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ABSTRACT  

Near-surface monitoring is an essential component of leak detection at geologic 

CO2 sequestration sites. With different strengths and weaknesses for every monitoring 

technique, an integrated system of leak detection monitoring methods is needed to 

combine the information provided by different techniques deployed at a site, and no 

current methodology exists that allows one to quantitatively combine the results from 

different monitoring technologies and optimize their design. More importantly, an 

evaluation that is able to provide the assessment of possible size of a leak based on the 

multiple monitoring results further helps the managers and decision makers to know 

whether the unexpected leakage event is smaller than the required annual seepage rate for 

effective long-term storage. The proposed methodology for this application is the 

development and use of a Bayesian belief network (BBN) for combining measurements 

from multiple leak detection technologies at a site.   

The Bayesian Belief Network for CO2 leak detection is built through an integrated 

application of a subsurface model for CO2 migration under different site conditions; field-

generated background information on several monitoring techniques; and statistical 

methods for processing the field background data to infer the leak detection threshold for 

each monitoring technique and the conditional probability values used in the BBN. 

Several statistical methods are applied to estimate the detection thresholds and the 

conditional probabilities, including (1) Bayesian methods for characterizing the natural 

background (pre-injection) conditions of the techniques for leak detection, (2) the 

combination of the characterization of the background monitoring results and the 
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simulated CO2 migration for estimating the probability of leak detection for each 

monitoring technique given the size of leak, (3) a probabilistic design of CO2 leak 

detection for estimating the detection probability of a monitoring technique under 

different site conditions and monitoring densities, (4) a Bayesian belief network for 

combining measurements from multiple leak detection technologies at an actual test site, 

with the site conditions and the probability distributions of leak detection and leakage 

rate estimated for the site. 

 The BBN model is built for the Zero Emissions Research and Technology 

(ZERT) test site in Montana. The monitoring techniques considered in this dissertation 

include soil CO2 flux measurement and PFC tracer monitoring. The possible near-surface 

CO2 and PFC tracer flux rates as a function of distance from a leakage point are 

simulated by TOUGH2, given different leakage rates and permeabilities. The natural 

near-surface CO2 flux and background PFC tracer concentration measured at the ZERT 

site are used to determine critical values for leak inference and to calculate the 

probabilities of leak detection given a monitoring network. A BBN of leak detection is 

established by combing the TOUGH2 simulations and the background characterization of 

near-surface CO2 flux and PFC tracer at the sequestration site. The BBN model can be 

used as an integrated leak detection tool at a geologic sequestration site, increasing the 

predicted precision and inferring the possible leak distribution by combining the 

information from multiple leak detection techniques. Moreover, the BBN model can also 

be used for evaluating each monitoring technique deployed at a site and for determining 

the performance of a proposed monitoring network design by a single or multiple 

techniques. 
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Chapter 1:   Introduction  

 

Geologic carbon sequestration is regarded as a promising technique for reducing 

the anthropogenic CO2 emission into the atmosphere because of the technical feasibility 

and the potential storage capacity (1, 2). Since injecting CO2 into the subsurface has been 

applied to enhance oil and gas recovery in petroleum industry, plus existing CO2 

contained gas fields as a natural analogue, geologic sequestration has been considered as 

the major sequestration method to mitigate atmospheric CO2 levels. Moreover, the 

storage capacity from oil and gas reservoir, unmineable coal seams, and saline formations 

are estimated at 1,157 billion metric tons in North America (3). Compared to the 

emission of greenhouse gases, which is around 7 billion metric tons per year (2), the 

storage capacity can provide quite a long time for us to adjust our living style and to 

develop new energy technologies in order to cope with the impacts of climate change.  

With geologic sequestration of CO2 now planned in a number of nations as a 

short- to medium-term strategy for reducing carbon emissions, there is a need for CO2 

leak detection monitoring to ensure that the sequestered CO2 at a site does not return to 

the atmosphere, yielding the mitigation strategy ineffective. Leakage from the CO2 

storage reservoir can make all the effort against climate change in vain and possibly pose 

surface ecosystem danger if the leakage rate is not small enough (4) or the seepage can 

lead to high concentrations on the spot (5). 

 A number of methods have been proposed for detecting CO2 leakage at 

sequestration and storage sites, including:  seismic profiling, pressure measurement, and 

other geophysical methods for detecting changes at the deep reservoir level; groundwater 
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sampling for changes in water chemistry in observation wells; analysis of natural, 

injected and recovered carbon isotopes; near-surface monitoring of soil CO2 fluxes; soil 

gas measurement for the presence of tracers added to the injected CO2; and measurement 

of CO2, tracers or other indicator gases in the air above the sequestration site (6-10).  

These alternatives for site monitoring target different locations at the site at different 

stages of the geologic sequestration process, and it is generally recognized that a 

combination of some methods will provide for the most effective coverage for leak 

detection.  

With different strengths and weaknesses for every monitoring technique, an 

integrated system of leak detection monitoring methods is needed to combine the 

information provided by different techniques deployed at a site, and no current 

methodology exists that allows one to quantitatively combine the results from different 

monitoring technologies and optimize their design. The proposed methodology for this 

application is the development and use of a Bayesian Belief Network (BBN) for 

combining measurements from multiple leak detection technologies at a site.  

The Bayesian Belief Network for CO2 leak detection is built through an integrated 

application of a subsurface model for CO2 migration under different site conditions; field-

generated background information on several monitoring techniques; and statistical 

methods for processing the field background data and the simulation results and for 

inferring the leak detection threshold for each monitoring technique and the conditional 

probability values used in the BBN. Several statistical methods are applied to estimate the 

detection thresholds and the conditional probabilities, including (1) Bayesian methods for 

characterizing the natural background (pre-injection) conditions of the techniques for leak 
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detection, (2) the combination of the characterization of the background monitoring 

results and the simulated CO2 migration for estimating the probability of leak detection 

for each monitoring technique given the size of leak, (3) a probabilistic design of CO2 

leak detection for estimating the detection probability of a monitoring technique under 

different site conditions and monitoring densities, (4) a Bayesian belief network for 

combining measurements from multiple leak detection technologies at an actual test site, 

with the site conditions and the probability distributions of leak detection and leakage 

rate estimated for the site.   

All the work in this dissertation was achieved with the support from Carnegie 

Mellon University (CMU), West Virginia University (WVU), and the National Energy 

Technology Laboratory (NETL).  The monitoring background data at test sites are 

provided by NETL. The near-surface CO2 and PFC mitigation modeling was performed 

by WVU. The statistical analysis and modeling for the development of the BBN model 

are carried out by the dissertation author with the assistance from the advisor and the 

committee members at CMU.  

The sections below briefly describe the background and the methods associated 

with the development of the BBN, including the near-surface monitoring methods for 

leak detection, CO2 fate and transport modeling for simulating CO2 migration in the near-

surface, Bayesian methods for charactering background (pre-injection) conditions, and 

the Bayesian belief network for integrating the results from multiple monitoring 

techniques. Also, the research objectives and the overview of this dissertation are 

presented in the end of this chapter.   
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1.1 Near-surface Monitoring Methods for CO2 Leak Detection 

In this dissertation, near-surface monitoring methods are first considered for the 

use in the BBN due to the data accessibility and collaboration efforts with NETL and 

WVU. Near-surface monitoring is also an essential component of leak detection at 

geologic sequestration sites, especially for the risks associated with human beings and 

ecosystems near the sites. Nevertheless, various technologies for leakage detection are 

currently being developed and tested by the NETL, including: 

 

Soil gas flux measurements using an accumulation chamber 

Soil CO2 flux monitoring provides a direct estimate of CO2 exchange between the 

soil and the atmosphere, and is typically implemented using the accumulation chamber 

method (11).  Accumulation chamber monitors have been deployed and tested in a 

number of pilot projects, such as the Zero Emissions Research and Technology (ZERT) 

monitoring experiment in Bozeman, Montana (12-13).  The background flux of CO2 

results from natural soil respiration processes and can be highly variable, depending on 

local climate and vegetation. It is thus important to account for natural variation of this 

baseline when attempting to isolate deep source leakage contributions to the monitored 

soil CO2 flux.  Researchers at NETL currently have measured soil CO2 fluxes using this 

method at some test sites like the ZERT site in Montana and the San Juan Basin site in 

New Mexico. In this dissertation, the background soil CO2 flux from nine AmeriFlux and 

CarboEurope sites and the ZERT site are used for building Bayesian hierarchical and 

nonhierarchical models for soil CO2 flux and leak detection at geologic sequestration 

sites.  
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Perfluorocyclohydrocarbon (PFC) tracer injected with the CO2 at injection wells   

Perfluorocyclohydrocarbon (PFC) is an artificial chemical, which has long 

lifetime and can be detected at very low concentrations. With no harmful biological 

effects, PFC is a good choice for being used as a tracer injected along with CO2 in order 

to detect leakage at geologic sequestration sites (9, 14-15). Although PFC is a strong 

greenhouse gas, the low dose PFC required for leak detection is insignificant for the 

environmental effect compared to CO2. The PFC tracer is detected using soil-gas 

monitoring with Capillary Adsorption Tube Samplers (CATS) used to collect the tracers. 

In this research, the PFC tracer is Perfluoromethylcyclohexane (PMCH), tested in the 

ZERT experiments (14-15). Besides the ZERT site, the background PFC concentrations 

from the San Juan Basin site, the Lower Michigan site in Michigan and the Pines Parking 

lot of NETL Pittsburgh are used for building a simple Bayesian hierarchical model for 

CO2 leak detection. 

  

Shallow soil gas sampling and analysis 

CO2 leakage into vadose zone can cause the changes in the chemical and isotopic 

compositions of shallow soil gas. Carbon isotopes (δ
13

C & δ
14

C) in soil gas have been 

mostly tested for detecting CO2 leakage in recent years (5-6, 10). Carbon isotopic ratio 

shows the compositions and relative ratios of the contributing gas sources. Carbon 

isotopes are particularly useful in enhanced oil recovery projects since the δ
13

C in the gas 

from fossil-fuel-driven sources is very different form the δ
13

C in shallow soil gas, 

contributed from the atmosphere and biologic activities in the soil, and the δ
14

C is 
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basically absent in fossil CO2. Therefore, Carbon isotopes are used to distinguish leaking 

CO2 from atmospheric and biological background sources. However, soil gas samples for 

CO2 concentration and 
13

C ratios are not included in the BBN for CO2 leak detection at 

the idealized ZERT site due to the lack of data for calculating the CO2 leakage rates from 

the carbon isotopes observations, which might be solved with the related data or 

simulations available in the future.   

  

Groundwater chemistry 

The chemistry of surface well water is monitored for characteristic changes 

resulting from the leakage of CO2 during injection. Some field tests have shown that pH, 

alkalinity and electrical conductance change significantly and rapidly due to the 

dissolution of leaking CO2 into groundwater. Laboratory analyses also indicate that the 

concentrations of some dissolved inorganic chemicals, like Ca, Mg, Fe and Mn, increase 

obviously after the injection (5, 16). The simulations of the change of groundwater 

chemistry associated with CO2 leak flux for deep saline aquifer have been performed (17-

18), indicating groundwater chemistry monitoring is able to detect median CO2 leakage. 

Similarly, the CO2 release test at the ZERT site 2008 for the changes of shallow 

groundwater chemistry (16) and the ongoing simulations also indicate the good 

agreement between the observed data and the geochemical modeling (19).   

 

1.2 CO2 Fate and Transport Modeling 

The simulation of the transport of CO2 in the near subsurface and lower 

atmosphere is essential for the success of this study.  In the near subsurface zone, where 
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the pressure is slightly greater than or equal to atmospheric, CO2 will exist as a colorless, 

odorless gas or be dissolved in water. It has a density about 50% greater than dry air, 

therefore, it will tend to sink toward the water table or to collect in surface depressions 

(5).   

The simulations focus on the near-surface level where the monitoring networks 

are installed and tested. This region of interest comprises the saturated zone, the 

unsaturated zone, and the lower atmosphere.  In the saturated zone, the flow can be 

assumed to follow a two-phase Darcy law since most of the pores are filled with water, 

but CO2 is a separate gas migrating upwards within the aquifer. Buoyancy forces due to 

nonuniform CO2 concentration and temperature are important.  Flow in the saturated 

zone mainly transports CO2 gas vertically to the unsaturated zone, as well as dissolved 

CO2 horizontally within the aquifer.  In the unsaturated or vadose zone, the soil is usually 

not saturated; and the simultaneous flow of gas and liquid must be considered.  The lower 

atmosphere affects the subsurface conditions varying due to wind, barometric pressure, 

air temperature and precipitation, etc. and consequently influences CO2 transport (20). A 

typical simulation might encompass 10 to 50 m of the saturated zone, 10 to 50 m of the 

unsaturated zone, and about 10 m of the atmosphere.  The horizontal extent of the model 

could range from 10’s to 1000’s of meters on a side.   

 Given the complexity of the simulations to be performed and the research 

advances of multi-phase transport modeling in recent years, the development of a new 

computer program is not considered.  Among the many existing groundwater flow and 

transport program, such as Eclipse 300 by Schlumberger (21), GEM and STARS by 

Computer Modelling Group (22) and TOUGH2 (23) by Lawrence Berkeley National 
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Laboratory, etc., TOUGH2 EOS7C (24-25) appears to fulfill the needed capacities for the 

present application for near surface CO2 leek seepage simulation. TOUGH2 computes the 

three dimensional coupled flow of liquid water, water vapor, noncondensible gas, and 

heat in porous and fractured media.  The model includes several options for modeling 

fractured media.  TOUGH2 uses a multi-phase approach, correctly simulating the 

simultaneous flow of gas and liquid and accounting for transitions between phases.  Also, 

it has been developed and used by Oldenburg and Unger (26-27) to perform parametric 

studies of CO2 transport in idealized near subsurface and lower atmospheric domains. 

 

1.3 Bayesian Hierarchical Model for Background Site Conditions 

Bayesian hierarchical modeling has been applied in a wide range of physical 

science and engineering applications where statistical models are sought to describe 

behavior across multiple subpopulations (e.g., sites) thought to exhibit common 

behaviors, but with a degree of site specificity (28-33).   Recent advances in Bayesian 

statistical methodology, including methods for Markov Chain Monte Carlo (MCMC) 

simulation for parameter estimation, have made models of this complexity easier to solve 

(34-39).  The Bayesian hierarchical approach can be viewed as providing a compromise 

between site-specific and completely-pooled parameter estimates.  Sites with small 

datasets ―borrow‖ information from sites with larger datasets, but their parameter 

estimates are eventually dominated by their own datasets as these become larger.  Joint 

uncertainty estimates are obtained for all global and site parameters, providing a basis for 

determining the statistical prediction intervals needed for deciding whether an observed 

monitoring variable is above that reasonably associated with natural variability at a site. 
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In this dissertation, the distributions of the background soil CO2 flux and PFC tracer 

concentration are estimated through Bayesian hierarchical method.  

 The estimated posterior global parameter distribution can subsequently be used as 

the prior distribution for a new site in a later study. Finally, the Bayesian procedure 

provides a basis for comparing the fit of alternative models for the observed monitoring 

variable, including those with different numbers of fitted parameters. In this dissertation, 

soil CO2 flux was regressed by soil temperature based on the data from nine AmeriFlux 

sites, and the resulting modeling recommendation is applied to the ZERT site. The PFC 

concentration was characterized by a simple Bayesian hierarchical normal model across 

the ZERT site and the other three reference sites.  

 

1.4 Bayesian Belief Network  

Bayesian belief network (BBN) has been wildly used in various research fields as 

a decision support tool. A BBN model combines probabilistic inference from multiple 

sources of evidence, presented in a graphical format, including node for events, arrows 

for casual relationship, and tables for probability. The graphical interface and 

probabilistic expression of BBN have several advantages in describing and modeling an 

environmental system. A BBN can provide (1) the integration of the system components 

of different forms and scales, (2) the clarification of a complex environmental system for 

gaining insights, (3) the basis for a decision support system with the inclusion of utility 

and decision options, (4) the estimation of the uncertainty associated with the system 

components, (5) the combination of prior knowledge from experts’ belief or historical 

records and the data from experiments in system modeling (40-45).   
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 For the application of CO2 leak detection, the main nodes for a BBN model are a 

leak of a given size and a leakage event can cause the measurement results from detection 

technologies above critical values indicating the occurrence of a leak. The nodes of 

detection technologies along with their monitoring network designs provide the evidences 

for evaluating the leakage event. Site conditions that affect leak probability can be listed 

as other nodes and actually are simulated via the response surface fitted to TOUGH2 

simulations.  Arrows between events for causal influence are characterized by conditional 

probabilities. The observations at any combination of nodes propagated through network 

to compute posterior probabilities. The BBN in this study is designed for the leak 

detection with a particular concern for leakage rate at a geologic sequestration site, and 

the systems are divided into the four areas: leakage event (leakage rate), site condition, 

monitoring network design and detection technology. The methodology and a general 

framework for a BBN for CO2 leak detection were developed in this thesis with an 

application to the ZERT site with two near-surface monitoring.  

 

1.5 Research Objective 

The main objective of this dissertation is to build a BBN for CO2 leak detection 

with an illustration of the application to a real site. The BBN for CO2 leak detection is 

built through an integrated application of a subsurface model for CO2 migration under 

different site conditions; field-generated background information on several monitoring 

techniques; and statistical methods for processing the field background data and the 

simulation results and for inferring the leak detection threshold for each monitoring 

technique and the conditional probability values used in the BBN. This dissertation 
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illustrates the statistical methods applied for the development of the BBN model, and the 

specific objectives are as follows:   

 To characterize the natural background (pre-injection) conditions of the 

monitoring techniques for leak detection using Bayesian methods.   

 To estimate the probability of leak detection for each monitoring 

technique given the size of leak by combining the characterization of the 

background monitoring results and the simulations of CO2 migration. 

 To estimate the detection probability of a monitoring technique under 

different site conditions and monitoring densities through a probabilistic 

design of CO2 leak detection 

 To build a Bayesian belief network for combining measurements from 

multiple leak detection technologies at an actual test site, with the site 

conditions and the probability distributions of leak detection and leakage 

rate estimated for the site. 

 

1.6 Dissertation Overview 

This dissertation consists of five chapters and seven appendices. The main content 

of the thesis is presented from Chapter 2 to 4, which comprise materials submitted to or 

in preparation for publication in peer-reviewed journals. Chapter 1 provides a general 

introduction to the dissertation, including the background of CO2 leak detection at 

geologic carbon sequestration sites, the methods used for the development of the BBN, 

the research objectives and brief overview of the content of this dissertation.  
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 Chapter 2 illustrates the use of Bayesian methods for the background 

characterization of soil CO2 flux measurement and the detection threshold of CO2 leakage 

events, based on the data from nine AmeriFlux sites. This material, written by Ya-Mei 

Yang and co-authored by Mitchell J. Small, Brian W. Junker, Grant S. Bromhal, Brian R. 

Strazisar and Arthur W. Wells is under review in Environmental Earth Sciences entitled 

―Bayesian Hierarchical Models for Soil CO2 Flux and Leak Detection at Geologic 

Sequestration Sites‖. 

 Chapter 3 presents the core statistical methods developed for estimating the 

conditional probabilities used in the BBN for CO2 leak detection at geologic 

sequestration sites. The methodologies are illustrated for the soil CO2 flux measurement 

at the idealized ZERT site. The probability of leak detection for soil CO2 flux 

measurement given the size of leak is inferred by combining the characterization of the 

background monitoring results and the simulations of CO2 migration. The detection 

probabilities of soil CO2 flux measurement under different site conditions and monitoring 

densities are explored as well. This material, written by Ya-Mei Yang and co-authored by 

Mitchell J. Small, Egemen O. Ogretim, Donald D. Gray, Grant S. Bromhal, Brian R. 

Strazisar and Arthur W Wells, is in preparation for publication in Environmental Science 

and Technology under the title ―Probabilistic Design of a Near-Surface CO2 Leak 

Detection System‖. 

 Chapter 4 describes the BBN model developed for CO2 leak detection and the two 

major uses of the BBN at geologic sequestration sites. The BBN can be used not only for 

inferring the probability distribution of leakage rates given the monitoring results, site 

conditions and monitoring densities, but also for optimizing the design of the monitoring 
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network of each detection technique. This material, written by Ya-Mei Yang and co-

authored by Mitchell J. Small, Egemen O. Ogretim, Donald D. Gray, Grant S. Bromhal, 

Brian R. Strazisar and Arthur W Wells, will be submitted for publication in a peer-review 

journal under the title ―A Bayesian Belief Network for Combining Sequestration Site 

Leak Detection Monitoring Results from Near-Surface CO2 Fluxes and PFC Tracer 

Concentrations‖.  

 Chapter 5 summarizes the major findings and conclusions of this dissertation and 

provides the suggestions for the ongoing researches and the future work associated 

monitoring and modeling for leak detection at geologic sequestration.   

Appendix A provides the supporting information for Chapter 2; Appendices B 

and C offer the supplemental materials for Chapter 3; and Appendices D, E and F 

provides the supporting information for Chapter 4 with a focus on the background 

characterization and the simulations made for PFC tracer at the idealized ZERT site. 

 



     14 

References 
 

   (1) U.S. Environmental Protection Agency (2008) Inventory of U.S. Greenhouse Gas 

Emissions and Sinks: 1990 – 2006. EPA 430-R-08-005. Washington, DC 20460, 

U.S.A. 

   (2) Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon 

Dioxide Capture and Storage. Cambridge University Press, Cambridge, U.K. 

   (3) U.S. Department of Energy, National Energy Technology Laboratory (2008) 

Carbon Sequestration Atlas of the United States and Canada, 2nd edit. 

   (4) Hepple RP, Benson SM (2005) Geologic storage of carbon dioxide as a climate 

change mitigation strategy: Performance requirements and the implications of 

surface seepage. 

   (5) Oldenburg, C.M., J.L. Lewicki, and R.P. Hepple (2003) Near-surface monitoring 

strategies for geologic carbon dioxide storage verification, Lawrence Berkeley 

National Laboratory Report LBNL-54089. 

   (6) Klusman, RW (2003) Evaluation of leakage potential from a carbon dioxide 

EOR/sequestration project, Energy Conversion and Management, Volume 44, Issue 

12, July 2003, Pages 1921-1940 

   (7) Benson SM, Gasperikova E, Hoversten GM (2004) Monitoring protocols and life-

cycle costs for geologic storage of carbon dioxide. In: Proceedings of the 7th 

International Conferenceon Greenhouse Gas Control Technologies (GHGT-7), 

Vancouver, Canada, 5–9 September 2004. 

   (8) Benson SM (2007) Monitoring Geological Storage of Carbon Dioxide, Carbon 

Capture and Geologic Sequestration: Integrating technology, monitoring, and 

regulation, E.J. Wilson and D. Gerard (eds.) Blackwell Scientific Publishing, Ames, 

Iowa, Chapter 4. 

   (9) Wells, A.W., Diehl, J.R., Bromhal, G., Strazisar, B.R., Wilson, T.H., White, C.M. 

(2007) The use of tracers to assess leakage from the sequestration of CO2 in a 

depleted oil reservoir, New Mexico. USA Appl. Geochem. 22 (5), 996–1016. 

 (10) Johnson, G, M Raistrick, B Mayer, M Shevalier, S Taylor, M Nightingale, I 

Hutcheon (2009) The use of stable isotope measurements for monitoring and 

verification of CO2 storage, Energy Procedia, Volume 1, Issue 1, Pages 2315-2322 

 (11) Healy RW, Striegl RG, Russell TF, Hutchinson GL, Livingston GP (1996) 

Numerical Evaluation of Static-Chamber Measurements of Soil—Atmosphere Gas 

Exchange: Identification of Physical Processes. Soil Sci Soc Am J  60:740-747. 

 (12) Lewicki JL, Oldenburg CM, Dobeck L, Spangler L (2007) Surface CO2 leakage 

during two shallow subsurface CO2 releases, Geophys Res Lett  34:L24402. 

