. We constrain the spectral norm of 3D coordinates be-
cause a rotation matrix is orthornormal and the spectral norm of 3D coordinates does not change
during rotation. We then minimize EΨ∼π (Df (Ψ)) to obtain a rotation-invariant resampling strat-
egy even when f(·) is rotation-variant.

For simplicity, we perform derivation for only linear feature-extraction operators. A linear
feature-extraction operator f(·) is of the form of f(X) = F X, where X is a 3D point cloud and
F ∈ RN×N is a feature-extraction matrix.
Theorem 25. Let f(·) be a rotation-varying linear feature-extraction operator, where f(X) =
F X with F ∈ RN×N . The exact form of EΨ∼πDf (Ψ) is

EΨ∼π (Df (Ψ)) = c2Tr
(
F Q FT

)
+ Tr

(
F Xo Q(F Xo)T

)
, (11.6)

where Q ∈ RN×N is a diagonal matrix with Qi,i = 1/πi − 1.
See Appendix 14.10 for the proof of these results.
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Optimal Resampling Distribution

We now derive the optimal resampling distributions by minimizing the reconstruction error. For
a rotation-invariant feature-extraction operator, we minimize (11.4).
Theorem 26. Let f(·) be a rotation-invariant feature-extraction operator. The corresponding
optimal resampling strategy π∗ is,

π∗i ∝ ‖fi(X)‖2 , (11.7)

where fi(X) ∈ RK is the ith row of f(X).
See Appendix 14.11 for the proof of these results.
We see that the optimal resampling distribution is proportional to the magnitude of features;

that is, points associated with high magnitudes have high probability to be selected, while points
associated with small magnitudes have small probability to be selected. The intuition is that the
response after the feature-exaction operator reflects the information contained in each 3D point
and determines the resampling probability of each 3D point.

For a rotation-variant linear feature-extraction operator, we minimize (11.6).
Theorem 27. Let f(·) be a rotation-variant linear feature-extraction operator, where f(X) = F X
with F ∈ RN×N . The corresponding optimal resampling strategy π∗ is,

π∗i ∝
√
c2 ‖Fi‖2

2 + ‖(F Xo)i‖
2
2, (11.8)

where constant c = ‖Xc‖2, Fi is the ith row of F and (F Xo)i is the ith row of F Xo.
See Appendix 14.12 for the proof of these results.
We see that the optimal resampling distribution is also proportional to the magnitude of fea-

tures. The feature comes from two sources: 3D coordinates and the other attributes. The tuning
parameter c in (11.8) is the normalized spectral norm used to remove the scale variance. The
choice of c trade-offs the contribution from 3D coordinates and the other attributes.

11.3.2 Resampling based on Graph Filtering
The previous section studied resampling based on an arbitrary feature-extraction operator. In
this section, we design graph filters to efficiently extract features from a point cloud. Let features
extracted from a point cloud X be

f(X) = h(A) X =
L−1∑
`=0

h` A` X,

which follows from the definition of graph filters (2.10). Since a graph filter is a linear opera-
tor, the corresponding optimal resampling distribution follows from the results in Theorems 26
and 27 by replacing F =

∑L−1
`=0 h` A`. All graph filtering-based feature-extraction operators are

scale-variant due to linearity. As discussed earlier, we can normalize the spectral norm of a 3D
coordinates to handle this issue. We thus will not discuss scale invariance in this section. We
will see that by carefully using the graph shift operator A and filter coefficients his, a graph
filtering-based feature-extraction operator may be shift or rotation varying.
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Similarly to filter design in classical signal processing, we design a graph filter either in the
graph vertex domain or in the graph spectral domain. In the graph vertex domain, for each point,
a graph filter averages the attributes of its local points. For example, the output of the ith point,
fi(X) =

∑L−1
`=0 h`

(
A` X

)
i

is a weighted average of the attributes of points that are within L hops
away from the ith point. The `th graph filter coefficient, h`, quantifies the contribution from the
`th-hop neighbors. We design the filter coefficients to change the weights in local averaging.

In the graph spectral domain, we first design a graph spectrum distribution and then use graph
filter coefficients to fit this distribution. For example, a graph filter with length L is

h(A) = V h(Λ) V−1

= V


∑L−1

`=0 h`λ
`
1 0 · · · 0

0
∑L−1

`=0 h`λ
`
2 · · · 0

...
... . . . ...

0 0 · · ·
∑L−1

`=0 h`λ
`
N

V−1,

where V is the graph Fourier basis and λi are graph frequencies (2.6). When we want the re-
sponse of the ith graph frequency to be ci, we set

h(λi) =
L−1∑
`=0

h`λ
`
i = ci,

and solve a set of linear equations to obtain the graph filter coefficients h`. It is also possible to
use the Chebyshev polynomial to design graph filter coefficients [37]. We now consider some
special cases of graph filters.

All-pass Graph Filtering

Let h(λi) = 1; that is, h(A) = I is an identity matrix with h0 = 1 and hi = 0 for i = 1, . . . , L−1.
The intuition behind this setting is that the original point cloud is trustworthy and all points are
uniformly sampled from an object without noise, reflecting the true geometric structure of the
object. We want to preserve all the information and the features are thus the original attributes
themselves. Since f(X) = X, the feature-extraction operator f(·) is rotation-variant. Based on
Theorem 27, the optimal resampling strategy is

π∗i ∝
√
c2 + ‖(Xo)i‖

2
2. (11.9)

Here the feature-extraction matrix F in (11.7) is an identity matrix and the norm of each row
of F is 1. When we only preserve 3D coordinates, we ignore the term of Xo and obtain a
constant resampling probability for each point, meaning that uniform resampling is the optimal
resampling strategy to preserve the overall geometry information.

High-pass Graph Filtering

In image processing, a high-pass filter is used to extract edges and contours. Similarly, we use
a high-pass graph filter to extract contours in a point cloud. Here we only consider the 3D
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coordinates as attributes (X = Xc = RN×3), but the proposed method can be easily extended to
other attributes.

A critical question is how to define contours in a 3D point cloud. We consider that contour
points break the trend formed by its neighboring points and bring innovation. Many previous
works need sophisticated geometry-related computation, such as surface normal, to detect con-
tours [227]. Instead of measuring sophisticated geometry properties, we describe the possibility
of being a contour point by the local variation on graphs, which is the response of high-pass
graph filtering. The corresponding local variation of the ith point is

fi(X) = ‖ (h(A) X)i‖
2
2 , (11.10)

where h(A) is a high-pass graph filter. The local variation f(X) ∈ RN quantifies the energy of
response after high-pass graph filtering. The intuition behind this is that when the local variation
of a point is high, its 3D coordinates cannot be well approximated from the 3D coordinates of its
neighboring points; in other words, this point bring innovation by breaking the trend formed by
its neighboring points and has a high possibility of being a contour point.

The following theorem shows that in general the local variation is rotation invariant, but shift
variant.
Theorem 28. Let f(X) = diag

(
h(A) X XT h(A)T

)
∈ RN , where diag(·) extracts the diagonal

elements. f(X) is rotation invariant and shift invariant unless h(A)1 = 0 ∈ RN .
See Appendix 14.13 for the proof of these results.
To guarantee local variation is naturally shift invariant without recentering a 3D point cloud,

we simply use a transition matrix as a graph shift operator; that is, A = D−1 W, where D is
the diagonal degree matrix. The reason is that 1 ∈ RN is the eigenvector of a transition matrix,
A1 = D−1 W 1 = 1. Thus,

h(A)1 =
N−1∑
`=0

h` A` 1 =
N−1∑
`=0

h`1 = 0,

when
∑N−1

`=0 h` = 0. A simple design is a Haar-like high-pass graph filter

hHH(A) = I−A (11.11)

= V


1− λ1 0 · · · 0

0 1− λ2 · · · 0
...

... . . . ...
0 0 · · · 1− λN

V−1,

Note that λmax = maxi |λi| = 1, where λi are eigenvalues of A, because the graph shift operator
is a transition matrix. In this case, h0 = 1, h1 = −1 and hi = 0 for all i > 1,

∑N−1
`=0 h` = 0.

Thus, a Haar-like high-pass graph filter is both shift and rotation invariant. The graph frequency
response of a Haar-like high-pass graph filter is hHH(λi) = 1 − λi. Since the eigenvalues are
ordered descendingly, we have 1 − λi ≤ 1 − λi+1, meaning low frequency response relatively
attenuates and high frequency response relatively amplifies.

185



(a) Lines. (b) Circle.

Figure 11.2: Red line shows the local variation.

In the graph vertex domain, the response of the ith point is

(hHH(A) X)i = xi −
∑
j∈Ni

Ai,j xj.

Because A is a transition matrix,
∑

j∈Ni Ai,j = 1 and hHH(A) compares the difference between a
point and the convex combination of its neighbors. The geometry interpretation of the proposed
local variation is the Euclidean distance between the original point and the convex combination
of its neighbors, reflecting how much information we know about a point from its neighbors.
When the local variation of a point is large, the Euclidean distance between this point and the
convex combination of its neighbors is long and this point provides a large amount of innovation.

We can verify the proposed local variation on some simple examples.
Example 1. When a point cloud form a 3D line, two endpoints belong to the contour.
Example 2. When a point cloud form a 3D polygon/polyhedron, the vertices (corner points) and
the edges (line segment connecting two adjacent vertices) belong to the contour.
Example 3. When a point cloud form a 3D circle/sphere, there is no contour.

When the points are uniformly spread along the defined shape, the proposed local varia-
tion (11.10) satisfies Examples 1, 2 and 3 from the geometric perspective. For example, in
Figure 11.2 (a), Point 2 is the convex combination of Points 1 and 3, and the local variation of
Point 2 is thus zero. However, Point 4 is not the convex combination of Points 3 and 5 and the
length of the red line indicates the local variation of Point 4. It turns out that only Points 1, 4 and
7 have nonzero local variation, which is what we expect. In Figure 11.2 (b), all the nodes are
evenly spread on a circle and have the same amount of innovation, which is represented as a red
line. Similar arguments show that the proposed local variation (11.10) satisfies Examples 1, 2
and 3.

The feature-extraction operator f(X) = ‖hHH(A) X‖2
F is shift and rotation-invariant. Based

on Theorem 26, the optimal resampling distribution is

π∗i ∝
∥∥∥∥ (hHH(A) X)i

∥∥∥∥2

2

=

∥∥∥∥∥xi −∑
j∈Ni

Ai,j xj

∥∥∥∥∥
2

2

, (11.12)
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where A = D−1 W is a transition matrix.

Figure 11.3: The pairwise difference based local variation cannot capture the contour points
connecting two faces.

