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Abstract

Mixed-integer programming provides a natural framework for modeling optimization prob-
lems which require discrete decisions. Valid inequalities, used as cutting-planes and cutting-
surfaces in integer programming solvers, are an essential part of today’s integer programming
technology. They enable the solution of mixed-integer programs of greater scale and com-
plexity by providing tighter mathematical descriptions of the feasible solution set. This
dissertation presents new structural results on general-purpose valid inequalities for mixed-
integer linear and mixed-integer conic programs.

Cut-generating functions are a priori formulas for generating a cutting-plane from the
data of a mixed-integer linear program. This concept has its roots in the work of Balas,
Gomory, and Johnson from the 1970s. It has received renewed attention in the past few years.
Gomory and Johnson studied cut-generating functions for the corner relaxation of a mixed-
integer linear program, which ignores the nonnegativity constraints on the basic variables
in a tableau formulation. We consider models where these constraints are not ignored. In
our first contribution, we generalize a classical result of Gomory and Johnson characterizing
minimal cut-generating functions in terms of subadditivity, symmetry, and periodicity. Our
analysis also exposes shortcomings in the usual definition of minimality in our general setting.
To remedy this, we consider stronger notions of minimality and show that these impose
additional structure on cut-generating functions. A stronger notion than the minimality of a
cut-generating function is its extremality. While extreme cut-generating functions produce
powerful cutting-planes, their structure can be very complicated. For the corner relaxation
of a one-row integer linear program, Gomory and Johnson identified continuous, piecewise
linear, minimal cut-generating functions with only two distinct slope values as a “simple”
class of extreme cut-generating functions. In our second contribution, we establish a similar
result for a one-row problem which takes the nonnegativity constraint on the basic variable
into account. In our third contribution, we consider a multi-row model where only continuous
nonbasic variables are present. Conforti, Cornuéjols, Daniilidis, Lemaréchal, and Malick
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recently showed that not all cutting-planes can be obtained from cut-generating functions
in this framework. They also conjectured a natural condition under which cut-generating
functions might be sufficient. In our third contribution, we prove that this conjecture is true.
This justifies the recent research interest in cut-generating functions for this model.

Despite the power of mixed-integer linear programming, many optimization problems
of practical and theoretical interest cannot be modeled using a linear objective function
and constraints alone. Next, we turn to a natural generalization of mixed-integer linear
programming which allows nonlinear convex constraints: mixed-integer conic programming.
Disjunctive inequalities, introduced by Balas in the context of mixed-integer linear program-
ming in the 1970s, have been a principal ingredient in the practical success of mixed-integer
programming in the last two decades. In order to extend our understanding of disjunctive
inequalities to mixed-integer conic programming, we pursue a principled study of two-term
disjunctions on conic sets. In our fourth contribution, we consider two-term disjunctions on
a general regular cone. A result of Kılınç-Karzan indicates that conic minimal valid linear
inequalities are all that is needed for a closed convex hull description of such sets. First
we characterize the structure of conic minimal and tight valid linear inequalities for the
disjunction. Then we develop structured nonlinear valid inequalities for the disjunction by
grouping subsets of valid linear inequalities. We analyze the structure of these inequalities
and identify conditions which guarantee that a single such inequality characterizes the closed
convex hull of the disjunction. In our fifth and sixth contributions, we extend our earlier
results to the cases where the regular cone under consideration is a direct product of second
order cones and nonnegative rays and where it is the positive semidefinite cone. Disjunc-
tions on these cones deserve special attention because they provide fundamental relaxations
for mixed-integer second-order cone and mixed-integer semidefinite programs. We identify
conditions under which our valid convex inequalities can be expressed in computationally
tractable forms and present techniques to generate low-complexity relaxations when these
conditions are not satisfied. In our final contribution, we provide closed convex hull descrip-
tions for homogeneous two-term disjunctions on the second-order cone and general two-term
disjunctions on affine cross-sections of the second-order cone. Our results yield strong convex
disjunctive inequalities which can be used as cutting-surfaces in generic mixed-integer conic
programming solvers.



Chapter 1

Introduction

1.1 Mixed-Integer Linear Programming

Mixed-integer linear programming is a natural framework for modeling optimization prob-
lems which require discrete decisions. In a mixed-integer linear program, we optimize a
linear function of the decision variables over a set defined by linear equations, nonnegativity
constraints, and integrality constraints on a subset of the decision variables. More precisely,
a mixed-integer linear program (MILP) is a problem of the form

minimize d>x (1.1a)

subject to Ax = b, (1.1b)

x ∈ Rn
+, (1.1c)

xj ∈ Z ∀j ∈ J, (1.1d)

where A is an m×n rational matrix, d and b are rational vectors of appropriate dimensions,
and J ⊂ {1, . . . , n}. The set of feasible solutions to (1.1) is

CI =
{
x ∈ Rn

+ : Ax = b, xj ∈ Z ∀j ∈ J
}
.

This section presents a short overview of mixed-integer linear programming. For a detailed
introduction to the topic, the reader is referred to the excellent textbooks [53, 100, 104].

The modeling flexibility of mixed-integer linear programming allows many problems of
practical and theoretical interest to be cast as mixed-integer linear programs. The real-world
impact of mixed-integer linear programming can be seen in almost every sector of business
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4 Chapter 1: Introduction

from healthcare to energy, as well as in science and engineering. Although mixed-integer
linear programming is NP-hard in general, the last two decades have seen a tremendous
improvement in our ability to solve mixed-integer linear programs. State-of-the-art integer
programming solvers such as CPLEX [1], Gurobi [2], and Xpress [4] can routinely handle
problems of scale and complexity that was considered impossible in the 1990s. This improve-
ment is a result of significant advances in our understanding of linear and mixed-integer lin-
ear programs, together with the availability of increased computing power [38]. Therefore,
further theoretical study of mixed-integer linear programming has the potential to bring
problems that remain challenging for today’s technology within the power of computation
in the future.

Arguably, the most successful approach to solving mixed-integer linear programs relies on
a combination of two algorithmic ideas, branch-and-bound and cutting-planes. This approach,
called branch-and-cut, exploits the fact that linear programming is both theoretically and
practically well-understood. To this end, one considers the natural continuous relaxation of
(1.1) which is obtained after dropping the integrality constraints (1.1d) from the formulation
(1.1):

minimize d>x (1.2a)

subject to Ax = b, (1.2b)

x ∈ Rn
+. (1.2c)

The problem (1.2) is a linear program and can be solved efficiently. Its set of feasible
solutions C = {x ∈ Rn

+ : Ax = b} is a polyhedron. With slight abuse of terminology, we
also call C the continuous relaxation of CI . The problem (1.2) is indeed a relaxation of
(1.1); its optimal value yields a lower bound on the optimal value of (1.1). Furthermore, if
the optimal solution x∗ to (1.2) satisfies the integrality constraints (1.1d), it is the optimal
solution to (1.1). However, the optimal solution x∗ is often fractional and does not satisfy
the integrality constraints. In order to make progress towards finding an optimal solution
to (1.1), it then becomes necessary to exclude the fractional solution x∗ from consideration
and work with tighter relaxations of (1.1). Branch-and-bound and cutting-planes represent
two strategies towards achieving this outcome.

The branch-and-bound method prescribes a systematic tree search of the feasible solution
set CI . The algorithm searches for the optimal solution to (1.1) as it successively divides C
into smaller sets. At the root node of the search tree, the continuous relaxation (1.2) is solved
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and the optimal solution x∗ is found. If x∗ satisfies the integrality constraints (1.1d), the
optimal solution to (1.1) has been found and the algorithm stops. Otherwise, C is split into
polyhedral subsets C1, . . . ,Ck whose union contains the set CI , but not the fractional solution
x∗. The procedure is repeated in each of the subsets C1, . . . ,Ck. Figure 1.1 illustrates this
branching step: The two sets C1 and C2 are created by requiring that an integer-constrained
variable, say x1, takes values that are less than or equal k in C1 and greater than or equal to
k + 1 in C2 for some integer k. The sets C1 and C2 are depicted in dark blue. The branch-
and-bound method also takes advantage of information obtained from the linear programs
min{d>x : x ∈ Ci} to guide its search: Because the optimal value of the linear program
min{d>x : x ∈ Ci} provides a lower bound on that of min{d>x : x ∈ Ci, xj ∈ Z ∀j ∈ J},
the algorithm discards a subset Ci if the optimal value of min{d>x : x ∈ Ci} is too large.

C2

C1

x
*

d

Figure 1.1: The branch-and-bound method for MILPs.

The cutting-plane method strives to strengthen the mathematical description of C with
new linear inequalities which are satisfied by all feasible solutions in CI . Such an inequality
is said to be a valid inequality for CI . In the cutting-plane method, first the continuous re-
laxation (1.2) is solved. If the optimal solution x∗ to (1.2) satisfies the integrality constraints
(1.1d), the optimal solution to (1.1) has been found. Otherwise, one has to find a linear
inequality that is valid for CI but not for the fractional solution x∗. Such a valid inequality
is called a cutting-plane, or a cut. The addition of this cut to the description of C leads to
a tighter approximation of CI , and the procedure is repeated. In Figure 1.2, the set C is
depicted in dark blue, whereas the halfspace associated with a recently-added cut is depicted
in light red. Note that this cut separates x∗ from CI strictly. The intersection of the blue
and red regions is the continuous relaxation of the new strengthened formulation.
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d

x
*

Figure 1.2: The cutting-plane method for MILPs.

Although a classical result in integer programming states that the mixed-integer linear
program (1.1) can be solved after adding a finite number of cutting-planes to the continuous
relaxation (1.2) and thus after a finite number of iterations of the cutting-plane method [94],
it is commonly observed that algorithms that rely solely on the cutting-plane method do
not perform well in practice. Combining cutting-planes and branch-and-bound in a branch-
and-cut framework, on the other hand, can be highly effective. This approach has been the
principal solution method in mixed-integer linear programming computation since the 1990s
and is used in today’s leading integer programming solvers.

1.2 Mixed-Integer Conic Programming

A natural generalization of mixed-integer linear programming is mixed-integer conic pro-
gramming. Let E be an n-dimensional Euclidean space which has the inner product 〈·, ·〉.
Any such space (E, 〈·, ·〉) is isomorphic to (Rn, >); in order to keep the notation simple and
similar to (1.1), we assume here that E = Rn and 〈α, x〉 = α>x. A mixed-integer conic
program (MICP) is a problem of the form

minimize d>x (1.3a)

subject to Ax = b, (1.3b)

x ∈ K, (1.3c)

xj ∈ Z ∀j ∈ J, (1.3d)
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where K ⊂ Rn is a regular (closed, convex, full-dimensional, and pointed) cone, A is anm×n
real matrix, d and b are real vectors of appropriate dimensions, and J ⊂ {1, . . . , n}. Examples
of regular cones include the nonnegative orthant Rk

+ =
{
x ∈ Rk : xj ≥ 0 ∀j ∈ {1, . . . , k}

}
,

the second-order (Lorentz) cone Lk =
{
x ∈ Rk :

√
x2

1 + . . .+ x2
k−1 ≤ xk

}
, the positive

semidefinite cone Sk+ =
{
x ∈ Rk×k : x>= x, a>x a ≥ 0 ∀a ∈ Rk

}
, and their direct products.

Mixed-integer linear programming is the special case of mixed-integer conic programming
where K = Rn

+. Other important special cases of mixed-integer conic programming include
mixed-integer second-order cone programming, where K is a direct product of second-order
cones and nonnegative rays, and mixed-integer semidefinite programming, where K is the
positive semidefinite cone. The set of feasible solutions to (1.3) is

CI =
{
x ∈ K : Ax = b, xj ∈ Z ∀j ∈ J

}
.

The natural continuous relaxation of (1.3) is obtained after dropping the integrality con-
straints (1.3d):

minimize d>x (1.4a)

subject to Ax = b, (1.4b)

x ∈ K. (1.4c)

The problem (1.4) is a conic program. It generalizes linear, second-order cone, and semidefi-
nite programs and can be solved efficiently in these cases [35, 43]. The continuous relaxation
of CI is C = {x ∈ K : Ax = b}, an affine cross-section of the cone K.

Despite the power of mixed-integer linear programming, many optimization problems of
practical and theoretical interest cannot be modeled using a linear objective function and
constraints alone. The possibility of using general conic constraints and integer variables
allows mixed-integer conic programming significant representation power. Even without re-
course to integer variables, second-order cone and semidefinite programs model a wide range
of problems [7, 35, 43]. Considering additional discrete decisions in these models or explicitly
requiring some of the existing variables to be integers leads to mixed-integer second-order
cone and mixed-integer semidefinite programs. On the one hand, second-order cone and
positive semidefinite cone constraints are used to capture inherent nonlinear relationships
between the decision variables in application areas such as power distribution network design
and control [79, 109], queuing system design [66], production scheduling [6], data clustering
[44, 105], sparse learning [101], and least-squares estimation with integer inputs [75]. On the
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other hand, mixed-integer second-order cone and mixed-integer semidefinite programs arise
as the robust or stochastic counterparts of mixed-integer linear programs in optimization
under uncertainty. Some application areas in this context include capital budgeting [112],
portfolio optimization [81, 93], telecommunications network design [76], supply chain network
design [12], and truss topology design [116]. The surveys [33, 36] contain further examples
of mixed-integer conic programming applications. In addition, it is well-known that semidef-
inite programming formulations provide strong convex relaxations for hard combinatorial
optimization problems such as maximum cut and maximum stable set [92]. Reintroducing
the integrality constraints into these relaxations yields exact mixed-integer conic program-
ming formulations. Therefore, a good understanding of mixed-integer conic programming is
also particularly relevant for combinatorial optimization.

The potential of mixed-integer conic programming has compelled significant attention
from researchers and practitioners in the last few years. Leading integer programming solvers
such as CPLEX [1], Gurobi [2], MOSEK [3], and Xpress [4] have responded to this interest
with new and expanded features for handling mixed-integer conic programs. However, the
development of practical solution methods for mixed-integer conic programs has remained a
challenge. Today’s mixed-integer conic programming technology is based to a great extent
on algorithms for solving general mixed-integer convex programs1 and employ a combination
of two techniques: branch-and-bound and linear outer approximation. See [33] for a detailed
account. The branch-and-bound method can be generalized from mixed-integer linear to
mixed-integer conic programming in a straightforward fashion. At the root node of the
branch-and-bound tree, the continuous relaxation (1.4) is solved and the optimal solution x∗

is found. If x∗ does not satisfy the integrality constraints (1.3d), the set C is split into smaller
sets C1, . . . ,Ck and the algorithm continues its search at each subset. Figure 1.3 illustrates
the procedure. Note that, as described, this method requires the solution of a conic program
at every node of the search tree. In linearization-based methods, on the other hand, the
mixed-integer conic program is reduced to a mixed-integer linear program. A linear outer
approximation to C is created and maintained dynamically, and the resulting mixed-integer
linear program is solved via branch-and-bound and cutting-planes. While both branch-and-
bound and linearization-based methods have their advantages, the theory of valid inequalities
for mixed-integer conic programs is relatively underdeveloped. In particular, generic branch-
and-bound algorithms for mixed-integer conic programming are not equipped with powerful
valid inequalities which can be used to strengthen the mathematical description of C in a

1A mixed-integer convex program is a mixed-integer program whose natural continuous relaxation is a
convex optimization problem.
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branch-and-cut framework. This places today’s technology for solving mixed-integer conic
programs at a position where mixed-integer linear programming technology was more than
two decades ago. On a related note, the inherent nonlinear structure of general mixed-integer
conic programs exposes a possible shortcoming of the cutting-plane approach. It is no longer
guaranteed that these problems can be solved to optimality after the addition of a finite
number of linear inequalities. This raises a possible need and potential for nonlinear valid
inequalities which can be represented in computationally tractable forms and used as cutting-
surfaces (or cuts). The development and practical implementation of such cutting-surfaces
in mixed-integer conic programming solvers is a topic of active research.

C1

C2
x
*

d

Figure 1.3: The branch-and-bound method for MICPs.

1.3 Focus of the Dissertation

This dissertation examines general-purpose valid inequalities for mixed-integer linear and
mixed-integer conic programs. Throughout the dissertation, no specific assumptions are
made on the structure of a problem except that it can be represented in one of the forms
(1.1) or (1.3). This makes our results applicable to a large class of optimization problems.
The first part of the dissertation presents structural results on strong cutting-planes in mixed-
integer linear programming. In fact, our framework is significantly more general, and some
of our results also have implications for mixed-integer convex programs and mixed-integer
programs with complementarity constraints. The second part of the dissertation presents
linear valid inequalities for mixed-integer conic programs as well as nonlinear valid inequali-
ties in computationally tractable forms. These can serve as cutting-surfaces in mixed-integer
conic programming solvers. Our results make progress towards a better understanding of
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mixed-integer linear and mixed-integer conic programs and have the potential to lead to the
development of more efficient solution methods for these problem classes.

1.4 Outline of the Dissertation

In the cutting-plane method to mixed-integer linear programming, first the continuous re-
laxation of the problem is solved. If the optimal solution to the continuous relaxation does
not satisfy the integrality constraints, a cut which strictly separates this fractional solution
from the set of feasible solutions is generated and added to the problem formulation. Con-
sider the optimal simplex tableau of the continuous relaxation. Let {xi}ni=1, {sj}kj=1, and
{yj}mj=1 denote the basic, nonbasic continuous, and nonbasic integer variables in this tableau,
respectively. Then the tableau has the form

x =f +RCs+RIy, (1.5a)

x ∈ Zp+ × Rn−p
+ , (1.5b)

s ∈ Rk
+, (1.5c)

y ∈ Zm+ , (1.5d)

where f ∈ Rn is an n-dimensional real vector and RC = [r1
C , . . . , r

k
C ] and RI = [r1

I , . . . , r
m
I ]

are real matrices of dimension n × k and n ×m respectively. The optimal solution to the
continuous relaxation is the basic solution associated with this simplex tableau, which is
x = f , s = 0, y = 0 in our notation. This solution satisfies the constraints of the continuous
relaxation; therefore, f ∈ Rn

+. If f ∈ Zp × Rn−p, then the solution x = f , s = 0, y = 0 also
satisfies the integrality constraints. Otherwise, the solution is fractional, and one would like
to cut it off.

In Chapters 2-4 of this dissertation, we study this separation problem in a more general
light. Let S ⊂ Rn be a nonempty closed set such that f ∈ Rn \ S. We consider the model

x =f +RCs+RIy, (1.6a)

x ∈ S, (1.6b)

s ∈ Rk
+, (1.6c)

y ∈ Zm+ . (1.6d)

The basic solution associated with this tableau, x = f , s = 0, y = 0, is still not feasible for
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(1.6) in this framework. For a better mathematical description of the feasible solution set,
one would like to generate a cut which strictly separates this infeasible basic solution from the
feasible solutions. In particular, one would like to be able to generate a cut for any realization
of the matrices RC and RI . This motivates the definition of “cut-generating functions”:
Consider S ⊂ Rn and f ∈ Rn \ S fixed. We say that the functions ψ, π : Rn → R form a
cut-generating function pair (ψ, π) for (1.6) if the inequality∑k

j=1 ψ(rjC)sj+
∑m
j=1 π(rjI)yj ≥ 1

holds for all feasible solutions (x, s, y) to (1.6) for any number of nonbasic variables k,m ∈ Z+

and any choice of the matrices RC ∈ Rn×k, RI ∈ Rn×m. Notice that this inequality cuts
off the basic solution x = f , s = 0, y = 0. While even the claim that cut-generating
functions exist may sound bold in the first place, such functions underlie the theory of
cutting-planes in mixed-integer linear programming. Some of the most powerful general-
purpose cuts are obtained in this framework. The nonnegativity constraints (1.6c) and
(1.6d) on the nonbasic variables impose a natural hierarchy on cut-generating function pairs
for (1.6). A cut-generating function pair (ψ, π) for (1.6) is said to be minimal if there does
not exist another cut-generating function pair (ψ′, π′) for (1.6) distinct from (ψ, π) such that
ψ(r) ≥ ψ′(r) and π(r) ≥ π′(r) for all r ∈ Rn. Observe that any feasible (x, s, y) which
satisfies ∑k

j=1 ψ
′(rjC)sj +∑m

j=1 π
′(rjI)yj ≥ 1 also satisfies ∑k

j=1 ψ(rjC)sj +∑m
j=1 π(rjI)yj ≥ 1 in

such a case. Gomory and Johnson [72, 73] and Johnson [82] analyzed cut-generating function
pairs for (1.6) when S = Zp × Rn−p. They characterized minimal cut-generating functions
in terms of subadditivity, periodicity, and a certain symmetry condition [72, 82]. Bachem,
Johnson, and Schrader [14] presented a similar characterization for the case S = {0}. The
case S = Zp+×Rn−p

+ is of particular interest in mixed-integer linear programming because of
its relation to (1.5) above. In Chapter 2, we generalize existing characterizations of minimal
cut-generating functions to the case where S ⊂ Rn is a nonempty closed set such that f /∈ S.
Our analysis also exposes shortcomings in the usual definition of minimality for this general
case. To remedy this, we consider stronger notions of minimality and demonstrate how they
impose additional structure on cut-generating functions under varying assumptions on the
set S. This chapter is based on joint work with Gérard Cornuéjols [113].

In Chapter 3, we consider the model (1.6) with only integer nonbasic variables:

x =f +RIy, (1.7a)

x ∈ S, (1.7b)

y ∈ Zm+ . (1.7c)

A cut-generating function for (1.7) is defined as before: A function π : Rn → R is a cut-
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generating function for (1.7) if the inequality ∑m
j=1 π(rjI)yj ≥ 1 holds for all feasible solutions

(x, y) to (1.7) for any positive integer m and matrix RI ∈ Rn×m. A cut-generating function
π : Rn → R for (1.7) is minimal if there does not exist another cut-generating function π′

for (1.7) distinct from π such that π(r) ≥ π′(r) for all r ∈ Rn. A stronger notion than
the minimality of a cut-generating function is its extremality: A cut-generating function π
is said to be extreme if any two cut-generating functions π1, π2 satisfying π = 1

2π1 + 1
2π2

must also satisfy π = π1 = π2. Notice that extreme cut-generating functions are minimal.
While extreme cut-generating functions produce powerful cuts, their structure can be very
complicated. In the case S = Z and f ∈ R \ Z, Gomory and Johnson [73, 74] identified a
“simple” class of extreme cut-generating functions for (1.7): They showed that continuous,
piecewise linear, minimal cut-generating functions with only two distinct slope values are
extreme. In Chapter 3, we establish a similar result for the case S = Z+ and f ∈ R+ \ Z+.
This chapter is based on joint work with Gérard Cornuéjols [113].

In Chapter 4, we consider the model (1.6) with only continuous nonbasic variables:

x =f +RCs, (1.8a)

x ∈ S, (1.8b)

s ∈ Rk
+. (1.8c)

As before, a function ψ : Rn → R is a cut-generating function for (1.8) if the inequality∑k
j=1 ψ(rjC)sj ≥ 1 holds for all feasible solutions (x, s) to (1.8) for any positive integer k and

matrix RC ∈ Rn×k. Conforti et al. [54] showed that cut-generating functions for (1.8) enjoy
significant structure. However, they also gave an example indicating that not all cuts c>s ≥ 1
can be obtained from cut-generating functions in this framework. They conjectured that cut-
generating functions might be sufficient under the natural condition S− f ⊂ coneRC , where
coneRC represents the cone generated by the columns of RC . In Chapter 4, we prove that
this conjecture is true. This justifies the recent research interest in cut-generating functions
for (1.8). This chapter is based on joint work with Gérard Cornuéjols and Laurence Wolsey
[58].

Cut-generating functions provide a means for producing cuts which separate the fractional
solution x = f , s = 0, y = 0 from the feasible solutions to a mixed-integer linear program. An
alternative (and complementary) solution to the same problem comes from Balas’ disjunctive
programming perspective [17, 18]. Suppose again that the basic solution x = f , s = 0, y = 0
does not satisfy the integrality constraints (1.5b). Then there exists an integer basic variable,
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say x1, whose current value f1 is not an integer. Any integer-feasible solution must satisfy
either x1 ≤ bf1c or x1 ≥ df1e; hence, the disjunction x1 ≤ bf1c ∨ x1 ≥ df1e removes the
fractional solution x = f , s = 0, y = 0 from the continuous relaxation while maintaining
all integer-feasible solutions. More generally, integrality constraints on the variables imply
linear two-term disjunctions of the form c>1 x ≥ c1,0 ∨ c>2 x ≥ c2,0 on the feasible solutions
to a mixed-integer linear program. When the halfspaces associated with c>1 x ≥ c1,0 and
c>2 x ≥ c2,0 are opposing and disjoint, such two-term disjunctions are called split disjunctions
[55]. As an example, the disjunction x1 ≤ bf1c ∨ x1 ≥ df1e mentioned above is a split
disjunction. The disjunctive set resulting from a two-term disjunction on the continuous
relaxation of a mixed-integer linear program has a much simpler structure than the feasible
solution set of a mixed-integer linear program; this simple structure can be used to derive
cuts. An inequality that is valid for a disjunction on the continuous relaxation is called a
disjunctive inequality [15, 16]. Disjunctive inequalities have been a principal ingredient in
the practical success of mixed-integer linear programming in the last two decades.

In Chapters 5-8 of this dissertation, we turn to mixed-integer conic programming. In
order to extend our understanding of disjunctive inequalities from mixed-integer linear to
mixed-integer conic programming, we pursue a principled analysis of two-term disjunctions
on affine cross-sections of regular cones. In Chapter 5, we consider a disjunction c>1 x ≥
c1,0 ∨ c>2 x ≥ c2,0 on a general regular cone K ⊂ Rn. Associated with this disjunction, we
define the sets

Ci =
{
x ∈ K : c>i x ≥ ci,0

}
for i ∈ {1, 2}.

Disjunctive sets of the form C1 ∪C2 provide fundamental non-convex relaxations for mixed-
integer conic programs. Convex inequalities that are valid for C1 ∪ C2 can serve as general-
purpose cutting-surfaces in mixed-integer conic programming solvers. To derive the strongest
convex cutting-surfaces from C1∪C2, we analyze the closed convex hull of this set. It is a well-
known fact from convex analysis that the closed convex hull of any set can be described with
only valid linear inequalities. A result of Kılınç-Karzan [87] indicates, however, that conic
minimal valid linear inequalities are all that is needed for a closed convex hull description
of C1 ∪ C2, in addition to the constraint x ∈ K. In the first part of Chapter 5, we present
necessary conditions that are satisfied by all conic minimal and tight valid linear inequalities
for C1 ∪ C2. In the second part, we develop structured nonlinear valid inequalities for
C1 ∪C2 by grouping subsets of valid linear inequalities through conic programming duality.
This yields a family of valid convex inequalities which collectively define the closed convex
hull of C1 ∪C2 in the space of the original variables. We formulate the general form of these
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inequalities and analyze their structure in detail. Under certain conditions on the choice of
disjunction, we can show that a single inequality from this family defines the closed convex
hull of C1 ∪C2. These conditions are satisfied, for example, in the case of split disjunctions.
This chapter is based on joint work with Fatma Kılınç-Karzan [90, 91, 115].

In Chapters 6 and 7, we extend the results of Chapter 5 to the cases where K is a
direct product of second order cones and nonnegative rays and where K = Sn+, respectively.
Disjunctions on these cones deserve special attention because of their role as fundamental
relaxations for mixed-integer second-order cone and mixed-integer semidefinite programs.
In Chapter 6, we develop closed-form expressions for the nonlinear valid inequalities of
Chapter 5 when K is a direct product of second-order cones and nonnegative rays. These
inequalities can always be represented in second-order cone form in a lifted space with few
additional variables. In the case K = Ln, the additional variables can be eliminated if
the disjunction satisfies a certain disjointness condition, resulting in a valid second-order
cone inequality for C1 ∪ C2 in the space of the original variables. As a consequence of
our earlier results in Chapter 5, the closed convex hull of C1 ∪ C2 can be described with
the constraint x ∈ K and a single closed-form convex inequality for certain disjunctions.
In general, however, a complete description may require every inequality from our family
of nonlinear inequalities. In the case K = Ln, we outline a procedure to reach explicit
closed convex hull descriptions of C1 ∪C2. Our results on two-term disjunctions on a single
second-order cone generalize related results on split disjunctions from the literature [8, 97].
Chapter 6 is based on joint work with Fatma Kılınç-Karzan [90, 91]. In Chapter 7, we develop
closed-form expressions for the nonlinear inequalities of Chapter 5 when K = Sn+. For a class
of elementary disjunctions, we demonstrate that these inequalities can be expressed in a
simple second-order cone form. For more general disjunctions, we present several techniques
to generate low-complexity convex valid inequalities for C1∪C2. Chapter 7 is based on joint
work with Fatma Kılınç-Karzan [115].

In Chapter 8, we consider homogeneous two-term disjunctions on the second-order cone
and general two-term disjunctions on affine cross-sections of the second-order cone. First,
we demonstrate that a convex inequality of the form developed in Chapter 6 defines the
convex hull of all homogeneous two-term disjunctions on the second-order cone. Second, we
show that such an inequality characterizes the closed convex hull of two-term disjunctions
on affine cross-sections of the second-order cone under certain conditions. These conditions
are satisfied in particular by all two-term disjunctions on ellipsoids and paraboloids, a large
class of two-term disjunctions on hyperboloids, and all split disjunctions on all cross-sections
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of the second-order cone. The inequalities can be represented in second-order cone form
in the space of the original variables if the disjunction satisfies an appropriate disjointness
condition in either case. Our results generalize related results on specific classes of two-term
disjunctions on cross-sections of the second-order cone from the literature [34, 59, 97]. This
chapter is based on joint work with Gérard Cornuéjols [114].

We conclude the dissertation with a discussion of our results and promising research
directions in Chapter 9.

The remainder of this dissertation assumes a fundamental knowledge of optimization
theory. Explicit references to specific results are provided as needed. The necessary back-
ground on integer programming, conic programming, and convex analysis can be found in
the textbooks [53], [35], and [77, 103], respectively.





Chapter 2

Minimal Cut-Generating Functions for Integer
Variables

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols [113].

2.1 Introduction

2.1.1 Motivation

An ongoing debate in integer linear programming centers on the value of general-purpose
cutting-planes (Gomory mixed-integer cuts are a famous example) versus facet-defining in-
equalities for special problem structures (for example, comb inequalities for the traveling
salesman problem). Both have been successful in practice. In this chapter, we focus on
the former type of cuts, which are attractive for their wide applicability. Nowadays, state-
of-the-art integer programming solvers routinely use several classes of general-purpose cuts.
Recently, there has been a renewed interest in the theory of general-purpose cuts. This was
sparked by a beautiful paper of Andersen, Louveaux, Weismantel, and Wolsey [9] on 2-row
cuts which illuminated their connection to lattice-free convex sets. This line of research fo-
cused on cut coefficients for the continuous nonbasic variables in a tableau form, and lifting
properties for the integer nonbasic variables [21, 26, 42, 51, 54, 60, 61]. Decades earlier,
Gomory and Johnson [72, 73] and Johnson [82] had studied cut coefficients for the integer
nonbasic variables directly. Although their characterization involves concepts that are not
always easy to verify algorithmically (such as subadditivity), it provides a useful framework
for the study of cutting-planes. Jeroslow [80], Blair [39], and Bachem, Johnson, and Schrader

17
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[14] extended the work of Gomory and Johnson on minimal cuts for the corner relaxation
to general integer linear programs. In this chapter, we pursue the study of general-purpose
cuts in integer programming, further extending the framework introduced by Gomory and
Johnson. Our focus is also on the cut coefficients of the integer variables.

Consider a pure integer linear program and the optimal simplex tableau of its continuous
relaxation. We select n rows of the tableau, corresponding to n basic variables {xi}ni=1. Let
{yj}mj=1 denote the nonbasic variables. The tableau restricted to these n rows is of the form

x =f +Ry, (2.1a)

x ∈ Zn+, (2.1b)

y ∈ Zm+ , (2.1c)

where f ∈ Rn
+ and R = [r1, . . . , rm] is a real n ×m matrix. We assume f /∈ Zn; therefore,

the basic solution x = f , y = 0 is not feasible. We would like to generate valid inequalities
which cut off this infeasible solution.

A function π : Rn → R is a cut-generating function for (2.1) if the inequality∑m
j=1 π(rj)yj ≥ 1 holds for all feasible solutions (x, y) to (2.1) for any possible number m of

nonbasic variables and any choice of the matrix R ∈ Rn×m. Gomory and Johnson [72, 73]
and Johnson [82] analyzed such functions for the corner relaxation of (2.1) where the con-
straint (2.1b) is relaxed into x ∈ Zn. They also introduced the infinite group relaxation as a
master model for all corner relaxations:

x =f +
∑
r∈Rn

ryr, (2.2a)

x ∈ Zn, (2.2b)

yr ∈ Z+ ∀r ∈ Rn, (2.2c)

y has finite support. (2.2d)

Here an infinite-dimensional vector is said to have finite support if it has a finite number of
nonzero entries.

Let S ⊂ Rn be any nonempty subset of the Euclidean space. In this chapter, we consider
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the following generalization of the Gomory-Johnson model:

x =f +
∑
r∈Rn

ryr, (2.3a)

x ∈ S, (2.3b)

yr ∈ Z+ ∀r ∈ Rn, (2.3c)

y has finite support. (2.3d)

This flexibility in the choice of S ⊂ Rn makes (2.3) a relevant model for i) integer convex
and conic programs, and ii) integer programs with complementarity constraints, as well as
integer linear programs; see [54, Section 1.1]. The Gomory-Johnson model (2.2) is the special
case of (2.3) where S = Zn. The model of Bachem et al. [14] corresponds to the case
S = {0}. The case where S = Zn+, or more generally where S ⊂ Rn is the set of integer
points in a full-dimensional rational polyhedron, is of particular interest in integer linear
programming due to its connection to (2.1) above. It is a main focus of this chapter. In
the context of mixed-integer linear programming, the model (2.3) with continuous as well as
integer variables is also interesting; we discuss it in Section 2.3.4 (where we allow continuous
basic variables) and Section 2.5 (where we also allow continuous nonbasic variables).

Note that (2.3) is nonempty since for any x̄ ∈ S, the solution x = x̄, yx̄−f = 1, and
yr = 0 for all r 6= x̄− f is feasible. In the remainder of this chapter, we assume f ∈ Rn \ S.
Therefore, the basic solution x = f , y = 0 is not feasible to (2.3). We are interested in
inequalities which are valid for (2.3) and which cut off the above infeasible basic solution.

We can generalize the notion of cut-generating function as follows. A function π : Rn → R
is a cut-generating function for (2.3) if the inequality ∑r∈Rn π(r)yr ≥ 1 holds for all feasible
solutions (x, y) to (2.3). For example, the function that takes the value 1 for all r ∈ Rn is
a cut-generating function because every feasible solution of (2.3) satisfies yr ≥ 1 for at least
one r ∈ Rn. When S = Zn+, we recover the earlier definition of a cut-generating function for
(2.1).

A key feature which distinguishes the cut-generating functions for model (2.3) from those
that were studied by Gomory and Johnson for model (2.2) is that they need not be non-
negative even if we assume continuity. In fact, they can take any real value, positive and
negative, as the following examples illustrate.

Example 2.1. Consider the model (2.3) where n = 1, 0 < f < 1, and S = Z+. Cornuéjols,
Kis, and Molinaro [57] showed that, for 0 < α ≤ 1, the following family of functions π1

α :
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R→ R are cut-generating functions:

π1
α(r) = min

{
r − bαrc

1− f ,
−r
f

+ dαre(1− αf)
αf(1− f)

}
.

Note that when α = 1, the function π1
1(r) = min

{
r−brc
1−f ,

dre−r
f

}
is the well-known Gomory

function. This function is periodic and takes its values in the interval [0, 1]. However, when
α < 1, this is not the case any more: The function π1

α takes all real values between −∞ and
+∞ and is not periodic in the usual sense. See Figure 2.1.

0

1

-1 −f rr

π1
1

-1 0 1

1

−f1/α

for α < 1π1
α

1

Figure 2.1: Two cut-generating functions: π1
α for some α < 1 and π1

1.

The next example is mostly of theoretical interest. It illustrates another property of
model (2.3) that does not arise in the Gomory-Johnson model (2.2).

Example 2.2. Consider the model (2.3) where n = 1, f > 0, and S = {0}. In this case, (2.3)
reduces to the constraints ∑r∈R ryr = −f , yr ∈ Z+ for r ∈ R, and y has finite support. For
any α ≤ − 1

f
< 0, the linear function π2

α : R → R defined as π2
α(r) = αr is a cut-generating

function. This can be seen by observing that ∑r∈R π
2
α(r)yr = ∑

r∈R(αr)yr = α
∑
r∈R ryr =

−αf ≥ 1 for any y feasible to (2.3).

2.1.2 Related Work

In this section, we provide a brief overview of existing work. We comment on the connections
between our results and other results from the literature further throughout the chapter.

Gomory and Johnson [72, 73] introduced the infinite group relaxation (2.2) as a master
framework for research into general-purpose cuts in integer linear programming. It has since
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become a central problem in integer linear programming and a fertile ground for research.
The reader is referred to the excellent surveys [28–30, 52, 102] for extensive accounts of classi-
cal as well as recent results on the infinite group relaxation and its variants. In their seminal
papers [72, 82], Gomory and Johnson investigated minimal cut-generating functions for (2.2);
these are cut-generating functions π such that there does not exist another cut-generating
function π′ distinct from π which satisfies π(r) ≥ π′(r) for all r ∈ Rn. Gomory and Johnson
characterized minimal cut-generating functions for (2.2) in terms of subadditivity, periodic-
ity with respect to Zn, and a certain symmetry condition. We provide a precise statement
of their result in Section 2.3.3. Bachem et al. [14] presented a similar characterization for
(2.3) in the case S = {0}.

In a parallel stream of literature, Jeroslow and Blair studied minimal valid inequalities for
an integer linear program with fixed data. In this framework, minimality of a valid inequality
is defined for the particular problem instance under consideration, rather than for a master
problem or a class of problems. Jeroslow [80] characterized minimal valid inequalities for
integer linear programs with bounded feasible regions in terms of their value functions. Blair
[39] extended this characterization to integer linear programs with rational data. Johnson
[83] analyzed minimal valid inequalities for disjunctive sets. In all of these models, the set
of feasible solutions is contained in the nonnegative orthant, and the minimality of a valid
inequality is defined with respect to the nonnegative orthant as well. Recently, on a model
for disjunctive conic programs, Kılınç-Karzan [87] generalized this notion broadly by defining
and analyzing the minimality of a valid inequality with respect to an arbitrary regular cone
which contains the feasible solution set. She also showed that these conic minimal inequalities
describe the closed convex hull of the disjunctive conic set together with the cone constraint
under a technical condition.

2.1.3 Notation and Terminology

Let Z++ be the set of positive integers. Let [k] = {1, . . . , k} for k ∈ Z++. For i ∈ [n], the
notation ei denotes the i-th standard unit vector in Rn. We let clV and convV represent
the closure and closed convex hull of a set V ∈ Rn, respectively. We use recV and linV to
refer to the recession cone and lineality space of a closed convex set V ⊂ Rn, respectively.

We say that a function π : Rn → R is subadditive if π(r1)+π(r2) ≥ π(r1+r2) for all r1, r2 ∈
Rn. We say that π is symmetric or satisfies the symmetry condition if π(r) + π(−f − r) = 1
for all r ∈ Rn. We say that π is periodic with respect to Zn if π(r) = π(r +w) for all r ∈ Rn
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and w ∈ Zn, and it is nondecreasing with respect to S ⊂ Rn if π(r) ≤ π(r+w) for all r ∈ Rn

and w ∈ S.

2.1.4 Outline of the Chapter

Minimal Cut-Generating Functions

Throughout the chapter, we consider the model (2.3) under the running assumptions that
S 6= ∅ and f ∈ Rn\S. A cut-generating function π′ for (2.3) dominates another cut-generating
function π if π ≥ π′, that is, π(r) ≥ π′(r) for all r ∈ Rn. A cut-generating function π is
minimal if there is no cut-generating function π′ distinct from π that dominates π. When
n = 1, S = Z+, and 0 < f < 1, the cut-generating functions π1

α of Example 2.1 are minimal
[57]. Later in Section 2.1.4, we will show that the linear cut-generating functions π2

α of
Example 2.2 are also minimal. The following theorem shows that minimal cut-generating
functions for (2.3) indeed always exist. This result also appears in a recent paper of Basu
and Paat [21].

Theorem 2.1. Every cut-generating function for (2.3) is dominated by a minimal cut-
generating function.

Proof. Let π be a cut-generating function for (2.3). Denote by Π the set of cut-generating
functions π′ that dominate π. Let {π`}`∈L ⊂ Π be a nonempty family of cut-generating
functions such that either π`′ ≤ π`′′ or π`′ ≥ π`′′ for any pair `′, `′′ ∈ L. To prove the
claim, it is enough to show according to Zorn’s Lemma (see, e.g., [49]) that there exists a
cut-generating function that is a lower bound on {π`}`∈L.

Define the function π̄ : Rn → R ∪ {−∞} as π̄(r) = inf`{π`(r) : ` ∈ L}. Clearly, the
function π̄ is a lower bound on {π`}`∈L. We show that it is a cut-generating function for (2.3).
First we prove that π̄ is finite everywhere. Choose x̄ ∈ S. For any r̄ ∈ Rn, let ȳ be defined
as ȳr̄ = 1, ȳx̄−f−r̄ = 1, and ȳr = 0 otherwise. The solution (x̄, ȳ) is feasible to (2.3). For any
` ∈ L, the cut-generating function π` satisfies

∑
r∈Rn π`(r)ȳr = π`(r̄) + π`(x̄ − f − r̄) ≥ 1.

Moreover, π` ≤ π because π` ∈ Π; hence,

π`(r̄) ≥ 1− π`(x̄− f − r̄) ≥ 1− π(x̄− f − r̄).

Therefore, π̄(r̄) ≥ 1 − π(x̄ − f − r̄). This shows that π̄(r) is finite for all r ∈ Rn. Now
consider any feasible solution (x, y) of (2.3). Note that {π`}`∈L is a totally ordered set, π̄ is
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finite everywhere, and only a finite number of the terms yr are nonzero. Combining these
facts, we get

∑
r∈Rn

π̄(r)yr =
∑
r∈Rn

inf
`

{
π`(r) : ` ∈ L

}
yr = inf

`

∑
r∈Rn

π`(r)yr : ` ∈ L

 ≥ 1.

This proves that π̄ is a cut-generating function.

Theorem 2.1 shows that there always exists a minimal cut-generating function which
separates the infeasible basic solution x = f , y = 0 from the feasible solutions to (2.3)
strictly. Hence, when we search for a cut-generating function which will cut off x = f ,
y = 0, we can restrict our attention to minimal cut-generating functions without any loss of
generality.

When S = Zn, cut-generating functions are traditionally assumed to be nonnegative. In
this setting, Gomory and Johnson showed that a function π : Rn → R+ is a minimal cut-
generating function if and only if π(0) = 0, π is subadditive, symmetric, and periodic with
respect to Zn [52, 72, 82]. However, for general S ⊂ Rn, Examples 2.1 and 2.2 show that
minimal cut-generating functions do not necessarily satisfy periodicity with respect to Zn,
nor symmetry. We define a condition, which we call the generalized symmetry condition, to
replace symmetry and periodicity in the characterization of minimal cut-generating functions
for (2.3). A function π : Rn → R is said to satisfy the generalized symmetry condition if

π(r) = sup
x,k

{
1− π(x− f − kr)

k
: x ∈ S, k ∈ Z++

}
for all r ∈ Rn. (2.4)

This condition also plays a central role in the work of Bachem et al. [14]. The functions
π1
α and π2

α of Examples 2.1 and 2.2 satisfy the generalized symmetry condition. We briefly
outline the proof in each case.

Example 2.1 continued. Consider the function π1
α of Example 2.1. The inequality k̄π1

α(r̄)+
π1
α(x̄− f − k̄r̄) ≥ 1 holds for any r̄ ∈ R, k̄ ∈ Z++, and x̄ ∈ Z+ because π1

α is a cut-generating
function [57] and the solution x = x̄, yr̄ = k̄, yx̄−f−k̄r̄ = 1, and yr = 0 otherwise is feasible
to (2.3). Hence, π1

α(r) ≥ 1
k
(1 − π1

α(x − f − kr)) for any r ∈ R, k ∈ Z++, and x ∈ Z+.
Furthermore, the graph of π1

α is symmetric relative to the point (−f/2, 1/2). In other words,
the symmetry condition holds: π1

α(r) = 1 − π1
α(−f − r) for any r ∈ R. Therefore, for any
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r ∈ R we get

π1
α(r) = 1− π1

α(−f − r) ≤ sup
x,k

{
1− π1

α(x− f − kr)
k

: x ∈ Z+, k ∈ Z++

}
≤ π1

α(r).

This shows that π1
α satisfies the generalized symmetry condition.

Example 2.2 continued. Consider the function π2
α of Example 2.2. Because S = {0}, the

term x disappears from (2.4). Using α ≤ − 1
f
, for any r ∈ R we get

sup
k∈Z++

{
1− π2

α(−f − kr)
k

}
= αr + sup

k∈Z++

1 + αf

k
= αr = π2

α(r).

This shows that π2
α satisfies the generalized symmetry condition.

Our main result about minimal cut-generating functions for (2.3) is the following theorem
which holds for any nonempty S ⊂ Rn. This result will be proved in Section 2.2.

Theorem 2.2. Let π : Rn → R. The function π is a minimal cut-generating function
for (2.3) if and only if π(0) = 0, π is subadditive and satisfies the generalized symmetry
condition.

Strengthening the Notion of Minimality

The notion of minimality that we defined above can be unsatisfactory for certain choices
of S ⊂ Rn. We illustrate this in the next proposition and remark. This shortfall in the
traditional definition of minimality was also noted in [87, Example 7 and Proposition 4].

Proposition 2.3. If a cut-generating function for (2.3) is linear, then it is minimal.

Proof. Let π be a linear cut-generating function for (2.3). By Theorem 2.1, there exists a
minimal cut-generating function π′ such that π′ ≤ π. By Theorem 2.2, π′ is subadditive and
π′(0) = 0. For any r ∈ Rn, the inequality π′ ≤ π implies π(r) + π(−r) ≥ π′(r) + π′(−r) ≥
π′(0) = 0 = π(r) + π(−r) where the last equality follows from the linearity of π. Hence,
π′ = π.

Linear cut-generating functions are closely related to linear inequalities which strictly
separate the point f from the set S. To see this, let α ∈ Rn, and consider a linear function π :
Rn → R such that π(r) = α>r. For any (x, y) feasible to (2.3), the equation ∑r∈Rn π(r)yr =∑
r∈Rn α

>ryr = α>(x− f) holds. Thus, π is a cut-generating function for (2.3) if and only if
α>(x− f) ≥ 1 holds for all x ∈ S.
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Remark 2.4. For a minimal cut-generating function π, it is possible that the inequality∑
r∈Rn π(r)yr ≥ 1 is implied by an inequality ∑r∈Rn π

′(r)yr ≥ 1 arising from some other
cut-generating function π′. Indeed, for n = 1, f > 0, and S = {0}, consider again the cut-
generating functions π2

α of Example 2.2 with α ≤ − 1
f
. These are minimal by Proposition 2.3.

However, the inequalities |α|f ∑r∈R
−r
f
yr ≥ 1 generated from π2

α for α < − 1
f
are implied by

the inequality ∑r∈R
−r
f
yr ≥ 1 generated for α = − 1

f
.

Therefore, it makes sense to define a stronger notion of minimality as follows: A cut-
generating function π′ for (2.3) implies another cut-generating function π via scaling if there
exists β ≥ 1 such that π ≥ βπ′. Note that when the function π′ is nonnegative, this notion
is identical to the notion of domination introduced earlier; however, the two notions are
distinct when π′ can take negative values. A cut-generating function π is restricted minimal
if there is no cut-generating function π′ distinct from π that implies π via scaling. This
was the notion of minimality used by Jeroslow [80], Blair [39], and Bachem et al. [14]; they
just called it minimality. In this chapter, we call it restricted minimality to distinguish it
from the minimality notion introduced in Section 2.1.4. The next proposition shows that
restricted minimal cut-generating functions are minimal cut-generating functions which enjoy
an additional “tightness” property.

Proposition 2.5. A cut-generating function π for (2.3) is restricted minimal if and only if
it is minimal and infx{π(x− f) : x ∈ S} = 1.

The proof of this proposition will be presented at the end of Section 2.2.

The next proposition shows that there always exists a restricted minimal cut-generating
function which separates the infeasible basic solution x = f , y = 0 from the feasible solutions
to (2.3) strictly. As a corollary, we obtain that restricted minimal cut-generating functions
always exist.

Proposition 2.6. Every cut-generating function for (2.3) is implied via scaling by a re-
stricted minimal cut-generating function.

