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Abstract

Long and short-term exposure to particulate matter (PM) are linked to adverse heath 

endpoints. Evidence indicates that PM composition such as metals and organic carbon (OC) 

might drive the health effects. As airborne pollutants show significant intracity 

spatiotemporal variation, mobile sampling and distributed monitors are utilized to capture the 

variation pattern. The measurements are then fed to develop models to better characterize the 

relationship between exposure and health outcomes.

Two sampling campaigns were conducted. One was sole mobile sampling in 2013 

summer and winter in Pittsburgh, PA. Thirty-six sites were chosen based on three 

stratification variables: traffic density, proximity to point sources, and elevation. The other 

one was hybrid sampling network, incorporating a mobile sampling platform, 15 distributed 

monitors, and a supersite. We designed two case studies (transect and downtown), selected 14 

neighborhoods (~1 km2), and conducted sampling in 2016 summer/fall and winter. 

Spatial variation of PM2.5 mass and composition was studied in the 2013 campaign. 

X-ray fluorescence (XRF) was used to analyze concentrations of 26 elements: Na, Mg, Al, Si, 

S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, and Pb. Trace 

elements had a broad range of concentrations from 0 to 300 ng/m3. Comparison of data from 

mobile sampling with stationary monitors showed reasonable agreement. We developed Land 

use regression (LUR) models to describe spatial variation of PM2.5, Si, S, Cl, K, Ca, Ti, Cr, 

Fe, Cu, and Zn. Independent variables included traffic influence, land-use type, and facility 

emissions. Models had an average R2 of 0.57 (SD = 0.16). Traffic related variables explained 

the most variability with an average R2 contribution of 0.20 (SD = 0.20). Overall, these 

results demonstrated significant intra-urban spatial variability of fine particle composition.

Spatial variation of OC was based on the 2013 campaign as well. We collected 
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organic carbon (OC) on quartz filters, quantified different OC components with thermal-

optical analysis, and grouped them based on volatility in decreasing order (OC1, OC2, OC3, 

OC4, and pyrolyzed carbon (PC)). We compared our ambient OC concentrations (both gas 

and particle phase) to similar measurements from vehicle dynamometer tests, cooking 

emissions, biomass burning emissions, and a highway traffic tunnel. OC2 and OC3 loading 

on ambient filters showed a strong correlation with primary emissions while OC4 and PC 

were more spatially homogenous. While we tested our hypothesis of OC2 and OC3 as 

markers of fresh source exposure for Pittsburgh, the relationship seemed to hold at a national 

level. Land use regression (LUR) models were developed for the OC fractions, and models 

had an average R2 of 0.64 (SD = 0.09). We demonstrate that OC2 and OC3 can be useful 

markers for fresh emissions, OC4 is a secondary OC indicator, and PC represents both 

biomass burning and secondary aerosol. People with higher OC exposure are likely inhaling 

more fresh OC2 and OC3, since secondary OC4 and PC varies much less drastically in space 

or with local primary sources.

With the 2016 hybrid sampling campaign, we addressed the intracity exposure 

patterns, as they could be more complex than intercity ones because of local traffic, 

restaurants, land use, and point sources. This network studied a wide range of pollutants 

(CO2, CO, NO2, PM1 mass and composition, and particle number PN). Mobile measurements 

and distributed monitors show good agreement. PN hotspots are strongly associated with 

restaurants and highway traffic. PN at sites with large local source impacts tends to have 

larger diurnal variation than daily variation, while CO in downtown center shows the 

opposite trend. PN exhibits the largest spatial and temporal variations. Spatial variation is 

generally larger than temporal variation among all five pollutants (CO2, NO2, CO, PN, and 

PM1). These findings provide quantitative comparison between spatial and temporal variation 
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in different scales, and support the theoretical validity of developing long-term exposure 

models from short-term mobile measurement. A combined sampling network with mobile 

and distributed monitor could prove more valuable in studying intracity air pollution.

In the 2016 hybrid sampling campaign, we also studied spatial variability of air 

pollution in the vicinity of monitors. Monitoring network is essential for protecting public 

health, though evaluation is needed to assess spatial representativeness of monitors in 

different environments. Mobile sampling was conducted repeatedly around 15 distributed 

monitors. Substantial short-range spatial variability was observed. Spatial variation was 

consistently larger than temporal variation for NO2 and CO at different sites. Ultrafine 

particles were highly dynamic both in space and time. PM1 was less spatially and temporally 

variable. Urban locations had more frequent episodic source plume events compared with 

background sites. Using a single monitor measurement to represent surrounding ~1 km2 areas 

could introduce an average daily exposure misclassification of 46 ppb (SD = 26) for CO 

(30% of regional background), 3 ppb (SD = 2) for NO2 (43% of background), 4007 #/cm3 

(SD = 1909) for ultrafine particle number (64% of background), and 1.2 µg/m3 (SD = 1.0) for 

PM1 (13% of background). Exposure differences showed fair correlation with traditional land 

use covariates such as traffic and restaurant density, and the magnitude of misclassification 

could be even bigger for urban neighborhoods.
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Listed air pollutants in the thesis

Gas phase pollutants:

CO2

CO
NO2

Gas phase organics

Particle phase pollutants:

PM2.5 (solids or liquids 
suspended in the air, 
less than 2.5 µm)

Ultrafine particles
(UFP, less than 1 µm):

Particle phase organics
Sulfate
Nitrate
Ammonium
Black carbon
Metals & Trace elements

PM1-2.5:

Particle phase organics
Sulfate
Nitrate
Ammonium
Black carbon
Metals & Trace elements

* Size of the pie does not necessarily mean the abundance of pollutants.

Fig. 1.1. Venn diagram for airborne pollutants included in the thesis. Airborne pollutants can 

be in the gas or particle phase.
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1.1 Atmospheric aerosols and air pollution

Airborne fine particulate matter (PM2.5; particles smaller than 2.5 µm diameter) 

continues to pose serious threats to human health, especially to vulnerable groups such as the 

elderly and children (Beelen et al., 2014; Brook et al., 2010; Di et al., 2017b; Dockery et al., 

1993; Pope and Dockery, 2006). Worldwide, long-term exposure to PM results in 7 million 

deaths annually (Brauer et al., 2016). Recent findings suggest no short-term or long-term safe 

limit for breathing fine particulate matter and super-linear dose response functions when 

pollutant concentrations are below the U.S. National Ambient Air Quality Standards (Beelen 

et al., 2014; Di et al., 2017b, 2017a).

Figure 1.1 shows PM2.5 is mainly composed of inorganic salts, organic carbon (OC), 

elemental carbon (EC), crustal components, and other trace elements (Rees et al., 2004). 

Sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-) are major inorganic 

ions. Crustal elements are relatively abundant species in the earth’s crust such as silicon (Si), 

aluminum (Al), iron (Fe), potassium (K), calcium (Ca), titanium (Ti), sodium (Na), and 

magnesium (Mg).

Organic carbon (OC) is a major component of PM with a broad range of 

concentrations from 0.1 to 100 µg/m3 worldwide (Jimenez et al., 2009). Ambient OC is a 

mixture of primary (directly emitted) and secondary (formed via chemical processing) 

components. Primary organic aerosol such as tailpipe exhaust is semi-volatile (Robinson et 

al., 2007). Fresh emissions are rapidly diluted in the ambient atmosphere. These emissions 

partially evaporate to form low-volatility vapors. The photo-oxidation of these newly created 

vapors, along with photo-oxidation of volatile organic gases, contributes to the burden of 

secondary ambient organic aerosol (Robinson et al., 2007). Secondary organic aerosol 

dominates the OC mass in most environments (Zhang et al., 2007), however in near source 
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regions (e.g., near roadways) emissions of primary OC can strongly influence population 

exposures (Donahue et al., 2016). 

The mechanism how PM exposure reduces life expectancy remains unclear (Brook et 

al., 2010; Schwartz et al., 1996). While most air pollution epidemiology studies have focused 

on the association of health endpoints with total PM2.5 mass (Brook et al., 2010; Pope et al., 

2009), evidence suggests that PM2.5 composition may drive some health effects. 

Epidemiological studies by Krall et al. (2017, 2013) suggest that some PM components and 

PM from certain sources may be more toxic than others. Compositional differences may also 

explain the enhanced risks associated with PM exposure in urban versus rural areas (Bravo et 

al., 2017). Verma et al. (2015) observed that organic aerosol from biomass burning was more 

effective at generating reactive oxygen species (ROS) than organic aerosol from other 

sources, suggesting that these emissions may be more toxic. Strak et al. (2017) showed that 

the prevalence of diabetes was related to PM oxidative potential instead of PM2.5 mass, 

suggesting a compositional dependence of human health response. Urch et al. (2008) showed 

strong association of blood pressure increase with particulate organic carbon concentration, 

but not with total PM2.5 mass, as well as a significant negative association between 

particulate organic carbon and arterial diameter (Urch et al., 2005). 

The US Environmental Protection Agency (EPA) regulates outdoor concentrations of 

CO, NO2, ozone (O3), and fine particulate matter (PM2.5) because of their known impacts on 

human health. Ultrafine particle number (UFP, particles with aerodynamic diameter less than 

100 nm) are a pollutant of emerging concern (Kerckhoffs et al., 2016; Meier et al., 2015; 

Patton et al., 2015; Saraswat et al., 2013; Simon et al., 2017). UFP can penetrate deep into the 

respiratory system and have been linked to human health impacts (Health Effects Institute, 

2013; Liu et al., 2015; Ostro et al., 2015; Stafoggia et al., 2017), though no current regulatory 
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standards exist. Particle number (PN) concentration is commonly used as a proxy for UFP 

(Eeftens et al., 2015; Meier et al., 2015).

Airborne pollutants can trigger both acute and chronic health outcomes (Di et al., 

2017b, 2017a). PM2.5 has been consistently found to link to both short-term (hours to days) 

and long-term (annual) health endpoints (Beelen et al., 2014; Brook et al., 2010; Di et al., 

2017b, 2017a). All major air pollutants (carbon monoxide, nitrogen dioxide, sulfur dioxide, 

ozone, PM2.5, and PM10), with the exception of ozone, were significantly associated with a 

short-term increase in myocardial infarction and heart attack risk (Mustafić et al., 2012). 

Although no standards regulate particle concentration, particle number concentration, 

especial ultrafine particles, also showed statistically significant correlation with short-term 

and long-term cardiovascular morbidity (Ostro et al., 2015; Weichenthal, 2012).

1.2 Intracity spatiotemporal variation

Numerous studies suggest substantial intra-urban variability of PM mass and 

composition (de Hoogh et al., 2013; Eeftens et al., 2012a; Tsai et al., 2015; Zhang et al., 

2015). Many cities have only a few PM speciation monitors, and the spatial density of these 

sites may not be sufficient to characterize population exposures with high spatial resolution 

because of large spatial heterogeneity. Thus, understanding spatial variations in pollutant 

concentrations and subsequent human exposures often relies on targeted sampling campaigns. 

For example, the European Study of Cohorts for Air Pollution Effects (ESCAPE) sampled at 

20 monitoring sites in each of 20 cities to resolve spatial patterns in PM2.5 mass and 

composition (de Hoogh et al., 2013; Eeftens et al., 2012a). ESCAPE used Harvard impactors 

to collect PM samples in three 2-week periods over a year to analyze spatial patterns of 

pollutants. Similarly, Zhang et al. (2015) applied distributed sampling with filters to analyze 

metals associated with PM1.0 in Calgary, Alberta, Canada. Recently, Zimmerman et al. 
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demonstrated the use of low-cost distributed monitors with 15-minute resolution (2017) to 

characterize spatial and temporal variations in pollutant concentrations.

Mobile sampling is an attractive alternative to distributed sampling for several 

reasons. High time resolution instruments can be deployed on mobile platforms (Larson et 

al., 2009; Tan et al., 2014a), enabling determination of specific source impacts, whereas 

distributed samplers often rely on filters or other time-integrated measurements. Mobile 

sampling may also allow investigation of a larger number of locations at lower monetary and 

logistic cost than distributed samplers. The primary downside of mobile sampling is that the 

sampling duration at a given measurement location is relatively short, ranging from minutes 

to several hours (Hankey and Marshall, 2015; Tan et al., 2014a). Thus, while mobile 

sampling can capture spatial variation in pollutant concentrations and particle composition, it 

is less adept at capturing long-term average concentrations (Tan et al., 2014b). Nonetheless, 

mobile measurement data have been used to build spatial maps of pollutant concentrations in 

several cities (Hankey and Marshall, 2015; Larson et al., 2009; Tan et al., 2016).

1.3 Land use regression model

Data from distributed or mobile sampling campaigns are often used to build statistical 

models to represent concentrations across an entire city. Many models exist for modeling 

spatial variability such as kriging, inverse distance weighting, and land use regression (LUR). 

LUR is inexpensive to implement and can achieve reliable estimates when adequate land use, 

traffic information, and monitoring data are available (Health Effects Institute, 2010). 

LUR links measured concentrations to land use type, traffic, point source, and other 

physical environmental variables. While not a formal source apportionment method, LURs 

can provide information on different source classes (e.g., traffic) and observed pollutant 

concentrations. 
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LUR can be used to resolve pollutant spatial patterns with high resolution (25 – 100 

meters). However, while predictors in LUR models may link measured concentrations to 

specific sources, LUR models lack true physical insight. Thus LUR models are not easily 

transferrable outside of the region where they are built (Patton et al., 2015; Poplawski et al., 

2009). This is in contrast to chemical transport models (CTM), which simulate all of the 

important chemical and physical processes in the atmosphere, but at much lower spatial 

resolution (e.g., 16x16 or 32x32 km grid cells) (Robinson et al., 2007). Successful 

applications of LUR include PM10, PM2.5, particle number, VOC, and PM composition (de 

Hoogh et al., 2013; Eeftens et al., 2012a; Jedynska et al., 2014; Zhang et al., 2015). 

LUR models can be built with different data sources: distributed filters and passive 

samplers (Eeftens et al., 2012; Matte et al., 2013), mobile sampling (Hankey and Marshall, 

2015; Li et al., 2017, 2016), and satellite data coupled to the EPA network (Bechle et al., 

2015).

1.4 Spatial representativeness of stationary monitors

A regulatory monitoring network is an essential component for protecting public 

health from air pollution. Data from the network can be used to determine if an area is in 

compliance with current air pollution standards. The data are also important sources for 

studying the relationship between air pollution and health impacts with epidemiology. The 

ground-breaking Harvard Six City study used filter measurements from regulatory stationary 

monitors to represent residents’ exposure to airborne pollutants in a county (Dockery et al., 

1993). However, whether monitors could represent a county level air pollution pattern (~30 

km) is subject to debate (Martin et al., 2014; Piersanti et al., 2015; Vitali et al., 2016).

Ground based monitor measurements are also important inputs to atmospheric models 

such as chemical transport models (Di et al., 2016; Ivey et al., 2017). The monitor data also 
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help to calibrate remote sensing models, e.g. deriving a reliable PM2.5 – aerosol optical depth 

(AOD) relationship. However, for these modeling studies (chemistry transport model and 

remote sensing), mismatch in spatial resolution is an issue, as it can introduce significant 

uncertainty in final model output (Yin et al., 2016). Ground based monitors provide point 

measurements. Chemical transport model and remote sensing utilize a grid based approach, 

with grid size ranging from 3 km to 36 km (Donahue et al., 2016; Guo et al., 2017; Lamsal et 

al., 2017; Robinson et al., 2007). Using point measurements to represent surrounding areas as 

large as county scale casts doubts on uncertainty magnitude of final model output.

1.5 Research objectives and motivation

The overarching goal of this thesis is to improve the characterization of spatial and 

temporal variation of multiple airborne pollutants with mobile sampling and distributed 

network. The thesis addressed the current knowledge gap in measuring and modeling particle 

composition within a city, shed new light in using OC fractions to characterize population 

exposure to organics, studied how pollutants varied both in space and time, proposed optimal 

sampling strategies to capture spatiotemporal pattern in different target pollutants, and 

quantified spatial representativeness of monitors in diverse neighborhoods (~1 km2). These 

findings provide guidance for future sampling designs in network optimization and avoiding 

redundant monitors, help to inform air quality planning, and advance understanding of 

pollutant variation and resulting population exposure pattern. Detailed research objectives 

and motivations are listed below.

1) How do PM compositions vary spatially? Limited studies described intracity spatial 

variation of PM compositions, partially due to heavy logistic requirements of setting 

up a large scale distributed monitor network (> 50 monitors) (de Hoogh et al., 2013; 

Zhang et al., 2015). In our study domain (Allegheny County, PA), only two regulatory 
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monitors reported PM speciation data every three or six days. PM health effects, 

however, showed compositional dependence (Krall et al., 2017, 2013). Studying the 

intracity spatial variation in PM composition could help answer if enough regulatory 

monitors existed in the domain for protecting public health.

2) What is the spatial variation in organics? Organics is a major component of fine PM, 

ranging from 20 to 90% in mass fraction (Zhang et al., 2007). Organics were also 

associated with adverse health impacts (Verma et al., 2015). Thus, it was important to 

quantify the spatial variation of organics, and assessed whether certain OC fractions 

were linked to specific sources. By identifying the source-receptor relationships, 

effective pollution control could be adopted to reduce population exposure to total 

organics, and finally PM as well. Two national speciation networks reported OC 

fractions data for decades (Solomon et al., 2014). Previous studies frequently 

incorporated total organics and simply disregarded OC fraction information. The 

potential answers to identify sources for OC fractions could contribute new 

information on using historical data to study organics exposure on a national scale.

3) How does multiple pollutant exposure vary spatially and temporally? Pollutants not 

only vary in space, but also in time. A comprehensive understanding of variation 

pattern for multiple pollutants help decide the optimal sampling strategy—mobile 

sampling only, distributed monitors only or both. In addition, studying temporal 

variation was especially important for acute health diseases. Numerous studies 

indicated statistically significant spatial variation of airborne pollutants in street level 

(~ m) and neighborhood scales (~1 km) (Apte et al., 2017; Donahue et al., 2016; Li et 

al., 2017, 2016). We suggested mobile sampling had the unique advantage of 

capturing spatial gradient with high resolution. With mobile measurements at different 
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locations as input, models could be built to predict concentrations at unmeasured 

spots. LUR was among the popular tools to predict long-term spatial pattern. 

Independent variables in LUR such as road length in surrounding areas were 

temporally invariant. Thus, it was critical to assess whether it was reliable to build 

long-term LUR models based on short-term mobile measurements. One way to 

address the knowledge gap is to compare relative magnitude of spatial and temporal 

variation in mobile sampling data. If temporal variation was orders of magnitude 

higher than spatial variation, even after temporal correction was applied to the raw 

mobile measurements, the corrected dataset would have substantial residual temporal 

variation. Little real spatial gradient could be inferred in this case. On the contrary, if 

spatial signal was significantly higher than temporal variation, spatial pattern would 

reveal itself even before we got to the point of having a stable annual average. This 

would justify the usage of LUR model based on short-term mobile measurements.

4) Do regulatory monitors represent air pollution in their neighborhood areas (~1 km2) 

well? Monitors can be used to determine if their surrounding regions meet regulatory 

standards of air pollution. Measurements at monitors describe surrounding residents’ 

air pollution exposure, help derive exposure dose response functions in epidemiology 

studies, and are essential input for chemical transport model and remote sensing. The 

knowledge gap is to quantify the spatial representativeness of monitors at different 

environments for a variety of gas and particle phase pollutants. The answer can 

further help inform the spatial density of monitors needed to quantify residents’ 

exposure within certain percentages of “true” population exposure based on 

residential address (home). This can be a valuable sampling planning tool, either to 

suggest frequency/density of future mobile sampling in a city, or the number of 
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distributed monitors in different areas.

1.6 Dissertation outline

In Chapter 2, we conducted a mobile sampling campaign in 2013 summer and winter 

in Pittsburgh, PA to characterize spatial variation in PM2.5 mass and composition. Thirty-six 

sites were chosen based on three stratification variables: traffic density, proximity to point 

sources, and elevation. We compared the mobile dataset to stationary monitors in the county 

to illustrate the difference between two sampling platforms. The effectiveness of using Zn as 

traffic marker in the ambient environment was investigated. We then developed LUR models 

to describe spatial variation of PM composition. The importance of different LUR predictors 

was discussed.

In Chapter 3, we specifically analyzed one major PM component collected in the 

same campaign -- OC. We compared our ambient OC concentrations (both gas and particle 

phase) to similar measurements from vehicle dynamometer tests, cooking emissions, biomass 

burning emissions, and a highway traffic tunnel. We then tested observed source relationship 

in national speciation network. LUR models were developed for these OC fractions. The 

models were then combined with census block population data to illustrate human exposure 

pattern to airborne organic carbon.

In Chapter 4, we use a hybrid sampling network to characterize spatiotemporal 

variations of multiple pollutants in Pittsburgh, PA. This network incorporates a mobile 

sampling platform, distributed monitors, and a supersite to investigate a wide range of 

pollutants (CO2, CO, NO2, PM1 mass and composition, and particle number PN). We 

designed two case studies (transect and downtown), selected 14 neighborhoods (~1 km2), and 

conducted sampling in 2016 summer/fall and winter. We quantitatively compared spatial and 

temporal variation in different scales, and addressed the theoretical validity of developing 
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long term exposure models from short-term mobile measurement. We further suggested 

different sampling strategies to better capture intracity air pollution variation for different 

pollutant. 

In Chapter 5, we used the same hybrid sampling network to study spatial variation of 

air pollution near stationary monitors. We conducted mobile sampling repeatedly around 15 

distributed monitors. We compared observed concentration differences to hourly temporal 

variation during driving trips to answer whether differences were source driven or just 

temporal fluctuations. Short-term (daily) exposure misclassification was quantified, and the 

relationship between exposure difference and land use covariates was studied.

In Chapter 6, we summarized major research findings and discussed future research 

ideas.



14

1.7 References

Apte, J.S., Messier, K.P., Gani, S., Brauer, M., Kirchstetter, T.W., Lunden, M.M., Marshall, 

J.D., Portier, C.J., Vermeulen, R.C.H., Hamburg, S.P., 2017. High-Resolution Air 

Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environ. Sci. 

Technol. 51, 6999–7008.

Bechle, M.J., Millet, D.B., Marshall, J.D., 2015. National Spatiotemporal Exposure Surface 

for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000–2010. 

Environ. Sci. Technol. 49, 12297–12305. https://doi.org/10.1021/acs.est.5b02882

Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z.J., Weinmayr, G., Hoffmann, 

B., Wolf, K., Samoli, E., Fischer, P., Nieuwenhuijsen, M., Vineis, P., Xun, W.W., 

Katsouyanni, K., Dimakopoulou, K., Oudin, A., Forsberg, B., Modig, L., Havulinna, 

A.S., Lanki, T., Turunen, A., Oftedal, B., Nystad, W., Nafstad, P., De Faire, U., 

Pedersen, N.L., Östenson, C.-G., Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., 

Eriksen, K.T., Overvad, K., Ellermann, T., Eeftens, M., Peeters, P.H., Meliefste, K., 

Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Krämer, U., Heinrich, J., de Hoogh, K., 

Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G., Ineichen, A., Schaffner, E., 

Probst-Hensch, N., Künzli, N., Schindler, C., Schikowski, T., Adam, M., Phuleria, H., 

Vilier, A., Clavel-Chapelon, F., Declercq, C., Grioni, S., Krogh, V., Tsai, M.-Y., 

Ricceri, F., Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, 

C., Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M., 

Trichopoulou, A., Brunekreef, B., Hoek, G., 2014. Effects of long-term exposure to 

air pollution on natural-cause mortality: an analysis of 22 European cohorts within the 

multicentre ESCAPE project. The Lancet 383, 785–795. https://doi.org/10.1016/

S0140-6736(13)62158-3



15

Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R.V., Dentener, F., 

Dingenen, R. van, Estep, K., Amini, H., Apte, J.S., Balakrishnan, K., Barregard, L., 

Broday, D., Feigin, V., Ghosh, S., Hopke, P.K., Knibbs, L.D., Kokubo, Y., Liu, Y., Ma, 

S., Morawska, L., Sangrador, J.L.T., Shaddick, G., Anderson, H.R., Vos, T., 

Forouzanfar, M.H., Burnett, R.T., Cohen, A., 2016. Ambient Air Pollution Exposure 

Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol. 50, 79–88. 

https://doi.org/10.1021/acs.est.5b03709

Bravo, M.A., Ebisu, K., Dominici, F., Wang, Y., Peng, R.D., Bell, M.L., 2017. Airborne Fine 

Particles and Risk of Hospital Admissions for Understudied Populations: Effects by 

Urbanicity and Short-Term Cumulative Exposures in 708 U.S. Counties. Environ. 