Note that the graph Laplacian matrix is commonly used to measure variations. Let L =
D−W ∈ RN×N be a graph Laplacian matrix. The graph Laplacian based total variation is

Tr
(
XT L X

)
=
∑
i

∑
j∈Ni

Wi,j ‖xi − xj‖2
2 . (11.13)

where Ni is the neighbors of the ith node and the variation contributed by the ith point is

fi(X) =
∑
j∈Ni

Wi,j ‖xi − xj‖2
2 . (11.14)

The variation here is defined based on the accumulation of pairwise differences. We call (11.14)
pairwise difference based local variation.

The pairwise difference based local variation cannot capture geometry change and violates
Example 2. We show a counter example in Figure 11.3. The points are uniformly spread along
the faces of a cube and Figure 11.3 shows two faces. Each point connects to its adjacent four
points with the same edge weight. The pairwise difference based local variations of all the points
are the same, which means that there is no contour in this point cloud. However, the black arrow
points to a point that should be a contour point.

Low-pass Graph Filtering

In classical signal processing, a low-pass filter is used to capture rough shape of a smooth signal
and reduce noise. Similarly, we use a low-pass graph filter to capture rough shape of a point
cloud and reduce sampling noise during resampling. Since we use the 3D coordinates of points
to construct a graph, the 3D coordinates are naturally smooth on this graph, meaning that two
adjacent points in the graph have similar coordinates in the 3D space. When a 3D point cloud
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is corrupted by noises and outliers, a low-pass graph filter, as a denoising operator, uses local
neighboring information to approximate a true position for each point. Since the output after
low-pass graph filtering is a denoised version of the original point cloud, it is more appropriate
to resample from denoised points than original points.

Frequency
0 200 400 600 800

Magnitude

0

50

100

150

(a) Teapot. (b) Approximation with (c) Approximation with (d) Graph spectral distribution.
10 graph frequencies. 100 graph frequencies.

Figure 11.4: Low-pass approximation represents the main shape of the original point clouds.
Plot (a) shows a point cloud with 8, 000 points representing a teapot. Plots (b) and (c) show
the approximations with 10 and 100 graph frequencies. We see that the approximation with 10
graph frequencies shows a rough structure of a teapot and the approximation with 100 graph
frequencies can be recognized as a teapot. Plot (d) shows the graph spectral distribution, which
clearly shows that most energy is concentrated in the low-pass band.

Ideal low-pass graph filter. A straightforward choice is an ideal low-pass graph filter, which
completely eliminates all graph frequencies above a given graph frequency while passing those
below unchanged. An ideal low-pass graph filter with bandwidth b is

hIL(A) = V

[
Ib×b 0b×(N−b)
0(N−b)×b 0(N−b)×(N−b)

]
V−1

= V(b) VT
(b) ∈ RN×N ,

where V(b) is the first b columns of V, and the graph frequency response is

hIL(λi) =

{
1, i ≤ b;
0, otherwise. (11.15)

The ideal low-pass graph filter hIL projects an input graph signal into a bandlimited subspace [90]
and hIL(A)s is a bandlimited approximation of the original graph signal s. We show an example
in Figure 11.4. Figures 11.4 (b) and (c) show that the bandlimited approximation of the 3D
coordinates of a teapot gets better when the bandwidth b increases. We see that the bandwidth
influence the shape of the teapot rapidly: with 10 graph frequencies, we only obtain a rough
structure of the teapot. Figure 11.4 (d) shows that the main energy is concentrated in the low-
pass graph frequency band.
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The feature-extraction operator f(X) = V(b) VT
(b) X is shift and rotation-varying. Based on

Theorem 27, the corresponding optimal resampling strategy is

π∗i ∝
√
c2
∥∥(V(b)

)
i

∥∥2

2
+
∥∥∥(V(b) VT

(b) Xo

)
i

∥∥∥2

2
(11.16)

=

√
c2 ‖vi‖2

2 +
∥∥Xo

T V(b) vi
∥∥2

2
,

where vi ∈ Rb is the ith row of V(b).
A direct way to obtain ‖vi‖2 requires the truncated eigendecomposition (2.6), whose com-

putational cost is O(Nb2), where b is the bandwidth. It is potentially possible to approximate
the leverage scores through a fast algorithm [230, 231], where we use randomized techniques
to avoid the eigendecomposition and the computational cost is O(Nb log(N)). Another way to
leverage computation is to partition a graph into several subgraphs and obtain leverage scores in
each subgraph.

Haar-like low-pass graph filter. Another simple choice is Haar-like low-pass graph filter;
that is,

hHL(A) = I+
1

|λmax|
A (11.17)

= V


1 + λ1

|λmax| 0 · · · 0

0 1 + λ2
|λmax| · · · 0

...
... . . . ...

0 0 · · · 1 + λN
|λmax|

V−1,

where λmax = maxi |λi| with λi eigenvalues of A. The normalization factor λmax is presented
to avoid the amplification of the magnitude. We denote Anorm = A /|λmax| for simplicity. The
graph frequency response is hHL(λi) = 1 + λi/|λmax|. Since the eigenvalues are ordered in a
descending order, we have 1 + λi ≥ 1 + λi+1, meaning low frequency response amplifies and
high frequency response attenuates.

In the graph vertex domain, the response of the ith point is (hHL(A) X)i = xi+
∑

j∈Ni(Anorm)i,jxj,
where Ni is the neighbors of the ith point. We see that hHL(A) averages the attributes of each
point and its neighbors to provide a smooth output.

The feature-extraction operator f(X) = hHL(A) X is shift and rotation-variant. Based on
Theorem 27, the corresponding optimal resampling strategy is

π∗i ∝
√
c2 ‖(I+ Anorm)i‖

2
2 + ‖((I+ Anorm) Xo)i‖

2
2,

(11.18)

To obtain this optimal resampling distribution, we need to compute the largest magnitude
eigenvalue λmax, which takes O(N), and compute ‖(I+ Anorm)i‖

2
2 and ‖((I+ Anorm) Xo)i‖

2
2 for

each row, which takes O(‖vec(A)‖0) with ‖vec(A)‖0 the nonzero elements in the graph shift
operator. We can avoid computing the largest magnitude by using a normalized adjacency matrix
or a transition matrix as a graph shift operator. A normalized adjacency matrix is D−

1
2 W D−

1
2 ,
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where D is the diagonal degree matrix, and a transition matrix is obtained by normalizing the
sum of each row of an adjacency matrix to be one; that is D−1 W. In both cases, the largest
eigenvalue of a transition matrix is one, we thus have A = Anorm.

Figure 11.5: Graph filter bank analysis for 3D point clouds. In the analysis part, we separate
a 3D point cloud into multiple subbands. In each subband, we resample a subset of 3D points
based on a specific graph filter h(A). The number of samples in each subband is determined by
a downsampling ratio α. In the synthesis part, we use all the resampled points to reconstruct a
surface via a reconstruction operator Φ.

11.3.3 Graph Filter Banks
In classical signal processing, a filter bank is an array of band-pass filters that analyze an input
signal in multiple subbands and synthesize the original signal from all the subbands [84, 232].
We use a similar idea to analyze a 3D point cloud: separate an input 3D point cloud into multiple
components via different resampling operators, allowing us to enhance different components
of a 3D point cloud. For example, we resample both contour points and noncontour points to
reconstruct the original surfaces, but we need more contour points to emphasize contours.

Figure 11.5 shows a surface reconstruction system for a 3D point cloud based on graph filter
banks. In the analysis part, we separate a 3D point cloud X into k subbands. In each subband,
the information preserved is determined by a specific graph filter and we resample a subset of
3D points according to (11.7) and (11.8). The number of samples in each subband is determined
by a sampling ratio α. We have flexibility to use either the original 3D points or the 3D points
after graph filtering. In the synthesis part, we use the resampled points to reconstruct the surface.
A literature review on surface reconstruction algorithms is shown in [233]. Since each surface
reconstruction algorithm has its own specific set of assumptions, different surface reconstruction
algorithms perform differently on the same set of 3D points.

We measure the overall performance of a surface reconstruction system by reconstruction
error, which is the difference between the surface reconstructed from resampled points and the
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original surface. This leads to a rate-distortion like tradeoff: when we resample more points,
we encode more bits and the reconstruction error is smaller; when we resample fewer points,
we encode less bits and the reconstruction error is larger. The overall goal is: given an arbitrary
tolerance of reconstruction error, we use as few samples as possible to reconstruct a surface by
carefully choosing a graph filter and sampling ratio in each subband. Such a surface reconstruc-
tion system will benefit a 3D point cloud storage and compression because we only need to store
a few resampled points.

11.4 Experimental Results
In this section, we apply the proposed resampling strategies to three applications: large-scale
visualization, accurate registration and robust shape modeling.

11.4.1 Large-scale Visualization

Here we use the proposed resampling strategy (11.12) to efficiently visualize large-scale urban
scenes. Since our visual system is sensitive to the contours of buildings and streets in a urban
scene, instead of showing an entire point cloud, we only show a selected subset of points, which
is useful for large-scale visualization and efficient data summarization. We consider a large-scale
dataset 2, which involves several natural scenes with over 3 billion points in total and covers a
range of diverse urban scenes: churches, streets, railroad tracks, squares, villages, soccer fields,
castles.

Figure 11.6 (a) shows a point cloud of ‘domfountain3’, which contains 15, 105, 667 points
(we ignore the points on ground). We compare the resampled point clouds based on two re-
sampling strategies: uniform resampling and high-pass graph filtering based resampling. Fig-
ures 11.6 (b), (d) and (f) show the resampled point clouds based on uniform resampling with
151, 057, 15, 105 and 1, 510 (1%, 0.1% and 0.01%) points, respectively. Figures 11.6 (c), (e) and
(g) show the resampled point clouds based on high-pass graph filtering based resampling with
151, 057, 15, 105 and 1, 510 (1%, 0.1% and 0.01%) points, respectively. We see that Figures 11.6
(c), (e) and (g) show much clearer contours than Figures 11.6 (b), (d) and (f). This validates
that the high-pass graph filtering based resampling strategy provides visual-friendly results for
large-scale urban scenes. The entire computation process, including graph construction, local
variation computation and resampling, was running on Matlab in a desktop and took less than
200 seconds.

To look into some details, we show two examples in Figure 11.7, including a building and
a church, which contain 381, 903 and 1, 622, 239 points, respectively. The four columns in Fig-
ure 11.7 show the original point cloud, the points that have top 1% largest local variations (11.10)
(large local-variation points are shown in red, other points are shown in black), the resampled
points based on uniform resampling and the resampled points based on high-pass graph filter-
ing (11.12). In the second column, we successfully detect the outlines of both the building and
the church as the contour. Some details, such the gates and windows of the building and the clock

2http://semantic3d.net/view_dbase.php?chl=1
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RMSE Errorshift Errorrotation

All points 4.22 8.76 2.30× 10−3

Uniform resampling 4.27 9.38 3.76× 10−3

High-pass graph filtering 1.49 0.01 4.29× 10−5

based resampling (11.12)

Table 11.1: Proposed high-pass graph filtering based resampling strategy provides an accurate
registration for a sofa. Best results are marked in bold. The first column shows RMSE; the
second column shows the shift error; The third column shows the rotation error. High-pass graph
filtering based resampling chooses key points and provides the best registration performance.

and the roof of the church, are also highlighted. This validates the effectiveness of the proposed
local variation. Comparing the fourth column to the third column, the resampled points based on
high-pass graph filtering preserves contours. We still recognize the contour of gates and windows
of the building from the resampled points.

