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ABSTRACT  

Geologic carbon dioxide (CO2) storage is one approach for mitigating 

concentrations of CO2 in the atmosphere that are caused by stationary anthropogenic 

inputs. Injecting CO2 into the subsurface for long-term storage is an “engineered-natural 

system”. This engineered-natural system is complex, with potential interactions during 

CO2 injection between CO2 and other reservoir fluids and various components of the 

geologic system. The National Risk Assessment Partnership (NRAP) is an initiative 

within DOE’s Office of Fossil Energy that is improving the fundamental understanding 

of the complex science behind engineered-natural systems and is developing the risk 

assessment tools that are needed for safe, permanent geologic CO2 storage. The NRAP 

technical approach entails an iterative modeling process that integrates component 

models into a system model which may then be used to provide quantitative assessments 

of potential risks and to design monitoring protocols that will effectively monitor risks at 

a geologic CO2 storage project. A theme throughout all phases of the NRAP approach is 

quantifying uncertainty and variability. The focus of this dissertation is to contribute 

statistical methods and/or approaches for quantifying uncertainty and variability with 

respect to both monitoring and performance at geologic CO2 storage sites. These methods 

are intended for future use by NRAP or other geologic CO2 storage practitioners and may 

be incorporated into broader modeling approaches. However, the results and 

contributions from this work extend beyond geologic CO2 storage and apply to other 

subsurface engineered-natural systems. 

This dissertation examines three topic areas which have been organized into three 

separate chapters: (Chapter 2) evaluating the effectiveness of deep subsurface pressure 
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monitoring for brine leakage detection; (Chapter 3) quantifying the benefit of wellbore 

leakage potential estimates for prioritizing long-term monitoring; and (Chapter 4) 

quantifying CO2 storage associated with CO2 enhanced oil recovery. Key results for each 

of these topic areas and new contributions to the state-of-the-science are summarized 

below. 

Evaluating the effectiveness of deep subsurface pressure monitoring for 

brine leakage detection. The work in Chapter 2 highlights the importance of uncertainty 

in the design of a reliable pressure monitoring network for geologic CO2 storage sites. 

Subsurface pressure monitoring is attractive within the geologic CO2 storage system, 

because the pressure pulse from CO2 injection will cover a significantly broader portion 

of the system than the CO2 plume. While several authors have investigated the use of 

pressure monitoring at geologic CO2 storage sites and the sensitivity of pressure output to 

model inputs, uncertainty analysis has not been extensively conducted to assess detection 

sensitivity of pressure monitoring throughout the reservoir system as a function of space 

and time. Uncertainty analysis adds important information beyond sensitivity analysis, 

and helps define the probability at which monitoring during and post-injection will 

differentiate leakage of a given size from the background variability. The results suggest 

that measurements of the absolute change in pressure within the target injection aquifer 

would not be able to distinguish small leakage rates from baseline conditions, and that 

only large leakage rates would be discriminated with sufficient statistical power. 

Combining measurements, for example by taking the ratio of formation pressure in the 

aquifer above the cap rock to the target injection aquifer, provides better statistical power 

for distinguishing smaller leakage rates at earlier times in the injection program. Thus one 
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important contribution of this work is the idea that an optimized monitoring system 

which integrates multiple measurements could provide improved leakage detection 

sensitivity. In addition, the work in Chapter 2 shows that detection sensitivity for pressure 

is a function of lateral distance from the injection wells (x), vertical position within the 

storage system (z), and time (t), or ~f(x, z, t). Therefore, design of an adequate monitoring 

network for subsurface pressure should account for this time-space variability to ensure 

that the monitoring system performs to the necessary design criteria. There is unlikely to 

be a “one-size fits all” monitoring program for geologic CO2 storage sites. However, a 

critical insight from the work in Chapter 2 is that the final monitoring program must be 

adaptive and dynamic, changing over the project life-cycle to adjust to changing 

subsurface conditions in response to CO2 injection. 

Quantifying the benefit of wellbore leakage potential estimates for 

prioritizing long-term monitoring. The work in Chapter 3 demonstrates that accurate 

prior knowledge about the probability of well leakage adds measurable value to the 

ability to detect a leaking well during the monitoring program, and that the loss in 

detection ability due to imperfect knowledge of the leakage probability can be quantified. 

The CO2 injection phase for geologic CO2 storage is likely to span decades and the post-

injection site care would extend approximately 50 additional years beyond that timeline. 

Thus, sampling all wells within the Area of Review (AoR) at fixed frequency (e.g., 

annually) may be cost-prohibitive, especially for sites with many legacy wells. 

Optimizing a well sampling program using prior knowledge about the probability of well 

leakage (e.g., pre-injection well integrity surveys) would yield a more cost-effective 

monitoring program. Power curves were developed as a function of (1) the number of 
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leaking wells within the Area of Review; (2) the sampling design (random or judgmental, 

choosing first the wells with the highest deep leakage potential scores); (3) the number of 

wells included in the monitoring sampling plan; and (4) the relationship between a well’s 

leakage potential score and its relative probability of leakage. Cases where the deep well 

leakage potential scores are fully or partially informative of the relative leakage 

probability are compared to a non-informative base case in which leakage is equiprobable 

across all wells in the Area of Review. The solution approach uses a stepwise procedure 

that was implemented using open-source (free) software; therefore, the process is 

reproducible and easily transferable to other modeling and simulation platforms. The 

results from Chapter 3 provide a practical example of how a field operator might 

incorporate prior knowledge about the probability of well leakage into their sampling 

plan design and thus quantitatively evaluate different plans to satisfy the site-specific 

monitoring objectives. 

Quantifying CO2 storage associated with CO2 enhanced oil recovery. The 

work in Chapter 4 analyzes a database of 31 existing CO2 enhanced oil recovery (EOR) 

projects to better understand the CO2 retention, incremental oil recovery, and net CO2 

utilization of these oil fields. The results of this study showed that across all 31 sites, the 

10th, 50th (median), and 90th percentile values for the three factors at 300% hydrocarbon 

pore volume (HCPV) were: CO2 retention: 23.1%, 48.3%, and 61.8% retained; 

incremental oil recovery: 5.3%, 12.2%, and 21.5% OOIP (original oil in place); and net 

CO2 utilization: 4.8, 8.7, and 10.5 Mscf/STB (stock-tank barrel). These results can be 

used to estimate the potential range of expected performance for similar candidate oil 

fields that are not currently undergoing CO2 injection, including estimates of the 
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associated CO2 storage potential of these candidate fields. In addition, the work in 

Chapter 4 employs a novel approach that incorporates nonlinear functions to quantify 

uncertainty of the CO2 retention, incremental oil recovery, and net CO2 utilization 

response with a handful of parameters, providing insight into the behavior of the reservoir 

across the entire timeline of the CO2 flood. This work showed that a four-parameter log-

logistic function was able to accurately describe the overall shape of the CO2 retention 

and incremental oil recovery curves across the 31 sites, and that a two-parameter simple 

asymptotic function was able to accurately describe the overall shape of the net CO2 

utilization curves across the 16 sites for which net CO2 utilization values could be 

calculated. These functions provide a practical approach for operators to summarize key 

performance metrics of their CO2 EOR field data and forecast the performance into the 

future. In addition, these functions also provide useful screening tools for broad regional 

assessments of the CO2 storage resource associated with candidate CO2 EOR fields. 

Lastly, these analytical approaches lend themselves to Monte Carlo simulation and 

therefore rapid uncertainty quantification as compared to complex three-dimensional 

numerical simulation models. 
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Chapter 1: Introduction 

1.1 Geologic CO2 Storage to Mitigate Atmospheric Inputs of CO2 

In their recent Fifth Assessment Synthesis Report, the Intergovernmental Panel on 

Climate Change (IPCC) asserts that the warming of Earth’s climate system is real and 

observable, and that this warming is directly attributable to anthropogenic inputs of 

carbon dioxide (CO2) and other greenhouse gases to the atmosphere, largely as a 

byproduct of fossil fuel combustion (IPCC, 2014). In an effort to mitigate concentrations 

of CO2 in the atmosphere that are caused by stationary anthropogenic inputs, the United 

States Department of Energy (DOE) is pursuing geologic CO2 storage as one approach in 

a portfolio of greenhouse gas reduction strategies. Through the Carbon Sequestration 

Program, the DOE is working with seven Regional Carbon Sequestration Partnerships 

(RCSPs) to identify feasible sites within the U.S. and portions of Canada for geologic 

storage of CO2 (DOE, 2012). 

Geologic CO2 storage generally involves (1) separating CO2 from an industrial 

process, (2) transporting the CO2 to a storage location, and (3) injecting and sequestering 

the CO2 in a geologic reservoir for long-term isolation from the atmosphere (IPCC, 

2005). Injecting CO2 into the subsurface for long-term storage is what DOE refers to as 

an “engineered-natural system” (DOE, 2015). This engineered-natural system is complex, 

with potential interactions during CO2 injection between CO2 and other reservoir fluids 

and various components of the geologic system. These components include the storage 

reservoir, structural features like faults and fractures, seal formations (the cap rock and 

other low-permeability layers which overly the storage reservoir), wellbores that are 

present within the storage site area, and near-surface receptors like underground sources 
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of drinking water (USDW), the soil vadose zone, and ultimately the surface (Figure 1-1). 

Understanding the interactions between CO2 and other reservoir fluids and these 

components of the geologic system in response to CO2 injection is paramount to 

accurately modeling the fate and transport processes in the subsurface and ultimately to 

quantifying the potential risks over the project life-cycle of the geologic CO2 storage site. 

 

Figure 1-1. Simplified diagram illustrating key components of a geologic CO2 storage site: storage 

reservoir (Reservoirs), geologic structural features such as faults and fractures (Seismicity), cap rock 

overlying the storage reservoir (Seals), wellbores that are present within the storage site area 

(Wellbores), near-surface receptors such as underground sources of drinking water, the soil vadose 

zone, and ultimately the surface (Receptors) (Source: DOE, 2015). 

 

1.2 National Risk Assessment Partnership Approach 

The National Risk Assessment Partnership (NRAP) is an initiative within DOE’s 

Office of Fossil Energy that is improving the fundamental understanding of the complex 

science behind engineered-natural systems and is developing the risk assessment tools 

that are needed for safe, permanent geologic CO2 storage (DOE, 2015). The NRAP 

technical approach for developing the risk assessment tools for geologic CO2 storage 

entails an iterative modeling approach that integrates component models into a system 

model which may then be used to provide quantitative assessments of potential risks and 

to design monitoring protocols that will effectively monitor risks at a geologic CO2 

storage project. A theme throughout all phases of the NRAP approach is quantifying 

uncertainty and variability. For example, uncertainty exists in both the random and 
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systematic errors used to measure key geologic and fluid parameters, which in turn 

influence the subsequent simulation of the fate and transport of CO2 and other reservoir 

fluids within the modeled system. However, there is also environmental variability over 

space for these parameters. This variability is inherent to the system and unlike 

uncertainty it cannot be reduced through additional measurements (Gilbert, 1987). Thus 

modeling of a complex engineered-natural system during CO2 injection is not a 

deterministic (i.e., single answer) computation, but is instead a probabilistic (stochastic) 

representation of reality, where uncertainty in the system must be propagated throughout 

the model to produce a statistical distribution of outcomes rather than a single value 

(Note: In this dissertation, the term “uncertainty” is used to capture the aggregate effect 

of both uncertainty and variability.). The focus of this dissertation is to contribute 

statistical methods and/or approaches for quantifying uncertainty with respect to both 

monitoring and performance at geologic CO2 storage sites. These methods are intended 

for future use by NRAP or other geologic CO2 storage practitioners and may be 

incorporated into broader modeling approaches, thus improving the state-of-the-science 

with respect to developing the risk assessment tools that are needed for safe, permanent 

geologic CO2 storage. However, the results and contributions from this work extend 

beyond geologic CO2 storage and apply to other subsurface engineered-natural systems. 

 

1.3 Research Objectives 

As noted above, the primary objective of this dissertation is to provide statistical 

methods for quantifying uncertainty related to monitoring and performance at geologic 

CO2 storage sites. The specific objectives were as follows: 
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• Objective 1 – To estimate the statistical power of a pressure monitoring system to 

detect leakage of brine through the cap rock as a function of (1) spatial orientation 

of the pressure monitoring (i.e., the lateral distance from the injection wells and 

vertical orientation within the reservoir); (2) time (i.e., years since CO2 injection); 

and (3) the specified leakage rate of brine through the cap rock. 

• Objective 2 – To estimate the statistical power of selecting one or more leaky 

wells from among a population of legacy wells as a function of (1) the number of 

leaking wells within the Area of Review; (2) the sampling design (random or 

judgmental); (3) the number of wells included in the monitoring sampling plan; 

and (4) the relationship between a well’s leakage potential score and its relative 

probability of leakage. 

• Objective 3 – To quantify the uncertainty associated with the CO2 retention, 

incremental oil recovery, and net CO2 utilization for CO2 enhanced oil recovery 

(EOR) sites using historical reservoir performance data from 31 CO2 EOR 

projects located within the continental United States and heavily dominated by 

West Texas carbonate floods.  Objective 3 is particularly important, as CO2 EOR 

is likely to be the primary means of geologic CO2 storage during the early stages 

of commercial implementation given the lack of a national policy and the viability 

of the current business case (Peridas, 2008; Leach et al., 2011). 

 

Each of these specific objectives contributes to the primary objective by illustrating the 

application of statistical tools and models to different components related to monitoring 

and performance at geologic CO2 storage sites. For example, pressure monitoring and 
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wellbore sampling are principal elements of the monitoring associated with geologic CO2 

storage sites. Thus Objectives 1 and 2 provide important results that may be used to 

directly answer key monitoring questions for these types of sites. Objective 3 is related to 

performance. CO2 retention, incremental oil recovery, and net CO2 utilization are three 

factors that significantly influence the long-term performance and economic viability of 

CO2 EOR projects. Therefore, Objective 3 provides key information about the expected 

values and uncertainties associated with these three performance metrics for CO2 EOR 

projects. 

 

1.4 Dissertation Overview 

This dissertation consists of five chapters. The main content of the thesis is 

presented in Chapter 2 to 4, which are materials that have been published in peer-

reviewed journals. 

Chapter 1 provides a general introduction to the dissertation, including the 

background of the NRAP approach for developing the risk assessment tools that are 

needed for safe, permanent geologic CO2 storage; a statement of the research objectives; 

and a brief overview of the content of this dissertation. 

Chapter 2 evaluates the detection sensitivity of deep subsurface pressure 

monitoring within an uncertain CO2 sequestration system by linking the output of an 

analytical reduced-order model and first-order uncertainty analysis. This material was 

written by Nicholas A. Azzolina and co-authored by Mitchell J. Small, David V. Nakles, 
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and Grant S. Bromhal, and was published in the peer-reviewed journal, Stochastic 

Environmental Research and Risk Assessment.
1
 

Chapter 3 uses probabilistic methods to simulate a hypothetical geologic CO2 

storage site in a depleted oil and gas field where the large number of legacy wells would 

make it cost-prohibitive to sample all wells for all measurements as part of the post-

injection site care. This material was written by Nicholas A. Azzolina and co-authored by 

Mitchell J. Small, David V. Nakles, Kyle A. Glazewski, Wesley D. Peck, Charlie D. 

Gorecki, Grant S. Bromhal, and Robert M. Dilmore, and was published in the peer-

reviewed journal, Environmental Science and Technology.
2
 

Chapter 4 analyzes a database of 31 existing CO2 EOR projects that was compiled 

for the estimation of oil reserves to better understand the CO2 retention, incremental oil 

recovery, and net CO2 utilization of these oil fields. As noted above, CO2 EOR is likely 

to be the primary means of geologic CO2 storage during the early stages of commercial 

implementation given the lack of a national policy and the viability of the current 

business case. This material was written by Nicholas A. Azzolina and co-authored by 

David V. Nakles, Charlie D. Gorecki, Wesley D. Peck, Scott C. Ayash, L. Steven Melzer, 

and Sumon Chatterjee, and was published in the peer-reviewed journal, International 

Journal of Greenhouse Gas Control.
3
 

                                                 
1
 Azzolina, N.A.; Small, M.J.; Nakles, D.V.; and Bromhal, G.S. (2014) Effectiveness of subsurface 

pressure monitoring for brine leakage detection in an uncertain CO2 sequestration system. Stochastic 

Environmental Research and Risk Assessment, 28:895-909. 
2
 Azzolina, N.A.; Small, M.J.; Nakles, D.V.; Glazewski, K.A.; Peck, W.D.; Gorecki, C.; Bromhal, G.S.; 

and Dilmore, R.M. (2015) Quantifying the benefit of wellbore leakage potential estimates for prioritizing 

long-term MVA well sampling at a CO2 storage site. Environmental Science and Technology, 49 (2): 1215-

1224. 
3
 Azzolina, N.A.; Nakles, D.V.; Gorecki, C.D.; Peck, W.D.; Ayash, S.C.; Melzer, L.S.; and Chatterjee, S. 

(2015). CO2 storage associated with CO2 enhanced oil recovery: A statistical analysis of historical 

operations. International Journal of Greenhouse Gas Control, 37:384-397. 
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Chapter 5 summarizes the major conclusions of this dissertation, highlights key 

contributions to the state-of-the science, and provides suggestions for ongoing research 

and future work associated with the monitoring and modeling at geologic CO2 storage 

sites. 
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Chapter 2: Effectiveness of subsurface pressure monitoring for brine 

leakage detection in an uncertain CO2 sequestration system
4
 

 

Abstract 

This work evaluates the detection sensitivity of deep subsurface pressure 

monitoring within an uncertain CO2 sequestration system by linking the output of an 

analytical reduced-order model and first-order uncertainty analysis. A baseline (non-

leaky) modeling run was compared against 10 different leakage scenarios, where the cap 

rock permeability was increased by factors of 2 to 100 (cap rock permeability from 10
-3

 

to 10
-1

 millidarcy). The uncertainty variance outputs were used to develop percentile 

estimates and detection sensitivity for pressure throughout the deep subsurface as a 

function of space (lateral distance from the injection wells and vertical orientation within 

the reservoir) and time (years since injection), or P(x, z, t). Conditional probabilities were 

computed for combinations of x, z, and t, which were then used to generate power curves 

for detecting leakage scenarios. The results suggest that measurements of the absolute 

change in pressure within the target injection aquifer would not be able to distinguish 

small leakage rates (i.e., less than 50x baseline) from baseline conditions, and that only 

large leakage rates (i.e., >100x baseline) would be discriminated with sufficient statistical 

power (>99%). Combining measurements, for example by taking the ratio of formation 

pressure in Aquifer 2/Aquifer 1, provides better statistical power for distinguishing 

                                                 

4
 Chapter 2 was the basis for the peer-reviewed publication. In the publication, several figures were 

presented in the Electronic Supplementary Material. However, in this dissertation the figures have been 

renumbered in consecutive numerical order and are embedded into the main text. Azzolina, N.A.; Small, 

M.J.; Nakles, D.V.; and Bromhal, G.S. (2014) Effectiveness of subsurface pressure monitoring for brine 

leakage detection in an uncertain CO2 sequestration system. Stochastic Environmental Research and Risk 

Assessment, 28:895-909. 
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smaller leakage rates at earlier times in the injection program. Detection sensitivity for 

pressure is a function of space and time. Therefore, design of an adequate monitoring 

network for subsurface pressure should account for this space-time variability to ensure 

that the monitoring system performs to the necessary design criteria, e.g., specific false-

negative and false-positive rates. 

 

2.1 Introduction 

In an effort to mitigate concentrations of carbon dioxide (CO2) in the atmosphere 

that are caused by stationary anthropogenic inputs, the United States Department of 

Energy (DOE) is pursuing carbon capture and sequestration (CCS) as one approach in a 

portfolio of greenhouse gas (GHG) reduction strategies. CCS involves (1) separating CO2 

from an industrial process, (2) transporting the CO2 to a storage location, and (3) 

injecting and sequestering the CO2 in a geologic reservoir for long-term isolation from 

the atmosphere (IPCC, 2005). Through the Carbon Sequestration Program, the DOE is 

working with seven Regional Carbon Sequestration Partnerships (RCSPs) to identify 

feasible sites within the U.S. and portions of Canada for large-scale (i.e., one million 

tonnes of CO2 or greater) CO2 geologic sequestration (GS) (DOE, 2011). 

The injection and long-term storage of CO2 into geologic reservoirs is not without 

risks. In general, these risks include leakage of stored CO2 or displaced formation water 

brine into the near-surface or surface environment or physical impacts resulting from 

modifying the subsurface stress regime. Several potential failure modes have been 

identified, including: (1) salinity impacts to freshwater underground sources of drinking 

water (USDW) from displaced formation water brines (Damen et al., 2006); (2) 
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mobilization of metals in USDW as a function of leaking CO2 entering the USDW, 

lowering the aquifer pH, and modifying the aquifer conditions such that metals enter the 

aqueous phase (Siirila et al., 2010; Little and Jackson, 2010; Wilkin and Digulio, 2010; 

Apps et al., 2011); (3) induced seismicity caused by injection of CO2 altering the 

subsurface stress conditions (Damen et al., 2006); and (4) CO2 leakage impacting 

sensitive ecological receptors in the near-surface and surface environment (U.S. EPA 

2008). These and other risks are analyzed and managed through combinations of site 

characterization, simulation models, and monitoring. Site characterization data include 

well logs, seismic data, geologic cores, and other measurements used to delineate the 

stratigraphy and subsurface properties of the storage system. Simulation models are then 

constructed from the site characterization data and used to predict the fate and transport 

of CO2 and other reservoir fluids in the subsurface or to model the geomechanical 

integrity of the reservoir and overlying seal formation in response to injection. Lastly, 

monitoring is used throughout the project life-cycle (baseline monitoring prior to 

injection, operational monitoring during injection, and post-operational monitoring 

following the injection period) to collect measurements and, based on the results of those 

measurements, infer whether or not one or more system failures is occurring. 

Monitoring will be an important component of making CO2 GS an acceptable 

method for atmospheric CO2 mitigation. Many different types of monitoring technologies 

are available, and each provides information with respect to making inferences about the 

probability of CO2 leakage or other types of storage system failures. Ultimately, an 

integrated, model-based monitoring network which incorporates tailored combinations of 

technologies will provide the appropriate balance between risk reduction and cost 
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effectiveness (Seto and McRae, 2011; Yang et al., 2012). The final configuration of 

monitoring technologies at any given CO2 GS site will be site-specific, including the 

appropriate number of technologies positioned at adequate sampling density and 

collecting information at the appropriate frequency (i.e., continuous, daily, weekly, 

monthly, or annually) to provide sufficient detection of leakage. However, heuristic 

studies of generic sites provide insight into how monitoring plans may be developed, and 

which technologies may provide sufficient detection sensitivity at lower cost. 

 In general, monitoring technologies may be classified by three different zones: (1) 

atmospheric, (2) near-surface, and (3) deep subsurface (DOE, 2009). While atmospheric 

and near-surface technologies provide information with respect to leakage at the surface 

or near-surface environments, they may be insufficient to provide detection early enough 

within the reservoir system to prevent impacts such as contamination of USDWs. In 

contrast, deep subsurface monitoring provides a sentinel location within the system, 

which could allow an operator to make adjustments during injection, thereby mitigating 

impacts to USDW or other near-surface and surface environments. One particular type of 

subsurface measurement that may provide information with respect to leakage is 

formation pressure (DOE, 2009). Pressure monitoring is attractive when there are a 

discrete number of monitoring wells within the system, because the pressure pulse from 

injection will cover a significantly broader portion of the system than the CO2 plume. For 

example, the results of stochastic simulations using a semi-analytical model showed that 

for a 100 km
2
 domain with 10 monitoring wells, the pressure pulse due to leakage after 

50 years of injection covered 98% of the project area, while the CO2 plume only covered 

3.5% of the domain (Nogues et al., 2011). 
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While several authors have investigated the use of pressure monitoring at CO2 GS 

sites (e.g., Nicot et al., 2009; Nogues et al., 2011) and the sensitivity of pressure output to 

model inputs (Birkholzer et al., 2009; Cihan et al., 2011; 2012), uncertainty analysis has 

not been extensively conducted to assess detection sensitivity of pressure monitoring 

throughout the reservoir system as a function of space and time. Uncertainty analysis 

adds important information beyond sensitivity analysis, and helps define the probability 

at which monitoring during and post-injection will differentiate leakage of a given size 

from the background variability. This work evaluates the detection sensitivity of deep 

subsurface pressure monitoring within an uncertain CO2 sequestration system by using an 

analytical reduced-order model (ROM) and first-order uncertainty analysis (FOUA). This 

works shows the value of a first-order approach for estimating uncertainty, and the 

importance of uncertainty in the design of a reliable monitoring network. Probabilistic 

approaches that incorporate uncertainty are important for designing monitoring networks, 

and may be used to select the best network that minimizes total cost (Bierkens, 2006; 

Kim and Lee, 2007). 

Modeling options for CO2 GS sites range from more simplified analytical 

approaches (e.g., Nordbotten et al., 2004; Cihan et al., 2012) to fully coupled, numerical 

three-dimensional (3D) models that include multi-phase flow, multi-component transport 

with complex phase partitioning, coupled geomechanical and geochemical reactions 

(Court et al., 2011). Many different types of numerical models have been developed. For 

example, DOE (2009) lists over 20 numerical codes that have been developed by either 

national laboratories or commercial vendors. Most of these numerical models involve 

solving the mass balance equations within the model grid, and their complexity requires 
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the use of massively parallel supercomputers (Court et al., 2011). Simpler 3D models 

exist, where one or more interactions are de-coupled, thereby simplifying the governing 

equations and expediting computation. Models such as TOUGH2 (Pruess, 2005), 

ECLIPSE (Exploration Consultants Limited Implicit Program for Simulation 

Engineering) (Schlumberger, 2010), and codes developed at the national laboratories 

such as Pacific Northwest National Laboratory’s (PNNL’s) STOMP (Subsurface 

Transport Over Multiple Phases) (White, 1997) or Lawrence Livermore National 

Laboratory’s (LLNS’s) NUFT (Nonisothermal, Unsaturated Flow and Transport with 

Chemistry) (Nitao, 1998) are examples of simplified 3D models (Court et al., 2011). 