Health Perspect. 125, 594–601. https://doi.org/10.1289/EHP257

Brook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., 

Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., Peters, A., Siscovick, D., 

Smith, S.C., Whitsel, L., Kaufman, J.D., 2010. Particulate Matter Air Pollution and 

Cardiovascular Disease: An Update to the Scientific Statement From the American 

Heart Association. Circulation 121, 2331–2378. https://doi.org/10.1161/CIR.

0b013e3181dbece1

de Hoogh, K., Wang, M., Adam, M., Badaloni, C., Beelen, R., Birk, M., Cesaroni, G., Cirach, 

M., Declercq, C., Dėdelė, A., Dons, E., de Nazelle, A., Eeftens, M., Eriksen, K., 

Eriksson, C., Fischer, P., Gražulevičienė, R., Gryparis, A., Hoffmann, B., Jerrett, M., 

Katsouyanni, K., Iakovides, M., Lanki, T., Lindley, S., Madsen, C., Mölter, A., 

Mosler, G., Nádor, G., Nieuwenhuijsen, M., Pershagen, G., Peters, A., Phuleria, H., 

Probst-Hensch, N., Raaschou-Nielsen, O., Quass, U., Ranzi, A., Stephanou, E., Sugiri, 

D., Schwarze, P., Tsai, M.-Y., Yli-Tuomi, T., Varró, M.J., Vienneau, D., Weinmayr, G., 



16

Brunekreef, B., Hoek, G., 2013. Development of Land Use Regression Models for 

Particle Composition in Twenty Study Areas in Europe. Environ. Sci. Technol. 47, 

5778–5786. https://doi.org/10.1021/es400156t

Di, Q., Dai, L., Wang, Y., Zanobetti, A., Choirat, C., Schwartz, J.D., Dominici, F., 2017a. 

Association of Short-term Exposure to Air Pollution With Mortality in Older Adults. 

JAMA 318, 2446–2456. https://doi.org/10.1001/jama.2017.17923

Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., Schwartz, J., 2016. Assessing PM2.5 

Exposures with High Spatiotemporal Resolution across the Continental United States. 

Environ. Sci. Technol. 50, 4712–4721. https://doi.org/10.1021/acs.est.5b06121

Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., Schwartz, 

J.D., 2017b. Air Pollution and Mortality in the Medicare Population. N. Engl. J. Med. 

376, 2513–2522. https://doi.org/10.1056/NEJMoa1702747

Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G.J., 

Speizer, F.E., 1993. An Association between Air Pollution and Mortality in Six U.S. 

Cities. N. Engl. J. Med. 329, 1753–1759. https://doi.org/10.1056/

NEJM199312093292401

Donahue, N.M., Posner, L.N., Westervelt, D.M., Li, Z., Shrivastava, M., Presto, A.A., 

Sullivan, R.C., Adams, P.J., Pandis, S.N., Robinson, A.L., 2016. Where Did This 

Particle Come From? Sources of Particle Number and Mass for Human Exposure 

Estimates, in: Airborne Particulate Matter. Royal Society of Chemistry, Cambridge, 

pp. 35–71.

Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., 

Dėdelė, A., Dons, E., de Nazelle, A., Dimakopoulou, K., Eriksen, K., Falq, G., 

Fischer, P., Galassi, C., Gražulevičienė, R., Heinrich, J., Hoffmann, B., Jerrett, M., 



17

Keidel, D., Korek, M., Lanki, T., Lindley, S., Madsen, C., Mölter, A., Nádor, G., 

Nieuwenhuijsen, M., Nonnemacher, M., Pedeli, X., Raaschou-Nielsen, O., Patelarou, 

E., Quass, U., Ranzi, A., Schindler, C., Stempfelet, M., Stephanou, E., Sugiri, D., 

Tsai, M.-Y., Yli-Tuomi, T., Varró, M.J., Vienneau, D., Klot, S. von, Wolf, K., 

Brunekreef, B., Hoek, G., 2012. Development of Land Use Regression Models for 

PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; 

Results of the ESCAPE Project. Environ. Sci. Technol. 46, 11195–11205. https://

doi.org/10.1021/es301948k

Eeftens, M., Phuleria, H.C., Meier, R., Aguilera, I., Corradi, E., Davey, M., Ducret-Stich, R., 

Fierz, M., Gehrig, R., Ineichen, A., Keidel, D., Probst-Hensch, N., Ragettli, M.S., 

Schindler, C., Künzli, N., Tsai, M.-Y., 2015. Spatial and temporal variability of 

ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and PMcoarse in Swiss 

study areas. Atmos. Environ. 111, 60–70. https://doi.org/10.1016/j.atmosenv.

2015.03.031

Guo, Y., Tang, Q., Gong, D.-Y., Zhang, Z., 2017. Estimating ground-level PM2.5 

concentrations in Beijing using a satellite-based geographically and temporally 

weighted regression model. Remote Sens. Environ. 198, 140–149. https://doi.org/

10.1016/j.rse.2017.06.001

Hankey, S., Marshall, J.D., 2015. Land Use Regression Models of On-Road Particulate Air 

Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile 

Monitoring. Environ. Sci. Technol. 49, 9194–9202.

HEI Review Panel on Ultrafine Particles, 2013. Understanding the Health Effects of Ambient 

Ultrafine Particles, HEI Perspectives 3. Health Effects Institute, Boston, MA.

Ivey, C., Holmes, H., Shi, G.-L., Balachandran, S., Hu, Y., Russell, A.G., 2017. Development 



18

of PM2.5 source profiles using a hybrid chemical transport-receptor modeling 

approach. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b03781

Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., 

DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, 

I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, 

V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., 

Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., 

E, Dunlea, J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., 

Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., 

Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., 

Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, 

J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., 

Kolb, C.E., Baltensperger, U., Worsnop, D.R., 2009. Evolution of Organic Aerosols in 

the Atmosphere. Science 326, 1525–1529. https://doi.org/10.1126/science.1180353

Kerckhoffs, J., Hoek, G., Messier, K.P., Brunekreef, B., Meliefste, K., Klompmaker, J.O., 

Vermeulen, R., 2016. Comparison of Ultrafine Particle and Black Carbon 

Concentration Predictions from a Mobile and Short-Term Stationary Land-Use 

Regression Model. Environ. Sci. Technol. 50, 12894–12902. https://doi.org/10.1021/

acs.est.6b03476

Krall, J.R., Anderson, G.B., Dominici, F., Bell, M.L., Peng, R.D., 2013. Short-term Exposure 

to Particulate Matter Constituents and Mortality in a National Study of U.S. Urban 

Communities. Environ. Health Perspect. https://doi.org/10.1289/ehp.1206185

Krall, J.R., Mulholland, J.A., Russell, A.G., Balachandran, S., Winquist, A., Tolbert, P.E., 

Waller, L.A., Sarnat, S.E., 2017. Associations between Source-Specific Fine 



19

Particulate Matter and Emergency Department Visits for Respiratory Disease in Four 

U.S. Cities. Environ. Health Perspect. 125, 97–103. https://doi.org/10.1289/EHP271

Lamsal, L.N., Janz, S.J., Krotkov, N.A., Pickering, K.E., Spurr, R.J.D., Kowalewski, M.G., 

Loughner, C.P., Crawford, J.H., Swartz, W.H., Herman, J.R., 2017. High-resolution 

NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and 

validation. J. Geophys. Res.-Atmospheres 122, 1953–1970. https://doi.org/

10.1002/2016JD025483

Li, H.Z., Dallmann, T.R., Gu, P., Presto, A.A., 2016. Application of mobile sampling to 

investigate spatial variation in fine particle composition. Atmos. Environ. 142, 71–82. 

https://doi.org/10.1016/j.atmosenv.2016.07.042

Li, H.Z., Dallmann, T.R., Li, X., Gu, P., Presto, A.A., 2017. Urban Organic Aerosol 

Exposure: Spatial Variations in Composition and Source Impacts. Environ. Sci. 

Technol. https://doi.org/10.1021/acs.est.7b03674

Liu, L., Urch, B., Poon, R., Szyszkowicz, M., Speck, M., Gold, D.R., Wheeler, A.J., Scott, 

J.A., Brook, J.R., Thorne, P.S., Silverman, F.S., 2015. Effects of Ambient Coarse, 

Fine, and Ultrafine Particles and Their Biological Constituents on Systemic 

Biomarkers: A Controlled Human Exposure Study. Environ. Health Perspect. 123, 

534–540. https://doi.org/10.1289/ehp.1408387

Martin, F., Fileni, L., Palomino, I., Vivanco, M.G., Garrido, J.L., 2014. Analysis of the spatial 

representativeness of rural background monitoring stations in Spain. Atmospheric 

Pollut. Res. 5, 779–788. https://doi.org/10.5094/APR.2014.087

Matte, T.D., Ross, Z., Kheirbek, I., Eisl, H., Johnson, S., Gorczynski, J.E., Kass, D., 

Markowitz, S., Pezeshki, G., Clougherty, J.E., 2013. Monitoring intraurban spatial 

patterns of multiple combustion air pollutants in New York City: Design and 



20

implementation. J. Expo. Sci. Environ. Epidemiol. 23, 223–231. https://doi.org/

10.1038/jes.2012.126

Meier, R., Eeftens, M., Aguilera, I., Phuleria, H.C., Ineichen, A., Davey, M., Ragettli, M.S., 

Fierz, M., Schindler, C., Probst-Hensch, N., Tsai, M.-Y., Kuenzli, N., 2015. Ambient 

Ultrafine Particle Levels at Residential and Reference Sites in Urban and Rural 

Switzerland. Environ. Sci. Technol. 49, 2709–2715. https://doi.org/10.1021/

es505246m

Mustafić, H., Jabre, P., Caussin, C., Murad, M.H., Escolano, S., Tafflet, M., Périer, M.-C., 

Marijon, E., Vernerey, D., Empana, J.-P., 2012. Main air pollutants and myocardial 

infarction: a systematic review and meta-analysis. Jama 307, 713–721.

Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., Kleeman, M.J., 2015. 

Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, 

Species and Sources: Results from the California Teachers Study Cohort. Environ. 

Health Perspect. 123, 549–556. https://doi.org/10.1289/ehp.1408565

Patton, A.P., Zamore, W., Naumova, E.N., Levy, J.I., Brugge, D., Durant, J.L., 2015. 

Transferability and Generalizability of Regression Models of Ultrafine Particles in 

Urban Neighborhoods in the Boston Area. Environ. Sci. Technol. 49, 6051–6060. 

https://doi.org/10.1021/es5061676

Piersanti, A., Vitali, L., Righini, G., Cremona, G., Ciancarella, L., 2015. Spatial 

representativeness of air quality monitoring stations: A grid model based approach. 

Atmospheric Pollut. Res. 6, 953–960. https://doi.org/10.1016/j.apr.2015.04.005

Pope, C.A.I., Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution: Lines 

that Connect. J. Air Waste Manag. Assoc. 56, 709–742. https://doi.org/

10.1080/10473289.2006.10464485



21

Pope, C.A.I., Ezzati, M., Dockery, D.W., 2009. Fine-Particulate Air Pollution and Life 

Expectancy in the United States. N. Engl. J. Med. 360, 376–386.

Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, 

A.P., Lane, T.E., Pierce, J.R., Pandis, S.N., 2007. Rethinking Organic Aerosols: 

Semivolatile Emissions and Photochemical Aging. Science 315, 1259–1262. https://

doi.org/10.1126/science.1133061

Saraswat, A., Apte, J.S., Kandlikar, M., Brauer, M., Henderson, S.B., Marshall, J.D., 2013. 

Spatiotemporal Land Use Regression Models of Fine, Ultrafine, and Black Carbon 

Particulate Matter in New Delhi, India. Environ. Sci. Technol. 47, 12903–12911. 

https://doi.org/10.1021/es401489h

Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is daily mortality associated specifically with 

fine particles? J. Air Waste Manag. Assoc. 1995 46, 927–939.

Simon, M.C., Hudda, N., Naumova, E.N., Levy, J.I., Brugge, D., Durant, J.L., 2017. 

Comparisons of traffic-related ultrafine particle number concentrations measured in 

two urban areas by central, residential, and mobile monitoring. Atmos. Environ. 169, 

113–127. https://doi.org/10.1016/j.atmosenv.2017.09.003

Solomon, P.A., Crumpler, D., Flanagan, J.B., Jayanty, R.K.M., Rickman, E.E., McDade, 

C.E., 2014. U.S. National PM2.5 Chemical Speciation Monitoring Networks—CSN 

and IMPROVE: Description of networks. J. Air Waste Manag. Assoc. 64, 1410–1438. 

https://doi.org/10.1080/10962247.2014.956904

Stafoggia, M., Schneider, A., Cyrys, J., Samoli, E., Andersen, Z.J., Bedada, G.B., Bellander, 

T., Cattani, G., Eleftheriadis, K., Faustini, A., Hoffmann, B., Jacquemin, B., 

Katsouyanni, K., Massling, A., Pekkanen, J., Perez, N., Peters, A., Quass, U., Yli-

Tuomi, T., Forastiere, F., Group,  on behalf of the U.S., 2017. Association Between 



22

Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban 

Areas. Epidemiology 28, 172–180. https://doi.org/10.1097/EDE.0000000000000599

Strak, M., Janssen, N., Beelen, R., Schmitz, O., Vaartjes, I., Karssenberg, D., van den Brink, 

C., Bots, M.L., Dijst, M., Brunekreef, B., Hoek, G., 2017. Long-term exposure to 

particulate matter, NO2 and the oxidative potential of particulates and diabetes 

prevalence in a large national health survey. Environ. Int. 108, 228–236. https://

doi.org/10.1016/j.envint.2017.08.017

Urch, B., Brook, J.R., Wasserstein, D., Wasserstein, D., Brook, R.D., Brook, R.D., 

Rajagopalan, S., Corey, P., Silverman, F., 2008. Relative Contributions of PM2.5 

Chemical Constituents to Acute Arterial Vasoconstriction in Humans. Inhal. Toxicol. 

16, 345–352.

Urch, B., Silverman, F., Corey, P., Brook, J.R., Lukic, K.Z., Rajagopalan, S., Brook, R.D., 

2005. Acute Blood Pressure Responses in Healthy Adults During Controlled Air 

Pollution Exposures. Environ. Health Perspect. 113, 1052–1055.

Verma, V., Fang, T., Xu, L., Peltier, R.E., Russell, A.G., Ng, N.L., Weber, R.J., 2015. Organic 

aerosols associated with the generation of reactive oxygen species (ROS) by water-

soluble PM2.5. Environ. Sci. Technol. 49, 4646–4656. https://doi.org/10.1021/

es505577w

Vitali, L., Morabito, A., Adani, M., Assennato, G., Ciancarella, L., Cremona, G., Giua, R., 

Pastore, T., Piersanti, A., Righini, G., Russo, F., Spagnolo, S., Tanzarella, A., Tinarelli, 

G., Zanini, G., 2016. A Lagrangian modelling approach to assess the 

representativeness area of an industrial air quality monitoring station. Atmospheric 

Pollut. Res. 7, 990–1003. https://doi.org/10.1016/j.apr.2016.06.002

Weichenthal, S., 2012. Selected physiological effects of ultrafine particles in acute 



23

cardiovascular morbidity. Environ. Res. 115, 26–36. https://doi.org/10.1016/j.envres.

2012.03.001

Yin, X., Dai, T., Schutgens, N.A.J., Goto, D., Nakajima, T., Shi, G., 2016. Effects of data 

assimilation on the global aerosol key optical properties simulations. Atmospheric 

Res. 178, 175–186. https://doi.org/10.1016/j.atmosres.2016.03.016

Zhang, J.J.Y., Sun, L., Barrett, O., Bertazzon, S., Underwood, F.E., Johnson, M., 2015. 

Development of land-use regression models for metals associated with airborne 

particulate matter in a North American city. Atmos. Environ. 106, 165–177. https://

doi.org/10.1016/j.atmosenv.2015.01.008

Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Allan, J.D., Coe, H., Ulbrich, I., Alfarra, M.R., 

Takami, A., Middlebrook, A.M., Sun, Y.L., Dzepina, K., Dunlea, E., Docherty, K., 

DeCarlo, P.F., Salcedo, D., Onasch, T., Jayne, J.T., Miyoshi, T., Shimono, A., 

Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., 

Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, 

R.J., Rautiainen, J., Sun, J.Y., Zhang, Y.M., Worsnop, D.R., 2007. Ubiquity and 

dominance of oxygenated species in organic aerosols in anthropogenically-influenced 

Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34, L13801. https://doi.org/

10.1029/2007GL029979

Zimmerman, N., Presto, A.A., Kumar, S.P.N., Gu, J., Hauryliuk, A., Robinson, E.S., 

Robinson, A.L., Subramanian, R., 2017. Closing the gap on lower cost air quality 

monitoring: machine learning calibration models to improve low-cost sensor 

performance. Atmos Meas Tech Discuss 2017, 1–36. https://doi.org/10.5194/

amt-2017-260



24

Chapter 2: Application of mobile sampling to investigate spatial variation in fine 

particle composition



25

Chapter 2

Application of mobile sampling to 

investigate spatial variation in fine particle 

composition

Published as Li, H.Z., Dallmann, T.R., Gu, P., Presto, A.A., 2016. Application of mobile 
sampling to investigate spatial variation in fine particle composition. Atmospheric 

Environment 142, 71–82. https://doi.org/10.1016/j.atmosenv.2016.07.042



26

2.1 Introduction

Airborne fine particulate matter (PM2.5; particles smaller than 2.5 µm diameter) 

continues to pose a serious threat to human health in the 21st century, especially to vulnerable 

groups such as the elderly and small children (Brunekreef and Holgate, 2002; Künzli et al., 

2000; World Health Organization, 2006). Air pollution exposure caused deaths of around 7 

million people worldwide in 2012, of which 95% were attributable to PM exposure (Brauer et 

al., 2012). 

Metals make up a small but important part of PM2.5. Transition metals such as copper 

(Cu) and manganese (Mn) contribute to oxidative strengths of ambient PM2.5 (Charrier and 

Anastasio, 2012), and may in turn drive health effects of PM2.5 exposure. The US 

Environmental Protection Agency (EPA) identifies some PM metals as toxic species, 

including antimony (Sb), arsenic (As), beryllium (Be), cadmium (Cd), hexavalent chromium 

(Cr), cobalt (Co), lead (Pb), magnesium (Mg), nickel (Ni), and selenium (Se). PM metals 

identified as air toxics have known health effects associated with exposure. For example, Pb 

is a known neurotoxin. 

This study presents measurements of PM2.5 mass and composition using a mobile 

laboratory in Pittsburgh and surrounding Allegheny County, PA. The primary contributions of 

this work are: (1) to evaluate spatial and seasonal patterns of PM2.5 mass and composition, 

(2) to compare mobile sampling data and stationary monitors, (3) to develop LUR models 

suitable for exposure estimation based on these data. Although LUR has been widely used to 

describe intra-city variations in airborne pollutants, fewer studies have applied it to PM2.5 

trace elements, partially because of the effort required to collect and analyze samples. This 

study suggests a cost-effective mobile sampling approach for collecting and mapping 

concentrations of PM2.5 components.
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2.2 Material and Methods

Sampling was conducted at 36 sites in Pittsburgh and surrounding areas of Allegheny 

County, PA (Fig. A1, Supporting Information). The landscape is characterized by a plateau 

with three major river valleys (Allegheny, Monongahela, and Ohio Rivers). Many major 

roadways follow the river valleys. Industrial facilities are primarily located along rivers, as 

indicated in Fig. A1. Major industrial sources include the largest metallurgical coke oven in 

United States (which accounts for 31.9% emissions of all criteria pollutants in the county), a 

coal-fired power plant, and facilities related to the steel industry.

2.2.1 Mobile sampling lab setup

The mobile laboratory was a gasoline-powered van; Tan et al. (Tan et al., 2014a) 

details instruments installed in the mobile laboratory. The mobile laboratory housed an on-

board generator to power all instruments. Most sampling was conducted with the mobile 

laboratory parked at curbside. An 8 m tube was connected to the vehicle exhaust pipe to 

prevent self-pollution during sampling (Tan et al., 2014a). 

This study focuses primarily on PM2.5 mass and composition as determined from 

filter sampling. The sampling inlet was a ½” O.D. stainless steel tube installed on top of the 

van. Ambient air was sampled through a PM2.5 cyclone. The sample stream was then divided 

into two lines with flow rate controlled by two identical pumps at 46 SLPM. One line had a 

Teflon filter (47 mm, Teflo R2PJ047, Pall-Gelman) followed by a quartz filter (47 mm, 

Tissuquartz 2500 QAOUP), and the other line had a bare quartz filter.

2.2.2 Mobile sampling overview

 We used stratification methods to select representative sites based on three factors: 

traffic density, proximity to industrial point sources, and elevation (Tan et al., 2014a). We 

identified sites as having high or low traffic based on annual average daily traffic volume 
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using traffic count data from the Pennsylvania Department of Transportation (PennDOT, 

2012). Proximity to point sources was used to indicate the combined influence of distance to 

major surrounding facilities and the magnitude of their emissions. Facilities under 

consideration have annual PM2.5 emissions larger than 50 tons (Fig. A1). Point source 

influenced sites were within an average distance of 1500 m to the nearest influential source. 

The elevation strata divided sites as either being in the river valley (elevation < 250 m) or on 

the plateau (upland) according to 2006 Allegheny County, PA contour data (PASDA, 2006; 

Fig. A2 the Supporting Information). Overall, we chose 36 sites to represent diverse urban 

features. Nineteen sites were labeled as high traffic, 11 heavily influenced by point source, 

and 12 in the valley. 

We used the mobile laboratory to collect our dataset in two seasons, one in 2013 

summer (August) and the other in 2013-2014 winter (December and January). We conducted 

sampling at each site three times in each of the two seasons. In each season, we visited every 

site once in separate morning (6 AM to 12 PM), evening (4 PM to 10 PM), and overnight (12 

AM to 5 AM) periods (Tan et al., 2014a). Each time we would park the mobile laboratory at 

curbside and collect data for one hour. Ideally, we could conduct a total of 6 hours sampling 

at each site and collect 108 filter sets per season. For the summer campaign, we collected 103 

out of a possible 108 filter sets. In the winter we collected all possible 108 filter sets. Missing 

filter sets were the result of operation failures (e.g., pump failures).

2.2.3 Data handling

We quantified PM2.5 mass and PM2.5 inorganic compositions with Teflon filters, and 

quartz filters provided concentrations of OC and EC. The quartz filter behind Teflon filter 

(QBT) provided an estimate of positive artifacts on the bare quartz filter (Subramanian et al., 

2004). We used gravimetric mass balance to measure PM2.5 mass. Each Teflon filter was 
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weighed before and after sampling. Filters were allowed to equilibrate at 34.3±1.6 % RH and 

23.6±1.6o C for at least 12 hours prior to weighing.