Note that the current results are compared visually, which may be biased. The difficulties of
showing a quantitative result come from the irregular distribution of 3D points and the lack of
proper models of visual perception. For example, human eyes may be more sensitive to contours
in a 3D point cloud, but a reliable perception model for 3D point clouds is unknown. We leave
the quality evaluation metric for 3D point clouds as future work.

11.4.2 Contour-based Registration

In this task, we use the proposed resampling strategy (11.12) to make two point clouds registered
efficiently and accurately.

Figure 11.8 (a) shows a point cloud of a sofa, which contains 1, 204, 055 points collected
from a Kinect based SLAM system [229]. As shown in Figure 11.8 (a), we split the original point
cloud into two overlapping point clouds marked in red and blue, respectively. We intentionally
shift and rotate the red part. The task is to invert the process and retrieve shift and rotation. We
use the iterative closest point (ICP) algorithm to register two point clouds, which is a standard
algorithm to rotate and shift different scans into a consistent coordinate frame [234]. The ICP
algorithm iteratively revises the rigid body transformation (combination of shift and rotation)
needed to minimize the distance from the source to the reference point cloud. Figures 11.8
(b) and (c) show the registered sofa and the details of the overlapping part after registration,
respectively. We see that the registration process recovers the overall structure of the original
point cloud, but still leaves some mismatch in a detailed level.

Since it is inefficient to register two large-scale point clouds, we want to resample a subset
of 3D points from each point cloud and implement registration. We will compare the registra-
tion performance between uniformly resampled point cloud and high-pass graph filtering based
resampled point cloud. Note that high-pass graph filtering based resampling can enhance the
contours and key points. Figures 11.8 (d) and (g) show the resampled point clouds based on uni-
form resampling and high-pass graph filtering based resampling, respectively. Two resampled
versions have the same number of points, which is 5% of points in the original point cloud. We
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see that Figures 11.8 (g) shows more contours than Figures 11.8 (d). Based on the uniformly re-
sampled version Figures 11.8 (d), Figures 11.8 (e) and (f) show the registered sofa and the details
of the overlapping part after registration, respectively. Based on the contour-enhanced resampled
version Figures 11.8 (g), Figures 11.8 (h) and (i) show the registered sofa and the details of the
overlapping part after registration, respectively. We see that the registration based on high-pass
graph filtering based resampling precisely recovers the original point cloud, even in a detailed
level. The intuition is that the high-pass graph filters enhance the contours, which make sharper
match between the sources and targets, and thus the registration becomes easier.

The quantitative results are shown in Table 11.1, where the first column shows the root mean
square error (RMSE); the second column shows the shift error; The third column shows the
rotation error. Specially,

RMSE =

√√√√ N∑
i=1

min
j=1,...,N

‖x̂i − xj‖2
2,

Errorshift = ‖â− a‖2 ,

Errorrotation =
∥∥∥R̂− R

∥∥∥
Frobenius

,

where x̂i, â and R̂ are the 3D coordinates of the ith point, recovered shift vector and recovered
rotation matrix after registration, respectively; xi, a and R are the ground-truth 3D coordinates
of the ith point, ground-truth shift vector and ground-truth recovered rotation matrix. We see
that high-pass graph filtering based resampled point cloud uses 20-times less points and achieves
even better results than using all the points. The shift and rotation errors of using high-pass
graph filtering based resampling are significantly smaller than those of using all the points or
using uniform resampling.

11.4.3 Robust Shape Modeling
In this task, we use the proposed resampling strategy (11.18) based on Haar-like low-pass graph
filter to achieve robust shape modeling. In Section 11.3.2, we discussed the shape modeling for a
fitness ball, which is a simple sphere. Here we consider a more sophisticated point cloud and use
poisson reconstruction to retrieve the surface. The goal is to show that low-pass graph filtering
makes the shape modeling more robust to noise.

As described earlier, Figure 11.9 (a) shows a point cloud of a sofa. Figure 11.9 (b) fits
a surface to the point cloud based on Poisson surface reconstruction, a method to reconstruct
object surfaces as meshes from point clouds [235].

To test the robustness to noise, we add the Gaussian noise with mean zero and variance 20 to
each point. Figures 11.9 (c) and (d) show the noisy point cloud and its reconstructed surface, re-
spectively. Figure 11.9 (e) shows the signed cloud-to-mesh distance from Figures 11.9 (d) to (b),
which shows the influence of noise to surface reconstruction. The error of surface reconstruc-
tion is measured by a cloud-to-mesh (C2M) distance used in a public software CloudCompare.
The C2M distance is defined as follows3: for each point in (d), search the nearest triangle in the

3More details see http://www.cloudcompare.org/doc/wiki/index.php?title=
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Mean distance Std deviation

Noisy sofa 3.84 4.34
Uniform resampling 1.99 7.55
Low-pass graph filtering 0.34 3.89
based resampling (11.18)

Table 11.2: Proposed low-pass graph filtering based resampling strategy provides a robust sur-
face reconstruction for a sofa. Best results are marked in bold. Note that we resample the same
number of 3D points from the original point cloud (noiseless) and the C2M distance is with mean
0.16 and standard deviation 1.65.

mesh (b), and then compute the signed distance from the point to that triangle using the triangle’s
normal.

Figures 11.9 (f), (g) and (h) show the resampled version based on uniform resampling, its
reconstructed surface and the C2M distance from (g) to (b), respectively. Figures 11.9 (i), (j)
and (k) show the resampled version based on low-pass graph filtering based resampling, its
reconstructed surface and the C2M distance from (j) to (b), respectively. The comparison of
reconstruction errors are shown in Table 11.2. Uniform resampling resamples 3D points directly
from the noisy point cloud, whose corresponding reconstructed surface is not robust: both the
mean and the variance of the C2M distance are large. On the other hand, low-pass graph filtering
based resampling denoises 3D points while resampling and produces a more robust surface. This
validates that the proposed resampling strategy with low-pass graph filtering provides a robust
shape modeling for noisy point clouds.

11.5 Conclusions
We proposed a resampling framework to select a subset of points to extract application-dependent
features and reduce the subsequent computation in a large-scale point cloud. We formulated an
optimization problem to obtain the optimal resampling distribution, which is also guaranteed
to be shift/rotation/scale invariant. We then specified the feature extraction operator to be a
graph filter and studied the resampling strategies based on all-pass, low-pass and high-pass graph
filtering. A surface reconstruction system based on graph filter banks was introduced to compress
3D point clouds. Three applications, including large-scale visualization, accurate registration
and robust shape modeling, were presented to validate the effectiveness and efficiency of the
proposed resampling methods.

Distances_Computation.
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(a) Original.

(b) Uniform resampling (↓ 100). (c) High-pass graph filtering based resampling (↓ 100).

(d) Uniform resampling (↓ 1, 000). (e) High-pass graph filtering based resampling (↓ 1, 000).

Figure 11.6: Proposed resampling strategy (11.12) helps efficiently visualize a large-scale urban
scene. Plot (a) shows a point cloud of Station3 of domfountain. Plots (b), (d) and (f) show the
resampled point clouds based on uniform resampling with 151, 057 and 15, 105 (1% and 0.1%)
points. Plots (b), (d) and (f) show the resampled point clouds based on high-pass graph filtering
based resampling with 151, 057 and 15, 105 (1% and 0.1%) points. High-pass graph filtering
based resampling provides clear contours.
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Original. Uniform resampling Resampling based on
after hard thresholding. high-pass graph filtering.

Figure 11.7: High-pass graph filtering helps detect contours and preserve the contour informa-
tion during resampling. The four columns show the original point cloud, the points that have top
1% largest local variations (11.10) (large local-variation points are shown in red, other points are
shown in black), resampled points based on uniform resampling and resampled points based on
the Haar-like high-pass graph filtering (11.12). Two resampled versions have the same number
of points, which is 1% of points in the original point cloud.
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(a) Original point cloud. (b) Registered point cloud. (c) Details.

(d) Uniform resampling (↓ 20). (e) Registered point cloud. (f) Details.

(g) High-pass graph filtering based (h) Registered point cloud. (i) Details.
graph filtering (↓ 20).

Figure 11.8: Accurate registration for sofa. The first row shows the original point cloud; the
second row shows the uniformly resampled point cloud; and the third row shows the high-pass
graph filtering based resampled point cloud (11.12). The first column shows the point clouds
before registration; the second column shows the point clouds after registration; and the second
column shows the registration details. Comparing to the other two methods, high-pass graph
filtering-based resampling provides more precise registration by using less points.
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(a) Original point cloud. (b) Reconstruction.

(c) Noisy point cloud. (d) Reconstruction. (e) C2M distance.

(f) Uniform resampling (↓ 20). (g) Reconstruction. (h) C2M distance.

(i) Resampling based on low-pass (j) Reconstruction. (k) C2M distance.
graph filtering (↓ 20).

Figure 11.9: Robust surface reconstruction for sofa. The first row shows the original point cloud;
the second row shows the noisy point cloud; the third row shows the result of uniform resampling
from the noisy point cloud; the fourth row shows the result of low-pass graph filtering-based
resampling (11.18) from the noisy point cloud. Plots (e), (h) and (k) show the relative errors to
the original surface, where the error bar is aligned and shown on the right corner. We see that
low-pass graph filtering-based resampling provides the smallest error.
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Chapter 12

Urban Data Mining

12.1 Introduction
Urban data records the behavior of urban ecosystem and analyzing those urban data potentially
leads to improvements of the urban lives [236, 237]. As one of the most critical components of
urban data, traffic data is a key to understand the mobility pattern and make cities more efficient;
however, traffic data is usually sparse because a few sensors are installed to cover a limited num-
ber of intersections [238]. In this paper, we aim to recover entire traffic data in the entire city
from sensors installed at a few intersections. To verify the feasibility of this idea, we focus on
Manhattan’s taxi pickups during the years of 2014 and 2015 because taxis are valuable sensors
of city life [239]. We model taxi-pick activities as graph signals supported on a city street net-
work where signal coefficient at a node reflects the number of taxi pickups at the corresponding
intersection. The recovery of taxi-pick activities is nothing but graph signal sampling and re-
covery [90, 98, 105]; however, previous works only consider sampling and recovery of smooth
graph signals. Real taxi-pick activities may not be smooth on a city street network; see Fig-
ure 12.1. To handle this problem, we propose a series novel techniques based on graph signal
processing [1, 2] to learn traffic patterns from historical taxi-pick activities and design targeted
sampling and recovery strategies. We are able to approximately recover the taxi-pick activities in
entire Manhattan by taking samples at only 5 selected intersections. Here we focus on taxi-pick
activity, but the same techniques can be applied to recover many other types of traffic data.

