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Abstract	

Building	 technology	 has	 been	 developed	 due	 to	 the	 improvement	 of	 information	

technology.	Specifically,	a	human	can	control	and	monitor	the	building	operation	by	

a	number	of	sensors	and	actuators.		The	sensors	and	actuators	are	installed	on	every	

single	 element	 in	 a	 building.	 Thus,	 the	 large	 stream	 of	 building	 data	 allows	 us	 to	

implement	both	quantitative	and	qualitative	improvements.	However,	there	are	still	

limitations	to	mapping	between	the	physical	building	element	and	cyber	system.	To	

solve	this	mapping	issue,	last	summer,	a	text	mining	methodology	was	developed	as	

part	 of	 a	 project	 conducted	 by	 the	 Consortium	 for	 Building	 Energy	 Innovation.	

Building	 data	 was	 extracted	 from	 building	 661,	 in	 Philadelphia,	 PA.	 The	 ground	

truth	of	 the	building	data	point	with	semantic	 information	was	 labeled	by	manual	

inspection.	 And	 a	 Support	 Vector	 Machine	 was	 implemented	 to	 investigate	 the	

relationship	 between	 the	 data	 point	 name	 and	 the	 semantic	 information.	 This	

algorithm	achieves	93%	accuracy	with	unseen	building	661	data	points.	Techniques	

and	lessons	were	gained	from	this	project,	and	this	knowledge	was	used	to	develop	

the	framework	for	analyzing	the	building	data	from	the	Gates	Hillman	Center	(GHC)	

building,	Pittsburgh	PA.	This	new	framework	consists	of	two	stages.	In	the	first	stage,	

we	 initially	 tried	 to	 cluster	 the	data	points	by	 similar	 semantic	 information,	using	

the	hierarchical	clustering	method.	However,	 the	effectiveness	and	accuracy	of	 the	

clustering	 method	 is	 not	 adequate	 for	 this	 framework.	 Thus,	 the	 filtering	 and	

classification	model	 is	 developed	 to	 identify	 the	 semantic	 information	 of	 the	 data	

points.	 From	 the	 filtering	 and	 classification	 method,	 it	 correctly	 identifies	 the	

damper	position	and	supply	air	duct	pressure	data	point	with	90%	accuracy	by	daily	

statistical	features.	Having	the	semantic	information	from	the	first	stage,	the	second	

stage	figures	out	the	relationship	between	Variable	Air	Volume	(VAV)	terminal	units	

and	Air	Handling	Units	(AHU).	The	intuitive	thermal	and	flow	relationship	between	

VAVs	 and	 AHUs	 are	 investigated	 at	 the	 beginning,	 and	 the	 statistical	 features	

clustering	method	 is	 applied	 from	 the	VAV	discharge	 temperature	 data.	However,	

the	control	strategy	of	this	building	makes	this	relationship	invisible.	Alternatively,	
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we	then	compared	the	similarity	between	damper	position	at	VAVs	and	supply	air	

duct	 pressure	 at	 AHUs	 by	 calculating	 the	 cross	 correlation.	 Finally,	 this	 similarity	

scoring	method	achieved	80%	accuracy	to	map	the	relationship	between	VAVs	and	

AHUs.	The	suggested	framework	will	guide	the	user	to	find	the	desired	information	

such	 as	 the	 VAVs	 –	 AHUs	 relationship	 from	 the	 problem	 generated	 by	 a	 large	

number	of	heterogeneous	sensor	networks	by	using	data-driven	methodology.	 	
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1.	Introduction	

While	everyone	agrees	about	the	importance	of	data	analysis,	we	have	had	to	deal	

with	the	concern	that	building	data	does	not	always	provide	us	with	an	ideal	dataset.	

For	example,	whenever	metadata	is	missing,	the	user	has	to	manually	infer	the	data	

type	 or	 ask	 the	 database	manager.	 In	 the	 worst	 case,	 the	meaning	 of	 the	 data	 is	

unknown.	 While	 advancements	 in	 information	 technology,	 such	 as	 the	 improved	

development	of	physical	sensors	and	actuators	has	been	beneficial,	this	information	

has	not	been	mapped	on	a	cyber	system	correctly	and	efficiently.		

	

	

Figure	1	Cyber	Physical	System	of	building	

	

There	 are	 three	 main	 characteristics	 of	 a	 building,	 which	 makes	 the	 mapping	

process	 difficult.	 The	 first	 reason	 is	 the	 huge	 size	 of	 the	 building.	 Normally	 one	

contains	 3,000	 data	 points	 for	 its	 operation.	 For	 example,	 building	 661,	 Gates	

Hillman	Center	(GHC)	and	Mellon	Institute	(MI)	have	approximately	4,000,	15,000,	

and	14,000	points	respectively.	These	numerous	data	points	have	multiple	functions	

such	 as	 sensors,	 actuators,	metering	 data	 or	 embedded	 virtual	 data	 points	 as	 the	

building	control	parameters.	Thus,	 it	 is	 too	 large	to	manually	handle	these	various	

data	types.	Secondly,	 the	building	has	a	relatively	 long	 life	cycle,	and	this	 life	cycle	

doesn’t	 fit	 with	 other	 building	 equipment’s	 life	 cycle	 (i.e.	 mechanical,	 lighting	

equipment,	 etc.).	 Because	 of	 this	 reason,	 different	 field	 engineers	 might	 label	

different	point	names	when	they	reinstall	or	repair	equipment	with	a	certain	time	

gap.	 This	 heterogeneity	 of	 the	 data	 point	 is	 a	 major	 impediment	 in	 finding	 the	
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generalized	naming	rules	and	the	relationship	among	a	large	amount	of	data	points.	

The	 last	 reason	 is	 derived	 from	 the	 interoperability	 issue	 from	multiple	 Building	

Automation	 System	 (BAS)	 vendors	 of	 the	 building	 industry.	 For	 example,	 the	

National	 Institute	 of	 Standard	 and	Technology	 found	 that	 the	 lack	 of	 the	 building	

interoperability	 standard	 wastes	 $15.8	 billion	 annually	 in	 the	 US.	 For	 example,	

different	vendors	even	describe	a	same	variable	air	volume	terminal	discharge	of	air	

temperature	 sensor	data	 in	 two	different	ways	 (i.e.	 vav	 room	3000	 class	 room	da	

temp	or	VAV-1	DAT).	Due	to	this	reason,	the	Department	of	Energy	(DOE)	published	

the	Building	Energy	Data	Exchange	Specification	(BEDES).	 It	 is	a	dictionary,	which	

includes	 data	 format,	 definition	 and	 terminology	 about	 the	 building	 data	 stock	 of	

words.	 However,	 there	 are	 still	 limits	 in	 implementing	 this	 text	 schema	 in	 real	

building	cases.	In	this	regard,	it	is	hard	to	find	the	universal	rule	of	mapping	the	raw	

data	points	on	the	semantic	information	as	cyber	system	type.	

	

Such	 challenges	 stimulate	 the	 development	 of	 data-driven	 building	metadata.	 The	

goal	 of	 this	 thesis	 is	 to	 develop	 an	 algorithm	 that	 mimics	 a	 well-experienced	

building	 data	 manager’s	 intelligence	 to	 identify	 the	 relationship	 between	 Air	

Handling	Units	(AHU)	and	Variable	Air	Volume	(VAV)	terminal	units.	The	dataset	is	

extracted	 from	 the	 Building	 Automation	 and	 Control	 Network	 (BACnet)	 and	

Automated	Logic	BAS	data	points	 in	a	GHC	building.	The	hierarchical	 clustering	 is	

firstly	 used	 to	 define	 the	 semantic	 information	 of	 the	 data	 point.	 This	 algorithm	

predicts	 the	 semantic	 information	 from	 data	 point	 names	 at	 the	 first	 stage.	 By	

changing	 the	 number	 of	 clusters,	 different	 levels	 of	 semantic	 information	 is	

predicted	 for	 each	 cluster.	 However,	 the	 first	 trial	 was	 not	 successful,	 we	 then	

proceed	 with	 new	 approach.	 The	 BACnet	 information	 filtering	 and	 data	 type	

classification	 method	 is	 developed	 to	 classify	 the	 desired	 data	 point	 type.	 Even	

though	this	filtering	and	classification	model	does	not	map	all	the	data	point	on	the	

cyber	 system,	 they	 are	 very	 effective	 and	 accurate	 when	 users	 know	which	 data	

point	type	they	specifically	need	for	further	analysis.	
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In	the	second	stage,	the	algorithm	also	infers	the	mechanical	functional	relationship	

between	VAVs	and	AHUs.	Specifically,	the	relationship	between	VAVs	and	AHUs	are	

studied	in	this	thesis.	This	is	because,	most	of	the	buildings	use	VAVs	and	AHUs	as	

the	main	Heating,	 Ventilation,	 and	Air	 Conditioning	 (HVAC)	 operation	 equipment,	

and	 the	data	points	of	VAVs	and	AHUs	 take	up	 the	majority	of	 the	whole	building	

data	points.	Thus,	this	relationship	is	one	of	the	most	crucial	parts	for	building	data	

analytics.	However,	only	a	few	buildings	store	that	relationship	information	on	BAS	

and	people	can	only	acquire	that	relationship	information	by	interpreting	the	paper	

based	mechanical	 drawing.	 The	 ground	 truth	 of	 the	 AHU	 and	 VAV	 relationship	 is	

identified	 through	 the	 manual	 inspection	 of	 BAS.	 This	 ground	 truth	 contains	 the	

physical	connection	between	287	VAVs	and	6	AHUs	 in	 the	GHC	building.	First	and	

foremost,	the	exploratory	data	analysis	is	conducted	by	temperature	and	flow	data	

at	VAVs	and	AHUs.	However,	the	strong	relationship	is	not	observed.	Secondly,	the	

VAV	 discharge	 air	 temperature	 is	 used	 as	 a	 feature	 variable	 and	 AHU	 reference	

number	 is	 used	 for	 prediction	 class	 values.	 The	 statistical	 features	 are	 extracted	

from	the	VAV	discharge	temperature	at	occupied	and	unoccupied	time	stamps.	The	

hierarchical	 clustering	algorithm	 is	 tested	 to	differentiate	 the	VAV	performance	 to	

predict	the	assigned	AHU.	However,	this	clustering	method	cannot	classify	the	AHU	

type	due	to	the	current	control	strategy	of	the	GHC	building.	Changing	the	viewpoint	

to	 the	 equipment	mechanical	 control	 relationship	 of	 VAVs	 and	AHUs,	 the	 damper	

position	data	and	supply	air	duct	pressure	data	are	queried	 from	VAVs	and	AHUs	

respectively.	 By	 calculating	 the	 cross	 correlation	 of	 two	 signals,	 the	 similarity	

between	those	two	signals	 is	acquired.	To	consider	the	seasonal	building	behavior	

patterns,	9	month	profiles	are	evaluated	to	identify	the	relationship	between	VAVs	

and	AHUs.		
	