OC and EC were analyzed via thermal-optical analysis (Sunset Laboratory Inc.). 

Quartz filters were baked at 550o C for at least six hours before sampling. In the OC-EC 

Aerosol Analyzer, samples are thermally desorbed from the filter medium under an inert 

helium atmosphere followed by an oxidizing atmosphere using carefully controlled heating 

ramps. The heating temperature profile followed the IMPROVE_A protocol (Chow et al., 

2007), and we used thermal-optical transmittance to account for pyrolysis. 

We sent Teflon filters to the Crocker Nuclear Lab (University of California, Davis) for 

XRF analysis. XRF utilizes emission of characteristic secondary X-rays from materials, 

which are excited by incoming X-rays or gamma rays. XRF analysis reported the following 

species: Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, 

Cd, Sb, and Pb. 

We collected two types of blank filters. One dynamic blank test was conducted each 

season. During the dynamic blank test, a HEPA filter was placed on the sample inlet of the 

mobile lab, and samples were collected for one hour. We also collected 12 handling blanks in 

summer and 18 in winter, roughly 10% of the total sample size. Handling blanks underwent 

all of the same handling (e.g., filter loading, unloading, and analysis) as the sampled filters, 

with the exception that no air sample was drawn through them. Handling and dynamic blanks 

had similar magnitudes. We corrected all sampling data using handling blanks.

We calculated the method detection limit (MDL) for PM components with unsampled 

filter blanks. MDL was defined as 3 times the standard deviation of reported filter blank 

concentrations. The field detection limit (FDL) was calculated as 3 times the standard 

deviation of handling blank concentrations. The species considered here did not differ much 
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between these two detection limits, and we chose FDL to be the more representative 

detection limit. 

Concentrations below FDL were replaced with half of FDL. Extreme concentrations 

were defined as values less than the first quartile (25th percentile) minus four times the 

interquartile range or greater than the third quartile (75th percentile) plus four times the 

interquartile range (de Hoogh et al., 2013).

2.2.4 LUR model construction and evaluation

We developed land use regression models for PM2.5, Si, S, Cl, K, Ca, Ti, Cr, Fe, Cu, 

and Zn. These elements were chosen from the larger list of particle components identified 

with XRF based on their high abundance. Si, Ti, and Fe are major crustal elements. S is 

primarily present as secondary sulfate and conveys long-range transport information. K is a 

biomass-burning tracer. Most of ambient Cr sources in the urban atmosphere are industrial 

emissions (Seigneur and Constantinou, 1995). Fe, Cu, and Zn indicate traffic or industry 

effects (Pekney et al., 2006; Schauer et al., 2006; Sternbeck et al., 2002).

To better distinguish different kinds of predictors and help explain LUR model 

results, we regrouped variables extracted from ArcGIS into the following groups: traffic, 

industry, elevation, central reference site measurements (at corresponding sampling time), 

and other environmental factors (Table 2.1). Traffic variables include utility and transport 

land use zoning, road length in a certain buffer area, traffic density on the nearest roadway, 

and inverse distance to the nearest road. The industry group includes industrial land use 

zoning, annual pollutant emissions within a buffer, inverse distance weighted emissions, the 

nearest facility emission of specific pollutants, and inverse distance to the nearest facility. 

Elevation is the height above mean sea level of the sampling site. The central reference site 

group includes stationary site measurements at the corresponding mobile sampling time. 
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Meteorological variables such as wind speed and wind direction were used in some studies, 

while Abernethy et al. (Abernethy et al., 2013) suggested that adding these elements would 

not greatly increase model performance. We did not include these meteorological factors in 

our models.  

We used ArcGIS-10.3 (ESRI, Redlands, CA) for geospatial analysis. Table 2.1 

outlines land use variables used in LUR building. Traffic counts on roads were obtained from 

the Pennsylvania Department of Transportation. We classified major roads as having annual 

average daily traffic (AADT) greater than 5000 vehicles per day. For local roads without 

AADT recorded, we assigned them 100 vehicles per day (Tan et al., 2014a). Road length data 

came from Pennsylvania spatial data access (PASDA). Traffic type variables included diesel 

trucks, transit bus fuel consumption, and railways. We included the multiplication of AADT 

and inverse distance to the nearest road variable as a potential descriptor for near-road 

variations in PM component concentrations. Vehicle density was the product of AADT and 

road length in a certain buffer. It represented combined traffic influence similar to the product 

of AADT and inverse distance. We included both inverse distance and inverse square distance 

variables. 

Elevation data came from USGS National Elevation Dataset. Land use type 

information came from the Allegheny County GIS group. Areas were classified as 

commercial, residential, industrial, agricultural, utility/transport, or vacant/forest. Minimum 

buffer size for these zoning variables was 100 m. For the point source group, we introduced 

point density variables with and without emission weighting. 

We used circular buffers for all land use variables. Choices of buffer sizes were based 

on other LUR studies (Eeftens et al., 2012a; Zhang et al., 2015) and our understanding of 

pollutant distributions near sources. Large gradients can exist near roadways due to traffic 
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influences (Karner et al., 2010), thus buffers for traffic variables ranged from 25 m to 1,000 

m. Land use zoning variables used buffers from 100 m to 5,000 m. The industry group had 

buffers ranging from 1,000 m to 30,000 m. The raster map for each predictor used a 5x5 m 

grid.

Central reference sites can be used to correct distributed or mobile samples for 

temporal variability via either addition or multiplication (Clougherty et al., 2013; Eeftens et 

al., 2012b). However, Jedynska et al. (Jedynska et al., 2014) suggested data before and after 

central site correction was highly correlated. Tan et al. (Tan et al., 2014b) used a Monte Carlo 

method to simulate the mobile sampling strategy described in this paper. In each attempt of 

10,000 simulations, a random set of temporally distributed data points was sampled from 

each of the monitoring stations in the EPA air quality system (AQS) for a given pollutant 

(e.g., PM2.5) to estimate average concentration. The simulation was deemed accurate if the 

estimate was within 1/1.2 to 1.2 times the true mean concentration. Tan et al. (Tan et al., 

2014b) found that the central site correction did not significantly decrease uncertainty in 

estimating long-term averages of pollutants. 

An alternative approach for resolving temporal variability is to include central 

reference sites measurements as variables for use in LUR building (Saraswat et al., 2013). We 

used this approach. A reference site was operated at an urban background location on the 

Carnegie Mellon University (CMU) campus to measure PM2.5 and black carbon (BC). PM2.5 

was measured with a TEOM (tapered element oscillating microbalance, Thermo Fisher 

Scientific 1405), and BC was monitored with an aethalometer (Magee Scientific AE31). The 

two reference monitors provide information on regional and local variations. PM2.5 

concentrations are dominated by secondary species and are often regional in nature 

(Subramanian et al., 2007), thus the PM2.5 reference provides information on changes in 
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pollutant concentrations driven by large-scale factors (e.g., weather). BC concentrations are 

strongly influenced by local emissions (e.g., traffic) (Tan et al., 2014a). The BC reference 

measurements therefore provide information on more local variations and emissions.

The methodology for LUR development is the same as the ESCAPE project (Eeftens 

et al., 2012a). It is a supervised regression. Each variable is assumed a prior direction, either a 

positive or negative regression coefficient. For example, we expect road length to correlate 

positively with pollutant concentrations, and pollutants will generally be more abundant in 

the valley than in the upland. A new predictor is added to the model if it yields the highest 

adjusted-R2 improvement and at the same time has the correct correlation direction with 

dependent variables. This adding process continues until no variable can increase adjusted-R2 

by more than 1%. Variables are removed if their p values are larger than 0.1 or variance 

inflation factor (VIF) is larger than 3. We used Cook’s D to investigate potential outlier 

events. Samples with Cook’s D larger than 1 were further examined. 

We addressed LUR model robustness by the mean studentized prediction residual 

(MSPR), root mean square of studentized residuals (RMS) produced by leave-one-out cross 

validation (LOOCV), and LOOCV R2 (Mukerjee et al., 2009). The LOOCV approach tests 

model goodness at predicting test datasets. In LOOCV, one observation is deleted each time. 

New models are developed using remaining observations, and then used to predict the deleted 

one. Moran’s I detects possible spatial autocorrelation of residuals. Statistical analysis was 

done using R (RStudio, Inc., Boston, Massachusetts, USA).

2.3 Results and Discussion

2.3.1 Mobile sampling versus stationary sites

One critical question we needed to address was how our mobile sampling strategy 

compared with stationary monitors both during the study period and in predicting long-term 
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average concentrations. Tan et al. (Tan et al., 2014b) simulated the sampling design used here 

and indicated that mobile sampling strategies can reproduce spatial patterns of pollutant 

concentrations but have an inherent deficiency to reproduce long-term mean concentrations 

due to a relatively small sampling time at each site. Additionally, there is concern that 

exclusively sampling on or adjacent to roadways may bias the dataset to higher 

concentrations, especially for traffic-related species. 

Fig. 2.1 shows boxplot comparisons between mobile sampling data collected as part 

of this study and measurements from stationary monitors during concurrent sampling periods. 

There are eight regulatory PM2.5 monitors in the study domain. Three (Lawrenceville, 

Harrison, and North Park) are urban or suburban population-based monitors. Four (Avalon, 

Clairton, North Braddock, and South Allegheny) are industrially dominated near source 

monitors. One (South Fayette) is the regional transport site. Mobile sampling was conducted 

at 36 sites as described above, and these samples spanned the spatial range covered by the 

stationary sites. Table A1 (Supplemental Information) lists statistical p values (Mann-

Whitney U test) for comparisons of concurrent measurements between mobile and stationary 

measurements. 

Overall, average PM2.5 concentrations (mean = 14.6 µg/m3) measured with mobile 

sampling were higher than the annual mean concentrations (10.2 µg/m3) measured by the 

stationary monitoring sites. The data therefore suggest that the mobile measurements using 

the sampling strategy described here overestimate long-term average PM2.5 mass 

concentrations for the study domain. As noted by Tan et al. (Tan et al., 2014b), this is in part 

due to the short sampling time at each site (6 hours) distributed across two seasons (summer 

and winter). PM2.5 concentrations in Pittsburgh are highest during the summer months, driven 

largely by secondary sulfate (Wittig et al., 2004). Thus constructing an annual average 
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concentration from the mean of summer and winter mobile samples should be expected to 

lead to a slightly higher estimate. 

The differences between mobile PM2.5 samples and concurrent measurements at the 

stationary sites are not statistically significant (p>0.05; Fig. 2.1 and Table A1). Thus, while 

the sampling strategy used here overestimates annual average PM2.5 mass, there is not a 

systematic error between mobile and stationary measurements. 

Fig. 2.1 also shows comparisons between mobile and stationary measurements for 

four particle components: sulfate, OC, EC, and Zn. Sulfate loading in the mobile samples is 

inferred from S measured by XRF and assuming that all S exists as sulfate. OC 

concentrations are determined from bare quartz minus QBT filters. There are only two PM 

speciation sites in the study domain: Lawrenceville (urban background) and South Allegheny 

(industrially dominated). South Allegheny exhibits consistently higher concentrations of 

sulfate, OC, EC, and Zn than Lawrenceville due to nearby emissions associated with 

steelmaking, metallurgical coke production, and diesel trucks.

Mobile measurements of sulfate, OC, and Zn are not statistically different than 

measurements of these particle components at either Lawrenceville or South Allegheny. 

Agreement between mobile and stationary PM2.5, OC, sulfate, and Zn mass 

concentrations is not surprising. PM2.5, OC, and sulfate are dominated by secondary 

production, rather than primary emissions, in the ambient environment (Tang et al., 2004). 

Thus these pollutants are more regional. Zn is expected to be strongly influenced by local 

emissions, though some of the major sources, such as tire wear, are ubiquitous. 

Mobile measurements of EC were not statistically different from EC measured at 

South Allegheny (p>0.05), but were statistically higher than Lawrenceville (p=0.02). EC 

concentrations at Lawrenceville are expected to be dominated by traffic emissions, whereas 
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the South Allegheny site is strongly influenced by local industrial emissions and associated 

diesel traffic (Cabada et al., 2002). Mobile sampling EC reflects contributions from both 

traffic and industrial emissions. Mobile measurements of EC may be larger relative to 

Lawrenceville because of higher traffic contributions on roads.

2.3.2 Abundance of selected particle components

Metals and crustal species have low concentrations compared with OC or sulfate in 

PM2.5 (Fig. 2.2). The most abundant trace element was Fe, with concentrations less than 0.1 

µg/m3 on average. Other crustal elements associated with suspended dust such as Si, K, and 

Ca were less abundant than Fe, but more abundant than non-crustal trace metals such as Cu, 

Cr, and Zn. 

Fig. 2.2 compares concentrations of trace species in summer and winter. In terms of 

seasonal difference, Si, Ca, Ti, and Cr had statistically higher concentrations in summer using 

the Mann-Whitney U test, but Cl, K, Fe, Cu, and Zn were not statistically different between 

seasons. This suggests different source categories or source strengths for Si, Ca, Ti, and Cr in 

different seasons.

Fig. 2.3 shows correlations between particle components in summer and winter. The 

crustal elements Si, Ca, and Ti were correlated in both seasons. The highest Pearson’s r was 

between Si and Ca in both seasons. This suggests that the higher concentrations of Si, Ca, and 

Ti observed in the summer are the result of a larger source strength (e.g., suspended dust) 

rather than a different set of sources in two seasons.

Cr concentrations were also significantly higher in summer than in winter. However, 

Cr is poorly correlated with all other species shown in Fig. 2.3 (r < 0.4). The primary sources 

of Cr in the study domain are specialty steelmaking and metal working (Pekney et al., 2006), 

so higher Cr concentrations in the summer may indicate increased emissions from or activity 
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at these facilities in summer months.

K is another crustal element. It is also a tracer for biomass burning. K has a modest 

correlation with other crustal species in the summer (r ~ 0.5 for Si and Ca), but this 

correlation is weakened in the winter (r < 0.3). The weaker correlation between K and other 

crustal elements is likely due to biomass burning for heat or recreation during winter 

(Robinson et al., 2006). K concentrations were not higher in winter than summer (though the 

IQR is larger), suggesting that biomass burning is not a major contributor to PM2.5 mass in 

Pittsburgh in the winter (Cabada et al., 2002). The apparent lack of seasonal variation in K 

concentrations could also indicate competing effects – less dust in winter (as shown by Si and 

Ca) but extra K from biomass burning. 

Iron is a crustal element, and is therefore correlated with other crustal elements such 

as Si and Ca. Fe concentrations are higher in summer (though not statistically significant), 

and this may be due to higher dust concentrations as with Si and Ca. In Pittsburgh, there are 

also important industrial sources of Fe. Three steelmaking plants along the Monongahela 

River were identified as important iron sources (Pekney et al., 2006). 

Non-tailpipe traffic emissions (e.g., brake wear) and steel production are the expected 

major sources for Zn. Fe had the highest Pearson’s r with Zn in both seasons (~0.5), 

suggesting similar sources (e.g., steel production) and/or source regions (e.g., roadways) for 

these species. 

 Cl had relatively high Pearson’s r with Si and Ca in both seasons, with higher 

correlations in winter. One possible explanation could be road salt, a source for Cl in winter. 

Road salt mixed with road dust would be airborne together in winter. 

 Brake wear is a major source for Cu (Sternbeck et al., 2002), and there are no major 

Cu point sources in the study area. Cu has a weak correlation with Zn, which is also emitted 
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from traffic, but is otherwise poorly correlated with other species.

Fig. 2.3 also includes S, which is assumed to exist exclusively as sulfate in the 

ambient atmosphere. Sulfate is dominated by secondary production, and strong correlation 

with other species listed in Fig. 2.3, which are dominated by primary emissions, was not 

observed.

2.3.3 Traffic indicators

Some metals are known to have traffic sources, such as Cu, Ba, Sb, and Zn. The first 

three are mainly derived from brake wear emissions instead of fuel combustion, and tire wear 

and tailpipe emissions are important sources for Zn. These metals have therefore been used as 

traffic indicator species in previous studies(Councell et al., 2004; Lough et al., 2005; 

Sternbeck et al., 2002). However, the data presented here suggest that metals such as these 

are weak traffic indicators in the ambient environment.

Fig. 2.4 shows a boxplot comparison of three traffic related PM components at high 

and low traffic sampling sites as a function of season: Zn, EC, and particle-bound polycyclic 

aromatic hydrocarbons (PAH). PAHs are a strong indicator for vehicle emissions (Tan et al., 

2014a). The boxplot and Mann-Whitney U test indicate that PAH concentrations are 

statistically elevated at high traffic sites in both summer and winter.

Average EC concentrations were higher at high traffic sites, but the difference 

between high and low traffic sites was not statistically significant. Tan et al. (Tan et al., 

2014a) showed that black carbon (BC) has contributions from both traffic and industrial 

sources in the study region. Thus there is an elevated BC/EC background and near-road 

gradients are weaker than for PAHs.

Zn concentrations at high and low traffic sites were nearly identical, and did not 

exhibit a statistically significant difference. Zn did not have relatively high concentrations at 
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high traffic sites. Thus, our data indicate that Zn is a poor indicator for traffic emissions. Zn is 

not purely an indicator for traffic emissions, as Zn is also emitted from steelmaking industries 

in the study domain.      

Seasonal variations for the three traffic indicators investigated in Fig. 2.4 were also 

different. EC and PAH exhibited higher concentrations in summer than winter, suggesting 

higher traffic emissions of these species in the summer. Higher concentrations were observed 

at both high and low traffic sites in the summer. On the other hand, Zn showed consistent 

ambient concentrations across the whole year. Both high and low traffic sites had similar 

concentrations in summer and winter. Thus, Zn had both a different spatial and seasonal 

pattern than two known traffic markers (EC and PAH), and itself seems to be a poor traffic 

indicator.

2.3.4 LUR models

Model results. We developed LUR models for PM2.5, Si, S, Cl, K, Ca, Ti, Cr, Fe, Cu, 

and Zn. Fig. 2.5 and Table 2.2 summarize the performance of the LUR models presented 

here. Models with R2 larger than 0.5 are considered adequate, and models with R2 of 0.7 or 

above are considered good (de Hoogh et al., 2013).   

With the exception of Cu, Ti, Cl, and PM2.5, all models had an R2 of at least 0.5. To 

better visualize relationship between measured and LUR predicted concentration, Figs. 2.6 

and 2.7 show scatter plots of measured versus predicted concentrations for each modeled 

species. We had good R2 (> 0.7) for S, K, Fe, and Zn models. Si, Ca, and Cr models had 

acceptable R2 (0.5 < R2 < 0.7) results. The Cu model performed the worst (R2 = 0.22). The 

PM2.5 model has a fair R2 of 0.46.

We examined model performance using MSPR and RMS in Table 2.2. The ideal result 

is 0 for MSPR, and 1 for RMS. MSPR for all models was close to 0 (-0.01 – 0.04). The 
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highest RMS was in the Ca model, which was 1.08. 

We also calculated the LOOCV R2 for each model. A R2 difference of 0.20 or smaller 

between the original and LOOCV model implies stable performance (Eeftens et al., 2012a). 

Every model was stable except Cr and Ti, which had 0.24 and 0.23 R2 reductions, 

respectively. Based on Moran’s I, we only saw spatial autocorrelation of residuals in S and Cr 

models (p<0.05).

Fig. 2.5 shows the model R2 and relative R2 contribution of different predictor groups. 

Overall, traffic related variables are the biggest contributor to model spatial variability with 

an average R2 of 0.20 (SD=0.20). The industry group comes second in importance (R2 ~ 

0.15). 

LUR model discussion. Overall, LUR generated good results for modeled species. 

Traffic related variables explained the biggest portion of spatial heterogeneity for most 

metals. This result was consistent with ESCAPE (de Hoogh et al., 2013), and conformed to 

expectations for traffic related pollutants. The industry group was the second largest 

contributor to overall R2. ESCAPE studies did not have such high industry significance. This 

could be explained by the fact that ESCAPE studies did not incorporate detailed facility 

emissions in model development, or industrial emissions being more important in our study 

domain. A similar magnitude of industry influence was observed in LUR studies in Calgary, 

Alberta, Canada (Zhang et al., 2015), another area with significant industrial emissions. 

PM2.5 in eastern US cities is affected by long-range transport from the Ohio Valley 

plus urban excess (Tang et al., 2004). The PM model illustrated the combined effects of 

regional transport, traffic, and industry on Pittsburgh air quality. The central reference site 

had the largest R2 contribution to the PM2.5 LUR. The model also included one industrial 
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variable and one traffic variable.

In addition to the model validation described above, we compared predictions from 

the PM2.5 model to an independent data set. Fig. 2.7 shows the LUR predictions of PM2.5 at 

the stationary EPA monitors in the model domain. The data in Fig. 2.7 show a consistent over 

prediction of the LUR model, reflecting the higher PM measured in mobile samples. In 

general, the over prediction is ~1.5 µg m-3 in suburban and urban background locations, and 

higher in areas near industrial sources. One exception is the industrially dominated Liberty 

site, where the LUR model under predicts by approximately 1.5 µg m-3. 

The LUR model preserves the spatial pattern observed in the EPA monitors. The 

Spearman rank correlation coefficient (r) is 0.60 for predictions at the eight EPA sites, and 

increases to 0.93 if the Liberty site is excluded. Thus, the PM2.5 LUR captures the pattern of 

spatial variations, but over predicts the absolute PM2.5 concentrations and the magnitude of 

spatial gradients. This over prediction results in part from the short sample time at each site 

and the subsequent difficulty in determining an accurate annual average concentration from 

data collected in two seasons, as well as from the mobile PM2.5 measurements used to build 

the LUR model being slightly higher than measurements at the stationary sites (Fig. 2.1).

The Zn model had an R2 of 0.7. Both traffic and industry group variables had a small 

R2 contribution (0.03). Most industrial facilities are located along rivers at low elevation, and 

0.18 R2 from the elevation factor may be a sign of industry influence. The other variables 

group was the largest contributor of R2, which suggested complexity of Zn sources. There 

was 0.17 R2 from central reference site BC. Steel mills emit Zn, and steel production is also a 

major source for BC in Pittsburgh (Cabada et al., 2002; Pekney et al., 2006). The link of Zn 

with reference site BC in the LUR model may indicate a common origin of steel mills.
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K models performed worse than other species in ESCAPE studies  (de Hoogh et al., 

2013), and researchers explained that the addition of a biomass burning predictor would 

potentially improve model performance. In our work, K was closely correlated with central 

reference site BC, suggesting an influence from local sources. The central reference site 

group explained 0.43 R2. Source apportionment with positive matrix factorization (PMF) in 

Pittsburgh identified two important BC and K source factors as biomass burning and traffic 

(Pekney et al., 2006). The biomass burning PMF factor was prevalent in October and 

November while we collected summer filters in August and winter filters in December and 

January. The traffic factor was rich in K and BC, and did not show a seasonal trend (Pekney 

et al., 2006). As noted above, the Mann-Whitney U test did not find significant difference 

between summer and winter K in our data, suggesting a weak influence of biomass burning 

on K. 

Considering the relatively small intra-urban variability of the secondary PM 

component sulfate, our S model performed well (R2 = 0.7). Central reference site PM was the 

most important predictor, reflecting the regional nature of secondary sulfate in Pittsburgh 

(Wittig et al., 2004). 

