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Abstract

For this thesis, a toolchain was designed that aimed to process network traffic to identify host and event

behavior. Network traffic is difficult for network administrators to analyze because both the area of

responsibility and distribution of external actors are very large when protecting an enterprise network.

Having a process that converts streaming network data into actionable intelligence greatly improves the

operational capability of network administrators.

The process consisted of three phases: Netflow Collection, Network Analysis, and Actionable Classi-

fication which were validated using a series of experiments. The following experiments were performed:

a comparison between behavior of normal weeks and a flash crowd incident, a comparison of behavior

among functional groups within the corporation, an analysis of hosts reported for abusive behavior, and

a classification method for identifying hosts by behavior. The toolchain revolved around using network

science methods to gather, process, and measure data. Even though network science is typically used to

analyze social network data, the similarities in size and structure of social network data and netflow data

make it viable for similar analysis.
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Chapter 1

Introduction

Network administrators have a large set of duties besides monitoring network activity. These duties

typically include installation, management of hardware and software, the diagnosis and repairing of com-

ponents, and directly working with users to solve problems they are facing. Additionally, the migration

to cloud environments and installation of Internet of Things (IOT) devices within companies has led to

an increased surfaced area that network administrators need to monitor and maintain. As company net-

works grow larger and more complex, it becomes even more difficult for staff to allocate resources into

monitoring and responding to events without hiring more people into those roles. In the case where the

company does not have the funds to gather more hands for the role, security becomes an afterthought.

Therefore, it becomes more imperative to introduce techniques that can quickly identify network activity

and host behavior without the direct supervision of a network administrator. This paper proposes and

designs a toolchain or process that creates actionable intelligence out of telecommunication traffic data

using network science.

The following sections will describe the current state of network events important to network admin-

istrators, data collection techniques, threat detection techniques, network behavior characterization, and

the proposed toolchain using a network science approach.

1.1 Network Events

Network administrators must be aware of the possible threats that can hinder company operations. Lock-

heed Martin defined the cyber kill chain which defines the standard sequence of steps an attacker follows

in offensive cyber operations[43]. Each step of the cyber kill chain can be directly monitored by a network

administrator given the proper data and models. In the first phase, reconnaissance, malicious actors can

perform port and network scans to find vulnerabilities and system/application information for individual

1
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devices or the whole network topology[43]. Additionally, when this scanning like behavior is done from

an internal device within the network, it can indicate an attacker already has access to a device within the

enterprise network and is attempting to propagate his access deeper within the network. This phase is

common in offensive cyber operations and is part of the weaponization and delivery phase of the cyber

kill chain[43].

Alongside reconnaissance activity, network administrators must be aware of events that render systems

and services unavailable. These attacks focus on flooding enterprise machines either through external

connections or taking advantage of vulnerabilities caused by network protocols. One example for an

external attack includes leasing botnets to flood the target with traffic. These attacks can also be caused

by legitimate network traffic as seen in flash crowds and alpha flows. Some examples of network protocol

attack are the Ping of death, the SYN flood, and the LAND attack. The Ping of death is an attack that

impacts systems that do not have a safety check for malformed packets that are too large[37]. Ping of

deaths are typically caused by sending large packets that when broken and reformed cause a buffer

overflow within the system processing the traffic thereby disabling the system. SYN floods are when large

amount of TCP sessions are half-created causing an allocation of resources that can ultimately hinder

legitimate users from connecting to the network[40]. LAND attacks are an attack where the source and

destination IP of a packet are the same causing a feedback loop of flooding the device with replies[42].

These are all examples of activities that network administrators should monitor for and they all have a

distinct set of features and behaviors that can be used when tracking network traffic.

1.2 Data Collection

There are 2 main methods for gathering data in anomaly detection. The first method is packet-based

inspection, the gathering of raw network traffic in packet form[69]. This can be performed using network

tools such as Wireshark1 and Tcpdump2. Gathering data using packet-based inspection has the advantage

of providing a comprehensive analysis because of the ability to analyze the payload of each packet. Infor-

mation on data being exfiltrated, exploitive input, and virus data can be monitored using this approach.

However, the main disadvantage is that this approach is not scalable due to the high amount of CPU

processing, memory, and storage capacity required to actively monitor an enterprise network.

The other approach is flow-based inspection[62]. Flow-based inspection aggregates a set of packets by

a common property defined by the flow protocol. Some of the most supported protocols among routers

1Wireshark can be downloaded for free at http://www.wireshark.org/
2In most UNIX distributions, tcpdump is installed by default, however it can be downloaded for free at

http://www.tcpdump.org/
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Table 1.1: Comparisons between threat detection techniques

Feature Signature-Based Volume-Based Feature-Based
Identifies network level anomalies X X X

Identifies host level anomalies X X
Easy feature specifications X X

Does not require packet data X X
Does not require data features for detection X X

Identifies zero-day threats X X
Fine-grained event detection X

are Netflow[14] and IPFIX[15]. The packets are forwarded to a Flow Collector that is responsible for using

the protocol to aggregate packet data into flows. The main advantages of flow-based inspection are that it

requires significantly less data for storing and processing and that it minimizes privacy concerns. Though

procedures are meant to protect the enterprise from external threats, many of the external hosts interacting

within the network are customers to the enterprise. As a result, there are concerns when packet level data

of customers is monitored. Flow-based inspection would remove this private data.

1.3 Threat Detection

There are 3 main approaches for threat detection in network traffic. Table 1.1 summarizes the pros and

cons of each threat detection system. The following subsections will describe them.

1.3.1 Signature-Based System

Signature-based systems examine packet headers and payload for pre-defined information that indicate

network activity of relevance to a network administrator[69]. These methods require companies to know

the indicators of an attack beforehand, however this can be ineffective because of the ability of malware

to obfuscate itself to avoid previously defined threat signatures. Network administrators predominantly

use previously discovered threat signatures and the blacklisting of threatening domains or addresses.

However, identifying blacklisted threats is not scalable and does not protect enterprise networks from

zero-day intrusions [59][53]. Blacklisting also does not address security or performance issues that come

from legitimate users.

1.3.2 Volume-Based Anomaly Detection

Volume-based anomaly detection focuses on establishing a threshold for normal traffic volume over the

network[20][60][9]. When the threshold is broken, network administrators are alerted. Though this ap-
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proach helps for network events that affect the traffic volume of the whole network such as DDoS and

flash crowds, they do not help for targeted events such as worm propagation.

1.3.3 Feature-Based Anomaly Detection

Feature-based anomaly detection focuses on modeling the behavior of network events. Anomaly detection

is difficult because of the difficulty in generating accurate models due to noise in network data [24][39].

Moreover, little research has been done on modelling the complex behavior resulting from network events

of interest to network administrators [7][48][50]. The work described in the thesis uses feature-based

anomaly detection. The Literature Review will describe the work done in this area in more detail.

1.4 Current Host and Network Behavior Characterization Methods

Current models have taken approaches focusing on in-degree and out-degree frequencies between various

hosts and ports and size of flows within this graph structure [59][50]. Additionally, behavioral models are

difficult to compute because of the noise resulting from the great size of data extracted from networks.

In network science, these measurements and many more are considered when analyzing a network or

graph structure. Network science provides a new dimension of measurements for quantifying network

behavior in the form of structural measurements and grouping level measurements. Additionally, network

science provides methods for extracting subsets of the data that can be used for more feature extraction.

Rather than focusing on simple node to node interactions, a network science approach examines the

interactions, relationships, and inter-connectedness between hosts within a network as a whole. This level

of study is ideal because it requires limited metrics and reduces the data when compared to raw-packet

data [59][53]. The quantified behavior can still be compared and modelled using traditional statistical

approaches through chi-squared, entropy, and other classification techniques.

1.5 Network Science

Network science as a field had a predominant use for marketing and advertisement. However, the simple

calculations that are used to measure and describe networks have found other applications in various

fields. Network science focuses on quantifying the behavior of interactions between agents within a

network. The main literature on network science can be found in literature by Stanley Wasserman and

Katherine Faust[71]. Telecommunication networks are very large complex systems that can be made of

hundreds of thousands of agents. Network science measurements are efficient to calculate making them

an attractive approach to rapidly identify behavior when compared to manual approaches that require
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Figure 1.1: Social Network Visualization of TCP Traffic of Servers within Enterprise Network

searching for the cause of problems. Figure 1.1 shows a social network representation of a time range of

TCP network server traffic over an enterprise network for a 4 hour time period. The bigger and the more

red the node, the more connected the node is. This was calculated using total-degree centrality.

Network science has been applied to cyber-security in cyber-criminal network analysis, insider threat

detection, and social attack graphs. The motivations behind cyber-criminal network analysis are to un-

derstand the behavior of dark web communities and the digital underground economy to better assess

risk. The measurements used to analyze this medium include centrality, degree, topic modeling, and hub

measurements [73][41]. The research on insider threat detection represented users/insiders, projects, data

access, and data items as a network structure and used distance measurements to model normal behavior

for insider threat detection [70]. Lastly, the research on cyber-attack graphs used closeness-centrality, de-

gree centrality, agglomerative hierarchical clustering as a means for identifying groups of hosts involved

in cyber-attacks from a graph of malicious traffic [64][21]. The approach described in this thesis focuses

on applying network science to network communication within an enterprise.

1.6 The Toolchain

The end goal of the work described in this paper is a toolchain that enables network administrators

to make sense of the events going on in their network despite the enormous amount of traffic flowing

through it. A toolchain was developed because of the complexity of the procedure necessary to analyze
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network traffic data from a network science perspective and the availability of already built tools that

support many functions required to complete analysis. In their specific field, many of the techniques used

in this analysis are not novel, however they have not been applied in the process described in this thesis.

Implementing this process as components within a toolchain within a real enterprise network provides a

quick method for validating the design and feasibility of implementing a similar tool and applying it to

industry.

Summarizing network traffic into categorizations and models for different network events and host be-

havior would give network administrations improved cyber-situational awareness within their enterprise

environment. Though a lot of work has examined steps of improving feature-based anomaly detection,

little work has been done that describes the design of a complete toolchain used to analyze behavioral

metrics of enterprise networks. As previously discussed, the problem is making sense of an overwhelming

amount of data without manually conducting forensics at the outbreak of a problem. The proposed tool

chain would consist of the following phases:

• Netflow Collection: reduces the size of packet data and preserves anonymity while preserving

network structure

• Network Analysis: represents the amount of flows into measurements for host and aggregating

netflows by time intervals

• Actionable Classification: classifies subset of streaming netflows into different classes of hosts by

behavior and aggregate events

The thesis proposes a toolchain for monitoring networks efficiently using network science. This

method was derived using experiments created from actual case studies on a real large-scale enterprise

network. The paper will start with a comprehensive literature review on the current methods used in

network monitoring highlighting the differences of the work done for this thesis. Next, the paper will de-

fine the toolchain and its components in detail in the Methods chapter. Then, the paper will describe the

results of many experiments conducted to validate the methods. Then, the paper will discuss the results

and its implications on the use of the toolchain. Finally, the paper will summarize the main findings on

the use of the toolchain and discuss its limitations and recommendations for future work.



Chapter 2

Literature Review

As mentioned in the prior chapter, there has been a significant amount of work in network monitoring.

Some work has focused on packet level data and others have focused on netflow. However, most of the

work done in this paper focuses on a completely novel paradigm as many social network techniques have

not been used for measuring network behavior. This chapter will focus on defining the technical work

done using graph methods to characterize telecommunications networks and all other methods used in

feature-based anomaly detection. The chapter will also compare each method with the work described in

this thesis.

2.1 Graph Methods for Feature-Based Anomaly Detection

There have been many techniques used for anomaly detection, however few have used graph-based rep-

resentations of host to host interactions to define features. Graph-based metrics were examined because

absolutely no work was done in analyzing network traffic with all of the different measurements offered

in the network science field. Graph theory was the closest field to network science in telecommunication

network analysis.

One recent paper used Tsallis and Shannon entropy on a graph representation of a network to detect

events such as DDoS, flash crowds, and port scans [2]. The graph structure in the Tsallis and Shannon

entropy paper consisted of nodes of devices and links of connections over a time interval. The measure-

ments used to quantify behavior included device out-degree, device in-degree, percent and distribution

of packets sent, and top-k devices that received or sent the most data. The method in this paper was very

similar, however rather than focusing on just in-degree and out-degree, the work of this thesis focuses on

network density measurements and clustering measurements as well and various graph manipulations to

highlight different changes within the data. The entropy part of the paper can be applied directly to the

7
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same measurements defined in this thesis.

One paper used PageRank to reduce the size of data to highlight anomalous behavior [59]. The paper

described a multi-staged process for filtering hosts to highlighting hosts and interactions of interesting.

The first stage relied on identifying the dominant benign servers in the network using user defined thresh-

olds for port, flow count, packet count, byte count, and in/out degree. The thresholds are set depending

on if it is a mail server, DNS server, or web server. The second stage filters out all flows to and from the

identified benign servers from the first stage. Last, a model was created based off the assumptions of the

behavior of a C2 server and the authority and hub scores were used to filter hosts that most match that

behavior. The implementation covered in this research is similar, however the research of the thesis adds

network level measurements, grouping level measurement, and other methods of extracting hosts besides

total-degree. This paper inspired many of techniques used in this paper for data reduction.

In a similar paper by Carnegie Mellon University, researchers used an entropy-based approach to

detect manually created anomalies using IP addresses, ports, flow sizes, and degree distribution [50]. The

models were created by injecting anomalies as a ground-truth dataset to create models using resulting

metrics [50]. The current study expands on this approach by using a larger network, more network

measurements, and different techniques to reduce the size of the data.