12.2 Problem Formulation
We consider a city street network G = (V , E), where V = {v1, . . . , vN} is the set of nodes
(intersections), E = {e1, . . . , eM} is the set of edges (streets). A graph signal models taxi
pickups in a city that assigns the number of taxi pickups during a period of time xn ∈ R to the
node vn; a vector form is x =

[
x1, x2, . . . , xN

]T ∈ RN . Let C ⊆ V be a set of nodes (an area
in a city). We can represent this set by using an indicator function, 1C ∈ RN , where (1C)i = 1
when vi ∈ C, and 0 otherwise. The signal coefficients are ones in the node set C and zeros
in the complement node set C̄ = V/C. When the node set C forms a connected subgraph, we
call C a piece and 1C a one-piece graph signal. A piecewise-constant graph signal is a linear
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(a) Global view. (b) Zoom-in plot.

Figure 12.1: Taxi-pickup distribution at 6 pm on January 1st, 2015. The data is not smooth on
the Manhattan street network. We approximate this data by a piecewise-constant graph signal.

combination of several one-piece graph signals x =
∑K

i=1 µi1Ci , where each Ci is a piece, µi
is a constant and K is the number of pieces.

Sampling & Recovery. We consider sampling the number of passing vehicles at several
selected intersections and then recovering the number of passing vehicles at the rest intersections.
Mathematically, we sample M coefficients at selected indices (intersections) in a graph signal
x ∈ RN to produce a sampled signal y = Ψx, where the sampling operator Ψ is a linear
mapping from RN to RM with Ψi,j = 1 when we sample the jth node in the ith measurement,
and 0, otherwise. Here we consider experimentally design sampling, which allows that sample
indices are chosen beforehand. We then interpolate y to get a recovery x̂ = Φy ∈ RN , where Φ
is the interpolation operator designed based on Ψ.

12.3 Methodology
The proposed method involves two phases: learning phase and real-time processing phase. In the
learning phase, we learn all the operators needed in the real-time processing phase from historical
taxi-pickup activities. In the real-time processing phase, we sample the taxi-pickup activities at
a few selected intersections and recover the rest by using the operators learned in the learning
phase.

12.3.1 Learning Phase
The purpose of learning phase is to learn important patterns from historical traffic data and then
decide which intersections we need to sample. A basic idea is to construct a graph that promotes
smoothness for historical taxi-pickup activities and then use graph sampling techniques to design
samples [70]. Does the original Manhattan street network promote smoothness for traffic data?
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Figure 12.2: Learning phase includes two main blocks: adaptive piecewise-constant approxi-
mation implemented by adaptively pruning a decomposition tree and sampling implemented by
sampling bandlimited graph signals. In the learning phase, we decide which node to sample.

Figure 12.1 shows the taxi-pickup distribution at 7 pm on January 1st, 2015. We see that many in-
tersections have many more taxi pickups than their neighbors and the entire distribution is barely
smooth. We thus need to learn a graph from traffic data. However, a city street network is usually
huge and historical traffic data is limited. For example, Manhattan has 13, 670 intersections. It
is thus inefficient and unrobust to construct a huge graph. To overcome this, we should reduce
the size of graph. In real traffic data, we find that sometimes neighboring intersections have
similar number of taxi pickups. We can significantly reduce the size of graph by exploring local
information and grouping those neighboring intersections as one super-node. This is equivalent
to approximate the original graph signal by using a piecewise-constant graph signal. Through
approximation, the dimension reduces from the number of intersections to the number of pieces.
We then construct a super-graph whose nodes are pieces and edges are the similarities between
pieces. We then can use graph sampling to design samples. Figure 12.2 overviews the procedure
of the learning phase. The two main modules are adaptive piecewise-constant approximation and
graph sampling. We now elaborate these two blocks.

Adaptive piecewise-constant approximation. The goal is to adaptively find a piecewise-
constant graph signal to approximate taxi-pickup activities. The key of approximation is to
design a series of nonoverlapping pieces that captures the variation of an graph signal. There are
usually two approaches to design such a series: predesigned approach and learning approach. In
a predesigned approach, we design pieces before accessing any traffic data. We can simply use
physical partitions, such as zipcodes and census blocks, but these partitions may not be flexible
enough to capture complex variations in traffic data; on the other hand, in a learning approach,
we learn a series of pieces to fit traffic data. However, there are multiple restrictions in the
optimization: those pieces are connected, nonoverlapping and cover the vertex domain. It is thus
inefficient and unrobust to solve a nonconvex optimization problem with multiple constraints and
limited training data.

Here we consider combining the advantages of these two approaches. We first design a set of
redundant pieces before having any data. Because of the redundancy, this set is able to capture
various shapes and sizes. We then prune this set and selects the best series of nonoverlapping
pieces according to historical taxi-pickup activities. This approach is both adaptive and efficient.
The set of redundant pieces can be constructed beforehand and the bottleneck of the computa-
tional complexity is the pruning stage. By taking advantage of a tree-structure, the computational
complexity is merely O(N).

201



(a) Global view. (b) Zoom-in plot.

Figure 12.3: Grow a binary tree in (a) is equivalent to decompose a graph in (b). The green path
in (a) is a decomposition in (b), where the same color indicates the one-to-one mapping from a
node in the decomposition tree to a piece in a graph.

A set of redundant pieces can be constructed via a binary tree decomposition as shown in [93].
This set is provably useful to represent arbitrary piecewise-constant graph signals. The main idea
is to recursively partition a piece into two disjoint pieces until that all the pieces are individual
nodes. Figure 12.3 shows an example. A node in (a) represents a piece in (b) and an edge
represents a kinship where a parent node partitions into two children nodes. The top node (in
orange) represents the entire vertex domain and the bottom nodes represents all the individual
nodes. The green path in (a) is a decomposition in (b), where the same color indicates the
one-to-one mapping from a node in a decomposition tree to a piece in a graph. We use the 2-
means clustering to implement graph partitioning [93]. For each piece, we select two nodes with
longest geodesic distance as the community centers and assign all the other nodes to their nearest
community center based on the geodesic distance. We then recompute the community center for
each community by minimizing the summation of the geodesic distances to all the other nodes in
the community and assign node to its nearest community center again. We keep doing this until
the community centers converge after a few iterations. Please find more details in [93].

By using the binary tree decomposition, we obtain (2N − 1) pieces. which is redundant and
captures various sizes and shapes of pieces. We then prune this set and selects the best series
of nonoverlapping pieces according to historical traffic data. Let C = {1Ci}2N−1

i=1 be the set of
constructed pieces. We aim to select a subset of pieces that minimizes the following optimization
problem,

D̂, Ẑ = arg min
Di∈C,Z

‖X−D Z‖2
F + λ dim(Z), (12.1)

subject to D1 = 1,

where X ∈ RN×L is a matrix representation of historical taxi-pick activities with L snapshots,
D ∈ RN×K is a matrix representation of constructed pieces with Di being the ith column, λ is a
tuning parameter and Z ∈ RK×L stores the constants of all the pieces with dim(Z) the number
of elements in Z. Note that K is variable during the optimization because we do not know how
many pieces we need in advance.

The first term in the objective functions pushes the piecewise-constant approximation to fit
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the given data. The second term punishes a large size of the constant matrix Z and avoids over-
fitting; that is, when λ is large, we tend to select fewer pieces from C to fit data and when λ
is small, we tend to select all the pieces in C to fit data. The constraint requires that all the
selected pieces are nonoverlapping and covers the entire vertex domain. Since each column in
D is a one-piece graph signal, the optimization problem (12.1) finds the best piecewise-constant
approximation for given traffic data. Since the constructed pieces in C have a nice tree struc-
ture, we can easily obtain the global optimum of (12.1) by pruning the tree, which follows the
paradigm in [240, 241]. The main idea is to compare the representation based on a parent piece
to the representation based on its two children pieces and see which representation minimizes the
objective function (12.1). For example, C1 is a parent piece and C2, C3 are its children pieces.
Since the parent piece and two children pieces represent the same vertex domain (C1 = C2∪C3),
to satisfy the constraint, we either choose the parent piece or its two children pieces. The cost of
using the parent piece is

min
z

∥∥X−1C1z
T
∥∥2

F
+ λL,

with optimum
∥∥X−1C11

T
C1

X
∥∥2

F
+ λL, and the cost of using the child pieces is

min
Z∈R2×L

∥∥X−
[
1C2 1C3

]
Z
∥∥2

F
+ 2λL,

with optimum
∥∥∥X−

[
1C2 1C3

] [
1C2 1C3

]T
X
∥∥∥2

F
+ 2λL Each time, we compare their costs

and choose the one with a smaller cost to update the representation at the parent piece. The
pruning process starts from the bottom level of the decomposition tree and move to an upper
level iteratively until we reach the top level. Through the pruning process, we obtain the global
optimum of (12.1).

Sampling. We next model each selected piece after pruning as a super-node and construct
a super-graph. Since the selected pieces already capture the local similarities, the connection
among super-nodes are not relevant to the geodesic distance any more. We need to learn a
super-graph to promote smoothness for historical taxi-pickup activities and then design which
super-nodes to sample. In graph sampling, we usually model a smooth graph signal as a ban-
dlimited graph signal [62,90,228] whose sampling strategy is designed based on the correspond-
ing graph Fourier basis. Thus, instead of constructing a full super-graph, we directly construct
a graph Fourier basis. Recall that the bandlimited assumption requires that most energy of a
graph signal is concentrated in the low-pass band; that is, we need to find a graph Fourier basis
that pushes the energy to the subspace spanned by its first few basis vectors. Thus, all we need
is the first few columns in the graph Fourier basis, which can be simply obtained by principal
component analysis. Principal component analysis uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of values of linearly uncorre-
lated variables [117], which exactly fits our requirement. Mathematically, let the constant matrix
Ẑ ∈ RK×L be a matrix of graph signals on the super-graph, we obtain the first M graph Fourier
basis vectors (principal components) by solving the following optimization problem,

V̂ = arg min
V∈RK×M

∥∥∥Ẑ− V VT Ẑ
∥∥∥2

F
, subject to VT V = I .
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It is true that we can obtain a truncated graph Fourier basis directly from X, which is equivalent
to set λ be zero in (12.1); however, the computation is less efficient and the obtained principal
components are learned from noisy and limited historical data and do not take advantage of the
local grouping1, which is explored by (12.1). Next, we design a sampling operator by using
graph sampling techniques. For example, we solve Ψ̂ = arg maxΨ σmin(ΨV̂) ∈ RM×K by
using a greedy method, which is shown in [90]. Note that we sample super-nodes, instead of
individual intersections. To directly operate on individual intersections, the sampling operator
is Ψ̂D̂

T
∈ RM×N , which means that Ψ̂ selects some pieces from D̂ in (12.1). We then need

to sample all the nodes in the selected pieces, or sample several nodes in selected pieces and
estimate the average values. In the experiments, we find that the selected pieces happen to be
single nodes; that is, we only need to sample one intersection for a piece.