The	 first	 stage	essentially	 figures	out	 the	 semantic	 information	of	 the	data	points.	

For	example,	the	user	can	infer	the	meaning	of	the	data	by	BACnet	information	and	

historical	database	without	having	the	informative	data	point	names.	This	filtering	

and	 classification	 method	 ultimately	 provides	 the	 metadata	 for	 the	 individual	

building	data	points.	The	relationship	information	among	data	points	also	helps	the	
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user	to	better	understand	the	metadata	structure.	In	the	second	stage,	the	algorithm	

specifically	 identifies	 the	 relationship	 between	 VAVs	 and	 AHUs.	 This	 data-driven	

inference	approach	reduces	a	significant	amount	of	time	for	manual	inspection	and	

is	 a	 backup	 solution	 for	 when	 the	 user	 does	 not	 have	 the	 physical	 mechanical	

drawing.	 	
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2.	Literature	Review	

2.1	Text	data	feature	inference	
To	 solve	 the	 heterogeneity	 of	 building	 data,	 several	 researchers	 tried	 to	 build	

efficient	 mapping	 methods.	 Bhattacharya	 et	 al.	 suggested	 automated	 metadata	

transformation	 by	 substring	 extraction	 language.	 The	 top-level	 expression	 of	 the	

language	 is	 the	 If-Then	 algorithm,	 and	 it	 extracts	 meaningful	 text	 by	 regular	

expressions.	 By	 learning	 from	 given	 primitive	 sensor	 metadata	 and	 common	

namespace	sets	from	one	building,	they	implemented	this	 learned	rule	to	56	other	

buildings	 to	 evaluate	 the	performance.	 24	 examples	 by	 the	 random	generator	 are	

desired	 to	 qualify	 a	 large	 fraction	 of	 a	 commercial	 building.	 For	 attaining	 90%	

accuracy,	 85	 examples	 are	 needed	 for	 building	 expert’s	 manual	 inspection.	

Bhattacharya	 et	 al.	 firstly	 suggested	 that	 semi-automatic	 algorithm	 be	 used	 for	

predicting	building	semantic	information	by	combining	building	expert’s	knowledge	

and	their	regular	expression	methodology.	Schumann	et	al.	tried	to	develop	the	text	

mining	algorithm	for	predicting	the	format	of	building	energy	management	software	

from	 primitive	 building	 data	 point	 names.	 They	 defined	 a	 building	 terminology	

dictionary	 in	 advance,	which	 contains	 504	 acronyms	 and	 125	markers,	 and	 score	

the	 similarity	 with	 2,099	 building	 management	 system	 raw	 data	 point	 names.	

Ultimately,	 the	 name	 with	 the	 highest	 score	 is	 labeled	 with	 raw	 building	

management	 system	 points.	 On	 average,	 a	 building	 expert	 needs	 to	 review	 15	

candidates	 of	 outcomes	 in	 this	 scoring	method.	 Compared	 to	 the	 number	 of	 total	

labels,	the	user	can	reduce	7.5%	for	consideration	by	implementing	their	linguistic	

similarity	 computation	 method.	 Both	 literatures	 are	 the	 pioneers	 of	 building	 the	

metadata	 field.	 However,	 they	 only	 considered	 the	 text	 naming	 data	 features	 in	 a	

more	linguistic	approach.	The	general	assumption	for	regular	expression	method	is	

the	text	location	and	arrangement	of	data	point	name,	and	vendors	have	their	own	

data	point	naming	schema.	Since	Schumann	et	al.	 implemented	their	own	building	

data	terminology	dictionary	from	their	energy	management	software	input	formats,	

their	text	mining	algorithm’s	performance	depends	on	the	dictionary	that	they	used.	
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Thus,	both	still	require	the	manual	input	from	building	experts	and	only	are	applied	

for	a	single	vendor.	

2.2	Numeric	data	feature	inference	

A	different	approach	was	also	suggested	from	only	considering	the	numeric	sensor	

data	reading	from	Gao	et	al.	After	cleaning	the	outliers	and	taking	interpolation,	the	

statistical	 features	 are	 extracted	 from	 BAS’s	 time	 series	 data.	 Each	 data	 samples	

with	 statistical	 features	 are	 labeled	 by	 the	 Project	Haystack	metadata	 format.	 For	

each	 sample,	 individual	 tags	 are	 obtained	 by	 the	 binary	 classifiers,	 and	 the	

combined	 individual	 tags	 are	 considered	 as	 a	 complete	 Project	 Haystack	 tag.	 8	

different	 classification	algorithms	are	evaluated	using	20%	of	 the	 training	 set	 and	

80%	of	the	testing	set.	Having	the	maximum	F1	score	on	Random	Forest	classifier,	

the	result	indicates	that	more	than	50%	F1	score	for	half	composite	tags	and	more	

than	 60%	 F1	 score	 for	 half	 individual	 tags.	 	 To	 test	 out	 the	 applicability	 of	 this	

algorithm,	Gao	et	al.	used	 two	different	 training	data	 from	December	and	 June.	As	

they	expected,	some	individual	tags	such	as	‘cool’,	‘hot’,	‘pressure’	show	very	low	F1	

score	 which	 means	 they	 are	 very	 sensitive	 to	 the	 weather.	 On	 the	 other	 hand,	

‘outside’,	‘air’,	‘fcu’	and	‘cur’	seem	less	sensitive	than	the	previous	three	tags	above.		

Finally,	 they	tested	their	algorithm	by	different	 train	building.	However,	 the	result	

shows	a	very	 low	performance	and	the	Project	Haystack	convention	 issue	 is	still	a	

problem	 that	 needs	 to	 be	 solved.	 Even	 though	 the	 accuracy	 is	 the	 lowest	 among	

other	metadata	inference	algorithms,	they	tried	to	build	the	Project	Haystack	format	

by	multi-label	classification.	Having	multiple	prediction	class	values	 from	one	data	

point	name,	they	built	a	more	robust	semantic	information.			

	

2.3	Text	and	numeric	data	feature	inference	

Several	researchers	consider	both	text	naming	and	numeric	sensor	reading	features	

to	infer	the	metadata	structure.	To	reduce	the	manual	input	from	the	domain	expert	

and	achieve	high	accuracy	 for	predicting	proper	point	 type,	Balaji	 et	 al.	 combined	

hierarchical	clustering	and	a	random	forest	classifier.	Firstly	they	extracted	unigram	
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features	 from	 data	 point	 names.	 The	 hierarchical	 clustering	 algorithm	 then	

calculates	the	Manhattan	distance	between	building	data	point	names	and	clustered	

them	 based	 on	 complete	 linkage	 of	 each	 cluster.	 Assuming	 the	 points	 within	 a	

cluster	 are	 of	 the	 same	 type,	 the	 building	 points	 are	 clustered	 by	 preprocessed	

string	features.	Then,	domain	experts	label	10-point	type	on	those	clusters.	Random	

forest	 classier	 is	 built	 based	 on	 these	 points.	 Random	 forest	 algorithm	 randomly	

picks	several	decision	trees	from	the	clustering	result	and	evaluates	the	accuracy	of	

the	clustering	performance.	Evaluating	the	probability,	0.9	 is	 the	correct	threshold	

and	 if	 the	probability	 is	 less	 than	0.2,	a	domain	expert	 is	asked	to	 label	new	point	

type.	Additionally,	numerical	time	series	data	is	considered	in	the	input	feature.	The	

episode	 of	 time	 series	 data	 consists	 of	 scaled,	 pattern,	 shape	 and	 texture	 based	

features.	 Those	 four	 features	 aid	 the	 defect	 of	 string	 data.	 Ultimately	 Balaji	 et	 al.	

achieved	 98%	 accuracy	 requiring	 27%	 fewer	 ground	 truth	 labels	 than	 using	 the	

regular	 expression	 method.	 Compared	 to	 only	 considering	 text	 feature	 methods,	

Balaji	et	al.	reduced	the	manual	input	and	achieved	higher	accuracy.	However,	their	

algorithm	is	still	only	applied	to	a	single	vendor,	which	is	Johnsons	control.	Thus	this	

algorithm	has	a	generalization	issue	with	other	BAS	vendors’	naming	schemata.	

	

Hong	 et	 al.	 suggested	 using	 an	 automatic	 mapping	 algorithm,	 which	 is	 called	

transfer	learning.	It	learns	a	set	of	statistic	classifiers	of	the	metadata	from	a	labeled	

building	and	adaptively	integrates	those	classifiers	to	a	different	unlabeled	building	

from	a	different	BAS	vendor.	This	 transfer	 learning	algorithm	takes	both	 text	data	

from	point	name	and	statistical	numerical	data	from	sensor	reading.	Both	numeric	

and	text	data	have	their	own	respective	implementation	benefits.	The	numeric	data	

is	more	consistent	among	different	buildings,	but	it	is	a	poor	indicator	of	sensor	type.	