One paper used network science measurements to analyze the set of malicious traffic [64]. The paper

used closeness centrality, a network science measurement to characterize a host’s position within the

network and used changes in these host level measurements to predict anomalies. The work has the

limitations of only being ran with a small network structure. With the size of the network structure used

in the thesis, closeness centrality may not provide as meaningful measurements without reducing the

data. However, if the data is reduced, the methods described in the paper can be implemented into the

work of this thesis.

2.2 Alternate Feature-based Anomaly Detection Methods

Though graph methods of characterizing network traffic are rare, feature-based anomaly detection is not

novel. The main approaches used in feature-based anomaly detection methods are entropy and machine

learning.

2.2.1 Entropy Based Methods

Entropy is the process of reducing network traffic into a single measurement and calculating the differ-

ence between the current period and a baseline period. One of the first works that used this approach was
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[74]. The paper focused on using Shannon entropy on host to host data to detect 4 traffic patterns, Con-

centrated origin and concentrated destination, concentrated origin and dispersed destination, dispersed

origin and concentrated destination, and dispersed origin and dispersed destination. Another approach

was mentioned in the prior section that also used a graph-based approach of representing the network

structure [50]. These methods are closer to a graph approach and rely on understanding the behavior of

an attack and correlating it to how hosts communicate with each other in the network. The work of this

thesis extends on this by using network science to define more complicated features of the interactions

between hosts within the network.

Shannon entropy was expanded in [65]. The method they coined Traffic Entropy Spectrum aggregated

traffic into bins of 5, 10, and 15 minutes, calculated Tsallis entropy values, and normalized the data using

maximum and minimum entropy values to define dominating changes and whether the change should

be normal or not. The method was tested using 3 DDoS attacks and 2 worm outbreaks. Again, network

science measurements can be used alongside the methods of this paper to implement streaming systems

that adjust the model for normal behavior.

Moreover, another method called dynamic entropy was performed in [35]. The dynamic approach

made hosts keep track of the current degree of interactions they are receiving. This state constantly

updates as connections change. The connection changes are monitored by tracking request and replies

from hosts. When groups of hosts interact with each other, their activity and state changes are modelled

into specific events. This approach can also be supplemental to the work described in this thesis.

Another more recent paper addresses the limitation entropy methods have on large networks using

adjustable piecewise entropy[67]. Adjustable piecewise entropy divides the feature space into 2 parts

before computation, high probability and low probability. This lowers the amount of computation that is

required by removing parts in an intermediate calculation. The methods described in the thesis can be

implemented with this method to improve performance.

Because entropy approaches look at host to host connections, entropy-based approaches and the pro-

posed network science approach go hand to hand. The methods used in network science can be applied to

entropy approaches for optimizing performance and implementing streaming systems. Network science

provides new methods to quantitively describe the relationship between hosts within the network during

a given timeframe.
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2.2.2 Machine Learning Based Methods

Most of work done on feature-based anomaly detection used machine learning approaches. Some of the

techniques used included principle component analysis, graph representation of features, SVM, Markov

Chains, and neural networks.

One paper used a technique called Principle Component Analysis to separate normal and anomalous

behavior represented as a time series graph [39]. Principle component analysis focuses on

Though the following papers used a graph-based approach, they focused on creating graph of the

features of individual netflows rather than a graph of host to host interactions. These papers tracked

features of flows such as source IP, destination IP, and protocols within a graph as clusters to categorize

anomalous activity [48][30]. The papers took entirely a big data approach and created blind models

from a large amount of data. The work described in the thesis focused more on validating assumptions

on telecommunication events based off the changes in network structure over time. Additionally, these

papers used heavily labelled data from the 1999 KDD Cup network intrusion dataset. The level of detail of

this data would not be feasible when applied to netflow collectors in a real enterprise network. However,

this machine learning approach can still be applied using the measurements derived from a network

science approach as features.

The following paper used distance sum-based support vector machines to classify network anomalies

[27]. It focused on first using distance of features between netflows to reduce the feature set and following

it with SVM to classify the sets of activity. The algorithm was applied to the 1999 KDD Cup network in-

trusion dataset. Again, the use of this data provides serious limitations on a live setting due to the amount

of labelled data given. Additionally, it is very old and network structures have changed significantly since

then.

Moreover another paper used Markov Chain to model network events and whether if it resulted

in a success or not [58]. The paper used a series of attack data provided by DARPA. Their method

focused on classifying sequences of system calls on a cloud server to determine if a malicious event

is occurring. Markov models can be directly applied to the network science approach because of the

temporal representation of network structures in the traffic data. Sequence or functions can be trained if

ground truth data was provided. Unfortunately, this is very difficult to apply on live data that is unlabeled.

A recent paper used neural networks and fuzzy categories to create a semi-supervised approach of

identifying network anomalies [6]. Fuzzy categories represent bins of uncertainty that are used to decide

which connections can be fed back into the model to improve its performance. The paper used a neural

network to classify anomalies using an NSL-KDD dataset. Like the feature graph paper, it had the lim-
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itation of requiring heavily labelled data which is difficult to obtain in a live networking environment.

Additionally, models change depending on the network’s topology.

Overall, most of the research on classifying network events used a similar approach and looked at a

set of labelled netflows and attempted to characterize what they are used for by its feature space. All of

this research did not seek to understand and define the behavior of each network event but used a large

amount of previous defined data in order to predict what a netflow is used for. However, these models

have the limitation of being difficult to obtain data for and they would not be very resilient to evolving

attack patterns and obfuscation techniques.

The attack landscape constantly changes within an enterprise network as new machines are added,

new applications are used, and cloud environments are integrated. Additionally, threats change as new

attack strategies develop which can show completely different behavior than those interpreted by models

that do not use interactions and relationships as features. Moreover, getting the data labelled for future

classifications is difficult because it requires seeing new attacks enough times to be able to characterize it.

It can take years to get enough attack data
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Methods

The following chapter will discuss the whole proposed toolchain process and components within the

toolchain. The chapter first introduces the toolchain in step-by-step detail. Next, the paper describes the

components used to implement for each step of the toolchain. Finally, hypothesized challenges with the

toolchain are discussed in the last section.

3.1 Tool Chain Process

As discussed in the introduction, the toolchain was divided into three phases. For this thesis, the toolchain

was implemented in parts using a range of techniques. These parts were then tested to prove its feasibility.

Figure 3.1 shows a diagram of the toolchain and the components that it is made of. The following sections

and subsections describes the implementation of each part of the toolchain grouped into the three phases.

3.1.1 Netflow Collection

The Netflow Collector was defined in order to preserve anonymity while reducing the size of the data.

Though netflow does abstract details of the interactions between hosts, network science only needs in-

teractions to define network structures and highlight a host’s role within the network. The Software

Engineering Institute at Carnegie Mellon University’s System for internet-Level Knowledge (SiLK) was

the netflow collector used to represent this stage of the toolchain. SiLK has a very flexible method for

querying netflows and includes many metrics for describing interactions between hosts. The output of

SiLK is just simple CSV files that can be parsed into formats for any other tool in processes further along

the toolchain. Alternative netflow collectors that can be used include ntopng1 and nProbe2, NFDUMP3,

1https://www.ntop.org/products/traffic-analysis/ntop/
2https://www.ntop.org/products/netflow/nprobe/
3https://github.com/phaag/nfdump

12
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Figure 3.1: Diagram of the toolchain process and the components that make up each phase

and EHNT4. All of the listed tools are open source, free tools that require installation into a router and

another machine used for storing netflow data. SiLK was used because it was already installed in the

company’s environment.

3.1.2 Network Analysis

Network science provides a mean to quantitatively describe the network. This phase of the toolchain

centers around manipulating the network time intervals, forming subsets and ego networks out of key

components within the network, and calculating network science level measurements over the intervals.

In the experiments carried out in the thesis, ORA and Python were used. Python was used for network

manipulation operations that ORA did not support. This step is necessary for creating quantitative data

that can be used for classification. Though the metrics can be difficult to interpret because of the volume of

data, it can still state some interesting things about the network. Other alternative social network analysis

tools include UCINet5, Pajek6, and Gephi7. ORA was used because it supports a higher number of nodes

and links than any other network science analysis tool, it supports the largest library of computational

measurements, it offers temporal analytics, and offers a very robust easy-to-use interface for visualizing

network structures.

4http://ehnt.sourceforge.net/
5https://sites.google.com/site/ucinetsoftware/home
6http://mrvar.fdv.uni-lj.si/pajek/
7https://gephi.org/
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3.1.3 Actionable Classification

Lastly, the data used to describe network structures over time is processed into terms that a network

administrator can respond to. Event period measurements and host behavior measurements can be bulked

into models to predict their presence from a streaming set of netflow data. This final step completes the

process that prunes an enormous amount of packet level data into actionable intelligence that a network

administrator can use to make decisions. Actionable Classification was carried out using a combination

of Python, R scripts, and machine learning algorithms.

3.2 Netflow Collection

The following section will describe the components implemented and integrated for the Netflow Collec-

tion phase.

3.2.1 Netflow

Network flows (or netflow as it is abbreviated) are simply logs of aggregated packet data throughout

a network. According to the literature, netflow can include a flexible amount of information including

source and destination IP addresses and port numbers, packet contents, and meta-information [32]. Flow

exporting is cost efficient because passive collectors simply listen to activity without affecting observed

traffic flows and only snapshots of aggregated packet captures are taken rather than the whole packets

themselves.

The reason behind the popularity of netflow analysis is the privacy of the data when compared to

packet level data and its significantly smaller size [59]. Thus, processing netflow data is a viable method

for network administrators to conduct real-time analysis of network traffic and identify events of inter-

ests. Even though netflow reduces the size of network data by multiple orders of magnitude, it still has

problems for enterprise networks because of the large number of hosts and activity going through them.

Thus, it is still very hard to pinpoint anomalous behavior within the noise of normal behavior from other

sets of hosts.

3.2.2 YAF Yet Another Flowmeter

The data was gathered using a tool developed by the Software Engineering Institute at Carnegie Mellon

University called Yet Another Flowmeter (YAF)[34]. YAF takes network packet data and converts it into

RFC-standard flow format, IP Flow Information Export (IPFIX)[68]. The format was a standard defined by
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Cisco Systems for adding the functionality of gathering and analyzing aggregate packets using netflow.

Under YAF’s configurations, there are three conditions in which a netflow is created:

• A TCP session between two hosts is complete

• There is an idle time of 30 seconds between connections between two hosts

• The max flow duration 30 minutes expires

YAF was installed into the company network to generate netflow data. YAF is available for free by the

Software Engineering Institute at Carnegie Mellon University8.

3.2.3 SiLK System for Internet-Level Knowledge

The data was queried using a tool developed by the Software Engineering Institute at Carnegie Mellon

University called System for internet-Level Knowledge (SiLK). SiLK packs collected flow from YAF into a

compact representation, stores it, then facilitates retrieval and analysis of stored flows. SiLK is compatible

with many different flow formats, however IPFIX was the format used in the SiLK installation. The

YAF/SiLK installation for this study uses a virtual machine deployed as a network boundary router to

inspect traffic, convert packets into netflows, and store flow records including the source/destination

address, source/destination port, transport protocol, flow size, and duration [66]. SiLK is available for

free by the Software Engineering Institute at Carnegie Mellon University9. An illustration of YAF and

SILK integrated into a network topology is shown in Figure 3.2.

After gathering data, the data was extracted through queries from the SiLK Database. The SiLK queries

used to gather the data in this research used a combination of time ranges and protocols. Each netflow

included only the source IP address, destination IP address, and time the flow started.

The data was gathered on a large-scale enterprise network with between 1,000 and 5,000 employees

and approximately 3,000 network connected devices. The network is configured so that any machine

can connect to any external IP address on the internet through their own internal DNS routers. A week

(Sunday through Saturday) of data was gathered from a flash crowd incident and two normal weeks

without any reported incidents. The flash crowd was a result of the disclosure of an event that triggered

a large public outburst causing a flash crowd and the crashing of a few machines within the network. In

this paper, the disclosure will be termed the event and the resulting flash crowd will be termed the flash

crowd.
8YAF installation instructions, download link, and user guide can be found the following website:

https://tools.netsa.cert.org/yaf/
9SiLK installation instructions, download link, and user guide can be found on the following website:

https://tools.netsa.cert.org/silk/
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Figure 3.2: SILK Collector Setup

After gathering data, the data was extracted through queries from the SiLK Database. The only metrics

used for queries were time ranges and protocols. Each flow record gathered by SiLK included (among its

30 data elements [66]) a source IP address, a destination IP address, and the flow start time. There were 3

weeklong periods (Event, normal week 1, normal week 2), for each of the protocols examined.

The following command was used to gather the data in SiLK:

rwfilter –start=<STARTDATE> –end=<ENDDATE> –type=all –bytes=1- –proto=<PROTOCOLNUMBER>

–pass=stdout | rwcut –fields=1,2,9 –delimited=’,’ > <FILENAME>.csv

The start and end flags indicate the time interval of flows to extract within the csv file. The type

defines if the extracted traffic is internal to internal, internal to external, or external to external. For the

thesis, all traffic was extracted. Bytes determines the range of bytes the netflows should be when queried.