 (13) Strazisar, BR, AW. Wells, JR Diehl, RW Hammack, GA Veloski (2009) Near-

surface monitoring for the ZERT shallow CO2 injection project, International 

Journal of Greenhouse Gas Control, Volume 3, Issue 6, Pages 736-744 

 (14) Watson, TB, R Wilke, RN Dietz, J Heiser, P Kalb (2007) The Atmospheric 

Background of Perfluorocarbon Compounds Used as Tracers, Environ. Sci. 

Technol.,  41 (20), pp 6909–6913 

 (15) Wells A, Strazisar B, Diehl J, Veloski G (2010) Atmospheric tracer monitoring and 

surface plume development at the ZERT pilot test in Bozeman, Montana, USA, 

Environ. Earth Sci. 60 (2): 299-305.  



     15 

 (16) Kharaka, YK, JJ. Thordsen, E Kakouros, G Ambats, WN Herkelrath, SR Beers, JT 

Birkholzer, JA. Apps, NF Spycher, L Zheng, RC. Trautz, HW Rauch, KS 

Gullickson (2009)  Changes in the chemistry of shallow groundwater related to the 

2008 injection of CO2 at the ZERT field site, Bozeman, Montana, Environ Earth 

Sci, Special Issue 

 (17) Zheng, L., Apps, J.A., Zhang, Y., Xu, T., Birkholzer, J.T. (2008):  Reactive 

Transport Simulations to Study Groundwater Quality Changes in Response to CO2 

Leakage from Deep Geological Storage, Proceedings 9th International Conference 

on Greenhouse Gas Control Technologies, November 2008, Washington, D.C., 

2008. 

 (18) Susan Carroll, Yue Hao, and Roger Aines. Geochemical detection of carbon dioxide 

in dilute aquifers. Geochemical Transactions 2009, 10:4 

 (19) Zheng L, Apps J, Spycher N, Birkholzer J, Kharaka YK, Thordsen J, Kakouros E, 

Trautz R, Rauch H, Gullickson K (2009) Changes in shallow groundwater 

chemistry at the 2008 ZERT CO2 injection experiment: II-modeling analysis. 

Abstract, eight carbon capture and sequestration conference, Pittsburgh, PA, May 

4–7 

 (20) Ogretim E, Donald D. Gray and Grant S. Bromhal (2009) Effects of Crosswind-

Topography Interaction on the Near-Surface Migration of a Potential CO2 Leak, 

Energy Procedia, Volume 1, Issue 1, Pages 2341-2348 

 (21) Darvish, G. R., Lindeberg, E., Kleppel, J., Torsaeter, O., ―Numerical Simulations 

For Designing Oil/CO2 Gravity-Drainage Laboratory Experiments of A Naturally 

Fractured Reservoir‖, EOR-OG 320, presented at the 7th International Conference 

on Greenhouse Gas Control Technologies, Vancouver, Canada, Sep 5 – 9, 2004. 

 (22) Izgec O., Demiral B., Bertin H.: CO2 injection into saline carbonate aquifer 

formations II: comparison of numerical simulations to experiments. Transp. Porous 

Media 73, 57–74 (2008). 

 (23) Pruess, K., Oldenburg, C.M., Moridis, G., 1999. TOUGH2 User’s Guide, version 

2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA, 

USA. 

 (24) Pruess K., García, J., Kovscek, T., Oldenburg, C. M., Rutqvist, J., Steefel, C., and 

Xu, T., 2004. Code intercomparison builds confidence in numerical simulation 

models for geologic disposal of CO2. Energy, 29(9-10), 1431-1444. 

 (25) Oldenburg, C.M., Pruess, K., Benson, S.M., 2001. Process modeling of CO2 

injection into natural gas reservoirs for carbon sequestration and enhanced gas 

recovery. Energy Fuels 15, 293–298. 

 (26) Oldenburg, C.M., and A.J.A. Unger. On leakage and seepage from geologic carbon 

sequestration sites; unsaturated zone attenuation. Vadose Zone Journal (August 

2003), 2(3):287-296  

 (27) Oldenburg, C.M., and A.J.A. Unger (2004) Coupled vadose zone and atmospheric 

surface-layer transport of CO2 from geologic carbon sequestration sites, Vadose 

Zone Journal, 3, 848–857, 2004, LBNL-55510. 

 (28) Agarwal DK, Silander JA, Gelfand AE, Dewar RE, Mickelson JG (2005) Tropical 

deforestation in Madagascar: analysis using hierarchical spatially explicit, Bayesian 

regression models. Ecol Model  185:105–131. 



     16 

 (29) Borsuk ME, Higdon D, Stow CA, et al. (2001) A Bayesian hierarchical model to 

predict benthic oxygen demand from organic matter loading in estuaries and coastal 

zones. Ecol Model  143:165–181. 

 (30) Goyal A, Small MJ, von Stackelberg K, Burmistrov D, Jones N (2005)  Estimation 

of fugitive lead emission rates from secondary lead facilities using hierarchical 

Bayesian models. Environ Sci Technol  39:4929–4937. 

 (31) Lockwood, JR, Schervish MJ, Gurian P, Small MJ (2001) Characterization of 

arsenic occurrence in U. S. drinking water treatment facility source waters. J Am 

Stat Assoc  96:1184–1193. 

 (32) Helser TE, Lai HL (2004) A Bayesian hierarchical meta-analysis of fish growth: 

with an example for North American largemouth bass, Micropterus salmoides. Ecol 

Model  178:399–416. 

 (33) Lockwood, JR., Schervish MJ, Gurian P, Small MJ (2004) Analysis of contaminant 

co-occurrence in community water systems. J Am Stat Assoc  99:45–56. 

 (34) Berliner LM (2000) Hierarchical Bayesian modeling in the environmental sciences, 

Allgemeines Statistisches Archiv. J German Stat  84:141–153. 

 (35) Gelman A, Hill J (2006) Data Analysis Using Regression and 

Multilevel/Hierarchical Models. Cambridge University Press, New York. 

 (36) Gelman, A, Carlin, JB, Stern, HS and Rubin, DB (2003) Bayesian Data Analysis, 

2nd edn. Chapman & Hall/CRC Press, Boca Raton, FL. 

 (37) Royle JA, Berliner LM (1999) A Hierarchical approach to multivariate spatial 

modeling and prediction. J Agric Biol Envir S  4:29–56. 

 (38) Wikle CK (2003) Hierarchical models in environmental science. Int Stat Rev  

71:181–199. 

 (39) Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures 

of model complexity and fit. J Roy Stat Soc B  64:583–639. 

 (40) Borsuk ME, Stow CA, Reckhow K (2004) A Bayesian network of eutrophication 

models for synthesis, prediction and uncertainty analysis. Ecol. Model. 173: 219-

239. 

 (41) Castelletti A, Soncini-Sessa R (2007) Bayesian networks in water resource 

modelling and management. Environmental Modelling & Software, 22(8): 1073-

1074. 

 (42) Darwiche A (2009) Modeling and Reasoning with Bayesian Networks. Cambridge 

University Press, New York.  

 (43) Heckerman D (1999) A Tutorial on Learning with Bayesian Networks.  In Learning 

in Graphical Models, M. Jordan, ed. MIT Press, Cambridge, MA. 

 (44) Lee DC, Rieman BE (1997) Population viability assessment of salmonids by using 

probabilistic networks. North Am. J. Fish. Manage. 17: 144–1157. 

 (45) Ticehurst JL, Newham LHT, Rissik D, Letcher RA, Jakeman AJ (2007) A Bayesian 

network approach for assessing the sustainability of coastal lakes in New South 

Wales, Australia.  Environ. Model. Softw.  22(8): 1129-1139. 

 



     17 

Chapter 2: Bayesian hierarchical models for soil CO2 flux and leak 

detection at geologic sequestration sites
1
 

 

Abstract 

Proper characterizations of background soil CO2 respiration rates are critical for 

interpreting CO2 leakage monitoring results at geologic sequestration sites. In this paper a 

method is developed for determining temperature-dependent critical values of soil CO2 

flux for preliminary leak detection inference.  The method is illustrated using surface CO2 

flux measurements obtained from the AmeriFlux network fit with alternative models for 

the soil CO2 flux vs. soil temperature relationship.  The models are fit first to determine 

pooled parameter estimates across the sites, then using a Bayesian hierarchical method to 

obtain both global and site-specific parameter estimates.  Model comparisons are made 

using the Deviance Information Criterion (DIC), which considers both goodness of fit 

and model complexity.  The hierarchical models consistently outperform the 

corresponding pooled models, demonstrating the need for site-specific data and estimates 

when determining relationships for background soil respiration.  A hierarchical model 

that relates the square root of the CO2 flux to a quadratic function of soil temperature is 

found to provide the best fit for the Ameriflux sites among the models tested.  This model 

also yields effective prediction intervals, consistent with the upper envelop of the flux 

data across the modeled sites and temperature ranges. Calculation of upper prediction 

intervals using the proposed method can provide a basis for setting critical values in CO2 

leak detection monitoring at sequestration sites. 

                                                 

1
 Coauthored by Mitchell J. Small, Brian W. Junker, Grant S. Bromhal, Brian R. Strazisar and Arthur W. 

Wells and submitted to Environmental Earth Sciences (in review). 
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2.1 Introduction 

 

 With geologic sequestration of CO2 now being considered in a number of nations 

as a short- to medium-term strategy for reducing carbon emissions, there is a need for 

CO2 leak detection monitoring to ensure that the sequestered CO2 at a site does not return 

to the atmosphere, yielding the mitigation strategy ineffective (1-5).  

 A number of methods have been proposed for detecting CO2 leakage at 

sequestration and storage sites, including:  seismic profiling, pressure measurement, and 

other geophysical methods for detecting changes at the deep reservoir level; groundwater 

sampling for changes in water chemistry in observation wells; analysis of natural, 

injected and recovered carbon isotopes; near-surface monitoring of soil-to-air CO2 fluxes; 

soil gas measurement for the presence of tracers added to the injected CO2; and 

measurement of CO2, tracers or other indicator gases in the air above (or downwind of) 

the sequestration site (6-10).  These alternatives for site monitoring target different 

locations at or near the site at different stages of the injection and storage process, and it 

is generally recognized that some combination of methods will ultimately provide for the 

most cost-effective coverage.   

 The need to characterize natural background (pre-injection) conditions is common 

to most methods for leak detection, whether based on ambient air, soil gas, groundwater, 

CO2, tracer gas, or isotopic measurements.  In each case the natural background must be 

monitored and/or modeled to provide a baseline against which the operational 

measurements are compared.  Various mechanistic and/or statistical models could be 
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used to describe background variability.  For example, Cortis et al. (11) employ artificial 

neural networks (ANN) to model background CO2 surface concentrations and detect 

anomalies possibly caused by CO2 leakage. In our approach, Bayesian statistical methods 

are used to represent both natural variability and the uncertainty present in characterizing 

this variability.  Statistically, the problem is one of determining the pre-injection 

predictive distribution of the measured indicator and its associated prediction intervals 

(12-14).  The approach is similar to methods recommended for use by the US EPA for 

groundwater leak detection at Resource Conservation and Recovery Act (RCRA) waste 

sites (15).  The method for determining leak detection prediction intervals is developed 

and demonstrated in this paper using surface soil CO2 flux monitoring data. 

 Soil CO2 flux monitoring provides a direct estimate of CO2 exchange between the 

soil and the atmosphere, and is typically implemented using the accumulation chamber 

method (16).  Accumulation chamber monitors have been deployed and tested in a 

number of pilot projects, such as the Zero Emissions Research and Technology (ZERT) 

monitoring experiment in Bozeman, Montana (17, 18).  The background flux of CO2 

results from natural soil respiration processes and can be highly variable, depending on 

local climate and vegetation. It is thus important to account for natural variation of this 

baseline when attempting to isolate deep source leakage contributions to the monitored 

soil CO2 flux.  

Predictive models for CO2 respiration rates generally involve a combination of 

mechanistic expressions for biological activity and the fitting of empirical parameters to 

observed field data.  The explanatory variables most often included in these models 

include soil temperature and moisture (19-24).  Soil temperature is recognized as the 
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most important and also the most widely used factor for modeling soil respiration rates 

because of its high degree of correlation with ambient temperature and its essential role in 

regulating biological mechanisms for energy generation (24-26). Generally soil 

respiration rates increase with soil temperature, but when temperatures become too high, 

biological activity decreases and thus soil respiration rates are inhibited (27).  Another 

important input considered in a number of CO2 respiration models is soil moisture.  As in 

the case of soil temperature, a non-monotonic relationship is expected with soil moisture, 

since biological activity is inhibited when soils are dry, but gas transport is blocked when 

soils become saturated (23, 28-31).  However, in many cases statistically significant 

relationships with soil moisture cannot be identified once soil temperature is included in 

the model (32, 33).  Recent studies have attempted to include the effects of other factors, 

like net primary production, or biomass, into soil respiration models (24, 26). 

Nevertheless, these models require more complex functional forms and submodels, more 

fitted parameters, and a greater amount of field data to support the estimates. While 

improvements in model prediction performance have been achieved, these applications 

are usually limited to a single site or biome. Soil respiration can be further partitioned 

into root respiration and microbial respiration and they may respond differently to soil 

temperature (34, 35), but due to limited data availability, this partition is not considered 

in this study.  

The method for building Bayesian hierarchical models for soil CO2 flux and leak 

detection is illustrated using nine sites with soil respiration and temperature data from the 

Ameriflux database (36). The sites are chosen since they have a relatively large number 

of observations and encompass conditions across a range of climate, vegetation, and soil 
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conditions. While Hibbard et al. (36) performed an extensive study of soil respiration 

rates for major Ameriflux sites in the Northern hemisphere, their analysis was limited to a 

nonlinear regression model of Lloyd and Taylor (25).  A number of the Ameriflux sites 

were also included in the modeling study of Reichstein et al. (23).  To demonstrate our 

methodology, four alternative models are tested, though all with dependency limited 

solely to soil temperature.  Subsequently, the best fitting model is expanded to include a 

term for soil moisture to see whether the additional complexity is justified using 

statistical criteria.  For application at potential carbon sequestration sites, soil respiration 

models are tested for their ability to estimate both central tendency CO2 flux rates as a 

function of explanatory variables and upper prediction intervals for these relationships, 

since it is the latter that determine critical values for leak detection. Bayesian hierarchical 

models are fit across the sites to illustrate how multisite information can be used to 

provide more-general model selection concurrent with site-specific estimation.  

 

 

2.2 Data and Methods 

2.2.1 Site Data 

CO2 respiration and soil temperature data were obtained for nine AmeriFlux and 

CarboEurope sites included in the AmeriFlux database (36).  These nine sites are the 

largest in terms of available data, with each having at least 50 concurrent observations of 

soil respiration and soil temperature.   The nine sites and their data summaries are 

presented in Table 2.1.  As indicated these sites represent four biomes: the IOM site is 

categorized as grasslands (GRS); the HAR and UMB sites represent mixed 
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deciduous/evergreen forest (MXD); the JUN site belongs to woodland/savannas (WSV); 

and the remaining five sites are all from evergreen needleleaf forests (ENF). The data 

were collected over a time period from 1995-2002.    

 

Table 2. 1    Characteristics of Nine AmeriFlux Sites 

Site
a
  

 

 

Site 

number 

 

Sample 

Size 

 
Soil Respiration Rate  

(μmol CO2 m
-2

 s
-1

)   

Mean (Std. Dev.) 

Temperature             

(°C) 

Mean (Std. Dev.) 

 

Biome
b 

HAR 1 182 3.2  (2.0) 12.0 (5.0) MXD 

HOW 2 149 2.7  (1.7) 9.5  (6.0) ENF 

IOM 3 658 1.6  (1.4) 20.0  (8.6) GRS 

JUN 4 87 0.56  (0.30) 20.0 (6.8) WSV 

MEO 5 302 2.1  (1.1) 13.0 (5.5) ENF 

MEY 6 258 1.5   (0.90) 16.0 (5.8) ENF 

THA 7 278 2.6  (1.7) 6.6 (4.3) ENF 

UMB 8 78 4.6  (2.4) 13.0 (5.8) MXD 

WDN 9 127 2.2  (0.69) 10.0 (3.3) ENF 
 

a 
HAR = Harvard forest site, Massachusetts;  HOW = Howland site, Maine;  

IOM = Ione modeled site, California;  JUN = Metolius juniper site, Oregon;  

MEO = Metolius old site, Oregon;  MEY = Metolius young site, Oregon; 

THA=  Tharandt site, Germany;  UMB = University Michigan Biol. Station, Michigan;  

WDN = Weidenbrunnen site, Germany 
b
MXD = Mixed deciduous/evergreen forest; ENF = Evergreen needleleaf forests; 

GRS = Grasslands; WVS = Woodland/savannas. 

 

 

The average mean daily soil respiration rate (Rs) across the nine sites was 2.12 

μmol m
-2

 s
-1

.  The highest single measurement of soil respiration (9.88 μmol m
-2

 s
-1

) 

occurred at the UMB site in July 1999, and the lowest value (0.03 μmol m
-2

 s
-1

) was 

measured at the IOM site in October 2001. The UMB site also exhibits the highest 

average soil respiration rate over the study period, 4.6 μmol m
-2

 s
-1

, while the lowest 

average respiration rate is calculated for the JUN site, 0.56 μmol m
-2

 s
-1

.   Relative 
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standard deviations (standard deviation divided by the mean) for the soil respiration rates 

range from 0.52-0.63 for seven of the nine sites, indicating a similar level of variability 

for each.  Somewhat higher variability is exhibited at the IOM site (relative standard 

deviation = 0.88), while somewhat lower variability is found for the WDN site (relative 

standard deviation = 0.33).  Measured soil temperatures at the sites ranged from 3.0°C to 

37.2°C.  The highest average soil temperatures are found at the IOM and JUN sites 

(20.0°C), while the lowest average occurs at the THA site (6.6°C). 

2.2.2 Soil Respiration – Temperature Models 

A number of preliminary tests of alternative models were conducted for the 

Ameriflux sites using simple linear or nonlinear regression.  Various variable 

transformations were also considered to insure that the fitted models would yield 

residuals that were normally distributed or at least approximately normal (26). The 

following four models, representative of a range of previous mechanistic and empirical 

applications, were chosen for further study:  (1) a conventional first-order exponential 

relationship, often referred to as the van’t Hoff simple Q10 model; (2) a log- quadratic 

model (37); (3) a modified Davidson model with a formula similar to that of the 

Michaelis-Menten model (24); and (4) a square root-quadratic model (38): 

Simple Q10:    TbafluxCO 2ln     (1) 

Log-quadratic:    2

2ln TcTbafluxCO        (2) 

Modified Davidson:  
)10(2)1(

)10(2)2333.01(

10/)10(

10/)10(

2
bTaT

bTT
fluxCO

T

T










   (3) 

Square root-quadratic:    22/1

2 TcTbafluxCO    (4) 
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In each case, T is soil temperature (°C) and CO2 flux is the average mean daily soil 

respiration rate (μmol m
-2

 s
-1

). The constants in the modified Davidson model (0.2333, 2 

and 10), are adapted from an illustrative model by Davidson et al. (24).  All four models 

can be represented as a general function g(T|θ) where θ represents a parameter vector (a, 

b) or (a, b, c).  Except for the simple Q10 model, all candidate models have the ability to 

capture nonmonotonic behavior in the soil respiration-temperature relationship.  

2.2.3 Bayesian Statistical Formulation and Parameter Estimation 

Bayesian hierarchical models have been developed in recent years for a number of 

environmental applications (39-45).  The approach allows model inferences to be shared 

across sites (or other subunits, such as species) and yields both global and subunit-

specific parameter estimates.  The model structure for the Bayesian hierarchical 

regression model is given by: 

yij = g(Tij|θj) + εij ,    θj  ~  fθ(θj|)         (10) 

where yij is the i
th

 observation of soil respiration at site j or the appropriate 

transformation
2
; g(Tij|θj) is the prediction from one of the four soil respiration models 

noted above; and εij, is the random error representing the variability that occurs over time 

or from point to point at a site due to meteorological, geochemical, and biological 

processes not captured by the fitted model.  Tij is the i
th

 soil temperature (°C) at site j, and 

θj  represents the parameter vector for site j, that is, a vector (aj, bj) or (aj, bj, cj), 

depending on the model.  The hierarchical nature of the model is captured by the second 

                                                 
2
 Transformations include the logarithm transformation,  fluxCO2ln , for the simple Q10 and log-

quadratic models, and the square-root transformation,   2/1

2 fluxCO , for the square-root quadratic model. 
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part of equation 10, where fθ(θj|)  is the global distribution function for θ across sites.  

The parameters for this distribution, encompassed in the vector , are referred to as the 

hyperparameters of the hierarchical model.   

As is common in regression models, the residual error in equation 10 is assumed 

to follow a normal distribution with mean zero and common variance, δy
2
, i.e.  εij ~ N(0, 

δy
2
). Consequently, yij is also normally distributed: 

yij ~ N( g(Tij|θj), δy
2
)        (11) 

Equations 10 and 11 imply that the soil respiration model is hierarchical in terms 

of the mean, but non-hierarchical in the variance, that is, a common variance is estimated 

across sites.  

The second level of the Bayesian hierarchical model is implemented by assuming 

a multivariate normal distribution for fθ(θj|): 

θj ~ N( μ, δθ
 2

)        (12) 

where  = (μ, δθ) is the hyperparameter vector.   The model parameters are assumed a 

priori to be normal with respective means and standard deviations.  For example, for the 

three parameter models with 
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 . The 

parameters are assumed to be independent a priori, however, covariance in their joint 

uncertainties is induced in the posterior estimates through the numerical Markov Chain 

Monte Carlo (MCMC) simulation procedure described below.  
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For the modified Davidson model, two hyperparameter vectors were required in 

order for the parameter estimation to converge. The vectors differentiate between sites 

that are fit well by the model and those that are not. This division allows each group to 

have its own variance, smaller for the former and larger for the latter.  The HAR, THA 

and UMB sites are fit well by the model (with a lower variance), while the remaining 

sites are assigned to the second, higher-variance group.    

The prior distributions of the parameters were chosen to be diffuse and non-

informative, since little information is available to suggest particular parameter values 

over others.  Diffuse normal distributions with μ= 0 and δθ
 2

=10
4
, were selected.  The 

prior distribution for the common standard deviation, δy, was assigned a broad uniform 

distribution, from 0 to 100, to ensure positivity, while still allowing for model 

convergence.  

Parameters are estimated by MCMC simulation, yielding samples of simulation 

results that are subsequently analyzed to determine parameter central tendencies (means 

and medians), dispersions (standard deviations and 95% credible intervals), and 

correlation coefficients.  Detailed discussions of MCMC procedures are found in Berliner 

et al. (46), Wikle (47), and Gelman et al. (48, 49).  Gibb’s sampling along with the 

Metropolis-Hastings algorithm are used, implemented by WinBUGS version1.4 (50).  

For models 1, 2 and 4, the initial values for the MCMC chains were first randomly 

sampled from the diffuse prior distributions.  This approach was also initially used for the 

modified Davidson model; however, successful convergence was not achieved.  As such, 

point estimates of parameters determined by nonlinear regression were used to initiate the 

MCMC chains, accelerating their convergence.  For models 1, 2 and 4, convergence was 
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achieved by simulating three chains, each with 8,000 iterations.  For the modified 

Davidson model, 100,000 iterations were required.  The last 6,000 iterations for each 

model were saved for subsequent statistical analysis.  

