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Abstract

Self-exciting point processes are widely used to model events occurring in time
and space whose rate depends on the past history of the process, such as earthquake
aftershocks, crime, and neural spike trains. Bymodeling the event rate as the sum of
a background (or immigrant) process, often an inhomogeneous Poisson process, and
an offspring process consisting of events triggered by previous events, self-exciting
point process models naturally account for complex clustering behavior. When the
model is physically motivated, as are models of earthquake aftershock sequences,
model parameters have direct interpretations in terms of the generative mechanism.

In this thesis, I focus in particular on the application of self-exciting point pro-
cesses to crime. Crime rates are known to vary greatly in space within a city, as a
result of many demographic and economic factors, and crime often exhibits “near-
repeats,” when one crime is followed by another soon after, either from retaliation
or because offenders tend to return to the same areas. Point process models have
been used to predict crime, but the available models can be improved: they cannot
explicitly account for spatially varying covariates and estimate their effects, and
there are no inference tools that could be used to test criminological theories or
evaluate interventions.

After extensively reviewing the literature on self-exciting point processes, I in-
troduce a new model which accounts for both spatial covariates and self-excitation,
and explore its benefits over simple lagged regressions and other commonly used
methods. After discussing computational issues in fitting the model, I use simula-
tions to explore methods for parameter inference, review a set of residual diagnos-
tics and animations, and use these diagnostics to explore themodel’s behavior under
various forms of model misspecification, giving practical advice for the interpreta-
tion of model fits. To demonstrate the model’s utility, I then analyze large databases
of Pittsburgh and Baltimore crime records, linking crime rates to several relevant
spatial covariate and leading indicator events, and comparing several model varia-
tions.
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One

Introduction

Predictive policing is the science of using historical crime data, and possibly other
explanatory variables, to predict the locations and times of future crimes. As police
agencies collect ever more data, more opportunities appear to mine these data for
insight. Predictive policing models have been used to target interventions aimed
at reducing property crime (Hunt, Saunders, & Hollywood, 2014; Mohler et al.,
2015) and violent crime (Ratcliffe, Taniguchi, Groff, & Wood, 2011; Taylor, Koper,
& Woods, 2011), and to analyze hotspots of robbery (Van Patten, McKeldin-Coner,
& Cox, 2009) and shootings (Kennedy, Caplan, & Piza, 2010), among many other
applications. Predictive policing methods are now widely deployed, with law en-
forcement agencies routinely making operational decisions based on them (Perry,
McInnis, Price, Smith, & Hollywood, 2013).

Beyond simply predicting crime, other analyses can help answer questions of
criminological interest and direct police efforts. For example, there has been a re-
cent focus on the prevalence of near-repeat victimization, which has been analyzed
using methods borrowed from epidemiology (Haberman & Ratcliffe, 2012; Ratcliffe
& Rengert, 2008). Other efforts, such as Risk Terrain Modeling (Kennedy et al., 2010;
Kennedy, Caplan, Piza, & Buccine-Schraeder, 2015), try to find local factors which
increase the risk of crime. Spatial analyses may also be used to test ideas such as
the “broken windows” theory, which posits that “failure to control minor offenses
such as prostitution and disorderly conduct destabilizes neighborhoods by creat-
ing a sense of public disorder”, leading to more serious crimes, including homicide
(Cerdá et al., 2009).

However, previous predictive policing methods have several weaknesses. Tools
for evaluating model performance are limited and comparisons between methods
are hindered by the use of arbitrary hotspot cutoffs and inappropriate metrics. Fur-
ther, all existing metrics evaluate fit globally rather than identifying specific prob-
lematic areas. Hotspot models, near-repeat models, and models incorporating spa-
tial factors are usually separate and incompatible, so no current method incorpo-
rates all these features, resulting in estimates which are confounded by the left-out
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1. introduction

features. Also, no existing method has used statistical inference to quantify uncer-
tainty in predictions or model parameters, limiting their usefulness in criminologi-
cal research.

In this thesis, I develop a single predictive model which incorporates features of
hotspot models, near-repeat analysis, and Risk Terrain Modeling. This model has
three goals: (1) improved hotspot predictions, by using all the relevant information;
(2) rigorous tests of which crimes and features most strongly predict future crimes,
using inference tools and model fit diagnostics; and (3) improved understanding of
the near-repeat phenomenon, by incorporating it directly into the model. I also
develop a Bayesian hierarchical model which extends the analysis to incorporate
multiple cities or regions simultaneously, allowing exploration of the differences in
crime dynamics between cities.

1.1 Predictive Policing Methods

Previous work has used a variety of methods to predict crime and identify high-risk
areas. In this section I review prior work in predictive policing, then summarize
gaps in these methods in Section 1.2. In Section 1.3, I summarize the work I have
done to extend and apply the self-exciting point process models introduced in Sec-
tion 1.1.3 to our Pittsburgh crime dataset.

1.1.1 Hotspot Detection

Themost common predictive policing methods focus on hotspots: small geographic
areas with high rates of target crimes. These hotspots can be chronic, lasting for
years or decades, or temporary, appearing only for a few weeks or months (Gorr
& Lee, 2015). They may be detected by spatial kernel density estimates, choropleth
maps, standard deviational ellipses, scan statistics, or clustering methods (Chainey,
Tompson, & Uhlig, 2008; Levine, 2008); these methods identify hotspots but do not
predict crime rates within them or otherwise quantify the risk of crime. Police then
choose the top hotspots for intensive patrol or other interventions, such as problem-
oriented policing (Taylor et al., 2011).

Hotspot methods often require the use of ad-hoc tuning parameters which must
be selected by a trained operator. The commonly used nearest-neighbor hierarchical
clustering technique, for example, requires the operator to select the desired number
of hotspots in advance (Perry et al., 2013, p. 22); kernel density hotspot mapping
software (such as Hotspot Detective) requires users to select a bandwidth and the
size of grid cells used for hotspot prediction, providing defaults based on the size of
the map instead of the features of the data (Chainey et al., 2008). This means that
different operators may produce different hotspot predictions (Hart & Zandbergen,
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2014), and tuning parameters are not chosen in a statistically principled way to
maximize predictive performance.

1.1.2 Risk Terrain Modeling

An alternative to hotspot methods is Risk Terrain Modeling (RTM) (Kennedy et al.,
2010; Kennedy et al., 2015), which attempts to identify spatial features that may pre-
dict crime: gang territories, bars, dance clubs, residences of recent parolees, fore-
closed homes, schools, and so on. This can provide local governments with impor-
tant information to target law enforcement, social programs, and public works to
reduce factors that lead to crime. RTM actually encompasses two related methods,
the second a much more sophisticated version of the first. At its most basic, RTM
proceeds as follows:

1. By reviewing the relevant literature, consulting with police, and analyzing
data as necessary, identify a set of spatial features that are likely relevant to
crime in the jurisdiction of interest.

2. Compile maps of each of these risk factors.

3. Create a fixed grid on top of the maps. Inside each grid cell, count the number
of distinct risk factors present. This is the risk score.

4. To evaluate the predictive performance of risk scores, fit a logistic regression
model and use it to predict the presence of crime in each grid cell during an
evaluation period.

Kennedy et al. (2010) did variable selection for this procedure by compiling a
2 × 2 contingency table for every risk factor, recording whether cells with that risk
factor experienced crime during the evaluation period. After performing 𝜒2 tests
for independence on each table, variables were selected by imposing 𝑝 value cutoffs.
This procedure suffers from a number of methodological flaws: risk factors are im-
plicitly assumed to have equal effects on crime rates, instead of allowing them to
have different coefficients; there is no spatial dependence between grid cells; and
the variable selection procedure uses marginal significance of variables instead of
a statistically motivated procedure, such as using logistic regression with each risk
factor as a separate covariate and performing a standard model selection technique.

A revised version of RTM (Kennedy et al., 2015) replaced the summed risk fac-
tors with a Poisson regression model, with elastic net regularization. Instead of
simple presence/absence variables for each risk factor, there were six variables for
each: three binary covariates indicating if the risk factor was present within 426,
852, or 1278 feet, and three binary covariates indicating if the density of the risk fac-
tor was two standard deviations above the mean, using the three distances above as
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bandwidths. After regressing this large number of variables, the authors were not
satisfied with the sparsity of the model, so they then used stepwise regression to
further reduce the model while optimizing BIC. It is not clear why they didn’t sim-
ply adjust the elastic net tuning parameter to induce more sparsity in the penalized
regression.

This overcomplicated technique is unsatisfactory for several reasons. The dis-
tance cutoffs were chosen arbitrarily based on the size of city blocks in the tested
city, in this case Chicago, rather than being determined by any empirical method.
There is also no reason not to simply use the distance to the nearest risk factor in-
stead. It is also not clear whether there is any reason to include kernel densities as
a separate covariate with three different bandwidths.

Nonetheless, RTM is now implemented in the commercial RTMDx utility, and
RTM’s predictive performance has been compared to hotspot-based methods, with
mixed results (Drawve, 2016; Drawve, Moak, & Berthelot, 2014).

1.1.3 Self-Exciting Point Processes

Beyond hotspot methods, some evidence suggests that a target crime (such as vi-
olent crime) can be better predicted by taking into account other crimes, such as
criminal mischief or liquor law violations (J. Cohen, Gorr, & Olligschlaeger, 2007;
Mohler et al., 2015). These crimes of public disorder serve as leading indicators, ap-
pearing before more serious crimes; when police are interested in predicting a rela-
tively rare crime, like homicide, leading indicator crimes can provide much-needed
data to produce better risk estimates. Leading indicators can also suggest targeted
interventions which attack the root causes of crime, rather than simple reactive
patrols.

Other research suggests that hotspots are not static in time, requiring a model
that can adapt to changing crime rates as patterns of criminal activity shift (Gorr &
Lee, 2015). Mohler (2014) developed such a model by building on self-exciting point
process models used in earthquake forecasting, known in the seismology literature
as epidemic-type aftershock sequence models (Ogata, 1999). Mohler’s model allows
hotspot estimates to change over time while taking leading indicators into account
by separating crime into chronic hotspots, which remain fixed in time, and tempo-
rary hotspots, which are caused by increases or changes in crime. (In seismological
models, earthquakes are similarly divided into main shocks and aftershocks caused
by those main shocks.) Hotspot intensities are modeled with a modification of ker-
nel density smoothing, where leading indicator crimes contribute to the intensity
with effects that decay away in time, and the bandwidth parameters are estimated
to best fit the data instead of being chosen by the operator. Together, this allows
the model to provide better predictions than if it only considered the target crime
or assumed hotspots were fixed in time.
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Mohler et al. (2015) performed a randomized trial of a simplified version of this
model in Los Angeles and Kent, showing that police deployment based on hotspot
maps, updated daily with the latest crime data, reduced crime by roughly 7.4% in
targeted areas. But the tested model eliminated some features that can improve
predictive performance: in particular, it divided space into 150×150m grid cells and
eliminated the spatial dependence between grid cells.

The details of these models, and the self-exciting point processes on which they
are built, will be introduced in Chapter 2, and extensions will be developed in Chap-
ter 3.

1.2 Gaps in the Literature

There is no current method that combines spatial covariates, as in RTM, with his-
torical crime data, as in hotspot mapping. Because RTM does not account for near-
repeats, its estimates are confounded by self-excitation, leading to bias and poten-
tial false positives; this will be illustrated in Section 3.1. It is currently impossible
to compare the strength of spatial effects with near-repeat and leading indicator ef-
fects, because each type of model is constructed entirely differently, and we cannot
disentangle the different modeling choices from the different predictive factors. A
unified model could solve this problem and estimate various factors of interest to
criminologists, such as the effects of different spatial and temporal covariates, while
controlling for the presence of leading indicator crimes.

Previous hotspot prediction methods do not attempt any form of parameter in-
ference. There have been some previous efforts to quantify the near-repeat phe-
nomenon: the increased likelihood of repeat crimes in the vicinity of a recent crime
(Ratcliffe & Rengert, 2008; Youstin, Nobles, Ward, & Cook, 2011). Most of these
efforts are based on the Near Repeat Calculator (Ratcliffe, 2009), which adapts the
Knox test from epidemiology to detect spatiotemporal clustering of events. The
Knox test requires the operator to select a threshold distance and a threshold time;
crimes which are close together in both distance and time are counted, and a per-
mutation test is used to tell if this number is larger than expected.

This allows a test for the presence of the near-repeat phenomenon, but the
threshold distances and times are arbitrary, and there is no satisfactory empirical
way to estimate the duration or decay of the near-repeat phenomenon. Distances
are often chosen based on the size of city blocks in the analyzed cities, and a va-
riety of times may be tested separately, the operator deciding the duration of the
near-repeat effect by which tests appear significant. This means near-repeat esti-
mates are confounded with the statistical power of the studies estimating them. By
contrast, the self-exciting point process model directly incorporates near-repeat ef-
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fects, and with the addition of inference techniques for these effects, the near-repeat
phenomenon can be much better understood.

Additionally, the Knox test suffers from confounding if the spatial risk surface
of crime changes over time, for example if some small areas become more attrac-
tive to criminals over the course of the observation period (Ornstein & Hammond,
2017). This increased local risk is indistinguishable from the clustering caused by
near-repeats unless the spatial features are explicitly accounted for, motivating the
development of a model which incorporates both spatial features and self-excitation.
Attempts to use the Knox test to determine the distance or length of time over which
self-excitation can occur are also confounded with the power of the test, as will be
demonstrated in Section 3.2.

Finally, most analysis of spatial covariates or of near-repeats has focused on one
city or jurisdiction at a time, perhaps due to the difficulties of obtaining multiple
datasets and in combining information across cities. There is not yet a model which
can incorporate several cities and determine how similar or different their dynamics
are, allowing principled comparisons.

1.3 Summary of Contributions

In this thesis, I develop a self-exciting point process model that incorporates spatial
covariates and self-excitation, demonstrate how this model may be fit, and apply
the model to real crime data. After an extensive review of the properties and uses
of self-exciting point process in Chapter 2, I describe the new model in Chapter 3,
along with the expectation–maximization algorithm to fit it and tools for simulation
and computation based on it. Tools for parameter inference and model diagnostics
are introduced in Chapter 4, followed by an extensive illustration using Pittsburgh
and Baltimore crime data in Chapter 5 and Chapter 6. Finally, Chapter 7 concludes
with a summary and suggested future work.
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Two

Self-Exciting Spatio-Temporal Point
Processes

Self-exciting spatio-temporal point processes, an extension of temporal Hawkes pro-
cesses, model events whose rate depends on the past history of the process.1 This
class of models has proven useful in a wide range of fields: seismological models of
earthquakes and aftershocks, criminological models of the dynamics of crime, epi-
demiological forecasting of the incidence of disease, and many others. In each field,
the spatio-temporal distribution of events is of scientific and practical interest, both
for prediction of new events and to improve understanding of the process generat-
ing the events. We may have a range of statistical questions about the process: does
the rate of events vary in space and time? What spatial or temporal covariates may
be related to the rate of events? Do events trigger other events, and if so, how are
the triggered events distributed in space and time?

Regression is a natural first approach to answer these questions. By dividing
space into cells, either on a grid or following natural or political boundaries, and
dividing the observed time window into short discrete intervals, we can aggregate
events and regress the number of events observed in a given cell and interval against
spatial and temporal covariates, prior counts of events in neighboring cells, and
so on. This approach has been widely used in applications. However, it suffers
several disadvantages: most notably, the Modifiable Areal Unit Problem means that
estimated regression coefficients and their variances may vary widely depending
on the boundaries or grids chosen for aggregation, and there is no natural “correct”
choice (Fotheringham & Wong, 1991).

Instead, we can model the rate of occurrence of events directly, without aggre-
gation, by treating the data as arising from a point process. If the questions of
scientific interest are purely spatial, the events can be analyzed using methods for
spatial point processes (Diggle, 2014), and their times can be ignored. If time is im-

1This chapter has been published as Reinhart (2018). A Review of Self-Exciting Spatio-Temporal
Point Processes and Their Applications. Statistical Science.
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portant, descriptive statistics for the first- and second-order properties of a point
process, such as the average intensity and clustering behavior, can also be extended
to spatio-temporal point processes (Diggle, 2014, chapter 11).

When descriptive statistics are not enough to understand the full dynamics of
the point process, we can use spatio-temporal point process models. These models
estimate an intensity function that predicts the rate of events at any spatial loca-
tion 𝑠 and time 𝑡 . The simplest case is the homogeneous Poisson point process,
where the intensity is constant in space and time. An example of a more flexible
inhomogeneous model is the log-Gaussian Cox process, reviewed by Diggle, Mor-
aga, Rowlingson, and Taylor (2013), in which the log intensity is assumed to be
drawn from a Gaussian process. With a suitable choice of spatio-temporal correla-
tion function, the underlying Gaussian process can be estimated, although this can
be computationally challenging.

Cluster processes, which directly model clustering behavior, split the process in
two: cluster centers, generally unobserved, are drawn from a parent process, and
each cluster center begets an offspring process centered at the parent (Daley & Vere-
Jones, 2003, Section 6.3). The observed process is the superposition of the offspring
processes. A common case is the Poisson cluster process, in which cluster centers
are drawn from a Poisson process; special cases include the Neyman–Scott process,
in which offspring are also drawn from a Poisson process, and the Matérn cluster
process, in which offspring are drawn uniformly from disks centered at the cluster
centers. Common cluster processes, other spatio-temporal models, and descriptive
statistics were reviewed by González, Rodrıǵuez-Cortés, Cronie, and Mateu (2016).

In this chapter, I will focus on self-exciting spatio-temporal point processmodels,
where the rate of events at time 𝑡 may depend on the history of events at times
preceding 𝑡 , allowing events to trigger new events. These models are characterized
by a conditional intensity function, discussed in Section 2.1, which is conditioned on
the past history of the process, and has a direct representation as a form of cluster
process. Parametrization by the conditional intensity function has allowed a wide
range of self-exciting models incorporating features like seasonality, spatial and
temporal covariates, and inhomogeneous background event rates to be developed
across a range of application areas.

Dependence on the past history of the process is not captured by log-Gaussian
Cox processes or spatial regression, but can be of great interest in some applications:
the greatest development of self-exciting models has been in seismology, where pre-
diction of aftershocks triggered by large earthquakes is important for forecasting
and early warning. However, the literature on theory, estimation, and inference for
self-exciting models has largely been isolated within each application, so the pur-
pose of this chapter is to synthesize these developments and place them in context,
drawing connections between each application and paving the way for new uses.
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Self-exciting models can be estimated using standard maximum likelihood ap-
proaches, discussed in Section 2.2.1 below. Once a self-exciting model is estimated,
we are able to answer a range of scientifically interesting questions about the dy-
namics of their generating processes. Section 2.2.2 reviews stochastic declustering
methods, which attribute events to the prior events which triggered them, or to the
underlying background process, using the estimated form of the triggering function.
Section 2.2.3 then introduces algorithms to efficiently simulate new data, and Sec-
tion 2.2.4 discusses methods for estimating model standard errors and confidence
intervals. Bayesian approaches are discussed in Section 2.2.5, and general model-
selection and diagnostic techniques in Section 2.2.6.

Finally, Section 2.3 introduces threemajor application areas of self-exciting spatio-
temporal point processes: earthquake forecasting, models of the dynamics of crime,
and models of infectious disease. These demonstrate the utility of self-exciting mod-
els and illustrate each of the techniques described in Section 2.2. Section 2.3.4 in-
troduces a further extension of self-exciting point processes, extending them from
spatio-temporal settings to applications involving events occurring on networks.

2.1 Basic Theory

2.1.1 Hawkes Processes

Consider a temporal simple point process of event times 𝑡𝑖 ∈ [0, 𝑇 ), such that
𝑡𝑖 < 𝑡𝑖+1, and a right-continuous counting measure 𝑁(𝐴), defined as the number
of events occurring at times 𝑡 ∈ 𝐴. Associated with the process is the history ℋ𝑡 of
all events up to time 𝑡 . We may characterize the process by its conditional intensity,
defined as

𝜆(𝑡 ∣ ℋ𝑡) = limΔ𝑡→0
𝔼 [𝑁 ([𝑡, 𝑡 + Δ𝑡)) ∣ ℋ𝑡]

Δ𝑡 .
The self-exciting point process model was introduced for temporal point pro-

cesses by Hawkes (1971). Self-exciting processes can be defined in terms of a condi-
tional intensity function in the equivalent forms

𝜆(𝑡 ∣ ℋ𝑡) = 𝜈 + ∫
𝑡

0
𝑔(𝑡 − 𝑢) d𝑁(𝑢)

= 𝜈 + ∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑡 − 𝑡𝑖),

where 𝜈 is a constant background rate of events and 𝑔 is the triggering function
which determines the form of the self-excitation. The process is called “self-exciting”
because the current conditional intensity is determined by the past historyℋ𝑡 of the
process. Depending on the form chosen for the triggering function 𝑔, the process
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may depend only on the recent history (if 𝑔 decays rapidly) or may have longer term
effects. Typically, because 𝜆(𝑡 ∣ ℋ𝑡) ≥ 0, we require 𝑔(𝑢) ≥ 0 for 𝑢 ≥ 0 and 𝑔(𝑢) = 0
for 𝑢 < 0.

Hawkes processes have been put to many uses in a range of fields, modeling
financial transactions (Bacry, Mastromatteo, & Muzy, 2015; Bauwens & Hautsch,
2009), neuron activity (D. H. Johnson, 1996), terrorist attacks (Porter &White, 2012),
and a wide range of other processes. They are particularly useful in processes that
exhibit clustering: Hawkes and Oakes (1974) demonstrated that any stationary self-
exciting point process with finite intensity may be interpreted as a Poisson cluster
process. The events may be partitioned into disjoint processes: a background process
of cluster centers 𝑁𝑐(𝑡), which is simply a Poisson process with rate 𝜈 , and sepa-
rate offspring processes of triggered events inside each cluster, whose intensities are
determined by 𝑔. Each triggered event may then trigger further events. Fig. 2.1
illustrates this separation. The number of offspring of each event is drawn from a
Poisson distribution with mean

𝑚 = ∫
∞

0
𝑔(𝑡) d𝑡.

Provided𝑚 < 1, cluster sizes are almost surely finite, as each generation of offspring
follows a geometric progression, with expected total cluster size of 1/(1−𝑚) includ-
ing the initial background event. This partitioning also permits other useful results,
such as an integral equation for the distribution of the length of time between the
first and last events of a cluster (Hawkes & Oakes, 1974, Theorem 5).

2.1.2 Spatio-Temporal Form

Spatio-temporal models extend the conditional intensity function to predict the rate
of events at locations 𝑠 ∈ 𝑋 ⊆ ℝ𝑑 and times 𝑡 ∈ [0, 𝑇 ). The function is defined in the
analogous way to temporal Hawkes processes:

𝜆(𝑠, 𝑡 ∣ ℋ𝑡) = limΔ𝑠,Δ𝑡→0
𝔼 [𝑁 (𝐵(𝑠, Δ𝑠) × [𝑡, 𝑡 + Δ𝑡)) ∣ ℋ𝑡]

|𝐵(𝑠, Δ𝑠)|Δ𝑡 , (2.1)

where 𝑁(𝐴) is again the counting measure of events over the set 𝐴 ⊆ 𝑋 × [0, 𝑇 ) and
|𝐵(𝑠, Δ𝑠)| is the Lebesgue measure of the ball 𝐵(𝑠, Δ𝑠) with radius Δ𝑠.

A self-exciting spatio-temporal point process is one whose conditional intensity
is of the form

𝜆(𝑠, 𝑡 ∣ ℋ𝑡) = 𝜇(𝑠) + ∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖), (2.2)

where {𝑠1, 𝑠2, … , 𝑠𝑛} denotes the observed sequence of locations of events and {𝑡1, 𝑡2, … , 𝑠𝑛}
the observed times of these events. Generally the triggering function 𝑔 is nonnega-
tive, and is often a kernel function or power law decay function; often, for simplicity,
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Observed 𝑡

Background

Gen. 1

Gen. 2

Labeled 𝑡
0 2 4 6 8 10

Figure 2.1: At top, a hypothetical observed self-exciting point process of events from
𝑡 = 0 to 𝑡 = 10. Below, the separation of that process into a background process
and two generations of offspring processes. The arrows indicate the cluster relation-
ships of which events were triggered by which preceding events; solid circles are
background events, and open circles and squares are triggered events. At bottom,
the combined process with generation indicated by shapes and shading. This clus-
ter structure is not directly observed, though it may be inferred with the methods
of Section 2.2.2.

it is taken to be separable in space and time, so that 𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖) = 𝑓 (𝑠 − 𝑠𝑖)ℎ(𝑡 − 𝑡𝑖),
similar to covariance functions in other spatio-temporal models (Cressie & Wikle,
2011, Section 6.1). Sometimes a general nonparametric form is used, as in the model
described in Section 2.2.2.

For ease of notation, the explicit conditioning on the past history ℋ𝑡 will be
omitted for the rest of this dissertation, and should be read as implied for all self-
exciting conditional intensities.

AswithHawkes processes, spatio-temporal self-exciting processes can be treated
as Poisson cluster processes, with the mean number of offspring

𝑚 = ∫𝑋 ∫
𝑇

0
𝑔(𝑠, 𝑡) d𝑡 d𝑠. (2.3)

The triggering function 𝑔, centered at the triggering event, is the intensity function
for the offspring process. Properly normalized, it induces a probability distribution
for the location and times of the offspring events. The cluster process represen-
tation will prove crucial to the efficient estimation and simulation of self-exciting
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Inhomogeneous process Self-exciting process

Figure 2.2: At left, a realization of an inhomogeneous Poisson process, in which the
intensity is higher inside a central square and lower outside. At right, a self-exciting
process with average total cluster size of 4, using the inhomogeneous Poisson pro-
cess as the background process. Excited events are shown in blue. The cluster struc-
ture of the process is clearly visible, with clumps emerging from the self-excitation.

processes, and the estimation of the cluster structure of the process will be the focus
of Section 2.2.2.