Lastly, vertically-averaged two-dimensional (2D) models integrate the full 3D equations 

over the direction perpendicular to the top and bottom boundaries of the formation of 

interest (often assumed to be the vertical direction) (Court et al., 2011). Due to the 

computational complexity of fully-coupled or partially de-coupled 3D models, it is 

generally not practical to conduct multiple realizations of these numerical models to 

assess uncertainty, as each model run may take tens of hours (or longer). Therefore, an 

open research question in this field is how to evaluate uncertainty given the modeling 

limitations. This work uses a recently-developed ROM for simulating reservoir injection 

and pressure that was developed by Lawrence Berkley National Lab (LBNL Model, 

Cihan et al., 2011). The LBNL Model is further described in the Methods section. The 

approach for evaluating detection sensitivity builds upon methods established by Yang et 

al. (2011a, b; 2012), and the process includes four primary steps: (1) Characterize the 

uncertainty and variability present in the expected value for pressure with near-zero 

reservoir leakage (i.e., baseline conditions); (2) Determine critical values of pressure 
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beyond which (above or below, depending upon whether leakage causes an increase or a 

decrease in pressure) the operator can reject the null hypothesis (H0: No leakage above 

baseline conditions); (3) Simulate the change in pressure in response to different leakage 

rates, including the variability and uncertainty of pressure at each leakage rate; and (4) 

Considering this prediction with its variability and uncertainty, compute the probability 

that that the leak-impacted pressure will be beyond the critical value, allowing rejection 

of H0, and therefore inference of a leak. The above process yields estimates of the 

statistical power of the pressure monitoring system for the given leakage rate.  In the 

development of power curves, we selected as critical values the 99th percentile (P99) of 

the baseline pressure (when leakage causes an increase in pressure) or the 1st percentile 

(P01) of the baseline pressure (when leakage causes a decrease in pressure). We used the 

FOUA variance outputs to develop percentile estimates and detection sensitivity for 

pressure throughout the deep subsurface as a function of space (lateral distance from the 

injection wells and vertical orientation within the reservoir) and time (years since 

injection). We defined leakage in terms of the additional brine flux that would pass 

through the primary cap rock as a function of increasing the value of the cap rock 

permeability by factors of two through 100 above baseline. Therefore, “leakage” is meant 

to imply that the cap rock transmits fluids at a greater rate than was originally anticipated 

during the site characterization (feasibility study) phase. This can be due to improper 

geologic characterization, or induced changes in the cap rock as a function of CO2 

injection (e.g., geochemical or geomechanical failures). In a sense, the system is 

"leaking" fluids to overlying strata, and this study is asking whether or not small 

"leakages" will be detected by changes in pressure in the subsurface. The ability to detect 
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these leakages would then be an input into the broader site decision framework for 

assessing potential brine impacts to USDW as CO2 injection continues.  

 

2.2 Methods 

2.2.1 Reduced-Order Model 

The LBNL Model has been extensively described in Cihan et al. (2011) and 

(2012). A brief overview of the solution approach is described below. The analytical 

solution assumes single-phase flow in a multilayered system of aquifers and aquitards 

with both diffuse brine leakage (i.e., flux through aquitards) and focused brine leakage 

(i.e., flow through wells) (Cihan et al., 2012). The LBNL Model is a single-phase model; 

therefore, multi-phase processes are not incorporated into the solution. However, 

injection of a single-phase fluid (brine) with an equivalent volume of CO2 injected 

compared well with the numerical model, TOUGH2-ECO2N, and provided accurate 

results for pressures beyond the CO2 plume and brine leakage zone (Birkholzer et al., 

2009; Cihan et al., 2011; 2012). These results show that multi-phase processes inside the 

CO2 plume may be assumed negligible for prediction of far-field pressure build-up. 

However, the analytical solution does over-predict pressure build-up within the CO2 

plume, and therefore this study restricts the modeling outputs to distances of greater than 

1 km from the injection location (Cihan et al., 2012). All aquifers and aquitards are 

assumed homogeneous, with uniform thickness and infinite radial extent. Fluid flow is 

horizontal in the aquifers and vertical in the aquitards. Leaky wells are represented as 

Darcy-type flow pathways, and the user may specify well X- and Y-coordinates, the 

hydraulic conductivity of well-aquifer segments, the hydraulic conductivity of well-
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aquitard segments, and the radius of the well (Cihan et al., 2012). The equations of 

horizontal groundwater flow in the aquifers are coupled to the vertical-flow equations in 

the aquitards and the flow-continuity equations in the leaky wells. The governing partial 

differential equations for single-phase flow in aquifers and aquitards are transformed into 

the Laplace domain, and the resulting coupled system of ordinary differential equations 

are solved using the eigenvalue analysis method (Cihan et al., 2012). The LBNL Model is 

compiled in FORTRAN, and the model output includes pressure build-up in the different 

geologic units with time. 

To evaluate reservoir conditions that had already been published and validated 

using the numerical TOUGH2/ECO2N simulator (Prues et al., 1999; Pruess, 2005), 

parameters for the baseline scenario were taken from Cihan et al. (2012). The model 

includes a primary injection aquifer (1180 m to 1120 m), overlying cap rock (1120 m to 

1020 m), and alternating units of aquifers and aquitards above the cap rock up to the land 

surface (Figure 2-1). Details on the model input parameters for each unit are provided in 

Figure 2-2 and Appendix A provides the input file for the baseline model. CO2 was 

injected into a zone of 50 m radial extent within the primary injection aquifer, 

representing several distributed wells. The original model simulation included 30 years 

injection at an annual rate of 1.52 million tonnes of CO2 followed by a 70-year post-

injection period, for a total of 100 years (Cihan et al., 2012). The original baseline model 

pressure output was computed assuming a low-permeability (0.1 millidarcy (mD)) cap 

rock and outputs were recorded at multiple lateral distances from the injection wells (x), 

vertical intervals (z), and times since injection (t), or P(x, z, t). A review of the pressure 

distribution throughout the system showed that significant pressure build-up did not 
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occur in many of the overlying units, even after 30 years of injection (Figure 2-3). 

Therefore, subsequent modeling and the FOUA focused on uncertainty within the three 

units representing the deepest zones within the system: the target injection aquifer 

(Aquifer 1), primary cap rock (Aquitard 1), and overlying aquifer (Aquifer 2). These 

three units are located between 1180 m to 960 m below ground surface (Figure 2-1). In 

addition, to focus on the period of greatest system sensitivity, FOUA output times were 

limited to the 30-year injection period (30 time steps in total), and did not include the 70-

year post-injection pressure decline. 

 

 

Figure 2-1. Model domain profile. Aquifer 1 is the target CO2 storage reservoir, and is overlain by an 

aquitard/aquifer sequence to simulate a sedimentary basin. Aquitard 1 is the primary cap rock. 

Aquifers 5-8 are considered underground sources of drinking water (USDW), while Aquifers 1-4 are 

saline. Model input parameters for each unit are summarized in Figure S1 in the ESM (adapted from 

Cihan et al., 2012). 
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Figure 2-2. Overview showing the model domain profile and values for the input parameters for each 

geologic unit. Input parameter values were taken from Birkholzer et al. (2009) and Cihan et al. 

(2012). 
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Figure 2-3. Profiles from the baseline model output showing the pressure build-up above hydrostatic 

pressure after 30 years of CO2 injection at distances of 1 km (blue line), 5 km (green line) and 15 km 

from the CO2 injection wells. Based on these results, which show that pressure does not propagate 

into the shallow geologic units, the first-order uncertainty analysis focused on the two bottom-most 

aquifer units: A01 and A02. 

 

2.2.2 First-Order Uncertainty Analysis 

Table 2-1 summarizes the nine principal uncertain inputs to the model, which 

included the hydraulic conductivity of Aquifers 1 (HCONX1) and 2 (HCONX2) and 

Aquitard 1 (HCONP1), the specific storage of Aquifers 1 (SS1) and 2 (SS2) and Aquitard 



     21

1 (SSP1), and the thickness of Aquifers 1 (BAQ1) and 2 (BAQ2) and Aquitard 1 

(BAQP1). 

In hydrogeologic systems, one source of uncertainty is the stochastic nature of the 

subsurface deposits and the resulting spatial field of hydraulic conductivity, which is a 

function fluid density, fluid viscosity, and the reservoir permeability as described in 

Equation 2-1 (Dagan, 1987; Rubin, 2003; Ezekwe, 2011). 

 

� = � ��
�          (2-1) 

 

Where: 

k is hydraulic conductivity (m d
-1

), 

κ is permeability (m
2
), 

ρ is the fluid density (kg m
-3

), 

g is the acceleration due to gravity (9.81 m s
-2

), and 

µ is the fluid viscosity (kg m
-1

s
-1

). 

 

For the calculation of hydraulic conductivity, fluid density and viscosity were 

considered constant within an aquifer or aquitard layer and were calculated on-line using 

the CREWES Fluid Property Calculator (CREWES, 2012). Formation salinity, 

temperature, and pressure profiles used in the computation of fluid properties were taken 

from Birkholzer et al. (2009). Permeability was assumed to follow a lognormal 

distribution. This assumption is based on the fact that data from geologic cores have 

shown that permeability follows a lognormal distribution (Ezekwe, 2011). In addition, 



     22

estimations of correlation functions for reservoir heterogeneity across hydrogeologic 

systems has shown from well test data that permeability is more closely approximated by 

a lognormal distribution (Gelhar, 1993; Yortsos, 2000). The median values (mean of the 

log-transformed permeability) were set equal to the values published in Cihan et al. 

(2012). We assumed that the median value was known to within plus-or-minus an order-

of-magnitude, and therefore established a 100-fold variability between the 0.1th and 

99.9th percentiles of the lognormal distribution to solve for the parameters (a and b) and 

estimate the variance in permeability. 

Specific storage was calculated according to Equation 2-2 and was also assumed 

to follow a lognormal distribution. 

 

�� = ���� + "#        (2-2) 

 

Where: 

Ss is specific storage (m
-1

), 

ϕ is porosity (unitless), 

α is the brine compressibility (Pa
-1

), and 

β is the pore compressibility (Pa
-1

). 

 

The median porosity was set at 20% for aquifers and 15% for aquitards 

(Birkholzer et al., 2009). The median brine compressibility was set at 3.9 x 10
-10

 Pa
-1

 

(Zhou et al., 2007) and the median pore compressibility was set at 4.5 x 10
-10

 Pa
-1

 for 

aquifers and 9.0 x 10
-10

 Pa
-1

 for aquitards (Birkholzer et al., 2009). As pore 
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compressibility could reasonably range from 4.5 x 10
-9

 Pa
-1

 to 4.5 x 10
-11

 Pa
-1

 (Zhou et 

al., 2007), we again assumed that the median value for specific storage was known to 

within plus-or-minus an order-of-magnitude, and therefore established a 100-fold 

variability between the 0.1th and 99.9th percentiles of the lognormal distribution to solve 

for the parameters and estimate the variance in specific storage. 

Lastly, the median aquifer thicknesses were set to 60 m and the median aquitard 

thicknesses were set to 100 m (Birkholzer et al., 2009). These were assumed to follow a 

uniform distribution with minimum and maximum values set at 10 m below or above the 

median value. 

The distributions assigned to these parameters attempt to account for both 

uncertainty and variability. For example, uncertainty exists in both the random and 

systematic errors used to measure these parameters, as well as in the assumptions used to 

estimate the parameters from theoretical models, such as estimating permeability from 

well test data (Horne, 1995; Ramaswami et al., 2005). However, there is also 

environmental variability over space for these parameters. This variability is inherent to 

the system and unlike uncertainty it cannot be reduced through additional measurements 

(Gilbert, 1987; Ramaswami et al., 2005). 

The FOUA of the baseline model was conducted by changing each of the 

variables by a “delta” of ±5% through 18 separate modeling runs and computing the 

variance-covariance matrix of model outputs using methods summarized by Ramaswami 

et al. (2005), including the uncertain variance in ln(pressure) at each (x, z, t). FOUA uses 

a Taylor series approximation to represent the model and estimates the variance in an 

output variable from this approximation. As the Taylor series is truncated after the first 
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term, it is known as “first-order” uncertainty analysis (Ramaswami et al., 2005). For a 

model that can be represented as y = f(x), where x = {x1, x2, …, xn}
T
 is a vector of 

uncertain parameters or model inputs and the function f is continuously differentiable in 

the neighborhood about x, then the Taylor series expansion for y about its nominal value, 

y
*
 is (Ramaswami et al., 2005): 

 

$ = $∗ + ∑ �'( − '(∗# *+,+-./0'∗ +
1
2∑ ∑ �'( − '(∗#3'4 − '4∗5 6 +7,

+-.+-89:'∗ + ;<=>4?1>(?1>(?1  (2-3) 

 

If '(∗ = @A'(B is the expected value of the parameter '(, then the variance of $, 

@A�$ − $∗#2B, resulting from uncertainty in the '( values, can be approximately evaluated 

from the first-order term of the Taylor series as (Ramaswami et al., 2005): 

 

E *3y	 − 	y*52/≅E IJ∑ �'( − '(∗# *+,+-./>(?1 0-∗K
2L = ∑ ∑ MNOP'(, '4R *+,+-./0-∗ *

+,
+-./0-∗>4?1>(?1  (2-4) 

 

If the '( are independent random variables 3MNOP'(, '4R = 0	TNU	V ≠ X5 then 

Equation 2-4 reduced to (Ramaswami et al., 2005): 

 

E *3y	 − 	y*52/ ≅ ∑ YZUA'(B J*+,+-./0-∗K
2>(?1       (2-5) 

 

The individual terms of the sum on the right of Equation 2-5 represent the 

contributions of each of the [ parameters to the variance in the output variable. The nine 

inputs were considered independent for the initial FOUA work. 
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The first-order derivative shown in Equations 2-3 to 2-5 was estimated 

numerically by central differencing using ∆' = 5% of '∗ (Ramaswami et al., 2005): 

 

+,
+-. ≅ ∆,

∆-. =
$|'∗,'V∗+∆'−$|'∗,'V∗−∆'2∆-         (2-6) 

 

A matrix solution approach was used to evaluate the a covariance matrix of the 

model inputs. For [- model inputs, '( , V = 1, … , [- and [, model outputs, $`, � =
1, … , [,; the [, by [- model sensitivity matrix, a,-, is given by (Ramaswami et al., 

2005): 

 

Pa,-R = *b$�b'V/0'∗          (2-7) 

 

where '∗ denotes that the local sensitivity coefficients are computed with all 

inputs at their nominal values. The [- × [- covariance matrix of the inputs, �- , is 

defined as (Ramaswami et al., 2005): 

 

A�-B = *MNOP'(, '4R/         (2-8) 

 

The [, × [, covariance matrixof the outputs, �,, is then computed as 

(Ramaswami et al., 2005): 

 

P�,R = Pa,-R × A�-B × Pa,-Rd       (2-9) 
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where A Bd denotes the matrix transpose operation. 

 The outputs from the LBNL Model were imported into Minitab® Statistical 

Software (Minitab, 2010) and the computations of the LBNL Model output variance were 

conducted in four steps: (1) Populate the A�-B matrix of the input variables (the diagonals 

were equal to the variance and the off-diagonal elements were all set to zero due to 

independence); (2) Compute the first-order derivative for each x, z, and t, using Equation 

2-6 and thereby populate the Pa,-R matrix; (3) Transpose the Pa,-R matrix; and (4) 

Calculate the P�,R matrix according to Equation 2-7. These four steps then provided a 

mean and variance estimate for each x, z, and t based on the variable inputs. 

FOUAs of the leakage scenarios were computed using the same approach 

described above, by repeating the 18 different modeling runs but with the initial HCONP 

of the cap rock increasing by 2x, 3x, 4x, 5x, 10x, 20x, 30x, 40x, 50x, and 100x baseline 

to emulate diffuse leakage through the seal formation (Table 2-1). The changes in 

HCONP equate to the median permeability of the cap rock changing from a baseline 

value of 10
-3

 mD to the leakiest scenario of 10
-1

 mD. 

The results of the FOUA provide information with respect to the distribution of 

pressure responses for each scenario, which thereby permits the quantification of the 

probability that a leak of a given size is detected (also referred to as the statistical power 

of the measurement) given the current pre-injection uncertainty in subsurface properties. 
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Table 2-1. LBNL Model input parameters for the baseline model that were changed by ±dx through a series of 18 separate modeling runs as part of the 

FOUA process. In the leaky scenarios, HCONP was modified by a factor of 2, 3, 4, 5, 10, 20, 30, 40, 50, and 100 for each of the 18 modeling runs 

Run No. 

Input 

Variablea Unit Unit Name x* Units Distribution 

Parametersb Range 

dx Mean Variance Std Dev a b b/a 

1 HCONX Aquifer 1 Target inject aquifer 1.01E-01 m/d lognormal -2.29 0.56 0.75 1.0E-02 1.0E+00 100 5.1E-03 

2 HCONX Aquifer 2 Saline aquifer 1.04E-01 m/d lognormal -2.27 0.56 0.75 1.0E-02 1.0E+00 100 5.2E-03 

3 SS Aquifer 1 Target inject aquifer 1.69E-06 1/m lognormal -13.29 0.56 0.75 1.7E-07 1.7E-05 100 8.5E-08 

4 SS Aquifer 2 Saline aquifer 1.70E-06 1/m lognormal -13.28 0.56 0.75 1.7E-07 1.7E-05 100 8.5E-08 

5 BAQ Aquifer 1 Target inject aquifer 60 m uniform 60 33.3 5.8 50 70 1.4 3 

6 BAQ Aquifer 2 Saline aquifer 60 m uniform 60 33.3 5.8 50 70 1.4 3 

7 HCONP Aquitard 1 Primary cap rock 1.03E-06 m/d lognormal -13.79 0.56 0.75 1.0E-07 1.0E-05 100 5.1E-08 

8 SSP Aquitard 1 Primary cap rock 1.99E-06 1/m lognormal -13.13 0.56 0.75 2.0E-07 2.0E-05 100 9.9E-08 

9 BAQT Aquitard 1 Primary cap rock 100 m uniform 100 33.3 5.8 90 110 1.2 5 

  

aInput variable definitions: 

  HCONX = hydraulic conductivity, x-direction (aquifers) 

  SS = specific storage (aquifers) 

  ANSR = anisotropy (aquifers only) 

  BAQ = aquifer thickness 

  HCONP = hydraulic conductivity, z-direction (aquitards) 

  BAQT = aquitard thickness 

ba and b: 

  For lognormal distributions, a = 0.1th percentile and b = 99.9th percentile. 

  For uniform distributions, a = minimum and b = maximum. 
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2.2.3 Statistical Power Curves 

The cumulative distribution functions (CDFs) were calculated for the different 

P(x, z, t) combinations in the baseline model using the mean and variance from the 

FOUA output and an assumed lognormal distribution. Conditional probabilities for the 

different leakage scenarios were derived by taking the inverse of the P01 and P99 from the 

baseline model using the mean and variance computed for each leaky scenario. The 

objective is to calculate the probability that each leaky scenario (HCONP = 2x, 3x, etc.) 

yields a pressure output beyond the P99 (or below the P01) of the non-leaky (baseline) 

estimate. For example, 

 

eUNfPe-,g,h > j|;M<ke = 2'R = lm1�n, o2', p2'#   (2-10) 

 

where X is the P99 value from the baseline model at that unique P(x, z, t) and o2' 

and p2' are the mean and standard deviation, respectively, of the 2x-leaky scenario at 

that same unique P(x, z, t). Conditional probabilities were computed for all combinations 

of x, z, t, and HCONP of the cap rock, which were then used to generate power curves for 

selected x, z, and t values. 

 

2.3 Results 

2.3.1 Model Nominal Response 

Increasing the permeability of the cap rock produces a direction of change that is 

to be expected, namely the pressure build-up decreases over time relative to the baseline 
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scenario within Aquifer 1 (the injection reservoir) and, in contrast, pressure build-up over 

time in Aquifer 2 increases relative to the baseline scenario (Figures 2-4 and 2-5). The 

magnitude of the change in pressure build-up is both a function of the aquifer (i.e., 

change Aquifer 1 > Aquifer 2) and lateral distance from the injection wells (i.e., the 

change is greatest closest to the injection wells and decreases as the radius increases). For 

example, after five years of injection the difference in pressure between (baseline – 10x) 

and (baseline – 100x) scenarios within Aquifer 1 are 515 and 1270 kilopascals (kPa), 

respectively, at 1 km. At a distance of 10 km, the differences are reduced to 234 and 347 

kPa, respectively, at the same point in time. 

Pressure build-up within Aquifer 3 in the Baseline model was negligible during 

the first decade of injection. At a 1-km distance from the injection wells, pressure build-

up above 14 kPa was not observed until 32 years after the start of injection, which is after 

injection has stopped and into the post-injection long-term monitoring phase. In contrast, 

the 10x and 100x leakage scenarios showed pressure build-up in Aquifer 3 above 14 kPa 

at years 14 and 10, respectively (Figures 2-4 and 2-5). A pressure build-up of 14 kPa is 

within the range of the published pressure accuracy for a down-hole quartz pressure 

gauge (±14 kPa) (Schlumberger, 2012). This result implies that detection of pressure 

increase above hydrostatic within Aquifer 3 during the early phases of injection would 

provide evidence of leakage. However, even with a relatively permeable cap rock, this 

leakage impact is not evident within the first decade of injection. 

 

  



     30

 

Figure 2-4. Pressure build-up above hydrostatic pressure in Aquifer 1 (bottom) and Aquifer 2 (top) as a function of time and distance from the CO2 

injection wells. Baseline (blue), 5x (green), 10x (orange), and 100x (red) show the relative change in pressure build-up as a function of the cap rock 

permeability. 
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Figure 2-5. Pressure build-up above hydrostatic pressure in Aquifer 1 (bottom) and Aquifer 2 (top) as a function of distance from the CO2 injection 

wells at a specified time. Baseline (blue), 5x (green), 10x (orange), and 100x (red) show the relative change in pressure build-up as a function of the cap 

rock permeability. 
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The ratio of pressure build-up in Aquifer 2/Aquifer 1 (A02/A01) was also 

evaluated to leverage the inverse correlation between pressure decrease in Aquifer 1 

relative to baseline and pressure increase in Aquifer 2 relative to baseline as a function of 

leakage rate. Presumably, the difference in the ratio would be greater than the absolute 

change in either aquifer, thereby driving detection sensitivity lower. Comparisons of the 

A02/A01 ratio over time and distance from the injection wells shows that the ratio 

differentiates between the baseline and leakage scenarios; however, the degree of 

separation is a function of both time and distance (Figure 2-6). At early time, when 

pressure build-up in Aquifer 2 is less pronounced, the A02/A01 ratio is driven almost 

entirely by the pressure decrease in Aquifer 1. However, as time progresses the A02/A01 

ratio increases more rapidly until reaching a near-asymptote after ten years of injection. 
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Figure 2-6. Comparison of the ratio of pressure build-up in Aquifer 2/Aquifer 1 (A02/A01) as a 

function of time since injection and lateral distance from the injection wells. Throughout the 

injection period, the A02/A01 ratio baseline (blue) < 10x (green) < 100x (red) scenarios, suggesting 

that this ratio would provide greater detection sensitivity than measurements of absolute change in 

pressure within either unit. 

 

2.3.2 Uncertainty in Pressure Response 

The nominal model output pressures, P*(x, z, t), described above indicate the 

general (and perhaps most likely) behavior of the system, but do not yet account for 

uncertainty in the model input parameters arising from the uncertainty in characteristics 
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like reservoir or aquitard hydraulic conductivity, specific storage, and thickness, which 

all contribute to the pressure response. The following comparisons take into account the 

uncertainty variance in pressure output and the consequence of this uncertainty on 

differentiating a leakage scenario from baseline conditions. 

The magnitude of the variability in P(x, z, t) within an aquifer was a function of 

leakage rate, distance from the injection wells, and time. For example, the baseline model 

output ln(pressures) varied more than those of the leaky scenarios, with variance baseline 

> 2x > … > 100x. The uncertainty was greatest at the 1-km distance, and least at the 20-

km distance. Lastly, the pressure uncertainty was lowest at early times, and increased 

throughout the 30-year injection period, i.e., variance 30 yr > 20 yr > … > 1 yr. 