On	the	other	hand,	the	text	data	is	a	good	indicator	of	metadata	structure	however	it	

might	not	be	consistent	cross	buildings.	To	utilize	both	advantages	of	two	data	types	

adaptively,	 this	 transfer	 learning	 algorithm	 assign	 higher	 weights	 to	 classifiers	

whose	 predictions	 on	 an	 instance’s	 neighbors	 in	 the	 target	 building	 are	 more	

consistent	 with	 the	 text	 feature	 defined	 within	 a	 cluster.	 Three	 buildings’	 2500	

sensors	are	evaluated	through	7	days	data.	The	best	base	line	classifier	is	selected	as	
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Random	forest,	which	shows	63%	accuracy.	On	the	other	hand,	the	transfer	learning	

algorithm	achieved	85%	of	accuracy	from	the	different	train	and	test	BAS	vendors	

(i.e.	Trane,	Apogee,	Barrington).	Hong	et	al.	tried	to	solve	the	interoperability	issue	

by	understanding	the	characteristics	of	text	and	numeric	data.		
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2.4	Literature	review	summary	

Even	 though	 building	 metadata	 inference	 is	 a	 new	 research	 topic	 in	 this	 field,	

several	works	were	 conducted	with	 different	 feature	 extraction	 settings.	 Figure	 2	

shows	 the	 general	 objective	 of	 5	 different	 literatures.	 They	 are	 slightly	 different	

from	 the	 feature	 selection	 method	 but	 all	 of	 them	 tried	 to	 infer	 the	 metadata	

framework	 for	 building	 data.	 In	 2014,	 Bhattacharya	 et	 al.	 and	 Schumann	 et	 al.	

started	 to	 build	 metadata	 by	 their	 own	 text	 mining	 approaches	 (i.e.	 regular	

expression,	similarity	scoring).	However,	their	algorithms	still	require	manual	input	

labeling	and	have	interoperability	issues	with	different	vendors’	naming	schemata.	

Different	 from	 two	 text	 mining	 algorithms,	 Gao	 et	 al.	 only	 considered	 statistical	

features	by	numeric	sensor	reading	data	to	predict	Project	Haystack’s	format.	They	

build	 the	 semantic	 information	 by	 multiple	 predictions.	 Also,	 they	 conducted	

learning	ratio	and	weather	sensitivity	studies.	On	 the	other	hand,	Baljaji	et	al.	and	

Hong	et	al.	considered	both	text	and	numeric	features	to	predict	their	own	semantic	

format.	 Balaji	 et	 al.	 achieved	 the	maximum	 accuracy	 among	 these	 algorithms	 and	

Hong	 et	 al.	 only	 tried	 to	 apply	 their	 algorithm	 to	 solve	 the	 interoperability	 issue	

among	three	different	vendors’	building	data	point	naming	schemata.	

	

	
Figure	2	General	objective	of	the	literatures	
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Table	1	Summary	table	for	literature	review	1	

Paper	 Data	type	 BAS	Vendor(s)	 Algorithm	

Bhattacharya	

et	al.(2014)	

Text	data	 Unknown	 Clustering,	

Regex	

Schumann	

et	al.	(2014)	

Text	data	 IBM	 Dictionary	based	

similarity	scoring	

Gao	et	al.	(2015)	 Numeric	data	 Automated	logic,	IBM	 Multi-label	

classification	by	

Random	forest	

Balaji	et	al.	(2015)	 Text	data	

Numeric	data	

Johnsons	control	 Clustering,	

Random	forest	

Hong	et	al.	(2015)	 Text	data	

Numeric	data	

Trane,	Apogee,	

Barrington	

Adaptive	

transfer	learning	
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Table	2	Summary	table	for	literature	review	2	

Paper	 Prediction	output	 Accuracy	 Note	

Bhattacharya	et	

al.(2014)	

Project	haystack	

format	

Semi	

automated	

Many	manual	input	

Schumann	

et	al.	(2014)	

Own	semantic	

format	

Semi	

automated	

Pre-defined	dictionary	

Gao	et	al.	(2015)	 Project	haystack	

format	

75%	 Learning	ratio	study	

Statistical	numeric	

feature	

Balaji	et	al.	(2015)	 Own	semantic	

format	

98%	 The	highest	accuracy	

Episodic	numeric	

feature	

Hong	et	al.	(2015)	 Own	semantic	

format	

85%	 Test	to	other	BASs	

adaptively	learning	
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3.	Test	bed	and	Dataset	

3.1	Gates	Hillman	Center	

The	 Gates	 Hillman	 Center	 (GHC)	 is	 tested	 for	 the	 data-driven	metadata	 inference	

algorithm.	It	is	the	main	building	of	the	Carnegie	Mellon	School	of	Computer	Science,	

Pittsburgh,	Pennsylvania,	USA.	The	217,00	sq.ft.	floor	area	with	nine	floors	contains	

310	offices,	32	 laboratories	and	11	conference	rooms	and	other	minor	rooms.	The	

Automated	 Logic	manages	 the	 building	 data	 in	GHC	building.	 Figure	 4	~	 Figure	 6	

show	the	BAS	webpage.	Approximately,	15,000	data	points	with	BACnet	object	and	

property	information	are	detected	in	this	building,	and	the	historical	data	is	stored	

from	May	2015	in	OSIsoft	PI	system.	There	are	287	VAV	terminal	units	and	6	AHUs	

in	the	Gates	building.	And	each	VAV	is	connected	to	a	specific	AHU.		

	

	
Figure	3	Gates	Hillman	Center	

	
Figure	4	Gates	building	BAS	1	

	
Figure	5	Gates	building	BAS	2	

	
Figure	6	Gates	building	BAS	3	
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3.2	Data	querying	

The	most	 important	 consideration	 for	 the	 data-driven	 framework	 development	 is	

how	 to	 acquire	 the	 dataset	with	 ground	 truth.	 Building	 data	 flows	 in	 three	 steps.	

Firstly,	based	on	Figure	7,	building	data	from	equipment	are	connected	to	BACNET	

panels.	Subsequently,	all	the	data	points	in	these	BACNET	panels	are	transferred	to	

the	BAS,	which	controls	and	manages	 these	series	of	data	points.	Additionally,	 the	

OSIsoft	 PI	 system	 is	 installed	 for	 data	 collection	 and	 storage	 purposes.	 The	 GHC	

building	is	controlled	and	managed	under	Automated	Logic	from	United	Technology	

Research	 Center.	 This	 BAS	 environment	 provides	 a	 clear	 understanding	 of	 how	

building	data	is	managed	and	the	semantic	meaning	of	the	data	points.	As	previously	

explained,	the	historical	dataset	of	GHC	building	is	stored	in	OSIsoft	PI	system,	thus	

we	can	efficiently	access	the	numeric	data	 from	the	GHC	building	system.	Thus,	as	

long	 as	 the	 future	 test	 building	 is	 controlled	 under	 BACnet	 protocol	 and	 the	

numerical	data	is	stored	from	the	BAS,	we	can	evaluate	the	suggested	framework	to	

build	the	metadata	for	a	different	building.	

	

	
Figure	7	Data	querying	process	
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4.	Methodology	

4.1	Data	preprocess	

There	are	two	types	of	data	we	can	infer	the	building	metadata	from.	The	first	type	

of	building	data	 is	text	data	from	point	names.	When	vendors	 install	 the	sensor	or	

actuators,	the	field	engineers	named	each	data	point	by	their	own	naming	rule	and	

each	BAS	vendor	has	its	own	naming	schema	and	utilizes	them	for	the	system.	Since	

normally	field	engineers	name	the	data	points	names	by	the	semantic	hierarchy	and	

application	type,	we	can	infer	the	hierarchical	structure	of	metadata	with	a	certain	

order	 (i.e.	 building-equipment-location-sensor	 type).	 However,	 once	 again	 the	

naming	ordering	rules	are	different	by	vendors	and	they	use	different	terminologies.	

The	second	data	type	is	the	time-series	data	from	sensor	and	actuator	readings.	This	

numeric	data	is	more	consistent	even	with	different	BAS	vendor	buildings.	However,	

it	 is	hard	to	indicate	the	sensor	type	by	numeric	data	itself.	Both	text	and	numeric	

data	 types	 have	 their	 own	 advantage	 and	 disadvantage.	 Thus,	 this	 algorithm	

employs	 two	data	 types,	 selectively.	The	 text	data	 feature	 is	used	 for	deriving	 the	

semantic	 information	 and	 the	 numeric	 data	 feature	 is	 utilized	 for	 inferring	 the	

relationship	among	data	points.		

	

	
Figure	8	Two	different	data	types	acquired	

	

Firstly,	 the	 text	 data	 is	 acquired	 from	 the	BACnet	 panel	 and	 the	BAS	 in	 the	Gates	

building.	 There	 are	 10	 types	 of	 text	 data	 that	 are	 extracted.	 However,	 the	 unit	 of	

measurement,	BACnet	object	name,	and	BAS	vendor	given	name,	are	only	selected	

as	meaningful	features.	First	and	foremost,	the	unit	of	measurement	is	the	obvious	

clue	for	classifying	the	data	acquisition	type	by	units	(i.e.	F,	cfm,	ppm,	min).	Secondly	
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the	 BACnet	 object	 name,	 which	 is	 made	 by	 field	 engineers	 also	 shows	 the	 data	

acquisition	type	(i.e.	flow,	temp,	co2)	in	a	direct	way.	Finally,	the	vendor	given	name	

contains	normally	5	more	words	and	indicates	the	location	and	equipment	type	in	a	

comprehensive	way.	However,	not	all	of	the	data	points	contain	these	three	different	

information	 types.	 After	 eliminating	 the	 data	 points,	 which	 do	 not	 completely	

contain	three	information	types,	7,434	data	points	are	queried	at	the	end.		