12.3.2 Real-time Processing Phase

In the learning phase, we obtain three operators from historical taxi-pickup activities: selected
pieces D̂, truncated graph Fourier basis V̂, sampling operator Ψ̂. Given a real-time traffic data
x ∈ RN , we first take samples at the selected intersections, y = Ψ̂D̂

T
x. Then we use the

interpolation operator to recover all the constants, z = V̂(Ψ̂V̂)†y. Finally, we obtain a piecewise-
constant approximation to the real taxi pickups by

x̂ = D̂z = D̂V̂(Ψ̂V̂)†y = D̂V̂(Ψ̂V̂)†Ψ̂D̂
T
x,

where the interpolation operator is Φ = D̂V̂(Ψ̂V̂)†. Figure 12.4 illustrates the procedure in
real-time processing.

Figure 12.4: In real-time processing, we sample the selected nodes, recover all the constants,
and finally obtain the piecewise-constant estimation to the real-time traffic data.

1Piecewise-constant approximation can be regarded as a denoising block. Many experiments indicate that reduc-
ing the dimension to N/2 provides the best recovery performance in the end, which is better and faster than directly
working with X.
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12.4 Experimental Results
We validate the proposed method on a dataset of Manhattan’s taxi pickups. We sample the num-
ber of taxi pickups at several intersections and recover the taxi pickups at the rest intersections.
This is similar to count the number of taxi pickups at several intersections and recover the number
of taxi pickups at all the other intersections.

Dataset. We consider taxi pickups in Manhattan2. Here we use the dataset in the year of
2014 and 2015. We focus on rush hours during workdays (6 pm from Monday to Friday). We
accumulate the taxi-pickup activities within a hour and project each taxi pickup to its closest
intersection, obtaining 261 graph signals in the year of 2014 for learning and 261 graph signals
in the year of 2015 for real-time processing.

Results. We first validate the proposed adaptive piecewise-constant approximation. We
solve (12.1) based on 261 graph signals in 2014 by varying the regularization parameter λ. Two
metrics are used to quantify the performance, including mean square error (MSE = 1

261N

∑261
i=1 ‖x̂i − xi‖2

2)
and mean absolute error (MAE = 1

261N

∑261
i=1 ‖x̂i − xi‖1), where x̂i is the recovered taxi pickups

in the ith day and xi is the real taxi pickups in the ith day. Figure 12.5 compares the approxi-
mation errors between the graph Fourier basis based on the Laplacian matrix (VL, in blue) and
adaptive piecewise-constant approximation (PC, in red). We see that PC significantly outper-
forms VL in terms of both metrics. We then set λ = 1 ( corresponds to 3788 pieces) and obtain
5 samples provided by the optimal sampling operator, as shown in Figure 12.6. As discussed
before, these 5 pieces happen to be individual nodes. Two adjacency intersections around Penn
Station are sampled, indicating that Penn Station is the weathercock of Manhattan’s traffic.
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(a) MSE. (b) MAE.

Figure 12.5: Piecewise-constant approximation significantly outperforms smooth approxima-
tion.

We next validate those learned operators to the graph signals in 2015. Figure 12.7 shows the
recovery of taxi-pick activity at 6 pm, Jan. 6th, 2015 by only using 5 samples. Even we just
use 5 samples, the recovered taxi-pick distribution is very close to the real taxi-pick distribution.

2Data is downloaded from http://www.nyc.gov/html/tlc/html/about/trip_record_data.
shtml
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(a) Global view. (b) Zoom-in plot.

Figure 12.6: Selected 5 intersections. Two adjacency intersections around Penn Station are
sampled.

Finally, we show the daily recovery errors in Figure 12.8. The recovery errors are particularly
large at Memorial day and Labor day (not surprise), but in general, the recovery error is small.
For example, Figure 12.8 (b) shows that the average error at each intersection is merely 0.6 taxi
pickups during the rush hour every weekday.

(a) Real taxi-pick distribution. (b) Recovered taxi-pick distribution.

Figure 12.7: Recovered taxi picks at 6 pm, Jan. 6th, 2015.
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Figure 12.8: Daily recovery error in the year of 2015.

12.5 Conclusions
We set a goal to monitor Manhattan’s traffic from a few intersections. Finally, we are able to
obtain an approximate recovery of the taxi-pick activities by taking samples at only 5 selected
intersections. The main techniques involves adaptive pieceiwise-constant approximation via de-
composition tree pruning, super-graph Fourier basis construction via principal component analy-
sis and sampling for bandlimited graph signals. The paper suggests that graph signal processing
tools may aid in urban computing.
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Chapter 13

Concluding Remarks

13.1 Concluding remarks

The main goal of this thesis is to create a framework to analyze data supported on graphs from
a signal processing perspective. To this end, we specifically consider five graph-related tasks,
including representation, sampling, recovery, detection and localization. We now summarize the
contributions.

Representations of Graph Signals. We explicitly define the graph signals of interest and
propose a graph dictionary to represent such signals. The graph dictionary unifies the represen-
tations based on both the graph Fourier domain and the graph vertex domain and is powerful
to make sense of real big data problems. We specifically study three typical classes of graph
signals: smooth graph signals, piecewise-constant graph signals, and piecewise-smooth graph
signals. To understand smooth graph signals, we introduce four smoothness criteria and propose
four graph dictionaries to generate graph signals that satisfy these four smoothness criteria. We
then study the graph Fourier basis and observe a localization phenomenon, which shows that the
graph Fourier basis of many real networks capture both local and global behaviors on graphs.
To represent piecewise-constant graph signals, we propose a local-set based piecewise-constant
graph wavelet basis and graph dictionary. We show that the proposed graph dictionary can pro-
mote the sparsity for arbitrary piecewise-constant graph signals. We validate the proposed graph
dictionary on both the Minnesota traffic network and the U. S sensor network. We then ex-
tend this result to piecewise-smooth graph signals and propose local-set based piecewise-smooth
graph dictionary. We show that the proposed graph dictionary can promote the sparsity for a
large set of piecewise-smooth graph signals and identify piecewise-smooth graphs signals from
noises.

Sampling of Graph Signals. We consider sampling from two aspects: finite number of
samples and infinite number of samples. For the first case, we propose a sampling theory for
graph signals. The theory follows the same paradigm as classical sampling theory. We show
that perfect recovery is possible for graph signals bandlimited under the graph Fourier transform.
The sampled signal coefficients form a new graph signal, whose corresponding graph structure
preserves the first-order difference of the original graph signal. For general graphs, an optimal
sampling operator based on experimentally designed sampling is proposed to guarantee perfect

211



recovery and robustness to noise; for graphs whose graph Fourier transforms are frames with
maximal robustness to erasures as well as for Erdős-Rényi graphs, random sampling leads to
perfect recovery with high probability. We further establish the connection to the sampling theory
of finite discrete-time signal processing and previous work on signal recovery on graphs. To
handle full-band graph signals, we propose a graph filter bank based on sampling theory on
graphs.

For the second case, we build a theoretical foundation to understand the fundamental limits
of three sampling strategies: uniform sampling, experimentally designed sampling and active
sampling. We derive the lower bounds on the maximum risk for the approximately bandlimited
class under these three sampling strategies and show that active sampling cannot fundamentally
outperform experimentally designed sampling. We propose a recovery strategy to compare uni-
form sampling with experimentally designed sampling. As the proposed recovery strategy lends
itself well to statistical analysis, we derive the exact mean square error for each sampling strat-
egy. To study convergence rates, we introduce two types of graphs and find that (1) the proposed
recovery strategy achieves the optimal rates; and (2) the experimentally designed sampling fun-
damentally outperforms uniform sampling for Type-2 class of graphs. To validate our proposed
recovery strategy, we test it on five specific graphs: a ring graph with k nearest neighbors, an
Erdős-Rényi graph, a random geometric graph, a small-world graph and a power-law graph and
find that experimental results match the proposed theory well. This work also presents a com-
prehensive explanation for when and why sampling for semi-supervised learning with graphs
works.

Recovery of Graph Signals. To recover one or multiple smooth graph signals from noisy,
corrupted, or incomplete measurements, we formulate graph signal recovery as an optimization
problem, for which we provide a general solution through the alternating direction methods of
multipliers. We show its relations to signal inpainting, matrix completion, robust principal com-
ponent analysis and anomaly detection. We propose new algorithms and theoretical analysis
for graph signal inpainting, graph signal matrix completion, and anomaly detection of graph
signals, all applicable to semi-supervised classification, regression, and matrix completion. We
validate the proposed methods on real-world recovery problems, including online blog classifi-
cation, bridge condition identification, temperature estimation, recommender system for jokes,
and expert opinion combination of online blog classification.

Detection of Graph Signals. We formulate a statistical hypothesis testing to decide whether
the given attribute activates a community in a graph interfered by Bernoulli noise. We propose
two statistics: graph wavelet statistic and graph scan statistic. Both are shown to be efficient
and statistically effective to detect activations. The intuition behind the proposed statistics is
that we study the interaction between graph structure and the given attribute, that is, we denoise
the attribute based on the graph structure and localize the underlying community in the graph.
We then test the proposed hypothesis tests on simulated data to validate the effectiveness and
robustness of the proposed methods.

Localization of Graph Signals. We use piecewise-constant graph signals to model local-
ized patterns, where each piece indicates a localized pattern that exhibits homogeneous internal
behavior and the number of pieces indicates the number of localized patterns. To separate local-
ized each localized pattern, we propose a specific graph signal model, an optimization problem
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and a computationally efficient solver. The advantage of the proposed method is parameter-free,
scalable and robust to noise. The proposed solver can directly find the the supports of arbitrary
localized activated patterns without tuning any threshold, which is a notorious issue in many
localization problems. We then conduct an extensive empirical study to validate the proposed
methods on both simulated and real data based on the Manhattan street network. The results
validate the effectiveness of our approach.

13.2 Future work

Filling in the blanks. Table 2.1 in Part II shows the work that has been explored in this the-
sis. There are still several holes to fill. For example, some previous works consider sampling
discrete-time piecewise bandlimited signals [242, 243]. Is it possible to design a sampling strat-
egy for piecewise-smooth graph signals? This will correspond to the the 2nd row, 3rd column in
Table 2.1.

A fundamental understanding of the graph Fourier transform. As the bridge connecting
the graph vertex and graph Fourier domains, the graph Fourier transform is the most important
tool in graph signal processing. The graph spectrum provides an efficient tool to summarize the
variations of a graph signal. Although spectral graph theory provides some information, a deep
mathematical understanding of the graph Fourier transform is still needed. For example, what is
the difference between the graph Fourier transforms based on graph adjacency matrix and graph
Laplacian matrix? how does edge weight influence the graph Fourier transform? how does the
local structure influence the graph Fourier transform? What is the mathematical reason of the
localization phenomenon?