To illustrate the cluster process behavior of spatio-temporal self-exciting pro-
cesses, Fig. 2.2 compares a simulated realization of a spatio-temporal inhomoge-
neous Poisson process against a self-exciting process using the same Poisson process
realization as its background process. The self-exciting process, simulated using a
Gaussian triggering function with a short bandwidth, shows clusters (of expected
total cluster size 4) emerging from the Poisson process. The simulation was per-
formed using Algorithm 2.5, to be discussed in Section 2.2.3, which directly uses
the cluster process representation to make simulation more efficient.

2.1.3 Marks

Point processesmay bemarked if features of events beyond their time or location are
also observed (Daley & Vere-Jones, 2003, Section 6.4). For example, if earthquakes
are treated as a spatiotemporal point process of epicenter locations and times, the
magnitude of each earthquake is an additional observed variable that is an important
part of the process: the number and distribution of aftershocks may depend upon it.
A marked point process is a point process of events {(𝑠𝑖 , 𝑡𝑖 , 𝜅𝑖)}, where 𝑠𝑖 ∈ 𝑋 ⊆ ℝ𝑑 ,
𝑡𝑖 ∈ [0, 𝑇 ), and 𝜅𝑖 ∈ 𝒦 , where 𝒦 is the mark space (e.g. the space of earthquake
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magnitudes). A special case is the multivariate point process, in which the mark
space is a finite set {1, … ,𝑚} for a finite integer𝑚. Often the mark in a multivariate
point process indicates the type of each event, such as the type of crime reported.

Marks can have several useful properties. A process has independent marks if,
given the locations and times {(𝑠𝑖 , 𝑡𝑖)} of events, the marks are mutually independent
of each other, and the distribution of 𝜅𝑖 depends only on (𝑠𝑖 , 𝑡𝑖). Separately, a process
has unpredictable marks if 𝜅𝑖 is independent of all locations and marks {(𝑠𝑗 , 𝑡𝑗 , 𝜅𝑗)}
of previous events (𝑡𝑗 < 𝑡𝑖).

Amarked point process has a ground process, the point process of event locations
and timeswithout their correspondingmarks. Using the ground process conditional
intensity, 𝜆𝑔(𝑠, 𝑡), we can write the marked point process’s conditional intensity
function as

𝜆(𝑠, 𝑡, 𝜅) = 𝜆𝑔(𝑠, 𝑡)𝑓 (𝜅 ∣ 𝑠, 𝑡), (2.4)

where 𝑓 (𝜅 ∣ 𝑠, 𝑡) is the conditional density of the mark at time 𝑡 and location 𝑠 given
the history of the process up to 𝑡 . In general, the ground process may depend on
the past history of marks as well as the past history of event locations and times.
For simplicity of notation, the following sections will largely consider point pro-
cesses without marks, except where noted, but most methods apply to marked and
unmarked processes alike.

2.1.4 Log-Likelihood

The likelihood function for a particular parametric conditional intensity model is
not immediately obvious: given the potentially complex dependence caused by self-
excitation, even the distribution of the total number of events observed in a time
interval is difficult to obtain, and the spatial distributions of this varying number of
events must also be accounted for. Instead, for a realization of 𝑛 points from a point
process, we start with its Janossy density (Daley&Vere-Jones, 2003, Section 5.3). For
a temporal point process, where a realization is the set of event times {𝑡1, 𝑡2, … , 𝑡𝑛}
in a set 𝑇 , the Janossy density is defined by the Janossy measure 𝐽𝑛,

𝐽𝑛(𝐴1 × ⋯ × 𝐴𝑛) = 𝑛!𝑝𝑛Πsym𝑛 (𝐴1 × ⋯ × 𝐴𝑛),

where the total number of events is 𝑛, 𝑝𝑛 is the probability of a realization of the pro-
cess containing exactly 𝑛 events, (𝐴1, … , 𝐴𝑛) is a partition of 𝑇 where 𝐴𝑖 represents
possible times for event 𝑖, and Πsym𝑛 (⋅) is a symmetric probability measure determin-
ing the joint distribution of the times of events in the process, given there are 𝑛 total
events. The Janossy measure is not a probability measure: it represents the sum of
the probabilities of all 𝑛! permutations of 𝑛 points. It is nonetheless useful, as its
density 𝑗𝑛(𝑡1, … , 𝑡𝑛) d𝑡1⋯ d𝑡𝑛 has an intuitive interpretation as the probability that
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there are exactly 𝑛 events in the process, one in each of the 𝑛 infinitesimal intervals
(𝑡𝑖 , 𝑡𝑖 + d𝑡𝑖).

This interpretation connects the Janossy density to the likelihood function, which
can be written as (Daley & Vere-Jones, 2003, Definition 7.1.II)

𝐿𝑇 (𝑡1, … , 𝑡𝑛) = 𝑗𝑛(𝑡1, … , 𝑡𝑛 ∣ 𝑇 ) (2.5)

for a process on a bounded Borel set of times 𝑇 ; for simplicity in the rest of this
section, we’ll consider times in the interval [0, 𝑇 ). Here 𝑗𝑛(𝑡1, … , 𝑡𝑛 ∣ 𝑇 ) denotes the
local Janossy density, interpreted as the probability that there are exactly 𝑛 events
in the process before time 𝑇 , one in each of the infinitesimal intervals.

The likelihood can be rewritten in terms of the conditional intensity function,
which is usually easier to define than the Janossy density, by connection with sur-
vival and hazard functions. Consider the conditional survivor functions 𝑆𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1) =
Pr(𝑡𝑘 > 𝑡 ∣ 𝑡1, … , 𝑡𝑘−1). Using these functions and the conditional probability densi-
ties 𝑝𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1) of event times, we can write the Janossy density recursively
as

𝑗𝑛(𝑡1, … , 𝑡𝑛 ∣ 𝑇 ) = 𝑝1(𝑡1)𝑝2(𝑡2 ∣ 𝑡1)⋯ 𝑝𝑛(𝑡𝑛 ∣ 𝑡1, … , 𝑡𝑛−1) ×
𝑆𝑛+1(𝑇 ∣ 𝑡1, … , 𝑡𝑛).

(2.6)

Additionally, we may define the hazard functions

ℎ𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1) =
𝑝𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1)
𝑆𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1)

= − d log 𝑆𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1)
d𝑡 .

(2.7)

The hazard function has a natural interpretation as the conditional instantaneous
event rate—which means the conditional intensity 𝜆(𝑡) can be written directly in
terms of the hazard functions:

𝜆(𝑡) = {ℎ1(𝑡) 0 < 𝑡 < 𝑡1
ℎ𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1) 𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘 , 𝑘 ≥ 2.

This allows us to write the likelihood from eq. (2.5) in terms of the conditional
intensity function instead of the Janossy density. Observe that from eq. (2.7) we
may write

𝑆𝑘(𝑡 ∣ 𝑡1, … , 𝑡𝑘−1) = exp (−∫
𝑡

𝑡𝑘−1
ℎ𝑘(𝑢 ∣ 𝑡1, … , 𝑡𝑘−1) d𝑢)
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2.1. Basic Theory

Substituting eq. (2.7) into eq. (2.6), replacing the hazard function with the condi-
tional intensity, and combining terms leads to the likelihood, for a complete param-
eter vector Θ, of (Daley & Vere-Jones, 2003, Proposition 7.2.III)

𝐿(Θ) = [
𝑛
∏
𝑖=1

𝜆(𝑡𝑖)] exp(−∫
𝑇

0
𝜆(𝑡) d𝑡) .

By treating spatial locations as marks, we may extend this argument to spatio-
temporal processes and obtain the log-likelihood (Daley & Vere-Jones, 2003, Propo-
sition 7.3.III):

ℓ(Θ) =
𝑛
∑
𝑖=1

log (𝜆(𝑠𝑖 , 𝑡𝑖)) − ∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡, (2.8)

where 𝑋 is the spatial domain of the observations. For spatio-temporal marked
point processes with intensity defined as in eq. (2.4), the log-likelihood is written in
terms of the ground process, and has an extra mark term (Daley & Vere-Jones, 2003,
Proposition 7.3.III):

ℓ(Θ) =
𝑛
∑
𝑖=1

log (𝜆𝑔(𝑠𝑖 , 𝑡𝑖)) +
𝑛
∑
𝑖=1

log (𝑓 (𝑚𝑖 ∣ 𝑠𝑖 , 𝑡𝑖))

− ∫
𝑇

0 ∫𝑋
𝜆𝑔(𝑠, 𝑡) d𝑠 d𝑡.

In unmarked processes, the first term in eq. (2.8) is easy to calculate, assuming
the conditional intensity is straightforward, but the second term can require com-
putationally expensive numerical integration methods.

There are several approaches to evaluate this integral. The spatial domain 𝑋
can be arbitrary—e.g. a polygon defining the boundaries of a city—so Meyer, Elias,
and Höhle (2012) (see Section 2.3.3) used two-dimensional numeric integration via
cubature, as part of a numerical maximization routine. This requires an expensive
numeric integration at every step of the numerical maximization, making the pro-
cedure unwieldy.

Schoenberg (2013) observed that, for some conditional intensities, it may be
much easier to analytically integrate over ℝ2 instead of an arbitrary 𝑋 . Hence the
approximation

∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡 ≤ ∫

∞

0 ∫ℝ2
𝜆(𝑠, 𝑡) d𝑠 d𝑡

may reduce the integral to a form that may be evaluated directly. The approxi-
mation is exact when the effect of self-excitation is contained entirely within 𝑋
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2. self-exciting spatio-temporal point processes

and before 𝑡 = 𝑇 , and overestimates otherwise; because overestimation decreases
the calculated log-likelihood, Schoenberg argued that likelihood maximization will
avoid parameter values where overestimation is large. Lippiello, Giacco, Arcange-
lis, Marzocchi, and Godano (2014) argued that the temporal approximation biases
parameter estimates more than the spatial one, and advocated only approximating
𝑋 by ℝ2. This approximation was used by Mohler (2014), discussed in Section 2.3.2.
Lippiello et al. (2014) also proposed a more accurate spatial approximation method
based on a transformation of the triggering function to polar coordinates.

2.2 Estimation and Inference

Suppose now we have observed a realization of a self-exciting point process, with
event locations {𝑠1, 𝑠2, … , 𝑠𝑛} and times {𝑡1, 𝑡2, … , 𝑡𝑛} over a spatial region 𝑋 and tem-
poral window [0, 𝑇 ). We have a model for the conditional intensity function and
would like to be able to estimate its parameters, perform inference, and simulate
new data if needed. This section discusses common approaches to these problems
in the literature, focusing largely on maximum likelihood estimation, though with
a brief discussion of Bayesian approaches in Section 2.2.5.

Fitting conditional intensity functions is not the only way to approach spatio-
temporal point processes; there is also extensive literature that primarily uses de-
scriptive statistics, such as first and second order moments of the process. I will
not delve into this literature here, as it is less useful for understanding self-exciting
processes; nonetheless, Vere-Jones (2009) gives a brief review, and more thorough
treatments are available from González et al. (2016) and Diggle (2014).

2.2.1 Maximum Likelihood

Self-exciting point process models are most commonly fit using maximum like-
lihood. This is usually impossible to perform analytically: the form of the log-
likelihood in eq. (2.8) involves a sum of logarithms of conditional intensities, which
themselves involve sums over previous points, making analytical maximization in-
tractable. Numerical evaluation of the intensity takes 𝑂(𝑛2) time, and the log-
likelihood can be nearly flat in large regions of the parameter space, causing prob-
lems for numerical maximization algorithms and making convergence extremely
slow; in some examples explored by Veen and Schoenberg (2008), numerical maxi-
mization may fail to converge altogether. Nonetheless, for small datasets where the
log-likelihood is computationally tractable to evaluate, numerical maximization is
often used.

Alternately, Veen and Schoenberg (2008) showed the likelihood can be maxi-
mized with the expectation maximization (EM) algorithm (Dempster, Laird, & Ru-
bin, 1977; McLachlan &Krishnan, 2008) by introducing a latent quantity, 𝑢𝑖 , for each
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2.2. Estimation and Inference

event 𝑖, which indicates whether the event came from the background (𝑢𝑖 = 0) or
was triggered by a previous event 𝑗 (𝑢𝑖 = 𝑗). This follows naturally from the cluster
process representation discussed in Sections 2.1.1 and 2.1.2: if 𝑢𝑖 = 0, event 𝑖 is a
cluster center, and otherwise it is the offspring (directly or indirectly) of a cluster
center.

Veen and Schoenberg (2008) derived the complete-data log-likelihood for a spe-
cific earthquake clustering model. More generally, consider a model of the form
given in eq. (2.2). If the branching structure 𝑢𝑖 is assumed to be known, the complete-
data log-likelihood for a parameter vector Θ can be written as

ℓ𝑐(Θ) =
𝑛
∑
𝑖=1

𝟙(𝑢𝑖 = 0) log (𝜇(𝑠𝑖))

+
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝟙(𝑢𝑖 = 𝑗) log (𝑔(𝑠𝑖 − 𝑠𝑗 , 𝑡𝑖 − 𝑡𝑗))

− ∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡,

where 𝟙(⋅) is the indicator function, which is one when its argument is true and
zero otherwise. The branching structure dramatically simplifies the log-likelihood,
as each event’s intensity comes only from its trigger (the background or a previous
event); this is analogous to the common EM approach to mixture models, where the
latent variables indicate the underlying distribution from which each point came.

To complete the E step, we take the expectation of ℓ𝑐(Θ). This requires estimat-
ing the triggering probabilities Pr(𝑢𝑖 = 𝑗) = 𝔼[𝟙(𝑢𝑖 = 𝑗)] for all 𝑖, 𝑗, based on the
current parameter values Θ̂ for this iteration. We can calculate these probabilities
as

Pr(𝑢𝑖 = 𝑗) = {
𝑔(𝑠𝑖−𝑠𝑗 ,𝑡𝑖−𝑡𝑗)

𝜆(𝑠𝑖 ,𝑡𝑖)
𝑡𝑗 < 𝑡𝑖

0 𝑡𝑗 ≥ 𝑡𝑖
(2.9)

Pr(𝑢𝑖 = 0) = 1 −
𝑖−1
∑
𝑗=1

𝑃(𝑢𝑖 = 𝑗) = 𝜇(𝑠𝑖)
𝜆(𝑠𝑖 , 𝑡𝑖)

. (2.10)
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2. self-exciting spatio-temporal point processes

This leads to the expected complete-data log-likelihood

𝔼[ℓ𝑐(Θ)] =
𝑛
∑
𝑖=1

Pr(𝑢𝑖 = 0) log (𝜇(𝑠𝑖))

+
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

Pr(𝑢𝑖 = 𝑗) log (𝑔(𝑠𝑖 − 𝑠𝑗 , 𝑡𝑖 − 𝑡𝑗))

− ∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡,

which is much easier to analytically or numerically maximize with respect to each
parameter in the M step. Once new parameter estimates are found, the procedure
returns to the E step, estimating new triggering probabilities, and repeats until the
log-likelihood converges, or until the estimated parameter values change by less
than some pre-specified tolerance.

The EM algorithm has several advantages over other numerical maximization
methods. Introducing the branching structure avoids the typical numerical issues
encountered by other maximization algorithms, making the maximization at each
iterationmuch easier, and the triggering probabilities also have a dual use in stochas-
tic declustering algorithms, discussed in the next section.

One important warning must be kept in mind, however. If we have observed
only data in the region𝑋 and time interval [0, 𝑇 ), but the underlying process extends
outside this region and time, our parameter estimates will be biased by boundary
effects (Zhuang, Ogata, & Vere-Jones, 2004). Unobserved events just outside 𝑋 or
before 𝑡 = 0 can produce observed offspring which may be incorrectly attributed
to the background process, and observed events near the boundary can produce
offspring outside it, biasing downward estimates of the mean number of offspring
𝑚 (see eq. (2.3)). Boundary effects can also bias the estimated intensity 𝜆(𝑠, 𝑡) in
ways analogous to the bias experienced in kernel density estimation (Cowling &
Hall, 1996), but these effects are not well characterized for common self-exciting
models.

2.2.2 Stochastic Declustering

For some types of self-exciting point processes, the background event rate 𝜇(𝑠) is
fit nonparametrically from the observed data, for example by kernel density esti-
mation or using splines (Ogata & Katsura, 1988). This could be fit by maximum
likelihood—Mohler (2014) fit the background as a weighted kernel density via max-
imum likelihood, for example—but in some cases, we would like to estimate 𝜇(𝑠)
using events from the background process only, and not using events which were
triggered by those events. We may also want to analyze the background process
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2.2. Estimation and Inference

intensity separately from the triggered events, since the background process may
have an important physical interpretation. This requires a procedure which can sep-
arate background events from triggered events, as illustrated in Fig. 2.1: stochastic
declustering.

Model-Based Stochastic Declustering.

This version of stochastic declustering, introduced by Zhuang, Ogata, and Vere-
Jones (2002), assumes that the triggering function 𝑔 has a parametric form, but that
the background 𝜇(𝑠) should be estimated nonparametrically from only background
events. Estimating the background requires determining whether each event was
triggered by the background, but to do so requires 𝑔, so the procedure is iterative,
starting with initial parameter values and alternately updating the background es-
timate and 𝑔 until convergence.

Consider the total spatial intensity function, defined as (Zhuang et al., 2002)

𝑚1(𝑠) = lim𝑇→∞
1
𝑇 ∫

𝑇

0
𝜆(𝑠, 𝑡) d𝑡, (2.11)

where 𝑇 is the length of the observation period. The function𝑚1(𝑠) does not require
declustering to estimate, since it sums over all events, including triggered events;
by replacing the limit in eq. (2.11) with a finite-data approximation and substituting
in eq. (2.2), we obtain

𝑚1(𝑠) ≈
1
𝑇 ∫

𝑇

0
𝜇(𝑠) + ∑

𝑖∶𝑡𝑖<𝑡
𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖) d𝑡

= 𝜇(𝑠) + 1
𝑇 ∫

𝑇

0
∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖) d𝑡.

We hence obtain the relation

𝜇(𝑠) ≈ 𝑚1(𝑠) −
1
𝑇 ∑

𝑖∶𝑡𝑖<𝑡
∫
𝑇

0
𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖) d𝑡

= 𝑚1(𝑠) − 𝛾(𝑠).

We can now use a suitable nonparametric technique, such as kernel density
estimation, to form �̂�1(𝑠):

�̂�1(𝑠) =
1
𝑇

𝑛
∑
𝑖=1

𝑘(𝑠 − 𝑠𝑖),
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2. self-exciting spatio-temporal point processes

where 𝑘 is a kernel function. It may also be desirable to estimate 𝛾(𝑠) the same
way. To do so, we use the same latent quantity 𝑢𝑖 defined and estimated in Sec-
tion 2.2.1. We can estimate the cluster process by, for example, a weighted kernel
density estimate, using

̂𝛾 (𝑠) = 1
𝑇

𝑛
∑
𝑖=1

Pr(𝑢𝑖 ≠ 0)𝑘(𝑠 − 𝑠𝑖).

This leads to the estimator

�̂�(𝑠) = �̂�1(𝑠) − ̂𝛾 (𝑠)

= 1
𝑇

𝑛
∑
𝑖=1

(1 − Pr(𝑢𝑖 ≠ 0))𝑘(𝑠 − 𝑠𝑖).
(2.12)

We now need to iteratively estimate parameters of the triggering function 𝑔.
Provided these can be found bymaximum likelihood, Zhuang et al. (2002) suggested
the following algorithm:

Algorithm 2.1. Let �̂�(𝑠) = 1 initially.

1. Using maximum likelihood (see Section 2.2.1), fit the parameters of the con-
ditional intensity function

𝜆(𝑠, 𝑡) = �̂�(𝑠) + ∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖).

2. Calculate Pr(𝑢𝑖 ≠ 0) for all 𝑖 using the parameters found in step 1 and eq. (2.10).

3. Using the new branching probabilities, form a new �̂�∗(𝑠) using eq. (2.12).

4. If max𝑠 |�̂�(𝑠) − �̂�∗(𝑠)| > 𝜖, for a pre-chosen tolerance 𝜖 > 0, return to step 1.
Otherwise, terminate the algorithm.

We can now perform stochastic declustering by thinning the process. With the
final estimated �̂�(𝑠), we recalculate Pr(𝑢𝑖 ≠ 0) and keep each event with probability
1−Pr(𝑢𝑖 ≠ 0); the rest of the events are considered triggered events and deleted. We
are left with those identified as background events.

In the original implementation of this algorithm, Zhuang et al. (2002) used an
adaptive kernel function 𝑘 in eq. (2.12) whose bandwidth was chosen separately
for each event, rather than being uniform for the whole dataset. After choosing an
integer 𝑛𝑝 between 10 and 100, for each event they found the smallest disk centered
at that event which includes at least 𝑛𝑝 other events (forced to be larger than some
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small value 𝜖, chosen on the order of the observation error in locations). The radius
of this disk was used as the bandwidth for the kernel at each event. This method was
chosen because, in clustered datasets, any single bandwidth oversmooths in some
areas and is too noisy in others. A method to estimate kernel parameters from the
data will be introduced in Section 2.2.2.

Zhuang et al. (2002) also adapted the declustering algorithm to produce a “family
tree”: a tree connecting background events to the events they trigger, and so on from
each event to those it triggered. The algorithm considers each pair of events and
determines whether one should be considered the ancestor of the other:

Algorithm 2.2. Begin with the final estimated �̂�(𝑠) from Algorithm 2.1.

1. For each pair of events 𝑖, 𝑗 (with 𝑡𝑖 > 𝑡𝑗 ), calculate Pr(𝑢𝑖 = 𝑗) and Pr(𝑢𝑖 = 0).
2. Set 𝑖 = 1.
3. Generate a uniform random variate 𝑅𝑖 ∼ Uniform(0, 1).
4. If 𝑅𝑖 < Pr(𝑢𝑖 = 0), consider event 𝑖 to be a background event.

5. Otherwise, select the smallest 𝐽 such that 𝑅𝑖 < Pr(𝑢𝑖 = 0) + ∑𝐽
𝑗=1 Pr(𝑢𝑖 = 𝑗).

Consider the 𝑖th event to be a descendant of the 𝐽 th event.

6. When 𝑖 = 𝑁 , the total number of events, terminate; otherwise, set 𝑖 = 𝑖 + 1
and return to step 3.

Though the thinning algorithm and family tree construction are stochastic and
hence do not produce unique declusterings, Zhuang et al. (2002) argue this is an
advantage, as uncertainty in declustering can be revealed by running the decluster-
ing process repeatedly and examining whether features are consistent across declus-
tered processes. These methods have been used to answer important scientific ques-
tions in seismology, as discussed in Section 2.3.1.

Forward Likelihood-based Predictive approach.

In a semiparametric model, where the background 𝜇(𝑠) is estimated nonparametri-
cally from background events, the nonparametric estimator (such as a kernel smoother)
may have tuning parameters which need to be adapted to the data. Themodel-based
stochastic declustering procedure discussed above uses an adaptive kernel in 𝜇(𝑠),
but we may wish to use a standard kernel density estimator with bandwidth esti-
mated from the data. However, if we follow Algorithm 2.1, adjusting the bandwidth
with maximum likelihood at each iteration, the bandwidth would go to zero, placing
a point mass at each event.
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2. self-exciting spatio-temporal point processes

To avoid this problem, Chiodi andAdelfio (2011) introduced the Forward Likelihood-
based Predictive approach (FLP). Rather than directly maximizing the likelihood,
consider increments in the log-likelihood, using the first 𝑘 observations to predict
the (𝑘 + 1)th:

𝛿𝑘,𝑘+1(Θ ∣ ℋ𝑡𝑘 ) = log 𝜆(𝑠𝑘+1, 𝑡𝑘+1 ∣ Θ,ℋ𝑡𝑘 )

− ∫
𝑡𝑘+1

𝑡𝑘
∫𝑋

𝜆(𝑠, 𝑡 ∣ Θ,ℋ𝑡𝑘 ) d𝑠 d𝑡,

where the past history ℋ𝑡𝑘 explicitly indicates that the intensity experienced by
point 𝑘 + 1 depends only on the first 𝑘 observations (i.e. the estimate of 𝜇(𝑠) only
includes the first 𝑘 points). A parameter estimate Θ̂ is formed by numerically max-
imizing the sum

FLP(Θ̂) =
𝑛−1
∑
𝑘=𝑘1

𝛿𝑘,𝑘+1(Θ̂ ∣ ℋ𝑡𝑘 ),

where 𝑘1 = ⌊𝑛/2⌋. Adelfio and Chiodi (2015a) and Adelfio and Chiodi (2015b) devel-
oped the FLP method into a semiparametric method following an alternated estima-
tion procedure similar to Algorithm 2.1. The procedure splits the model parameters
into the nonparametric smoothing parameters Σ and the triggering function param-
eters Θ, and iteratively fits them in the following steps:

Algorithm 2.3. Begin with a default estimate for Σ, for example by Silverman’s rule
for kernel bandwidths (Silverman, 1986). Use this to estimate 𝜇(𝑠𝑖) for each event 𝑖.

1. Using the estimated values of 𝜇(𝑠𝑖) and holdingΣ fixed, estimate the triggering
function parameters Θ via maximum likelihood.