 

Aquifer 1 Pressure 

Overlays of the CDFs for pressure in Aquifer 1 for different model scenarios 

show substantial overlap among the pressure distribution for the baseline scenario and the 

2x through 50x leakage scenarios (Figure 2-7). For example, the P01 for baseline in 

Aquifer 1 at 1 km after one year of injection was 13,430 kPa (formation pressure). The 

Prob[P(1 km, A01, 1 yr) < P01] for the 2x, 5x, 10x, 20x, 50x, and 100x scenarios were 

0.016, 0.036, 0.118, 0.218, 0.754, and 0.994, respectively. Therefore, a pressure decrease 

within Aquifer 1 resulting from higher leakages through the cap rock than presumed 

under the baseline scenario lack sufficient statistical power for differentiation from 

baseline for the 2x through 50x scenarios. In contrast, a leakage rate of 100x produced 

probability distributions that were significantly lower than baseline (Figure 2-7), with 

resulting power exceeding 0.99. 
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Figure 2-7 illustrates several trends with respect to the interplay among x, z, t, and 

detection sensitivity within Aquifer 1. First, the overlap in baseline and leakage-impacted 

CDFs decreases with time, and as injection continues the ability to discriminate smaller 

leakage sizes from baseline improves. For example, at 1 km during years 1, 5, 10, and 15, 

the probabilities that the Aquifer 1 pressure in the 30x scenario is less than P01 from 

baseline were 0.404, 0.763, 0.853, and 0.891, respectively. Therefore, at 15 years into the 

injection program a leakage scenario of 30x could be differentiated from baseline with 

approximately 90% confidence, as opposed to only 40% confidence within the first year 

of injection. A second trend is the relationship between uncertain variance and distance 

from the injection wells. Figure 2-7 shows nearly vertical CDFs at 3 km in the first year, 

because this region does not experience significant pressure build-up, and therefore the 

formation pressure at this location and time is nearly hydrostatic. Conversely, after 10 

years of injection, there is nearly 1000 kPa uncertainty in the formation pressure at this 

location. These two trends highlight the importance of time and distance in the design of 

an optimal monitoring network configuration; the detection sensitivity is not a static 

value at any given point within the storage reservoir. 
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Figure 2-7. Cumulative distribution functions for baseline, 2x, 5x, 10x, 20x, 50x, and 100x scenarios within Aquifer 1 as a function of distance from the 

injection wells at one year (bottom), five years (middle), and 10 years (top) after injection. 
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The nominal, P01, and P99 responses for Aquifer 1 at 1 km for the baseline, 10x, 

and 100x scenarios are shown for the 30-year injection period in Figure 2-8. Additional 

comparisons are shown in Figures 2-9, 2-10, and 2-11. The time-series plots illustrate 

several of the aforementioned trends. For example, the width of the interval from the P01 

to the P99 is widest for baseline and smallest for the 100x scenario. In addition, at no time 

during the 30-year period at 1 km, 2 km, or 3 km from the injection wells are the 5x or 

10x scenarios clearly distinguishable from the baseline scenario. At 1 km, the 50x 

scenario is not distinguishable from baseline, but at 2 km and 3 km there is sufficient 

separation between the baseline P01 and the 50x distribution to indicate likely inference of 

leakage. Lastly, at all times and distances, the 100x scenario is clearly different from 

baseline, so detection is very probable. 
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Figure 2-8. Comparison of the nominal response at 1km from the injection wells for baseline 

bounded by the 1st and 99th percentiles to the 10x leakage scenario (top) and 100x leakage scenario 

(bottom). 
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Figure 2-9. Comparison of the nominal response at 1 km from the injection wells for baseline (blue) bounded by the 1st and 99th percentiles to the 5x 

leakage scenario (green, upper left), 10x leakage scenario (orange, upper right), 50x leakage scenario (purple, lower left), and 100x leakage scenario 

(red, lower right). 
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Figure 2-10. Comparison of the nominal response at 2 km from the injection wells for baseline (blue) bounded by the 1st and 99th percentiles to the 5x 

leakage scenario (green, upper left), 10x leakage scenario (orange, upper right), 50x leakage scenario (purple, lower left), and 100x leakage scenario 

(red, lower right). 
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Figure 2-11. Comparison of the nominal response at 3 km from the injection wells for baseline (blue) bounded by the 1st and 99th percentiles to the 5x 

leakage scenario (green, upper left), 10x leakage scenario (orange, upper right), 50x leakage scenario (purple, lower left), and 100x leakage scenario 

(red, lower right).  
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Ratio Aquifer 2/Aquifer 1 (A02/A01) 

The A02/A01 ratio increases as a function of leakage rate, as the pressure in A02 

increases and the pressure in A01 decreases relative to baseline. Therefore, comparisons 

were made to the P99 A02/A01 ratio value for baseline (in contrast to the P01 for baseline 

pressure in Aquifer 1). At early times, the A02/A01 ratio is effectively the hydrostatic 

formation pressure in A02 divided by the decreasing formation pressure in A01. As a 

result, initially the ratio does not provide added differentiation among leakage scenarios 

beyond the pressure decrease in A01. However, with time, as the difference in pressure 

between A01 and A02 increases, the A02/A01 ratio provides more powerful detection of 

leakage (i.e., greater statistical power). 

Overlays of the CDFs for A02/A01 for different model scenarios show substantial 

overlap between the baseline scenario and the 2x through 20x leakage scenarios in the 

first year; however, the separation improves for years 5 and 10 (Figure 2-12). The 

Prob[P(1 km, A02/A01, 1 yr) > P99] for the 2x, 5x, 10x, 20x, 50x, and 100x scenarios 

were 0.016, 0.038, 0.168, 0.605, >0.999, and >0.999, respectively. However, at five years 

the probabilities were 0.026, 0.244, 0.819, >0.999, >0.999, and >0.999, respectively. 

Therefore, after five years of injection, the ratio A02/A01 at 1 km is able to differentiate 

the 20x-leakage scenario from baseline. This is in contrast to the measurement of the 

absolute change in formation pressure within Aquifer 1 alone, which was not able to 

distinguish the 20x scenario even after 15 years. These results suggest that combining 

measurements from two different aquifers provides greater statistical power than the 

measurement of formation pressure at any one single location. 
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Figure 2-12. Cumulative distribution functions for the ratio A02/A01 for baseline, 2x, 5x, 10x, 20x, 50x, and 100x scenarios as a function of distance 

from the injection wells at one year (bottom), five years (middle), and 10 years (top) after injection. 
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The nominal, P01, and P99 responses for A02/A01 at 1 km for the baseline, 10x, 

and 100x scenarios are shown for the 30-year injection period in Figure 2-13. Additional 

comparisons are shown in Figures 2-14, 2-15, and 2-16. The time-series plots show that 

the ratio A02/A01 is more sensitive for detecting leakage than the measurement of the 

absolute change in pressure in a single aquifer. For example, at approximately 15 years, 

the A02/A01 ratio at 1 km distinguishes between the 10x and baseline scenarios, whereas 

the measurement of pressure decrease at 1 km in Aquifer 1 could not distinguish the 10x 

scenario from baseline at any point during the 30-year injection period (Figure 2-8). 
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Figure 2-13. Comparison of the nominal response at 1 km from the injection wells for baseline 

bounded by the 1st and 99th percentiles to the 10x leakage scenario (top) and 100x leakage scenario 

(bottom). 
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Figure 2-14. Comparison of the nominal response at 1 km from the injection wells for baseline (blue) bounded by the 1st and 99th percentiles to the 5x 

leakage scenario (green, upper left), 10x leakage scenario (orange, upper right), 50x leakage scenario (purple, lower left), and 100x leakage scenario 

(red, lower right). 
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Figure 2-15. Comparison of the nominal response at 2 km from the injection wells for baseline (blue) bounded by the 1st and 99th percentiles to the 5x 

leakage scenario (green, upper left), 10x leakage scenario (orange, upper right), 50x leakage scenario (purple, lower left), and 100x leakage scenario 

(red, lower right). 
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Figure 2-16. Comparison of the nominal response at 3 km from the injection wells for baseline (blue) bounded by the 1st and 99th percentiles to the 5x 

leakage scenario (green, upper left), 10x leakage scenario (orange, upper right), 50x leakage scenario (purple, lower left), and 100x leakage scenario 

(red, lower right).  
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2.3.3 Power Curves 

Power curves showing the probability of detecting either (1) pressure less than 

baseline conditions for Aquifer 1 or (2) a ratio A02/A01 greater than baseline conditions 

are shown in Figure 2-17. The comparisons show that in the first year, both 

measurements perform similarly for detecting leakage of a specific magnitude. However, 

as time progresses, the A02/A01 ratio outperforms the measurement of pressure only in 

Aquifer 1. For example, at five years the A02/A01 ratio provides greater than 95% 

probability of detecting a 10x leakage scenario at 2-5 km from the injection wells, 

whereas the measurement of pressure solely within Aquifer 1 has less than 90% 

probability for all but the 5-km distance. At 10 years, the A02/A01 ratio can distinguish a 

5x leakage scenario from baseline at 3-5 km with greater than 95% probability, while the 

measurement of pressure solely within Aquifer 1 has less than 50% probability of 

detecting 5x leakage at all distances. 

The power curves show that the power for detection increases with further 

distance from the point of injection (maximum power at 5 km). This result is 

counterintuitive, since one in general expects measurements near the point of injection to 

be more sensitive. However, unlike direct measurements of CO2, which would likely 

increase sensitivity closer to the injection wells, pressure changes are more variable near 

the injection wells than further away. Beyond a certain distance, the pressure remains at 

or near hydrostatic through time, and therefore at such distances there is little information 

to be gained from monitoring. Between this distance and the injector lies and optimal 

point which varies through time where detection sensitivity to changing pressure 

conditions is greatest. 
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Figure 2-17. Power curves showing the probability of detecting pressure less than baseline conditions 

in Aquifer 1 (left column) or an A02/A01 ratio greater than baseline conditions (right column) at 

years 1, 5, and 10 of the injection program. The x-axis shows the factor at which the baseline 

permeability of the cap rock was multiplied for the leakage scenario, i.e., x=10 refers to the 10x 

leakage scenario. 

 

2.4 Sensitivity to Model Assumptions 

A number of assumptions were made in executing this work in addition to those 

assumptions already incorporated into the solution approach for the LBNL Model itself 

(e.g., single-phase, homogeneous aquifers and aquitards of constant thickness, etc.). First, 

this work assumes a lognormal distribution for pressure, and utilizes the nominal value as 

the lognormal mean and the second moment (variance) from the FOUA process to derive 
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the lognormal standard deviation. The lognormal distribution is justifiable due to the 

multiplicative effects incorporated into the analytical solutions of the LBNL Model, as 

the product of many independent, identically distributed, positive random variables has 

approximately a log-normal distribution. In addition, many of the input parameters are 

themselves log-normally distributed; therefore, the output distribution is also lognormal 

(Limpert et al., 2001). For example, the equation used for the diffuse leakage rate 

(specific discharge) from an aquifer to an overlying aquitard (wi) as part of the governing 

equations used to develop the analytical solution in the LBNL Model is (Cihan et al., 

2011): 

 

q( = − rVsV
+�.
+gt.0uvV=0         (2-11) 

 

Where Ki is the hydraulic conductivity, Bi is the aquifer thickness, si is the specific 

storativity of the aquifer, and uw( is the dimensionless local vertical coordinate. As noted 

above in the Methods section, the hydraulic conductivity is lognormal and therefore wi 

will be log-normally distributed. Other governing equations used in the LBNL Model 

have a similar form. In addition to more appropriately fitting the output distribution, the 

lognormal distribution prevents the output pressure values from going below zero. In 

contrast, the use of the normal distribution, particularly for outputs with significant 

variance, permits the lower percentile values (e.g., P01) to be negative. This pressure 

response is not feasible, as CO2-equivalent brine volumes are being injected into the 

system and the resulting change in pressure must therefore be positive. 
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A second assumption was the uncertainty in the input parameters, which directly 

affects the Sx matrix (Equation 2-8) and hence, the output covariance matrix, Sy (Equation 

2-9). The nominal case assumed that the median values for hydraulic conductivity and 

specific storage were known to within plus-or-minus an order-of-magnitude, and 

therefore established a 100-fold variability between the 0.1th and 99.9th percentiles of the 

lognormal distribution. Aquifer and aquitard thickness were assumed, somewhat 

arbitrarily, to be known to within plus-or-minus 10 m. To explore the sensitivity of the 

statistical power curves to these assumptions for input parameter uncertainty, two end-

member scenarios were modeled and the resulting statistical power curves were 

compared. The first end-member represents a less uncertain system, with only a 10-fold 

variability between the 0.1th and 99.9th percentiles of the lognormal distribution for 

hydraulic conductivity and specific storage, and aquifer and aquitard thickness were 

assumed to be known within plus-or-minus 5 m. The second end-member represents a 

more uncertain system, with a 1000-fold variability between the 0.1th and 99.9th 

percentiles of the lognormal distribution for hydraulic conductivity and specific storage, 

and aquifer and aquitard thickness were assumed to be known within plus-or-minus 20 m. 

Comparisons of the statistical power curves for the three different input parameter 

uncertainty scenarios: (1) less uncertain (10-fold case); (2) nominal uncertainty (100-fold 

case); and (3) highly uncertain (1000-fold case) are shown in Figure 2-18 for the 1-, 2- 

and 3-km lateral distances at 1, 5, and 10 years following injection. The results show, as 

expected, that the less uncertain model has greater statistical power and the more 

uncertain model has less. However, the results are somewhat robust and the 10-fold 

differences in the input parameter uncertainty do not result in 10-fold difference in 
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statistical power. For example, after five years of injection and 1 km from the injection 

wells, the probability of detecting pressure less than baseline conditions for Aquifer 1 

under the 100-fold uncertainty model is 0.221 for the 10x scenario. For the 10-fold 

uncertainty and 1000-fold uncertainty models, the probabilities are 0.413 and 0.105, 

respectively. Therefore, for this particular example, the 10-fold difference in the input 

parameter uncertainty results in a doubling (or halving) of the statistical power. The 

magnitude of the change in statistical power is a function of time since injection and 

lateral distance from the injection well. For example, after five years of injection and 3 

km from the injection wells, the probability of detecting pressure less than baseline 

conditions for Aquifer 1 under the 100-fold uncertainty model is 0.645 for the 10x 

scenario. For the 10-fold uncertainty and 1000-fold uncertainty models, the probabilities 

are 0.973 and 0.442, respectively. Therefore, at this greater distance from the injection 

wells, the 10-fold difference in the input parameter uncertainty results in a 1.5 times 

greater (or less) statistical power. 

Lastly, the FOUA process assumes a local linear approximation for the model 

output to variations in the input parameters. A CO2 storage system may exhibit nonlinear 

behavior, in which case the FOUA estimates would be inadequate. A Monte Carlo 

analysis of uncertainty would be better-suited for estimating nonlinear behavior, and for 

providing estimates of the full probability distribution function for the model outputs 

(Ramaswami et al., 2005). However, a Monte Carlo approach would be computationally 

more intensive, and would likely require thousands of simulations. 
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Figure 2-18. Comparisons of the statistical power curves for three different scenarios of input parameter uncertainty: (1) less uncertain (10-fold case) 

[dotted line]; (2) nominal uncertainty (100-fold case) [solid line]; and (3) highly uncertain (1000-fold case) [dashed line] for the 1-km (left column), 2-km 

(middle column) and 3-km (right column) lateral distances at 1 year (top row), 5 years (middle row), and 10 years (bottom row) following injection.. 
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2.5 Conclusions 

This work shows the value of a first-order approach for estimating uncertainty, 

and the importance of uncertainty in the design of a reliable monitoring network. The 

results suggest that measurements of the absolute change in pressure within the target 

injection aquifer would not be able to distinguish small leakage rates (i.e., 2x to 50x) 

from baseline conditions, and that only large leakage rates (i.e., >100x) would be 

discriminated with sufficient statistical power (probability ≥99%), for the monitoring 

strategy assumed here. Combining measurements, for example by taking the ratio of 

formation pressure in Aquifer 2/Aquifer 1, provides better statistical power for 

distinguishing smaller leakage rates at earlier times in the injection program. Detection 

sensitivity for pressure is a function of lateral distance from the injection wells, vertical 

position within the system, and time i.e., (x, z, t). Therefore, design of an adequate 

monitoring network for subsurface pressure should account for this time-space variability 

to ensure that the monitoring system performs to the necessary design criteria, e.g., a 

specific false-negative and false-positive rate. The FOUA process demonstrated here 

required 10 nominal model runs and 180 ±∆x model runs, for a total of 190 model runs to 

generate the first-order uncertainty assessment. The total simulation time was less than 

three hours (i.e., less than one minute per run); however, the subsequent data handling 

and FOUA matrix computations were more time-intensive. 
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Chapter 3: Quantifying the benefit of wellbore leakage potential 

estimates for prioritizing long-term MVA well sampling at a CO2 

storage site
5
 

 

Abstract 

This work uses probabilistic methods to simulate a hypothetical geologic CO2 

storage site in a depleted oil and gas field where the large number of legacy wells would 

make it cost-prohibitive to sample all wells for all measurements as part of the post-

injection site care. Deep well leakage potential scores were assigned to the wells using a 

random subsample of 100 wells from a detailed study of 826 legacy wells that penetrate 

the basal Cambrian formation on the U.S. side of the U.S./Canadian border. Analytical 

solutions and Monte Carlo simulations were used to quantify the statistical power of 

selecting a leaking well. Power curves were developed as a function of (1) the number of 

leaking wells within the Area of Review; (2) the sampling design (random or judgmental, 

choosing first the wells with the highest deep leakage potential scores); (3) the number of 

wells included in the monitoring sampling plan; and (4) the relationship between a well’s 

leakage potential score and its relative probability of leakage. Cases where the deep well 

leakage potential scores are fully or partially informative of the relative leakage 

probability are compared to a non-informative base case in which leakage is equiprobable 

across all wells in the Area of Review. The results show that accurate prior knowledge 

                                                 
5
 Chapter 3 was the basis for the peer-reviewed publication. In the publication, several tables and figures 

were presented in the Supporting Information. However, in this dissertation the tables and figures have 

been renumbered in consecutive numerical order and are embedded into the main text. Azzolina, N.A.; 

Small, M.J.; Nakles, D.V.; Glazewski, K.A.; Peck, W.D.; Gorecki, C.; Bromhal, G.S.; and Dilmore, R.M. 

(2015) Quantifying the benefit of wellbore leakage potential estimates for prioritizing long-term MVA well 

sampling at a CO2 storage site. Environmental Science and Technology, 49 (2): 1215-1224. 
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about the probability of well leakage adds measurable value to the ability to detect a 

leaking well during the monitoring program, and that the loss in detection ability due to 

imperfect knowledge of the leakage probability can be quantified. This work underscores 

the importance of a data-driven, risk-based monitoring program that incorporates 

uncertainty quantification into long-term monitoring sampling plans at geologic CO2 

storage sites. 

 

3.1 Introduction 

In an effort to mitigate concentrations of carbon dioxide (CO2) in the atmosphere 

that are caused by stationary anthropogenic inputs, the United States Department of 

Energy (DOE) is pursuing carbon capture and sequestration (CCS) as one approach in a 

portfolio of greenhouse gas (GHG) reduction strategies. CCS involves (1) separating CO2 

from an industrial process, (2) transporting the CO2 to a storage location, and (3) 

injecting and sequestering the CO2 in a geologic reservoir for long-term isolation from 

the atmosphere (IPCC, 2005). Through the Carbon Sequestration Program, the DOE is 

working with seven Regional Carbon Sequestration Partnerships (RCSPs) to identify 

feasible sites within the U.S. and portions of Canada for large-scale (i.e., one million 

tonnes of CO2 or greater) CO2 geologic sequestration (U.S. DOE, 2011). The DOE is 

pursuing three primary types of geologic systems for long-term CO2 storage: (1) depleted 

oil and gas fields; (2) unconventional formations such as gas shales, coal seams, and 

basalts; and (3) saline formations (U.S. DOE, 2012) 

One of the potential risks associated with the injection and long-term storage of 

CO2 into geologic reservoirs is leakage of stored CO2 from geologic containment and into 
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the near-surface or surface environment. A potential leakage pathway in depleted oil and 

gas fields is associated with legacy exploration and production wells (Celia et al., 2007; 

2011; Nogues et al., 2011) These legacy wells provide a potential conduit through low-

permeability cap rock formations that would otherwise act as a seal to retain CO2 in the 

storage reservoir. Extensive work has been conducted in Alberta, Canada over the past 

decade to assess the potential CO2 leakage risk of legacy wells by drawing inferences 

from well completion and abandonment information. This work has, in part, been 

performed as part of the DOE Regional Partnership – Plains CO2 Reduction (PCOR) 

Partnership. For example, Watson and Bachu (2007) compiled data from the Alberta 

Energy Resources Conservation Board on well leakage at the surface as surface-casing 

vent flow (SCVF) through wellbore annuli and soil gas migration (GM) outside casing. 

Their analysis compared these data on SCVF/GM well leaks against available well 

completion and abandonment factors. Based on this assessment, Watson and Bachu 

(2008) developed a scoring methodology to score well leakage potential according to a 

matrix of factors. 

A well leakage potential scoring approach like the one developed by Watson and 

Bachu (2008) provides a quantitative means for ranking the increased probability of CO2 

leakage at a specific well because of SCVF and/or GM. Applying this scoring 

methodology to the legacy wells that are located within a particular region provides a 

screening-level risk assessment approach for identifying potential geologic CO2 storage 

sites – areas with a high incidence of high-ranking wells would represent locations that 

are not favorable to long-term geologic storage of CO2, while areas with a low incidence 

of high-ranking wells may be suitable future CO2 injection and storage. In addition, once 
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a geologic CO2 storage site has been identified, then such a well ranking approach also 

informs the monitoring, verification, and accounting (MVA) sampling plan for the site, as 

higher-ranking wells would take priority over lower-ranking wells. 

This work investigates the use of a deep well leakage potential scoring approach 

like the one developed by Watson and Bachu (2008) to inform the CO2 monitoring plan 

for legacy oil and gas wells at a simulated geologic CO2 storage site. Previous studies 

have evaluated the effectiveness of leakage monitoring using specific measurements and 

their detection sensitivity, based on the underlying uncertainty and variability present in 

the baseline measurements (Yang et al., 2011a; 2011b; 2012; Azzolina et al., 2014) In 

contrast, this work assumes that a leakage event at a particular location (in this case, a 

legacy exploration or production well) will be detected, but only if the particular location 

is included in the sampling plan. The probability of detection is then determined by the 

sample size (relative to the total number of candidate locations/wells at the site) and the 

extent to which locations are properly prioritized based on their potential for leakage. 

Monitoring CO2 leakage through legacy wells at a geologic CO2 storage site would occur 

across the project phases: pre-injection (baseline), during injection (operational), and 

post-injection site care (long-term monitoring). Different approaches to sampling wells 

are available, from down-hole geophysical methods (e.g., vertical seismic profiles, 

neutron logs, and passive seismic) to collecting discrete fluid samples for geochemical 

analysis (e.g., carbon isotopes, alkalinity, and pH) (U.S. DOE, 2009; Hitchon, 2012). The 

full breadth of sampling methods is beyond the scope of this study. However, a site-

specific sampling plan would need to specify not only the measurements to be made at 

each well, but the specific wells at which the measurements would be conducted. 
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Different methods for selecting the specific wells to include in the monitoring program 

are the focus of this work. For example, the most conservative approach would be to 

conduct all measurements on all wells within the Area of Review (AoR). An AoR is the 

region surrounding the geologic CO2 storage project that may be impacted by the 

injection activity, which is based on simulation modeling that accounts for the separate-

phase CO2 plume extent and extent of storage formation pressure increase (U.S. EPA, 

2011). While this approach ensures complete coverage, it may be cost-prohibitive and is 

neither data-driven nor risk-based. Alternatively, the number of wells and specific wells 

could be chosen randomly across the AoR or according to a judgmental sampling design 

which incorporates prior knowledge of the increased probability of CO2 leakage at 

specific wells based on the leakage factors discussed above (Gilbert, 19987; U.S. EPA, 

2002). 

The objective of this work is to quantify the statistical power of selecting a set of 

leaking wells using judgmental sampling informed by estimated deep well leakage 

potential scores, under alternative assumptions regarding the extent to which the deep 

well leakage potential scores are reflective of actual leakage probabilities. A non-

informative base case is first considered in which the occurrence of leakage across all 

wells is equiprobable, independent of the deep well leakage potential score. A second 

fully-informative case is next considered in which well leakage probabilities are assumed 

to be directly proportional to the deep well leakage potential scores. A third set of cases 

representing partially-informative deep well leakage potential-score information is then 

simulated assuming that the deep well leakage potential scores provide some information 

regarding corresponding well leakage probabilities, but with an error that is 
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parameterized by either a small or large degree of imprecision. Finally, a fourth set of 

cases is examined where only two or three of the four well attributes used to derive the 

deep well leakage potential score are used to inform the sampling, thus the sampler has 

incomplete information about the true probability of leakage. In all cases sampling is 

sequential, based on the deep well leakage potential score, that is, proceeding from 

highest to lowest deep well leakage potential score (though not necessary from the 

highest to the lowest well leakage probability). 

This work evaluates several probabilistic simulations of a hypothetical geologic 

CO2 storage site in a depleted oil and gas field where exhaustive sampling of a large 

number of legacy wells would be cost-prohibitive as part of the MVA sampling plan. 

This work does not use numerical simulation models to simulate CO2 injection, 

subsurface fate and transport of CO2 phases, and subsequent migration of CO2 into 

abandoned wells. Instead, the sampling problem is reduced to different combinations of 

well leakage and well sampling, and the probabilistic simulations quantify the statistical 

power of selecting a set of leaking wells for each combination. The statistical modeling is 

aimed at late-stage operational monitoring phase and into the post-injection site care 

phase. Deep well leakage potential scores were assigned to the wells using a random 

subsample from a detailed study of 826 legacy wells that penetrate the basal Cambrian 

formation on the U.S. side of the U.S./Canadian border (Glazewski et al., 2013). 

Analytical solutions and Monte Carlo simulations were used to quantify the statistical 

power of selecting a leaking well. Power curves quantifying the probability that a leaky 

well was selected were developed as a function of (1) the number of leaking wells within 

the AoR; (2) the sampling design (random or judgmental); (3) the number of wells 
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sampled as part of the MVA plan; and (4) the failure model for the leaking wells 

(equiprobable; with leakage probabilities fully related to the deep well leakage potential 

score; or with leakage probabilities and leakage potential scores only partially related, 

i.e., with error). The results of this work underscore the importance of a data-driven, risk-

based monitoring program that incorporates uncertainty quantification into MVA 

sampling plans at geologic CO2 storage sites. 

 

3.2 Methods 

3.2.1 Generic Geologic CO2 Storage Site 

A generic geologic CO2 storage site was defined using an AoR with n=100 legacy 

wells. This generic site and monitoring scenarios are intended to represent the late-stage 

operational monitoring phase and into the post-injection site care phase. Monitoring 

during the early-stage operational phase would focus resources closer to the CO2 

injection wells. In contrast, monitoring in the later stages of CO2 injection and into the 

post-injection site care phase would need to sample a broader AoR based on the separate-

phase CO2 plume extent and extent of storage formation pressure increase within the 

subsurface. This broader radial extent and the need to economize well selection for 

monitoring within the AoR help to motivate the need for this work. 