	
Table	3	10	sample	points	from	Gates	building	

	
	

	
Figure	9	Two	main	stages	of	the	framework	
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4.2	Semantic	information	clustering	

Having	the	text	data	from	data	point	names,	we	can	extract	the	unigram	features.	In	

this	 feature	extraction	process,	numerous	single	words	 from	 the	whole	data	point	

names	are	extracted	without	 the	numbers	and	 special	 characters.	This	 is	because,	

the	 numbers	 and	 special	 characters	 are	 used	 for	 equipment	 reference	 or	

arrangement	of	the	point	name,	thus	it	might	derive	the	bias	error.	After	extracting	

unigram	 features,	 each	 data	 point	 name	 is	 converted	 to	 binary	 format,	 and	 this	

binary	data	basically	count	the	occurrences	of	the	features.	Thus,	we	can	build	the	

binary	matrix	format,	where	each	column	represents	the	occurrences	of	features	in	

binary	format	and,	each	row	shows	the	data	points.	Figure	10	shows	the	example	of	

the	 feature	matrix.	Having	 binary	 variables	 of	 each	 data	 point	 name,	we	 can	 now	

calculate	the	distance	among	data	point	names.	The	Euclidian	distance	function,	and	

complete	 linkage	 calculation	method	 are	 implemented	 for	 hierarchical	 clustering.	

Since	 this	 Euclidean	 function	 is	 calculating	 the	 distances	 in	 the	 same	 dimension	

space,	 we	 can	 interpret	 the	 shorter	 distance	 as	 the	 higher	 similarity.	 For	 the	

distance	 between	 clusters,	 the	 complete	 linkage	 calculation	 method	 selects	 the	

furthest	distance	between	two	data	points	in	each	cluster.	By	doing	so,	we	can	group	

the	data	points	by	similarity	and	also	differentiate	each	group	by	non-similarity.		

	

	
Figure	10	Feature	matrix	
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𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝟏. 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡1, 𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡2

= 	 (𝑑𝑎𝑡𝑎>? − 𝑑𝑎𝑡𝑎>?)B + (𝑑𝑎𝑡𝑎>B − 𝑑𝑎𝑡𝑎>B)B +	(𝑑𝑎𝑡𝑎>D − 𝑑𝑎𝑡𝑎>D)B + ⋯	

	

	
Figure	11	Complete	linkage	between	two	clusters	

	

4.3	Data	Point	type	classification	

4.3.1	BACnet	information	filtering	method	

The	Building	Automation	and	Control	Network	(BACnet)	is	the	data	communication	

protocol,	which	is	the	most	commonly	used	standard	in	the	building	automation	and	

control	 industry.	The	data	points	 in	 the	GHC	building	are	also	managed	under	 the	

BACnet	 protocol.	 As	 the	 BACnet	 follows	 the	 object-oriented	 nomenclature,	 the	

BACnet	standard	have	6	major	objects	with	required	properties.	(Table	4	&	Table	5).	

After	querying	the	BACnet	data	points	from	the	control	panel,	we	can	have	the	list	of	

all	the	data	point	objects	with	required	properties.	The	inputs	are	data	coming	into	

the	control	panel	from	the	sensor	and	switch,	and	the	outputs	are	data	coming	out	

from	the	control	panel	to	control	the	actuator.	Additionally,	control	parameters	are	

pre-assigned	 or	 calculated	 within	 the	 control	 panel.	 Thus,	 we	 can	 filter	 the	 data	

points	by	 the	usage	 and	 specific	 property	 types.	 For	 example,	 all	 the	 temperature	

sensor	 data	 is	 acquired	 through	 filtering	 with	 Analog	 Input	 and	 the	 unit	 of	

measurement	(degrees-Fahrenheit).				



	 24	

	
Table	4	The	6	major	object	in	BACnet	standard	

Object	 The	usage	
Analog	Input	 Sensor	input	
Analog	Output	 Control	output	
Analog	Value	 Control	parameter	or	setpoint	
Binary	Input	 Switch	input	
Binary	Output	 Relay	output	
Binary	Value	 Control	parameter	

	
	

Table	5	The	required	properties	for	BACnet	object	

Property	 Example	usage	
Object	Identifier	 Analog	Input	#1	
Object	Name	 AI	01	
Object	Type	 Analog	Input	
Present	Value	 68	
Status	Flags	 In	Alarm	
Event	State	 Normal	
Out	Of	Service	 False	

Units	 Degrees-Fahrenheit	
	
	

4.3.2	Data-driven	classification	algorithm	

Even	though	we	can	reduce	the	candidates	for	our	data	point	semantic	classification	

by	 the	BACnet	 information	 filtering	method,	 there	 could	be	 some	data	points	 that	

have	identical	objects	and	properties.	For	example,	there	are	four	different	pressure	

sensors	 in	 different	 locations	 within	 a	 single	 AHU.	 Thus,	 the	 data-driven	

classification	 algorithm	 is	 developed	 to	 differentiate	 the	 specific	 pressure	 sensor	

that	a	user	needs.			
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Figure	12	Hypothesis	behind	the	classification	

	
The	 data-driven	 classification	 algorithm	 characterizes	 the	 different	 signals	 by	

statistical	 features.	 Although	 two	 sensors	 measure	 the	 same	 component,	 the	

characteristics	of	signals	are	slightly	different	from	one	another	based	on	the	sensor	

location.	As	a	 feature	selection	process,	7	different	statistical	 features	(i.e.	median,	

mean,	standard	deviation,	minimum,	maximum,	25%	quartile	and	75%	quartile)	are	

extracted.	For	model	selection,	 the	Random	Forest	algorithm	 is	selected.	Basically,	

the	 Random	 Forest	 algorithm	 builds	 the	 decision	 trees	 by	 random	 samples,	 and	

evaluates	 the	classification	probability	 from	multiple	randomly	generated	decision	

trees.	 Since	 this	 method	 classifies	 the	 sensor	 type	 based	 on	 the	 probability	 from	

bagging	by	multiple	random	decision	trees,	we	can	avoid	the	over-fitting	problem.	

To	develop	 the	classification	 for	 the	damper	position,	5	days	of	statistical	 features	

are	 extracted	 from	 297	 VAVs	 and	 for	 the	 supply	 air	 duct	 pressure,	 31	 days	 of	

statistical	features	are	extracted	from	6	AHUs.			

	

	
Figure	13	Random	Forest	algorithm	
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4.4	Functional	relationship	inference	

4.4.1	Building	system	description	

In	the	Gates	part	of	the	GHC	building,	297	VAVs	operate	by	6	different	AHUs.	All	the	

297	VAV	terminal	units	serve	the	air	on	the	3rd	floor	to	the	9th	floor,	and	exact	VAV	

locations	 are	mapped	 in	 Figure	 14	~	 Figure	 20.	 Table	 6	 contains	 the	 locations	 of	

AHUs	and	the	number	of	VAVs	that	each	AHU	serves.	Essentially,	the	GHC	building	is	

divided	into	three	main	programs	in	terms	of	control	logic.	Firstly,	the	public	spaces	

(i.e.	 kitchen,	 corridor,	 project	 room,	 lobby)	 require	 non-stop	 operating	 everyday.	

Secondly,	 the	 classroom	units	 have	 their	 own	predefined	 schedules	 for	 operation.	

The	 last	 program,	 which	 comprises	 the	 largest	 portion	 of	 the	 program	 in	 this	

building,	 is	 the	 office	 unit.	 And	 office	 units	 in	 the	 GHC	 building	 is	 operated	 by	

occupancy	and	each	office	unit	user	can	change	 their	setpoint	by	 their	preference.	

Additionally,	each	VAV	terminal	unit	controls	both	the	air	flow	rate	and	temperature	

by	 damper	 and	 reheat	 coil	 respectively.	 The	 general	 assumption	 of	 the	 functional	

relationship	 inference	 methodology	 is	 primarily	 developed	 by	 considering	 the	

specific	characteristics	of	the	GHC	building.	
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Figure	14	VAV	locations	on	the	3rd	floor	

	

	

Figure	15	VAV	locations	on	the	4th	floor	
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Figure	16	VAV	locations	on	the	5th	floor	

	

	

Figure	17	VAV	locations	on	the	6th	floor	
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Figure	18	VAV	locations	on	the	7th	floor	

	

	

Figure	19	VAV	locations	on	the	8th	floor	
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Figure	20	VAV	locations	on	the	9th	floor	

	
	

Table	6	Detail	information	for	AHUs	

Air	Handling	Unit	 Location	 Number	of	VAVs	

AHU3	 3rd	floor	 3	

AHU7	 3rd	floor	 5	

AHU8	 3rd	floor	 53	

AHU9	 Rooftop	floor	 65	

AHU10	 Rooftop	floor	 84	

AHU11	 Rooftop	floor	 73	
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Table	7	Control	strategy	in	GHC	building	

Zone	program	 Control	strategy	
Public	area	

(kitchen,	corridor,	project	room)	
Operating	everyday	

Class	room	 Unoccupied	mode	(12:00	am	~	7:00	am)	
Occupied	mode	(7:00	am	~	10:00	pm)	

Unoccupied	mode	(10:00	pm	~	12:00	am)	
Office	unit	 Occupancy	sensor	based	control	

Occupants	can	change	setpoint	
	

4.4.2	Exploratory	numeric	trending	method	

An	 exploratory	method	 is	 implemented	 for	 investigating	 the	 intuitive	 relationship	

between	VAVs	and	AHUs.	Three	different	types	of	data	are	collected	from	VAVs	and	

AHUs.	 From	 VAVs,	 discharge	 air	 tempereature,	 flow	 and	 damper	 position	 are	

collected	 in	 every	 5	minute	 interval.	 Also,	 supply	 air	 temperatuer,	 flow	 and	 static	

pressure	are	gathered	from	AHUs.	The	detail	locations	of	the	data	point	at	VAVs	and	

AHUs	 are	 highlighted	 in	 the	 orange	 box	 in	 Figure	 21	 and	 Figure	 22.	 The	 numeric	

trending	data	 is	sampled	on	a	typical	summer	and	winter	day	 in	terms	of	building	

occupancy	 and	 outdoor	 weather	 conditions.	 To	 consider	 fully	 occupied	 building	

operation,	the	first	days	of	Fall	and	Spring	sememster	are	selected	(i.e.	Fall	semester	

-	August	31st	 2015,	 Spring	 semester	 -	 January	11th	2016).	The	air	 temperture	and	

flow	are	the	most	visible	air	distribution	relationship	of	VAVs	and	AHUs,	because	the	

higher	 temperature	 or	 flow	 rate	 from	 the	 AHU	 is	 distributed	 into	 the	 higher	

temperature	 or	 flow	 rate	 at	 the	 VAV	 terminal	 unit	 as	 well.	 Additionally,	 damper	

position	from	VAVs	and	static	pressure	from	AHUs	are	selected	because	they	have	a	

mechanical	 control	 relationship.	 For	 example,	 if	 the	VAV	 increases	 the	 opening	 of	

the	damper,	the	static	pressure,	with	a	short	time	lag,	at	AHU	is	going	to	decrease.	