For the thesis, any netflow with at least 1 byte was extracted. The proto flag indicates which protocol to

extract flows from. For the thesis, protocols 17 (UDP), 6 (TCP), 50 (ESP), 47 (GRE), and 1 (ICMP) were

extracted individually to their own CSV files. The pass flag indicates what output buffer would you want

to send the query. The RWCut commands takes the output from a RWFilter command and converts it to

a specified format. For the experiment, fields 1, 2, and 9 were taken. These fields pertained to the source

host, destination host, and timestamp. Each field was delimited by a comma to create a CSV format and

the output was written into a CSV file. Space was limited on the machine conducting SiLK queries so

sometimes the whole week of data was divided into days or parts of days and aggregated at the very end

using the Organization Risk Analyzer (ORA).
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3.3 Network Analysis

The following section will describe the components implemented and integrated for the Network Analysis

phase.

3.3.1 Network Science Measurements

In the network science perspective, this research examined methods for detecting changes within a net-

work and the degree of change. Previous work by McCulloh and Carley has used statistical process

control to detect behavioral changes within a network [45]. However, periodicity within networks caused

noise that interfered with change detection.

In the network, each address represented an Agent node and each connection between addresses rep-

resented a link. This data was processed and analyzed using ORA, a dynamic meta-network assessment

and analysis tool developed by CASOS at Carnegie Mellon University. All charts and network measure-

ments were generated using this software. The data included roughly 42 networks each binned into 4-hour

periods per week period. The rationality of the 4-hour period is that it encompasses most of the work day

while creating a larger network structure. Having a larger time period can lower the granularity of the

data when monitoring events over time, however having a larger network structure has the advantages of

being able to calculate a greater variety of metrics.

Telecommunication network traffic gathered from a private network have a unique structure. Figure

3.3 shows a visualization generated by the Organization Risk Analyzer (ORA), a software used to analyze

network data for the thesis, of a raw network structure of ICMP for a 4 hour period. ICMP was used

because TCP visualizations required too much computational power to produce. For the visualization,

the bottom 10% total-degree nodes were removed making the visualization a lot more readable. Without

removing these nodes, typically each internal host was a star shaped network with many connections

unique to each host. The connected hosts would be made up of any hosts the machine has connected to

during that time period including any websites or resources the websites use, diagnosis/update checks

for any software installed, the sending or accessing of emails, or any other internet function. The current

visualization preserves the interactions with the most common external hosts in the network. Additionally,

the nodes were sized and colored by their total-degree centrality to highlight the most active hosts within

the telecommunication network. The biggest and reddest nodes are typically servers.

Typically, they are very sparse due to the variety of external hosts internal hosts connect to and the lack

of visibility of external to external interactions. As a result, the network structures show largely clustered

activity for internal hosts within the network amongst each other and to various external nodes. There
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Figure 3.3: Visualization of ICMP Traffic of Enterprise Network during 4-hour Time Period

are groups of external nodes that have many interactions and this typically indicates external software

that the enterprise uses such as email clients and cloud infrastructure. These differences in structure pose

some limitations on calculating more complex measurements, however there are still many measurements

that can help characterize the behavior of an enterprise network.

This paper uses techniques and measurements defined by Newman to analyze the enterprise network

[47]. To analyze the enterprise network, a time series was created for the following network measurements:

• Density: The ratio of the number of links versus the maximum possible links for a network. In

the context of telecommunications networks, it represents the overall connectedness of interactions

between machines for a given time interval.

A = binaryInputNetwork

m = numberRows

n = numberColumns

∑(A)

m ∗ n
(3.1)

• Fragmentation: The proportion of nodes in a network that are disconnected. In the context of

telecommunications networks, it is an indicator of separate interactional groups during the time
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period.

Sk = kthWeakNodes

N = numberNodes

1− ∑ Sk(Sk − 1)
N(N − 1)

(3.2)

• Clustering Coefficient: The average density of each node’s ego network. In the context of telecom-

munications network, it represents the degree to which IP addresses can be clustered into interac-

tional groups during the given time period.

T = numberTriangles

C = numberConnectedTriplets

3 ∗ T
C

(3.3)

• Clique Count:The number of distinct cliques to which each node belongs. A clique is defined as

a group of three or more nodes that are all connected and that cannot be made larger by adding

another node. In telecommunication networks, it represents the number of triads of interactions

within the network during the time period.

• Node Count: The number of nodes within the network. In the telecommunication network, it

represents the total number of machines interacting during the time period.

N (3.4)

• Link Count: The number of links within the network. In the telecommunication network, it repre-

sents the total number of distinct interactions between machines during the time period.

L (3.5)
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• Weighted Link Sum: The number of weighted links within the network. In the telecommunication

network, it represents the total number of interactions between machines during the time period.

Lw (3.6)

• Average Total-degree Centrality: The average number of incoming and outgoing links out of all

nodes. In the telecommunication network, it represents the average concentration level amongst IP

addresses for the given time period. From now on, the equation will be represented as tdc(A, i, V,

N). The calculation for total degree is below[71]:

A = network

i = nodeToCalculate

V = maxLinkValue

N = numberNodes

∑ A(:, i)− A(i, i)
2 ∗V(N − 1)

(3.7)

Finally, the average total-degree centrality of the network is calculated below

i∈A
∑
i

tdc(A, i, V, N)

N
(3.8)

Within the network, each node represented a host and each link represented a netflow. Figure 3.4

depicts an example ego network from the netflow data. Ego networks are generated from selecting a node

and all its neighbors. Many of the network science measurements focus on characterizing the network’s

structure. Network science measurements have frequently been used as methods for measuring effects

within network data [4]. This paper hopes to address if the network structure and host behavior changes

during a flash crowd incident.

3.3.2 ORA Social Network Analyzer

ORA or the Organization Risk Analyzer was a tool developed by CASOS created for network analysis[12].

It was developed to help organizations and individuals with little statistical and technical background an-
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Figure 3.4: ORA Visualization of a 2 Radius Ego Network on a Company Host

alyze their network data. ORA can process data on many different formats and can calculate network-level

and node-level metrics, clustering algorithms, correlation/regression reports, represent visualizations, in-

editor network manipulations, and many other functions. ORA has the capability of processing a large

amount of data and it proved very useful for the analysis of netflow data. ORA was one of the main

tools used in calculating measurements, manipulating networks, and generating charts and reports. The

operations that could not be done in ORA were done with Python or R. The user guide and the product

page are included in footnotes below10,11.

The following subsections will describe the process on importing data, calculating chart measures,

generating ego networks, and reducing networks.

Importing Data

To import data, ORA’s Data Import Wizard was used. This was accessed from File > Data Import Wizard.

The configuration used was “Import Excel of text delimited files” > “Table of network links”. CSV files in

the following format were imported into the Data Import Wizard.

sip, dip, stime

<IP address>, <IP address>, <Start time>

...

10ORA’s QuickStart Guide can be found on the following web page: http://casos.cs.cmu.edu/projects/ora/ORA%20QuickStart%20-
%20v2.pdf

11ORA-Lite can be downloaded from the following link: http://casos.cs.cmu.edu/projects/ora/software.php
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Figure 3.5: Configuration for importing SiLK CSV files into ORA

Figure 3.6: Configuration for aggregating SiLK CSV files into ORA

These files were all generated from SiLK. Figure 3.5 shows the configurations that were set in the next

window. These configurations mean that each source IP to destination IP constitute a link. The STIME

column is used as a timestamp for the netflow link. In the next window, networks are configured to be

aggregated by 4 hours within a dynamic meta-network. Figure 3.6 shows these configuration options.
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Figure 3.7: Configuration for selecting measurements for chart measures in ORA

Generating Chart Measures

Generating chart measures were very simple in ORA. To generate them, the dynamic meta-network was

selected and the Measure Charts... button was pressed. From there, Custom Measurements were selected,

and the 9 measurements used in the thesis were selected. Figure 3.7 shows this configuration menu.

Finally, after the charts were generated, the Save Computed Measures button was clicked and the data

were saved into CSV files.

Reducing Networks

To reduce networks, the following procedure was taken. The dynamic meta-networks were copied and

pasted within the work place. For each meta-network within the network, a subset of the network was

generated. To do this, the network and agent list were selected. The navigation tab Nodes > Select nodes

from file were pressed.

Then a line delimited file of IP addresses was passed as a parameter resulting in all the nodes whose

IP address appeared in the file being selected. Finally, the navigation tabs Nodes > Keep only selected

nodes was selected. This resulted in the inclusion of only the selected nodes within the network. This was

repeated for every meta-network within the dynamic meta-network.
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Figure 3.8: Report of a malicious host on abuseipdb.com

3.3.3 AbuseIPDB

AbuseIPDB is a project managed by Marathon Studios Inc12. It is used by webmasters, system adminis-

trators, and network administrators to identify potentially malicious hosts. It is maintained by a network

of administrators who can freely report IP addresses who were found conducting malicious behavior.

Network administrators typically label the reason for reporting hosts. AbuseIPDB users have reported

millions of IP addresses and its popularity among network administrators have been increasing exponen-

tially since 2014. Figure 3.8 shows an example report of a host on abuseipdb.com.

For the project, AbuseIPDB was used as a source for ground truth malicious IP addresses. The hosts

within the network examined were queried by the amount of reports they received from AbuseIPDB and

those that exceeded a certain number of reports were considered malicious. Having a set of labelled

malicious IPs creates the ability to characterize and possibly detect malicious behavior on a network by

host. Because hosts can be freely reported by any user of AbuseIPDB, it can potentially produce inaccurate

data. For example, number of Google and Facebook owned IPs have been reported and it is unclear if they

should be considered malicious. However, if their behavior seemed intrusive enough to warrant hundreds

of reports from network administrators, then its categorization may still prove useful.

3.3.4 Network Size Reduction

Because the netflow data encompasses the whole enterprise network and network events typically only

affected select groups within the corporation, a few approaches were used to extract the groups affected.

Previous research found that sampling can destabilize centrality measurements on a network so reduction

12AbuseIPDB can be accessed from: https://www.abuseipdb.com/
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techniques that followed the reasoning of the hypothesized results were used [18][10]. These sampling

techniques were used to eliminate noise within the data to help evaluate hypothesis on the effects of

incidents to normal network behavior. Many network events influence a subset of hosts within the network

and it is sometimes beneficial to analyze subsets of a network. The following approaches were only done

on TCP and UDP.

Top Change in Total-Degree Host Selection

Two static networks were created by unionization (combining network bins into a single network where

all link weights were summed together), one corresponding to the week of the event and the other to the

normal work week. Then total-degree centralities were calculated for all IPs. Finally, the IPs within the

top 20% difference were extracted. Previous dynamic analysis was repeated with only the extracted IPs.

The rationality behind this approach was that the interactions of hosts who were affected by an incident

should have had significantly different behavior metrics during the time of the incident. This technique

is meant to be used to find hosts whose behavior changed as a result of an incident and generates a

network structure with only those queried hosts. The top 20% was used because it seemed to generate a

small enough sample to show quantitative difference in measurements while being big enough to keep

the same network structure and no other values were experimented with.

Top Increase in Sending Decrease in Receiving Host Selection

After generating the two static networks per period, the top 20% hosts that had the greatest increase in out-

degree and greatest decrease in in-degree were chosen between the event static network and the normal

static network. This method essentially highlighted the hosts that transmitted more and received less

during the event week than normal. Again, this method assumes that the event resulted in the decrease of

interactions for some hosts and the increase of interactions from other hosts. It was hypothesized to have

good performance at highlighting hosts who were either brought down or engaging in a higher amount

of connections during denial of services.

Functional Sub Groups

The last network size reduction technique required ground truth data from the company itself. For this

approach, groups of IP addresses by division within the company were placed into their own network

alongside their interactions with other hosts. Examining the differences in interactions of individual di-

vision over time and during telecommunication events is beneficial to understanding how divisions use

their machines and how they respond to telecommunication events. Quantifying the behavior of each
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Figure 3.9: Graph depicting an example of the Kolmogorov-Smirnov test[11]

group can help in creating models of normalcy for each division as well. For the company being exam-

ined, 4 groups were analyzed. These groups included technical user machines, corporate management

user machines, campus security user machines, and servers. Most of the groups had more than 100 IP

addresses, however corporate management had the largest amount of IP addresses totaling about 1,000.

3.3.5 Two-Sample Kolmogorov Smirnov Test

The Two-Sample Kolmogorov Smirnov test (KS test) is a non-parametric method for comparing two dis-

tributions. KS tests work by calculating the difference between the empirical distribution function of a

sample and the cumulative distribution function of a baseline sample[44]. Figure 3.9 depicts an example

of the KS test where the red line represents a cumulative distribution function of the baseline sample and

the blue line represents the empirical distribution function of the sample.

A number of literature has used the KS Test in order to test for the difference in behavior of com-

puter networks over a period of time[46][28][26]. For the proposed toolchain, the KS test was a crucial

component in initially testing if network science measurements differ between events and groups of hosts

proving the feasibility of a classifier. KS Tests were calculated using R.

3.3.6 Correlation Matrix Generation

Correlation Matrices are typically used to represent the changes between two matrices. In the case of the

dynamic metanetworks represented in the netflow, they are used to compare static intervals of two dy-

namic metanetworks. Correlation values use Pearson Correlation to compare two matrices. The Pearson
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Figure 3.10: Graph visualizing distance measurements calculated in the dynamic time warping
algorithm[51]

Correlation calculates the number of standard deviations both matrices are from their own respected mean

and normalizes them with each other [63][33]. Previous work on netflow has used PearsonâĂŹs Correla-

tion to quantify the differences between computer network models[13][22][49]. Correlation Matrices are

used to compare the specific days as in Mondays or Fridays of two different dynamic metanetworks. The

different metanetworks can be comprised of ego-networks composed of a different set of hosts or different

events that can exhibit different behavior over time.