2. Calculate Pr(𝑢𝑖 = 0) for each event 𝑖 using the current parameter estimates.

3. Estimate the smoothing parameters by maximizing FLP(Σ̂), holding Θ fixed.

4. Calculate new estimates of 𝜇(𝑠𝑖) for each event 𝑖, using a weighted estimator
with the weights calculated in step 2.

5. Check for convergence in the estimates of Σ and Θ and either terminate or
return to step 1.

Adelfio and Chiodi (2015b) applied this method to a large catalog of earthquakes
in Italy, using the earthquake models to be discussed in Section 2.3.1, finding im-
proved performance over a version of the model where smoothing parameters were
fixed solely with Silverman’s rule.
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Model-Independent Stochastic Declustering.

Marsan and Lengliné (2008) proposed a model-independent declustering algorithm
(MISD) for earthquakes which removed the need for a parametric triggering func-
tion 𝑔(𝑠, 𝑡), instead estimating the shape of 𝑔(𝑠, 𝑡) from the data. They assumed a
conventional conditional intensity with constant background rate 𝜆0,

𝜆(𝑠, 𝑡) = 𝜆0 + ∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖),

but 𝑔(𝑠, 𝑡)was simply assumed to be piecewise constant in space and time, with the
constant for each spatial and temporal interval estimated from the data. Marsan and
Lengliné (2010) showed their method can be considered an EM algorithm, following
the same steps as in Section 2.2.1: estimate the probabilities Pr(𝑢𝑖 = 𝑗) in the E
step and then maximize over parameters of 𝑔(𝑠, 𝑡) and 𝜆0 in the M step, eventually
leading to convergence and final estimates of the branching probabilities.

Fox, Schoenberg, and Gordon (2016) extended this method to the case where
the background 𝜆0 is not constant in space by assuming a piecewise constant back-
ground function 𝜇(𝑠) or by using a kernel density estimate of the background, then
quantified uncertainty in the background and in 𝑔(𝑠, 𝑡) by using a version of the
parametric bootstrap method to be discussed in Section 2.2.4. This can be consid-
ered a general nonparametric approach to spatio-temporal point process modeling
as well as a declustering method, since with confidence intervals for the nonpara-
metric triggering function, useful inference can be drawn for the estimated trigger-
ing function’s shape.

2.2.3 Simulation

It is often useful to simulate data from a chosenmodel. For temporal point processes,
a range of simulation methods are described by Daley and Vere-Jones (2003, section
7.5). Several spatio-temporal methods are based on a thinning procedure which first
generates a large quantity of events, then thins them according to their conditional
intensity, starting at the first event and working onward so history dependence
can be taken into account. The basic method was introduced for nonhomogeneous
Poisson processes by P. A. W. Lewis and Shedler (1979).

Ogata (1998) proposed a two-stage algorithm for general self-exciting processes
which requires thinning fewer events and is hence more efficient. Events are gen-
erated sequentially, and the time of each event is determined before its location. To
generate times, we require a version of the conditional intensity which is only a
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2. self-exciting spatio-temporal point processes

function of time, having integrated out space:

𝜆𝑋 (𝑡) = 𝜈0 + ∑
𝑗∶𝑡𝑗<𝑡

𝜈𝑗(𝑡)

𝜈0 = ∫𝑋
𝜇(𝑠) d𝑠

𝜈𝑗(𝑡) = ∫𝑋
𝑔(𝑠, 𝑡) d𝑠.

This allows us to simulate times of events before simulating their locations. The
algorithm below, though apparently convoluted, amounts to drawing the waiting
time until the next event from an exponential distribution, drawing its location ac-
cording to the distribution induced by 𝑔, and repeating, rejecting (thinning) some
proposed times proportional to their intensities 𝜆𝑋 :

Algorithm 2.4. Start with 𝑎 = 𝑏 = 𝑐 = 0 and 𝑖 = 1.

1. Set 𝑠𝑎 = 0 and generate𝑈𝑏 ∼ Uniform(0, 1). LetΛ𝑐 = 𝜈0 and 𝑢𝑎 = − log(𝑈𝑏)/Λ𝑐 .

2. If 𝑢𝑎 > 𝑇 , stop. Otherwise, let 𝑡𝑖 = 𝑢𝑎 , let 𝐽 = 0, and skip to step 7.

3. Let 𝑏 = 𝑏 + 1 and 𝑎 = 𝑎 + 1. Generate 𝑈𝑏 ∼ Uniform(0, 1) and let 𝑢𝑎 =
− log(𝑈𝑏)/Λ𝑐 .

4. Let 𝑠𝑎 = 𝑠𝑎−1 + 𝑢𝑎 . If 𝑠𝑎 > 𝑇 , stop; otherwise let 𝑏 = 𝑏 + 1 and generate
𝑈𝑏 ∼ Uniform(0, 1).

5. If 𝑈𝑏 > 𝜆𝑋 (𝑠𝑎)/Λ𝑐 , set 𝑐 = 𝑐 + 1 and let Λ𝑐 = 𝜆𝑋 (𝑠𝑎), then go to step 3.

6. Let 𝑡𝑖 = 𝑠𝑎 , set 𝑏 = 𝑏 + 1, generate 𝑈𝑏 ∼ Uniform(0, 1), and find the smallest 𝐽
such that ∑𝐽

𝑗=0 𝜈𝑗(𝑡𝑖) > 𝑈𝑏𝜆𝑋 (𝑡𝑖).

7. If 𝐽 = 0 then generate 𝑠 ∈ 𝑋 from the non-homogeneous Poisson intensity
𝜇(𝑠) and go to step 10.

8. Otherwise, set 𝑏 = 𝑏 + 1, then set 𝑠𝑖 by drawing from the normalized spatial
distribution of 𝑔 centered at 𝑠𝐽 .

9. If 𝑠𝑖 is not in 𝑋 , return to step 3.

10. Otherwise, set 𝑖 = 𝑖 + 1 and return to step 3.
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This can be computationally expensive. The intensity 𝜆𝑋 must be evaluated at
each candidate point, involving a large sum, and the thinning in step 5 means multi-
ple candidate times will often have to be generated. Another method, developed for
earthquake models, directly uses the cluster structure of the self-exciting process,
eliminating the need for thinning or repeated evaluation of 𝜆(𝑠, 𝑡) (Zhuang et al.,
2004):

Algorithm 2.5. Begin with a fully specified conditional intensity 𝜆(𝑠, 𝑡).

1. Generate events from the background process using the intensity 𝜇(𝑠), by
using a simulationmethod for nonhomogeneous stationary Poisson processes
(P. A. W. Lewis & Shedler, 1979). Call this catalog of events 𝐺(0).

2. Let 𝑙 = 0.

3. For each event 𝑖 in 𝐺(𝑙), simulate its 𝑁 (𝑖) offspring, where 𝑁 (𝑖) ∼ Poisson(𝑚)
(with𝑚 defined as in eq. (2.3)), and the offspring’s location and time are gener-
ated from the triggering function 𝑔, normalized as a probability density. Call
these offspring 𝑂(𝑙)

𝑖 .

4. Let 𝐺(𝑙+1) = ⋃𝑖∈𝐺(𝑙) 𝑂(𝑙)
𝑖 .

5. If 𝐺(𝑙) is not empty, set 𝑙 = 𝑙 + 1 and return to step 3. Otherwise, return
⋃𝑙

𝑗=0 𝐺(𝑗) as the final set of simulated events.

This algorithm has been widely used in the seismological literature for studies
of simulated earthquake catalogs. However, both methods suffer from the same
edge effects as discussed in Section 2.2.1: if the background is simulated over a time
interval [0, 𝑇 ), the offspring of events occurring just before 𝑡 = 0 are not accounted
for. Similarly, if events occurred just outside the spatial region 𝑋 , they can have
offspring inside 𝑋 , which will not be simulated. This can be avoided by simulating
over a larger space-time window and then only selecting simulated events inside 𝑋
and [0, 𝑇 ). Møller and Rasmussen (2005) developed a perfect simulation algorithm
for temporal Hawkes processeswhich avoids edge effects, but its extension to spatio-
temporal processes remains to be developed.

2.2.4 Asymptotic Normality and Inference

Ogata (1978) demonstrated asymptotic normality of maximum likelihood parameter
estimates for temporal point processes, and showed the covariance converges to the
inverse of the expected Fisher information matrix, suggesting an estimator based on
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the Hessian of the log-likelihood at the maximum likelihood estimate. This estima-
tor has been frequently used for spatio-temporal models in seismology; however,
Wang, Schoenberg, and Jackson (2010), comparing it with sampling distributions
found by repeated simulation, found that standard errors based on the Hessian can
be heavily biased for small to moderate observation period lengths, suggesting the
finite-sample behavior is poor.

Rathbun (1996) later demonstrated that for spatio-temporal point processes, max-
imum likelihood estimates of model parameters are consistent and asymptotically
normal as the observation time 𝑇 → ∞, under regularity conditions on the form
of the conditional intensity function 𝜆(𝑠, 𝑡). An estimator for the asymptotic covari-
ance of the estimated parameters is

Σ̂ = (
𝑛
∑
𝑖=1

Δ(𝑠𝑖 , 𝑡𝑖)
𝜆(𝑠𝑖 , 𝑡𝑖)

)
−1

, (2.13)

where Δ(𝑠𝑖 , 𝑡𝑖) is a matrix-valued function whose entries are

Δ𝑖𝑗(𝑠, 𝑡) =
�̇�𝑖(𝑠, 𝑡)�̇�𝑗(𝑠, 𝑡)

𝜆(𝑠, 𝑡)

and �̇�𝑖(𝑠, 𝑡) denotes the partial derivative of 𝜆(𝑠, 𝑡)with respect to the 𝑖th parameter.
From Σ̂we can deriveWald tests of parameters of interest, and by inverting the tests
we can obtain confidence intervals for any parameter.

Rather than relying on asymptotic normality, another approach is the paramet-
ric bootstrap, which has been used for temporal point process models in neuro-
science (Sarma et al., 2011). The parametric bootstrap, though computationally in-
tensive, is conceptually simple:

Algorithm 2.6. Using the parameter values Θ̂ from a previously fitted model, and
starting with 𝑖 = 1:

1. Using a simulation algorithm from Section 2.2.3, simulate a new dataset in
the same spatio-temporal region.

2. Fit the same model to this new data, obtaining new parameter values Θ̂(𝑖).

3. Repeat steps 1 and 2 with 𝑖 = 𝑖 + 1, up to some pre-specified number of simu-
lations 𝐵 (e.g 1000).

(Alternately, the algorithm can be adaptive, by checking the confidence inter-
vals after every 𝑏 steps and stopping when they seem to have converged.)
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2.2. Estimation and Inference

4. Calculate bootstrap 95% confidence intervals for each parameter by using the
2.5% and 97.5% quantiles of the estimated Θ̂(𝑖).

This is straightforward to implement, relies on minimal assumptions, and is
asymptotically consistent in some circumstances. However, just as asymptotically
normal standard errors may be biased for finite sample sizes, the bootstrap has no
performance guarantees for small samples. Wang et al. (2010) tested neither the
parametric bootstrap nor the estimator of Rathbun (1996) in their simulations, so no
direct comparison is possible here, and those intending to use the bootstrap should
test its performance in simulation.

It is sometimes desirable to estimate only a subset of the parameters in a model,
either because full estimation is intractable or because some covariates are unknown.
Dropping terms from the conditional intensity results in a partial likelihood, and
parameter estimates obtained by maximizing the partial likelihood may differ from
those obtained from the complete likelihood. Schoenberg (2016) explored the cir-
cumstances under which the parameter estimates are not substantially different,
finding that partial likelihood estimates are identical under assumptions about the
separability of the omitted parameters, and are still consistent in more general ad-
ditive models under assumptions that the omitted parameters have relatively small
effects on the intensity. In either case, the maximum partial likelihood estimates
still have the asymptotic normality properties discussed above.

2.2.5 Bayesian Approaches

Rasmussen (2013) introduced two methods for Bayesian estimation for self-exciting
temporal point processes: direct Markov Chain Monte Carlo (MCMC) on the like-
lihood, using Metropolis updates within a Gibbs sampler, and a method based on
the cluster process structure of the process. Loeffler and Flaxman (2017) recently
adapted MCMC to fit a version of the self-exciting crime model discussed in Sec-
tion 2.3.2, using the Stan modeling language (Stan Development Team, 2016) and
Hamiltonian Monte Carlo to obtain samples from the posteriors of the parame-
ters. Ross (2016), however, working with the seismological models discussed in
Section 2.3.1, argued that direct Monte Carlo methods are impractical: a sampling
method involving repeated rejection requires evaluating the likelihood many times,
an 𝑂(𝑛2) operation, and the strong correlation of some parameters can make con-
vergence difficult.

Instead, building on the cluster process method suggested by Rasmussen (2013),
Ross (2016) proposed taking advantage of the same latent variable formulation in-
troduced for maximum likelihood in Section 2.2.1. If the latent 𝑢𝑖s are known for
all 𝑖, events in the process can be partitioned into 𝑁 + 1 sets 𝑆0, … , 𝑆𝑁 , where

𝑆𝑗 = {𝑡𝑖 ∣ 𝑢𝑖 = 𝑗}, 0 ≤ 𝑗 < 𝑁 .
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Events in each set 𝑆𝑗 can be treated as coming from a single inhomogeneous Pois-
son process, with intensity proportional to the triggering function 𝑔 (or to 𝜇(𝑠), for
𝑆0). This allows the log-likelihood to be partitioned, reducing dependence between
parameters and dramatically improving sampling performance. The algorithm now
involves sampling 𝑢𝑖 (using the probabilities defined in eqs. (2.9)–(2.10)), then using
these to sample the other parameters, in a procedure very similar to the expectation
maximization algorithm for these models.

2.2.6 Model Selection and Diagnostics

In applications, model selection is usually performed using the Akaike information
criterion (AIC) or related criteria like the Bayesian information criterion (BIC) and
the Hannan–Quinn criterion. J. Chen, Hawkes, Scalas, and Trinh (2017) compared
the performance of these methods in selecting the correct model in a range of set-
tings and sample sizes, finding AICmore effective in small samples and less in larger
samples. A variety of tests and residual plots are available for evaluating the fit of
spatio-temporal point process models. Bray and Schoenberg (2013) provide a com-
prehensive review focusing on earthquake models; I will give a brief summary here.

First, we observe that any process characterized by its conditional intensity
𝜆(𝑠, 𝑡)may be thinned to obtain a homogeneous Poisson process (Schoenberg, 2003),
allowing examination of the fit of the spatial component of the model. We define
𝑏 = inf𝑠,𝑡 𝜆(𝑠, 𝑡), and for each event 𝑖 in the observed process, calculate the quantity

𝑝𝑖 =
𝑏

𝜆(𝑠𝑖 , 𝑡𝑖)
.

Retain event 𝑖 with probability 𝑝𝑖 . If this is done with an estimated intensity �̂�(𝑠, 𝑡)
from the chosen model, the thinned process (now ignoring time) will be Poisson
with rate 𝑏, and can be examined for homogeneity, for example with the 𝐾 -function
(Ripley, 1977), which calculates the proportion of events per unit area which are
within a given distance. This will detect if the thinned process still has clustering
not accounted for by the model.

If 𝑏 is small, the thinned process will contain very few events, making the test
uninformative. Clements, Schoenberg, and Veen (2012) propose to solve this prob-
lem with “super-thinning”, which superimposes a simulated Poisson process. We
choose a rate 𝑘 for the super-thinned process, such that 𝑏 ≤ 𝑘 ≤ sup𝑠,𝑡 𝜆(𝑠, 𝑡), and
thin with probabilities

𝑝𝑖 = min { 𝑘
𝜆(𝑠𝑖 , 𝑡𝑖)

, 1} .
We add to the thinned process a simulated inhomogeneous Poisson process with
rate max{𝑘 − 𝜆(𝑠, 𝑡), 0}. The sum process is, if the estimated model is correct, homo-
geneous with rate 𝑘.
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Graphical diagnostics are also available. For purely spatial point processes, Bad-
deley, Turner, Moller, and Hazelton (2005) developed a range of residual diagnostic
tools to display differences between the fitted model and the data, demonstrating
further properties of these residuals in Baddeley, Møller, and Pakes (2007) and Bad-
deley, Rubak, and Møller (2011). Zhuang (2006) showed these tools could be ex-
tended directly to spatio-temporal point processes, producing residual maps which
display the difference between the predicted number of events and the actual num-
ber, over grid cells or some other division of space. Bray, Wong, Barr, and Schoen-
berg (2014) argued that a grid is a poor choice: if grid cells are small, the expected
number of events per cell is low and the distribution of residuals is skewed, but if
grid cells are large, over- and under-prediction within a single cell can cancel out.
Instead, they proposed using the Voronoi tesselation of space: for each event lo-
cation 𝑠𝑖 , the corresponding Voronoi cell consists of all points that are closer to 𝑠𝑖
than to any other event. This generates a set of convex polygons. By integrating
the conditional intensity over a reasonable unit of time and over each Voronoi cell,
we obtain a map of expected numbers of events, which we can subtract from the
true number in each cell (which is 1 by definition). This produces a map which can
be visually examined for defects in prediction.

As an example, Fig. 2.3 is a Voronoi residual map of the self-exciting point pro-
cess previously shown in Fig. 2.2, produced following the procedure suggested by
Bray et al. (2014). A model was fit to the simulated point process data that does not
account for the inhomogeneous background process, instead assuming a constant
background rate, and a spatial pattern in the residuals is apparent, with positive
residuals (more events than predicted) in areas where the background rate is higher
and negative residuals outside those areas.

2.3 Applications

This section will review four major applications of self-exciting point processes:
earthquake models, crime forecasting, epidemic infection forecasting, and events
on networks. This is by no means an exhaustive list—self-exciting point process
models have been applied to problems as disparate as wildfire occurrence (Peng,
Schoenberg, & Woods, 2005) and civilian deaths in Iraq (E. Lewis, Mohler, Branting-
ham, & Bertozzi, 2011). The selected applications illustrate the features that make
self-exciting point processes valuable: parameters of the triggering function 𝑔 have
important physical interpretations and can be used to test scientific hypotheses
about the event triggering process, while the background 𝜇 flexibly incorporates
spatial and temporal covariates whose effects can be estimated. Purely descriptive
methods, or methods such as log-Gaussian Cox processes, do not permit the same
inference about the event triggering process.
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Figure 2.3: A Voronoi residual map of the self-exciting point process shown in
Fig. 2.2. The model was fit assuming a constant background intensity and does
not account for the inhomogeneous rate, leading to positive residuals in the center
area and negative residuals outside. Residual values are standardized according to
an approximate distribution given by Bray, Wong, Barr, and Schoenberg (2014).

2.3.1 Earthquake Aftershock Sequence Models

After a large earthquake, a sequence of smaller aftershocks is typically observed
in the days and weeks afterwards, usually near the epicenter of the main shock
(Freed, 2005). These tremors are triggered by the seismic disturbance of the main
shock, and the distribution of their magnitudes and arrival times has proven to be
relatively consistent, allowing the development of models for their prediction and
analysis.

Sequences of earthquakes and aftershocks show rich behavior, such as spatial
and temporal clustering, complex spatial dependence, and gradual shifts in overall
seismicity. Self-exciting point processes are a natural choice to model this behavior,
as they can directly capture spatio-temporal aftershock triggering behavior and can
incorporate temporal trends and spatial inhomogeneity. The Epidemic-Type After-
shock Sequence (ETAS) model, developed and expanded over several decades, pro-
vides a flexible foundation for modeling this behavior, and has been widely applied
to earthquake sequences in Japan, California, and elsewhere. A comprehensive re-
view is provided by Ogata, 1999.
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The initial ETAS model was purely temporal, modeling the rate of earthquakes
at time 𝑡 as a superposition of a constant rate of background seismicity and of after-
shocks triggered by these background events:

𝜆(𝑡) = 𝜇 + ∑
𝑖∶𝑡𝑖<𝑡

𝐾𝑖
(𝑡 − 𝑡𝑖 + 𝑐)𝑝

Here 𝜇 is the background seismic activity rate and 𝐾𝑖 is related to the recorded
magnitude 𝑀𝑖 of earthquake 𝑖 by the relationship

𝐾𝑖 = 𝐾0𝑒𝛼(𝑀𝑖−𝑀0),
where 𝑀0 is the minimum magnitude threshold for earthquakes to be recorded in
the dataset, and 𝐾0, 𝛼 , and 𝑝 are constants. Earthquake magnitudes are treated
as unpredictable marks. The functional form of the triggering function, known as
the modified Omori formula, was determined empirically by studies of aftershock
sequences.

The temporal ETAS model was soon extended to a spatio-temporal model of the
form in eq. (2.2). A variety of triggering functions 𝑔 were used, ranging from bi-
variate normal kernels to more complicated exponential decay functions and power
laws; some triggering functions allow the range of spatial influence to depend on
the earthquake magnitude. The inhomogeneous background 𝜇(𝑠), which represents
spatial differences in fault structure and tectonic plate physics, can be obtained by
a simple kernel density estimate (Musmeci & Vere-Jones, 1992) or by the stochastic
declustering methods discussed in Section 2.2.2.

Zhuang et al. (2004) demonstrated that stochastic declustering can be used to
test model assumptions. They applied the ETAS model and stochastic declustering
to a catalog of 19,139 earthquakes compiled by the Japanese Meteorological Agency,
then used the declustered data to test assumptions typically used in modeling earth-
quakes; for example, the distribution of earthquake magnitudes is assumed to be the
same for main shocks and aftershocks, and both mainshocks and aftershocks trigger
further aftershocks with the same spatial and temporal distribution. By identifying
main shocks and aftershocks and connecting them with their offspring, it was pos-
sible to test each assumption, finding that some do not hold and leading to a revised
model (Ogata & Zhuang, 2006).

Further, by using AIC, different triggering functions have been compared to im-
prove understanding of the underlying triggering mechanisms. For example, spa-
tial power law triggering functions were found more effective than normal kernels,
suggesting aftershocks can be triggered at long ranges, and the rate of aftershock
triggering depends on the magnitude of the mainshock. This has led to improved
earthquake forecasting algorithms based on the ETAS model (Zhuang, 2011). Harte
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(2012) explored the effects of model misspecification and boundary effects on model
fits, finding that a good fit for the background component is also essential, as a poor
background fit tends to bias the model to consider background events as triggered
events instead, overestimating the rate of triggering and the expected number of
offspring events, 𝑚.

Some research suggests that the parameters of the ETAS model are not spatially
homogeneous, and that a more realistic model would allow the parameters to vary
in space. Ogata, Katsura, and Tanemura (2003) introduced a method which allows
parameters to vary in space, linearly interpolated between values defined at the
corners of a Delaunay triangulation of the space defined by the earthquake locations.
To ensure spatial smoothness in these values, a smoothness penalty term was added
to the log-likelihood. Nandan, Ouillon, Wiemer, and Sornette (2017) took a similar
approach, partitioning the region𝑋 drawing 𝑞 points uniformly at randomwithin𝑋 ,
obtaining the Voronoi tesselation, and allowing each Voronoi cell to have a separate
set of parameters. No spatial smoothness was imposed, and the number of points 𝑞
was selected via BIC.

Similar concerns apply to temporal nonstationarity. Kumazawa andOgata (2014)
considered two approaches to model changes in parameters over time: a change-
point model, in which parameters are fitted separately to events before and after a
suspected change point, and a continuously varyingmodel in which several parame-
ters, including the triggering rate, were assumed to be first-order spline functions in
time. Temporal smoothness was enforced with a penalty term in the log-likelihood,
and AIC was used to compare the fits in series of earthquakes recorded in Japan,
finding evidence of nonstationarity in an earthquake swarm.

2.3.2 Crime Forecasting

After the development of ETAS models, Mohler, Short, Brantingham, Schoenberg,
and Tita (2011) drew an analogy between aftershock models and crime. Criminolo-
gists have demonstrated that near-repeat victimization is common for certain types
of crime—for example, burglars often return to steal from the same area repeatedly
(Bernasco, Johnson, & Ruiter, 2015; Short, D’Orsogna, Brantingham, & Tita, 2009;
Townsley, Homel, & Chaseling, 2003), and some shootings may cause retaliatory
shootings soon after (Loeffler & Flaxman, 2017; Ratcliffe & Rengert, 2008), typically
within just a few hundred meters. These can be treated as “aftershocks” of the orig-
inal crime.

Similarly, several criminological theories suggest the background rate of crime
can be expected to widely vary by place. Routine activities theory (L. E. Cohen &
Felson, 1979) states that criminal acts require three factors to occur together: likely
offenders, suitable targets, and the absence of capable guardians. These factors vary
widely in space depending on socioeconomic factors, business and residential de-
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velopment, and the activities of police or other guardians (e.g. vigilant neighbors).
Rational choice theory (Clarke & Cornish, 1985) considers criminals making ratio-
nal decisions to commit offenses based on the risks and rewards they perceive—and
the availability of low-risk high-reward crime varies in space. Weisburd (2015), us-
ing crime data across several cities, argued for a law of crime concentration, stating
that a large percentage of crime occurs within just a few percent of street segments
(lengths of road between two intersections) in a given city. Bolstering this, Gorr and
Lee (2015) demonstrated that a policing program based on both chronic hot spots
and temporary flare-ups can be more effective than a program based on only one
or the other.

These theories suggest a model of crime that assumes the conditional intensity
of crime occurrence can be divided into a chronic background portion, which may
vary in space depending on a variety of factors, and a self-exciting portion which
accounts for near-repeats and retaliations (Mohler et al., 2011):

𝜆(𝑠, 𝑡) = 𝜈(𝑡)𝜇(𝑠) + ∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖),

where 𝑔 is a triggering function and 𝜈(𝑡) reflects temporal changes from weather,
seasonality, and so on. Initially, 𝜈 , 𝜇, and 𝑔 were determined nonparametrically fol-
lowingAlgorithm 2.1, thoughweighted kernel density estimationwas too expensive
to perform on the full dataset of 5,376 residential burglaries, so they modified the
algorithm to subsample the dataset on each iteration. An alternate approach, requir-
ing no subsampling, would be to use a fast approximate kernel density algorithm to
reduce the computational cost (Gray & Moore, 2003).