The	damper	opening	would	be	the	trigger	for	increasing	fan	flow	rate.	
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Figure	21	Data	point	locations	at	VAV	unit	

	

	
Figure	22	Data	point	locations	at	AHU	

	

	
Figure	23	Relationship	between	damper	position	and	duct	pressure	

	
	
	



	 33	

4.4.3	Statistical	features	clustering	method	

To	 identify	 the	 relationship	 between	 VAVs	 and	 AHUs,	 the	 statistical	 features	 (i.e.	

mean,	median,	standard	deviation,	quartiles,	min,	max)	are	extracted	from	the	VAV	

discharge	 temperature	 sensor	 data.	 The	 functional	 relationship	 inference	 is	

conducted	with	an	unsupervised	clustering	algorithm	in	this	pilot	study.	We	group	

the	 VAVs	 based	 on	 their	 temperature	 trend,	 and	 compare	 how	 many	 VAVs	 are	

correctly	assigned	to	each	AHU.	Even	though	this	pilot	study	only	aims	to	count	the	

number	 of	 VAVs	 on	 each	 AHU,	 it	 would	 be	 a	 great	 stepping-stone	 for	 feature	

extraction	 for	 future	 study.	We	can	 simply	 count	how	many	AHUs	are	 installed	 in	

the	 buildings,	 and	 this	 number	 is	 used	 as	 the	 clustering	 number.	 Similar	 to	 the	

semantic	information	clustering	algorithm,	we	can	thus	calculate	the	distances	from	

the	statistical	features	of	the	VAV	discharge	temperature	sensor	data.	Therefore,	we	

can	 group	 the	 VAVs	 by	 the	 assigned	 AHUs.	 	 For	 the	 statistical	 features	 clustering	

method,	the	historical	data	for	discharge	air	temperature	(November	18th,	2015)	is	

queried	 by	 a	 6-minute	 interval	 from	 287	 different	 VAVs.	 Since	 the	 temperature	

trends	are	different	in	occupied	(9am	~	5pm)	and	unoccupied	time	stamps	(12am	~	

9am	and	5pm	~	12pm)	by	control	logic,	the	queried	time-series	data	is	divided	into	

two-time	stamps.	

	

4.4.4	Similarity	scoring	by	cross	correlation	

To	compute	the	similarity	between	two	signals,	we	implemented	a	cross	correlation	

method.	 Basically	 cross	 correlation	 is	 the	 dot	 product	 of	 two	 vectors,	 and	 two	

signals	are	represented	by	two	vectors	for	this	calculation.	The	calculation	result	of	

cross	correlation	indicates	similarity	for	some	time	lags.	The	range	for	this	similarity	

score	can	be	from	the	minimum	value	-1.0	(negative	correlation)	to	maximum	value	

1.0	 (positive	correlation),	and	 the	similarity	score	0	means	 that	 it	 is	 impossible	 to	

find	the	correlation	between	two	signals.	The	damper	position	from	297	VAVs	and	

supply	 air	 side	 static	 pressure	 at	 6	 AHUs	 are	 selected	 for	 this	 similarity	 scoring	

method	 because,	 as	 we	 previously	 discussed	 in	 the	 prior	 section,	 the	 damper	

position	and	the	static	pressure	have	a	negative	correlation.	Six	different	profiles	are	
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extracted	from	those	two	signals,	and	the	detail	sampling	date	is	tabulated	on	Table	

8.		

	
Table	8	Six	profiles	for	cross	correlation	

	 Summer	 Winter	

Daily		

(5	minute	interval)	

Aug.31	–	Sep.1	2015		

(288	data	points)	

Jan.11	–	Jan.12	2016		

(288	data	points)	

Weekly		

(5	minute	interval)	

Aug.31	–	Sep.7	2015		

(2,016	data	points)	

Jan.11	–	Jan.18	2016	

	(2,016	data	points)	

Monthly		

(5	minute	interval)	

Aug.31	–	Sep.28	2015	

(8,064	data	points)	

Jan.11	–	Feb.8	2016		

(8,064	data	points)	

	

	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛2. 𝐶𝑟𝑜𝑠𝑠	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	

	 𝑓	 ⋆ 𝑔 𝑛 			= 	 𝑓 𝑚 		𝑔[𝑚 + 𝑛]
O

PQRO

	

	

By	computing	the	similarity	scores	between	the	single	VAV	damper	position	signal	

and	 6	 different	 AHUs	 static	 pressure	 signals,	 a	 specific	 VAV	 can	 have	 6	 similarity	

scores	from	the	calculation.	The	algorithm	predicts	the	AHU	of	the	highest	absolute	

scoring	 value.	The	 reason	why	we	 take	 the	 absolute	 value	of	 the	 score	 is	 that	 the	

relationship	between	damper	position	and	static	pressure	has	a	negative	correlation	

and	 we	 want	 to	 compare	 the	 similarity	 even	 though	 they	 have	 the	 negative	

relationship.		
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Figure	24	Similarity	scoring	process	

	

4.4.5	Multiple	scores	prediction	method	

The	variation	of	the	signal	profile	is	the	important	factor	for	investigating	the	cross	

correlation	 function	of	 two	 signals.	Even	 though	 the	 control	 schedule	 is	 repetitive	

throughout	a	year,	the	outdoor	weather	conditions	would	be	the	primary	trigger	for	

the	 variation	 of	 signal	 profiles.	 Thus,	 the	 experiment	 is	 extended	 for	 9	 month	

profiles	 to	 cover	 different	 weather	 conditions	 (i.e.	 3	 months	 –	 swing	 season,	 3	

months	–	cooling	season	and	3	months	–	heating	season).	By	extending	the	range	of	

experiments	 for	May	2015	to	 January	2016,	 the	algorithm	can	cover	 four	different	

seasonal	factors	(i.e.	Spring,	Summer,	Fall	and	Winter).	Firstly,	9	different	monthly	

profiles	 are	 collected	with	 5	minute	 intervals.	 By	 computing	 the	 similarity	 scores	

with	9	months,	a	single	VAV	damper	position	signal	can	have	9	different	predicted	

AHUs	for	each	month.	The	most	frequently	predicted	AHU	from	9	months	is	selected	

as	 the	 final	 prediction	 of	 this	 algorithm.	 If	 the	 multiple	 AHUs	 are	 tied	 in	 the	

prediction	result,	the	AHU	with	the	higher	score	is	the	prediction.		
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Figure	25	Multiple	scores	prediction	method	
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5.	Evaluation	

5.1	Semantic	information	clustering	

Having	7,435	data	points,	we	can	extract	238	unique	unigram	features	(i.e.	cfm,	flow,	

input,	vav).	Each	data	point	is	evaluated	by	the	occurrences	of	238	text	features,	and	

the	 result	 is	 represented	 in	 binary	 format.	 Thus,	 we	 can	 build	 a	 binary	 feature	

matrix	(7435	data	points	by	238	text	features).	The	2,000	data	points	are	evaluated	

for	this	experiment.	The	detailed	experiment	procedure	is	explained	in	Figure	26.	

	

	
Figure	26	Text	feature	extraction	procedure	

	
Based	on	the	calculation	method	described	in	Equation	1	and	Figure	11,	 the	2,000	

data	points	are	clustered	together.	In	Figure	27,	the	x-axis	represents	the	individual	

data	 points,	 and	 they	 are	 clustered	 by	 the	 distance	 index.	 The	 highest	 clustering	

number	 is	 one,	 which	 is	 the	 Gates	 building,	 and	 the	 lowest	 clustering	 number	 is	

2,000,	which	is	the	individual	data	points.	The	clustering	numbers	of	10,	50	and	249	

were	 evaluated	 as	 the	 parametric	 study	 to	 investigate	 the	 relationship	 between	

clustering	number	and	semantic	information	type.		
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Figure	27	Dendogram	result	of	hierarchical	clustering	

	

From	Figure	 28	 and	Table	 9,	 if	 the	 2,000	 data	 points	 are	 grouped	 by	 10	 clusters,	

each	 cluster	 represents	 the	major	 system	categories	 (i.e.	AHU,	VAV,	Metering).	By	

the	 manual	 verification	 of	 the	 clustering	 result,	 4	 different	 unique	 major	 system	

types	are	clustered	but	assigned	to	multiple	clusters.	For	example,	cluster	number	0,	

1,	 2,	 4,	 5	 and	 9	 shows	 all	 VAV	 semantic	 information.	 Assuming	 the	 probability	 of	

correct	clustering	at	70%,	we	can	achieve	80%	accuracy	for	a	10	clustering	result.	

And	the	accuracy	for	each	cluster	is	manually	inspected	by	a	simple	if-then	code	(i.e.	

if	the	text	data	contains	VAV,	then	it	is	correctly	clustered	for	the	VAV	cluster).		