3.4 Actionable Classification

The following section will describe the components implemented and integrated for the Actionable Clas-

sification phase.

3.4.1 Dynamic Time Warping K-nearest Neighbor Classification

Dynamic time warping is a technique used to measure the differences between two time series. Dynamic

time warping was created to address the gap of Euclidean Distance wherein same events that have differ-

ent speeds and reaction times do not result in matches. Dynamic time warping works by calculating every

combination of distances between points in each time series graph and selecting an optimal path that min-

imizes the distance between both time series[8]. Figure 3.11 visualizes the distance metrics calculated from

the dynamic time warping algorithm.

After calculating a distance metric between two time series, classification algorithms such as K-nearest

neighbor are used in defining a model for a class of data given a set of labelled data points. K-nearest

neighbor or KNN works by storing a set of labelled points and evaluating the neighbors of an unlabeled

point. The class is determined by the composition of classes among neighbors given a radius distance,
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Figure 3.11: Visual of K-nearest neighbor algorithm where blue and red represent different classes, green
represents a test point, and both circles represent different values of k. The inner radius would classify
green as red and the outer radius would classify green as blue [3]

K[19]. The following literature have used either Euclidean distance or dynamic time warping as a distance

measurement and K-nearest neighbor to classify netflow data[31][72][29][56][54].

3.5 Challenges

However, computer network analytics is a difficult problem because of the sheer size of data. Much of

the data, especially in a large-scale enterprise network is noise. Users visit hundreds of websites a day

and these websites connect to hundreds of advertisement distributors every day. All this activity will be

captured in netflow and previous activity is easily influenced by current events and changing trends.

Additionally, care must be taken into not abstracting too much of the data. For instance, no matter how

many packet records a collector gathers, if a network administrator even finds one pair of internal hosts

communicating over a port that should not be in use, he already found an event of interest. Administrators

have a simple set of things that they are interested in within their network, so an automatic detection tool

chain must include these features.

Moreover, event detection algorithms may be hard to define because their effectiveness depends on the

number of occurrences the model was trained on. It is difficult to integrate event data from other computer

networks because topologies vary, and this can cause a very different set of reactions for another network

when compared with the network of interest.

Lastly, host behavior can be very difficult to differentiate between. Previous network security methods

used threat signatures and tracked a context free graph of actions that indicate malicious behavior. These

methods require packet-level inspection. Only having link level behavioral interactions between hosts

may result in ill-defined classes for detection algorithms.
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Results

The thesis was made up of a variety of experiments to implement parts of the toolchain, learn more about

the data, find the meaning of various network measurements calculated from the data, and test methods

of processing the data to highlight important information to network administrators. This chapter focuses

on describing these experiments and their results. These experiments are effectively case studies of the

toolchain in action split into smaller components. The experiments and their results highlight the best

components to use in constructing a toolchain that improves a network administrator’s capabilities.

4.1 Netflow Data Structure: Network Analysis

This section focuses on the experiments analyzing the whole netflow structure and how it changes de-

pending on the environment.

4.1.1 Previous Network Structure

Overview

The network structure was created as a part of an experiment examining the change in network behavior

after a flash crowd incident. The results of the experiment are in the following section.

The data was gathered on a large-scale enterprise network and started with a very simple structure.

The network was dynamic meaning that many network structures were creating representing a single

time frame within a larger time frame. Each node represented a host and each link represented a uni-

directional netflow from host to host. Each link has a weighted value representing the number of flows

within the timeframe of the network.

29
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Additionally, the data was placed in bins by the following protocol: TCP, UDP, ICMP, ESP, and GRE.

These protocols were the top 5 protocols used within the network and each of these bins indicated different

functional usages. The rational of this type of binning was that the behaviors of these protocols should

vary. Protocol bins made the most sense for reducing some noise and is frequently used in other netflow

analysis [39][50]. The functions of each protocol are as follows [57]:

• TCP: Main transport protocol of Internet protocol suite, majority of network traffic including the

World Wide Web, email, remote administration, and file transfer. These activities are human-directed

and task-oriented and may occur over durations of up to several seconds or minutes[25].

• UDP: Secondary transport protocol of Internet protocol suite, includes Domain Name System re-

quests, SNMP, RIP, DHCP, voice and video traffic, and streaming content. These activities are

human-directed and task-oriented, but most frequently occur over durations of a few seconds at

most[55].

• ICMP: Supporting protocol of Internet protocol suite, used by network devices for error messages

and debugging information. This traffic is not human-directed or task-oriented and occurs in brief

bursts[17].

• ESP: Used in IPsec protocol suite for enforcing confidentiality, authentication, and integrity in IP

packets. This traffic is typically ongoing activity in support of established connections and is human-

directed but not task-oriented[38].

• GRE: Used with IPsec VPNs to enforce security of IP packets. This traffic is infrequent, occurring

only at the start of these VPNs[23].

Results

The data included roughly 42 networks each binned into 4-hour periods per week period. There were

a couple of holes, at most 24 hours long in some of the data because of technical issues with the SiLK

Collector during those periods. There were 3 weeklong periods (Event, normal week 1, normal week 2), for

each of the 5 protocols. This totaled to about 630 networks and roughly 300GBs of data. The distribution

of the amount of network data is illustrated in Table 4.1. By protocol, the data was distributed as follows

per 4-hour network:

Overall, the initial data structure was effective at representing the network. Periodicity with the work

week was clear even after splitting the networks into 4-hour aggregate structures. Additionally, splitting
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Table 4.1: Distribution of Protocol Data

Protocol Number of Hosts Number of Links Size in MB Percentage of Size
TCP 400,000 4,000,000 271,000 91.11%
UDP 35,000 400,000 23,900 8.03%
ICMP 40,000 30,000 1,830 0.62%
ESP 70 130 509 0.17%
GRE 13,000 25,000 215 0.07%

the network by protocol showed clear differences in behavior as well. However, it was clear that some

protocols were unnecessary because of the lack of data.

One concern with this structure was the possibility of it abstracting important information from a

network administrator. Netflow already abstracts a significant amount of information when analyzing

telecommunication data, however aggregating the structure into 4-hour periods may obscure signs of an

attack or exfiltration attempt. Moreover, a toolchain for monitoring an enterprise network using the tech-

niques described in this paper will require streaming data. Therefore, smaller time intervals of network

aggregation would be necessary to continuously update models.

4.1.2 Flash Crowd Incident Description

Overview

This experiment examined a case study of a flash crowd incident on a large, corporate-scale enterprise

network. A flash crowd incident is a surge in traffic upon a machine from legitimate users that results

in dramatic performance reduction or even crashing of the machine [5]. The particular flash crowd that

this paper discusses resulted in the denial of service of a few machines. The flash crowd was caused

by the disruption of a service the company offered that resulted in a sudden, large public outburst over

the company network that disabled some machines that directly interacted with external customers. This

paper compares the event with normal work weeks. As a part of the analysis, various network science

techniques were used to reduce the dataset to highlight the impact of the flash crowd while removing

extraneous noise.

Analyzing the differences in measurements of network incidents such as flash crowds and a normal

work week makes it viable to create models to help predict them [7]. This prediction would allow network

administrators to respond to events before they affect end users or reduce operational capability. A paper

by Amaral et. al. shows the types of methods to which network science can be applied to detect network

activities in real time [2]. Their method focused on applying Page Rank to reduce the size of data to

highlight anomaly behavior. The method is similar to the total-degree measurement in the network science

field and a similar data reduction method was used in the thesis.
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A week (Sunday through Saturday) of data was gathered from a flash crowd incident and two normal

weeks without any reported incidents. In this section, the disclosure of the service outage will be termed

the event and the resulting flash crowd will be termed the flash crowd. In previous literature, flash crowds

have shown a clear difference in behavior [7][5].

For the experiment, it was hypothesized that TCP and ICMP traffic behavior would be significantly

different during the incident time when compared to the normal weeks and all normal weeks should show

consistent behavior among their protocols. ESP and GRE should not be affected because it was assumed

that the flash crowd would not affect user machines within the network. ESP and GRE focus on VPN and

security protocols and these procedures will mostly be carried out by user machines within the network.

UDP should not be affected because the majority of UDP traffic should be from the internal DNS servers.

As a result, changes in internal host behavior are what would cause the most changes in DNS UDP traffic

within the network as a whole.

For specific details on the scale of change, traffic over TCP and ICMP were predicted to increase

overall during the time period. This was factored by the increased number of customer external machine

interacting with the web server and other customer interaction portals all expressing concerns over the

service outage. Therefore, link counts, link sums, and node counts should increase during these periods.

Density measurements should decrease as a result of the flash crowd because it is directly correlated with

the number of external hosts connecting to the network.

Raw Data Analysis Results

The initial measurements without any data reduction illustrated many differences between behaviors of

different protocols, however it was not as successful at illustrating the effect of the event and flash crowd

on the network.

For TCP, Density dropped after the disclosure of the incident to the public and skyrocketed a little

before the end of the event. This indicates that immediately after the incident, more disconnected compo-

nents of IPs were interacting within the network. This illustrates interactions between customers who are

expressing their fears and concerns. The skyrocketing near the end may indicate that internally there was

more communication about the status of the incident and attempts to resolve it. The time series of TCP

density of the incident week and a normal week is in Figures 4.1 and 4.2 respectively.

The table 4.2 shows the result of a Two-Sample Kolmogorov-Smirnov Test. The test aimed to see if the

normal week and incident week shared the same distributions for the measurements recorded.

The expected results of the KS-test were that the normal weeks should not show significant differences

and that the incident week with the normal week should show significant differences. The KS-test for TCP
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Figure 4.1: Time series of density of TCP connections during incident week; shaded region indicates the
disclosure of the event, orange line represents the mean of normal weeks, grey lines represent first level
standard deviations of normal weeks

Figure 4.2: Time series of density of TCP connections during normal week
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Table 4.2: Two-Sample Kolmogorov-Smirnov Test of TCP comparison of Normal Week and Incident Week
and both normal weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.175 0.557 0.1667 0.6041

Weighted Density 0.1286 0.8872 0.1429 0.7848
Fragmentation 0.1310 0.8179 0.1905 0.4355

Edge Count 0.5036 2.965e-05 0.6667 3.781e-09
Edge Sum 0.9512 <2.2e-16 0.6429 5.793e-08

Node Count 0.2488 0.1278 1 <2.2e-16
Clique Count 0.6 7.846e-07 0.2619 0.1121

Clustering Coefficient 1 <2.2e-16 0.3333 0.0188

Table 4.3: Two-Sample Kolmogorov-Smirnov Test of UDP comparisons of the Incident Week and a Normal
Week and the Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.1429 0.8037 0.1905 0.4313

Weighted Density 0.5897 1.556e-06 0.6191 2.046e-07
Fragmentation 0.1557 0.6451 0.2619 0.1123

Edge Count 0.2454 0.1433 0.1429 0.7912
Edge Sum 0.9762 <2.2e-16 0.5952 6.892e-07

Node Count 0.2088 0.2897 0.1905 0.4355
Clique Count 0.5952 1.196e-06 0.3333 0.0188

Clustering Coefficient 0.5476 1.08e-05 0.4286 0.0009

found that only clique count supported both assumptions. Density, weighted density, and fragmentation

supported the hypothesis that normal weeks should show consistent behavior. Edge count, edge sum, and

clustering coefficient supported the hypothesis that the incident week should show a different distribution

of measurements than the normal weeks.

The results for UDP were difficult to interpret. There were no significant spikes or changes during

the flash crowd time period and all time periods showed similar behavior for all measurements. Overall,

this was expected. The UDP protocol is used mainly for DNS queries, network management, routing,

and some voice and video traffic. However, the vast majority of traffic over UDP within the network in

question is internal hosts to internal DNS servers. As a result, the flash crowd event should not result in

significant changes in the composition of UDP network traffic. Tables 4.3 shows the results of the KS-test

for UDP traffic.

Overall, UDP’s results supported the hypothesis quite well. Density, fragmentation, edge count, and

node count all satisfied the hypothesis in which behaviors should be consistent regardless if it was the

flash crowd week or a normal week. Unfortunately, its results were not consistent with TCP’s which may

point to the theory that a different set of network science measurements are required to analyze network

events depending on the protocol.

For ICMP, density dropped after the start of the event and increased before the end of the event.
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Figure 4.3: Time series of link count of ICMP connections during incident week; shaded region indicates
the disclosure of the event, orange line represents the mean of normal weeks, grey lines represent first
level standard deviations of normal weeks

This indicates that immediately after the incident, more disconnected components of IPs were interacting

within the network. The drop was probably caused because of the significant increase of new unique

machines connecting to the network. The skyrocketing near the end may indicate that internally there

were many errors or debug messages between machines within a majority of the network. Additionally,

the number of unique machines connecting to the network decreased.

Fragmentation was low during the incident and rose at the same time the density rose. This indicates

that internal communities were breaking apart because of the increased number of machines connecting

to the network. The new unique machines connecting to the network had very sparse connections. The

question is who are these machines? Are they third party network administrators? Possible attackers?

Reserve backup machines? More analysis should be done on this phenomenon.