Mohler (2014) introduced a parametric approach intended to simplify model fit-
ting and also incorporate “leading indicators”—other crimes or events which may
be predictive of the crime of interest. In a model forecasting serious violent crime,
for example, minor offenses like disorderly conduct and public drunkenness have
proven useful in predictions, since they may reflect behavior that will escalate into
more serious crime (J. Cohen et al., 2007). The intensity is simplified to make the
background constant in time (𝜈(𝑡) = 1), and to incorporate leading indicators, the
background is based on a weighted Gaussian kernel density estimate, in which
𝜈(𝑡) = 1 and

𝜇(𝑠) =
𝑛
∑
𝑖=1

𝛼𝑀𝑖
2𝜋𝜂2𝑇 exp (−‖𝑠 − 𝑠𝑖‖2

2𝜂2 ) ,

where 𝑇 is the length of the time window encompassed by the dataset, 𝑠𝑖 and 𝑡𝑖 the
location and time of crime 𝑖,𝑀𝑖 is a mark giving the type of crime 𝑖 (where𝑀𝑖 = 1 by
convention for the crime being predicted), and 𝛼 is a vector of weights determining
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the contribution of each event type to the background crime rate. The sum is over all
crimes, avoiding the additional computational cost of stochastic declustering. The
marks are treated as unpredictable, and only the ground process is estimated, not
the conditional distribution of marks.

Similarly to 𝜇(𝑠), the triggering function 𝑔 is Gaussian in space with an expo-
nential decay in time:

𝑔(𝑠, 𝑡, 𝑀) = 𝜃𝑀
2𝜋𝜔𝜎2 exp(−𝑡/𝜔) exp (− ‖𝑠‖

2

2𝜎2) .

𝜃 performs a similar function to 𝛼 , weighting the contribution of each type of crime
to the conditional intensity. The bandwidth parameters 𝜎2 and 𝜂2 determine the
spatial influence of a given crime type, while 𝜔 determines how quickly its effect
decays in time. In principle, different spatial and temporal decays could be allowed
for each type of crime, but this would dramatically increase the number of parame-
ters.

Mohler (2014) fit the parameters of this model on a dataset of 78,852 violent
crimes occurring in Chicago, Illinois between 2007 and 2012. The crime of interest
was homicide, using robberies, assaults, weapons violations, batteries, and sexual
assaults as leading indicators. The resulting model was used to identify “hotspots”:
small spatial regions with unusually high rates of crime. Previous research has
suggested that directing police patrols to hotspots can produce measurable crime re-
ductions, with results varying by the type of policing intervention employed (Braga,
Papachristos, & Hureau, 2014). To test the self-exciting model’s effectiveness in this
role, Mohler (2014) compared its daily predictions to true historical records of crime,
finding that it outperforms methods that consider only fixed hotspots (equivalent
to setting 𝜃𝑖 = 0 for all 𝑖) and those that only consider near-repeats (𝛼𝑖 = 0 for all 𝑖).
2.3.3 Epidemic Forecasting

Forecasting of epidemics of disease, such as influenza, typically rely on time series
data of infections or infection indicators (such as physician reports of influenza-like
illness, without laboratory confirmation), and hence often rely on time series mod-
eling or compartment models, such as the susceptible–infectious–recovered model
(Nsoesie, Brownstein, Ramakrishnan, & Marathe, 2013). This data does not typi-
cally include the location and time of individual infections, instead containing only
aggregate rates over a large area.

When individual-level data is available, however, point processes can model the
clustered nature of infections. Spatial point processes have beenwidely used for this
purpose (Diggle, 2014, chapter 9), and when extended to spatio-temporal analysis,
self-exciting point processes are a natural choice, with excitation representing the
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transmission of disease. Again following the ETAS literature, Meyer et al. (2012)
introduced a self-exciting spatio-temporal point process model adapted for predict-
ing the incidence of invasive meningococcal disease (IMD), a form of meningitis
caused by the bacterium Neisseria meningitidis, which can be transmitted between
infected humans and sometimes forms epidemics. Unaffected carriers can retain
the bacterium in their nasopharynx, suggesting that observed cases of IMD can be
divided into “background” infections, transmitted from an unobserved carrier to a
susceptible individual, and triggered infections transmitted from this individual to
others.

In a dataset of 636 infections observed in Germany from 2002–2008, each in-
fection’s time, location (by postal code), and finetype (strain) was recorded. The
model includes unique features: rather than empirically estimating the background
function, it is composed of a function of population density and of a vector of co-
variates (in this case, the number of influenza cases in each district of Germany,
hypothesized to be linked to IMD). The resulting conditional intensity function is

𝜆(𝑠, 𝑡) = 𝜌(𝑠, 𝑡) exp (𝛽′𝑧(𝑠, 𝑡))
+ ∑
𝑗∈𝐼 ∗(𝑠,𝑡)

𝑒𝜂𝑗𝑔(𝑡 − 𝑡𝑗)𝑓 (‖𝑠 − 𝑠𝑗 ‖),

where 𝐼 ∗(𝑠, 𝑡) is the set of all previous infections within a known fixed distance 𝛿
and time 𝜖. Here 𝜌(𝑠, 𝑡) represents the population density, 𝑧(𝑠, 𝑡) the vector of spatio-
temporal covariates, and 𝜂𝑗 = 𝛾0+𝛾 ′𝑚𝑗 , where𝑚𝑗 is a vector of unpredictable marks
on each event, such as the specific strain of infection. The spatial triggering function
𝑓 is a Gaussian kernel, and the temporal triggering function 𝑔 is assumed to be a
constant function, as there were comparatively few direct transmissions of IMD in
the dataset from which to estimate a more flexible function.

The results were promising, showing that the self-exciting model can be used
to estimate the epidemic behavior of IMD.The unpredictable marks𝑚𝑗 included pa-
tient age and the finetype (strain) of bacterium responsible. Comparisons between
finetypes revealed which has the greatest epidemic potential, and the age coefficient
allowed comparisons of the spread behavior between age groups.

Meyer and Held (2014) then proposed to replace 𝑓 with a power law function,
previously found to better model the long tails in the movement of people (Brock-
mann, Hufnagel, & Geisel, 2006). Using the asymptotic covariance estimator given
in eq. (2.13), they also produced confidence intervals for their model parameters,
though without verifying the necessary regularity assumptions on the conditional
intensity function (Meyer, 2010, section 4.2.3). A similar modeling approach was
used to test if psychiatric hospital admissions have an epidemic component, via a
permutation test for the parameters of the epidemic component of themodel (Meyer,
Warnke, Rössler, & Held, 2016).
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Schoenberg, Hoffman, and Harrigan (2017) introduced a recursive self-exciting
epidemic model in which the expected number of offspring 𝑚 of an event is not
constant but varies as a function of the conditional intensity, intended to account for
the natural behavior of epidemics: when little of the population has been exposed
to the disease, the rate of infection can be high, but as the disease becomes more
prevalent, more people have already been exposed and active prevention measures
slow its spread. The model takes the form

𝜆(𝑠, 𝑡) = 𝜇 + ∫𝑋 ∫
𝑡

0
𝐻 (𝜆(𝑠′, 𝑡′)) 𝑔(𝑠 − 𝑠′, 𝑡 − 𝑡′) d𝑁(𝑠′, 𝑡′),

where 𝑔 is a chosen triggering function and 𝐻 is the productivity function, determin-
ing the rate of infection stimulated by each event as a function of its conditional in-
tensity. Schoenberg et al. (2017) took 𝐻(𝑥) = 𝜅𝑥−𝛼 , with 𝜅 > 0, to model decreasing
productivity, and fit to a dataset of measles cases in Los Angeles, California with
maximum likelihood to demonstrate the effectiveness of the model.

2.3.4 Events on Social Networks

The models discussed so far have considered events in two-dimensional space (e.g.
latitude and longitude coordinates of a crime or infection). Recently, however, self-
exciting point processes have been extended to other types of events, including
events taking place on social networks.

Fox, Short, Schoenberg, Coronges, and Bertozzi (2016) considered a network of
officers at the West Point Military Academy. Each officer is a node on the network,
and directed edges between officers represent the volume of email sent between
them. Fox, Short, et al. (2016) developed several models, the most general of which
models the rate at which officer 𝑖 sends email as

𝜆𝑖(𝑡) = 𝜈𝑖𝜇(𝑡) +∑
𝑗

∑
𝑟 𝑖𝑗𝑘 <𝑡

𝜃𝑖𝑗𝜔𝑖𝑒−𝜔𝑖(𝑡−𝑟 𝑖𝑗𝑘 ).

Here 𝑟 𝑖𝑗𝑘 represents the time of the 𝑘th message sent from officer 𝑗 to officer 𝑖, 𝜔𝑖 is
a temporal decay effect for officer 𝑖, and 𝜃𝑖𝑗 models a pairwise reply rate for officer
𝑖’s replies to officer 𝑗. The background rate 𝜇(𝑡) is allowed to vary in time to model
time-of-day and weekly effects, with a offset 𝜈𝑖 for each officer. The model is fit by
expectation maximization and standard errors found by parametric bootstrap.

Zipkin, Schoenberg, Coronges, and Bertozzi (2015) considered the same dataset,
but instead of modeling a self-exciting process for each officer, they assigned one to
each edge between officers, which enabled them to develop methods for a missing-
data problem: can the sender or recipient be inferred if one or both are missing from
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a givenmessage? The self-excitingmodel had promising results, and they suggested
a possible application in inferring participants in gang violence.

Taking an alternate approach, Green, Horel, and Papachristos (2017) modeled
the contagion of gun violence through social networks in Chicago. The network
nodes were all individuals who had been arrested by Chicago police during the
study period, connected by edges for each pair of individuals who had been arrested
together, assumed to indicate strong pre-existing social ties. Rather than predicting
the rate on edges, as Fox, Short, et al. (2016) did, this studymodeled the probability of
each individual being a victim of a shooting as a function of seasonal variations (the
background) and social contagion of violence, as the probability of being involved
in a shooting is assumed to increase if someone nearby in the social network was
recently involved as well.

This is formalized in the conditional intensity for individual 𝑘,

𝜆𝑘(𝑡) = 𝜇(𝑡) +∑
𝑡𝑖<𝑡

𝜙𝑘𝑖 ,𝑘(𝑡 − 𝑡𝑖),

where 𝜇(𝑡) represents seasonal variation and the self-excitation function 𝜙𝑘𝑖 ,𝑘 is
composed of two pieces, a temporal decay 𝑓𝛽(𝑡) and a network distance 𝑔𝛼 (𝑢, 𝑣):

𝑓𝛽(𝑡) = 𝛽𝑒−𝛽𝑡

𝑔𝛼 (𝑢, 𝑣) = {𝛼 dist(𝑢, 𝑣)−2 when dist(𝑢, 𝑣) ≤ 3
0 otherwise

𝜙𝑢,𝑣(𝑡) = 𝑓𝛽(𝑡)𝑔𝛼 (𝑢, 𝑣),

where dist(𝑢, 𝑣) is the minimum distance (number of edges) between nodes 𝑢 and
𝑣 . The model was fit numerically via maximum likelihood, and a form of declus-
tering performed by attributing each occurrence of violence to the larger of the
background 𝜇(𝑡) or the sum of contagion from previous events, rather than using a
stochastic declustering method as discussed in Section 2.2.2.

2.4 Summary

This chapter introduced self-exciting point process models and their varied appli-
cations. Next, Chapter 3 introduces a new model adapted for the spatio-temporal
modeling of crime, extending the models discussed in Section 2.3.2.
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Three

The Extended Model

Ourmodel builds on themodel introduced byMohler (2014), discussed in Section 2.3.2.1
Mohler’s model used a nonparametric estimate of the background intensity by us-
ing observed crime data. Instead, we would like to incorporate relevant spatial
covariates, like population density, poverty rates, socioeconomic and demographic
variables, and attractors of crime like pawn shops and liquor stores, so we may es-
timate their effects on local crime rates while also accounting for self-excitation. In
this chapter we introduce our revised crime model incorporating these features.

3.1 Why Not Just Use Regression?

Before I get into the details, I should answer a fairly simple question: why is a full
self-exciting point process model with covariates necessary? Methods like Risk Ter-
rain Modeling (Kennedy et al., 2010; Kennedy et al., 2015) use regression methods
to predict the number of crimes in an area using spatial covariates, and a straight-
forward Poisson regression seems adequate for the task.

However, in the presence of self-excitation, spatial regression cannot accurately
estimate covariate effects. There is an intuitive explanation for this: if some crimes
trigger other crimes, for example by causing retaliation, the point process will ex-
hibit additional clustering which is not accounted for by the covariates, and more
events than can be explained by the covariates. In attempting to fit a model which
does not include self-excitation, we will naturally obtain biased results.

A simulation demonstrates this effect. I simulated events occurring on a spatial
grid, using the self-exciting point process model defined in the next section, with
two spatial covariates which varied separately over the grid (shown in Figure 3.1).
The amount of self-excitation varied from crimes never triggering other crimes to
crimes nearly always triggering another crime. The simulated crimes were then

1Portions of this chapter have been published as Reinhart and Greenhouse (2018). Self-exciting
point processes with spatial covariates: modelling the dynamics of crime. Journal of the Royal Statis-
tical Society: Series C. doi:10.1111/rssc.12277
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3. the extended model

Figure 3.1: Two covariates were used in the simulation: a hamster eating a Cheez-It,
and Alessandro Rinaldo (right). Values were obtained by extracting the grayscale
brightness value of each pixel. Each is 66 × 60 pixels, each pixel representing a grid
cell.
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Figure 3.2: As the amount of self-excitation increases from 0 crimes triggered to
1 crime triggered for every observed crime, spatial Poisson regression coefficients
gradually become more and more biased.

gridded and a Poisson generalized linear regressionmodel fit to the counts of crimes
in each grid cell. I compared the regression coefficients obtained in this model fit to
the true coefficients I set in the simulation.

The results are shown in Figure 3.2. As the amount of self-excitation increases,
the regression coefficients become more and more systematically biased. The in-
tercept, 𝛽0, increases to account for the additional crimes; the covariate coefficient
𝛽1 decreases from its true value of 4.8, and 𝛽2 increases from its true value of −2.3.

40



3.1. Why Not Just Use Regression?

Figure 3.3: Two synthetic covariates. The covariates have value 1 in the white areas
and zero elsewhere. The covariate on the left has a true coefficient of zero in the
simulations, while the covariate on the right has a positive true effect. The spatial
decay distance is 𝜎 = 5 pixels, so the effect of the right covariate spreads to the
area of the left covariate.

Notably, this means both covariate coefficients shrink towards zero in the presence
of self-excitation, and the magnitude of this effect is large compared with their ab-
solute size.

In certain circumstances, self-excitation can cause increases in coefficients in-
stead of decreases. For example, Figure 3.3 shows two synthetic spatial covariates.
One is nonzero in a center square, the other in a ring around that square. Only the
first covariate has a true nonzero coefficient, but because the clustering produces
crimes outside the square, its effect “leaks” to the outer ring, causing the second
covariate to appear to have a positive coefficient, as shown in the simulation results
in Figure 3.4.

A commonway to avoid these problems is to regress with lags. Figure 3.5 shows
the results of simulations in which events were simulated over two months, using
the covariates shown in Figure 3.1, and counts taken for every five-day period in
the interval. Along with the spatial covariates, the counts from the previous three
periods were also included as covariates, potentially allowing the Poisson regres-
sion to account for self-excitation. The temporal decay constant was 𝜔 = 10 d, so
the three lags should have accounted for most of the self-excitation. Nonetheless,
Figure 3.5 still shows the bias effect for high values of 𝜃 , only slightly less bias than
in the previous simulation without lags.

This is likely because lagged counts within each grid cell are not sufficient to
account for self-excitation, since events triggered by a crime in one cell may occur
in other nearby cells. Further simulations demonstrate that if the self-excitation
is forced to always trigger events within the same grid cell, the bias does indeed
decrease, but is not eliminated, suggesting that a simple linear dependence on past
lags is insufficient to account for the self-excitation. Further, if triggered events are
known to occur within a certain distance 𝑑 , we would want to include as covariates
the lagged counts of events in all grid cells within distance 𝑑 , so their effect could
also be accounted for. But because regression provides no direct way to estimate 𝑑 ,
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Figure 3.4: As the amount of self-excitation increases, the coefficient 𝛽1 (the left
covariate in Figure 3.3) increases from zero, despite its true value being zero. 𝛽2
shrinks toward zero for the same reason as in Figure 3.2.

we do not know which lagged counts must be included and must err on the side of
including too many.

This bias effect is generic and does not depend on the choice of regression model
or the form of the self-excitation. (A similar effect would occur if crime suppressed
future crime, instead of stimulating it.) We can see this more clearly in the causal
diagram presented in Figure 3.6, which presents a simplified situation in which we
observe crime in a grid cell 𝑖 at two times, 𝑡 and 𝑡 − 1. A crime at 𝑡 may be caused
by a crime at 𝑡 − 1, or may be caused by two separate covariates. Crucially, because
there is a causal path from the covariates through 𝑡 − 1 to 𝑡 , estimates of the direct
effect of the covariates on crime at 𝑡 are confounded unless the crime at 𝑡 − 1 is
observed and controlled for.

By using a point process model which explicitly accounts for both covariates
and self-excitation, and does not require arbitrary aggregation of data into grid cells
and hence avoids the Modifiable Areal Unit Problem mentioned in Chapter 2, we
can avoid the biases shown above and more explicitly model each component of
the underlying process, including directly estimating the self-excitation distance
and time decay.
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Figure 3.5: By including counts in three previous five-day windows as covariates,
the Poisson regression model can attempt to account for self-excitation. However,
the bias as 𝜃 increases is still present, only slightly reduced from Figure 3.2.

Crime in 𝑖 at 𝑡Crime in 𝑖 at 𝑡 − 1

Covariate 1

Covariate 2

Figure 3.6: A simplified causal diagram of crime observed in a grid cell 𝑖 at two times,
𝑡 and 𝑡 − 1, when there are two covariates which may affect the rate of crime.
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3.2 Why Not Knox?

We can also ask a related question: when analyzing near-repeat behavior in crime
data, why not simply use the Knox test for spatio-temporal clustering? The Knox
test (Knox, 1964) is conceptually simple: the statistician selects a threshold distance
Δ𝑠 and threshold time Δ𝑡 , and counts all pairs of events which are within this dis-
tance and time of each other. This test statistic is compared against a null distribu-
tion, obtained by Monte Carlo by permuting the times of all events, to produce a
𝑝 value, testing whether the spatio-temporal clustering is stronger than expected
by chance. There can be false positive problems if the background event rate varies
over time in small areas (Ornstein & Hammond, 2017), which induces apparent clus-
ters which are not actually self-exciting, but the test seems otherwise sound.

In numerous criminological applications, the range of self-excitation—the dis-
tance over which the influence of a recent crime spans—has been determined by se-
lecting various thresholds Δ𝑠 and determining at which distance the Knox 𝑝 value is
no longer statistically significant. Sometimes this involves a variation of the Knox
test in which pairs are binned into discrete categories of distance and time, such
as pairs within 100m, 200m, and so on (S. D. Johnson et al., 2007; Townsley et al.,
2003).

Regardless, these variations suffer from a common flaw. Determining the range
of self-excitation by determining which Knox test is significant is, in fact, merely a
determination of whether the sample size is sufficiently large enough to give power
to reject the null. If the range of self-excitation is Δ𝑠 = 1 in some arbitrary unit,
excess clustering should be observed in a Knox test done with a threshold of Δ𝑠 = 10
provided the sample size is large enough. This is illustrated in Figure 3.7, which
shows the results of simulations done with the same self-excitation distance and
increasing sample sizes, using different Knox cutoffs. Short distance cutoffs have the
highest power, but as the sample size increases, longer cutoffs gain power, making
the self-excitation distance appear to be longer.

A similar problem occurs for efforts to find the self-excitation time Δ𝑡 by succes-
sive Knox tests. Because the null hypothesis is false for all values of Δ𝑡 , significance
at each chosen cutoff reflects only the statistical power of the test, not the actual
self-excitation range. Self-excitation must be directly modeled and fit to data to
understand its dynamics and parameters.

3.3 Adding Covariates

We start with the basic conditional intensity form given in (2.2). Our background
function 𝜇(𝑠) will be a log-linear predictor based on covariates. We assume that the
observation domain 𝑋 is divided into cells 𝑐 of arbitrary shape, inside of which a
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Figure 3.7: The power of the Knox test to detect true clustering. The simulated
clustering is on the length scale Δ𝑠 = 1, but we see that as the sample size (length of
time period over which crimes are simulated) increases, the power of the Knox test
to detect clustering at longer length scales increases, leading to false conclusions
about the range of self-excitation.

covariate vector 𝑋𝑐 (including an intercept term) is known. Our model is then

𝜆(𝑠, 𝑡) = exp (𝛽𝑋𝐶(𝑠)) + ∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖 , 𝑀𝑖), (3.1)

where 𝐶(𝑠) is the index of the covariate cell containing 𝑠 and

𝑔(𝑠, 𝑡, 𝑀) = 𝜃𝑀
2𝜋𝜔𝜎2 exp(−𝑡/𝜔) exp (− ‖𝑠‖

2

2𝜎2) ,

as was used by Mohler (2014). We let 𝑔(𝑠, 𝑡, 𝑀) = 0 for 𝑠 < 𝛿 , for an arbitrary short
distance 𝛿 , to prevent crimes which occur at exactly the same location from enticing
the model to converge to 𝜎 = 0.

In principle, this model could be built with covariates which vary continuously
in space, defined by a function𝑋(𝑠). This would increase the generality of themodel.
However, in practice, this generality is not necessary: most socioeconomic, demo-
graphic, or land use variables are observed only in cells such as city blocks, census
blocks, or neighborhoods. As we will see in Section 3.4 and Section 3.5, piecewise
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constant covariates make estimation and simulation computationally tractable, and
so the small loss in generality is worth the substantial gain in practicality.

We may also reasonably ask about the form of the triggering function 𝑔, which
specifies an exponential decay in time and a Gaussian kernel in space. Meyer and
Held (2014), for example, analyzing the spread of infectious disease, proposed a
power law kernel to account for long-range flows of people. Unfortunately, most
alternate spatial kernels make the expectation maximization strategy described in
the next section more difficult, by making analytical maximization on each iteration
impossible. These kernels could still be used, but with the additional computational
cost of numerical maximization.

3.4 Expectation Maximization

The log-likelihood given in (2.8) could be maximized by any numerical optimization
method, but given the natural interpretation of thismodel as amixturemodel, where
crimes arise from a mixture of the static background and self-excited foreground
components of the model, an expectation maximization (EM) approach is simple to
implement and reasonably effective. We use the basic EM approach described in
Section 2.2.1, with a few modifications.

The complete-data log-likelihood, following Section 2.2.1, is

ℓ𝑐(Θ) =
𝑛
∑
𝑖=1

𝟙(𝑢𝑖 = 0)𝛽𝑋𝐶(𝑠)

+
𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝟙(𝑢𝑖 = 𝑗) log (𝑔(𝑠𝑖 − 𝑠𝑗 , 𝑡𝑖 − 𝑡𝑗))

− ∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡,

where Θ is the complete vector of parameters.
We first attack the integral term, which I’ll call 𝐶 . We have

𝐶 = ∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡

= ∫
𝑇

0 ∫𝑋
exp (𝛽𝑋𝐶(𝑠)) + ∑

𝑖∶𝑡𝑖<𝑡

𝜃𝑀𝑖
2𝜋𝜔𝜎2 exp (−(𝑡 − 𝑡𝑖)/𝜔) exp (−

‖𝑠‖2
2𝜎2) d𝑠 d𝑡.
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We split the integral in two. The first portion is

∫
𝑇

0 ∫𝑋
exp (𝛽𝑋𝐶(𝑠)) d𝑠 d𝑡 = 𝑇 ∫𝑋

exp (𝛽𝑋𝐶(𝑠)) d𝑠

= 𝑇 ∑
cells 𝑖

𝐴𝑖 exp(𝛽𝑋𝑖),

where the sum is over covariate cells and 𝐴𝑖 is the area of covariate cell 𝑖. If covari-
ates were not piecewise constant in space, we would have to evaluate the integral
numerically instead, a significant computational cost.

The second portion is more difficult, and requires that we let 𝑋 be all of ℝ2 in-
stead of just the bounding box of the crimes or the jurisdiction. (This means we
neglect boundary effects, which may have consequences at the edge of our jurisdic-
tion. See Section 3.7.) We need not let 𝑇 → ∞, which, as discussed in Section 2.1.4,
harms accuracy more than the approximation of 𝑋 as ℝ2. With this approximation,
we can integrate out:

∫
𝑇

0 ∫𝑋
∑
𝑖∶𝑡𝑖<𝑡

𝜃𝑀𝑖
2𝜋𝜔𝜎2 exp (−(𝑡 − 𝑡𝑖)/𝜔) exp (−

‖𝑠‖2
2𝜎2) d𝑠 d𝑡

= 1
2𝜋𝜔𝜎2 ∑

crimes 𝑖
𝜃𝑀𝑖 ∫

𝑇

𝑡𝑖
exp (−(𝑡 − 𝑡𝑖)/𝜔)∫𝑋

exp (− ‖𝑠‖
2

2𝜎2) d𝑠 d𝑡

≤ 1
𝜔 ∑

crimes 𝑖
𝜃𝑀𝑖 ∫

𝑇

𝑡𝑖
exp (−(𝑡 − 𝑡𝑖)/𝜔) d𝑡

= ∑
crimes 𝑖

𝜃𝑀𝑖 (1 − 𝑒−(𝑇−𝑡𝑖)/𝜔) .