  

2.2.4 Model Evaluation and Comparison 

Models were evaluated and compared using a traditional measure of goodness-of-

fit:  the mean square error (MSE) of predicted vs. observed CO2 flux rates; and a metric 

developed specifically for evaluating Bayesian hierarchical models:  the Deviance 

Information Criterion (DIC) (48, 51).  In general, the MSE decreases as the model 

complexity (number of parameters) increases, particularly when the complex model is a 

more generalized version of the less complex model.  In contrast, the DIC considers both 

the goodness-of-fit and a penalty for model complexity. DIC is defined as 

DpDDIC           (13) 

where D  is the expected deviance and Dp  is the effective number of parameters. The 

DIC computes a score based on the likelihood of the observed data given the model, then 

applies a penalty based on the number of fitted parameters. The DIC is specifically 

designed to overcome the difficulty in determining the effective number of parameters 

and degrees of freedom to assign to hierarchical models.  For both the MSE and DIC, a 

smaller value is preferred.   

2.2.5 Posterior predictive distributions 

The joint parameter distributions simulated for each model with the MCMC 

method provide the basis for estimating a predictive distribution and associated 
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prediction interval for CO2 flux rates as a function of temperature for each model at each 

site. The predictive distribution represents the uncertainty in CO2 flux rate given 

temperature that results from both the uncertainty in the fitted parameter values of the 

model and the variability represented by the variance term.  The prediction interval 

identifies a critical percentile along this distribution that may be used to judge the 

likelihood that a particular flux rate observed at a given soil temperature was sampled 

from the fitted distribution, reflective of naturally occurring conditions, vs. sampled from 

a distribution with added CO2 flux from a possible leak.  For example, the 95% 

prediction interval extends from the 2.5% value of the simulated distribution to the 97.5% 

value of the distribution, with the latter providing a possible critical value for leak 

detection.  In this paper, a value of 97.5%, corresponding to the upper bound of 95% 

prediction intervals, is chosen for illustrative purposes.   

The steps in estimating the predictive distribution for each model at each site are 

as follows: 

1. The last 6000 sets of parameter values of the simulated MCMC chain constitute 

samples from the joint parameter distribution.  

2.   For each parameter set a mean CO2 flux rate is computed for the chosen soil 

temperature. 

3.   The error variance for each parameter set is used to simulate a normally distributed 

error term for addition to the mean from b), then this sum is transformed if needed 

(depending on the model) to obtain a sample of the CO2 flux rate corresponding to the 

predictive distribution. 



     29 

4.   The resulting sample of predicted CO2 flux rates (n = 6000) is analyzed to estimate 

targeted percentiles, e.g., the 2.5, 50, and 97.5% values, for the given temperature, 

model, and site. 

 

 

2.3 Results 

2.3.1 Parameter estimation   

The full sets of parameters estimated for the four Bayesian hierarchical models 

are shown in Table 2.2, including the Bayesian posterior median of each parameter and 

their 95% credible intervals.  Median and 95% credible intervals are likewise reported for 

the model standard deviations, y. Estimates for Bayesian pooled models, in which data 

from all sites are combined to fit a single (pooled) model across sites, are also presented 

in Table 2.2 for comparison. The fitted models yield statistically significant parameter 

estimates in all but a few cases. Further interpretation of the specific parameter estimates 

for each model is found in Appendix A and graphical presentations of the fitted 

relationships are shown below for selected sites.  As expected, the estimated y(hierarchical) 

of the Bayesian hierarchical model is smaller than the y(pooled) of the Bayesian pooled 

model, indicating that the hierarchical structure allows more accurate prediction, though 

at the cost of greater model complexity and a higher effective number of model 

parameters.  
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Table 2. 2    Summary of Markov Chain Monte Carlo Parameter Estimates for Bayesian 

Hierarchical Model Fit for each CO2 Flux - Temperature Model for each Site 
A. Simple Q10 (log-linear) Model 

Parameter:                           a                                                     b                            

Site  2.50% median 97.50% 2.50% median 97.50%    

  HAR -1.30 -1.07 -0.84 0.14 0.16 0.17    

  HOW -0.88 -0.70 -0.52 0.13 0.14 0.16    
  IOM 1.76 1.88 1.99 -0.10 -0.10 -0.09    

  JUN -2.04 -1.65 -1.26 0.03 0.05 0.06    

  MEO -0.68 -0.52 -0.35 0.08 0.09 0.10    
  MEY -0.63 -0.42 -0.21 0.03 0.04 0.05    

  THA -0.39 -0.26 -0.14 0.13 0.15 0.17    

  UMB -0.39 -0.09 0.24 0.09 0.11 0.13    
  WDN -0.75 -0.42 -0.09 0.08 0.11 0.14    

Bayesian 

Pooled 0.77 0.85 0.93 -0.04 -0.03 -0.03    
ζy(hierarchical)  0.578 0.596 0.614       

ζy(pooled)  0.945 0.972 1.004       

B. Log-quadratic Model 

Parameter:                           a                                                     b                                                     c                           

Site  2.50% median 97.50% 2.50% median 97.50% 2.50% median 97.50% 

  HAR -1.64 -1.59 -1.31 0.17 0.22 0.28 -0.01 -3.0E-03 -9.2E-04 

  HOW -1.09 -1.05 -0.87 0.17 0.23 0.28 -0.01 -4.9E-03 -1.9E-03 
  IOM 1.00 1.05 1.27 -0.06 -0.03 0.00 -2.5E-03 -1.8E-03 -1.0E-03 

  JUN -2.62 -2.49 -1.88 -0.04 0.07 0.15 -2.8E-03 -7.1E-04 2.4E-03 

  MEO -1.07 -1.02 -0.78 0.09 0.14 0.19 -4.1E-03 -2.1E-03 -1.1E-04 
  MEY -1.06 -1.00 -0.69 0.03 0.08 0.13 -2.9E-03 -1.4E-03 3.0E-04 

  THA -0.54 -0.52 -0.37 0.16 0.21 0.27 -0.01 -4.7E-03 -1.5E-03 

  UMB -0.71 -0.63 -0.29 0.11 0.16 0.24 -0.01 -2.3E-03 2.4E-04 
  WDN -1.05 -0.99 -0.64 0.11 0.17 0.26 -0.01 -3.3E-03 -9.6E-05 

Bayesian 

Pooled -0.71 -0.70 -0.61 0.19 0.21 0.22 -0.01 -0.01 -0.01 
ζy(hierarchical)  0.572 0.589 0.608       

ζy(pooled)  0.758 0.781 0.805       

C. Modified Davison Model 

Parameter:                           a                                                     b                            

Site  2.50% median 97.50% 2.50% median 97.50%    

  HARa  18.2 62.1 139.2 -319.8 -144.9 -41.7    
  HOWb  0.01 0.04 0.21 -0.04 0.38 0.43    

  IOMb  0.32 0.34 0.37 0.31 0.32 0.32    

  JUNb  2.99 6.87 27.04 -2.09 -0.25 0.16    
  MEOb  1.46 3.17 9.38 -7.43 -2.14 -0.72    

  MEYb  1.54 2.78 7.51 -2.30 -0.53 -0.07    

  THAa  -17.41 -6.44 0.40 -338.5 -168.9 -33.17    
  UMBa  11.0 30.9 64.0 -330.4 -163.4 -58.0    

  WDNb  0.27 1.24 6.47 -9.45 -1.27 0.26    

Bayesian 

Pooled 0.22 0.23 0.24 0.32 0.32 0.33    
ζy(hierarchical)  0.849 0.874 0.901       

ζy(pooled)  1.288 1.327 1.371       

D. Square Root Quadratic Model 

Parameter:                           a                                                     b                                                     c                           

Site  2.50% median 97.50% 2.50% median 97.50% 2.50% median 97.50% 

  HAR 0.22 0.37 0.54 0.07 0.11 0.13 -1.2E-03 -1.0E-04 1.4E-03 
  HOW 0.55 0.65 0.75 0.09 0.11 0.12 -1.9E-03 -8.9E-04 1.8E-04 

  IOM 1.42 1.56 1.68 0.00 0.01 0.03 -1.9E-03 -1.5E-03 -1.2E-03 

  JUN 0.04 0.37 0.71 -0.01 0.02 0.06 -1.2E-03 -2.4E-04 7.4E-04 
  MEO 0.48 0.63 0.78 0.04 0.07 0.09 -1.3E-03 -3.1E-04 6.6E-04 

  MEY 0.51 0.68 0.89 0.02 0.04 0.07 -1.4E-03 -6.8E-04 2.4E-04 

  THA 0.75 0.83 0.90 0.09 0.11 0.13 -2.0E-03 -7.2E-04 7.0E-04 
  UMB 0.61 0.79 0.97 0.07 0.10 0.13 -1.3E-03 -1.3E-04 1.3E-03 

  WDN 0.50 0.69 0.88 0.05 0.09 0.12 -2.7E-03 -8.2E-04 7.2E-04 

Bayesian 
Pooled 0.62 0.68 0.74 0.12 0.13 0.13 -4.5E-03 -4.3E-03 -4.0E-03 

ζy(hierarchical)  0.294 0.303 0.312       

ζy(pooled)  0.432 0.445 0.458       
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a 
Gruop 1 includes HAR, THA and UMB. 

b 
Group 2 includes HOW, IOM, JUN, MEO, MEY, WDN. 

 

 

2.3.2 Model comparison for Bayesian pooled and hierarchical models 

The selected predictions of the four Bayesian hierarchical models and their 

Bayesian pooled versions are presented in Figure 1 below. The predictions represent the 

median values of the simulated predictive distributions of soil respiration as a function of 

temperature. The four sites shown represent the four different biomes in the dataset, the 

HAR site (MDF biome), HOW site (ENF), IOM site (GRS) and JUN site (WVS).  As 

shown in Figure 1, the hierarchical models fit the site data better than the pooled models 

do. At the HAR site (Figure 1 (a)), the four hierarchical models’ predictions are very 

close and exhibit similar upward-sloping convex shapes as a function of temperature for 

the soil respiration rate. For the HOW site (Figure 1 (b)), differentiation between the 

fitted model predictions is apparent above 15°C. The Q10 model keeps rising up steeply, 

the log-quadratic model and the square root-quadratic model go up mildly and are close 

to each other, and the modified Davidson model starts decreasing with temperature at 

around 18°C.  In contrast, the IOM site (Figure 1 (c)) exhibits a clear decrease in soil 

respiration rate at high temperature, which is common for the GRS biome.  All four 

models capture this behavior, except for the pooled modified Davidson estimate.  All of 

the hierarchical models for the IOM site predict monotonically decreasing relationships 

over the observed temperature range (6 – 35
o
C), except for the modified Davidson model 

which initially increases with temperature, then decreases.  The JUN site has very low, 

relatively constant soil respiration rates across the range of observed temperatures, and 

this behavior is captured reasonably well by each of the hierarchical models.   
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(c) IOM site (GRS)
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(d) JUN site (WVS)

0

2

4

6

8

10

-2 2 6 10 14 18 22 26 30 34

Soil Temperature (°C)

S
o

il
 C

O
2
 F

lu
x

 (
μ

m
o

l/
m

2
-s

)

 
 

 

Figure 2. 1    Comparison of Bayesian Pooled and Bayesian Hierarchical Model Prediction for 

Median CO2 flux for Four Models of Soil Respiration. The solid lines represent the prediction from 

Bayesian hierarchical models (different for each site), and the grid lines represent the prediction 

from Bayesian pooled models (same across all sites). Blue color is for simple Q10 model; red color is 

for log-quadratic model; green color is for square root-quadratic model; yellow color is for modified 

Davidson model:  (a) HAR site for mixed deciduous/evergreen forest biome; (b) HOW site for 

evergreen needleleaf forest biome; (c) IOM site for grassland biome; and (d) JUN site for 

woodland/savannas biome. 

 

 

The predictions of the Bayesian pooled models reveal a strong averaging effect 

across sites.  For instance, the pooled Q10 model is greatly influenced by the largest site 

(IOM), which exhibits a significant drop in soil respiration rates at high soil temperature, 

and the pooled data thus lead to an atypical (downward sloping) curve for the fitted Q10 

model.  The other two-parameter (modified Davidson) function also yields a monotonic 

   Data points ― Q10 ― Log-quadratic ― Squared-root quadratic  ― Modified Davidson 

--- Q10 pooled --- Log-quadratic pooled --- Squared-root quadratic pooled  --- Modified Davidson pooled 
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pooled function, though in this case upward sloping.  In contrast, the three-parameter 

models (log-quadratic and square-root quadratic) provide sufficient flexibility to yield a 

non-monotonic pooled relationship, better able to capture the range of behavior exhibited 

across sites.   

The goodness of fit of the alternative models and modeling approaches is 

summarized in Table 2.3.  For all four models there is a substantial decrease in the mean 

square error in moving from the single pooled model applied to all sites to the 

hierarchical model that provides for site-specific parameter estimates.  However, this 

requires an increase in the effective number of parameters from approximately 3-4 

(depending on the model), to between 12 and 25. The DIC, which penalizes models for 

the number of fitted parameters, is nevertheless consistently lower (better) for the 

hierarchical models.  As such, the added complexity of hierarchical models is indeed 

worth it.  By all measures the best fitting model is the hierarchical square-root quadratic, 

with a DIC value of 978.  The square-root quadratic also provides the best fitting (lowest 

DIC) pooled model, and has the lowest MSE for both the pooled and hierarchical fits.   

 

Table 2. 3    Mean Square Error (MSE) and Deviance Information Criterion (DIC) of Four Bayesian 

Hierarchical and Pooled Models of Soil Respiration (see Equation 13 for parameter definitions) 

    Model 

 

 

MSE 
(Pooled) 

 

MSE 
(Hierarchical) 

DIC  
(Pooled) 

DIC  
(Hierarchical) 

 

pD D  
 

DIC 
 

pD D  
 

DIC 

Simple Q10  

 

3.11 1.00 3 5891 5894 18.9 3817 3836 

Log-quadratic 

 

1.99 0.849 3.9 4962 4966 25.4 3769 3794 

Modified 

Davidson 

10.03 0.759 3 7213 7216 11.7 5441 5453 

Square root-

quadratic 

1.78 0.749 3.9 2583 2587 23.2 955 978 
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2.3.3 Posterior Predictive Distribution and Prediction Intervals  

Figure 2 illustrates the resulting predictive distributions from this procedure for 

the IOM and the HAR site, at a temperature of 15
o
C, based on parameter sets from the 

four Bayesian hierarchical models.  Each cumulative distribution function is computed 

from 6000 samples generated as described above. In the case of the IOM site, the models 

tend to converge at higher percentile values of the distribution, so that the 97.5% value is 

approximately 4 μmol CO2 m
-2

 s
-1

 in each case. The overall shapes of the four predictive 

distribution curves are somewhat similar for the IOM site, with some differentiation 

between the Q10 and log-quadratic models vs. the modified Davidson and square-root 

quadratic models. At the HAR site, the models show significant disagreement at higher 

percentage values of the distribution, and the two groups of curves are obviously 

distinguished from each other. The 97.5% values of the modified Davidson and square-

root quadratic models are approximately 5-6 μmol CO2 m
-2

 s
-1

; however, the 97.5% 

values of the Q10 and log-quadratic models are higher, approximately 9 μmol CO2 m
-2

 s
-1

.  
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(b) MDF (HAR site)
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Figure 2. 2    Cumulative distribution function of posterior predictive distribution of the CO2 flux at 

T = 15
o
C for the four Bayesian hierarchical models at the IOM and HAR sites. 

 

--- 97.5%                ― Q10    ― Log-quadratic     ― Squared-root quadratic  ― Modified Davidson 
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The 95% prediction intervals computed using the Bayesian hierarchical models 

for the four sites shown in Figure 1 are presented in Figure 3, along with the original 

data. The models yield similar results, especially for the lower (2.5%) prediction interval 

value, however, it is the upper value that is our primarily concern, since this (or a similar 

upper percentile) will be used as a critical value for leak inference. A consistent pattern is 

present at three of the sites: HAR, HOW, and IOM. In each case the four models yield 

similar 97.5% values over approximately half of the observed temperature range – for the 

HAR and HOW sites this occurs at lower soil temperatures, while for the IOM site this 

occurs at higher soil temperatures (in all three cases corresponding to lower flux rates).  

However, for the remaining portion of the curve the Q10 and log-quadratic models predict 

97.5% flux rates much higher than the other two models and much higher than any of the 

observations made at those temperatures. In contrast, the modified Davidson and square-

root quadratic models provide 97.5% estimates that reasonably track the upper envelope 

of the observed data, as would be targeted for leak detection applications. Given this 

result and the strong performance of the square-root quadratic model in the goodness of 

fit comparisons presented above, this model would appear to provide a preferred basis for 

modeling the soil temperature – CO2 flux relationship and associated prediction intervals 

at these sites.  
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Figure 2. 3    95% Prediction Intervals of Four Models of Soil Respiration. Blue color denotes Q10 

model; red color denotes log-quadratic model; green color represents square root-quadratic model; 

the yellow represents modified Davidson model:  (a) HAR site for mixed deciduous/evergreen forest 

biome; (b) HOW site for evergreen needleleaf forest biome; (c) IOM site for grassland biome; and (d) 

JUN site for woodland/savannas biome. 

 

 

To illustrate the effect of including soil moisture as an additional explanatory 

variable in the hierarchical model, the square-root quadratic model was refit using both 

soil temperature and soil moisture data for the nine Ameriflux sites (due to data 

limitations, the total sample size is reduced from 2119 to 1840).  This was implemented 

by modifying Equation 4 to include an additional linear term for soil moisture on the 

right-hand-side of the equation.  While the soil moisture term is statistically significant in 

single-site regression models for five of the nine sites, for three of these sites the fitted 

   Data points ― Q10 ― Log-quadratic ― Squared-root quadratic  ― Modified Davidson 
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coefficient is positive while for the other two it is negative.  Furthermore, for the 

Bayesian hierarchical model, addition of the soil moisture term yields a fitted model with 

a much higher DIC value (4575 for the model with the soil moisture term vs. 978 for the 

model with only the soil temperature terms).  As such, use of the additional parameters 

(the soil moisture term coefficients for each site and the hyperparameters across sites) is 

not statistically justified for the hierarchical model.  While the use of additional 

explanatory variables, such as soil moisture, can be readily accommodated in the general 

methodology proposed here, this use should be justified using appropriate statistical 

measures (such as the DIC) that consider the tradeoff between goodness-of-fit and model 

complexity. 

 

2.4 Discussion and Conclusion  

In this study Bayesian pooled and hierarchical models have been successfully 

developed and applied to predict soil CO2 respiration rates as a function of temperature at 

nine AmeriFlux sites. The hierarchical approach allows determination of a global 

parameter distribution for the set of sites, the sharing of information across sites, and site-

specific parameter estimates for each. The Bayesian MCMC method allows 

determination of the joint uncertainty of model parameters across sites, facilitating the 

calculation of predictive distributions for each site and the comparison of alternative 

models. The comparison of goodness of fit between the pooled and hierarchical models 

shows that the hierarchical structure enables much better prediction by providing site-

specific parameter estimates. The greater model complexity required by the hierarchical 

models is more than compensated for by the improved fit, as reflected in their lower DIC 



     39 

values. The ability to characterize the uncertainty at each site allows estimation of 

prediction intervals, which can provide a first basis for determining critical values of 

measured CO2 fluxes (conditioned on temperature) representing higher-than-natural 

values. Measurements above these flux rates could thus be indicative of a possible leak at 

a sequestration site.   

Among the four selected soil respiration models, the square root-quadratic model 

has the best performance in fitting the site data and providing reasonable prediction 

intervals. The square root-quadratic model has the lowest DIC and MSE for both 

hierarchical and pooled versions. Furthermore, the model’s upper prediction intervals 

reasonably match the upper envelope of observed values across different sites and 

different temperature ranges. This is a desirable feature for a model that may be applied 

for general use in leak detection applications.  This model should thus be among those 

considered for fitting respiration-temperature relationships and determining critical 

values for leak detection at planned CO2 sequestration sites.   

The Bayesian hierarchical approach illustrated here for determining the critical 

values of soil CO2 flux for leak detection can also be applied to other CO2 leak detection 

monitoring techniques, such as carbon isotopes or injected tracers.  In each case, the 

natural background data from multiple sites are characterized by the Bayesian 

hierarchical method in order to obtain the predictive distribution of the natural 

background data at each site. The predictive distribution is used to estimate the prediction 

intervals, and the upper value of the prediction intervals is the critical value of leak 

identification for the monitoring technique. The critical value is needed to determine 



     40 

when a measurement is statistically significantly different from that expected normal 

range for a given site and site conditions.   

Prediction intervals result from the combined effects of measurement error; 

variability in local climate, site geology, and soil conditions; and the uncertainty inherent 

in fitting models with finite datasets.  When measurements are available across multiple 

sites, Bayesian hierarchical models provide a basis for pooling this information, thereby 

reducing the overall uncertainty, while still maintaining site-specific model estimates.   
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Chapter 3: Probabilistic Design of a Near-Surface CO2 Leak Detection 

System
3
 

 

Abstract  

A methodology is developed for predicting the performance of near-surface CO2 

leak detection systems at geologic sequestration sites.  The methodology integrates site 

characterization and modeling to predict the statistical properties of natural, pre-injection 

CO2 fluxes; the transport of potential CO2 leakage from the subsurface reservoir; and the 

detection of CO2 transport, surface fluxes, or other signals measured by the monitoring 

network.  The probability that a leakage event will be detected is computed as the 

probability that the leakage signal is sufficient to increase to total flux beyond a 

statistically-determined threshold for a presumptive leak.  The methodology is illustrated 

assuming a monitoring network utilizing CO2 surface flux chamber measurements on a 

uniform grid.  A highly idealized site is assumed, with simple subsurface layering, 

horizontally homogeneous permeability, and a uniform probability of leakage across the 

site.  The TOUGH2 model is used to predict the spatial profile of surface CO2 fluxes 

resulting from different leakage rates and different soil permeability.  A response surface 

is fit to the TOUGH2 results to allow interpolation across continuous values of 

permeability and leakage rate.   Nonlinear, non-monotonic relationships of network 

performance with soil permeability and network density are evident, and in general dense 

networks (with ~10-20 meters between monitors) are required to ensure a moderate to 

                                                 
3
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high probability of leak detection.   Therefore, surface soil CO2 flux measurement is 

unlikely to be feasible as a stand-alone technology for leak detection.  Rather, it will most 

likely be applied in high risk locations, such as areas around wells and features, during 

the injection and post-injection period. Extensions to consider detection networks using 

multiple monitoring technologies at real sites with complex, nonhomogeneous site 

conditions, are discussed. 

 

3.1 Introduction 

Fossil fuel combustion is the principal source of anthropogenic CO2 emissions 

globally and in the U.S.  In 2007, electric power plants and industrial sources together 

resulted in the majority of US CO2 emissions (42% from power plants, 15% from 

industrial sources) (1, 2).  Coal-fired power plants constitute the largest single emitter of 

CO2 and despite efforts to transition to alternative sources of energy, they are likely to 

remain so in the near future.  

As a near-term solution the U.S. and many other nations are pursuing the 

implementation of carbon capture and sequestration (CCS) to reduce CO2 emissions from 

electric power plants and industrial sources.  CCS involves the post-combustion capture 

of CO2 and its subsequent injection into geologic formations.  However, to ensure that 

CCS is effective, leak detection monitoring is required to verify that a significant portion 

of the captured CO2 does not return to the atmosphere.  To ensure that greenhouse 

emissions credits are fairly applied, performance criteria proposed for the U.S. dictate 

monitoring technologies capable of detecting small leaks of no more than 1% of the 

amount of injected carbon dioxide (3).  
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Several monitoring technologies have been developed to detect CO2 leakage at 

sequestration sites, including:  observation of reservoir seismic and pressure profiles; 

ground water chemistry monitoring; near-surface measurements of soil CO2 fluxes, 

carbon isotopes and tracer compounds injected with the sequestered CO2; and nearby 

atmospheric monitoring of CO2 and tracer gases (4-8). However, as a CCS site may span 

several square kilometers, many hundreds of monitors may be needed to cover such a 

large area, potentially at a significant cost.  Additionally, more than one type of 

monitoring technology may be needed at a site to ensure early detection and allow 

quantitative estimation of leakage rates.  Operators could incur high costs or risk non-

detection if such monitoring networks are designed poorly.  Methodologies are thus 

needed that can utilize site-specific information to design efficient networks with high 

probabilities of leak detection, but also with low false positive rates.  Furthermore, an 

effective design methodology should be able to consider the application of multiple 

monitoring technologies at a site.   