Cr sources in the urban environment are mostly due to industrial emissions (Seigneur 

and Constantinou, 1995). In our Cr model, industry factors accounted for 0.15 R2, around one 

fourth of the total R2. Traffic explained more spatial variability. However, the utility transport 

land use variable in the traffic group referred to railways, and industrial facilities in the valley 

are major users of the railroad network to transport raw materials or products. Thus, the 

traffic variables in the Cr model may also suggest facility emissions.
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Table 2.1. General description of predictors used in LUR models.
Major Category ArcGIS Category Units

Circular Buffer 
Radius (m) Description

Variable 
Abbreviations

Length of all roads RDALL

Length of major roads RDMAJ
Inverse distance to 

nearest road
DISTINVALL

Inverse square distance to 
nearest road

DISTINVALL2

Inverse distance to 
nearest major road

DISTINVMAJ

Inverse square distance to 
nearest major road

DISTINVMAJ2

AADT on nearest road ALLAADT
AADT on nearest major 

road
MAJAADT

Diesel truck AADT on 
nearest road

ALLDIESAADT

Diesel truck AADT on 
nearest major road

MAJDIESALLAADT

Vehicle density on all 
roads

VEHDENSALL

Vehicle density on major 
roads

VEHDENSMAJ

Diesel truck density on 
all roads

TRKDENSALL

Diesel truck density on 
major roads

TRKDENSMAJ

Bus fuel consumption kg fuel/day 25, 50, 100, 300, 500, 
1000

Bus fuel consumption BUSFC

Rail length m 25, 50, 100, 300, 500, 
1000

Rail length RAIL

Traffic land use 
zoning m2 100, 300, 500, 1000, 

5000
Utility/transport land use 

area LUUtTr

km-2 Number of facilities per 
unit area

PointDe_NEI 

lb km-2 Annual pollutant 
emissions per unit area

PointDe_NEI_Popu

Euclidean inverse 
distance to nearest 

facility
EucDistinv

Euclidean inverse square 
distance to nearest 

facility
EucDistinv2

Pollution emission lb NA
Pollution emission at 
nearest corresponding 

facility
EucAllo

IDW

IDW2

Industry land use 
zoning m2 100, 300, 500, 1000, 

5000
Industrial land use area LUINDUS

Corresponding PM 
measurements at the 

central site
CSMPM

Corresponding BC 
measurements at the 

central site
CSMBC

Elevation Elevation m NA Elevation Elevation

Residential land use area LURES

Commercial land use area LUCOMM

Agricultural land use area LUAGRI

Vacant/Forest land use 
area

LUVaFo

Population 100, 300, 500, 1000, 
5000

Number of inhabitants POP

Housing
100, 300, 500, 1000, 

5000
Number of households HOUS

Traffic

Road length m
25, 50, 100, 300, 500, 

1000

Inverse distance to the 
nearest road m-1 NA

Annual average daily 
traffic (AADT) on 

nearest road
veh/day NA

Vehicle density veh m/day
25, 50, 100, 300, 500, 

1000

Inverse distance weighted 
annual emissions

Central reference site Central reference site µg/m3 NA

Industry

Point density of 
industry sources (NEI)

1000, 1500, 3000, 
5000, 7500, 10000, 

15000, 20000, 30000

Inverse distance to 
nearest industrial 

source
m-1 NA

Inverse distance 
weighted annual 

emissions

Others

Land use zoning 
variables m2 100, 300, 500, 1000, 

5000

lb NA
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2.4 Limitations

As noted above and by Tan et al. (Tan et al., 2014b), mobile sampling strategies that 

collect relatively small amounts of data at each sampling site, including the sampling strategy 

used here, may not represent long-term average concentrations of all PM species at each site. 

Our data reflect this. While Fig. 2.1 shows that mobile measurements of PM2.5 mass and 

PM2.5 components are not consistently over or underestimating concurrent stationary 

measurements, there may be inaccuracy when constructing an annual average concentration 

from mobile data collected in two seasons (Fig. 2.7). The error in calculated annual average 

concentrations is likely larger for species that have strong seasonal variations (e.g., PM2.5) 

than for species with relatively constant concentrations throughout the year (e.g., Zn). 

Nonetheless, the mobile measurements capture the spatial concentration pattern, and the 

mobile data are sufficient for constructing LUR models. 

The number of sites for LUR development was 36. Cross validation might 

overestimate R2 for small training size; however, Zhang et al. (Zhang et al., 2015) concluded 

that a total of 25 sites could give acceptable cross validation performance for element models. 

Our various model validation processes also yielded reasonable results.

2.5 Discussion and Implication

We conducted a mobile sampling campaign in two seasons to characterize spatial 

variation of fine particle composition in Pittsburgh. We developed LUR models for PM2.5 and 

ten trace species. Most elements displayed significant intra-urban variation with influence 

from traffic emissions and industrial production. 

This manuscript presents the first successful LUR study for particle composition in 

North America using a cost effective mobile sampling approach. Mobile sampling is 

convenient to implement to study spatial variability with high resolution. Despite the inherent 
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deficiency of mobile sampling to estimate long-term average concentrations, we found that 

our dataset was not statistically significant compared with stationary reference monitors and 

we were able to derive acceptable LUR models. This study provides support for future LUR 

attempts with mobile sampling.
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3.1 Introduction

Organic carbon (OC) is a major component of PM with a broad range of 

concentrations from 0.1 to 100 µg/m3 worldwide (Jimenez et al., 2009). National speciation 

networks, including the Chemical Speciation Network (CSN) and the Interagency Monitoring 

of Protected Visual Environments (IMPROVE), generally use thermal-optical OC/EC 

analysis for OC measurements. This method thermally desorbs OC captured by quartz filters 

at specified temperature ranges in a helium environment (Chow et al., 2007). While not 

chemically specific, the lumped OC fractions evolved at different temperatures – OC1, OC2, 

OC3, OC4, and pyrolyzed carbon (PC) – are associated with different volatility and may 

therefore indicate different composition, OC sources, or extents of photochemical processing. 

Ma et al. (2016) found that OC fractions (OCX) are related to volatility, with the most 

volatile material (OC1) existing almost exclusively in the vapor phase. PC has the lowest 

volatility and exists almost entirely in the particle phase (Ma et al., 2016; Zhu et al., 2014). 

OC2, OC3, and OC4 are more volatile than PC and partition between the particle and vapor 

phase.

Previous work performed source apportionment of OCX in order to link these OC 

fractions with specific sources (Kim and Hopke, 2004a, 2004b; Lee et al., 2003). Kim et al. 

(2004a) used positive matrix factorization (PMF) to resolve sources for data from a rural 

IMPROVE site. They found that PC was mostly from a secondary PM factor, and attributed 

the PC to water-soluble secondary organic carbon produced by oxidation of volatile 

precursors in the atmosphere. The gasoline factor and diesel factor identified by Kim et al. 

had high loadings of lower temperature carbon fractions OC2 and OC3. In a separate study, 

Kim et al. (2004b) performed PMF analysis for an urban IMPROVE site. The derived diesel 

factor was rich in OC2. Lee et al. (2003) attributed the high OC4 loading in their secondary 
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coal PMF factor to reflect a chemical aging process because the carbon associated with the 

secondary coal source would have travelled much farther than local traffic emitted OC.

Many LURs have been built for PM2.5 mass concentrations (Chen et al., 2017; 

Eeftens et al., 2012; Hankey and Marshall, 2015; Li et al., 2016; Shi et al., 2016), and for PM 

components such as black carbon and specific PM metals (Brokamp et al., 2017; de Hoogh et 

al., 2013; Hankey and Marshall, 2015; Li et al., 2016). Few LURs have been built for organic 

PM constituents. Jedynska et al. (2014) built LURs for OC, polycyclic aromatic 

hydrocarbons (PAHs), and organic molecular markers such as steranes and hopanes in ten 

European cities. Hopanes, steranes, and PAHs can all be used as markers for motor vehicle 

emissions (Robinson et al., 2006; Tan et al., 2014a), and therefore these LURs could be used 

to estimate exposures to source-specific PM emissions. We are not aware of other LURs for 

OC, nor of any LURs built for lumped OC fractions from OC/EC analysis.

In this paper, we present measurements of OC and its thermally-resolved fractions 

using mobile sampling in Pittsburgh and surrounding Allegheny County, PA. The primary 

objectives of this work are: (1) to evaluate intracity spatial variation of OC and its 

composition, (2) to characterize potential sources of OC fractions, and (3) to derive LUR 

models of OC and OC fractions for high spatial resolution exposure estimation. We also 

identify certain OC fractions as indicators of exposure to fresh emissions versus more aged 

aerosol.

3.2 Material and Methods

We chose 36 sites for mobile sampling, which were distributed in Pittsburgh and 

surrounding cities in Allegheny County, PA. The sampling campaign is described in detail in 

Li et al (2016), and the sampling locations are shown in Figure B1 of the Supporting 

Information. The landscape is characterized by a plateau with three major river valleys 
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(Allegheny, Monongahela, and Ohio Rivers). A variety of industrial facilities are located 

along the rivers, such as coke plants, steel manufacturing, and coal-fired electricity stations 

(Fig. B1, Supporting Information).

3.2.1 Mobile platform setup

We used a gasoline powered van, equipped with diverse instruments (Li et al., 2016). 

Ambient air was pulled by mechanical pumps from a ½’’ O.D. stainless steel inlet on top of 

the van approximately 3 m above ground level. 

Ambient air was sampled through a PM2.5 cyclone for size selection. Then it was 

divided into two streams with flow rate controlled at 46 SLPM. We used Teflon filters (47 

mm, Teflo R2PJ047, Pall-Gelman) and quartz filters (47 mm, Tissuquartz 2500 QAOUP). 

One sample line had a Teflon filter in front and a quartz filter behind (QBT – quartz behind 

Teflon), and the other line had one bare quartz filter (BQ).

Samples were collected with the mobile laboratory parked at curbside. An 8 m hose 

was connected to the vehicle tailpipe and placed in the downwind direction to avoid self-

contamination. Filter sets were also collected from a highway tunnel in Pittsburgh, PA. The 

sampling configuration in the tunnel is the same as the setup in the mobile van (Li et al., 

2016).

3.2.2 Sampling overview

The sampling strategy is described in detail in Li et al (2016) and Tan et al (2014a). 

Briefly, we selected 36 sites based on three stratification variables – traffic intensity, 

proximity to major industrial sources, and elevation (Li et al., 2016). The traffic group criteria 

is annual average daily traffic (AADT) volume obtained from the Pennsylvania Department 

of Transportation (PASDA, 2017a). Locations with AADT > 2800 vehicles/day are classified 

as high traffic (Li et al., 2016). Proximity to industrial sources takes into account both the 
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distance to the nearest major industrial facility and their emissions. Facilities under 

consideration have annual PM2.5 emissions larger than 50 tons (Fig. B1). The average 

distance to the nearest facility for source-impacted sites is about 1500 m. The elevation 

threshold of 250 m divides sites as either valley (< 250 m) or highland (> 250 m) according 

to 2006 Allegheny County, PA contour data (PASDA, 2017). After classification, 19 sites are 

high traffic density sites, 11 near point sources, and 12 in the valley. Table B2 in the 

Supporting Information lists the sampling sites and the strata for each site.

We visited sites in two seasons – 2013 summer and winter. For each season, we 

visited every site at three different time sessions on random days – morning (6 a.m. to 12 

p.m.), evening (4 p.m. to 10 p.m.), and night (12 a.m. to 5 a.m.) (Li et al., 2016). For every 

sampling session, we parked the van at curbside and sampled for 1 hour. Ideally, we would 

collect 216 quartz filters for each season. We collected 206 out of 216 samples in summer 

because of pump failures or other errors and all 216 samples in the winter campaign.

We collected 18 tunnel filters in 2013 winter. Sampling is described in detail in Li et 

al (2016). The sampling time for 14 of the filter sets was 45 minutes and the remainder were 

sampled for 90 minutes. Filters were collected either during midday (12 p.m. – 2 p.m.) or in 

the afternoon rush hour (3 p.m. – 6 p.m.).

3.2.3 OC quantification

We use the quartz behind Teflon (QBT) method to correct for sampling artifacts on 

bare quartz (BQ) filters and to determine particulate OC concentrations (Ma et al., 2016; 

Presto et al., 2011; Turpin et al., 2000, 1994). Two sampling artifacts are involved in this 

setup – positive and negative artifacts. Positive artifact is when vapors are captured by the 

bare quartz filter. Negative artifact is when particles are first captured by the filter but then re-

evaporate. The BQ filter collects both particle and gas phase OC. The Teflon filter removes 
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the particle phase OC, and the quartz behind Teflon (QBT) filter collects the remaining gas 

phase OC. The difference between bare quartz OC loading and QBT (BQ-QBT) gives an 

estimate of the artifact-corrected particle phase OC. In the ambient, there is typically a larger 

positive artifact than negative artifact, and BQ-QBT approach provides a reasonable artifact-

corrected particle phase OC concentration for our sampling setup (Subramanian et al., 2004). 

Before each sampling session, quartz filters are prebaked in the oven at 5500 C for at least six 

hours to remove residual OC.

We used a Sunset OC/EC analyzer (Sunset Labs, Inc.) to measure OC concentrations 

using filter transmittance with the IMPROVE_A protocol (Chow et al., 2007). OC desorbs 

from quartz filters at four different temperature stages in an inert helium environment and are 

classified as OC1 (< 1400 C), OC2 (1400 C – 2800 C), OC3 (2800 C – 4800 C), and OC4 

(4800 C – 5800). Some OC chars and forms pyrolyzed carbon (PC). PC and elemental carbon 

(EC) are measured after the carrier gas changes to He/O2 (O2: 10%). We used sucrose 

standards to calibrate the instrument prior to use every time.

We collected approximately 30 field blanks each season. Field blanks went through 

the same handling procedure as normal samples – filter loading, unloading, and analysis – but 

no sample was collected. Total carbon loading on all field blanks was lower than 1 µg/cm2, 

which is EPA’s standard for clean blank quartz filters (Chow et al., 2010). OC on most blanks 

was lower than the instrument detection limit of 0.2 µg/cm2. No blank correction was made 

because of low signals on field blanks.

The collection area on the quartz filters was 11.34 cm2. We transformed instrument-

reporting values in µg/cm2 to ambient concentration in µg/m3 by first multiplying by the 

collection area, and then dividing by the sampling volume. Under typical sampling conditions 
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(46 SLPM for one hour), the instrument detection limit of 0.2 µg/cm2 would be converted to 

0.8 µg/m3, and measurement resolution would be half the detection limit (0.4 µg/m3) (Lubin 

et al., 2004).

In addition to our dataset collected in Pittsburgh, we extracted OC data from the 

national CSN speciation network (Solomon et al., 2014). CSN data for OCX and total OC on 

bare quartz filters were retrieved for 2013.

3.2.4 LUR development

We developed land use regression (LUR) models for OC fractions on bare quartz 

filters (OC2, OC3, OC4, PC and total OC). These OC fractions include both particle and gas 

phase OC. However, quartz filters do not capture all OC vapors with unit efficiency; thus we 

exclude OC1, which exists almost entirely as vapors in the atmosphere and is poorly captured 

by quartz filters, from LUR model building (Subramanian et al., 2004; Zhao et al., 2016, 

2015). OCX mentioned afterwards in this paper means OC loading on the bare quartz filter. 

We also derived LUR models for total particle phase OC (BQ-QBT).

LUR is an application of multilinear regression. It associates dependent variables 

(pollutant concentrations) with multiple independent ones (land use information) using a 

linear model. Formally, the model format, given p final predictors and n observations at 

different locations, is

Following our previous work, the LUR predictor categories are traffic, restaurants, 

industry, elevation, and other environmental variables (Li et al., 2016). Detailed predictor 

information is in Table B1 (Supporting Information). In the traffic group, we include 

variables such as total road length, inverse distance to the nearest road, annual average daily 
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traffic on the nearest road (AADT), bus fuel consumption, and traffic land use zoning area. 

The restaurant and industry groups both include point density and inverse distance to 

the nearest source variables. The industry group also contains inverse distance weighted 

annual emissions and industrial land use zoning. Other land use variables include commercial 

and residential land use area, population density, and housing density. Elevation is the 

altitude of the sampling location above mean sea level. 

Since we did not visit all 36 sites at same time on the same day, we need to account 

for temporal variations that are convolved with our spatially distributed measurements. One 

approach is to adjust the measured OC by either an additive or multiplicative factor based on 

measurements at a central reference site (Eeftens et al., 2012; Wang et al., 2013). An 

alternative approach is to include the central reference site measurements among the LUR 

predictor variables (Saraswat et al., 2013). We used the latter approach.

As in our previous LUR study (Li et al., 2016), we use hourly-resolved PM2.5 

measurements at an urban EPA monitoring site (Lawrenceville, Figure B1) during concurrent 

mobile sampling periods as an explanatory variable in our LUR models. Since PM2.5 mass 

concentrations are dominated by secondary species and often regional in nature, variations in 

PM2.5 captured at the central reference site reflect influences of large-scale factors (e.g., 

weather) that impact the entire sampling domain. The Lawrenceville site was selected as the 

reference because it represents typical urban background concentrations. 

We obtained the road network shapefile from Pennsylvania spatial data access and 

traffic counts data from Pennsylvania Department of Transportation (PASDA, 2017b, 2017a). 

We classified roads with annual average daily traffic (AADT) greater than 5,000 vehicles per 

day as major roads. We also define vehicle density (Table B1) as the product of AADT and 

road length. 
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Locations of restaurants were retrieved from the Allegheny County Health 

Department. From an air pollution perspective, our primary interest was meat cooking 

(Schauer et al., 1999). We therefore excluded restaurants without an obvious cooking source, 

such as ice cream and coffee shops.

Industry emission and location information came from the National Emission 

Inventory (2011 NEI) (US EPA, 2015). Elevation data were from the USGS National 

Elevation Dataset (National Map, 2017). Land use type included utility/transport, industrial, 

commercial, residential, agricultural, or vacant/forest defined by Allegheny County GIS 

group (Tan et al., 2016). 

Road and traffic intensity variables were extracted in circular buffers of 25, 50, 100, 

300, 500, and 1,000 m around each sampling site. The traffic group had the smallest buffer 

size, starting from 25 m, as traffic related pollutants decrease to background concentrations 

within 100-500 meters of the road edge (Karner et al., 2010). The small buffer size indicated 

the importance of local source emissions. Buffers for land use zoning variables and the 

restaurant group began with 100 m. The industry group had buffers starting from 1,000 m due 

to transport of pollutants after emission from high stacks.

For LUR model building, we adopted the forward selection approach used by the 

European Study of Cohorts for Air Pollution Effects (ESCAPE) (Eeftens et al., 2012). 

Potential variables were assigned a prior regression coefficient sign as either positive or 

negative before they were examined in the variable selection process. The assignment was 

intuitive, e.g., traffic emissions tended to have a positive influence on pollutant 

concentrations. Thus, traffic related variables would have a positive regression coefficient (βi) 

in the model.

In the forward selection process, potential variables were added to the model 
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iteratively. First, univariate regression models were developed for the measured pollutants 

using individual predictor variables, and the predictor with the highest R2 was chosen for the 

initial model. The remaining variables were added to the model separately to create an 

intermediate model, and adjusted-R2 was calculated. If the added predictor yielded an 

increase in adjusted-R2 greater than 1% and had the same regression coefficient sign as prior 

assigned, the intermediate model was considered valid and was used as the base model for 

next round of iteration. This process continued until no more variables could meet the 

inclusion criteria. 

We examined the final model for predictor significance, collinearity of predictors, and 

influential observations (potential outliers). Variables were removed if their p values based on 

an F-test were larger than 0.1 or had a variation inflation factor (VIF) larger than 3. We used 

Cook’s D to signify influential observations. Observations with Cook’s D bigger than 1 were 

further examined by developing and comparing models with this observation or without.

Other model diagnostics included leave-one-out cross validation (LOOCV) R2, mean 

studentized prediction residual (MSPR), root mean square of studentized residuals (RMS) 

produced by LOOCV, and Moran’s I (Mukerjee et al., 2009). LOOCV examined model 

goodness at predicting test datasets. Each observation was deleted iteratively, and new 

models were developed using the remaining data. The new model then predicted the deleted 

observation. Moran’s I detected spatial autocorrelation of residuals. LUR, as a linear model, 

relied on the assumptions that observations were independent of each other. If spatial 

autocorrelation existed in the final model (p value less than 0.05), then this important 

assumption was violated.

3.3 Results and Discussion
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3.3.1 OC spatial variation

Figure 3.1 shows the spatial variation of OC and EC between our 36 sampling sites. 

Sampling locations are sorted by inverse distance from the city center, and sites near point 

sources are indicated with an asterisk. The detailed sampling site description is listed in Table 

B2 (Supporting Information). 

Particle phase OC in Pittsburgh (Ma et al., 2016; Robinson et al., 2007; Subramanian 

et al., 2007) increases from 0.8 µg/m3 at urban background and upwind locations to ~4 µg/m3 

at downtown areas or industrial sites. While BQ-QBT OC (purple symbols in Fig. 3.1) 

generally increases from rural to urban locations, the increase is not monotonic. This suggests 

that the spatial variability of particulate OC is multi-factorial and does not simply increase 

along the rural-urban gradient. The highest OC concentrations are typically observed at sites 

near point sources (mean = 2.25 µg/m3).

Overall, OC approximately triples from upwind to near source locations. This spatial 

variation has important human exposure implications, as OC occupies a large fraction of 

ambient fine PM. EC is primary in nature and its fraction spans from 4% to 18% of total 

carbon. The sites with the highest EC fraction are heavily influenced by local industrial 

emissions and heavy-duty vehicle emissions (Tan et al., 2014a).

3.3.2 Different fresh emission influence on OCX

Figure 3.2 shows that the abundance of OCX varies with total OC loading on the bare 

quartz filter for both ambient and tunnel samples. BQ OC2 has the largest range of 

concentrations from 0 to 8 µg/m3, OC3 from 0 to 6 µg/m3, and OC4 and PC tend to be < 2 

µg/m3. Data organize into rows because of the instrument resolution, especially for OC4 and 

PC. Ambient OC2 and OC3 seem to increase linearly with total OC loading on the bare 

quartz filter, and concentrations of both are clearly elevated in the tunnel. OC4 also increases 
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with BQ OC, but seems to level off in the ambient samples for BQ OC > ~5-10 µg/m3 

(though OC4 is slightly elevated in the tunnel relative to ambient). PC levels off in the 

ambient filters for BQ OC > ~5 µg/m3 and is not elevated in the tunnel relative to ambient. 

The comparison of ambient to tunnel data in Figure 3.2 suggests that as volatility decreases 

from OC2 to PC, the contribution of fresh emissions also decreases. The ambient and tunnel 

data also suggest that primary traffic emissions are not a major source of PC in Pittsburgh. 

Figure 3.2 also compares the ambient and tunnel measurements to published OCX/

OC ratios derived from source emissions tests for gasoline and diesel vehicles, cooking, and 

biomass burning (May et al., 2013a, 2013b). For OC2, all four source relationships describe 

the ambient and tunnel observations with high R2 values. This suggests that OC2 is a marker 

for fresh emissions, but is not source specific. 

The observed ambient and tunnel OC3/OC ratios are most similar to diesel emissions 

(R2 = 0.7), and gasoline emissions seem to set the lower bound of our Pittsburgh dataset. 

Cooking and biomass burning do not describe the observed OC3 in Pittsburgh. This suggests 

that OC3 may be a good traffic emissions marker, but it is unclear from our data whether we 

can definitively claim OC3 as a marker for gasoline or diesel emissions. 

Observed ambient and tunnel OC4 are poorly correlated with source test data. 