Proof. Let π be a cut-generating function. Let µ = infx,y{
∑
r∈Rn π(r)yr :

(x, y) satisfies (2.3)}; note that µ ≥ 1. Define π′ = π
µ
. The function π′ is also a cut-

generating function, and it satisfies infx,y{
∑
r∈Rn π

′(r)yr : (x, y) satisfies (2.3)} = 1. By
Theorem 2.1, there exists a minimal cut-generating function π∗ that dominates π′. The
function π∗ implies π via scaling since µπ∗ ≤ µπ′ = π. We claim that π∗ is restricted
minimal. First note that infx,y{

∑
r∈Rn π

∗(r)yr : (x, y) satisfies (2.3)} = 1. Now consider
β ≥ 1 and a cut-generating function π∗∗ such that π∗ ≥ βπ∗∗. We must have β = 1
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since infx,y{
∑
r∈Rn π

∗∗(r)yr : (x, y) satisfies (2.3)} ≥ 1. Then because π∗ is minimal, we get
π∗∗ = π∗. This proves the claim.

When S = {0}, Bachem et al. [14] showed that restricted minimal cut-generating func-
tions for (2.3) satisfy the symmetry condition. This can be generalized as in the next theorem,
which we prove in Section 2.3.

Theorem 2.7. Let K ⊂ Rn be a closed convex cone and S = K ∩ (Zp × Rn−p). Let π :
Rn → R. The function π is a restricted minimal cut-generating function for (2.3) if and
only if π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies the symmetry
condition.

The notion of minimality can be strengthened even further if we take into consideration
the linear inequalities that are valid for S. Let α>(x − f) ≥ α0 be valid for S. Because
f+∑r∈Rn ryr = x ∈ S for any (x, y) feasible to (2.3), such a valid inequality can be translated
to the space of the nonbasic variables y as ∑r∈Rn α

>ryr ≥ α0. We say that a cut-generating
function π′ for (2.3) implies another cut-generating function π for (2.3) if there exists a valid
inequality α>(x−f) ≥ α0 for S and β ≥ 0 such that α0 +β ≥ 1 and π(r) ≥ α>r+βπ′(r) for
all r ∈ Rn. This definition makes sense because if ∑r∈Rn π

′(r)yr ≥ 1 is a valid inequality for
(2.3), then∑r∈Rn π(r)yr ≥

∑
r∈Rn α

>ryr+β∑r∈Rn π
′(r)yr ≥ α0 +β ≥ 1 is also valid for (2.3).

When conv(S) = Rn, the only inequalities that are valid for S are those that have α = 0 and
α0 ≤ 0; in this case, a cut-generating function may imply another only via scaling. However,
the two notions may be different when conv(S) ( Rn. We say that a cut-generating function
π is strongly minimal if there does not exist another cut-generating function π′ distinct
from π that implies π. Note that strongly minimal cut-generating functions are restricted
minimal. Indeed, if π is a cut-generating function that is not restricted minimal, there exists
a cut-generating function π′ 6= π and β ≥ 1 such that π ≥ βπ′; but then π′ implies π by
taking α = 0 and α0 = 0 which shows that π is not strongly minimal. For a fixed integer
programming instance, the three definitions of minimality that we explore in this chapter can
be represented as minimality with respect to a cone in a lifted space in the framework of [87].
We comment on this connection further in Section 2.6. In the setting of the master model
(2.3), our results demonstrate how strengthening the notion of minimality imposes additional
structure on cut-generating functions. See also [87, Remark 7] for a related discussion.

In Section 2.4.1, we prove the following theorem about strongly minimal cut-generating
functions for (2.3) when S = Zp+ × Rn−p

+ .

Theorem 2.8. Let S = Zp+ × Rn−p
+ and f ∈ Rn

+ \ S. Let π : Rn → R. The function π is a
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strongly minimal cut-generating function for (2.3) if and only if π(0) = 0, π(−ei) = 0 for
all i ∈ [p] and lim supε→0+

π(−εei)
ε

= 0 for all i ∈ [n] \ [p], π is subadditive and satisfies the
symmetry condition.

In Section 2.4.2, we give an example showing that strongly minimal cut-generating
functions do not always exist. On the other hand, when the closed convex hull of S is a
full-dimensional polyhedron, we can show that there always exists a strongly minimal cut-
generating function which separates the infeasible basic solution x = f , y = 0 from the
feasible solutions to (2.3) strictly. As a corollary, this shows that strongly minimal cut-
generating functions always exist in this case.

Theorem 2.9. Suppose the closed convex hull of S ⊂ Rn is a full-dimensional polyhedron.
Let f ∈ conv S. Then every cut-generating function for (2.3) is implied by a strongly minimal
cut-generating function.

The proof of this theorem will be given in Section 2.4.2.

Section 2.5 extends some of the earlier results to a mixed-integer model where nonbasic
continuous and nonbasic integer variables are both present.

2.2 Characterization of Minimal Cut-Generating
Functions

In this section, we characterize minimal cut-generating functions for (2.3) under the basic
assumption that S 6= ∅. In the next three lemmas, we state necessary conditions that are
satisfied by all minimal cut-generating functions.

Lemma 2.10. If π is a minimal cut-generating function for (2.3), then π(0) = 0.

Proof. Suppose π(0) < 0, and let (x̄, ȳ) be a feasible solution of (2.3). Then there exists some
k̄ ∈ Z++ such that π(0)k̄ < 1 −∑r∈Rn\{0} π(r)ȳr since the right-hand side of the inequality
is a constant. Define ỹ as ỹ0 = k̄ and ỹr = ȳr for all r 6= 0. Note that (x̄, ỹ) is a feasible
solution of (2.3). This contradicts the assumption that π is a cut-generating function since∑
r∈Rn π(r)ỹr < 1. Thus, π(0) ≥ 0.

Let (x̄, ȳ) be a feasible solution of (2.3), and consider ỹ defined as ỹ0 = 0 and ỹr = ȳr

for all r 6= 0. Then (x̄, ỹ) is a feasible solution of (2.3). Now define the function π′ as
π′(0) = 0 and π′(r) = π(r) for all r 6= 0. Observe that ∑r∈Rn π

′(r)ȳr = ∑
r∈Rn π(r)ỹr ≥ 1
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where the inequality follows because π is a cut-generating function. This shows that π′ is
also a cut-generating function for (2.3). Since π is minimal and π′ ≤ π, we must have π = π′

and π(0) = 0.

The proof of the next lemma is similar to the ones presented by Gomory and Johnson
[72, Theorem 1.2] for the case S = Z and Johnson [82, Theorem 3.3] for the case S = Zn. It
is included here for the sake of completeness.

Lemma 2.11. If π is a minimal cut-generating function for (2.3), then π is subadditive.

Proof. Let r1, r2 ∈ Rn. We need to show π(r1) + π(r2) ≥ π(r1 + r2). This inequality holds
when r1 = 0 or r2 = 0 by Lemma 2.10.

Assume now that r1 6= 0 and r2 6= 0. Define the function π′ as π′(r1 + r2) = π(r1)+π(r2)
and π′(r) = π(r) for r 6= r1 + r2. We show that π′ is a cut-generating function. Since π is
minimal, it then follows that π(r1 + r2) ≤ π′(r1 + r2) = π(r1) + π(r2).

Consider any feasible solution (x̄, ȳ) to (2.3). Define ỹ as ỹr1 = ȳr1 + ȳr1+r2 , ỹr2 =
ȳr2 + ȳr1+r2 , ỹr1+r2 = 0, and ỹr = ȳr otherwise. Note that ỹ is well-defined since r1 6= 0
and r2 6= 0. It is easy to verify that ỹ has finite support, ỹr ∈ Z+ for all r ∈ Rn, and∑
r∈Rn rỹr = ∑

r∈Rn rȳr. These together show that (x̄, ỹ) is a feasible solution of (2.3).
Furthermore, ∑r∈Rn π

′(r)ȳr = ∑
r∈Rn π(r)ỹr ≥ 1 where the inequality holds because π is a

cut-generating function. This proves that π′ is a cut-generating function.

The next lemma shows that all minimal cut-generating functions satisfy the generalized
symmetry condition (2.4). This generalizes a result of Bachem et al. [14] for the case S = {0}.

Lemma 2.12. If π is a minimal cut-generating function for (2.3), then it satisfies the gen-
eralized symmetry condition.

Proof. Let r̄ ∈ Rn. For any x̄ ∈ S and k̄ ∈ Z++, define ȳ as ȳr̄ = k̄, ȳx̄−f−k̄r̄ = 1, and
ȳr = 0 otherwise. Since (x̄, ȳ) is feasible to (2.3) and π is a cut-generating function for (2.3),
the inequality π(r̄) ≥ 1

k̄
(1− π(x̄− f − k̄r̄)) holds. Then the definition of supremum implies

π(r̄) ≥ supx,k
{

1
k
(1 − π(x − f − kr̄)) : x ∈ S, k ∈ Z++

}
. Note that the value on the right is

bounded from above since π is a real-valued function and the left-hand side is finite.

Let the function ρ : Rn → R be defined as ρ(r) = supx,k
{

1
k
(1 − π(x − f − kr)) : x ∈

S, k ∈ Z++
}
. Note that π ≥ ρ from the first part. Now suppose π does not satisfy the

generalized symmetry condition. Then there exists r̃ ∈ Rn such that π(r̃) > ρ(r̃). Define
the function π′ as π′(r̃) = ρ(r̃) and π′(r) = π(r) for all r 6= r̃. Consider any feasible solution
(x̃, ỹ) to (2.3). If ỹr̃ = 0, the inequality ∑r∈Rn π

′(r)ỹr = ∑
r∈Rn π(r)ỹr ≥ 1 holds. Otherwise,
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ỹr̃ ≥ 1, and π′(r̃)ỹr̃ + ∑
r∈Rn\{r̃} π

′(r)ỹr ≥ 1 − π(x̃ − f − ỹr̃r̃) + ∑
r∈Rn\{r̃} π(r)ỹr ≥ 1 where

the first inequality follows from π′(r̃) = ρ(r̃) ≥ 1
ỹr̃

(1− π(x̃− f − ỹr̃r̃)) and the second from∑
r∈Rn\{r̃} rỹr = x̃− f − ỹr̃r̃ and the subadditivity of π. Thus, π′ is a cut-generating function

for (2.3). Since π′ ≤ π and π′(r̃) = ρ(r̃) < π(r̃), this contradicts the minimality of π.

We now prove Theorem 2.2 stated in the introduction.

Theorem 2.2. Let π : Rn → R. The function π is a minimal cut-generating function
for (2.3) if and only if π(0) = 0, π is subadditive and satisfies the generalized symmetry
condition.

Proof. The necessity of these conditions has been proven in Lemmas 2.10, 2.11, and 2.12.
We now prove their sufficiency.

Assume that π(0) = 0, π is subadditive and satisfies the generalized symmetry condition.
Since π(0) = 0, the generalized symmetry condition implies π(x̄ − f) ≥ 1 for all x̄ ∈ S by
taking r = 0, x = x̄, and k = 1 in (2.4). We first show that π is a cut-generating function for
(2.3). To see this, note that any feasible solution (x̄, ȳ) for (2.3) satisfies ∑r∈Rn rȳr = x̄− f ,
and using the subadditivity of π, we can write ∑r∈Rn π(r)ȳr ≥ π(∑r∈Rn rȳr) = π(x̄− f) ≥ 1.

If π is not minimal, Theorem 2.1 indicates that there exists a minimal cut-generating
function π′ such that π′ ≤ π and π′(r̄) < π(r̄) for some r̄ ∈ Rn. Let ε = π(r̄) − π′(r̄).
Because π satisfies the generalized symmetry condition, there exists x̄ ∈ S and k̄ ∈ Z++

such that π(r̄) − ε
2 ≤

1
k̄
(1 − π(x̄ − f − k̄r̄)). Rearranging the terms and using π′ ≤ π and

π(r̄)− π′(r̄) = ε, we obtain

1 ≥ k̄
(
π(r̄)− ε

2

)
+ π(x̄− f − k̄r̄) ≥ k̄

(
π′(r̄) + ε

2

)
+ π′(x̄− f − k̄r̄),

which implies k̄π′(r̄) + π′(x̄− f − k̄r̄) < 1. This contradicts the hypothesis that π′ is a cut-
generating function because the solution x = x̄, ȳr̄ = k̄, ȳx̄−f−k̄r̄ = 1, and ȳr = 0 otherwise
is feasible to (2.3).

Next we state two properties of subadditive functions that will be used later in the
chapter. Lemma 2.13 below shows that if the supremum is achieved in the generalized
symmetry condition, it must be achieved for k = 1.

Lemma 2.13. Let π : Rn → R be a subadditive function which satisfies the generalized
symmetry condition. Suppose r ∈ Rn is a point for which the supremum in (2.4) is achieved.
Then the supremum is achieved when k = 1, that is, π(r) = 1−π(x− f − r) for some x ∈ S.
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Proof. Consider a vector r ∈ Rn for which the supremum in (2.4) is achieved. Namely, there
exists x ∈ S and k ∈ Z++ such that π(r) = 1

k
(1− π(x− f − kr)). This equation can be

rewritten as
kπ(r) + π(x− f − kr) = 1. (2.5)

We also have kπ(r) + π(x− f − kr) = π(r) + (k − 1)π(r) + π (x− f − kr) ≥ π(r) + π(x−
f − r) ≥ 1, where the first inequality follows from the subadditivity of π and the second
from π(r) ≥ 1− π(x− f − r) according to the generalized symmetry condition. Using (2.5),
we see that equality holds throughout. In particular, π(r) + π(x − f − r) = 1. Thus, the
supremum in (2.4) is achieved when k = 1.

A subadditive function π : Rn → R satisfies π(r) ≥ π(kr)
k

for all r ∈ Rn and k ∈ Z++.
Hence, it satisfies π(r) ≥ supk∈Z++

π(kr)
k

. In fact, π(r) = supk∈Z++
π(kr)
k

because equality
holds for k = 1. When π(r) = lim supk∈Z++,k→∞

π(kr)
k

for some r ∈ Rn, Bachem et al. [14]
show that π is actually linear in k ∈ Z++.

Lemma 2.14 (Bachem et al. [14]). If a subadditive function π : Rn → R satisfies π(r) =
lim supk∈Z++,k→∞

π(kr)
k

for some r ∈ Rn, then π(kr) = kπ(r) for all k ∈ Z++.

We close this section with a proof of Proposition 2.5 stated in the introduction.

Proposition 2.5. A cut-generating function π for (2.3) is restricted minimal if and only if
it is minimal and infx{π(x− f) : x ∈ S} = 1.

Proof. If π is a cut-generating function, then π(x̄− f) ≥ 1 for any x̄ ∈ S. To see this, note
that the solution x = x̄, yx̄−f = 1, and yr = 0 for all r 6= x̄ − f is feasible to (2.3) and the
inequality ∑r∈Rn π(r)yr ≥ 1 reduces to π(x̄− f) ≥ 1.

To prove the “only if” part, let π be a restricted minimal cut-generating function. Then
there does not exist any cut-generating function π′ 6= π that implies π via scaling by β ≥ 1.
By taking β = 1, we note that no cut-generating function π′ 6= π dominates π. Thus, π is
minimal. Let ν = infx{π(x− f) : x ∈ S}. Our observation above indicates ν ≥ 1. Suppose
ν > 1, and let π′ = π

ν
. For any feasible solution (x, y) to (2.3), the inequality∑r∈Rn π

′(r)yr =
1
ν

∑
r∈Rn π(r)yr ≥ 1

ν
π(∑r∈Rn ryr) = 1

ν
π(x − f) ≥ 1 holds where the first inequality follows

from the subadditivity of π and the second from the definition of ν. Thus, π′ is a cut-
generating function. Since π′ is distinct from π and implies π via scaling, this contradicts
the hypothesis that π is restricted minimal. Therefore, ν = infx{π(x− f) : x ∈ S} = 1.

For the converse, let π be a minimal cut-generating function such that infx{π(x−f) : x ∈
S} = 1. Suppose π is not restricted minimal. Then there exists a cut-generating function
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π′ 6= π that implies π via scaling. That is, there exists β ≥ 1 such that π ≥ βπ′. Because π is
minimal, we must have β > 1, but then infx{π′(x−f) : x ∈ S} = 1

β
infx{π(x−f) : x ∈ S} < 1.

This implies that there exists x ∈ S such that π′(x − f) < 1, contradicting the choice of π′

as a cut-generating function.

2.3 Specializing the Set S

In this section, we turn our attention to sets S ⊂ Rn that arise in the context of integer
programming. The majority of the results in this section consider S = C∩(Zp×Rn−p) where
C ⊂ Rn is a closed convex set and p is an integer between 0 and n. The case p = n and
C = Rn

+ is of particular interest since it corresponds to the pure integer linear programming
case. At the other extreme, when p = 0 and C is a closed convex cone, we recover the
infinite relaxation of a mixed-integer conic programming model studied by Morán, Dey, and
Vielma [98]. In this model, Morán, Dey, and Vielma presented an extension of the duality
theory to mixed-integer conic programs and showed that subadditive functions which are
nondecreasing with respect to C generate all valid inequalities under a technical condition.

2.3.1 The Case S = C ∩ (Zp × Rn−p) for a Convex Set C

We first show that when S ⊂ Rn is the set of mixed-integer points in a closed convex set,
a function that satisfies the generalized symmetry condition is monotone in a certain sense.
Let K ⊂ Rn and L ⊂ Rn be a closed convex cone and a linear subspace. Recall that a
function π : Rn → R is nondecreasing with respect to K ∩ (Zp × Rn−p) if π(r) ≤ π(r + w)
for all r ∈ Rn and w ∈ K ∩ (Zp ×Rn−p). We say that the function π is periodic with respect
to L ∩ (Zp × Rn−p) if π(r) = π(r + w) for all r ∈ Rn and w ∈ L ∩ (Zp × Rn−p). Note that
when L = Rn and p = n, this definition of periodicity reduces to the earlier definition of
periodicity with respect to Zn.

Proposition 2.15. Let C ⊂ Rn be a closed convex set, S = C∩ (Zp×Rn−p), and f ∈ Rn. If
π : Rn → R satisfies the generalized symmetry condition, then it is nondecreasing with respect
to rec(C) ∩ (Zp × Rn−p). In particular, it is periodic with respect to lin(C) ∩ (Zp × Rn−p).

Proof. Suppose π satisfies the generalized symmetry condition. Then for any r ∈ Rn and
ε > 0, there exist xε ∈ S and kε ∈ Z++ such that 1

kε
(1 − π(xε − f − kεr)) > π(r) − ε. Let

w ∈ rec(C) ∩ (Zp × Rn−p). Observing that xε + kεw ∈ C ∩ (Zp × Rn−p) = S, the condition
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(2.4) implies

π(r + w) ≥ 1
kε

(1− π ((xε + kεw)− f − kε(r + w))) = 1
kε

(1− π(xε − f − kεr)) > π(r)− ε.

Taking limits of both sides as ε ↓ 0, we get π(r + w) ≥ π(r). The second statement follows
from the observation that w,−w ∈ rec(C)∩ (Zp×Rn−p) if w ∈ lin(C)∩ (Zp×Rn−p). In this
case, repeating the same argument with both w and −w gives us the equality necessary to
establish the periodicity of π.

Proposition 2.16. Let C ⊂ Rn be a closed convex set, S = C ∩ (Zp × Rn−p), and f ∈ Rn.
Let X ⊂ S be such that S = X + (rec(C) ∩ (Zp × Rn−p)). The function π : Rn → R
satisfies the generalized symmetry condition if and only if it is nondecreasing with respect to
rec(C) ∩ (Zp × Rn−p) and satisfies the condition

π(r) = sup
x,k

{
1− π(x− f − kr)

k
: x ∈ X, k ∈ Z++

}
for all r ∈ Rn. (2.6)

Proof. Suppose π satisfies the generalized symmetry condition. By Proposition 2.15, π is
nondecreasing with respect to rec(C)∩(Zp×Rn−p). Let r ∈ Rn and ε > 0. For any x ∈ X and
k ∈ Z++, the inequality kπ(r) +π(x− f − kr) ≥ 1 holds. Because π satisfies the generalized
symmetry condition, there exist xε ∈ S and kε ∈ Z++ such that kεπ(r) + π(xε − f − kεr) <
1 + kεε. Let x̄ ∈ X be such that xε ∈ x̄+ (rec(C)∩ (Zp×Rn−p)). Because π is nondecreasing
with respect to rec(C)∩(Zp×Rn−p), we get kεπ(r)+π(x̄−f−kεr) ≤ kεπ(r)+π(xε−f−kεr) <
1 + kεε. This shows that π satisfies (2.6).

To prove the converse, suppose π is nondecreasing with respect to rec(C) ∩ (Zp × Rn−p)
and satisfies (2.6). Let r ∈ Rn and ε > 0. For any x ∈ S and k ∈ Z++, there exists x̄ ∈ X such
that x ∈ x̄+(rec(C)∩ (Zp×Rn−p)). Then kπ(r)+π(x−f−kr) ≥ kπ(r)+π(x̄−f−kr) ≥ 1.
Furthermore, there exist xε ∈ X ⊂ S and kε ∈ Z++ such that π(r)−ε < 1

kε
(1−π(xε−f−kεr)).

This shows that π satisfies the generalized symmetry condition.

When the set X in the statement of Proposition 2.16 is finite, condition (2.6) further
implies that

∀r ∈ Rn ∃xr ∈ X such that π(r) = sup
k

{
1− π(xr − f − kr)

k
: k ∈ Z++

}
. (2.7)

A finite set X ⊂ S satisfying the hypothesis of Proposition 2.16 exists for two choices of
unbounded sets S ⊂ Rn which are important in integer programming. When S is the set of
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pure integer points in a rational (possibly unbounded) polyhedron, the existence of such a
finite set X follows from Meyer’s Theorem and its proof [94]. When S is the set of mixed-
integer points in a closed convex cone, one can simply choose X = {0}. Then (2.6) can be
stated as

π(r) = sup
k

{
1− π(−f − kr)

k
: k ∈ Z++

}
for all r ∈ Rn. (2.8)

In general, (2.8) is a weaker requirement than symmetry on subadditive functions. However,
the next proposition shows that (2.8) implies symmetry if the supremum is achieved for all
r ∈ Rn.

Proposition 2.17. Let π : Rn → R be a subadditive function.
i. Let X ⊂ S be a finite set. Suppose π satisfies (2.7). Fix r ∈ Rn, and choose xr ∈ X as

in (2.7). The supremum in (2.7) is attained if and only if π(r) + π(xr − f − r) = 1.
ii. Suppose π satisfies (2.8). Fix r ∈ Rn. The supremum in (2.8) is attained if and only if

π(r) + π(−f − r) = 1. Furthermore, the supremum in (2.8) is attained for all r ∈ Rn

if and only if π satisfies the symmetry condition.

Proof. We first prove statement (i). Fix r ∈ Rn, and choose xr ∈ X as in (2.7). Suppose
the supremum on the right-hand side of (2.7) is attained. Let k∗ ∈ Z++ be such that
1
k∗

(1− π(xr − f − k∗r)) ≥ 1
k
(1− π(xr − f − kr)) for all k ∈ Z++. Because π satisfies (2.7),

it satisfies π(r) ≥ 1− π(xr − f − r) and π(r) = 1
k∗

(1− π(xr − f − k∗r)). The subadditivity
of π implies 1 = k∗π(r) + π(xr − f − k∗r) = π(r) + (k∗ − 1)π(r) + π(xr − f − k∗r) ≥
π(r)+π(xr−f−r) ≥ 1. This shows π(r)+π(xr−f−r) = 1. To prove the converse, suppose
π(r)+π(xr−f−r) = 1. Then 1−π(xr−f−r) = π(r) = supk

{
1
k
(1−π(xr−f−kr)) : k ∈ Z++

}
.

Thus, the supremum is attained for k = 1. This concludes the proof of (i).

Statement (ii) follows from statement (i) by noting that (2.8) is equivalent to (2.7) with
X = {0}. In this case, xr ∈ X in (2.7) is necessarily equal to zero for any r ∈ Rn. Let r ∈ Rn.
From statement (i), the supremum in (2.8) is attained if and only if π(r) + π(−f − r) = 1.
If the supremum is attained for all r ∈ Rn, then π(r) + π(−f − r) = 1 for all r ∈ Rn, which
is the symmetry condition on π.

Proposition 2.18. Let X ⊂ S be a finite set, and let π : Rn → R be a subadditive function
such that π(0) = 0 and π satisfies (2.7). Fix r ∈ Rn, and choose xr ∈ X as in (2.7). If the
supremum in (2.7) is not attained, then

π(r) = lim sup
k∈Z++,k→∞

π(kr)
k

= lim sup
k∈Z++,k→∞

−π(−kr)
k

.
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Furthermore, π(kr) = kπ(r) for all k ∈ Z++.

Proof. Fix r ∈ Rn, and choose xr ∈ X as in (2.7). Suppose the supremum in (2.7) is
not attained. Since π satisfies (2.7), the inequality π(r) ≥ 1

k
(1 − π(xr − f − kr)) holds

for all k ∈ Z++. It follows that π(r) ≥ lim supk∈Z++,k→∞
1
k
(1 − π(xr − f − kr)). Let

ε = π(r)−lim supk∈Z++,k→∞
1
k
(1−π(xr−f−kr)). Suppose ε > 0. According to the definition

of limit supremum, there exists k0 ∈ Z++ such that π(r) − ε
2 ≥

1
k
(1 − π(xr − f − kr)) for

all k ≥ k0. It follows that the supremum in (2.7) must be attained for some k < k0, a
contradiction. Therefore, ε = 0. Using π(0) = 0 and the subadditivity of π, we obtain

π(r) = lim sup
k∈Z++,k→∞

1− π(xr − f − kr)
k

= lim sup
k∈Z++,k→∞

−π(xr − f − kr)
k

≤ lim sup
k∈Z++,k→∞

−π(−kr) + π(−xr + f)
k

= lim sup
k∈Z++,k→∞

−π(−kr)
k

≤ lim sup
k∈Z++,k→∞

π(kr)
k
≤ π(r).

In particular, π(r) = lim supk∈Z++,k→∞
π(kr)
k

= lim supk∈Z++,k→∞
−π(−kr)

k
. It follows from

Lemma 2.14 that π(kr) = kπ(r) for all k ∈ Z++.

When the set X of Proposition 2.16 is finite, we can obtain a simplified version of (2.6)
where the double supremum over x and k is decoupled through Propositions 2.17 and 2.18.

Corollary 2.19. Let C ⊂ Rn be a closed convex set, S = C ∩ (Zp × Rn−p), and f ∈ Rn.
Let X ⊂ S be a finite set such that S = X + (rec(C) ∩ (Zp × Rn−p)). Let π : Rn → R be a
subadditive function such that π(0) = 0. The function π satisfies the generalized symmetry
condition if and only if it is nondecreasing with respect to rec(C)∩ (Zp×Rn−p) and satisfies
the condition

π(r) = max
{

max
x∈X
{1− π(x− f − r)}, lim sup

k∈Z++,k→∞

−π(−kr)
k

}
for all r ∈ Rn. (2.9)

Proof. By Proposition 2.16, it is enough to show that π satisfies (2.6) if and only if it
satisfies (2.9). Suppose π satisfies (2.6). Fix r ∈ Rn. From (2.6), we get π(r) ≥
maxx∈X{1− π(x− f − r)}. The subadditivity of π implies π(r) ≥ lim supk∈Z++,k→∞

π(kr)
k
≥

lim supk∈Z++,k→∞
−π(−kr)

k
. The “only if” part then follows from Propositions 2.17 and 2.18

after observing that X is finite and π satisfies (2.7). To prove the “if” part, suppose π sat-
isfies (2.9). Fix r ∈ Rn. Observe that (2.9) implies π(r) ≥ 1 − π(x − f − r) for all x ∈ X.
From the subadditivity of π, we get kπ(r) + π(x− f − kr) ≥ π(r) + π(x− f − r) ≥ 1 for all
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x ∈ X and k ∈ Z++. In particular, π(r) ≥ supx,k
{

1
k
(1 − π(x − f − kr)) : x ∈ X, k ∈ Z++

}
.

If there exists xr ∈ X such that π(r) = 1 − π(xr − f − r), then (2.7) holds for that xr. If
π(r) = lim supk∈Z++,k→∞

−π(−kr)
k

, then (2.7) holds for any x ∈ X since

lim sup
k∈Z++,k→∞

1− π(x− f − kr)
k

≥ lim sup
k∈Z++,k→∞

1− π(x− f)− π(−kr)
k

= lim sup
k∈Z++,k→∞

−π(−kr)
k

= π(r).

In either case, condition (2.6) is satisfied.

2.3.2 The Case S = K ∩ (Zp × Rn−p) for a Convex Cone K

In this section, we consider the case where S ⊂ Rn is the set of mixed-integer points in
a closed convex cone. The following theorem recapitulates the results of Theorem 2.2 and
Proposition 2.16 for this case.

Theorem 2.20. Let K ⊂ Rn be a closed convex cone and S = K ∩ (Zp × Rn−p). Let
π : Rn → R. The function π is a minimal cut-generating function for (2.3) if and only if
π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies (2.8).

When K is a closed convex cone and S = K ∩ (Zp × Rn−p), we can choose X = {0} in
Corollary 2.19. Then (2.8) in the statement of Theorem 2.20 can be replaced with (2.9)
which now reads π(r) = max

{
1 − π(−f − r), lim supk∈Z++,k→∞

−π(−kr)
k

}
for all r ∈ Rn.

This condition simplifies further to just π(r) = 1 − π(−f − r), the symmetry condition,
when we consider restricted minimal cut-generating functions. This will be proved next in
Theorem 2.7, which was already stated in the introduction. Theorem 2.7 generalizes to
S = K ∩ (Zp × Rn−p) a result of Bachem et al. [14] for the case S = {0}.

Theorem 2.7. Let K ⊂ Rn be a closed convex cone and S = K ∩ (Zp × Rn−p). Let
π : Rn → R. The function π is a restricted minimal cut-generating function for (2.3) if and
only if π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies the symmetry
condition.

Proof. We first prove the “if” part. Assume π(0) = 0, π is subadditive, nondecreasing
with respect to S, and satisfies the symmetry condition. Since condition (2.8) is a weaker
requirement than symmetry, it follows from Theorem 2.20 that π is a minimal cut-generating
function. Because π is nondecreasing with respect to S, it satisfies π(x − f) ≥ π(−f) for
all x ∈ S. Furthermore, by taking r = −f , the symmetry condition implies π(−f) = 1. It
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follows that min{π(x − f) : x ∈ S} = π(−f) = 1. Then by Proposition 2.5, π is restricted
minimal.

We now prove the “only if” part. Assume that π is a restricted minimal cut-generating
function. By Proposition 2.5, π is a minimal cut-generating function and satisfies infx{π(x−
f) : x ∈ S} = 1. Since π is minimal, Theorem 2.20 implies that π(0) = 0, π is subadditive,
nondecreasing with respect to S, and satisfies (2.8). Because π is nondecreasing with respect
to S ⊂ Rn, we have π(−f) = infx{π(x − f) : x ∈ S} = 1. Now suppose that there exists
r̄ ∈ Rn such that π(r̄) > 1− π(−f − r̄). Letting X = {0} and using Proposition 2.17(i), we
see that the supremum in (2.8) is not attained. By Proposition 2.18, π(kr̄) = kπ(r̄) for all
k ∈ Z++. By the subadditivity of π, π(−f+k(f+ r̄))+(k−1)π(−f) ≥ π(kr̄) = kπ(r̄) for all
k ∈ Z++. Rearranging terms and using π(−f) = 1, we get k(1−π(r̄)) ≥ 1−π(−f+k(f+ r̄)).
Thus, 1− π(r̄) ≥ 1

k
(1− π(−f + k(f + r̄))) for all k ∈ Z++. This implies

1− π(r̄) ≥ sup
k

{
1− π(−f − k(−f − r̄))

k
: k ∈ Z++

}
= π(−f − r̄),

where the equality follows from (2.8). This contradicts the hypothesis that π(r̄) > 1 −
π(−f − r̄).

Let K1,K2 ∈ Rn be two closed convex cones such that K2 ⊂ K1. Because K2 ⊂ K1, every
cut-generating function for (2.3) when S = K1 ∩ (Zp × Rn−p) is a cut-generating function
for (2.3) when S = K2 ∩ (Zp × Rn−p). However, it is rather surprising that every restricted
minimal cut-generating function for (2.3) when S = K1 ∩ (Zp × Rn−p) is also a restricted
minimal cut-generating function for (2.3) when S = K2 ∩ (Zp × Rn−p). A similar statement
is also true for minimal cut-generating functions. We show this in the next proposition.

Proposition 2.21. Let K1,K2 ∈ Rn be two closed convex cones such that K2 ⊂ K1. If π is
a (restricted) minimal cut-generating function for (2.3) when S = K1 ∩ (Zp ×Rn−p), then π
is also a (restricted) minimal cut-generating function for (2.3) when S = K2 ∩ (Zp × Rn−p).

Proof. We prove the statement for the case of restricted minimality only. A similar claim
on minimal cut-generating functions follows by using Theorem 2.20 instead of Theorem 2.7.

Assume π is a restricted minimal cut-generating function for (2.3) when S = K1 ∩ (Zp ×
Rn−p). By Theorem 2.7, π(0) = 0, π is subadditive, nondecreasing with respect to K1∩(Zp×
Rn−p), and satisfies the symmetry condition. Because K2 ⊂ K1, π is also nondecreasing with
respect to K2 ∩ (Zp × Rn−p). Therefore, again by Theorem 2.7, π is a restricted minimal
cut-generating function for (2.3) when S = K2 ∩ (Zp × Rn−p).
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In particular, Proposition 2.21 implies that a (restricted) minimal cut-generating function
for (2.3) when S = Zp × Rn−p is still (restricted) minimal for (2.3) when S = Zp+ × Rn−p

+ ,
and a (restricted) minimal cut-generating function for (2.3) when S = Zp+ × Rn−p

+ is still
(restricted) minimal for (2.3) when S = {0}. We focus on the cases S = Zp × Rn−p and
S = Zp+ × Rn−p

+ in the next two sections.

2.3.3 The Case S = Zp × Rn−p

Gomory and Johnson [72] and Johnson [82] characterized minimal cut-generating functions
for (2.2) in terms of subadditivity, symmetry, and periodicity with respect to Zn. In this
section, we relate our Theorems 2.7 and 2.20 to their results.

For the model (2.2), Theorem 2.20 states that a function π : Rn → R is a minimal
cut-generating function if and only if π(0) = 0, π is subadditive, periodic with respect
to Zn, and satisfies (2.8). For the same model, Theorem 2.7 shows that π is restricted
minimal if and only if it satisfies the symmetry condition as well as the conditions for
minimality above. In the context of model (2.2), cut-generating functions are conventionally
required to be nonnegative; therefore, the minimal ones take values in the interval [0, 1] only.
(See [52, 72, 82].) While the implications of Theorems 2.7 and 2.20 above hold without
this additional assumption, the notions of minimality and restricted minimality coincide
for nonnegative cut-generating functions for (2.2). To see this, note that any nonnegative
minimal cut-generating function π for (2.2) satisfies π(−f) ≥ 1 because 0 ∈ S and π(−f) ≤ 1
because it takes values in [0, 1] only. The periodicity of π with respect to Zn then implies
minx{π(x−f) : x ∈ Zn} = π(−f) = 1. It follows from Proposition 2.5 that any nonnegative
minimal cut-generating function for (2.2) is in fact restricted minimal. Hence, by taking
K = Rn and p = n in the statement of Theorem 2.7, we can recover the well-known results
of Gomory and Johnson [72, Theorem 1.6] and Johnson [82, Theorem 6.1] on nonnegative
minimal cut-generating functions for (2.2).

Theorem 2.22 (Gomory and Johnson [72], Johnson [82]). Let π : Rn → R+. The function
π is a minimal cut-generating function for (2.2) if and only if π(0) = 0, π is subadditive,
symmetric, and periodic with respect to Zn.

Note that when S = Zp × Rn−p, a minimal cut-generating function π : Rn → R for (2.3)
has to be periodic with respect to Zp × Rn−p by Theorem 2.20. In particular, the value of
π cannot depend on the last n − p entries of its argument. This shows a simple bijection
between minimal cut-generating functions for S = Zp and those for S = Zp × Rn−p: Let
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projRp : Rn → Rp denote the orthogonal projection onto the first p coordinates. The function
π′ : Rp → R is a minimal cut-generating function for S = Zp if and only if π = π′ ◦ projRp is
a minimal cut-generating function for S = Zp × Rn−p. Using the same arguments, one can
also show that such a bijection exists between restricted minimal cut-generating functions
for S = Zp and those for S = Zp × Rn−p.

2.3.4 The Case S = Zp+ × Rn−p
+

In this section, we focus on the case where S = Zp+×Rn−p
+ which is of particular importance

in integer linear programming. We simplify the statement of Theorems 2.7 and 2.20 for this
special case exploiting the fact that Rn

+ has the finite generating set {ei}ni=1. However, we
first prove a simple lemma.

Lemma 2.23. Let π : Rn → R be a subadditive function. For any α > 0 and r ∈ Rn,
π(αr)
α
≤ lim supε→0+

π(εr)
ε

.

Proof. Consider ε = α
k
for k ∈ Z++. Then kπ(α

k
r) ≥ π(αr) by the subadditivity of π. Thus,

π(αr)
α
≤ π(α

k
r)

α
k

. Letting k → +∞, this implies π(αr)
α
≤ lim supε→0+

π(εr)
ε

.

Proposition 2.24. Let π : Rn → R be a subadditive function such that π(0) = 0. The
function π is nondecreasing with respect to Zp+×Rn−p

+ if and only if π(−ei) ≤ 0 for all i ∈ [p]
and lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p].

Proof. Suppose π is nondecreasing with respect to Zp+ × Rn−p
+ . Then π(0) = 0 implies

π(−ei) ≤ 0 for all i ∈ [p] and lim supε→0+
π(−εei)

ε
≤ 0 for all i ∈ [n] \ [p]. For the converse,

suppose π(−ei) ≤ 0 for all i ∈ [p] and lim supε→0+
π(−εei)

ε
≤ 0 for all i ∈ [n] \ [p]. For any

w ∈ Zp+ × Rn−p
+ , using the subadditivity of π and Lemma 2.23 with α = wi, we get

π(−w) ≤
n∑
i=1

π(−wiei) ≤
p∑
i=1

wiπ(−ei) +
n∑

i=p+1
wi lim sup

ε→0+

π(−εei)
ε

≤ 0.

Thus, for any r ∈ Rn and w ∈ Zp+ × Rn−p
+ , the inequality π(r + w) ≥ π(r) − π(−w) ≥ π(r)

holds. This shows that π is nondecreasing with respect to Zp+ × Rn−p
+ .

Theorem 2.20 and Proposition 2.24 thus show the following: A function π : Rn → R is
a minimal cut-generating function for (2.3) when S = Zp+ × Rn−p

+ if and only if π(0) = 0,
π(−ei) ≤ 0 for all i ∈ [p] and lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p], π is subadditive and

satisfies (2.8). Similarly, Theorem 2.7 and Proposition 2.24 show the following.
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Theorem 2.25. Let S = Zp+ × Rn−p
+ and π : Rn → R. The function π is a restricted

minimal cut-generating function for (2.3) if and only if π(0) = 0, π(−ei) ≤ 0 for all i ∈ [p]
and lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p], π is subadditive and satisfies the symmetry

condition.

2.4 Strongly Minimal Cut-Generating Functions

The following example illustrates the distinction between restricted minimal and strongly
minimal cut-generating functions.

Example 2.3. Consider the model (2.3) where n = 1, 0 < f < 1, and S = Z+. The
Gomory function π1

1(r) = min
{
r−brc
1−f ,

dre−r
f

}
is a cut-generating function in this setting [70].

For any α ≥ 0, we define perturbations π3
α : R → R of the Gomory function as π3

α(r) =
αr+(1+αf)π1

1(r). One can easily verify that π3
α(0) = 0 and π3

α(−1) = −α ≤ 0. Furthermore,
π3
α is symmetric and subadditive since π1

1 is. By Theorem 2.25, π3
α is a restricted minimal

cut-generating function. However, for α > 0, π3
α is not strongly minimal because it is implied

by the Gomory function π1
1.

When f /∈ conv S, any valid inequality that strictly separates f from S can be used to
cut off the infeasible solution x = f , y = 0. Therefore, when we analyze strongly minimal
cut-generating functions, our focus will be on the case f ∈ conv S.

Lemma 2.26. Suppose f ∈ conv S. Let π be a (restricted) minimal cut-generating function
for (2.3). Any cut-generating function for (2.3) that implies π is also (restricted) minimal.

Proof. We will prove the claim for the case of restricted minimality only. The proof for
minimality is similar.

Let π be a restricted minimal cut-generating function for (2.3). Let π′ be a cut-generating
function that implies π. Then there exist a valid inequality α>(x− f) ≥ α0 for S and β ≥ 0
such that α0 + β ≥ 1 and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. Because f ∈ conv S, the
inequality α>(x− f) ≥ α0 is also valid for x = f . Hence, α0 ≤ 0, and β ≥ 1. We claim that
π′ is restricted minimal.

Let π̄′ be a restricted minimal cut-generating function that implies π′ via scaling. Such a
function π̄′ always exists by Proposition 2.6. Then there exists ν ≥ 1 such that π′ ≥ νπ̄′. By
Proposition 2.5 and Theorem 2.2, π̄′ is subadditive. We first show that π̄ : Rn → R, defined
as π̄(r) = βπ̄′(r) + α>r

ν
, is also a cut-generating function. Indeed, for any feasible solution
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(x, y) to (2.3), we can use the validity of α>(x − f) ≥ α0 for S and the subadditivity of π̄′

to write

∑
r∈Rn

π̄(r)yr =
∑
r∈Rn

α>r

ν
yr + β

∑
r∈Rn

π̄′(r)yr ≥
α>(x− f)

ν
+ βπ̄′(x− f) ≥ α0

ν
+ β ≥ α0 + β ≥ 1.

Therefore, π̄ is a cut-generating function. Because ν ≥ 1, so is νπ̄. Furthermore, for all
r ∈ Rn, we have

νπ̄(r) = α>r + βνπ̄′(r) ≤ α>r + βπ′(r) ≤ π(r). (2.10)

Because π is a restricted minimal cut-generating function, it follows that νπ̄ = π̄ = π, ν = 1,
and equality holds throughout (2.10). In particular, the first inequality in (2.10) is tight.
Using this, ν = 1, and β ≥ 1, we get π̄′ = π′. This proves that π′ is restricted minimal.

The next proposition characterizes strongly minimal cut-generating functions as a certain
subset of restricted minimal cut-generating functions.

Proposition 2.27. Suppose that S ⊂ Rn is full-dimensional. Suppose also that f ∈ conv S.
Let π : Rn → R. The function π is a strongly minimal cut-generating function for (2.3) if and
only if it is a restricted minimal cut-generating function for (2.3) and for any valid inequality
α>(x− f) ≥ α0 for S such that α 6= 0, there exists x∗ ∈ S such that π(x∗−f)−α>(x∗−f)

1−α0
< 1.

Proof. We first prove the “only if” part of the statement. Let π be a strongly minimal cut-
generating function for (2.3). It follows by setting α = 0 and α0 = 0 in the definition of strong
minimality that π is restricted minimal. In particular, it is subadditive by Theorem 2.2 and
Proposition 2.5. Suppose there exists a valid inequality α>(x−f) ≥ α0 for S such that α 6= 0
and π(x−f)−α>(x−f)

1−α0
≥ 1 for all x ∈ S. Because f ∈ conv S, we must have α0 ≤ 0. Define

the function π′ : Rn → R by letting π′(r) = π(r)−α>r
1−α0

. We claim that π′ is a cut-generating
function. To see this, first note that π′ is subadditive because π is. Also, π′(x − f) ≥ 1
for all x ∈ S by our hypothesis. Then for any feasible solution (x, y) to (2.3), we can write∑
r∈Rn π

′(r)yr ≥ π′(∑r∈Rn ryr) = π′(x− f) ≥ 1. Thus, π′ is indeed a cut-generating function
for (2.3). Furthermore, it is not difficult to show that π′ is distinct from π. Consider x̄ ∈ S
such that α>(x̄− f) > α0; such a point exists because S is full-dimensional. Because π is a
cut-generating function, π(x̄− f) ≥ 1. Then π′(x̄− f) = π(x̄−f)−α>(x̄−f)

1−α0
< π(x̄− f) because

α>(x̄−f) > α0 ≥ α0π(x̄−f). Finally, note that π′ implies π since π(r) ≥ (1−α0)π′(r)+α>r
for all r ∈ Rn. Because π′ is distinct from π, this contradicts the strong minimality of π.

Now we prove the “if” part. Let π be a restricted minimal cut-generating function for
(2.3). Suppose that for any valid inequality α>(x − f) ≥ α0 for S such that α 6= 0, there
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exists x∗ ∈ S such that π(x∗−f)−α>(x∗−f)
1−α0

< 1. Let π′ be a cut-generating function that implies
π. Then there exists a valid inequality µ>(x− f) ≥ µ0 and ν ≥ 0 for S such that µ0 + ν ≥ 1
and π(r) ≥ νπ′(r) + µ>r for all r ∈ Rn. Note that µ0 ≤ 0 because f ∈ conv S. We will show
π′ = π, proving that π is strongly minimal. First suppose µ 6= 0. Then by our hypothesis,
there exists x∗ ∈ S such that 1 > π(x∗−f)−µ>(x∗−f)

1−µ0
≥ νπ′(x∗−f)

1−µ0
. Rearranging the terms, we

get π′(x∗ − f) < 1−µ0
ν
≤ 1. This contradicts the fact that π′ is a cut-generating function

because the solution x = x∗, yx∗−f = 1, and yr = 0 otherwise is feasible to (2.3). Hence, we
can assume µ = 0. Then we actually have π ≥ νπ′ for some ν ≥ 1. Because π is restricted
minimal, it must be that π′ = π.

2.4.1 Strongly Minimal Cut-Generating Functions for S = Zp+ ×
Rn−p

+

The main result of this section is Theorem 2.8 which was stated in the introduction.

Theorem 2.8. Let S = Zp+ × Rn−p
+ and f ∈ Rn

+ \ S. Let π : Rn → R. The function π is a
strongly minimal cut-generating function for (2.3) if and only if π(0) = 0, π(−ei) = 0 for
all i ∈ [p] and lim supε→0+

π(−εei)
ε

= 0 for all i ∈ [n] \ [p], π is subadditive and satisfies the
symmetry condition.

Proof. Let π be a restricted minimal cut-generating function. By Theorem 2.25 and Proposi-
tion 2.27, it will be enough to show that π(−ei) = 0 for all i ∈ [p] and lim supε→0+

π(−εei)
ε

= 0
for all i ∈ [n] \ [p] if and only if, for any valid inequality α>(x− f) ≥ α0 for Zp+×Rn−p

+ such
that α 6= 0, there exists x∗ ∈ Zp+ × Rn−p

+ such that π(x∗−f)−α>(x∗−f)
1−α0

< 1.

We first prove the “if” part of the statement above. Because π is restricted minimal,
Theorem 2.25 implies that π(−ei) ≤ 0 for all i ∈ [p], lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈

[n] \ [p], π is subadditive and symmetric. The symmetry condition implies in particular that
π(−f) = 1. Suppose in addition that for any valid inequality α>(x− f) ≥ α0 for Zp+×Rn−p

+

with α 6= 0, there exists x∗ ∈ Zp+×Rn−p
+ such that π(x∗−f)−α>(x∗−f)

1−α0
< 1. Let α ∈ Rn be such

that αi = −π(−ei) for all i ∈ [p] and αi = − lim supε→0+
π(−εei)

ε
for all i ∈ [n] \ [p]. Note that

α is well-defined since π is subadditive and π(−ei) ≤ lim supε→0+
π(−εei)

ε
= −αi ≤ 0 for all

i ∈ [n] \ [p] by Lemma 2.23. Now consider the inequality α>(x− f) ≥ −α>f which is valid
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for all x ∈ Zp+ × Rn−p
+ because α ∈ Rn

+. Note that for any x ∈ Zp+ × Rn−p
+ , we can write

π(x− f)− α>x = π(x− f) +
p∑
i=1

π(−ei)xi +
n∑

i=p+1
lim sup
ε→0+

π(−εei)
ε

xi

≥ π(x− f) +
p∑
i=1

π(−ei)xi +
n∑

i=p+1
π(−eixi) ≥ π(−f) = 1

by using Lemma 2.23 and the subadditivity of π to obtain the first and second inequality,
respectively. Because α, f ∈ Rn

+ and π(x − f) − α>x ≥ 1 for any x ∈ Zp+ × Rn−p
+ , the

inequality π(x−f)−α>(x−f)
1+α>f ≥ 1 holds for any x ∈ Zp+ × Rn−p

+ . Then by our hypothesis, we
must have α = 0.