Another problematic issue is that different from the spectrum in classical signal processing,
the graph spectrum does not have a concrete physical meaning. The graph Fourier transform is
merely obtained from a mathematical generalization. Is there any other way to generalize the
Fourier transform? If the answer is positive, which one we should adopt?

Signal representations based on network motifs. Due to irregular and complex connec-
tions, the representation in the graph vertex domain is usually much harder than the representa-
tion in the graph Fourier domain; however, the representation in the graph vertex domain is more
straightforward and more meaningful, I believe. A subjective reason is that when dealing with
graphs, we should understand the irregular connections in the graph vertex domain, instead of
avoiding them through the graph Fourier transform. Those irregular connections make graphs
unique and interesting. Another reason is that many useful local information may not be reflected
in the graph Fourier transform. Network motifs are elementary subgraphs that repeat themselves
in a complex network, which may reflect local, functional properties. Network motifs are impor-
tant tools to analyze the functional abilities in biological networks, social networks, and many
others. The motif of time-series is nothing but shift (delay), which is the most elementary build-
ing block in classical signal processing. A network-motif based representation may be more
useful to understand data generated from biological and social networks than the graph Fourier
transform.

Heterophily in graph signal processing. Most works in graph signal processing con-
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sider smoothness, which reflects homophily. How about heterophily? As the mirror opposite
of homophily, heterophily is defined as the degree to which pairs of individuals who interact
are different in certain attributes. For example, a coach talks to players more than another
coach. If homophily reflects small variations/low-frequency components, does heterophily high
variations/high-frequency components?

Active sampling on graphs. In Chapter 7, we show that active sampling cannot fundamen-
tally outperform experimentally designed sampling for approximately bandlimited graph signals.
The next step is to show when active sampling can fundamentally outperform experimentally de-
signed sampling.

General receipt of graph signal localization. The core idea behind sampling and recovery
is that information we access is scarce and limited. In a big data era, it is usually easy to access a
massive amount of data, but it is hard to efficiently discover patterns in a massive amount of data,
which is precisely detection and localization. In data mining, people propose specific detection
and localization methods for each pattern. Is it possible to propose a general solution from a
signal processing perspective? Maybe a invariant graph translation operator will be useful in this
task.

Signal processing on product graphs. The proposed methods are designed for a static
graph. How about their counterpart on a time-evolving graph, a knowledge graph, or a multilayer
graph? Those graphs can be modeled as product graphs, which can be stored as tensors. Is it
possible to generalize the existing tools to product graphs?

Interdisciplinary thinking. Currently, a pattern of most graph signal processing papers is
to generalize concepts or tools from classical signal processing to graph signal processing; how-
ever, some papers blindly pursue mathematical elegance and are not well motivated from the
practical problems. When we look at a bigger picture, what we are really doing is data science
with graphs, which overlaps with people from various fields, such machine learning, data mining,
network science and mathematics. We should think interdisciplinarily. For example, [244] con-
siders a generalization of convolutional neural networks from low-dimensional regular Euclidean
domains, where images (2D), videos (3D) and audios (1D) are represented, to high-dimensional
irregular domains such as social networks or biological networks represented by graphs via graph
filtering. Over these years, people are always wondering what are the killer applications of graph
signal processing. I personally do not believe there is a killer application specifically waiting for
graph signal processing. As Prof. Moura mentioned, signal processing itself is really a stealth
technology1. Some ideas or tools rooted in graph signal processing may be useful to build a
module in a large data-analysis system. For example, graph filter bank and graph signal sam-
pling could be modules in a 3D point cloud processing system; graph signal recovery and graph
signal localization could be module for estimating an origin-destination matrix in a transportation
management system.

1https://www.youtube.com/watch?v=0_wXsYKifBY
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Chapter 14

Appendix

14.1 Proof of Theorem 14

We aim to construct a typical set of vectors in F, and use the Fano’s method. Let vk be the kth
column of V, v(i) be the ith row of V, X be a pruned hypercube and

F′ = {x(w) = V x̂�w =

2κ0−1∑
k=κ0

wkψk, w ∈ X},

where κ0 is no smaller than the bandwidth K,

ψk = x̂kvk = (±)k

√
cµ ‖x‖2

2

κ0(1 + k2β)
vk,

and 0 < c < 1. It is easy to check that F′ ⊆ F. Let d(x,y) = ‖x− y‖2; we thus have
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−2β
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2 ,
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where (a) follows from k ≤ 2K, and (b) from the Varshamov-Gilbert lemma. To use the Fanno’s
method, we need to bound the Kullback-Leibler divergence,

KL(pw, pw0|M)

=
∑
i∈M

Ew

[
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i )
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where δ =
∑2κ0−1

k,k′=κ0,k 6=k′(−1)k+k′ cµ‖x‖22wkwk′ Vik Vik′

κ0
√

1+k2β
√

1+k′2β
is small because of the cross signs. For

uniform sampling, the sampling setM is chosen randomly, thus, we have
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where (a) follows from the independence of each sample, P(j = i) denotes the probability to
sample the ith node that equals j, and

∥∥V(2,κ0)
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=
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For experimentally designed sampling, we can choose the sampling set M to maximize∑
i∈M

∑2κ0−1
k=κ0

V2
ik; we thus have
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For active sampling, we cannot get more benefit from signal coefficients, so the KL divergence
is the same of the experimentally designed sampling.r By Fanno’s lemma, we finally have the
lower bounds for three sampling strategies. �

14.2 Proof of Theorem 15
We aim to bound the MSE by splitting to a bias term and a variance term.

E ‖x∗ − x‖2
2
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2

= E
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)
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2 + E ‖x∗ − Ex∗‖2
2 ,
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where the first term is bias and the second term is variance. For each element in the bias term,
we have

Ex∗i =
∑
k<κ

Vik EM,ε

 ∑
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where (a) follows from the independence of each sample. For all the elements, we have

Ex∗ = V(κ) x̂(κ),

which leads to Lemma 1.

We next bound the variance term by splitting into two parts, with and without noise. For each
element in the variance term, we have
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where ∆(1) is the variance from noise and ∆(2) is the variance from sampling. To bound ∆
(1)
i ,
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we have
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To bound ∆
(2)
i , we have
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We combine the bounds for both ∆
(1)
i and ∆

(2)
i , and obtain the bounds for the variance term,
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which leads to Lemma 2. Finally, we obtain the MSE by combine the bias term and the variance
term,
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14.3 Proof of Corollaries 5 and 6

For a Type-1 graph, we assume that each element in an approximately bandlimited signal has
a similar magnitude. Since all the elements in V have the same magnitude, each element of a
graph signal, xi = vTi x̂, should have a similar magnitude. In other words, N maxi x

2
i and ‖x‖2

2

are of the same order.
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For uniform sampling, based on Corollary 1, we have
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where (a) follows from U being orthornormal, κ being of the order of m
1

2β+1 , and C > 0 some
constant. Since at least the sampled projection estimator satisfies this rate of convergence, we
have
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We next show the lower bound. Based on Theorem 3, we have
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where κ0 is of the order of m
1

2β+1 .
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For optimal sampling scores based sampling, based on Corollary 2, we have
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where (a) follows from that, based on Definition 5,
∥∥U(κ)

∥∥2

2,1
=
(
N
√
κ( c√

N
)2
)2

= O(Nκ),

which is of the same order ofN
∥∥U(κ)

∥∥2

F
. Since at least the sampled projection estimator satisfies

this rate of convergence, we have

inf
(x∗,M)∈Θe

sup
x∈ABLA(K,β,µ)
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Based on Definition 5,
∥∥V(2,κ0)

∥∥2

∞,2 = κ0( c√
N

)2 = c2κ0/N , which is of the same order of∥∥V(2,κ0)

∥∥2

F
/N , we have

inf
(x∗,M)∈Θe

sup
x∈ABLA(K,β,µ)

Ex,M
(
‖x∗ − x‖2
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≥ c1µ ‖x‖2
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1− cµ ‖x‖2

2

σ2κ2β+2
0

∥∥V(2,κ0)

∥∥2

∞,2m

)
,

=
c1µ ‖x‖2

2

κ2β
0

(
1− cµ ‖x‖2

2

σ2κ2β+1
0 N

m

)

≥ c1µ ‖x‖2
2

κ2β
0

(
1− cµmaxi x

2
i

σ2κ2β+1
0

m

)
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where κ0 is of the order of m
1

2β+1 . �

14.4 Proof of Corollaries 7 and 8
For a Type-2 graph, we assume that a few elements in an approximately bandlimited signal have
much higher magnitudes than the others. The intuition is that, since V is sparse, the energy
concentrates in O(κ) rows of V(κ), thus, O(κ) components of an approximately bandlimited
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signal, xi ≈ vTi,(κ)x̂(κ), have much higher magnitudes than the others. In other words, κmaxi x
2
i

and ‖x‖2
2 are of the same order.

For uniform sampling, based on Corollary 1, we have

µ

1 + κ2β
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2 +
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m
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where γ varies with κ to satisfy κγ ≤ N (γ > 1) and κ is of the order of m
1

2β+γ , and C > 0 is
some constant. Since at least Algorithm 1 satisfies this rate of convergence, we thus have
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sup
x∈ABLA(K,β,µ)
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2

)
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We next show the lower bound. Based on Theorem 3, we have
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where κ0 is of the order of m
1

2β+γ .
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For optimal sampling scores based sampling, based on Corollary 2, we have

µ

1 + κ2β
‖x‖2
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1
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 N∑
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where (a) follows from the energy concentrating inO(κ) columns of U(κ) as shown in Definition
6 and the upper bound reaching the minimum when κ is of the order of m

1
2β+1 . Since at least

Algorithm 1 satisfies this rate of convergence, we have

inf
(x∗,M)∈Θe

sup
x∈ABLA(K,β,µ)

Ex,M
(
‖x∗ − x‖2

2

)
≤ Cm−

2β
2β+1 .

Based on Definition 6,
∥∥V(2,κ0)

∥∥2

∞,2 = c, we have
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sup
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�

14.5 Proof of Theorem 21
Under H0, the observation is y = Bernoulli(ε1V). Let the ith wavelet basis vector be

wi =

√√√√ |S(i)
1 ||S

(i)
2 |

|S(i)
1 |+ |S

(i)
2 |

(
1
S
(i)
1

|S(i)
1 |
−

1
S
(i)
2

|S(i)
2 |

)

=

√
|S(i)|
2

(
1
S
(i)
1

|S(i)
1 |
−

1
S
(i)
2

|S(i)
2 |

)
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where S(i)
1 , S

(i)
2 are two local child sets that form wi and S(i) is the parent local set. The second

equality follows from the even partition. Thus,

wT
i y =

√
|S(i)|
2

1T
S
(i)
1

y

|S(i)
1 |
−

1T
S
(i)
2

y

|S(i)
2 |

 .