Gasoline source tests are omitted from the OC4 panel of Figure 3.2 because of poor 

correlation between OC4 and BQ OC. OC4/OC ratios for diesel vehicles, cooking, and 

biomass burning do not explain the observed ambient and tunnel ratios. The poor correlation 

between ambient OC4 and the source tests, along with the minimal enhancement of OC4 in 

the traffic tunnel, suggests that OC4 may be an indicator for secondary organic aerosol.

PC also appears to be a marker of secondary organic aerosol for the Pittsburgh data. 

This is consistent with charring of ambient secondary OC contributing to measured PC. For 
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example, Yu et al. (2002) found that water-soluble OC accounted for a large fraction of 

charring on quartz filter samples, while hexane extractable organic compounds (non-polar) 

produced little charring. The ratio of PC to total water-soluble OC was found to increase with 

water-soluble OC loading; in other words, the abundance of PC was largely dependent on the 

fraction of water-soluble secondary OC. 

PC was not observed in the gasoline (Chow et al., 2001; Schauer et al., 2003) and 

diesel (May et al., 2013a, 2013b) exhaust filters shown in Figure 3.2, but it is observed in 

wood smoke source tests (Chow et al., 2001; Li et al., 2016; Schauer et al., 2003). Figure 3.2 

shows that the PC/OC trend from biomass burning source tests does not describe the 

Pittsburgh ambient samples, and this is likely because biomass burning is not a major source 

to PM2.5 in Pittsburgh (Robinson et al., 2006).

Figure 3.2 suggests that OC2 and OC3 collected on bare quartz filters are good fresh 

emission markers, with OC3 specifically being a marker for traffic emissions. OC4 and PC 

are the secondary OC in the study region. The different OCX therefore suggest different 

source implications.

3.3.3 From Pittsburgh to nationwide

To broaden study impacts and test our hypothesis of OCX’s different fresh emission 

dependence nationwide instead of just inside the study region, we extracted OC reports from 

all CSN sites in 2013 and present their relationship with our Pittsburgh dataset and source test 

results in Figure 3.3.

In Pittsburgh, more volatile OCX (OC2 and OC3) are associated with fresh emissions, 

and this trend also applies to CSN sites nationwide. The national OC2 data in Figure 3.3 are 

linearly correlated with total BQ OC, and the trend can reasonably be described with OC2/

OC ratios from source tests. The Pittsburgh OC2/OC relationship falls along the upper bound 
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of the nationwide OC2 data. The national OC2 data have the strongest agreement with diesel 

emissions (R2 = 0.94), whereas for our Pittsburgh dataset the strongest agreement was with 

gasoline vehicles. Nonetheless, the national CSN data suggest that BQ OC2 is an indicator of 

fresh emissions, though the specific identify of those emissions may be uncertain.

For OC3, the Pittsburgh and national CSN data largely overlap. Again, agreement is 

strongest with diesel emissions. Cooking and biomass burning do not describe the observed 

OC3/OC trend in either the Pittsburgh or national CSN data. Thus, the national CSN data 

seem to agree with our observation from Figure 3.2 that OC3 is a marker for traffic 

emissions. 

For OC4 the national data show a similar trend (increasing at low BQ OC and 

plateauing at ~1 µg/m3 OC4 for BQ OC > ~5-10 µg/m3) as the Pittsburgh data and poor 

agreement with source test results. This again suggests that OC4 may be a marker for 

secondary organic aerosol (Leskinen et al., 2007a, 2007b). 

PC is very different between Pittsburgh and the national CSN data. Whereas PC peaks 

at ~2 µg/m3 in Pittsburgh, some CSN sites have much higher PC. Biomass burning is a major 

source for global/nationwide ambient PM2.5 and PC, while it is only a minor source in 

Pittsburgh (Robinson et al., 2006; Zhou et al., 2017; Zhou et al., 2017). The implication is 

that PC in Pittsburgh seems to be an indicator of secondary PM, but in the nationwide dataset 

there seem to be some sites where PC is dominated by biomass burning. These sites fall near 

the biomass line in Figure 3.3. Thus, when we consider the Pittsburgh and CSN data together, 

PC is of mixed origin and interpreting it as either secondary OA or a biomass marker may 

depend on where the samples are collected, and knowing about sources near sampling sites.

3.3.4 LUR models

By using mobile sampling measurements (Figure 3.1) as input, we developed LUR 
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models for bare quartz OC, OC2, OC3, OC4, PC, and particle phase OC (BQ-QBT). The 

detailed model results are in Table 3.1. Variable names are briefly described in Table 3.1 and 

are described in detail in Table B1 of the Supporting Information.

Our LUR models achieve good performance as their R2 values are all above 0.5 (de 

Hoogh et al., 2013; Zhang et al., 2015). Comparison of filter measurements averaged for each 

of the 36 sampling sites and LUR model predictions at the sampling locations are shown in 

Figure B2 in the Supplemental Materials. Measurements and predictions generally agree with 

each other and are distributed along the 1:1 line. 

The number of independent predictors in LUR models ranges from 3 to 6. The central 

reference site group appears in every model except BQ OC3, and this indicates strong 

association between OC and regional background PM2.5 concentrations, as expected 

(Robinson et al., 2007). Predictors from the elevation and restaurant groups are not selected 

in the final models.

As described above, we evaluated LUR models using LOOCV, MSPR, RMS, and 

Moran’s I. A R2 shrinkage of 0.15 or smaller between original and LOOCV model indicates 

stable models (de Hoogh et al., 2013; Zhang et al., 2015). All derived models are stable. The 

ideal value for MSPR is 0, and that for RMS is 1. All models have MSPR value close to 0, 

and the largest RMS is 1.07. We do not detect any spatial autocorrelation of residuals based 

on Moran’s I.

We used the LUR models to generate pollutant prediction maps in ArcGIS-10.3 

(ESRI, Redlands, CA) with the spatial analyst tool. Since the LUR model purely extrapolates 

outside the sampling domain (de Hoogh et al., 2013; Zhang et al., 2015), we limit the 

minimum BQ-QBT OC predictions to be 1.5 µg/m3 based on an upwind EPA monitor. 

Artifact-corrected OC concentrations are elevated in urban and near-source regions in Figure 



78

3.4(a). Primary emission sources are more concentrated in the city center than in rural 

regions, and these emissions drive local enhancements in particulate (BQ-QBT) OC.  

We retrieved annual average particulate (BQ-QBT) OC concentrations from two 

regulatory PM speciation monitors (Lawrenceville and Liberty; Figure B1). These two sites 

served as an independent test set to evaluate our LUR model, as they were not included as 

inputs during the LUR model building process. Our BQ-QBT OC prediction at Lawrenceville 

is 0.04 µg/m3 larger than the monitor measurement. The LUR model under predicted OC by 

0.5 µg/m3 at Liberty. This under prediction at Liberty was also observed in our LUR PM2.5 

model in the same study domain, suggesting LUR did not fully capture the spatial gradient 

induced by a nearby major industrial point source (Li et al., 2016). 

BQ OCX exhibit different spatial patterns, as shown in Figure 3.4. Both OC2 and 

OC3 show significant spatial variability associated with fresh emissions, primarily from 

traffic sources. The road network is evident as yellow areas in both Figure 3.4(b) and (c). 

OC2 and OC3 are both elevated in the Pittsburgh central business district (center of the map), 

where there is both high traffic and large emissions from other human activities (e.g., 

restaurants). On the other hand, the concentration surface of OC4 is less variable in Figure 

3.4(d).

The plot under each LUR map is projected from the black line in the map and 

quantifies the spatial variation of BQ-QBT OC, BQ OC2, OC3 or OC4 across a transect. BQ-

QBT OC increases from 1.5 µg/m3 to 2-3 µg/m3 on a neighborhood scale (1-2 km) but 

otherwise is mostly at the background – most of the observed OC is regional. BQ OC2 and 

OC3 are enhanced near busy roads and the city center. People living near roadways have 

higher OC2 and OC3 exposures, though since OC2 and OC3 partition between phases, not all 

of this enhanced OC2 or OC3 shows up in the BQ-QBT map. OC4 is nearly invariant, and 
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oscillates around 0.5 µg/m3 across the whole model prediction domain.

3.3.5 Exposure implications

Figure 3.2 shows that BQ OC2 has the largest concentration range of the OC fractions 

in Pittsburgh (0-6 µg/m3), whereas OC4 and PC are less variable (0-2 µg/m3). OC2 and OC3 

seem to be associated with fresh emissions. Higher total BQ and BQ-QBT OC is therefore 

driven by changes in OC2 and OC3, whereas OC4 and PC are more spatially homogeneous. 

This means that variations in exposure to total OC mass are convolved with variations in the 

OC composition. 

Figure 3.5 quantifies this variation and provides an estimate of human exposure 

considering the spatial heterogeneity of OCX and varying population density. We first 

obtained population of every census block in Allegheny county (~30,000 blocks) (US Census 

Bureau, 2010), and assumed the population was evenly distributed in the block. We then 

assigned a block-averaged LUR OCX prediction to each block. 

The black line in Figure 3.5 shows the cumulative distribution function (CDF) of 

population-weighted BQ OC exposure. The stacked colors show the distribution of BQ OC 

among OC2, OC3, OC4, and PC. As noted above, we do not directly consider OC1, which 

exists almost exclusively as vapor in the atmosphere and is not captured efficiently by quartz 

filters. Therefore, the sum of OC2, OC3, OC4, and PC (right y-axis) is less than the total BQ 

OC (x-axis).

Figure 3.5 shows that variations in BQ OC exposure are driven almost entirely by the 

more volatile OC2 and OC3 fractions. For example, population-weighted BQ OC increases 

from ~3.5 to ~4.5 µg/m3 from the 10th to the 90th percentile. OC4 and PC account for 

approximately 10% of the difference, increasing from ~1 to ~1.1 µg/m3, whereas OC2 and 

OC3 account for the remaining 90% of the additional exposure.
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In urban areas with high population and source density, people are exposed to higher 

BQ OC because of the local enhancement of OC2 and OC3 from primary sources such as 

traffic and restaurants. On the other hand, the relatively constant concentrations of OC4 and 

PC indicate that people living in both urban and rural areas are inhaling similar 

concentrations of secondary OC4 and PC. When people move from rural areas to downtown, 

exposures to primary OC2 and OC3 increase while those of secondary OC4 and PC are 

roughly the same. Since OC4 and PC are effectively always in the particle phase (Ma et al., 

2016), everyone is breathing the spatially homogeneous portion of the (mostly secondary) 

OC. 

Figure 3.5 shows exposures for BQ OC, and bare quartz filters capture both 

particulate and vapor-phase organics. We would expect the exposure contrast for particulate 

(BQ-QBT) OC to be somewhat muted, because OC2 and OC3 are semi-volatile, and exist 

partially as vapors in the atmosphere. Nonetheless, a similar exposure pattern should hold for 

particulate OC: spatially homogeneous background aerosol (secondary OC4 and PC) 

punctuated by zones of higher exposure due to local emissions sources.
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Fig. 3.3. OCX on bare quartz filters from all CSN sites in 2013. Regression lines for 

Pittsburgh OC2 and OC3 are based on the combined dataset of summer, winter, and tunnel. 

For OC4 and PC, Pittsburgh data are grouped into bins of 2 µg/m3, and the error bars show 

one standard deviation.
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3.4 Limitations

The major limitation of this paper is the short-duration quartz filter sampling. Tan et 

al. (2014b) showed that short term mobile sampling was less adept at estimating long term 

average pollutant concentrations compared with stationary monitors. Nonetheless, our recent 

study demonstrated that mobile measurements could capture spatial variation of PM2.5 and its 

constituents and were adequate for developing LUR models (Li et al., 2016).

The BQ-QBT method can overcorrect OC artifacts and lead to smaller concentrations 

(Subramanian et al., 2004). We assume that BQ-QBT works well for artifact correction, and 

that filters do a good job of capturing particle plus vapors for OC2, OC3, OC4, and PC. This 

may not be a perfect assumption. However, it is worth noting that our sampling setup is a 

common one, which makes it easy to compare to data from nationwide networks such as 

CSN and IMPROVE.

To avoid unrealistic LUR prediction due to model extrapolation, we set a reference 

standard for our lowest BQ-QBT OC concentration using the upwind EPA Florence site. The 

Florence site reports bare quartz carbon speciation. We used the volatility basis set 

framework (Donahue et al., 2006) to calculate particle OC and treated it as the lowest particle 

OC prediction in our LUR maps.
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4.1 Introduction

One major challenge with mobile sampling is that it is difficult to collect sufficient 

data to resolve long-term average (e.g., seasonal or annual) concentrations, because mobile 

sampling always convolves spatial and temporal variations in pollutant concentrations. Apte 

et al. (2017) showed that multiple, repeated drives over a small area can recreate long-term 

average concentrations if individual areas are sampled on >20 unique days; however, such an 

intense sampling strategy may not be feasible in all areas.

Since mobile sampling is conducted at different sites and different times of day, 

another major challenge is to accurately separate spatial variation (between site) from 

temporal variation (within site). This separation is often achieved by temporal data correction 

based on a continuous central reference site, however, few studies address the robustness of 

this methodology (Brantley et al., 2014), or quantify the relative magnitude of spatial and 

temporal variations (Sullivan and Pryor, 2014; Yu et al., 2016). Yu et al. used concurrent 

parallel mobile sampling to characterize spatial and temporal variation of traffic-related air 

pollutants in an urban community, and suggested separation of temporal variation from 

spatial variation was important for more accurately estimating human exposure (2016). 

Sullivan et al. (2014) used combined fixed and mobile measurements, and indicated PM2.5 

spatial variability was greater than temporal variability on short time scales (hourly). Apte et 

al. (2017) conducted a yearlong extensive mobile sampling with Google Street View cars, 

and concluded spatial variability generally dominated over temporal variability for NO,  

NO2, and BC. Additional studies are still needed to quantify relative magnitude of spatial and 

temporal variation, and help explain precision and robustness of long-term exposure models 

such as LUR based on short-term measurements (Allen et al., 2011; Vienneau et al., 2010). 

LUR models quantify spatial variation in pollutant concentrations and are mainly used 
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for estimating chronic exposures. The use of LURs for exposure estimation assumes that 

spatial variations exist in addition to temporal variations. Exposure at a given location is the 

combination of background and local source impacts. The background can change day-to-day 

or within a day because of weather and regional transport. The local signal is more dependent 

on nearby sources (Tan et al., 2014a, 2016). Long-term epidemiology studies focus on spatial 

variation, and LUR proves an adequate tool to capture pollutant spatial gradients (Gerard et 

al., 2008). But temporal variation also exists in pollutant exposure. Research is needed to 

compare spatial and temporal trends for multiple pollutants, and answer questions whether 

spatial and temporal variations in human exposure are the same for all pollutants (e.g., does 

CO exposure behaves the same as exposure to NO2 or PN).

People have been making LURs for ~20 years, but no optimal sampling strategy 

exists (Hatzopoulou et al., 2017). Most studies use one sampling strategy or another (e.g., 

distributed filters or mobile sampling) to collect the data needed to build LUR models. With a 

combined sampling network including mobile and distributed samplers with high time 

resolution, we can start probing these methods and think about refined sampling strategies. 

For example, different sampling strategies may be needed in urban versus rural areas.

In this study, we designed an extensive sampling network including both distributed 

monitors and mobile sampling in Pittsburgh, PA. The main objectives are to quantify: 1) 

spatial and temporal variation of gaseous and particle pollutants (CO2, CO, NO2, PN, and 

PM2.5); 2) temporal variations in different scales, e.g., diurnal vs. daily; 3) spatial vs. 

temporal variations. We use both mobile and stationary monitor data as a basis to compare 

spatial and temporal variations in different micro-environments, and make some inferences 

about future sampling strategies for building LURs.
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4.2 Methods

4.2.1 Sampling platform setup

Our sampling network includes three components, a mobile sampling van, 14 

distributed monitors, and a supersite. We synchronized clocks on all instruments, and data 

were all reported in eastern standard time.

The mobile laboratory was a gasoline powered van, equipped with gas and particle 

instruments. The mobile lab has been described in detail by Li et al (2016) and Tan et al 

(2014a). Ambient air is pulled though an ½” O.D. stainless tube installed on top of the van. 

The flow rate is controlled by mechanical pumps at 16.7 SLPM, and a PM2.5 cyclone 

removes coarse particles in air flows before they reach instruments. A customized onboard 

generator dispatches power to all instruments. GPS information is logged by Bad Elf GPS 

Pro with 1 s resolution (Bad Elf, CT, USA). A High-Resolution Aerodyne Aerosol Mass 

Spectrometer (AMS, Aerodyne Research Inc., MA, USA) operating in fast-MS mode 

(Kimmel et al., 2011) measures submicron (less than 1 µm) particle composition with 20 s 

resolution (DeCarlo et al., 2006; Jayne et al., 2000). An Aethalometer AE-33 (Magee 

Scientific, CA, USA) measured black carbon (BC) with 1 min resolution. AMS output 

(organic and inorganic concentrations) plus BC yields PM1 concentration. A fast mobility 

particle sizer spectrometer (FMPS, TSI Incorporated, MN, USA) measured PN concentration 

(5.6 to 560 nm) with 1 s resolution. Gas analyzers include T200 NOX, T300 CO (Teledyne 

Technology, CA, USA), and LI-820 CO2 analyzer (LI-COR Biosciences, NE, USA). The gas 

analyzers all report data every 1 s.

Distributed monitors measured gaseous pollutants with Real-time Affordable Multi-

Pollutant (RAMP) sensors (SenSevere LLC, PA, USA) (Zimmerman et al., 2017). The 

RAMP uses Alphasense electrochemical sensors (Alphasense Ltd., UK) to measure NO2, CO, 
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O3, and SO2. An additional non-dispersive infrared (NDIR) sensor measures CO2, 

temperature (method: bandgap) and RH (method: capacitive). Voltage signals from individual 

sensors installed on the RAMPs were converted to concentration using a machine learning 

calibration detailed by Zimmerman et al. All RAMP data are reported at 15-minute 

resolution. PM2.5 at each distributed site was measured via nephelometry with a MetOne 

Neighborhood PM Monitor (MetOne Instruments, Inc., OR, USA). Eight sites had PN 

measurements from water-based condensation particle counters (CPC, Aerosol Dynamics 

Inc., CA, USA) (Hering et al., 2017). To ensure consistency, cleaned final data output from 

distributed monitors are reported at 15-minute resolution, including gaseous pollutants, 

PM2.5, and PN.

The supersite was on the Carnegie Mellon University Campus, in Pittsburgh, PA. It is 

~500 m away from major roads, and at least 40 km away from any point sources with more 

than 50 tons of annual PM2.5 emission in the predominant wind direction. Gaseous pollutants 

measured at the supersite are reported in 1 s resolution, including CO2 (LICOR 820), NO2 

(2B Technologies Model 405 nm), CO (Teledyne T300U), O3 (Teledyne T400), and SO2 

(Teledyne T100A). Particle number (7.5 nm to 316.2 nm) is measured with scanning mobility 

particle sizer (TSI Incorporated, MN, USA) every 3 minutes. The Supersite also had a RAMP 

with a MetOne PM2.5 nephelometer. The supersite operated continuously for the entire 

sampling period, and therefore provides a good reference of urban background concentrations 

for multiple pollutants. 

We performed calibration for instruments in all three sampling platforms. Gas 

monitors in the mobile van and supersite were calibrated weekly. The AMS ionization 

efficiency was calibrated monthly. The CPCs at distributed monitors undercount relative to 

the TSI SMPS, which we treat as a reference. Thus, raw CPC output was scaled based on 
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linear regressions from collocations conducted in our laboratory. Calibration of RAMP was 

based on machine learning technique random forest (Zimmerman et al., 2017). PM2.5 

measured by Met One are corrected for different RH environments based on hygroscopic 

growth factor and reference PM2.5 monitor (Petters and Kreidenweis, 2007).

The CPCs at distributed monitors had weekly maintenance, mainly refilling water 

reservoirs. FMPS was zero checked prior to each mobile sampling trip with HEPA filtered air. 

AMS was zero checked after each trip with HEPA filtered air.

4.2.2 Sampling overview

We selected 14 sites to deploy our distributed monitors. Sites were selected using 

stratified sampling with traffic, restaurant density, and building height as the selection 

variables (Allegheny County Information Portal, 2017; Department of City Planning, 2017; 

City of Pittsburgh GIS Data, 2015; US Census Tiger, 2010). High traffic density sites were 

classified based on vehicle miles travelled, number of traffic lights, and road length within a 

200 m by 200 m grid cell. High restaurant density locations were designated as having 3 or 

more restaurants within a 200 m by 200 m grid cell. We excluded restaurants with no obvious 

emissions source, such as ice cream and coffee shops. Building height suggests street canyon 

effect. The criteria to select tall buildings (those that likely influence surrounding air patterns) 

was when the average height of buildings in a 200 m by 200 m grid cell was over 40 ft.

The distributed monitors were deployed on two separate case studies—urban-rural 

transect and downtown (Table 4.1, Figure 4.1). The nine sites in the transect campaign were 

distributed from upwind, through the urban center, to downwind locations. The predominant 

wind direction is from the southwest (Figure D1, Supplemental Materials). The six sites in 

the downtown campaign are much closer in space compared with ones along the transect 

(Figure 4.1). The transect campaign spanned summer/fall seasons from August 2016 to 



108

December 2016. The downtown campaign started from January 2017 to December 2017. Site 

9 and the Supersite (Site 15) were operated continuously during both campaigns.

Mobile sampling was conducted in a ~1 km2 surrounding box near each distributed 

monitor (Figure 4.1).  Mobile sampling at each site was spread across the day. Total visits 

during morning rush hour (5 am to 9 am) or afternoon/evening (11 am to 9 pm) were at least 

3. Downtown sites have more visits as sites were closer to each other, and less labor required 

to cover all sites. For each mobile sampling trip near a monitor, we tended to cover all main 

roads in the corresponding box at least once. The average required driving time around each 

distributed monitor was one hour.

4.2.3 Data preparation and analysis

Various data wrangling processes and QA procedures were performed. Extreme 

measurements are defined as values either larger than 75th percentile plus 4 times the 

interquartile range or less than 25th percentile minus 4 times the interquartile range. Data 

from the stationary monitors were filtered for extreme and null values. Mobile measurements 

are expected to show larger variability, as it is more frequently impacted by local sources. No 

extreme value cleaning procedure is applied on it. We removed any CPC data with error 

codes, and counts less than 100 #/cm3 or bigger than 1,000,000 #/cm3 (random spikes 

sometimes due to power cycling). Any PM2.5 data with error flags or PM2.5 concentrations 

larger than 600 µg/m3 were filtered. GPS data were aligned with mobile pollutant 

measurements after accounting for residence time in the sampling lines. The FMPS tended to 

undersize accumulation mode particles (>80 nm) and we applied a calibration relationship 

based on Zimmerman et al (2015). 

We applied temporal correction to our mobile sampling dataset as background 

concentrations could change diurnally or from day to day (Klompniaker et al., 2015; Masiol 
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et al., 2017). Previous research commonly used a single background supersite for temporal 

correction via addition or multiplication method (de Hoogh et al., 2013; Tan et al., 2014b; 

Wang et al., 2013). However, this method relied on the assumption that temporal variation 

was not spatially variable (Apte et al., 2017; Van den Bossche et al., 2015). Here we first 

applied wavelet decomposition to 15-minute average measurements at each distributed 

monitor located across the whole county (Klems et al., 2010). We defined signals with 

frequency larger than 8 hours to be the regional background represented by the monitor. We 

then compared the 8-hour frequency signals from all distributed monitors in each 15-minute 

window and selected the smallest one as the regional background for that specific 15 minutes 

period. Raw mobile measurements were compared with the corresponding regional 

background, and we defined local enhancement as raw mobile measurements minus the 

background. The enhancement represented the portion of spatial signal in the raw 

measurement. As only supersite has consistent PN measurement throughout campaigns, we 

instead used the rolling hourly fifth percentile of mobile measurements as the PN regional 

background.