We now prove the “only if” part. Via Theorem 2.25, the restricted minimality of π
implies that π(−ei) ≤ 0 for all i ∈ [p], lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p], and π is

subadditive. Suppose in addition that π(−ei) = 0 for all i ∈ [p] and lim supε→0+
π(−εei)

ε
= 0

for all i ∈ [n] \ [p]. Let α>(x − f) ≥ α0 be a valid inequality for Zp+ × Rn−p
+ such that

π(x−f)−α>(x−f)
1−α0

≥ 1 for all x ∈ Zp+ × Rn−p
+ . We will show α = 0. First observe that because

the inequality α>(x − f) ≥ α0 is valid for all x ∈ Zp+ × Rn−p
+ , we must have α ∈ Rn

+ and
α0 ≤ 0. Define the function π′ : Rn → R by letting π′(r) = π(r)−α>r

1−α0
. Then π′ is subadditive

because π is. Furthermore, π′(x−f) ≥ 1 for all x ∈ Zp+×Rn−p
+ by our choice of the inequality

α>(x− f) ≥ α0. These two observations imply that π′ is a cut-generating function because
for any solution (x, y) feasible to (2.3), the inequality ∑r∈Rn π(r)yr ≥ π(x − f) ≥ 1 holds.
Furthermore, π′ implies π by definition. It follows from Lemma 2.26 that π′ is also restricted
minimal. Then by Theorem 2.25, 0 ≥ π′(−ei) = π(−ei)+αi

1−α0
= αi

1−α0
for all i ∈ [p] and

0 ≥ lim sup
ε→0+

π′(−εei)
ε

= 1
1− α0

(
αi + lim sup

ε→0+

π(−εei)
ε

)
= αi

1− α0

for all i ∈ [n] \ [p]. Together with α ∈ Rn
+ and α0 ≤ 0, this implies α = 0.

Example 2.4. Theorem 2.8 implies that the cut-generating functions π1
α of Example 2.1

are strongly minimal. On the other hand, none of the minimal cut-generating functions π2
α

of Example 2.2 are strongly minimal. To see this, first note that α(x − f) ≥ 1 is valid for
S = {0} when α ≤ − 1

f
and f > 0. The function π2

α is implied by the trivial cut-generating
function π0 which takes the value 1 everywhere because π2

α(r) ≥ 0(π0(r)) + αr for all r ∈ R.
Note that π0 is not minimal since it does not satisfy Lemma 2.10.
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2.4.2 Existence of Strongly Minimal Cut-Generating Functions

Theorem 2.8 is stated for a rather special set S ⊂ Rn. One issue is the existence of strongly
minimal cut-generating functions for general S. In particular, in Example 2.2, no strongly
minimal cut-generating function exists despite the existence of minimal and restricted min-
imal cut-generating functions. We show this in the next proposition.

Proposition 2.28. No strongly minimal cut-generating function exists for (2.3) unless S ⊂
Rn is full-dimensional.

Proof. Suppose S is not full-dimensional. Let π be a cut-generating function for (2.3). We
will show that there exists a cut-generating function π′ 6= π such that π′ implies π and hence
π cannot be strongly minimal.

Let α>(x− f) = α0 be an equation that holds for all x ∈ S and satisfies α 6= 0. Assume
without any loss of generality that 0 ≤ α0 < 1. Define the function π′ : Rn → R as
π′(r) = π(r)−α>r

1−α0
. If α0 = 0, then π′ 6= π because α 6= 0. Suppose α0 6= 0 and π′ = π. Then

π(r) = α>r
α0

. As in Example 2.2, one can show that π is implied by the trivial cut-generating
function π0 which takes the value 1 everywhere because α>(x−f)

α0
≥ 1 is valid for S and

the inequality π(r) ≥ 0(π0(r)) + α>r
α0

holds for all r ∈ Rn. Therefore, π cannot be strongly
minimal in this case. Hence, we may assume π′ 6= π. We next show that π′ is a cut-generating
function. Since π′ implies π, this will prove that π is not strongly minimal. For any feasible
solution (x, y) to (2.3), we have∑r∈Rn ryr = x−f and∑r∈Rn π(r)yr ≥ 1. Using the definition
of π′, we can write ∑r∈Rn π

′(r)yr = 1
1−α0

(∑
r∈Rn π(r)yr − α>(∑r∈Rn ryr)

)
≥ 1−α>(x−f)

1−α0
= 1.

Thus, π′ is a cut-generating function.

Next we prove Theorem 2.9 stated in the introduction.

Theorem 2.9. Suppose that the closed convex hull of S ⊂ Rn is a full-dimensional polyhe-
dron. Suppose also that f ∈ conv S. Then every cut-generating function for (2.3) is implied
by a strongly minimal cut-generating function.

Proof. Let π be a cut-generating function for (2.3). By Proposition 2.6, there exists a
restricted minimal cut-generating function π0 that implies π via scaling. By Proposition 2.5
and Theorem 2.2, π0 is subadditive. Furthermore, π0(x− f) ≥ 1 for all x ∈ S. Consider an
explicit description of the closed convex hull of S with t linear inequalities: conv(S) = {x ∈
Rn : (αi)>(x − f) ≥ αi0 ∀i ∈ [t]}. Note that αi0 ≤ 0 for all i ∈ [t] because f ∈ conv S. Let
λ∗0 = 0. We define a finite sequence of functions {πi}ti=1 iteratively as follows:
A. Given πi−1, let λ∗i be the largest λi which satisfies πi−1(x−f)−λi(αi)>(x−f)

1−λiαi0
≥ 1 for all x ∈ S.
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B. Define the function πi by letting πi(r) = πi−1(r)−λ∗i (αi)>r
1−λ∗i α

i
0

.

Claim 1. For all i ∈ {0, . . . , t}, λ∗i ≥ 0 and πi is a restricted minimal cut-generating function.
We prove the claim by induction. The claim holds for i = 0. Assume that it holds for
i = j − 1 where j ∈ [t]. Note that λ∗j is well-defined because the closed convex hull of S
is full-dimensional and there exists xj ∈ S such that (αj)>(xj − f) > αj0. Furthermore,
λ∗j ≥ 0 because πj−1(x − f) ≥ 1 for all x ∈ S. The function πj is a subadditive cut-
generating function because it satisfies πj(x − f) ≥ 1 for all x ∈ S and πj−1 is subadditive
by Proposition 2.5 and Theorem 2.2. Moreover, πj is restricted minimal by Lemma 2.26
because it implies πj−1 and πj−1 is restricted minimal. ♦

Claim 2. For all i ∈ [t] and x ∈ S, πi(x− f) ≤ πi−1(x− f).
Indeed, for all i ∈ [t] and x ∈ S, we have

πi(x− f) = πi−1(x− f)− λ∗i (αi)>(x− f)
1− λ∗iαi0

≤ πi−1(x− f)− λ∗iαi0
1− λ∗iαi0

≤ πi−1(x− f).

The first inequality above follows from the validity of (αi)>(x − f) ≥ αi0 for S, the second
inequality follows from αi0 ≤ 0 and the fact that πi−1(x− f) ≥ 1 for all x ∈ S. ♦

Claim 3. For all i ∈ [t] and λ > 0, there exists x ∈ S such that πi(x−f)−λ(αi)>(x−f)
1−λαi0

< 1.
To see this, fix i ∈ [t] and suppose that the claim is not true. Then there exists λ > 0 such
that

1 ≤ πi(x− f)− λ(αi)>(x− f)
1− λαi0

=
πi−1(x−f)−λ∗i (αi)>(x−f)

1−λ∗i α
i
0

− λ(αi)>(x− f)
1− λαi0

= πi−1(x− f)− (λ∗i + λ(1− λ∗iαi0))(αi)>(x− f)
1− (λ∗i + λ(1− λ∗iαi0))αi0

for all x ∈ S. Because λ(1− λ∗iαi0) > 0, we get λ∗i + λ(1− λ∗iαi0) > λ∗i which contradicts the
maximality of λ∗i . ♦

Claim 4. For all i ∈ [t] and λ ∈ Ri
+ \ {0}, there exists x ∈ S such that

πi(x−f)−
∑i

`=1 λ`(α
`)>(x−f)

1−
∑i

`=1 λ`α
`
0

< 1.
We have already proved this for i = 1 in Claim 3. Assume now that the claim holds for
i = j − 1 ∈ [t− 1]. Let λ ∈ Rj

+ \ {0}. If λj = 0, we can write

πj(x− f)−∑j
`=1 λ`(α`)>(x− f)

1−∑j
`=1 λ`α

`
0

≤ πj−1(x− f)−∑j−1
`=1 λ`(α`)>(x− f)

1−∑j−1
`=1 λ`α

`
0

< 1.
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Here we have used Claim 2 to obtain the first inequality and the induction hypothesis to
obtain the second inequality. If λj > 0, we get

πj(x− f)−∑j
`=1 λ`(α`)>(x− f)

1−∑j
`=1 λ`α

`
0

≤ πj(x− f)−∑j−1
`=1 λ`α

`
0 − λj(αj)>(x− f)

1−∑j−1
`=1 λ`α

`
0 − λjα

j
0

< 1,

using Claim 3 to obtain the second inequality. ♦

By Claim 1, πt is a restricted minimal cut-generating function. Furthermore, πt implies
π0. By Proposition 2.27, to prove that πt is strongly minimal, it is enough to show that
for any valid inequality α>(x − f) ≥ α0 for S such that α 6= 0, there exists x ∈ S such
that π(x−f)−α>(x−f)

1−α0
< 1. Let α>(x − f) ≥ α0 be a valid inequality for S such that α 6= 0.

Then α0 ≤ 0 because f ∈ conv S. By Farkas’ Lemma, there exists λ ∈ Rt
+ \ {0} such

that α = ∑t
`=1 λ`α

` and ∑t
`=1 λ`α

`
0 ≥ α0. By Claim 4 above, there exists x ∈ S such that

πt(x − f) −∑t
`=1 λ`α

` < 1 −∑t
`=1 λ`α

`
0 ≤ 1 − α0. Proposition 2.27 now implies that πt is

strongly minimal.

2.5 Minimal Cut-Generating Functions for Mixed-
Integer Programs

We now turn to mixed-integer linear programming. As before, it is convenient to work with
an infinite model:

x =f +
∑
r∈Rn

rsr +
∑
r∈Rn

ryr, (2.11a)

x ∈ S, (2.11b)

sr ∈ R+ ∀r ∈ Rn, (2.11c)

yr ∈ Z+ ∀r ∈ Rn, (2.11d)

s, y have finite support. (2.11e)

The set S ⊂ Rn is a nonempty subset of the Euclidean space. In this section, we will also
need to assume that f ∈ Rn is not in the closure of S, that is, f /∈ cl S.

Two functions ψ, π : Rn → R are said to form a cut-generating function pair if the
inequality∑r∈Rn ψ(r)sr+

∑
r∈Rn π(r)yr ≥ 1 holds for every feasible solution (x, s, y) of (2.11).

Cut-generating function pairs can be used to generate cutting-planes in mixed-integer linear
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programming by simply restricting the above inequality to the vectors r that appear as
nonbasic columns.

Note that the assumption f 6∈ cl S is needed for the existence of ψ in cut-generating
function pairs (ψ, π). Suppose for example that S = R \ {f}. Let r̄ ∈ R \ {0} and ε > 0.
Then the solution x = f + εr̄, y = 0, sr̄ = ε, and sr = 0 for all r 6= r̄ is feasible to (2.11).
Therefore, in any cut-generating function pair (ψ, π) for (2.11), the function ψ : R→ R would
have to satisfy ∑r∈R π(r)yr +∑

r∈R ψ(r)sr = εψ(r̄) ≥ 1. This, however, implies ψ(r̄) ≥ 1
ε
for

all ε > 0, contradicting ψ(r̄) ∈ R.

The definitions of minimality, restricted minimality, and strong minimality extend readily
to cut-generating function pairs for the model (2.11). A cut-generating function pair (ψ′, π′)
for (2.11) dominates another cut-generating function pair (ψ, π) if ψ ≥ ψ′ and π ≥ π′, implies
(ψ, π) via scaling if there exists β ≥ 1 such that ψ ≥ βψ′ and π ≥ βπ′, and implies (ψ, π)
if there exists β ≥ 0 and a valid inequality α>(x − f) ≥ α0 for S such that α0 + β ≥ 1,
ψ(r) ≥ βψ′(r) + α>r, and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. A cut-generating function
pair (ψ, π) is minimal (resp. restricted minimal, strongly minimal) if it is not dominated
(resp. implied via scaling, implied) by a cut-generating function pair other than itself. As
for the model (2.3), strongly minimal cut-generating function pairs for (2.11) are restricted
minimal, and restricted minimal cut-generating function pairs for (2.11) are minimal.

The following theorem extends Theorem 2.1, Proposition 2.6, and Theorem 2.9 to the
model (2.11). The proof of each claim is similar to the proof of its aforementioned counterpart
for the model (2.3) and is therefore omitted.

Theorem 2.29.
i. Every cut-generating function pair for (2.11) is dominated by a minimal cut-generating

function pair.
ii. Every cut-generating function pair for (2.11) is implied via scaling by a restricted min-

imal cut-generating function pair.
iii. Suppose that the closed convex hull of S ⊂ Rn is a full-dimensional polyhedron. Suppose

also that f ∈ conv S. Then every cut-generating function pair for (2.11) is implied by
a strongly minimal cut-generating function pair.

Next we state two simple lemmas which will be used in the proof of Theorem 2.32. We
omit a complete proof of Lemma 2.30. Its first claim follows from the observation that for
any cut-generating function pair (ψ, π), the related pair (ψ, π′) where π′ is the pointwise
minimum of ψ and π is a cut-generating function pair that dominates (ψ, π). Its second
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claim has a similar proof to that of Lemma 2.11. The reader is referred to [52, Lemma 7.1]
for the proof of Lemma 2.30 in the case S = Zn, which remains valid for general S ⊂ Rn.

Lemma 2.30. Let (ψ, π) be a minimal cut-generating function pair for (2.11). Then
i. π ≤ ψ,
ii. ψ is sublinear, that is, subadditive and positively homogeneous.

Lemma 2.31. Let ψ, π : Rn → R. If π is a cut-generating function for (2.3), ψ is sublinear,
and ψ ≥ π, then (ψ, π) is a cut-generating function pair for (2.11).

Proof. Let (x̄, s̄, ȳ) be a feasible solution of (2.11), and let r̄ = ∑
r∈Rn rs̄r. Note that (x̄, ỹ),

where ỹr̄ = ȳr̄ + 1 and ỹr = ȳr for r 6= r̄, is a feasible solution to (2.3). Then π(r̄) +∑
r∈Rn π(r)ȳr = ∑

r∈Rn π(r)ỹr ≥ 1 because π is a cut-generating function for (2.3). Using the
sublinearity of ψ and ψ ≥ π, we get ∑r∈Rn ψ(r)s̄r + ∑

r∈Rn π(r)ȳr ≥ ψ(r̄) + ∑
r∈Rn π(r)ȳr ≥

π(r̄) +∑
r∈Rn π(r)ȳr ≥ 1. This shows (ψ, π) is a cut-generating function pair for (2.11).

Gomory and Johnson [73] characterized minimal cut-generating function pairs for (2.11)
when S = Z. Johnson [82] generalized this result as follows: Consider ψ, π : Rn → R. The
pair (ψ, π) is a minimal cut-generating function pair for (2.11) when S = Zn if and only if π
is a minimal cut-generating function for (2.3) when S = Zn and ψ satisfies

ψ(r) = lim sup
ε→0+

π(εr)
ε

for all r ∈ Rn. (2.12)

In the next result, we give similar characterizations of minimal, restricted minimal, and
strongly minimal cut-generating function pairs for (2.11). Our proof follows the proofs of
[82, Theorem 6.1] and [52, Theorem 7.2] on minimal cut-generating function pairs in the
case S = Zn.

Theorem 2.32. Let ψ, π : Rn → R.
i. The pair (ψ, π) is a (restricted) minimal cut-generating function pair for (2.11) if and

only if π is a (restricted) minimal cut-generating function for (2.3) and ψ satisfies
(2.12).

ii. Suppose that S ⊂ Rn is full-dimensional. Suppose also that f ∈ conv S. The pair (ψ, π)
is a strongly minimal cut-generating function pair for (2.11) if and only if π is a strongly
minimal cut-generating function for (2.3) and ψ satisfies (2.12).

Proof. We will prove statement (ii) only. The proof of statement (i) is similar.

We first prove the “only if” part. Suppose (ψ, π) is a strongly minimal cut-generating
function pair for (2.11). Because (ψ, π) is minimal, we have that ψ ≥ π and ψ is sublinear
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by Lemma 2.30. Furthermore, π is a cut-generating function for (2.3) since for any feasible
solution (x̄, ȳ) to (2.3), there exists a feasible solution (x̄, s̄, ȳ) to (2.11) such that s̄r = 0
for all r ∈ Rn, and ∑

r∈Rn π(r)ȳr = ∑
r∈Rn ψ(r)s̄r + ∑

r∈Rn π(r)ȳr ≥ 1. We claim that π
is a strongly minimal cut-generating function for (2.3). Suppose not. Then there exists a
cut-generating function π′ 6= π, a valid inequality α>(x − f) ≥ α0 for S, and β ≥ 0 such
that α0 + β ≥ 1 and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. Because f ∈ conv S, α0 ≤ 0 and
β ≥ 1. Define the function ψ′ : Rn → R by letting ψ′(r) = ψ(r)−α>r

β
. The pair (ψ′, π′) is a

cut-generating function pair for (2.11). To see this, first note that ψ′ is sublinear because ψ
is. Furthermore, ψ′ ≥ π′ because ψ′(r) = ψ(r)−α>r

β
≥ π(r)−α>r

β
≥ π′(r) for all r ∈ Rn. It then

follows from Lemma 2.31 that (ψ′, π′) is a cut-generating function pair. Because π′ 6= π and
(ψ′, π′) implies (ψ, π), this contradicts the strong minimality of (ψ, π). Thus, π is a strongly
minimal cut-generating function for (2.3). In particular, π is minimal, and subadditive by
Theorem 2.2.

Define the function ψ′′ : Rn → R by letting ψ′′(r) = lim supε→0+
π(εr)
ε

. We first show that
ψ′′ is well-defined, that is, it is finite everywhere, and that ψ′′ ≤ ψ. By Lemma 2.30, π ≤ ψ

and ψ is sublinear. Thus, for all ε > 0 and r ∈ Rn, we have

−ψ(−r) = −ψ(−εr)
ε

≤ −π(−εr)
ε

≤ π(εr)
ε
≤ ψ(εr)

ε
= ψ(r).

The second inequality above holds because π(r) + π(−r) ≥ π(0) = 0 for all r ∈ Rn by the
subadditivity of π. This implies

−ψ(−r) ≤ ψ′′(r) = lim sup
ε→0+

π(εr)
ε
≤ ψ(r),

which proves both claims since ψ is real-valued.

It is easy to verify from the definition of ψ′′ that it is sublinear. Furthermore, π ≤ ψ′′ by
Lemma 2.23. It then follows from Lemma 2.31 that (ψ′′, π) is a cut-generating function pair
for (2.11). Because the cut-generating function pair (ψ, π) is minimal and ψ′′ ≤ ψ, we get
ψ = ψ′′, proving that ψ satisfies (2.12).

We now prove the “if” part. Suppose π is a strongly minimal cut-generating function for
(2.3) and ψ satisfies (2.12). Note that ψ is sublinear by definition and ψ ≥ π by Lemma 2.23.
It follows from Lemma 2.31 that (ψ, π) is a cut-generating function pair for (2.11). Let
(ψ′, π′) be a cut-generating function pair that implies (ψ, π). We will show ψ′ = ψ and
π′ = π, proving that (ψ, π) is strongly minimal. Let (ψ′′, π′′) be a minimal cut-generating
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function pair that dominates (ψ′, π′). By the choice of (ψ′, π′), there exist a valid inequality
α>(x− f) ≥ α0 and β ≥ 0 such that α0 + β ≥ 1 and ψ(r) ≥ βψ′(r) + α>r ≥ βψ′′(r) + α>r,
π(r) ≥ βπ′(r) +α>r ≥ βπ′′(r) +α>r for all r ∈ Rn. Furthermore, α0 ≤ 0 and β ≥ 1 because
f ∈ conv S. By the “only if” part of statement (i), π′′ is a minimal cut-generating function
for (2.3) and ψ′′(r) = lim supε→0+

π′′(εr)
ε

for all r ∈ Rn. The function π′′ implies π. The
strong minimality of π gives π′′ = π. Then π(r) ≥ βπ(r) + α>r for all r ∈ Rn. Let x̄ ∈ S
be such that α>(x̄ − f) > α0; such a point exists because S is full-dimensional. If β > 1,
then π(x̄ − f) ≤ −α>(x̄−f)

β−1 < −α0
β−1 ≤ 1 which contradicts the fact that π is a cut-generating

function. Hence, we can assume β = 1. Then α>r ≤ 0 for all r ∈ Rn; therefore, α = 0.
Using α = 0 and β = 1, we get π = π′′ ≤ π′ ≤ π and ψ′′ ≤ ψ′ ≤ ψ. Finally, note that
ψ′′(r) = lim supε→0+

π′′(εr)
ε

= lim supε→0+
π(εr)
ε

= ψ(r) for all r ∈ Rn. This shows ψ′′ = ψ′ = ψ

and concludes the proof.

Example 2.5. Let n = 1, S = Z+, and 0 < f < 1. We consider the classical Gomory
function ψ(r) = max

{
−r
f
, r

1−f

}
for the continuous nonbasic variables. In the spirit of [60],

the trivial lifting of ψ can be defined as

π5(r) = inf
x∈Z+

ψ(r + x).

Note that π5 coincides with the Gomory function π1
1(r) = min

{
r−brc
1−f ,

dre−r
f

}
of Example 2.1

on the negative points and with ψ on the nonnegative points. Using standard techniques,
one can verify that (ψ, π5) is a cut-generating function pair for (2.11). Nevertheless, (ψ, π5)
is not a minimal pair. To prove this, it is enough by Theorem 2.32 and Proposition 2.16 to
show that π5 does not satisfy (2.8) and hence is not a minimal cut-generating function for
(2.3). Indeed, note that π5(1) = 1

1−f , whereas π
5(−f − k) = 1 for all k ∈ Z++. Therefore,

π5(1) = 1
1−f 6= 0 = sup

{
1
k
(1− π5(−f − k)) : k ∈ Z++

}
which violates (2.8).
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2.6 Relationship Between Strong Minimality and
Conic Minimality

In this section, we consider the model

x =f +Ry, (2.13a)

x ∈ S, (2.13b)

y ∈ Zm+ , (2.13c)

where S ⊂ Rn is a nonempty set, f ∈ Rn
+, and R = [r1, . . . , rm] is a real n×m matrix. This

is a generalization of (2.1). An inequality π′>y ≥ 1 that is valid for (2.13) is said to imply
another valid inequality π>y ≥ 1 if there exists an inequality α>(x−f) ≥ α0 that is valid for
S and β ≥ 0 such that π ≥ βπ′+R>α and α0 +β ≥ 1. An inequality π>y ≥ 1 that is valid for
(2.13) is strongly minimal if it is not implied by a valid inequality for (2.13) other than itself.
We demonstrate how this notion of strong minimality for (2.13) is equivalent to minimality
with respect to a particular cone in a lifted space in the framework of Kılınç-Karzan [87].
A similar argument shows that the restricted minimality of an inequality that is valid for
(2.13) can be represented as minimality with respect a cone in a lifted space as well. To this
end, we define

K =
{(

t

y

)
∈ Rm+1

+ :
(

t

tf +
∑m

j=1 r
jyj

)
∈ cone

(
1
S

)}
.

Then a point (x, y) satisfies (2.13) if and only if (t, x, y) = (1, x, y) satisfies the system

x =ft+Ry, (2.14a)

x ∈ S, (2.14b)

y ∈ Zm+ , (2.14c)

t = 1, (2.14d)(
t

y

)
∈ K. (2.14e)

The system (2.14) is an exact reformulation of (2.13): The feasible solution set of (2.14) is
the set of feasible solutions to (2.13) embedded in the hyperplane defined by the equation
t = 1. Therefore, an inequality π>y ≥ 1 is valid for (2.13) if and only if π>y ≥ t is valid for
(2.14). According to the conic minimality definition of [87], we will say that an inequality
π′>y ≥ π′0t that is valid for (2.14) dominates another valid inequality π>y ≥ π0t with respect
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to K if (−π0 + π′0, π − π′) ∈ K∗. We will say that an inequality π>y ≥ π0t that is valid for
(2.14) is minimal with respect to K, or K-minimal, if it is not dominated with respect to K
by a valid inequality for (2.14) other than itself.

Let π>y ≥ 1 be a valid inequality for (2.13). As in most of Section 2.4, we assume that
f ∈ conv S. We also assume that the set of feasible solutions to (2.13) is full-dimensional.
Under these assumptions, we can establish an equivalence between the strong minimality of
π>y ≥ 1 for (2.13) and the K-minimality of π>y ≥ t for (2.14) through the following chain
of equivalences:

π>y ≥ 1 is a strongly minimal
valid inequality for (2.13).

⇐⇒ 6 ∃ an inequality π′>y ≥ 1 valid for (2.13),

an inequality α>(x− f) ≥ α0 valid for S,

and β ≥ 0 such that π′ 6= π, α0 + β ≥ 1,

and π ≥ βπ′ +R>α.

⇐⇒ 6 ∃ an inequality π′>y ≥ t valid for (2.14),

an inequality α>(x− ft) ≥ α0t valid for
(

1
S

)
,

and β ≥ 1 such that π′ 6= π, α0 + β ≥ 1,

and π ≥ βπ′ +R>α.

⇐⇒ 6 ∃ an inequality π̄′>y ≥ βt valid for (2.14),

an inequality α>(x− ft) ≥ α0t valid for
(

1
S

)
,

and β ≥ 1 such that π̄′ 6= βπ, α0 + β ≥ 1,

and π ≥ π̄′ +R>α.

⇐⇒ 6 ∃ an inequality π̄′>y ≥ βt valid for (2.14),

an inequality α>(x− ft) ≥ α0t valid for
(

1
S

)
,

and β ≥ 1 such that (−1 + β, π̄′ − π) 6= 0,

α0 + β ≥ 1, and π ≥ π̄′ +R>α.

⇐⇒ 6 ∃ an inequality π̄′>y ≥ βt valid for (2.14) and

an inequality α>(x− ft) ≥ α0t valid for
(

1
S

)
such that (−1 + β, π̄′ − π) 6= 0, α0 + β ≥ 1,

and π ≥ π̄′ +R>α.

⇐⇒ π>y ≥ t is a K-minimal valid inequality for (2.14).
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To see the second equivalence above, note first that α0 ≤ 0 in any valid inequality α>(x−f) ≥
α0 for x ∈ S because f ∈ conv S. Furthermore, a point (x, y) satisfies (2.13) if and only if
(t, x, y) = (1, x, y) satisfies (2.14). These together establish the desired equivalence. The
third equivalence follows from the introduction of π̄′ = βπ′ and the condition β ≥ 1. The
fourth equivalence holds because π̄′ 6= βπ if and only if (−1 + β, π̄′ − π) 6= 0 for any β ≥ 1,
inequality π̄′>y ≥ βt valid for (2.14), and inequality α>(x−ft) ≥ α0t valid for

(
1
S

)
such that

α0 + β ≥ 1 and π ≥ π̄′ + R>α. This equivalence is clear in the case β = 1. If β > 1, then
(−1 + β, π̄′ − π) 6= 0 holds trivially. We would like to show that π̄′ 6= βπ in this case as
well. Suppose for a contradiction that π̄′ = βπ. Then the inequality π ≥ π̄′ + R>α implies
− 1
β−1R

>α ≥ π. Because π>y ≥ 1 is valid for (2.13), the inequality −(R>α)>y ≥ β − 1 is
also valid for (2.13). Using α0 + β ≥ 1, we see that α>Ry ≤ α0 is valid for (2.13) as well.
Any feasible solution to (2.13) satisfies x− f = Ry. Therefore, the equation α>(x− f) = α0

holds for any solution to (2.13). This contradicts our assumption that the set of feasible
solutions to (2.13) is full-dimensional. The fifth equivalence follows from the observation
that the inequality β ≥ 1 can be dropped because it is implied by α0 + β ≥ 1 under the
condition f ∈ conv S, which implies α0 ≤ 0. The final equivalence follows from our choice of
the cone K.



Chapter 3

Extreme Cut-Generating Functions for the
One-Row Problem

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols [113].

3.1 Introduction

3.1.1 Motivation

Let S ⊂ Rn be a nonempty subset of the Euclidean space, and let f ∈ Rn\S. In this chapter,
we continue to study cut-generating functions for the infinite relaxation

x =f +
∑
r∈Rn

ryr, (3.1a)

x ∈ S, (3.1b)

yr ∈ Z+ ∀r ∈ Rn, (3.1c)

y has finite support. (3.1d)

The model (3.1) generalizes Gomory and Johnson’s infinite group relaxation [72, 73, 82],
which corresponds to the case S = Zn, and a model studied by Bachem, Johnson, and
Schrader [14], which corresponds to the case S = {0}. The reader is referred to Section 2.1
for a related discussion. In Chapter 2 we characterized minimal cut-generating functions
for (3.1) under different notions of minimality and assumptions on the structure of S. A
yet stronger notion than the minimality of a cut-generating function is its extremality: A

53
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cut-generating function π is said to be extreme if any two cut-generating functions π1, π2

satisfying π = 1
2π1 + 1

2π2 must also satisfy π = π1 = π2. In this chapter, we investigate
extreme cut-generating functions for (3.1). We focus on the one-row problem where n = 1.

The structure of extreme cut-generating functions can be very complicated. Constructing
extreme cut-generating functions for (3.1), or even verifying that a given cut-generating
function is extreme for (3.1), often requires ad hoc techniques. For the case S = Z, Gomory
and Johnson [73, 74] established the Two-Slope Theorem which identifies an interesting class
of “simple” extreme cut-generating functions. We state this result next. Recall that, when
S = Z, cut-generating functions must be nonnegative over the rationals, and they are usually
assumed to be nonnegative on the whole real line.

Assumption 3.1. When S = Z, all cut-generating functions π satisfy π ≥ 0, that is,
π(r) ≥ 0 for all r ∈ R.

Let I ⊂ R be a compact interval of the real line. We say that a function π : I → R is
piecewise linear if there are finitely many values min I = r0 < r1 < . . . < rt = max I such
that π(r) = ajr + bj for some aj, bj ∈ R at each one of the open intervals (rj−1, rj). The
piecewise linear function π is continuous if and only if π(r0) = a1r0 + b1, π(rt) = atrt + bt,
and π(rj) = ajrj + bj = aj+1rj + bj+1 for j ∈ {1, . . . , t− 1}.

Theorem 3.1 (Gomory-Johnson Two-Slope Theorem [73, 74]). Let S = Z and f ∈ R \ Z.
Suppose Assumption 3.1 holds. Let π : R → R be a minimal cut-generating function for
(3.1). If the restriction of π to the interval [0, 1] is a continuous piecewise linear function
with only two slopes, then π is extreme.

Despite their simplicity, two-slope cut-generating functions produce powerful cutting-
planes. Gomory mixed-integer cuts [70], which are among the most effective cutting-planes
in mixed-integer linear programming [38], are generated by two-slope functions. Motivated
by the success of two-slope cut-generating functions in the case S = Z, in this chapter we
prove a similar result for the case S = Z+.

It follows from the definition of extremality that extreme cut-generating functions are
minimal [72, 82]. In Section 3.2, we show that extreme cut-generating functions must in
fact be strongly minimal. In Section 3.3, we prove a Two-Slope Theorem for extreme cut-
generating functions for (3.1) when S = Z+, in the spirit of the Gomory-Johnson Two-Slope
Theorem for S = Z. A similar extension of the Two-Slope Theorem has recently appeared
in [111].
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3.1.2 Notation and Terminology

Let Q and Z++ denote the set of rational numbers and the set of strictly positive integers,
respectively. Let [k] = {1, . . . , k} for k ∈ Z++. The notation convV represents the closed
convex hull of a set V ∈ Rn.

We define the minimality, restricted minimality, and strong minimality of a cut-generating
function as in Chapter 2. A cut-generating function π′ for (3.1) dominates another cut-
generating function π if π ≥ π′, implies π via scaling if there exists β ≥ 1 such that π ≥ βπ′,
and implies π if there exists a valid inequality α>(x − f) ≥ α0 for S and β ≥ 0 such that
α0 + β ≥ 1 and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. A cut-generating function π is minimal
(resp. restricted minimal, strongly minimal) if it is not dominated (resp. implied via scaling,
implied) by a cut-generating function other than itself. We say that a function π : Rn → R
is subadditive if π(r1) + π(r2) ≥ π(r1 + r2) for all r1, r2 ∈ Rn; it is symmetric or satisfies
the symmetry condition if π(r) + π(−f − r) = 1 for all r ∈ Rn; and it is nondecreasing with
respect to S ⊂ Rn if π(r) ≤ π(r + w) for all r ∈ Rn and w ∈ S.

3.2 Two Results for General S

The results of this section hold for any nonempty S ⊂ Rn. We also assume f ∈ conv S;
otherwise, any inequality which separates f from S strictly cuts off the infeasible solution
x = f , y = 0. The following result shows that extreme cut-generating functions must be
strongly minimal. See Gomory and Johnson [72, Theorem 1.1] and Johnson [82, Theorem 3.1]
for similar results on minimal cut-generating functions in the cases S = Z and S = Zn. See
also Kılınç-Karzan [87, Proposition 2] for a similar result on conic minimal valid inequalities
for disjunctive conic programs.

Lemma 3.2. Suppose f ∈ conv S. Any extreme cut-generating function for (3.1) is strongly
minimal.

Proof. We prove the contrapositive, namely, any cut-generating function that is not strongly
minimal cannot be extreme. Let π be a cut-generating function for (3.1) that is not strongly
minimal. Then there exist a cut-generating function π′ 6= π, a valid inequality α>(x−f) ≥ α0

for S, and β ≥ 0 such that α0 + β ≥ 1 and π(r) ≥ α>r + βπ′(r) for all r ∈ Rn. Because
f ∈ conv S, we must have α0 ≤ 0, and β ≥ 1. We divide the rest of the proof into two cases.
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In each case, we exhibit cut-generating functions π1, π2 that are distinct from π and satisfy
π = 1

2π1 + 1
2π2.

Case (i): α0 + β > 1. Let δ > 0 be such that α0 + β = 1 + δ. Let π1 and π2 be defined as
π1 = 1

1+δπ and π2 = 1+2δ
1+δ π. It is easy to check that π = 1

2π1+ 1
2π2. Furthermore, π1 and π2 are

distinct from π since for any x ∈ S, π1(x−f) 6= π(x−f) and π2(x−f) 6= π(x−f). We show
that π1 and π2 are indeed cut-generating functions. Let (x, y) be a feasible solution to (3.1)
so that f +∑r∈Rn ryr = x ∈ S. Then ∑r∈Rn π1(r)yr ≥ 1

1+δ (
∑
r∈Rn α

>ryr +β
∑
r∈Rn π

′(r)yr) ≥
1

1+δ (α
>(x − f) + β) ≥ α0+β

1+δ = 1. Similarly, ∑r∈Rn π2(r)yr = 1+2δ
1+δ

∑
r∈Rn π(r)yr ≥ 1+2δ

1+δ > 1.
Thus, π1 and π2 are cut-generating functions.

Case (ii): α0 + β = 1. Let π1 and π2 be defined as π1 = π′ and π2 = π + (π − π′). It is
again easy to see that π = 1

2π1 + 1
2π2. The function π1 is a cut-generating function that

is distinct from π by hypothesis. Furthermore, π2 is distinct from π because π1 is distinct
from π. We show that π2 is a cut-generating function. Note that α0 + β = 1; hence, π2(r) =
π(r) + (π(r)− (α0 + β)π′(r)) = π(r) + ((π(r)− βπ′(r))− α0π

′(r)) ≥ π(r) + (α>r− α0π
′(r))

for all r ∈ Rn. For any feasible solution (x, y) to (3.1), we can write ∑r∈Rn π2(r)yr ≥∑
r∈Rn π(r)yr +∑

r∈Rn α
>ryr − α0

∑
r∈Rn π

′(r)yr ≥
∑
r∈Rn π(r)yr + α>(x− f)− α0 ≥ 1 where

the second inequality follows from α0 ≤ 0. Thus, π2 is a cut-generating function.

Recall that any minimal cut-generating function π for (3.1) is subadditive by Theorem 2.2.
Thus, π(r1)+π(r2) ≥ π(r1+r2) for all r1, r2 ∈ Rn. Let E(π) denote the set of all pairs (r1, r2)
for which this inequality is satisfied at equality. The next result generalizes [72, Lemma 1.4]
and [52, Lemma 5.6].

Lemma 3.3. Suppose S is full-dimensional and f ∈ conv S. Let π be a strongly minimal
cut-generating function for (3.1). Suppose there exist cut-generating functions π1 and π2

such that π = 1
2π1 + 1

2π2. Then π1 and π2 are strongly minimal cut-generating functions and
E(π) ⊂ E(π1) ∩ E(π2).

Proof. We first prove that π1 and π2 are strongly minimal cut-generating functions. Suppose
π1 is not strongly minimal. Then there exists a cut-generating function π′1 6= π1, a valid
inequality α>(x− f) ≥ α0 for S, and β ≥ 0 such that α0 + β ≥ 1 and π1(r) ≥ βπ′1(r) + α>r

for all r ∈ Rn. Because f ∈ conv S, α0 and β ≥ 1. Define the function π′ : Rn →
R as π′ = β

β+1π
′
1 + 1

β+1π2. The function π′ is a cut-generating function because it is a
convex combination of two cut-generating functions. Furthermore, π(r) = 1

2π1(r)+ 1
2π2(r) ≥

β
2π
′
1(r) + 1

2π2(r) + 1
2α
>r = β+1

2 π′1(r) + 1
2α
>r for all r ∈ Rn. Because the linear inequality

1
2α
>(x − f) ≥ α0

2 is valid for S, β+1
2 ≥ 0, and β+1

2 + α0
2 ≥ 1, the function π′ implies π. If
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α = 0 and β = 1, then π′ = 1
2π
′
1 + 1

2π2 and π′ 6= π because π′1 6= π1. If α = 0 and β > 1,
then π ≥ β+1

2 π′. For any x ∈ S, the inequality π(x − f) > π′(x − f) holds because π′ is
a cut-generating function and π′(x − f) ≥ 1. If α 6= 0, then there exists x̄ ∈ S such that
α>(x̄ − f) > α0. Such a point x̄ exists because S is full-dimensional. Then we can write
π(x̄− f) ≥ β+1

2 π′(x̄− f) + 1
2α
>(x̄− f) > β+1

2 π′(x̄− f) + α0
2 ≥ π′(x̄− f) + α0+β−1

2 ≥ π′(x̄− f)
by using π′(x̄−f) ≥ 1 and α0 +β ≥ 1 to obtain the third and fourth inequality, respectively.
In all three cases, π′ 6= π which contradicts the strong minimality of π.

Now let (r1, r2) ∈ E(π). Because π1 and π2 are minimal cut-generating functions, they
are subadditive by Theorem 2.2. Then

π(r1 + r2) = π(r1) + π(r2) = 1
2(π1(r1) + π1(r2)) + 1

2(π2(r1) + π2(r2))

≥ 1
2π1(r1 + r2) + 1

2π2(r1 + r2) = π(r1 + r2).

This shows that the inequality above must in fact be satisfied as an equality and πj(r1) +
πj(r2) = πj(r1 + r2) for j ∈ [2]. Equivalently, (r1, r2) ∈ E(π1) ∩ E(π2). Hence, E(π) ⊂
E(π1) ∩ E(π2).

3.3 The One-Row Problem for S = Z+

The main purpose of this section is to establish a Two-Slope Theorem for extreme cut-
generating functions for (3.1) when S = Z+, in the spirit of the Gomory-Johnson Two-Slope
Theorem for S = Z. We also assume f ∈ R+ \ Z+.

When S = Z+, any cut-generating function for (3.1) must take nonnegative values at
nonnegative rationals because minimal cut-generating functions are subadditive and take
nonnegative values at nonnegative integers. In the remainder, we restrict our attention to
cut-generating functions for (3.1) that take nonnegative values at all nonnegative points.
This is satisfied in particular by cut-generating functions that are left or right-continuous on
the nonnegative halfline. Therefore, we make the following assumption.

Assumption 3.2. When S = Z+, all cut-generating functions π satisfy π(r) ≥ 0 for all
r ≥ 0.

This assumption means, in particular, that a cut-generating function π is extreme if and
only if it cannot be written as π = 1

2π1 + 1
2π2 where π1 and π2 are distinct cut-generating

functions satisfying Assumption 3.2. We now state the main result of this section.
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Theorem 3.4 (Two-Slope Theorem). Let S = Z+ and f ∈ R+\Z+. Suppose Assumption 3.2
holds. Let π : R → R be a strongly minimal cut-generating function for (3.1). If the
restriction of π to any compact interval is a continuous piecewise linear function with at
most two slopes, then π is extreme.

Theorem 3.4 implies, for example, that the cut-generating functions π1
α of Example 2.1

are extreme [57, Theorem 1]. The proof of Theorem 3.4 will require the next two lemmas.

Lemma 3.5. Let S = Z+ and f ∈ R+ \ Z+. Let π : R → R be a minimal cut-generating
function for (3.1). If the restriction of π to any compact interval is a continuous piecewise
linear function, then there exist 0 < ε ≤ min{f − bfc, dfe − f} and s− < 0 < s+ such that
π(r) = s−r for r ∈ [−ε, 0] and π(r) = s+r for r ∈ [0, ε].

Proof. Suppose π is a minimal cut-generating function for (3.1). By Theorem 2.20, π(0) = 0
and π is subadditive. Together with π(0) = 0, the continuity and piecewise linearity of π
imply that there exist 0 < ε ≤ min{f − bfc, dfe − f} and s−, s+ ∈ R such that π(r) = s−r

for r ∈ [−ε, 0] and π(r) = s+r for r ∈ [0, ε]. Because π is a cut-generating function for (3.1),
it must satisfy π

(
bfc − f

)
≥ 1 and π

(
dfe − f

)
≥ 1. The subadditivity of π then implies

kπ
(
bfc−f
k

)
≥ π

(
bfc − f

)
≥ 1 and kπ

(
dfe−f
k

)
≥ π

(
dfe − f

)
≥ 1 for all k ∈ Z++. For k large

enough, bfc−f
k
∈ [−ε, 0] and dfe−f

k
∈ [0, ε]. This proves s− < 0 < s+.

A fundamental tool in the proof of Theorem 3.4 will be the Interval Lemma, as was
already the case in the proof of Gomory and Johnson’s Two-Slope Theorem [73, 74]. The
Interval Lemma has numerous variants (see, for example, Aczél [5], Kannappan [85], Dey
et al. [63], and Basu et al. [24]). Below we give another variant which is well-suited to
our needs in proving Theorem 3.4 because it only assumes a function that is bounded from
below on a finite interval. This condition is known to be equivalent to the classical continuity
assumption in the literature on Cauchy’s additive equation; see Kannappan [85, Theorem
1.2]. We include a proof of our Interval Lemma here for the sake of completeness. Our proof
follows the approach of [24, Lemma 2.5]. Interval lemmas are usually stated in terms of a
single function, but they can also be worded using three functions; this variant is known
as Pexider’s additive equation (see, for example, Aczél [5] or Basu, Hildebrand, and Köppe
[27]). We state and prove our lemma in this more general form.

Lemma 3.6 (Interval Lemma). Let a1 < a2 and b1 < b2. Consider the intervals A = [a1, a2],
B = [b1, b2], and A + B = [a1 + b1, a2 + b2]. Let f : A→ R, g : B→ R, and h : A + B→ R.
Assume that f is bounded from below on A. If f(a) + g(b) = h(a + b) for all a ∈ A and
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b ∈ B, then f , g, and h are affine functions with identical slopes in the intervals A, B, and
A + B, respectively.

Proof. The lemma will follow from several claims about the functions f , g, h.

Claim 1. Let a ∈ A, and let b ∈ B, ε > 0 be such that b + ε ∈ B. For all k ∈ Z++ such that
a+ kε ∈ A, we have f(a+ kε)− f(a) = k[g(b+ ε)− g(b)].
For ` ∈ [k], we have f(a + `ε) + g(b) = h(a + b + `ε) = f(a + (` − 1)ε) + g(b + ε) by the
hypothesis of the lemma. This implies f(a+ `ε)−f(a+(`−1)ε) = g(b+ ε)−g(b) for ` ∈ [k].
Summing all k equations, we obtain f(a+ kε)− f(a) = k[g(b+ ε)− g(b)]. ♦

Let ā, ā′ ∈ A be such that ā′ − ā ∈ Q and ā′ > ā. Define c = f(ā′)−f(ā)
ā′−ā .

Claim 2. For all a, a′ ∈ A such that a′ − a ∈ Q, we have f(a′)− f(a) = c(a′ − a).
Assume without any loss of generality that a′ > a. Choose a positive rational ε such that
ā′ − ā = p̄ε for some integer p̄, a′ − a = pε for some integer p, and b1 + ε ∈ B. From Claim
1, we get

f(ā′)− f(ā) = p̄[g(b1 + ε)− g(b1)] and f(a′)− f(a) = p[g(b1 + ε)− g(b1)].

Dividing the first equality by ā′ − ā = p̄ε and the second by a′ − a = pε, we obtain

f(a′)− f(a)
a′ − a

= g(b1 + ε)− g(b1)
ε

= f(ā′)− f(ā)
ā′ − ā

= c.

Thus, f(a′)− f(a) = c(a′ − a). ♦

Claim 3. For all a ∈ A, f(a) = f(a1) + c(a− a1).
Let δ(x) = f(x)− cx. We show that δ(a) = δ(a1) for all a ∈ A to prove the claim. Because
f is bounded from below on A, δ is bounded from below on A as well. Let M be a number
such that δ(a) ≥M for all a ∈ A.

Suppose for a contradiction that there exists some a∗ ∈ A such that δ(a∗) 6= δ(a1). The
lower bound on δ implies δ(a1), δ(a∗) ≥ M . Let D = max{δ(a1), δ(a∗)}. Let N ∈ Z++ be
such that N |δ(a∗) − δ(a1)| > D −M . By Claim 2, δ(a1) = δ(a) and δ(a∗) = δ(a′) for all
a, a′ ∈ A such that a1 − a and a∗ − a′ are rational. If δ(a∗) < δ(a1), choose ā, ā′ ∈ A such
that ā < ā′, δ(a1) = δ(ā), δ(a∗) = δ(ā′), ā+N(ā′− ā) ∈ A, and b1 + (ā′− ā) ∈ B. Otherwise,
choose ā, ā′ ∈ A such that ā < ā′, δ(a1) = δ(ā′), δ(a∗) = δ(ā), ā + N(ā′ − ā) ∈ A, and
b1 + (ā′ − ā) ∈ B. In either case ā < ā′ and δ(ā) > δ(ā′). Furthermore, the choices of ā, ā′,
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and N imply

N [δ(ā′)− δ(ā)] = −N |δ(ā′)− δ(ā)| = −N |δ(a∗)− δ(a1)| < M −D.

Let ε = ā′ − ā. By Claim 1,

δ(ā+Nε)− δ(ā) = N [δ(b1 + ε)− δ(b1)] = N [δ(ā+ ε)− δ(ā)] = N [δ(ā′)− δ(ā)].

Combining this with the previous inequality, we obtain

δ(ā+Nε)− δ(ā) = N [δ(ā′)− δ(ā)] < M −D.

Because δ(ā) ≤ max{δ(a1), δ(a∗)} = D, this yields δ(ā + Nε) < M −D + δ(ā) < M which
contradicts the choice of M . ♦

Claim 4. For all b ∈ B, g(b) = g(b1) + c(b− b1).
Let k be the smallest positive integer such that k(a2 − a1) ≥ b − b1, and let ε = b − (b1 +
(k − 1)(a2 − a1)). For all ` ∈ [k − 1], we have g(b1 + `(a2 − a1))− g(b1 + (`− 1)(a2 − a1)) =
f(a1 + (a2−a1))− f(a1) = c(a2−a1) by Claim 1. Similarly, g(b)− g(b1 + (k− 1)(a2−a1)) =
g(b1 + (k − 1)(a2 − a1) + ε)− g(b1 + (k − 1)(a2 − a1)) = f(a1 + ε)− f(a1) = cε by Claim 1.
Summing all k equations, we obtain g(b)− g(b1) = cε+ c(k − 1)(a2 − a1) = c(b− b1). ♦

Finally, let w ∈ A+B, and let a ∈ A, b ∈ B be such that w = a+ b. By the hypothesis of
the lemma and by Claims 3 and 4, we have h(w) = f(a) + g(b) = f(a1) + c(a− a1) + g(b1) +
c(b− b1) = h(a1 + b1) + c(w − (a1 + b1)).

We now prove Theorem 3.4. Our proof follows the outline of the Gomory-Johnson Two-
Slope Theorem for S = Z presented in [74, Theorem 5]; see also [73, Theorem 3.3].

Proof of Theorem 3.4. Let I be a compact interval of the real line containing
[
b−fc, 1

]
. By

Lemma 3.5, there exist 0 < ε ≤ min{f−bfc, dfe−f} and s− < 0 < s+ such that π(r) = s−r

for r ∈ [−ε, 0] and π(r) = s+r for r ∈ [0, ε]. Thus, s− and s+ are the two slopes of π. Assume
without any loss of generality that the slopes of π are distinct in the consecutive intervals
delimited by the points min I = r−q < . . . < r−1 < r0 = 0 < r1 < . . . < rt = max I. It follows
that π has slope s+ in interval [ri, ri+1] if i is even and slope s− if i is odd.