3.2.2 Well Leakage Potential Scores 

This work focuses on deep well leakage potential scores. Deep well leakage is 

defined as leakage (cross-flow) from a target production zone or CO2 injection zone back 

into the wellbore (or outside the casing) where it moves upward into an adjacent 
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permeable zone (productive zone or aquifer) (Bachu et al., 2012). Thus detecting deep 

well leakage is one component of the MVA sampling program to proactively identify 

leakage deep in the subsurface in an attempt to mitigate near-surface impacts. A detailed 

study of 826 legacy oil and gas wells penetrating the basal Cambrian system on the U.S. 

side of the U.S./Canada border incorporated four well attributes to derive a deep well 

leakage potential score: (1) number of fracture treatments; (2) number of acid treatments; 

(3) number of completions (perforations); and (4) well abandonment type (Glazewski et 

al., 2013). Information was collected for each of the 826 wells penetrating the basal 

Cambrian system across the states of Montana, North Dakota, and South Dakota. Well 

data were collected from each state agency as follows: Montana Board of Oil and Gas 

(MTBOG), North Dakota Industrial Commission (NDIC) Oil and Gas Division, and 

South Dakota Department of Environment and Natural Resources (SD DENR). 

Fracture treatments are designed to open cracks in the formation to allow oil or 

natural gas to flow back to the well. Matrix-acidizing treatments are used either to 

stimulate a well to greater-than-ideal matrix reservoir flow or to remove skin damage. 

Both fracture and acid treatments are executed at high pressure and therefore may 

contribute to degradation of local hydraulic isolation (Bachu et al., 2012). Well 

completions (perforations) provide a communication pathway through the production 

casing in order to access the formation. However, perforations could compromise well 

integrity as the casing may not be sealed when squeezing cement into the perforations 

during abandonment. Thus as the number of perforations increase, so does the potential 

risk of leakage. Lastly, wells in the study area were typically abandoned by using either 

cement plugs or cast iron bridge plugs. Cement plugs are generally considered more 
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reliable, while bridge plugs have been found to be more prone to corrosion and seal 

failure in the presence of CO2 (Bachu et al., 2012). Cement/additive type was omitted 

from the scoring, as the well files in the basal Cambrian study area lacked sufficient 

cement and additive data to evaluate wellbore integrity. The scoring system is shown in 

Table 3-1. 

Table 3-1. Well attributes and weighting scores used to derive the deep well leakage potential scores 

for 826 legacy oil and gas wells penetrating the basal Cambrian system on the U.S. side of the 

U.S./Canada. 

Well Attribute Weighting Score 

Number of fracture treatments 

0 1 

1 1.5 

>1 2 

Number of acid treatments 

0 1 

1 1.1 

2 1.2 

>2 1.5 

Number of completions (perforations) 

0 1 

1 1.5 

>1 2 

Abandonment plug type 

Cement 1 

Unknown (abandoned) 2 

Active well 2 

Bridge plug 3 

 

The basal Cambrian study showed that the deep well leakage potential scores 

reflected a right-skewed distribution, with most wells having relatively low risk scores 

and fewer wells having relatively high- to very-high scores. The deep well leakage risk 

scores were determined to fit a 3-parameter gamma distribution, with probability density 

function (pdf) (NIST/SEMATECH, 2014): 
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T�'|Z, f, x# = yz{|} ~�{� ���ymz{|} ~
����#        (3-1) 

Where: 

 f(x|a,b,θ) = the pdf of the 3-parameter gamma distribution; 

x  = the deep well leakage risk score (x ≥ θ); 

a  = the shape parameter (a > 0); 

 b  = the scale parameter (b > 0); 

 θ  = the threshold parameter; and 

 Γ  = the gamma function, which has the formula: 

Γ�Z# = � ��m1�mh���
�         (3-2) 

 

The cumulative distribution function (cdf) of the deep well leakage risk score, 

F(x|a,b,θ), is computed using numerical methods or from commands available within 

most mathematics/statistics packages, such as Excel, Minitab, and Matlab. The 3-

parameter gamma distribution was fit using the empirical cdf in Minitab 17 Statistical 

Software (Minitab Statistical Software, 2010), resulting in fitted parameters of a=0.2513, 

b=5.899, and θ=0.99. The empirical and fitted 3-parameter gamma cdfs are compared for 

the 826 legacy oil and gas well deep leakage potential scores in Figure 3-1. 

A random subsample of n=100 wells was collected from this group of n=826 

wells to populate the deep well leakage potential scores used in this work (the total score 

based on all four attributes and each of the four component scores), and these values are 

assumed to apply to a set of n=100 wells in the AoR. The n=100 subsample was 
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determined to be representative of the larger well population. A comparison of the fitted 

cumulative distribution function to the population of 826 wells and the random 

subsample of 100 wells is shown in Figure 3-1. 

 

Figure 3-1. Cumulative distribution of the deep well leakage potential scores for 826 legacy oil and 

gas wells penetrating the basal Cambrian system on the U.S. side of the U.S./Canada border (gray 

open circles) [left] and our random subsample of 100 wells used in this work [right]. The blue dashed 

line in both panels represents the fitted cumulative distribution function of a 3-parameter gamma 

function to the full population of 826 legacy oil and gas wells. Many of the deep well leakage potential 

scores were identical; therefore, a small jitter of 0.025 was added to the x- and y-directions of this 

plot to help visualize the number of points. 

 

3.2.3 Well Leakage and Well Sampling Scenarios 

Six different scenarios (Scenarios 1 through 6) were evaluated to assess different 

well leakage and well sampling combinations (Table 3-2). Two different failure modes 

were considered for well leakage: (1) equiprobable well leakage and (2) well leakage 

proportional to the deep well leakage potential score. Equiprobable well leakage would 

equate to some unknown failure mode independent of the well attributes or discrete 

geologic pathway such that all wells are equally likely to be leaking (e.g., site-wide seal 

formation failure). Well leakage proportional to the deep well leakage potential score 

implies that some combination of the number of fracture treatments, number of acidizing 
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treatments, number of completions, and/or well abandonment type are predictive of well 

leakage, thus wells with higher deep leakage potential scores leak first. Two different 

sampling plans were considered: (1) random sampling and (2) sequential sampling based 

on the deep well leakage potential scores. Random sampling represents the simplest 

sampling plan, and assumes that wells are randomly selected from the n=100 possible 

wells, thus each well is equally likely to be included in any given sampling event. 

Sequential sampling based on the deep well leakage potential scores selects wells from 

highest to lowest leakage potential score in sequential order. These two failure modes and 

two sampling plans yield four different leakage/sampling combinations, which have been 

designated Scenarios 1-4. Two additional evaluations have been included to look at the 

change in Scenario 4 when error is introduced into the deep well leakage potential score 

(Scenarios 5a and 5b) or when only a subset of the well attributes used to derive the deep 

well leakage potential score is known (Scenarios 6a and 6b) (Table 3-2). 
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Table 3-2. Matrix of six well leakage and well sampling scenarios included in this work. 

 
Scenario Well Leakage Well Sampling Risk Score for Sampling Calculation Method 

1 Equiprobable Random NA Analytical - hypergeometric distribution 

2 Equiprobable Sequential Fully informative Leakage = random w/o replacement; Sampling = sequential 

3 Score Random NA Leakage = mwnchypg distribution; Sampling = random w/o replacement 

4 Score Sequential Fully informative Leakage = mwnchypg  distribution; Sampling = sequential 

5a Score Sequential Partially informative (small error) Leakage = mwnchypg  distribution; Sampling = sequential 

5b Score Sequential Partially informative (large error) Leakage = mwnchypg  distribution; Sampling = sequential 

6a Score Sequential Partially informative (2 of 4 well attributes) Leakage = mwnchypg  distribution; Sampling = sequential 

6b Score Sequential Partially informative (3 of 4 well attributes) Leakage = mwnchypg  distribution; Sampling = sequential 

 

1) NA = Not Applicable. 

2) Score = proportional to the deep well leakage potential score. 

3) Sequential well sampling was from highest-to-lowest deep well leakage potential score. 

4) The “fully informative” leakage potential scores used to simulate the sampling matrix in Scenarios 2 and 4 assume that both the “true” increased 

probability of well leakage and the information used to develop the well sampling plan are identical. In contrast, the “partially informative” leakage 

potential scores used to simulate the sampling matrices in Scenarios 5a and 5b reflect either a small or large degradation, respectively, in the 

accuracy in the sampler’s beliefs about the true increased probability of well leakage. The partially informative leakage potential scores used to 

simulate the sampling matrices in Scenarios 6a and 6b reflect the use of only two or three of the four well attributes, respectively, that were used to 

derive the deep well leakage potential score. 

5) The “mwnchypg distribution” used in Scenarios 3, 4, 5, and 6 is the multivariate Wallenius’ hypergeometric distribution. 
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Scenario 1 Calculations 

In Scenario 1, all wells are equally likely to be leaking (uniform distribution of 

well leakage risk scores) and wells are sampled randomly. Scenario 1 is a discrete 

probability distribution where the probability of k successes (k = nLS) in n draws (n = ns) 

without replacement from a finite population of size N (N = n) containing exactly K 

successes (K = nL), and is therefore described by the hypergeometric distribution 

(Equation 3-3) (Jaynes, 2003; Berkopec, 2007): 

 

� = l�[��|[�, [� , [# = ∑ y>�( ~y
>>�
mm>�( ~

y >>�~
-(?� 	      (3-3) 

 

where p is the cumulative probability of sampling up to nLS of a possible number 

of leaky wells (nL), in a sample of nS wells without replacement from a group of n wells; 

and F(x|nS,nL,n) = the cdf of the hypergeometric distribution. 

The hypergeometric distributions for Scenario 1 were calculated for nL = 1, 2, 5, 

and 10 wells and nS = 0 to 100 using the “HYPGEOM.DIST” function in Microsoft 

Excel
®

. Scenario 1 represents the random, uninformed base case against which Scenarios 

2, 3, 4, 5, and 6 were compared. Three outputs were used to compare scenarios: (1) the 

probability that at least one leaky well was sampled (POLWS); (2) the probability that all 

leaky wells were sampled (PALWS); and (3) the expected fraction of leaky wells 

sampled (EFLWS). 

The output POLWS was quantified by setting nLS=1 in Equation 3-3 and solving 

for nL = 1, 2, 5, and 10 wells. The output PALWS was quantified by the probability mass 
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function (pmf) of the hypergeometric distribution at nL = 1, 2, 5, and 10 wells. The 

expected value of a hypergeometric distribution is defined as (Equation 3-4): 

 

@AnB = [�� = [� >�>          (3-4) 

 

Scenario 2 Calculations 

In Scenario 2, all wells are equally likely to be leaking and wells are sampled 

sequentially from the highest deep well leakage potential score to the lowest. The 

POLWS, PALWS, and EFLWS for Scenario A2 were computed through Monte Carlo 

simulation for nL = 1, 2, 5, and 10 wells and nS = 0 to 100. Each combination was run for 

1000 realizations. 

The first step in the simulation process was to generate a 1000-by-nL matrix, 

[AnL], of leaky wells, which was populated with random integers from 1 to n without 

replacement. Thus each row of matrix [AnL] represents a unique simulation and contains 

the index of the equiprobable leaky wells. The second step in the simulation process was 

to generate a 1000-by-nS matrix, [BnS], of sampled wells, which was populated according 

to deep well leakage potential scores of the random subsample of 100 wells. The highest 

deep well leakage potential scores (highest rank) were sampled first, then the sample 

selection moved down the ranks to the lowest deep well leakage potential score. In the 

event of wells with tied ranks the wells were selected at random without replacement. 

Logical functions were used to compare the indices of leaky wells and sampled 

wells to determine if one or more leaky wells were included in the sample. The POLWS 

was the number of times one or more leaky wells were sampled (nLS ≥ 1) out of 1000 for 
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a given nS. The PALWS was the number of times all leaky wells were sampled (nL = nLS) 

out of 1000 for a given nS. Lastly, the EFLWS was the fraction of leaky wells sampled 

(nLS / nL) out of 1000 for a given nS.  

 

Scenario 3 Calculations 

In Scenario 3, each well has a leakage probability that is proportional to their deep 

well leakage potential score, but this information is ignored and the wells are sampled 

randomly. The POLWS, PALWS, and EFLWS for Scenario 3 were computed through 

Monte Carlo simulation for nL = 1, 2, 5, and 10 wells and nS = 0 to 100. Each 

combination was run for 1000 realizations. 

The first step in the simulation process was to generate a 1000-by-nL matrix, 

[AnL], of leaky wells, which was populated according to deep well leakage potential 

scores of the random subsample of 100 wells. The second step in the simulation process 

was to generate a 1000-by-nS matrix, [BnS], of sampled wells, which was populated with 

random integers from 1 to n without replacement. Thus each row of matrix [BnS] 

represents a unique simulation and contains the index of the randomly-sampled wells. 

The well leakage probability was calculated for each well as the individual deep well 

leakage potential score for that well divided by the sum of deep well leakage potential 

scores across all n=100 wells (Equation 3-5). 

 

ProbALeakage(B = ���� .
∑ ���� .¡.¢�

       (3-5) 

 

Where: 
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 n  = total number of wells (n=100); 

DWLPSi = the deep well leakage potential score assigned to each well. 

 

The Monte Carlo simulation of leaky wells for Scenario 3 was conducted using a 

generalization of the hypergeometric distribution where wells are selected with bias 

according to a matrix of weights (odds) that a particular well will be selected. The 

probability that a particular well is leaking in a particular draw depends not only on its 

initial Prob[Leakagei], but also on the total sum of the competing wells that remain in the 

legacy oil and gas field at that moment. In other words, Prob[Leakagei] must be 

recalculated after each draw because the leaky wells are selected without replacement. 

The solution for this type of simulation is the multivariate form of Wallenius’ non-central 

hypergeometric distribution (Equations 3-6 through 3-10) (Wallenius, 1963; Fog, 2008; 

2014): 

 

T�£|[�,¤,¥# = ⋀�£#I�£#, where       (3-6) 

 

⋀�£# = ∑ y¨('( ~>(?1 ,         (3-7) 

 

I�£# = � ∏ 31 − �ª./¬5-. 	��>(?11
� ,       (3-8) 

 

� =  ∙ �¤ − £# = ∑ ¯(�¨( − '(#>(?1 ,      (3-9) 

 

£ = �'1, '2, … , '>#,¤ = �¨1, ¨2, … ,¨>#, = �¯1, ¯2, … , ¯>#,   (3-10) 
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Where: 

f(x|nS, m, ω) = the probability mass function of the multivariate Wallenius’ non-

central hypergeometric distribution; 

ωi  = the individual “weights”, or Prob[Leakagei] for each well; 

n  = total number of wells (n=100); 

nS  = number of wells sampled (≤n); 

mi  = the number of each well available (m1=m2=mn=1); and 

 xi  = the number of each well of a given type that is sampled. 

 

The Monte Carlo simulations of the multivariate form of Wallenius’ non-central 

hypergeometric distribution were implemented in R using the package “BiasedUrn” (Fog, 

2008; 2014). Leaky wells are randomly selected, without replacement, from this 

distribution where the probability of leakage for each well was defined by Eq. 3-5. Leaky 

wells are simulated sequentially, whereby the leakage probabilities of the remaining wells 

are updated to reflect the ‘removal’ of the previous leaky well from the pool of potential 

monitoring wells. The probability that a particular well is sampled in a particular draw 

depends not only on its own weight, but also on the total weight of the competing wells 

that remain in the AoR at that moment (Wallenius, 1963). One thousand random draws 

were generated in R, and this output was then used as the 1000-by-nL matrix, [AnL]. 

Appendix B provides the input file and R code that was used to generate the matrix [AnL] 

from BiasedUrn. The POLWS, PALWS, and EFLWS were computed using logical 
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functions to compare the indices of sampled wells and leaky wells as described for 

Scenario 2. 

 

Scenario 4 Simulations 

In Scenario 4, each well has a leakage probability that is proportional to their deep 

well leakage potential score, and wells are sampled based on these deep well leakage 

potential scores, from highest to lowest. The POLWS, PALWS, and EFLWS for Scenario 

4 were computed through simulation for nL = 1, 2, 5, and 10 wells and nS = 0 to 100. Each 

combination was run for 1000 realizations. The 1000-by-nL matrix, [AnL], of leaky wells 

was populated according to deep well leakage potential scores of the random subsample 

of 100 wells using the multivariate form of Wallenius’ non-central hypergeometric 

distribution and the same process as was described for Scenario 3. The 1000-by-nS 

matrix, [BnS], of sampled wells was populated according to deep well leakage potential 

scores of the random subsample of 100 wells using the same process as was described for 

Scenario 2. The POLWS, PALWS, and EFLWS were computed using logical functions 

to compare the indices of sampled wells and leaky wells as described for Scenario 2. 

 

Scenario 5 Simulations 

In Scenario 5, each well exhibits a relationship between their leakage probability 

and their deep well leakage potential score that is similar to Scenario 4, but with error 

introduced into the relationship. The sampling in Scenario 4 represents a form of 

judgmental sampling, where the well sampling order is informed by the deep well 

leakage potential scoring system. However, Scenario 4 assumes that both the “true” 
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increased probability of well leakage (i.e., Prob[Leakagei]) and the information used to 

develop the well sampling plan are identical. In other words, Scenario 4 assumes that the 

sampler has perfect knowledge of the true increased probability of well leakage. In 

reality, that knowledge is likely to be imperfect and dependent upon the quality of the 

well integrity survey(s) conducted prior to and/or during CO2 injection and other factors.  

Scenario 5 assesses the change in POLWS, PALWS, and EFLWS as a function of the 

accuracy in the relationship between the deep well leakage potential score and the 

leakage probability for each well. 

The 1000-by-nL matrix, [AnL], of leaky wells was populated according to deep 

well leakage potential scores of the random subsample of 100 wells using the 

multivariate form of Wallenius’ non-central hypergeometric distribution and the same 

process as was described for Scenario 4. The 1000-by-nS matrix, [BnS], of sampled wells 

was populated according to deep well leakage potential scores of the random subsample 

of 100 wells using the same process as was described for Scenario 4. However, the [BnS] 

matrix of sampled wells was adjusted from Scenario 4 using a two-step process to 

simulate imperfect knowledge of the leakage probability. First, the “true” deep well 

leakage potential score for a specific well was multiplied by 0.8 and 1.2 to define the 

lower and upper bounds, respectively, of a range. Next, a pseudo-leakage potential score 

was selected randomly within this range using a uniform distribution. For example, if the 

“true” deep well leakage potential score was equal to 10, then the range would be 8 to 12 

from which a pseudo-leakage potential score was randomly selected. The 0.8 and 1.2 

factors were used to develop a pseudo-leakage potential score reflecting a small 

degradation in the accuracy in the sampler’s beliefs, which was designated Scenario 5a. 
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In addition, factors of 0.2 and 5.0 were used to simulate the lower and upper bounds, 

respectively, of a range representing a large degradation in accuracy. In this case, if the 

“true” deep well leakage potential score was equal to 10, then the range would be 2 to 50 

from which a pseudo-leakage potential score was randomly selected. The large 

degradation in accuracy was designated Scenario 5b. The pseudo-leakage potential scores 

from the small and large accuracy change cases were used to inform the sampling order. 

The POLWS, PALWS, and EFLWS were computed using logical functions to compare 

the indices of sampled wells and leaky wells as described for Scenario 2. 

 

Scenario 6 Simulations 

In Scenario 6, each well has a leakage probability that is proportional to their well 

leakage potential score, and wells are sampled based on these leakage potential score, 

from highest to lowest. However, Scenario 6 examines the cases where only two 

(Scenario 6a) or three (Scenario 6b) of the four well attributes are available; thus the 

sampler only has partial prior knowledge of the true well leakage potential, which is 

represented by the complete score using all four attributes. 

There were six combinations of well treatments for Scenario 6a (two well 

attributes) and four combinations for Scenario 6b (three well attributes), for a total of 10 

additional simulations (Table 3-3). Analogous to the model form used to fit the complete 

deep well leakage potential scores, the cdfs for each of the combinations were also fit to a 

3-parameter gamma distribution (Figures 3-2 and 3-3). The cdfs of the two- and three-

attribute partial deep well leakage potential scores were computed using numerical 

methods from commands available within Minitab. 
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Table 3-3. Combinations of well attributes for Scenarios 6a and 6b. 

 
Scenario 6a Scenario 6b 

Fracture/Acid Fracture/Acid/Abandonment 

Fracture/Completions Fracture/Acid/Completions 

Fracture/Abandonment Fracture/Abandonment/Completions 

Acid/Abandonment Acid/Abandonment/Completions 

Acid/Completions  

Abandonment/Completions  

 

In Scenario 6, the 1000-by-nL matrix, [AnL], of leaky wells was populated 

according to deep well leakage potential scores of the random subsample of 100 wells 

(the complete deep well leakage potential scores, i.e., all four well attributes) using the 

multivariate form of Wallenius’ non-central hypergeometric distribution and the same 

process as was described for Scenario 4. However, the 1000-by-nS matrix, [BnS], of 

sampled wells was populated according to partial deep well leakage potential scores of 

the random subsample of 100 wells (the partial deep well leakage potential scores, i.e., 

using only two well attributes [Scenario 6a] or three well attributes [Scenario 6b]). Thus 

the well sampling order is informed by the partial deep well leakage potential scores, 

which are not fully representative of the true leakage probability. The POLWS, PALWS, 

and EFLWS were computed using logical functions to compare the indices of sampled 

wells and leaky wells as described for Scenario 2. 
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Figure 3-2. Fitted 3-parameter gamma cumulative distribution functions (cdfs, blue dashed line) to the two-attribute partial deep well leakage potential 

scores for 826 legacy oil and gas wells penetrating the basal Cambrian system on the U.S. side of the U.S./Canada border (gray open circles) (Glazewski 

et al., 2013). A small jitter of 0.015 was added to the x- and y-directions of this plot to help visualize the number of points used to fit the cdfs. The 

combinations of two well attributes are shown for each panel. 
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Figure 3-3. Fitted 3-parameter gamma cumulative distribution functions (cdfs, blue dashed line) to 

the three-attribute partial deep well leakage potential scores for 826 legacy oil and gas wells 

penetrating the basal Cambrian system on the U.S. side of the U.S./Canada border (gray open 

circles) (Glazewski et al., 2013). A small jitter of 0.015 was added to the x- and y-directions of this 

plot to help visualize the number of points used to fit the cdfs. The combinations of three well 

attributes are shown for each panel. 
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three scenarios produce a hypergeometric distribution as a function of nS. Scenarios 2 and 
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3 are not discussed further and comparisons focus on the random, uninformed base case 

(Scenario 1) and Scenarios 4, 5 and 6. 

Statistical power curves for Scenarios 1 and 4 for the outputs POLWS, PALWS, 

and EFLWS are shown in Figure 3-7. Under Scenario 1, the probability of sampling at 

least one leaky well (POLWS) is low when the number of leaky wells is small. For 

example, when nL=2, it is not until nS ≥ 69 where POLWS is ≥ 0.9. However, when 

nL=10, POLWS is ≥ 0.9 when nS ≥ 20. The probability that all leaky wells are sampled 

(PALWS) is extremely low, regardless of the number of leaky wells.  For example, it is 

not until nS ≥ 95 (nearly complete coverage of the n=100 well AoR) where POLWS is ≥ 

0.9 when nL=2. The lack of information provided by random sampling is further 

emphasized by the straight-line EFLWS for Scenario 1, which is equivalent to nS/100, or 

“even odds” (Figure 3-7). 
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Figure 3-4. Probability of at least one leaky well sampled (POLWS) for Scenario 1 (equiprobable well leakage/random well sampling, [left]), Scenario 2 

(equiprobable well leakage/score-based well sampling, [middle]), and Scenario 3 (score-based well leakage/random well sampling [right]). 

 

Figure 3-5. Probability that all leaky wells are sampled (PALWS) for Scenario 1 (equiprobable well leakage/random well sampling, [left]), Scenario 2 

(equiprobable well leakage/score-based well sampling, [middle]), and Scenario 3 (score-based well leakage/random well sampling [right]). 
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Figure 3-6. Expected fraction of leaky wells sampled (EFLWS) for Scenario 1 (equiprobable well leakage/random well sampling, [left]), Scenario 2 

(equiprobable well leakage/score-based well sampling, [middle]), and Scenario 3 (score-based well leakage/random well sampling [right]). 
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Figure 3-7. Probability of at least one leaky well sampled (POLWS, left column); probability that all leaky wells are sampled (PALWS, middle column); 

and expected fraction of leaky wells sampled (EFLWS, right column) for Scenario 1 (equiprobable well leakage/random well sampling, [top]) and 

Scenario 4 (score-based well leakage/score-based well sampling, [bottom]). 
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Information-based sampling using the deep well leakage potential scores in 

Scenario 4 produces significantly greater statistical power. While this result is intuitive, 

comparison of the statistical power curves quantifies the information value of the fully-

informative deep well leakage potential scores for helping to select the leaky well(s). For 

example, when nL=2, POLWS is ≥ 0.9 when nS ≥ 32, which is 37 fewer wells (54% fewer 

wells) than needed to obtain a similar detection power in Scenario 1. When nL=10, 

POLWS is ≥ 0.9 when nS ≥ 5, which is 15 fewer wells (75% fewer wells) than needed 

under Scenario 1. Therefore comparable statistical power for detecting one or more leaky 

wells is achieved by sampling significantly fewer wells in Scenario 4. The results are 

similar for PALWS and EFLWS, though not as dramatic. For example, when nL=2, 

PALWS is ≥ 0.9 when nS ≥ 90, which is 5 fewer wells (5% fewer wells) than needed to 

obtain a similar detection power in Scenario 1. To achieve an EFLWS of ≥ 0.9 (i.e., 90 

percent of leaky wells sampled) when nL=2 requires nS ≥ 79 wells for Scenario 4, as 

opposed to 90 wells in Scenario 1 (12% fewer wells). 