Putting it together, we get

𝐶 ≤ 𝑇 ∑
cells 𝑖

𝐴𝑖 exp(𝛽𝑋𝑖) + ∑
crimes 𝑖

𝜃𝑀𝑖 (1 − 𝑒−(𝑇−𝑡𝑖)/𝜔) ,

where the first sum is over grid cells and the second over all crimes (not just re-
sponse crimes).

This gives us the approximate expected complete-data log-likelihood of

𝔼[ℓ𝑐(Θ)] ≤ ∑
responses 𝑖

(𝑃(𝑢𝑖 = 0)𝛽𝑋𝐶(𝑥𝑖 ,𝑦𝑖) + ∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) log(
𝜃𝑀𝑗

2𝜋𝜔𝜎2 𝑒
−(𝑡𝑖−𝑡𝑗)/𝜔 exp(− 𝑑2𝑖𝑗

2𝜎2)))

− 𝑇 ∑
cells 𝑖

𝐴𝑖 exp(𝛽𝑋𝑖) − ∑
crimes 𝑖

𝜃𝑀𝑖 (1 − 𝑒−(𝑇−𝑡𝑖)/𝜔)

This is what we need to maximize.
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3.4.1 M Step

In the following sections we derive the update rules necessary to perform the M
step of EM, after the E step (calculation of 𝑃(𝑢𝑖 = 𝑗) for all 𝑖, 𝑗, following eqs. (2.9)
and (2.10)) has already been performed.

Covariates

To maximize, consider only the terms that depend on 𝛽 :
𝔼[ℓ𝑐(Θ)] ∝ ∑

responses 𝑖
𝑃(𝑢𝑖 = 0)𝛽𝑋𝐶(𝑥𝑖 ,𝑦𝑖) − 𝑇 ∑

cells 𝑖
𝐴𝑖 exp(𝛽𝑋𝑖)

If we try taking the partial derivative (which is a vector, with respect to each com-
ponent of 𝛽), we obtain:

𝜕 𝔼[ℓ𝑐(Θ)]
𝜕𝛽 = ∑

responses 𝑖
𝑃(𝑢𝑖 = 0)𝑋𝐶(𝑥𝑖 ,𝑦𝑖) − 𝑇 ∑

cells 𝑖
𝐴𝑖𝑋𝑖 exp(𝛽𝑋𝑖)

∑
responses 𝑖

𝑃(𝑢𝑖 = 0)𝑋𝐶(𝑥𝑖 ,𝑦𝑖) = 𝑇 ∑
cells 𝑖

𝐴𝑖𝑋𝑖 exp(𝛽𝑋𝑖).

This cannot be directly solved for 𝛽 , as it is a high-order polynomial in exp(𝛽). How-
ever, the original likelihood expression is convex in 𝛽 and easy to differentiate, so
we use a standard numerical maximization routine to find a maximum on each iter-
ation.

Spatial Decay

For 𝜎2 we extract the only component of the expected log-likelihood which depends
on it:

𝔼[ℓ𝑐(Θ)] ∝ ∑
responses 𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) (log (
𝜃𝑀𝑗

2𝜋𝜔𝜎2) − 𝑑2𝑖𝑗
2𝜎2) .

We take the partial derivative and obtain

𝜕 𝔼[ℓ𝑐(Θ)]
𝜕𝜎2 = ∑

responses 𝑖
∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) ( 𝑑2𝑖𝑗
2𝜎4 − 1

𝜎2) .

Setting this to zero and solving for 𝜎2 yields

0 = ∑
responses 𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) (𝑑2𝑖𝑗 − 2𝜎2)

𝜎2 =
∑responses 𝑖 ∑𝑡𝑗<𝑡𝑖 𝑃(𝑢𝑖 = 𝑗)𝑑2𝑖𝑗
2∑responses 𝑖 ∑𝑡𝑗<𝑡𝑖 𝑃(𝑢𝑖 = 𝑗) .
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Temporal Decay

For 𝜔 we extract three terms from the log-likelihood:

𝔼[ℓ𝑐(Θ)] ∝ ∑
responses 𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) (log (
𝜃𝑀𝑗

2𝜋𝜔𝜎2) − (𝑡𝑖 − 𝑡𝑗)/𝜔)

− ∑
crimes 𝑖

𝜃𝑀𝑖 (1 − 𝑒−(𝑇−𝑡𝑖)/𝜔) .

Taking the partial derivative, we obtain

𝜕 𝔼[ℓ𝑐(Θ)]
𝜕𝜔 = ∑

𝑖
∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) (𝑡𝑖 − 𝑡𝑗
𝜔2 − 1

𝜔) −∑
𝑖
𝜃𝑀𝑖𝑒−(𝑇−𝑡𝑖)/𝜔(𝑡𝑖 − 𝑇)/𝜔2,

which we set to zero and solve to obtain

0 = ∑
𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) ((𝑡𝑖 − 𝑡𝑗) − 𝜔) −∑
𝑖
𝜃𝑀𝑖𝑒−(𝑇−𝑡𝑖)/𝜔(𝑡𝑖 − 𝑇)

𝜔 =
∑𝑖 ∑𝑡𝑗<𝑡𝑖 𝑃(𝑢𝑖 = 𝑗)(𝑡𝑖 − 𝑡𝑗) − ∑𝑖 𝜃𝑀𝑖𝑒−(𝑇−𝑡𝑖)/𝜔(𝑡𝑖 − 𝑇)

∑𝑖 ∑𝑡𝑗<𝑡𝑖 𝑃(𝑢𝑖 = 𝑗) .

Note that we have not actually solved for 𝜔—we simply used the previous version
of 𝜔 on the right-hand side instead of explicitly maximizing, since the maximum
cannot be found analytically here. This was the strategy used by Mohler (2014),
who found that this fixed point iteration approach was adequate for maximizing 𝜔
with less computational difficulty.

Foreground Coefficients

Extracting the terms involving 𝜃 , we obtain

𝔼[ℓ𝑐(Θ)] ∝ ∑
responses 𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) log(𝜃𝑀𝑗 ) − ∑
crimes 𝑖

𝜃𝑀𝑖 (1 − 𝑒−(𝑇−𝑡𝑖)/𝜔) .

Taking the derivative with respect to a chosen 𝜃𝐿, we get the update rule

𝜕 𝔼[ℓ𝑐(Θ)]
𝜕𝜃𝐿

= ∑
responses 𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗)
𝜃𝐿

𝟙(𝑀𝑗 = 𝐿) − ∑
crimes 𝑖

𝟙(𝑀𝑖 = 𝐿) (1 − 𝑒−(𝑇−𝑡𝑖)/𝜔)

0 = 1
𝜃𝐿

∑
responses 𝑖

∑
𝑡𝑗<𝑡𝑖

𝑃(𝑢𝑖 = 𝑗) 𝟙(𝑀𝑗 = 𝐿) − 𝐾𝐿 + ∑
crimes 𝑖

𝟙(𝑀𝑖 = 𝐿)𝑒−(𝑇−𝑡𝑖)/𝜔

𝜃𝐿 =
∑responses 𝑖 ∑𝑡𝑗<𝑡𝑖 𝑃(𝑢𝑖 = 𝑗) 𝟙(𝑀𝑗 = 𝐿)
𝐾𝐿 − ∑crimes 𝑖 𝟙(𝑀𝑖 = 𝐿)𝑒−(𝑇−𝑡𝑖)/𝜔 .
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3.4.2 Termination Criterion

The E and M steps are applied repeatedly until the fit reaches convergence. As
convergence criterion, we calculate the full log-likelihood on every iteration, and
halt when the relative change in log-likelihood is less than 𝜖, which is typically
chosen to be 10−10. Calculating the log-likelihood is not a significant computational
cost if implemented correctly: it depends on the intensity 𝜆(𝑠𝑖 , 𝑡𝑖) at each event 𝑖,
but those intensities are already required for the calculations of 𝑃(𝑢𝑖 = 𝑗) in the E
step, and hence may be re-used to minimize the cost.

3.5 Simulation System

As discussed in Section 2.2.3, a good strategy for simulation is very useful in testing
statistical properties of our model and evaluating its behavior when assumptions
are violated. I implemented a simulation system based on Algorithm 2.5. The co-
variates model makes this particularly fast and efficient, because the background
coefficients are piecewise constant in space, being defined by polygons from cen-
sus block shapes or other administrative divisions. We hence do not need a general
method to simulate from an inhomogeneous Poisson process: background events in
each polygon are simulated from a homogeneous Poisson process, simply by sam-
pling uniformly within the polygon (via rejection sampling). A future improvement
could sample within polygons by triangulating them and directly sampling within
the triangles, avoiding the need for rejection, but this was not deemed necessary for
our purposes, since simulation is already fast for datasets of thousands of events.

I also worked to lower the computational cost. To save on memory allocation
overhead, the size of each new generation of offspring events is calculated in ad-
vance. Each event has a Poisson(𝑚)-distributed number of offspring, so if there are
𝑛 events in the previous generation, the total number of offspring is Poisson(𝑛𝑚).
An array of this size is allocated, and the number of these offspring which come
from each in the previous generation is drawn from a multinomial with appropriate
weights.

The simulation system can simulate from themodel specified by eq. (3.1), but can
also simulate various violations of assumptions: the spatial distribution of offspring
can be 𝑡 with arbitrary degrees of freedom, instead of Gaussian, and their temporal
distribution can be drawn from a Gamma distribution with arbitrary parameters.
The framework is flexible and allows additional distributions to be chosen easily, so
we can test performance under unusual conditions.
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3.6. Fast Dual-Tree Intensities

3.6 Fast Dual-Tree Intensities

The EM algorithm described in Section 3.4 is computationally intensive: on each
iteration, 𝜆(𝑠, 𝑡) must be calculated at each of 𝐾0 crimes, and since each requires a
sum over𝑂(𝐾) crimes, this step takes𝑂(𝐾𝐾0) time. Evenwith intensities calculated
in parallel on an 8-core machine, this step takes a large portion of the time of each
EM iteration.

This is analogous to kernel density estimation, where obtaining an exact kernel
density estimate at each of 𝑁 points requires 𝑂(𝑁 2) operations. Gray and Moore
(2003) observed that it is possible to dramatically reduce computation time in the
kernel density case by computing approximate densities. For any given point 𝑠, most
points contribute very little to the density, because they are too far away in space.
By carefully organizing the data with a space-splitting 𝑘-d tree, we can exploit this
knowledge to approximate the contributions of large groups of points as a single
point, in time conjectured to be 𝑂(𝑁 ).

Here I adapt this method to approximate calculation of 𝜆(𝑠, 𝑡), with the addi-
tional complication that each crime 𝑖 has different weights 𝜃𝑀𝑖 , and that the fore-
ground influence decays in time as well as space.

3.6.1 𝑘-d Trees

Bentley (1975) introduced 𝑘-d trees as a data structure to store 𝑘-dimensional data
while supporting 𝑂(log𝑁) queries for points in specific regions of the space. (𝑘-d
trees also have 𝑂(log𝑁) performance for insertion or deletion of points, but this
is less relevant for us.) A 𝑘-d tree is a binary tree that repeatedly splits the space
along each coordinate axis, until leaf nodes contain some small number of points in
a small region of the space.

There are a variety of ways to implement 𝑘-d trees, based on different splitting
heuristics and storage methods. We need two implementations: a base QueryTree

class representing a tree of two-dimensional points with timestamps, and a sub-
class DataTree which records the types of the crimes contained in each node: while
calculating the intensity, we must know the type of every crime to look up the
appropriate 𝜃𝑀𝑖 parameter to determine its contribution to the intensity.

To build either type of tree, we start with a large set of crimes. Then:

1. Choose a coordinate axis (either 𝑥 , 𝑦, or 𝑡) arbitrarily and find the median
value of that coordinate among all crimes.

2. Split the crimes into two groups, separated by the median. One group will be
designated the left child of this node, the other the right child.
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3. the extended model

3. Recursively repeat this procedure on the two child nodes, stopping when the
node contains fewer than a small number 𝑀 of nodes. We typically choose
𝑀 = 200.

There are several heuristics to choose the optimal axis along which to split, but we
simply split along each axis in turn; splitting along the axis with the largest range
of values is also common, but showed no benefit for our data.

Crucially, each node stores its bounding box: the minimum and maximum val-
ues of 𝑥 , 𝑦, and 𝑡 for all the crimes it contains. This structure makes queries easy:
to find nodes in a specific region, recurse through the tree, only looking at a child
node if its bounding box intersects the query region. As we will see in the next sec-
tion, this also enables fast intensity calculations, as we can quickly estimate upper
and lower bounds of the intensity contributed by points inside a node by using its
bounding box.

3.6.2 Dual-Tree Intensity Algorithm

The dual-tree algorithm proposed by Gray and Moore (2003) builds upon 𝑘-d trees
to accelerate approximate kernel density estimation. Our adaptation is presented
in Algorithm 3.1 and uses a formulation of the algorithm presented by Lang (2004,
Section 3.3.5). It uses two 𝑘-d trees, one QueryTree to store the points at which the
intensity is to be evaluated, and one DataTree to store the crime data generating the
intensity.

The basic principle is to gradually refine intensity estimates by progressing
deeper into the 𝑘-d trees. We start with the root nodes of both trees, and calcu-
late the upper and lower bounds of intensity on all points in the query tree node
contributed by all points in the data tree node. These bounds are obtained by treat-
ing all points in each node as being at a single point, then finding the minimum and
maximum possible distances between these two points by using the node bounding
boxes. Hence these bounds can be found without summing over individual points.

If the upper and lower bounds are too far apart, we must refine our estimates by
considering the child nodes of the roots. We push (query node, data node) pairs onto
a priority queue, with their priority calculated from the number of points contained
in each node and the gap between bounds, so that the least precise estimates with
the most points will be refined first. We then loop through the queue, refining our
estimates with child nodes and pushing their children onto the queue as necessary,
until the bounds are within acceptable tolerances everywhere and we can stop.

Amore rigorous treatment is given in Algorithm 3.1. The algorithm uses several
utility functions. The PriorityQueue, Enqueue, and Dequeue functions create,
push, and pop from a priority queue, respectively; in this case we are pushing pairs
of nodes, and the last argument to Enqueue is the priority. Dequeue returns the
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Variable Average difference SE

𝜎2 3.0278 × 10−10 2.9235 × 10−9
𝜔 1.6795 × 10−4 1.6529 × 10−3
𝜃 3.2329 × 10−10 2.3021 × 10−9
𝛽0 −4.2464 × 10−9 5.5147 × 10−8
𝛽1 4.8978 × 10−9 7.3175 × 10−8

Table 3.1: Differences between parameter values from exact and inexact fits to the
same data.

node pair with the highest priority. We use a convenience function Zeros to initial-
ize an array of zeros of a given size. Bounds calculates the lower and upper bounds
on the contribution to �̂�(𝑠, 𝑡) at 𝑞 from the points in 𝑑 , and AddBounds adds 𝑙 and
𝑢 to lower and upper for all points contained in 𝑞. Finally, Intensity performs the
exact calculation for the intensity at a point 𝑞 contributed by the crime at point 𝑝.

Note that Algorithm 3.1 is not an anytime algorithm, and the upper and lower
bound variables are not valid bounds if the algorithm is interrupted at any stage,
unlike the proposal of Gray and Moore (2003). The anytime algorithm requires
initializing the upper bound at the largest possible value; in our case, despite using
64-bit floating point numbers, the difference in scale between the upper and lower
bounds caused floating-point errors that rapidly accumulated, eventually rendering
the bounds nonsensical. (Small numbers subtracted from the upper bound were
often lost to floating-point error.)

3.6.3 Validation

Because the dual-tree approach produces approximate intensities, we must demon-
strate that the approximation does not harm the model fit. A series of 100 simulated
datasets, using random parameter values, a single covariate, and the simulation al-
gorithm described in Section 3.5, were generated and used to fit with both the exact
and approximate intensity algorithms. The average difference between the exact
and approximate fits is shown in Table 3.1, and is quite small: on the order of 10−9
or smaller for all parameters but 𝜔, which sees an average difference on the order of
10−4 seconds. This shows that the approximation does not appreciably harm model
fits.

3.6.4 Performance

The dual-tree intensity approach is intended to speed up the repeated calculation of
intensities during expectation maximization, which otherwise would be the limit-
ing factor for the speed of model fits. However, the naive 𝑂(𝑁 2) exact calculation is
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Algorithm 3.1 Dual-tree intensity approximation algorithm
1: function DualTree(𝑄, 𝐷, 𝜖) ▷ 𝑄 and 𝐷 are 𝑘-d trees, 𝜖 the maximum error
2: 𝑃 ← PriorityQueue
3: 𝑁 ← NumPointsIn(𝑄)
4: lower ← Zeros(𝑁 )
5: upper ← Zeros(𝑁 )
6: Enqueue(𝑃, 𝑄, 𝐷, 0)
7: while not Empty(𝑃 ) do
8: 𝑞, 𝑑 ← Dequeue(𝑃 )
9: 𝑙, 𝑢 ← Bounds(𝑞, 𝑑)

10: if (𝑢 − 𝑙) ≤ 2𝜖min(lower[𝑞])/𝑁 then
11: AddBounds(𝑞, lower, upper, 𝑙, 𝑢)
12: else if Leaf(𝑞) and Leaf(𝑑) then
13: ExactIntensity(𝑞, 𝑑, lower, upper)
14: else
15: for qchild ∈ Children(𝑞) do
16: for dchild ∈ Children(𝑑) do
17: 𝑝 ← Priority(𝑞, 𝑙, 𝑢)
18: Enqueue(𝑃 , qchild, dchild, 𝑝)
19: return (lower + upper) / 2
20: function ExactIntensity(𝑞, 𝑑, lower, upper)
21: for qpoint ∈ 𝑞 do
22: for dpoint ∈ 𝑑 do
23: 𝑐 ← Intensity(qpoint, dpoint)
24: lower[qpoint] += 𝑐
25: upper[qpoint] += 𝑐
26: function Priority(𝑞, 𝑙, 𝑢)
27: 𝑛 ← NumPointsIn(𝑞)
28: return 𝑛 × (𝑢 − 𝑙)
29: function Children(node)
30: if Leaf(node) then
31: return {node}
32: else
33: return {node.left, node.right}
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both trivially parallelizable (the intensity at each point can be computed in parallel)
and easy to speed up—a large fraction of its time is spent calculating the pairwise
Euclidean distances between events, which do not change from iteration to itera-
tion and can hence be precomputed and stored in a matrix. The dual-tree approach
avoids considering every single data point, but it is not easily parallelizable and
requires minimum and maximum Euclidean distance calculations as each pair of
nodes is examined.

In practice, then, a parallel implementation of the exact𝑂(𝑁 2) calculation proves
to be faster than the dual-tree algorithm, while also being easier to understand.
Theremay be circumstances when the dual-tree algorithmwould perform better—in
a very large city, for example, when it can discard most points, or if it could be par-
allelized by allowing multiple threads to access the priority queue simultaneously.
We did not pursue these possibilities in this thesis.

3.7 Boundary Effects

Section 2.2.1 briefly discusses the problem of boundary effects: if crimes are only
observed in the region 𝑋 and time interval [0, 𝑇 ), but also occur outside 𝑋 and at
𝑡 < 0 or 𝑡 ≥ 𝑇 , parameter estimates can be biased by boundary effects.

The nature of the boundary effects can be seen clearly from the parameter up-
dates in the M step of the EM algorithm (Section 3.4.1). For example, the foreground
update for 𝜃𝐿 is

𝜃𝐿 =
∑responses 𝑖 ∑𝑡𝑗<𝑡𝑖 𝑃(𝑢𝑖 = 𝑗) 𝟙(𝑀𝑗 = 𝐿)
𝐾𝐿 − ∑crimes 𝑖 𝟙(𝑀𝑖 = 𝐿)𝑒−(𝑇−𝑡𝑖)/𝜔 ,

which can be interpreted as a weighted average: for all crimes of type 𝐿, sum up
their contributions to response crimes (measured by 𝑃(𝑢𝑖 = 𝑗)), and take the average.
An average of 0.5, for example, says a crime of type 𝐿 can be expected to contribute
to about 0.5 future response crimes. The denominator also contains a temporal
boundary correction term which is negligible when 𝑇 is very large.

Suppose, however, that many crimes of type 𝐿 occur near the boundary of the
observation region 𝑋 , and trigger response crimes that occur outside of 𝑋 . These
response crimes will not be included in the sum in the numerator, and hence 𝜃𝐿
will be biased downward. Updates for 𝜎2 and 𝜔 can also be interpreted as weighted
averages, and are subject to similar biases.

Harte (2012) explored the effects of these biases on the ETAS models discussed
in Section 2.3.1. One common workaround to reduce the bias is to introduce a re-
gion 𝑋0 ⊂ 𝑋 , chosen so that events inside 𝑋0 have triggered offspring that mostly
occur within 𝑋 . All events in 𝑋 contribute to the intensity 𝜆(𝑠, 𝑡), but the weighted
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Parameter Value Interpretation

𝜔 5.436 × 105 6.292 d
𝜎2 9.736 3.12 ft

Predictor Foreground

Self-excitation 0.3353

Table 3.2: Average parameter values from 50 simulations where true parameters are
𝜃 = 0.5, 𝜔 = 7 d, and 𝜎 = 4 ft. The grid is 66 × 60 ft and no boundary correction was
applied, resulting in the biases above. Note that 𝜃 is biased too low, since events
triggered outside the grid were not observed, and both 𝜔 and 𝜎 are also too small.

averages in the M step only average over events inside 𝑋0: that is, to update 𝜃𝐿,
we average over events of type 𝐿 within 𝑋0, counting their contributions to any
response crimes within 𝑋 . Since most of their offspring will be within 𝑋 by con-
struction, the average will not leave much out.

The same subsetting is also done in time, so only events in the interval [0, 𝑇0)
are considered, where 𝑇0 < 𝑇 . This eliminates bias caused by events at 𝑡 close to 𝑇
triggering offspring that occur after 𝑇 and are hence not observed.

Of course, averaging over events only in a subset of space and time reduces
the effective sample size of the fit, introducing additional variance to parameter
estimates. It does, however, dramatically reduce bias. To demonstrate this, Ta-
ble 3.2 shows parameter values obtained from repeated simulations from a model
with known parameter values, with covariates defined by the images shown in Fig-
ure 3.1. It is apparent from the table that parameters are heavily biased in the fit.
However, Table 3.3 shows fits obtained when an 8-pixel boundary was established
around the images, so 𝑋0 was the inner 50 × 46 box; the simulated events occurred
over the course of two years, of which the last thirty days were also left out. These
fits suffer from much less bias.

An additional danger in our model is in estimates of 𝛽 . If 𝛽 changes dramatically
across the boundary of 𝑋 , effects of covariates just outside of 𝑋 can “leak” inside 𝑋
and bias ̂𝛽 , in the sameway as the covariate configuration in Figure 3.3 causes a false
positive in spatial regression. A covariate inducing high event rates just outside of
𝑋 will induce moderately higher event rates inside of 𝑋 because of self-excitation,
which will falsely be attributed to covariates and self-excitation from inside 𝑋 . The
subsetting procedure above does not address this problem, although a similar form
of subsetting that skips background cells near the boundary may help, and deserves
further research.

Additionally, boundaries have similar effects on estimates of 𝜆(𝑠, 𝑡) as they do
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3.8. Summary

Parameter Value Interpretation

𝜔 6.128 × 105 7.092 d
𝜎2 14.75 3.841 ft

Predictor Foreground

Self-excitation 0.4770

Table 3.3: Average parameter values from simulations from the same model as in
Table 3.2, but where boundary correction was applied with an 8 ft buffer around all
edges. The biases are substantially reduced.

in kernel density estimation (e.g., Cowling & Hall, 1996). In kernel density esti-
mation, biases occur when the density being estimated has bounded support; near
the boundaries, the kernel estimator underestimates the density because it “sees”
the area outside the support with no events. This can be avoided with a variety of
strategies that modify the kernel near the boundary or add “pseudodata” outside
it. The self-excitation component of 𝜆(𝑠, 𝑡) can also be seen as a weighted kernel
density estimate, and though in this case the problem is censoring (data is unavail-
able outside the domain 𝑋 ), the effect is much the same, and 𝜆(𝑠, 𝑡) is systematically
biased downward near the boundaries.

This problem can be avoided using the same strategy as above—establishing a
buffer area around the domain 𝑋 and not calculating 𝜆(𝑠, 𝑡) inside this buffer. It
could also potentially be addressed by weighted or modified triggering functions
𝑔(𝑠, 𝑡), which account for the fraction of the kernel’s support contained outside 𝑋 ,
along the lines of modified kernels used in density estimation, though any such
strategy would make expectation maximization of the log-likelihood much more
difficult. We leave this problem to further research.

3.8 Summary

This chapter introduced a new self-exciting point process model incorporating spa-
tial covariates, which could be used for modeling the spread of crime, along with
estimation and simulation tools for its use. Before we use it, however, we must have
tools for diagnosing model fit and performing parameter inference, which will be
introduced in Chapter 4.
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Four

Inference and Model Diagnostics

Once we have fit a predictive policing model, we are interested in quantifying the
uncertainty in its parameters and in its predictions.1 Section 4.1 considers confi-
dence intervals for model parameters, which previous crime models have not in-
cluded. These intervals improve the interpretability of the model and aid in its use
to answer criminological questions about factors which influence crime.

After examining the model parameters, we need tools to evaluate its predictive
performance. Along with the methods discussed in Section 1.1.1, Section 1.1.2, and
Section 1.1.3, previous researchers have developed metrics to evaluate their per-
formance, which I review in Section 4.2. However, these tools have a number of
flaws, discussed in Section 4.2.3, leading us to propose a new method based on ROC
curves in Section 4.2.4. Section 4.3 also discusses the possibility of using proper
scoring rules, such as the log score, for comparing predictive performance between
models . In addition, in Section 4.4 I propose diagnostic tools specifically adapted
to our self-exciting point process model, enabling more detailed understanding of
the accuracy of its predicted crime rates.