Consider cut-generating functions π1, π2 such that π = 1
2π1 + 1

2π2. By Lemma 3.3, π1

and π2 are strongly minimal cut-generating functions. By Theorem 2.8, π, π1, and π2 are
symmetric and satisfy π(0) = π1(0) = π2(0) = 0 and π(−1) = π1(−1) = π2(−1) = 0. The
symmetry condition implies in particular that π(−f) = π1(−f) = π2(−f) = 1.
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We will obtain the theorem as a consequence of several claims.

Claim 1. In intervals [ri, ri+1] with i even, π1 and π2 are affine functions with positive slopes
s+

1 and s+
2 , respectively.

Let i ∈ {−q, . . . , t − 1} even. Let 0 < ε ≤ r1 be such that ri + ε < ri+1. Define A = [0, ε],
B = [ri, ri+1− ε]. Then A+B = [ri, ri+1]. Note that the slope of π is s+ in all three intervals
and π(a) +π(b) = π(a+ b) for all a ∈ A and b ∈ B. By Lemma 3.3, π1(a) +π1(b) = π1(a+ b)
and π2(a) + π2(b) = π2(a + b) for all a ∈ A and b ∈ B. Consider either j ∈ {1, 2}. The
function πj is a cut-generating function, so πj(a) ≥ 0 for all a ∈ A by Assumption 3.2.
Lemma 3.6 implies that πj is an affine function with common slope s+

j in all three intervals
A, B, and A + B. Because πj is a minimal cut-generating function, it is subadditive and
satisfies kπj

(
dfe−f
k

)
≥ πj

(
dfe − f

)
≥ 1 for all k ∈ Z++. Choosing k large enough ensures

dfe−f
k
∈ A and kπj

(
dfe−f
k

)
= s+

j

(
dfe − f

)
≥ 1. This shows s+

j > 0 and concludes the proof
of Claim 1. ♦

Claim 2. In intervals [ri, ri+1] with i odd, π1 and π2 are affine functions with negative slopes
s−1 and s−2 , respectively.
The proof of the claim is similar to the proof of Claim 1. One only needs to choose the
intervals A, B, and A+B slightly more carefully while using Lemma 3.6. Let i ∈ {−q, . . . , t−
1} be odd. Let 0 < ε ≤ −r−1 be such that ri + ε < ri+1 and ε ≤ r1. Define A = [−ε, 0],
B = [ri + ε, ri+1]. Then A + B = [ri, ri+1]. Consider either j ∈ {1, 2}. Because πj is a
minimal cut-generating function, it is subadditive and satisfies πj(a) ≥ −πj(−a) = s+

j a for
all a ∈ A. Thus, πj is minorized by a linear function and bounded from below on A. Now
using Lemmas 3.3 and 3.6, we see that πj is an affine function with common slope s−j in all
three intervals A, B, and A+B. The negativity of s−j then follows from this, the subadditivity
of πj, πj(0) = 0, and πj

(
bfc − f

)
≥ 1. ♦

Claims 1 and 2 show that π1 and π2 are continuous functions whose restrictions to the
interval I are piecewise linear functions with two slopes.

Claim 3. s+ = s+
1 = s+

2 , s− = s−1 = s−2 .
Define L+

−1 and L+
−f as the sum of the lengths of intervals with positive slope contained

in [−1, 0] and [−f, 0], respectively. Define L−−1 and L−−f as the sum of the lengths of
intervals with negative slope contained in [−1, 0] and [−f, 0], respectively. Note that
L+
−f , L

−
−f , L

+
−1, L

−
−1 are all nonnegative, L+

−1 + L−−1 = 1, and L+
−f + L−−f = f . Since π(0) =

π1(0) = π2(0) = 0, π(−f) = π1(−f) = π2(−f) = 1, and π(−1) = π1(−1) = π2(−1) = 0, the
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vectors (s+, s−), (s+
1 , s

−
1 ), (s+

2 , s
−
2 ) all satisfy the system

L+
−1σ

+ + L−−1σ
− = 0,

L+
−fσ

+ + L−−fσ
− = −1.

Note that (L+
−1, L

−
−1) 6= 0 because L+

−1 + L−−1 = 1. Suppose the constraint matrix of the
system above is singular. Then the vector (L+

−f , L
−
−f ) must be a multiple λ of (L+

−1, L
−
−1).

However, this is impossible because the system has a solution (s+, s−) and the right-hand
sides of the two equations would have to satisfy 0λ = −1. Therefore, the constraint matrix
is nonsingular and the system must have a unique solution. This implies s+ = s+

1 = s+
2 and

s− = s−1 = s−2 . ♦

The functions π, π1, and π2 are continuous piecewise linear functions which have the same
slope in each interval [ri, ri+1] of I. Therefore, π(r) = π1(r) = π2(r) for all r ∈ I. Because I
can be chosen to be any compact interval that contains

[
b−fc, 1

]
, we get π = π1 = π2.

Example 3.1. In Theorem 3.4, the cut-generating function π is assumed to be “strongly
minimal”. This assumption cannot be weakened to “minimal” or “restricted minimal” as the
following example illustrates. Consider the model (3.1) where S = Z+ and 0 < f < 1. For
α ≥ 1, define the function π4

α : R→ R as

π4
α(r) =


αr

1−f , for r ≥ 0,
−r
f
, for − f < r < 0,

1 + α(r+f)
1−f , for r ≤ −f.

The function π4
α is a continuous piecewise linear function with only two slopes (see Fig-

ure 3.1). Furthermore, αr
1−f ≤ π4

α(r) ≤ 1 + α(r+f)
1−f for all r ∈ R. We claim that

i. π4
α is a restricted minimal cut-generating function for (3.1),

ii. π4
α is neither strongly minimal nor extreme for (3.1) when α > 1.

As a consequence of Theorem 2.25, to prove statement (i), we only need to show that
π4
α(0) = 0, π4

α(−1) ≤ 0, and π4
α is subadditive and symmetric. The first two properties

are straightforward to verify. We prove that π4
α is subadditive, that is, π4

α(r1) + π4
α(r2) ≥

π4
α(r1 + r2) for all r1, r2 ∈ R. We assume r1 ≤ r2 without any loss of generality.
- If r1 ≤ −f , then π4

α(r1) + π4
α(r2) ≥ 1 + α(r1+f)

1−f + αr2

1−f = 1 + α(r1+r2+f)
1−f ≥ π4

α(r1 + r2).
- If r1 > −f and r1 + r2 < 0, then π4

α(r1) + π4
α(r2) ≥ −r1

f
+ −r2

f
= −(r1+r2)

f
≥ π4

α(r1 + r2).
- If r1 + r2 ≥ 0, then π4

α(r1) + π4
α(r2) ≥ αr1

1−f + αr2

1−f = π4
α(r1 + r2).
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0

1

-1

−f r

π4
α

1

Figure 3.1: The restricted minimal cut-generating function π4
α has only two slopes but is not

extreme.

Thus, π4
α is subadditive. Furthermore, π4

α is symmetric since the point (−f/2, 1/2) is a point
of symmetry in the graph of the function.

To prove statement (ii), note that π4
α(−1) < 0 for any α > 1. It follows from Theorem 2.8

that π4
α is not strongly minimal and from Lemma 3.2 that π4

α is not extreme. Indeed, for
any α > 1, π4

α can be written as π4
α = 1

2π
4
α−ε + 1

2π
4
α+ε, where both functions π4

α−ε and π4
α+ε

are restricted minimal cut-generating functions if we choose 0 < ε ≤ α− 1.

Finally, we observe that when α = 1, the conditions of Theorem 2.8 are satisfied. This
implies that π4

α is strongly minimal for (3.1) when α = 1 and therefore extreme according to
Theorem 3.4 in this case.





Chapter 4

Sufficiency of Cut-Generating Functions

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols and Lau-
rence Wolsey [58].

4.1 Introduction

4.1.1 Motivation

Let S′ ⊂ Rn be a nonempty closed set such that 0 /∈ S′. In this chapter, we consider the
model

X = X(R, S′) =
{
s ∈ Rk

+ : Rs ∈ S′
}
, (4.1)

where R = [r1, . . . , rk] is a real n×k matrix. The model (4.1) has been studied in [54, 83, 87].
It arises in integer programming when studying Gomory’s corner relaxation [71, 72] or the
relaxation proposed by Andersen, Louveaux, Weismantel, and Wolsey [9]. It also arises in
other optimization problems such as complementarity problems [84]. As in Chapters 2 and
3, the goal of the framework (4.1) is to generate inequalities that are valid for X but not for
the origin. Such cutting planes are well-defined [54, Lemma 2.1] and can be written as

c>s ≥ 1. (4.2)

Let S′ ⊂ Rn be a given nonempty closed set such that 0 /∈ S′. The set S′ is assumed to
be fixed in this paragraph. A function ρ : Rn → R is a cut-generating function for X(R, S′)
if it produces the coefficients cj = ρ(rj) of a cut (4.2) valid for X(R, S′) for any choice

65
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of k and R = [r1, . . . , rk]. Conforti et al. [54] show that cut-generating functions enjoy
significant structure, generalizing earlier work in integer programming [22, 61]. For instance,
the minimal ones are sublinear and are closely related to S′-free neighborhoods of the origin.
We say that a closed, convex set is S′-free if it contains no point of S′ in its interior. For
any minimal cut-generating function ρ, there exists a closed, convex, S′-free set V ⊂ Rn such
that 0 ∈ intV and V = {r ∈ Rn : ρ(r) ≤ 1}. A cut (4.2) with coefficients cj = ρ(rj) is called
an S′-intersection cut in this chapter.

Now assume that both S′ and R are fixed. Noting X ⊂ Rk
+, we say that a cut c>s ≥ 1

dominates b>s ≥ 1 if cj ≤ bj for all j ∈ {1, . . . , k}. A natural question is whether every
cut (4.2) that is valid for X is dominated by an S′-intersection cut. Conforti et al. provide
an affirmative response to this question under the condition that coneR = Rn; see [54,
Theorem 6.3]. However, they also give an example which demonstrates that it is not always
the case. This example has the peculiarity that S′ contains points that cannot be obtained
as Rs for any s ∈ Rk

+. Conforti et al. [54] propose the following open problem: Assuming
S′ ⊂ coneR, is it true that every cut (4.2) that is valid for X(R, S′) is dominated by an
S′-intersection cut? The main theorem of this chapter shows that this is indeed the case.

Theorem 4.1. Let X(R, S′) be a nonempty set defined as in (4.1). Suppose S′ ⊂ coneR.
Then any valid inequality c>s ≥ 1 separating the origin from X(R, S′) is dominated by an
S′-intersection cut.

Earlier, for the case n = 2, Cornuéjols and Margot [56] showed that every valid cut (4.2)
for X(R, S′) is dominated by an S′-intersection cut for all choices of R when S′ = b+ Zn for
some b ∈ Rn\Zn; see [56, Theorem 3.1]. Zambelli [117] generalized this result to arbitrary n.
Conforti et al. [50] showed that a similar statement is true for Gomory’s corner polyhedron.
We note that any valid cut (4.2) must have c ∈ Rk

+ in all of these settings because the
recession cone of the closed convex hull of X(R, S′) equals the nonnegative orthant. Dey and
Wolsey [61] extended these results to the case where S′ = P∩(b+Zn) for some b ∈ Rn\Zn and
a rational polyhedron P ⊂ Rn; see [61, Proposition 3.7]. Our Theorem 4.1 further extends
them to the case where S′ ⊂ Rn is an arbitrary nonempty closed set such that 0 /∈ S′. More
recently, Theorem 4.1 has been generalized in [88, 89]. These papers build upon the results
of [83, 87] on minimal valid inequalities for X(R, S′). See the discussion ensuing Remark 4.3
for additional details.

The remainder of the chapter is organized as follows: In Section 4.2, we prove Theo-
rem 4.1. Section 4.3 elaborates on the geometric intuition behind the proof and illustrates
its construction with an example.
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4.1.2 Notation and Terminology

For a positive integer `, we let [`] = {1, . . . , `}. For j ∈ [k], we let ej ∈ Rk denote the j-th
standard unit vector. We let convV, coneV, and spanV represent the convex hull, conical
hull, and linear span of a set V ⊂ Rn, respectively. We use linV and recV to refer to the
lineality space and recession cone of a closed convex set V ⊂ Rn, respectively. The polar
cone of V ⊂ Rn is the set V◦ = {r ∈ Rn : r>x ≤ 0 ∀x ∈ V}. The dual cone of V ⊂ Rn is the
set V∗ = −V◦.

A function ρ : Rn → R ∪ {+∞} is said to be positively homogeneous if ρ(λx) = λρ(x)
for all λ > 0 and x ∈ Rn, and subadditive if ρ(x1) + ρ(x2) ≥ ρ(x1 + x2) for all x1, x2 ∈ Rn.
Moreover, ρ is sublinear if it is both positively homogeneous and subadditive. Sublinear
functions are known to be convex. For a nonempty set V ⊂ Rn, the support function of
V is the function σV : Rn → R ∪ {+∞} defined as σV(r) = supx∈V r>x. It is not difficult
to show that σV = σconvV. Support functions of nonempty sets are sublinear. For an in-
depth treatment of sublinearity and support functions, the reader is referred to [77, Chapter
C]. Given a closed, convex neighborhood V ⊂ Rn of the origin, a representation of V is
any sublinear function ρ : Rn → R such that V = {r ∈ Rn : ρ(r) ≤ 1}. Minkowski’s
gauge function is a representation of V, but there can be other representations when V is
unbounded. S′-intersection cuts are generated by representations of closed, convex, S′-free
neighborhoods of the origin.

4.2 Proof of Theorem 4.1

Our proof of Theorem 4.1 will use several lemmas. Throughout this section we assume that
X 6= ∅ and c>s ≥ 1 is a valid inequality separating the origin from X.

Lemma 4.2. Let X be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. If u ∈ Rk

+ and Ru = 0, then c>u ≥ 0. Equivalently, c ∈ Rk
+ + ImR>.

Proof. Let s̄ ∈ X. Note that R(s̄ + tu) = Rs̄ ∈ S′ and s̄ + tu ≥ 0 for all t ≥ 0. From the
validity of c, we have c>(s̄ + tu) ≥ 1 for all t ≥ 0. Observing tc>u ≥ 1 − c>s̄ and letting
t→ +∞ implies c>u ≥ 0 as desired. Because u is an arbitrary vector in Rk

+ ∩KerR, we can
write c ∈ (Rk

+ ∩ KerR)∗. The equality (Rk
+ ∩ KerR)∗ = Rk

+ + ImR> follows from the facts
(Rk

+)∗ = Rk
+, (KerR)∗ = ImR>, and Rk

+ + ImR> is closed (see [103, Corollary 16.4.2]).

Given the valid inequality c>s ≥ 1, we now construct a sublinear function hc which
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produces a valid inequality ∑k
j=1 hc(rj)sj ≥ 1 that dominates c>s ≥ 1. Let hc : Rn →

R ∪ {+∞} be defined as
hc(r) = min c>s

Rs = r,

s ≥ 0.
(4.3)

The next remark records two properties of hc which follow immediately from its definition.

Remark 4.3. Suppose the hypotheses of Lemma 4.2 are satisfied. Let hc : Rn → R∪{+∞}
be defined as in (4.3).

i. hc(rj) ≤ cj for all j ∈ [k].
ii. hc(r) ≥ 1 for all r ∈ S′.

Proof. The first claim follows directly from the observation that ej ∈ Rk is feasible to the
linear program (4.3) associated with r = rj. To prove the second claim, let r ∈ S′. If the
linear program (4.3) associated with r = r is infeasible, hc(r) = +∞ ≥ 1. Otherwise, any
feasible solution s̄ to this linear program satisfies s̄ ∈ X and c>s̄ ≥ 1 by the validity of
c>s ≥ 1. Hence, hc(r) ≥ 1.

Previously, the function hc was studied in [39, 80, 83, 87] because of its connection with
minimal valid inequalities for the set X(R, S′) corresponding to a fixed matrix R. In this
context, an inequality c>s ≥ 1 that is valid for X(R, S′) is called minimal if there does not
exist another valid inequality b>s ≥ 1 such that cj ≥ bj for all j ∈ [k] and cj > bj for some
j ∈ [k]. In the framework of Blair [39] and Jeroslow [80], the set S′ is a singleton. Johnson
[83] assumes that S′ is a finite set, whereas Kılınç-Karzan [87] lets it be any nonempty set.
The results of these papers show that if c>s ≥ 1 is a minimal valid inequality for X(R, S′), the
conclusion of Remark 4.3(i) can be strengthened into cj = hc(rj) for all j ∈ [k]. Furthermore,
under a technical condition, minimal valid inequalities exist, and every valid inequality for
X(R, S′) is dominated by a minimal valid inequality. Therefore, our main challenge lies in
extending hc into a cut-generating function which produces valid cuts for X(R, S′) for all
matrices R while ensuring that it still produces a cut that dominates c>s ≥ 1 for the problem
instance under consideration. Our use of hc here parallels the proof of [117, Theorem 1]; see
also [23, Lemma 3.1] and [54, Theorem 2.3].

Lemma 4.4. Let X be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let hc : Rn → R ∪ {+∞} be defined as in (4.3).

i. hc = σP where P = {y ∈ Rn : R>y ≤ c}.
ii. The function hc is piecewise-linear and sublinear. Furthermore, it is finite on coneR.
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Proof. The dual of (4.3) is
max r>y

R>y ≤ c.
(4.4)

By Lemma 4.2, c = c′ + c′′ where c′ ∈ Rk
+ and c′′ ∈ ImR>. Because c′′ ∈ ImR>, there exists

y′′ ∈ Rn such that R>y′′ = c′′ ≤ c. Hence, y′′ ∈ P which shows that the dual linear program
(4.4) is always feasible and strong duality holds. This shows that hc = σP and hc is indeed
a sublinear function.

The linear program (4.3) is feasible if and only if r ∈ coneR. Hence, hc(r) < +∞ for
r ∈ coneR and hc(r) = +∞ for r ∈ Rn \ coneR. The conclusion that hc is finite on coneR
follows from hc = σP > −∞. We now show that hc is piecewise-linear. Let r ∈ coneR. Let
W be a finite set of points for which P = convW + recP. Observe that recP = (coneR)◦

and r>u ≤ 0 for all u ∈ recP. Thus, r>(w + u) ≤ r>w for all w ∈ convW and u ∈ recP,
which implies

σP(r) = sup
p∈P

r>p ≤ σconvW(r) = sup
w∈convW

r>w = σW(r).

Since W ⊂ P implies σW ≤ σP, we have σP(r) = σW(r). Therefore, hc(r) = σP(r) = σW(r) =
maxw∈W r>w where the last equality follows from the finiteness of W. This and the fact that
coneR is polyhedral imply that hc is piecewise-linear.

Lemma 4.4 implies in particular that hc(0) = 0.

Proposition 4.5. Theorem 4.1 holds when coneR = Rn.

Proof. In this case hc is finite everywhere. Let Vc = {r ∈ Rn : hc(r) ≤ 1}. The set Vc is a
closed, convex neighborhood of the origin because hc is sublinear and finite everywhere, and
hc(0) = 0. Because the Slater condition is satisfied with hc(0) = 0, we have intVc = {r ∈ Rn :
hc(r) < 1} (see, e.g., [77, Proposition D.1.3.3]). Then Vc is also S′-free since hc(r) ≥ 1 for all
r ∈ S′ by Remark 4.3(ii). The function hc is a cut-generating function because it represents
the closed, convex, S′-free neighborhood of the origin Vc by definition, and ∑k

j=1 hc(rj)sj ≥ 1
is an S′-intersection cut that can be obtained from Vc. By Remark 4.3(i), hc(rj) ≤ cj for all
j ∈ [k]. This shows that the S′-intersection cut ∑k

j=1 hc(rj)sj ≥ 1 dominates c>s ≥ 1.

We now consider the case where coneR ( Rn. We want to extend the definition of
hc to the whole of Rn and show that this extension is a cut-generating function. We will
first construct a function h′c such that i) h′c is finite everywhere on spanR, ii) h′c coincides
with hc on coneR. If rank(R) < n, we will further extend h′c to the whole of Rn by letting
h′c(r) = h′c(r′) for all r ∈ Rn, r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′+ r′′. Our proof of
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Theorem 4.1 will show that this procedure yields a function h′c that is the desired extension
of hc.

Let r0 ∈ − ri(coneR) where ri(·) denotes the relative interior. Note that this guarantees
cone(R ∪ {r0}) = spanR since there exist ε > 0 and d = rank(R) linearly independent
vectors a1, . . . , ad ∈ spanR such that −r0 ± εai ∈ coneR for all i ∈ [d] which implies
±ai ∈ cone(R ∪ {r0}). Now we define c0 as

c0 = sup
r ∈ coneR
α > 0

{
hc(r)− hc(r − αr0)

α

}
. (4.5)

Lemma 4.6. Let X be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let hc : Rn → R ∪ {+∞} be defined as in (4.3). The value c0, defined as in
(4.5), is finite.

Proof. Any pair r ∈ coneR and α > 0 yields a lower bound on c0: Our choice of r0 ensures
r − αr0 ∈ coneR and c0 ≥ hc(r)−hc(r−αr0)

α
. To get an upper bound on c0, consider any

r̃ ∈ coneR and α̃ ≥ 0. Observe that r̃ − α̃r0 ∈ coneR. By Lemma 4.4, hc(r̃ − α̃r0) =
σP(r̃ − α̃r0) where P = {y ∈ Rn : R>y ≤ c}. Let W be a finite set of points for which
P = convW + recP. Because recP = (coneR)◦, we have (r̃ − α̃r0)>u ≤ 0 for all u ∈ recP.
This implies σP(r̃ − α̃r0) = σW(r̃ − α̃r0), and we can write

c0 = sup
r ∈ coneR
α > 0

{
σW(r)− σW(r − αr0)

α

}
≤ sup

r ∈ coneR
α > 0

{
σW(αr0)

α

}
= σW(r0),

where we have used the sublinearity of σW in the inequality and the second equality. The
conclusion follows now from the fact that W is a finite set.

Remark 4.7. Suppose the hypotheses of Lemma 4.6 are satisfied. If we scale r0 by a number
λ > 0, then c0 is scaled by λ as well.

Proof. For any r ∈ coneR, α > 0, and λ > 0, the positive homogeneity of hc implies

hc(r)− hc(r − αλr0))
α

= λ
hc(r/λ)− hc(r/λ− αr0))

α
.

The claim follows from this observation together with the fact that r ∈ coneR if and only if
r/λ ∈ coneR.
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Proposition 4.8. Let X(R, S′) be a nonempty set defined as in (4.1). Consider a valid
inequality c>s ≥ 1 for X(R, S′). Let hc : Rn → R ∪ {+∞} be defined as in (4.3). Let
r0 ∈ − ri(coneR), and let c0 be defined as in (4.5). Then c0s0 + c>s ≥ 1 is a valid inequality
for X([r0, R], S′).

Proof. Let (s̄0, s̄) ∈ X([r0, R], S′) and r = r0s̄0 +Rs̄ ∈ S′. Then

c0s̄0 + c>s̄ ≥ c0s̄0 +
k∑
j=1

hc(rj)s̄j ≥ c0s̄0 + hc(Rs̄) = c0s̄0 + hc(r − s̄0r0),

where the first inequality follows from Remark 4.3(i) and the second from the sublinearity
of hc. Using the definition of c0 and applying Remark 4.3(ii), we conclude c0s̄0 + c>s̄ ≥
c0s̄0 + hc(r − s̄0r0) ≥ hc(r) ≥ 1.

We define the function h′c on spanR by

h′c(r) = min c0s0 + c>s

r0s0 +Rs = r,

s0 ≥ 0, s ≥ 0.
(4.6)

The function h′c is real-valued, piecewise-linear, and sublinear on spanR as a consequence of
Lemma 4.4 applied to the matrix [r0, R] and the inequality c0s0 + c>s ≥ 1 which is valid for
X([r0, R], S′) by Proposition 4.8.

Lemma 4.9. Let X be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let hc, h′c : Rn → R ∪ {+∞} be defined as in (4.3) and (4.6), respectively.
The function h′c coincides with hc on coneR.

Proof. It is clear from the definitions (4.3) and (4.6) that h′c ≤ hc on spanR. Let r ∈ coneR
and suppose h′c(r) < hc(r). Then there exists (s̄0, s̄) satisfying r0s̄0 +Rs̄ = r, s̄ ≥ 0, s̄0 > 0,
and c0s̄0 + c>s̄ < hc(r). Rearranging the terms and using Remark 4.3(i), we obtain

c0 <
hc(r)− c>s̄

s̄0
≤
hc(r)−

∑k
j=1 hc(rj)s̄j
s̄0

.

Finally, the sublinearity of hc and the observation that Rs̄ = r − r0s̄0 give

c0 <
hc(r)−

∑k
j=1 hc(rj)s̄j
s̄0

≤ hc(r)− hc(Rs̄)
s̄0

= hc(r)− hc(r − r0s̄0)
s̄0

.

This contradicts the definition of c0 and proves the claim.
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Lemma 4.9 and Remark 4.3 have the following corollary.

Corollary 4.10. Let X be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let h′c : Rn → R ∪ {+∞} be defined as in (4.6).

i. h′c(rj) ≤ cj for all j ∈ [k].
ii. Suppose S′ ⊂ coneR. Then h′c(r) ≥ 1 for all r ∈ S′.

If rank(R) < n, we extend the function h′c defined in (4.6) to the whole of Rn by letting

h′c(r) = h′c(r′) for all r ∈ Rn, r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. (4.7)

Note that this extension preserves the sublinearity of h′c.

Proof of Theorem 4.1. Let h′c be defined as in (4.6) and (4.7), and let V′c = {r ∈ Rn : h′c(r) ≤
1}. Observe that V′c is a closed, convex neighborhood of the origin because h′c is sublinear
and finite everywhere, and h′c(0) = 0. Furthermore, intV′c = {r ∈ Rn : h′c(r) < 1} by the
Slater property h′c(0) = 0. This implies that V′c is also S′-free since h′c(r) ≥ 1 for all r ∈ S′ by
Corollary 4.10(ii). The function h′c is a cut-generating function because it represents V′c, and∑k
j=1 h

′
c(rj)sj ≥ 1 is an S′-intersection cut. By Corollary 4.10(i), h′c(rj) ≤ cj for all j ∈ [k].

This shows that the S′-intersection cut ∑k
j=1 h

′
c(rj)sj ≥ 1 dominates c>s ≥ 1.

4.3 Constructing the S′-Free Convex Neighborhood of
the Origin

Here we give a geometric interpretation for the proof of Theorem 4.1 and explicitly describe
the S′-free neighborhood of the origin V′c = {r ∈ Rn : h′c(r) ≤ 1} in terms of the vectors
r1, . . . , rk.

As in Section 4.2, we let c>s ≥ 1 be a valid inequality separating the origin from X.
Assume without any loss of generality that the vectors r1, . . . , rk have been normalized so
that cj ∈ {0,±1} for all j ∈ [k]. Define the sets J+ = {j ∈ [k] : cj = +1}, J− = {j ∈
[k] : cj = −1}, and J0 = {j ∈ [k] : cj = 0}. Let C = conv({0} ∪ {rj : j ∈ J+}) and
K = cone({rj : j ∈ J0 ∪ J−} ∪ {rj + ri : j ∈ J+, i ∈ J−}). Let A = C + K. Defining hc as in
(4.3), one can show A = {r ∈ Rn : hc(r) ≤ 1}.

When coneR 6= Rn, the origin lies on the boundary of A. This happens in the example
of Figure 4.1. In the proof of Theorem 4.1, we overcame the difficulty occurring when
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coneR 6= Rn by extending hc into a function h′c which is defined on the whole of Rn and
coincides with hc on coneR. The geometric counterpart is to extend the set A into a set
A′ that contains the origin in its interior. Let r0 ∈ − ri(coneR) and let c0 be as defined in
(4.5). When c0 6= 0, scale r0 so that c0 ∈ {±1} (this is possible by Remark 4.7). Introduce
r0 into the relevant subset of [k] according to the sign of c0: If c0 = +1, let J′+ = J+ ∪ {0},
J′0 = J0, and J′− = J−; if c0 = 0, let J′+ = J+, J′0 = J0 ∪ {0}, and J′− = J−; and if c0 = −1,
let J′+ = J+, J′0 = J0, and J′− = J− ∪ {0}. Finally, let C′ = conv({0} ∪ {rj : j ∈ J′+}),
K′ = cone({rj : j ∈ J′0 ∪ J′−} ∪ {rj + ri : j ∈ J′+, i ∈ J′−}), and

A′ = C′ + K′ + (spanR)⊥. (4.8)

The example below illustrates this procedure for the cases c0 = +1 and c0 = −1.

Example 4.1. Let R = [r1, r2, r3] be a 2× 3 real matrix where r1 = (1, 3), r2 = (1.5, 1.5),
and r3 = (2,−1). Let c ∈ R3 where c1 = c2 = +1 and c3 = −1. The shaded region in
Figure 4.1 is the set A. In Figure 4.2 we add the vector r0 = (−5,−1) to the collection of
vectors {r1, r2, r3}. The new vector r0 has c0 = +1. Its addition expands A to the set A′

that is depicted. In Figure 4.3 we add the vector r0 = (−4,−5) with c0 = −1 to the original
collection and again obtain A′.

The following proposition shows that the function h′c defined in (4.6) and (4.7) represents
the set A′ defined in (4.8) above.

Proposition 4.11. Let X be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let h′c : Rn → R ∪ {+∞} be defined as in (4.6) and (4.7). Let A′ ⊂ Rn be
defined as in (4.8). Then A′ = {r ∈ Rn : h′c(r) ≤ 1}.

Proof. Let V′c = {r ∈ Rn : h′c(r) ≤ 1}. Note that V′c is convex by the sublinearity of
h′c. We have h′c(rj) ≤ cj = 1 for all j ∈ J′+, h′c(rj) ≤ cj ≤ 0 for all j ∈ J′0 ∪ J′−, and
h′c(rj+ri) ≤ h′c(rj)+h′c(ri) ≤ cj+ci = 0 for all j ∈ J′+ and i ∈ J′−. Moreover, h′c(r) = h′c(r+r′)
for all r ∈ Rn and r′ ∈ (spanR)⊥ by the definition of h′c. Hence, C′ ⊂ V′c, K′ ⊂ recV′c, and
(spanR)⊥ ⊂ linV′c, which together give us A′ = C′ + K′ + (spanR)⊥ ⊂ V′c.

To prove the converse, let r ∈ Rn be such that h′c(r) ≤ 1. We need to show r ∈ A′. We
consider two distinct cases: h′c(r) ≤ 0 and 0 < h′c(r) ≤ 1. First, let us suppose h′c(r) ≤ 0.
Then the definition of h′c implies that there exist (s̄0, s̄) ∈ R × Rk and r′ ∈ (spanR)⊥

such that (s̄0, s̄) ≥ 0, ∑j∈J′+ s̄j −
∑
i∈J′− s̄i ≤ 0, and r0s̄0 + Rs̄ = r − r′. Consider the cone

F = {(s̄0, s̄) ≥ 0 : ∑j∈J′+ s̄j −
∑
i∈J′− s̄i ≤ 0} defined by the first two sets of inequalities. The

extreme rays of F have all their components equal to 0 except for one or two components.
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Therefore, it is easy to verify by inspection that F is generated by the rays {ej : j ∈
J′0 ∪ J′−} ∪ {ej + ei : j ∈ J′+, i ∈ J′−}. This shows r ∈ K′ + (spanR)⊥ ⊂ A′. Now suppose
0 < h′c(r) ≤ 1. Then there exist (s̄0, s̄) ∈ R × Rk and r′ ∈ (spanR)⊥ such that (s̄0, s̄) ≥ 0,
0 < ∑

j∈J′+ s̄j −
∑
i∈J′− s̄i ≤ 1, and r0s̄0 + Rs̄ = r − r′. Define s̄ji = s̄i

s̄j∑
j∈J′+

s̄j
for all i ∈ J′−

and j ∈ J′+. These values are well-defined since 0 ≤ ∑
i∈J′− s̄i <

∑
j∈J′+ s̄j. Observe that∑

j∈J′+ s̄
j
i = s̄i and r0s̄0 +Rs̄ = ∑

j∈J′+(s̄j −
∑
i∈J′− s̄

j
i )rj +∑

i∈J′−
∑
j∈J′+ s̄

j
i (ri + rj) +∑

j∈J′0 s̄jrj.
We have∑j∈J′+(s̄j−

∑
i∈J′− s̄

j
i ) = ∑

j∈J′+ s̄j−
∑
i∈J′− s̄i ≤ 1 together with s̄j−

∑
i∈J′− s̄

j
i > 0 which

is true for all j ∈ J′+ because ∑i∈J′− s̄
j
i = s̄j

∑
i∈J′−

s̄i∑
j∈J′+

s̄j
< s̄j. Hence,

∑
j∈J′+(s̄j−

∑
i∈J′− s̄

j
i )rj ∈ C′.

Moreover, ∑i∈J′−
∑
j∈J′+ s̄

j
i (ri + rj) +∑

j∈J′0 s̄jr
j ∈ K′. These yield r ∈ C′ + K′ + (spanR)⊥ =

A′.

As a consequence, the set A′ can be used to generate an S′-intersection cut that dominates
c>s ≥ 1. Indeed, the proof of Theorem 4.1 shows that V′c = {r ∈ Rn : h′c(r) ≤ 1} is a closed,
convex, S′-free neighborhood of the origin. Proposition 4.11 shows that A′ = V′c. Therefore,∑k
j=1 h

′
c(rj)sj ≥ 1 is an S′-intersection cut obtained from A′.
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Figure 4.1: The set A for Example 4.1.
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Figure 4.2: The set A is expanded to A′
after the addition of r0 = (−5,−1).
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Figure 4.3: The set A is expanded to A′
after the addition of r0 = (−4,−5).





Chapter 5

Two-Term Disjunctions on Regular Cones

Acknowledgments. This chapter is based on joint work with Fatma Kılınç-Karzan [91,
115]. An extended abstract of [91] appeared as [90].

5.1 Introduction

5.1.1 Motivation

Let E be a finite-dimensional Euclidean space equipped with the inner product 〈·, ·〉. In
this and the next three chapters, we consider non-convex sets resulting from the application
of a linear two-term disjunction on an affine cross-section of a regular (full-dimensional,
closed, convex, and pointed) cone K ⊂ E. To be precise, we consider a disjunction 〈c1, x〉 ≥
c1,0 ∨ 〈c2, x〉 ≥ c2,0 on a set

C =
{
x ∈ K : Ax = b

}
, (5.1)

where A : E → Rm is a linear map and b ∈ Rm. In reference to this disjunction, we define
the sets

Ci =
{
x ∈ C : 〈ci, x〉 ≥ ci,0

}
for i ∈ {1, 2}. (5.2)

The purpose of this chapter is to understand the structure of the closed convex hull of the
disjunctive conic set C1 ∪ C2 under minimal assumptions on C. Our focus is on the case
where the definition of C contains a trivial set of equations, that is, where C = K. We
provide linear and nonlinear valid inequalities which describe this closed convex hull in the
space of the original variables. We also develop techniques for constructing low-complexity
convex relaxations of C1 ∪ C2 in the same space.

77
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Sets of the form C1 ∪ C2 are at the core of convex optimization based solution methods
to conic programs with integrality requirements on the decision variables and other types
of non-convex constraints. In mixed-integer conic programming, integrality conditions are
naturally relaxed into disjunctions that all feasible solutions satisfy; inequalities that are
valid for the resulting non-convex sets can then be added to the problem formulation to
obtain a tighter mathematical description of the integer hull. Such inequalities are known
as disjunctive inequalities [15]. We comment further on the use of disjunctive inequalities in
mixed-integer conic programming in Section 5.1.2. Furthermore, two-term disjunctions are
closely related to non-convex sets X = {x ∈ E : (c1,0 − 〈c1, x〉)(c2,0 − 〈c2, x〉) ≤ 0} associated
with rank-two quadratics. For instance, whenever there does not exist any point x ∈ C
which satisfies both 〈c1, x〉 ≥ c1,0 and 〈c2, x〉 ≥ c2,0 strictly, the disjunctive conic set C1 ∪C2

can be represented as C ∩ X. We explore this relationship further in Section 5.2.2.

A conic program is the problem of optimizing a linear function over the intersection of a
regular cone with an affine subspace. Mixed-integer conic programs (MICPs) are conic pro-
grams where some decision variables are constrained to take integer values. In the special case
where the ambient cone of the problem is a nonnegative orthant, MICPs reduce to mixed-
integer linear programs. The combined representation power of integer variables and conic
constraints makes mixed-integer conic programming an attractive framework for modeling
complex optimization problems which require discrete decisions. Following the development
of stable and efficient algorithms for solving second-order cone programs and semidefinite
programs, MICPs with second-order cone and positive semidefinite cone constraints have
received significant attention in the recent years. These problems find applications in op-
timization under uncertainty as well as in engineering design and statistical learning. The
reader is referred to Section 1.2 for a discussion of the applications of mixed-integer conic
programming. Motivated by these applications, the next three chapters place special em-
phasis on the cases where K is the nonnegative orthant, the second-order cone, the positive
semidefinite cone, or one of their direct products.

5.1.2 Related Work

Disjunctive inequalities, introduced in the context of mixed-integer linear programming in
the early 1970s [15], are a main ingredient of today’s successful integer programming tech-
nology. Despite their simplicity, the most powerful disjunctions in integer programming are
split disjunctions where the inequalities 〈c1, x〉 ≥ c1,0 and 〈c2, x〉 ≥ c2,0 define opposing and
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disjoint halfspaces. Disjunctive inequalities obtained from split disjunctions are called split
inequalities [55]. Some of the most well-known families of cutting-planes in mixed-integer
linear programming are split inequalities: Chvátal-Gomory inequalities [48, 69], Gomory
mixed-integer cuts [70], mixed-integer rounding inequalities [99], lift-and-project inequalities
[20]. . . More general two-term disjunctions are used for complementarity problems [84, 108]
and integer programs with non-convex quadratic constraints [31, 46]. When K = Rn

+,
Bonami et al. [41] characterized the closed convex hull of C1 ∪ C2 with a finite number
of linear inequalities. There has been significant recent interest in extending our under-
standing of disjunctive inequalities from mixed-integer linear programming to mixed-integer
conic programming. Stubbs and Mehrotra [106, 107] generalized lift-and-project inequalities
to mixed-integer convex programs with 0-1 variables. Çezik and Iyengar [47] investigated
Chvátal-Gomory inequalities for pure-integer conic programs and lift-and-project inequali-
ties for mixed-integer conic programs with 0-1 variables. Kılınç, Linderoth, and Luedtke [86]
and Bonami [40] suggested improved methods for generating lift-and-project inequalities for
mixed-integer convex programs. Atamtürk and Narayanan [11] presented a method to lift
conic valid inequalities for a low-dimensional restriction of a mixed-integer conic set into
conic valid inequalities for the original set.

The set C1 ∪C2 exemplifies the simplest form of the disjunctive conic sets Kılınç-Karzan
considered in [87]. In this framework, the underlying cone K of the disjunctive conic set
defines a hierarchy on valid linear inequalities. Kılınç-Karzan [87] examined valid linear in-
equalities which are minimal with respect to this hierarchy and showed that these inequalities
generate the associated closed convex hull under a mild technical condition which is also sat-
isfied in our setup in this chapter. Bienstock and Michalka [37] studied the characterization
and separation of valid linear inequalities for the epigraph of a convex, differentiable function
restricted to a non-convex domain. While a regular cone, which provides the base convex
set for our disjunctions in this and the next two chapters, can be seen as the epigraph of a
convex function, this function is not differentiable. On the other hand, certain cross-sections
of the second-order cone, which we consider in Chapter 8, correspond to epigraphs of convex,
differentiable functions. Nevertheless, we note that in both cases two-term disjunctions on
the domain of these functions can be more limited than the disjunctions we consider. Fur-
thermore, in contrast to [37], our focus is on describing the closed convex hull of disjunctive
conic sets explicitly with closed-form nonlinear inequalities.

Mixed-integer second-order cone programs (MISOCPs), a special class of MICPs where
the ambient cone is a direct product of second-order cones and nonnegative rays, have re-



80 Chapter 5: Two-Term Disjunctions on Regular Cones

ceived particular attention in the last few years. Atamtürk and Narayanan [10] extended
mixed-integer rounding inequalities to mixed-integer second-order cone programming. See
also [110] for a generalization of their approach to mixed-integer p-order cone program-
ming. Drewes [64] analyzed Chvátal-Gomory and lift-and-project inequalities for MISOCPs.
Drewes and Pokutta [65] devised a lift-and-project cutting-plane framework for MISOCPs
with a special structure. Several authors have investigated the problem of representing
the closed convex hull of a set such as C1 ∪ C2 in the space of the original variables with
closed-form nonlinear inequalities when C is an affine cross-section of the second-order cone.
Dadush et al. [59] and Andersen and Jensen [8] characterized the convex hull of a split
disjunction on C with a single new second-order cone inequality in the cases where C is
an ellipsoid and the second-order cone, respectively. Modaresi et al. [97] extended these
characterizations of the convex hull of a split disjunction to essentially all the cases where
C is an affine cross-section of the second-order cone. Modaresi et al. [96] also examined the
relationship between these characterizations, conic mixed-integer rounding inequalities, and
extended formulations of second-order cone constraints. Belotti et al. [32] demonstrated
that families of quadratic surfaces which have fixed intersections with two given hyperplanes
can be described with a single parameter. Based on this result, Belotti et al. [34] later
devised a procedure for identifying a second-order cone inequality which characterizes the
closed convex hull of C1 ∪ C2 under the assumptions that the set C is an ellipsoid and the
sets C1 and C2 are disjoint.

Recently, results about two-term disjunctions on affine cross-sections of the second-order
cone have been extended to intersections of these affine cross-sections with a single homo-
geneous quadratic [45, 95]. To the best of our knowledge, none of the papers in the existing
literature provide explicit closed convex hull characterizations of two-term disjunctions on
the positive semidefinite cone in the space of the original variables.

5.1.3 Notation and Terminology

In this chapter, E represents a finite-dimensional Euclidean space equipped with the inner
product 〈·, ·〉. If E is a direct product of p lower-dimensional Euclidean spaces E1, . . . ,Ep,
that is, E = ∏p

j=1 Ej, we define 〈·, ·〉 as 〈α, x〉 = ∑p
j=1〈αj, xj〉j where αj and xj represent

the restriction of α and x to the space Ej respectively and 〈·, ·〉j is the inner product on
Ej. We assume that Rn is equipped with the inner product 〈α, x〉 = α>x. The (standard)
Euclidean norm ‖ · ‖ : E → R on E is defined as ‖x‖ =

√
〈x, x〉. The dual cone of V ⊂ E
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is V∗ = {α ∈ E : 〈x, α〉 ≥ 0 ∀x ∈ V}. Given a set V ⊂ E, we let convV, convV, intV,
and bdV denote the convex hull, closed convex hull, topological interior, and boundary of
V, respectively. We use recV to refer to the recession cone of a closed convex set V ⊂ E.
For a positive integer k, we let [k] = {1, . . . , k}, and for i ∈ [n], we let ei denote the i-th
standard unit vector in Rn.

Throughout the chapter, we consider a regular cone K ⊂ E. In the case where E =∏p
j=1 Ej, if each Kj ⊂ Ej is a regular cone, then their direct product K = ∏p

j=1 Kj is also a
regular cone in E. We remind the reader that the dual cone K∗ of a regular cone K is also
regular, and the dual of K∗ is K itself. If K = ∏p

j=1 Kj, then K∗ = ∏p
j=1(Kj)∗.

5.1.4 Outline of the Chapter

Section 5.2 introduces the basic elements of our analysis. Section 5.2.1 identifies the setup for
our analysis of the closed convex hull of C1∪C2 with Conditions 5.1 and 5.2. Condition 5.1 is
a natural assumption for our purposes, whereas Condition 5.2 is only needed in results which
provide a complete closed convex hull description of C1∪C2. We discuss the pathologies that
arise in the absence of Condition 5.2 in Section 5.3.3. Section 5.2.2 establishes a connection
between two-term disjunctions on C and the non-convex set C ∩ X defined by a rank-two
quadratic; we show that this connection carries over to closed convex hulls of these sets.

In Section 5.3, we start our analysis of two-term disjunctions on a regular cone K. It is a
well-known fact from convex analysis that the closed convex hull of C1∪C2 can be described
with linear inequalities alone. However, the set of linear inequalities that are valid for C1∪C2

is typically very large, and only a small subset of these are needed in a description of the
closed convex hull of C1 ∪C2. In Section 5.3.1, for a two-term disjunction on a regular cone
K, we characterize the structure of a subset of strong valid linear inequalities which, along
with the cone constraint x ∈ K, are sufficient to describe the closed convex hull of C1 ∪ C2.
These inequalities are tight on C1 ∪C2 and conic minimal in the sense of [87]. We call such
linear inequalities “undominated” in this chapter. Section 5.3.2 identifies certain cases where
the characterization of undominated valid linear inequalities can be refined further.

In Section 5.4, we develop structured nonlinear valid inequalities for the sets under consid-
eration through conic programming duality. In Section 5.4.1, we consider two-term disjunc-
tions on a regular cone K. We formulate the general form of a family of convex inequalities
that are valid for C1 ∪C2 and explore their structure in detail. The refined linear inequality
characterization of Section 5.3.2 guarantees that a single convex inequality from this family
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defines the closed convex hull of C1∪C2 under certain conditions. In Section 5.4.2, using the
connection established in Section 5.2.2 between two-term disjunctions and non-convex sets
defined by rank-two quadratics, we develop valid convex inequalities and closed convex hull
descriptions for sets of the form K ∩ X. In Section 5.4.3, we demonstrate how the results of
Section 5.4.1 can be strengthened when C1 and C2 satisfy a certain disjointness condition.

We note that our results on disjunctions on regular cones easily extend to disjunctions on
homogeneous cross-sections of regular cones if we work in the linear subspace which defines
the cross-section.

5.2 Preliminaries

5.2.1 Two-Term Disjunctions on Convex Sets

Let C ⊂ E be defined as in (5.1). In this section, we start our analysis of the set C1 ∪ C2

and its closed convex hull, where C1 and C2 are defined as in (5.2). We first describe some
conditions which are instrumental in simplifying our analysis.

The inequalities 〈c1, x〉 ≥ c1,0 and 〈c2, x〉 ≥ c2,0 can always be scaled so that their right-
hand sides are 0 or ±1. Therefore, we assume c1,0, c2,0 ∈ {0,±1} for convenience from now
on. Furthermore, conv(C1 ∪ C2) = C2 when C1 ⊂ C2, and conv(C1 ∪ C2) = C1 when
C1 ⊃ C2. In both cases, the closed convex hull of C1 ∪C2 has an immediate description. In
the remainder we assume C1 6⊂ C2 and C1 6⊃ C2.

Condition 5.1. C1 6⊂ C2 and C1 6⊃ C2.

In particular, Condition 5.1 implies C1,C2 6= ∅ and C1,C2 6= C. Condition 5.1 has
a simple implication which we state next. The lemma extends ideas from Balas [18] to
disjunctions on more general convex sets.

Lemma 5.1. Let C ⊂ E be a convex set. Consider Ci = {x ∈ C : 〈ci, x〉 ≥ ci,0} for
i ∈ {1, 2}. Suppose C1 and C2 satisfy Condition 5.1.

i. The set C1 ∪ C2 is not convex unless C1 ∪ C2 = C.
ii. If C is closed and pointed, then conv(C1∪C2) = conv(C+

1 ∪C+
2 ) where C+

1 = C1 +recC2

and C+
2 = C2 + recC1.

Proof. To prove statement (i), suppose C1 ∪ C2 ( C and pick x0 ∈ C \ (C1 ∪ C2). Also,
pick x1 ∈ C1 \ C2 and x2 ∈ C2 \ C1. Let x′ be the point on the line segment between x0
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and x1 such that 〈c1, x
′〉 = c1,0. Similarly, let x′′ be the point between x0 and x2 such that

〈c2, x
′′〉 = c2,0. Note that x′ /∈ C2 and x′′ /∈ C1 by the convexity of C \ C1 and C \ C2. Then

a point that is a strict convex combination of x′ and x′′ is in the convex hull of C1 ∪C2 but
not in C1 ∪ C2.

Now we prove statement (ii). Note that [103, Corollary 9.1.2] implies C+
1 and C+

2 are
closed and recC+

1 = recC+
2 = recC1 + recC2 because C is pointed. The inclusions C1 ⊂ C+

1

and C2 ⊂ C+
2 imply that conv(C1 ∪ C2) ⊂ conv(C+

1 ∪ C+
2 ). Furthermore, the convex hull of

C+
1 ∪C+

2 is closed according to [103, Corollary 9.8.1] since C+
1 and C+

2 have the same recession
cone. Hence, conv(C1 ∪ C2) ⊂ conv(C+

1 ∪ C+
2 ). We claim conv(C1 ∪ C2) = conv(C+

1 ∪ C+
2 ).

Let x+ ∈ conv(C+
1 ∪ C+

2 ). Then there exist u1 ∈ C1, v2 ∈ recC2, u2 ∈ C2, and v1 ∈ recC1

such that x+ ∈ conv{u1 + v2, u2 + v1}. To prove the claim, it is enough to show that
u1 + v2, u2 + v1 ∈ conv(C1 ∪ C2). Consider the point u1 + v2 and the sequence

{(
1− 1

k

)
u1 + 1

k
(u2 + kv2)

}∞
k=1

.