Ratios of (EFLWS for Scenario 4 / EFLWS for Scenario 1) as a function of nS and 

nL are shown in Figure 3-8. Scenario 4 provides clear value over Scenario 1, especially 

when nS is small. For example, when nS is between 1 and 10 wells, the improvement in 

the power for achieving higher EFLWS provided by Scenario 4 is between 4.5 and 3.5 

times, respectively. Therefore, in a situation where only a few wells are leaking CO2 and 

limited resources are available to sample from n available wells, full prior knowledge of 

the deep well leakage potential adds significant value to the ability of the monitoring plan 

to detect the leaking well(s). This situation may arise quite often at geologic CO2 storage 

sites in legacy oil and gas fields. The CO2 injection phase is likely to span decades and 
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the post-injection site care would extend beyond that timeline. Current recommendations 

suggest long-term monitoring for CO2 plume and pressure stability for 50 years post-

injection (U.S. DOE, 2009). Thus, sampling all wells within the AoR at fixed frequency 

(e.g., annually) for 50 years may be cost-prohibitive (i.e., nS would be limited by cost). 

 

Figure 3-8. Ratio of the expected fraction of leaky wells sampled (EFLWS) for Scenario 4 (score-

based well leakage/score-based sampling) / Scenario 1 (equiprobable well leakage/random well 

sampling) as a function of the number of wells sampled (nS). 
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leakage potential score and the wells are sampled from highest-to-lowest leakage 

potential score. Barring additional knowledge about the order in which wells might leak 

(beyond the scope of this study) the detection performance would not exceed the 

Scenario 4 results. Scenario 5 evaluates how Scenario 4 degrades toward Scenario 1 as a 

function of the change in accuracy of the believed well leakage risk score relative to the 

“true” well leakage probability. 

Ratios of EFLWS for (Scenario 4 / Scenario 5a or 5b) as a function of nS and nL 

are shown in Figure 3-9 (Note: when nL = 1, POLWS=PALWS=EFLWS). This 

comparison shows that a small change in accuracy does not substantively affect the 

statistical power, as the ratio for Scenario 5a is close to 1 (Figure 3-9, blue line). This is 

due to the right-skewed distribution of deep well leakage potential scores, which causes 

the first few wells to continue to be ranked highly despite the error introduced in the case 

with a small loss of accuracy. In other words, the top 10 highest-ranked wells generally 

remain in the top 10 when there is only a small loss in the accuracy of predicted leakage 

probabilities from deep well leakage potential scores in Scenario 5a. A large decrease in 

accuracy (Scenario 5b) does lead to a noticeable decrease in statistical power. For 

example, for nL=2 and nS=20, the ratio of EFLWS (Scenario 4 / Scenario 5b) is 

approximately 1.1, or a 10 percent decrease in statistical power for Scenario 5b as 

compared to the fully-informed Scenario 4. This effect decreases as the number of leaky 

wells increases and the number of sampled wells increases, as is seen in Figure 3 moving 

from nL=1 to nL=10. 
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Figure 3-9. Ratios of the expected fraction of leaky wells sampled (EFLWS) for Scenario 4 / Scenario 

5a (small accuracy loss, blue line) or Scenario 4 / Scenario 5b (large accuracy loss, dashed red line) as 

a function of nS for nL = 1 (top left), 2 (top right), 5 (bottom left), and 10 (bottom right) wells. Note: 

when nL = 1, POLWS (probability at least one leaky well sampled) = PALWS (probability all leaky 

wells sampled) = EFLWS. 
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partial scores yield sampling matrices that consist of between 6 to 10 groups of wells 

within which the sampling order is random. The complete deep well leakage potential 

scores using all four attributes also result in tied scores, with 19 groups of wells within 

which the sampling order is random. As a result, Figure 3-10 shows little difference 

(ratios near 1) between Scenarios 4 and 6a for some combinations when nS is less than 

about five wells. However, the overarching trend is clear – there is a loss of statistical 

power with partial scores for each of the leaky well scenarios and it is most pronounced 

when nS is small (generally less than 30 wells). Figure 3-11 shows the ratio of EFLWS 

for (Scenario 4 / Scenario 6b) as a function of nS and nL. There is less effect than the two-

attribute case in Scenario 6a; however, there is a loss of statistical power with the three-

attribute partial scores when nS is small (generally less than 15 wells). 

Figures 3-10 and 3-11 show that statistical power is most sensitive to omitting the 

number of fracture treatments, acid treatments, or well abandonment type from the deep 

well potential score, and least sensitive to omitting the number of completions. For 

example, the three two-attribute combinations in Scenario 6a which result in the smallest 

loss of statistical power are: (1) fracture/acid, (2) fracture/abandonment, and (3) 

acid/abandonment (Figure 3-10). Among the three-attribute scores in Scenario 6a, the 

combination fracture/acid/abandonment provides nearly identical performance to 

Scenario 4 (Figure 3-11). Analogous to Scenarios 5a and 5b, the closer the sampling 

knowledge to the true leakage probability, the quantifiably better the leaky well detection 

becomes. While these results seem to state the obvious, the methods used in this work 

illustrate statistical approaches that can be used to quantify different sampling plans and 
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thus justify one sampling plan over another at a site where Prob[Leakagei] can be 

quantified. 
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Figure 3-10. Ratio of EFLWS (Scenario 4) / EFLWS (Scenario 6a), where Scenario 6a utilizes only two of the four well attributes to develop the well 

sampling. The six combinations of two attributes include: (1) no. of fracture and acid treatments (upper left); (2) no. of fracture treatments and 

abandonment type (upper middle); (3) no. of fracture treatments and completions (upper right); (4) no. of acid treatments and abandonment type 

(lower left); (5) no. of acid treatments and completions (lower middle); and (6) no. of completions and abandonment type (lower right). 
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Figure 3-11. Ratio of EFLWS (Scenario 4) / EFLWS (Scenario 6b), where Scenario 6b utilizes only 

three of the four well attributes to develop the well sampling. The four combinations of three 

attributes include: (1) no. of fracture treatments, no. of acid treatments, and abandonment type 

(upper left); (2) no. of fracture treatments, acid treatments, and completions (upper right); (3) no. of 

fracture treatments, no. of completions, and abandonment type (lower left); and (4) no. of acid 

treatments, no. of completions, and abandonment type (lower right). 
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where the deep well leakage potential scores are fully informative and used to develop 

the sampling plan, is 81%. Detecting one leaking well is important, as this will drive 

additional investigation work in the region surrounding the leaking well to confirm or 

deny the presumptive leak and to characterize the nature and extent of the leak should it 

turn out to be present. 

The Scenario 5a and 5b results underscore the value of quality well integrity 

testing during the site feasibility study phase to estimate Prob[Leakagei] for all wells 

within the AoR. A baseline survey which more closely reflects the true increased 

probability of well leakage provides better information for sampling plan development, 

which in turn increases the statistical power of locating a leaking well should one exist. 

The greater the error of the deep well leakage potential score for inferring the true well 

leakage probability, the more the detection performance of Scenario 4 degrades to that of 

Scenario 1 (even odds). Similarly, Scenarios 6a and 6b illustrate the loss of statistical 

power when only a subset of the well attributes used to define the leakage probability is 

known. Thus, Scenarios 5a, 5b, 6a, and 6b illustrate methods for quantifying the loss in 

detection ability due to imperfect knowledge, which may provide a means for justifying 

the economics associated with additional wellbore characterization during the pre-

injection characterization phase for a geologic CO2 storage project. 

A host of atmospheric, near-surface, and subsurface monitoring techniques are 

available for CO2 leak detection. The spatial and temporal scales of measurement for the 

different methods vary greatly, from those covering broad, field-wide scales such as 

Interferometric Synthetic Aperture Radar (e.g., InSAR) and three-dimensional (3D) 

seismic imaging, to small-scale samples collected from individual wells (points within a 
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field), such as down-hole geophysical logs or discrete well fluid samples (U.S. DOE, 

2009). While the former provide field-wide information with respect to CO2 plume 

behavior and migration, the latter would likely be needed as supplementary measurement 

tools and would almost certainly be required for confirmatory sampling in the event of a 

presumptive CO2 leak. For geologic CO2 storage in legacy oil and gas fields with large 

numbers of wells, the well sampling design must be considered along with the additional 

monitoring techniques. Ultimately, the long-term monitoring component of an MVA plan 

would be based on the combined knowledge of reservoir simulation, geologic 

characterization data, well integrity surveys, and observations during CO2 injection, 

allowing the monitoring network to integrate combinations of technologies to provide the 

appropriate balance between risk reduction and cost effectiveness (Seto and McRae, 

2011). This work underscores the value of well integrity surveys and estimates of deep 

well leakage potential to the well sampling design, which may be incorporated into the 

overall monitoring design to provide sufficient detection sensitivity of CO2 leakage 

throughout the AoR. 

 

3.5 Implicit Assumptions of the Statistical Simulation Approach 

Implicit in this statistical simulation approach are five fundamental assumptions: 

(1) leakage may be reduced into a discrete (binary) outcome; (2) there is no time-

dependence in the problem; (3) buoyant CO2 is the emphasis; (4) no geospatial 

information is relevant; and (5) the scoring methodology of Watson and Bachu (2008) 

provides a valid estimate of well leakage probability. Discussions for each of these 

assumptions are provided below. 



     98

3.5.1 Monitoring as a Discrete Outcome 

Monitoring is often reduced to a discrete (binary) outcome. For example, control 

charts (or Shewhart charts) are often used in manufacturing and business to assess 

whether a process is in statistical control. These charts often flag a measurement when it 

is above or below three standard deviations of the mean, or within 99.7% of the normal 

distribution probability mass (Shewhard, 1931). Multivariate extensions of control charts 

have also been developed (Rohlf, 1975; Beckman, 1983). Other authors investigating 

monitoring CO2 leakage at geologic CO2 storage sites have also cast monitoring as a 

dichotomous response of either (a) within the 99% prediction interval of baseline or (b) 

above this threshold concentration (Yang et al., 2011a; 2011b; 2012). The reduction of 

the sampling problem in this work into a simple “yes/no” for “did select/did not select” a 

leaky well simply extends the idea of a monitoring threshold to the well, i.e., if the well is 

leaking CO2, and we conduct measurements at that well, then we are assuming that we 

will detect the leakage. While one might argue that the size of the leak is important, one 

could also argue that if you sample the wrong well, then regardless of how low your 

method detection limit you will still not observe a leak. Therefore selecting the correct 

wells is paramount to using the right technology or the size of the leak. As has been 

shown by other authors, detection limits are important and must be included in the overall 

MVA program (Yang et al., 2011a; 2011b; 2012). However, this work assumes that if 

you select a leaking well as part of the sampling plan, then the CO2 leak will be detected 

by one or more monitoring technologies used at that discrete location. 
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3.5.2 Time Independence 

Time is obviously an important variable in the fate and transport of CO2 in the 

subsurface at a geologic CO2 storage site. Annual injection rates of one million tonnes 

CO2 per year add significant CO2 mass to the subsurface and greater CO2 mass injected 

over time means a greater potential for CO2 leakage. Leakage risk profiles for CO2 

storage sites have been conjectured to track with CO2 injection, peaking at the end of site 

operations and decaying over time as the CO2 plume, pressure front, and reservoir 

equilibrate (Benson, 2007). However, for buoyant CO2 leakage of the type we are 

exploring in this work, the free-phase CO2 plume not only extends radially away from the 

CO2 injector(s) but grows in a conic shape outward from the CO2 injector(s), i.e., gains 

thickness over time. As a result, the rate of change in the radial extent of the free-phase 

CO2 plume does not increase as rapidly in later time as it does earlier in the injection 

program. 

For example, we used the analytical solution of Nordbotten et al. (2005) and the 

semi-analytical solutions of Vilarrasa et al. (2013) to model the CO2-brine interface at the 

top of the injection reservoir (i.e., the base of the seal formation) over a 50-year injection 

period. The analytical solution of Nordbotten et al. (2005) was one of the first to derive 

analytical solutions to two-phase flow (i.e., CO2 and brine) in porous media, and the 

results were shown to have reasonable agreement with numerical models such as 

ECLIPSE.
 
However, Vilarrasa et al. (2013) showed that because the Nordbotten et al. 

(2005) analytical solution ignores CO2 compressibility and buoyancy effects in the 

injection well (i.e., they inject CO2 uniformly along the whole thickness of the aquifer), 

the accurate prediction of the CO2 plume position is sensitive to the gravity number, or 
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the ratio of gravity to viscous forces.
 
In contrast, the Vilarrasa et al. (2013) semi-

analytical approach was shown to provide accurate estimates of CO2 plume position and 

fluid pressure regardless of gravity number (as compared to numerical simulations using 

the finite element numerical code CODE_BRIGHT). Therefore we modeled the CO2 

plume position (CO2-brine interface) in this work using both the analytical solution of 

Nordbotten et al. (2005) and the semi-analytical solutions of Vilarrasa et al. (2005). The 

modeling assumed a constant annual CO2 injection rate of one million tonnes per year for 

1, 5, 10, 20, 30, 40, and 50 years. The brine and CO2 density and viscosity were estimated 

according to Bachu
 
(2002) based on the estimated reservoir temperature, pressure, and 

salinity the basal Cambrian system on the U.S. side of the U.S./Canada border. The input 

parameters for the aquifer, brine, CO2, and additional data into the models are 

summarized in Table 3-4. At one year into the injection program, the CO2 plume radius 

was 1.4 km, and at five years it was out to 3.2 km, or an average rate of change in area of 

approximately 100% per year. However, at 30, 40, and 50 years into the injection 

program, the CO2 plume radius was 4.0, 4.3, and 4.5 km, respectively, or an average rate 

of change in area of about 1% per year (Figure 3-12). 

This work is aimed at the late-stage operational monitoring phase and into the 

post-injection site care phase, so time has less of an effect on the spatial distribution of 

the CO2 plume in relation to the wells within the AoR as it would in earlier time. While 

CO2 plume anisotropy and the rates of CO2 fate and transport processes in the subsurface 

are obviously site-specific and therefore sensitive to the input parameters, these 

simulations illustrate that in late-stage operational monitoring, time dependency is less of 

a concern than it would be early in the injection program. As a result, this work focuses 
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on the steady-state condition and removes time from the solution, recognizing that a 

transient (i.e., time-dependent) CO2 leakage model would have significantly greater 

relevance early in the injection program. 

Table 3-4. Input parameters used in the analytical model of Nordbotten et al. (2005) and the semi-

analytical model of Vilarrasa et al. (2013) to estimate the radial extent of the CO2 plume during a 50-

years CO2 injection period. 

Variable Units Symbol Value 

AQUIFER INPUT DATA 

Aquifer thickness m D 152 

Aquifer porosity   φ 0.15 

Aquifer permeability m
2
 k 1E-12 

Aquifer temperature K T 380 

Depth of the top of the aquifer m z0 2440 

Aquifer salinity mg L
-1

 TDS 175,000 

Hydrostatic pressure MPa p0 24.4 

        

BRINE INPUT DATA 

Brine density kg m
-3

 ρbrine 1082 

Brine viscosity Pa·s µbrine 3.9E-04 

        

CO2 INPUT DATA 

CO2 density kg m
-3

 ρCO2 550 

CO2 viscosity Pa·s µCO2 4.3E-05 

        

ADDITIONAL INPUT DATA 

Injection well radius m rp 0.5 

CO2 volumetric injection rate m
3
 s

-1
 Q0 0.06 

Prescribed CO2 mass flow rate kg s
-1

 Qm 31.7 
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Figure 3-12. Profile from the injector (x=0) outward of a hypothetical CO2-brine interface at 1, 5, 10, 

20, 30, 40, and 50 years into the CO2 injection period using the input parameters for the aquifer, 

brine, and CO2 shown in Table 3-4 and the semi-analytical model of Vilarrasa et al. (2013). The 

solution at 50 years for the same input parameters using the analytical model of Nordbotten et al. 

(2005) is shown for comparison (red dashed line). 
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water interactions) (IPCC, 2005). However, hydrodynamic and geochemical trapping 

mechanisms are relatively slow, perhaps taking centuries or millennia. In the time period 

that is the focus of this work (i.e., late-stage operational monitoring phase and into the 

post-injection site care phase – perhaps 50 years following the end of CO2 injection), 

migration of buoyant CO2 is the dominant leakage risk. For example, at the pressure and 

temperature conditions estimated for our analytical and semi-analytical modeling (24.4 

MPa and 107 degrees Celsius), CO2 is expected to have a density of approximately 550 

kg/m
3
, or roughly half the density of the formation water (1082 kg/m

3
). This density 

difference drives the buoyant migration of CO2 upwards towards the top of the reservoir 

layer (Eke et al., 2011). As noted by Watson and Bachu (2007) for a leak to occur, there 

must be (1) a leak source; (2) a driving force such as buoyancy, and (3) a leakage 

pathway. This work appropriately assumes that during the late-stage injection and into 

the post-injection site care phases, the first two conditions are met – buoyant CO2 is 

present in the subsurface and buoyancy is the dominant driving force, and that any 

leakage pathway along the wellbore will permit CO2 to migrate from the storage site. 

3.5.4 Geospatial Information 

This work uses a vector of deep well leakage potential scores (i.e., no X- or Y-

coordinates), thus geospatial phenomena are not included in the calculations. Site-specific 

geologic characteristics such as preferential flow paths could lead to portions of the AoR 

having a higher risk of CO2 leakage than others. The methods used in this work would 

need to be coupled with a broader reservoir simulation model to properly address 

geospatial correlation and other site-specific geospatial features. 
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3.5.5 Accuracy of the Deep Well Leakage Potential Score 

This work assumes that the leakage probability is directly proportional to the deep 

well leakage potential score. While the scoring methods of Watson and Bachu
 
(2007; 

2008) were derived from real-world data on SCVF/GM well leaks against available well 

completion and abandonment factors, the weighting factors and scoring approach are 

unlikely to be exact predictors of the increased probability of CO2 leakage. The scoring 

has not been validated against field data of wellbore permeability estimates, which are the 

actually drivers of wellbore leakage, not scores. For instance, it could be that all wells 

with a score higher than some threshold value are equally leaky in terms of their effective 

hydraulic parameters, and therefore the distribution of leakage probability would look 

quite different than the one used in this work. However, the methods used in this work 

are relevant regardless of the method used to assign the leakage probability. For example, 

other approaches for quantifying wellbore leakage probability estimates such as direct 

measurements of wellbore permeability could be used to define Prob(Leakagei). The 

subsequent modeling steps would then be identical to those used in this work, i.e., use the 

multivariate form of Wallenius’ non-central hypergeometric distribution to simulate the 

probability that a particular well is leaking and compare sampling designs to quantify the 

statistical power of selecting one or more leaky wells. 

 

3.6 Conclusions 

Despite the few limitations discussed above, the current work shows the value of 

high-quality wellbore characterization data for informing MVA sampling plans. Site-

specific scoring systems using methods like the one provided in this work or empirical 
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measurements of wellbore integrity/permeability may be used to derive the probability of 

leakage, which may then be modeled to assess the number and location of wellbore 

samples needed to satisfy the site-specific MVA objective. 
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Chapter 4: CO2 storage associated with CO2 enhanced oil recovery: A 

statistical analysis of historical operations
6
 

 

Abstract 

This work analyzes a database of 31 existing CO2 enhanced oil recovery (EOR) projects 

that was compiled for the estimation of oil reserves to better understand the CO2 

retention, incremental oil recovery, and net CO2 utilization for these oil fields. The 

measured data begin at the start date of the CO2 flood and extend through the year 2007. 

Cumulative CO2 retention (in the formation), incremental oil recovery factors, and net 

CO2 utilization factors were calculated for each of the sites. To express all site data on a 

common dimensionless scale, the data were extrapolated to 300% cumulative 

hydrocarbon pore volume (HCPV) by fitting nonlinear functions. Summary statistics 

were then calculated from 0% to 300% HCPV. Across all 31 sites, the 10th, 50th 

(median), and 90th percentile values for the three factors at 300% HCPV were: CO2 

retention: 23.1%, 48.3%, and 61.8% retained; incremental oil recovery: 5.3%, 12.2%, and 

21.5% of OOIP (original oil in place); and net CO2 utilization: 4.8, 8.7, and 10.5 

Mscf/STB (stock-tank barrel). This work employs a novel approach that incorporates 

nonlinear functions to quantify uncertainty in the estimated values as a function of HCPV 

and to describe the shape of the CO2 retention or incremental oil recovery response with a 

handful of parameters, providing insight into the behavior of the reservoir across the 

entire timeline of the CO2 flood. These nonlinear curve fits are focused on statistical 

                                                 
6
 Chapter 4 was the basis for the peer-reviewed publication. In the publication, some of the text and tables 

were shortened to conform to the journal format. Azzolina, N.A.; Nakles, D.V.; Gorecki, C.D.; Peck, W.D.; 

Ayash, S.C.; Melzer, L.S.; and Chatterjee, S. (2015). CO2 storage associated with CO2 enhanced oil 

recovery: A statistical analysis of historical operations. International Journal of Greenhouse Gas Control, 

37:384-397.  



     111

inference – i.e., what is the likely outcome and uncertainty ranges for CO2 retention, 

incremental oil recovery, and net CO2 utilization given the historical data from the 31 

CO2 EOR sites?  However, the approach described in this work also provides useful 

information for prediction – i.e., given a set of inputs from another site with similar 

geology, what are plausible ranges in outcomes for each of these factors? Consequently, 

the results of this work can be used to estimate the potential range of expected 

performance for similar candidate oil fields that are not currently undergoing CO2 

injection, including estimates of the associated CO2 storage potential of these candidate 

fields. The results of this work allow estimation of CO2 storage capacity in CO2-EOR 

operations with various degrees of confidence. The sites in the dataset reflect water–

alternating gas CO2 floods – all within the continental United States and heavily 

dominated by the West Texas carbonate floods. Other floods outside of this region, where 

the data were available, are also included in this study (i.e., the Rocky Mountain region 

and the State of Oklahoma). 

 

4.1 Introduction 

The need to simultaneously reduce atmospheric concentrations of carbon dioxide 

(CO2) and provide energy to satisfy an ever-growing worldwide energy demand presents 

a seemingly intractable societal challenge. One proven technology which both produces 

oil and permanently stores CO2 in the subsurface is CO2 enhanced oil recovery (CO2 

EOR). CO2 EOR refers to the process whereby CO2 is injected into the subsurface at an 

oil field, after which it mixes with the oil to swell it and reduce the oil viscosity, making 

it lighter and detaching it from the rock surfaces. These subsurface alterations cause the 
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oil to flow more freely within the reservoir so that it will flow from the injection well to 

producer wells. During this process, nearly all of the purchased CO2 delivered to the oil 

field remains securely trapped within the deep geologic formation (Melzer, 2012). 

Consequently, CO2 EOR provides one viable means for offsetting carbon emissions from 

oil production and combustion via geologic storage of the carbon. The CO2 EOR 

technique was first tested at large scale in the 1970s in the Permian Basin of West Texas 

and southeastern New Mexico, thus it has been used in the United States for over 40 

years. As of 2014, a total of 136 active CO2 EOR projects have been identified in the 

U.S. (Kuuskraa and Wallace, 2014). 

Historically, most of the CO2 supply to CO2 EOR projects has come from larger 

natural sources, which obviously do not contribute toward a reduction in anthropogenic 

CO2 emissions (Kuuskraa and Wallace, 2014). However, in an effort to reduce 

concentrations of CO2 in the atmosphere that are caused by anthropogenic sources, the 

U.S. Department of Energy (DOE) is pursuing carbon capture, utilization, and storage 

(CCUS) as one approach in a portfolio of greenhouse gas reduction strategies. CCUS 

involves (1) separating CO2 from an industrial process; (2) transporting the CO2 to a 

geologic storage location; and (3) injecting and storing the CO2 in a geologic reservoir for 

long-term isolation from the atmosphere (IPCC, 2005). In the case of CO2 EOR, the CO2 

is “utilized” in the sense that it is serving an additional value-added purpose of producing 

incremental oil prior to geologic storage (in contrast to CO2 injection into saline 

reservoirs which only serve as CO2 storage units and do not provide incremental oil 

recovery). As part of its Carbon Storage Program, DOE is working toward the 

demonstration and commercialization of CCUS through its Infrastructure, Core Research 
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and Development (R&D), and Global Collaborations areas (U.S. DOE, 2013), which was 

also the source of funding for this study.  

CO2 EOR is most commonly a “tertiary production phase” process, which is used 

after the primary and secondary production phases have been completed. During the life-

cycle of the CO2 EOR process (commonly referred to as the “CO2 flood”), CO2 is 

injected into the reservoir at designated injection wells and a mixture of oil, CO2, and 

water is produced at production wells. These produced fluids are separated at the surface. 

Oil is transported off-site to refineries and other end users. The produced CO2 is 

separated from the other fluids (processed), dried, re-compressed and re-injected into the 

subsurface. This “recycling” of the produced CO2 prevents it from being released to the 

atmosphere and provides substantial savings to the oil field operator that would otherwise 

have had to purchase replacement CO2 volumes (U.S. DOE, 2010; Melzer, 2012). 

Therefore, the CO2 EOR process is essentially a “closed loop” for CO2. However, not all 

of the injected CO2 is produced, as a significant fraction of the CO2 is retained in the 

reservoir. To maintain a specified injection ratio of water and CO2, the recycled CO2 is 

supplemented with the purchased CO2. Therefore, as the CO2 flood continues through 

time, the total volume of injected CO2 is comprised of both recycled CO2 and purchased 

CO2. Often, CO2 floods proceed by alternating the injection of CO2 and water, which are 

designated as “water-alternating-gas”, or WAG floods. The WAG approach helps to 

reduce the tendency for the lower viscosity CO2 to finger its way ahead of the displaced 

oil and therefore improves the sweep efficiency of the flood (U.S. DOE, 2010). Sweep 

efficiency refers to the effectiveness of the injected CO2 to contact the volume of the 

reservoir where the oil resides (Green and Willhite, 1998). The produced water may also 
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be re-injected into the reservoir as part of the WAG process. Figure 4-1 illustrates the 

fluid flows (oil, CO2, and water) in a typical CO2 EOR project. 