Coefficient of variation (COV) is used to compare the relative magnitude of spatial 

and temporal variation (R. C. Sullivan and Pryor, 2014). It is calculated as the standard 

deviation divided by the mean.

Intraclass correlation (ICC) compares the variability between groups versus within 

each group. It is based on analysis of variance (ANOVA) framework, and is calculated as the 

ratio of variation between groups (mean square between groups, MSP) to the sum of MSP 

and variation within groups (mean square errors, MSE). By definition, ICC ranges from 0 to 

1. An upper limit 1 means that within-group variation is much smaller than between-group 

variations (MSP >> MSE). In contrast, 0 means significant variability within groups relative 
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to differences between groups (MSE >> MSP). Figure D2 in Supplemental Materials 

provides an example showing the difference between high and low ICC values. The 

interpretation for ICC is as follows: less than 0.4 – small or little between group difference, 

between 0.40 and 0.59 – adequate between group difference, between 0.60 to 1 – substantial 

between group difference (Cicchetti, 1994).

Mobile measurements are grouped into 50 m fishnet boxes following Apte et al 

(2017). After we corrected mobile measurements’ temporal variation by wavelet 

decomposition, the derived enhancement values were then averaged to represent each grid 

box.

4.3 Results and Discussion

4.3.1 Sampling domain overview

Figure 4.1 shows the sampling sites’ stratification overview. Sites 1, 2, 3, 4 are 

essentially upwind background sites in Table 4.1. Sites 5, 6, 7, 10 are under combined 

influences of traffic, street canyon, and restaurant emissions.  Site 8 is an urban background 

location in a residential neighborhood. Sites 9 and 11 have high restaurant density. Site 12 

has restaurants and green space mixed inside. Site 13 has high traffic volume, and site 14 is a 

downwind background. Site 15 is the supersite in university campus.

Figure 4.1 also shows UFP spatial variation in the upwind background site 2, urban 

core sites 5, 6, 7, and a residential area with high density of restaurants site 11. Background 

UFP concentration is around 6257 #/cm3 based on supersite measurements. The mean 

temporally corrected mobile measurements (local enhancement) are calculated for 50 m 

square grid boxes. The legend on the middle right indicates magnitude of the averages. 
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Upwind sites such as 1, 2, 3 and 4 are essentially background sites (blue) as no obvious UFP 

sources are near these sites. Sites in downtown (5, 6 and 7) have large UFP enhancement, up 

to a factor of 7 above background due to combined influence of vehicle emissions, 

restaurants, and street canyon effect. Not only is there enhancement, the enhancement is 

spatially variable indicated by mix of red and blue grid boxes. Site 11 has the highest average 

UFP enhancement. Hotspots (red grid boxes) indicate a dense restaurant district with high 

traffic. Air pollution from restaurants has an influencing spatial extent around neighborhood 

scales (~1 km). Site 11 is both a residential and recreational area. This could exacerbate air 

pollution health impacts. People usually go to site 11 for dining at restaurants or bars and 

spend a bit portion of their daily time there, but they are still exposed to a large fraction of 

their daily accumulated UFP exposure during this time window.

4.3.2 Concurrent mobile vs. distributed monitors

Concurrent NO2 from mobile sampling (1 s measurement) are generally comparable 

to that from distributed monitors (15-min resolution) as shown in Figure 4.2. Site 15 is the 

urban background supersite, and there was no mobile sampling around this location. Site 14 

is omitted as measurements fail QAQC check. Site 13 has the largest discrepancy of NO2 

measurement between mobile and distributed sampling. Site 13 is surrounded by a highway 

(North) and one major road (South). The distributed monitor (blue boxplot) was placed on the 

edge of the highway, and measures higher concentrations of NO2 than mobile on-road 

measurements nearby. Even though mobile sampling was conducted quite near the highway, 

it did not capture high emissions from vehicle sources. This illustrates the quick decay of 

traffic related pollutants within hundreds of meters away from roads (Karner et al., 2010). 

The complex river valley topography and predominant southwestern wind could also help 

explain the lower NO2 concentrations in the driving domain, as the mobile sampling route 
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was often upwind of the highway.

As sites 5, 6, 7 are within a single 1 km2 box, they were assigned the same mobile 

sampling boxplot stats in Figure 4.2. Site 7 measures the highest NO2 concentrations among 

these 3 clustered downtown sites. It is located ~10 m away from a pizza restaurant exhaust 

fan in a narrow street canyon. Under this local source impact, it measures high NO2 with a 

similar magnitude as the monitor installed next to a highway (site 13). Site 6 is near a bus 

stop, and the RAMP monitor is placed at about the same height as bus exhaust tailpipe 

relative to the ground. It is under consistent diesel exhaust pollution during daytime hours, 

and this partially explains why site 6 measures higher NO2 compared with site 5. Site 5 is ~2 

m above the ground, placed next to a 2-lane major road in downtown.

Site 8 is ~2 km downwind from the urban center sites (5, 6, 7). It has spatial 

nonuniformity in terms of traffic volume on roads inside the 1 km2 driving box. The 

distributed monitor at site 8 measures similar NO2 as the urban center sites (5, 6, and 7). 

However, other driving roads inside the 1-km2 box used for mobile sampling have 

significantly less traffic volume. NO2 from the mobile measurement represents the average 

traffic intensity in the whole box instead of a specific major road, and is thus slightly lower 

than values from the distributed monitor. 

Sites 1, 2 and 3 are upwind background, and have lower NO2 compared with 

downtown sites. Site 1 has lower NO2 mobile measurements compared to monitor values. A 

portable storage company is 200 m upwind of site 1. Thus, the NO2 discrepancy might be due 

to the distributed monitor capturing off road or on road vehicle emissions from the point 

source while mobile van does not. 

Spatial variation exists between sites and within sites (~1 km). Within site variability 

is higher in downtown locations indicated by the interquartile range of the boxplots in Figure 
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4.2, especially sites 5, 6, 7, and 11, which are all impacted by large numbers of restaurants 

and high traffic volume. Figure 4.2 shows significant spatial variability down to the street 

level, and this suggests spatial representativeness of stationary urban monitors could be quite 

limited (Piersanti et al., 2015; Righini et al., 2014; Vitali et al., 2016).

4.3.3 Temporal variation in two scales – daily vs. diurnal

Pollutant concentrations vary over certain relevant timescales – hourly, daily, 

seasonal, and annual. This section focuses on variations over hourly and daily timescales 

using 15-minute resolution measurements from the RAMPs. 

Figure 4.3 shows temporal variation of CO at downtown site 6 and background site 

14. For downtown site 6, the day-to-day variation of median CO concentration is larger than 

within-day variation. Interquartile range (IQR: 75th percentile minus 25th percentile) of 

mean daily CO is 231 ppb. Among all 45 sampling days at site 6, only 22 % of days have a 

larger IQR value of within-day CO. On the contrary, for the background site 14, within-day 

variation is bigger than daily variation. The IQR of daily CO at site 14 is 45 ppb. Among a 

total of 50 sampling day, 74% of days have larger IQR of within-day CO.

 Figure 4.3(a) indicates Tuesday has the highest CO concentrations at downtown site 

6. CO during weekdays are generally higher than CO during weekends as expected by large 

decrease in traffic volume during weekends (Alghamdi et al., 2014). Boundary layer shifting 

and traffic flow change are the main causes for the diurnal temporal variation in Figure 

4.3(b). One CO peak period is the morning rush hour ~8 a.m., and the other is around 5 p.m. 

Downtown site 6 is consistently impacted by traffic and other primary sources throughout the 

whole day, while traffic activity changes significantly between weekdays and weekends. We 

computed ICC of CO2, CO, NO2, PN, and PM2.5 measurements grouped by each day. ICC for 

temporal CO difference at site 6 is 0.56 in Table C1 (Supplemental Materials). ICC values 
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between 0.4 and 1.0 indicate more intergroup differences and more similarity within groups. 

Daily CO variation has higher ICC values, indicating more difference between days than 

variation within a single day (diurnal variation). Overall, day-to-day CO variation is higher 

than diurnal CO variation in urban center. 

Figure 4.3(c) shows throughout the whole week, no specific days have higher CO 

concentrations than others at background site 14. Figure 4.3(d) shows that peaks around 7 

a.m., likely reflecting a combination of boundary layer effects and regional traffic 

contributions. 

Figure 4.4 compares PN at two sites – site 7 (downtown) is heavily influenced by 

local traffic and cooking sources, and site 15 (supersite) represents the urban background. 

Site 7 is located in a narrow pedestrian alley near a restaurant exhaust fan; emissions 

from the restaurant significantly impact measurements at this location. Site 7 shows large 

within-day changes in PN due to cooking activities. There are periodic spikes due to the non-

continuous nature of cooking at the restaurant, though there is a consistent peak starting at 

midday and running through evening. At this site, daily variation of PN was smaller than its 

diurnal variation. When PN was compared across days, PN did not change much between 

weekday vs. weekend, and the business working hours for restaurants were consistent from 

day to day. 

On the contrary, PN at the supersite was around 8000 #/cm3, on average nearly an 

order of magnitude smaller than PN measured near the restaurants. PN concentrations at the 

supersite was only close to PN at site 7 during overnight periods (~midnight to 1 a.m.), when 

cooking and traffic activity near site 7 fell and the site 7 looked more like background. Day-

to-day variation of PN at the supersite was larger than diurnal variations, in contrast to PN 

temporal pattern near restaurants at downtown. 
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Overall, the relative magnitude of the difference between two temporal variations for 

a specific pollutant depends on sources and land use near the monitor locations. We used 

coefficient of variation (COV) to quantify temporal variation in daily or diurnal scale. Daily 

COV values compares daily mean concentrations across multiple days. Diurnal COV value 

compares hourly averages within a day. 

Figure 4.5 shows temporal variation in two scales for five pollutants. CO2 daily and 

diurnal variations are both small and nearly identical, since CO2 is dominated by the global 

background. 

CO is a primary pollutant. Incomplete fuel combustion is major source of ambient CO 

(US EPA, 2016). As shown in Figure 4.3 for site 6, CO tended to have higher daily variation 

than diurnal variation near the urban center. This pattern was observed in sites 4, 5, 6, 7, and 

10. Significant traffic pattern and volume changes between weekday and weekend might 

partially explain the difference. However, as shown in Figure 4.3(a), there are also significant 

day-to-day differences in CO at urban sites between weekdays, suggesting that weekday/

weekend differences in traffic patterns are not the only driver for the observed daily 

variations. Figure 4.3(a) suggests that traffic differences between weekdays can be as 

significant as weekday/weekend differences. 

Background and urban background sites 1, 2, 12, 14, and 15 all have larger within-

day (diurnal) variations than day-to-day variations of CO. These sites follow the same general 

pattern as shown in Figure 4.3(c) and 4.3(d), though these sites are a mixture of suburban/

rural (sites 1, 2, and 14) and urban background (sites 12 and 15).

Sites 8 and 11 are urban sites where the daily and diurnal CO variations are similar in 

magnitude. Site 8 is in a residential neighborhood adjacent to downtown, and site 11 is in a 

neighborhood with high restaurant and traffic density.



116

Overall, the general trend for CO is that urban, source-impacted sites have slightly 

higher daily variations than diurnal variations, and background sites have higher diurnal 

variations. Two sites do not fit this narrative. Site 9 is in an urban neighborhood with tall 

buildings and high restaurant density. Based on nearby sites 5, 6, and 7, we might expect 

larger daily variations, but the opposite is observed. Similarly, site 13, which is adjacent to a 

highway, might be expected to have larger daily variations, but daily and diurnal variations 

are nearly identical.

NO2 has a similar pattern as CO, and overall the magnitude of COVs is similar for 

NO2 and CO. Traffic impacted urban sites have larger NO2 daily variability than diurnal 

variability, whereas background sites have larger diurnal variability. Site 9, which has lower 

than expected daily variation in CO, also has low daily variation for NO2. One difference is 

for the near highway site 13, which has larger daily variation than diurnal variation in NO2, 

similar to traffic impacted urban sites. 

PN has the largest temporal variation of the measured pollutants. PN, especially UFP, 

is highly dynamic (Cattani et al., 2017; Donahue et al., 2016; Kerckhoffs et al., 2017, 2016). 

For sites 3, 14 and 15, suburban and urban background sites, daily PN variation is larger than 

diurnal variation. These sites have minimal impact from nearby sources. Nucleation might be 

an important contributor to day-to-day variations at these sites. During our campaign from 

September 2016 to February 2017, supersite PN measurement indicates 18% nucleation 

frequency, and these nucleation events contribute around 21% of PN concentration increase 

at the supersite. For these background sites without nearby primary sources such as traffic or 

restaurants as places in downtown, PN will be higher mostly due to nucleation events 

occurring. For a day without nucleation events, PN concentration would fluctuate much less 

and change smoothly as a regional background. The source impacted sites are influenced by 
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nucleation too, but have additional primary source influences.

Sites 4, 5, 6, 8 and 11 have similar daily and diurnal variations. These sites all have 

nearby source impacts from traffic and/or cooking. The only site where diurnal variation is 

larger than daily variation is site 7, which as described above is heavily impacted by a 

cooking source. These data suggest that PN at source-impacted sites is very dynamic, with 

concentrations changing significantly on both daily and sub-daily scales.

PM2.5 is mostly secondary (Robinson et al., 2007; Seinfeld and Pandis, 2016), and 

shows the least intersite difference. Daily COV is nearly identical for all the sites, confirming 

the largely regional nature of PM2.5. It also suggests that most of the variation can be 

described as temporal variation with a single monitor, and may be why many PM2.5 LUR 

models have a central site as an important predictor (Eeftens et al., 2012; Li et al., 2017, 

2016). Within-day PM variations tend to be small except in cases with a large nearby source 

like site 7. Even some of the other source impacted sites in downtown that are heavily 

impacted by bus traffic (e.g., site 6) are dominated by the day-to-day variations. 

ICC magnitude also supports the results presented in Figure 4.5 (Table C1, 

Supplemental materials). ICC of PM2.5 at most sites indicates either adequate (0.40 to 0.59) 

or substantial (0.60 to 1) between group differences. These higher ICC values mean less 

variability within the same day (diurnal variation), but more variability between days (daily 

variation). Thus, in Figure 4.5, high ICC specifically means daily COV (black dot) will be 

above median or upper hinge of the boxplot (diurnal COV). On the other hand, low ICC 

values (less than 0.15) mean daily COV (black dot) will be well below the median or lower 

hinge of the boxplot, as CO and NO2 at background sites 1 and 2. 

Overall, there is not a single temporal pattern across pollutants at different sites. 

Looking just at the median values across all sites, CO and NO2 have slightly larger hourly 
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variation than day-to-day variation. PM2.5 and PN have larger day-to-day variations. But 

patterns are not consistent across all sites. Background sites (1, 2, 12, 14) tend to have larger 

diurnal than daily variations for CO and NO2. For downtown sites, the reverse is true. But 

lots of sites have similar hourly and daily variation. PN is consistently the most variable 

across all sites. In general, daily and hourly PN variations are similar – exceptions are 

background sites (daily > hourly) and the site with the restaurant (source dominates, hourly 

>> daily). For PM2.5, daily variations are consistent across all sites, and daily variation is 

bigger than hourly except for the restaurant site.

One implication of the results shown in Figure 4.5 is that pollutant spatial patterns 

change with time over the day (or between days), and that the changes are pollutant specific. 

A simple background correction that lifts or drops all sites may be too simple to fully capture 

between-day or within-day variations, especially in cases where time- or location-weighted 

exposures are a desired endpoint.

4.3.4 Spatial vs. temporal variation

Figure 4.6 shows the comparison between spatial and temporal variation. Spatial 

variation was calculated based on temporally corrected mobile measurements inside each ~1 

km2 driving box. The resolution of temporal variation was set to daily. Average days for 

temporal variation calculations are around 60 days, or 2 months. Average sampling days for 

spatial calculation are around 10 days. Note here, mobile measurements are generally in 1 s 

resolution, while distributed monitors report data in 15 minutes resolution.

For almost every pollutant at every sampling location, spatial variations as measured 

by COV were larger than temporal variations. CO2 spatial variations are nearly an order of 

magnitude larger than temporal variations. This is likely due to the mobile laboratory being 

sensitive to CO2 emissions from nearby vehicles.
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CO, NO2 and PN are more spatially variable than temporally variable at every single 

site. This reflects variations in source impacts. As shown in Figures 4.1 and 4.4, spatial 

differences of PN are on the order of a factor of 2-3 or more, but the temporal variations are 

smaller. Similarly, Figure 4.3 shows large spatial differences in CO (~100 ppb) between sites 

6 (downtown) and 14 (suburban). Mobile sampling routinely identifies variations of similar 

magnitude within the individual 1 km2 driving domains.

Several sites (2, 3, 4, 9, 10, and 13) have PM temporal variations that are larger than 

spatial variations. We cannot determine an obvious reason for this observation, as these sites 

span a range from background to near-highway. For example, site 4, while located near 

downtown, is largely classified as “low” for all of the land use variables. Thus, it might be 

reasonable to expect a lack of PM sources and this spatial uniformity at this site. However, 

we also observe smaller spatial than temporal variations at sites 9 and 10, which have much 

more variation in the land use in the 1 km2 mobile sampling domain.

One possible explanation for the PM results is that the mobile laboratory measures 

PM1 whereas the stationary sites measure PM2.5. However, since most PM1 constitutes a 

large fraction of PM2.5 mass (Buczyńska et al., 2014), this seems unlikely.

As mobile sampling is conducted in different locations and times of day, this sampling 

platform collects spatial signals as well as temporal variations. If the temporal variations 

dominate over spatial variations, then it will be very hard to separate these two variations, 

and get the target spatial signals in this sampling approach. On the other hand, if spatial 

signals are much higher than temporal ones, the implications are, with an appropriate 

temporal correction method, the dataset can be distilled to provide us with the true spatial 

variations. 

Overall, all five pollutants show higher spatial variability than temporal variability. 
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This suggests that when we build LUR based on short term mobile measurements, the 

potential harmful effect of temporal fluctuations in short term mobile sampling is limited. 

With an appropriate background correction method, mobile sampling is reliable to infer long 

term spatial contrasts.

4.3.5 COV comparison with other studies

Figure 4.5 and 4.6 used COV metric to compare relative magnitude of spatial and 

temporal variation. Other studies such as Sullivan et al. (2014) showed diurnal COV of PM2.5 

temporal variation was 0.20 (SD = 0.05). Our diurnal PM2.5 COV is around 0.22. Their 

studies also showed spatial variability of PM2.5 was a factor of 2 of the temporal variability. 

Yu et al. (2016) showed COVs in concurrent measurements from two parallel routes 

were around 0.21 for all traffic related air pollutants (BC, PN, PM2.5, and CO). Their COV 

was calculated by the standard deviation of two paired same time measurements divided by 

the mean of the two. The relative small sample size (2) might not give a good estimate of the 

general spatial or temporal variation.
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Fig. 4.1. 15 sampling sites overview with stratification information labelled based on 50 m 

grid boxes. T: high traffic density, B: high building height, R: high density of restaurants, 

LOW: low source density. Stars are the locations of distributed monitors. Polygon areas are 

around ~1 km2, and mobile sampling is conducted repeatedly inside the polygons to study 

spatial variability around each monitor. UFP spatial variation in 3 polygons with 50 m spatial 

resolution are shown in the bottom panels.
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4.4 Implication for land use regression modeling

Land use regression is a multilinear regression. The dependent variable is pollutant 

concentration, usually averages of all measurements. The independent variables are GIS 

covariates, such as traffic, land use, and population density. Some of these predictors are 

temporally invariant. They only inform differences between sites at multiple locations. 

Insufficient temporal correction to mobile sampling dataset (both spatial and temporal 

variation) can result in confusing temporal variability as spatial gradient. This mis-

assignment is accounted as measurement error. For epidemiological studies of environmental 

exposure, this random error would not result in biased regression coefficient, but indeed 

derive models with less precision and power (Armstrong, 1998). We deployed multiple 

stationary sites across the county, and did signal processing to raw measurements at all 

available monitors to calculate the regional background. Our results showed spatial variation 

was generally higher than temporal variation. This supported the applicability of long term 

exposure modeling based on short term mobile sampling. LUR proves the right way to go. 

Capturing spatial variations that are imposed on top of the regional background is important. 

However, day to day temporal variations are bigger than within day temporal variations for 

pollutants such as CO and NO2. This means that, in order to get a robust annual average 

concentration at a specific location, we need to sample enough days or hours to characterize 

the day-to-day variability to get a robust estimate of the annual average. Since the spatial 

variation is larger than the temporal variation and that spatial variation can often be 

associated with sources, for example, CO spatial variations are expected to be strongly tied to 

vehicle density, this means that the spatial pattern should reveal itself with mobile sampling 

well before we get to a point of having a stable annual average. So even if we don’t have 

enough mobile sampling to get a stable annual average, we should be able to pretty quickly 
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resolve high versus low concentration sites or ranks sites. This idea is shown in our group’s 

previous paper (Tan et al., 2014b).

As for building LUR models for specific pollutants, different sampling strategy is 

suggested based on findings in this paper. For PM2.5, Figure 4.5 shows temporal pattern of 

PM2.5 is quite consistent across different sites unless a massive local source is in the vicinity 

like site 7. Figure 4.6 shows spatial variation of PM1 is only slightly higher than temporal 

variability. Thus, distributed monitors, with one or two near major sources, probably does a 

good job of estimating PM2.5 exposures within a given city. 

For the other pollutants, spatial variation is much more important to the overall 

picture, so a network of monitors or trying to mix stationary sites with mobile sampling add 

more value. UFP (or PN) is the toughest – it has the largest temporal and spatial variations 

(therefore presumably the largest data needs to get representative averages). This matches 

with LUR results that traditionally do badly for UFP (Cattani et al., 2017; Farrell et al., 2016; 

Kerckhoffs et al., 2017; Saraswat et al., 2013). However, since UFP seems to be location-

specific, the conventional UFP sampling strategy of going to a location and measuring for a 

short period of time (~10 minutes) could be sufficient with careful selection of sites.
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5.1 Introduction

Some studies pointed out the limited spatial representativeness of stationary monitors 

(Apte et al., 2017; Piersanti et al., 2015; Shi et al., 2016; Vardoulakis et al., 2005; Vitali et al., 

2016). Vitali et al. (2016) used dispersion modeling and concluded an industrial air quality 

monitoring station was representative of a surrounding area of 0.07 km2 (roughly 250 m by 

250 m) based on relative difference between monitor measurements and predicted 

concentrations in locations nearby. Shi et al. (2016) used geostatistical methods to find an 

ideal pixel size for spatially aggregating mobile PM2.5 measurements in Hong Kong. They 

indicated 300 m resolution-based aggregation preserved the short-range features of intracity 

street-level air pollution variation. Monitors tended to represent a larger spatial extent when 

compared in the context of long term exposure than short term exposure, and monitors in 

rural or suburbs could be more spatially representative than urban monitors (Piersanti et al., 

2015). Vardoulakis et al. (2005) conducted mobile sampling in the vicinity of a monitoring 

station located near busy intersections in central Paris, and observed the monitoring station 

was consistently recording higher air pollutant concentrations compared to mobile 

measurements one block away. Given the siting of the monitor and the pronounced spatial 

variability near the monitor, they concluded the monitor was inadequate to indicate the 

overall air pollution picture in the study area, and thus not a good reference for population 

exposure estimate. Recently, Apte et al. (2017) deployed instruments on a Google StreetView 

car and conducted a yearlong extensive sampling in Oakland, CA. They found substantial 

spatial variation in street level and neighborhood scale (~ km) for nitrogen oxides and black 

carbon. 