This paper provides a probabilistic methodology for assessing the performance of 

a monitoring network, using characterizations of leak occurrence, CO2 transport and flux 

in the subsurface, and statistical attribution of changes in monitored values that could be 

induced by these fluxes.  While the methodology is introduced in this paper for a single 

type of measurement, the general approach is broadly applicable and subsequent 

applications will demonstrate the combination of leak inferences and designs for systems 

that deploy multiple measurement technologies.  The specific objective of the proposed 

methodology is to estimate the probability that a monitoring network will detect CO2 

leakage rates of a given size.  The methodology is illustrated for a CO2 surface flux 
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monitoring network in which measurements of CO2 flux (or ―seepage‖) rates are taken at 

fixed locations at a site using a chamber accumulation method or similar technique (7, 9-

11).  Background (pre-injection) monitoring at the site is used to determine critical 

threshold values for leak detection and ongoing (post-injection) monitoring is used for 

presumptive leak inference. A presumptive leak is inferred when the measured flux rate 

at a monitor exceeds a critical threshold value, determined to occur with low probability 

under the background (no-leak) condition.  The statistical approach for leak inference is 

thus similar in concept to that used for groundwater leak detection at waste sites (12-15).   

To evaluate the relationship between leakage events and possible incremental 

fluxes, a subsurface simulation model, TOUGH2 (16), is applied under a range of 

scenarios for the leakage rate, leakage location (relative to monitors), and subsurface 

conditions of interest (in particular, permeability).  The TOUGH2 model is able to 

simulate multiphase, multicomponent fluid flow through porous media, allows for 

flexible representation of physical processes and site hydrogeology (17), and has been 

applied to simulate near surface CO2 seepage in a number of recent studies (18-20). Other 

recent studies have considered the risk of transport from a sequestration reservoir to the 

surface through fissures, wells, and other subsurface features (21).  Here we consider the 

transport and detection of such a leakage event only after it has reached the near-surface 

vadose zone. However, the general methodology is applicable to leak detection at any 

stage in the post-injection process using any technology where a leakage signal must be 

distinguished from background variability (22).  

 



     50 

3.2 Methodology   

The approach is first presented in a general manner, followed by idealizations to 

facilitate demonstration of the overall methodology.  These idealizations include the 

assumption of a spatially homogeneous (though temporally varying) distribution of 

background CO2 flux rates; a uniform leakage occurrence probability across the site; 

isotropic, homogeneous subsurface properties resulting in a radially symmetric spatial 

profile of CO2 flux around a leakage point; and leakage flux detection occurring (or 

missed) only at the monitor closest to the point of leakage.  These assumptions allow for 

a number of computational simplifications, including the substitution of the TOUGH2 

model flux profile results with a nonparametric response surface for flux vs. distance.  

These simplifications allow a full illustration of the conceptual methodology, setting the 

foundation for subsequent applications requiring additional data to characterize site 

heterogeneity and greater computational resources to model the subsurface transport of 

potential CO2 leakage plumes.   

While a highly idealized site model is assumed, the parameters of the model are 

chosen to roughly correspond to conditions found at the Zero Emission Research and 

Technology Center’s (ZERT) testing field site at Bozeman, Montana.  The ZERT site is a 

collaborative research effort designed to advance scientific understanding of site 

hydrogeology, injection, potential leakage, monitoring, and modeling dimensions of 

geologic CO2 sequestration sites (http://www.montana.edu/zert/).   ZERT conditions and 

data are used to characterize the background CO2 flux rates and to prescribe the range of 

leakage rates and soil permeability considered in demonstrating the methodology.  

 

http://www.montana.edu/zert/
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3.2.1 General framework for leak detection 

Consider a leakage event releasing CO2 to the subsurface above a sequestration 

reservoir at source location s, at steady leakage rate Ls [M/T].  This leakage is assumed to 

result in a steady seepage flux rate at surface monitoring location m, of Sm [M/L
2
-T].  The 

first step is to determine the functional relationship (FR) between Sm and Ls: 

 

 msLFRS sm ,,          (1) 

 

This can be generally accomplished through use of a subsurface fate and transport 

model, such as TOUGH2, applied to a fully specified sequestration site.  Leaks of size Ls 

are simulated with the model at location s and the seepage rate Sm is computed at location 

m.  The model may be as complex as needed to accurately capture the source-receptor 

relationship, e.g., including multiple layers of varying thickness and permeability.  

However, when a complex heterogeneous system is assumed, all combinations of 

possible source points s and monitoring locations m must be simulated, creating a very 

high computational demand.   

In this first demonstration of the methodology, we assume a homogeneous, 

isotropic subsurface, resulting in a radially symmetric functional relationship (RSFR): 

 

 mssm rLRSFRS ,,,       (2) 
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where  is a vector of subsurface properties input to the fate and transport model (in this 

case, permeability) and rs,m is the radial distance from source point s to monitoring 

location m. 

The steady seepage from the leakage event is assumed to be superimposed on the 

naturally occurring CO2 respiration rate at the monitoring location, Ym [M/L
2
-T], to yield 

a total flux X m [M/L
2
-T]: 

 

 mmm SYX         (3) 

 

The monitoring device measures Xm and an inference is drawn regarding the 

potential presence of a leak at the site.  If Xm equals or exceeds a critical threshold value 

m, then a presumptive leak is inferred.  Otherwise, no leak is implied.  The threshold m 

is chosen so that there is a very small probability that it will be exceeded under the (no-

leak) condition of natural variability (the exceedance probability chosen for the threshold 

corresponds to the false positive rate for an individual measurement).  In practice, m 

could vary with time (e.g., seasonally), location at the site, and site conditions, such as 

soil temperature and moisture.  In Yang et al. (23) we develop Bayesian statistical models 

to relate natural CO2 surface flux to soil temperature, and upper prediction intervals from 

these models are employed here to illustrate the methodology.  A single threshold is 

assumed to apply at all locations at the idealized site.   

With this formulation, the probability of detecting a leak of size Ls at monitoring 

location m is the probability that the total flux that results, Xm, is above the detection 

threshold m.  This probability, P[Dm| Sm = FR(Ls,s,m)] is given by: 
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      P[Dm| Sm = FR(Ls,s,m)]    =    P[Xm > m] 

 

    =    P[Ym  +  Sm  >  m] 

 

    =    P[Ym   >   (m  -  Sm)] 

 

    =    1  -  P[Ym   <   (m  -  Sm)] 

 

    =     1 – FYm(m - Sm)    (4) 

 

where FYm() is the cumulative distribution function (cdf) of the naturally occurring CO2 

flux rate.  The problem is thus reduced to one of computing the functional relationship 

between Sm and Ls, specifying the probability distribution of naturally occurring measured 

CO2 flux at the monitoring locations, and choosing an appropriate threshold m.  In our 

analysis, m is determined as a function of soil temperature using a relationship fit to pre-

injection baseline data, then subsequently applied with soil temperature measurements 

taken concurrently with the CO2 flux samples collected during detection monitoring.  The 

detailed assumptions and simplifications needed to provide a first demonstration of the 

methodology are provided in the sections that follow. 
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3.2.2 Distribution of background CO2 flux rate and determination of critical value for 

leak detection  

A variety of statistical methods can be used to characterize background variability 

for carbon sequestration sites.  For example, Cortis et al. (24) apply artificial neural 

networks (ANN) to model background CO2 surface concentrations.  To demonstrate our 

methodology, a Bayesian statistical method is used to fit a soil temperature-CO2 flux 

relationship and calculate upper prediction intervals for measured values (23).  The fitted 

posterior distribution of model parameters and the resulting predictive distribution for 

individual measurements reflect the high variability and uncertainty of natural 

background soil CO2 fluxes typically encountered at sites.  The upper prediction interval 

for the natural flux provides a rational basis for selecting the leak detection threshold and 

facilitates the subsequent analysis of the probability that the monitoring threshold will be 

exceeded, with and without incremental flux from the occurrence of a leak.   

Natural background soil CO2 flux rates (Ym, μmol/m
2
-s) are characterized using 

empirical regression models to predict the probability distribution function of Ym at a site 

as a function of the soil temperature, T (
o
C).  In Yang et al. (23) several Bayesian 

hierarchical regression models were built and tested using soil CO2 flux measurements 

obtained from the nine largest sites in the Ameriflux database (25).  Among the four 

empirical models considered, a square root-quadratic relationship with soil temperature 

was found to provide the best goodness of fit and the most stable estimates for the upper 

prediction intervals (needed to determine m).  In this study new temperature-flux data 

were obtained from the ZERT site.   Using a model selection procedure that considers the 

tradeoff between model complexity and prediction errors (see Appendix B), a simpler 
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square root-linear relationship was found to provide the best fit for these data.  The 

square-root linear relationship is assumed to apply at all locations m at the site, with the 

background CO2 flux rate given by: 

 

   TbaYm

2/1
       (5) 

 

where a, b, and c are fitted constants and  is an error term, normally distributed with 

mean zero and variance 2

 .  As described in Yang et al. (23), Equation 5 is estimated 

using Markov Chain Monte Carlo (MCMC) simulation.  Each sample in the simulation 

provides an estimate for a, b, and  .  These vectors are sampled uniformly and the 

predictive distribution of    TYm

2/1
is simulated by drawing multiple normal samples 

with a mean of  Tba   and a standard deviation of  .   The empirical cumulative 

distribution function of the simulated predictive distribution is then evaluated to 

determine the upper prediction interval value, m, used for leak detection.  For example, 

if the upper limit of the 99% prediction interval is desired (this upper limit corresponds to 

the 99.5 percentile value of the empirical distribution) and 10,000 values are simulated 

from the predictive distribution and ranked from smallest to biggest, then m is assigned 

the value of the 9,950
th

 value in this sample.  

The chamber CO2 flux measurements at the ZERT site were collected from 

September 2006 – June 2007, yielding a total of 105 CO2 flux –  soil temperature 

measurements.  Parameter estimation for Equation 5 was conducted using the MCMC 

procedure in WinBUGS14 (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml) 

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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with three chains, each with 10,000 iterations (burn-in of 2500), and the last 7,500 

iterations saved for analysis.  The posterior parameter estimates are summarized in Table 

3.1, including the parameter medians, standard deviations, 95% probability intervals, and 

correlation coefficients.  Figure 3.1 presents the resulting 99% prediction interval for CO2 

flux as a function of soil temperature.   As shown, the upper prediction interval (99.5% 

estimate) does appear to provide a reasonable envelope for the natural, pre-injection 

conditions, with only one of the 105 observations above the threshold.  This upper 

prediction interval is used for the leak detection threshold, m, in the analysis that 

follows.   

Table 3. 1    MCMC posterior estimates for parameters in square root linear model (Eq. 5) for ZERT 

site (n = 105).  Based on MCMC sample size of 7,500 

A. Posterior parameter estimates 

 a b   

Median 0.21 0.0855 0.545 

Std. Dev. 0.220 0.00967 0.0388 

95% Interval (-0.219, 0.635) (0.0668, 0.105) (0.478, 0.629 ) 

 

 Posterior parameter correlations

Parameters ρ  

a, b -0.969 

a, ζε 0.00678 

 b, ζε -0.00507 
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Figure 3. 1    CO2 flux vs. soil temperature relationship fit for ZERT site.  The 99% prediction 

intervals are shown for square root linear model (0.5% and 99.5% values) along with observed 

ZERT site data. 

 

3.2.3 Simulation of seepage rate profile from a leakage event  

In order to produce a simulated data base for the spatial distribution of CO2 

seepage flux around a point source, the TOUGH2 code with the EOS7CA module was 

used. This module is capable of including water, air, and CO2, making it suitable for 

simulating two-phase flow in the vadose zone.  For the sake of selecting a reference 

setting, conditions similar to those at the ZERT test site are assumed (10), though 

simplifications are made consistent with the goal of demonstrating the methodology for 

an idealized site.   

Similar to the ZERT field tests, our base case includes a CO2 leakage source 2.45 

m below the soil surface with a leakage rate of 1.93 x 10
-4

 kg/s (16.67 kg/day).  Unlike 
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the ZERT field tests which included multiple leakage points along a pipe, our simulations 

represent only a single point source, since the aim of this study is to quantify the 

likelihood of detection as a function of distance from a source. The topsoil in the domain 

is assumed to be a 1.2 m thick silty soil with high capillary retention properties. The 

lower 8.8 m of the domain is a cobble-type layer with very low capillary retention. To 

mimic the presence of the atmosphere above the domain, a hypothetical soil layer is 

added with a porosity of 0.99, high relative permeability and no capillary retention. The 

total flux rate from the soil to the atmosphere is computed as the sum of the computed 

fluxes due to diffusion and convection into this atmospheric layer.  Please see Figure 3.2 

below for the physical scenario with an example CO2 plume given 1.93 x 10
-7

 kg/s 

leakage rete, 1mD permeability and 1.35 vadose zone thickness. 
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Figure 3. 2  Example CO2 seepage simulation by TOUGH2 for leakage rate L1 = 1.93 x 10
-7

 kg/s, 

permeability P1=0.001 Darcy and vadose zone thickness = 1.35m.   

 

The leakage event is simulated for 50 days, and the resulting seepage distribution 

as a function of radius is computed.  In order to populate the data base for the response 

surface model, three parametric studies were performed. First, the topsoil permeability 

was modeled with seven different values varying from 1 mD to 1000 D, by factors of 10. 

Second, the leakage rate was varied over the range from 1.93 x 10
-7

 to 1.93 x 10
-1

 kg/s, 

again by factors of 10. The four extreme cases with combinations of the highest and 

lowest permeabilities and leakage rates were also evaluated. Overall, a total of 17 cases 
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were simulated using a main effects centered statistical design to fit the response surface 

relationships.   

 

3.2.4 Nonparametric response surface modeling of TOUGH2 simulations   

While each of the 17 initial TOUGH2 simulations were conducted for particular 

values of the leakage rate and permeability we seek to estimate the key model output, 

CO2 seepage rate as a function of distance from the leak, as a continuous function of 

leakage rate and permeability.  In the subsequent analysis, this allows us to compute the 

leak detection probability for arbitrary (i.e., continuous) combinations of permeability 

and leakage rate (within the range used to generate the TOUGH2 simulations).  This is 

accomplished using a nonparametric cubic spline function (26) to determine the seepage 

rate Sr as a function of distance r for each of the 17 TOUGH2 model simulations with 

specified permeability and leakage rate, then applying 2D kriging at a given r to 

interpolate estimates of Sr for other (unmodeled) values of the leakage rate and 

permeability.  An intermediate vadose zone thickness of 1.35 m is assumed in this 

analysis.    

Figure 3.3 shows the CO2 seepage rate as a function of distance (r, in meters) 

from the point of leakage, for the intermediate case permeability = 1 Darcy, for each of 

the leakage rates tested, ranging from 1.93 x 10
-7

 kg/s (L1) to 1.93 x 10
-1

 kg/s (L7).  

Figure 3.3 is a similar plot, showing the effect of varying permeability, while keeping the 

leakage rate at the intermediate value, L4 = 1.93 x 10
-4

 kg/s.  In both figures, the original 

TOUGH2 results are shown as points and the fitted spline curves are shown as solid lines.   
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Figure 3.3 indicates a monotonically increasing response in the seepage rate as the 

leakage rate increases, as would be expected.  Figure 3.4 indicates somewhat more 

complex behavior as the permeability changes with a fixed leakage rate.  At low 

permeability, the seepage rate vs. distance profiles are relatively flat, yielding lower 

seepage rates near the source of the leakage, but higher seepage rates (relative to the high 

permeability cases) at larger distances.  The high permeability cases yield very high 

seepage rates near the source, but the zone of influence is limited to a smaller distance of 

~8 meters or less.  For Figure 3.3 it is found that the increase of leakage rate increases the 

diffusion flux of the seepage, but for Figure 3.4 the diffusion fluxes keep similar values 

in all cases as the permeability increases. The advection part of the seepage only 

increases monotonically as the leakage rate increases. For the permeability study, the 

advection part of the seepage also increases with permeability until around 100D (P6 

case), and the advection part in the P7 case drops back to the magnitude similar to that in 

the P4 case.  

Figures 3.3 and 3.4 demonstrate that the spline function for seepage rate as a 

function of distance is able to provide an excellent representation of the original 

TOUGH2 results.  To validate the ability of the 2-D kriging prediction for other values of 

permeability and leakage rate, a cross-validation is performed (see Appendix C).  The 

cross-validations indicate a very good correspondence between the TOUGH2 simulation 

results and the values estimated by the combined spline-kriging interpolation method.  

For a given leakage rate and permeability this algorithm is used in subsequent analysis to 

estimate the seepage rate, Sm, at a distance rm,s from the point of leakage.   
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Figure 3. 3    Simulated CO2 seepage rates for different leakage rates, ranging from L1 = 1.93 x 10
-7

 

kg/s to L7 = 1.93 x 10
-1 

kg/s, by factors of 10.  For all cases, permeability = 1 Darcy, vadose zone 

thickness = 1.35m.  Points are TOUGH2 simulation results, solid lines are fitted cubic spline 

prediction.  Low seepage rate area shown in grey is unlikely to be distinguished from background. 
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Figure 3. 4    Simulated CO2 seepage rates for different soil permeability, ranging from P1 =  0.001 

Darcy to P7=1000 Darcy, by factors of 10.  For all cases, leakage rate = 1.93 x 10
-4

 kg/s, vadose zone 

thickness = 1.35m.  Points are TOUGH2 simulation results, solid lines are fitted cubic spline 

prediction.  Low seepage rate area shown in grey is unlikely to be distinguished from background.  

 

 

3.2.5 Idealized site and monitoring network layout  

Calculations are made for a hypothetical homogeneous site, 1 km x 1 km. 

Monitoring points are placed at center points of a square grid (see Figure 3.5), with the 

distance between adjacent monitors ranging from d = 100 m (this is the case shown in 

Figure 3.5, a sparse grid with a total of n=100 monitors distributed across the site) to d = 

10 m (a dense grid with n = 10,000).  Leaks are assumed to occur with uniform 

probability across the site.  The probability distribution function of the distance from a 

random leakage point to the nearest monitor can be calculated analytically or generated 

with a simple Monte Carlo routine.  The latter simulates many potential leakage points 
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uniformly within a square domain and computes the distance from each point to its 

domain center (where the monitor is located).  For nonuniform leak occurrence 

probabilities (e.g., where there are wells, fissures, or other features that cause leaks to be 

more likely to occur at particular locations within the site), the Monte Carlo method is 

readily adapted by generating proportionally more random points at these locations.   The 

Monte Carlo method is used here with a sample size of 10
6
, yielding the distribution 

functions for the distance to the nearest monitor shown in Figure 3.6.  These distributions 

are sampled randomly to determine the distance rm,s for use in the spline functions used to 

calculate Sm in Eq. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5    Idealized site with homogeneously distributed monitoring points (distance between 

monitors, d=100 m).  Each monitoring point is located at the center of the square defining its domain 

for calculating the distance to the nearest monitor. 
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Figure 3. 6    Empirical cumulative distribution of the distance to the nearest monitor for a random 

leak location in a square grid monitoring network (results shown for networks with distance between 

monitors ranging from d = 10m to d = 100m). 

 

 

3.2.6 Computing the probability of seepage detection and the probability of leakage 

detection  

 

The probability of detection for a given size leak, Ls, occurring randomly (in this case 

uniformly) across the site is computed with the following steps.  

i. For the given monitoring density, randomly select a distance to the nearest 

monitor, rnm, from the appropriate empirical distribution shown in Figure 3.6.  

ii. For the given leakage rate (Ls) and subsurface properties (  = permeability in 

this case), determine the seepage rate at distance rnm by evaluating the radially 

symmetric functional relationship in Equation 2:   mssm rLRSFRS ,,, , 
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with rs,m  rnm.  This evaluation is made using the cubic spline – kriging 

estimates determined as a function of Ls and permeability.  

iii. Given Sm, the leak detection threshold m, and the soil temperature T, evaluate 

Equation 4 to determine the probability of detection P[Dm| Sm] , that is, the 

probability that the background seepage rate plus the leak-induced seepage rate 

(Xm = Ym + Sm) exceeds the leak detection threshold m.  This calculation is 

made using the same predictive distribution of Ym|T simulated in Section 2 to 

estimate the threshold m, except in this case we determine what fraction of this 

sample is greater than m - Sm.   

iv. Repeat steps i. through iii. for different values of rnm, sampled from the 

simulated distribution of distance to the nearest monitor for the given 

monitoring density.   Then average the values of P[Dm| Ls] computed for each to 

determine the overall probability of detection for a randomly located leak of 

size Ls  at the site. 

 

 

3.3 Results   

The methodology is demonstrated for the range of leakage rates, site conditions, 

and monitoring densities described above.  A soil temperature of T = 15 °C is assumed, 

resulting in a detection threshold of m   8.5 mole/m
2
-s for the CO2 seepage rate 

(computed from Equation 5, see also Figure 3.1).  Equation 4 is then evaluated to 

determine the probability of detection at a monitor as a function of the seepage rate. 
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The result, P[Dm| Sm], is shown in Figure 3.7.  Comparing Figure 3.7 to Figure 3.1, it is 

not surprising that the probability of detection begins to increase measurably at seepage 

rates Sm between 1 and 2 µmole/m
2
-s, approaching nearly 1.0 (nearly assured detection) 

as Sm increases from 8 to 9 µmole m
-2

s
-1

.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Simulated CO2 seepage flux (micromole/m
2
-s)

P
ro

b
a

b
il
iy

 o
f 

d
e

te
c

ti
o

n

ZERT site at 15 °C

 

Figure 3. 7    Probability of detection at ZERT site for different leak-related seepage rates, for soil 

temperature T = 15°C. 

 

 

Equation 4 is evaluated multiple times (for a given leakage rate and permeability) using 

seepage fluxes corresponding to randomly sampled values of the distance to the nearest 

monitor (calculated from the TOUGH2 response surface).  The computed probabilities of 

detection are then averaged across the sampled distances to compute the overall 

probability of detection for a randomly located leak event.  Figures 3.8a, b and c illustrate 

the results for the idealized ZERT site given permeabilities of 0.01, 1 and 100 Darcy, 

respectively, with soil temperature T = 15°C, vadose zone thickness = 1.35 m and 

monitoring densities ranging from d=100 to 10m.  
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The principal inferences that can be drawn from Figure 3.8 include: 

 As expected, the probability of detection increases with increasing leakage rate.   

 Transitions from low to high detection probability as a function of leakage rate 

tend to occur more rapidly in high-density networks.   

 Transitioning from low (d = 100m) to high density (d = 10m) networks results in 

very large increases in the probability of detection for all values of permeability 

considered.  This reflects the relatively small radius of influence associated with a 

point source released near the surface.   

 Permeability affects detection probability in a more complex, non-monotonic 

manner, depending upon the monitoring network density:     

o For the dense network (d = 10 m), moving from the low permeability case 

in Figure 3.8a (corresponding to P2 in Figure 3.4) to the intermediate 

permeability case in Figure 3.8b (corresponding to P4 in Figure 3.4), 

results in an increase in detection probability, since seepage rates for the 

latter increase to high, easily detectable values over most of the range 

from r = 0 - 7 meters (these inferences are limited to cases with 

intermediate to high leakage rates that are potentially detectable).  Further 

increases in near-source seepage rates do occur at high permeability (P6 in 

Figure 3.4), however these are limited to the range from 0-3 meters (where 

seepage rates are already high enough to yield a high probability of 

detection for the intermediate permeability case) and are associated with a 

sharp drop-off in the seepage rate beyond three meters.  As a result, 
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moving from the intermediate permeability case in Figure 3.8b to the high 

permeability case in Figure 3.8c for the dense network (d = 10 m) results 

in an overall decrease in the probability of detection.   

o In contrast, for a sparse network (d = 100m) increases in permeability lead 

to decreases in detection probability throughout, since the upward 

channeling and reduction in the horizontal extent of the plume they induce 

preclude the occurrence of increased seepage rates at the greater distances 

where monitoring locations are now more likely to be located.      