The link count and node count significantly increased. This indicates that traffic and the number of

unique machines connecting increased significantly. This may indicate the outage. The time series of

ICMP link count of the incident week is in Figure 4.3. Overall, the normal week was very cyclic so

ICMP is probably a great protocol to monitor from a network science perspective to find anomalies. Table

4.11 shows the results of the Two-Sample KS Test on ICMP comparing the incident week and the normal

weeks.
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Table 4.4: Two-Sample Kolmogorov-Smirnov Test of ICMP comparisons of the Incident Week and a Nor-
mal Week and the Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.63571 1.286e-07 0.21429 0.2898

Weighted Density 0.22619 0.2453 0.2619 0.1121
Fragmentation 0.40357 0.001566 0.5476 3.935e-06

Edge Count 0.65833 6.847e-09 0.2857 0.0645
Edge Sum 0.88095 <2.2e-16 0.7381 2.213e-11

Node Count 0.68214 1.522e-09 0.2619 0.1123
Clique Count 0.05119 1 0.1191 0.9272

Clustering Coefficient 0.075 0.9998 0.1191 0.9272

Table 4.5: Two-Sample Kolmogorov-Smirnov Test of ESP comparisons of the Incident Week and a Normal
Week and the Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.2798 0.0810 0.4523 0.0004

Weighted Density 0.1393 0.8216 0.95238 <2.2e-16
Fragmentation 0.16548 0.6288 0.3571 0.0094

Edge Count 0.2988 0.0515 0.3571 0.0094
Edge Sum 1 <2.2e-16 0.9762 <2.2e-16

Node Count 0.2083 0.3362 0.4762 0.0001
Clique Count 1.1102e-16 1 0 1

Clustering Coefficient 1.1102e-16 1 0 1

It was hypothesized that ICMP would have significant differences between the incident and the normal

weeks and that the normal weeks should show consistent behavior. Both hypothesis were supported by

the results of network measurements, density, edge count, and node count. Fragmentation and Edge Sum

results supported the incident and normal week comparison and Weighted Density, Clique Count, and

Clustering Coefficient supported the normal week comparison.

Both, ESP and GRE, did not show visible effects from the incident. ESP and GRE mostly consist of

automatic traffic while using secure connections and VPNs. The data was very cyclic with the work day

for all measures. The time series of ESP total-degree centrality of the incident week and normal week are

in Figures 4.4 and 4.5 respectively. Table 4.5 shows the result of the KS test comparing the incident week

with the normal week and both normal weeks for ESP.

For ESP, it was hypothesized that all weeks should show consistent behavior among each other. Both

hypotheses were supported for Clique Count and Clustering Coefficient. The hypothesis of density,

weighted density, fragmentation, edge count, and node count for the comparison between the incident

week and normal week. Interestingly, there were significant differences between both normal weeks for

ESP. It is unclear why these results could have occurred, however it may have to do with interference from

an unknown network event. Table 4.6 shows the results of the KS test for GRE.

Like ESP, it was hypothesized that all weeks should show consistent behavior among each other for
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Figure 4.4: Time series of total-degree centrality of ESP connections during incident week; shaded region
indicates the disclosure of the event, orange line represents the mean of normal weeks, standard deviations
were not included because the range was too large

Figure 4.5: Time series of total-degree centrality of ESP connections during a normal week
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Table 4.6: Two-Sample Kolmogorov-Smirnov Test of GRE comparisons of the Incident Week and a Normal
Week and the Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 1 <2.2e-16 1 <2.2e-16

Weighted Density 0.8333 9.278e-12 0.7381 2.312e-10
Fragmentation 0.5378 1.613e-05 0.6905 7.455e-10

Edge Count 1 <2.2e-16 1 <2.2e-16
Edge Sum 1 <2.2e-16 0.54762 3.935e-06

Node Count 1 <2.2e-16 1 <2.2e-16
Clique Count 4.1633e-17 1 0 1

Clustering Coefficient 4.1633e-17 1 0 1

GRE. Overall, GRE had similar results to ESP. Only clique count and clustering coefficient supported both

hypothesis. However, unlike ESP, no other hypotheses were supported individually comparing incident

week with normal week or comparisons among both normal weeks. Like ESP, it is unclear why there are

significant differences among weeks for GRE.

Overall, the time series generated from the netflow traffic indicated very different behaviors between

the protocols. Automatic protocols like ESP and GRE showed persistent cyclic behavior regardless of

infrastructure stress. TCP and ICMP behavior showed very clear behavioral changes during the event.

However, the effect on the event on UDP traffic was difficult to define due to more erratic measures on

both time periods.

Top 20% Total Degree Centrality Analysis Results

The first technique to reduce the size of the dataset did not work as expected. It seemed to highlight the

cyclic behavior and there were no differences between the normal week and the incident week.

For TCP, density, link count, node count, average total-degree, and clique count exhibit more cyclic

behavior coinciding with the normal work day schedule. Fragmentation and the clustering coefficient had

significant changes.

After removing the bottom 80% difference in total-degree centrality, the fragmentation dropped during

the incident. This might be a result of removing nodes of low total-degree centrality. Otherwise, the mea-

surement indicates that during the incident there was more frequent communication between individuals

within the network that normally do not communicate with each other.

Even though fragmentation dropped, the clustering coefficient did not increase as much as it did

during the incident. Without reducing the data, the clustering coefficient increased from 5E-8 to 4.5E-7

during the incident. This was an increase of about 9 times. On the contrary, the clustering coefficient only

increased from 1E-4 to 3E-4, an increase by 3 times after reducing the data. This may mean the web traffic

during incident may have been sparser than originally expected or that the difference in total-degree may
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Figure 4.6: Time series of clustering coefficient of TCP connections during incident week after remov-
ing bottom 80% total-degree difference; shaded region indicates the disclosure of the event, orange line
represents the mean of normal weeks, grey lines represent first level standard deviations of normal weeks

Table 4.7: Two-Sample Kolmogorov-Smirnov Test of the Top 20% Total-degree comparisons of TCP con-
nections between the Incident Week and a Normal Week and between the Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.1679 0.6107 0.2619 0.1121

Weighted Density 0.7369 4.341e-10 0.2381 0.1848
Fragmentation 0.9762 <2.2e-16 0.3095 0.0352

Edge Count 0.2155 0.2436 0.5238 1.279e-05
Edge Sum 0.625 4.807e-08 0.3095 0.0358

Node Count 0.1369 0.8372 0.7381 2.312e-10
Clique Count 0.3857 0.0045 0.3810 0.0045

Clustering Coefficient 0.975 <2.2e-16 0.3571 0.0094

not have captured an accurate representation of the IPs affected by the incident. Figures 4.6 and 4.7 show

the clustering coefficient of TCP of the event week and the normal week. Table 4.7 shows the results of

the KS test comparing the incident week with a normal week and normal weeks together of the top 20%

different total-degree central hosts between the service outage and a normal time period for TCP traffic.

It was hypothesized that reducing the data would highlight a greater effect by narrowing down the

network to hosts whose behavior changed during the service outage. Therefore, the incident week should

show significantly different behavior and the normal weeks should show consistent behavior. However,

the expected results did not take place. For the comparison between the incident week and the normal

week, fragmentation, edge sum, clique count, and clustering coefficient showed significant differences.
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Figure 4.7: Time series of clustering coefficient of TCP connections during normal week after removing
bottom 80% total-degree difference

For the comparison between normal weeks, density and weighted density were the only measures that

were consistent.

It is unclear why the data reduction resulted in this way. The greatest possible explanation is that the

method of highlighted hosts with different behavior was not correct. This is probably because total-degree

centrality does not take link weights into account only the unique hosts the host is connected too. As a

result, unique links will most change with the hosts that connect to the greatest range of external hosts.

For these networks, these were the servers. This explains why networks extracted using this approach

showed increased cyclic behavior. The proper method to gather the highlighted change would be to find

the greatest difference of link weights for each node.

For UDP, density, link count, node count, clustering coefficient, and clique count were almost iden-

tical. Fragmentation and average total-degree centrality were the only measurements with significant

differences between the weeks.

Fragmentation and total-degree centrality had lower degrees of effect when compared to the raw data.

The lower degrees may mean that the community extracted from total-degree was more cohesive but

may be less interactive than the raw dataset. Additionally, both measurements exhibited cyclic behavior

during the incident that was not seen in the normal weeks. This cyclic behavior means that the total-degree

centrality difference sampling strategy selected actual work machines at the company’s campus or selected
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Figure 4.8: Time series of fragmentation of UDP connections during incident week after removing bottom
80% total-degree difference; shaded region indicates the disclosure of the event, orange line represents the
mean of normal weeks, grey lines represent first level standard deviations of normal weeks

Table 4.8: Two-Sample Kolmogorov-Smirnov Test of the Top 20% Total-degree comparisons of UDP con-
nections between the Incident Week and a Normal Week and between the Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.2106 0.331 0.3095 0.0358

Weighted Density 0.6978 5.601e-09 0.4286 0.0009
Fragmentation 0.1685 0.5383 1 <2.2e-16

Edge Count 0.1612 0.5994 0.2857 0.0645
Edge Sum 0.9762 <2.2e-16 0.2143 0.2924

Node Count 0.1447 0.7164 0.3095 0.0358
Clique Count 0.1319 0.8734 0.2857 0.0649

Clustering Coefficient 0.1319 0.8734 0.4048 0.0021

autonomic traffic centered around the company’s time zone. Figures 4.8 and 4.9 show fragmentation of

UDP of the event week and the normal week. Table 4.8 shows the results of the KS test comparing the

incident week with a normal week and normal weeks together of the top 20% different total-degree central

hosts between the service outage and a normal time period for UDP traffic.

It was hypothesized that all weeks should show consistent behavior for UDP. The hypothesis was

validated for Edge Count and Clique Count. The hypothesis of the comparison between incident week

and normal week was validated for density, node count, and clustering coefficient. The hypothesis of

the comparison between both normal weeks was validated by edge sum. Interestingly, like many of

the previous results, the normal week comparison showed significant differences between measurements
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Figure 4.9: Time series of fragmentation of UDP connections during normal weeks after removing bottom
80% total-degree difference

between normal weeks. These results shared the same limitations as the TCP top 20% difference in total-

degree.

Increased Egress and Decreased Ingress Rate Analysis Results

The second technique to reduce the size of the dataset did not work as expected. It seemed to have

highlight the cyclic behavior and there were no differences between the normal week and the incident

week.

For TCP, much of the noise for all measurements was removed and as a result, changes that were

seen in the normal set were intensified. Additionally, cyclic behavior with the normal work day was

found in density, link count, node count, and total-degree centralization. Figures 4.10 and 4.11 show the

density of TCP of the event week illustrating the highlighted cyclic behavior. The script to extract IPs of

high sender/receiver rate on the normal week has been running for more than a week and still has not

complete. Table 4.9 shows the results of the KS-test for the top 20% increased egress and decreased ingress

hosts over TCP.

It was hypothesized that the incident week would have significant differences when compared to

the normal week and the normal weeks should show no significant differences. Only edge count and

clique count validated both hypothesis. Density, weighted density, fragmentation, edge sum, node count,
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Figure 4.10: Time series of density of TCP connections during event week after selecting the top 20%
increased sender and decreased receivers; shaded region indicates the disclosure of the event, orange line
represents the mean of normal weeks, standard deviations were not included because the values were too
low

Figure 4.11: Time series of density of TCP connections during normal weeks after selecting the top 20%
increased sender and decreased receivers
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Table 4.9: Two-Sample Kolmogorov-Smirnov Test of the Top 20% Increased Egress and Decreased Ingress
Hosts comparing TCP connections between the Incident Week and a Normal Week and between the
Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 1 <2.2e-16 0.6429 5.793e-08

Weighted Density 1 <2.2e-16 0.7143 9.879e-10
Fragmentation 1 <2.2e-16 0.8810 <2.2e-16

Edge Count 0.6429 1.064e-08 0.2143 0.2924
Edge Sum 0.5714 7.828e-07 0.5714 1.133e-06

Node Count 1 <2.2e-16 1 <2.2e-16
Clique Count 0.5893 1.323e-06 0.1905 0.4313

Clustering Coefficient 0.7560 1.354e-10 0.3571 0.0094

Table 4.10: Two-Sample Kolmogorov-Smirnov Test of the Top 20% Increased Egress and Decreased Ingress
Hosts comparing UDP connections between the Incident Week and a Normal Week and between the
Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.4451 0.0004 1 <2.2e-16

Weighted Density 0.4359 0.0009 0.6191 2.046e-07
Fragmentation 0.2180 0.2449 1 <2.2e-16

Edge Count 0.4689 0.0003 0.5238 1.279e-05
Edge Sum 0.8480 3.331e-15 0.4762 0.0001

Node Count 0.4689 0.0001 0.9286 <2.2e-16
Clique Count 0.6429 1.102e-07 0.3333 0.0188

Clustering Coefficient 0.6191 3.714e-07 0.3333 0.0188

and clustering coefficient validated the incident hypothesis. Overall, the reduction had great results at

highlighting the differences between the incident week and a normal week, however it performed poorly

at finding consistent behavior among the normal weeks.

For UDP, the most change happened in grouping measurements such as fragmentation, clustering

coefficient, and clique count. All measures showed an increase in fragmented smaller groups during the

incident. This indicates that a greater variety of IPs were interacting in the network during the incident.

This can lead to the theory that internet background radiation traffic (ongoing activity on the internet not

related to any business mission) increased during the incident which may imply that malicious users were

aware of the incident and conducted more active operations upon the network. An interesting change in

density showed that work day cycles were broken up. This might be because of the greater proportion

of nodes from other countries that run in different work day cycles. Figure 4.12 and 4.13 shows the

fragmentation of UDP of the event week and the normal week.

For UDP, it was hypothesized that behavior should be consistent among all weeks regardless of a flash

crowd. No measurement supported the hypothesis. It is very difficult to determine why this behavior

was done and it is unclear what hosts were really extracted using this method because this method shares

the same issues of the difference in total-degree reduction method. This method showed no consistency
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Figure 4.12: Time series of fragmentation of UDP connections during event week after selecting the top
20% increased sender and decreased receivers; shaded region indicates the disclosure of the event, orange
line represents the mean of normal weeks, standard deviations were not included because the range was
too large

Figure 4.13: Time series of fragmentation of UDP connections during normal weeks after selecting the top
20% increased sender and decreased receivers
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among normal weeks as well.