Studying the spatial representativeness of monitors can help design improved 

monitoring networks, maximizing spatial coverage and avoiding redundant sites (Martin et 
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al., 2014). However, the aforementioned studies either studied only one or two pollutants 

(Lightowlers et al., 2008; Piersanti et al., 2015; Vitali et al., 2016), or they used model 

prediction at one location instead of real instrument measurements to compare with the 

reference monitor measurement (Martin et al., 2014).

In this study, we conducted a campaign with both mobile sampling and distributed 

monitors. The goals are to study: 1) spatial variability of multiple pollutants including CO, 

NO2, UFP, and PM1 near stationary monitors, 2) short-term exposure misclassification of 

using point measurement to represent the whole surrounding neighborhoods, 3) spatial 

representativeness of monitors in different microenvironments.

5.2 Material and Methods

The sampling domain is Allegheny County, PA. The city of Pittsburgh is in the center 

of the county. The county’s landscape is characterized by three river valleys and a vast 

plateau. The air quality is influenced by the interaction of regional pollutants transported 

from power plants and other industrial emissions in the Ohio River valley and local industrial 

and traffic sources (ACHD - Air Quality Reports, 2016). Diverse point sources are distributed 

in the whole county, including the largest eastern U.S. coke plant, steel manufacturing, power 

plants, and specialty steel production.

5.2.1 Sampling setup

The sampling network is composed of a mobile sampling van and fifteen distributed 

monitors. Mobile sampling is conducted around each monitor repeatedly across different 

times of day in 2016 summer/fall and winter.

The mobile van is a gasoline powered high roof van. It is described in detail in Li et al 

and Tan et al (Li et al., 2016; Tan et al., 2014a). Power is drawn from the van engine via a 

converter and then dispatched to different gas or particle instruments. Two half-inch O.D. 
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stainless sampling lines are installed on top of the van. The sampling inlet is about 4 m above 

the ground, with an extended stainless bowl cover to keep out rain or snow. A Bad Elf GPS 

logger (Bad Elf, CT, USA) records the mobile sampling location every 1 s. 

One sampling line is for particle measurements including PM1 composition measured 

by a Time of Flight Aerosol Mass Spectrometer (AMS) (Aerodyne Research Inc., Boston, 

MA) (DeCarlo et al., 2006; Jayne et al., 2000), black carbon (BC) by Aethalometer (Magee 

Scientific, CA, USA), and particle number (PN) from Fast Mobility Particle Sizer (FMPS, 

size range 5.6 to 560 nm) (TSI Incorporated, MN, USA). Before the air flow reaches these 

particle instruments, it is size selected by a cyclone with flow rate controlled at 16.7 SLPM. 

The cutoff size is 2.5 µm. The sum of particle composition from the AMS (organic and 

inorganic) plus the BC from Aethalometer yields the PM1. AMS is operated at fast mass 

spectra mode and outputs data in 20 s resolution (Kimmel et al., 2011). BC data are in 1-min 

resolution. PN is reported every 1 s. 

The other sampling line is for gas instruments, including a NOx analyzer T200 and 

CO analyzer T300 (Teledyne Technology, CA, USA). A HEPA filter is placed behind the top 

sampling inlet to remove particles inside air flow before the air reaches the gas instruments. 

All gas instruments on the mobile van report data every 1 s.

15 distributed monitors are all equipped with a low-cost sensor package—the real-

time affordable multipollutant sensor (RAMP) (SenSevere LLC, PA, USA). The RAMP is 

described in detail in Zimmermann et al (2017). Briefly, the core component of the RAMP is 

Alphasense electrochemical sensors (Alphasense Ltd., UK) for measuring CO and NO2. 

Voltage difference during the reaction of incoming gas pollutants with reagents is converted 

to ambient concentration using a previously developed machine learning calibration 

(Zimmerman et al, 2017). The RAMPs report NO2 and CO every 15 minutes.
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The distributed monitors are also equipped with MetOne Neighborhood PM monitors 

(MetOne Instruments, Inc., OR, USA) for PM2.5 measurement. Some of the distributed 

monitors had a water based condensation particle counter (Aerosol Dynamics Inc., Berkeley, 

CA) for PN concentration. To ensure consistency, PM2.5 and PN measurements are reported 

along with gas pollutants NO2 and CO at 15-min resolution.

Routine calibration and maintenance are performed for both sampling platforms. On 

the mobile platform, the AMS ionization efficiency calibration was performed every time the 

AMS was unloaded and reloaded from the van. The AMS collects one HEPA filtered blank 

sample after each sampling trip. The FMPS is zero cleaned via HEPA filter air before each 

sampling trip. Calibration of NOX and CO analyzers includes zero and span check with 

reference gases every week. On the distributed monitors, the RAMP output is calibrated with 

machine learning random forest model based approach (Zimmerman et al., 2017). MetOne 

PM2.5 output is first corrected based on hydroscopic growth factor (Petters and Kreidenweis, 

2007), and then calibrated against reference PM monitors. The raw output from the 

distributed CPCs was adjusted based on co-location tests with a butanol CPC (TSI 

Incorporated, MN, USA) in the lab. All instruments were synchronized, and reported data in 

eastern standard time.

5.2.2 Sampling overview

The whole campaign is comprised of two case studies, and 15 distributed sites are 

selected based on different land use and source characteristics. Sites in the transect case study 

span much larger spatial extent (~ 50 km) compared to downtown sites (within ~5 km) (Table 

5.1; Figure D1, Supplemental Materials). The transect case study was conducted in 2016 

summer/fall, and the downtown study was in 2016 winter. Sites are stratified based on traffic 

density, restaurants, and building height (Allegheny County Information Portal, 2017; 
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Department of City Planning, 2017; City of Pittsburgh GIS Data, 2015; US Census Tiger, 

2010). Traffic density criteria includes road length, number of traffic lights, and vehicles 

miles travelled (VMT) in defined buffer areas (200 m by 200 m grid boxes). Building height 

to road width ratio is a common metric to describe pollution trapping by street canyon effects 

in downtown (Kwak et al., 2016). Here we simplified the methodology and used building 

height to indicate whether air flow could be influenced by tall buildings. A 200 m grid box is 

labelled as high building if the average building height is above 40 feet. Cooking emissions 

from restaurants are a major source of urban organic aerosol (Liu et al., 2017). Dining at 

restaurants is usually an important part of people daily life. The resulting pollutant exposure 

problems raise concern. A 200 m grid box is regarded as high restaurant density if the box has 

3 or more restaurants inside. 

Mobile sampling is conducted inside a predetermined 1 km2 box around each monitor. 

For each sampling trip, we tried to cover all major roads inside the box at least once. 

Sampling time spent per site was around 1 hour for downtown sites, and 40 mins for 

suburban sites. Repeated mobile sampling at each site covered different times of day to 

capture both spatial and temporal variation. Each transect site was visited on at least 3 

different days, and downtown sites each had more than 10 unique visits. The data difference 

was due to the different spatial range in two case studies.

5.2.3 Data treatment

Various data wrangling processes were performed including data import and export, 

data spatial joining, outlier filtering, null value replacement, etc. 1 Hz mobile measurements 

were spatially allocated based on 50 or 100 m grid boxes following Apte et al (2017). GPS 

information was joined to concurrent pollutant measurements. For PM1 reported at 20 s 

resolution, the mean of GPS latitude and longitude measurements was joined to the PM1 
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measurement in that 20-s time window. FMPS undersizes accumulation mode particles and is 

corrected based on Zimmerman et al (2015). FMPS occasionally reported unrealistic size 

distributions (no particles in middle size bins) when the van was driving on bumpy roads. 

Such data were filtered. Extreme concentrations were defined as values either larger than the 

75th percentile plus 4 times the interquartile range or less than 25th percentile minus 4 times 

interquartile range. This outlier filtering only applied to distributed monitor data. Mobile 

sampling data are expected to show more episodic events and broader concentration range 

compared with monitor measurements (Tan et al., 2014a). 

We used mobile measurements to study spatial patterns within the predetermined 

driving domains. For each 1 km2 driving box, we assigned the 50 or 100 m grid with the most 

total measurements from all sampling trips as the reference grid. The reference grid would be 

fixed and not change from day to day. Then the raw mobile data were grouped by each day 

and site. For one mobile sampling trip on a specific day at one site, the median of all 

measurements inside the reference grid was calculated and treated as the reference value for 

that trip at the site. Measurements in other grids at that site were then subtracted from the 

reference value. This process was repeated for every sampling date, and all the subtracted 

concentrations were then averaged to represent each grid’s relative difference to the reference 

grid.

5.3 Results and Discussion

5.3.1 Spatial variability at each site

Pollutants are known to exhibit significant intracity variation (Apte et al., 2017; 

Donahue et al., 2016; Li et al., 2016, 2017). Figure 5.1 shows NO2 spatial variability mapped 

with 50 m spatial resolution inside each 1 km2 mobile sampling box at different sites in our 

sampling domain. Enhancement is calculated by raw mobile measurement minus the 
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corresponding background derived from distributed monitors using wavelet decomposition 

(Klems et al., 2010). We first decomposed 15-minute resolution time series of distributed 

monitor measurements into different frequencies, selected components with longer than 8-

hour frequency at each site, and then compare and select the smallest one as the true regional 

background for that 15-minute window. Urban background NO2 in the study region is 7 ppb. 

Grey boxes are within 50% of the regional background, and yellow or red means a factor of 

2-3 difference with respect to background. Each 50 m grid box in Figure 5.1 has at least 20 

mobile measurements before averaging, so the spatial pattern tends to inform a long-term 

trend (Apte et al., 2017; Van den Bossche et al., 2015, 2016).

Upwind sites such as 1, 2, 3, 4 (Figure D1. Supplemental Materials) are essentially 

background with little or no NO2 enhancement. Urban sites 5-12 show different degrees of 

spatial enhancement. Downtown sites 6, 7, 8 have the largest NO2 enhancement due to 

combined influence of traffic, building height induced street canyon effects, and point 

sources. Site 13 has mixed residential area (south) and green space (north) inside, and NO2 

enhancement increases from south to north. Site 14 has one highway in the north, only 50 

meters away from the sampling box, though NO2 enhancement is barely caught. One reason 

might be due to the quick decay of traffic related pollutants to background within hundreds of 

meters from roadside (Karner et al., 2010). Another reason might be due to the southwestern 

predominant wind direction. Downwind background site 15 has little NO2 enhancement as 

there are no obvious primary sources inside the domain. Red or purple grid boxes frequently 

are located near major road intersections such as at sites 6, 11 and 14. Traffic density has a 

significant impact on driving NO2 spatial pattern in different sites.

Overall, Figure 5.1 indicates different spatial variability in different micro-

environments. Urban sites tend to have large spatial heterogeneity, which means that a 
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reference monitor located in urban center might be less representative of residents living 

nearby. As less air pollutant variability is observed around suburban or background monitors, 

these monitors could represent a larger spatial extent of surrounding population exposure.

5.3.2 Temporal variability during each trip

To identify whether concentration difference in space is due to temporal variation or 

source impacts, Figure 5.2 shows cumulative distribution function (CDF) of sequential hourly 

pollutant concentration differences based on data from all continuously operating distributed 

monitors. Downtown has more episodic events, and histogram of site 6 is shown as an inset 

in top left of each panel as an example.  

Figure 5.2(A) shows that 50% of the population of CO sequential differences lie 

between -13 and 13 ppb. 75% lie between -36 and 36 ppb. Since each mobile sampling visit 

to a 1 km2 box takes about one hour, we interpret absolute CO differences relative to a chosen 

reference grid (like a stationary monitor) larger than 13 ppb to indicate real spatial variation 

instead of mere temporal fluctuation during the sampling drive. The histogram of CO 

differences at downtown shows less than 50% or 75% values lying between thresholds based 

on the whole population. This means, temporal variation at downtown seems to be bigger 

than background sites. 

Urban background CO is around 154 ppb. 36 ppb (75% threshold) is about 23% of the 

background value. Unlike the log-normal distribution commonly seen for pollutants from 

mobile sampling (Tan et al., 2014b), the histogram of CO at downtown shows a Gaussian like 

distribution. This indicates different pattern of temporal and spatial variations.

For NO2 in Figure 5.2(B), similarity, 50% of the population differences lie between 

-0.6 to 0.6 ppb. 75% values are between -1.5 and 1.5 ppb. Urban background NO2 is around 7 

ppb. 1.5 ppb is around 20% of this background value.
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Urban background PN is around 6257 #/cm3. The 75% threshold of 4300 is around 

70% of the background value. This indicates PN is highly temporally dynamic.

Urban background PM2.5 is 9 µg/m3. The 75% threshold -- 1.1 is only 12% of the 

value. PM2.5 shows the least temporal variability among all four pollutants listed.

5.3.3 Spatial variability near urban monitors

In comparison to the magnitude of temporal variation during each sampling trip 

shown in Figure 5.2, Figure 5.3 shows the spatial variability inside the downtown driving 

box. Each 50 m grid box is colored by the concentration difference relative to the reference 

grid (black dot). Grey legend values correspond to differences smaller than the 50% temporal 

threshold for each pollutant determined in Figure 5.2. Red or blue grids therefore indicate 

spatial differences larger than typical hourly temporal variations. Hot colors show that a 

particular grid box has larger concentrations than the reference grid, and cool colors show 

boxes with concentrations smaller than the reference grid. Similar to Figure 5.2, the 

histogram of the spatial difference is shown as an insert on top right.

The logic is to treat the reference grid as an imaginary monitor. The exact location of 

the monitor does not influence the spatial variation pattern, as we are using relative 

concentration difference in this study. We do not use the distributed monitor data as the 

reference for several reasons. Comparing mobile data to mobile data, rather than mobile to 

stationary, avoids potential issues associated with temporal mismatch (15 min resolution for 

RAMPs versus 1 Hz for mobile) and potential confounding factors due to different detection 

methods for mobile sampling versus RAMPs. Additionally, not every distributed site was 

equipped with a CPC, so obtaining PN spatial differences at every site requires comparisons 

of the mobile data to itself.

CO at downtown shows significant spatial variation as indicated by mixture of red or 
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yellow grids. The maximum CO difference was 731 ppb, and the regional CO background 

was around 154 ppb, around a factor of 5 difference. For the whole 1 km2 box, average 

absolute CO difference was 32 ppb (SD = 67 ppb). Assuming population were evenly 

distributed in downtown, CO exposure was underestimated by > 40% for 15% of the whole 

population (the portions at least one SD larger than mean). Incomplete fuel combustion from 

vehicles is the major source of CO in urban environments (US EPA, 2016). High traffic 

density and frequent traffic congestion led to higher CO emission. The street canyon effect 

further trapped emitted CO in downtown. These combined to contribute to the significant CO 

spatial variability shown in Figure 5.3(A).

Another traffic related pollutant NO2 also shows street-level spatial differences. Few 

grey grids mean more difference relative to reference grid. The maximum NO2 difference 

was 28 ppb, and the regional NO2 background was around 7 ppb, around a factor of 4 

difference. For the whole 1 km2 box, average absolute NO2 difference was 2 ppb (SD = 3 

ppb).  

UFP has relatively more gray grids compared with CO and NO2. The magnitude of 

the grey grid was 1800 #/cm3, 1/4 of the regional background UFP 6257 #/cm3. In 

comparison, Grey grid of CO and NO2 were around 1/10 the background. This contrast 

means that UFP has both significant spatial and temporal variation. Thus, the potential 

number of monitors studying UFP spatiotemporal pattern in downtown locations may be 

more than the amount needed for CO and NO2. The maximum UFP difference was 27455 #/

cm3, 3 times more than the regional UFP background. For the whole 1 km2 box, average 

absolute UFP difference was 3257 #/cm3 (SD = 4098 #/cm3). 

PM1 mass is mostly secondary (Robinson et al., 2007), therefore less spatial 

variability is expected. As PM1 data were reported at 20 s resolution, grid box size was 
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increased from 50 m to 100 m in Figure 5.3(D). The grid filtering threshold changed from at 

least 20 mobile measurements to 5. The maximum PM1 difference was 5 µg/m3, around half 

the regional PM2.5 background. For the whole 1 km2 box, average absolute PM1 difference 

was 1.4 µg/m3 (SD = 1.3 µg/m3). 

Overall, CO, NO2, UFP and PM1 all showed different degrees of spatial variability in 

downtown locations. High traffic density, points sources, and street canyon effect are 

attributable to this variation.

5.3.4 Spatial variability near an urban background monitor

Figure 5.4 shows the same four pollutants mapped in an urban background location 

(site 9). The site 9 was located ~500 m downwind of downtown center (sites 6-8). This site 

had less traffic or other primary source activity, and slightly decreasing spatial variability of 

pollutants was observed.

 More grids are in grey for CO in Figure 5.4(A) than for the downtown sites. The 

maximum CO difference was 541 ppb, while the maximum one for downtown was 731 ppb. 

Mean absolute CO difference was 40 ppb (SD = 60 ppb), roughly the same magnitude as 

downtown.

For NO2, the reference grid tended to have higher NO2 concentrations compared with 

most of the areas. This grid was located near major road intersections, and traffic sources 

were related to this NO2 hotspot. The maximum NO2 difference was 11 ppb, close to the 

regional background 7 ppb, and half the maximum NO2 difference at downtown. Mean 

absolute NO2 difference was 2 ppb (SD = 2 ppb), slightly less variable compared to the 

downtown driving box.

For UFP, the vast majority of grids were grey, meaning less difference compared with 

temporal variation during driving. As temporal variation of UFP was large, these gray areas 
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in the maps also had large concentration changes during the driving. The maximum UFP 

difference was 14315 #/cm3, 2 times the regional background. The mean absolute UFP 

difference was 2440 #/cm3 (SD = 2422 #/cm3), and both metrics were lower than downtown 

ones.

For PM1, less spatial variability was observed compared to downtown PM1. The 

maximum PM1 difference was 1.6 µg/m3. The mean absolute PM1 difference was 0.5 µg/m3 

(SD = 0.4 µg/m3). Both mean and SD were around 1 µg/m3 less than the corresponding 

downtown metrics.

Overall, urban background site showed less spatial variability compared to downtown 

site. A monitor near the background neighborhoods could possibly represent a larger area 

population exposure compared to downtown monitors, though the spatial extent might still be 

within ~1 km when addressing short-term, such as daily, exposures.

5.3.5 CDF of spatial vs. temporal variability

Figures 5.3 and 5.4 showed comparison between downtown and urban background 

sites, and their relative spatial and temporal variation. Figure 5.5 combines all relative spatial 

differences and presents them in a CDF plot. Red lines correspond to 50% of the relative 

difference for mobile sampling, and black lines mean 75% of the population of sampled grid 

boxes. Dashed lines show the corresponding 50% and 75% of temporal differences from 

Figure 5.2.

Relative CO spatial differences are generally larger than temporal fluctuations during 

sampling trips. The spatial differences were skewed, while temporal differences were more 

Gaussian. 50% of spatial differences almost encompass 75% of temporal differences. As 

shown in Figures 5.3 and 5.4, urban sites tended to have larger CO spatial heterogeneity 

compared to background sites. The magnitude of 75% spatial difference was 88 ppb, around 
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½ the regional background (154 ppb).

A similar trend was observed for NO2. 75% of temporal differences nearly fall 

between 50% of spatial differences. Traffic and other primary source drives spatial pattern of 

NO2 on top of the boundary layer induced temporal differences. The magnitude of 75% 

spatial difference was 5 ppb, about the same as regional NO2 (7 ppb).

For UFP, temporal and spatial difference seemed to overlap more compared to CO 

and NO2. The magnitude of 75% spatial difference was around 5912 #/cm3, similar to 

regional background (6257 #/cm3). The same 75% metric for temporal difference was 4300 

#/cm3. UFP has substantial spatial and temporal variations. For urban sites, UFP was 

influenced by both sources and boundary layer shifting. For suburban or background sites, 

regional nucleation, sources and boundary layer shifting could also drive significant 

variation, and lead to more background baseline change in mobile sampling time series 

signal.

Spatial and temporal differences of PM1 also overlapped with each other. The spatial 

difference was based on PM1 from AMS measurement, while the temporal difference was 

based on PM2.5 from MetOne monitors. PM1 occupies a large portion, around 51%, of PM2.5 

(Buczyńska et al., 2014). The 75% magnitude of spatial difference was 1.4 µg/m3, and the 

regional PM2.5 concentration was 9 µg/m3. PM1 or PM2.5 are both less variable in space and 

time compared with the other three pollutants.

5.3.6 Exposure misclassification

Plots 5.1, 5.3, and 5.4, all illustrate spatial variations within the 1 km2 driving 

domains. These spatial variations can be translated to short-term and/or long-term exposure 

misclassification. Figure 5.6 shows the mean absolute difference for each pollutant, relative 
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to the reference grid, for each sampling location. The right y-axis transforms left y-axis to 

show concentration difference as the fraction of corresponding regional background. The 

numbers below the bars are the number of 50 or 100 m grids inside the ~1 km2 driving boxes.

The mean absolute relative CO difference shows intersite difference in Figure 5.6(A). 

Downtown sites 6, 7, 8 (which are grouped together) had an average difference from the 

reference grid of 30 ppb, 1/5 of regional background of 154 ppb. The other urban sites 10, 11, 

12 showed larger average differences, 60-75 ppb. The sampling box in site 10 had two 

distinct sampling regions, separated by a river. The sampling area in the north of the box was 

river valley with a bike trail as a relatively clean environment. The other half was a 

commercial area with large amounts of restaurants and major traffic roads. The larger 

exposure difference was attributable to the significant difference in land use. Site 14 was 

considered to be an urban site as it was surrounding by highways. Unfavorable wind 

direction, low elevation topography and rapid decay of traffic emission away from road edge 

could explain the small spatial variation and less exposure difference. 

Background sites 1, 4, 15 showed less spatial variability, and therefore smaller 

differences from the reference grid. This means that mobile measurement inside these 

backgrounds showed little variation. Putting a single monitor inside these areas introduced 

little exposure misclassification and could represent the surrounding air pollution exposure. 

However, the other background sites 2, 3, 5, 13 showed similar exposure differences as urban 

sites. 

Site 5 was an upwind background with high altitude, separated from the downtown by 

a river. Although no obvious primary CO sources were located inside site 5, the site was just 

above a major traffic tunnel. Site 13 had green space, residential areas, and restaurants mixed 

inside. Similar to site 10, the significant difference in land use could lead to high exposure 
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differences.

Some of the sites with larger exposure contrasts (e.g., sites 2 and 3) had fewer 50 m 

grids for use in the calculation of mean exposure difference than the urban sites. Additionally, 

fewer mobile sampling trips were made to these sites than the urban sites. Both of these 

factors may contribute to the higher than expected exposure differences at these sites. 

NO2 in Figure 5.6(B) shows a similar trend as CO. Urban sites 10 and 11 had NO2 

exposure differences around 3 ppb, half the urban background 7 ppb. Background sites 1, 4 

and 15 had little exposure misclassification. The biggest differences were observed in sites 3 

and 5. The implication is, an ideal background might not seem quite easy to identify, and a 

monitor located at a seemingly background neighborhood could also lead to high exposure 

misclassification.

UFP sites showed consistent differences of 2000 #/cm3 across urban or background 

site except for sites 10, 12, and 13, partially due to significant temporal variation during 

driving at different sites. These three sites all had high density of restaurants compared with 

the other urban sites. Site 10 and 13 also had significant spatial heterogeneity in land use 

characteristics. As dining at restaurants was an important part of people daily life, the actual 

exposure differences could be even bigger than presented here.