 

Figure 4-1. Schematic of fluid flows in a CO2 EOR project. �������
 refers to purchased CO2; ������	  

refers to recycled CO2; ����
��
 refers to total injected CO2, which is comprised of both purchased CO2 

and recycled CO2; ������
 refers to the sequestered CO2 that is permanently stored in the subsurface 

and not available for recycle; ����
��
 refers to injected water; and ��
����

 refers to incremental oil 

production (Source: van ’t Veld et al., 2013). 

 

Industry experience and simulation studies suggest that the amount of CO2 stored 

is a function of both geologic and operational controls. Geologic controls are specific to 

the reservoir, and include lithology, permeability, heterogeneity, and other physical 

features unique to the reservoir. Operational controls are specific to the design and 

operation of the CO2 flood, including injection pattern (the geometrical arrangement of 

injector and producer wells), pattern spacing (the distance between injectors and 

producers), the volume of CO2 injected, and the ratio of injected water to injected CO2 

(the “WAG ratio”). The interplay of geologic and operational controls leads to 
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uncertainty in the amount of CO2 storage that occurs at an individual site. Analogously, 

these same controls affect the quantity of incremental oil that is produced (ARI and 

Melzer, 2010; Hill et al., 2013; van ’t Veld et al., 2013; 2014; Ettehadtavakkol, 2014). 

The primary objective of this work is to improve the overall quantitative 

understanding of CO2 retention, incremental oil recovery, and net CO2 utilization, which 

are factors that significantly influence the long-term performance and economic viability 

of CO2 EOR projects. CO2 retention is a metric that expresses the fraction of total 

injected CO2 that is not recycled but remains in the subsurface. CO2 storage is a metric 

that expresses the fraction of total purchased CO2 that remains in the subsurface. 

Incremental oil recovery is the amount of oil that is produced solely from the CO2 flood 

(i.e., not from the previous primary and secondary production phases). Lastly, net CO2 

utilization tracks the amount of purchased CO2 that is required to produce a barrel of oil. 

This work provides a statistical analysis of an historical industry dataset, which allows 

modeling results to be compared against real-world, observed injection and production 

data. Other authors have summarized multi-site CO2 EOR field data in the past (e.g., 

Brock and Bryan, 1989; Hadlow, 1992; Manrique et al. 2007), or have extended 

predictions of CO2 EOR performance into the future using simulation models (e.g., 

Merchant, 2010). However, this work differs significantly from past publications in three 

major ways. First, empirical models in this study were fit across 31 sites with real-world 

injection and production data, which represents one of the largest CO2 EOR datasets ever 

to be analyzed and summarized in the peer-reviewed literature. Second, by incorporating 

a statistical model that fits the entire data record, as opposed to extending long-term 

trends via decline-curve analysis or other forecasting tools, this approach allows 
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inference about the overall shape of the CO2 retention, incremental oil recovery, and net 

CO2 utilization responses through time. Finally, this approach and data set significantly 

extend the understanding of CO2 EOR behavior and uncertainty quantification further 

into the future (i.e., at higher total volumes of fluid injected into the reservoir) than has 

been presented in previous work. 

 

4.2 Methods   

4.2.1 Industry Data Set and Parameters 

Monthly reservoir performance data from 31 CO2 EOR sites (hereafter referred to 

as the “Industry Data Set”) were provided by Melzer Consulting, Inc. and a worldwide 

reservoir appraisal company (confidential). These data have been used to develop 

petroleum reserve estimates for the operators of the field and to prepare annual petroleum 

reserves certifications for filers with the U.S. Securities and Exchange Commission. They 

include the following five parameters for each of the 31 CO2 EOR sites: 

1) Time (years): This is the time in years since the start of the CO2 flood. All 31 

sites are expressed on a common time scale such that time zero (t0) represents 

the beginning of the CO2 flood across all projects, with data continuing up to 

and including the year 2007; 

2) CO2 injected (%HCPV): This is the total cumulative volume of CO2 injected 

(purchased plus recycled CO2) expressed as %HCPV; 

3) CO2 produced (%HCPV): This is the total cumulative volume of CO2 

produced expressed as %HCPV. It is equivalent to the recycled volume of CO2; 
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4) CO2 + H2O injected (%HCPV): This is the total cumulative volume of CO2 

and water injected expressed as %HCPV. Most, but not all, CO2 floods utilize 

the WAG injection method wherein stages of gas injection (predominantly 

CO2) are followed by injection of liquid only (predominantly water). The 

normalizing factor used herein tracks both the CO2 and the water volumes in 

contrast to just the CO2 volumes; and 

5) Cumulative incremental oil recovery (% original oil in place [OOIP]): The 

cumulative incremental oil recovery data are expressed as %OOIP, where the 

baseline waterflood and any infill drilling contributions have been subtracted 

from the total oil production to determine the incremental oil production 

resulting from CO2 injection. 

4.2.1 Dimensionless Variables 

In comparing reservoir performance data across multiple sites, it is useful to 

express the data using dimensionless variables, which are independent of any particular 

system. These calculations were conducted by the worldwide reservoir appraisal 

company who compiled the database. The first step is to define OOIP, which is the 

amount of oil in the reservoir prior to any production and is a function of the volume of 

the reservoir (area and thickness), porosity, and the original oil saturation, as shown in 

Eq. 1 (Green and Willhite, 1998). 

 

k = aℎ��±( 1
²³. y 1

´.¶1´	·¸¹/��º~        (4-1) 

 

Where: 
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N  = Original oil in place (stock tank barrels [STB]); 

A  = Reservoir area (ft
2
); 

h  = Reservoir thickness (ft); 

ϕ  = Reservoir porosity (fraction); 

Soi  = Original oil saturation (volume fraction); 

Boi  = Initial oil formation volume factor (reservoir barrels [RB]/STB); 

 

Reservoir barrel (RB) refers to the volume of oil at reservoir pressure and 

temperature conditions. Stock tank barrel (STB) refers to the volume of oil after 

production, at surface pressure and temperature, which has been established as 15.6ºC 

and 101.325 kPa [60ºF and 14.696 psia], respectively.]. OOIP is commonly reported in 

units of STB. 

The volumes of CO2 injected, CO2 produced, and CO2 + H2O injected may be 

expressed as dimensionless variables in units of HCPV, as opposed to a volume or mass 

measure. HCPV represents the pore volume of the reservoir that is occupied by 

hydrocarbons. One hundred percent HCPV (which is equivalently reported in the 

literature as 1.0 HCPV) is equivalent to the OOIP. However, the amount of CO2 or CO2 + 

H2O injected is not bounded between zero and 100%, as more than 100% HCPV may be 

injected into the reservoir over the life-cycle of the CO2 flood due to the fact that there is 

not perfect displacement, i.e., sweep efficiency, of the OOIP, which requires the 

recycling of produced CO2 plus additionally purchased CO2 beyond 100% HCPV to 

achieve the desired oil recoveries (Figure 1). The formula for determining %HCPV of 

CO2 injected or produced is as follows (Green and Willhite, 1998): 



     119

 

;MeY = »²	¼½7
½½¾¿×²³.         (4-2) 

 

Where: 

HCPV = Hydrocarbon pore volume (%); 

RB CO2 = Reservoir barrels (RB) of CO2; 

OOIP = Original oil in place [stock tank barrels (STB)] 

Boi  = Initial oil formation volume factor (RB/STB) 

 

Incremental oil recovery represents oil that is produced following the primary or 

secondary oil production, i.e., during tertiary recovery from the CO2 flood, and hence 

“incrementally” adds to the entire oil production from the field. Incremental oil recovery 

may also be expressed as a dimensionless variable, the incremental oil recovery factor, 

which is expressed in units of %OOIP, as opposed to a volumetric measure, as shown in 

Eq. 3 (Green and Willhite, 1998). 

 

Àl = ÁÂ
Á           (4-3) 

 

Where: 

RF  = Incremental oil recovery factor [unitless]; 

Np  = Cumulative incremental oil production [STB]; and 

N  = Original oil in place [STB]. 
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4.2.2 CO2 Retention 

The formula for CO2 retention that is used throughout this paper (Eq. 4) is widely 

used within the oil and gas industry and expresses CO2 retention as a fraction between 0 

and 1 (Melzer, 2012): 

 

CO2	retention = �¸È¸Éº	ÊË7	ÌÍÎ�Ï¸�ÐmÊË7	�ÑÈÐÒÏ�Ð#
¸È¸Éº	ÊË7	ÌÍÎ�Ï¸�Ð      (4-4) 

  

Where: 

CO2 retention = percent of injected CO2 retained in the reservoir (%); 

total CO2 injected = total injected volumes of CO2 [purchased plus recycled 

CO2] (%HCPV); and 

CO2 produced = total produced volumes of CO2 [recycled CO2] (%HCPV). 

 

The CO2 retention computed using Eq. 4 is a cumulative CO2 retention, and 

represents the fraction of total injected CO2 that is not recycled. 

4.2.3 Net CO2 Utilization Factors 

This paper calculates and discusses net CO2 utilization expressed as Mscf of CO2 

per STB of oil produced. Net CO2 utilization does not include the recycled CO2 

component and, therefore, only incorporates the purchased CO2 volumes into the 

calculation. In contrast, gross CO2 utilization includes the total amount of CO2 injected, 

which incorporates both purchased and recycled CO2 volumes into the calculation as 

discussed further below. 



     121

The net CO2 utilization factor is commonly expressed as the amount of purchased 

CO2 used to recover a barrel of oil, in units of Mscf/STB (Wiggins and Hughes, 2005). 

The units needed to derive the CO2 utilization factor are different from those provided in 

the Industry Data Set, which expresses injection and production data using dimensionless 

variables – injected CO2 volumes are in units of %HCPV (not Mscf) and incremental oil 

production is in units of %OOIP (not STB). 

For the purposes of calculating net CO2 utilization, this work assumed that the 

volume of purchased CO2 is equal to the total CO2 injected less the CO2 recycled from 

the previous time step. This assumption was based on the fact that CO2 losses are de 

minimus, and therefore, contribute a relatively small amount of error into the calculation 

(Fox, 2009; DOE, 2010a; Melzer, 2012). We then used OOIP, initial oil formation 

volume factor (Boi), and CO2 formation volume factor (BCO2) to derive the purchased CO2 

volume in units of Mscf, as per Eq. 5 (Green and Willhite, 1998): 

 

Y¼½2,ÓÔÕÖ×��Ø¬,Ù�ÖÚ = ÛÜÝ7,ÂÞßàá�âãä,åÜæç×Á×²³.
²ÜÝ7      (4-5) 

 

Where: 

VCO2,purchased,Mscf = Cumulative volume of purchased CO2 injected (Mscf); 

VCO2,purchased,HCPV = Cumulative volume of purchased CO2 injected (HCPV); 

N   = Original oil in place [STB]; 

Boi   = Initial oil formation volume factor (RB/STB); and 

BCO2  = CO2 formation volume factor (RB/Mscf). 
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The Boi, BCO2, and N values for each site that were used in  Eq. 5 to convert the 

units of the purchased CO2 from %HCPV to Mscf were obtained from the literature; 

however, literature values for all of these parameters were not available for all 31 sites. 

As a result, net CO2 utilization factors could only be computed for 16 of the 31 sites. 

Cumulative incremental oil recovery in the Industry Data Set is expressed as 

%OOIP. We converted %OOIP into units of STB prior to computing the net CO2 

utilization factor by rearranging Eq. 3, as shown in Eq. 6: 

 

kÓ = Àl × k          (4-6) 

 

Where: 

Np = Cumulative incremental oil production [STB]; 

N = Original oil in place [STB]; and 

RF = Incremental oil recovery factor [unitless]. 

  

For the 16 sites for which we could accurately express both the cumulative 

volume of purchased CO2 injected (Mscf) and the cumulative incremental oil production 

(STB) in the appropriate units, the), the net CO2 utilization factor for each site was 

calculated as follows (Eq. 7): 

 

èl¼½2,>Øh = ÛÜÝ7,ÂÞßàá�âãä,éâàê
ÁÂ         (4-7) 

 

Where: 
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UFCO2,net  = Net CO2 utilization factor (Mscf/STB); 

VCO2,purchased,Mscf = Cumulative volume of purchased CO2 injected (Mscf); 

and 

Np   = Cumulative incremental oil production (STB). 

 

The net CO2 utilization factors computed in this paper are cumulative net CO2 

utilization factors for each site, where the cumulative CO2 injected at the site is divided 

by the cumulative oil produced at the site up to the %HCPV that was selected for the 

calculation. 

4.2.4 Nonlinear Regression 

As previously noted the Industry Data Set includes measured data that begins at the 

start date of the CO2 flood and extends up to and including the year 2007. It is difficult to 

assess CO2 retention, incremental oil recovery, and net CO2 utilization across multiple 

sites when there is no common basis for comparison. For example, at 10 years into the 

CO2 flood, Sites A and B had injected 50% and 65% HCPV of CO2 + H2O , respectively; 

therefore, simply using the time since the start of the CO2 flood is not a sufficient 

parameter with which to compare multiple sites. Therefore, to express all site data on a 

common dimensionless scale, the reservoir performance data were evaluated as a 

function of total CO2 + H2O injected in units of %HCPV, and were extrapolated to 300% 

HCPV for each of the sites to allow for multi-site comparisons of the above factors from 

0% to 300% HCPV. This extrapolation was done by fitting a nonlinear function to the 

data using nonlinear regression. There were two steps to the nonlinear regression 
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modeling: 1) selecting the nonlinear regression model form and 2) fitting the nonlinear 

regression model parameters. 

The curves produced by plotting CO2 retention and incremental oil recovery 

versus CO2 + H2O injected all exhibited a sigmoidal shape (Figure 4-2 and Figure 4-3, 

respectively). CO2 retention and incremental oil recovery factors are both expressed as a 

value between 0 and 1 (i.e., a percentage). Sigmoidal-shaped curves bounded by the 

interval from 0 to 1 are commonly modeled using a logistic function (Gelman and Hill, 

2007; Carlin and Louis, 2009). However, the logistic function is symmetrical around its 

inflection point. Since the CO2 retention and incremental oil recovery curves show a 

different type of response, i.e., the slopes are steeper at the early part of the CO2 flood, it 

was necessary to fit these sigmoidal curves using a four-parameter log-logistic function. 

This function defines the response, y, at any value of x by an equation with four 

parameters: minimum response, maximum response, the natural log(inflection point), and 

the slope factor (Minitab Statistical Software, 2014): 

 

y = A + (B – A) / {1 + exp[D × ln(x / C)]},      (4-8) 

  

Where: 

y = CO2 retention (%) or incremental oil recovery (%OOIP); 

x = total cumulative volume of CO2 + H2O injected (%HCPV); 

ln = natural log to the base e (approximately equal to 2.71828); 



     125

 A = fitted model parameter equal to the lower asymptote at infinite CO2 + 

H2O injected (for CO2 retention) or the upper asymptote at infinite CO2 + 

H2O injected (for incremental oil recovery); 

 B = fixed (constant) model parameter equal to the upper asymptote of 100% 

(for CO2 retention) or the lower asymptote of 0% (for incremental oil 

recovery); 

 C = fitted model parameter equal to the inflection point in the sigmoidal 

shape where the curve changes from concave to convex (for CO2 

retention) or from convex to concave (for incremental oil recovery); and 

 D = fitted model parameter for the slope factor of the curve between the 

upper and lower asymptotes. 

 

Figure 4-2. Scatterplots of x = cumulative total CO2 + H2O injected and y = CO2 retention for each of 

the 31 CO2 EOR sites included in the Industry Data Set. The red horizontal line across each panel 

represents 50% CO2 retention. 

100
75
50
25
0

100
75
50
25
0

100
75
50
25
0

100
75
50
25
0

100
75
50
25
0

3002001000 3002001000 3002001000 3002001000 3002001000

3002001000

100
75
50
25
0

Site_A Site_B Site_C Site_D Site_E Site_F

50

Site_G Site_H Site_I Site_J Site_K Site_L

50

Site_M Site_N Site_O Site_P Site_Q Site_R

50

Site_S Site_T Site_U Site_V Site_W Site_X

50

Site_Y Site_Z Site_ZA Site_ZB Site_ZC Site_ZD

50

Site_ZE

50

Total CO2 + H2O Injected (% HCPV)

C
O

2
R

e
te

n
ti

o
n

 (
%

)



     126

 

Figure 4-3. Scatterplots of x = cumulative total CO2 + H2O injected and y = incremental oil recovery 

for each of the 31 CO2 EOR sites included in the Industry Data Set. The red horizontal line across 

each panel represents 10% OOIP. 

 

As for the net CO2 utilization versus CO2 + H2O injected curves, they all 

exhibited an asymptotic shape, with high values at low injection volumes and rapid 

decline to an asymptotic value of approximately 10 Mscf/STB (Fig. 4-4). Several 

different asymptotic model forms were explored, and ultimately these curves were fit 

using a two-parameter asymptotic model of the form: 

 

ln(y) = A + (B/x),          (4-9) 

  

Where: 

 ln(y) = natural log of CO2 net utilization (Mscf/STB); 
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 x = total cumulative volume of CO2 + H2O injected (%HCPV); 

 A = fitted model parameter equal to the lower asymptote at infinite CO2 + 

H2O injected; and 

 B = fitted model parameter related to the slope of the curve from the 

maximum value to the asymptote. 

  

Other model forms were evaluated for extrapolation to 300% HCPV, such as the 

exponential, harmonic, power, and hyperbolic forms, which are commonly used in 

decline-curve analysis (e.g., Arps, 1994; Guo et al., 2007; Poston and Poe, 2008). 

However, these decline-curve models are used to extend trends into the future, and are 

insufficient for modeling the entire shape of the sigmoidal curve. This study was 

interested in not only extrapolating the data record to 300% HCPV, but also in fitting a 

function to the entire data record to allow inference about the overall shape of the curve 

and how that shape might relate to reservoir conditions and CO2 flood design. 
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Figure 4-4. Scatterplots of x = cumulative total CO2 + H2O injected and y = net CO2 utilization factor 

for 16 of the 31 CO2 EOR sites included in the Industry Data Set. The red horizontal line across each 

panel represents 10 Mscf/STB. Note: y-axis is presented on a log-scale. 
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represent better models for the goals of this study. Approximately 87% of the sites in the 

Industry Data Set have observed data through 100% HCPV; 60% of the sites have 

observed data through 200% HCPV; and less than 30% of the sites have observed data 

through 300% HCPV. Thus a target area for prediction in our work is the region between 

200% and 300% HCPV. The reason for selecting a single model was so that the fitted 

parameters could be assessed across all sites. Using this logic, the four-parameter log-

logistic model was determined to provide the best fit for CO2 retention and incremental 

oil recovery, while the asymptotic model was determined to provide the best fit for net 

CO2 utilization. 

Parameters for each model were fit using the nonlinear regression module in 

Minitab® Statistical Software, Version 17 (Minitab Statistical Software, 2014). Initial 

starting values for each parameter were selected based on a graphical assessment and the 

geometric interpretation of each parameter (i.e., asymptotes, inflection point, and slope 

factor). The Gauss-Newton algorithm was then used to minimize the sum of squared 

errors (SSE). Step-by-step examples of fitting these curves for Site A are provided in 

Appendix C. Model fits were evaluated using a graphical assessment in addition to 

inspection of residuals and SSE. 

 

4.3 Results 

4.3.1 Patterns in CO2 Retention, Incremental Oil Recovery Factor, and Net CO2 

Utilization 

The 31 sites had similar CO2 retention patterns over time (Figure 4-2) and show 

that a larger proportion of the injected CO2 is retained in the reservoir (i.e., CO2 recycle 
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volumes are low) during the early years of a CO2 EOR project (at low %HCPV), until 

reaching a near-horizontal slope (i.e., asymptote) in later years (at high %HCPV). 

The incremental oil recovery factor trends were the inverse of CO2 retention; the 

31 sites showed low oil recovery at low %HCPV and an increased until reaching a stable, 

near-horizontal slope at higher %HCPV. These patterns show that during the early years 

of a CO2 EOR project, a larger proportion of the injected CO2 is retained in the reservoir 

with no commensurate increase in the incremental oil production, resulting in relatively 

low oil recovery factors (Figure 4-3). 

The 16 sites with corresponding data also showed similar net CO2 utilization 

factor patterns over time, with higher net CO2 utilization factors at low %HCPV and an 

exponential-type decline until reaching a stable, near-horizontal slope at higher %HCPV 

(Figure 4-4). These patterns show that during the early years of a CO2 EOR project (at 

low %HCPV), a larger proportion of the injected CO2 is retained in the reservoir while 

little oil is produced, resulting in significantly higher net CO2 utilization factors. At many 

of the sites, the CO2 utilization factor exceeded 1000 Mscf/STB in the first several years 

before converging toward a more stable asymptotic value near 10 Mscf/STB. 

 

4.3.2 Nonlinear Curve Fits of CO2 Retention 

The four-parameter log-logistic function was able to accurately describe the 

overall shape of the CO2 retention curve across the 31 sites. Representative fits for six of 

the 31 sites are shown in Figure 4-5. These sites reflect the variety of slopes, asymptotic 

values, and overall shapes observed in the data set and demonstrate the robustness of the 

four-parameter log-logistic function to accurately describe the patterns observed in the 
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data. The median RMSE value across the CO2 retention model fits from 50% to 300% 

HCPV for the 31 sites was 0.496, indicating a good overall model fit with average 

differences between observed and predicted values of about 0.5% CO2 retention. A list of 

the parameter estimates and standard errors for A, C and D for each of the 31 sites is 

compiled in Table 4-1 (parameter B is a constant at 100%). 

The lower asymptotic values (parameter A) across the 31 sites, which represent 

CO2 retention at infinite CO2 + H2O injected, ranged from 13.0% to 62.2%, with a 

median value of 47.7%. As noted in the introduction, uncertainty in CO2 retention reflects 

the various site-specific geologic and operational factors that contribute to incidental CO2 

storage over the lifetime of the CO2 flood. 

From a CO2 cost perspective, the ideal site would have low CO2 retention and 

more rapidly transition from high to low CO2 retention such that the CO2 utilization 

would be less intensive over the lifetime of the CO2 flood (i.e., less CO2 would be 

required to produce an incremental barrel of oil). In terms of Equation 4-8, this would 

translate into a low parameter A value (low CO2 retention), low parameter C value (early 

inflection point in the CO2 flood), and high parameter D value (steep slope). 
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Figure 4-5. Fits of CO2 retention four-parameter log-logistic functions to six representative sites from 

the Industry Data Set. Blue circles represent observed data and the red line represents the fitted 

response from the four-parameter log-logistic model, Equation 4-8. 
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Table 4-1. Fitted parameters A, C, and D and their standard errors for the four-parameter log-

logistic model used to fit CO2 retention. The column showing the maximum value for %HCPV is the 

length of the measured data record from the Industry Data Set. Parameter B was constant in the 

four-parameter log-logistic model (100 for CO2 retention) and is therefore not shown in the table. 

Cells with an “---” indicate that insufficient data were available to calculate estimates. 

  x = CO2 + H2O Injected y = CO2 Retention 

  (%HCPVI) (%) 

Site Letter Code Maximum Value A std. error C std. error D std. error 

Site_A 245.8 62.21 0.06 42.57 0.14 2.32 0.02 

Site_B 280.6 40.00 0.08 79.31 0.16 1.96 0.01 

Site_C 147.8 61.65 0.08 30.80 0.12 2.17 0.02 

Site_D 449.9 47.69 0.08 97.08 0.26 1.83 0.01 

Site_E 242.1 59.06 0.10 67.67 0.23 2.18 0.01 

Site_F 301.8 44.92 0.16 80.87 0.26 2.27 0.02 

Site_G 148.3 25.01 0.47 34.11 0.37 1.65 0.03 

Site_H 151.7 57.96 0.16 46.53 0.23 2.17 0.02 

Site_I 478.1 26.88 0.07 48.64 0.15 1.86 0.01 

Site_J 70.4 56.72 0.51 21.60 0.47 1.45 0.03 

Site_K 649.8 38.99 0.10 46.90 0.26 1.30 0.01 

Site_L 121.9 61.59 0.11 31.08 0.12 2.22 0.02 

Site_M 94.9 26.41 0.26 39.21 0.15 2.48 0.02 

Site_N 148.2 47.94 0.24 47.58 0.27 2.65 0.03 

Site_O 92.2 57.13 0.15 12.02 0.09 1.21 0.01 

Site_P 122.0 56.54 0.10 43.18 0.11 2.56 0.02 

Site_Q 198.8 56.09 0.16 74.63 0.18 2.19 0.02 

Site_R 378.0 57.56 0.07 66.29 0.21 2.08 0.01 

Site_S 310.7 60.61 0.07 37.26 0.29 1.82 0.02 

Site_T 238.1 38.16 0.11 26.35 0.20 2.04 0.03 

Site_U 208.6 31.72 0.31 81.16 0.48 1.89 0.02 

Site_V 253.6 15.30 0.09 85.34 0.10 3.12 0.01 

Site_W 277.5 38.69 0.20 45.66 0.63 1.91 0.03 

Site_X 434.7 50.59 0.06 73.00 0.18 2.11 0.01 

Site_Y 188.3 12.96 0.85 25.79 0.55 1.31 0.04 

Site_Z 446.5 50.30 0.20 32.19 0.40 1.25 0.02 

Site_ZA 83.1 17.71 0.35 24.70 0.23 1.15 0.01 

Site_ZB 341.1 13.14 1.56 151.03 5.55 1.07 0.02 

Site_ZC 276.7 21.99 0.56 116.21 1.61 1.21 0.01 

Site_ZD 281.0 40.62 1.07 73.75 2.19 1.58 0.06 

Site_ZE 158.3 53.79 0.29 55.96 0.47 1.90 0.02 

minimum = 70.4 12.96 0.06 12.02 0.09 1.07 0.01 

median = 242.1 47.69 0.16 46.90 0.23 1.91 0.02 

mean = 252.3 42.90 0.28 56.08 0.54 1.90 0.02 

std. deviation = 136.4 16.11 0.33 30.42 1.03 0.50 0.01 

maximum = 649.8 62.21 1.56 151.03 5.55 3.12 0.06 
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4.3.3 Nonlinear Curve Fits of Incremental Oil Recovery 

The four-parameter log-logistic function was also able to accurately describe the 

overall shape of the incremental oil recovery curve across the 31 sites. Representative fits 

for six of the 31 sites are shown in Figure 4-6. These sites reflect the variety of slopes, 

asymptotic values, and overall shapes observed in the data set, and demonstrate the 

robustness of the four-parameter log-logistic function to accurately describe the data. The 

median RMSE value across the incremental oil recovery model fits from 50% to 300% 

HCPV for the 31 sites was 0.075, indicating a good overall model fit with average 

differences between observed and predicted values of less than 0.1% OOIP. A list of the 

parameter estimates for A, C and D for each of the 31 sites is compiled in Table 4-2 

(parameter B is a constant at 0% OOIP). 