	
Table	9	Ten	clustering	result	1	

Clustering	Number	=	10	

Category	of	semantic	 Major	system	(AHU,	VAV,	Electrical	Metering,	Water)	

Number	of	unique	semantic	 4	

Accuracy	of	total	clustering	 8/10	=	80%	(Pcorrect	=	0.7	for	individual	cluster)	
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Table	10	Ten	clustering	result	2	

Cluster	 Data	points	

(EA)	

Semantic	

Information	

Accuracy	

(%)	

0	 957	 VAV	 95.8	

1	 141	 VAV	 87.2	

2	 73	 VAV(override)	 84.9	

3	 437	 AHU	 69.6	

4	 160	 VAV(error)	 77.5	

5	 87	 VAV(alarm)	 67.8	

6	 68	 Metering	 100	

7	 34	 Water	system	 100	

8	 20	 Metering	 100	

9	 23	 VAV(lobby)	 100	

	

	
Figure	28	Clustering	result	(10)	

From	Figure	29	and	Table	11,	 if	 the	2,000	data	points	are	grouped	by	50	clusters,	

each	cluster	represents	the	acquisition	type	categories	(i.e.	temperature,	flow,	CO2).	

By	the	manual	verification	of	the	clustering	result,	18	different	unique	major	system	

types	are	 clustered,	but	 assigned	 to	multiple	 clusters.	Assuming	 the	probability	of	

correct	clustering	at	70%,	we	can	achieve	60%	accuracy	for	a	50	clustering	result.	

And	the	accuracy	for	each	cluster	is	manually	inspected	by	a	simple	if-then	code	(i.e.	
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if	 the	 text	 data	 contains	 temp,	 then	 it	 is	 correctly	 clustered	 for	 the	 temperature	

cluster).	

	
Table	11	Fifty	clustering	result	1	

Clustering	Number	=	50	

Category	of	semantic	 Data	acquired	type	(temperature,	flow,	RH,	CO2,	…)	

Number	of	unique	semantic	 18	

Accuracy	of	total	clustering	 30/50	=	60%	

	
Table	12	Fifty	clustering	result	2	
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Figure	29	Clustering	result	(50)	

	

The	 last	parametric	study	case	 is	 the	249	clustering	experiment.	When	Automated	

Logic	installed	the	BAS	for	GHC	building,	they	predefined	the	249	unique	semantic	

information	 types	 for	 each	 data	 points.	 Based	 on	 Figure	 30	 and	 Table	 13,	 the	

hierarchical	 clustering	 algorithm	 doesn’t	 predict	 the	 given	 semantic	 information	

well.	 The	 accuracy	 is	 only	 22%.	 This	 low	 accuracy	 is	 driven	 by	 the	 calculation	

method	 of	 complete	 linkage.	 Since	 the	 complete	 linkage	 method	 calculates	 the	

distance	between	two	clusters	by	the	furthest	distance,	this	method	is	not	applicable	

for	the	extremely	high	number	of	clustering.	Another	interesting	finding	is	detected	

from	 Figure	 31,	 where	 both	 given	 semantic	 information	 and	 the	 algorithm	

prediction	shows	the	Pareto	distribution.	The	Pareto	distribution	means	20%	of	the	

semantic	 information	 takes	 80%	 of	 the	 total	 data	 points.	 This	 distribution	 result	

indicates	that	after	the	certain	maximum	limit	of	the	clustering	number,	ultimately	

doesn’t	guarantee	a	good	accuracy	rate	because	of	the	skewed	data	distribution.	For	

example,	 the	 majority	 of	 data	 shows	 VAV	 in	 terms	 of	 major	 system	 type	 and	

temperature	 or	 flow	 in	 terms	 of	 acquisition	 type.	 Thus,	 it	 is	 very	 important	 to	

choose	a	correct	number	of	clustering	before	conducting	the	hierarchical	clustering	

procedure.		 	
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Table	13	249	clustering	result	

Clustering	Number	=	249	

Category	of	semantic	 Vendor	given	semantic	information	

Number	of	unique	semantic	 249	

Accuracy	of	total	clustering	 55/249	=	22%	

		

	
Figure	30	Clustering	result	(249)	

	

	
Figure	31	Clustering	result	comparison	with	ground	truth	
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5.2	Data	point	type	classification	

5.2.1	Classification	for	the	damper	position		

To	 identify	 the	 relationship	between	VAVs	and	AHUs,	 the	damper	position	data	 is	

required	from	the	VAV	unit.	Normally,	a	single	VAV	unit	contains	around	20	BACnet	

data	points,	and	4	of	them	are	Analog	Values	(i.e.	Airflow,	Airflow	setpoint,	Damper	

position	and	Reheat	Valve)	as	the	control	parameters.	Additionally,	we	can	filter	the	

data	points	by	unit	 of	measurement	 (%).	After	 filtering	 the	data	points	by	Analog	

Value	 and	unit	 (%),	we	 can	only	have	 two	 candidates	 (damper	position	or	 reheat	

valve)	for	classifying	the	damper	position	data	type.			

	

	
Figure	32	Random	decision	tree	by	a	statistical	feature	sample	

	
Calculating	 statistical	 features	 from	 randomly	 chosen	 1,747	 samples	 from	

previously	 filtered	data	point,	we	 can	build	 the	 feature	 table	 (7	 features	by	1,747	

samples)	 with	 the	 manually	 labeled	 ground	 truth	 class	 values.	 From	 this	 feature	

table	 and	ground	 truth	 labels,	 100	decision	 trees	 are	 randomly	 generated.	Having	

the	 classification	 result	 from	 100	 random	 decision	 trees,	 we	 can	 build	 the	

probability	distribution	for	each	class	value.	To	evaluate	the	model	by	a	new	data	set,	

569	samples	from	March	2016	are	collected.	The	model	for	classifying	the	damper	

position	data	 classifies	569	 samples	 correctly	out	of	 594	 samples	 (=95.79%)	with	

low	out-of-bag	error	 (0.0567)	and	high	kappa	 statistics	 (0.8197).	To	 interpret	 the	

confusion	 matrix,	 the	 horizontal	 and	 vertical	 axis	 represent	 the	 actual	 and	

prediction	 data	 point	 types,	 and	 the	 diagonal	 values	 are	 correctly	 classified	 data	
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point	 types	 from	 this	 model.	 The	model	 classifies	 the	 damper	 position	 data	 type	

from	the	actual	damper	position	data	 type	accurately.	However,	 it	misclassifies	25	

data	points	as	damper	position	instead	of	the	reheat	valve,	thus,	this	model	does	not	

guarantee	 the	higher	accuracy	 for	differentiating	 the	 reheat	valve	data	 type.	Since	

the	aim	of	the	suggested	classification	algorithm	is	to	identify	the	damper	position	

data	type	from	all	the	data	points	in	the	VAV	unit,	the	skewness	of	the	classification	

result	is	not	a	major	problem.	For	the	training	and	testing	process	for	the	Random	

Forest	 method,	 we	 used	 Weka,	 which	 is	 a	 Java	 based	 machine	 learning	 tool	

developed	from	the	University	of	Waikato,	New	Zealand.		

	
Table	14	Confusion	matrix	from	the	classification	result	1	

(Prediction)	
	
(Actual)	

	 Damper	position	 Reheat	valve	
Damper	position	 502	 0	
Reheat	valve	 25	 67	

	
	

	
Figure	33	Example	result	for	the	Random	Forest	model	1	

	

	
5.2.2	Classification	for	the	supply	air	duct	pressure	

To	 identify	the	relationship	between	VAVs	and	AHUs,	 the	supply	air	duct	pressure	

data	is	required	from	the	AHU	unit.	Normally,	a	single	AHU	unit	contains	over	100	

BACnet	 data	 points,	 and	 around	 10	 different	 types	 of	 sensors	 are	 installed	 (i.e.	

temperature,	 pressure,	 humidity,	 airflow,	 etc.).	 To	 acquire	 the	 supply	 air	 duct	



	 46	

pressure	data	point,	we	filtered	the	data	point	by	the	object	(Analog	Input)	and	the	

unit	of	measurement	(in	H2O).	After	filtering,	we	can	have	four	candidates	(supply	

air	 duct	 pressure,	 exhaust	 fan	 pressure,	 supply	 fan	 pressure	 and	 enthalpy	 wheel	

pressure)	for	classifying	the	supply	air	duct	pressure.		

	

To	build	the	model	for	classifying	the	pressure	sensor	type,	we	calculated	statistical	

features	from	700	pressure	sensor	data	samples	from	6	AHUs	with	manually	labeled	

ground	 truth	 class	 values.	 From	 this	 data	 collection,	 we	 generate	 100	 random	

decision	 trees	 to	 build	 the	 classification	model.	 By	 having	 the	 classification	 result	

from	the	100	random	decision	trees,	we	can	gain	a	classification	probability	result	

for	the	test	dataset	from	March	2016	(236	samples).	The	Random	Forest	model	for	

classifying	 the	 damper	 position	 data	 classifies	 222	 samples	 correctly	 out	 of	 536	

samples	 (=94.06%)	 with	 low	 out-of-bag	 error	 (0.0375)	 and	 high	 kappa	 statistics	

(0.9182).	 Referring	 to	 Table	 15,	 the	 model	 classifies	 the	 supply	 air	 and	 enthalpy	

wheel	 pressure	 sensor	 correctly,	 but	 it	misclassifies	 some	 of	 the	 exhaust	 fan	 and	

supply	fan	pressure	sensor	data.	Once	again,	 the	aim	of	this	classification	model	 is	

identifying	the	supply	air	duct	pressure	sensor,	therefore,	we	can	utilize	this	model	

for	further	analysis.	