The largest PM1 exposure difference was at site 10, though only four 100 m grids 

might seem too small a number. Site 13 had an average exposure difference of 3 µg/m3. Di et 

al. (2017a) indicated each short-term increase of 10 µg/m3 in fine PM was statistically 

associated with a relative increase of 1.05% (95% CI, 0.95 % -- 1.15%) in daily mortality 

rate. Thus, the magnitude of exposure misclassification at site 13 could lead to large 

uncertainty for estimating short-term exposure. Downtown center sites 6-8 had an average 

difference of 1.5 µg/m3, and background sites frequently had differences below 0.5 µg/m3.
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Figure 5.7 shows the relationship between mean absolute difference in Figure 5.6 and 

representative land use covariates, (A) CO, (B) NO2, (C) UFP, and (D) PM1. Equations are 

labelled in bottom right. CO, NO2 and PM1 exposure difference showed a good correlation 

with vehicle density. Downtown sites (6, 7, 8) has the largest traffic density, though not the 

highest exposure misclassification. Figure 5.1 showed the downtown NO2 spatial 

enhancement pattern was mostly yellow, with a few deep red or purple grids. The whole 

downtown areas have elevated pollutant concentrations compared with background. Site 14 

was near highway, though unlikely capturing emissions from traffic on the highway, as 

described above. The regression slope overestimated the exposure difference in site 14. Sites 

13 and 10 tended to have high exposure difference considering their moderate average traffic 

density. As discussed above, substantial spatial heterogeneity in land use type inside these 

two sites could contribute to high exposure misclassification. UFP (C) showed more 

exponential decay like relationship instead of linear trend with restaurant density. Many sites 

were clustered in the bottom left area in UFP plot (C). These sites had a nearly constant 

exposure misclassification regardless of land use characteristics. As land use based exposure 

models such as land use regression (LUR) tried to link spatial variation with changes in land 

use, Figure 5.7 partially explained why UFP LUR model had low R2 as changes in dependent 

variable UFP variation sometimes were not related to traditional LUR predictors (Kerckhoffs 

et al., 2017; Patton et al., 2015; Saraswat et al., 2013).
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Fig. 5.1. Temporally corrected NO2 spatial variation averaged across all sampling days 

mapped with 50 m resolution inside fifteen ~1 km2 mobile driving boxes. Sites 6, 7, 8 are 

clustered inside one driving box. Site number is labeled on top with details listed in Table 5.1. 

Each 50 m box has more than twenty 1 s NO2 measurements.
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Fig. 5.2. Cumulative distribution function of sequential hourly pollutant concentration 

difference from distributed monitors–(A) CO, (B) NO2, (C) PN, (D) PM2.5. Red vertical 

lines indicate more than 50% of values are within this range. Black means more than 75% of 

population. Histogram examples of pollutants at downtown are shown as an inset in top left.
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Fig. 5.3. Spatial variation of (A) CO, (B) NO2, (C) UFP, and (D) PM1 in the 1 km2 mobile 

driving box at downtown. Grid boxes are filled with concentration difference relative to same 

time reference grid values (black dot). Choice of grey legend is based on cumulative 

distribution function of distributed monitors in Figure 5.2 (50% cutoff of temporal variation). 

Thus, red or blue grids represent truly different pollutant concentrations due to emission 

source instead of temporal fluctuations during the sampling trip.
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Fig. 5.4. Replicate of Fig. 3. based on an urban background site 9.
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Fig. 5.6. Mean absolute relative pollutant concentration difference (exposure 

misclassification) across different sites, A: CO, B: NO2, C: UFP, D. PM1. Error bars are two 

times the standard error. Site 5 and 15 missing from UFP or PM1 panel are due to data 
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5.4 Limitation

One limitation of this study is the difficulty to infer exposure error for long-term 

health impacts analysis. The large-scale sampling network limits total visits at each site due 

to labor requirement. Our exposure misclassification was based on short-term spatial pattern.

Another limitation is the way we define the reference grid. We pick the grid with the 

most data points and implicitly assume that grid to be most representative of the long-term 

average. From an analytical standpoint this is defensible, but there could be other ways to 

pick the reference grid.
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6.1 Summary of major findings

Long and short-term exposure to particulate matter are linked to adverse health 

impacts. Single or few stationary monitors are inadequate to capture substantial intracity 

spatial variation of airborne pollutants, thus leading to high uncertainty in describing 

population exposure. This dissertation addresses urban aerosol exposure focusing on 

spatiotemporal variation and source characterization. Main achievements of the thesis were 

on improving the characterization of spatial and temporal variation of multiple airborne 

pollutants. Parts of the improvements were about sampling design, choosing the appropriate 

sampling network for different target pollutants. The thesis also dealt with current knowledge 

gap regarding exposure model building, specifically the robustness of feeding LUR models 

with mobile measurements. We investigated and compared all available sampling approaches 

– mobile sampling (moving or short-term stationary, 1 hr), distributed monitors, and 

supersite. Novel parts of the thesis included deploying low-cost sensors on distributed 

monitors to provide high temporal resolution (15 min) data, using aerosol mass spectrometry 

to get spatially resolved PM1 with the mobile sampling van, providing a cost-effective 

framework to measure spatial variation in particle composition, identifying certain OC 

fractions to be a marker for fresh vs. aged organics exposure, and quantifying spatial 

variability near stationary monitors with special sampling design (mobile sampling around 

monitors in diverse areas).

As reported in Chapter 2, application of mobile sampling was conducted to 

investigate spatial variation in particle composition. This research highlighted the growing 

importance of measuring and modeling spatial variation in PM trace elements, as they 

exhibited intracity variation and could drive health effects of particulate matter. However, 

limited studies existed partially due to the logistic requirement of establishing distributed 
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network and monetary cost for filter analysis in the lab. We suggested a practical mobile 

sampling approach to alleviate the drawbacks and captured substantial intracity spatial 

variation in particle composition. 36 sites were selected in diverse microenvironments based 

on traffic density, proximity to industrial sources, and elevation. Trace elements showed a 

broad range of concentrations from 0 to 300 ng/m3. We showed our mobile sampling data 

were not statistically significant different from same time regulatory monitor measurements. 

This finding indicated we could use mobile sampling to capture spatial variation in particle 

composition while in the same time yielding a representative dataset. Correlation strength 

between PM composition in summer and winter indicated different source intensity or source 

categories. Crustal elements such as Si, Ca, and Ti showed good correlation in both seasons. 

Biomass burning tracer K showed stronger correlation with other elements in summer than 

winter, likely because of the influence of biomass burning during winter months. Sulfate is 

dominated by secondary production, and little correlation was observed with other primary 

trace metals. The correlation results could help classify source profiles in source 

apportionment studies such as positive matrix factorization. We examined the effectiveness of 

using Zn (from brake and tire wear) as traffic intensity marker in the ambient environment, 

and Zn proved less useful compared with elemental carbon or polycyclic aromatic 

hydrocarbons. Source apportionment studies relied on good tracers (chemical inert and 

source specific) to accurately quantify source contributions at receptor sites. Our finding 

indicated using Zn as the sole tracer for traffic emissions in ambient sampling environment 

was not robust. With mobile measurements as model input, we compared and selected land 

use regression to predict long-term spatial gradient in the whole study domain (Allegheny 

County, PA). We demonstrated traffic related predictors accounted for major variability 

observed. This manuscript presents the first successful LUR study for particle composition in 
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North America using a cost-effective mobile sampling approach.

Chapter 3 continued to study spatial variation of PM compositions, and specifically 

analyzed one major PM component (20 to 90% in mass fraction) (Zhang et al., 2007), organic 

carbon (OC), based on the same mobile sampling campaign. OC is also linked to adverse 

health outcomes (Urch et al., 2008, 2005). Though secondary organic aerosol dominates the 

OC mass in most environments (Zhang et al., 2007), in near source regions (e.g., near 

roadways) emissions of primary OC can strongly influence population exposures (Donahue et 

al., 2016). We collected OC on quartz filters and quantified different OC fractions OCX using 

thermo-optical methods. Particle phase OC tripled from upwind to near source locations, and 

this indicated substantial intracity OC spatial variation and the need to accurately quantify 

human exposure to OC. We illustrated the different fresh emission dependence of OCX 

collected on the bare quartz. OC2 and OC3 are good fresh emission markers, with OC3 

specifically being a marker for traffic emissions. OC4 and PC are the secondary OC in the 

study region. The different OCXs therefore suggest different source implications. These 

implications are also applicable to national speciation network. This finding shed new light 

on using existing and historical monitor measurements to investigate population exposure 

status on a national scale. Ridley et al. (2017) indicated OC declined by 25-50% between 

1990 and 2012 based on national speciation network data. They showed 2/3 OC reduction 

could be explained by vehicle emissions and residential fuel burning. Such a large OC 

decrease was not anticipated in the 2011 EPA report to congress. This implied the Clean Air 

Act might be more beneficial than what we think. Our finding could further support this 

study by analyzing how primary source marker OC2 and OC3 varied in the last few decades. 

Similar to Chapter 2, we derived long-term LUR models for OCX and total OC with an 

average R2 0.64 (SD=0.09). We further combined LUR predictions with census block 
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population data to quantify long-term exposure spatial pattern. We showed primary source 

emitted OC2 and OC3 were the main drivers for enriched urban OC exposure. This finding 

implied that controlling OC2 and OC3 might be more effective in reducing total organics 

exposure and thus gaining more public health benefits.

Chapters 2 and 3 investigated different PM components’ spatial variation with mobile 

sampling, and used land use based exposure models to describe the long-term spatial 

variation. Population exposure in real world included temporal variation besides spatial 

variation. Especially for acute health impacts, we needed to understand temporal variability.

Chapter 4 studied temporal variation of both gas and particle pollutants, addressed 

current knowledge gap regarding the theoretical validity of developing long-term exposure 

models based on short-term mobile measurement, and provided suggestions on better 

capturing intracity spatiotemporal variation of multiple pollutants. We used a hybrid sampling 

network including a mobile sampling platform, 14 distributed monitors, and a supersite to 

investigate a wide range of pollutants (CO2, CO, NO2, PM1 mass and composition, and 

particle number PN). Mobile sampling was conducted repeatedly near distributed monitors 

(~1 km2), and results from both platforms showed good agreement. PN was highly dynamic, 

and hotspots were strongly associated with restaurants and highway traffic. Spatial variation 

existed both between and within driving boxes (~1 km2). Within box spatial variability was 

higher in downtown areas due to combined influence of traffic, street canyon, and point 

sources. Distributed monitors recorded different temporal pattern across pollutants. A single 

background correction that lifts or drops all sites together may be too simple to fully capture 

between-day or within-day variations, especially in cases where time- or location-weighted 

exposures are a desired endpoint. Spatial variation was generally larger than temporal 

variation among all five pollutants (CO2, NO2, CO, PN, and PM1). This suggested that when 
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we built long-term LUR based on short-term mobile measurements, the potential harmful 

effect of temporal fluctuations in short-term mobile sampling data was limited. As for 

measuring spatiotemporal variation of specific pollutants, different sampling strategy was 

suggested as followed. Distributed monitors, with one or two near major sources, probably 

did a good job of estimating PM2.5 exposures within a given city. For the other pollutants 

such as CO, NO2, and PN, spatial variation tended to be more important to the overall 

picture, so a network of monitors or trying to mix stationary sites with mobile sampling 

added more value.

Chapter 5 used the same hybrid sampling network in Chapter 4 to study spatial 

representativeness of stationary monitors in different environments. Monitoring network is 

essential for protecting public health, though studies pointed out the limited spatial 

representativeness of stationary monitors (Apte et al., 2017; Piersanti et al., 2015; Shi et al., 

2016; Vardoulakis et al., 2005; Vitali et al., 2016). This limitation could create additional 

uncertainty in epidemiology results, chemical transport model output, and remote sensing 

studies. CO and NO2 exhibited within-neighborhood (~1 km2) spatial variation, with hotspots 

elevated by up to a factor of 5 above the regional background. UFP was the most variable, 

with spatial variations up to an order of magnitude higher than background. PM1 showed the 

least spatial variability. Urban neighborhoods showed larger spatial variability compared to 

suburban and background ones. The magnitude of relative concentration differences was 

commonly larger than the interquartile range of hourly temporal differences. This suggested 

concentration variations captured by mobile sampling were more indicative of source 

impacts. We quantified exposure misclassification within each 1 km2 neighborhood. Using a 

single monitor measurement to represent surrounding ~1 km2 areas could introduce an 

average daily exposure misclassification of 46 ppb (SD = 26) for CO (30% of regional 
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background), 3 ppb (SD = 2) for NO2 (43% of background), 4000 #/cm3 (SD = 1900) for 

ultrafine particle number (64% of background), and 1.2 µg/m3 (SD = 1) for PM1 (13% of 

background). We identified sites with significant land use spatial heterogeneity seemed to 

have larger exposure misclassification, and background sites tended to have smaller exposure 

differences. We regressed exposure misclassification values against representative land use 

predictors such as traffic or restaurant density, and found fair correlation between them. 

These findings addressed limited representative spatial extent of urban monitors measuring 

multiple pollutants, and provided quantitative short-term exposure misclassification.

6.2 Future studies

This dissertation studied spatiotemporal variation of airborne pollutants in the urban 

environment. The findings can be used as direct input for epidemiology study. We built local 

LUR models for PM composition and organic aerosol, and we can try using our LUR model 

output coupled with other statistical tools such as Environmental Benefits Mapping and 

Analysis Program (BenMAP) to analyze the relationship between hospital admittance and air 

pollution events in the region. The findings can be an interesting case study in the context of 

living in an old industrialized U.S. city.

We showed different fresh emission dependence of OC fractions (OCX), and the 

relationships held applicable in national specification network. This finding shed new light on 

utilizing existing thermo-optical OC fractions data. We can try building a nationwide OCX 

LUR to start testing if OCX exposures are associated with certain health effects.

We mainly relied on LUR to model spatial variation of pollutant. The major drawback 

of land use regression is transferability. One model built in one place commonly cannot be 

transferred to another location. So solely relying on land use regression and trying to analyze 

large population means a multi-city campaign like MESA-air (Kim et al., 2016), which is 
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hard. Recently, people combined LUR with machine learning random forest approach to 

improve prediction accuracy and transferability (Brokamp et al., 2017). Traditional LUR 

assumes a linear relationship between GIS predictors and concentrations, and this assumption 

can be too simple. Random forest, on the other hand, accounted for the non-linear 

relationships and interaction between predictors (Brokamp et al., 2017). We can apply 

machine learning to our existing mobile sampling dataset, and address whether random forest 

can improve our LUR model transferability.

Emission control proves successful for pollutants such as NOX in urban area. 

However, Zhao et al. (2017) indicates though NOx emission is consistently decreasing with 

new control technology and more strict law enforcement adopted, the interaction between 

organics, NOx, and ozone could lead to a possible higher ambient organic aerosol in future 

simulating scenario. This finding is backed up by Praske et al. (2017), which indicates the 

autoxidation of peroxy radicals is increasing important in urban and suburban North America. 

Studying spatiotemporal variation of pollutants and source characterization can get us a good 

first step identifying which might be the optimal air pollution control strategy. But the 

evolving nature of primary emissions in the atmosphere make it especially hard for us to be 

sure we are doing definitely the right thing. Ambient measurement and lab chemistry 

experiments need to be combined together to illustrate the complex air pollution nature and 

contribute to human health.
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Appendix A

Application of mobile sampling to investigate spatial variation in fine particle 

composition
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Fig. A1. Blue dots indicate mobile sampling locations. Red pins are stationary regulatory 

monitors. Industrial facilities with annual PM2.5 emissions greater than 50 tons are also 

shown.
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Fig. A2. Elevation map (meters above sea level) for Allegheny county, PA. Blue lines are the 

rivers. 250 m is the distinction value between river valleys and upland locations.
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Appendix B

Urban organic aerosol exposure: spatial variations in composition and source impacts
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Fig. B1. Red dots indicate 36 mobile sampling locations. Industrial facilities with annual 

PM2.5 emissions greater than 50 tons are shown as factory labels. Two regulatory monitors 

(Lawrenceville and Liberty) are displayed as black pins. The shapefile is downloaded from 

Pennsylvania Spatial Data Access (PASDA, 2017). Factory label and pins are from the 

software ArcGIS-10.3 (ESRI, Redlands, CA).
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Fig. B2. LUR prediction versus measured values at 36 sampling sites. The black line is each 

plot is the 1:1 line. LUR model R2 value is under the title.



Major Category ArcGIS Category Units
Circular Buffer 

Radius (m) Description
Variable 

Abbreviations

Length of all roads RDALL

Length of major roads RDMAJ

Inverse distance to nearest road DISTINVALL

Inverse square distance to nearest road DISTINVALL2

Inverse distance to nearest major road DISTINVMAJ

Inverse square distance to nearest major 
road

DISTINVMAJ2

AADT on nearest road ALLAADT

AADT on nearest major road MAJAADT

Diesel truck AADT on nearest road ALLDIESAADT

Diesel truck AADT on nearest major 
road

MAJDIESALLAADT

Vehicle density on all roads VEHDENSALL

Vehicle density on major roads VEHDENSMAJ

Diesel truck density on all roads TRKDENSALL

Diesel truck density on major roads TRKDENSMAJ

Bus fuel consumption kg fuel/day 25, 50, 100, 300, 500, 
1000

Bus fuel consumption BUSFC

Rail length m 25, 50, 100, 300, 500, 
1000

Rail length RAIL

Traffic land use 
zoning m2 100, 300, 500, 1000, 

5000 Utility/transport land use area LUUtTr

Point density of 
restaurants km-2 100, 300, 500, 1000, 

5000
Number of restaurants per unit area PointDe_Rest

NA Euclidean inverse distance to nearest 
restaurant

EucDistinv

NA
Euclidean inverse square distance to 

nearest restaurant EucDistinv2

km-2 Number of facilities per unit area PointDe_NEI 

lb km-2 Annual pollutant emissions per unit area PointDe_NEI_Popu

Euclidean inverse distance to nearest 
facility

EucDistinv

Euclidean inverse square distance to 
nearest facility

EucDistinv2

Pollution emission lb NA Pollution emission at nearest 
corresponding facility

EucAllo

IDW

IDW2

Industry land use 
zoning m2 100, 300, 500, 1000, 

5000 Industrial land use area LUINDUS

Central reference site Central reference site µg/m3 NA
Corresponding PM measurements at the 

central CSMPM

Elevation Elevation m NA Elevation Elevation

Residential land use area LURES

Commercial land use area LUCOMM

Agricultural land use area LUAGRI

Vacant/Forest land use area LUVaFo

Population 100, 300, 500, 1000, 
5000

Number of inhabitants POP

Housing
100, 300, 500, 1000, 

5000 Number of households HOUS

Inverse distance weighted annual 
emissions

Others

Land use zoning 
variables m2 100, 300, 500, 1000, 

5000

Industry

Point density of 
industry sources 

(NEI)

1000, 1500, 3000, 
5000, 7500, 10000, 

15000, 20000, 30000

Inverse distance to 
nearest industrial 

source
m-1 NA

Inverse distance 
weighted annual 

emissions
lb NA

Vehicle density veh m/day
25, 50, 100, 300, 500, 

1000

Restaurant Inverse distance to 
the nearest 
restaurants

m-1

Traffic

Road length m
25, 50, 100, 300, 500, 

1000

Inverse distance to 
the nearest road m-1 NA

Annual average daily 
traffic (AADT) on 

nearest road
veh/day NA

Table B1. General description of predictors used in LUR models.
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Sites Strata
Natrona/Brackenridge U+P+T 1
Creighton/Tarentum V 2

Plum U+P 3
Monroeville U 4

Elizabeth V+P 5
Springdale V+P 6

West Elizabeth V+P 7
Clairton U+P 8
Harmar V+T 9

Jefferson Hills U+T 10
Neville-West V 11

Rodi Rd. U+T 12
Verona V+T 13

Bethel Park 2 U 14
McCandless Twp U+T 15

Pleasant Hills U+T 16
Upper St. Clair U 17

Bethel Park U+T 18
Fox Chapel U 19

Shaler 2 U 20
Blawnox V 21

Bridgeville U+P+T 22
Neville-Shenango V+P 23

Baldwin U 24
Ross Twp U 25
Shaler Twp U+P 26
Wilkinsburg U+T 27
Heidelberg V 28

Mt. Lebanon-St.Clair U+T 29
Castle Shannon U+T 30

Carnegie V+T 31
Mt. Lebanon U+T 32

Bellevue U+T 33
Dormont U+T 34
ACHD U+P+T 35

6th & Penn V+P+T 36

 Table B2. Classification of 36 sampling site based on three criteria (T: high traffic 
density; P: point source influenced; V (U): valley or upland).

Corresponding number in Fig. 3.1
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Appendix C

Comparison of spatial and temporal variation of airborne pollutants using mobile and 

distributed sampling
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Fig. C1. Wind rose map based on yearlong meteorology data from an urban regulatory 

monitor at Lawrenceville, PA. The predominant wind direction is southwest.
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Fig. C2. High ICC value (left, 0.56) vs. low ICC (right, 0.02). High ICC means larger 

between group difference compared to within group variability. Low ICC means the opposite, 

i.e., smaller between group variability.



Site ID Site name CO2 NO2 CO PN PM2.5

1 Chartiers 0.32 0.11 0.09 NA 0.44
2 Carnegie 0.10 0.13 0.15 NA 0.58
3 Beechview 0.28 0.50 0.35 0.54 0.35
4 Mt Washington 0.34 0.46 0.46 0.37 0.47
5 Penn 0.60 0.56 0.56 NA 0.52
6 Mellon 0.39 0.56 0.41 0.35 0.44
7 Church 0.54 0.42 0.46 0.21 0.16
8 Hill 0.38 0.49 0.37 0.33 0.55
9 Strip 0.18 0.15 0.20 NA 0.53
10 ACHD 0.44 0.53 0.46 NA 0.63
11 Southside 0.31 0.31 0.32 0.31 0.52
12 Zoo 0.27 0.29 0.24 NA 0.44
13 Aspinwall 0.38 0.46 0.34 NA 0.53
14 Shadyside 0.17 0.21 0.27 0.55 0.59
15 Supersite 0.26 0.30 0.24 0.54 0.65

                   
                    
                

           

Table C1. ICC value for measured pollutants across all sites based on distributed monitor data. Data are grouped by 
each day. The interpretation for ICC is: less than 0.4 -- small or little between group difference, between 0.40 and 0.59 -- 

adequate between group difference, between 0.60 to 1 -- substantial between group difference (Cicchetti et al., 1994). 
Substantial ICC values are in orange. Adequate ICC ones are in blue.
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Appendix D

Spatial variability of air pollution near monitors and exposure misclassification in an 

eastern US city
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Fig. D1. Overview of the whole sampling campaign in Allegheny County, PA. Transect case 

study (blue) covers larger areas compared with Downtown one (red). Sites are arranged and 

labeled according to predominant southwestern wind direction. Mobile sampling is conducted 

in a ~1 km2 surrounding area near the monitor at each site.
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Fig. D2. Influence of grid box size (100 m vs. 50 m) on NO2 relative difference pattern. The 

top and the bottom of the box represent the 75th and 25th percentile. The line inside the box 

is the median. The outer line extends to the most extreme concentrations not classified as 

outliers.
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Fig. D3. Comparison of mobile (1 s) and distributed monitors (15 minutes) NO2 

measurements at same time and location. Numbers in the title mean the number of unique 15-

minute window. X-axis is the number of occurrences when van is inside the 50-m grid where 

the monitor is located.
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