The upper asymptotic values (parameter A) across the 31 sites, which represent 

incremental oil recovery at infinite CO2 + H2O injected, ranged from 4.8% to 26.1%, with 

a median value of 13.5%. Analogous to CO2 retention, the uncertainty in incremental oil 

recovery reflects the various site-specific geologic and operational factors. 

From an oil production perspective, the ideal site would have a high incremental 

oil recovery and would more rapidly transition from low to high recovery such that the 

oil production would be more rapidly achieved in the early phases of the CO2 flood. In 

terms of Equation 4-8, this would translate to a high parameter A value (high incremental 

oil recovery), low parameter C value (early inflection point in the CO2 flood), and high 

parameter D value (steep slope). 
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Figure 4-6. Fits of incremental oil recovery four-parameter log-logistic functions to six representative 

sites from the Industry Data Set. Blue circles represent observed data and the red line represents the 

fitted response from the four-parameter log-logistic model, Equation 4-8. 
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Table 4-2. Fitted parameters A, C, and D and their standard errors for the four-parameter log-

logistic model used to fit incremental oil recovery. The column showing the maximum value 

for %HCPV is the length of the measured data record from the Industry Data Set. Parameter B was 

constant in the four-parameter log-logistic model (0 for incremental oil recovery) and is therefore not 

shown in the table. Cells with an “---” indicate that insufficient data were available to calculate 

estimates. 

  x = CO2 + H2O Injected y = Incremental Oil Recovery Factor 

  (%HCPVI) (%OOIP) 

Site Letter Code Maximum Value A std. error C std. error D std. error 

Site_A 245.8 12.29 0.01 108.37 0.08 2.81 0.00 

Site_B 280.6 19.11 0.03 106.85 0.17 2.34 0.01 

Site_C 147.8 12.38 0.01 77.38 0.06 2.98 0.00 

Site_D 449.9 20.08 0.02 132.69 0.21 2.46 0.01 

Site_E 242.1 13.76 0.06 114.57 0.57 2.05 0.01 

Site_F 301.8 11.28 0.03 92.52 0.27 2.29 0.01 

Site_G 148.3 9.27 0.09 83.12 0.89 2.02 0.02 

Site_H 151.7 13.48 0.02 61.98 0.08 2.82 0.01 

Site_I 478.1 6.95 0.01 89.46 0.35 1.53 0.01 

Site_J 70.4 24.89 1.23 78.12 2.55 2.67 0.05 

Site_K 649.8 5.70 0.01 92.71 0.23 1.68 0.01 

Site_L 121.9 12.01 0.02 74.13 0.08 3.05 0.00 

Site_M 94.9 5.16 0.01 17.76 0.08 2.08 0.02 

Site_N 148.2 11.24 0.03 52.54 0.16 3.12 0.03 

Site_O 92.2 6.73 0.01 27.81 0.06 2.76 0.01 

Site_P 122.0 4.76 0.08 101.78 1.60 2.25 0.02 

Site_Q 198.8 13.89 0.05 92.06 0.31 2.65 0.02 

Site_R 378.0 16.99 0.07 114.41 0.78 1.63 0.01 

Site_S 310.7 16.71 0.05 127.88 0.38 2.54 0.01 

Site_T 238.1 6.45 0.01 103.48 0.16 2.16 0.00 

Site_U 208.6 9.81 0.02 89.86 0.28 1.87 0.01 

Site_V 253.6 10.07 0.00 64.34 0.04 3.47 0.01 

Site_W 277.5 15.30 0.03 104.35 0.25 2.10 0.01 

Site_X 434.7 13.10 0.01 118.16 0.14 2.27 0.01 

Site_Y 188.3 13.54 0.02 45.85 0.11 3.14 0.02 

Site_Z 446.5 15.95 0.02 68.77 0.19 1.94 0.01 

Site_ZA 83.1 25.34 0.54 71.02 2.21 1.42 0.02 

Site_ZB 341.1 26.14 0.16 108.05 0.92 1.95 0.02 

Site_ZC 276.7 18.54 0.06 146.21 0.56 2.07 0.01 

Site_ZD 281.0 16.16 0.06 86.20 0.38 2.38 0.02 

Site_ZE 158.3 13.79 0.05 72.96 0.23 3.09 0.02 

minimum = 70.4 4.76 0.00 17.76 0.04 1.42 0.00 

median = 242.1 13.48 0.03 89.86 0.23 2.29 0.01 

mean = 252.3 13.58 0.09 87.92 0.46 2.37 0.01 

std. deviation = 136.4 5.69 0.23 29.08 0.61 0.52 0.01 

maximum = 649.8 26.14 1.23 146.21 2.55 3.47 0.05 
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4.3.4 Nonlinear Curve Fits of Net CO2 Utilization 

As previously mentioned, net CO2 utilization could only be calculated for 16 of 

the 31 sites because the Boi, BCO2, or N values needed to convert from dimensionless 

variables to volumetric units were not available for all 31 sites. For the 16 sites for which 

we could accurately express both the cumulative volume of purchased CO2 injected and 

the cumulative incremental oil production, the two-parameter asymptotic function was 

able to accurately describe the overall shape of the net CO2 utilization curves. Unlike 

CO2 retention and incremental oil recovery, which had very low residuals across the 

entire data record for nearly all 31 sites, the net CO2 utilization residuals were slightly 

higher. This was particularly true near the focus of the hyperbolic shape where the steep, 

near-vertical decline in net CO2 utilization transitions to the asymptote. However, despite 

this phenomenon, the two-parameter asymptotic function was able to accurately describe 

the overall shape of the net CO2 utilization curve and had small residuals at higher 

%HCPV. Representative fits for six of the 16 sites are shown in Figure 4-7. The median 

RMSE value across the net CO2 utilization model fits from 50% to 300% HCPV for the 

16 sites was 0.593, indicating a good overall model fit with average differences between 

observed and predicted values of about 0.6 Mscf/STB. A list of the parameter estimates 

for A and B for each of the 16 sites is compiled in Table 4-3. Analogous to CO2 retention 

and incremental oil recovery, the uncertainty in net CO2 utilization reflects the various 

site-specific geologic and operational factors. 

From a profitability perspective, the ideal site would have a steep slope, reflecting 

a rapid transition from high to low net CO2 utilization, and asymptote to a low net CO2 

utilization. This combination of observations would yield a more rapid decline in the 
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amount of CO2 required to produce a barrel of oil over the lifetime of the CO2 flood. In 

terms of Equation 4-9, this translates to a low parameter A value (low net CO2 utilization 

asymptote) and a high parameter B value (steep slope). 

The lower asymptote (exponentiation of parameter A) represents net CO2 

utilization at infinite (CO2 + H2O) injected. However, it should be noted that it is not 

correct to interpret an infinitely asymptotic behavior to net CO2 utilization, as the true 

model form may be slightly curvilinear at higher %HCPV. Stated differently, net CO2 

utilization may increase beyond 300% HCPV and therefore may not be a true asymptote. 

The residuals within the modeled region used in this study (between 50% to 300% 

HCPVI) were generally less than 0.2 Mscf/STB, and therefore, the model form was 

appropriate for this intended use. However, interpretations should not be extended to 

outside this region of injection. 
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Figure 4-7. Fits of net CO2 utilization two-parameter asymptotic functions to six representative sites 

from the Industry Data Set. Blue circles represent observed data and the red line represents the 

fitted response from the two-parameter asymptotic model, Equation 4-9. 
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Table 4-3. Fitted parameters A and B and their standard errors for the two-parameter asymptotic 

function used to model net CO2 utilization. The column showing the maximum value for %HCPV is 

the length of the measured data record from the Industry Data Set. Cells with an “---” indicate that 

insufficient data were available to calculate estimates. 

  x = CO2 + H2O Injected y = Net CO2 Utilization 

  (%HCPVI) (Mscf/STB) 

Site Letter Code Maximum Value A std. error B std. error 

Site_A 245.8 1.92 0.01 90.48 0.61 

Site_B 280.6 2.10 0.01 24.58 0.34 

Site_C 147.8 1.93 0.01 62.65 0.39 

Site_D 449.9 1.87 0.01 88.07 1.37 

Site_E 242.1 2.37 0.02 43.11 1.38 

Site_F 301.8 2.20 0.01 19.00 0.21 

Site_G 148.3 0.65 0.01 77.87 0.42 

Site_H 151.7 1.61 0.01 48.09 0.34 

Site_I 478.1 1.70 0.00 41.93 0.23 

Site_J 70.4 2.18 0.01 28.06 0.32 

Site_K 649.8 2.17 0.00 16.48 0.08 

Site_L 121.9 1.94 0.01 61.22 0.21 

Site_M 94.9 2.13 0.00 5.14 0.03 

Site_N 148.2 2.10 0.01 27.79 0.29 

Site_O 92.2 --- --- --- --- 

Site_P 122.0 --- --- --- --- 

Site_Q 198.8 --- --- --- --- 

Site_R 378.0 1.81 0.00 9.75 0.16 

Site_S 310.7 --- --- --- --- 

Site_T 238.1 --- --- --- --- 

Site_U 208.6 --- --- --- --- 

Site_V 253.6 --- --- --- --- 

Site_W 277.5 1.70 0.01 62.65 1.33 

Site_X 434.7 --- --- --- --- 

Site_Y 188.3 --- --- --- --- 

Site_Z 446.5 --- --- --- --- 

Site_ZA 83.1 --- --- --- --- 

Site_ZB 341.1 --- --- --- --- 

Site_ZC 276.7 --- --- --- --- 

Site_ZD 281.0 --- --- --- --- 

Site_ZE 158.3 --- --- --- --- 

minimum = 70.4 0.65 0.00 5.14 0.03 

median = 242.1 1.93 0.01 42.52 0.33 

mean = 252.3 1.90 0.01 44.18 0.48 

std. deviation = 136.4 0.40 0.01 27.35 0.46 

maximum = 649.8 2.37 0.02 90.48 1.38 
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4.3.5 Uncertainty Quantification – Percentile Estimates from 0% to 300% HCPVI 

The modeled responses from 0% to 300% HCPVI from each of the sites (31 sites 

for CO2 retention and incremental oil recovery and 16 sites for net CO2 utilization) were 

combined into a single data set to generate empirical percentile estimates across the sites. 

The model fits for CO2 retention, incremental oil recovery, and net CO2 utilization are 

shown in Figure 4-8. The 10th, 25th (first quartile), 50th (median), 75th (third quartile), 

and 90th percentile values (P10, P25, P50, P75, and P90, respectively) were used to describe 

the uncertainty in the response as a function of %HCPV. The P50 estimate is the central 

value of the distribution. The P25 to P75 is the interquartile range (IQR) and the central 50 

percent of the data would be found within this interval (dark gray shaded regions in 

Figure 4-8). Lastly, the P10 to P90 is the range within which 80 percent of the data would 

be found (light gray shaded regions in Figure 4-8). 

The minimum, maximum, average, standard deviation, and percentile estimates 

are summarized in Table 4-4. The P10, P50, and P90 estimates at 300% HCPV for the three 

responses modeled in this work were: CO2 retention – 23.1%, 48.3%, and 61.8%; 

incremental oil recovery – 5.3%, 12.2%, and 21.5% OOIP; and net CO2 utilization – 4.8, 

8.7, and 10.5 Mscf/STB. 
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Figure 4-8. Percentile estimates generated from multi-site nonlinear regression fits for CO2 retention 

(top), incremental oil recovery (middle), and net CO2 utilization (bottom). The light gray shaded 

regions bounded by dashed lines represent the 10th to 90th percentiles; the dark gray shaded regions 

bounded by dotted lines represent the 25th to 75th percentiles (interquartile range); and the P50 

estimate (solid black line) represents the central value of the distribution. 
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Table 4-4. Multi-site empirical percentile estimates for CO2 retention, incremental oil recovery 

factor, and net CO2 utilization as a function of total CO2 + H2O injected (50%, 100%, 150%, 200%, 

250%, and 300% HCPV). The modeled responses from each of the sites (31 sites for CO2 retention 

and incremental oil recovery and 16 sites for net CO2 utilization) were combined into a single data set 

to generate empirical percentile estimates across the sites. 

x = CO2 + H2O Injected 

y = CO2 Retention 

% 

(%HCPV) Min P10 P25 Average Std Dev P50 P75 P90 Max 

50 38.8 51.1 66.6 72.3 13.3 75.1 82.7 86.5 88.0 

100 25.6 33.6 53.3 57.7 12.8 63.3 66.0 71.0 73.1 

150 20.9 28.0 45.6 51.8 13.2 56.6 62.7 64.1 65.2 

200 18.6 25.1 42.1 48.9 13.5 51.2 59.7 62.4 63.2 

250 17.2 23.9 39.0 47.4 13.8 48.9 59.0 61.9 62.8 

300 16.4 23.1 38.6 46.4 14.0 48.3 58.1 61.8 62.6 

x = CO2 + H2O Injected 

y = Incremental Oil Recovery Factor 

(%OOIP) 

(%HCPV) Min P10 P25 Average Std Dev P50 P75 P90 Max 

50 0.8 1.3 1.8 3.3 2.0 2.7 4.7 5.8 9.6 

100 3.2 5.5 7.7 3.4 7.3 9.9 12.4 16.4   

150 3.4 4.5 7.1 10.2 4.1 10.3 12.4 16.3 21.2 

200 3.9 5.1 8.0 11.4 4.6 11.7 13.4 19.2 23.0 

250 4.2 5.2 8.6 12.1 4.9 12.0 14.1 20.7 23.8 

300 4.4 5.3 8.9 12.5 5.1 12.2 15.1 21.5 24.2 

x = CO2 + H2O Injected 

y = Net CO2 Utilization 

(Mscf/STB) 

(%HCPV) Min P10 P25 Average Std Dev P50 P75 P90 Max 

50 7.4 8.6 12.3 18.2 10.0 13.8 23.9 39.1 41.7 

100 4.2 6.0 8.4 11.0 3.5 10.6 12.8 16.6 16.9 

150 3.2 5.5 7.5 9.4 2.6 9.8 10.6 13.0 14.3 

200 2.8 5.3 6.9 8.7 2.4 9.4 10.1 11.5 13.3 

250 2.6 5.0 6.6 8.4 2.3 8.9 9.6 10.8 12.7 

300 2.5 4.8 6.4 8.1 2.2 8.7 9.2 10.5 12.4 

 

4.4 Discussion 

4.4.1 Comparison to Other Published Studies 

The results of this work at 300% HCPV compare well with other published 

studies that projected end-of-project estimates. For example, the patterns shown by 

Hadlow (1992) for simulation studies of incremental oil recovery as a function of time 
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and different CO2 injection methods (continuous CO2; 1:1 conventional WAG; 1:1 hybrid 

WAG) demonstrate the sigmoidal shape used in the modeling work in this study. In 

addition, Hadlow (1992) also described the estimated end-of-project net CO2 utilization 

for five major CO2 EOR projects (Denver, Means, Rangely, Seminole, and E. Vaccuum). 

The ranges in net CO2 utilization were 6 to 11 Mscf/STB. These ranges agree well with 

the percentile estimates developed in the current work, which ranged from a P10 value of 

4.8 Mscf/STB to a P90 value of 10.5 Mscf/STB across the 16 sites for which net CO2 

utilization values could be calculated. 

Merchant (2010) evaluated oil recovery for WAG floods beyond 80% HCPV 

using numerical models. Data from that work, which included several of the sites that 

were also part of the Industry Data Set of this work, suggest tertiary oil recovery beyond 

80% HCPV in the range of 5% to 25% OOIP, depending on the specific reservoir 

formation, field, or lease. These ranges agree well with the percentile estimates 

developed in the current work, which ranged from a P10 value of 5.3% to a P90 value of 

21.5% across the 31 sites. Similar results were also observed for net CO2 utilization. The 

ranges for net CO2 utilization reported by Merchant (2010) were approximately 1 to 10 

Mscf/STB, again dependent upon the specific reservoir formation, field, or lease, as 

compared to the P10 and P90 estimates developed in the current work, as noted above. 

Thus the model predictions of Merchant (2010) are verified by the observations of this 

study, which are based on empirical data from actual field results. 

Lastly, Zhou et al. (2012) discuss incremental oil recovery in the range from 8% 

to 25% OOIP for Permian Basin CO2 WAG injection, which agrees well with the 

percentile estimates developed in the current work. In addition, Zhou et al. (2012) 
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estimated the net CO2 utilization at continuous injection and WAGs with different WAG 

ratios. For continuous CO2 injection up to WAG ratios of 4:1, predicted net CO2 

utilization ranged from 13 to 5 Mscf/STB, respectively. These ranges also agree well 

with the P10 and P90 values discussed in this current work. 

 

4.4.2 Predictions of CO2 Storage 

The nonlinear curve fits and percentile estimates are focused on statistical 

inference – i.e., what is the likely outcome, and uncertainty ranges, for CO2 retention, 

incremental oil recovery, and net CO2 utilization given the historical data from 31 CO2 

EOR sites? However, the approach described in this work also provides useful 

information for prediction – i.e., given a set of inputs from another site with similar 

geology and operational factors, what are plausible ranges in outcomes? Generic 

predictions of CO2 storage are possible using the results from this work. The volume of 

CO2 stored is a function of OOIP, incremental oil recovery factor, and net CO2 utilization 

factor, is shown below in Equation 4-10. Generic predictions. 

 

CO2 stored [Mscf] = (OOIP × RF) × UFCO2,net,     (4-10) 

  

Where: 

OOIP  = original oil in place (STB); 

RF  = incremental oil recovery factor (%); and 

UFCO2,net = net CO2 utilization factor (Mscf/STB). 
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For example, assuming an OOIP of 500 million bbl, a point estimate of the volume of 

CO2 stored using the median value for incremental oil recovery factor and UFCO2,netnet at 

300% HCPV from Table 4-2 is: 

 

CO2 stored [Mscf] = (500,000,000 bbl × 0.122) × 8.7 Mscf/STB 

= 530,700,000 Mscf 

= 27.6 Mt  

 

The conversion from Mscf to tonnes assumes 1 tonne of CO2 per 19.25 Mscf at standard 

conditions of 101.4 kPa (14.7 psi) and 21.1 degrees Celsius (70 degrees Fahrenheit) 

(DOE, 2010b). 

For generic screening, however, it is recognized that the incremental oil recovery 

factor and UFCO2,netnet at each %HCPV are both uncertain quantities, with summary 

statistics from the Industry Data Set provided in Table 4-2. Therefore, estimates of these 

factors which better quantify the inherent uncertainty can be achieved through Monte 

Carlo simulation that takes into account this uncertainty. For example, using the same 

OOIP as above but accounting for the uncertainty in the estimates for incremental oil 

recovery factor and UFCO2,netnet at 300% HCPV, Monte Carlo simulation produces an 

interval estimate for the amount of CO2 stored of 13.1, 25.3, and 42.4 Mt for the P10, P50, 

and P90, respectively. A histogram of CO2 stored using this Monte Carlo simulation 

approach is shown in Figure 4-9. While this generic screening approach is rapid and 

straightforward to implement, the uncertainty in the inputs produces uncertainty in the 

estimates of CO2 stored. This generic screening approach would be suitable for broad 
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regional assessments, and could perhaps provide useful information to make site-specific 

decisions about incremental oil recovery and associated CO2 storage. 

 

Figure 4-9. Monte Carlo simulation results of the volume of CO2 stored as a function of OOIP, 

incremental oil recovery factor, and net CO2 utilization factor using Equation 4-10 and an OOIP of 

500,000,000 bbl. The y-axis shows the frequency out of 10,000 simulations. The red vertical lines at 

13.1 and 42.4 Mt show the P10 and P90 estimates, respectively. The blue vertical line at 25.3 shows the 

P50 (median). 

 

4.4.3 CO2 Retention versus CO2 Storage 

It is important to emphasize that Equation 4-4 quantifies CO2 retention, not CO2 

storage, as the latter requires knowledge of purchased CO2 volumes. For example, the 

formula for calculating CO2 storage would be as follows (Equation 4-11) (Melzer, 2012): 
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Where: 

CO2 storage = percentage of purchased CO2 stored (%); 

total CO2 injected = total injected volumes of CO2 [purchased plus 

recycled CO2]; 

CO2 produced = total produced volumes of CO2 [recycled CO2]; 

CO2 losses = CO2 losses from the injector/producer system; and 

purchased CO2 injected = purchased CO2 volumes. 

 

Purchased CO2 volumes are protected by confidentiality agreements between the 

buyers and sellers of CO2, and were not available as part of the Industry Data Set. As a 

result of the protected nature of these data, there is widespread use of the non-

confidential quantity of total injected CO2 volumes (which includes the recycled CO2 

volumes), and hence the use of Equation 4-4 rather than Equation 4-11 (Melzer, 2012). 

CO2 losses from the injector/producer system can occur during an EOR project. 

For example, power outages or equipment repair can cause periods where CO2 (and other 

gaseous substances) must be released to the atmosphere during the flaring of the gas. This 

is an example of surface CO2 losses. In addition, lateral migration within the target 

injection zone and the inability to assure perfect lateral containment within the flooded 

area can also lead to  CO2 losses in the reservoir, i.e., CO2 migrates outside of the 

producer wells and is therefore not captured in the recycling loop but remains in the 

subsurface (Melzer, 2012). These down-hole losses do not represent a loss of CO2 

storage; the CO2 is still retained in the subsurface, but it is not captured in the recycle 
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loop. These surface and down-hole losses would be subtracted from the numerator of 

Equation 4-11, as they represent a component of the CO2 stream that leaves the 

injection/production system and is not recycled. CO2 losses (either surface or down-hole 

[i.e., in the reservoir]) were not quantified in the Industry Data Set; however, industry 

experience suggests that total CO2 losses from these are de minimus (<5%), with half 

allocated to surface losses and half allocated to down-hole losses (which do not 

contribute to a loss of storage) (Fox, 2009; DOE, 2010a; Melzer, 2012). This leads to 

CO2 storage values greater than 95%. 

As a result of the inability to quantify purchased CO2 volumes and CO2 losses 

from the Industry Data Set, this paper defines CO2 retention as presented in Equation 4-4, 

recognizing that the computed value represents the fraction of total CO2 injected that is 

retained in the subsurface (i.e., not recycled), and that this quantity is not directly 

comparable to the percentage of stored CO2 volumes as a fraction of the purchased CO2 

volumes. For example, the median CO2 retention value of 48.5% determined as part of 

this work (i.e., the P50 value) does not imply that the remaining 51.5% of the CO2 was 

emitted to the atmosphere – the recycled CO2 is captured for use at another CO2 EOR 

site. The scarcity and cost of the CO2 drives the operator to recapture and conserve as 

much of the CO2 as possible. The stored volumes of CO2 in the reservoir are the 

purchased volumes of CO2 minus negligible losses (Hill et al., 2013). Using this basis, 

life-cycle assessments have shown that more than 97% of purchased CO2 volumes are 

retained in the subsurface (Fox, 2009). Thus, losses of purchased CO2 to the atmosphere 

are on the order of a few percent. 
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4.5 Conclusions 

CO2 flooding is a proven method for extending oilfield life through EOR. Until 

recently, most of the CO2 used for these operations was from natural geologic sources; 

however, with concerns over human-induced climate change, a lack of CO2 supply for 

EOR, and hundreds of fields that are amenable to EOR, several anthropogenic CO2 

sources are now supplying EOR operations of the industry and resulting in the storage of 

CO2 that would otherwise be emitted to the atmosphere. This work provides a statistical 

analysis of an historical industry data set, which allows modeled responses to be 

compared against real-world, observed injection and production data. The results of this 

study provide quantitative ranges for the potential EOR market for CO2 as well as the 

potential incremental oil recovery from, and storage of CO2 in, these oil fields. This work 

showed that a four-parameter log-logistic function was able to accurately describe the 

overall shape of the CO2 retention and incremental oil recovery curves across the 31 sites, 

and that a two-parameter simple asymptotic function was able to accurately describe the 

overall shape of the net CO2 utilization curves across the 16 sites for which net CO2 

utilization values could be calculated. These functions provide a practical approach for 

operators to summarize key performance metrics of their CO2 EOR field data and 

forecast the performance into the future. In addition, these functions also provide useful 

screening tools for broad regional assessments of the CO2 storage resource associated 

with candidate CO2 EOR fields. The results of this work allow estimation of CO2 storage 

capacity in CO2 EOR operations with various degrees of confidence. Additional 

investigation into the geologic and operational factors that control the parameters of the 

four-parameter log-logistic or two-parameter asymptotic functions may help to refine 



     151

these screening tools and their estimates of associated CO2 storage. The results of this 

work provide useful statistical information to estimate CO2 storage in CO2 EOR 

operations. 
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Chapter 5: Conclusions and Future Research Directions 
 

5.1 Conclusions 

The following conclusions were developed in three separate papers which were 

presented in Chapters 2, 3 and 4, and are summarized below in Sections 5.1.1, 5.1.2, and 

5.1.3, respectively. These conclusions address each of the three specific research 

objectives that were discussed in Chapter 1. 