4.1.3 Effects of the Flash Crowd on Functional Groups

Overview

Because of the inconclusive results of the flash crowd, the analysis was repeated but only upon select

internal groups within the corporation. The corporation is made up of a variety of offices each requiring

different technological abilities and higher levels of access in managing infrastructure. It was hypothesized

that these groups would show differences in behavior during normal weeks and the flash crowd weeks.

Examining the changes in behaviors of offices would help a corporation understand the appearance of

normal behavior and abnormal behavior caused by an incident similar to a flash crowd. By understanding

these differences in behaviors, it becomes more feasible to create models that can automatically detect

deviations from the norm.

Results

The only division network that was created was the server network. It was hypothesized that the servers

within the company would have very cyclic behavior with the work day but should maintain a consistent

rate of activity. Additionally, the flash crowd was expected to not have that much of an effect on the

network because server activity is automatic, and it should only really affect a few select servers. The

presence of other servers will normalize the effect and obfuscate smaller changes from the event. Figure

4.14 shows the edge sum during the incident and normal weeks.

The visual analysis supported the hypothesis by showing cyclic behavior that peeks a little after noon

and a consistent baseline during nights and weekends. However, it deviated from the hypothesis in the

degree of changes and baseline. Like the results on the raw analysis, the normal weeks had significantly

greater values than the incident week. This was most likely an issue with the SiLK installation. However,

this does not discount the changes in cyclic behavior for normal week 2. Each peek increased by more

than 4 times its baseline value for normal week 2 and the rest of the weeks doubled on each peek. It is

unclear why normal week 2 resulted in this way because no anomalous behavior was reported during the

time.

None of the results validated the hypothesis. All of the chart measures showed similar results as

Figure 4.14 and there were significant differences between all 3 of the weeks. There should not have been

significant differences between all the weeks because of the nature of the machines selected. Research on

more data must be conducted to explain this phenomenon.
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Figure 4.14: Time series of edge sum of server TCP connections within the company

Table 4.11: Two-Sample Kolmogorov-Smirnov Test of server TCP connections between the Incident Week
and a Normal Week and between Normal Weeks

Measurement Incident Difference Incident P-Value Normal Difference Normal P-Value
Density 0.6512 3.726E-08 0.9767 <2.2e-16

Weighted Density 0.9535 <2.2e-16 0.9767 <2.2e-16
Fragmentation 0.3466 0.0129 0.5349 9.082e-06

Edge Count 0.7850 1.165e-11 0.9535 <2.2e-16
Edge Sum 0.9767 <2.2e-16 0.6279 8.674e-08

Node Count 0.9767 <2.2e-16 0.9767 <2.2e-16
Clique Count 0.9767 <2.2e-16 0.3954 0.0024

Clustering Coefficient 0.9036 2.665e-15 0.6977 1.626e-09

4.1.4 Network Science Measurement Evaluation

The KS-tests conducted in the previous sections offer a look on the effectiveness of each network sci-

ence measurement assuming the hypothesis accurately represented the expected behavior. The following

section will examine the results of the KS-Test for each network science measurement and analyze the

effectiveness of each network science measurement and offer possible explanations for the results. Table

4.12 shows the aggregated results for all of the KS-test completed in the previous experiments.

Overall, clique count and edge count were the network science measures that best validated the as-

sumptions made about the data. It is important to note that a limitation of this approach is that detailed

information about the enterprise network was inaccessible. Topology and event information during these
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Table 4.12: Summary of the results of the two sample KS-test for all experiments

Measurement Raw Data Analysis Top 20% Total-degree Top 20% Egress/Ingress Total
Density 2/5 0/2 0/2 2/9

Weighted Density 0/5 0/2 0/2 0/9
Fragmentation 1/5 0/2 0/2 1/9

Edge Count 2/5 1/2 1/2 4/9
Edge Sum 0/5 0/2 0/2 0/9

Node Count 2/5 0/2 0/2 2/9
Clique Count 3/5 1/2 1/2 5/9

Clustering Coefficient 2/5 0/2 0/2 2/9

Table 4.13: Daily two sample KS-test for normal weeks

Measurement UDP ICMP ESP GRE
Density 6/7 3/7 0/7 0/6

Weighted Density 0/7 4/7 0/7 0/6
Fragmentation 4/7 1/7 2/7 0/6

Edge Count 5/7 2/7 0/7 0/6
Edge Sum 1/7 0/7 0/7 2/6

Node Count 6/7 2/7 0/7 0/6
Clique Count 4/7 7/7 7/7 6/6

Clustering Coefficient 2/7 7/7 7/7 6/6

time periods may lead to results contrary to the assumptions made. Regardless, these results are signif-

icant because there were a standard set of measurements that followed the hypothesis. Moreover, it still

showed consistency despite the limitations of the data reduction methods.

This procedure was also limited because of the lack of data points used in comparing network science

measurements. Only three weeks were used so there was a limited amount to compare. As a result,

the following table was creating comparing how many times the hypothesis was validated daily. These

networks were reduced from 4-hour bins to 1-hour bins. As a result, each daily time series had 24

points and 7 time series plots were compared for each combination of available weeks. The total amount

of datapoints these KS-test have is 105 not counting the degree reduction techniques. These were not

included because of the limitations they had.

To combat this limitation, the network was split from 4-hour bins into 1-hour bins. Time series chart

measures were calculated for each day so 24 metaneworks were used for each test. Then, each day of

the first normal week was compared with the corresponding day of the second normal week. Table 4.13

shows the results these tests. TCP was not included because of the amount of time required to calculate

measurements in 1-hour bins.

Overall, the results were very consistent with the week-long time series comparisons. UDP performed

very well at identifying consistent behavior, ICMP performed decently well, and ESP and GRE performed

poorly though they showed consistent patterns. For UDP, non-weighted measurements performed the
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best per day, ICMP showed better performance in structural measurements, and all performed well with

clustering measurements. Interestingly, weekends tended to deviate the most between both weeks. This

makes sense because of cyclic work day patterns. ESP and GRE showed consisted behavior in terms of

cyclic structure from the visual analysis, however performed the worst with KS Test. It can be included

that weighting should be adjusted in KS test or another statistical test should be used.

4.1.5 AbuseIPDB Distribution

Overview

During the analysis, an interesting phenomenon was discovered. A large number of IPs from non-US

countries had a high network presence even though there is no reason for these hosts to be communicating

with the network. Many of these IPs have been found on AbuseIPDB, a database where webmasters and

system administrators can report and query IP addresses associated with malicious activity. Some of the

high total-degree external IPs had over 1,000 reports for port scanning on various rarely used ports and

other reconnaissance activity. Other IPs have been reported for being a part of distributed denial of service

(DDoS) attacks. The greedy reconnaissance behavior of some of these bot machines can be attributed to

nation states crawling the whole internet looking for potential vulnerable targets[61].

Previous research coined the term Internet Background Radiation for these types of interactions[52].

These types of interactions make up a significant portion of traffic within the internet. Previous research

has attempted to characterize and detect this traffic behavior[52][1][36].

For this study, dynamic ego networks were created using the most reported IPs for both UDP and

TCP. Ego networks are currently used as a sampling strategy to eliminate noise within large networks[16].

Then network measurements were calculated and their time series were compared to those with the

whole network. Only second-degree neighbors were used because these machines typically had a very

high total-degree and a higher degree would create a noisier sample.

Results

AbuseIPDB revealed many interesting aspects of the data. With the addition of reporting data, Abu-

seIPDB used WhoIs queries to get information about the organization, ISP, hostname, country, and city

of the IP address. After the dynamic network analysis, distributions were calculated on the country and

organization of the IP addresses both before and after pruning. These distributions show what kind of

IP addresses had a high difference in total-degree or high sending rate and low receiving rate during the

incident.
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Figure 4.15: Distribution of Countries for TCP IPs

The distribution of IPs by country over TCP without filtering is below in Figure 4.15. It is interesting

because more than 50% IPs within the company network are from foreign countries even though the

company should only have to conduct business with parties in the United States. Some possible reasons

for this can be because of varying views of what is ethical use of the internet, organized crime groups or

malicious state actors conducting reconnaissance, or non-native groups moving through foreign countries

to complicate attribution.

The distribution of IPs by country over UDP is in Figure 4.16. There is a significantly greater dis-

tribution of IPs within the United States using UDP on the network. This makes sense because of the

more autonomic nature of UDP traffic. Additionally, it is good that the network has a reasonably low

interaction from other countries because that may indicate data exfiltration attempts.

The country distribution of the top 10% difference in total-degree centrality over TCP and UDP after

the event is in Figure 4.17 and 4.18 respectively. While TCP showed an increase in United States traffic,

UDP showed a decrease. Though TCP’s results may be a good sign, UDP’s results is a bad sign and can

indicate foreign actors having a very high total-degree within the network. This indicates that the foreign

machines are conducting greedy reconnaissance behavior.

The country distribution of the top 10% increased sending and decreased receiving rate over UDP is

on Figure 4.19. The TCP analysis is still pending due to missing attribute data. This pruning strategy

found the least amount of United States IPs and found a significant amount of unknown and Korean IPs.

It is interesting that Russia and China were not higher in this list.
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Figure 4.16: Distribution of Countries for UDP IPs

Figure 4.17: Distribution of Countries for TCP Top 10% difference in total-degree centrality IPs
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Figure 4.18: Distribution of Countries for UDP Top 10% difference in total-degree centrality IPs

Figure 4.19: Distribution of Countries for UDP Top 10% increased sending and decreased receiving rate
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Figure 4.20: Distribution of Organizations over TCP

The organization distribution of IPs within the network using TCP is on Figure 4.20. The “None”

organization represents either none or unknown. “Company” is the name of the company being analyzed.

Many of the foreign organizations are ISPs who have no control over what activity is conducted on their

domains. However, it is important to note that some countries have more control over their ISPs then

others such as China compared to India.

4.1.6 AbuseIPDB Ego networks

Overview

AbuseIPDB provides a method to label potentially abusive hosts within the network. The question the

experiment detailed in this section sought to answer is if there are any differences in behavior between

hosts labelled abusive and hosts not labelled abusive. By proving abusive hosts exhibit different behavior

detected through network science measurements than their non-abusive counterparts, creating a classifier

for detecting abusive hosts becomes more feasible.

To complete this experiment, hosts were divided in bins separated by total-degree centrality. Total-

degree centrality shows the activeness of a host within the network. This division helps focus on whether

the abusive label results in differences in behavior and removes biases associated with the activeness of the

host. The bins used for this experiment were the top 10% total-degree central hosts, 50 to 60% total-degree

central hosts, and the bottom 10% total-degree central hosts.
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From within these bins, 5 hosts were chosen that were non-abusive and 5 hosts were chosen that

were labelled abusive. The non-abusive hosts were hosts from Fortune 500 Companies for the top 10%

total-degree central hosts or random hosts that were not reported and not part of the organization for

the other bins. The company of the IP address was found through reverse DNS lookup and publicized

IP ranges of companies. Abusive hosts were random hosts with the top 10% highest number of reports

on AbuseIPDB. The experiment aimed to see if the behavior defined by network science measurements

had some correlation to the number of reports made on the host through AbuseIPDB. Internal hosts were

not examined. This experiment has the limitation of not establishing a ground truth for non-abusive

hosts. The Fortune 500 Companies method is more accurate than the 0 reports approach, however it

was not feasible with the composition of hosts in the other categories. Another limitation is the small

sample size used for each category. This experiment was meant to be a preliminary study to see if there

were any differences in behavior and explanations for their differences. To test the differences for a large

subset of labelled hosts, a classification method was created. The effectiveness of the classification was

used to determine the differences in behavior between abusive and non-abusive hosts. The experiment is

described in a later section.

Ego-networks were then created for each of these hosts where the ego-network represents the chosen

host, its neighbors, and its neighbors’ connections amongst each other. Network science measurements,

link count, link sum, node count, density, and weighted density are then calculated for each of these

networks and plotted over time. These measurements were chosen because the network size got reduced

to such a small size where other measurements lost meaning.

Results

For, the top 10% total-degree central hosts, there were many differences in behavior between abusive and

non-abusive Fortune 500 hosts. Companies showed very cyclic behavior that matched the work day of

the corporation. This points to the assumption that many of these hosts were external tools used by the

corporation such as cloud infrastructure, email providers, human resource tools, or content distribution

networks. Figure 4.21 shows the cyclic behavior of Fortune 500 hosts within the network for edge sum.

This can lead to the possibility of using alignment with company periodicity as a feature for detecting

normal behavior amongst external host interaction.

On the other hand, the abusive hosts showed much more erratic behavior. These hosts typically showed

an enormous amount of activity in burst. This caused the data to have a lot of holes which can hinder

the ability to create classifiers for the abusive category. Because these hosts are both highly prevalent in

the network and they have a large amount of reports on AbuseIPDB, it can be safely assumed that these
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Figure 4.21: Time series of edge sum for 5 hosts in the Top 10% Total-degree centrality that are a part of
Fortune 500 companies

hosts engage in malicious behavior. Figure 4.22 shows the erratic behavior of the abusive top 10% total-

degree central hosts. However, the behavior of these hosts is not homogenous which also makes creating

a classifier from this category of hosts more difficult.