For any k > 0, we have u1 ∈ C1 and u2 + kv2 ∈ C2. Therefore, the sequence above is
contained in the convex hull of C1 ∪ C2. Furthermore, it converges to u1 + v2 as k → ∞
which implies u1 + v2 ∈ conv(C1 ∪ C2). A similar argument shows u2 + v1 ∈ conv(C1 ∪ C2)
and proves the claim.

We also need the following technical condition in some of our results.

Condition 5.2. C1 and C2 are strictly feasible. That is, the sets C1 ∩ intK and C2 ∩ intK
are nonempty.

Throughout the chapter, we are interested in sets C1 and C2 defined as in (5.2). If C1

and C2 satisfy Conditions 5.1 and 5.2 together with c1,0, c2,0 ∈ {0,±1}, we say that C1 and
C2 satisfy the basic disjunctive setup.

5.2.2 Intersection of a Convex Set with Non-Convex Rank-Two
Quadratics

In this section, we consider the set C ∩ X where

X =
{
x ∈ E : (c1,0 − 〈c1, x〉)(c2,0 − 〈c2, x〉) ≤ 0

}
(5.3)
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is a non-convex set defined by a rank-two quadratic inequality. As in Section 5.2.1, we can
assume without any loss of generality that c1,0, c2,0 ∈ {0,±1}. Under a disjointness assump-
tion, the disjunction 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on C can be written as the intersection of
C with the non-convex set X. We discuss this connection further in Section 5.4.3.

Note that X = X1 ∪ X2 where

X1 =
{
x ∈ E : 〈c1, x〉 ≥ c1,0, 〈c2, x〉 ≤ c2,0

}
,

X2 =
{
x ∈ E : 〈c1, x〉 ≤ c1,0, 〈c2, x〉 ≥ c2,0

}
.

Associated with X,C ⊂ E, we define the sets C+
i ,C−i ⊂ E where

C+
i =

{
x ∈ C : 〈ci, x〉 ≥ ci,0

}
, C−i =

{
x ∈ C : 〈ci, x〉 ≤ ci,0

}
for i ∈ {1, 2}. (5.4)

Then C∩X1 = C+
1 ∩C−2 and C∩X2 = C−1 ∩C+

2 . Furthermore, C∩X equals the intersection
of C+

1 ∪ C+
2 and C−1 ∪ C−2 . In Proposition 5.2 below, we show that the convex hull of C ∩ X

equals the intersection of the convex hulls of C+
1 ∪ C+

2 and C−1 ∪ C−2 .

Proposition 5.2. Let C ⊂ E be a convex set. Let X ⊂ E and C+
i ,C−i ⊂ E be defined as in

(5.3) and (5.4), respectively.
i. conv(C ∩ X) = conv(C+

1 ∪ C+
2 ) ∩ conv(C−1 ∪ C−2 ).

ii. If C is closed, then conv(C ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ).

Proof. First we prove statement (i). Because C∩X = (C+
1 ∪C+

2 )∩(C−1 ∪C−2 ), we immediately
have conv(C∩X) ⊂ conv(C+

1 ∪C+
2 )∩conv(C−1 ∪C−2 ). If conv(C+

1 ∪C+
2 )∩conv(C−1 ∪C−2 ) = ∅,

then we have equality throughout. Let x ∈ conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ). We will show
x ∈ conv(C∩X). If x ∈ X, then we are done, because conv(C+

1 ∪C+
2 )∩ conv(C−1 ∪C−2 ) ⊂ C.

Hence, we assume x /∈ X. Then x ∈ T+ ∪ T− where T+ = {x ∈ E : 〈c1, x〉 > c1,0, 〈c2, x〉 >
c2,0} and T− = {x ∈ E : 〈c1, x〉 < c2,0, 〈c2, x〉 < c2,0}.

Consider the case where x ∈ T+. The case for x ∈ T− is similar. Because x ∈ T+, we have
〈c1, x〉 > c1,0 and 〈c2, x〉 > c2,0. Because x ∈ conv(C−1 ∪ C−2 ), there exists x1, x2 ∈ C−1 ∪ C−2
such that x ∈ conv{x1, x2}. We claim x1, x2 ∈ X. Suppose not. Then x1 ∈ T− or x2 ∈ T−.
In the first case, x1 satisfies 〈c1, x1〉 < c1,0 and 〈c2, x1〉 < c2,0, whereas x2 ∈ C−1 ∪C−2 implies
that x2 satisfies at least one of 〈c1, x2〉 ≤ c1,0 or 〈c2, x2〉 ≤ c2,0. This contradicts x ∈ T+.
The case where x2 ∈ T− is analogous and leads to the same conclusion.

Now we prove statement (ii). The inclusion conv(C∩X) ⊂ conv(C+
1 ∪C+

2 )∩conv(C−1 ∪C−2 )
follows from statement (i). As in the proof of statement (i), we can assume conv(C+

1 ∪C+
2 )∩
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conv(C−1 ∪C−2 ) 6= ∅. Let x ∈ conv(C+
1 ∪C+

2 )∩conv(C−1 ∪C−2 ). We will show x ∈ conv(C∩X).
Because x ∈ C, it is enough to consider x /∈ X. Suppose x ∈ T+. Because x ∈ conv(C−1 ∪C−2 ),
there exists a sequence {ui}∞i=1 ⊂ conv(C−1 ∪ C−2 ) which converges to x. The subsequence
{ui}∞i=1 ∩ T+ is infinite, contained in conv(C+

1 ∪ C+
2 ) ∩ conv(C−1 ∪ C−2 ), and also converges

to x. By statement (i), this subsequence is also contained in conv(C ∩ X). Therefore,
x ∈ conv(C ∩ X).

5.3 Properties of Valid Linear Inequalities for Disjunc-
tions on Regular Cones

In the rest of this chapter, we consider the case where the description of C contains a trivial
set of linear equations. In other words, we let C = K. With this, the sets C1 and C2 take
the form

Ci =
{
x ∈ K : 〈ci, x〉 ≥ ci,0

}
for i ∈ {1, 2}. (5.5)

The main purpose of this section is to characterize the structure of undominated valid linear
inequalities for C1 ∪ C2. As before, we assume that C1 and C2 satisfy Condition 5.1 and
each inequality 〈ci, x〉 ≥ ci,0 has been scaled so that ci,0 ∈ {0,±1}. For some results, we also
require C1 and C2 to satisfy Condition 5.2. When this is the case, we say that C1 and C2

satisfy the basic disjunctive setup.

Under Condition 5.2, the sets C1 and C2 always have nonempty interior. Note that
the set Ci is always strictly feasible when it is nonempty and ci,0 ∈ {±1}. Therefore, we
need Condition 5.2 to supplement Condition 5.1 only when c1,0 = 0 or c2,0 = 0. We note
that Condition 5.2 is primarily needed for sufficiency results, that is, closed convex hull
characterizations, and even in the absence of Condition 5.2, our techniques yield convex
valid inequalities for C1 ∪C2. We evaluate the necessity of Condition 5.2 for our sufficiency
results with an example in Section 5.3.3.

The next lemma records a simple consequence of Condition 5.1.

Lemma 5.3. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5). Sup-
pose Condition 5.1 holds. Then the following system of inequalities in the variable β1 is
inconsistent:

β1 ≥ 0, β1c1,0 ≥ c2,0, c2 − β1c1 ∈ K∗. (5.6)
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Similarly, the following system of inequalities in the variable β2 is inconsistent:

β2 ≥ 0, β2c2,0 ≥ c1,0, c1 − β2c2 ∈ K∗. (5.7)

Proof. Suppose there exists β∗1 satisfying (5.6). For all x ∈ K, this implies 〈c2−β∗1c1, x〉 ≥ 0 ≥
c2,0 − β∗1c1,0. Then any point x ∈ C1 satisfies β∗1〈c1, x〉 ≥ β∗1c1,0 and therefore, 〈c2, x〉 ≥ c2,0.
Hence, C1 ⊂ C2 which contradicts Condition 5.1. The proof for the inconsistency of (5.7) is
similar.

5.3.1 Undominated Valid Linear Inequalities

It is well-known that the closed convex hull of any set can be described with valid linear
inequalities alone (see, e.g., [77, Theorem A.4.2.3]). In this section, using the particular
structure of the set C1 ∪C2, we demonstrate that a subset of strong valid linear inequalities
are all that is needed for a description of the closed convex hull of C1 ∪ C2.

An inequality 〈µ, x〉 ≥ µ0 that is valid for a nonempty set S ⊂ K is said to be tight if
infx{〈µ, x〉 : x ∈ S} = µ0 and strongly tight if there exists x∗ ∈ S such that 〈µ, x∗〉 = µ0. A
valid inequality 〈ν, x〉 ≥ ν0 for S ⊂ K is said to dominate another valid inequality 〈µ, x〉 ≥ µ0

if (µ−ν, µ0−ν0) ∈ K∗×−R+. A valid inequality 〈µ, x〉 ≥ µ0 for S ⊂ K is undominated if there
does not exist another valid inequality 〈ν, x〉 ≥ ν0 which dominates 〈µ, x〉 ≥ µ0 such that
(µ, µ0) 6= (ν, ν0). This notion is closely related to the conic minimality definition of Kılınç-
Karzan [87]. In the framework of [87], a valid inequality 〈µ, x〉 ≥ µ0 for S ⊂ K is minimal
with respect to K, or K-minimal, if there does not exist another valid inequality 〈ν, x〉 ≥ ν0

which dominates 〈µ, x〉 ≥ µ0 such that µ 6= ν. In particular, a valid linear inequality for
C1 ∪C2 is undominated in the sense considered here if and only if it is K-minimal and tight
on C1 ∪ C2.

Kılınç-Karzan [87] introduces and studies the notion of K-minimality for sets that have
the form {x ∈ K : Ax ∈ B}, where B ⊂ Rm is an arbitrary nonempty set, A : E → Rm is a
linear map, and K ⊂ E is a regular cone. Our set C1 ∪C2 can be represented in this form as

{
x ∈ K :

(
〈c1, x〉
〈c2, x〉

)
∈
(
c1,0 + R+

R

)
∪
(

R
c2,0 + R+

)}
.

Because C1∪C2 is full-dimensional under Condition 5.2, [87, Proposition 2] implies that the
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extreme rays of the convex cone of valid linear inequalities

{
(µ, µ0) ∈ E× R : 〈µ, x〉 ≥ µ0 ∀x ∈ C1 ∪ C2

}
are either K-minimal valid linear inequalities, or they are implied by the cone constraint
x ∈ K. It is also not difficult to show that these extreme rays have to be tight on C1 ∪ C2.
Hence, undominated valid linear inequalities produce an outer description of the closed
convex hull of C1 ∪ C2, together with the constraint x ∈ K.

Because C1 and C2 satisfy Condition 5.2, the strong duality theorem of conic program-
ming (see, e.g., [35, Theorem 2.4.1] for a precise statement) implies that an inequality
〈µ, x〉 ≥ µ0 is valid for C1 ∪ C2 if and only if there exist α1, α2, β1, and β2 such that
(µ, µ0, α1, α2, β1, β2) satisfies

µ = α1 + β1c1, µ = α2 + β2c2,

β1c1,0 ≥ µ0, β2c2,0 ≥ µ0,

α1 ∈ K∗, β1 ∈ R+, α2 ∈ K∗, β2 ∈ R+.

(5.8)

Consider (µ, µ0, α1, α2, β1, β2) which satisfies (5.8). If µ0 < β1c1,0 and µ0 < β2c2,0, the
inequality 〈µ, x〉 ≥ µ0 is not tight on C1 ∪C2. Any such inequality is dominated by 〈µ, x〉 ≥
min{β1c1,0, β2c2,0} which has a larger right-hand side. Furthermore, when β1 = 0 or β2 = 0,
the inequality 〈µ, x〉 ≥ µ0 is implied by the cone constraint x ∈ K. Therefore, any valid
inequality 〈µ, x〉 ≥ µ0 that is tight on C1 ∪ C2 and not implied by the constraint x ∈ K is
characterized by a tuple (µ, µ0, α1, α2, β1, β2) which satisfies

µ = α1 + β1c1, µ = α2 + β2c2,

min{β1c1,0, β2c2,0} = µ0,

α1 ∈ K∗, β1 ∈ R+ \ {0}, α2 ∈ K∗, β2 ∈ R+ \ {0}.

(5.9)

In Proposition 5.5 below, we show that this system can be strengthened significantly when
we consider undominated valid linear inequalities. We first prove a simple lemma.

Lemma 5.4. Let K ⊂ E be a regular cone. Let r ∈ E.
i. There exist α1, α2 ∈ K∗ such that α1 − α2 = r.
ii. Consider α1, α2 ∈ K∗ such that α1 − α2 = r. Suppose r /∈ ± intK∗. Then there exist

α′1, α
′
2 ∈ bdK∗ such that α′1 − α′2 = r, α1 − α′1 ∈ K∗, and α2 − α′2 ∈ K∗.

Proof. We prove statement (i) first. The dual cone K∗ is also a regular cone. Let e ∈ intK∗.
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Then there exists ε > 0 such that e+B(ε) ⊂ K∗ where B(ε) = {x ∈ E : ‖x‖ ≤ ε}. Let r ∈ E.
Then ε

‖r‖r ∈ B(ε). Hence, e + ε
‖r‖r ∈ K∗. After scaling, we obtain ‖r‖

ε
e + r ∈ K∗, which

implies that r can be written as the difference of some point in K∗ and ‖r‖
ε
e.

If r ∈ bdK∗, let α′1 = r and α′2 = 0. If r ∈ − bdK∗, let α′1 = 0 and α′2 = r. In either case,
α′1 and α′2 satisfy the claims of statement (ii). Now consider the case r /∈ ±K∗. The rays α1

and α2 must be distinct and nonzero. Let ε1 ≥ 0 be such that α◦2 = α2 − ε1α1 ∈ bdK∗. The
scalar ε1 is well-defined because K∗ is pointed. Note that ε1 < 1 because (α1 − ε1α1)− α◦2 =
r /∈ ±K∗. Let α◦1 = α1 − ε1α1. Now let ε2 ≥ 0 be such that α′1 = α◦1 − ε2α

◦
2 ∈ bdK∗.

Again ε2 is well-defined. Furthermore, ε2 < 1 because α′1 − (α◦2 − ε2α
◦
2) = r /∈ ±K∗. Let

α′2 = α◦2 − ε2α◦2. The points α′1 and α′2 satisfy the claims of statement (ii).

Proposition 5.5. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5). Sup-
pose C1 and C2 satisfy the basic disjunctive setup. Then, up to positive scaling, any undom-
inated valid linear inequality for C1 ∪ C2 has the form 〈µ, x〉 ≥ µ0 with (µ, µ0, α1, α2, β1, β2)
satisfying

µ = α1 + β1c1, µ = α2 + β2c2,

min{β1c1,0, β2c2,0} = µ0,

α1 ∈ bdK∗, β1 ∈ R+ \ {0}, α2 ∈ bdK∗, β2 ∈ R+ \ {0}.

(5.10)

Proof. Let 〈ν, x〉 ≥ ν0 be a valid inequality for C1 ∪ C2. Then there exist α1, α2, β1,

and β2 such that (ν, ν0, α1, α2, β1, β2) satisfies (5.8). If (ν, ν0, α1, α2, β1, β2) does not sat-
isfy (5.9), then it is dominated. Hence, we can assume without any loss of generality that
(ν, ν0, α1, α2, β1, β2) satisfies (5.9). Let r = β2c2 − β1c1. If r /∈ ± intK∗, then 〈ν, x〉 ≥ ν0 is
dominated by the inequality 〈µ, x〉 ≥ ν0 where µ = α′1 + β1c1 = α′2 + β2c2 for α′1 and α′2

chosen as in Lemma 5.4(ii). In the remainder of the proof, we consider the case r ∈ ± intK∗.
We will show that 〈ν, x〉 ≥ ν0 is dominated by an inequality which satisfies (5.10).

Suppose r ∈ intK∗; the analysis for the case r ∈ − intK∗ is similar. By Lemma 5.3 and
taking β1, β2 > 0 into account, we conclude i) β2c2,0 > β1c1,0, and ii) α1 = α2 + r ∈ intK∗.
Statement (i) further implies ν0 = β1c1,0. There are two cases that we need to consider:
α2 6= 0 and α2 = 0.

First suppose α2 6= 0. Let α′1 = r, α′2 = 0, and µ = ν − α2. Then the inequality
〈µ, x〉 ≥ ν0 is valid for C1 ∪ C2 because (µ, ν0, α

′
1, α

′
2, β1, β2) satisfies (5.8). Furthermore,

〈µ, x〉 ≥ ν0 dominates 〈ν, x〉 ≥ ν0 since ν − µ = α2 ∈ K∗ \ {0}.

Now suppose α2 = 0. Then α1 = r ∈ intK∗. If ν0 > 0, then c1,0 = c2,0 = 1. We must
have c2 /∈ −K∗; otherwise, Condition 5.2 is violated. Let ε > 0 be such that α1−εc2 ∈ bdK∗.
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Here ε is well-defined because c2 /∈ −K∗. Moreover, Lemma 5.3 shows (β2 − ε) > β1 since
(β2 − ε)c2 − β1c1 = α1 − εc2 ∈ K∗. We define α′1 = β2

β2−ε(α1 − εc2), β′1 = β2
β2−εβ1, and

ν ′0 = β2
β2−εν0. If ν0 ≤ 0, we can assume c2 /∈ K∗; otherwise, the inequality 〈ν, x〉 ≥ ν0 is

implied by the constraint x ∈ K. Let ε > 0 be such that α1 + εc2 ∈ bdK∗. The scalar ε is
well-defined because c2 /∈ K∗. We define α′1 = β2

β2+ε(α1 + εc2), β′1 = β2
β2+εβ1, and ν ′0 = β2

β2+εν0.
The inequality 〈ν, x〉 ≥ ν ′0 is valid for C1 ∪ C2 because (ν, ν ′0, α′1, α2, β

′
1, β2) satisfies (5.10).

Furthermore, 〈ν, x〉 ≥ ν ′0 dominates 〈ν, x〉 ≥ ν0 because ν ′0 ≤ ν0.

Any tuple (µ, µ0, α1, α2, β1, β2) satisfying (5.10) must also satisfy r = β2c2 − β1c1 /∈
± intK∗ since having r ∈ ± intK∗ contradicts either α1 = α2 + r ∈ bdK∗ or α2 = α1 −
r ∈ bdK∗. For ease of exposition in the remainder of this section, we let µ0(β1, β2) =
min{β1c1,0, β2c2,0} and define

B =
{

(β1, β2) ∈ R2 : β1, β2 > 0, β2c2 − β1c1 6∈ ± intK∗
}
, (5.11)

M′(β1, β2) =
{
µ ∈ E : ∃α1, α2 ∈ bdK∗, µ = α1 + β1c1 = α2 + β2c2

}
. (5.12)

Proposition 5.5 implies the following result.

Corollary 5.6. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. The closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M′(β1, β2), (β1, β2) ∈ B

}
.

The system (5.10) is homogeneous in the tuple (µ, µ0, α1, α2, β1, β2). Therefore, in an
undominated valid inequality 〈µ, x〉 ≥ µ0, we can assume without any loss of generality that
the whole tuple has been scaled by a positive real number so that β1 = 1 or β2 = 1.

Proposition 5.7. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5). Sup-
pose C1 and C2 satisfy the basic disjunctive setup. Then, up to positive scaling, any undom-
inated valid linear inequality for C1 ∪ C2 has the form 〈µ, x〉 ≥ µ0 with (µ, µ0, α1, α2, β1, β2)
satisfying one of the following systems:

(i)

µ = α1 + β1c1,

µ = α2 + c2,

β1c1,0 ≥ c2,0 = µ0,

α1, α2 ∈ bdK∗,

β1 ∈ R+ \ {0}, β2 = 1,

(ii)

µ = α1 + c1,

µ = α2 + β2c2,

β2c2,0 ≥ c1,0 = µ0,

α1, α2 ∈ bdK∗,

β2 ∈ R+ \ {0}, β1 = 1.

(5.13)
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Keeping c1,0, c2,0 ∈ {0,±1} in mind, observe that the first of the two systems in (5.13) is
infeasible when c2,0 > c1,0 and the second is infeasible when c1,0 > c2,0. Therefore, in these
cases it is enough to consider only one of these systems. When c1,0 = c2,0 however, one may
need valid linear inequalities that are associated with either of the two systems in (5.13)
for a description of the closed convex hull of C1 ∪ C2. Still, for this case Proposition 5.7
implies that any undominated valid linear inequality for C1 ∪C2 can be written in the form
〈µ, x〉 ≥ µ0 where µ0 = c1,0 = c2,0.

Proposition 5.7 can be used to strengthen the statement of Corollary 5.6 as follows. Let
r = c2 − β1c1. First, note that any tuple (µ, µ0, α1, α2, β1, β2) satisfying the first system
in (5.13) must also satisfy r /∈ ± intK∗ since having r ∈ ± intK∗ contradicts either α1 =
α2+r ∈ bdK∗ or α2 = α1−r ∈ bdK∗. Analogously, any tuple (µ, µ0, α1, α2, β1, β2) satisfying
the second system in (5.13) must also satisfy c1 − β2c2 /∈ ± intK∗. Let us define

B1 =
{
β1 > 0 : β1c1,0 ≥ c2,0, c2 − β1c1 6∈ ± intK∗

}
, (5.14a)

B2 =
{
β2 > 0 : β2c2,0 ≥ c1,0, β2c2 − c1 6∈ ± intK∗

}
. (5.14b)

Proposition 5.7 implies the following result.

Corollary 5.8. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. The closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =

x ∈ K :
〈µ, x〉 ≥ c2,0 ∀µ ∈M′(β1, 1), β1 ∈ B1,

〈µ, x〉 ≥ c1,0 ∀µ ∈M′(1, β2), β2 ∈ B2

 .

5.3.2 When Does a Single (β1, β2) Pair Suffice?

In this section, we continue to study undominated valid linear inequalities for C1 ∪C2. The
main result of this section is Theorem 5.9, which shows that under certain conditions the
closed convex hull of C1 ∪ C2 has a much simpler outer description than the one given in
Corollary 5.8.

Theorem 5.9. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Let µ0 = min{c1,0, c2,0}. Suppose one
of the conditions below holds:

i. c1 ∈ K∗ or c2 ∈ K∗.
ii. The convex hull of C1 ∪ C2 is closed and c1,0 = c2,0 ∈ {±1}.
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Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ K : 〈µ, x〉 ≥ µ0 ∀µ ∈M′(1, 1)

}
.

Theorem 5.9 is a consequence of several lemmas, which refine the results of Section 5.3.1
on the structure of undominated valid linear inequalities for C1 ∪C2. These lemmas are the
subject of the next two sections.

The Recession Cones of C1 and C2

The lemma below shows that the statement of Proposition 5.7 can be strengthened substan-
tially when c1 ∈ K∗ or c2 ∈ K∗. Note that ci ∈ K∗ implies recCi = K in either case.

Lemma 5.10. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose c1 ∈ K∗ or c2 ∈ K∗. Let
µ0 = min{c1,0, c2,0}. Then, up to positive scaling, any undominated valid linear inequality
for C1 ∪ C2 has the form 〈µ, x〉 ≥ µ0 where µ ∈M′(1, 1).

Proof. Having ci ∈ K∗ implies recCi = K. If c1,0 ≤ 0 or c2,0 ≤ 0, then Lemma 5.1 indicates
conv(C1 ∪ C2) = K. In this case, all valid linear inequalities for C1 ∪ C2 are implied by
the constraint x ∈ K, and the claim holds trivially because there are no undominated valid
linear inequalities. Thus, we only need to consider the case c1,0 = c2,0 = 1.

Assume without any loss of generality that c2 ∈ K∗. Consider an undominated valid
inequality 〈ν, x〉 ≥ ν0 for C1 ∪ C2. Up to positive scaling, it satisfies the conditions of
Proposition 5.7. Hence, i) ν0 = c1,0 = c2,0 = 1, and ii) there exist α1, α2, β1, and β2 such
that (ν, 1, α1, α2, β1, β2) satisfies one of the two systems in (5.13). In particular, this implies
ν = α1 +β1c1 = α2 +β2c2 ∈ K∗ and min{β1, β2} = 1. Let r = β2c2−β1c1. By Lemma 5.3, we
also have r /∈ ±K∗. We will show that 〈ν, x〉 ≥ 1 cannot be undominated unless ν ∈M′(1, 1).
If β1 = β2 = 1, then ν ∈ M′(1, 1). We divide the rest of the proof into the following two
cases: β1 > β2 and β1 < β2.

First suppose β1 > β2. Then β2 = 1 and ν = α1 + β1c1 = α2 + c2. Having α2 = 0
contradicts r /∈ ±K∗; therefore, we may assume α2 6= 0. Let ε be such that 0 < ε ≤ β1−1

β1
.

Define α′1 = (1− ε)α1 + εc2, β′1 = (1− ε)β1, α′2 = (1− ε)α2, and µ = ν − εα2. The inequality
〈µ, x〉 ≥ 1 is valid for C1 ∪ C2 because (µ, 1, α′1, α′2, β′1, 1) satisfies (5.8). Furthermore, it
dominates 〈ν, x〉 ≥ 1 since ν − µ = εα2 ∈ K∗ \ {0}.
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Now suppose β2 > β1 = 1. Observe that the tuple (ν, 1, α1, α2 + (β2 − 1)c2, 1, 1) also
satisfies (5.8). Having α1 = 0 contradicts r /∈ ±K∗; therefore, we may assume α1 6= 0. In
the case α2 + (β2− 1)c2 ∈ intK∗, we can find a valid inequality that dominates 〈ν, x〉 ≥ 1 by
subtracting a positive multiple of α1 from µ as in the proof of Proposition 5.5. Otherwise,
α2 + (β2 − 1)c2 ∈ bdK∗. Then ν ∈M′(1, 1) since ν = α1 + c1 = (α2 + (β2 − 1)c2) + c2.

The Topology of the Convex Hull

When c1,0 = c2,0 ∈ {±1}, the characterization of Proposition 5.7 can be strengthened simi-
larly for the family of undominated valid linear inequalities which are tight on both C1 and
C2.

Lemma 5.11. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose c1,0 = c2,0 ∈ {±1} and let
µ0 = c1,0 = c2,0. Then, up to positive scaling, any undominated valid linear inequality for
C1 ∪ C2 which is tight on both C1 and C2 has the form 〈µ, x〉 ≥ µ0 where µ ∈M′(1, 1).

Proof. Let 〈µ, x〉 ≥ µ0 be an undominated valid inequality for C1∪C2 that is tight on both C1

and C2. Using Proposition 5.7, we can assume that µ0 = c1,0 = c2,0 and there exist α1, α2, β1,

and β2 such that (µ, µ0, α1, α2, β1, β2) satisfies one of the two systems in (5.13). In particular,
either β1 = 1 and β2µ0 ≥ µ0, or β2 = 1 and β1µ0 ≥ µ0. In any case, min{β1µ0, β2µ0} = µ0.
We will show β1 = β2 = 1.

Consider the following pair of minimization problems

inf
x

{
〈µ, x〉 : x ∈ C1

}
and inf

x

{
〈µ, x〉 : x ∈ C2

}
,

and their duals

sup
δ,γ

{
δµ0 : µ = γ + δc1, γ ∈ K∗, δ ≥ 0

}
and sup

δ,γ

{
δµ0 : µ = γ + δc2, γ ∈ K∗, δ ≥ 0

}
.

The pairs (α1, β1) and (α2, β2) are feasible solutions to the first and second dual problems,
respectively. Because the inequality 〈µ, x〉 ≥ µ0 is tight on both C1 and C2, the optimal
values of both minimization problems are µ0. Then we must have β1µ0 ≤ µ0 and β2µ0 ≤ µ0

by weak duality. This implies β1µ0 = β2µ0 = µ0 and β1 = β2 = 1.

Next, we identify an important case where the family of inequalities considered in
Lemma 5.11 is rich enough to describe the closed convex hull of C1 ∪ C2 completely.
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Proposition 5.12. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose the convex hull of C1 ∪C2 is
closed. Then undominated valid linear inequalities which are strongly tight on both C1 and
C2 are sufficient to describe the convex hull of C1 ∪ C2, together with the constraint x ∈ K.

Proof. Suppose the convex hull of C1 ∪ C2 is closed. When conv(C1 ∪ C2) = K, no new
inequalities are needed for a description of the convex hull of C1∪C2; hence, the claim holds
trivially. Therefore, assume conv(C1∪C2) ( K. We prove that given u ∈ K\ conv(C1∪C2),
there exists an undominated valid inequality which separates u from the convex hull of
C1 ∪ C2 and which is strongly tight on both C1 and C2.

Let v ∈ int(conv(C1 ∪C2)) \ (C1 ∪C2). Note that such a point exists since int(conv(C1 ∪
C2)) ⊂ C1 ∪ C2 otherwise, and this would imply conv(C1 ∪ C2) ⊂ C1 ∪ C2 because C1 ∪ C2

is closed. According to Lemma 5.1, this is possible only if C1 ∪ C2 = K, which has already
been ruled out in the first paragraph. Let 0 < λ < 1 be such that w = (1 − λ)u + λv ∈
bd(conv(C1 ∪ C2)). Then w ∈ K \ (C1 ∪ C2) because K \ (C1 ∪ C2) is convex. Because
w ∈ conv(C1∪C2), there exist x1 ∈ C1, x2 ∈ C2, and 0 < κ < 1 such that w = κx1+(1−κ)x2.
Furthermore, according to Corollary 5.6, having w ∈ bd(conv(C1 ∪ C2)) implies that there
exists an undominated valid inequality 〈µ, x〉 ≥ µ0 for C1∪C2 such that 〈µ,w〉 = µ0. Because
〈µ,w〉 = κ〈µ, x1〉 + (1 − κ)〈µ, x2〉 = µ0, 〈µ, x1〉 ≥ µ0, and 〈µ, x2〉 ≥ µ0, it must be the case
that 〈µ, x1〉 = 〈µ, x2〉 = µ0. Thus, the inequality 〈µ, x〉 ≥ µ0 is strongly tight on both C1

and C2. The only thing that remains to show is that 〈µ, u〉 < µ0. To see this, first note
that u = 1

1−λ(w − λv). Moreover, 〈µ, v〉 > µ0 since v ∈ int(conv(C1 ∪ C2)). It follows that
〈µ, u〉 = 1

1−λ(〈µ,w〉 − λ〈µ, v〉) < µ0.

We now give the proof of Theorem 5.9 stated at the beginning of this section.

Proof of Theorem 5.9. Consider an inequality 〈µ, x〉 ≥ µ0 where µ ∈ M′(1, 1) and µ0 =
min{c1,0, c2,0}. This inequality is valid for C1 ∪ C2 because there exist α1, α2 ∈ K∗ such
that the tuple (µ, µ0, α1, α2, 1, 1) satisfies (5.8). Furthermore, Lemmas 5.10 and 5.11 and
Proposition 5.12 show that all undominated valid linear inequalities for C1 ∪ C2 have this
form. The result follows.

Proposition 5.12 demonstrates the close relationship between the closedness of the convex
hull of C1 ∪ C2 and the sufficiency of valid linear inequalities which are tight on both C1

and C2. This motivates us to understand the cases where the convex hull of C1 ∪ C2 is
closed next. The convex hull of C1 ∪ C2 is always closed when c1,0 = c2,0 = 0 (see, e.g.,
[103, Corollary 9.1.3]) or when C1 and C2 are defined by a split disjunction (see Dadush et
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al. [59, Lemma 2.3]). In Proposition 5.13 below, we generalize the result of Dadush et al.:
We give a sufficient condition for the convex hull of C1 ∪C2 to be closed and show that this
condition is almost necessary.

Proposition 5.13. Let C ⊂ E be a closed, convex, and pointed set. Let Ci = {x ∈ C :
〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. Suppose C1 and C2 satisfy Condition 5.1. If

{
r ∈ recC : 〈c2, r〉 = 0

}
⊂
{
r ∈ recC : 〈c1, r〉 ≥ 0

}
and{

r ∈ recC : 〈c1, r〉 = 0
}
⊂
{
r ∈ recC : 〈c2, r〉 ≥ 0

}
,

(5.15)

then the convex hull of C1 ∪ C2 is closed. Conversely, if
i. there exists r∗ ∈ recC such that 〈c1, r

∗〉 < 0 = 〈c2, r
∗〉 and the problem infx{〈c2, x〉 :

x ∈ C1} is solvable, or
ii. there exists r∗ ∈ recC such that 〈c2, r

∗〉 < 0 = 〈c1, r
∗〉 and the problem infx{〈c1, x〉 :

x ∈ C2} is solvable,
then the convex hull of C1 ∪ C2 is not closed.

Proof. Let C+
1 = C1+recC2 and C+

2 = C2+recC1. We have conv(C1∪C2) ⊂ conv(C1∪C2) =
conv(C+

1 ∪C+
2 ) by Lemma 5.1. We will show conv(C+

1 ∪C+
2 ) ⊂ conv(C1 ∪C2) to prove that

the convex hull of C1 ∪C2 is closed when (5.15) is satisfied. Let x+ ∈ C+
1 . Then there exist

u1 ∈ C1 and v2 ∈ rec(C2) such that x+ = u1 + v2. If 〈c2, v2〉 > 0, then there exists ε ≥ 1
such that x+ + εv2 ∈ C2 and we have x+ ∈ conv(C1 ∪ C2). Otherwise, 〈c2, v2〉 = 0, and by
the hypothesis, 〈c1, v2〉 ≥ 0. This implies x+ ∈ C1, and thus C+

1 ⊂ conv(C1 ∪ C2). Through
a similar argument, one can show C+

2 ⊂ conv(C1 ∪ C2). Hence, C+
1 ∪ C+

2 ⊂ conv(C1 ∪ C2).
Taking the convex hull of both sides yields conv(C+

1 ∪ C+
2 ) ⊂ conv(C1 ∪ C2).

For the converse, suppose condition (i) holds, and let x∗ ∈ C1 be such that 〈c2, x
∗〉 ≤

〈c2, x〉 for all x ∈ C1. Note that 〈c2, x
∗〉 < c2,0 since otherwise, C1 ⊂ C2. Pick δ > 0 such that

x′ = x∗ + δr∗ /∈ C1. Then x′ /∈ C2 too because 〈c2, x
′〉 = 〈c2, x

∗〉 < c2,0. For any 0 < λ < 1,
x1 ∈ C1, and x2 ∈ C2, we can write 〈c2, λx1 + (1− λ)x2〉 ≥ λ〈c2, x

∗〉+ (1− λ)c2,0 > 〈c2, x
′〉.

Hence, x′ /∈ conv(C1 ∪ C2). On the other hand, x′ ∈ C+
1 ⊂ conv(C+

1 ∪ C+
2 ) = conv(C1 ∪ C2)

where the last equality follows from Lemma 5.1.

Corollary 5.14 shows that the sufficient condition of Proposition 5.13 can be rewritten in
a simpler form through conic programming duality when C1 and C2 are defined as in (5.5).

Corollary 5.14. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. If there exist β1, β2 ∈ R such that
c1 − β2c2 ∈ K∗ and c2 − β1c1 ∈ K∗, then the convex hull of C1 ∪ C2 is closed.
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Proof. Suppose there exist β1, β2 ∈ R such that c1−β2c2 ∈ K∗ and c2−β1c1 ∈ K∗. Consider
the following minimization problem

inf
u

{
〈c1, u〉 : 〈c2, u〉 = 0, u ∈ K

}
and its dual

sup
δ

{
0 : c1 − δc2 ∈ K∗

}
.

Because β2 is a feasible solution to the dual problem, we have 〈c1, u〉 ≥ 0 for all u ∈ K such
that 〈c2, u〉 = 0. Similarly, one can use the existence of β1 to show that the second part of
(5.15) holds too. Then by Proposition 5.13, the convex hull of C1 ∪ C2 is closed.

Lemma 5.11 allows us to simplify the characterization (5.10) of undominated valid linear
inequalities which are tight on both C1 and C2 in the case c1,0 = c2,0 ∈ {±1}. The next
proposition shows the necessity of the condition c1,0 = c2,0 in the statement of this lemma.
Unfortunately, when c1,0, c2,0 ∈ {0,±1} and c1,0 6= c2,0, undominated valid linear inequalities
are tight on exactly one of the two sets C1 and C2.

Proposition 5.15. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. If c1,0 > c2,0, then any undominated
valid linear inequality for C1 ∪ C2 is tight on C2 but not on C1.

Proof. Every undominated valid inequality has to be tight on either C1 or C2; other-
wise, we can just increase the right-hand side to obtain a dominating valid inequality.
By Proposition 5.7, undominated valid inequalities are of the form 〈µ, x〉 ≥ µ0 where
(µ, µ0, α1, α2, β1, β2) satisfies the first system in (5.13). In particular, we have β1 > 0,
β1c1,0 ≥ c2,0, and µ0 = c2,0. Now consider the following minimization problem

inf
u

{
〈µ, u〉 : u ∈ C1

}
and its dual

sup
δ

{
δc1,0 : µ− δc1 ∈ K∗, δ ≥ 0

}
.

Note that β1 is a feasible solution to the dual problem. The set C1 is strictly feasible by
Condition 5.2, so strong duality applies to this pair of conic programs. The dual problem
admits an optimal solution δ∗ which satisfies δ∗ ≥ β1 > 0 because c1,0 ≥ 0. Then

sign{δ∗c1,0} = sign{c1,0} = c1,0 > c2,0 = µ0.
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Hence, the inequality 〈µ, x〉 ≥ µ0 cannot be tight on C1.

This result, when combined with Proposition 5.12, yields the following corollary.

Corollary 5.16. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose c1,0 > c2,0. If conv(C1∪C2) 6=
K, then the convex hull of C1 ∪ C2 is not closed.

Proof. Suppose the convex hull of C1 ∪ C2 is closed. Let x ∈ K \ conv(C1 ∪ C2). By
Proposition 5.12, there exists an undominated valid linear inequality which strictly sepa-
rates x from the convex hull of C1 ∪ C2 and is tight on both C1 and C2. This contradicts
Proposition 5.15.

5.3.3 Revisiting Condition 5.2

Consider C1 and C2 defined as in (5.5). When Ci is nonempty and ci,0 ∈ {±1}, it is not
difficult to show that Ci has to be strictly feasible. Therefore, Condition 5.2 is not needed
when, for instance, C1 and C2 are nonempty sets defined by a split disjunction which excludes
the origin. Indeed, the only situation where Condition 5.2 may be needed in addition to
Condition 5.1 occurs when c1,0 = 0 or c2,0 = 0. Note that in such a case, linear inequalities
that satisfy system (5.8) (or (5.10)) are still valid for C1∪C2; they may just not be sufficient
to define its closed convex hull completely. We next give an example which shows that
Condition 5.2 is necessary to establish the sufficiency of the linear inequalities that satisfy
(5.8) (or (5.10)) when c1,0 = c2,0 = 0.

Let E = R3 and K = L3. Consider the disjunction x1 − x3 ≥ 0 ∨ −x1 − x3 ≥ 0
(c1 = e1 − e3, c2 = −e1 − e3, c1,0 = c2,0 = 0) on L3. Note that c1, c2 ∈ − bdL3, and C1 and
C2 are the rays generated by e1 + e3 and −e1 + e3, respectively. Therefore, conv(C1 ∪C2) =
{x ∈ L3 : x2 = 0} and x2 ≥ 0 is a valid inequality for C1 ∪ C2. However, letting µ = e2

in (5.8), we see that any α1 which satisfies µ = α1 + β1c1 for some β1 ∈ R cannot be in L3

because α1 = −β1e
1 + e2 + β1e

3 /∈ L3.

5.4 Nonlinear Inequalities with Special Structure

In this section, we continue to study the closed convex hull of C1 ∪C2, where C1 and C2 are
defined as in (5.5). Consider (β1, β2) ∈ B. For this pair, we define M′(β1, β2) as in (5.12).
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We also let µ0(β1, β2) = min{β1c1,0, β2c2,0} and define

M(β1, β2) = {µ ∈ E : ∃α1, α2 ∈ K∗, µ = α1 + β1c1 = α2 + β2c2}.

Lemma 5.4(ii) has the following consequence.

Remark 5.17. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5). Let
(β1, β2) ∈ B. Then

{
x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M′(β1, β2)

}
={

x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M(β1, β2)
}
.

Proof. Fix (β1, β2) ∈ B. Let D′,D ⊂ K be the sets on the left and right-hand sides of the
equation above, respectively. Then D ⊂ D′ because M(β1, β2) ⊃ M′(β1, β2). For the reverse
inclusion, let x̄ ∈ K\D. Then there exists µ ∈M(β1, β2) such that 〈µ, x̄〉 < µ0(β1, β2). Having
µ ∈ M(β1, β2) implies the existence of α1, α2 ∈ K∗ that satisfy µ = α1 + β1c1 = α2 + β2c2.
Recall that β2c2 − β1c1 /∈ ± intK∗ because (β1, β2) ∈ B. As in the proof of Proposition 5.5,
Lemma 5.4(ii) indicates that there exist α′1, α′2 ∈ bdK∗ such that α′1 − α′2 = β2c2 − β1c1,
α1 − α′1 ∈ K∗, and α2 − α′2 ∈ K∗. Let µ′ = α′1 + β1c1 = α′2 + β2c2. Then µ′ ∈M′(β1, β2) and
µ− µ′ ∈ K∗. The latter implies x̄ /∈ D′ since 〈µ′, x̄〉 < µ0(β1, β2).

For µ ∈M(β1, β2), the inequality 〈µ, x〉 ≥ µ0(β1, β2) is always valid for C1∪C2, regardless
of whether or not C1 and C2 satisfy the basic disjunctive setup. On the other hand, when
C1 and C2 satisfy the basic disjunctive setup, Corollary 5.6 and Remark 5.17 indicate

conv(C1 ∪ C2) =
{
x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M(β1, β2), (β1, β2) ∈ B

}
.

In this section, for a fixed pair (β1, β2) ∈ B, we develop structured valid nonlinear inequalities
for C1 ∪ C2 by grouping the linear inequalities 〈µ, x〉 ≥ µ0(β1, β2) associated with all µ ∈
M(β1, β2). Notice that a point x ∈ E satisfies 〈µ, x〉 ≥ µ0(β1, β2) for all µ ∈M(β1, β2) if and
only if it satisfies

inf
µ∈M(β1,β2)

〈µ, x〉 ≥ µ0(β1, β2). (5.16)

Theorem 5.9 and Remark 5.17 demonstrate that there are important cases where the in-
equality (5.16) associated with a single pair (β1, β2) ∈ B provides a complete description
of the closed convex hull of C1 ∪ C2. In general, however, the inequality (5.16) is only a
valid inequality derived from a relaxation 〈β1c1, x〉 ≥ µ0(β1, β2) ∨ 〈β2c2, x〉 ≥ µ0(β1, β2) of
the original disjunction on the cone K. Somewhat contrary to intuition, inequalities (5.16)
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obtained from such weaker disjunctions are sometimes necessary for a complete description
of the closed convex hull of C1∪C2. With this understanding, we consider (β1, β2) ∈ B fixed
from now on. To keep the notation simple, we suppress the arguments of M(β1, β2) and
µ0(β1, β2) and let di = βici for i ∈ {1, 2}. We concentrate our analysis on the set D1 ∪ D2

where
Di =

{
x ∈ K : 〈di, x〉 ≥ µ0

}
for i ∈ {1, 2}. (5.17)

Because (β1, β2) ∈ B, we are primarily interested in the case d2 − d1 6∈ intK∗. We also
note that, given C1 and C2 which satisfy the basic disjunctive setup, the sets D1 and D2

always satisfy Condition 5.2 because D1 ⊃ C1 and D2 ⊃ C2. However, they may violate
Condition 5.1. When this is the case, the set D1 ∪ D2 equals one of D1 or D2. Therefore,
while studying convex relaxations for D1∪D2 in the subsequent sections, we sometimes state
our results under the stronger condition d2 − d1 /∈ ±K∗.

5.4.1 Inequalities for Two-Term Disjunctions

In this section, we consider D1 and D2 defined as in (5.17). Recall that

M = {µ ∈ E : ∃α1, α2 ∈ K∗, µ = α1 + d1 = α2 + d2}.

For any choice of D1 and D2, a point x ∈ D1 ∪ D2 satisfies

inf
µ∈M
〈µ, x〉 ≥ µ0. (5.18)

Furthermore, when D1 and D2 satisfy the conditions of Theorem 5.9, an inequality of the
form (5.18) characterizes the closed convex hull of D1 ∪ D2, together with the constraint
x ∈ K. The main purpose of this section is to investigate the general form of this inequality
under minimal assumptions on the structure of K. This generality will enable us to establish
results about disjunctions on direct products of second-order cones and nonnegative rays in
Chapter 6 and disjunctions on the positive semidefinite cone in Chapter 7.

Throughout this section, we denote r = d2− d1 ∈ E. We start with a simple observation
which provides an alternate representation of the disjunction 〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0.

Remark 5.18. A point x ∈ E satisfies the disjunction 〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0 if and
only if it satisfies

|〈r, x〉| ≥ 2µ0 − 〈d1 + d2, x〉. (5.19)
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The next proposition states (5.18) in an alternate form.

Proposition 5.19. Let K ⊂ E be a regular cone. A point x ∈ E satisfies (5.18) if and only
if it satisfies

fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉 (5.20)

where fK,r : E→ R ∪ {−∞} is defined as

fK,r(x) = inf
α1,α2

{
〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ K∗

}
(5.21)

= max
ρ

{
〈r, ρ〉 : x− ρ ∈ K, x+ ρ ∈ K

}
. (5.22)

Proof. Consider (5.18). Note that

inf
µ

{
〈µ, x〉 : µ ∈M

}
= inf

µ,α1,α2

{
〈µ, x〉 : µ = α1 + d1, µ = α2 + d2, α1, α2 ∈ K∗

}
= 1

2〈d1 + d2, x〉+ 1
2 inf
α1,α2

〈α1 + α2, x〉 :
α1 − α2 = r,

α1, α2 ∈ K∗


= 1

2〈d1 + d2, x〉+ 1
2fK,r(x).

Therefore, (5.18) is equivalent to (5.20). Lemma 5.4(i) shows that there always exist α̂1, α̂2 ∈
K∗ such that α̂1 − α̂2 = r. Hence, (5.21) is always feasible. Indeed, this minimization
problem is strictly feasible because, for any e ∈ intK∗, we have α̂1 + e, α̂2 + e ∈ intK∗ and
(α̂1 + e)− (α̂2 + e) = r. Therefore, the strong duality theorem of conic programming applies,
and the dual problem (5.22) is solvable whenever the optimal value of (5.21) is bounded
from below.

Next, we make a series of immediate observations on the function fK,r(x).

Remark 5.20. Let K ⊂ E be a regular cone. Fix r ∈ E.
i. As a function of x, −fK,r(x) is the support function of a nonempty set (see (5.21)).

Therefore, it is closed and sublinear. Furthermore, the value of −fK,r(x) is finite if and
only if x ∈ K.

ii. The function fK,r(x) satisfies fK,r(x) ≥ |〈r, x〉| for any x ∈ K. If x is an extreme ray
of K, then fK,r(x) = |〈r, x〉|.

Proof. We only prove statement (ii). Let x ∈ K. Both x and −x are feasible solutions to
(5.22). Therefore, fK,r(x) ≥ |〈r, x〉|. Now suppose x is an extreme ray of K. Let ρ ∈ E be any
feasible solution to (5.22). We show ρ ∈ conv{x,−x}. First, note that 1

2(x−ρ)+ 1
2(x+ρ) = x.

Because x is an extreme ray of K, there must exist λ1, λ2 ≥ 0 such that x − ρ = λ1x and
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x+ ρ = λ2x. It follows that ρ = (1−λ1)x = (λ2− 1)x and λ1 +λ2 = 2, which completes the
proof of the claim.

Remark 5.20(i) immediately implies the convexity of the inequality (5.20) because its
right-hand side is a linear function of x.

Recall from Remark 5.18 that (5.19) provides an exact representation of the disjunction
〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0. Remark 5.20 shows that fK,r(x) is a concave function of x which
satisfies fK,r(x) ≥ |〈r, x〉| for any x ∈ K. Replacing the term |〈r, x〉| on the left-hand side of
(5.19) with any such function would define a convex relaxation of D1 ∪ D2 inside the cone
K. However, fK,r(x) is a “tight” concave overestimator of the function x 7→ |〈r, x〉| : E→ R
over K: It satisfies fK,r(x) = |〈r, x〉| whenever x is an extreme ray of K. This indicates that
an extreme ray x ∈ K satisfies (5.20) if and only if x ∈ D1 ∪D2. Furthermore, when D1 and
D2 satisfy the conditions of Theorem 5.9, the inequality (5.20) defines the closed convex hull
of D1 ∪ D2.

Remark 5.21. Let K ⊂ E be a regular cone. Fix x ∈ K.
i. As a function of r, fK,r(x) is the support function of a bounded set which contains the

origin (see (5.22)). Therefore, it is nonnegative, finite-valued, and sublinear.
ii. As a function of r, fK,r(x) is symmetric with respect to the origin, that is, fK,r(x) =

fK,−r(x) for any r ∈ E.