 

Of particular interest for network design is the monitoring density necessary to 

achieve a high probability of leak detection for a leakage rate large enough to cause 

safety, economic, and/or regulatory concerns.  Assume a site where 1 million 

tonnes of CO2 per year (1 Mt CO2/yr) has been injected for the first 10 years (27) , with a 

design lifetime of 100 years.  If 1% of the total injected CO2 is lost over the 100 year 

period (essentially equivalent to the 0.01% annual seepage rate proposed as a cap by 

Hepple et al., 2004 (28)), this scenario corresponds to a maximum leakage rate of 0.0336 

kg/s (or 10
-1.47

 kg/s).  Assume further that a probability of leak detection of 90% is 

sought.  For the intermediate permeability case in Figure 3.8b, this is achieved with a 

monitoring density between d=50 and d=20m (assuming the 0.0336 kg/s leakage rate 

occurs at a single point). However, leakage could also occur in a distributed manner 

across multiple point locations, such as wells and features.  For example, with a well 

density of 1 per km
2
 (within the range of 0.01- 20 wells per km

2
 reported in recent studies 

(23, 29, 30)), and a distributed CO2 footprint of 100 km
2
 (28), the leakage event would be 
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distributed among 100 wells, requiring a 100-fold reduction in the leakage rate targeted 

for detection, i.e., 3.36x10
-4

 kg/s (or 10
-3.47

 kg/s).  Again for the intermediate permeability 

case in Figure 3.8b, with a goal of detecting leakage with a probability of 90%, a higher 

monitoring density with d=10m is now required.   

 

 

Figure 3. 8(a)    Probability of detection as a function of CO2 leakage rate for different density 

monitoring networks, ranging from sparse (d = 100m between monitors) to dense (d = 10m between 

monitors) given low permeability = 0.01 Darcy, and vadose zone thickness = 1.35m.  Leakage rate 

shown as base 10 logarithm. 
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Figure 3. 9 (b)    Probability of detection as a function of CO2 leakage rate for different density 

monitoring networks, ranging from sparse (d = 100m between monitors) to dense (d = 10m between 

monitors) given intermediate permeability = 1 Darcy, and vadose zone thickness = 1.35m.  Leakage 

rate shown as base 10 logarithm. 

 

 
Figure 3. 10 (c)    Probability of detection as a function of CO2 leakage rate for different density 

monitoring networks, ranging from sparse (d = 100m between monitors) to dense (d = 10m between 

monitors) given high permeability = 100 Darcy, and vadose zone thickness = 1.35m. Leakage rate 

shown as base 10 logarithm. 
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3.4 Discussion   

The results presented above provide useful initial insights on monitoring network 

performance and the factors that affect it.  Even for the idealized site considered, 

nonlinear/non-monotonic relationships are apparent between site conditions, monitoring 

design (density), and the resulting detection probability.  These effects are likely to be 

even more pronounced when the method is applied to actual site conditions with potential 

releases from deep formations; complex non-homogeneous site geology; facilitated 

transport through fissures, wells, and zones of high permeability; and spatial variation in 

pre-injection soil respiration rates.  The purpose of this paper is to formulate and illustrate 

(here using multiple simplifying assumptions) the overall framework for integrating site 

characterization, site modeling, and monitoring device and network specification, to 

compute the likely performance of a network.  Application to actual sites will require 

more detailed site characterization data and modeling tools for estimating the 

relationships between leakage events and monitoring results, and adaptation of the 

methodology will be required to address these complexities.  For example, methods will 

be needed to account for partial (imperfect) knowledge of more-likely leak locations and 

the need for denser monitoring coverage at or near these portions of the site.   

For the simple cases considered here, relatively dense monitoring networks with 

distances between monitors ranging from 10 to 20 meters were required to assure a high 

probability of detection at leakage rates likely to be of concern.  At even a small 1 km 

square site, this corresponds to be between 2500 and 10,000 surface flux monitoring 

points.  This is clearly impractical from both an administrative and an economic 
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perspective. Furthermore, with such a large number of monitors, the risk of a false 

positive is substantial.   

As such, surface soil CO2 flux measurement is unlikely to be feasible as a stand-

alone technology for leak detection.  Rather, it will most likely be applied in high risk 

locations, such as areas around wells and features, during the injection and post-injection 

period.  As now recognized, a mix of complementary technologies targeting signals from 

potential leaks at different locations and in different ways, will be needed to allow for 

practical and affordable designs that achieve high levels of assurance (10, 24, 31).  The 

methods proposed here for computing detection probabilities are generally applicable, 

and our ongoing research considers the joint deployment of technologies targeting both 

deep and near-surface leakage signals. 
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Chapter 4: A Bayesian Belief Network for Combining Sequestration 

Site Leak Detection Monitoring Results from Near-Surface CO2 Fluxes 

and PFC Tracer Concentrations
4
 

 

Abstract  

To incorporate the use of multiple geologic sequestration monitoring techniques, 

a Bayesian Belief Network (BBN) for leak detection inference is applied to integrate the 

information provided by different techniques deployed at a site. In this study, two 

monitoring methods, near-surface soil CO2 flux and perfluorocarbon (PFC) tracer 

concentration, are included in the BBN. First, possible near-surface flux rates for CO2 

and PFC tracer as a function of distance from a leakage point are simulated by TOUGH2, 

given different leakage rates and permeabilities. Then, the natural near-surface CO2 flux 

and background PFC tracer concentration measured at the Zero Emission Research and 

Technology (ZERT) site are used to determine critical values for leak inference and to 

calculate the probabilities of leak detection given a monitoring network. A BBN of leak 

detection is established by combing the TOUGH2 simulations and the background 

characterization of near-surface CO2 flux and PFC tracer at the sequestration site. The 

results show a positive correlation between the detection abilities of PFC tracer and soil 

CO2 flux, but the PFC tracer is more sensitive for detecting a leak in most cases. The 

BBN of leak detection including both soil CO2 flux and PFC tracer concentration gives 

an integrated probability estimation of leak detection for different permeability and 

leakage rates for a given monitoring network. The results show that with sufficient 

                                                 
4
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monitoring density, PFC tracer monitoring can generally detect the leakages greater than 

10
-6

 kg/s, while soil CO2 flux measurement can effectively detect the leakage greater than 

10
-4

 kg/s, based on the ZERT site condition. Considering the pros and cons of the two 

monitoring techniques, soil CO2 flux measurement is recommended for regions where the 

large size leaks might occur, such as the area around wells and features. PFC tracer 

monitoring is more flexible with regard to the location of monitors due to its sensitivity to 

small sized leaks. A BBN developed using the proposed methodology can be used to help 

site engineers and decision makers to evaluate leakage signals and the risk of undetected 

leakage, given a suite of monitoring techniques and site conditions.  

 

4.1 Introduction 

Geologic carbon sequestration is a promising and feasible solution to the 

reduction of the CO2 emission from large anthropogenic sources to the atmosphere. In 

order to achieve long-term storage of CO2 successfully, minimum 99% retention of the 

injected CO2 is needed in geological sequestration (1), or equivalently 0.01% annual 

seepage rate (2). To ensure the effectiveness of geologic carbon sequestration and to early 

detect the unexpected leakage, assurance monitoring is extremely important and 

necessary in a geologic sequestration project.   

A number of monitoring techniques have been developed at some test sites (3-10) 

and have been tested and applied to several large geologic sequestration projects (11, 12). 

These monitoring techniques include (1) subsurface monitoring, like seismic methods, 

well fluids sampling, pressure and tiltmeter measurement; and (2) near-surface and 

surface monitoring such as soil gas sampling, soil CO2 flux and atmospheric CO2 flux 
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measurement, satellite remote sensing, carbon isotopes and tracers added to the 

sequestered CO2. With different strengths and weaknesses for every monitoring 

technique, an evaluation tool is needed to integrate the information provided by different 

techniques deployed at a site. More importantly, an evaluation that is able to provide the 

assessment of possible size of a leak based on the multiple monitoring results further 

helps the managers and decision makers to know whether the unexpected leakage event is 

still smaller than the 0.01% annual seepage rate required for effective long-term storage.   

Bayesian belief network (BBN) is a very useful and powerful tool for integrating 

the information from different components of various formats and scales in an 

environmental system (13, 14). A Bayesian belief network, a graphical model 

representing the probabilistic relationships between variables of interest (15), has several 

advantages in describing and modeling an environmental system. First, the system 

components of different forms and scales can be integrated via their probabilistic 

expressions in a BBN model, so a complicated system can be easily represented without 

the difficulties encountered in system dynamics (16).  Second, a BBN represents the 

causal or evidential relationships between system components (or variables) based on 

experts’ prior knowledge in a graphical interface, which summarizes a complex 

environmental system into a simpler concept (13, 17). Therefore, it is more intuitive and 

easier to gain insight from a BBN model. Third, it is readily to expend a BBN model to a 

decision support system with the inclusion of utility and decision options (14).  

Moreover, it provides the uncertainty estimation for each system component due to its 

probabilistic formulation and shows how the uncertainty of each component affects the 

predictions or the decisions possibly made (13, 15). Thus, it helps decision makers see 
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the effect of each component systematically. Finally, a BBN model is an excellent 

approach combing prior knowledge from experts’ belief or historical records and the data 

from experiments in system modeling.  However, the prior and conditional probability 

estimations for each variable usually require a lot of work since these values are obtained 

from data, expert elicitations or simulations of other models (14, 18), and sometimes 

these values are hard to estimated.   

Many applications of BBN can be found in the field of environmental and natural 

resource management since 1990s. Most of the studies are found in the water resource 

management area. For example, an overview of BBN with some case studies from water 

resource management and fisheries was made by Varis and Kuikka (19); Borsuk et al. 

(11) developed a very comprehensive BBN for eutrophication problem; Castelletti and 

Soncini-Sessa (14) thoroughly studied the application of BBN to water research 

management and addressed the related issues; and Tiecehurst et al. (16) used BBN model 

for assessing the sustainability of costal lakes in Australia. Other applications of BBN 

include fisheries (20, 21), fish and wildlife (22), water distribution (23), groundwater 

contamination (24) and risk assessment (25, 26).   

The objective of this research is to develop a Bayesian Belief Network (BBN) for 

CO2 leak detection in order to integrate the information provided by different near-

surface monitoring techniques deployed at a site and to infer the probability that a CO2 

leakage event occurs, expressed in a probability distribution of CO2 leakage rate.  

Meanwhile, this BBN model is used to evaluate the performance of an integrated 

monitoring network with different monitor densities. To illustrate the methodology 

developed for a geologic sequestration site, the information from the Zero Emission 
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Research and Technology (ZERT) site is used for the BBN model. The parameters used 

for simulating leakage events are tuned using ZERT site data, given various leakage rates 

and permeabilities. The background data of two monitoring methods, near-surface soil 

CO2 flux and perfluorocarbon (PFC) tracer concentration measured at the ZERT site are 

characterized for leak detection.  The probabilistic relationships between leakage rate, 

soil CO2 flux, PFC tracer concentration and permeability are obtained by a subsurface 

simulation model, TOUGH2 (27) under a range of scenarios for the leakage rate, leakage 

location (relative to monitors), and subsurface conditions (permeability). While this study 

focuses on the near-surface monitoring techniques, other monitoring methods can be 

added to the BBN model as well. Similarly, this BBN model includes only permeability 

as the site condition variable due to the simulation cost of time, however, other site 

conditions can be included if needed for the future applications.   

 

4.2 Methods   

First, the methodology and a general framework for the development of a 

Bayesian Belief Network (BBN) for CO2 leak detection are described, and then the 

illustration of the application to the ZERT site with two near-surface monitoring 

techniques is followed. 

4.2.1    Bayesian Belief Network for CO2 Leak Detection at a Geologic Sequestration 

Site 

A Bayesian Belief Network (or Bayesian Network or Bayesian probability 

network) is a graphical model representing the probabilistic relationships between 

variables of interests (15). According to Heckerman’s notation (15), a BBN includes (i) a 
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set variables  X={X1, …, Xi, …, Xn}, i.e. system components,  (ii) a set of local 

probability distributions P related to each variable, and (iii) a directed acyclic graphical 

structure representing the probabilistic relationships between the variables of interest in 

the system . In the directed acyclic graph, the variables are represented as nodes, and the 

conditional dependence between these variables is expressed as a series of arcs. The lack 

of arcs between variables indicates conditional independence, a key feature of a BBN that 

allows the estimation of joint distribution of X to be logically simplified into steps and 

thus reduce the complexity of computations and modeling. Therefore, the conditional 

probability of Xi given other variables is reduced to those variables on which Xi is 

dependent, known as ―parents‖ (or ―parent nodes‖) Pai. The conditional probability P 

(Xi|Pai) refers to the local probability distributions of Xi mentioned above.  

The development of a BBN model starts with the selection of the variables in the 

system, then the network structure is identified by assigning causal relationships among 

the variables, and finally the probability P(Xi|Pai) is assessed  based on the inference 

made from any related data, model simulations or expert elicitation (15, 20).  All the 

steps of the BBN model development require an understanding and knowledge of the 

problem and the system of interest. In our study, the variables were chosen by the 

authors, and the general structure of the model structure  was reviewed by experts in the 

Monitoring, Measurement and Verification (MMV) group at the National Energy 

Technology Laboratory (NETL) and other experts in the field of geologic carbon 

sequestration at the Sixth Annual Conference on Carbon Capture & Sequestration (28).  

The BBN in this study is designed for the leak detection with a particular focus on 

the leakage rate at a geologic sequestration site. This problem involves two major 
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aspects: the occurrence of a leakage event and the detection of the leak by various 

monitoring techniques and network designs. The occurrence of a leakage event includes 

the possible factors that make the leakage event happen   and the parameters that affect 

how the leak spreads and where the leak moves once it begins, including the physical and 

geological conditions of the site such as temperature, porosity, permeability, vadose  zone 

thickness, rock types, etc.  The second aspect of the CO2 leak detection problem involves 

the monitoring plan at the site, including the monitoring techniques chosen for the pre-

injection, operation and post-injection stages as well as the number of monitors needed 

and the monitoring location for each monitoring technique. The monitors can be evenly 

distributed throughout a site or located around possible leak spots like wells and faults. 

Figure 4.1 below shows the general BBN framework CO2 leak detection problem. In this 

figure, the systems are divided into four areas with respect to the two major aspects 

mentioned above. The areas with solid lines are included in the ZERT case, but the area 

surrounded by the dotted line is not included due to the lack of data; however, it is part of 

the original BBN model developed in the first place.  
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Figure 4. 1    General Framework of Bayesian Belief Network for CO2 Leak Detection at Geologic 

Sequestration Site 

 

 

 

In Figure 4.1, a leakage event can be simulated by models like TOUGH2 using 

the designed leakage rates and the parameters as the inputs for the simulations. Then, the 

simulations create the geological patterns showing how the leakage flux spreads out, that 

is, the relationship between the simulated CO2 leak flux and a particular location at a 

sequestration site. The methodology for predicting the performance of near-surface CO2 

leak detection systems geologic sequestration sites earlier developed by Yang et al. (29) 

was adapted for the current research. A radially symmetric functional relationship 

(RSFR) of CO2 seepage flux Sm given leakage rate Ls sub-surface parameters ϕ and the 

leak source location s at the monitor location m is expressed as Sm=RSFR(Ls, ϕ, rs,m), 
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where rs,m is the distance between the source of the leak and the monitor. A number of 

leakage rates Ls are given in the simulations in order to estimate the probability 

distribution of possible size leaks based on the multiple monitoring inputs. The sub-

surface parameters ϕ are site specific, mostly depending on the geological information 

available at the site. The distance distribution of rs,m for each monitoring technique can be 

calculated given a monitoring network design and possible leak sources. For any given 

measurement made using each monitoring technique, the corresponding CO2 seepage 

flux Sm was estimated in order to calculate the probability of detecting a leak. This 

estimation of Sm for each monitoring technique could be made based on either the field 

data, experimental data, or related simulations. This is one of the main reasons that near-

surface CO2 fluxes and PFC tracer concentrations were chosen for this research.   

 

4.2.2    Application to the ZERT site 

A BBN for combining the leak detection monitoring results from near-surface 

CO2 fluxes measurement and PFC tracer monitoring was built based on the information 

provided at the ZERT site. This site was selected to demonstrate the BBN model due to 

the abundance of data available there. The shallow CO2 release experiments were carried 

out at the ZERT site in the fall of 2006 and the summers of 2007 and 2008. The modeling 

of CO2 transportation accompanied these experiments by TOUGH2/EOS7CA (30, 31) 

provided the calibration and verification information for our simulations. Several near-

surface monitoring methods were tested and verified during the experiments (9, 32-34). 

Two near-surface monitoring methods, the CO2 flux (or soil CO2 flux) and PFC tracer 

monitoring, were selected for the BBN model.  
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Leakage Event Simulation 

Simulations of leakage events involving both CO2 seepage flux and the PFC 

tracer fluxes were implemented using TOUGH2/EOS7CA. Simulation scenarios and 

assumptions followed the methodology described in Yang et al. (29), which considered 

combinations of different values of leakage rates and top-soil permeabilities (the one 

subsurface parameter), for a total of 17 cases. The base leakage rate was 1.93 x 10
-4

 kg/s, 

twice the value used in the MMV test at the ZERT site, and varied from a factor of 1/10
3
, 

1/10
2
… to 10

3
. Similarly, the permeability ranged over factors of 10 from 1 mD to 1000 

D, using 1 D as the base value. Four cases combining the highest and lowest permeability 

and leakage rate were included as well. The PFC tracer was Perfluoromethylcyclohexane 

(PMCH), tested in the ZERT experiments, and the tracer leakage rate was assumed to be 

proportional to the CO2 leakage rate. The ratio of CO2 and PMCH leakage rates by 

weight was 3107.28, between the values found in the ZERT tests (9) and the Frio test (4, 

5). Consequently, a PMCH leakage rate of 1.24 x 10
-7

 kg/s was thus obtained for the base 

case. The simulations of the 17 cases provided the basis for estimating both CO2 seepage 

flux Sm given different leakage rates Ls and permeability (ϕ1), as well as the 

corresponding PMCH seepage flux, Spm, in the near-surface area. The simulation results 

of CO2 seepage flux were taken from the study by Yang et al., 2010 (29), and the 

simulations of PMCH seepage were implemented in our study using the settings above. 

The results of simulated PMCH seepage flux for different leakage rates and 

permeabilities are shown in Appendix D.  
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Monitoring Network and Leak Distribution     

The simulations of leakage events for both the CO2 and PFC fluxes were used to 

test the design of four monitoring densities, d=100 m, d=50m, d=20m and d=10m, where 

d indicates the distance between adjacent monitors. A random leak field for a 

hypothetical homogeneous site of 1 km x 1 km was assumed. Then, the distance rm,s from 

a random leakage point s to the nearest monitor m was calculated. The distribution of the 

distance rm,s was estimated by random sampling within the random leak field, as 

described in Yang et al. (29),  where the distance distributions of rm,s for the four 

monitoring densities can also be found. These distance distributions of rm,s were used as 

the inputs in the radially symmetric functional relationship Sm for near-surface CO2 flux 

and the Spm for near-surface PMCH  flux. The resulting seepage flux distributions of Sm 

and Spm were then used to calculate the probability of detection in the following section.  

 

Monitoring Technique and Detection 

The natural near-surface CO2 flux (or soil CO2 flux rate) and the background 

PMCH tracer concentration measured at the ZERT site were used to determine critical 

values for leak inference and to calculate the probabilities of leak detection given a 

monitoring network.  In Yang et al. (35), the natural soil CO2 flux rates (μmol/m
2
-s) at 

the ZERT site were characterized by a Bayesian square-root linear model that predicted 

the background flux as a function of soil temperature. Therefore, this square-root linear 

model was also assumed to apply for all locations m at the ZERT site, and the 15 °C 

simulation temperature in TOUGH2 was used for this model. The natural background 

PMCH concentrations (fL/L) were characterized by a Bayesian hierarchical model that 
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predicted the background tracer concentration based on the measurements obtained from 

the four sites in 2007: the ZERT site in Montana (9), the Lower Michigan Basin site near 

Gaylord, Michigan (36), the San Juan Basin site in New Mexico, and the Pines parking 

lot at NETL, Pittsburgh, Pennsylvania. The Bayesian hierarchical model was used to 

characterize the PMCH concentration because of the small number of observations at the 

ZERT site. Thus, a Bayesian hierarchical model combining information from other 

similar sources was the best alternative in this situation. The summary of the simulations 

for the Bayesian hierarchical modeling of background PMCH concentrations can be 

found in Appendix E. 

The probability distributions of the background soil CO2 flux, Y1, and the 

background PMCH tracer concentration, Y2, were obtained once the characterization of 

background data had been made. The resulting predictive distribution from the Bayesian 

hierarchical or nonhierarchical model was then used to determine the upper prediction 

interval value of each monitoring technique for leak detection (35).  In this study, the 

upper bound of the 99% prediction interval was chosen as the threshold for detecting a 

leak for both CO2 flux measurement and PMCH concentration.   

The probability of leak detection for each monitoring technique is defined as the 

probability that the total CO2 flux or tracer concentration, i.e. the observed value, exceeds 

the threshold estimated based on the background information. The total CO2 flux (X1) is 

the sum of the natural background CO2 flux (Y1) and the simulated leak seepage flux (Sm). 

Similarly, the total tracer concentration (X2) is the sum of the natural background 

concentration (Y2) and the additional tracer concentration from the simulated leak 

seepage flux (Spm). At the ZERT site, PMCH flux was converted to PMCH concentration 
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by assuming a circular influence area of 1.5 m in diameter and a 10-day exposure period 

for each PMCH monitor.  Since the simulated seepage flux is a function of leakage rate 

(Ls), site parameters (ϕ) and the distance between adjacent monitors (rm,s), the probability 

of detection for a given size leak, Ls, could be obtained through the simulated seepage 

flux (Sm) or tracer concentration (Spm) (29).  

The Detection node represents the detection done by any of the monitoring 

techniques. The joint distributions for leak detection were estimated assuming conditional 

independence between monitoring techniques given a particular size of leak. The joint 

distributions of X1 and X2 above their detection thresholds, i.e., the joint probability 

distribution of the detection node, were calculated by combining the distributions of Y1 

and Y2 with the relationship between Sm and Spm. Since the tracer leakage rate was 

assumed to be a portion of the CO2 leakage rate, the simulated Sm and Spm had a clear 

relationship which could easily be modeled (See Appendix F). Here a nonparametric 

cubic spline function was applied for determining Spm as a function of Sm, including the 

estimation of the distribution of the prediction error.  The joint probability distribution of 

the detection node was generated with a Monte Carlo integral over of Y1 and Y2 along 

with the error distribution and the inherent variability from Sm due to the distance 

distribution rs,m, given a particular leakage rate and permeability. 

Figure 4.2 below shows the BBN applied to the idealized ZERT site. In this study, 

the leakage rates were discretized and range from tiny leakage rates below 10
-6

 kg/s to the 

explosion size of 1 kg/s based on the range of the TOUGH2 simulations. A power 

distribution with a slope factor of 1 was assumed for the prior distribution of the leakage 

rate (37-38), i.e. the probability density function p(Ls)=(4.54x10
-7

)Ls
(-1) .  The distribution 
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of distance rm,s depends on the designed monitoring density: d=100m, d=50m, d=20m 

and d=10m (29). In order to focus on the leakage rate distribution, the subsurface 

parameter, soil permeability, is limited to three deterministic options: high (100 D), 

median (1 D) and low (0.01 D).  The simulated CO2 leak seepage node is also hidden in 

the Results section below in order to directly represent the probabilistic relationships 

between the monitoring results and the corresponding distribution of leakage rates.  The 

BBN was constructed using the software package Netica 4.16 (39). 