The 50-60% total-degree central hosts had significantly different results than the top 10% total-degree

central hosts. First, the data was much more complete. There was a low number of holes in both the

non-abusive and abusive categories. Within the sample of 5, the non-abusive category was more tightly

clustered, and the abusive category was more erratic. The abusive category had on average a higher

number of unique connections than the non-abusive categories as well. Figures 4.23 and 4.24 respectively

show the edge-count of non-abusive and abusive hosts within the network. Because not much is known

about the non-abusive hosts, these findings may not mean as much. The IP addresses of these hosts were

still from countries that have no affiliation with the corporation being examined. Analysis on a larger set

of hosts using the classification method will help substantiate results.

The bottom 10% had difficult results to interpret. Both bins were fraught with holes in data and

this was expected considering these hosts had some of the least involvement with the network. It was

interesting that the hosts reported by AbuseIPDB had less holes within the network though. Figures

4.25 and 4.26 visualize the differences in node count between abusive and non-abusive hosts. The lesser

number of holes may indicate that abusive hosts tend to have a lingering amount of activity within the
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Figure 4.22: Time series of edge sum for 5 hosts labelled abusive in the Top 10% Total-degree centrality

Figure 4.23: Time series of edge count for 5 hosts labelled non-abusive in the 50% to 60% Total-degree
centrality range
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Figure 4.24: Time series of edge count for 5 hosts labelled abusive in the 50% to 60% Total-degree centrality
range

network. This can resemble malicious activities like a port scan or exfiltration obfuscated by limiting

network activity. However, the analysis with a larger subset of hosts would substantiate these claims.

Lastly, graphs of the standard deviations for each total-degree centrality bin were used to visualize the

differences in variation amongst the host for each bin. The previous graphs were able to show some of

these differences; however, this analysis was meant to quantify them in greater detail. Standard deviation

proved to show a large amount of variation between abusive and non-abusive hosts, however it is difficult

to prove with only a sample of 5 hosts.

Figure 4.27 shows 3 different categories and their standard deviations of edge counts among hosts.

This figure shows an unused category called non-abuse which consisted of many local hosts within the

network. This category was taken out because the netflow collector gathers outgoing connections from

these hosts making the network structure significantly different when compared to external hosts. The

Fortune 500 hosts exhibited cyclic behavior that match those of the internal hosts, however the frequencies

are a lot lower than the internal hosts. This difference is again explained by the netflow collector and

the outgoing information captured about internal hosts within the network. On the other hand, abusive

hosts exhibit very burst-like behavior with high degree. The internal and abusive hosts showed a lot more

variation in edge count measurements than the Fortune 500 hosts and this provides evidence that making

classifiers based off corporate external tools is more feasible.
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Figure 4.25: Time series of node count for 5 hosts labelled non-abusive in the bottom 10% Total-degree
centrality

Figure 4.26: Time series of node count for 5 hosts labelled abusive in the bottom 10% Total-degree central-
ity
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Figure 4.27: Time series of standard deviation of edge count for company, non-abusive, and abusive
categories in the top 10% Total-degree centrality

Figure 4.28 shows the standard deviation of edge count for the 50 to 60% total-degree central hosts

for abusive and non-abusive hosts. The 50 to 60% bin showed clear differences of standard deviation

between abusive and non-abusive hosts. The curves for both bins did not intersect with each other and

abusive hosts showed greater variation and higher variations in standard deviations than the non-abusive

hosts. Like the previous results, this substantiates the claim that non-abusive hosts show more standard

behavior than those reported for abuse on AbuseIPDB.

Lastly, figure 4.29 shows the standard deviation of edge count for the bottom 10% total-degree central

hosts for abusive and non-abusive hosts. The 0 to 10% results were not as clear. The non-abusive hosts

rested at 0 for a majority of the week and the abusive hosts showed erratic behavior between 0 and 4. This

was a result of the large number of holes within the data. The 0 to 10% total-degree central hosts will not

be examined in future experiments.

Overall, the study provided findings that non-abusive hosts are more varied and can provide eas-

ier models to generate than tracking abusive behavior. This study will be confirmed in the Actionable

Classification sections of this thesis.
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Figure 4.28: Time series of standard deviation of edge count for company, non-abusive, and abusive
categories in the 50% to 60% Total-degree centrality range

Figure 4.29: Time series of standard deviation of edge count for company, non-abusive, and abusive
categories in the bottom 10% Total-degree centrality
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4.2 Actionable Classification

This section focuses on the experiments testing classification of hosts. First, hosts are classified as abusive

using data provided by AbuseIPDB. Last, hosts are classified by company division. Only hosts were clas-

sified because there was not enough data to create classifiers for normal behavior and incident behavior.

4.2.1 Classifying Hosts By Division

Overview

The previous section described methods used to see if there were any differences of network behavior

between different divisions of user machines within the enterprise network. The following experiment

would test if there are similarities in network structure among divisions within the company. This infor-

mation would provide value for network administrators by defining normal behavior for each division

of internal user machines. For example, if the behavior of an IT user machine starts changing from the

model of IT user machines to one matching a server, it may indicate the machine is being used in a data

exfiltration attempt or as a backdoor in a cyber-attack.

For the experiment ego-networks for every internal host were created and grouped by IP range that

represented their division. The experiment examined 4 divisions within the company: servers, IT user

machines, campus security, and management. The sampling distribution was comprised of a 20% testing

and 80% training sample for each division and it totaled approximately 950 hosts for training and 220

hosts for testing. Figure 4.30 shows a visual of some of the ego network measurements by division.

After the samples were created, a distance matrix was calculated among all the hosts through dynamic

time warping. The measurements that were used were density, weighted density, node count, link count,

and link sum. The reason these measurements were used was that reducing the network into ego-networks

with only first-degree neighbors made the more complicated measurements irrelevant. Then, K-nearest

neighbor was applied on the test sample using the distance matrix calculated through dynamic time

warping and the training sample. Finally, a classification report was generated to measure the accuracy

of the model generated from the test sample. The whole procedure was completed using Python, Scipy,

Matplotlib, and Numpy.

The experiment was completed the first time by calculating the distance matrix of network science

measurements individually. However, this approach has the limitations of only comparing one measure

of the network and does not give a complete representation of the network. As a result, another approach

was done by adding the distance of a combination of network science measures in calculating the distance
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Figure 4.30: Time series plots of link sum for 6 hosts identified by division

matrix. To do this, the other difference measurements calculated through dynamic time warping were put

into a multidimensional plane in order calculate a new distance between host ego networks.

Results

Overall, the classifier with single measurements did not show great performance. Figure 4.31 and 4.32

show the results of the best and worst measurements for the classifier respectivally. All of the other

heatmaps showed a similar distribution among divisions. The management division was the easiest to

classify and the rest of the categories had poor results. This may indicate that all hosts show similar

behavior and management hosts have the highest chance of being classified because of the large number

of hosts in the category.

The rest of the results are shown in table 4.14 which show the precision and recall for each of the

network science measurements among each division. The management division had the most accurate

results but had the largest sample size so it could have been the most accessible group hosts can classify

themselves as. The most accurate measurements for classification ended up being weighted density and

link count which showed similar results.
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Figure 4.31: Classification Report Heatmap of DTW/KNN calculated from link count

Figure 4.32: Classification Report Heatmap of DTW/KNN calculated from density
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Table 4.14: Table of DTW/KNN results for all network science measurements individually calculated

Measurement Precision Recall F1-score Support
Density 0.52 0.5 0.51 22

Weighted Density 0.75 0.67 0.7 24
Node Count 0.48 0.55 0.51 22
Link Count 0.71 0.68 0.69 25
Link Sum 0.62 0.58 0.60 24



Chapter 5

Discussion

The discussion summarizes the experiments and their implications for the toolchain. Each experiment

was an implementation of a component of the toolchain. Effectively, the whole set of experiments show

the complete execution of the whole toolchain. Therefore, the experiments validate the effectiveness of

possible tools that can be used within the toolchain. The chapter is divided by the phases of the toolchain

and the experiments performed in each phase.

5.1 Netflow Collection

Overall, there was little work that needed to be done at the netflow collection phase. Network flows are

commonly used in industry when analyzing network traffic and the work has been well cited. As long

as the data being examined has been reduced in size, no packet data has been included, and if common

network activity should be consistent after reduction of the data, then the netflow collection component

has done its job.

5.1.1 SiLK Usage

Overall, SiLK and YAF completed its job. A large amount of data was extracted and described in the

Result chapter. Additionally, differences in behavior for protocol and the work week cycles were apparent.

Moreover, SiLK offered a lot of fields that were not explored for the experiments that can provide helpful

measurements for future work.

One issue that arose with using SiLK and YAF was the amount of time it took to resolve issues when

the installation had problems. The reason why this process was so difficult was that the company did not

have a specific person in charge of managing the installation. Because of this, it was impossible to gather

more data near the end of the project.

65
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Most of these limitations should not impact a company with their own netflow collection installation.

As a result, SiLK and YAF are components that would not need changes if this toolchain was to be

implemented on a real enterprise network.

5.2 Network Analysis

The network analysis was the focus of most of the experiments conducted in this thesis. The experiments

conducted for this section included analyzing the difference of network science measurements between

network protocols, the differences of network structures between a flash crowd week and normal weeks,

data reduction strategies using degree, data reduction strategies using company divisions, and AbuseIPDB

analysis.

5.2.1 Protocol Usage

Overview

The networks were binned by protocol because it was assumed that each protocol would show drastically

different behavior. Overall, this assumption was validated. Specifically, automatic protocols, ESP and GRE

showed more consistent behavior. Traffic caused by protocols controlled by users such as TCP and ICMP

showed more predictable temporal behavior that changed with the flash crowd and the work week cycle.

UDP showed more erratic behavior that was more difficult to correlate with the information known about

the network.

Implications for Toolchain

It is important to know the type of events that network administrators look for. Every protocol has their

own set of anomalies that a network administrator must track to ensure no malicious activity is happening

with their network. The most common attack vector is TCP and as a result there is a larger variety of attack

models that must be tracked. Additionally, attack vectors are chosen by how easy it is to obfuscate the

attack within regular network traffic. For commonly used protocols like TCP, UDP, and ICMP, this is easy.

However, if any small change in ESP and GRE are seen, then it is easy to notice because of the lack of

traffic performed using these protocols.

Though the effects from the flash crowd were not significant, there was a significant difference in

behavior between different protocols. The ESP and GRE clearly exhibited different behavior due to its

autonomous nature. TCP and ICMP had clear differences though it is difficult to attribute the cause of
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the changes. As a result, splitting data by protocol may be a viable method for cutting network data to

reduce noise and highlight behaviors of interest.

Overall, binning these measurements helps narrow down some of this activity. For example, changes

in ICMP activity during the Flash Crowd indicated troubleshooting. These were expected results, but if

this similar pattern of behavior is unexpected, it can indicate network reconnaissance from an attacker

who has access to a backdoor within the network. Typically, ICMP traffic is a precursor before a machine

connects to the internet so examining its use would improve cyber-situational awareness.

Additionally, binning by ESP and GRE would require lower threshold models because of how much

they reduce the model. Identifying anomalies within these protocols is easy because of how consistent

their behavior is. Though it is rare for attacks to happen using these protocols, as soon as some behavior

changes and the network structure changes, it is easy to automatically identify it.

Separating the protocols offer the biggest advantage of separating activity from the protocols with the

highest activity, TCP and UDP. If all this activity was aggregated into one network bin, then a lot of these

behaviors would not be noticeable.

5.2.2 Flash Crowd Analysis

Overview

Overall, the study has found that there is some differentiation in network behavior between the flash

crowd and a normal work week, however not a significant amount. The majority of changed behavior

seemed to be in differences in degrees of clustering and fragmentation when analyzing a network as a

whole. Average total-degree, link, and node count seemed to consistently show cyclic behavior that show

little change from the event.

The results of the KS-test found significant differences in distribution for all protocols when comparing

the incident week and normal week. However, the main issue was that comparing normal weeks resulted

in significant differences as well. The KS-test found that the measures edge count and clique count

validated the highest amount of hypothesis created from knowledge of the protocols and network events.

The deviations from the hypothesis may be because of the increased volume of data, incorrectly defined

hypothesis due to network noise, and interference from unknown anomalies. Without more data or a

reliable method of reducing the data, it is inconclusive if network science measurements help characterize

flash crowds because of the inconsistency in measured network behavior for normal weeks.

The greatest limitation is the low amount of comparisons. For the experiments, only 3 weeks were

compared among each other. Table 4.12 clearly showed this limitation with the low sample size of 9
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comparisons. Additionally, more information on the topology and network events during each time

period may change the expected results. Therefore, the results could be correct, however the wrong

assumptions are being made.

Another limitation was the large scope of data without a ground truth means of classifying it. The

examined data contained all netflow records of every host interacting on the company network internally

and externally. The scope of a flash crowd incident would impact a smaller subset of internal hosts. If the

hosts can be labelled by web servers, email servers, and external clients, then the impact of the flash crowd

may be clearer. The methods implemented in the research hoped to extract the effect based off what was

expected to happen during the event.

Overall, the methods produced okay results that found significant differences in behavior between

different network protocols and the incident and a normal week. However, the results were severely

impacted because of the inability to find consistency among normal weeks. Finding consistency of normal

weeks is crucial for anomaly detection because of the difficulty in getting a sample size large enough to

model network events.

Examining the behavior of high degree central hosts raised the concern of possible persistent threats

conducting reconnaissance behavior on the network. Thus, even if resources are allocated to solving net-

work issues, defensive measures should still be practiced. These potentially abusive high degree centrality

hosts can be subject for future research.