Remark 5.22. Let K ⊂ E be a regular cone. Let x ∈ K.
i. If r ∈ K∗, then fK,r(x) = 〈r, x〉; if −r ∈ K∗, then fK,r(x) = 〈−r, x〉. Thus, fK,r(x) =
|〈r, x〉| if r ∈ ±K∗.

ii. If r /∈ ± intK∗, then fK,r(x) = f ′K,r(x) where f ′K,r : E→ R ∪ {−∞} is defined as

f ′K,r(x) = inf
α1,α2

{
〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ bdK∗

}
. (5.23)

Proof. We only prove statement (ii). The inequality fK,r(x) ≤ f ′K,r(x) follows from the
observation that the feasible solution set of the minimization problem (5.23) is a restriction
of the feasible solution set of the problem (5.21). The inequality fK,r(x) ≥ f ′K,r(x) follows
from Lemma 5.4(ii) and the hypothesis x ∈ K.

Remark 5.22(ii) shows that, when r /∈ ± intK∗, the variables α1, α2 in the minimization
problem (5.21) can be restricted to the boundary of K∗ without changing the optimal value
of the problem. Note that this conclusion parallels the necessary conditions for undominated
valid linear inequalities obtained in Proposition 5.5.
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We can use Proposition 5.19 together with Remarks 5.20(i) and 5.21(i) to build simple
convex inequalities for D1 ∪ D2 as follows.

Remark 5.23. Let K ⊂ E be a regular cone. Fix r ∈ E. For any r1, . . . , r` ∈ E such
that r = ∑`

i=1 ri, we have ∑`
i=1 fK,ri(x) ≥ fK,r(x). Therefore, the inequality ∑`

i=1 fK,ri(x) ≥
2µ0−〈d1 +d2, x〉 is a relaxation of (5.20). Furthermore, note from Remark 5.20(i) that each
function fK,ri(x) is a concave function of x; hence, the resulting inequality is convex.

Remark 5.23 suggests a general procedure for developing convex inequalities for D1 ∪
D2 which might have nicer structural properties than (5.20). Furthermore, it allows great
flexibility in the choice of the decomposition r = ∑`

i=1 ri. For certain choices of r1, . . . , r` ∈ E,
the relaxation suggested in Remark 5.23 has the interpretation of relaxing the underlying
disjunction. We comment more on this interpretation in Section 7.2.4. Next we consider
an immediate application of the procedure outlined in Remark 5.23 which gives valid linear
inequalities for D1 ∪ D2 as a consequence of Remark 5.22(i).

Remark 5.24. Let K ⊂ E be a regular cone. Fix r ∈ E. By Lemma 5.4, there exists r+, r− ∈
K∗ such that r = r+ − r−. Remark 5.21(i) shows that fK,r(x) ≤ fK,r+(x) + fK,−r−(x) =
fK,r+(x)+fK,r−(x). Moreover, because r+, r− ∈ K∗, Remark 5.22(i) implies fK,r+(x) = 〈r+, x〉
and fK,r−(x) = 〈r−, x〉. Finally, using Proposition 5.19, we conclude that any x ∈ D1 ∪ D2

satisfies the linear inequality

〈r+ + r−, x〉 ≥ 2µ0 − 〈d1 + d2, x〉. (5.24)

Note that any possible choice of r+, r− ∈ K∗ satisfying r = r+ − r− leads to a different
inequality of the form (5.24). Given a two-term disjunction and a point x ∈ K that is
desired to be cut off, we can select the best possible inequality of the form (5.24) via a conic
program.

Remark 5.25. Let K ⊂ E and K ⊂ E be regular cones such that K ⊃ K. Then K∗ ⊂ K∗,
and fK,r(x) ≥ fK,r(x) for any x, r ∈ E.

The monotonicity result from Remark 5.25 can be useful when one would like to develop
structured convex relaxations of D1 ∪ D2 by replacing K with a regular cone K ⊃ K such
that an expression for fK,r(x) is readily available.

Remark 5.26. Let E = ∏p
j=1 Ej be a direct product of finite-dimensional Euclidean spaces.
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Suppose K = ∏p
j=1 Kj and each Kj ⊂ Ej is a regular cone. Then

fK,r(x) =
p∑
j=1

inf
αj1,α

j
2

{
〈αj1 + αj2, x

j〉j : αj1 − αj2 = rj, αj1, α
j
2 ∈ (Kj)∗

}
=

p∑
j=1

fKj ,rj(xj).

Under the hypotheses of Remark 5.26, let us define the following sets with respect to
r = (r1, . . . , rp) ∈ E:

P+=
{
j ∈ [p] : −rj ∈ (Kj)∗

}
, P−=

{
j ∈ [p] : rj ∈ (Kj)∗

}
, P◦=

{
j ∈ [p] : rj /∈ ±(Kj)∗

}
. (5.25)

Next we state a consequence of Proposition 5.19 and Remarks 5.22(i) and 5.26.

Proposition 5.27. Let E = ∏p
j=1 Ej be a direct product of finite-dimensional Euclidean

spaces. Suppose K = ∏p
j=1 Kj and each Kj ⊂ Ej is a regular cone. Define the sets P+, P−,

and P◦ as in (5.25).
i. A point x ∈ K satisfies (5.20) if and only if it satisfies

∑
j∈P◦

fKj ,rj(xj) +
∑
j∈P◦
〈dj1 + dj2, x

j〉j + 2
∑
j∈P+

〈dj1, xj〉j + 2
∑
j∈P−
〈dj2, xj〉j ≥ 2µ0. (5.26)

ii. A point x ∈ K satisfies (5.26) if and only if there exist zj ∈ R, j ∈ [p], such that

fKj ,rj(xj) ≥ |2zj − 〈dj1 + dj2, x
j〉| ∀j ∈ [p], (5.27a)

p∑
j=1

zj ≥ µ0. (5.27b)

Furthermore, for each j ∈ [p], (5.27a) is equivalent to

[
fKj ,rj(xj)

]2
− 〈rj, xj〉2j ≥ 4(zj − 〈dj1, xj〉j)(zj − 〈dj2, xj〉j). (5.28)

Proof. Statement (i) follows directly from Proposition 5.19 and Remarks 5.22(i) and 5.26.
Fix x ∈ K. The “if” part of statement (ii) is clear. To show the “only if” part, let z̄j =
1
2(fKj ,rj(xj) + 〈dj1 + dj2, x

j〉j) for each j ∈ [p]. Recall from Remark 5.21(i) that each fKj ,rj(xj)
is finite and nonnegative. Then 2z̄j − 〈dj1 + dj2, x

j〉j = fKj ,rj(xj) ≥ 0. Hence, (z̄1, . . . , z̄p)
satisfies (5.27).

To finish the proof, we show that (5.27a) is equivalent to [fKj ,rj(xj)]2−〈rj, xj〉2j ≥ 4(zj −
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〈dj1, xj〉j)(zj − 〈dj2, xj〉j) for any zj ∈ R. The nonnegativity of fKj ,rj(xj) implies

fKj ,rj(xj) ≥ |2zj − 〈dj1 + dj2, x
j〉j| ⇔

[
fKj ,rj(xj)

]2
≥ (2zj − 〈dj1 + dj2, x

j〉j)2

⇔
[
fKj ,rj(xj)

]2
− 〈rj, xj〉2j ≥ 4(zj − 〈dj1, xj〉j)(zj − 〈dj2, xj〉j).

Remark 5.28. Under the hypotheses of Proposition 5.27, Remark 5.22(i) shows that
fKj ,rj(xj) = |〈rj, xj〉| for j ∈ P+∪P−. Therefore, (5.27a) simplifies to 〈dj1, xj〉 ≥ zj ≥ 〈dj2, xj〉
for j ∈ P+ and to 〈dj2, xj〉 ≥ zj ≥ 〈dj1, xj〉 for j ∈ P−. Hence, the auxiliary variables zj,
j ∈ P+ ∪ P−, can be eliminated from (5.27) after setting them equal to their corresponding
upper bounds.

The next remark recovers a well-known result about disjunctions on the nonnegative
orthant, as a consequence of Remark 5.28.

Remark 5.29. Let E = Rp and K = Rp
+. Note that Rp

+ is a decomposable cone: It can be seen
as a direct product ∏p

j=1 Kj where Kj = R+ for all j ∈ [p]. Then Remark 5.22(i), together
with the fact that rj ∈ ±R+ for all j ∈ [p], implies fRp+,r(x) = ∑p

j=1 |rjxj| =
∑p
j=1 |rj|xj for

all x ∈ Rp
+. Proposition 5.19 shows that the inequality ∑p

j=1 |rj|xj ≥ 2µ0 − 〈d1 + d2, x〉 is
valid for D1 ∪ D2. This inequality can be further simplified into

p∑
j=1

max
{
dj1, d

j
2

}
xj ≥ µ0.

5.4.2 Inequalities for Intersections with Rank-Two Non-Convex
Quadratics

In this section, we consider sets of the form K∩F where K ⊂ E is a regular cone and F ⊂ E
is a non-convex set defined by a rank-two quadratic inequality:

F =
{
x ∈ E : (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0

}
. (5.29)

We will show how the results of Sections 5.2.2 and 5.4.1 can be combined to build convex
relaxations and convex hull descriptions for K ∩ F.

As in the previous section, we denote r = d2−d1 ∈ E. We start with a simple observation
on an alternate representation of F, which parallels Remark 5.18.

Remark 5.30. A point x ∈ E satisfies (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0 if and only if it
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satisfies
|〈r, x〉| ≥ |2µ0 − 〈d1 + d2, x〉|

The following result is a consequence of Remark 5.21(ii) and Propositions 5.2 and 5.19.

Proposition 5.31. Let K ⊂ E be a regular cone. Consider F ⊂ E defined as in (5.29). Let
D+
i = {x ∈ K : 〈di, x〉 ≥ µ0} and D−i = {x ∈ K : 〈di, x〉 ≤ µ0} for i ∈ {1, 2}.
i. Any point x ∈ K ∩ F satisfies

fK,r(x) ≥ |2µ0 − 〈d1 + d2, x〉|. (5.30)

ii. Suppose conv(D+
1 ∪ D+

2 ) = K, or the sets D+
1 and D+

2 satisfy the conditions of Theo-
rem 5.9. Suppose also that conv(D−1 ∪ D−2 ) = K, or the sets D−1 and D−2 satisfy the
conditions of Theorem 5.9. Then

conv(K ∩ F) =
{
x ∈ K : fK,r(x) ≥ |2µ0 − 〈d1 + d2, x〉|

}
. (5.31)

Proof. Note that K ∩ F = (D+
1 ∪D+

2 ) ∩ (D−1 ∪D−2 ). Using Proposition 5.19 for D+
1 ∪D+

2 and
D−1 ∪ D−2 shows that the inequalities fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉 and fK,−r(x) ≥ −2µ0 +
〈d1 + d2, x〉 are both valid for K ∩ F. By Remark 5.21(ii), fK,−r(x) = fK,r(x) for any r ∈ E
and x ∈ K. Therefore, the two inequalities together are equivalent to (5.30). Under the
hypotheses of statement (ii), we have

conv(D+
1 ∪ D+

2 ) =
{
x ∈ K : fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉

}
and

conv(D−1 ∪ D−2 ) =
{
x ∈ K : fK,−r(x) ≥ −2µ0 + 〈d1 + d2, x〉

}
.

Then Proposition 5.2 yields (5.31).

The next proposition shows that the linear inequality in (5.27) can be replaced with a
linear equality when we consider the intersection of K with a rank-two non-convex quadratic
instead of a two-term disjunction.

Proposition 5.32. Let E = ∏p
j=1 Ej be a direct product of finite-dimensional Euclidean

spaces. Suppose K = ∏p
j=1 Kj and each Kj ⊂ Ej is a regular cone. A point x ∈ K satisfies

(5.30) if and only if there exist zj ∈ R, j ∈ [p], such that (5.27a) (or, equivalently (5.28))
holds together with ∑p

j=1 z
j = µ0.

Proof. Fix x ∈ K. The “if” part follows from the triangle inequality. To show the “only if”
part, recall from Proposition 5.27(ii) that x satisfies fKj ,rj(xj) ≥ 2µ0 − 〈dj1 + dj2, x

j〉 if and
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only if there exist tj1 ∈ R, j ∈ [p], such that

fKj ,rj(xj) ≥ |2tj1 − 〈dj1 + dj2, x
j〉| ∀j ∈ [p], (5.32a)

p∑
j=1

tj1 ≥ µ0. (5.32b)

Furthermore, x satisfies fKj ,rj(xj) ≥ −2µ0 + 〈dj1 + dj2, x
j〉 if and only if there exist tj2 ∈ R,

j ∈ [p], such that

fKj ,rj(xj) ≥ | − 2tj2 + 〈dj1 + dj2, x
j〉| ∀j ∈ [p], (5.33a)

−
p∑
j=1

tj2 ≥ −µ0. (5.33b)

Let 0 ≤ δ ≤ 1 such that δ∑p
j=1 t

j
1 − (1 − δ)∑p

j=1 t
j
2 = µ0. For all j ∈ [p], we also define

zj = δtj1 − (1 − δ)tj2. Then ∑p
j=1 z

j = µ0. For any j ∈ [p], combining (5.32a) and (5.33a)
with weights δ and 1− δ, we have

fKj ,rj(xj) ≥ δ|2tj1 − 〈dj1 + dj2, x
j〉|+ (1− δ)| − 2tj2 + 〈dj1 + dj2, x

j〉|

= δ|2tj1 − 〈dj1 + dj2, x
j〉|+ (1− δ)|2tj2 − 〈dj1 + dj2, x

j〉|

≥ |2zj − 〈dj1 + dj2, x
j〉|,

where the second inequality holds because the function z 7→ |2z − 〈dj1 + dj2, x
j〉| : R → R is

convex. This completes the proof of the first part. Finally, we note that the equivalence of
(5.27a) to

[
fKj ,rj(xj)

]2
− 〈rj, xj〉2j ≥ 4

(
zj − 〈dj1, xj〉j

)(
zj − 〈dj2, xj〉j

)
can be shown as in the

proof of Proposition 5.27.

We close this section with a result which complements the relationship between convex
hulls of non-convex quadratic sets of form K ∩ F and the associated disjunctions given in
Proposition 5.31. In particular, we show that given a structured and explicit characterization
of the closed convex hull of K ∩ F, we can obtain a closed convex hull characterization of
D1 ∪ D2 even when D1 and D2 are not disjoint.

Proposition 5.33. Let K ⊂ E be a regular cone. Consider D1,D2 ⊂ E defined as in (5.17)
and F ⊂ E defined as in (5.29). Let g(x) : E → R ∪ {−∞} be an upper semi-continuous,
concave function such that g(x) ≥ 0 for any x ∈ K and K ∩ F ⊂ {x ∈ K : g(x) ≥
|2µ0 − 〈d1 + d2, x〉|}.
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i. Any point x ∈ D1 ∪ D2 satisfies the convex inequality

g(x) ≥ 2µ0 − 〈d1 + d2, x〉. (5.34)

ii. If conv(K ∩ F) = {x ∈ K : g(x) ≥ |2µ0 − 〈d1 + d2, x〉|}, then

conv(D1 ∪ D2) =
{
x ∈ K : g(x) ≥ 2µ0 − 〈d1 + d2, x〉

}
. (5.35)

Proof. Note that D1 ∪D2 = (K∩F)∪ (D1 ∩D2). Our hypotheses ensure that any x ∈ K∩F
satisfies (5.34). Moreover, for any x ∈ D1 ∩D2, we have 0 ≥ 2µ0 − 〈d1 + d2, x〉. Then (5.34)
is valid for D1 ∩ D2 because g(x) is nonnegative for x ∈ K.

Statement (i), together with the concavity of g(x), shows that (5.34) is valid for the convex
hull of D1 ∪ D2. The continuity of g(x) implies the validity of (5.34) for the closed convex
hull of D1∪D2. If conv(D1∪D2) = K, then (5.34) is redundant. Suppose conv(D1∪D2) 6= K.
Assume for contradiction that there exists x̄ ∈ K satisfying (5.34) but x̄ /∈ conv(D1 ∪ D2).
Then x̄ /∈ conv(K ∩ F) as well; thus g(x̄) < |2µ0 − 〈d1 + d2, x̄〉|. Combining this with (5.34),
we arrive at

|2µ0 − 〈d1 + d2, x̄〉| > g(x̄) ≥ 2µ0 − 〈d1 + d2, x̄〉,

which implies 0 > 2µ0−〈d1 + d2, x̄〉. Then at least one of 0 > µ0−〈d1, x̄〉 or 0 > µ0−〈d2, x̄〉
must hold. Hence, x̄ ∈ D1 ∪ D2, contradicting the assumption x̄ /∈ conv(D1 ∪ D2). This
proves the relation stated in (5.35).

5.4.3 Inequalities for Disjoint Two-Term Disjunctions

As in Section 5.4.1, we consider sets D1 and D2 defined as in (5.17). In this section, we assume
{x ∈ K : 〈d1, x〉 > µ0, 〈d2, x〉 > µ0} = ∅. Whenever this is the case, we say that D1 and D2

satisfy the disjointness condition. Such sets D1 and D2 are naturally associated with rank-
two quadratic constraints: In particular, under the disjointness condition, D1 ∪ D2 = K ∩ F
where F is defined as in (5.29). Therefore, we can immediately use the results of Section 5.4.2
in this case. In more specific terms, we have the following result.

Corollary 5.34. Let K ⊂ E be a regular cone. Consider D1 and D2 defined as in (5.17).
i. Let x ∈ K be such that 〈d1, x〉 ≤ µ0 ∨ 〈d2, x〉 ≤ µ0. Then x satisfies (5.20) if and only

if it satisfies (5.30).
ii. Suppose D1 and D2 satisfy the disjointness condition. Then a point x ∈ K satisfies

(5.20) if and only if it satisfies (5.30).
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Proof. We first prove statement (i). Let x ∈ K be such that 〈d1, x〉 ≤ µ0 ∨ 〈d2, x〉 ≤ µ0.
Then x satisfies the inequality fK,−r(x) ≥ −2µ0 + 〈d1 + d2, x〉. Recall from Remark 5.21(ii)
that fK,−r(x) = fK,r(x) for any r ∈ E. Hence, x satisfies (5.20) if and only if it satisfies
(5.30).

Under the disjointness condition, any point x ∈ K satisfies the disjunction 〈d1, x〉 ≤
µ0 ∨ 〈d2, x〉 ≤ µ0. The result follows from statement (i).

5.5 Conclusion

This chapter has examined two-term disjunctions on a general regular cone K and intersec-
tions of a regular coneK with rank-two non-convex quadratics. These sets provide fundamen-
tal non-convex relaxations for conic programs with integrality requirements and other types
of non-convex constraints. First we have presented necessary conditions on the structure of
undominated valid linear inequalities for two-term disjunctions on K. Later we have devel-
oped a general theory for constructing closed convex hull descriptions and low-complexity
convex relaxations of two-term disjunctions on K in the space of the original variables. We
have also extended these results to intersections of K with rank-two non-convex quadratics.
The inequalities which characterize the associated closed convex hulls and convex relaxations
can be used as cutting-surfaces in mixed-integer conic programming solvers when they admit
closed-form expressions.

In Chapters 6 and 7, we turn our attention to regular cones with a specific structure. We
consider two-term disjunctions on a direct product of second-order cones and nonnegative
rays in Chapter 6 and two-term disjunctions on the positive semidefinite cone in Chapter 7. In
both cases, the structure of the cone under consideration can be exploited to develop closed-
form equivalents for the nonlinear valid inequalities of Section 5.4. We also provide explicit
closed convex hull characterizations and computationally tractable convex relaxations of
two-term disjunctions on these cones whenever possible.





Chapter 6

Convex Hulls of Disjunctions on Second-Order
Cones

Acknowledgments. This chapter is based on joint work with Fatma Kılınç-Karzan [91].
A preliminary version appeared in [90].

6.1 Introduction

6.1.1 Motivation

Recall that the k-dimensional second-order cone is Lk =
{
x ∈ Rk :

√
x2

1 + . . .+ x2
k−1 ≤ xk

}
.

In this chapter, we consider general two-term disjunctions on a direct product of second-
order cones and nonnegative rays. Let K ⊂ Rn be defined as K = ∏p1+p2

j=1 Kj where Kj = Lnj

for j ∈ {1, . . . , p1} and Kj = R+ for j ∈ {p1 + 1, . . . , p1 + p2}. Associated with a disjunction
〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on the cone K, we define the sets

Ci =
{
x ∈ K : 〈ci, x〉 ≥ ci,0

}
for i ∈ {1, 2}. (6.1)

The purpose of this chapter is to provide an explicit outer description of the closed convex
hull of C1 ∪ C2 with closed-form convex (or conic) inequalities in the space of the original
variables. Note that K is a regular cone, and C1 ∪ C2 is a disjunctive conic set of the form
considered in Chapter 5. To obtain a closed-form characterization of the closed convex hull of
C1∪C2, we take advantage of our results in Chapter 5 together with the particular structure
of K. The greater part of the chapter concentrates on the case K = Ln.

109
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The reader is referred to Section 5.1.2 for a detailed discussion of disjunctive inequali-
ties in mixed-integer conic programming. Prior to our study, similar results characterizing
the convex hull of two-term disjunctions on a single second-order cone appeared in [8, 97].
Nevertheless, our work is set apart from [8, 97] by the fact that we examine linear two-term
disjunctions on the second-order cone in full generality and do not restrict our attention to
split disjunctions, which are defined by parallel hyperplanes. Our analysis shows that the
resulting convex hulls can be significantly more complex in the general case. Furthermore,
our proof techniques originate from the conic programming duality perspective of Chapter 5,
which makes them completely different from the techniques employed in the aforementioned
papers.

Although we consider two-term disjunctions on K in this chapter, our results apply to
two-term disjunctions on sets of the form {x ∈ Rn : Ax − b ∈ K} through the affine
transformation discussed in [8] when the matrix A has full row rank. Chapter 8 extends the
results of this chapter in two directions: First, we show that a closed-form convex inequality
of the form developed in this chapter characterizes the convex hull of homogeneous two-term
disjunctions on the second-order cone. Second, we identify conditions under which such an
inequality can characterize the closed convex hull of two-term disjunctions on affine cross-
sections of the second-order cone. Similar and complementary results describing the closed
convex hull of intersections of the second-order cone and its affine cross-sections with a single
homogeneous quadratic have recently been obtained in [45, 95].

6.1.2 Notation and Terminology

We assume that Rn has the standard inner product 〈α, x〉 = α>x. The standard (Euclidean)
norm ‖ · ‖2 : Rn → R on Rn is defined as ‖x‖2 =

√
〈x, x〉. The dual cone of V ⊂ Rn is

V∗ = {α ∈ Rn : 〈x, α〉 ≥ 0 ∀x ∈ V}. We let convV, convV, and spanV represent the
convex hull, closed convex hull, and linear span of a set V ⊂ Rn, respectively. We let intV
and bdV represent the topological interior and boundary of V ⊂ Rn, respectively. We use
recV to refer to the recession cone of a closed convex set V. For a positive integer k, we let
[k] = {1, . . . , k}, and for i ∈ [n], we let ei denote the i-th standard unit vector in Rn. For
x ∈ Rk, we let x̃ represent the subvector x̃ = (x1, . . . , xk−1).

In this chapter, we let K ⊂ Rn denote the regular cone K = ∏p1+p2
j=1 Kj where Kj = Lnj

for j ∈ {1, . . . , p1} and Kj = R+ for j ∈ {p1 + 1, . . . , p1 + p2}. We remind the reader
that K is self-dual, that is, its dual cone is equal to itself. Throughout the chapter, we
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consider sets C1 and C2 defined as in (6.1). If C1 and C2 satisfy Conditions 5.1 and 5.2
together with c1,0, c2,0 ∈ {0,±1}, we say that C1 and C2 satisfy the basic disjunctive setup.
If {x ∈ K : 〈c1, x〉 > c1,0, 〈c2, x〉 > c2,0} = ∅, we say that C1 and C2 satisfy the disjointness
condition.

6.1.3 Outline of the Chapter

In this chapter, building upon the results of Chapter 5, we characterize the closed convex
hull of C1 ∪ C2 with closed-form convex inequalities in the space of the original variables.
Consider the set

B =
{

(β1, β2) ∈ R2 : β1, β2 > 0, β2c2 − β1c1 6∈ ± intK
}

defined earlier in (5.11). For a pair (β1, β2) ∈ B, Proposition 5.19 indicates that any point
x ∈ C1 ∪ C2 satisfies the convex inequality

fK,β2c2−β1c1(x) ≥ 2µ0(β1, β2)− 〈β1c1 + β2c2, x〉, (6.2)

where µ0(β1, β2) = min{β1c1,0, β2c2,0} and fK,r : Rn → R ∪ {−∞} is the function defined in
(5.21). Furthermore, whenever C1 and C2 satisfy the basic disjunctive setup, Corollary 5.6,
Remark 5.17, and Proposition 5.19 guarantee that

conv(C1 ∪ C2) =
{
x ∈ K : fK,β2c2−β1c1(x) ≥ 2µ0(β1, β2)− 〈β1c1 + β2c2, x〉 ∀(β1, β2) ∈ B

}
.

These results form the groundwork for our analysis in Sections 6.2 and 6.3.

In Section 6.2, we consider a fixed pair (β1, β2) ∈ B. In Section 6.2.1, we focus on the
fundamental case K = Ln. We develop an equivalent closed-form expression for (6.2) and
show that it admits a second-order cone representation in a lifted space with one additional
variable. Under a certain disjointness condition, the additional variable in this representation
can be eliminated, leading to a valid second-order cone inequality in the space of the original
variables. In Section 6.2.2, we extend these results to the case where K is a direct product
of second-order cones and nonnegative rays. Throughout Section 6.2, we also investigate
the relationship between two-term disjunctions on K and non-convex sets resulting from the
intersection of K with rank-two quadratics.

In Section 6.3, we search for an explicit closed convex hull description of C1 ∪ C2 in
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the case where K = Ln. As a consequence of Theorem 5.9, Remark 5.17, Proposition 5.19,
and our analysis in Section 6.2, we establish in Section 6.3.1 that the closed convex hull of
C1 ∪ C2 can be characterized with a single closed-form inequality and the constraint x ∈ K
for certain disjunctions on K in the space of the original variables. For more general two-
term disjunctions, we outline a procedure to reach explicit closed convex hull descriptions in
Section 6.3.2. We finish the chapter with three examples which illustrate our results.

6.2 Disjunctions on Direct Products on Second-Order
Cones

In this section, we consider a fixed pair (β1, β2) ∈ B. The disjunction 〈β1c1, x〉 ≥ µ0(β1, β2) ∨
〈β2c2, x〉 ≥ µ0(β1, β2) associated with (β1, β2) ∈ B is a relaxation of our original two-term
disjunction. As in Section 5.4, we concentrate our analysis on this relaxation. To keep the
notation simple, we suppress the arguments of µ0(β1, β2). We also let di = βici for i ∈ {1, 2}
and r = d2 − d1. Associated with the relaxed disjunction on K, we define the sets

Di =
{
x ∈ K : 〈di, x〉 ≥ µ0

}
for i ∈ {1, 2}. (6.3)

Because (β1, β2) ∈ B, we are primarily interested in the case r 6∈ ± intK. Furthermore, when
r ∈ ±K, the set D1 ∪ D2 equals one of D1 or D2. Therefore, we sometimes state our results
in this section under the stronger condition r 6∈ ±K. If D1 and D2 satisfy the disjointness
condition, then D1 ∪ D2 = F ∩ K, where F ⊂ Rn is a non-convex set defined by a rank-two
quadratic of the form

F =
{
x ∈ Rn : (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0

}
. (6.4)

In Sections 6.2.1 and 6.2.2, we develop closed-form convex valid inequalities for D1∪D2 in the
cases where K = Ln and where K is a direct product of second-order cones and nonnegative
rays, respectively.

6.2.1 Disjunctions on a Single Second-Order Cone

In this section, we let K = Ln. Theorem 6.2 specializes the results of Propositions 5.19 and
5.31 to this case. This result is based on the following lemma.
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Lemma 6.1. For any r /∈ ± intLn, we have

fLn,r(x) =


√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2), if x ∈ Ln,

−∞, otherwise.

Proof. Remark 5.20(i) indicates fLn,r(x) = −∞ for all x /∈ Ln. Consider x ∈
Ln. For r ∈ ± bdLn, Remark 5.22(i) shows fLn,r(x) = |〈r, x〉|. Then fLn,r(x) =√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) because ‖r̃‖2

2 = r2
n. Now suppose r /∈ ±Ln. Recall from

Remark 5.22(ii) that

fLn,r(x) = f ′Ln,r(x) = inf
α1,α2

{
〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ bdLn

}
.

Because r /∈ ±Ln, Moreau’s decomposition theorem [77, Theorem A.3.2.5] implies that
there exist orthogonal nonzero vectors α∗1, α∗2 ∈ bdLn such that r = α∗1 − α∗2. Thus, the
minimization problem above is feasible. Defining a new variable π = α1 + α2 and using the
equation α1 − α2 = r, we can rewrite fLn,r(x) as

fLn,r(x) = inf
π

{
〈π, x〉 : ‖π̃ + r̃‖2 = πn + rn, ‖π̃ − r̃‖2 = πn − rn

}
.

Let P = {π ∈ Rn : ‖π̃ + r̃‖2 = πn + rn, ‖π̃ − r̃‖2 = πn − rn}. Then

P =
{
π ∈ Rn : ‖π̃ + r̃‖2 = ‖π̃ − r̃‖2 + 2rn, ‖π̃ − r̃‖2 = πn − rn

}
.

Note that ‖π̃+ r̃‖2 +‖π̃− r̃‖2 +2rn > 0 for π ∈ Ln and r /∈ ±Ln such that ‖π̃− r̃‖2 = πn−rn.
Therefore, taking the square of both sides of the first equation above does not enlarge P.
After also replacing the term ‖π̃ − r̃‖2 with πn − rn, we arrive at

P =
{
π ∈ Rn :

〈(
r̃

−rn

)
, π

〉
= 0, ‖π̃ − r̃‖2 = πn − rn

}
.

Thus, we have

fLn,r(x) = inf
π

{
〈π, x〉 :

〈(
r̃

−rn

)
, π

〉
= 0, ‖π̃ − r̃‖2 = πn − rn

}
.

Unfortunately, the optimization problem stated above is non-convex due to the second equal-
ity constraint. We show below that the natural convex relaxation for this problem is tight.



114 Chapter 6: Disjunctions on Second-Order Cones

Indeed, consider the relaxation

inf
π

{
〈π, x〉 :

〈(
r̃

−rn

)
, π

〉
= 0, ‖π̃ − r̃‖2 ≤ πn − rn

}
.

The feasible region of this relaxation is the intersection of a hyperplane with a second-
order cone shifted by the vector r. Any solution which is feasible to the relaxation but not
the original problem can be expressed as a convex combination of solutions feasible to the
original problem. Because we are optimizing a linear function, this shows that the relaxation
is equivalent to the original problem. Thus, we have

fLn,r(x) = inf
π

{
〈π, x〉 :

〈(
r̃

−rn

)
, π

〉
= 0, π − r ∈ Ln

}
.

Consider α∗1 and α∗2 defined at the beginning of the proof. Note that
〈(

r̃
−rn

)
, α∗1 + α∗2

〉
= 0

because α∗1 − α∗2 = r and α∗1, α
∗
2 ∈ bdLn. Furthermore, α∗1 + α∗2 ∈ intLn because α∗1 and

α∗2 are orthogonal and nonzero. The minimization problem in the last line above is feasible
since π∗ = 2α∗2 + r = α∗1 + α∗2 is a feasible solution. Indeed, it is strictly feasible because
α∗1 + α∗2 ∈ intLn is a recession direction of the feasible region. Hence, the optimal value
of this minimization problem is equal to that of its dual problem. Furthermore, the dual
problem is solvable whenever it is feasible. Then

fLn,r(x) = max
ρ,τ

{
〈r, ρ〉 : ρ+ τ

(
r̃

−rn

)
= x, ρ ∈ Ln

}

= max
τ

{
〈r, x〉 − τ

(
‖r̃‖2

2 − r2
n

)
: x− τ

(
r̃

−rn

)
∈ Ln, ρ ∈ Ln

}
.

There will be an optimal solution to the problem above on the boundary of the feasible
region. Because ‖r̃‖2

2 − r2
n > 0, an optimal solution to this problem is

τ− =
〈r, x〉 −

√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2)

‖r̃‖2
2 − r2

n

.

The conclusion that fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) follows.

Theorem 6.2. Let K = Ln. Suppose r /∈ ± intLn. Then a point x ∈ Ln satisfies (5.20) if
and only if it satisfies

√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) ≥ 2µ0 − 〈d1 + d2, x〉. (6.5)
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Similarly, a point x ∈ Ln satisfies (5.30) if and only if it satisfies
√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) ≥ |2µ0 − 〈d1 + d2, x〉|. (6.6)

As a result of Theorem 6.2, Proposition 5.19, and Remark 5.20(i), the inequality (6.5)
defines a convex relaxation for D1 ∪ D2 in the space of the original variables. In addition, if
D1 and D2 satisfy the conditions of Theorem 5.9, the inequality (6.5) and the cone constraint
x ∈ Ln together characterize the closed convex hull of D1 ∪ D2. Recall from Corollary 5.34
that, if D1 and D2 satisfy the disjointness condition, a point x ∈ Ln satisfies (5.20) if and
only if it satisfies (5.30). Thus, in the case of disjoint disjunctions, the inequalities (6.5) and
(6.6) are equivalent. On the other hand, according to Theorem 6.2 and Proposition 5.31(i),
any point x ∈ F ∩ Ln satisfies (6.6), where F ⊂ Rn is defined as in (6.4). Moreover, if F
satisfies the conditions of Proposition 5.31(ii), the inequality (6.6) and the constraint x ∈ Ln

define the closed convex hull of F ∩ Ln.

Remark 6.3. Let K = Ln. Consider D1 and D2 defined as in (6.3). The inequality (6.5)
has a simple geometrical meaning when the sets D1 and D2 satisfy the disjointness condition.
Consider a point x ∈ Rn which is on the hyperplane defined by 〈d1, x〉 = µ0. Then the
disjointness condition implies 〈d2, x〉 ≤ µ0. Replacing 〈d1, x〉 with µ0 on both sides of (6.5),
we can see that when r = d2−d1 /∈ ±Ln, such a point x satisfies (6.5) if and only if x ∈ ±Ln.
Similarly, a point x which is on the hyperplane defined by 〈d2, x〉 = µ0 satisfies (6.5) if and
only if x ∈ ±Ln. Thus, the region defined by (6.5) has the same cross-section as ±Ln at the
hyperplanes defined by the equations 〈d1, x〉 = µ0 and 〈d2, x〉 = µ0.

For r ∈ ± bdLn, the inequalities (6.5) and (6.6) reduce to linear inequalities on points
in the second-order cone. When r /∈ ±Ln on the other hand, the next two results show that
(6.5) and (6.6) have simple second-order cone representations for the same points.

Lemma 6.4. Suppose r /∈ ±Ln. Then a point x ∈ Ln satisfies (6.5) if and only if there
exists z ≥ µ0 such that

(
‖r̃‖2

2 − r2
n

) (
x2
n − ‖x̃‖2

2

)
≥ 4(z − 〈d1, x〉)(z − 〈d2, x〉). (6.7)

Similarly, a point x ∈ Ln satisfies (6.6) if and only if it satisfies (6.7) together with z = µ0.

Proof. Lemma 6.1 shows

[
fLn,r(x)

]2
− 〈r, x〉2 =

(
‖r̃‖2

2 − r2
n

) (
x2
n − ‖x̃‖2

2

)
.
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Then the two claims follow from Propositions 5.27(ii) and 5.32(ii), respectively.

Proposition 6.5. Suppose r /∈ ±Ln. For any z ∈ R, a point x ∈ Ln satisfies (6.7) if and
only if it satisfies (

‖r̃‖2
2 − r2

n

)
x− 2(z − 〈d1, x〉)

(
r̃

−rn

)
∈ Ln.

Proof. Fix z ∈ R. Because r /∈ ±Ln, any point x ∈ Ln satisfies (6.7) if and only if it satisfies

(
‖r̃‖2

2 − r2
n

)2 (
x2
n − ‖x̃‖2

2

)
− 4

(
‖r̃‖2

2 − r2
n

)
(z − 〈d1, x〉)(z − 〈d2, x〉) ≥ 0.

The left-hand side of this inequality is identical to the following quadratic form which has a
single positive eigenvalue:

((
‖r̃‖2

2 − r2
n

)
xn + 2(z − 〈d1, x〉)rn

)2
−
∥∥∥(‖r̃‖2

2 − r2
n

)
x̃− 2(z − 〈d1, x〉)r̃

∥∥∥2

2
.

For ease of exposition, let us define the functions A,B : Rn → R as

A(x) =
∥∥∥(‖r̃‖2

2 − r2
n

)
x̃− 2(z − 〈d1, x〉)r̃

∥∥∥
2

and B(x) =
(
‖r̃‖2

2 − r2
n

)
xn + 2(z − 〈d1, x〉)rn.

We have just shown that a point x ∈ Ln satisfies (6.7) if and only if it satisfies A(x)2 ≤ B(x)2.
To finish the proof, we show that x ∈ Ln satisfies either A(x)+B(x) > 0 or A(x) = B(x) = 0.
Suppose A(x) + B(x) ≤ 0 for some x ∈ Ln. Using the triangle inequality, we can write

0 ≥ A(x) + B(x)

=
∥∥∥(‖r̃‖2

2 − r2
n

)
x̃− 2(z − 〈d1, x〉)r̃

∥∥∥
2

+
(
‖r̃‖2

2 − r2
n

)
xn + 2(z − 〈d1, x〉)rn

≥ −
(
‖r̃‖2

2 − r2
n

)
‖x̃‖2 + 2|z − 〈d1, x〉| ‖r̃‖2 +

(
‖r̃‖2

2 − r2
n

)
xn − 2|z − 〈d1, x〉||rn|

=
(
‖r̃‖2

2 − r2
n

)
(xn − ‖x̃‖2) + 2|z − 〈d1, x〉| (‖r̃‖2 − |rn|) .

Because x ∈ Ln and r /∈ ±Ln, the last expression above must be equal to zero. Hence,
‖x̃‖2 = xn and 〈d1, x〉 = z. This implies A(x) + B(x) = (‖r̃‖2

2 − r2
n)(‖x̃‖2 + xn) which is

strictly positive unless x = 0, but then A(x) = B(x) = 0.

Remark 6.6. Suppose the hypotheses of Proposition 6.5 are satisfied. Changing the roles of
d1 and d2, the proof of Proposition 6.5 can be repeated to show that a point x ∈ Ln satisfies
(6.7) if and only if it satisfies

(
‖r̃‖2

2 − r2
n

)
x+ 2(z − 〈d2, x〉)

(
r̃

−rn

)
∈ Ln.
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The following is a consequence of Proposition 6.5 and Corollary 5.34.

Corollary 6.7. Let K = Ln. Consider D1 and D2 defined as in (6.3). Suppose r /∈ ±Ln.
i. Let x ∈ Ln be such that 〈d1, x〉 ≤ µ0 ∨ 〈d2, x〉 ≤ µ0. Then x satisfies (6.5) if and only

if it satisfies (
‖r̃‖2

2 − r2
n

)
x− 2(µ0 − 〈d1, x〉)

(
r̃

−rn

)
∈ Ln. (6.8)

ii. Suppose D1 and D2 satisfy the disjointness condition. Then a point x ∈ Ln satisfies
(6.5) if and only if it satisfies (6.8).

6.2.2 Extension to Direct Products of Second-Order Cones

Corollary 6.8 extends Theorem 6.2 to the case where K ⊂ Rn is a direct product of multiple
second-order cones and nonnegative rays.

Corollary 6.8. Let K ⊂ Rn such that K = ∏p1+p2
j=1 Kj where Kj = Lnj for j ∈ [p1] and

Kp1+j = R+ for j ∈ [p2]. Let

P+
1 =

{
j ∈ [p1] : −rj ∈ Lnj

}
, P−1 =

{
j ∈ [p1] : rj ∈ Lnj

}
, P◦1 =

{
j ∈ [p1] : rj /∈ ±Lnj

}
.

i. A point x ∈ K satisfies (6.5) if and only if it satisfies

∑
j∈P◦1

fLnj ,rj(x
j) +

∑
j∈P◦1

〈dj1 + dj2, x
j〉j

+ 2
∑
j∈P+

1

〈dj1, xj〉j + 2
∑
j∈P−1

〈dj2, xj〉j + 2
p1+p2∑
j=p1+1

max
{
dj1, d

j
2

}
xj ≥ 2µ0, (6.9)

where fLnj ,rj(xj) =
√
〈rj, xj〉2j +

(
‖r̃j‖2

2 − (rjnj)2
)(

(xjnj)2 − ‖x̃j‖2
2

)
for any j ∈ P◦1.

ii. A point x ∈ K satisfies (6.9) if and only if there exist zj ∈ R, j ∈ P◦1, such that

(
‖r̃j‖2

2 − (rjnj)
2
)
xj − 2

(
zj − 〈dj1, xj〉j

)( r̃j

−rjnj

)
∈ Lnj ∀j ∈ P◦1, (6.10a)

∑
j∈P◦1

zj +
∑
j∈P+

1

〈dj1, xj〉j +
∑
j∈P−1

〈dj2, xj〉j +
p1+p2∑
j=p1+1

max
{
dj1, d

j
2

}
xj ≥ µ0. (6.10b)

Proof. Fix x ∈ K. Lemma 6.1, together with Proposition 5.27(i) and Remarks 5.22(i) and
5.29, indicates that (5.20) reduces to (6.9). For statement (ii), consider Proposition 5.27(ii).
Remark 5.28 demonstrates that the auxiliary variables zj can be eliminated from (5.27) for
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j ∈ P+
1 ∪ P−1 . Furthermore, as discussed in Lemma 6.4 and Proposition 6.5, the inequalities[

fLnj ,rj(xj)
]2
−〈rj, xj〉2j ≥ 4

(
zj−〈dj1, xj〉j

)(
zj−〈dj2, xj〉j

)
can be represented in second-order

cone form as (6.10a) for j ∈ P◦1. Hence, (5.27) reduces to (6.10).

6.3 Describing the Closed Convex Hull

In this section, we turn our attention back to the set C1 ∪ C2, where C1 and C2 are defined
as in (6.1) for K = Ln. The main purpose of this section is to provide a complete closed
convex hull description of C1 ∪ C2, using the results of Section 6.2.1. Consider the set B
defined earlier in (5.11). Let µ0(β1, β2) = min{β1c1,0, β2c2,0}.

Corollary 6.9. Let K = Ln. Consider C1 and C2 defined as in (6.1).
i. Let (β1, β2) ∈ B. Any point x ∈ C1 ∪ C2 satisfies

fLn,β2c2−β1c1(x) ≥ 2µ0(β1, β2)− 〈β1c1 + β2c2, x〉, (6.11)

where fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) for any r 6∈ ± intLn. Furthermore,

the inequality (6.11) defines a convex relaxation of C1∪C2 inside the second-order cone.
ii. Suppose C1 and C2 satisfy the basic disjunctive setup. Then

conv(C1 ∪ C2) =
{
x ∈ Ln : fLn,β2c2−β1c1(x) ≥ 2µ0(β1, β2)−〈β1c1 + β2c2, x〉 ∀(β1, β2) ∈ B

}
,

where fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) for any x ∈ Ln and r 6∈ ± intLn.

Proof. Proposition 5.19 and Theorem 6.2 show that any point x ∈ C1 ∪ C2 satisfies (6.11).
Remark 5.20(i) implies that the set of points in the second-order cone which satisfy (6.11) is
convex. This proves statement (i). Statement (ii) follows from Corollary 5.6 and Remark 5.17
together with Theorem 6.2.

6.3.1 When does a Single Convex Inequality Suffice?

In this section, we assume that C1 and C2 satisfy the basic disjunctive setup. Theorem 5.9
identifies the following cases where the closed convex hull of C1 ∪ C2 can be completely
described with a single inequality of the form (6.5), in addition to the constraint x ∈ Ln.
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Corollary 6.10. Let K = Ln. Consider C1 and C2 defined as in (6.1). Suppose C1 and C2

satisfy the basic disjunctive setup with c1,0 = c2,0. Let µ0 = c1,0 = c2,0. Suppose one of the
conditions below holds:

i. c1 ∈ Ln or c2 ∈ Ln.
ii. The convex hull of C1 ∪ C2 is closed and µ0 ∈ {±1}.

Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ Ln : fLn,c2−c1(x) ≥ 2µ0 − 〈c1 + c2, x〉

}
,

where fLn,c2−c1(x)=
√
〈c2 − c1, x〉2 + (‖c̃2 − c̃1‖2

2 − (c2,n −c1,n)2)(x2
n −‖x̃‖2

2) for any x∈ Ln.

Proof. When C1 and C2 satisfy Condition 5.1 and c1,0 = c2,0, Lemma 5.3 implies c2 − c1 /∈
±Ln. The result then follows from Theorems 5.9 and 6.2 along with Remark 5.17.

Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose also that they satisfy i)
the conditions of Corollary 6.10, and ii) the disjointness condition. The conditions of Corol-
lary 6.10 hold, for instance, when C1 and C2 are defined with respect to a split disjunction on
the second-order cone excluding the origin. In this case µ0 = c1,0 = c2,0 = 1. Furthermore,
Corollary 5.14 implies that the convex hull of C1 ∪ C2 is closed. The disjointness condition
also holds for split disjunctions. Then Corollary 6.10 indicates that the closed convex hull
of C1 ∪ C2 can be completely characterized with the inequality

fLn,c2−c1(x) ≥ 2µ0 − 〈c1 + c2, x〉, (6.12)

together with the cone constraint x ∈ Ln. Furthermore, Corollary 6.7(ii) shows that any
x ∈ Ln satisfies (6.12) if and only if it satisfies

(
‖c̃2 − c̃1‖2

2 − (c2,n − c1,n)2
)
x− 2(µ0 − 〈c1, x〉)

(
c̃2 − c̃1

c1,n − c2,n

)
∈ Ln.

We formulate this conclusion into Corollary 6.11 below for split disjunctions on the second-
order cone. Note that, if C1 and C2 satisfy Condition 5.1 together with c1,0, c2,0 ∈ {0,±1}
in this case, Lemma 5.1 implies that the convex hull of C1 ∪C2 equals the whole cone unless
c1,0 = c2,0 = 1. On the other hand, if C1 and C2 satisfy c1,0 = c2,0 = 1 in addition to
Condition 5.1, then they satisfy the basic disjunctive setup. Corollary 6.11 recovers [97,
Corollary 5 and Proposition 10] and [8, Theorem 3].

Corollary 6.11. Consider C1 and C2 defined by a split disjunction 〈t1`, x〉 ≥ c1,0 ∨ 〈t2`, x〉 ≥
c2,0 on Ln such that t1 > 0 > t2 and C1∪C2 ( Ln. Suppose C1 and C2 satisfy Condition 5.1
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and c1,0, c2,0 ∈ {0,±1}. If c1,0 = c2,0 = 1, then

conv(C1 ∪ C2) =
{
x ∈ Ln : (t1 − t2)

(
‖˜̀‖2

2 − `2
n

)
x+ 2(1− 〈t1`, x〉)

( ˜̀
−`n

)
∈ Ln

}
.

Otherwise, conv(C1 ∪ C2) = Ln.

Corollaries 6.7 and 6.10 extend the results of [8, 97] to more general two-term disjunc-
tions on the second-order cone. Theorem 8.6 in Chapter 8 complements Corollary 6.10 and
demonstrates that a single inequality of the form (6.5) characterizes the convex hull of all
homogeneous two-term disjunctions on the second-order cone as long as C1 and C2 satisfy
the basic disjunctive setup. Despite the encouraging result of Corollary 6.10, it is easy to
construct instances where its hypotheses are not satisfied. We explore these cases further in
Section 6.3.2.

Examples where a Single Inequality Suffices

Example 6.1. As an application of Corollary 6.11, consider the split disjunction 4x1 ≥
1 ∨ −x1 ≥ 1 on the second-order cone L3. Corollary 6.11 states that in this case the convex
hull of C1 ∪ C2 is the set of points x ∈ L3 that satisfy the second-order cone inequality

5x+ 2(1− 4x1)e1 ∈ L3.

Figures 6.1(a) and (b) show the disjunctive set C1 ∪ C2 and its convex hull, respectively.
Figures 6.1(c) shows the second-order cone inequality which is introduced to convexify C1 ∪
C2.

Example 6.2. Consider the cone L3 and the disjunction x3 ≥ 1 ∨ x1 + x3 ≥ 1 (c1 = e3,
c2 = e1 + e3, c1,0 = c2,0 = 1). Note that c1, c2 ∈ L3 in this example. Hence, Corollary 6.10
can be used to characterize the closed convex hull:

conv(C1 ∪ C2) =
{
x ∈ L3 :

√
x2

3 − x2
2 ≥ 2− (x1 + 2x3)

}
.

Figures 6.2(a) and (b) depict the disjunctive set C1 ∪ C2 and the associated closed convex
hull, respectively. In order to give a better sense of the convexification operation, we plot
the points added to C1∪C2 to generate the closed convex hull in Figure 6.2(c). We note that
in this example the disjointness condition that was required in Corollary 6.7(ii) is violated.
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Nevertheless, the inequality we provide is still intrinsically related to the second-order cone
inequality (6.8) of Corollary 6.7: The sets described by the two inequalities coincide in the
region outside C1 ∩ C2 as a consequence of Corollary 6.7(i). We display the corresponding
cone for this example in Figure 6.2(d). Note that the resulting second-order cone inequality
is in fact not valid for some points in C1 ∩ C2.