 

 

Figure 4. 2    Bayesian Belief Network for CO2 Leak Detection for the Idealized ZERT Site 
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4.3 Results   

4.3.1   The probabilities of CO2 leak detection and CO2 leakage rate  

The relationships between the probability of CO2 leak detection and the CO2 

leakage rate for the PFC tracer, the soil CO2 flux measurement, and the joint 

measurement of both the soil CO2 flux and the PFC tracer are shown in Figures 4.3-4.5 

below, for the low, median and high permeability rates, respectively, given different 

monitoring densities. These probabilistic relationships form the content of   the 

conditional probability tables in the BBN model for the idealized ZERT site (see 

Appendix G). The probability of CO2 leak detection for soil CO2 flux measurement given 

different permeabilities and leakage rates were discussed in the research reported in Yang 

et al. 2010.  Here these cases are presented again for comparison with the PFC tracer 

monitoring and the joint measurement of both soil the CO2 flux and PFC tracer.   

In Figures 4.3- 4.5, the PFC tracer reading is shown to be much more sensitive for 

detecting a leak than soil CO2 flux measurement in all twelve cases with  combinations of 

the four monitoring densities and three permeabilities. Therefore, the probabilities for the 

joint leak detection are almost the same as for the PFC tracer alone.  Like soil CO2 flux 

measurement, the probability of leak detection by the PFC tracer increases with rising 

leakage rate. Also, the probability of leak detection increases as the monitoring density 

increases from low (d=100m) to high (d=10m). Moreover, the overall probabilities of 

leak detection for both monitoring methods decrease with increases in permeability, 

unlike the soil CO2 flux measurement in median permeability with monitoring density 

d=10 m and 25m, where the shape of the CO2 seepage plume becomes important in leak 
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detection (29).  However, the abilities of detecting minimal-sized leaks are very different 

in tracer and soil CO2 flux measurement.   

 

Figure 4. 3    Probability of detection as a function of CO2 leakage rate for different monitoring 

densities, (a) 100m (b) 50m (c) 20m and (d) 10m between monitors, and for different monitoring 

techniques, PFC tracer and/or CO2 flux measurement, given low permeability = 0.01 Darcy. 

 

Figure 4. 4    Probability of detection as a function of CO2 leakage rate for different monitoring 

densities (a) 100m (b) 50m (c) 20m and (d) 10m between monitors, and for different monitoring 

techniques PFC tracer and/or CO2 flux measurement, given median permeability = 1 Darcy. 
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Figure 4. 5    Probability of detection as a function of CO2 leakage rate for different monitoring 

densities (a) 100m (b) 50m (c) 20m and (d) 10m between monitors, and for different monitoring 

techniques PFC tracer and/or CO2 flux measurement, given high permeability = 100 Darcy.   

 
For PFC monitoring, permeability only has an effect on the probability of 

detection with the less dense (d=50m and d=100m) networks. In Figure 4.3 showing the 

cases with low permeability, the probabilities of leak detection by PFC tracer remain 

close to 1 at the higher monitoring densities (d=20 m and d=10 m). The PFC tracer can 

nearly fully detect the CO2 leak seepage signals generated by any leakage rate above 10
-6

 

kg/s when the distance between adjacent monitors is less than 20 m. Under the same 

monitoring network (d=20 m), soil CO2 flux only starts detecting the seepage signal at 

leakage rate around 10
-4

 kg/s. Additionally, the detection ability of the PFC tracer starts 

decreasing as the leakage rate decreases to 10
-4

 kg/s, given the monitoring network d=50 

m. Nevertheless, the probability of leak detection with the PFC tracer in the d=100 m 

case is still comparable to that with soil CO2 flux in the d=10 m case.  Similarly, in 

Figures 4.4 and 4.5, for the median and high permeability cases, respectively, the nearly 

full detection made by the PFC tracer is still achieved for denser monitoring networks 
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(d=10 m and 20 m)), while for sparse monitoring networks, d=50 m and d=100 m, the 

full detection probability is reached at leakage rates of 10
-3

 and 10
-2

 kg/s respectively. 

Compared to soil CO2 flux measurement for sparse networks in cases of high 

permeability, the leakage rate above 10
-2

 kg/s, which is hardly detected by soil CO2 flux 

measurement, can still be detected by PFC tracer monitoring. However, though the PFC 

tracer provides a better coverage for detecting a leak, there are a few drawbacks with PFC 

tracer monitoring, which are explained in the discussion section.   

 

4.3.2   Probability inference of the Bayesian Belief Network Model for the Idealized 

ZERT site  

The probability of any node in the model can be inferred with the BBN model, 

given any evidence, monitoring network designs, or site conditions. The calculation is 

made based on the conditional probabilities shown in the previous section. Two types of 

probability inferences made by the BBN model are illustrated here: (1) the inference 

regarding the possible size of a leak, i.e. the leakage distribution given the monitoring 

results (evidence), monitoring network design or site parameters, and (2) the use of the 

BBN model to calculate the probability of leak detection for an acceptable minimum 

leakage rate in order to optimize a monitoring network design or to select monitoring 

techniques to be deployed at a site.  

First, the BBN model in Figure 4.6 shows the posterior distributions of the 

leakage rates for the high (d=10m) and low (d=100m) monitoring density networks, 

given that both soil CO2 flux and PFC tracer measurements detect the leak. The expected 

size of the leakage and the variance found in the high density case are smaller than those 
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in the low density case. As can be seen in Figure 4.6a for the high monitoring density, the 

expected leakage size is 1.41x10
-4

 kg/s with a variance of 5.1x10
-3

, while in Figure 4.6b, 

the expected leakage size for the low density case is shown to be 2.26x10
-3

 kg/s with a 

variance of 0.035. The increase in monitoring density increases the ability of detecting 

smaller leaks and thus decreases the expected leakage size and the variance once the leak 

is found.   Although the leakage rate distribution in Figure 4.6b seems to focus on the 

category of the smallest leaks (0 to 10
-6

 kg/s), the substantially increased portions of the 

large leakage rates, from 0.001 to 1, increase the expected values about one order of 

magnitude.     
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Figure 4. 6    The leakage rate distributions for the network of (a) high monitoring density (10m) and 

(b) low monitoring density (100m), given the detection made using both soil CO2 flux and PFC tracer 

measurements. 

 

 

Second, the posterior distributions of the leakage rate can also be inferred from 

the multiple monitoring results, analogous to a medical diagnosis. In Figure 4.7 the 

posterior distributions of leakage rate for the detection made by the two techniques or the 

PFC tracer alone are shown given median permeability and monitoring density d=20m.  

In Figure 4.7a, the expected leakage rate for the joint measurements is 2.29x10
-4

 kg/s 
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with a variance of 7.1x10
-3

.  For a leak detected with the use of both monitoring 

techniques, a larger sized leak is expected because the soil CO2 flux measurement 

discovers larger sized leaks.  Figure 4.7b shows the leakage distribution when both 

monitoring techniques are applied but only PFC tracer monitoring detects the leak. With 

the no-detection input from soil CO2 flux measurement, the expected leakage rate is 

much smaller, with a mean of 1.52x10
-6

 kg/s and a variance of 1.2x10
-5

 since PFC tracer 

monitoring is able to detect smaller sized leaks. Figure 4.7c shows the leak detection 

done using only the PFC tracer monitoring result without the use of soil flux 

measurement. The leakage distribution has a slightly higher mean of 3.45x10
-6

 kg/s and a 

larger variance of 6.6x10
-4

, similar to the result shown in Figure 4.7b. 
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Figure 4. 7    The leakage rate distributions for detection made using PFC tracer and soil CO2 flux 

measurement with (a) both techniques indicating positive findings, (b) PFC tracer indicating positive 

finding and soil CO2 flux indicating none, and (c) only PFC tracer monitoring implemented and 

indicating positive, given median permeability and monitoring density d=20m.  
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Another important use of the BBN model is to calcualte the probability of leak 

detection for an acceptable minimum leakage rate in order to optimize a monitoring 

network design or to select the monitoring techniques deployed at a site. Considering the 

different coverage ability of the two monitoring techniques, the monitoring density can 

be assigned to each node specifically for its individual design.  Figure 8 illustrates the 

probability of leak detection at a desired level of leakage rate  (10
-4

 to 10
-3

 kg/s) for two 

different monitoring designs, d=20m for soil CO2 flux and d=50m for PFC tracer, given 

median permeability. This leakge rate catetory (10
-4

 to 10
-3

 kg/s) correponds to the 

leakage rates used in our base case simulation and the ZERT tests. Figure 4.8 shows that 

the overall probability of detection is 0.967, and  the individual probability of detection is 

0.636 for for soil CO2 flux given the monitoring network design d=20m and 0.919 for 

PFC tracer when the design of d=50m. Similarly, the same computation can be made for 

all possible combinations of monitoring densities and monitoring techniques so that a 

subsequent optimization of monitoring network design that includes other considerations 

such as cost or labor can take place. Therefore, the overall and individual probabilities of 

detecting the leakage rate from 10
-4

 to 10
-3

 kg/s are calculated for all combinations of the 

four monitoring densities and the two monitoring techniques, given high, median, and 

low permeability, as shown in Table 4.1 below. 
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Figure 4. 8    The probability of leak detection for a desired level of leakage rate (10
-4

 to 10
-3

 kg/s) 

using the network design of monitoring density of 20m for soil CO2 flux and 50m for PFC tracer, 

given median permeability.  
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Table 4. 1    Probability of Leak Detection for 10
-4

 to 10
-3

 kg/s Leakage Rate for Soil CO2 Flux and 

PFC Tracer 

High permeability PFC tracer 

Soil CO2 flux na 100 m 50 m 20 m 10 m 

na 0 15.90% 60.40% 100% 100% 

100 m 1.29% 17.00% 60.90% 100% 100% 

50 m 4.67% 19.80% 62.20% 100% 100% 

20 m 26.30% 38.00% 70.80% 100% 100% 

10 m 89.90% 91.50% 96.00% 100% 100% 

Median 
permeability PFC tracer 

Soil CO2 flux na 100 m 50 m 20 m 10 m 

na 0 27.80% 91.00% 100% 100% 

100 m 3.44% 30.30% 91.30% 100% 100% 

50 m 9.70% 34.80% 91.90% 100% 100% 

20 m 63.60% 73.70% 96.70% 100% 100% 

10 m 99.90% 99.90% 100% 100% 100% 

Low permeability PFC tracer 

Soil CO2 flux na 100 m 50 m 20 m 10 m 

na 0 100% 100% 100% 100% 

100 m 7.89% 100% 100% 100% 100% 

50 m 30.00% 100% 100% 100% 100% 

20 m 100% 100% 100% 100% 100% 

10 m 100% 100% 100% 100% 100% 

 

 

 

With Table 4.1, the lowest density of the monitoring network required for each 

monitoring technique can easily be found given a required detection probability under 

different permeability conditions. If a minimum 95% detection probability is required, a 

monitoring network of d=20m for PFC tracer alone or the combination of d=50m 

network for PFC tracer and d=10m network for soil CO2 flux is sufficient in the case of 

high permeability. Likewise, the target probability of 95% detection can be met one of 

three ways: by using the d=50m network for PFC tracer and d=20m monitoring network 

for soil CO2 flux, merely a d=10m monitoring network for soil CO2 flux, or a d=20m 
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network for PFC tracer in the median permeability case. For low permeability, either a 

monitoring network of d=100m for PFC tracer or a monitoring network of d=20m for soil 

CO2 flux can achieve the same target detection probability. The trade-offs between the 

two methods can be seen in this analysis, which provides a basis for the following 

decision making process to obtain an optimized monitoring network design for an 

acceptable minimum leakage rate. Besides detection ability, the determination of the 

optimized network design usually involves other factors such as the cost of monitoring, 

labor and technology availability.   

 

4.4 Discussion   

The two monitoring techniques, soil CO2 flux measurement and PFC tracer 

monitoring, show different results for detecting the size of leak in the BBN model for the 

idealized ZERT site. With sufficient monitoring density, PFC tracer monitoring can 

generally detect the leakages greater than 10
-6

 kg/s, while soil CO2 flux measurement can 

effectively detect the leakage greater than 10
-4

 kg/s, based on the ZERT site condition. 

PFC tracer monitoring is more sensitive in detecting leaks. In Figure 4 for median 

permeability, the monitoring density required for 90% detection is d=10 m for soil CO2 

flux measurement and d=20 m ~ 50 m for PFC tracer monitoring.  These numbers tell us 

that PFC monitoring has better performance in detecting a leak compared to soil CO2 flux 

measurement for the same monitoring density and site conditions.   

However, PFC tracer monitoring is not as fast and direct as soil CO2 flux 

measurement. It usually takes from a couple of weeks to a couple of months to complete 

PFC tracer sampling (9, 40). In contrast, the daily average of soil CO2 flux measured by 
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accumulated chamber is obtained and used for leak detection; thus, the feedback using 

soil CO2 flux measurement is faster.  Also, because of the possible contamination of PFC 

tracer during the injection stage, which changes the original background concentration, 

the injection procedure of PFC tracer must be done especially carefully (36, 41, 42), 

while soil CO2 flux is less delicate and provides direct measurement on the spot. 

Nevertheless, the coverage of soil CO2 flux measurement is small compared to that 

provided with PFC tracer monitoring, so many more monitors are needed to achieve the 

same probability of detection, making this technique cost- and labor-intensive.  

Considering the pros and cons of the two monitoring techniques, soil CO2 flux 

measurement is recommended for regions where the large size leaks might occur, such as 

the area around wells and features. PFC tracer monitoring is more flexible with regard to 

the location of monitors due to its sensitivity to small sized leaks. Actually, these 

concerns with regard to coverage area, sampling time and cost can be integrated to the 

BBN to build a decision support system for CO2 leak detection for application in the 

future. Take the cost for example: if the use of a PFC tracer is relatively more expensive 

than soil CO2 flux measurement, a combination of the two monitoring techniques may be 

preferred. If it’s not more expensive, soil CO2 flux is suggested for use in high risk 

regions because of its quick feedback.  Since the use of different monitoring strategies is 

suggested, in our ongoing research, we will consider the monitoring network designed 

specifically for each monitoring technique for each particular situation, considering high-

risk leakage pathways like fractures, faults and abandoned wells. The optimization of 

these network designs in order to achieve a minimum acceptable leakage rate is indeed 
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site-specific; therefore, more information from a sequestration site is needed to obtain a 

refined monitoring network design.    

This study presents a general and applicable framework of the Bayesian Belief 

Network (BBN) for CO2 leak detection deployed at a site, illustrating the use of the two 

monitoring techniques for the idealized ZERT site. However, more monitoring 

technologies can be added to the BBN for a more fully integrated assessment of CO2 leak 

detection in the application stage. Moreover, each monitoring node can be further 

categorized into several states in order to better characterize leakage distribution.  Other 

site parameters of interest, such as vadose zone thickness or porosity, can be added into 

the BBN as well. Additionally, the prior distribution of leakage rate can be further 

explored, rather than simply assuming a power-low distribution based on the natural 

analogue like volcanic CO2 fluxes. Some operational or natural factors associated with 

leakage rate, or site characterization generally, are worth studying. Finally, as mentioned 

above, the BBN can be expanded into a decision support system with the addition of 

other elements reflecting important operational, economic, and social concerns. 
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Chapter 5: Conclusions and Future Research Directions 

 

 

5.1 Summary and Conclusions  

 

Bayesian methods for characterizing the natural background conditions of the 

monitoring techniques for leak detection  

Bayesian hierarchical models have been successfully developed and applied to 

predict soil CO2 respiration rates as a function of temperature at nine AmeriFlux sites. 

The hierarchical approach allows determination of a global parameter distribution for the 

set of sites, the sharing of information across sites, and site-specific parameter estimates 

for each. The prediction intervals from the predictive distributions provide a first basis for 

determining critical values of measured CO2 fluxes (conditioned on temperature) for leak 

detection.  Among the four selected soil respiration models, the square root-quadratic 

model has the best performance in fitting the site data and providing reasonable 

prediction intervals, which is a desirable feature for a model that may be applied for 

general use in leak detection applications.  For the ZERT site, a simpler square root-linear 

relationship, a special case of square root-quadratic model, was found to provide the best 

fit for these data, and a Bayesian nonhierarchical square root-linear model is used for 

estimating the prediction intervals for leak detection.   

The general method illustrated for characterizing soil CO2 flux is also applied to 

PFC tracer monitoring at the ZERT site, using a simple Bayesian hierarchical normal 

model across the four test sites.  Similarly, the critical value is estimated from the upper 

bound of the prediction intervals to determine when a measurement is unlike the 
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background concentrations. When measurements are available across multiple sites, 

Bayesian hierarchical models provide a basis for pooling this information, thereby 

reducing the overall uncertainty, while still maintaining site-specific model estimates.   

 

Probability of Leak Detection for a Near-Surface CO2 Monitoring System  

The application on the soil CO2 flux measurement at the idealized ZERT site 

shows nonlinear, non-monotonic relationships of network performance with soil 

permeability and network density. In general, dense monitoring networks (with ~10-20 

meters between monitors) are required to ensure a moderate to high probability of leak 

detection. These effects are likely to be even more pronounced when the method is 

applied to actual site conditions with potential releases from deep formations; complex 

non-homogeneous site geology; facilitated transport through fissures, wells, and zones of 

high permeability; and spatial variation in pre-injection soil respiration rates.  Similar 

results are found for PFC tracer monitoring with less dense networks (with ~50-20m 

meters between monitors) required for achieving the same probability of leak detection.  

For the PFC tracer, permeability only matters for the less dense networks.  

As such, surface soil CO2 flux measurement is unlikely to be feasible as a stand-

alone technology for leak detection.  Rather, it will most likely be applied in high risk 

locations, such as areas around wells and features, during the injection and post-injection 

period.  As now recognized, a mix of complementary technologies targeting signals from 

potential leaks at different locations and in different ways will be needed to allow for 

practical and affordable designs that achieve high levels of assurance.   
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The methods presented here for integrating site characterization, site modeling, 

and monitoring device and network specification, to compute the detection probabilities 

of a network for each monitoring technique are generally applicable. Application to 

actual sites will require more detailed site characterization data and modeling tools for 

estimating the relationships between leakage events and monitoring results, and 

adaptation of the methodology will be required to address these complexities.   

 

Bayesian Belief Network for Combining Sequestration Site Leak Detection Monitoring 

Results from Near-Surface CO2 Fluxes and PFC Tracer Concentrations 

A general and applicable framework of the BBN for CO2 leak detection deployed 

at a site is presented with an illustration of the use of the two monitoring techniques for 

the idealized ZERT site. The results show that PFC monitoring has better performance in 

detecting a leak compared to soil CO2 flux measurement for the same monitoring density 

and site conditions. Considering the pros and cons of the two monitoring techniques, soil 

CO2 flux measurement is recommended for regions where large size leaks might occur, 

such as the area around wells and features, because of its quick feedback. PFC tracer 

monitoring is more flexible with regard to the location of monitors due to its sensitivity to 

small sized leaks.  

Moreover, the BBN can be used to calculate the probability of leak detection for 

an acceptable leakage rate in order to optimize a monitoring network design or to select 

the monitoring techniques deployed at a site. In the illustrative analysis, a d=20m or less 

PFC tracer network alone is sufficient for detecting almost all sizes of leaks. For the 

leakge rate catetory 10
-4

 to 10
-3

 kg/s and the target probability of 95% detection, options 
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for the mix of the two technologies include: the mix of a d=50m network for PFC tracer 

and a d=10m network for soil CO2 flux in the case of high permeability; and the mix of a 

d=50m network for PFC tracer and a d=20m network for soil CO2 flux in the case of 

median permeability. For low permeability, a d=100m PFC tracer network alone or a 

d=20m network for soil CO2 flux is sufficient. Considering the pros and cons of the two 

monitoring techniques, soil CO2 flux measurement is recommended for regions where the 

large size leaks might occur, such as the area around wells and features. PFC tracer 

monitoring is more flexible with regard to the location of monitors due to its sensitivity to 

small sized leaks. The analysis of the set of idealized monitoring scenarios also gives a 

general idea about the number of monitors needed for a monitoring network design and 

shows the trade-offs between two monitoring methods.   Besides detection ability 

presented in this research, the determination of the optimized network design usually 

involves other factors such as the cost of monitoring, labor and technology availability, 

which must be considered in the real decision making process.  

 

5.2 Recommendations for Future Research 

 

While building the BBN for CO2 leak detection, some challenges and questions 

have arisen, especially in regard to the consideration of actual site conditions and the best 

use of each monitoring technique. We suggest the following directions which are worth 

investigating in the future.  
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 The CO2 soil flux and tracer models can be applied to evaluate monitoring 

network designs at an actual site, considering non-uniform/non-isotropic leak 

occurrence probability and subsurface CO2 transport.  Application to actual sites 

will require more detailed site characterization data and modeling tools, and 

adaptation of the methodology will be required to address these complexities.  For 

example, methods will be needed to account for partial (imperfect) knowledge of 

more-likely leak locations such as wells and features and the need for denser 

monitoring coverage at or near these portions of the site. Therefore, leakage 

simulation scenarios close to the real site conditions, considering all possible 

leakage pathways, are needed. After the leakage simulations are made, the 

optimized monitoring network design for a technology can be evaluated based on 

the probability of leak detection. 

 More monitoring technologies can be added to the BBN for a more fully 

integrated assessment of CO2 leak detection in the application stage. The key 

challenge of adding a new monitoring technique into the BBN is the ability to 

relate the monitoring results to the size of a possible leak. It is equivalent to 

answering the question: what the possible size of a leak given the observation? 

Besides the CO2 soil flux and PFC tracer technologies, other monitoring methods, 

such as groundwater chemistry and carbon isotopes, can be included in the BBN 

in the future. 

 The joint deployment of technologies targeting both deep and near-surface 

leakage signals can be considered. The methods proposed here for computing 

detection probabilities are generally applicable, and related tests and the 
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simulations for deep saline aquifer storage have been performed by several 

research groups (1-10). Therefore, it is feasible and practical to develop joint 

assessments for the monitoring technologies applied in deep reservoirs and the 

shallow near-surface area.  

 The BBN can be expanded into a decision support system with the addition of 

other elements reflecting important operational, economic, and social concerns. 

For example, the use of a BBN to optimize the network design for an acceptable 

leakage rate can be linked to the cost associated with the monitoring technique 

considered.  

 The time required for sampling and analysis is also another interesting factor 

discovered here besides the geological monitoring network designs. How the 

frequency of a monitoring technology affects the effective period for the 

probability of leak detection is worth investigating in the future.      
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Appendix A:  Interpretation of Parameter Estimates for the Four Soil 

Temperature-CO2 Respiration Rate Models (see Table 2.2 in main text) 

 

For the simple Q10 model parameter estimates presented in Table 2.2, the median 

of parameter a at each site varies from -1.07 to 1.88, with the only positive value (1.88) 

estimated for the IOM site.  In contrast, the median estimates of all parameter b values 

are positive, ranging from 0.04 to 0.16, except for the one for the IOM site, which has a 

value of -0.1.  The Q10 model is monotonic with temperature, sloping upward when b is 

positive and downward when b is negative.  All sites except IOM yield an upward 

sloping curve. The large sample size associated with the IOM site and the relative 

respiration rates between sites with differing ranges of soil temperature result in a 

similarly downward sloping relationship for the pooled estimate, with a positive a value 

and a negative b value.  The remaining models all allow for a non-monotonic relationship 

between soil temperature and CO2 flux, providing greater flexibility for capturing a more 

realistic range of temperature effects both within and between sites.   

The log-quadratic model includes an additional parameter for the quadratic term. 