Finally, these diagnostic and evaluation tools are used to explore the model’s
behavior under simulations of various forms of misspecification in Section 4.5, in-
cluding various alternate forms of the triggering function 𝑔 and omitted but relevant
spatial covariates.

4.1 Confidence Intervals and Coverage

Section 2.2.4 discusses several approaches to inference on the parameters of a self-
exciting point process model: the Hessian of the log-likelihood at the MLE (Ogata,
1978), an estimator based on the conditional intensity function (Rathbun, 1996), and
the parametric bootstrap.

1Portions of this chapter have been published as Reinhart and Greenhouse (2018). Self-exciting
point processes with spatial covariates: modelling the dynamics of crime. Journal of the Royal Statis-
tical Society: Series C. doi:10.1111/rssc.12277
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4. inference and model diagnostics

There are not clear theoretical results to indicate which method should perform
best in producing confidence intervals and statistical tests of parameters; all three
methods are asymptotic, the first two relying on asymptotic normality results for
point process models, and it’s not obvious which estimator of the asymptotic co-
variance matrix should perform best.

To settle the issue, I implemented both asymptotically normal methods. (For
large datasets, the parametric bootstrap simply proves impractically slow, because
of the simulation and refitting cycle.) To calculate the Hessian of the log-likelihood,
I used Theano (Bergstra et al., 2010), a Python package for describing computations
which automatically generates fast C code and automatically computes all necessary
derivatives, meaning I did not need to explicitly derive each manually. (Theano
also supports computation using the GPU, which may significantly speed up this
calculation, but I have not yet tested this feature.) With the full estimated covariance
matrix, I calculated standard errors for each estimator, and produced confidence
intervals from these.

The estimator proposed by Rathbun (1996) (given in eq. (2.13)) was easily im-
plemented by analytically deriving gradients of the conditional intensity function,
making this estimator particularly fast. The parametric bootstrap uses the simula-
tion method described in Section 2.2.3, Algorithm 2.5.

I ran a series of simulations to determine if either asymptotic confidence interval
method attains its nominal coverage level. Each used two covariates (those shown
in Figure 3.1) and simulated over a period of two years, averaging one background
event per day. All model parameters were randomly selected for each simulation,
and a boundary correction buffer (as described in Section 3.7) was used to limit the
distortion caused by boundary effects.

Table 4.1 shows the results for the observed information estimate and for Rath-
bun’s estimator. Coverage is worst for the self-excitation parameter 𝜃 , which is af-
fected by any remaining boundary effect not compensated for by the buffer region;
Rathbun’s covariance estimator achieves nearly nominal coverage for 𝛽 , which is
less affected. Overall, Rathbun’s estimator achieves 88% coverage and is closest to
its nominal 95% coverage.

It’s also worth checking the assumption of asymptotic normality used in the
observed information estimator and Rathbun’s estimator. I ran 350 simulations av-
eraging 6478 events each, using the two background covariates shown in Figure 3.1
and a fixed arbitrary set of parameters, and fit to each simulated dataset. The result-
ing sampling distribution of parameter values was collected into probability plots
to compare against the normal distribution; these plots are shown in Figure 4.1, and
show the shape of most sampling distributions is close to the expected normal dis-
tribution, apart from a slight right skew in several distributions. This suggests that
the asymptotically normal confidence intervals should be accurate.
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4.1. Confidence Intervals and Coverage

Variable Hessian (%) Rathbun (%)

𝜎2 86 88
𝜔 87 91
𝜃 82 63
𝛽0 77 83
𝛽1 89 92
𝛽2 86 89

Average 85 88

Table 4.1: A comparison of the coverage rates of nominal 95% confidence intervals
generated using the observed information matrix estimated from the Hessian or
by using Rathbun’s estimator, in a series of 500 simulations of two years of data.
Simulations averaged around 3,000 events each, with a maximum of over 15,000.
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Figure 4.1: Probability plots of parameter estimates on simulated datasets against
the reference normal distribution. The red lines are least-squares lines of best fit.
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4. inference and model diagnostics

4.2 Hotspot-Based Hit Rate Metrics

The performance of predictive policing models is typically evaluated by producing a
single hotspotmap andmeasuring the fraction of crimes in a subsequent time period,
such as several months or a year, contained in areas predicted as hotspots. For
a kernel density map, hotspots are chosen by evaluating the density on a grid and
marking all grid cells over a certain cutoff as hotspots; the cutoff is arbitrarily chosen,
and practitioners have used the top 10% of cells with values two standard deviations
above the mean (Drawve, 2016), the top 20% of cells (Levine, 2008; Van Patten et al.,
2009), cells 1.96 standard deviations above the mean (Hart & Zandbergen, 2014), and
other schemes. For covariate-basedmodels like RTM, grid cells with the highest risk
scores are similarly selected.

Once these hotspots are selected, a variety of metrics may be calculated from
them, as discussed in the following sections.

4.2.1 Search Efficiency Rate

Bowers, Johnson, and Pease (2004) proposed the Search Efficiency Rate (SER), a very
simple metric to compare procedures:

SER = number of test crimes successfully predicted
area of hot spots (km2)

.

Procedures that predict a high number of crimes in a small area are hence ranked
better than those that require a larger area. This, they argue, has a clear advantage
over the hit rate (total fraction of crimes predicted), since police cannot practically
patrol very large hotspots. It is more useful to know the crime density within the
hotspots, since a high density implies a patrolling officer can have a greater effect
in a smaller area.

4.2.2 Prediction Accuracy Index

Chainey et al. (2008) pointed out that the SER does not adequately handle compar-
isons between different study areas:

“For example, a study area that is 10km2 in area may have determined
certain areas where crimes are predicted to occur from which a Search
Efficiency Rate of 20 crimes per km2 has been calculated. A study area
that is 50 km2 in size may have experienced the same volume of crime
as the smaller study area and also have the same Search Efficiency Rate
of 20 crimes per km2 for the areas where crimes are predicted to occur.
Yet in the larger study area there is more space where no crime has
been predicted to occur, meaning that the predicted areas that have
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4.2. Hotspot-Based Hit Rate Metrics

been identified cover a smaller relative area than the predicted areas
determined in the smaller study area, and provide a more useful basis
from which to target resources, relative to the entire study area’s size.”

To replace SER, they introduced the Prediction Accuracy Index (PAI), which bal-
ances the hit rate of the hotspot map with the fraction of the total map area desig-
nated as hotspots, rewarding models that predict a large fraction of crimes without
marking a large fraction of the map as hotspots:

PAI = hit rate
area of hotspots/total map area

.

Hence a model which predicts 100% of future crime by designating the entire map
a hotspot would have PAI = 1, while a map that predicts 90% of crime by selecting
only 10% of the map would have PAI = 9. Reported PAIs vary widely; for vehicle
theft, for example, they range from 2.32 in London with kernel density estimates
(Chainey et al., 2008) to a spectacular 459.15 in Houston using nearest-neighbor
hierarchical clustering (Levine, 2008).

However, the PAI does not solve the problems it claims to. Though Chainey et al.
(2008) do not make the connection explicit, we can rewrite the PAI in terms of the
SER:

PAI = SER
average crime density

.
Scaling by crime density (crimes per unit area) makes intuitive sense: if the number
of crimes doubles across the entire city, we should be able to predict twice as many
crimes. However, this does not make PAI comparable between different study areas,
since it is strongly sensitive to the distribution of crime, not just its average density.
In a city where crime is clustered in several small hotspots, it is easy for any hotspot
method to obtain a large PAI, because the denominator can be very small. In a city
where crime is more evenly distributed, a high PAI is difficult to obtain, even if the
city has the same average crime density. This implies that the different reported
PAIs reflect differences in crime distribution as much as differences in the hotspot
methods, and to compare different methods we must test them in a single city and
single study area.

4.2.3 Other Flaws

Each of these metrics suffers from the weakness that hotspot thresholds are arbi-
trary, and hence model performance may vary widely depending on the chosen
threshold. This makes it difficult to compare results obtained from different hotspot
methods, which may use very different default hotspot thresholds. I know of no pre-
vious work which has considered the effects of varying thresholds, though my own
analysis suggests the threshold can affect PAI by a factor of two or more.
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4. inference and model diagnostics

Prediction evaluations are also often ad-hoc. Different investigators use data
from different cities and time periods to evaluate their methods, based on whatever
data they have agreements to access, and there have been few systematic attempts
to understand the effect of tuning parameters (number of hotspots, smoothing band-
width, grid size, etc.) on predictive performance (see Hart & Zandbergen, 2014, for
one example). No systematic study has been made of the properties or utility of
metrics like the PAI, and there are no diagnostic tools to assess why models do not
fit well to particular datasets or which specific regions they do not fit to.

These prediction evaluations also do not match how hotspot maps are used in
practice. Rather than being produced once and used for months, maps are typically
updated daily or weekly with new data (e.g. Mohler et al., 2015), and so any evalu-
ation method needs to work with regularly updated predictions. Also, to compare
predictive models, it is essential to understand performance variation between cities
and time periods; prior practice has been to use an evaluation in a single city for a
single time period and treat it as authoritative.

4.2.4 ROC-Based Metrics

Rather than arbitrarily defining hotspots using the conditional intensity and then
computing the PAI, as discussed in the previous sections, I have built new perfor-
mance evaluation methods which do not require arbitrary cutoffs. Adapting tech-
niques from statistics, and following the suggestion of Gorr (2009), I applied Re-
ceiver Operating Characteristic (ROC) curves to our model (Fawcett, 2006; Lasko,
Bhagwat, Zou, & Ohno-Machado, 2005). Additionally, instead of evaluating on a
single long time period, I use one-ahead predictions that more accurately reflect
how hotspot models would be used: the model parameters are fit to training data,
a prediction map is made, and new data is added periodically to update the map.
Police may update their maps weekly or monthly as crime data arrives. Model pa-
rameters are held fixed; it is assumed that these change fairly slowly, and so they
can be refit infrequently.

To calculate ROC curves, first evaluate the conditional intensity function on a
fine grid. Next, record the presence or absence of the target crime in each grid cell in
the subsequent time period. Treating the conditional intensity as a test statistic in a
classifier, vary the hotspot cutoff from taking only the single highest intensity cell to
taking every cell, recording the number of true and false positive cell classifications
on theway. Figure 4.2 shows two example ROC curves, computed bymakingweekly
predictions of burglaries over six months in 2012 and updating the intensity map
with new predictions at the end of each week. One model uses only population
density as a covariate, while the other includes three additional covariates. (Both
models will be discussed further in Chapter 5.)

64



4.3. Predictive Scores

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
Basic burglary
More covariates

Figure 4.2: ROC curves for weekly predictions of all burglaries in the last six months
of 2012, with orwithout additional demographic covariates. The covariates increase
predictive performance in the middle of the range. Without covariates, the AUC is
0.66; with covariates, it increases to 0.70.

As amore interpretable alternativemetric for users, I also created hit rate curves,
which plot the hit rate (fraction of crimes included in selected hot spots) against the
fraction of the map selected as hot spots. Figure 4.3 shows one example, using the
same models, indicating that the additional covariates improve performance only
when selecting a fairly large portion of the map as hotspots to be patrolled.

4.3 Predictive Scores

The hit rate metrics discussed in the previous section are necessary for typical
hotspot methods because the hotspot methods make purely dichotomous predic-
tions: each grid cell or map area is either part of a hotspot or it isn’t. We then make
evaluations based on if these hotspots capture a large fraction of crimes while only
selecting a small land area. But in a self-exciting point process model of crime, we
have much more information than simply a dichotomous prediction: we have a pre-
dicted crime rate 𝜆(𝑠, 𝑡) at every point and time. How can we test whether this rate
is well-calibrated?

Vere-Jones (1998) considered this problem for ETAS models (Section 2.3.1) and
related earthquake forecasting models, which also produce conditional intensities,
by drawing a connection to proper scoring rules (Gneiting & Raftery, 2007). Scoring
rules evaluate probabilistic forecasts of events: a score 𝑆(𝑃, 𝑥) returns the score
of a predictive distribution 𝑃 when outcome 𝑥 occurs. A simple example is the
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Figure 4.3: Hit rate curve for weekly predictions of burglaries, with and without the
additional demographic covariates.

logarithmic score,
𝑆logarithmic(𝑃, 𝑥) = log 𝑝𝑥 ,

where 𝑝𝑥 is the forecast probability of event 𝑥 occurring. A prediction method
which maximizes the expected score is desirable. There are many different scoring
rules; a scoring rule is proper if the expected value of the score, under the predictive
distribution 𝑃 , is maximized by predicting 𝑃 , meaning a forecaster has no incentive
to choose any other predictive distribution than their true belief.

Vere-Jones (1998) considered defining events 𝑥 such as “an earthquake occurs
within this forecast interval.” To obtain 𝑝𝑥 from a conditional intensity model, he
proposed simulating repeatedly from the model, then calculating the fraction of
simulated datasetswhich contain an eventwithin the chosen forecast interval. Since
outcomes are binomial, one can use a binomial score

𝑆binomial(𝑝, 𝑥) = 𝑥 log 𝑝 + (1 − 𝑥) log(1 − 𝑝),
where 𝑥 ∈ {0, 1} and 𝑝 is the forecast probability that 𝑥 will be 1. But despite the
scoring, this still dichotomizes outcomes. Harte and Vere-Jones (2005) takes the
logic further by connecting it to the entropy of the predictive distribution 𝑃 , and
defining the relative entropy

𝐼 ∗ = 𝔼𝑃 log
𝑝𝑥
𝜋𝑥

,
where 𝜋 is some baseline predictive distribution, such as a homogeneous Poisson
process model, against which all models are compared. Because the predictive dis-
tribution 𝑃 is conditional on the past history of the point process, this quantity is
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4.4. Residuals

random, depending on the particular realization of the process; the expected in-
formation gain 𝐺 = 𝔼[𝐼 ∗] averages over all possible realizations, and numerically
quantifies the intrinsic predictability of the process.

A connection soon becomes apparent. A score which sums up the logarithm
of the predictive probabilities of each event is just the log-likelihood of the model;
the relative entropy 𝐼 ∗ is just a log-likelihood ratio. Hence, the expected informa-
tion gain 𝐺 is estimated by the log-likelihood ratio on an observed dataset, which
converges to 𝐺 as the number of events grows to infinity (provided the process is
stationary):

�̂� = 1
𝑇 log (𝐿1𝐿0

) , (4.1)

where 𝐿0 is the baseline model likelihood and 𝐿1 the likelihood of the model of
interest. The likelihood ratio between two models estimates the difference in score
between them, in the form of the relative entropy. (The theoretical aspects here
were reviewed in more depth by Daley and Vere-Jones (2004).)

This justifies the use of the Akaike Information Criterion (AIC) to compare mod-
els as (approximately) a comparison of scores, with penalty for the number of pa-
rameters in the model. Evaluation can be performed on a separate test time period
to prevent overfitting.

4.4 Residuals

Beyond goodness-of-fit tests and overall hit rate metrics, it is useful to be able to de-
terminewhere themodel fits: what types of systematic deviations are present, where
covariates may be lacking, what types of crimes are over- or under-predicted, and
so on. Eq. (2.1) suggests we can produce these detailed analyses: because the point
process model predicts a conditional intensity at each location, we can calculate the
expected number of crimes within each region in a certain period of time, and com-
pare this against the true occurrences over the same time, producing a residual map.
These residuals are defined to be (Daley & Vere-Jones, 2008, chapter 15)

𝑅(ℎ) = ∫ℝ×ℝ2
ℎ(𝑠, 𝑡) [𝑁 (d𝑡 × d𝑠) − 𝜆(𝑠, 𝑡) d𝑡 d𝑠] ,

where 𝑁(⋅) is the counting measure of events in the given region, and ℎ(𝑠, 𝑡) is a
bounded window function (typically an indicator function for a chosen region).

To calculate 𝑅(ℎ), a typical approach is to choose a time window—say, a par-
ticular week or month—and integrate the conditional intensity over this window.
Then the spatial region 𝑋 is divided appropriately (see Section 4.4.1 below) and the
intensity is integrated over each subdivision, then compared against the number of
events in that subdivision during that time window.
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4. inference and model diagnostics

Our chosen conditional intensity function (eq. (3.1)) is fairly easily integrated
with respect to time, leaving a function that must be integrated over the chosen
spatial regions:

𝜆(𝑠) = ∫
𝑡2

𝑡1
𝜆(𝑠, 𝑡) d𝑡

= (𝑡2 − 𝑡1) exp (𝛽𝑋𝐶(𝑠)) + ∫
𝑡2

𝑡1
∑
𝑖∶𝑡𝑖<𝑡

𝑔(𝑠 − 𝑠𝑖 , 𝑡 − 𝑡𝑖 , 𝑀𝑖) d𝑡

= (𝑡2 − 𝑡1) exp (𝛽𝑋𝐶(𝑠)) +

∑
𝑖∶𝑡𝑖<𝑡2

𝜃𝑀𝑖
2𝜋𝜎2 exp (−‖𝑠𝑖 − 𝑠‖2

2𝜎2 ) (exp (𝑡𝑖 −max(𝑡1, 𝑡𝑖)
𝜔 ) − exp (𝑡𝑖 − 𝑡2

𝜔 ))

4.4.1 Residual Maps

Choosing spatial subdivisions for residuals requires care. The obvious choice is a
discrete grid, but the right size is elusive: small grid cells produce skewed residuals
with high variance (as most cells have no crimes), and positive and negative residual
values can cancel each other out in large cells. Bray et al. (2014) suggest instead
using the Voronoi tessellation of the plane, which produces a set of convex polygons,
known as Voronoi cells, each of which contains exactly one crime and all locations
that are closer to that crime than to any other.

Given this tessellation, the raw Voronoi residuals ̂𝑟𝑖 for each cell 𝐶𝑖 are
̂𝑟𝑖 = 1 − ∫𝐶𝑖

�̂�(𝑠) d𝑠.

The choice of Voronoi cells ensures that cell sizes adapt to the distribution of the
data, and Bray et al. (2014) cite extensive simulations by Tanemura (2003) indicating
that the Voronoi residuals of a homogeneous Poisson process have an approximate
distribution given by

̂𝑟𝑖 ∼ 1 − 𝑋 ; 𝑋 ∼ Gamma(3.569, 3.569),
so that 𝔼[ ̂𝑟𝑖] = 0. (Here the gamma distribution is parametrized by its shape and
rate.) But because our model is not a homogeneous Poisson process, we performed
similar simulations for random parameter values, then used maximum likelihood to
fit the approximate distribution 𝑋 ∼ Gamma(3.389, 3.400) to the 1,332,546 simulated
residuals.

After each ̂𝑟𝑖 is found, using Monte Carlo integration over 𝐶𝑖 , the Voronoi cells
can be mapped with colors corresponding to their residual values. To ease interpre-
tation, colors are determined by −Φ−1(𝐹 (1 − ̂𝑟𝑖)) where 𝐹 is the cumulative distribu-
tion function of the approximate distribution of 𝑋 and Φ−1 is the inverse normal cdf.
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4.4. Residuals

Parameter Value Interpretation

𝜔 4.511 × 106 52.21 d
𝜎2 2.664 × 105 516.1 ft
Covariate Coefficient exp(Coef)

Intercept −31.63 1.8 × 10−14
Population 31.66 5.6 × 1013

Predictor N Foreground

Self-excitation 2892 0.7640

Table 4.2: Parameters of a fit to one year of Pittsburgh burglary data, using popula-
tion density (per square meter) as a covariate for each Census block.

Positive residuals indicate more observed crime than was predicted, and negative
residuals less.

These residual maps provide much more detailed information than previous
global measures of hotspot fit, and can indicate areas with unusual patterns of crimi-
nal activity. For example, consider a model that predicts homicides using leading in-
dicators such as assault and robbery; this model may perform well in an area which
experiences gang-related violence, but would systematically over-predict homicides
in a commercial area full of bars and nightclubs, where most assaults are drunken
arguments rather than signs of gang conflict.

To demonstrate the use of residual maps, consider a fit predicting burglaries
using the Pittsburgh crime data to be introduced in Chapter 5. Amodel was fit using
one year of data, using population density as the sole covariate. Fit parameters are
shown in Table 4.2 and show that the spatial bandwidth of self-excitation is about
540 feet, over 51 days. This is reflected in maps of burglaries, which show hotspots
appearing and disappearing from month to month.

Figure 4.4 shows the effect of this hotspot behavior on residual plots. A hotspot
of burglary in the Oakland neighborhood disappears over several weeks; the model,
expecting the high rate of crime to excite further burglaries, over-estimates the bur-
glary rate as the hotspot comes to an end.

The example map does illustrate one weakness of Voronoi residual maps. We
would expect areas with large positive residuals (red, in the map) to have a higher
crime density than areas with large negative residuals (blue), since positive residu-
als indicate more crimes occurred than were expected. Hence areas with positive
residuals tend to have smaller Voronoi cells than areas with negative residuals, and
the map is visually dominated by large cells with negative residuals. Closer inspec-

69



4. inference and model diagnostics

1

mi

Burglary residuals
2012-03-26 to 2012-04-16

3.0

2.4

1.8

1.2

0.6

0.0

0.6

1.2

1.8

2.4

3.0

R
e
si

d
u
a
l

1

mi

Burglary residuals
2012-04-16 to 2012-05-07

3.0

2.4

1.8

1.2

0.6

0.0

0.6

1.2

1.8

2.4

3.0

R
e
si

d
u
a
l

Figure 4.4: Burglary residuals in the Oakland neighborhood of Pittsburgh in two
separate three-week periods in 2012. A cluster of burglaries near the upper right
of the map is apparent in early April (left), containing over a dozen burglaries. By
late April and early May (right), the cluster has shifted west, and negative residuals
appear, showing that the model expected the cluster to continue.

tion reveals clusters of very small cells containing large positive residuals; these are
the locations of new crime hotspots. Users should be aware of this problem when
interpreting residual maps.

Previous applications of residual maps have focused on their use in visualizing
individual models, but we can easily extend them to compare the fits of two differ-
ent models fit to the same dataset. We might, for example, use a residual map to
discover a flaw in one model, which we hypothesize could be fixed with the use of
an additional covariate, then want to determine whether the additional covariate
indeed fixed the problem. We calculate the residuals ̂𝑟𝑎𝑖 and ̂𝑟𝑏𝑖 in the same way as
before for both models 𝑎 and 𝑏, using a common set of Voronoi cells, then calculate

̂𝛿𝑖 = | ̂𝑟𝑎𝑖 | − | ̂𝑟𝑏𝑖 |.
This indicates the degree of improvement obtained by model 𝑏 over model 𝑎: when
̂𝛿𝑖 is positive, model 𝑏’s prediction in Voronoi cell 𝑖 is closer to the truth than model
𝑎’s.

We can also compare residuals to covariate values at the location of the event
defining the Voronoi cell, in a fashion analogous to a plot of residuals versus a co-
variate in ordinary multiple regression. This could be useful in identifying trans-
formations that may be needed for covariates, or for exploratory analysis to find
covariates that should be included in a model. Figure 4.5 shows an example plot for
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Figure 4.5: Residuals of a simulated fit, plotted against the values of a second co-
variate which is relevant to the event rate but which was not included in the fit.
The visible trend indicates that the covariate should be added to the model.

a simulated dataset in which one of the relevant covariates was omitted from the
fit; plotted against this covariate, the residuals show a clear trend, demonstrating
that it should be added to the model.

A purely temporal residual analysis can be useful to illustrate the calibration of
the model over time. Consider plotting the index 𝑖 of each event versus the quantity

𝜏𝑖 = ∫
𝑡𝑖

0 ∫𝑋
𝜆(𝑠, 𝑡) d𝑠 d𝑡,

the expected number of events in the interval [0, 𝑡𝑖). This is an extension of the
standard transformation property of point processes: if the model is correct, the
resulting process {𝜏𝑖} will be a stationary Poisson process with intensity 1 (Papan-
gelou, 1972). Hence the plotted points will fall on the diagonal, and by plotting the
deviation from the diagonal, poor calibration becomes obvious. Similar diagnostics
have previously been used for seismological models (e.g. Ogata, 1988). An example
of this diagnostic will be shown in Section 4.5.2, demonstrating its use in detecting
some forms of model misspecification.
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4.4.2 Accelerated Residual Calculation

Monte Carlo integration of 𝜆(𝑠) over each Voronoi cell 𝐶𝑖 is computationally ex-
pensive, and so residual maps can take considerable time to calculate. Fortunately,
the integrated intensity can be calculated approximately using the same dual-tree
approach described in Section 3.6. The Intensity function in Algorithm 3.1 is re-
placed with one calculating the integrated intensity 𝜆(𝑠), the 𝑘-d tree is generated
over two-dimensional space without including the time coordinate, and Bounds is
replaced with a version calculating bounds in integrated intensities.

In practice, rejection sampling points in each Voronoi cell for the Monte Carlo
integration is more computationally expensive than the actual calculation of 𝜆(𝑠), so
if residual calculations prove to be a burden (e.g. for interactive visualization tools),
rejection sampling could be replaced with a faster method, such as triangulating the
polygons and uniformly sampling within the triangles. For applications such as the
residual videos discussed in the next section, sampled points could be retained from
one frame to the next, instead of being redrawn each time.

4.4.3 Residual Videos

Residual comparisons between time periods, as shown in Figure 4.4, can be useful
to understand the temporal dynamics of hotspots and self-excitation. To automate
this process, I introduced residual videos, which animate residual maps over time.
In each frame of the video, residuals are calculated for a specific time window, then
mapped, and the window advances with each frame.