6.3.2 When are Multiple Convex Inequalities Needed?

As Proposition 5.15 hints, there are cases where a single inequality of the form (6.5) is
not sufficient to define the closed convex hull of C1 ∪ C2. In this section, we study these
cases when K = Ln and outline a procedure to find closed-form expressions describing the
closed convex hull of C1 ∪C2. We first state the following consequence of Corollary 5.8 and
Theorem 6.2. Consider the sets B1 and B2 defined earlier in (5.14).

Corollary 6.12. Let K = Ln. Consider C1 and C2 defined as in (6.1). Suppose C1 and C2

satisfy the basic disjunctive setup. Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =

x ∈ Ln :
fLn,c2−β1c1(x) ≥ 2c2,0 − 〈β1c1 + c2, x〉 ∀ β1 ∈ B1,

fLn,β2c2−c1(x) ≥ 2c1,0 − 〈c1 + β2c2, x〉 ∀ β2 ∈ B2

 ,
where fLn,r(x) =

√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2) for any x ∈ Ln and r 6∈ ± intLn.

Consider β1 ∈ B1 and β2 ∈ B2. Let x ∈ Ln. For ease of notation, let us define the
functions R,P ,Q : Ln → R as

R(x) = 〈c1, x〉2 + (‖c̃1‖2
2 − c2

1,n)(x2
n − ‖x̃‖2

2),

P(x) = 〈c1, x〉〈c2, x〉+ (c̃>1 c̃2 − c1,nc2,n)(x2
n − ‖x̃‖2

2),

Q(x) = 〈c2, x〉2 + (‖c̃2‖2
2 − c2

2,n)(x2
n − ‖x̃‖2

2).

With these definitions, we have

R(x)β2
1 − 2P(x)β1 +Q(x)=〈c2 − β1c1, x〉2+

(
‖c̃2 − β1c̃1‖2

2 − (c2,n − β1c1,n)2
) (
x2
n − ‖x̃‖2

2

)
,

Q(x)β2
2 − 2P(x)β2 +R(x)=〈β2c2 − c1, x〉2+

(
‖β2c̃2 − c̃1‖2

2 − (β2c2,n − c1,n)2
) (
x2
n − ‖x̃‖2

2

)
.
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We further define the functions tx1 : B1 → R and tx2 : B2 → R as

tx1(β1) = β1〈c1, x〉+ fLn,c2−β1c1(x) = β1〈c1, x〉+
√
R(x)β2

1 − 2P(x)β1 +Q(x),

tx2(β2) = β2〈c2, x〉+ fLn,β2c2−c1(x) = β2〈c2, x〉+
√
Q(x)β2

2 − 2P(x)β2 +R(x).

Through these definitions and Corollary 6.12, we reach

conv(C1 ∪ C2) =

x ∈ Ln :
tx1(β1) ≥ 2c2,0 − 〈c2, x〉 ∀β1 ∈ B1,

tx2(β2) ≥ 2c1,0 − 〈c1, x〉 ∀β2 ∈ B2


=

x ∈ Ln :
infβ1∈B1 t

x
1(β1) ≥ 2c2,0 − 〈c2, x〉,

infβ2∈B2 t
x
2(β2) ≥ 2c1,0 − 〈c1, x〉

 . (6.13)

It follows that, for any given x ∈ Ln, we can check whether x ∈ conv(C1 ∪ C2) by cal-
culating the optimal value of the problems on the left-hand side of the inequalities in
(6.13). Furthermore, whenever the minimizer β∗1 = β∗1(x) of the problem infβ1∈B1 t

x
1(β1)

exists and can be expressed parametrically in terms of c1, c2, and x, one can replace the
inequality infβ1∈B1 t

x
1(β1) ≥ 2c2,0 − 〈c2, x〉 in (6.13) with tx1(β∗1) ≥ 2c2,0 − 〈c2, x〉. Similarly,

one can define the minimizer β∗2 = β∗2(x) and replace infβ2∈B2 t
x
2(β2) ≥ 2c1,0 − 〈c1, x〉 with

tx2(β∗2) ≥ 2c1,0 − 〈c1, x〉. We illustrate this procedure on an example in the next section.

Example where Multiple Inequalities are Needed

Example 6.3. Consider the cone L3 and the disjunction −x2 ≥ 0 ∨ −x3 ≥ −1 (c1 =
−e2, c1,0 = 0, c2 = −e3, c2,0 = −1). Since c1,0 > c2,0, Proposition 5.15 implies that
any undominated valid linear inequality for C1 ∪ C2 will be tight on C2 but not on C1.
Therefore, we follow the approach outlined at the beginning of this section. Noting that
c2 − β1c1 ∈ − intL3 for 0 ≤ β1 < 1 and c2 − β1c1 6∈ ± intL3 for β1 ≥ 1, we obtain
B1 = [1,∞). For β1 = 1, c2−β1c1 ∈ − bdL3; Remark 5.22(i) indicates that x2 ≤ 1 is a valid
linear inequality for C1 ∪ C2. It is also clear in this example that B2 = ∅.

Since we are interested in cutting off only points x ∈ L3 such that x2 ≤ 1 and x /∈
conv(C1 ∪ C2), consider x ∈ L3 such that 0 < x2 ≤ 1 and x3 > 1. The hypotheses x ∈ L3
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and x2 > 0 imply x3 − |x1| > 0. In this setup we have

R(x) = x2
3 − x2

1,

P(x) = x2x3,

Q(x) = x2
1 + x2

2.

The resulting tx1 is a convex function of β1 and has a critical point at

β̂1 = β̂1(x) = P(x)
R(x) −

〈c1, x〉
R(x)

√√√√P(x)2 −Q(x)R(x)
〈c1, x〉2 −R(x)

= x2x3

x2
3 − x2

1
+ x2

x2
3 − x2

1

√√√√x2
2x

2
3 − (x2

1 + x2
2)(x2

3 − x2
1)

(−1)(x2
3 − x2

1 − x2
2)

= x2x3 + |x1|x2

x2
3 − x2

1
= x2

x3 − |x1|
,

where the last equation uses the fact that x ∈ L3 and thus x3 > 1.

For any x ∈ L3 such that x2 ≤ x3 − |x1|, we have β̂1 ≤ 1. By the convexity of tx1 ,
the minimum of tx1 occurs at β∗1 = max

{
β̂1, 1

}
= 1. As discussed above, the inequality

tx1(1) ≥ 2c2,0− 〈c2, x〉 reduces to the linear inequality x2 ≤ 1. Moreover, for any x ∈ L3 such
that x2 ≥ x3−|x1|, we have β̂1 ≥ 1. For such points, β∗1 = β̂1 and tx1(β∗1) = |x1|− x2

2(x3+|x1|)
x2

3−x
2
1

=
|x1|− x2

2
x3−|x1| . Therefore, for all x ∈ L3 such that 0 < x2 ≤ 1, x3 > 1, and x2 ≥ x3−|x1|, we can

impose the inequality tx1(β̂1) ≥ 2c2,0 − 〈c2, x〉 which translates into |x1| − x2
2

x3−|x1| ≥ −2 + x3

in this example. Using 0 < x2 ≤ 1 and x3 − |x1| > 0, we can rewrite this inequality as√
1−max{0, x2}2 ≥ 1 + |x1| − x3. Putting this together with x2 ≤ 1, we arrive at

conv(C1 ∪ C2) =
{
x ∈ L3 : tx1(β1) ≥ −2 + x3 ∀β1 ∈ [1,∞)

}
=

{
x ∈ L3 : x2 ≤ 1,

√
1−max{0, x2}2 ≥ 1 + |x1| − x3

}
,

where both inequalities are convex on R3. In fact, both inequalities are second-order cone
representable in a lifted space as expected.

In Figures 6.3(a) and (b), we plot the disjunctive set C1 ∪C2 and its closed convex hull,
respectively. The closed convex hull is obtained by imposing various convex inequalities of
the form (6.5), each corresponding to d1 = β1c1, d2 = c2, and a different value of β1 ∈ B1, on
L3. In Figure 6.3(c) we show the second-order cone counterparts (6.8) of these inequalities.
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Note that these inequalities are not necessarily valid for all points in C1 ∪ C2 because the
disjointness condition is not satisfied; however, they describe how the boundary of the closed
convex hull of C1 ∪C2 is formed outside C1 ∪C2. In Figure 6.3(d) we show the cross-section
of C1 ∪ C2 and the regions defined by the second-order cone inequalities (6.8) at x3 = 4.
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(a) C1 ∪ C2 (b) The convex hull of C1 ∪ C2

(c) Second-order cone inequality describing the
convex hull of C1 ∪ C2

Figure 6.1: Sets associated with the split disjunction 4x1 ≥ 1 ∨ −x1 ≥ 1 on L3.



126 Chapter 6: Disjunctions on Second-Order Cones

(a) C1 ∪ C2 (b) The closed convex hull of C1 ∪ C2

(c) conv(C1 ∪ C2) \ C1 ∪ C2 (d) Underlying cone generating the convex in-
equality

Figure 6.2: Sets associated with the disjunction x3 ≥ 1 ∨ x1 + x3 ≥ 1 on L3.
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(a) C1 ∪ C2 (b) The closed convex hull of C1 ∪ C2

(c) Underlying cones generating the convex in-
equalities

(d) Cross-section at x3 = 4

Figure 6.3: Sets associated with the disjunction −x2 ≥ 0 ∨ −x3 ≥ −1 on L3.





Chapter 7

Low-Complexity Relaxations and Convex
Hulls of Disjunctions on the Positive Semidef-
inite Cone

Acknowledgments. This chapter is based on joint work with Fatma Kılınç-Karzan [115].

7.1 Introduction

7.1.1 Motivation

Let Sn represent the space of symmetric n×n matrices with real entries. In this chapter, we
consider two-term disjunctions on the positive semidefinite cone Sn+ = {X ∈ Sn : a>X a ≥
0 ∀a ∈ Rn}. In reference to a disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0 on the positive
semidefinite cone, we define the sets

Di =
{
X ∈ Sn+ : 〈Di, X〉 ≥ µ0

}
for i ∈ {1, 2}. (7.1)

In addition, we consider non-convex sets resulting from the intersection of the positive
semidefinite cone with rank-two non-convex quadratics F ⊂ Sn of the form

F =
{
X ∈ Sn : (µ0 − 〈D1, X〉)(µ0 − 〈D2, X〉) ≤ 0

}
. (7.2)

As in Chapter 6, the purpose of this chapter is to provide closed convex hull descriptions and
convex relaxations for D1 ∪D2 and F∩ Sn+ with closed-form convex (or conic) inequalities in

129
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the space of the original variables. When we consider D1 and D2, we are primarily interested
in the cases where D1 and D2 satisfy Condition 5.1. Therefore, we sometimes state our
results under the condition R = D2 −D1 /∈ ±Sn+ in this chapter.

While the class of disjunctions we consider in this chapter is more limited than those
we considered in Chapters 5 and 6, such disjunctions provide natural relaxations for more
general two-term disjunctions. Moreover, convex valid inequalities derived from these re-
laxed disjunctions can be used to characterize the closed convex hull of general two-term
disjunctions. See Sections 5.4 and 6.3 for further details.

The reader is referred to Section 5.1.2 for a discussion of disjunctive inequalities in mixed-
integer conic programming. To the best of our knowledge, none of the papers in the existing
literature provide explicit closed convex hull descriptions of two-term disjunctions on the
positive semidefinite cone in the space of the original variables.

7.1.2 Notation and Terminology

In this chapter, we distinguish between the elements of Rn and Sn: We denote the elements of
Rn with lowercase letters and the elements of Sn with uppercase letters. With this notation,
we have Sn =

{
X ∈ Rn×n : X> = X

}
. We assume that Sn is equipped with the Frobenius

inner product 〈A,X〉 = Tr(AX). The Frobenius norm ‖ · ‖F : Sn → R on Sn is defined as
‖X‖F =

√
〈X,X〉. The `-1 norm ‖ · ‖1 : Rn → R on Rn is defined as ‖x‖1 = ∑n

i=1 |xi|. We
let convV, convV, and intV represent the convex hull, closed convex hull, and topological
interior of a set V ⊂ Sn, respectively. The dual cone of V ⊂ Sn is V∗ = {A ∈ Sn : 〈X,A〉 ≥
0 ∀X ∈ V}. Given a matrix A ∈ Rn×n and J ⊂ [n], we let A[J] denote the principal
submatrix of A whose rows and columns are indexed by the elements of J. We let In ∈ Sn

represent the n× n identity matrix. For any positive integer k, we let [k] = {1, . . . , k}, and
for i ∈ [n], we let ei denote the i-th standard unit vector in Rn.

Given a matrix A ∈ Rn×n, we let λ(A) denote the vector of the eigenvalues of A arranged
in nonincreasing order and λi(A) denote its i-th eigenvalue. If A ∈ Sn, then the eigenvalues
of A are real. Furthermore, A ∈ Sn is positive semidefinite (resp. positive definite) if and
only if λi(A) ≥ 0 (resp. λi(A) > 0) for all i ∈ [n]. We remind the reader that the positive
semidefinite cone is self-dual, that is, its dual cone is equal to itself. The topological interior
of the positive semidefinite cone is the set of positive definite matrices. Throughout the
chapter, we consider sets D1 and D2 defined as in (7.1). If D1 and D2 satisfy Conditions 5.1
and 5.2 together with µ0 ∈ {0,±1}, we say that D1 and D2 satisfy the basic disjunctive
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setup. If {X ∈ Sn+ : 〈D1, X〉 > µ0, 〈D2, X〉 > µ0} = ∅, we say that D1 and D2 satisfy the
disjointness condition.

7.1.3 Outline of the Chapter

Section 7.2 specializes the results of Section 5.4 to two-term disjunctions on the positive
semidefinite cone and intersections of the positive semidefinite cone with rank-two non-
convex quadratics. In Section 7.2.1, we introduce a linear transformation which simplifies
our analysis of D1 ∪ D2 and F ∩ Sn+. In Section 7.2.2, we consider the set D1 ∪ D2 and
investigate the structure of the convex valid inequalities of Section 5.4 in this particular
case. In Section 7.2.3, we identify a class of elementary disjunctions where these convex
inequalities admit a second-order cone representation in a lifted space with one additional
variable. If an elementary disjunction also satisfies the disjointness condition, the additional
variable can be eliminated, yielding a valid second-order cone inequality in the space of the
original variables. For more general disjunctions, we present several techniques to generate
low-complexity convex relaxations. Although, we do not consider disjunctions on general
affine cross-sections of the positive semidefinite cone explicitly, our approach immediately
leads to convex disjunctive inequalities for these sets. We comment on such extensions in
Section 7.3.

7.2 Disjunctions on the Positive Semidefinite Cone

7.2.1 A Transformation to Simplify Disjunctions

Let R = D2 − D1. In this section, we establish a linear correspondence which reduces
the closed convex hull description of any two-term disjunction on the positive semidefinite
cone to the closed convex hull description of an associated disjunction for which the matrix
R = D2 −D1 is diagonal. We first prove the following more general result.

Proposition 7.1. Let A : Sn → Rm be a linear map. Consider C1,C2 ⊂ Sn defined as
Ci = {X ∈ Sn+ : AX = b, 〈Ci, X〉 ≥ ci,0}. Let Q ∈ intSn+ and U ∈ Rn×n be a diagonal
matrix and an orthogonal matrix, respectively. Define the linear map A′ : Sn → Rm as
A′X = AUQXQU>. Define the matrices C ′i = QU>CiUQ and the sets C′i = {X ∈ Sn+ :
A′X = b, 〈C ′i, X〉 ≥ ci,0} for i ∈ {1, 2}. Then
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i. Ci = UQC′iQU> for i ∈ {1, 2},
ii. conv(C1 ∪ C2) = UQ conv(C′1 ∪ C′2)QU>.
iii. conv(C1 ∪ C2) = UQ conv(C′1 ∪ C′2)QU>.

Proof. First we prove (i). Note that Ci = UQ−1C ′iQ
−1U> for i ∈ {1, 2}. We can write

Ci =
{
X ∈ Sn+ : AX = b, 〈Ci, X〉 ≥ ci,0

}
=
{
UQY QU> ∈ Sn+ : AUQY QU> = b,

〈
UQ−1C ′iQ

−1U>, UQY QU>
〉
≥ ci,0

}
=
{
UQY QU> : A′Y = b, 〈C ′i, Y 〉 ≥ ci,0, Y ∈ Sn+

}
= UQC′iQU>.

The third equality above uses the observation that UQY QU> ∈ Sn+ if and only if Y ∈ Sn+,
which is true because QU> is a nonsingular matrix.

Statement (ii) follows from (i) and the observation that convex combinations are invari-
ant under the linear transformations X 7→ UQXQU> : Sn → Sn and X 7→ Q−1U>XUQ−1 :
Sn → Sn. Statement (iii) follows from (ii) and the observation that the linear transforma-
tions X 7→ UQXQU> : Sn → Sn and X 7→ Q−1U>XUQ−1 : Sn → Sn are continuous.

Corollary 7.2. Let A : Sn → Rm be a linear map. Consider C,X ⊂ Sn defined as C = {X ∈
Sn+ : AX = b} and X = {X ∈ Sn : (c1,0 − 〈C1, X〉)(c2,0 − 〈C2, X〉) ≤ 0}. Let Q ∈ intSn+
and U ∈ Rn×n be a diagonal matrix and an orthogonal matrix, respectively. Define the linear
map A′ : Sn → Rm as A′X = AUQXQU>, the matrices C ′i = QU>CiUQ, and the sets
C′ = {X ∈ Sn+ : A′X = b} and X′ = {X ∈ E : (c1,0 − 〈C ′1, X〉)(c2,0 − 〈C ′2, X〉) ≤ 0}. Then

i. conv(C ∩ X) = UQ conv(C′ ∩ X′)QU>.
ii. conv(C ∩ X) = UQ conv(C′ ∩ X′)QU>.

Proof. For i ∈ {1, 2}, let C+
i = {X ∈ C : 〈Ci, X〉 ≥ ci,0} and C−i = {X ∈ C : 〈Ci, X〉 ≤ ci,0}.

Similarly, define (C+
i )′ = {X ∈ C′ : 〈C ′i, X〉 ≥ ci,0} and (C−i )′ = {X ∈ C′ : 〈C ′i, X〉 ≤ ci,0}.

Then C ∩ X = (C+
1 ∪ C+

2 ) ∩ (C−1 ∪ C−2 ) and C′ ∩ X′ = ((C+
1 )′ ∪ (C+

2 )′) ∩ ((C−1 )′ ∪ (C−2 )′). To
prove statement (i), note that

conv(C ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 )

= UQ
[

conv((C+
1 )′ ∪ (C+

2 )′) ∩ conv((C−1 )′ ∪ (C−2 )′)
]
QU>

= UQ conv(C′ ∩ X′)QU>.
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The first and third equalities above hold as a result of Proposition 5.2; and the second
equality follows from Proposition 7.1(ii). Statement (ii) follows similarly from the same
results.

Remark 7.3. Based on Proposition 7.1, we can assume without any loss of generality that
the matrices D1, D2 ∈ Sn which define the sets D1 and D2 are such that the matrix R =
D2 − D1 is diagonal with diagonal elements from {0,±1} sorted in nonincreasing order.
To see this, consider the eigenvalue decomposition of R = UΛU> where U ∈ Rn×n is an
orthogonal matrix and Λ ∈ Sn is a diagonal matrix whose entries are the eigenvalues of R
sorted in nonincreasing order. Let Q ∈ intSn+ be the diagonal matrix with diagonal entries
Qii = 1√

|Λii|
if Λii is nonzero and Qii = 1 otherwise. By Proposition 7.1(iii), we have

conv(D1 ∪ D2) = UQ conv(D′1 ∪ D′2)QU> where D′i =
{
X ∈ Sn+ : 〈D′i, X〉 ≥ µ0

}
and

D′i = QU>DiUQ for i ∈ {1, 2}. Furthermore, R′ = D′2 − D′1 = QU>RUQ = QΛQ is a
diagonal matrix with diagonal elements from {0,±1} sorted in nonincreasing order. When
D1 and D2 satisfy Condition 5.1, Lemma 5.3 implies R /∈ ±Sn+, in which case R′ has at least
one diagonal entry equal to 1 and one diagonal entry equal to -1. Analogously, based on
Corollary 7.2, we can assume that the matrices D1, D2 ∈ Sn which define F are such that the
matrix R = D2−D1 is diagonal with diagonal elements from {0,±1} sorted in nonincreasing
order.

In order to simplify the presentation of certain results in the rest of the chapter, we some-
times make the assumption that R is a diagonal matrix whose diagonal elements are from
{0,±1} and sorted in nonincreasing order. Proposition 7.1, Corollary 7.2, and Remark 7.3
show that this assumption is without any loss of generality.

7.2.2 General Two-Term Disjunctions on the Positive Semidefinite
Cone

Theorem 7.5 specializes the results of Propositions 5.19 and 5.31 to disjunctions on the
positive semidefinite cone. This result is based on the following lemma.

Lemma 7.4. For any R ∈ Sn, we have

fSn+,R(X) =


∥∥∥λ(X1/2RX1/2

)∥∥∥
1
, if X ∈ Sn+,

−∞, otherwise.
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Proof. Remark 5.20(i) indicates fSn+,R(X) = −∞ for all X /∈ Sn+. Consider X ∈ Sn+. From
Proposition 5.19, we have

fSn+,R(X) = max
P

{
〈R,P 〉 : X − P ∈ Sn+, X + P ∈ Sn+

}
.

First consider the case X ∈ intSn+. Then there exists a matrix X1/2 ∈ intSn+ such that
X = X1/2X1/2. A matrix P ∈ Sn satisfies X − P ∈ Sn+ and X + P ∈ Sn+ if and only if it
satisfies In −X−1/2PX−1/2 ∈ Sn+ and In +X−1/2PX−1/2 ∈ Sn+. Therefore, after introducing
a new variable Q = X−1/2PX−1/2, we can write

fSn+,R(X) = max
Q

{
〈R,X1/2QX1/2〉 : In −Q ∈ Sn+, In +Q ∈ Sn+

}
= max

Q

{〈
X1/2RX1/2, Q

〉
: In −Q ∈ Sn+, In +Q ∈ Sn+

}
= max

Q

{〈
X1/2RX1/2, Q

〉
: ‖λ(Q)‖∞ ≤ 1

}
=
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
.

Now consider the more general case X ∈ Sn+. For ε > 0, let Xε = X + εIn. Then Xε ∈
intSn+ and λi

(
(Xε)1/2

)
=
√
λi(X) + ε for all i ∈ [n]. Furthermore, limε↓0

∥∥∥(Xε)1/2R(Xε)1/2−
X1/2RX1/2

∥∥∥
F

= 0. The function A 7→ ‖λ(A)‖1 : Sn → R is convex and finite ev-
erywhere; therefore, it is continuous. It follows that limε↓0

∥∥∥λ((Xε)1/2R(Xε)1/2
)∥∥∥

1
=∥∥∥|λ(X1/2RX1/2

)∥∥∥
1
. On the other hand, according to Remark 5.20, the function −fSn+,R(X)

is a closed convex function of X; therefore, limε↓0 fSn+,R(Xε) = fSn+,R(X) (see, for instance,
[77, Proposition B.1.2.5]). Putting these together, we get

fSn+,R(X) = lim
ε↓0

fSn+,R(Xε) = lim
ε↓0

∥∥∥λ((Xε)1/2R(Xε)1/2
)∥∥∥

1
=
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
.

We note that, for any R ∈ Sn and X ∈ Sn+, the eigenvalues of X1/2RX1/2 are real because
it is real symmetric. Lemma 7.4 implies the following result.

Theorem 7.5. Let K = Sn+. Then a point X ∈ Sn+ satisfies (5.18) if and only if it satisfies

∥∥∥λ(X1/2RX1/2
)∥∥∥

1
≥ 2µ0 − 〈D1 +D2, X〉. (7.3)

Similarly, a point X ∈ Sn+ satisfies (5.30) if and only if it satisfies

∥∥∥λ(X1/2RX1/2
)∥∥∥

1
≥ |2µ0 − 〈D1 +D2, X〉|. (7.4)
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Consider D1 and D2 defined as in (7.1). Theorem 7.5, Proposition 5.19, and Remark 5.20
indicate that (7.3) provides a convex relaxation for D1 ∪ D2 in the space of the original
variables. Furthermore, if D1 and D2 satisfy the conditions of Theorem 5.9, the inequality
(7.3) characterizes the closed convex hull of D1 ∪ D2, together with the cone constraint
X ∈ Sn+. If D1 and D2 satisfy the disjointness condition, then Corollary 5.34 shows that any
point X ∈ Sn+ satisfies (7.3) if and only if it satisfies (7.4). On the other hand, Theorem 7.5
and Proposition 5.31(i) indicate that (7.4) provides a convex relaxation for F ∩ Sn+, where
F ⊂ Sn is defined as in (7.2). Furthermore, if F satisfies the conditions of Proposition 5.31(ii),
then (7.4) describes the closed convex hull of F ∩ Sn+.

The next lemma can be used to simplify the term
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
on the left-hand side

of (7.3); see, e.g., [78, Theorem 1.3.22] for a proof.

Lemma 7.6. Let A ∈ Rm×n and B ∈ Rn×m with m ≤ n. Then the n eigenvalues of BA are
the m eigenvalues of AB together with n−m zeroes.

Corollary 7.7. For any R ∈ Sn and X ∈ Sn+, we have λ
(
X1/2RX1/2

)
= λ(RX). In

particular:
i. The eigenvalues of RX are real.
ii. fSn+,R(X) = ‖λ(RX)‖1.

Corollary 7.8. Let R ∈ Sn and X ∈ Sn+. Suppose R is diagonal with diagonal elements
from {0,±1} sorted in nonincreasing order. Let supp(R) ⊂ [n] be the set of indices of the
nonzero elements of the diagonal of R. Then

i. The eigenvalues of R[supp(R)]X[supp(R)] are real,
ii.

fSn+,R(X) =
∥∥∥λ(X[supp(R)]1/2R[supp(R)]X[supp(R)]1/2)

∥∥∥
1

=
∥∥∥λ(R[supp(R)]X[supp(R)])

∥∥∥
1
.

Proof. Let t+, t−, and t0 be the number of diagonal elements of R which are equal to +1,
−1, and 0, respectively. Then t+ + t− = | supp(R)|. Let P ∈ Rn×(t++t−) be the matrix whose
i-th row is ei if i ∈ [t+], ei−t0 if i ∈ [n] \ [t+ + t0], and the zero vector otherwise. Then
R = PR[supp(R)]P> and

X1/2RX1/2 = X1/2PR[supp(R)]P>X1/2.

Note that the eigenvalues of X1/2PR[supp(R)]P>X1/2 are real because it is real symmetric.
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By Lemma 7.6, the n eigenvalues of X1/2PR[supp(R)]P>X1/2 are the t+ + t− eigenvalues of
R[supp(R)]P>XP = R[supp(R)]X[supp(R)] together with t0 zeroes. Noting X[supp(R)] ∈
St++t−

+ and applying Lemma 7.6 again, we see that the eigenvalues of R[supp(R)]X[supp(R)]
are the same as the eigenvalues of X[supp(R)]1/2R[supp(R)]X[supp(R)]1/2.

We use the next result in the proof of Lemma 7.10, which provides an alternate repre-
sentation of

∥∥∥λ(X1/2RX1/2
)∥∥∥

1
.

Lemma 7.9. Let R ∈ Sn and X ∈ Sn+. The number of positive (resp. negative) eigenvalues
of X1/2RX1/2 is less than or equal to the number of positive (resp. negative) eigenvalues of
R.

Proof. Consider the eigenvalue decomposition of X = UxDxU
>
x with an orthogonal matrix

Ux and a diagonal matrix Dx. Note λ(X1/2RX1/2) = λ(D1/2
x UxRU

>
x D

1/2
x ). Let Ix be a

diagonal matrix which has (Ix)ii = (Dx)ii if (Dx)ii > 0 and (Ix)ii = 1 if (Dx)ii = 0. Let Px
be a diagonal matrix which has (Px)ii = 1 if (Dx)ii > 0 and (Ix)ii = 0 if (Dx)ii = 0. Then
D1/2
x UxRU

>
x D

1/2
x = Px(I1/2

x UxRU
>
x I

1/2
x )Px. The matrix I1/2

x UxRU
>
x I

1/2
x has the same inertia

as R because I1/2
x Ux is nonsingular. Because Px(I1/2

x UxRU
>
x I

1/2
x )Px is a principal submatrix

of I1/2
x UxRU

>
x I

1/2
x , we deduce the result from Cauchy’s interlacing eigenvalue theorem [78,

Theorem 3.4.17].

Lemma 7.10. Let R ∈ Sn and X ∈ Sn+. Suppose R /∈ ±Sn+ and it is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ = max{k : Rkk = 1}, n− =
min{k : Rkk = −1}, and J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then

∥∥∥λ(X1/2RX1/2
)∥∥∥

1
=
√
〈R,X〉2 − 4

∑
(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

Proof. Note that 〈R,X〉 = Tr(RX) = ∑n
i=1 λi(RX) = ∑n

i=1 λi
(
X1/2RX1/2

)
where the last

equality follows from Corollary 7.7. Furthermore, X1/2RX1/2 has at most n+ positive and
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at most n− n− + 1 negative eigenvalues because of Lemma 7.9. Hence, we can write

∥∥∥λ(X1/2RX1/2
)∥∥∥2

1
− 〈R,X〉2 =

∥∥∥λ(X1/2RX1/2
)∥∥∥2

1
−
( n∑
i=1

λi
(
X1/2RX1/2

))2

=
[
n+∑
i=1

λi
(
X1/2RX1/2

)
−

n∑
i=n−

λi
(
X1/2RX1/2

)]2

−
[
n+∑
i=1

λi
(
X1/2RX1/2

)
+

n∑
i=n−

λi
(
X1/2RX1/2

)]2

= −4
[
n+∑
i=1

λi
(
X1/2RX1/2

)][ n∑
i=n−

λi
(
X1/2RX1/2

)]

= −4
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

The result follows from the nonnegativity of
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
.

Lemmas 7.4 and 7.10, along with Propositions 5.27(ii) and 5.32(ii), have the following
consequence.

Corollary 7.11. Suppose R /∈ ±Sn+ and it is diagonal with diagonal elements from {0,±1}
sorted in nonincreasing order. Let n+ = max{k : Rkk = 1}, n− = min{k : Rkk = −1}, and
J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then a point X ∈ Sn+ satisfies (7.3) if and only if
there exists z ≥ µ0 such that

−
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
≥ (z−〈D1, X〉)(z−〈D2, X〉). (7.5)

Similarly, a point X ∈ Sn+ satisfies (7.4) if and only if it satisfies (7.5) together with z = µ0.

Proof. Lemmas 7.4 and 7.10 show

[
fSn+,R(X)

]2
− 〈R,X〉2 = ‖λ(X1/2RX1/2)‖2

1 − 〈R,X〉2

= −
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

Then the two claims follow from Propositions 5.27(ii) and 5.32(ii), respectively.
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7.2.3 Elementary Disjunctions on the Positive Semidefinite Cone

Although the inequality (7.3) provides a closed-form equivalent for (5.18) in the case of
disjunctions on the positive semidefinite cone, it can pose challenges from a computational
perspective. In this section, we identify a class of two-term disjunctions for which (7.3) can
be represented exactly in a computationally tractable form.

We say that the disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0 is elementary when the matrix
R = D2 − D1 ∈ Sn has exactly one positive and one negative eigenvalue. In this section,
we consider sets D1,D2 ⊂ Sn+ which are defined by an elementary disjunction 〈D1, X〉 ≥
µ0 ∨ 〈D2, X〉 ≥ µ0. By Remark 7.3, we assume without any loss of generality that R is
diagonal and has exactly one positive entry R11 = 1 and one negative entry Rnn = −1. In
this case, using Lemma 7.9, the matrix X1/2RX1/2 has at most one positive and at most one
negative eigenvalue for any X ∈ Sn+. The largest and smallest eigenvalues of X1/2RX1/2 are

λ1
(
X1/2RX1/2

)
= 1

2

(
X11 −Xnn +

√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n)
)
, (7.6a)

λn
(
X1/2RX1/2

)
= 1

2

(
X11 −Xnn −

√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n)
)
. (7.6b)

Hence, Lemma 7.4 and Theorem 7.5 reduce to the statement below for elementary disjunc-
tions on the positive semidefinite cone.

Corollary 7.12. Suppose R = D2 − D1 is a diagonal matrix with exactly one
positive entry R11 = 1 and one negative entry Rnn = −1. Then fSn+,R(X) =√

(X11 −Xnn)2 + 4(X11Xnn −X2
1n) for any X ∈ Sn+. Furthermore, a point X ∈ Sn+

satisfies (7.3) if and only if it satisfies
√

(X11 −Xnn)2 + 4(X11Xnn −X2
1n) ≥ 2µ0 − 〈D1 +D2, X〉. (7.7)

Proof. The proof follows from noting that ‖λ(X1/2RX1/2)‖1 = λ1(X1/2RX1/2) −
λn(X1/2RX1/2) where λ1(X1/2RX1/2) and λn(X1/2RX1/2) are as in (7.6).

Corollary 7.11 leads to equivalent second-order cone representations for (7.7) in the case
of both disjoint and non-disjoint disjunctions.

Theorem 7.13. Suppose R = D2 −D1 is a diagonal matrix with exactly one positive entry
R11 = 1 and one negative entry Rnn = −1. Then a point X ∈ Sn+ satisfies (7.3) if and only
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if there exists z ≥ µ0 such that

X[{1, n}]− (z − 〈D1, X〉)R[{1, n}] ∈ S2
+. (7.8)

Similarly, a point X ∈ Sn+ satisfies (7.4) if and only if it satisfies (7.8) together with z = µ0.
Furthermore, the inequality (7.8) can be represented as a second-order cone constraint.

Proof. Fix X ∈ Sn+. The first part of Corollary 7.11 shows that X satisfies (7.3) if and only
if there exists z ≥ µ0 such that

(X11Xnn −X2
1n) ≥ (z − 〈D1, X〉)(z − 〈D2, X〉).

This inequality can be rewritten as

[X11Xnn −X2
1n] ≥ (z − 〈D1, X〉)(z − 〈D1, X〉 − 〈R,X〉)

⇔ [X11Xnn −X2
1n] ≥ (z − 〈D1, X〉)2 − (z − 〈D1, X〉)[X11 −Xnn]

⇔ X11Xnn + (z − 〈D1, X〉)[X11 −Xnn]− (z − 〈D1, X〉)2 −X2
1n ≥ 0

⇔ [X11 − (z − 〈D1, X〉)] [Xnn + (z − 〈D1, X〉)]−X2
1n ≥ 0. (7.9)

The left-hand side of (7.9) is equal to the determinant of the matrix
X11 − (z − 〈D1, X〉) X1n

X1n Xnn + (z − 〈D1, X〉)

 .
This matrix equals X[{1, n}]− (z − 〈D1, X〉)R[{1, n}] which also appears in (7.8).

To finish the proof, we show that the diagonal elements of the matrix on the left-hand
side of (7.8) are nonnegative for any X ∈ Sn+ and z ∈ R which satisfy (7.9). That is, we show
X11−(z−〈D1, X〉) ≥ 0 and Xnn+(z−〈D1, X〉) ≥ 0. When X and z satisfy 〈D1, X〉 = z, the
hypothesis that X ∈ Sn+ implies this immediately. Therefore, we can assume 〈D1, X〉 6= z.
Note that (7.9) implies

[X11 − (z − 〈D1, X〉)] [Xnn + (z − 〈D1, X〉)] ≥ 0.

Because 〈D1, X〉 6= z and X11, Xnn ≥ 0 for X ∈ Sn+, at least one of the terms in the product
above is positive; this also implies the nonnegativity of the other term. Hence, (7.9) is
equivalent to (7.8) for any X ∈ Sn+ and z ∈ R.
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The second part of Corollary 7.11 shows that X satisfies (7.4) if and only if it satisfies
(7.8) together with z = µ0.

Remark 7.14. Suppose the hypotheses of Theorem 7.13 are satisfied. Reversing the roles of
D1 and D2 in the proof of Theorem 7.13, the inequality (7.8) can be equivalently represented
as

X[{1, n}] + (z − 〈D2, X〉)R[{1, n}] ∈ S2
+.

7.2.4 Low-Complexity Inequalities for General Two-Term Dis-
junctions

In this section, we present structured conic valid inequalities for general two-term disjunc-
tions on the positive semidefinite cone. Section 7.2.3 showed that (7.3) admits an exact
second-order cone representation when we consider elementary disjunctions on the positive
semidefinite cone. However, the structure of (7.3) can be more complicated in the case
of general two-term disjunctions. In this section, we introduce and discuss simpler conic
inequalities which provide good relaxations to (7.3) at a significantly lower cost of compu-
tational complexity.

Relaxing the Inequality

We will use a classical result from matrix analysis to arrive at the results of this section. We
state this result as Lemma 7.15 below; see [78, Theorem 1.2.16] for a proof.

Lemma 7.15. Let A ∈ Rn×n. Then

∑
1≤i<j≤n

det(A[{i, j}]) =
∑

1≤i<j≤n
λi(A)λj(A).

Using Lemma 7.15, we prove the following result.

Lemma 7.16. Let R ∈ Sn and X ∈ Sn+. Suppose R /∈ ±Sn+ and R is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ = max{k : Rkk = 1}, n− =
min{k : Rkk = −1}, and J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then

∑
(i,j)∈J

det(X[{i, j}]) ≥ −
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
. (7.10)



7.2. Disjunctions on the Positive Semidefinite Cone 141

Proof. Let Y = RX. From Corollary 7.7, λ(Y ) = λ(X1/2RX1/2); therefore, the right-hand
side of (7.10) is exactly equal to −∑(i,j)∈J λi(Y )λj(Y ). Define the sets J+ = {(i, j) : 1 ≤
i < j ≤ n+} and J− = {(i, j) : n− ≤ i < j ≤ n}. Note that det(Y [{i, j}]) = det(X[{i, j}])
if (i, j) ∈ J+ ∪ J−, det(Y [{i, j}]) = − det(X[{i, j}]) if (i, j) ∈ J, and det(Y [{i, j}]) =
0 otherwise. Furthermore, Y has at most n+ positive and at most n − n− + 1 negative
eigenvalues. Then

∑
(i,j)∈J

det(X[{i, j}]) = −
∑

(i,j)∈J
det(Y [{i, j}])

= −
∑

1≤i<j≤n
det(Y [{i, j}]) +

∑
(i,j)∈J+

det(Y [{i, j}]) +
∑

(i,j)∈J−
det(Y [{i, j}])

= −
∑

1≤i<j≤n
λi(Y )λj(Y ) +

∑
(i,j)∈J+

det(X[{i, j}]) +
∑

(i,j)∈J−
det(X[{i, j}])

= −
∑

(i,j)∈J
λi(Y )λj(Y ) +

[ ∑
(i,j)∈J+

det(X[{i, j}])−
∑

(i,j)∈J+

λi(Y )λj(Y )
]

+
[ ∑

(i,j)∈J−
det(X[{i, j}])−

∑
(i,j)∈J−

λi(Y )λj(Y )
]
.

In order to reach (7.10), we show

∑
(i,j)∈J+

det(X[{i, j}]) ≥
∑

(i,j)∈J+

λi(Y )λj(Y ), (7.11a)

∑
(i,j)∈J−

det(X[{i, j}]) ≥
∑

(i,j)∈J−
λi(Y )λj(Y ). (7.11b)

Let P+ ∈ Sn+ be the diagonal matrix with diagonal entries P+
ii = 1 if i ∈ [n+] and

zero otherwise. Let P− ∈ Sn+ be the matrix P− = P+ − R. Define X+ = P+XP+ and
X− = P−XP−. Then X+, X− ∈ Sn+. Furthermore, X+ (resp. X−) has at most n+ (resp.
n− n− + 1) nonzero (positive) eigenvalues. We first prove (7.11a). Note that

∑
(i,j)∈J+

det(X[{i, j}]) =
∑

1≤i<j≤n
det(X+[{i, j}]) =

∑
1≤i<j≤n

λi(X+)λj(X+)

=
∑

(i,j)∈J+

λi(X+)λj(X+),

where the second equation follows from Lemma 7.15 and the last one from the fact that
X+ has at most n+ positive eigenvalues. From (P+)2 = P+ and Lemma 7.6, we have
λ(X+) = λ(P+XP+) = λ(P+X) = λ(X1/2P+X1/2). From Corollary 7.7, we have
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λ(Y ) = λ(X1/2RX1/2). Note X1/2P+X1/2 − X1/2RX1/2 = X1/2P−X1/2 ∈ Sn+; hence,
λ(X1/2P+X1/2) ≥ λ(X1/2RX1/2). Note from Lemma 7.9 that X1/2RX1/2 has at most
n − n− + 1 negative eigenvalues; hence, the largest n+ eigenvalues of X1/2RX1/2 are all
nonnegative. Then we have ∑(i,j)∈J+ λi(X+)λj(X+) ≥ ∑(i,j)∈J+ λi(Y )λj(Y ) because the first
n+ coordinates of both λ(X+) and λ(Y ) are nonnegative and λ(X+) ≥ λ(Y ). This proves
(7.11a). The proof of (7.11b) follows in a similar manner.

Remark 7.17. Suppose the hypotheses of Lemma 7.16 are satisfied. Then Remark 5.20(ii)
and Lemmas 7.4, 7.10, and 7.16 imply that, for any X ∈ Sn+, we have

√
〈R,X〉2 + 4

∑
(i,j)∈J

det(X[{i, j}]) ≥ ‖λ(X1/2RX1/2)‖1 ≥ |〈R,X〉|.

If the rank of X ∈ Sn+ is one, then det(X[{i, j}) = 0 for all (i, j) ∈ J; therefore, both
inequalities above hold at equality.

An appealing feature of (7.3) is that any rank-one matrixX ∈ Sn+ satisfies (7.3) if and only
if X ∈ D1 ∪ D2. Recall Remark 5.20 and the ensuing discussion. Next we use Remark 7.17
to construct a relaxation of (7.3) which shares the same feature.

Proposition 7.18. Suppose R /∈ ±Sn+ and it is diagonal with diagonal elements from {0,±1}
sorted in nonincreasing order. Let n+ = max{k : Rkk = 1}, n− = min{k : Rkk = −1}, and
J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Let gSn+,R : Sn → R ∪ {−∞} be defined as

gSn+,R(X) =


√
〈R,X〉2 + 4∑(i,j)∈J det(X[{i, j}]) if X ∈ Sn+,

−∞ otherwise.

i. Any point X ∈ Sn+ which satisfies (7.3) also satisfies

gSn+,R(X) ≥ 2µ0 − 〈D1 +D2, X〉. (7.12)

Similarly, any point X ∈ Sn+ which satisfies (7.4) also satisfies

gSn+,R(X) ≥ |2µ0 − 〈D1 +D2, X〉|. (7.13)
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ii. Any point X ∈ Sn+ satisfies (7.12) if and only if there exists z ≥ µ0 such that
 n+∑
i=1

Xii − (z − 〈D1, X〉)
  n∑

j=n−
Xjj + (z − 〈D1, X〉)

 ≥ ∑
(i,j)∈J

X2
ij, (7.14a)

n+∑
i=1

Xii − (z − 〈D1, X〉) ≥ 0,
n∑

j=n−
Xjj + (z − 〈D1, X〉) ≥ 0. (7.14b)

Similarly, any point X ∈ Sn+ satisfies (7.13) if and only if it satisfies (7.14) together
with z = µ0. Furthermore, (7.14) can be represented as a single second-order cone
constraint.

Proof. By Remark 7.17, gSn+,R(X) ≥ fSn+,R(X) for all X ∈ Sn+. Then statement (i) follows
from Theorem 7.5. As in Proposition 5.27(ii), we can show that a point X ∈ Sn+ satisfies
(7.12) if and only if there exists z ≥ µ0 such that

[
gSn+,R(X)

]2
− 〈R,X〉2 ≥ 4(z − 〈D1, X〉)(z − 〈D2, X〉). (7.15)

Similarly, as in Proposition 5.32(ii), we can show that a point X ∈ Sn+ satisfies (7.13) if
and only if it satisfies (7.15) together with z = µ0. We show that (7.15) can be represented
as (7.14). The inequality (7.15) is identical to ∑(i,j)∈J det(X[{i, j}]) ≥ (z − 〈D1, X〉)(z −
〈D2, X〉). Following steps similar to those in the proof of Theorem 7.13, we rewrite it as

∑
(i,j)∈J

det(X[{i, j}]) ≥ (z − 〈D1, X〉)(z − 〈D1, X〉 − 〈R,X〉)

⇔
∑

(i,j)∈J
[XiiXjj −X2

ij] ≥ (z − 〈D1, X〉)2 − (z − 〈D1, X〉)
 n+∑
i=1

Xii −
n∑

j=n−
Xjj


⇔

 n+∑
i=1

Xii − (z − 〈D1, X〉)
  n−∑

j=1
Xjj + (z − 〈D1, X〉)

− ∑
(i,j)∈J

X2
ij ≥ 0.

The final form is the same as (7.14a). Furthermore, as in the proof of Theorem 7.13, we can
show ∑n+

i=1Xii − (z − 〈D1, X〉) ≥ 0 and ∑n
j=n− Xjj + (z − 〈D1, X〉) ≥ 0 for any X ∈ Sn+ and

z ∈ R satisfying (7.14a). Observing that the inequalities (7.14) can be written as a rotated
second-order cone constraint completes the proof.

Remark 7.19. We note that, under the hypotheses of Proposition 7.18, the inequality (7.12)
defines a convex region inside the positive semidefinite cone. To see this, note that the
set of points satisfying (7.12) and X ∈ Sn+ is precisely the projection of the set of points
satisfying (7.14) and X ∈ Sn+ onto the space of X variables. Because projection of a convex
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set is convex, this immediately proves the convexity of the region defined by (7.12) inside the
positive semidefinite cone.

Remark 7.20. We note that the results of Section 7.2.3 immediately follow from Proposi-
tion 7.18 because in the particular case of elementary disjunctions, (7.10) holds at equality.
This can be seen by noting that J+ = J− = ∅ in the proof of Lemma 7.16. Therefore, in the
case of elementary disjunctions, (7.12) does not only define a relaxation of (7.3); it is also
equivalent to (7.3). Despite this connection, we have opted to keep Section 7.2.3 due to its
more transparent derivation.

Example 7.1. Consider the split disjunction −1
2(X11 + X22 − X33) ≥ 1 ∨ 1

2(X11 +
X22 − X33) ≥ 1 on S3

+. The sets D1 and D2 are defined as in (7.1) with D1 =
−1

2

(
(e1)(e1)> + (e2)(e2)> − (e3)(e3)>

)
, D2 = −D1, and µ0 = 1. Proposition 7.18(ii) shows

that the inequalities[1
2(X11 +X22 +X33)− 1

] [1
2(X11 +X22 +X33) + 1

]
≥ X2

13 +X2
23,

1
2(X11 +X22 +X33)− 1 ≥ 0, 1

2(X11 +X22 +X33) + 1 ≥ 0

are valid for D1∪D2. Furthermore, these inequalities can be represented as the second-order
cone constraint 

2X13

2X23

2
X11 +X22 +X33

 ∈ L4. (7.16)

Let G denote the region defined by (7.16). Figure 7.1 shows the intersection of various two-
dimensional linear spaces with D1 ∪ D2, S3

+, and G. Each two-dimensional linear space has
the form W = {xππ> + yψψ> : (x, y) ∈ R2} where π, ψ ∈ R3 are chosen such that π1 =

√
5

2 ,
ψ3 =

√
2, and the remaining components of π and ψ are random numbers from the interval

[−1, 1]. The intersection of W with S3
+ corresponds to the nonnegative orthant in the (x, y)

space. Each image depicts the intersection of W with D1 ∪ D2 (blue meshed area) and G
(red unmeshed area) in the (x, y) space.

We remind the reader that (7.16) is valid for all of D1 ∪ D2 and not just D1 ∪ D2 ∩W.
Hence, even in the cases where conv(D1∪D2) = S3

+∩G, we cannot in general expect to have
conv((D1 ∪ D2) ∩W) = S3

+ ∩G ∩W.
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In the next remark, we discuss how we can utilize our results for elementary disjunctions
in the light of Remark 5.24 to build structured relaxations of (7.3).

Remark 7.21. Suppose R /∈ ±Sn+ is a diagonal matrix with diagonal elements from {0,±1}
sorted in nonincreasing order. Let R+, R− ∈ Sn+ and R1, . . . , R` /∈ ±Sn+ be such that R =
R+−R−+∑`

k=1Rk and rank(Rk) = 2. Remark 5.23 indicates that any X ∈ D1∪D2 satisfies
the convex inequality

fSn+,R+(X) + fSn+,−R−(X) +
∑̀
k=1

fSn+,Rk(X) ≥ 2µ0 − 〈D1 +D2, X〉.