Implications for Toolchain

The size of enterprise networks is large and methods must be used to remove and analyze it in parts to

remove noise. Analyzing the IT network from a network science perspective is useful because all that is

required is the Source IP, Target IP, and time. This reduces the size exponentially while only requiring

storing IP information, thereby, enforcing privacy for end users. Network science provides a new set of

metrics to reduce the size of data, cluster data, and in real time, measure behavior.

Overall, the KS-test found edge count and clique count were the best measurements used to validate

the hypothesis. The next set of measurements that validated results were density, node count, and clus-

tering coefficient. As a result, these measurements should provide focus on future implementations of

the toolchain. The measurements that did not fare well were weighted and represented the amount of

connections that took place during the period. Conducting KS-test on weighted measures with greater

amount of variation may result in inaccurate results. Some parameter may need to be applied to KS-test

that makes the test less strict with finding similarities in distribution for weighted measurements.
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Because the results of hypothesis were not able to find consistent normal behavior, there is not enough

evidence to support that network science measures provide an accurate representation. Being able to

identify normal behavior is very important because it is difficult to create models on incident data. Inci-

dent data is significantly more rare and difficult to simulate within an enterprise network. More data and

continued experiments should be done to prove if network science measurements can be used to identify

normal behavior and network events.

5.2.3 Data Reduction

Overview

The sampling techniques using degree centrality failed to highlight possible effects from the flash crowd

incident. Surprisingly, sampling techniques using total-degree centrality seemed to remove noise from the

data and highlighted cyclic behavior and more study must be done finding how to pinpoint affected areas

during infrastructure stress. This is mainly because total-degree was the incorrect measurement used to

extract the hosts with the highest change in behavior.

Difference in total-degree highlights the hosts that changed variation in hosts that the select host

connects to. As a result, this selected mostly servers who have the largest total-degree. External hosts

were typically not selected because they connected to a relatively smaller number of servers within the

internal enterprise network. The proper measurement to use would have been link sum within the host’s

ego network. Regardless, labelled data from the organization would greatly improve the ability to pinpoint

the hosts affected by the flash crowd incident.

Implications for Toolchain

Instead of using total-degree which targets variation of hosts the select host is connecting to, using link

sum may improve the results. Total-degree was the incorrect measurement to use and a different network

science measurement should be used to highlight hosts that had the highest change in behavior when

comparing an incident with a normal week. Another approach is split the network into subset of hosts by

functional group within the organization. This information is significantly easier to obtain if the toolchain

is being developed from within the company.
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5.2.4 Functional Group Analysis

Overview

The functional group analysis was limited because of the incompletion of the campus security, manage-

ment, and IT user machines. The only results completed were the server hosts. The server hosts exhibited

the same behavior as expected individually. They showed cyclic behavior that peaked early afternoon of

the work day and exhibited a constant baseline during the nights and weekends. However, all 3 weeks

differed tremendously from each other regardless of normal week. It was hypothesized that there should

be consistency between all 3 weeks because the sample includes all servers and the flash crowd event

would only show.

Implications for Toolchain

The main change that these results indicate for the toolchain is that more research needs to be completed

on normal weeks. It is safe to discount observations of the data until it can be observed in future data

because of how inconsistent these results are from knowledge of the events themselves conceptually and

from the perspective of the company. For now, the inconsistencies of the data can be dismissed as a SiLK

collection issue until recent data can confirm these observations. However, the cyclic nature of server

machines makes servers seem like a viable category to classify hosts. Later sections will confirm the

performance of classifying the hosts.

5.2.5 AbuseIPDB Analysis

Overview

Overall, the small sample of abusive hosts and non-abusive hosts highlighted that there is more variation

in hosts that were tagged for abusive behavior. This implies that making classification models by non-

abusive hosts is easier. However, variation was not the only difference and abusive hosts typically had the

higher range of network interactions when compared to non-abusive hosts.

After cross correlating hosts with high total-degree centrality within the network with Abuse IP

Database, a database of user reported potentially malicious hosts, many highly-reported hosts were preva-

lent in the network during both the incident week and the normal weeks. Potential threats are persistent

at all times, even during infrastructure stress; defensive measures should not be disregarded even during

these periods.

However, this initial experiment had many limitations. The first limitation was that only 5 hosts made
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the sample size. The sample of 5 was only used for visual analysis, however conclusions cannot be made

on the data as whole with this sample. Additionally, identifying hosts as non-abusive was difficult. Only

the top 10% total-degree central hosts non-abusive category was accurate because of the use of Fortune

500 companies to identify these hosts. However, the other results only searched for hosts with 0 reports

on AbuseIPDB. These hosts may still be conducting malicious behavior, but they just may not have been

reported by a network administrator.

Despite these limitations, abusive hosts are easy to identify in AbuseIPDB and make up fairly confidant

ground truth of the behavior of these hosts. Thus, abusive hosts may still provide a sufficient set for

classification. Future tests on a larger set of abusive hosts should be performed to confirm this assumption.

If classification algorithms perform well on AbuseIPDB abusive hosts, then network science measurements

provide a great method for quantifying network behavior for hosts and identifying potentially abusive

hosts.

Implications for Toolchain

Overall, creating ego-networks using AbuseIPDB showed good results. It is common for firewalls and

intrusion detection systems to use signatures and IP address lists of hosts compromised by botnets from

other sources. AbuseIPDB provides the same role for the toolchain described in this thesis. Though

finding hosts prevalent in the network that have been reported was easy, there is not enough evidence to

support the assumption that their network science measurements differ between non-abusive hosts. These

assumptions will be validated in the actionable classification phase when identifying AbuseIPDB reported

hosts from host behavior.

5.3 Actionable Classification

The last phase was validated by creating models for individual host activity by class. These experiments

consisted of classifying hosts by their individual traffic activity represented by a network. Two approaches

were tested, identifying abusive hosts and hosts by internal divisions. Both of these classification strategies

would equip network administrators with knowledge on how to respond to anomalous host activity.

5.3.1 Classifying Hosts by Division

Overview

The individual network science measurements showed adequate results. It identified hosts within the

management division around 70% of the time. However, the other categories scored between 30% and
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60%. Regardless of measurement, the results were fairly consistent among each division and the division

that performed the best had the highest sample size. This indicates that either the management was the

easiest to classify or that there were many false classifications to the management division from the other

hosts and host behavior was consistent regardless of division. However, because the recall was still around

70% for the management division than this may not that big of an issue.

Classifying with measurements individually produces the shortcomings of only using one feature of

the network structure. The goal of the thesis was to attempt to quantify the whole network structure and

this requires many measurements to define. As a result, more work should be done on using multiple

network science measurements to calculate distance measurements for k-nearest neighbor. Additionally,

there are more advanced classification techniques that can be applied such as neural networks and Markov

chains to classify time series. These techniques may offer higher quality results and should be examined

as well.

An additional limitation is that dynamic time warping makes the assumption that temporal features

have less weight when determining the differences between time series. It can be argued that temporal

features are very important for telecommunication events because timing of traffic flows determine the dif-

ference between DDOS attacks and flash crowds. Other attack types might require timing differentiation

as well. On the contrary, an entirely Euclidean approach should not be used because network behavior

will always differ for hosts between different time periods. There must be a mediation between strict

difference measurements and more relaxed difference measurements and different situations may require

different approaches. The current experiment only used dynamic time warping to calculate measurements

and it was lenient towards temporal differences.

Implications for Toolchain

For individual measure classification, the best measures were weighted density and link count. Both had

a range of 50% to 70% precision and 50% to 70% recall. These results are not accurate enough to apply to

real network operations and should not be implemented in its state. Methods should be done to improve it

which include adding multi-dimensional distance measurements using other network science measures,

applying transformations before calculating distances of time series plots, and applying other machine

learning techniques. If other methods do not work, then representing hosts as individual networks may

not provide a structure robust enough to characterize host behavior.
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Conclusions

The thesis describes the design and implementation of many possible components of a network science

toolchain used to convert network traffic data into actionable intelligence for network administrators. The

design followed a procedure that is similar to how other feature-based anomaly detection system were

designed focusing on reducing the data, representing the data, and then modelling the data. The approach

described in this thesis is novel because of its application of network science to the field.

It was hypothesized that network science would provide very good results due to the nature of its

scale of analysis. Rather than examine metrics associated to individual hosts, network science focuses on

using a large set of metrics to describe the whole network structure. Effectively, a combination of network

science measures becomes a profile for the network traffic during a period of time and its representation

over time is a series of time plots. These time plots can then be used to generate models to events and

host profiles that network administrators can respond to.

The work completed in this thesis marks a preliminary study on the capabilities and potential tech-

niques that can be used when analyzing this data using network science as a field of study. Within the

work, a series of implementations and experiments on various aspects of the toolchain were carried out

and validated using assumptions made from the network topology and network events. Though the re-

sults did not align clearly with the hypothesis for many experiments, the capability of network science

as a means should not be discounted. The work contributed to the field by providing a method of repre-

senting network traffic through graph structures and time series plots describing the network structure,

identified differences in behavior of traffic over network protocol, examined the quantified differences

between a flash crowd and normal weeks, used IP ranges as divisions for network structures for pin-

pointing changes in network behavior, compared IP addresses labelled as abusive with those that were

non-abusive, and tested a classifier for hosts using host behavior as a parameter.

73
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The work described in this research is novel and seeks to quantitively represent network traffic us-

ing network structures and its associated measures. The closest previous work only investigated graph

measurements which focused on node level measurements. Even though the results were not as conclu-

sive, the research elevates the field by providing a new field of work for telecommunication feature-based

anomaly detection.

The following sections will conclude with the limitations of the thesis and directions to take future

work.

6.1 Limitations

The limitations of the research done in this thesis is the lack of longer series of data, the difficulty in

getting ground truth information about the network and events from the company, and the difficulty of

working with live streaming data.

One of the greatest limitations of the work was the low amount of data points used for comparisons.

Event data was compared by weeks and only 3 weeks were provided for comparisons. Having more

weeks of data would help validate measurement comparisons used in the paper. Additionally, this can

be solved by changing the time limits being compared. This was shown from a previous experiment that

used daily data as parameters for the KS tests instead of weekly data. Alternative methods that take a

similar approach and increase the number of datapoints compared in statistical tests should be done.

Much of the network, network events, and data was proprietary and there was a strict bureaucracy of

getting information from the company. This made getting information to better explain network science

measurements difficult. Even by the end of the research, it is unclear what hosts were most affected by

the flash crowd incident and these are all details that the company should possess. Some information

was given such as the timeline of the service outage and flash crowd incident and IP ranges of company

divisions, however a lot of other information was not given. If the network topology complete with IP

ranges were given, then it would make data reduction significantly easier for forensics on any network

event.

Working with live data has advantages because its unique and real. Most research in the same field

use simulated data or published data. However, the data used in this research was collected live while

network operations were taken place. Not only was the data live, but it was on a very large enterprise

network. This data represents exactly how the toolchain would perform in a real enterprise network.

However, working with the data is difficult. The SiLK installation had issues that resulted in holes in the

data after the instance was brought down. Some of these holes were as small as a few hours and others
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were as large as a whole day. Solving these issues was also difficult as someone within the company had

to work to resolve them and a lot of times, the netflow collector issues took less priority than other tasks

for the company administrators.

6.2 Future Work

The first goal of future work is to be able to define normal behavior using the network science measure-

ments described in the thesis. If normal behavior can be defined clearly, then finding differences with

network events should be simpler. To solve this, more data on normal weeks can be collected or an alter-

native data source can be used. The new normal data can be compared and clustered till a baseline model

can be established using previous classification techniques.

Moreover, more incident data can be gathered or simulated to create models of events themselves.

When an incident occurs, the same comparison and reduction experiments can be used to characterize the

differences of that week on the normal model. It may be unfeasible to rely on actual events happening

within the network to create classification models, however it may be possible to simulate event data and

inject it into the network.

Additionally, the statistical tests currently focus on individual network science measurements. How-

ever, individual metrics do not quantify the network structure as a whole. To capture the whole network,

combinations of network science measurements should be used to characterize the behavior of the net-

work. This multi-dimensional plane then should be applied to comparison and classification processes to

characterize changes in behavior of network traffic.

Another area for future work would be to reexamine the flash crowd event using different data reduc-

tion strategies and with more topology information from the company. The current methods were making

inferences on the effects and network structure. The results from the experiments clearly lead to the fact

that some information is missing about the incident and the network. One simple approach for reducing

the data would be to filter netflows by packet size. The size of netflows and number of packets within the

flow tell a significant amount of information about the network communication. Network administrators

can tell if a streaming service is running or simple heart beat messages are being sent to hosts. By binning

netflows by size, the models can focus on the network communication that network administrators are

more interested about.

Another approach to reducing the data would be to use more information about the network to bin

different network structures. Having complete information about the network and incidents is crucial to

making correct hypothesis about the experiments to validate processes within the toolchain. Additionally,
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this information is available for the security experiments who would be responsible for implementing the

toolchain in a real, enterprise situation. For future work, either more information should be gathered on

the current network or simulated data should be defined to help validate the assumptions of the process.

The last area for future work centers on the Actionable Classification stage. There are many methods

for analyzing and classifying time series data. One approach is to expand on the K-nearest neighbor ap-

proach and use different distance measurements besides dynamic time warping, transform the time series

data before calculating distance, and using combinations of network science measurements to calculate

distances. Another approach is to apply different classification machine learning algorithms to time series

data. Previous research centered on using machine learning methods on well labelled network traffic and

have exceptional results. These same methods can be applied using the features generated from network

science.
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