5.1.1 Chapter 2: Effectiveness of subsurface pressure monitoring for brine leakage 

detection in an uncertain CO2 sequestration system 

The first objective (Objective 1) of this dissertation was to estimate the statistical 

power of a pressure monitoring system to detect leakage of brine through the cap rock as 

a function of (1) spatial orientation of the pressure monitoring (i.e., the lateral distance 

from the injection wells and vertical orientation within the reservoir); (2) time (i.e., years 

since CO2 injection); and (3) the specified leakage rate of brine through the cap rock. 

The work in Chapter 2 highlights the importance of uncertainty in the design of a 

reliable pressure monitoring network for geologic CO2 storage sites. The results suggest 

that measurements of the absolute change in pressure within the target injection aquifer 

would not be able to distinguish small leakage rates from baseline conditions, and that 

only large leakage rates would be discriminated with sufficient statistical power. 

Combining measurements, for example by taking the ratio of formation pressure in the 

aquifer above the cap rock to the target injection aquifer, provides better statistical power 

for distinguishing smaller leakage rates at earlier times in the injection program. Thus an 

optimized monitoring system which integrates multiple measurements could provide 

improved leakage detection sensitivity. 
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In addition, the work in Chapter 2 shows that detection sensitivity for pressure is a 

function of lateral distance from the injection wells, vertical position within the system, 

and time, or ~f(x, z, t). Therefore, design of an adequate monitoring network for 

subsurface pressure should account for this time-space variability to ensure that the 

monitoring system performs to the necessary design criteria. There is unlikely to be a 

“one-size fits all” monitoring program for geologic CO2 storage sites. However, a critical 

insight from the work in Chapter 2 is that the final monitoring program must be adaptive 

and dynamic, changing over the project life-cycle to adjust to changing subsurface 

conditions in response to CO2 injection. 

5.1.2 Chapter 3: Quantifying the benefit of wellbore leakage potential estimates for 

prioritizing long-term MVA well sampling at a CO2 storage site 

The second objective (Objective 2) of this dissertation was to estimate the 

statistical power of selecting one or more leaky wells from among a population of legacy 

wells as a function of (1) the number of leaking wells within the Area of Review; (2) the 

sampling design (random or judgmental); (3) the number of wells included in the 

monitoring sampling plan; and (4) the relationship between a well’s leakage potential 

score and its relative probability of leakage. 

The work in Chapter 3 demonstrates that accurate prior knowledge about the 

probability of well leakage adds measurable value to the ability to detect a leaking well 

during the monitoring program, and that the loss in detection ability due to imperfect 

knowledge of the leakage probability can be quantified. Statistical power curves 

quantifying the probability that a leaky well was selected were developed as a function of 

(1) the number of leaking wells within the Area of Review; (2) the sampling design 
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(random or judgmental, choosing first the wells with the highest deep leakage potential 

scores); (3) the number of wells included in the monitoring sampling plan; and (4) the 

relationship between a well’s leakage potential score and its relative probability of 

leakage. Cases where the deep well leakage potential scores are fully or partially 

informative of the relative leakage probability are compared to a non-informative base 

case in which leakage is equiprobable across all wells in the Area of Review. These 

statistical power curves underscore the value of well integrity surveys and estimates of 

deep well leakage potential to the well sampling design. 

5.1.3 Chapter 4: CO2 storage associated with CO2 enhanced oil recovery: A statistical 

analysis of historical operations 

The third objective (Objective 3) of this dissertation was to quantify the 

uncertainty associated with the CO2 retention, incremental oil recovery, and net CO2 

utilization for CO2 enhanced oil recovery (EOR) sites using historical reservoir 

performance data from 31 CO2 EOR projects located within the continental United States 

and heavily dominated by West Texas carbonate floods. 

The results of this study showed that across all 31 sites, the 10th, 50th (median), 

and 90th percentile values for the three factors at 300% hydrocarbon pore volume 

(HCPV) were: CO2 retention: 23.1%, 48.3%, and 61.8% retained; incremental oil 

recovery: 5.3%, 12.2%, and 21.5% OOIP (original oil in place); and net CO2 utilization: 

4.8, 8.7, and 10.5 Mscf/STB (stock-tank barrel). These results can be used to estimate the 

potential range of expected performance for similar candidate oil fields that are not 

currently undergoing CO2 injection, including estimates of the associated CO2 storage 

potential of these candidate fields. 
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5.2 New Contributions 

The focus of this dissertation is to contribute statistical methods and/or 

approaches for quantifying uncertainty with respect to both monitoring and performance 

at geologic CO2 storage sites. These methods are intended for future use by NRAP or 

other geologic CO2 storage practitioners and may be incorporated into broader modeling 

approaches. The results help to advance the risk assessment tools that are needed for safe, 

permanent geologic CO2 storage. However, the results and contributions from this work 

extend beyond geologic CO2 storage and apply to other subsurface engineered-natural 

systems. Several new contributions to the state-of-the-science were made in this 

dissertation, as summarized below. 

5.2.1 Integration of Analytical Model and First-Order Uncertainty Analysis to 

Answer Fundamental Questions 

The work in Chapter 2 provides an example of how to integrate an analytical 

model with first-order uncertainty analysis to answer fundamental questions about 

pressure monitoring. The NRAP technical approach for developing the risk assessment 

tools for geologic CO2 storage entails an iterative modeling approach that integrates 

component models into a system model which may then be used to provide quantitative 

assessments of potential risks and to design monitoring protocols. A key part of this 

“system modeling” approach is the integration of reduced-order models (ROMs) as 

simplified and efficient computational tools for reproducing predictions from the detailed 

3D numerical models over the range of conditions of interest (DOE, 2015). Subsurface 

pressure is a potentially useful monitoring tool because the pressure pulse from CO2 
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injection will cover a significantly broader portion of the system than the CO2 plume. The 

analytical ROM that was used in Chapter 2 (Lawrence Berkeley National Laboratory 

[LBNL] Model) is one available tool for rapidly estimating pressure buildup within a 

geologic storage system in response to CO2 injection. The approaches that were used in 

Chapter 2 illustrate how to adapt the LBNL Model, which is fundamentally a 

deterministic calculation tool, to account for uncertainty using first-order uncertainty 

analysis. Therefore, Chapter 2 provides one approach for integrating the LBNL Model (or 

similar analytical solutions) into broader system modeling efforts. 

5.2.2 Simulation Approach for Integrating Wellbore Leakage Risk and Monitoring 

The simulation approach in Chapter 3 allows an operator to combine well leakage 

risk estimates with different sampling designs to help select a sampling plan from among 

several alternatives. Legacy wells at geologic CO2 storage sites (or other types of 

subsurface storage sites) are potential preferential pathways for leakage. For monitoring 

these sites, a site-specific sampling plan would need to specify not only the 

measurements to be made at each well, but the specific wells at which the measurements 

would be conducted. A key research question is how to incorporate estimates of well 

leakage risk into a quantitative simulation approach that allows an operator to justify one 

sampling plan among several alternatives by using risk-based, data-driven decisions. The 

solution approach in Chapter 3 uses a stepwise procedure that was implemented using 

open-source (free) software; therefore, the process is reproducible and easily transferable 

to other modeling and simulation platforms. The probabilistic simulation incorporates 

sampling from the multivariate form of Wallenius’ non-central hypergeometric 

distribution, which is the first time that this discrete distribution has been applied to this 
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particular problem. The approach can accommodate any type of well leakage risk scoring 

system into the process – the operator need only assign a leakage probability score to 

each well. The simulation approach therefore provides a practical example of how a field 

operator might incorporate prior knowledge about the probability of well leakage into 

their sampling plan design and thus quantitatively evaluate different plans to satisfy the 

site-specific monitoring objectives. 

5.2.3 Novel Approach for Fitting CO2 EOR Performance Metrics 

The work in Chapter 4 employs a novel approach that incorporates nonlinear 

functions to describe the shape of the CO2 retention, incremental oil recovery, and net 

CO2 utilization responses with a handful of parameters. These three metrics are factors 

that significantly influence the long-term performance and economic viability of CO2 

EOR projects. This work showed that a four-parameter log-logistic function was able to 

accurately describe the overall shape of the CO2 retention and incremental oil recovery 

curves across the 31 sites, and that a two-parameter simple asymptotic function was able 

to accurately describe the overall shape of the net CO2 utilization curves across the 16 

sites for which net CO2 utilization values could be calculated. These functions provide a 

practical approach for operators to summarize key performance metrics of their CO2 EOR 

field data and forecast the performance into the future. In addition, these functions also 

provide useful screening tools for broad regional assessments of the CO2 storage resource 

associated with candidate CO2 EOR fields. Lastly, these analytical approaches lend 

themselves to Monte Carlo simulation and therefore rapid uncertainty quantification as 

compared to complex three-dimensional numerical simulation models. 
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5.3 Recommendations for Future Research 

Over the course of developing each paper, several challenges emerged and 

limitations in some of the tools and approaches were apparent. Based on these 

experiences, we suggest the following additional research areas which are worth 

investigating in the future. 

• CO2 injection simulators which allow multiple realizations. A deficit of the 

LBNL model that was used in Chapter 2 is the computational burden in post-

processing associated with the first-order uncertainty analysis (FOUA) process – 

the total simulation time was less than one minute per run; however, the 

subsequent data handling and statistical computations took hours per run. The 

FOUA process demonstrated in Chapter 2 required 10 nominal model runs and 

180 ±∆x model runs, for a total of 190 model runs to generate the first-order 

uncertainty assessment. Altogether, the labor-intensive process took tens of hours 

and was an inefficient procedure consisting of (1) modifying the input text file; 

(2) executing the FORTRAN model; (3) importing the output data into Excel; and 

(4) performing the matrix calculations needed to conduct the FOUA assessment. 

There is a need for CO2 injection simulation programs capable of running 

multiple realizations with user-defined sets of parameters analogous to those 

which are currently available within the LBNL model. Moreover, the FOUA 

process that was used in Chapter 2 assumes a local linear approximation for the 

model output to variations in the input parameters. A CO2 storage system may 

exhibit nonlinear behavior, in which case the FOUA estimates would be 

inadequate. Having a simulation program that is capable of running multiple 
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realizations would allow for a Monte Carlo analysis of uncertainty, which would 

be better-suited for estimating nonlinear behavior, and for providing estimates of 

the full probability distribution function for the model outputs (Ramaswami et al., 

2005). The CO2 injection simulation program should be user-friendly and capable 

of being run by individuals who are not necessarily “expert-level” programmers 

such that practitioners with diverse backgrounds beyond programming may 

evaluate different modeling scenarios and ask fundamental questions. 

• Improved programming for post-processing computations. Analogous to the 

computational intensity of the pressure monitoring work in Chapter 2, one deficit 

of the solution approach used in the wellbore leakage work in Chapter 3 is the 

calculations using logical statements for determining the probability of detecting 

one or more leaky wells. The solution approach compares a matrix of sampled 

wells to a matrix of leaky wells, and then uses logical statements (i.e., IF, OR, 

AND) to count “hits” and to generate the different performance metrics. The 

process that was used in the Chapter 3 work involved exporting files from R into 

Excel and then performing the computations. This process is time-consuming and 

potentially error-prone. Additional programming should be developed to 

seamlessly integrate the simulations of leaky wells in R using BiasedUrn, 

simulations of sampled wells using random or judgmental sampling, and the 

matrix comparisons. Improving this process would allow a practitioner to explore 

additional well leakage and well sampling scenarios without incurring the lengthy 

data handling and computational times associated with the current process. 
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• Coupling of geospatial data to wellbore leakage. The work in Chapter 3 uses a 

vector of well leakage potential scores (i.e., no X- or Y-coordinates), thus 

geospatial phenomena are not included in the calculations. However, it is likely 

that site-specific geologic characteristics such as preferential flow paths could 

lead to portions of the AoR having a higher risk of CO2 leakage than others 

regardless of their well-specific leakage potential score. As a result, wells located 

closer in space could potentially suffer from “common cause failure”, or increased 

probability of leakage due to geologic conditions which place a greater risk onto 

specific regions of the site. In other words, the wellbore leakage potential would 

not be independent of the site geology, or stated differently, leakage would be 

dependent upon geospatial consideration beyond the well leakage potential score. 

The methods used in the Chapter 3 work would need to be coupled with a broader 

reservoir simulation model to properly address geospatial correlation and other 

site-specific geospatial features. 

• Accurate measurements related to wellbore leakage potential. The work in 

Chapter 3 assumes that the leakage probability is directly proportional to the deep 

well leakage potential score. While the scoring methods of Watson and Bachu
 

(2007; 2008) were derived from real-world data on surface-casing vent flow 

(SCVF) through wellbore annuli, soil gas migration (GM) outside casing, and 

available well completion and abandonment factors, the weighting factors and 

scoring approach are unlikely to be exact predictors of the increased probability of 

CO2 leakage. The scoring has not been validated against field data of wellbore 

permeability estimates, which are the actually drivers of wellbore leakage, not 
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scores. For instance, it could be that all wells with a score higher than some 

threshold value are equally leaky in terms of their effective hydraulic parameters, 

and therefore the distribution of leakage probability would look quite different 

than the one used in the Chapter 3 work. Additional field data are needed to 

validate the scoring approach (or alternatively to devise a new and improved 

scoring approach) and accurately quantify the relative probability of increased 

well leakage potential for wells within an Area of Review. 

• Additional CO2 EOR injection and production data from other regions. The 

31 CO2 EOR sites in the database that was used in Chapter 4 reflect water-

alternating gas CO2 floods – all within the continental United States and heavily 

dominated by the West Texas carbonate floods (25 of 31 sites). A handful of other 

floods outside of this region are also included in this study (one from Colorado, 

three from New Mexico, one from Oklahoma, and one from Utah). While the 

West Texas carbonate floods reflect the region of the U.S. where CO2 EOR has 

been most active historically, other areas within the U.S. are also anticipated to be 

targets for future CO2 EOR. These include regions such as the Gulf Coast 

(Louisiana, Mississippi, Texas, and off-shore in the Gulf of Mexico), 

Midcontinent (primarily Oklahoma), and the Rocky Mountain Region (Colorado 

and Wyoming) (Kuuskra and Wallace, 2014). To get a broader sample of CO2 

EOR sites, additional injection and production data from sites located within these 

alternate regions should be aggregated into a similar database and analyzed using 

the methods described in Chapter 4. The results would provide a more 

representative set of parameters which could then be used to develop a more 
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accurate picture of the CO2 storage capacity throughout the U.S. at CO2 EOR 

sites. 

• Quantifying factors related to CO2 EOR prediction. The nonlinear curve fits 

that were used to evaluate the CO2 EOR sites in Chapter 4 are focused on 

statistical inference – i.e., what are the likely outcomes and uncertainty ranges for 

CO2 retention, incremental oil recovery, and net CO2 utilization given the 

historical data from the 31 CO2 EOR sites? However, the approach described in 

this work also provides useful information for prediction – i.e., given a set of 

inputs from another site with similar geology, what are plausible ranges in 

outcomes for each of these factors? While the work in Chapter 4 provides a 

generic approach for making broad predictions of CO2 storage from estimates of 

original oil in place, future work is needed to provide more accurate predictions. 

This is especially true when trying to make predictions early in the CO2 flood, as 

the curve-fitting techniques employed in Chapter 4 are sensitive to the length of 

the data record used to fit each function. Additional investigation into the 

geologic and operational factors that control the parameters of the four-parameter 

log-logistic or two-parameter asymptotic functions may help to refine these 

screening tools and their estimates of associated CO2 storage. 
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Appendix A:  LBNL Model Input File for the Baseline Model 

 

The Lawrence Berkley National Lab Model (LBNL Model) uses a text file as the input, 

which must be saved into the same directory as the LBNL Model executable file. The text 

below represents the input file for the baseline model that was used in Chapter 2. This 

text may be copied and pasted directly into a text file to reproduce the baseline model 

results. Figure 2-2 in Chapter 2 provides the values that were used to derive the input 

parameters for each aquifer and aquitard. Table 2-1 in Chapter 2 lists the uncertain 

parameter inputs and their statistical distributions. 

 

 
*TITLE: DIFFUSE LEAKAGE IN EIGTH-AQUIFER-SEVEN-AQUITARD SYSTEM (BIRKHOLZER ET AL., 2009) 

*----------------------------------------------------------------------* 

* Model Selection 

* Model Type=1: Focused Leakage Only 

* Model Type=2: Diffuse Leakage Only 

* Model Type=3: Coupled Focused and Diffuse Leakage 

* Enter Model Type 

    2 

 

*----------------------------------------------------------------------* 

* 1- RESERVOIR DESCRIPTION  

* 1.1. Layer types at bottom and top 

* AQUIFER = 1, AQUITARD = 0 

* BOTTOM OF THE DOMAIN, BL 

   1 

 

* TOP OF THE DOMAIN; TL 

   1 

 

* 1.2: Number of Aquifers, NAQ 

    8 

 

* 1.3: Aquifer Properties 

* BAQ   HCONX   ANSR      SS 

60 0.101452974 1. 1.69284E-06 

60 0.103743737 1. 1.70399E-06 

60 0.103814996 1. 1.72306E-06 

60 0.100094923 1. 1.74163E-06 

60 0.095347086 1. 1.76346E-06 

60 0.088516151 1. 1.7757E-06 

60 0.081488598 1. 1.79016E-06 

60 0.075849035 1. 1.80335E-06 

 

* 1.4. Number of Aquitards 

* NAQT=NAQ+1-BL-TL 

7 

 

* 1.5. Aquitard Properties 

* BAQT  HCONP      SSP 

100 1.02834E-06 1.98821E-06 

100 1.04022E-06 1.97796E-06 

100 1.021E-06 1.97604E-06 

100 9.80039E-07 1.98082E-06 

100 9.19177E-07 1.98942E-06 

100 8.49152E-07 1.99954E-06 

100 7.88179E-07 2.00954E-06 

 

* 1.6. Domain Boundary Conditions. ENTER ONLY IF MODEL TYPE IS EQUAL TO 2 OR 3 

* IF BOTB OR TOPB EQUAL TO Zero, ZERO DRAWDOWN BOUNDARY 

* IF BOTB OR TOPB DIFFERENT THAN ZERO, NO FLOW BOUNDARY USED 

*  BOTB, TOPB 

  1 1 
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*----------------------------------------------------------------------* 

* 2 - ACTIVE WELLS 

* 2.1.Number of Injection/Pumping Wells and Number of Periods 

* NIW  NP 

   1    100 

 

* 2.2. ENTER END TIME OF NP PERIODS 

365 

730 

1095 

1460 

1825 

2190 

2555 

2920 

3285 

3650 

4015 

4380 

4745 

5110 

5475 

5840 

6205 

6570 

6935 

7300 

7665 

8030 

8395 

8760 

9125 

9490 

9855 

10220 

10585 

10950 

11315 

11680 

12045 

12410 

12775 

13140 

13505 

13870 

14235 

14600 

14965 

15330 

15695 

16060 

16425 

16790 

17155 

17520 

17885 

18250 

18615 

18980 

19345 

19710 

20075 

20440 

20805 

21170 

21535 

21900 

22265 

22630 

22995 



     169

23360 

23725 

24090 

24455 

24820 

25185 

25550 

25915 

26280 

26645 

27010 

27375 

27740 

28105 

28470 

28835 

29200 

29565 

29930 

30295 

30660 

31025 

31390 

31755 

32120 

32485 

32850 

33215 

33580 

33945 

34310 

34675 

35040 

35405 

35770 

36135 

36500. 

 

* 2.3. Properties of NIW active wells  

* Well1 

*  X1   Y1    NAP 

    0.    0.   1 

 

*   KK   RIW       Q(I=1,..,NP) 

*              PERIOD1 PERIOD2... 

    1    50.0    

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 

5075 



     170

5075 

5075 

5075 

5075 

5075 

5075 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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0 

0 

0 

0 

0 

0. 

 

*----------------------------------------------------------------------* 

* 3 - LEAKY WELLS 

 

*----------------------------------------------------------------------* 

* 4 - Solution Control and Time Steps 

 

* 4.1.  NINT: Number of terms for the Stehfest Laplace Inversion Formula (Series) 

*        NINT must be EVEN, and suggested to assign 8<=NINT<=16 for efficient and accurate results 

*        NT: (Number of time steps to write output) 

*    NINT  NT 

      16    100 

 

* 4.2. Times to write output 

*    DT3 (I=1,...,NT); MUST BE > 0 

365 

730 

1095 

1460 

1825 

2190 

2555 

2920 

3285 

3650 

4015 

4380 

4745 

5110 

5475 

5840 

6205 

6570 

6935 

7300 

7665 

8030 

8395 

8760 

9125 

9490 

9855 

10220 

10585 

10950 

11315 

11680 

12045 

12410 

12775 

13140 

13505 

13870 

14235 

14600 

14965 

15330 

15695 

16060 

16425 

16790 

17155 

17520 

17885 
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18250 

18615 

18980 

19345 

19710 

20075 

20440 

20805 

21170 

21535 

21900 

22265 

22630 

22995 

23360 

23725 

24090 

24455 

24820 

25185 

25550 

25915 

26280 

26645 

27010 

27375 

27740 

28105 

28470 

28835 

29200 

29565 

29930 

30295 

30660 

31025 

31390 

31755 

32120 

32485 

32850 

33215 

33580 

33945 

34310 

34675 

35040 

35405 

35770 

36135 

36500. 

 

* 4.3. Variables written to output 

*             S:(Drawdown or buildup) 

*             P:(Pressure) (not available in this version) 

*             H:(Head) (not available in this version) 

*    OUT(I),I=1,3 

    1  0  0 

 

* 4.4. MESH Option 

* FLAG=1, Create Mesh from external file, (A FILE CALLED 'MESH_CONTOUR' SHOULD BE PROVIDED) 

* FLAG= otherwise, provide manually 

   1 

 

* IF FLAG DIFFERENT THAN ZERO, PROVIDE THE FOLLOWING 

* Number of grid blocks IN X AND Y DIRECTIONS (for plotting) 

*  NI   NJ 

*   1   1 

* Distance to nodes in x-direction. (m) 

* IF FLAG=1, LEAVE EMPTY!, THE PROGRAM READS X(I) FROM MESH FILE 



     173

*   X(i),i=1,NI 

* Distance to nodes in Y-direction. (m) 

* IF FLAG=1, LEAVE EMPTY!, THE PROGRAM READS Y(J) FROM MESH FILE 

*  Y(j),j=1,NJ 

 

* 4.5: ENTER NUMBER OF AQUIFERS FOR CONTOUR PLOT 

* NAQP 

  1 

 

* 4.6: AQUIFER LAYER NUMBERS WHOSE CONTOUR PLOTS WILL BE PREPARED 

* AQL(I); I=1,...,NAQP 

  1 

 

* 4.7: ENTER NUMBER OF LOCATIONS FOR CALCULATION OF BUILDUP IN AQUIFERS 

* NB 

   20 

 

* 4.8: ENTER X AND Y FOR PLOTTING BUILDUP AT AQUIFERS AS FUNCTION OF TIME 

* X    Y 

  1000. 0. 

  2000. 0. 

  3000. 0. 

  4000. 0. 

  5000. 0. 

  6000. 0. 

  7000. 0. 

  8000. 0. 

  9000. 0. 

  10000. 0. 

  11000. 0. 

  12000. 0. 

  13000. 0. 

  14000. 0. 

  15000. 0. 

  16000. 0. 

  17000. 0. 

  18000. 0. 

  19000. 0. 

  20000. 0. 

 

* 4.9: ENTER NUMBER OF LOCATIONS FOR Vertical Profile Plot 

* NAB 

   20 

 

* ENTER X AND Y FOR PLOTTING BUILDUP IN AQUITARDS 

  1000. 0. 

  2000. 0. 

  3000. 0. 

  4000. 0. 

  5000. 0. 

  6000. 0. 

  7000. 0. 

  8000. 0. 

  9000. 0. 

  10000. 0. 

  11000. 0. 

  12000. 0. 

  13000. 0. 

  14000. 0. 

  15000. 0. 

  16000. 0. 

  17000. 0. 

  18000. 0. 

  19000. 0. 

  20000. 0. 

 

* end of input file 

*---------------------------------------------------------------------* 
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Appendix B:  Biased Urn R Code 

 

In Chapter 3, one thousand random draws were generated in R using the package 

“BiasedUrn”, and this output was then used as the 1000-by-nL matrix, [AnL]. The original 

CRAN version of BiasedUrn (available for download at: http://cran.r-

project.org/web/packages/BiasedUrn/index.html) is only compiled to run a maximum of 

32 “colors” (MAXCOLORS=32) or 32 different odds that can be used to weight each 

random draw. Since the work in Chapter 3 used 100 wells each with their own leakage 

potential score, additional colors were needed. The work in Chapter 3 therefore used a 

precompiled Windows version of BiasedUrn that was modified by Emory University to 

allow a maximum of 10,000 colors (MAXCOLORS=10000). Both 32- and 64-bit 

versions compiled for R-3.0.1 are available for download at the following website: 

 

http://genetics.emory.edu/labs/epstein/software/BiasedUrn/burn-install-windows.html 

 

Once the BiasedUrn package is installed, to simulate 1000 random draws in R for the 

case with 10 leaky wells would use the following code: 

 

mymatrix = rMWNCHypergeo(1000, m=m, n=10, odds=odds)   (10) 

 

Where: 

rMWNCHypergeo = specifies the random variate generation function of the 

multivariate form of Wallenius’ non-central 

hypergeometric distribution; 

 1000   = specifies the number of random variables to generate; 

 m   = refers to a vector of n=100 wells (all equal to 1); 

n = refers to nL, the number of leaky wells (10 in this 

example); and 

odds = refers to a vector of weights (Prob[Leak Riski]) for each 

well. 

 

The output, “mymatrix”, may then be exported from R and used to derive the 1000-by-nL 

matrix, [AnL]. 