	
	

Table	15	Confusion	matrix	from	the	classification	result	2	

(Prediction)	
	
	
	

(Actual)	

	 EF	 SF	 SA	 EW	

EF	 49	 6	 0	 4	

SF	 4	 75	 0	 0	

SA	 0	 0	 70	 0	

EW	 0	 0	 0	 28	
Legend	:	EF(Exhaust	Fan),	SF(Supply	Fan),	SA(Supply	Air),	EW	(Enthalpy	Wheel)	
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Figure	34	Example	result	for	the	Random	Forest	model	2	

	

5.3	Functional	relationship	inference		

5.3.1	Exploratory	numeric	trending	result	

As	 Figure	 35	 ~	 Figure	 40	 show,	 it	 is	 hard	 to	 capture	 the	 relationship	 between	

discharge	air	temperature	and	flow	at	VAVs,	and	supply	air	temperature	and	flow	at	

AHUs.	The	reason	why	both	temperature	and	flow	do	not	have	a	strong	relationship	

is	due	to	the	control	logic	of	the	GHC	building.	As	previously	explained,	AHUs	serve	

three	 different	 program	 zones	 through	 VAVs	 and	 the	 majority	 of	 VAVs	 are	

controlled	based	on	occupancy	variable	 in	 the	office	program	units.	Both	program	

variety	and	uncertain	occupancy	behavior	create	the	complex	temperature	and	flow	

relationship	between	VAVs	and	AHUs.	Thus,	 it	 is	hard	 to	extract	 the	VAVs	–	AHUs	

relationship	information	from	the	direct	numeric	trending	of	temperature	and	flow	

sensor	data.	
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Figure	35	AHU	-	VAV	temperature	distribution	on	Summer	day	

	

	
Figure	36	VAV	airflow	distribution	on	Summer	day	
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Figure	37	AHU	airflow	distribution	on	Summer	day	

	

	
Figure	38	AHU	-	VAV	temperature	distribution	on	Winter	day	
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Figure	39	VAV	airflow	distribution	on	Winter	day	

	

	
Figure	40	AHU	airflow	distribution	on	Winter	day	
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5.3.2	Statistical	features	clustering	result	

The	numeric	trending	for	AHUs	–	VAVs	relationship	inference	is	investigated	by	not	

just	 direct	 comparison	 of	 numeric	 trending,	 but	 trying	 to	 cluster	 the	 VAVs	 by	

assigned	 AHUs	 with	 statistical	 features.	 14	 statistical	 features	 are	 extracted	 for	

clustering	 VAVs	 by	 assigned	 AHUs.	 The	 clustering	 algorithm	 is	 evaluated	 by	

implementing	 a	 similar	 setting	 of	 the	 semantic	 information	 clustering	 algorithm.	

Figure	41	shows	the	result	of	the	algorithm	and	it	conveys	a	low	performance.	The	

clustering	pattern	indicates	poor	performance.	For	example,	AHU	11	actually	should	

have	 83	VAVs	 but	 it	 predicts	 180	VAVs.	 To	 verify	whether	 this	 feature	 extraction	

method	is	correct	or	not,	each	statistical	feature	distribution	is	plotted	in	Figure	42	

~	 Figure	 45.	 Intuitively,	 their	 distributions	 are	 similar	 even	 though	 they	 are	

assigned	by	6	different	AHUs.	This	is	because,	as	long	as	their	set	point	temperature	

is	 the	 same	 for	 all	 the	 VAVs,	 it	 is	 then	 difficult	 to	 differentiate	 the	 VAV	 numeric	

trending	by	only	statistical	features	of	the	temperature	data.		

	

	
Figure	41	VAV	-	AHU	mapping	inference	result	
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Figure	42	Mean	and	Median	distribution	

	

	
Figure	43	Quartiles	distribution	

	

	
Figure	44	Max	and	Min	distribution	
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Figure	45	Standard	deviation	distribution	

	

5.3.3	Similarity	scoring	result	

Similarity	scoring	by	cross	correlation	is	implemented	for	damper	position	at	VAVs	

and	static	pressure	at	AHUs.	Figure	46	shows	a	complete	cross	correlation	result	of	

a	 typical	summer	day.	The	result	 indicates	they	have	a	negative	correlation	with	a	

short	 time	 lag.	 The	 absolute	 number	 of	 the	 maximum	 cross	 correlation	 value	 is	

0.9143,	and	it	 is	the	maximum	score	among	other	AHUs	scores.	Thus,	we	can	infer	

that	VAV_room4215	is	connected	with	AHU3.	Additionally,	Figure	47	represents	the	

cross	 correlation	 result	 of	 a	 typical	 winter	 month.	 	 Their	 relationship	 is	 also	 a	

negative	 correlation	 with	 0.8432	 maximum	 score,	 thus	 the	 prediction	 of	

VAV_room6119	is	AHU7.	

	

	
Figure	46	Cross	correlation	result	on	Summer	day	
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Figure	47	Cross	correlation	result	on	Winter	month	

	

After	calculating	all	the	similarity	scores	for	the	combination	of	VAVs	and	AHUs,	we	

can	know	the	inference	accuracy	result	on	Table	16.	Among	6	profiles,	the	monthly	

profile	 has	 the	 maximum	 accuracy	 (40.50%).	 However,	 those	 six	 profiles	 do	 not	

have	 enough	 variation	 in	 terms	 of	 seasonal	 factors.	 To	 cover	 seasonal	 building	

operation	behavior,	the	dataset	must	be	extended	to	multiple	months.	

	
Table	16	Inference	accuracy	result	of	6	profiles	

	 Summer	 Winter	

Daily	 58/297	=	20.78%	 21/297	=	7.52%	

Weekly	 81/297	=	29.03%	 69/297	=	24.73%	

Monthly	 70/297	=	25.08%	 113/297	=	40.50%	
(correctly	matched	VAV	/	total	number	of	VAV)	

	

5.3.4	Multiple	scores	prediction	result	

Extending	 the	 dataset	 from	 1	 month	 to	 9	 month	 profiles,	 the	 cross	 correlation	

function	 can	 consider	 various	 seasonal	 factors.	 The	 9	 month	 profiles	 are	 the	

minimum	number	covering	three	different	seasonal	behaviors.	Since	the	14	damper	

positions	at	VAVs	are	not	collected	properly,	the	total	number	of	VAVs	is	reduced	to	

283.	 The	 seasonal	 characteristics	 of	 the	 profiles	 are	 selectively	 beneficial	 for	

predicting	 the	AHU.	 For	 example,	 the	 summer	peak	profile	 from	August	 is	 a	 good	

indicator	 for	 AHU9,	 on	 the	 other	 hand,	 the	 winter	 peak	 profile	 from	 January	

provides	a	higher	accuracy	for	AHU11.	To	adaptively	predict	the	correct	AHU	from	
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the	cross	correlation	result,	the	most	frequently	predicted	AHU	type	from	9	months	

is	predicted	at	the	final	stage	of	this	algorithm.		

	
Table	17	Multiple	scores	prediction	method	result	

Assigned	AHU	 Correctly	matched	 Accuracy	

AHU3	 3/3	 100%	

AHU7	 4/5	 80%	

AHU8	 45/53	 85%	

AHU9	 56/65	 86%	

AHU10	 72/84	 86%	

AHU11	 26/73	 63%	

Total	 226/283	 79.85%	

	

Table	17	indicates	the	relationship	inference	result,	the	overall	accuracy	is	80%,	but	

the	 relationship	between	VAVs	and	AHU11	does	not	 show	 the	 strong	 relationship	

compared	 to	 other	 AHUs.	 The	 VAVs	 served	 from	 AHU11	 are	 located	 in	 various	

thermal	characteristic	zones.	Essentially	AHU11	serves	 the	second	 largest	number	

of	VAVs	(73ea),	and	the	AHU11	distributes	the	air	 into	5	different	floors	(from	the	

5th	floor	to	the	9th	floor).	It	means	the	vertical	distance	between	VAVs	and	AHU11	is	

the	 maximum	 distance	 among	 other	 AHUs.	 In	 addition,	 as	 Figure	 14	 ~	 Figure	

20demonstrate,	the	VAVs,	which	connect	to	AHU11,	are	facing	various	orientations	

compared	to	other	VAVs.	
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Figure	48	Vertical	distances	between	VAV	-	AHU	
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6.	Conclusion	

6.1	Framework	deployment	

The	 final	outcome	of	 this	paper	provides	 the	 framework	 for	 future	users	 to	utilize	

the	building	data	in	more	efficient	ways.	The	primary	objective	of	this	framework	is	

discerning	the	relationship	between	VAVs	and	AHUs	from	the	heterogeneity	of	the	

building	 data	 points.	 The	 framework	 mainly	 consists	 of	 two	 stages.	 The	 first	 is	

filtering	 and	 classifying	 the	data	point	by	BACnet	 information	 and	daily	 statistical	

features	 for	 acquiring	 damper	 position	 and	 supply	 air	 duct	 pressure	 data.	 The	

second	 stage	 is	 figuring	out	 the	 relationship	between	VAVs	and	AHUs	by	 the	data	

that	we	investigated	in	the	first	stage.		

	

	
Figure	49	Detail	procedure	of	the	framework	

	

The	detail	 procedure	of	 the	 framework	has	6	 steps	 and	 is	described	 in	Figure	49.	

Firstly,	 the	 user	 can	 collect	 the	 BACnet	 information	 (i.e.	 names,	 objects	 and	

properties)	with	the	data	point,	and	filter	the	data	point	list	by	what	the	user	needs.	

For	example,	if	the	user	wants	to	find	the	supply	air	duct	pressure	sensor	data,	the	

user	can	filter	the	data	points	by	object	type	(analog	input)	and	unit	of	measurement	

(in	H2O).			
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Figure	50	Example	of	step	1	and	2	

	

After	having	all	the	candidates	for	the	damper	position	data	points	in	VAVs	and	the	

supply	air	duct	pressure	data	points	in	AHUs,	the	daily	statistical	features	(i.e.	mean,	

median,	standard	deviation,	minimum,	maximum	and	quartiles)	are	extracted	from	

those	 candidate	 data	 points.	 These	 daily	 statistical	 features	 are	 applied	 to	 the	

classification	model	for	labeling	their	semantic	information.	The	classification	model	

is	 developed	 by	 Random	 Forest	 algorithm	 and	 the	 historical	 random	 samples.	