Note that, for any X ∈ Sn+, fSn+,R+(X) = 〈R+, X〉 and fSn+,−R−(X) = 〈R−, X〉. Now, for each
k ∈ [`], consider the eigenvalue decomposition of Rk = UkDkU

>
k , and define Qk ∈ intSn+ as

in Remark 7.3. Then J = QkU
>
k RkUkQk is a diagonal matrix with exactly one positive entry

J11 = 1 and exactly one negative entry Jnn = −1. Furthermore, Lemmas 7.4 and 7.6 show

fSn+,Rk(X) =
∥∥∥λ(RkX

)∥∥∥
1

=
∥∥∥λ(J(Q−1

k U>k XUkQ
−1
k )

)∥∥∥
1

= fSn+,J
(
Q−1
k U>k XUkQ

−1
k

)
.

The function fSn+,J has the form given in Corollary 7.12. It follows that any inequality
constructed through this approach admits a second-order cone representation in a lifted space.
We note that there is a lot of flexibility in the choice of the matrices R+, R−, and Rk and
each selection will lead to a different valid inequality.

Relaxing the Disjunction

Another approach to using our results on elementary disjunctions for arbitrary two-term
disjunctions might be through relaxing the underlying disjunction. To illustrate this point,
consider a disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0. Let R+, R− ∈ Sn+ be such that
R′ = R − R+ + R− /∈ ±Sn+ and has rank two. Define D′1 = D1 + R− and D′2 = D2 + R+.
The matrices D′1 and D′2 define a relaxation 〈D′1, X〉 ≥ µ0 ∨ 〈D′2, X〉 ≥ µ0 of the original
disjunction because any X ∈ Sn+ satisfying 〈Di, X〉 ≥ µ0 also satisfies 〈D′i, X〉 ≥ µ0 for
i ∈ {1, 2}. Therefore, any inequality valid for the relaxed disjunction is also valid for the
original. Because R′ /∈ ±Sn+ and has rank two, it has exactly one positive and one negative
eigenvalue. The relaxed disjunction is elementary, and the results of Section 7.2.3 can be
used to derive structured nonlinear valid inequalities for D1∪D2. In particular, this approach
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leads to the inequality

fSn+,R′(X) ≥ 2µ0 − 〈D′1 +D′2, X〉 = 2µ0 − 〈D1 +D2, X〉 − 〈R+ +R−, X〉

⇐⇒ 〈R+ +R−, X〉+ fSn+,R′(X) ≥ 2µ0 − 〈D1 +D2, X〉

⇐⇒ fSn+,R+(X) + fSn+,−R−(X) + fSn+,R′(X) ≥ 2µ0 − 〈D1 +D2, X〉.

We note, however, that the inequality above can also be obtained through the approach
outlined in Remark 7.21. Therefore, the approach of Remark 7.21 is a more powerful method
to build structured relaxations of (7.3).

7.3 Conclusion

In this chapter, we have considered two-term disjunctions on the positive semidefinite cone
and intersections of the positive semidefinite cone with rank-two non-convex quadratics. We
have developed closed-form counterparts and second-order cone relaxations for the nonlin-
ear valid inequalities of Section 5.4 using the special structure of the positive semidefinite
cone. We have also shown that these relaxations represent the aforementioned nonlinear
inequalities exactly in the case of elementary disjunctions on the positive semidefinite cone.

Chapter 8 extends the results of Chapter 6 and presents closed-form characterizations of
closed convex hulls of two-term disjunctions on affine cross-sections of the second-order cone.
Extending the results of this chapter to affine cross-sections of the positive semidefinite cone,
however, remains a topic of future research. Certain cross-sections of the positive semidefinite
cone deserve specific interest from the viewpoint of combinatorial optimization. For instance,
in the case of the maximum cut problem, it is well-known that the elliptope {X ∈ Sn+ : Xii =
1 ∀i ∈ [n]} provides a good outer approximation to the cut polytope, which is the convex
hull of (±1) characteristic vectors of all cuts in a complete graph on n vertices. Goemans
and Williamson [67] employed this observation to develop the approximation algorithm with
the best-known approximation guarantee for the maximum cut problem. Furthermore, the
elliptope provides a valid integer programming formulation for the maximum cut problem
in the sense that any X ∈ {±1}n×n in the elliptope corresponds to the characteristic vector
of a cut. On this cross-section of the positive semidefinite cone, we can easily transform any
two-term disjunction into an elementary disjunction. Thus, the results of Section 7.2.3 can
be relevant. We hope that these results will be instrumental to the development of more
practical algorithms for maximum cut and other hard combinatorial problems.
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Figure 7.1: Sets associated with the disjunction −1
2(X11 +X22 −X33) ≥ 1 ∨ 1

2(X11 +X22 −
X33) ≥ 1 on S3

+.





Chapter 8

Convex Hulls of Disjunctions on Cross-
Sections of the Second-Order Cone

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols [114].

8.1 Introduction

8.1.1 Motivation

In Chapter 6, we characterized the closed convex hull of two-term disjunctions on the second-
order cone with closed-form convex inequalities in the space of the original variables. In this
chapter, we extend this characterization to two-term disjunctions on affine cross-sections
of the second-order cone, which include ellipsoids, paraboloids, and hyperboloids as special
cases. To this end, we consider a disjunction 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on the set

C =
{
x ∈ Ln : Ax = b

}
, (8.1)

where A is an m × n real matrix and b ∈ Rm. Associated with this disjunction, we define
the sets

Ci =
{
x ∈ C : 〈ci, x〉 ≥ ci,0

}
for i ∈ {1, 2}.

We are interested in closed-form convex inequalities which, together with the constraint x ∈
C, describe the closed convex hull of C1∪C2. Such inequalities can be used as cutting-surfaces
in the solution of mixed-integer second-order cone programs. Our starting point is the results

149
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of Chapter 6. We also complement these earlier results and present a characterization of the
convex hull of homogeneous two-term disjunctions on the (whole) second-order cone.

The reader is referred to Section 5.1.2 for a discussion of disjunctive inequalities in mixed-
integer conic programming. Prior to our study, similar results characterizing the closed con-
vex hull of two-term disjunctions on affine cross-sections of the second-order cone appeared
in [34, 59, 97]. Our results generalize the work of [59, 97], which considered only split dis-
junctions on cross-sections of the second-order cone, and the work of [34], which considered
two-term disjunctions on ellipsoids under the assumption that the sets C1 and C2 are disjoint.
The associated closed convex hulls can be significantly more complicated in the absence of
these assumptions. Similar and complementary results describing the closed convex hull of
intersections of the second-order cone and its affine cross-sections with a single homogeneous
quadratic have recently been obtained in [45, 95].

8.1.2 Notation and Terminology

We assume that Rn has the standard inner product 〈α, x〉 = α>x. The standard (Euclidean)
norm ‖ · ‖2 : Rn → R on Rn is defined as ‖x‖2 =

√
〈x, x〉. The dual cone of V ⊂ Rn

is V∗ = {α ∈ Rn : 〈x, α〉 ≥ 0 ∀x ∈ V}. We remind the reader that the second-order
cone is self-dual, that is, its dual cone is equal to itself. Throughout the chapter, we let
convV, convV, and coneV represent the convex hull, closed convex hull, and conical hull of
a set V ⊂ Rn, respectively. We let intV, bdV, and dimV represent the topological interior,
boundary, and dimension of V ⊂ Rn, respectively. We use recV to refer to the recession cone
of a closed convex set V ⊂ Rn. For u ∈ Rn, we let ũ denote the subvector ũ = (u1, . . . , un−1).

We consider sets C1 and C2 defined as in (8.1.1). If C1 and C2 satisfy Conditions 5.1
and 5.2 together with c1,0, c2,0 ∈ {0,±1}, we say that C1 and C2 satisfy the basic disjunctive
setup. If {x ∈ C : 〈c1, x〉 > c1,0, 〈c2, x〉 > c2,0} = ∅, we say that C1 and C2 satisfy the
disjointness condition.

8.1.3 Outline of the Chapter

Section 8.2 demonstrates that C can be assumed to be the intersection of a lower-dimensional
second-order cone with a single hyperplane without any loss of generality. In Section 8.3,
we characterize the convex hull of (almost) all homogeneous two-term disjunctions on the
second-order cone with a single inequality of the form (6.5). In Section 8.4, we prove the main
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result of this chapter, Theorem 8.8, which shows that under certain conditions the closed
convex hull of C1 ∪ C2 can be characterized as the set of points satisfying the constraint
x ∈ C and a single inequality of the form (6.5). We finish the chapter with two examples
which illustrate the applicability of Theorem 8.8.

8.2 Intersection of the Second-Order Cone with an
Affine Subspace

This section shows that we can assume C is the intersection of a lower-dimensional second-
order cone with a single hyperplane in our analysis. Let W = {x ∈ Rn : Ax = b} so that
C = Ln ∩W. The following lemma will simplify our analysis.

Lemma 8.1. Let V be a p-dimensional linear subspace of Rn. The intersection Ln ∩ V is
either the origin, a half-line, or a bijective linear transformation of Lp.

See [32, Section 2.1] for a similar result. We do not give a formal proof of Lemma 8.1,
but only note that it can be obtained from the observation that the second-order cone is the
conical hull of a (one dimension smaller) sphere, and that the intersection of a sphere with
an affine space is either empty, a single point (when the affine space intersects the sphere
but not its interior), or a lower dimensional sphere of the same dimension as the affine space
(when the affine space intersects the interior of the sphere).

Lemma 8.1 implies that when b = 0, C is either the origin, a half-line, or a bijective linear
transformation of Ln−m. The closed convex hull of C1 ∪ C2 can be described easily when C
is a single point or a half-line. Furthermore, the problem of characterizing the closed convex
hull of C1∪C2 when C is a bijective linear transformation of Ln−m can be reduced to that of
convexifying an associated two-term disjunction on Ln−m. A detailed analysis of the latter
can be found in Chapter 6.

Next we concentrate on the case b 6= 0. Note that, whenever this is the case, we can
permute and normalize the rows of (A, b) so that its last row reads (a>m, 1), and subtracting
a multiple of (a>m, 1) from the other rows if necessary, we can write the remaining rows of
(A, b) as (Ã, 0). Therefore, we can assume without loss of generality that all entries of b are
zero except the last one. Isolating the last row of (A, b) from the others, we can then write
W = {x ∈ Rn : Ãx = 0, a>mx = 1}. Let V = {x ∈ Rn : Ãx = 0}. By Lemma 8.1, Ln ∩ V
is the origin, a half-line, or a bijective linear transformation of Ln−m+1. Again, the first two
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cases are easy and not of interest in our analysis. In the last case, we can find a matrix D
whose columns form an orthonormal basis for V and define a nonsingular matrix H such
that {y ∈ Rn−m+1 : Dy ∈ Ln} = HLn−m+1. Then C can be represented equivalently as

C =
{
x ∈ Ln : x = Dy, a>mx = 1

}
= D

{
y ∈ Rn−m+1 : Dy ∈ Ln, a>mDy = 1

}
= D

{
y ∈ Rn−m+1 : y ∈ HLn−m+1, a>mDy = 1

}
= DH

{
z ∈ Ln−m+1 : a>mDHz = 1

}
.

The set C = Ln ∩ W is a bijective linear transformation of {z ∈ Ln−m+1 : a>mDHz =
1}. Furthermore, the same linear transformation maps any two-term disjunction on {z ∈
Ln−m+1 : a>mDHz = 1} to a two-term disjunction on C and vice versa. Thus, without any
loss of generality, we can assume m = 1. Under this assumption, we can rewrite (8.1) as

C =
{
x ∈ Ln : 〈a, x〉 = 1

}
. (8.2)

In the remainder we study the problem of describing the closed convex hull of C1∪C2 where

Ci =
{
x ∈ C : 〈ci, x〉 ≥ ci,0

}
for i ∈ {1, 2}. (8.3)

In Section 8.4 we show that, under certain conditions, the closed convex hull of C1 ∪ C2

can be described with a single convex or second-order cone inequality, in addition to the
constraint x ∈ C.

8.3 Homogeneous Disjunctions on the Second-Order
Cone

In this section, we consider a homogeneous two-term disjunction 〈c1, x〉 ≥ 0 ∨ 〈c2, x〉 ≥ 0 on
the second-order cone. Associated with this disjunction, we define the sets

Ki =
{
x ∈ Ln : 〈ci, x〉 ≥ 0

}
for i ∈ {1, 2}. (8.4)
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The main result of this section characterizes the convex hull of K1 ∪K2. Note that K1 and
K2 are closed, convex, pointed cones; therefore, the convex hull of K1 ∪K2 is always closed
(see, e.g., [103, Corollary 9.1.3]).

Suppose K1 and K2 satisfy the basic disjunctive setup. By Condition 5.1, we have
K1,K2 ( Ln, and by Condition 5.2, we have that K1 and K2 are full-dimensional. This
implies ci /∈ ±Ln, or equivalently ‖c̃i‖2

2 > c2
i,n, for i ∈ {1, 2}. After scaling c1 and c2 with

appropriate positive scalars if necessary, we may assume without any loss of generality that

‖c̃1‖2
2 − c2

1,n = ‖c̃2‖2
2 − c2

2,n = 1. (8.5)

In the remainder, we let r = c2 − c1 and N = ‖r̃‖2
2 − r2

n.

Remark 8.2. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy Con-
dition 5.1. Then we have r = c2 − c1 /∈ ±Ln. Indeed, r ∈ Ln implies that 〈r, x〉 ≥ 0
for all x ∈ Ln, and this implies K2 ⊂ K1; similarly, −r ∈ Ln implies K1 ⊂ K2. Hence,
N = ‖r̃‖2

2 − r2
n > 0.

We recall the following results from Chapter 6 which will be useful in reaching the results
of this chapter. The first result is a restatement of Corollary 6.9(i) for the set K1∪K2 under
consideration.

Corollary 8.3. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy Condi-
tion 5.1. Any point x ∈ K1 ∪K2 satisfies

√
〈r, x〉2 +N (x2

n − ‖x̃‖2
2) ≥ 〈−c1 − c2, x〉. (8.6)

Furthermore, the inequality (8.6) defines a convex relaxation of K1 ∪ K2 inside the second-
order cone.

Proof. Remark 8.2 indicates that r = c2 − c1 /∈ ±Ln when K1 and K2 satisfy Condition 5.1.
Then the hypotheses of Corollary 6.9(i) are satisfied after setting β1 = β2 = 1. The result
follows.

The next proposition shows that (8.6) can be written in second-order cone form for points
inside the second-order cone except in the region where both clauses of the disjunction are
strictly satisfied. It is a restatement of Remark 6.6 and Corollary 6.7.

Proposition 8.4. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy
Condition 5.1. Let x ∈ Ln be such that 〈c1, x〉 ≤ 0 ∨ 〈c2, x〉 ≤ 0. Then the following
statements are equivalent:
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i. x satisfies (8.6).
ii. x satisfies the second-order cone inequality

Nx− 2〈c1, x〉
(
−r̃
rn

)
∈ Ln. (8.7)

iii. x satisfies the second-order cone inequality

Nx+ 2〈c2, x〉
(
−r̃
rn

)
∈ Ln. (8.8)

Remark 8.5. When c1 and c2 satisfy (8.5), the inequalities (8.7) and (8.8) describe cylin-
drical second-order cones whose lineality spaces contain the linear span of

(
−r̃
rn

)
. To see this,

note that
N = 2− 2(c̃>1 c̃2 − c1,nc2,n) = 2

〈
c1,

(
−r̃
rn

)〉
= −2

〈
c2,

(
−r̃
rn

)〉
.

Recall that c1 and c2 can always be scaled so that they satisfy (8.5) when K1 and K2

satisfy the basic disjunctive setup. The next theorem is the main result of this section.
It shows that (8.6), together with the constraint x ∈ Ln, characterizes the convex hull of
K1 ∪ K2 if c1 and c2 satisfy (8.5). Because this condition can be imposed without any
loss of generality, Theorem 8.6 complements Corollary 6.10, settling the case for two-term
disjunctions on the second-order cone when c1,0 = c2,0 = 0 in (6.1).

Theorem 8.6. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy the basic
disjunctive setup. Suppose also that c1 and c2 satisfy (8.5). Then

conv(K1 ∪K2) =
{
x ∈ Ln : x satisfies (8.6)

}
. (8.9)

Proof. Let D denote the set on the right-hand side of (8.9). We already know from Corol-
lary 8.3 that any point in the convex hull of K1∪K2 satisfies (8.6). Hence, conv(K1∪K2) ⊂ D.
Let x ∈ D. If x ∈ K1 ∪ K2, then clearly x ∈ conv(K1 ∪ K2). Therefore, suppose
x ∈ Ln \ (K1 ∪ K2) is a point that satisfies (8.6). According to Proposition 8.4, x also
satisfies

Nx− 2〈c1, x〉
(
−r̃
rn

)
∈ Ln and Nx+ 2〈c2, x〉

(
−r̃
rn

)
∈ Ln.

We will show that x belongs to the convex hull of K1 ∪K2.
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By Remarks 8.2 and 8.5, 0 < N = 2
〈
c1,
(
−r̃
rn

)〉
= −2

〈
c2,
(
−r̃
rn

)〉
. Let

α1 = 〈c1,−x〉〈
c1,
(
−r̃
rn

)〉 , α2 = 〈c2,−x〉〈
c2,
(
−r̃
rn

)〉 ,
x1 = x+ α1

(
−r̃
rn

)
, x2 = x+ α2

(
−r̃
rn

)
.

(8.10)

It is not difficult to see that 〈c1, x1〉 = 〈c2, x2〉 = 0. Furthermore, x ∈ conv{x1, x2} because
α2 < 0 < α1. Therefore, the only thing we need to show is x1, x2 ∈ Ln. From Remark 8.5,
we have

N
(
−r̃
rn

)
− 2

〈
c1,

(
−r̃
rn

)〉(
−r̃
rn

)
= N

(
−r̃
rn

)
+ 2

〈
c2,

(
−r̃
rn

)〉(
−r̃
rn

)
= 0.

Hence, we reach

Nx1 − 2〈c1, x1〉
(
−r̃
rn

)
= Nx− 2〈c1, x〉

(
−r̃
rn

)
∈ Ln and

Nx2 + 2〈c2, x2〉
(
−r̃
rn

)
= Nx+ 2〈c2, x〉

(
−r̃
rn

)
∈ Ln.

Now observing that 〈c1, x1〉 = 〈c2, x2〉 = 0 and N > 0 shows x1, x2 ∈ Ln. This proves
x1 ∈ K1 and x2 ∈ K2.

In the next section, we will show that the inequality (8.6) can also be used to characterize
the closed convex hull of C1 ∪ C2 when C1 and C2 are as in (8.3).

8.4 Disjunctions on Cross-Sections of the Second-
Order Cone

8.4.1 The Main Result

Consider the set C and the sets C1 and C2 defined as in (8.2) and (8.3), respectively. The
set C is an ellipsoid when a ∈ intLn, a paraboloid when a ∈ bdLn, a hyperboloid when
a /∈ ±Ln, and empty when a ∈ −Ln. In this section, we prove the main result of this
chapter, Theorem 8.8, which characterizes the closed convex hull of C1∪C2 under some mild
conditions.
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In the rest of this chapter, we assume that C1 and C2 satisfy the basic disjunctive setup.
By Condition 5.1, we have C1,C2 ( C, and by Condition 5.2, we have dimC1 = dimC2 =
n − 1. We also assume, without any loss of generality, that c1,0 = c2,0 = 0; note that this
can always be ensured by subtracting a multiple of 〈a, x〉 = 1 from 〈ci, x〉 ≥ ci,0 if necessary.
With this assumption, the condition that C1 and C2 satisfy the basic disjunctive setup
implies ci /∈ ±Ln, or equivalently ‖c̃i‖2

2 > c2
i,n, for i ∈ {1, 2}. As in the previous section, we

assume that c1 and c2 have been scaled by positive scalars so that they satisfy (8.5).

Consider the relaxations K1 and K2 obtained after dropping the equality constraint from
the descriptions of C1 and C2 :

Ki =
{
x ∈ Ln : 〈ci, x〉 ≥ 0

}
for i ∈ {1, 2}.

The sets K1 and K2 satisfy the basic disjunctive setup because C1 and C2 satisfy it. Define
r = c2 − c1 and N = ‖r̃‖2

2 − r2
n as in Section 8.3. Given that K1 and K2 satisfy the basic

disjunctive setup, all results of Section 8.3 hold for them. In particular, Corollary 8.3 implies
that the inequality (8.6) provides a convex relaxation for C1 ∪ C2 inside C. In Theorem 8.8
below, we will show that (8.6) can also characterize the closed convex hull of C1 ∪C2 under
mild conditions on the sets C1 and C2. The proof of Theorem 8.8 requires the following
technical lemma.

Lemma 8.7. Consider C1 and C2 defined as in (8.3). Suppose C1 and C2 satisfy the basic
disjunctive setup with c1,0 = c2,0 = 0. Suppose also that c1 and c2 satisfy (8.5). Assume〈
a,
(
−r̃
rn

)〉
6= 0, and let x∗ = (−r̃rn)

〈a,(−r̃rn)〉 . Let x ∈ C \ (C1 ∪ C2) satisfy (8.6).

a. If
〈
a,
(
−r̃
rn

)〉
> 0, then 〈c1, x− x∗〉 < 0. If in addition

(a+ cone{c1, c2}) ∩ Ln 6= ∅, or (−a+ cone{c1, c2}) ∩ Ln 6= ∅, or

(−a+ cone{c2}) ∩ −Ln 6= ∅,
(8.11)

then 〈c2, x− x∗〉 ≥ 0.
b. If

〈
a,
(
−r̃
rn

)〉
< 0, then 〈c2, x− x∗〉 < 0. If in addition

(a+ cone{c1, c2}) ∩ Ln 6= ∅, or (−a+ cone{c1, c2}) ∩ Ln 6= ∅, or

(−a+ cone{c1}) ∩ −Ln 6= ∅,
(8.12)

then 〈c1, x− x∗〉 ≥ 0.

Proof. Remarks 8.2 and 8.5 show N = 2
〈
c1,
(
−r̃
rn

)〉
= −2

〈
c2,
(
−r̃
rn

)〉
> 0. Using this, we
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obtain

Nx∗ − 2〈c1, x
∗〉
(
−r̃
rn

)
= 1〈

a,
(
−r̃
rn

)〉 (N − 2
〈
c1,

(
−r̃
rn

)〉)(
−r̃
rn

)
= 0, (8.13)

Nx∗ + 2〈c2, x
∗〉
(
−r̃
rn

)
= 1〈

a,
(
−r̃
rn

)〉 (N + 2
〈
c2,

(
−r̃
rn

)〉)(
−r̃
rn

)
= 0. (8.14)

Furthermore, 〈a, x〉 = 〈a, x∗〉 = 1.
a. Assume

〈
a,
(
−r̃
rn

)〉
> 0. Having x /∈ C1 implies 〈c1, x〉 < 0. Furthermore,

〈
c1,
(
−r̃
rn

)〉
=

N
2 > 0 implies

〈c1, x
∗〉 =

〈
c1,
(
−r̃
rn

)〉
〈
a,
(
−r̃
rn

)〉 > 0.

Thus, we get 〈c1, x− x∗〉 < 0.

Now suppose (a + cone{c1, c2}) ∩ Ln 6= ∅. Then there exist λ ≥ 0 and 0 ≤ θ ≤ 1 such
that a + λ(θc1 + (1 − θ)c2) ∈ Ln. Recall that the point x does not belong to either C1

or C2 and satisfies (8.6). According to Proposition 8.4, it satisfies (8.8) as well. Using
(8.14), we can write

N (x− x∗) + 2〈c2, x− x∗〉
(
−r̃
rn

)
∈ Ln. (8.15)

Because the second-order cone is self-dual, we get

0 ≤
〈
a+ λ(θc1 + (1− θ)c2),N (x− x∗) + 2〈c2, x− x∗〉

(
−r̃
rn

)〉

= 2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
+ λ

〈
θc1 + (1− θ)c2,N (x− x∗) + 2〈c2, x− x∗〉

(
−r̃
rn

)〉

= 2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
− λθ

〈
r,N (x− x∗) + 2〈c2, x− x∗〉

(
−r̃
rn

)〉

+ λ〈c2, x− x∗〉
(
N + 2

〈
c2,

(
−r̃
rn

)〉)

= 2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
− λθ

〈
r,N (x− x∗) + 2〈c2, x− x∗〉

(
−r̃
rn

)〉

= 2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
− λθN〈r, x− x∗〉 − 2λθ〈c2, x− x∗〉

〈
r,

(
−r̃
rn

)〉

= 2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
+ λθN〈c1 + c2, x− x∗〉
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=
(

2
〈
a,

(
−r̃
rn

)〉
+ λθN

)
〈c2, x− x∗〉+ λθN〈c1, x− x∗〉

using 〈a, x − x∗〉 = 0 to obtain the first equality, N + 2
〈
c2,
(
−r̃
rn

)〉
= 0 to obtain the

third equality, and N +
〈
r,
(
−r̃
rn

)〉
= 0 to obtain the fifth equality. Now it follows from

2
〈
a,
(
−r̃
rn

)〉
+ λθN > 0, 〈c1, x− x∗〉 < 0, and λθN ≥ 0 that 〈c2, x− x∗〉 ≥ 0.

Now suppose (−a + cone{c1, c2}) ∩ Ln 6= ∅. Let λ ≥ 0 and 0 ≤ θ ≤ 1 be such that
−a + λ(θc1 + (1− θ)c2) ∈ Ln. According to Proposition 8.4, x satisfies (8.7), and using
(8.13), we can write

N (x− x∗)− 2〈c1, x− x∗〉
(
−r̃
rn

)
∈ Ln.

As before, because the second-order cone is self-dual, we get

0 ≤
〈
−a+ λ(θc1 + (1− θ)c2),N (x− x∗)− 2〈c1, x− x∗〉

(
−r̃
rn

)〉
.

The right-hand side of this inequality is identical to
(

2
〈
a,

(
−r̃
rn

)〉
+ λ(1− θ)N

)
〈c1, x− x∗〉+ λ(1− θ)N〈c2, x− x∗〉.

It follows from 2
〈
a,
(
−r̃
rn

)〉
+ λ(1 − θ)N > 0, 〈c1, x − x∗〉 < 0, and λ(1 − θ)N ≥ 0 that

〈c2, x− x∗〉 ≥ 0.

Finally suppose (−a + cone{c2}) ∩ −Ln 6= ∅. Let θ ≥ 0 be such that −a + θc2 ∈ −Ln.
Then using (8.15), we obtain

0 ≥
〈
−a+ θc2,N (x− x∗) + 2〈c2, x− x∗〉

(
−r̃
rn

)〉

= −2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
+ θ〈c2, x− x∗〉

(
N + 2

〈
c2,

(
−r̃
rn

)〉)

= −2〈c2, x− x∗〉
〈
a,

(
−r̃
rn

)〉
.

It follows from
〈
a,
(
−r̃
rn

)〉
> 0 that 〈c2, x− x∗〉 ≥ 0.

b. If
〈
a,
(
−r̃
rn

)〉
< 0, then

〈
a,−

(
−r̃
rn

)〉
> 0. Since −

(
−r̃
rn

)
=
 c̃2 − c̃1

−c2,n + c1,n

, part (b) follows
from part (a) by interchanging the roles of C1 and C2.

In the next result we show that the inequality (8.6) is all that is needed, in addition to
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the constraint x ∈ C, to describe the closed convex hull of C1 ∪ C2 when conditions (8.11)
and (8.12) hold.

Theorem 8.8. Consider C1 and C2 defined as in (8.3). Suppose the sets C1 and C2 satisfy
the basic disjunctive setup with c1,0 = c2,0 = 0 and the vectors c1 and c2 satisfy (8.5). Suppose
also that one of the following conditions is satisfied:
a.
〈
a,
(
−r̃
rn

)〉
= 0.

b.
〈
a,
(
−r̃
rn

)〉
> 0 and (8.11) holds.

c.
〈
a,
(
−r̃
rn

)〉
< 0 and (8.12) holds.

Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ C :

√
〈r, x〉2 +N (x2

n − ‖x̃‖2
2) ≥ 〈−c1 − c2, x〉

}
. (8.16)

Proof. Let D denote the set on the right-hand side of (8.16). The inequality (8.6) is valid for
the closed convex hull of C1∪C2 according to Corollary 8.3. Hence, conv(C1∪C2) ⊂ D. Let
x ∈ D. If x ∈ C1 ∪C2, then clearly x ∈ conv(C1 ∪C2). Therefore, suppose x ∈ C \ (C1 ∪C2)
is a point that satisfies (8.6). By Proposition 8.4, it satisfies (8.7) and (8.8) as well. We will
show that in each case x belongs to the closed convex hull of C1 ∪ C2.
a. Suppose

〈
a,
(
−r̃
rn

)〉
= 0. By Remarks 8.2 and 8.5, N = 2

〈
c1,
(
−r̃
rn

)〉
= −2

〈
c2,
(
−r̃
rn

)〉
> 0.

Define α1, α2, x1, and x2 as in (8.10). It is not difficult to see that 〈a, x1〉 = 〈a, x2〉 = 1
and 〈c1, x1〉 = 〈c2, x2〉 = 0. Furthermore, x ∈ conv{x1, x2} because α2 < 0 < α1. One
can show that x1, x2 ∈ Ln using the same arguments as in the proof of Theorem 8.6.
This proves x1 ∈ C1 and x2 ∈ C2.

b. Suppose
〈
a,
(
−r̃
rn

)〉
> 0 and (8.11) holds. Let x∗ = (−r̃rn)

〈a,(−r̃rn)〉 . Then from Lemma 8.7, we
have 〈c1, x− x∗〉 < 0 and 〈c2, x− x∗〉 ≥ 0.

First, suppose 〈c2, x− x∗〉 > 0, and let

α1 = 〈c1,−x〉
〈c1, x− x∗〉

, α2 = 〈c2,−x〉
〈c2, x− x∗〉

,

x1 = x+ α1(x− x∗), x2 = x+ α2(x− x∗).
(8.17)

As in part (a), one can show 〈a, x1〉 = 〈a, x2〉 = 1, 〈c1, x1〉 = 〈c2, x2〉 = 0, and x ∈
conv{x1, x2} because α1 < 0 < α2. To show x1, x2 ∈ Ln, first note Nx∗−2〈c1, x

∗〉
(
−r̃
rn

)
=

Nx∗ + 2〈c2, x
∗〉
(
−r̃
rn

)
= 0 as in (8.13) and (8.14). Using this and 〈c1, x1〉 = 〈c2, x2〉 = 0,



160 Chapter 8: Disjunctions on Cross-Sections of the Second-Order Cone

we obtain

Nx1 = Nx1 − 2〈c1, x1〉
(
−r̃
rn

)
= (1 + α1)

(
Nx− 2〈c1, x〉

(
−r̃
rn

))
,

Nx2 = Nx2 + 2〈c2, x2〉
(
−r̃
rn

)
= (1 + α2)

(
Nx+ 2〈c2, x〉

(
−r̃
rn

))
.

Clearly, 1 + α2 > 0 because α2 > 0; this implies Nx2 ∈ Ln. Furthermore,

1 + α1 = 〈c1,−x∗〉
〈c1, x− x∗〉

=
−
〈
c1,
(
−r̃
rn

)〉
〈
a,
(
−r̃
rn

)〉
〈c1, x− x∗〉

= −N
2
〈
a,
(
−r̃
rn

)〉
〈c1, x− x∗〉

> 0,

where we have used the relationships N > 0,
〈
a,
(
−r̃
rn

)〉
> 0, and 〈c1, x−x∗〉 < 0 to reach

the inequality. It follows that Nx1 ∈ Ln as well. Because N > 0, we get x1, x2 ∈ Ln.
This proves x1 ∈ C1 and x2 ∈ C2.

Now suppose 〈c2, x − x∗〉 = 0. Define α1 and x1 as in (8.17). All of our arguments
showing that α1 < 0 and x1 ∈ C1 continue to hold. Using Nx∗ + 2〈c2, x

∗〉
(
−r̃
rn

)
= 0, we

can write
N (x− x∗) = N (x− x∗) + 2〈c2, x− x∗〉

(
−r̃
rn

)
∈ Ln.

Because N > 0, we get x− x∗ ∈ Ln. Together with 〈c2, x− x∗〉 = 0 and 〈a, x− x∗〉 = 0,
this implies x − x∗ ∈ recC2. Then x = x1 − α1(x − x∗) ∈ C1 + recC2 because α1 < 0.
The claim now follows from the fact that the last set is contained in the closed convex
hull of C1 ∪ C2 (see, e.g., [103, Theorem 9.8]).

c. Suppose
〈
a,
(
−r̃
rn

)〉
< 0 and (8.12) holds. Since−

(
−r̃
rn

)
=
 c̃2 − c̃1

−c2,n + c1,n

, part (c) follows
from part (b) by interchanging the roles of C1 and C2.

The following result shows that when C is an ellipsoid or a paraboloid, the closed convex
hull of any two-term disjunction can be obtained by adding an inequality of the form (8.6)
to the description of C.

Corollary 8.9. Consider C1 and C2 defined as in (8.3). Suppose C1 and C2 satisfy the basic
disjunctive setup with c1,0 = c2,0 = 0. Suppose also that c1 and c2 satisfy (8.5). If a ∈ Ln,
then (8.16) holds.

Proof. The result follows from Theorem 8.8 after observing that conditions (8.11) and (8.12)
are trivially satisfied for any c1 and c2 when a ∈ Ln.

The case of split disjunctions is particularly relevant in the solution of mixed-integer
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second-order cone programs, and it has been studied in several papers recently. Theorem 8.8
has the following consequence for split disjunctions on C. This recovers and extends [59,
Lemma 3.6] and the related results of [34, 97].

Corollary 8.10. Consider C1 and C2 defined by a split disjunction 〈t1`, x〉 ≥ `1,0 ∨ 〈t2`, x〉 ≥
`2,0 on C such that t1 > 0 > t2 and C1 ∪ C2 ( C. Suppose C1 and C2 satisfy the basic
disjunctive setup. Then (8.16) holds for

ci = ti`− `i,0a√
‖ti ˜̀− `i,0ã‖2

2 − (ti`n − `i,0an)2
for i ∈ {1, 2}.

Proof. First note Ci = {x ∈ C : 〈ti`, x〉 ≥ `i,0} = {x ∈ C : 〈ci, x〉 ≥ 0} for
i ∈ {1, 2}. For the given split disjunction, we have C1 ∪ C2 ( C only if `1,0

t1
> `2,0

t2
. Let

λi =
(√
‖ti ˜̀− `i,0ã‖2

2 − (ti`n − `i,0an)2
)−1

for i ∈ {1, 2}. Also, let θ1 = −t2
λ1(t1`2,0−t2`1,0) and

θ2 = t1
λ2(t1`2,0−t2`1,0) . Then

a+ θ1c1 + θ2c2 = a+ −t2(t1`− `1,0a)
t1`2,0 − t2`1,0

+ t1(t2`− `2,0a)
t1`2,0 − t2`1,0

= 0 ∈ Ln.

The result now follows from Theorem 8.8 after observing that θ1, θ2 > 0 implies that condi-
tions (8.11) and (8.12) are satisfied.

Under the disjointness condition, Proposition 8.4 shows that (8.6) can be expressed in
second-order cone form and directly implies the following result.

Corollary 8.11. Consider C1 and C2 defined as in (8.3). Suppose C1 and C2 satisfy Con-
dition 5.1 together with c1,0 = c2,0 = 0.

i. Let x ∈ C be such that 〈c1, x〉 ≤ 0 ∨ 〈c2, x〉 ≤ 0. Then x satisfies (8.6) if and only if it
satisfies (8.7) (or, equivalently (8.8)).

ii. Suppose C1 and C2 satisfy the basic disjunctive setup and the disjointness condition.
Suppose also that c1 and c2 satisfy (8.5) and the conditions of Theorem 8.8 hold. Then
the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ C : Nx− 2〈c1, x〉

(
−r̃
rn

)
∈ Ln

}

=
{
x ∈ C : Nx+ 2〈c2, x〉

(
−r̃
rn

)
∈ Ln

}
.

Remark 8.12. Conditions (8.11) and (8.12) are directly related to the conditions which
guarantee the closedness of the convex hull of a two-term disjunction on a regular cone,
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explored in Chapter 5. In particular, one can show using Corollary 5.14 that the convex hull
of a disjunction 〈`1, x〉 ≥ `1,0 ∨ 〈`2, x〉 ≥ `2,0 on the second-order cone is closed if there exists
0 < µ < 1 such that µ`1 + (1 − µ)`2 ∈ Ln, or `1, `2 ∈ − intLn. Recall from Corollary 6.10
that, when the convex hull of such a disjunction is closed and `1,0 = `2,0 ∈ {±1}, we can
characterize the convex hull of the disjunction with a single closed-form inequality. In our
present context, exploiting these conditions after letting `i = a + θici and `i,0 = 1 (or,
`i = −a+ θici and `i,0 = −1) for some θi > 0 leads to (8.11) and (8.12).

8.4.2 Two Examples

In this section, we illustrate Theorem 8.8 with two examples.

A Two-Term Disjunction on a Paraboloid

Example 8.1. Consider the disjunction −2x1 − x2 − 2x4 ≥ 0 ∨ x1 ≥ 0 on the paraboloid
C = {x ∈ L4 : x1 + x4 = 1}. Let C1 = {x ∈ C : −2x1 − x2 − 2x4 ≥ 0} and C2 = {x ∈ C :
x1 ≥ 0}. Noting that C is a paraboloid and C1 and C2 are disjoint, we can use Corollary 8.11
to characterize the closed convex hull of C1 ∪ C2 with a second-order cone inequality:

conv(C1 ∪ C2) =

x ∈ C : 3x+ x1


−3
−1
0
2

 ∈ L4


Figure 8.1 depicts the paraboloid C in mesh and the disjunction C1 ∪ C2 in blue. The
second-order cone disjunctive inequality added to convexify this set is shown in red.

A Two-Term Disjunction on a Hyperboloid

Example 8.2. Consider the disjunction −2x1−x2 ≥ 0 ∨
√

2x1−x3 ≥ 0 on the hyperboloid
C = {x ∈ L3 : x1 = 2}. Let C1 = {x ∈ C : −2x1− x2 ≥ 0} and C2 = {x ∈ C :

√
2x1− x3 ≥

0}. Note that in this setting

〈
a,

(
−r̃
rn

)〉
= 1

10

〈 1
0
0

 ,
 −2

√
5 + 5

√
2

−
√

5
−5

〉 > 0,
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Figure 8.1: Sets associated with the disjunction −2x1 − x2 − 2x4 ≥ 0 ∨ x1 ≥ 0 on the
paraboloid C = {x ∈ L4 : x1 + x4 = 1}.

but none of the conditions (8.11) are satisfied. The second-order cone inequality

(5 + 2
√

10)x+ (
√

2x1 − x3)

 −2
√

5 + 5
√

2
−
√

5
−5

 ∈ L3 (8.18)

of Theorem 8.8 is valid for C1 ∪ C2 but not sufficient to characterize its closed convex hull.
Indeed, the inequality x2 ≤ 2 is valid for the closed convex hull of C1∪C2 but is not implied
by (8.18). Figure 8.2 depicts the hyperboloid C in mesh and the disjunction C1∪C2 in blue.
The second-order cone disjunctive inequality (8.18) is shown in red.
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Figure 8.2: Sets associated with the disjunction −2x1 − x2 ≥ 0 ∨
√

2x1 − x3 ≥ 0 on the
hyperboloid C = {x ∈ L3 : x1 = 2}.



Chapter 9

Final Remarks

This dissertation presented novel structural results on strong valid inequalities for generic
mixed-integer linear and mixed-integer conic programs. These valid inequalities can be used
as cutting-planes and cutting-surfaces in general-purpose integer programming solvers. In
this section, we review our results and outline open research directions.

Chapters 2-4 focused on cut-generating functions in integer programming. In Chapter 2,
we examined cut-generating function pairs for the model

x =f +RCs+RIy, (9.1a)

x ∈ S, (9.1b)

s ∈ Rk
+, (9.1c)

y ∈ Zm+ , (9.1d)

where S ⊂ Rn is a nonempty closed set, f ∈ Rn \ S, and RC = [r1
C , . . . , r

k
C ] and RI =

[r1
I , . . . , r

m
I ] are real matrices of dimension n× k and n×m, respectively. We characterized

minimal cut-generating function pairs for (9.1) with respect to different notions of minimality
under different structural assumptions on S. In Chapter 3, we exhibited a family of extreme
cut-generating functions for a variant of model (9.1) where S = Z+, f ∈ R+ \ Z+, and only
integer nonbasic variables are present. In Chapter 4, we considered cut-generating functions

165
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for the model

x =f +RCs, (9.2a)

x ∈ S, (9.2b)

s ∈ Rk
+. (9.2c)

We showed that cut-generating functions can generate all cutting-planes separating the basic
solution in (9.2) under a natural condition on the matrix RC . There is, therefore, no loss of
generality in restricting attention to inequalities which can be obtained from cut-generating
functions on a large class of instances identified with RC .

Theorems 2.2 and 2.32 characterize minimal cut-generating function pairs for the model
(9.1). Unfortunately, this characterization has the disadvantage of not being constructive.
Minimal cut-generating functions for the model (9.2), on the other hand, are much better
understood, especially when S is the set of integer points in some rational polyhedron, it is
full-dimensional, and f ∈ conv S \ S. In this case, Dey and Wolsey [61] and Basu et al. [22]
demonstrated a close connection between cut-generating functions for (9.2) and the so-called
S-free convex sets. A convex set is said to be S-free if it does not contain any point of S in its
interior. Dey and Wolsey [61] and Basu et al. [22] established that (inclusionwise) maximal
S-free convex sets are polyhedra; see [61, Proposition A.4] and [22, Theorem 2]. In addition,
they showed that a function ψ : Rn → R is a minimal cut-generating function for (9.2) if
and only if there exists a maximal S-free polyhedron B = {x ∈ Rn : (ai)>(x− f) ≤ 1∀i ∈ I}
such that ψ(r) = maxi∈I(ai)>r; see [61, Propositions 2.3 and 3.2] and [22, Theorem 6].
These results reduce the problem of constructing a minimal cut-generating function for (9.2)
to that of finding a maximal S-free polyhedron containing f in its interior. Furthermore,
whenever this can be achieved, the resulting cut-generating functions have easy-to-compute
closed-form expressions. Conforti et al. [54] extended this connection between cut-generating
functions for (9.2) and S-free convex sets to the more general case where S is an arbitrary
nonempty closed set.

A practical approach to constructing cut-generating function pairs for (9.1) is to start
from some cut-generating function ψ for (9.2) and “lift” it into a cut-generating function pair
for (9.1). This approach has its roots in the fill-in idea of Gomory and Johnson [73, 82] and
the monoidal strengthening idea of Balas and Jeroslow [19]; it has recently been revisited and
developed further in [13, 21, 25, 26, 51, 60, 62]. Given a cut-generating function ψ : Rn → R
for (9.2), a function π : Rn → R is said to be a lifting of ψ if (ψ, π) is a cut-generating
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function pair for (9.1). The function π is a minimal lifting of ψ if it is a lifting of ψ and
there does not exist another lifting π′ of ψ such that π(r) ≥ π′(r) for all r ∈ Rn. If ψ is a
minimal cut-generating function for (9.2), and π is a minimal lifting of ψ, then (ψ, π) is a
minimal cut-generating function pair for (9.1). Thus, minimal cut-generating function pairs
for (9.1) can be constructed by lifting minimal cut-generating functions for (9.2).

Let S be the set of integer points in a rational polyhedron. Suppose S is full-dimensional
and f ∈ conv S \ S. Consider a minimal cut-generating function ψ for (9.2). It can be
shown that any minimal lifting of ψ must be periodic with respect to lin(conv S) ∩ Zn (see
[51, Lemma 6]). Furthermore, there exists a region Dψ ⊂ Rn, containing the origin in its
interior, where any minimal lifting of ψ must coincide with ψ (see [60, Proposition 5] and
[51, Theorem 5]). Therefore, any minimal lifting of ψ is uniquely determined in the region
Dψ + (lin(conv S)∩Zn). An easy consequence of this fact is that the function ψ has a unique
minimal lifting if Dψ + (lin(conv S) ∩ Zn) = Rn (see [60, Theorem 2] and [51, Theorem
7]). The condition Dψ + (lin(conv S) ∩ Zn) = Rn was also shown to be necessary for the
existence of a unique minimal lifting when S = Zn (see [60, Theorem 2] and [26, Theorem
5]). However, it is not known whether there exist more general conditions which guarantee
the existence of a unique minimal lifting in the general case where S is the set of integer points
in a rational polyhedron. Can we reach an answer to this question in the light of our results
from Chapter 2? Answering this question would also be helpful towards understanding when
minimal liftings can be computed efficiently.

Recall that the natural continuous relaxation of the feasible solution set of a mixed-
integer conic program has the form C = {x ∈ K : Ax = b}, where E is a finite-dimensional
Euclidean space with the inner product 〈·, ·〉, K ⊂ E is a regular cone, A : E → Rm is
a linear map, and b ∈ Rm. Such a set C is an affine cross-section of K. Chapters 5-8
examined linear and convex disjunctive inequalities which can be obtained from a two-
term disjunction 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on C under varying assumptions on C. Let
Ci = {x ∈ C : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. Chapter 5 focused on the case C = K. We
presented necessary conditions on undominated valid linear inequalities for C1 ∪ C2 and
developed a family of convex nonlinear valid inequalities that subsume specific subsets of
linear valid inequalities. Together with the constraint x ∈ K, these nonlinear inequalities
collectively characterize the closed convex hull of C1∪C2, and a single one of these inequalities
is enough for certain choices of disjunction. Based on our results about two-term disjunctions,
we also provided closed convex hull descriptions and convex relaxations for intersections of
K with rank-two non-convex quadratics. In Chapters 6 and 7, we presented closed-form
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convex (and conic) equivalents to the nonlinear inequalities of Chapter 5 in the cases where
K is a direct product of second-order cones and nonnegative rays and where K is the positive
semidefinite cone, respectively. In Chapter 8, we showed that the closed convex hull of C1∪C2

can be characterized with a single closed-form convex (or conic) inequality for a large class of
two-term disjunctions on C, when C is an affine cross-section of the second-order cone. These
results provide a general methodology for deriving structured convex disjunctive inequalities
from two-term disjunctions on affine cross-sections of regular cones and identify the strongest
convex valid inequalities which can be obtained from such disjunctions for various choices of
disjunction and C.

For two-term disjunctions on the positive semidefinite cone, Theorem 7.5 and Corol-
lary 7.11 present the nonlinear valid inequalities of Chapter 5 in a form which takes specific
advantage of the structure of this cone. However, these inequalities include terms involv-
ing eigenvalues of variable matrices, which makes them undesirable from a computational
perspective. As Theorem 7.13 demonstrates, these inequalities admit an exact second-order
cone representation for elementary disjunctions, but in the general case, a computation-
ally tractable representation in the space of the original variables is not currently available.
It would therefore be nice to understand whether these inequalities can be represented in
tractable forms (for example, as a second-order cone or positive semidefinite cone inequality)
in the space of the original variables for more general classes of disjunctions than elementary
disjunctions. This would provide integer programming solvers with a wider repertoire of
nonlinear disjunctive inequalities for mixed-integer semidefinite programs.

Under certain conditions, Theorem 8.8 provides an explicit closed-form characterization
of the closed convex hull of two-term disjunctions on affine cross-sections of the second-
order cone. Another interesting direction for future research is the analysis of disjunctions
on affine cross-sections of other structured cones, such as the positive semidefinite cone or
direct products of second-order cones and nonnegative rays. On a similar note, disjunctions
on intersections of these structured cones with linear and conic inequality constraints might
also be interesting. Taking advantage of these additional constraints in the development
of disjunctive inequalities would lead to stronger cutting-planes and cutting-surfaces. Our
results in Chapters 6 and 7 have immediate implications for two-term disjunctions on the
intersection of K with homogeneous half-spaces through [45, Lemma 5] and for two-term
disjunctions on certain affine cross-sections of K through [45, Lemma 7] in the cases where
K is a direct product of second-order cones and nonnegative rays or the positive semidefinite
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cone. However, a complete characterization of the closed convex hull of these disjunctive
sets in the space of the original variables is not currently available in the general case.

The nonlinear inequalities developed in Chapters 6-8 yield strong convex relaxations for
the disjunctions from which they are derived. In a large class of cases of interest, they
characterize the closed convex hull of the associated disjunctive sets. However, the imple-
mentation of these disjunctive inequalities as cutting-surfaces in integer programming solvers
presents major challenges. The addition of nonlinear cutting-surfaces to the formulation of
a mixed-integer conic program may increase the solution time of its continuous relaxation
significantly. Thus, in the current state of the art, one needs to be judicious in choosing
when to add nonlinear cutting-surfaces to a problem formulation and which cutting-surfaces
to use. Nevertheless, nonlinear disjunctive inequalities such as those presented in this dis-
sertation have already been utilized with some success in the preprocessing of mixed-integer
second-order cone programs [68]. In this context, an existing second-order cone inequality
in the original problem formulation is replaced with a stronger second-order cone inequality,
exploiting the integrality of certain decision variables. Furthermore, nonlinear disjunctive in-
equalities encode useful structural information about the closed convex hull of the associated
disjunctive sets and hence provide a benchmark against which the strength and performance
of cutting-planes may be evaluated.
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