Videos pose an additional challenge because the Voronoi cells used change with
every frame of the video, as the crimes contained within the time window change.
Left unchecked, this would produce a nearly incoherent video, as the shapes and
colors of cells change rapidly from frame to frame. Instead, the animation works on
a series of time windows, one per frame. For each window, we calculate the Voronoi
tessellation of crimes occurring in that window and the corresponding residuals ̂𝑟𝑗 .
These residuals, and the times of the events defining each cell, are used to build
a smoothed residual field similar to that suggested by Baddeley et al. (2005). The
residual value at each animation frame and each point in space is determined by
a kernel smoother, using an exponential kernel in time and a Gaussian kernel in
space, with the same structure as the triggering function 𝑔(𝑠, 𝑡). This eliminates
jarring changes in the map and makes it easier to interpret.

4.5 Robustness to Model Misspecification

Using extensive simulations and the tools discussed in this chapter, we can begin
to explore the behavior of the point process model under various types of model
misspecification. Several modeling choices, such as the Gaussian spatial triggering
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Figure 4.6: Boxplot of log-likelihood ratios (eq. (4.1)) obtained from fits to simulated
data with Cauchy-distributed offspring (left) or Gaussian offspring (right). The
poor fit from model misspecification is noticeable.

and exponential time decay in the triggering function 𝑔, will not exactly hold in real
data, so we should verify that the model still behaves well in such circumstances.

4.5.1 Triggering Function

Consider two simulations: one in which event offspring locations are drawn from
the Gaussian triggering function 𝑔 used in fitting our model, and one in which their
locations are drawn from a Cauchy distribution, giving them a heavy tail which
is not accounted for by the model. Running 100 simulations under each condition
and calculating the log-likelihood ratios of fits to each, I obtained the ratios shown
in Figure 4.6, which demonstrate this method’s ability to detect poor model fit. In
this situation, the disturbance in model fit is limited to the self-excitation parame-
ters 𝜃 and 𝜔 (𝜎2 is not meaningful to compare here), along with the intercept 𝛽0;
the estimates of 𝛽 for the simulated covariates are unaffected, suggesting that mis-
specification of the triggering function need not harm inference about the spatial
covariates.

Similarly, we can test whether the exponential time decay assumption in the trig-
gering function can be violated. The assumption is equivalent to drawing waiting
times to each offspring from an Exp(𝜔) distribution, so as an alternative specifica-
tion, I simulated data from a Gamma(3, 𝜔) distribution, giving the alternate shape
shown in Figure 4.7. The spatial offspring distribution remained Gaussian. Despite
the dramatically different temporal triggering, after 100 simulations averaging 3000
events each, there was no significant bias in estimates of 𝜃 or 𝛽 (apart from the
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Figure 4.7: In blue, the exponential time decay function assumed by 𝑔. In orange, a
Gamma-distributed decay function from which simulated data is drawn.

intercept 𝛽0), though 𝜎2 was systematically underestimated; most surprisingly, 𝜔
appeared to be correctly estimated on average as well.

4.5.2 Omitted Variables and Confounding

Another type of misspecification concerns the covariates used in fitting the model.
Section 3.1 discussed the inherent confounding which can occur when estimating
the effect of spatial covariates on crime without accounting for self-excitation. Fig-
ure 3.6 demonstrated that this confounding is generic, occurring whenever there are
covariates which affect crime over time. By building a self-exciting point process
model which accounts for self-excitation and covariates, we can account for both
and avoid the confounding.

We must, however, be aware of other types of confounding that can creep in.
The most common is an unobserved covariate: there are many causal factors which
can influence crime rates, and it is unlikely we can directly measure all of them.
Figure 4.8 demonstrates the danger. A covariate may be causally related to another
covariate as well as to crime rates, and if it is not observed and accounted for, the
other covariate’s estimated effect will be confounded. This is directly analogous
to the situation in ordinary regression, when unobserved predictors may confound
regression coefficient estimates.

On the other hand, if the two covariates are not correlated in any way, omit-
ting one does not bias estimates of the other’s effect; in traditional regression its
mean effect is simply added to the intercept and the individual effects simply add
to the error variance. However, in the more complicated self-exciting point process
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Crime in 𝑖 at 𝑡Crime in 𝑖 at 𝑡 − 1
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Figure 4.8: A simplified causal diagram depicting potential confounding: covariate
1 has a causal relationship with both covariate 2 and crime rates, and so if it is
unobserved, estimates of covariate 2’s effect will be confounded.
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Figure 4.9: The rate induced (that is, exp(𝛽𝑋), where 𝛽 = 1 for simplicity and 𝑋 is
the covariate) by two Gaussian process covariates on a 20 × 20 grid. The second
covariate is dependent upon the first. Notice the spatial structure of the Gaussian
process.

model, omitted covariates may have other detrimental effects. A series of simula-
tions demonstrate this.

To simulate two uncorrelated covariates, I generated covariates on a grid, draw-
ing the covariate values from a Gaussian process with squared exponential covari-
ance function to ensure there was some spatial structure. Each covariate was an
independent draw from the Gaussian process. To simulate confounded covariates,
I drew the first covariate from the Gaussian process and defined the second to be
the sum of the first and a new Gaussian process draw, so that the second was corre-
lated with the first. Both covariates had effects on the crime rate. Sample correlated
covariates are shown in Figure 4.9.

With uncorrelated covariates, I ran 100 simulations (each with new Gaussian
process draws), fitting models with both covariates included and with the second
covariate omitted. Simulations were performed with random true parameter values,
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Figure 4.10: The difference between the true value of 𝜃 and the estimated value, as
a function of the coefficient 𝛽2. On the left, fits made when 𝛽2 is accounted for; on
the right, when it is not. Notice the odd behavior around 𝛽2 = 0: when the omitted
covariate does not matter, 𝜃 is estimated to be close to its true value, but when it
has a larger effect, ̂𝜃 has much higher variance.

and these values were recorded, along with the fits. It is apparent from the results
that estimates of ̂𝜃 are affected by the missing covariate: Figure 4.10 shows the fits,
as a function of the true value of 𝛽2 used in the simulation, and a distinct pattern can
be seen when the second covariate is omitted from the fit, with ̂𝜃 having larger vari-
ance for larger values of |𝛽2|. On average, the estimated ̂𝜃 with a missing covariate
is larger than the true 𝜃 by 0.18 (95% CI [0.10, 0.27]).

Overestimation of 𝜃 has other consequences. For example, Figure 4.11 shows
a temporal residual plot (see Section 4.4.1) for a fit to a simulated dataset with an
omitted covariate. An obvious calibration problem is present: by the time the 500th
event occurred, the conditional intensity function predicted 150 fewer events than
occurred. Near 𝑡 = 0, 𝜆(𝑠, 𝑡) cannot predict the observed events because there is
little past history of events; near 𝑡 = 𝑇 , a long past history and overestimated 𝜃
causes 𝜆(𝑠, 𝑡) to overestimate the intensity and “catch up” in the cumulative pre-
dicted number of events.

Additionally, the time decay parameter 𝜔 is also overestimated by 70% on aver-
age. Together, these biases suggest that the clustering induced by the unobserved
covariate is being accounted for by increasing self-excitation and by allowing the
effects of self-excitation to last longer in the model.

Next, I simulated causally confounded covariates, following the causal model in
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Figure 4.11: At left, a temporal residual plot for a fit to a simulated dataset with one
covariate, showing normal variation in the residuals. At right, a temporal residual
plot for a fit to the same data which omits the covariate, demonstrating the effect
of the overestimated 𝜃 . Note the difference between the maximum deviations from
0 in both plots.

Figure 4.8. Covariate 1 was drawn from a Gaussian process, as before, and Covariate
2 was defined to be the average of Covariate 1 and a separate independent Gaussian
process. This gave an average correlation of 𝑟 = 0.66 between the covariates. Data
was simulated from these covariates (with random coefficients) and then models
fit with and without Covariate 2 included. Figure 4.12 demonstrates the bias in
estimates of 𝛽1 which ensues when the effect of 𝛽2 is not accounted for, similar to the
biases that can occur in ordinary linear regression when covariates are confounded.
The confounding also affects ̂𝜃 and �̂� in a similar way as in the previous simulation,
with bias as |𝛽2| increases.

Together, these simulations demonstrate two important caveats of self-exciting
point process models:

1. Omitted spatial covariates, whether or not they are confoundedwith observed
covariates, can bias estimates of the self-excitation parameter 𝜃 , making it
seem as though events are more likely to trigger offspring events.

2. Omitted spatial covariates can also bias estimates of the temporal decay pa-
rameter 𝜔, making it seem as though self-excitation or near-repeat effects
occur over a longer timescale than they really do.

3. If there is a confounding relationship between covariates, such as that shown
in Figure 4.8, unobserved covariates can bias estimates of observed covariate
effects ( ̂𝛽) as well as of self-excitation.
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Figure 4.12: Bias observed in estimated values of 𝛽1 when 𝛽2 is also estimated (left)
or is omitted from the fit (right).

Thefirst two points are particularly concerning, since in practical applications it
is unlikely that all covariates could ever be accounted for—there will always be un-
measured spatial differences in base rates, or imperfectly measured covariates. This
suggests that previous applications of self-exciting point process models may have
overestimated the amount and time scale of self-excitation in the process, unless
their background estimator was able to capture all spatial variation in base rates.

In some cases, it may be possible to detect when there is an important unob-
served spatial covariate. Residual maps, introduced in Section 4.4.1, can make sys-
tematic deviations from the predicted event rate visible, and careful examination of
the maps may suggest variables that need to be included. Chapter 5 gives several
examples of this in Pittsburgh crime data.

General approaches to account for unobserved covariates are more difficult.
One strategy, sometimes used in spatial regressions, is to include a spatial random
effect term intended to account for the unobserved covariates. However, at least
in spatial regression, this method does not achieve its goal: a spatial random effect
can bias coefficients of the observed covariates in arbitrary ways, particularly if
the unobserved covariate is spatially correlated with any of the observed covariates
(Hodges & Reich, 2010). Given the causal diagram in Figure 3.6, it does not seem
possible for any one adjustment to account for an unobserved covariate and give
unbiased estimates of the effects of the other covariates. Users of spatial regres-
sion and the self-exciting point process model introduced here need to be aware of
their limitations in the presence of unobserved confounders, and interpret results
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carefully.

4.6 Summary

This chapter introduced a range of diagnostic and inference tools for self-exciting
point processes, building on inference and residual methods previously used in
other areas of application. Using these tools, Section 4.5 presented a comprehen-
sive simulation study of the effects model misspecification. These results, and the
diagnostic tools used to obtain them, can now be put to use analyzing real-world
crime data.
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Five

Application to Pittsburgh Crime
Data

5.1 Pittsburgh Data

This chapter analyzes a database of 205,485 police incident records filed by the Pitts-
burgh Bureau of Police (PBP) between June 1, 2011, and June 1, 2016, specifying the
time and type of each incident and the city block onwhich it occurred.1 (Privacy reg-
ulations prevent PBP from releasing the exact addresses or coordinates of crimes, so
PBP provides only the coordinates of the block containing the address.) The records
include crimes from very minor incidents (such as 38 violations of Pittsburgh’s or-
dinance against spitting) to violent crimes, such as homicides and assaults. Only
crimes reported to PBP are included, so the dataset does not include records from
the police departments of Pittsburgh’s several major universities, such as the Uni-
versity of Pittsburgh, Carnegie Mellon University, Chatham University, or Carlow
University.

Because the database contains only incident reports, offense types are prelim-
inary. Charges listed in the reports may be downgraded or dropped, suspects ac-
quitted, or new charges filed. The reports represent only the charges reported by
the initial investigating officers, so they may not correspond with final FBI Uniform
Crime Report data or other sources. While this limits the accuracy of our data, it
is also the only practical approach—final charges may not be known for months, so
predictions based on them would be hopelessly out of date.

Rather than dealing with the numerous sections and subsections of the Penn-
sylvania Criminal Code represented in the incident data, we used the FBI Uniform
Crime Report hierarchy, which splits incident types into a common hierarchy com-
parable across states and jurisdictions. Among so-called “part I” crimes, homicide,
assault, and rape are at the top of the hierarchy, followed by other crimes like theft,

1Portions of this chapter have been published as Reinhart and Greenhouse (2018). Self-exciting
point processes with spatial covariates: modelling the dynamics of crime. Journal of the Royal Statis-
tical Society: Series C. doi:10.1111/rssc.12277
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5. application to pittsburgh crime data

Hierarchy Crime Count

1 Homicide 300
2 Forcible rape 893
3 Robbery 5884
4 Aggravated assault 5900
5 Burglary 11 943
6 Larceny/theft 37 487
7 Motor vehicle theft 3892
8 Arson 0

Table 5.1: The part I crime hierarchy prescribed by the FBI Uniform Crime Report
system, along with counts of each type of offense in the Pittsburgh dataset. (Arson
appears to have been miscoded in this dataset, making it falsely appear to contain
no arson incidents.)

burglary, and so on. If an incident involves two distinct types of crime (e.g. a bur-
glary involving an assault on a homeowner), we use the type higher in the hierar-
chy, following the FBI’s “Hierarchy Rule” (FBI, 2004). The hierarchy of offenses is
shown in Table 5.1. In our analysis we focused on crimes in these categories, though
other “part II” crimes, such as simple assault and vandalism, are also available in the
dataset, along with every other offense type recorded by the Pittsburgh Bureau of
Police.

To supplement the crime data, PBP also provided 1,027,056 records from its
Computer Aided Dispatch (CAD) system, which records both 911 calls and other
officer-initiated incidents. (For example, an officer may call in to dispatch to record
a “police park & walk” when parking to patrol on foot.) From this data we extracted
broad groupings of calls related to assaults, gunshots, drug incidents, and other
types considered relevant to violent crime by previous leading indicator studies.

All analyses are performed in the Pennsylvania South State Plane Coordinate
System (srid 2272), with coordinates in feet.

5.2 Spatial Covariates

With the assistance of Evan Liebowitz, I obtained shapefiles of geographic covari-
ates for the city of Pittsburgh containing, for each U.S. census block,

• The fraction of residents who are male from age 18–24

• The fraction of residents who are black
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• The fraction of homes which are occupied by their owners, rather than rented

• The total population

• Population density (per square meter)

• The fraction of residents who are black or Hispanic.

Some city blocks have no population (e.g. in commercial areaswith no residents),
so an additional dummy variable was used to record whether each block had a popu-
lation. In all models that follow, population-based covariates only enter the models
when the block has a nonzero population.

Additional variableswere obtained from theAmericanCommunity Survey, Pitts-
burgh land parcel records, and other public Pittsburgh GIS data, and were recorded
at the census block group level:

• The fraction of residents without a high school diploma

• The fraction of residents living under the poverty line

• Number of bus stops in the block group

• Numbers of bars, banks, and retail stores, from land parcel data.

The census block variables were also aggregated to the block group level, so they are
available when analyzing with block group covariates. The analysis software does
not yet have the ability to mix covariates recorded on different shapefiles, though
this is technically possible with some extra harmonization work.

The business data is least reliable, since it is based on land parcel records and
reflects only the owner of the land, not any lessees or secondary uses. Office build-
ings with shops on the first floor may not be recorded as containing retail stores,
for example. We did not use this data for our primary analysis, focusing instead on
the demographic and socioeconomic variables.

5.3 Dealing with Aggregated Data

The Pittsburgh dataset does not contain exact locations of every incident. Instead,
each incident’s location is the center of the city block containing the incident. This
aggregation causes some problems. As discussed in Section 3.3, crimes closer than
a short distance 𝛿 are not permitted to contribute to the intensity, implying that if
two crimes occur at exactly the same location, one cannot have “caused” the other
through self-excitation in the foreground process. Hence crimeswhich occur within
the same block cannot have caused each other.
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Parameter Value Interpretation

𝜔 5.199 × 106 60.18 d
𝜎2 5.359 × 105 732.1 ft
Covariate Coefficient exp(Coef)

Intercept −31.95 1.3 × 10−14
Population 31.77 6.2 × 1013

Predictor N Foreground

Self-excitation 2682 0.8913

Table 5.2: Predicting part I violent crimes using only self-excitation and background
effects, with no jitter, from June 1, 2011 to June 1, 2012.

This limits the utility of the self-exciting component of themodel, since it cannot
account for self-excitation within the same city block, where self-excitation could
be expected to have the strongest effect. One possible solution is jitter, which adds
independent random noise to the location of each crime. However, themost obvious
form of jitter, simply adding independent bivariate random normal numbers with
mean zero to each crime’s coordinates, proves to introduce artifacts to the model
fit.

In particular, jittering aggregated data leads to clusters: if we use a standard
deviation of ten feet, we will create small clusters which are well-fit with a model
with �̂�2 ≈ 10 ft. To illustrate this, I used part I violent crime data (hierarchy levels
1–4); Table 5.2 shows the fit without jitter, and Table 5.3 shows the fit with ten-foot
normal jitter, both using population density as a background covariate. There are
several crucial differences. The original fit has a log-likelihood of −83377.1, com-
pared to −78459.1 for the jittered fit, an improvement of 4818. The self-excitation
effect goes from a coefficient of 0.8913 to 0.9492. But the self-excitation bandwidth is
�̂� = 12.4 ft, a sign the self-excitation is fitting to the clusters I artificially introduced.

Instead, I adopted a jittering approach that does not introduce artificial clus-
tering, and is more “honest” about the accuracy of our aggregated data. Using a
shapefile containing the boundaries of every city block in Pittsburgh, I indepen-
dently and uniformly drew the location of each crime from the block containing
it. (To find the block, I used R-trees (Guttman, 1984), an efficient data structure for
searching spatial polygon data.) Because the draw is uniform, this does not cause
clustering; because it is within the block to which the crime was aggregated, it uses
exactly the precision available to us and no more.

A block-jittered fit to the same data is shown in Table 5.4. �̂�2 is no longer artifi-
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Parameter Value Interpretation

𝜔 2.286 × 107 264.6 d
𝜎2 153.7 12.4 ft
Covariate Coefficient exp(Coef)

Intercept −31.18 2.9 × 10−14
Population 31.83 6.7 × 1013

Predictor N Foreground

Self-excitation 2682 0.9492

Table 5.3: Predicting part I violent crimes using only self-excitation and background
effects, with ten feet of jitter, from June 1, 2011 to June 1, 2012.

Parameter Value Interpretation

𝜔 7.788 × 106 90.14 d
𝜎2 1.471 × 105 383.5 ft
Covariate Coefficient exp(Coef)

Intercept −31.93 1.4 × 10−14
Population 31.60 5.3 × 1013

Predictor N Foreground

Self-excitation 2682 0.9771

Table 5.4: Predicting part I violent crimes using only self-excitation and background
effects, jittered within city blocks, from June 1, 2011 to June 1, 2012.

cially fitting to clusters introduced by jittering, and self-excitation is stronger than
the un-jittered model in Table 5.2, showing the effect of allowing crimes within the
same block to excite each other.

Repeated fits with jitter (i.e. starting from the original unaltered data, jittering
with new random numbers, and refitting) shows that the jitter has only a small effect
on parameter values—less than 1% in most cases.

5.4 Predicting Burglary

I began analysis of the Pittsburgh crime data with burglary. Selecting only the first
year of data, I fit two models, one using only population density as a covariate
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Parameter Value Interpretation

𝜔 4.511 × 106 52.21 d
𝜎2 2.664 × 105 516.1 ft
Covariate Coefficient exp(Coef)

Intercept −31.63 1.8 × 10−14
Population 31.66 5.6 × 1013

Predictor N Foreground

Self-excitation 2892 0.7640

Table 5.5: A model predicting burglary using self-excitation and population density
(persons per square meter).

and the other using additional covariates. The model fits are shown in Table 5.5
and Table 5.6. The additional covariates improve the model AIC from 179 750 to
179 319, an improvement of about 431 units. Notice the relative consistency of the
self-excitation parameters �̂� and �̂�2 between fits, and that, as expected from the
discussion in Section 4.5.2, ̂𝜃 decreases when additional covariates are added.

Interpretation of the model with all covariates (Table 5.6) is straightforward.
High population densities predict higher risks of burglary, as there are more res-
idences to burgle; higher proportions of young men also indicate a higher risk,
in agreement with previous criminological research suggesting this is the demo-
graphic most likely to commit crime. Home ownership, rather than renting, corre-
lates with decreases in burglary risk, while a higher fraction of black residents is
correlated with higher burglary rates; these last two factors are likely confounded
with measures of poverty and unemployment, which also likely have strong rela-
tionships with crime, but are not included in this model.

Predictive evaluations of these models were used as examples in Section 4.2.4,
in Figure 4.2 and Figure 4.3, showing the small but detectable improvement in pre-
dictive performance coming from the use of additional covariates. Residual maps
were used as examples in Figure 4.4, illustrating the nature of burglary hotspots. For
a larger view of Pittsburgh, Figure 5.1 shows an overall residual map of Pittsburgh
over two months. Several trends appear, suggesting inadequacies in the available
covariates and the presence of boundary effects: commercial areas such as down-
town (at the confluence of the two rivers) have fewer burglaries than predicted, and
the presence of the University of Pittsburgh and Carnegie Mellon University also
results in negative residuals, as each has its own police department whose records
are not included in our dataset. Note that, as discussed in Section 4.4.1, negative
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5.4. Predicting Burglary

Parameter Value Interpretation

𝜔 4.061 × 106 47 d
𝜎2 2.194 × 105 468.4 ft

Covariate Coefficient exp(Coef)

Intercept −33.15 4 × 10−15
Population 25.50 1.2 × 1011
is_positive(TotalPopul) 2.49 12
is_positive(TotalPopul):PercentMal −0.69 0.5
is_positive(TotalPopul):PercentBla 0.75 2.1
is_positive(TotalPopul):PercentOwn −1.14 0.32

Predictor N Foreground

Self-excitation 2892 0.5893

Table 5.6: Amodel predicting burglary using self excitation and multiple covariates:
population density, fraction of residents who are 18–24 year oldmales (PercentMal),
fraction of residents who are black (PercentBla), and fraction of homes occupied by
their owners (PercentOwn).

(blue) residuals visually dominate, because areas with lower-than-expected crime
hence have larger Voronoi cells; also note the presence of several clusters of small
cells with large positive residuals, at the locations of temporary burglary hotspots.

Further exploration of the ROC and hit rate curves (Figure 4.2 and Figure 4.3)
is illuminating. Despite the 221 unit improvement in AIC from the addition of de-
mographic covariates, the predictive performance gain is fairly small. To explore
the reasons for this, I performed two simulations. In the first, I used the model
parameters in Table 5.6, along with the Pittsburgh demographic covariates, to gen-
erate a synthetic burglary dataset, fit to that dataset with and without the covariates,
and compared the ROC curves on simulated data; the curves were essentially iden-
tical. On the other hand, if I fit a model in which I set 𝜃 = 0, so there was no
self-excitation and only the covariates mattered (essentially a spatial regression), I
obtained Figure 5.2.

This suggests that, at least in this context, self-excitation accounts for much
more of the predictive power of the model than the covariates; ̂𝜃 = 0.5893, which
leads to an expected total cluster size of 2.43, so there are almost twice as many
offspring crimes as there are crimes arising from the background. To confirm this
intuition, I simulated another burglary dataset using the parameters in Table 5.6, ex-
cept I artificially set 𝜃 = 0.1, giving an expected total cluster size of 1.11 and ensuring
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Figure 5.1: Residual map from the fit shown in Table 5.5, over two months of bur-
glaries.
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Figure 5.2: ROC curves for a full model with all covariates and one with no self-
excitation, on simulated burglary data.
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Figure 5.3: ROC curves for a full model with all covariates and one with no self
excitation, on simulated burglary data with 𝜃 = 0.1 set artificially.

most crimes arose from the background directly. In this simulation, omitting covari-
ates caused a large reduction in predictive performance, as shown in Figure 5.3.

Interpreting these results requires care. At first glance it appears the covariates
have little effect on crime rates; however, the estimated background crime rate 𝜇(𝑠)
varies by four orders of magnitude between city blocks, so it is not the case that
covariates do not matter at all. The large value of ̂𝜃 instead suggests that either
burglary is naturally very highly self-excited, giving it a stronger predictive effect
than covariates, or that there are additional relevant covariates that have not been
accounted for—Section 4.5.2 showed that omitting relevant factors can significantly
increase ̂𝜃 , as locally high event rates are accounted for with self-excitation instead
of background features. We must be careful interpreting ̂𝜃 to mean, for example,
that burglars commit 3.05 burglaries on average before being caught or moving
elsewhere, because that number is biased upward by unknown factors. We can, at
best, consider it an upper bound on the average burglary cluster size.

Finally, we can look at the addition of leading indicators. Using the same co-
variates as in Table 5.6, we add in larceny/theft and motor vehicle theft as possible
leading indicators, and obtain the fit shown in Table 5.7. The covariate coefficients
change slightly, and motor vehicle theft seems to predict burglaries better than
larceny/theft. The AIC of the fit is 179 201, an improvement of a further 118 units—a
smaller improvement than the addition of the original covariates, but nonetheless
substantial. As could be expected, the self-excitation decreases again to roughly 0.5,
as motor vehicle theft and larceny account for some previously unaccounted-for
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5. application to pittsburgh crime data

Parameter Value Interpretation

𝜔 3.551 × 106 41.1 d
𝜎2 1.619 × 105 402.3 ft

Covariate Coefficient exp(Coef)

Intercept −33.90 1.9 × 10−15
Population 25.19 8.7 × 1010
is_positive(TotalPopul) 3.00 20
is_positive(TotalPopul):PercentMal −0.85 0.43
is_positive(TotalPopul):PercentBla 0.94 2.5
is_positive(TotalPopul):PercentOwn −1.00 0.37

Predictor N Foreground

Self-excitation 2892 0.4480
Larceny/theft 7382 0.0632
Motor vehicle theft 824 0.1167

Table 5.7: A fit to 1 year of burglary data using other types of property crime as
leading indicators.

clustering.