Since each element in y is a Bernoulli random variable that takes value one with probability ε,
the first term in the parentheses is the mean of |S(i)

1 | Bernoulli random variables with success
probability of ε. We then can show that

E

1T
S
(i)
1

y

|S(i)
1 |

 =
|S(i)

1 |ε
|S(i)

1 |
= ε.

Following from the Hoeffding inequality [184], for any η,

P

∣∣∣∣∣∣
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S
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y

|S(i)
1 |
− ε

∣∣∣∣∣∣ ≥ η

 ≤ 2e−2|S(i)
1 |η2 .

Thus, (1T
S
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1

y/|S(i)
1 | − ε) is 1/(2

√
|S(i)

1 |)-sub-Gaussian random variable. Combing two terms,

we obtain that wT
i y is

√
2/2-sub-Gaussian random variable. Then,

E
(∥∥WT

(−1) y
∥∥
∞

)
= E

(
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)
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logN.

Finally, by the Cirelson’s theorem [184], with probability at least 1− δ,∥∥WT
(−1) y

∥∥
∞
≤ E

(∥∥WT
(−1) y

∥∥
∞

)
+
√

2 log(1/δ).

Under H1, the observation is y = Bernoulli(µ1C + ε1V). We need to show there exists at
least one wavelet basis vector capturing C well. We start with the following lemmas.
Lemma 8. ∥∥WT

(−1) 1C
∥∥
∞
≥

√
|C|(1− |C|/N)

1 + ρ logN
.

Proof.
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.

The second inequality follows from Theorem 8 with ‖∆1C‖0 ≤ ρ and the even partition.
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Let

i = arg max
2≤j≤N
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j 1C

= arg max
2≤j≤N
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,

where S(j)
1 , S

(j)
2 are the children local sets of S(j). Following from Lemma 8,
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Thus, the assumption can be reformulated as

µ− ε ≥
(
√

logN + 2
√

2 log(2
δ
))

√
S(i)

2

(
|S(i)

1 ∩C|
|S(i)

1 |
− |S

(i)
2 ∩C|
|S(i)

2 |

) , (14.1)

Lemma 9. When a ∼ Binomial (n1, p1) , b ∼ Binomial (n2, p1), with probability (1− δ)2,

|a+ b− (n1p1 + n2p2)| ≤
√
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2
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δ
) +

√
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2
log(

2

δ
).

Proof. Following from the Hoeffding inequality, with probability 1−δ, |a−n1p1| ≤
√
n1 log(2/δ)/2.

We bound both a and b, and rearrange the terms to obtain Lemma 9.

We aim to show that |wT
i y| is sufficiently large. Here, the term 1T

S
(i)
1
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appear inside the local set S(i)
1 and is a random variable under the distribution of Binomial
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Similarly, we have with probability (1− δ)2,∣∣∣1T
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Without losing generality, we assume that |S(i)
1 ∩C| ≥ |S
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2 ∩C|. With probability (1− δ)4,
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The last inequality follows from (14.1). Finally, with probability at least (1− δ)4,

∥∥WT
(−1) y

∥∥
∞
≥ |wT
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√

logN +

√
2 log(

2

δ
).

�

14.6 Proof of Theorem 22

Under H0, the observation is y = Bernoulli(ε1V). Let C = {C : ‖∆1C‖1 ≤ ρ}.

ĝ = max
C∈C
|C|KL

(
1TCy

|C|
||ε
)
≤ 8 max

C∈C
|C|
(
1TCy

|C|
− ε
)2

≈ 8

(
max
C∈C

1TC(y − ε)√
|C|

)2

.

In the last step, we only consider one side of the distribution. We can evaluate both sides and
take the maximum, but this is nearly the same. By using the Hoeffding inequality, we can show
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that 1TC(y − ε)/
√
|C| is a 1/2-sub-Gaussian random variable. Similarly to Theorem 5 in [178],

we can show that with probability 1− δ,

max
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√
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1

δ
.

Theorem 5 [178] is concerned with a Gaussian variable and here we are concerned with a sub-
Gaussian variable. Thus, under the null hypothesis H0, with probability 1− δ,

ĝ ≤ 8
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√
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)√
2 log(N − 1)

+
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√
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.

UnderH1, the observation is y = Bernoulli(µ1C+ε1C). Following from the Hoeffding inequal-
ity, with probability 1− δ,

|1
T
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√
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Then,
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)
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,

we can distinguish H1 from H0. �
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14.7 Proof of Theorem 23

Under H0, the observation is y = Bernoulli(ε1V). Let Xt = {x : x ∈ [0, 1]N , ‖∆1C‖1 ≤
ρ,1Tx ≤ t.}.

r̂ = max
t,x∈Xt

tKL

(
xTy

t
||ε
)

≤ 8 max
t,x∈Xt

t
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xTy
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≈ 8

(
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xT (y − ε)√
t

)2

,

where the second inequality follows from that 1Tx ≤ t and in the the last step, we only consider
one side of the distribution. We can evaluate both sides and take the maximum, but this is nearly
the same.
Lemma 10.
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.

When x is a binary variable, xT (y − ε)/
√
1Tx is a 1/2-sub-Gaussian random variable as shown

previously. The cardinality of the set {0, 1}N is 2N . Thus,

Ey max
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t

≤
√

1

2
log 2N .
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Combining Lemma 10 and to Theorem 5 in [178], we can show that with probability 1− δ,
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Thus, under the null hypothesis H0, with probability 1− δ,
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.

Under H1, the observation is y = Bernoulli(µ1C + ε1C). Let t∗ = |C|,x∗ = 1C . Similarly to
the proof in Theorem 22,

r̂ ≥ t∗KL
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we can distinguish H1 from H0. �

231



14.8 Proof of Lemma ??

For the nonweighted version, we have

EΨ∼π
(
ΨTΨf(X)

)
i

= EM

 ∑
Mj∈M

fMj
(X)δMj=i


(a)
= ME` (f`(X)δ`=i) = M

N∑
`=1

f`(X)π`δ`=i

= Mπifi(X).

where
(
ΨTΨf(X)

)
i
∈ RK is the ith row of ΨTΨf(X), fi(X) ∈ RK is the ith row of f(X),

δi denotes an indicator function and equality (a) follows from the independent and identically
distributed random sampling.

For the reweighted version, we have

EΨ∼π
(
S ΨTΨf(X)

)
i

= EM

 ∑
Mj∈M

SMj ,Mj
fMj

(X)δMj=i


= ME`

(
1

Mπl
f`(X)δ`=i

)
= M

N∑
`=1

1

Mπ`
f`(X)π`δ`=i

= fi(X).

�

14.9 Proof of Theorem 24

We first split the error into the bias term and the variance term,

EΨ∼π
∥∥S ΨTΨf(X)− f(X)

∥∥2

2

=
∥∥EΨ∼π

(
S ΨTΨf(X)

)
− f(X)

∥∥2

2

+EΨ∼π
∥∥S ΨTΨf(X)− EΨ∼π

(
S ΨTΨf(X)

)∥∥2

2
,

where the first term is bias and the second term is variance. Lemma (7) shows that the bias term
is zero. So, we only need to bound the variance term.
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For each element in the variance term, we have
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∥∥(S ΨTΨf(X)

)
i
− E

(
S ΨTΨf(X)

)
i

∥∥2

= EM

[ ∑
Mj∈M

SMj ,Mj
fMj

(X)δMj=i − fi(X)

T

 ∑
Mj′∈M

SMj′ ,Mj′
fMj′

(X)δMj′=i
− fi(X)

]

= EM
( ∑
Mj ,Mj′∈M

SMj ,Mj
SMj′ ,Mj′

fMj
(X)TfMj′

(X)

δMj=iδMj′=i

)
− fi(X)Tfi(X)

= M2E` S2
`,` f`(X)Tf`(X)δ`=i − fi(X)Tfi(X)

= M2

N∑
`=1

f`(X)Tf`(X)

M2π2
`

π`δ`=i − fi(X)Tfi(X)

=

(
1

πi
− 1

)
fi(X)Tfi(X).

We finally combine all the elements and obtain (11.4). �

14.10 Proof of Theorem 25
Proof. Based on Theorem 24, we have

EΨ∼π (Df (Ψ))

= EΨ∼π max
X′c:‖X′c‖2=c

∥∥(S ΨTΨ− I
)
f
([

X′c Xo

])∥∥2

F

= EΨ∼π max
X′c:‖X′c‖2=c

∥∥(S ΨTΨ− I
)

F
[
X′c Xo

]∥∥2

F

= EΨ∼π

(
max

X′c:‖X′c‖2=c

∥∥(S ΨTΨ− I
)

F X′c
∥∥2

F

+
∥∥(S ΨTΨ− I

)
F Xo

∥∥2

F

)
= EΨ∼π

(
c2
∥∥(S ΨTΨ− I

)
F
∥∥2

F

+
∥∥(S ΨTΨ− I

)
F Xo

∥∥2

F

)
= c2Tr

(
F Q FT

)
+ Tr

(
F Xo Q(F Xo)T

)
.
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14.11 Proof of Theorem 26

The optimal resampling strategy is the solution of the following optimization problem,

min
π

EΨ∼π
(
Df(X)(Ψ)

)
(14.2)

subject to
N∑
i=1

πi = 1, πi ≥ 0.

The corresponding Lagrange function is

L(πi, λ, µ)

= EΨ∼π
(
Df(X)(Ψ)

)
+ λ

(
N∑
i=1

πi − 1

)
+

N∑
i=1

µiπi

=
N∑
i=1

(
1

πi
− 1

)
‖fi(X)‖2

2 + λ

(
N∑
i=1

πi − 1

)
+

N∑
i=1

µiπi,

where the equality follows from Theorem 24. The derivative to πi is

∂L

∂πi
= − 1

π2
i

‖fi(X)‖2
2 + λ+ µi. (14.3)

By setting its derivative to zero, we have

πi =
‖fi(X)‖2√
λ+ µi

.

Due to the complementary slackness, we have

µiπi =
µi ‖fi(X)‖2√

λ+ µi
= 0.

Thus, either µi or ‖fi(X)‖2 is zero. In both cases, πi ∝ ‖fi(X)‖2. �

14.12 Proof of Theorem 27

The optimal resampling strategy is the solution of the following optimization problem,

min
π

EΨ∼π (Df (Ψ)) (14.4)

subject to
N∑
i=1

πi = 1, πi ≥ 0.
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The corresponding Lagrange function is

L(πi, λ, µ)

= EΨ∼π (Df (Ψ)) + µ

(
N∑
i=1

πi − 1

)
+

N∑
i=1

µiπi

= c2

N∑
i=1

(
1

πi
− 1

)
‖Fi‖2

2 +
N∑
i=1

(
1

πi
− 1

)
‖(F Xo)i‖

2
2

+µ

(
N∑
i=1

πi − 1

)
+

N∑
i=1

µiπi,

where Fi is the ith row of F and (F Xo)i is the ith row of F Xo. The derivative to πi is

∂L

∂πi
= − 1

π2
i

(
c2 ‖Fi‖2

2 + ‖(F Xo)i‖
2
2

)
+ µ+ µi.