The Bayesian hierarchical parameter estimation yields a median value of the parameter a 

ranging across sites from -1.88 to 1.27, with the median of parameter b ranging from        

-0.03 to 0.23. Once again, the IOM site yields parameter estimates with opposite signs 

compared to the other sites. The credible intervals indicate that most parameters are 

statistically significant for the model fit except for the parameter a at the UMB site and 

the parameters b and c at the JUN site. The parameters of the Bayesian pooled model 

agree with those parameters estimated for the Bayesian hierarchical model at most sites. 
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Compared to the parameter c of the hierarchical model, the parameter c of the pooled 

model is lower, indicating a greater degree of curvature in the pooled model relationship.   

The square root-quadratic model likewise has three parameters.  The Bayesian 

hierarchical estimates yield positive median values of parameter a, ranging from 0.37 to 

1.56, positive median values of parameter b, ranging from 0.014 to 0.11, and negative 

parameter values for c, ranging from -0.007 to -0.001. However, the parameter c is 

statistically insignificant for the HAR, JUN, MEO, UMB and WDN sites, suggesting that 

adding curvature to the model for the square root transformed data is not necessary at 

most sites. The estimated parameters of the Bayesian pooled model agree well with those 

of the Bayesian hierarchical model. Like the log-quadratic model, the parameter c of the 

pooled model is lower than estimated for the hierarchical model, reflecting the larger 

concavity in the pooled model needed to capture variations across all sites.   

For the modified Davidson model, the parameter estimates exhibit a higher degree 

of variation than for the other three models, in part due to the greater complexity of the 

model. The median value of parameter a at each site ranges from -6.44 to 62.14, and all 

parameter a estimates are statistically significant. The median values of parameter b 

range from 0.376 to -168.9, with the group 1 sites (HAR, THA and UMB) yielding 

similar, low negative values for b. The parameter b is not statistically significant for the 

JUN and WDN sites, indicating that there is no enhanced curvature due to temperature 

change at these sites. The parameters estimated from the pooled model are very close to 

the parameters of the illustrative model proposed by Davidson et al. (2006) which 

represents a general prediction for soil respiration.  
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Below are the correlation coefficient matrix tables of the parameters of the four 

soil temperature-CO2 respiration rate models. 

 

 

 

 

 

 

 

 



 

Table A. 1    The Correlation Coefficient Matrix of the Parameters of the Four Soil Temperature-CO2 Respiration Rate Models Applied to the 

AmeriFlux Site Data  

 
A. Simple Q10 (log-linear) Model 

Q10 a(HAR) a(HOW) a(IOM) a(JUN) a(MEO) a(MEY) a(THA) a(UMB) a(WDN) b(HAR) b(HOW) b(IOM) b(JUN) b(MEO) b(MEY) b(THA) b(UMB) b(WDN) 

a(HAR) 1.000 0.023 0.008 0.009 0.009 -0.001 -0.005 0.020 -0.039 -0.927 -0.015 -0.001 -0.010 -0.008 0.000 0.004 -0.017 0.030 

a(HOW) 0.023 1.000 0.017 0.000 0.009 -0.021 -0.025 -0.015 -0.020 -0.013 -0.849 -0.013 -0.006 -0.008 0.017 0.027 0.015 0.020 

a(IOM) 0.008 0.017 1.000 -0.003 -0.010 0.005 0.016 0.009 0.007 -0.001 -0.023 -0.917 0.006 0.000 -0.011 0.000 -0.012 -0.009 

a(JUN) 0.009 0.000 -0.003 1.000 0.012 0.027 -0.006 -0.011 0.002 -0.002 -0.001 0.008 -0.946 -0.008 -0.022 0.001 0.008 0.009 

a(MEO) 0.009 0.009 -0.010 0.012 1.000 0.000 0.005 0.001 0.015 -0.006 -0.005 0.011 -0.008 -0.916 0.003 0.004 0.007 -0.016 

a(MEY) -0.001 -0.021 0.005 0.027 0.000 1.000 -0.004 -0.006 0.017 -0.006 0.021 -0.001 -0.019 0.002 -0.939 0.006 0.000 -0.017 

a(THA) -0.005 -0.025 0.016 -0.006 0.005 -0.004 1.000 0.010 0.015 0.011 0.020 -0.012 0.007 -0.008 0.007 -0.844 -0.012 -0.013 

a(UMB) 0.020 -0.015 0.009 -0.011 0.001 -0.006 0.010 1.000 -0.016 -0.014 0.015 -0.004 0.009 -0.001 0.010 -0.013 -0.907 0.020 

a(WDN) -0.039 -0.020 0.007 0.002 0.015 0.017 0.015 -0.016 1.000 0.036 0.011 -0.002 0.001 -0.022 -0.011 -0.024 0.014 -0.952 

b(HAR) -0.927 -0.013 -0.001 -0.002 -0.006 -0.006 0.011 -0.014 0.036 1.000 0.007 -0.004 0.005 0.005 0.004 -0.007 0.013 -0.026 

b(HOW) -0.015 -0.849 -0.023 -0.001 -0.005 0.021 0.020 0.015 0.011 0.007 1.000 0.020 0.008 0.007 -0.024 -0.022 -0.011 -0.010 

b(IOM) -0.001 -0.013 -0.917 0.008 0.011 -0.001 -0.012 -0.004 -0.002 -0.004 0.020 1.000 -0.009 -0.001 0.005 -0.002 0.007 0.005 

b(JUN) -0.010 -0.006 0.006 -0.946 -0.008 -0.019 0.007 0.009 0.001 0.005 0.008 -0.009 1.000 0.005 0.015 -0.004 -0.005 -0.012 

b(MEO) -0.008 -0.008 0.000 -0.008 -0.916 0.002 -0.008 -0.001 -0.022 0.005 0.007 -0.001 0.005 1.000 -0.005 -0.001 -0.003 0.021 

b(MEY) 0.000 0.017 -0.011 -0.022 0.003 -0.939 0.007 0.010 -0.011 0.004 -0.024 0.005 0.015 -0.005 1.000 -0.011 -0.004 0.013 

b(THA) 0.004 0.027 0.000 0.001 0.004 0.006 -0.844 -0.013 -0.024 -0.007 -0.022 -0.002 -0.004 -0.001 -0.011 1.000 0.009 0.026 

b(UMB) -0.017 0.015 -0.012 0.008 0.007 0.000 -0.012 -0.907 0.014 0.013 -0.011 0.007 -0.005 -0.003 -0.004 0.009 1.000 -0.018 

b(WDN) 0.030 0.020 -0.009 0.009 -0.016 -0.017 -0.013 0.020 -0.952 -0.026 -0.010 0.005 -0.012 0.021 0.013 0.026 -0.018 1.000 

 
B. Log-quadratic model 

LQ a(HAR) a(HOW) a(IOM) a(JUN) a(MEO) a(MEY) a(THA) a(UMB) a(WDN) b(HAR) b(HOW) b(IOM) b(JUN) b(MEO) b(MEY) b(THA) b(UMB) b(WDN) 

a(HAR) 1.000 0.102 -0.020 0.039 -0.039 -0.056 0.155 0.119 -0.002 -0.836 -0.205 0.017 -0.031 0.031 0.050 -0.220 -0.148 -0.048 

a(HOW) 0.102 1.000 -0.048 -0.134 0.012 -0.135 0.181 0.063 0.073 -0.175 -0.728 0.054 0.157 -0.023 0.148 -0.272 -0.080 -0.138 

a(IOM) -0.020 -0.048 1.000 0.010 0.113 0.038 -0.114 -0.038 -0.030 0.042 0.110 -0.963 -0.026 -0.124 -0.033 0.164 0.063 0.051 

a(JUN) 0.039 -0.134 0.010 1.000 0.023 0.137 -0.199 -0.024 -0.065 -0.040 0.224 -0.009 -0.958 -0.021 -0.151 0.270 0.030 0.142 

a(MEO) -0.039 0.012 0.113 0.023 1.000 0.087 0.020 0.059 0.002 0.031 -0.048 -0.120 -0.020 -0.926 -0.087 -0.027 -0.051 -0.025 
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a(MEY) -0.056 -0.135 0.038 0.137 0.087 1.000 -0.067 0.042 -0.055 0.082 0.229 -0.042 -0.149 -0.105 -0.930 0.125 -0.041 0.105 

a(THA) 0.155 0.181 -0.114 -0.199 0.020 -0.067 1.000 0.019 0.086 -0.192 -0.293 0.117 0.219 -0.019 0.073 -0.785 -0.041 -0.164 

a(UMB) 0.119 0.063 -0.038 -0.024 0.059 0.042 0.019 1.000 0.125 -0.158 -0.109 0.030 0.020 -0.072 -0.047 -0.041 -0.802 -0.157 

a(WDN) -0.002 0.073 -0.030 -0.065 0.002 -0.055 0.086 0.125 1.000 -0.038 -0.138 0.029 0.072 -0.003 0.055 -0.130 -0.177 -0.832 

b(HAR) -0.836 -0.175 0.042 -0.040 0.031 0.082 -0.192 -0.158 -0.038 1.000 0.314 -0.044 0.025 -0.021 -0.077 0.295 0.201 0.093 

b(HOW) -0.205 -0.728 0.110 0.224 -0.048 0.229 -0.293 -0.109 -0.138 0.314 1.000 -0.120 -0.262 0.057 -0.252 0.449 0.151 0.242 

b(IOM) 0.017 0.054 -0.963 -0.009 -0.120 -0.042 0.117 0.030 0.029 -0.044 -0.120 1.000 0.024 0.131 0.038 -0.169 -0.056 -0.059 

b(JUN) -0.031 0.157 -0.026 -0.958 -0.020 -0.149 0.219 0.020 0.072 0.025 -0.262 0.024 1.000 0.019 0.166 -0.305 -0.027 -0.153 

b(MEO) 0.031 -0.023 -0.124 -0.021 -0.926 -0.105 -0.019 -0.072 -0.003 -0.021 0.057 0.131 0.019 1.000 0.105 0.027 0.065 0.025 

b(MEY) 0.050 0.148 -0.033 -0.151 -0.087 -0.930 0.073 -0.047 0.055 -0.077 -0.252 0.038 0.166 0.105 1.000 -0.131 0.045 -0.111 

b(THA) -0.220 -0.272 0.164 0.270 -0.027 0.125 -0.785 -0.041 -0.130 0.295 0.449 -0.169 -0.305 0.027 -0.131 1.000 0.072 0.250 

b(UMB) -0.148 -0.080 0.063 0.030 -0.051 -0.041 -0.041 -0.802 -0.177 0.201 0.151 -0.056 -0.027 0.065 0.045 0.072 1.000 0.230 

b(WDN) -0.048 -0.138 0.051 0.142 -0.025 0.105 -0.164 -0.157 -0.832 0.093 0.242 -0.059 -0.153 0.025 -0.111 0.250 0.230 1.000 

c(HAR) 0.651 0.190 -0.049 0.033 -0.024 -0.088 0.187 0.159 0.057 -0.951 -0.333 0.053 -0.015 0.013 0.085 -0.298 -0.205 -0.107 

c(HOW) 0.216 0.553 -0.122 -0.229 0.055 -0.237 0.298 0.112 0.145 -0.327 -0.960 0.133 0.268 -0.064 0.260 -0.462 -0.155 -0.252 

c(IOM) -0.014 -0.057 0.913 0.009 0.118 0.043 -0.116 -0.021 -0.026 0.044 0.122 -0.986 -0.023 -0.130 -0.040 0.166 0.048 0.060 

c(JUN) 0.025 -0.163 0.035 0.897 0.017 0.150 -0.222 -0.018 -0.074 -0.015 0.276 -0.033 -0.983 -0.018 -0.169 0.315 0.025 0.154 

c(MEO) -0.026 0.029 0.121 0.018 0.829 0.113 0.016 0.078 0.002 0.016 -0.059 -0.129 -0.018 -0.971 -0.112 -0.025 -0.073 -0.022 

c(MEY) -0.041 -0.143 0.025 0.149 0.080 0.826 -0.073 0.047 -0.053 0.066 0.248 -0.029 -0.165 -0.096 -0.971 0.127 -0.047 0.109 

c(THA) 0.225 0.282 -0.162 -0.268 0.025 -0.139 0.626 0.045 0.134 -0.309 -0.469 0.167 0.307 -0.027 0.145 -0.960 -0.077 -0.260 

c(UMB) 0.142 0.078 -0.067 -0.029 0.042 0.032 0.052 0.579 0.177 -0.194 -0.151 0.062 0.026 -0.056 -0.038 -0.083 -0.937 -0.235 

c(WDN) 0.073 0.158 -0.056 -0.171 0.035 -0.123 0.193 0.150 0.548 -0.115 -0.273 0.071 0.183 -0.036 0.131 -0.292 -0.226 -0.907 

 

LQ (cont.) c(HAR) c(HOW) c(IOM) c(JUN) c(MEO) c(MEY) c(THA) c(UMB) c(WDN) 

a(HAR) 0.651 0.216 -0.014 0.025 -0.026 -0.041 0.225 0.142 0.073 

a(HOW) 0.190 0.553 -0.057 -0.163 0.029 -0.143 0.282 0.078 0.158 

a(IOM) -0.049 -0.122 0.913 0.035 0.121 0.025 -0.162 -0.067 -0.056 

a(JUN) 0.033 -0.229 0.009 0.897 0.018 0.149 -0.268 -0.029 -0.171 

a(MEO) -0.024 0.055 0.118 0.017 0.829 0.080 0.025 0.042 0.035 

a(MEY) -0.088 -0.237 0.043 0.150 0.113 0.826 -0.139 0.032 -0.123 

a(THA) 0.187 0.298 -0.116 -0.222 0.016 -0.073 0.626 0.052 0.193 

a(UMB) 0.159 0.112 -0.021 -0.018 0.078 0.047 0.045 0.579 0.150 
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a(WDN) 0.057 0.145 -0.026 -0.074 0.002 -0.053 0.134 0.177 0.548 

b(HAR) -0.951 -0.327 0.044 -0.015 0.016 0.066 -0.309 -0.194 -0.115 

b(HOW) -0.333 -0.960 0.122 0.276 -0.059 0.248 -0.469 -0.151 -0.273 

b(IOM) 0.053 0.133 -0.986 -0.033 -0.129 -0.029 0.167 0.062 0.071 

b(JUN) -0.015 0.268 -0.023 -0.983 -0.018 -0.165 0.307 0.026 0.183 

b(MEO) 0.013 -0.064 -0.130 -0.018 -0.971 -0.096 -0.027 -0.056 -0.036 

b(MEY) 0.085 0.260 -0.040 -0.169 -0.112 -0.971 0.145 -0.038 0.131 

b(THA) -0.298 -0.462 0.166 0.315 -0.025 0.127 -0.960 -0.083 -0.292 

b(UMB) -0.205 -0.155 0.048 0.025 -0.073 -0.047 -0.077 -0.937 -0.226 

b(WDN) -0.107 -0.252 0.060 0.154 -0.022 0.109 -0.260 -0.235 -0.907 

c(HAR) 1.000 0.346 -0.054 0.004 -0.008 -0.076 0.316 0.198 0.124 

c(HOW) 0.346 1.000 -0.134 -0.282 0.065 -0.256 0.484 0.156 0.284 

c(IOM) -0.054 -0.134 1.000 0.032 0.128 0.032 -0.164 -0.056 -0.075 

c(JUN) 0.004 -0.282 0.032 1.000 0.017 0.169 -0.318 -0.025 -0.183 

c(MEO) -0.008 0.065 0.128 0.017 1.000 0.103 0.026 0.063 0.033 

c(MEY) -0.076 -0.256 0.032 0.169 0.103 1.000 -0.140 0.042 -0.130 

c(THA) 0.316 0.484 -0.164 -0.318 0.026 -0.140 1.000 0.087 0.305 

c(UMB) 0.198 0.156 -0.056 -0.025 0.063 0.042 0.087 1.000 0.234 

c(WDN) 0.124 0.284 -0.075 -0.183 0.033 -0.130 0.305 0.234 1.000 

 
C. Modified Davidson model  

MD a(HAR) a(HOW) a(IOM) a(JUN) a(MEO) a(MEY) a(THA) a(UMB) a(WDN) b(HAR) b(HOW) b(IOM) b(JUN) b(MEO) b(MEY) b(THA) b(UMB) b(WDN) 

a(HAR) 1.000 -0.034 -0.006 0.039 0.101 -0.070 -0.438 0.563 0.080 -0.995 0.034 0.006 -0.042 -0.101 0.071 -0.556 -0.571 -0.078 

a(HOW) -0.034 1.000 0.015 -0.055 -0.024 -0.091 0.014 -0.042 -0.026 0.035 -0.996 -0.012 0.048 0.024 0.091 0.022 0.045 0.025 

a(IOM) -0.006 0.015 1.000 0.002 -0.012 0.012 -0.027 -0.015 -0.003 0.005 -0.016 -0.456 0.002 0.012 -0.012 -0.023 0.014 0.002 

a(JUN) 0.039 -0.055 0.002 1.000 0.372 0.262 -0.014 0.034 0.274 -0.041 0.053 0.015 -0.953 -0.370 -0.262 -0.038 -0.039 -0.272 

a(MEO) 0.101 -0.024 -0.012 0.372 1.000 0.239 -0.058 0.114 0.570 -0.100 0.022 0.018 -0.370 -0.997 -0.239 -0.080 -0.115 -0.573 

a(MEY) -0.070 -0.091 0.012 0.262 0.239 1.000 0.005 -0.043 0.276 0.068 0.090 -0.007 -0.248 -0.238 -0.995 -0.003 0.043 -0.275 

a(THA) -0.438 0.014 -0.027 -0.014 -0.058 0.005 1.000 -0.414 -0.040 0.438 -0.015 0.028 0.021 0.059 -0.006 0.746 0.417 0.040 

a(UMB) 0.563 -0.042 -0.015 0.034 0.114 -0.043 -0.414 1.000 0.100 -0.567 0.043 0.010 -0.039 -0.114 0.044 -0.547 -0.980 -0.098 

a(WDN) 0.080 -0.026 -0.003 0.274 0.570 0.276 -0.040 0.100 1.000 -0.081 0.025 0.021 -0.270 -0.572 -0.278 -0.058 -0.104 -0.992 

b(HAR) -0.995 0.035 0.005 -0.041 -0.100 0.068 0.438 -0.567 -0.081 1.000 -0.035 -0.007 0.045 0.100 -0.069 0.559 0.575 0.078 
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b(HOW) 0.034 -0.996 -0.016 0.053 0.022 0.090 -0.015 0.043 0.025 -0.035 1.000 0.013 -0.046 -0.022 -0.091 -0.023 -0.046 -0.024 

b(IOM) 0.006 -0.012 -0.456 0.015 0.018 -0.007 0.028 0.010 0.021 -0.007 0.013 1.000 -0.015 -0.019 0.008 0.018 -0.009 -0.018 

b(JUN) -0.042 0.048 0.002 -0.953 -0.370 -0.248 0.021 -0.039 -0.270 0.045 -0.046 -0.015 1.000 0.368 0.248 0.044 0.044 0.268 

b(MEO) -0.101 0.024 0.012 -0.370 -0.997 -0.238 0.059 -0.114 -0.572 0.100 -0.022 -0.019 0.368 1.000 0.238 0.081 0.115 0.574 

b(MEY) 0.071 0.091 -0.012 -0.262 -0.239 -0.995 -0.006 0.044 -0.278 -0.069 -0.091 0.008 0.248 0.238 1.000 0.003 -0.044 0.276 

b(THA) -0.556 0.022 -0.023 -0.038 -0.080 -0.003 0.746 -0.547 -0.058 0.559 -0.023 0.018 0.044 0.081 0.003 1.000 0.557 0.058 

b(UMB) -0.571 0.045 0.014 -0.039 -0.115 0.043 0.417 -0.980 -0.104 0.575 -0.046 -0.009 0.044 0.115 -0.044 0.557 1.000 0.103 

b(WDN) -0.078 0.025 0.002 -0.272 -0.573 -0.275 0.040 -0.098 -0.992 0.078 -0.024 -0.018 0.268 0.574 0.276 0.058 0.103 1.000 

 
D. Square root-quadratic model 

SQ a(HAR) a(HOW) a(IOM) a(JUN) a(MEO) a(MEY) a(THA) a(UMB) a(WDN) b(HAR) b(HOW) b(IOM) b(JUN) b(MEO) b(MEY) b(THA) b(UMB) b(WDN) 

a(HAR) 1.000 0.012 -0.147 0.202 0.166 0.130 0.095 0.216 0.010 -0.853 -0.050 0.159 -0.232 -0.195 -0.139 -0.200 -0.299 -0.008 

a(HOW) 0.012 1.000 -0.018 -0.001 0.040 -0.017 0.010 -0.003 0.048 -0.020 -0.677 0.013 0.005 -0.040 0.017 -0.029 -0.037 -0.071 

a(IOM) -0.147 -0.018 1.000 -0.090 -0.092 -0.104 0.018 -0.118 0.073 0.198 -0.016 -0.958 0.099 0.108 0.095 -0.042 0.178 -0.119 

a(JUN) 0.202 -0.001 -0.090 1.000 0.287 0.204 0.069 0.153 0.118 -0.264 -0.020 0.093 -0.921 -0.319 -0.217 -0.108 -0.217 -0.144 

a(MEO) 0.166 0.040 -0.092 0.287 1.000 0.198 0.011 0.127 0.123 -0.215 -0.110 0.102 -0.316 -0.921 -0.221 -0.063 -0.197 -0.161 

a(MEY) 0.130 -0.017 -0.104 0.204 0.198 1.000 0.006 0.155 0.056 -0.165 -0.044 0.112 -0.232 -0.227 -0.928 -0.047 -0.211 -0.084 

a(THA) 0.095 0.010 0.018 0.069 0.011 0.006 1.000 0.062 0.065 -0.124 -0.061 -0.026 -0.085 -0.023 -0.009 -0.716 -0.076 -0.073 

a(UMB) 0.216 -0.003 -0.118 0.153 0.127 0.155 0.062 1.000 0.074 -0.248 -0.029 0.124 -0.180 -0.146 -0.161 -0.080 -0.776 -0.093 

a(WDN) 0.010 0.048 0.073 0.118 0.123 0.056 0.065 0.074 1.000 -0.020 -0.100 -0.076 -0.147 -0.138 -0.056 -0.083 -0.103 -0.827 

b(HAR) -0.853 -0.020 0.198 -0.264 -0.215 -0.165 -0.124 -0.248 -0.020 1.000 0.063 -0.216 0.304 0.259 0.180 0.243 0.373 0.019 

b(HOW) -0.050 -0.677 -0.016 -0.020 -0.110 -0.044 -0.061 -0.029 -0.100 0.063 1.000 0.023 0.018 0.124 0.042 0.111 0.076 0.151 

b(IOM) 0.159 0.013 -0.958 0.093 0.102 0.112 -0.026 0.124 -0.076 -0.216 0.023 1.000 -0.104 -0.120 -0.102 0.044 -0.194 0.128 

b(JUN) -0.232 0.005 0.099 -0.921 -0.316 -0.232 -0.085 -0.180 -0.147 0.304 0.018 -0.104 1.000 0.348 0.248 0.129 0.261 0.182 

b(MEO) -0.195 -0.040 0.108 -0.319 -0.921 -0.227 -0.023 -0.146 -0.138 0.259 0.124 -0.120 0.348 1.000 0.248 0.084 0.228 0.178 

b(MEY) -0.139 0.017 0.095 -0.217 -0.221 -0.928 -0.009 -0.161 -0.056 0.180 0.042 -0.102 0.248 0.248 1.000 0.058 0.223 0.087 

b(THA) -0.200 -0.029 -0.042 -0.108 -0.063 -0.047 -0.716 -0.080 -0.083 0.243 0.111 0.044 0.129 0.084 0.058 1.000 0.124 0.113 

b(UMB) -0.299 -0.037 0.178 -0.217 -0.197 -0.211 -0.076 -0.776 -0.103 0.373 0.076 -0.194 0.261 0.228 0.223 0.124 1.000 0.139 

b(WDN) -0.008 -0.071 -0.119 -0.144 -0.161 -0.084 -0.073 -0.093 -0.827 0.019 0.151 0.128 0.182 0.178 0.087 0.113 0.139 1.000 

c(HAR) 0.687 0.024 -0.202 0.268 0.222 0.166 0.127 0.236 0.024 -0.957 -0.064 0.221 -0.309 -0.266 -0.181 -0.240 -0.370 -0.023 

c(HOW) 0.060 0.389 0.036 0.024 0.117 0.068 0.078 0.040 0.102 -0.073 -0.911 -0.042 -0.025 -0.135 -0.067 -0.130 -0.079 -0.157 

c(IOM) -0.161 -0.010 0.900 -0.092 -0.105 -0.113 0.030 -0.124 0.074 0.219 -0.027 -0.983 0.104 0.123 0.103 -0.044 0.197 -0.127 
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c(JUN) 0.235 -0.008 -0.097 0.800 0.311 0.232 0.089 0.184 0.154 -0.307 -0.014 0.104 -0.965 -0.340 -0.249 -0.134 -0.271 -0.192 

c(MEO) 0.202 0.038 -0.108 0.318 0.813 0.228 0.031 0.149 0.135 -0.270 -0.125 0.121 -0.344 -0.968 -0.247 -0.092 -0.233 -0.173 

c(MEY) 0.136 -0.016 -0.081 0.210 0.220 0.818 0.010 0.151 0.054 -0.179 -0.038 0.087 -0.243 -0.243 -0.968 -0.063 -0.213 -0.085 

c(THA) 0.220 0.030 0.044 0.114 0.082 0.069 0.426 0.083 0.076 -0.260 -0.116 -0.043 -0.134 -0.105 -0.082 -0.897 -0.134 -0.111 

c(UMB) 0.294 0.049 -0.176 0.217 0.204 0.208 0.073 0.531 0.104 -0.379 -0.087 0.195 -0.264 -0.236 -0.219 -0.127 -0.928 -0.142 

c(WDN) 0.004 0.080 0.130 0.126 0.148 0.088 0.063 0.085 0.465 -0.013 -0.158 -0.142 -0.161 -0.161 -0.091 -0.108 -0.132 -0.862 