Essentially,	 the	 classification	 model	 identifies	 the	 semantic	 information	 (damper	

position,	supply	air	duct	pressure)	by	the	probability	calculated	through	the	results	

of	the	100	decision	trees.	

	

	
Figure	51	Example	of	step	3	
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Figure	52	Example	of	step	4	

	

Since	the	user	acquired	the	damper	position	and	supply	air	duct	pressure	data	point	

from	the	previous	steps,	 the	user	can	 investigate	the	VAVs	–	AHUs	relationship	by	

the	acquired	data	points.	Querying	the	12	months	data	by	5	minute	intervals	 from	

both	damper	position	and	supply	air	duct	pressure,	the	user	needs	to	calculate	the	

similarity	 scores	 (absolute	 number	 of	 cross	 correlation)	 of	 12	 monthly	 profiles.	

Therefore,	each	VAV	unit	has	6	similarity	scores	from	6	different	AHUs	per	month.	

Considering	the	maximum	similarity	scores	as	the	prediction	of	the	specific	month,	

each	VAV	unit	has	12	predictions	from	12	month	profiles.	Ultimately,	the	framework	

returns	 the	 most	 frequently	 predicted	 AHU	 type	 as	 the	 final	 outcome	 of	 the	

relationship.	
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Figure	53	Example	of	step	5	and	6	

	

The	overall	methodology	for	this	framework	is	driven	by	the	physical	cyber	system	

of	the	building.	To	discern	the	physical	relationship,	conventional	practice	dictated	

that	 engineers	 checked	 the	 equipment	 and	 drawing	 manually.	 However,	 since	

information	 technology	 has	 dramatically	 improved,	 where	 the	 building	 industry	

actively	 utilizes	 the	 technology	 into	 the	 building	 system,	 the	 building	 industry	 is	

now	ready	to	derive	the	useful	information	from	the	building	database.	For	example,	

the	 GHC	 building’s	 data	 points	 are	 managed	 under	 BACnet	 protocol	 and	 their	

historical	 database	 is	 stored.	 Thus,	 the	 physical	 relationship	 is	 indirectly	 inferred	

through	the	data	mining	of	the	cyber	system	database.	Assuming	that	a	building	is	

managed	under	BACnet	 protocol	 and	 at	 least	 9	months	 of	 building	data	 is	 stored,	
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this	framework	is	very	useful	when	the	user	has	no	information	on	the	relationship	

between	 VAVs	 and	 AHUs.	 Even	 though	 the	mechanical	 drawing	 is	missing	 or	 the	

user	cannot	read	it,	they	can	diagnose	the	mechanical	system	with	this	framework.			

	

	
Figure	54	Final	framework	outcome	

	

6.2	Finding	&	Limitation	

This	 project	 has	 two	 primary	 goals.	 The	 first	 goal	 is	 mapping	 the	 semantic	

information	on	the	data	points	and	the	second	one	is	investigating	the	VAVs	–	AHUs	

relationship	by	the	semantic	information	that	is	acquired	in	stage	1.	To	accomplish	

the	first	objective,	 initially	we	try	to	cluster	the	data	point	by	the	similar	semantic	

information.	 However,	 the	 accuracy	 for	 clustering	 the	 acquisition	 type	 (i.e.	

temperature,	 pressure,	 etc.)	 shows	 less	 than	 20%.	 This	 is	 because	when	we	 have	

only	the	text	features	for	clustering,	we	are	then	limited	in	being	able	to	cluster	the	

semantic	information.	In	the	GHC	building	data	points,	the	data	point	name	includes	

the	equipment	type	(i.e.	VAV,	AHU,	etc.),	however	the	detail	sensor	information	(i.e.	

supply	air	duct	pressure,	mixed	air	temperature,	etc.)	is	not	represented	as	the	text	

data.	 In	 some	 data	 points,	 we	 can	 find	 the	 acronyms	 and	 synonyms	 on	 the	 point	

names,	 but	 the	 majority	 of	 data	 point	 names	 contains	 the	 company’s	 naming	
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ordering	rule	(combination	of	one	character	and	3	digit	numbers).	Moreover,	there	

are	too	many	data	points	in	the	building	database,	and	some	of	the	data	points	are	

just	 constant	numbers	or	binaries	as	 the	control	parameters.	 In	 this	 initial	 trial	 to	

find	the	semantic	 information,	we	realize	that	considering	only	text	features	is	not	

enough	 to	 infer	 the	 semantic	 information,	 therefore,	 we	 need	 to	 reduce	 the	 data	

points	based	on	our	needs.	

	

The	second	method	is	developed	by	the	two	lessons	that	we	learned	during	the	first	

trial.	Essentially	the	filtering	stage	utilizes	the	BACnet	information	for	reducing	the	

useless	 data	 points	 of	 our	 framework.	 The	 BACnet	 information	 is	 very	 useful	 to	

understand	how	the	building	data	points	are	managed	and,	as	 long	as	the	building	

data	points	are	managed	under	the	BACnet	protocol,	we	can	implement	this	filtering	

method	 easily	 for	 other	 buildings.	 However,	 even	 though	 this	 filtering	 method	

reduces	the	data	points,	it	is	not	enough	to	find	the	desired	data	type.	For	example,	

reheat	 valve	 and	 damper	 position	 data	 points	 are	 both	 analog	 values	 with	

percentage	as	the	unit	of	measurement.	To	solve	this	type	of	problem,	we	consider	

the	numerical	features	to	classify	the	desired	data	type.	The	daily	statistical	features	

of	numerical	signals	are	very	informative	in	classifying	the	data	type.	This	filtering	

and	 classification	method	 has	 implementation	 limits	when	 the	 user	 knows	which	

data	type	the	user	needs.	On	the	other	hand,	the	first	clustering	method	is	mapping	

all	 the	 data	 points	 with	 similar	 semantic	 information.	 Additionally,	 the	 current	

filtering	 and	 classification	model	 is	 only	 tailored	 to	 find	 the	 damper	 position	 and	

supply	air	duct	pressure	data	in	VAV	and	AHU	respectively.	Once	again,	however,	if	

the	user	knows	what	they	need	for	further	analysis,	this	method	is	very	informative	

in	finding	the	desired	data	point	type.		

	

To	accomplish	the	second	goal	of	this	project,	which	is	an	investigation	of	the	VAVs	–	

AHUs	relationship,	the	exploratory	data	analysis	is	conducted	with	temperature	and	

flow	 data.	 Since	 a	 single	 AHU	 serves	 an	 average	 of	 46	 VAV	 units,	 and	 a	 building	

contains	 various	 program	 zones,	 it	 is	 hard	 to	 find	 the	 intuitive	 relationship	 in	

medium	 sized	 commercial	 buildings	 like	 the	 GHC	 building.	 To	 learn	 more	
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information	about	the	temperature	data,	the	statistical	 features	are	extracted	from	

VAV	units.	However,	 this	 statistical	 feature	method	 is	 not	 informative	 in	mapping	

those	VAV	units	on	the	AHU	type,	because	the	control	set-points	are	almost	identical	

for	 6	 different	 AHUs.	 Therefore,	 we	 invert	 our	 viewpoint	 to	 the	 mechanical	

relationship.	Typically,	 the	damper	position	at	VAV	unit	 is	calculated	based	on	the	

sensor	 reading	 at	 supply	 air	 duct	 pressure,	 therefore	 they	 have	 a	 negative	

correlation.	 By	 calculating	 the	 cross	 correlation	 between	 damper	 position	 from	

VAVs	 and	 supply	 air	 duct	 pressure	 from	 AHUs,	 we	 can	 score	 the	 correlations	

between	 VAVs	 and	 AHUs.	 Based	 on	 the	 building	 behavior	 in	 heating,	 cooling	 or	

swing	 seasons,	 different	 profiles	 are	 collected.	 Therefore,	 we	 consider	 9	 month	

profiles	to	calculate	the	cross	correlations.	Since	we	need	to	query	and	calculate	9	~	

12	month	profiles,	 this	 step	requires	high	computational	demands.	To	achieve	 the	

80%	accuracy,	at	least	9	month	profiles	are	required.		

	

6.3	Future	work		

The	next	step	for	this	project	 involves	the	evaluation	of	a	new	building	where	this	

framework	 is	 applied.	We	developed	 the	 framework	 for	 future	users	 to	 overcome	

interoperability	 issues	 with	 other	 buildings.	 However,	 the	 Random	 Forest	

classification	 model	 in	 the	 first	 stage	 is	 driven	 by	 the	 historical	 data	 of	 the	 GHC	

building.	 Thus,	 the	 Random	 Forest	 classification	model	 should	 be	 evaluated	 with	

other	building	data	for	the	active	usage	of	this	framework.		

	

This	framework	is	especially	developed	for	inferring	the	VAVs	–	AHUs	relationship	

by	damper	position	and	supply	air	duct	pressure	data.	It	is	important	to	note	though,	

that	 there	 are	 a	 variety	 of	 mechanical	 relationships	 in	 the	 building	 system.	 The	

future	 user	 can	 develop	 their	 methodology	 within	 this	 framework	 structure.	 For	

example,	 if	 they	 train	 the	 classification	 model	 based	 on	 the	 different	 location	

temperature	sensor	data,	 the	new	 framework	will	define	 the	 locations	of	different	

temperature	sensors.		Furthermore,	if	we	can	collect	the	entire	possible	train	model	
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for	data	 type	 classification,	 this	 framework	will	ultimately	map	all	 the	data	points	

with	the	semantic	information. 
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