By setting its derivative to zero, we have

πi =

√
c2 ‖Fi‖2

2 + ‖(F Xo)i‖
2
2√

µ+ µi
.

Due to the complementary slackness, we have

µiπi =
µi

√
c2 ‖Fi‖2

2 + ‖(F Xo)i‖
2
2√

µ+ µi
= 0.

Thus, either µi or ‖fi(X)‖2 is zero. In both cases, πi ∝
√
c2 ‖Fi‖2

2 + ‖(F Xo)i‖
2
2. �

14.13 Proof of Theorem 28
We first show the rotational invariance. Let X be the 3D coordinates of an original point cloud
and R ∈ R3×3 be a rotation matrix. The point cloud after rotating is X R. The local variation of
X R is

fi(X R) = ‖(h(A) X R)i‖
2
2

= ‖(h(A))i X R‖2
2

= (h(A))i X R RT XT (h(A))Ti
(a)
= (h(A))i X XT (h(A))Ti
= ‖(h(A) X)i‖

2
2 = fi(X),

where (h(A))i is the ith row of h(A) and (a) follows from any rotation matrix R is orthonormal.
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We next show the shift variance. Let a ∈ R3 be the shift and the point cloud after shifting is
X +1aT . The local variation of X +1aT is

fi(X +1aT ) =

∥∥∥∥(h(A)
(
X +1aT

))
i

∥∥∥∥2

2

=

∥∥∥∥(h(A) X

)
i

+

(
h(A)1aT

)
i

∥∥∥∥2

2

Thus, fi(X +1aT ) = fi(X) only when h(A)1 = 0 ∈ RN . �
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[4] Michèle and Igor V. Nikiforov, “Detection of abrupt changes: Theory and application,”
Automatica, vol. 32, no. 8, pp. 1235–1236, 1996.

[5] J. D. Haupt, R. M. Castro, and R. D. Nowak, “Distilled sensing: selective sampling
for sparse signal recovery,” in Proceedings of the Twelfth International Conference on
Artificial Intelligence and Statistics, AISTATS, Clearwater Beach, Florida, April 2009, pp.
216–223.

[6] V. Cevher, P. Indyk, C. Hegde, and R. G. Baraniuk, “Recovery of clustered sparse signals
from compressive measurements,” in Proc. Sampling Theory Appl., Marseille, May 2009.

[7] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground-
background segmentation using codebook model,” Real-Time Imaging, vol. 11, no. 3,
pp. 172–185, June 2005.

[8] F. Buggenthin, C. Marr, M. Schwarzfischer, P. S. Hoppe, O. Hilsenbeck, T. Schroeder, and
F. J. Theis, “An automatic method for robust and fast cell detection in bright field images
from high-throughput microscopy,” BMC Bioinformatics, vol. 14, pp. 297, 2013.

[9] G. L. Turin, “An introduction to matched filters,” IRE Trans. Information Theory, vol. 6,
no. 3, pp. 311–329, 1960.

[10] A. Mahalanobis, B. V. K. V. Kumar, and D. Casasent, “Minimum average correlation
energy filters,” Appl. Opt., vol. 26, pp. 3633–3640, 1987.

[11] G. Birkhoff and S. MacLane, Introduction to Graph Theory, Longman, 1953.

[12] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.

[13] F. Chung and L. Lu, Complex Graphs and Networks (Cbms Regional Conference Series
in Mathematics), American Mathematical Society, Boston, MA, USA, 2006.

[14] D. Eppstein, “Subgraph isomorphism in planar graphs and related problems,” J. Graph

237



Algorithms Appl., vol. 3, no. 3, 1999.

[15] D. Brélaz, “New methods to color the vertices of a graph,” Commun. ACM, vol. 22, no.
4, pp. 251–256, Apr. 1979.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
MIT Press and McGrawHill, London, UK, 2 edition, 2001.

[17] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[18] A. Schrijver, “On the history of the transportation and maximum flow problems,” Math.
Program., vol. 91, no. 3, pp. 437–445, 2002.

[19] I. Herman, G. Melancon, and M. S. Marshall, “Graph visualization and navigation in
information visualization: A survey,” IEEE Trans. Vis. Comput. Graph., vol. 6, no. 1, pp.
24–43, 2000.

[20] F. R. K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in Mathemat-
ics, No. 92), Am. Math. Soc., 1996.

[21] D. A. Spielman, “Spectral graph theory and its applications,” in 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS, 2007), October 20-23, 2007,
Providence, RI, USA, Proceedings, 2007, pp. 29–38.

[22] U. V. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no.
4, pp. 395–416, 2007.

[23] Y. Koren, “Drawing graphs by eigenvectors: Theory and practice,” Comput. Math. Appl.,
vol. 49, no. 11-12, pp. 1867–1888, June 2005.

[24] D. A. Spielman and N. Srivastava, “Graph sparsification by effective resistances,” SIAM
J. Comput., vol. 40, no. 6, pp. 1913–1926, 2011.

[25] D. A. Spielman, “Algorithms, graph theory, and the solution of laplacian linear equa-
tions,” in Automata, Languages, and Programming - 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, 2012, pp. 24–26.

[26] M. Newman, Networks: An Introduction, Oxford University Press, 2010.

[27] R. Pastor-Satorras, C. Castellano, P. V. Mieghem, and A. Vespignani, “Epidemic processes
in complex networks,” Rev. Mod. Phys., vol. 87, Aug. 2015.

[28] M. Girvan and M. E. J. Newman, “Community structure in social and biological net-
works,” Proc. Nat. Acad. Sci., vol. 99, pp. 7821–7826, 2002.

[29] H. Schmidt, G. Petkov, M. P. Richardson, and J. R. Terry, “Dynamics on networks: The
role of local dynamics and global networks on the emergence of hypersynchronous neural
activity,” PLoS Computational Biology, vol. 10, no. 11, 2014.

[30] D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, Tools, and Case Studies, Synthe-
sis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers,
2012.

[31] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: A
survey,” Data Min. Knowl. Discov., vol. 29, no. 3, pp. 626–688, May 2015.

238



[32] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph summarization,”
in Proceedings of the ACM SIGMOD International Conference on Management of Data,
Vancouver, Canada, June 2008, pp. 567–580.

[33] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos, “FRAUDAR: bound-
ing graph fraud in the face of camouflage,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, 2016, pp. 895–904.

[34] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks,” in
Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, Dec. 2012, pp.
548–556.

[35] J. Leskovec and R. Sosic, “SNAP: A general-purpose network analysis and graph-mining
library,” ACM TIST, vol. 8, no. 1, pp. 1, 2016.

[36] A. Sandryhaila and J. M. F. Moura, “Big data processing with signal processing on
graphs,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90, 2014.

[37] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral
graph theory,” Appl. Comput. Harmon. Anal., vol. 30, pp. 129–150, Mar. 2011.

[38] S.l K. Narang, G. Shen, and A. Ortega, “Unidirectional graph-based wavelet transforms
for efficient data gathering in sensor networks,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Dallas, TX, Mar. 2010, pp. 2902–2905.

[39] E. Pavez, H. E. Egilmez, Y. Wang, and A. Ortega, “GTT: graph template transforms with
applications to image coding,” in 2015 Picture Coding Symposium, PCS 2015, Cairns,
Australia, May 31 - June 3, 2015, 2015, pp. 199–203.

[40] D. I. Shuman, M. J. Faraji, , and P. Vandergheynst, “A multiscale pyramid transform for
graph signals,” IEEE Trans. Signal Process., vol. 64, pp. 2119–2134, Apr. 2016.

[41] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., Kyoto, Japan, Mar. 2012, pp. 3921 – 3924.

[42] D. Thanou, D. I. Shuman, and P. Frossard, “Learning parametric dictionaries for signals
on graphs,” IEEE Trans. Signal Process., vol. 62, pp. 3849–3862, June 2014.

[43] D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, “Spectrum-adapted
tight graph wavelet and vertex-frequency frames,” IEEE Trans. Signal Processing, vol.
63, no. 16, pp. 4223–4235, 2015.

[44] A. Agaskar and Y. M. Lu, “A spectral graph uncertainty principle,” IEEE Trans. Inf.
Theory, vol. 59, no. 7, pp. 4338–4356, July 2013.

[45] M. Tsitsvero, S. Barbarossa, and P. D. Lorenzo, “Signals on graphs: Uncertainty principle
and sampling,” IEEE Trans. Signal Process., vol. 64, pp. 4845 – 4860, 2015.

[46] N. Perraudin, B. Ricaud, D. Shuman, and P. Vandergheynst, “Global and local uncertainty
principles for signals on graphs,” CoRR, vol. arXiv:1603.03030, 2016.

[47] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for
graph structured data,” IEEE Trans. Signal Process., vol. 60, pp. 2786–2799, June 2012.

239



[48] S. K. Narang and Antonio Ortega, “Compact support biorthogonal wavelet filterbanks for
arbitrary undirected graphs,” IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4673–4685,
Oct. 2013.

[49] V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran, “Spline-like wavelet
filterbanks for multiresolution analysis of graph-structured data,” IEEE Trans. Signal and
Information Processing over Networks, vol. 1, no. 4, pp. 268–278, 2015.

[50] N. Tremblay and P. Borgnat, “Subgraph-based filterbanks for graph signals,” IEEE Trans.
Signal Processing, vol. 64, no. 15, pp. 3827–3840, 2016.

[51] J. Zeng, G. Cheung, and A. Ortega, “Bipartite subgraph decomposition for critically
sampled wavelet filterbanks on arbitrary graphs,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Shanghai, Mar. 2016, pp. 6210–6214.

[52] N. Tremblay and P. Borgnat, “Graph wavelets for multiscale community mining,” IEEE
Trans. Signal Process., vol. 62, pp. 5227–5239, Oct. 2014.

[53] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov, “Clustering on multi-layer
graphs via subspace analysis on Grassmann manifolds,” IEEE Trans. Signal Process., vol.
62, no. 4, pp. 905–918, Feb. 2014.

[54] P.-Y. Chen and A.O. Hero, “Local Fiedler vector centrality for detection of deep and
overlapping communities in networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Florence, 2014, pp. 1120–1124.

[55] B. Girault, “Stationary graph signals using an isometric graph translation,” in 23rd Eu-
ropean Signal Processing Conference, EUSIPCO 2015, Nice, France, Aug. 2015, pp.
1516–1520.

[56] N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” arXiv
preprint arXiv:1603.04667, Jan. 2016.

[57] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and
spectral estimation,” arXiv preprint arXiv:1603.04667, Mar. 2016.

[58] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Signal denoising on graphs
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Variation minimization,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4609–4624,
Sept. 2015.
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