 

SQ (cont.) c(HAR) c(HOW) c(IOM) c(JUN) c(MEO) c(MEY) c(THA) c(UMB) c(WDN) 

a(HAR) 0.687 0.060 -0.161 0.235 0.202 0.136 0.220 0.294 0.004 

a(HOW) 0.024 0.389 -0.010 -0.008 0.038 -0.016 0.030 0.049 0.080 

a(IOM) -0.202 0.036 0.900 -0.097 -0.108 -0.081 0.044 -0.176 0.130 

a(JUN) 0.268 0.024 -0.092 0.800 0.318 0.210 0.114 0.217 0.126 

a(MEO) 0.222 0.117 -0.105 0.311 0.813 0.220 0.082 0.204 0.148 

a(MEY) 0.166 0.068 -0.113 0.232 0.228 0.818 0.069 0.208 0.088 

a(THA) 0.127 0.078 0.030 0.089 0.031 0.010 0.426 0.073 0.063 

a(UMB) 0.236 0.040 -0.124 0.184 0.149 0.151 0.083 0.531 0.085 

a(WDN) 0.024 0.102 0.074 0.154 0.135 0.054 0.076 0.104 0.465 

b(HAR) -0.957 -0.073 0.219 -0.307 -0.270 -0.179 -0.260 -0.379 -0.013 

b(HOW) -0.064 -0.911 -0.027 -0.014 -0.125 -0.038 -0.116 -0.087 -0.158 

b(IOM) 0.221 -0.042 -0.983 0.104 0.121 0.087 -0.043 0.195 -0.142 

b(JUN) -0.309 -0.025 0.104 -0.965 -0.344 -0.243 -0.134 -0.264 -0.161 

b(MEO) -0.266 -0.135 0.123 -0.340 -0.968 -0.243 -0.105 -0.236 -0.161 

b(MEY) -0.181 -0.067 0.103 -0.249 -0.247 -0.968 -0.082 -0.219 -0.091 

b(THA) -0.240 -0.130 -0.044 -0.134 -0.092 -0.063 -0.897 -0.127 -0.108 

b(UMB) -0.370 -0.079 0.197 -0.271 -0.233 -0.213 -0.134 -0.928 -0.132 

b(WDN) -0.023 -0.157 -0.127 -0.192 -0.173 -0.085 -0.111 -0.142 -0.862 

c(HAR) 1.000 0.073 -0.225 0.311 0.277 0.180 0.255 0.380 0.016 

c(HOW) 0.073 1.000 0.045 0.024 0.140 0.062 0.133 0.088 0.164 

c(IOM) -0.225 0.045 1.000 -0.106 -0.125 -0.087 0.039 -0.200 0.143 

c(JUN) 0.311 0.024 -0.106 1.000 0.335 0.244 0.139 0.276 0.172 

c(MEO) 0.277 0.140 -0.125 0.335 1.000 0.240 0.113 0.240 0.156 

c(MEY) 0.180 0.062 -0.087 0.244 0.240 1.000 0.086 0.210 0.089 
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c(THA) 0.255 0.133 0.039 0.139 0.113 0.086 1.000 0.137 0.110 

c(UMB) 0.380 0.088 -0.200 0.276 0.240 0.210 0.137 1.000 0.135 

c(WDN) 0.016 0.164 0.143 0.172 0.156 0.089 0.110 0.135 1.000 

 



Appendix B:  Model Selection Procedure for ZERT Site Soil CO2 Flux 

vs. Temperature Relationship 

 

The following four models were fit to the soil temperature vs. CO2 flux data for 

the ZERT site, based on the research by Yang et. al (1): 

 

Simple Q10 (log-linear) model:       ln[CO2 flux] = a + bT + ε 

 

Log-quadratic model:        ln[CO2 flux] = a + bT+cT
2 
+ ε 

 

Square root-linear model:             [CO2 flux]
1/2

 = a + bT + ε 

 

Square root-quadratic model:       [CO2 flux]
1/2

 = a + bT+cT
2
 + ε 

 

Model selection was made by comparing the mean square error (MSE) and the deviance 

information criterion (DIC) for each. MSE is a commonly used method for model 

selection, and the DIC is specifically developed for Bayesian model selection to account 

for the tradeoff between model complexity (number of parameters) and goodness of fit 

(2,3).  Like for the MSE, lower values of the DIC are preferred.  The MSE and DIC of 

each model are shown in Table B.1 below, and the parameter distributions are 

summarized in Table B.2. As can been seen in Table B.1, the square root-linear model 

has the best model fit, with the lowest values of MSE and DIC. In fact the square root-

linear model is a particular case of the square root-quadratic model, which was found by 

Yang et. al (1) to provide the best fit across nine Ameriflux sites.  In this application to 

the ZERT site, the quadratic term is not statistically significant (see Table B.2). While the 

MSE and DIC values of the square root-quadratic model are similar to those of the square 
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root-linear model, the lowest values for both measures are achieved with the square root-

linear model, and this less-complex model is thus selected for our subsequent analysis.    
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Table B. 1    Computed Mean Square Error (MSE) and Deviance Information Criterion (DIC) for 

Four Models of Soil Respiration.  Lower values of the MSE indicate a closer goodness of fit of the 

model to the data.  The DIC further accounts for model complexity by penalizing models with more 

parameters.   For both the MSE and the DIC, the model with the lowest value is preferred (value 

shown in bold). 

 Model 

 
Metric 

Simple 
Q10 

Log-
quadratic 

Square 
root-
linear 

Square 
root-

quadratic 

MSE 5.82 5.75 5.36 5.39 

DIC 210.7 212.7 172.8 174.8 

 

 

 

Table B. 2    Summary of Markov Chain Monte Carlo Parameter Estimates for Four Model Fits 

Tested for ZERT Site 

Simple Q10 (log-linear) Model:    ln[CO2 flux] = a + bT + ε 

  mean Sd 2.50% 25% 50% 75% 97.50% 

A -0.7537 0.2647 -1.2710 -0.9310 -0.7549 -0.5760 -0.2361 

B 0.0945 0.0116 0.0718 0.0866 0.0945 0.1023 0.1174 

σε 0.6558 0.0462 0.5710 0.6238 0.6536 0.6845 0.7521 

        

Log-quadratic Model:    ln[CO2 flux] = a + bT+cT
2 
+ ε 

  mean Sd 2.50% 25% 50% 75% 97.50% 

A -0.9644 1.4030 -3.7249 -1.9230 -0.9683 -0.0203 1.7881 

B 0.1147 0.1336 -0.1426 0.0258 0.1149 0.2054 0.3778 

C -0.0005 0.0030 -0.0064 -0.0025 -0.0004 0.0015 0.0053 

σε 0.6577 0.0469 0.5735 0.6250 0.6553 0.6874 0.7558 
        

Square root-Linear Model:   [CO2 flux]
1/2

 = a + bT + ε 

  mean Sd 2.50% 25% 50% 75% 97.50% 

A 0.2076 0.2200 -0.2195 0.0564 0.2100 0.3571 0.6350 

B 0.0855 0.0097 0.0668 0.0790 0.0855 0.0920 0.1047 

σε 0.5470 0.0388 0.4781 0.5202 0.5447 0.5718 0.6292 

        

Square root-quadratic Model:    [CO2 flux]
1/2

 = a + bT+cT
2
 + ε 

 mean Sd 2.50% 25% 50% 75% 97.50% 

A 0.3160 1.1879 -2.0226 -0.4775 0.3087 1.1093 2.6403 

B 0.0748 0.1133 -0.1493 -0.0006 0.0760 0.1511 0.2968 

C 0.0002 0.0026 -0.0047 -0.0015 0.0003 0.0020 0.0053 

σε  0.5502 0.0394 0.4798 0.5229 0.5481 0.5751 0.6344 
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Appendix C:  Cross Validation of Kriging Method for Interpolating 

CO2 Seepage Rate Predictions 

 

To validate the accuracy of the 2-D kriging prediction for unmodeled values of 

permeability and leakage rate, Figure C1 shows the same results as Figure 3.2, but with 

the TOUGH2 output withheld (from the spline fitting and 2D kriging routines) for each 

of the five leakage rates for which a curve is predicted (predictions are shown for the five 

intermediate cases, L2 – L6).  For example, when fitting the response surface for case L3, 

only the TOUGH2 outputs for cases L1, L2, and L4 – L7 are used.  Figure C.2 shows 

similar cross validation results for varying permeability (Figure C.2 has the same 

TOUGH2 results as Figure 3.3, but with the spline-kriging interpolation conducted with 

each curve’s TOUGH2 results withheld).  The cross-validations in Figures C.1 and C.2 

indicate a good correspondence between the TOUGH2 simulation results and the values 

estimated by the combined spline-kriging interpolation method.  
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Figure C. 1    Cross-validation of the combined spline-kriging method for TOUGH2 simulated CO2 

seepage rates for different leakage rates, ranging from L2=1.93 x 10
-6

 kg/s to L6 = 1.93 x 10
-2 

kg/s, by 

factors of 10.  For all cases, permeability = 1 Darcy, vadose zone thickness = 1.35m.  Points are 

TOUGH2 simulation results, and solid lines are the predictions made by the spline-kriging method.   
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Figure C. 2    Cross-validation of the combined spline-kriging method for TOUGH2 simulated CO2 

seepage rates for different soil permeability, ranging from P2=0.01 Darcy to P6=100 Darcy, by 

factors of 10.  For all cases, leakage rate = 1.93 x 10
-4

 kg/s, vadose zone thickness = 1.35m.  Points are 

TOUGH2 simulation results, and solid lines are the predictions made by the spline-kriging method. 

 

 

 



     131 

Appendix D:  TOUGH2 Simulations of PMCH Seepage Flux for 

Different Leakage Rates and Permeabilities  

 

The Figure D.1 and D.2 below present the results of simulated PMCH seepage 

flux by TOUGH2 (1) for different leakage rates and permeabilities. The simulation 

scenarios for the associated CO2 leakage rates (L1-L7) and permeabilities (P1-P7) are 

described in Chapter 4, section 4.2.2, and the leakage event is simulated for 10 days. 

  

 
 

Figure D. 1    Simulated PMCH seepage rates along with CO2 injection for different CO2 leakage 

rates, ranging from L1 = 1.93 x 10
-7

 kg/s to L7 = 1.93 x 10
-1 

kg/s, by factors of 10.  For all cases, 

permeability = 1 Darcy, vadose zone thickness = 1.35m. 
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Figure D. 2    Simulated PMCH seepage rates along with CO2 injection for different soil 

permeability, ranging from P1 =  0.001 Darcy to P7=1000 Darcy, by factors of 10.  For all cases, CO2 

leakage rate = 1.93 x 10
-4

 kg/s, vadose zone thickness = 1.35m.   

 

 

 

 

 

 

Reference 

 (1) Pruess, K., Oldenburg, C.M., Moridis, G., 1999. TOUGH2 User’s Guide, version 2.0. 

Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA, 

USA. 

 

 



     133 

Appendix E:  The Simulation Summary of the Bayesian Hierarchical 

Modeling of Background PMCH Concentrations  

 

Bayesian approach allows model inferences to be shared across sites and yields 

both global and subunit-specific parameter estimates.  A simple normal model is applied 

here. The model structure for the Bayesian hierarchical model of the PMCH 

concentration is given by Yij ~ N(μj, ζy
2
) , where yij is the i

th
 observation of PMCH 

concentrations at site j; μj is the mean (or prediction) of the observed PMCH 

concentrations at each site; and ζy is the variance representing the variability that occurs 

over time or from point to point.   

The second level of the Bayesian hierarchical model is implemented by assuming 

a multivariate normal distribution for μj:  μj ~  N(aj, ζa
2
) , where aj and ζa

2
 are the 

hyperparameters.  

In our study, the background PMCH concentration are obtained from four sites in 

2007: the ZERT(ZH) site in Montana, during the ZERT Horizontal Pipe Injection 

(Strazisar et al. 2009), the Lower Michigan Basin (LMB) site near Gaylord, Michigan 

(Wells, 2008), the San Juan Basin (SJB) site in New Mexico, and the Pines parking lot at 

NETL Pittsburgh (PN), Pennsylvania. All observations are obtained in the summer and 

fall of 2007.  Table E.1 below shows the summary of the data from the four sites. The 

Bayesian hierarchical model is a simple normal model with the mean for each site and a 

variance across site is used, though the mean of PMCH might be modeled with year since 

PMCH is cumulative in the atmosphere (1). In this study, all observations are from the 

same year so the year is not considered as a predictor variable. The model can be refined 
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in the future when more data are available. Table B2 below summarizes the simulations 

for the Bayesian hierarchical model of the PMCH concentration.  

 

Table E. 1    Summary of PMCH Concentration at the Four Sites, 2007 

Site 
sample 

size 
mean sd min median max 

LMB 3 4.33 0.58 4.00 4.00 5.00 

SBJ 26 6.41 3.26 0.33 6.33 14.60 

ZH 7 14.69 8.93 1.50 17.00 28.30 

PN 10 9.37 0.78 7.67 9.33 10.30 

 

 

Table E. 2    Summary of Markov Chain Monte Carlo Estimates for Bayesian Hierarchical Modeling 

of Background PMCH Concentrations 

Site mean sd 2.50% 50% 97.50% 

LMB 5.2 2.4 0.4 5.3 10.0 

SBJ 6.5 0.9 4.9 6.5 8.2 

ZH 14.0 1.7 10.6 14.1 17.3 

PN 9.3 1.3 6.6 9.3 11.8 

mu.a 8.7 6.3 -4.0 8.7 20.4 

sigma.y 4.4 0.5 3.6 4.3 5.6 

sigma.a 8.8 8.7 1.9 6.1 33.5 

pD=6.4 and DIC = 271 (using the rule, pD = var(deviance)/2)  

DIC is an estimate of expected predictive error (lower deviance is better).   

 

 

Reference 

(1) Watson TB,  Wilke R, Dietz RN, Heiser J, Kalb P (2007) The Atmospheric 

Background of Perfluorocarbon Compounds Used as Tracers. Environ. Sci. Technol., 

41 (20): 6909–6913. 

 



     135 

Appendix F:  Relationships between Simulated CO2 Flux and PMCH 

Flux 

The relationships between simulated CO2 flux and PMCH flux are presented in 

Figure F.1 and F.2 below. Figure F.1 represent all 17 simulated cases. In Figure F.1, the 

extreme case of the largest leakage rate and the largest permeability shows a very 

different pattern compared to the other 16 cases. Therefore, Figure F.2 only shows the 

relationships between simulated CO2 flux and PMCH flux for the 16 cases.  
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Figure F. 1    The relationships between the simulated PMCH seepage flux and the simulated CO2 

seepage for all 17 cases    

 

 



     136 

0 2000 4000 6000 8000

0
.0

0
0

.1
0

0
.2

0
0

.3
0

CO2 flux(micromole/m2-s)

P
F

C
 f
lu

x
(m

ic
ro

m
o

le
/m

2
-s

)
(a) Original scale

extreme case p1l7

leakage rate L1-L7

permeability P1-P7

two lower leakage rates

detection threshold

 

-30 -20 -10 0 10

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0

0

ln[CO2 flux(micromole/m2-s)]

ln
[P

F
C

 f
lu

x
(m

ic
ro

m
o

le
/m

2
-s

)]

(b) Ln-ln scale

 

Figure F. 2    The relationships between the simulated PMCH seepage flux and the simulated CO2 

seepage for the 16 cases    
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Appendix G:  Conditional Probability Table in the BBN Model   

 

Table G.1 below shows the conditional probability tables for the soil CO2 flux and the 

PFC tracer in the BBN model for the idealized ZERT site. 

 

Table G. 1    Conditional Probability Tables for Soil CO2 Flux Measurement and PFC Tracer 

Monitoring 

  Soil  CO2 flux measurement  PFC tracer monitoring 
Monitoring 
density  

Permeability 
(D) 

Leakage  
rate (kg/s) 

Below critical 
value 

Above critical 
value 

Like 
background 

Above 
background 

100m high 0 to 1e-6 94.4 5.6 99.5 0.5 

100m high 1e-6 to 1e-5 92.56 7.44 99.5 0.5 

100m high 1e-5 to 1e-4 90.18 9.82 99.42 0.58 

100m high 1e-4 to 0.001 84.1 15.9 98.71 1.29 

100m high 0.001 to 0.01 44.89 55.11 96.87 3.13 

100m high 0.01 to 0.1 2.52 97.48 93.98 6.02 

100m high 0.1 to 1 0.13 99.87 92.03 7.97 

100m median 0 to 1e-6 94.53 5.47 99.5 0.5 

100m median 1e-6 to 1e-5 92.12 7.88 99.5 0.5 

100m median 1e-5 to 1e-4 87.79 12.21 99.27 0.73 

100m median 1e-4 to 0.001 72.15 27.85 96.56 3.44 

100m median 0.001 to 0.01 0 100 91.38 8.62 

100m median 0.01 to 0.1 0 100 77.82 22.18 

100m median 0.1 to 1 0 100 0 100 

100m low 0 to 1e-6 93.75 6.25 99.5 0.5 

100m low 1e-6 to 1e-5 87.93 12.07 99.5 0.5 

100m low 1e-5 to 1e-4 27.6 72.4 99.5 0.5 

100m low 1e-4 to 0.001 0 100 92.11 7.89 

100m low 0.001 to 0.01 0 100 85.48 14.52 

100m low 0.01 to 0.1 0 100 67.03 32.97 

100m low 0.1 to 1 0 100 0 100 

50m high 0 to 1e-6 81.38 18.62 99.5 0.5 

50m high 1e-6 to 1e-5 73.23 26.77 99.48 0.52 

50m high 1e-5 to 1e-4 62.59 37.41 98.03 1.97 

50m high 1e-4 to 0.001 39.62 60.38 95.33 4.67 

50m high 0.001 to 0.01 6.18 93.82 91.03 8.97 

50m high 0.01 to 0.1 0.16 99.84 79.96 20.04 

50m high 0.1 to 1 0.01 99.99 69.65 30.35 

50m median 0 to 1e-6 81.35 18.65 99.5 0.5 

50m median 1e-6 to 1e-5 69.53 30.47 99.35 0.65 
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50m median 1e-5 to 1e-4 50.4 49.6 97.26 2.74 

50m median 1e-4 to 0.001 9.02 90.98 90.3 9.7 

50m median 0.001 to 0.01 0.01 99.99 67.64 32.36 

50m median 0.01 to 0.1 0 100 18.78 81.22 

50m median 0.1 to 1 0 100 0 100 

50m low 0 to 1e-6 78.36 21.64 99.5 0.5 

50m low 1e-6 to 1e-5 53.65 46.35 99.5 0.5 

50m low 1e-5 to 1e-4 2.44 97.56 98.66 1.34 

50m low 1e-4 to 0.001 0 100 69.96 30.04 

50m low 0.001 to 0.01 0 100 42.52 57.48 

50m low 0.01 to 0.1 0 100 4.16 95.84 

50m low 0.1 to 1 0 100 0 100 

20m high 0 to 1e-6 6.88 93.12 99.5 0.5 

20m high 1e-6 to 1e-5 0.91 99.09 98.66 1.34 

20m high 1e-5 to 1e-4 0.03 99.97 89.73 10.27 

20m high 1e-4 to 0.001 0 100 73.73 26.27 

20m high 0.001 to 0.01 0 100 43.12 56.88 

20m high 0.01 to 0.1 0 100 1.98 98.02 

20m high 0.1 to 1 0 100 0 100 

20m median 0 to 1e-6 6.91 93.09 99.5 0.5 

20m median 1e-6 to 1e-5 0.39 99.61 97.85 2.15 

20m median 1e-5 to 1e-4 0 100 83.9 16.1 

20m median 1e-4 to 0.001 0 100 36.39 63.61 

20m median 0.001 to 0.01 0 100 0 100 

20m median 0.01 to 0.1 0 100 0 100 

20m median 0.1 to 1 0 100 0 100 

20m low 0 to 1e-6 4.27 95.73 99.5 0.5 

20m low 1e-6 to 1e-5 0.03 99.97 99.5 0.5 

20m low 1e-5 to 1e-4 0 100 93.38 6.62 

20m low 1e-4 to 0.001 0 100 0 100 

20m low 0.001 to 0.01 0 100 0 100 

20m low 0.01 to 0.1 0 100 0 100 

20m low 0.1 to 1 0 100 0 100 

10m high 0 to 1e-6 0.1 99.9 99.5 0.5 

10m high 1e-6 to 1e-5 0.09 99.91 96.32 3.68 

10m high 1e-5 to 1e-4 0.05 99.95 63.69 36.31 

10m high 1e-4 to 0.001 0 100 10.09 89.91 

10m high 0.001 to 0.01 0 100 0.1 99.9 

10m high 0.01 to 0.1 0 100 0.1 99.9 

10m high 0.1 to 1 0 100 0.1 99.9 

10m median 0 to 1e-6 0.1 99.9 99.5 0.5 

10m median 1e-6 to 1e-5 0.08 99.92 93.53 6.47 

10m median 1e-5 to 1e-4 0 100 42.78 57.22 
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10m median 1e-4 to 0.001 0 100 0.1 99.9 

10m median 0.001 to 0.01 0 100 0.09 99.91 

10m median 0.01 to 0.1 0 100 0 100 

10m median 0.1 to 1 0 100 0 100 

10m low 0 to 1e-6 0.1 99.9 99.5 0.5 

10m low 1e-6 to 1e-5 0.02 99.98 99.44 0.56 

10m low 1e-5 to 1e-4 0 100 78 22 

10m low 1e-4 to 0.001 0 100 0 100 

10m low 0.001 to 0.01 0 100 0 100 

10m low 0.01 to 0.1 0 100 0 100 

10m low 0.1 to 1 0 100 0 100 

  

 

 