5.5 Predicting Violent Crime

Violent crime is frequently the target of police attention and interventions, and so
models to direct police resources to lower violent crime rates are of high interests.
From the Pittsburgh dataset I selected hierarchy levels 1–4: homicide, forcible rape,
robbery, and aggravated assault, totaling 12 975 offenses over five years.2

As an initial exploration, I fit a model using all five years of data and covariates
on the census block group level, including indicators of poverty and education. The
result is shown in Table 5.8. Population density continues to have a strong positive
relationship with violent crime, as do poverty and low education levels; surpris-
ingly, the fraction of residents who are males aged 18–24 has a negative correlation
with crime, the opposite of what we would usually expect. This may occur because
the parts of Pittsburgh with the highest concentrations of young men are near the
campuses of the University of Pittsburgh and Carnegie Mellon University, where

2Table 5.1 lists 12 977 such offenses, but two had invalid or missing coordinates and could not be
used.
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5.5. Predicting Violent Crime

Parameter Value Interpretation

𝜔 2.444 × 107 282.9 d
𝜎2 5.186 × 104 227.7 ft
Covariate Coefficient exp(Coef)

Intercept −31.92 1.4 × 10−14
Population 213.21 4 × 1092
BlockGr_13 1.64 5.2
BlockGr_12 0.20 1.2
PercentMal −5.54 0.0039
PercentOwn −1.17 0.31
Predictor N Foreground

Self-excitation 12 960 0.8658

Table 5.8: A fit to five years of part I violent crime data. BlockGr_13 is the fraction
of population under the poverty line; BlockGr_12 is the fraction without a high
school diploma. As before, PercentMal is the fraction of residents who are males
age 18–24 and PercentOwn the fraction of homes occupied by their owners.

education levels are high and crimes are reported to campus police departments
and do not appear in our dataset.

The self-excitation in this model is roughly consistent with previous research
(Haberman & Ratcliffe, 2012; Ratcliffe & Rengert, 2008), which has found near-
repeat effects over a scale of about one city block, or around 400 feet. The decay
time is nearly ten months, however, which is much longer than most previous stud-
ies have found—the usual period used in Knox tests is about two weeks. Further
investigation is needed to understand why there is such a dramatic difference in
time periods.

If we fit to the same dataset without the socioeconomic and demographic co-
variates, using only population density as a covariate, we obtain broadly similar
self-excitation parameters, as shown in Table 5.9. The self-excitation rate ̂𝜃 is higher,
as wewould expect from Section 4.5.2, but the spatial and temporal decays from self-
excitation are nearly the same, and the direction of the effect of population density
is similar as well. The decline in AIC from removing the socioeconomic and demo-
graphic variables is 305, suggesting they are indeed quite important to the model
fit.

Together, these two examples illustrate the use of the extended self-exciting
model of crime for crime analysis, and demonstrate its potential for quantifying the
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Parameter Value Interpretation

𝜔 2.333 × 107 270.1 d
𝜎2 6.045 × 104 245.9 ft
Covariate Coefficient exp(Coef)

Intercept −32.62 6.8 × 10−15
Population 186.45 9.5 × 1080

Predictor N Foreground

Self-excitation 12 960 0.9214

Table 5.9: A fit to the same data as Table 5.8, but without most of the spatial covari-
ates.

effects of leading indicators and spatial covariates. The analysis here is not com-
plete, and further criminological analysis with many more interesting covariates is
possible, though out of the scope of this thesis. Instead, in the next chapter we will
demonstrate the model’s applicability to cities other than Pittsburgh, by analyzing
crime in Baltimore.
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Six

Application to Baltimore Crime
Data

6.1 Baltimore Data

This chapter, intended to provide a point of comparison against Chapter 5’s analysis
of Pittsburgh crime data, analyzes a database of crime records released by the Bal-
timore Police Department covering Part 1 crime (offense types listed in Table 5.1).
The dataset is publicly available through the city’s Open Baltimore service and fre-
quently updated with the latest crime data; I extracted two subsets of this data, one
of Part 1 Violent crime (hierarchy levels 1–4) and one of burglary (with larceny/theft
and motor vehicle theft as leading indicators), both between July 1, 2015 and July 1,
2017.

Similar caveats apply to this dataset: it represents preliminary reports, before
the data is validated and submitted to the final FBI Uniform Crime Report, and in-
formation may change as incidents are investigated. Only Baltimore Police Depart-
ment data is included, not any other police agencies which may have jurisdiction
in the area. Also, the data released by the Baltimore Police Department is geocoded
to the nearest city block coordinates, and so, following Section 5.3, I used Census
block boundaries to uniformly jitter the events within city blocks. All analyses were
conducted in the Maryland State Plane coordinate system (srid 3582), in feet.

Spatial covariates were obtained from the Vital Signs 15 dataset produced by the
Baltimore Neighborhood Indicators Alliance, which aggregates city and census data
about each of Baltimore’s 55 neighborhoods. A large range of variables are available;
from these, I used the following (descriptions quoted from BNIA data pages):

• Household density (number of households per square mile), based on the total
number of households variable

• Percent of residents aged 18–24

• Percent of family households living below the poverty line
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6. application to baltimore crime data

• Percent of the population unemployed

• Percent of the population age 25+ with less than a high school diploma/GED

• High school dropout/withdrawal rate

• Percent of 9th–12th graders who are chronically absent

Because Baltimore is split into only 55 neighborhoods, these covariates are rather
coarse-grained, and finer variation in population density, poverty, and other demo-
graphics cannot be captured by this covariate data. This is an important difference
versus the Pittsburgh data, which is recorded at the block level but has less rich
covariates.

6.2 Predicting Burglary

I began analysis of the Baltimore data with burglary, following the same steps as
with the Pittsburgh data. Selecting the first year of data (July 1, 2015 to July 1,
2016), I fit a model containing the covariates listed above. The resulting fit is shown
in Table 6.1. The coefficients on the covariates appear to be small, but the scaling
matters here; a 10 percentage point change in the proportion of residents age 18–24,
for example, correlates with a 1.76× increase in background crime rate, for example.

Comparing against Table 5.7, self-excitation is higher, perhaps because this fit
did not use additional leading indicators, but spatial and temporal decays are simi-
lar. Unfortunately it’s difficult to evaluate the consistency in covariate coefficients
between cities because a consistent set of covariates is not available across both;
further work would be required to extract Census data in identical ways for both
cities to enable a meaningful comparison.

Residuals of this fit for one two-week period are shown in Figure 6.1. Several
serious burglary hotspots are visible, as well as a range of residual values that appear
to be related to the hotspots. To evaluate the predictive performance of the model, it
was tested on weekly predictions for the following year of data (July 1, 2016 to July
1, 2017) in the same way as in Figure 4.2 and Figure 4.3 for Pittsburgh data, giving
the curves shown in Figure 6.2 and Figure 6.3. The curves are very similar to those
for Pittsburgh data, with the ROC curve’s AUC of 0.68 nearly matching the AUC of
0.70 for Pittsburgh, suggesting the predictive performance is similar between cities
(though again, the difference in covariates makes direct comparison impossible).

6.3 Predicting Violent Crime

Again following the same steps as with the Pittsburgh data, I analyzed Part 1 violent
crime data (hierarchy levels 1–4) from July 1, 2015 to July 1, 2016, a total of 17 973
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6.3. Predicting Violent Crime

Parameter Value Interpretation

𝜔 4.242 × 106 49.1 d
𝜎2 1.969 × 105 443.7 ft

Covariate Coefficient exp(Coef)

Intercept −33.01 4.6 × 10−15
I(hhs15 / (area / 5280 / 5280)) 0.00 1
age18_15 0.06 1.1
hhpov15 −0.01 0.99
unempr15 0.01 1
lesshs15 0.03 1
drop15 −0.02 0.98
abshs15 −0.01 0.99

Predictor N Foreground

Self-excitation 7565 0.7424

Table 6.1: Fit to one year of Baltimore burglary data with covariates and leading
indicators. The covariates, in turn, are households per square mile, percent age
18–24, percent of households under the poverty line, percent unemployed, percent
with less than a high school education, high school dropout rate, and percent of
9th–12th graders who are chronically absent.

incidents. For the sake of comparison, I produced two separate fits, one with the
full set of covariates used in Table 6.1 and one using only household density and
self-excitation.

The fits are shown in Table 6.2 and Table 6.3. The self-excitation rate is much
higher than for burglary, and as we’d expect from Section 4.5.2, it is higher without
covariates. AIC improves from 1 056 176 to 1 055 457, or about 718 units, with the
addition of the covariates, suggesting they are quite important despite their appar-
ently small magnitude. (Note again that, as the covariates are percentages, they vary
over a large range.) The time scale of self-excitation (�̂�) is longer than many previ-
ous results on near-repeats would suggest, though not as extreme as the Pittsburgh
results in Section 5.5; this suggests there is more to the near-repeat phenomenon
than has been discovered so far.

It is particularly interesting that self-excitation parameter 𝜃 varies in magnitude
so greatly between burglary and violent crime, since previous evaluations based on
Knox tests have not had any easily comparable measure of effect size, only the sig-
nificance of the test. The consistency of this difference between Pittsburgh and
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Figure 6.1: Residual map for the fit shown in Table 6.1. Several clusters are visible,
one to the southwest of downtown and several directly around it.

Parameter Value Interpretation

𝜔 6.61 × 106 76.51 d
𝜎2 7.756 × 104 278.5 ft

Covariate Coefficient exp(Coef)

Intercept −31.40 2.3 × 10−14
I(hhs15 / (area / 5280 / 5280)) 0.00 1

Predictor N Foreground

Self-excitation 17 973 0.9452

Table 6.2: Fit to Baltimore violent crime data without covariates, apart from house-
holds per square mile.

96



6.3. Predicting Violent Crime

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Burglary

Figure 6.2: ROC curve for weekly predictions of burglaries in Baltimore. Compare
against Figure 4.2. The AUC is 0.68.
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Figure 6.3: Hit rate for weekly predictions of burglaries in Baltimore. Compare
against Figure 4.3.
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Parameter Value Interpretation

𝜔 7.888 × 106 91.3 d
𝜎2 5.859 × 104 242 ft

Covariate Coefficient exp(Coef)

Intercept −33.66 2.4 × 10−15
I(hhs15 / (area / 5280 / 5280)) 0.00 1
age18_15 0.02 1
hhpov15 −0.01 0.99
unempr15 0.03 1
lesshs15 0.00 1
drop15 −0.10 0.9
abshs15 0.06 1.1

Predictor N Foreground

Self-excitation 17 973 0.8799

Table 6.3: Fit to Baltimore violent crime data with all covariates.

Baltimore suggests an underlying phenomenon is at work; the difference could be
explained by different crime dynamics for different types of crime, as well as dif-
ferences in the efficacy of the covariates—perhaps the covariates available to us are
much better at predicting burglary than at predicting violent crime, and the addition
of other as-yet-unknown covariates would result in the estimated self-excitation
for violent crime dropping to a similar level. Further criminological research is re-
quired.

6.4 Summary

Analysis of Pittsburgh and Baltimore crime data has demonstrated the practical use
of the model introduced in Chapter 3 and illustrated the diagnostics discussed in
Chapter 4. Though the models are intended more for demonstration than as rigor-
ous tests of criminological theories, the preliminary results are already interesting,
suggesting differences between the dynamics of different types of crime and giving
better estimates of near-repeat behavior than were previously possible. Naturally,
the results suggest a great deal of future criminological work that could be possi-
ble with more comprehensive covariates, more detailed maps, and more extensive
records from additional cities, so we now turn to consider potential future work.
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Seven

Conclusions and Future Work

This thesis develops a self-exciting spatio-temporal point process model of crime,
building on previous work by simultaneously accounting for spatial features, lead-
ing indicators, and past crime history, and by combining useful diagnostics and
inference tools to make analysis practical. A series of simulations and practical
applications to Pittsburgh and Baltimore demonstrate the model’s usefulness.

Many further extensions to the model are possible, and this chapter reviews
several that would have immediate practical uses.

7.1 Distance Metrics

One obvious modification to the self-exciting point process model of crime is the
choice of distance metric. The triggering function 𝑔 uses the Euclidean distance
between crimes to determine influence on each other, but in a city with rivers, high-
ways, bridges, and other complicated geography, Euclidean distance is likely not
the best measure of how influential one crime may be on another. It may be more
reasonable to design a triggering function that increases the risk of crimes in areas
close in travel distance to the crime, rather than in Euclidean space. This choice also
makes it simple to avoid predicting crime in locations which are physically close
but cannot experience crime, such as the middle of a lake.

One version of this is advocated by Rosser, Davies, Bowers, Johnson, and Cheng
(2017), who argue in favor of using distances along the street network. Crimes typ-
ically occur along streets (or residences adjacent to streets), and street distance is
a good proxy measure for how easy it is to get from one point to another. Using
a spatio-temporal kernel density method, they show that hotspot predictions per-
formed on the street network outperform predictions in Euclidean space.

If provided a dataset of events geocoded to street segments, along with a cur-
rent city road map, it would be reasonably simple to adapt the self-exciting point
process model of crime to operate on the network. The triggering function would
be modified to use network distance instead of Euclidean distance, and the spatial
integral in the log-likelihood would integrate over the road network instead of over

99
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a domain 𝑋 ⊂ ℝ2. Mapping and visualizing the intensity 𝜆(𝑠, 𝑡) would be more dif-
ficult, since it would only be defined on the road network and not arbitrary points
𝑠 ∈ 𝑋 , but predictions on the network could be performed as usual. Residuals would
be defined in terms of sets of road segments instead of Voronoi cells.

It may be valuable in future work to explore this option, and to explore other
applications where events occur on a network. Other possible extensions include
tests for difference between different types of network edges, such as the effects of
public transit lines making certain routes much easier to travel than others, using
weighted graph traversal methods.

7.2 Spatio-Temporal Covariates

Another extension is the possibility of including covariates that change as a func-
tion of time. Rather than the observation domain 𝑋 being divided into spatial cells,
each of which has a fixed constant covariate vector, we could imagine the covari-
ate vectors being allowed to change over time. Meyer et al. (2012), for example,
discussed in Section 2.3.3, used each district’s recent count of influenza cases as a
covariate for predicting invasivemeningococcal disease. For crime prediction, other
spatiotemporal covariates could include the weather, which is known to influence
crime (Brunsdon, Corcoran, Higgs, & Ware, 2009; Field, 1992; Mares, 2013), week-
day and weekend effects, long-term changes in population density or police activity
patterns, and so on.

For covariates that change at discrete intervals, such as daily or weekly, the
model can be fairly easily extended, and the same EM fitting algorithm applied,
with minor modifications to the update steps in Section 3.4 to sum over space-time
covariate cells, rather than spatial cells. However, covariates that are allowed to
vary continuously in time or space pose a problem: the integral of 𝜆(𝑠, 𝑡) over all
space and time in the log-likelihood (see Section 2.1.4) can no longer easily be done
analytically, but must be done numerically for the specific spatio-temporal form of
the covariates. This would dramatically slow down model fitting, except perhaps in
special cases that can still be done analytically.

7.3 Leading Indicator Suppression

The self-exciting point process model can incorporate additional types of events,
such as misdemeanor offenses or 911 calls, that are not the target of prediction but
which may indicate locally higher risks of the target crime types. There could also
be types of leading indicators that locally suppress the crime rate—for example, a
police foot patrol or the arrest of a repeat offender. Other applications of the model
outside of crime may have analogous suppression effects that need to be modeled.
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7.4. Modeling Police Responses

As the model is written, suppression is difficult to account for, because of the
need to ensure that 𝜆(𝑠, 𝑡) ≥ 0. An event that contributes a negative rate to the sum
may violate this constraint. One possible approach is given by S. Chen, Shojaie,
Shea-Brown, and Witten (2017), which replaces the cluster process representation
described in Section 2.1.2 with a “thinning process representation” allowing each
event “to increase or decrease the occurrence of future events”. This representa-
tion is not yet widely used, and adopting it would mean we cannot use the current
expectation-maximization method to fit the model; future work should explore this
representation and estimation strategies to practically apply it to our model.

7.4 Modeling Police Responses

Another concern is the change in crime dynamics that results from police using a
predictive policingmodel to direct their effects. We could imagine this happening in
several different ways. For example, perhaps police implement a burglary interven-
tion program intended to prevent burglary near-repeats, hence stopping hotspots
before they become hotspots; if the program is guided by a predictive policingmodel
and the intervention is effective, then a successful model will fail to predict burglary,
since the burglaries it predicts are successfully prevented.

On the other hand, perhaps amodel intended to predict drug-related street crime
could be used to direct police patrols and lead to higher incident rates, as police
search more suspicious persons, make more drug arrests, and observe drug trans-
actions that otherwise would have gone unreported. A successful predictive model
hence excites more reported crime.

Accounting for either effect would be challenging, andwould require extensions
to the model to account for police activity. One approach would be to include po-
lice activity as a leading indicator that can either excite or inhibit crime, requiring
the extensions discussed in the previous section; another might be to allow police
activity to be a spatio-temporal covariate in the background process.

7.5 Bayesian Modeling

Recently there has been interest in developing Bayesian versions of self-exciting
spatio-temporal point processes, as an alternate model fitting approach to maxi-
mum likelihood estimation. As discussed in Section 2.2.5, there have been sev-
eral recent advances in Bayesian inference for these models that make it dramat-
ically more computationally tractable, hence making Bayesian inference practical
for much larger datasets than were previously possible to use.

The crucial advance was made by Rasmussen (2013) and Ross (2016), who ap-
plied the same conditioning process used during expectation maximization (Sec-
tion 2.2.1). Conditioning on the branching structure allows the log-likelihood to be
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separated into pieces, following the cluster structure described in Section 2.1.1; this
makes it much easier to sample from the posterior of the model parameters, as we
shall see below. I have made some preliminary steps towards adapting this method
to the extended model introduced in Chapter 3, and this promises to allow hierarchi-
cal Bayesian estimation that can fit to several cities or neighborhoods at the same
time, accounting for heterogeneity across or between cities.

7.5.1 The Partitioned Likelihood

Following the setup used in Chapter 3, we consider events to be triples (𝑠𝑖 , 𝑡𝑖 , 𝑀𝑖),
where 𝑠𝑖 is a location in ℝ2, 𝑡𝑖 is a time in [0, 𝑇 ), and 𝑀𝑖 is the type of event. By
convention, 𝑀𝑖 = 0 for the response event type and a positive integer for leading
indicators. Let 𝐾𝑙 be the number of events with 𝑀𝑖 = 𝑙. Suppose, for the response
variables with 𝑀𝑖 = 0, we have the latent variables 𝑢𝑖 , such that 𝑢𝑖 = 0 if event 𝑖
arose from the background and 𝑢𝑖 = 𝑗 if event 𝑖 was triggered by event 𝑗, with 𝑡𝑗 < 𝑡𝑖 .
(𝑀𝑗 need not be 0.) Partition the response events into sets 𝑆0, … , 𝑆𝑛 such that

𝑆𝑗 = {𝑖 ∣ 𝑢𝑖 = 𝑗}, 𝑀𝑖 = 0 and 0 ≤ 𝑗 < 𝑛,
so 𝑆0 contains the indices of the background events and 𝑆𝑗 is the set of indices of
events triggered by event 𝑗. Note that some of these sets may be empty, as some
events do not trigger any offspring events.

We know that the likelihood of a realization of a spatio-temporal point process
with intensity 𝜆(𝑠, 𝑡 ∣ ℋ𝑡) and parameter vector Θ is (eq. (2.8))

𝐿(Θ) = [
𝑛
∏
𝑖=1

𝜆(𝑠𝑖 , 𝑡𝑖 ∣ ℋ𝑡)] exp(−∫
𝑇

0 ∫𝑋
𝜆(𝑠, 𝑡 ∣ ℋ𝑡) d𝑠 d𝑡) .

Also, we know that once events are partitioned into the sets 𝑆𝑗 , each set is indepen-
dent of the others—that’s the key of the cluster process representation. So we may
calculate the likelihoods of each set separately.

The background component, 𝑆0, has intensity 𝜇(𝑠) = exp (𝛽𝑋(𝑠)), where 𝑋(𝑠) is
a covariate function that is piecewise constant in space. The background component
can then be broken up into separate covariate cells (each cell is a region in which
the covariate function is constant), each with its own Poisson process, resulting in
the likelihood

𝐿0(Θ) = [
𝐽
∏
𝑗=1

exp (|𝑆0 ∩ 𝐶𝑗 |𝛽𝑋𝑗)] exp(−𝑇
𝐽
∑
𝑗=1

|𝐶𝑗 | exp (𝛽𝑋𝑗)) (7.1)

where there are 𝐽 total covariate cells, |𝐶𝑗 | is the area of cell 𝑗, |𝑆0 ∩ 𝐶𝑗 | is the count
of background events in cell 𝑗, and 𝑋𝑗 is the covariate vector in cell 𝑗.
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Next, for each 𝑗 > 0, we have independent nonhomogeneous Poisson process
clusters, where the intensities are given by the triggering function

𝑔(𝑠, 𝑡, 𝑀) = 𝜃𝑀
2𝜋𝜔𝜎2 exp(−𝑡/𝜔) exp (− ‖𝑠‖

2

2𝜎2) ,

centered at (𝑠𝑗 , 𝑡𝑗). The product term in the likelihood is
𝑛
∏
𝑖∈𝑆𝑗

𝑔(𝑠𝑖 − 𝑠𝑗 , 𝑡𝑖 − 𝑡𝑗 , 𝑀𝑗) = ∏
𝑖∈𝑆𝑗

𝜃𝑀𝑗
2𝜋𝜔𝜎2 exp (−(𝑡𝑖 − 𝑡𝑗)/𝜔) exp (−

‖𝑠𝑖 − 𝑠𝑗 ‖2
2𝜎2 )

= (
𝜃𝑀𝑗

2𝜋𝜔𝜎2)
|𝑆𝑗 |

exp(−∑
𝑖∈𝑆𝑗

(𝑡𝑖 − 𝑡𝑗)/𝜔) exp(−∑
𝑖∈𝑆𝑗

‖𝑠𝑖 − 𝑠𝑗 ‖2
2𝜎2 ) .

The integral is

∫
𝑇

𝑡𝑗
∫𝑋

𝑔(𝑠 − 𝑠𝑗 , 𝑡 − 𝑡𝑗 , 𝑀𝑗) d𝑠 d𝑡 = ∫
𝑇

𝑡𝑗
∫𝑋

𝜃𝑀
2𝜋𝜔𝜎2 exp (−(𝑡 − 𝑡𝑗)/𝜔) exp (−

‖𝑠 − 𝑠𝑗 ‖2
2𝜎2 ) d𝑠 d𝑡

= 𝜃𝑀 (1 − 𝑒−(𝑇−𝑡𝑗)/𝜔) .
So, in cluster 𝑗, we have |𝑆𝑗 | events and likelihood

𝐿𝑗(Θ) = exp (−𝜃𝑀𝑗 (1 − 𝑒−(𝑇−𝑡𝑗)/𝜔))∏
𝑖∈𝑆𝑗

𝜃𝑀𝑗
2𝜋𝜔𝜎2 exp (−(𝑡𝑖 − 𝑡𝑗)/𝜔) exp (−

‖𝑠𝑖 − 𝑠𝑗 ‖2
2𝜎2 )

= exp (−𝜃𝑀𝑗 (1 − 𝑒−(𝑇−𝑡𝑗)/𝜔)) (
𝜃𝑀𝑗

2𝜋𝜔𝜎2)
|𝑆𝑗 |

exp(−∑
𝑖∈𝑆𝑗

(𝑡𝑖 − 𝑡𝑗)/𝜔) exp(−∑
𝑖∈𝑆𝑗

‖𝑠𝑖 − 𝑠𝑗 ‖2
2𝜎2 ) .

Note that we have approximated the integral on [0, 𝑇 ) × 𝑋 with one on [0, 𝑇 ) × ℝ2.
If we further approximate to [0, ∞) × ℝ2, we get

𝐿𝑗(Θ) ≈ exp (−𝜃𝑀𝑗) (
𝜃𝑀𝑗

2𝜋𝜔𝜎2)
|𝑆𝑗 |

exp(−∑
𝑖∈𝑆𝑗

(𝑡𝑖 − 𝑡𝑗)/𝜔) exp(−∑
𝑖∈𝑆𝑗

‖𝑠𝑖 − 𝑠𝑗 ‖2
2𝜎2 ) .

Also note that when |𝑆𝑗 | = 0, this reduces to
𝐿𝑗(Θ) = exp (−𝜃𝑀𝑗 (1 − 𝑒−(𝑇−𝑡𝑗)/𝜔)) ≈ exp (−𝜃𝑀𝑗) .

Since no parameter appears in both the background and triggered likelihoods,
the components can be fit separately, when we condition on knowledge of the
branching structure 𝑆𝑗 .
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7.5.2 Conditioning on the Branching Structure

The above likelihoods were computed on the assumption that the branching struc-
ture (𝑢𝑖 for all crimes 𝑖 with 𝑀𝑖 = 0) is known. In expectation maximization, we
calculate the expected values and require the quantities 𝑃(𝑢𝑖 = 𝑗); in the sampling
procedure suggested by Ross (2016), we draw directly from the conditional distribu-
tion of 𝑢𝑖 , then condition on these to sample from the posterior.

Most of the computational work goes into this conditioning: drawing 𝑢𝑖 for each
crime with 𝑀𝑖 = 0 requires calculating the intensity at each such crime (based on
the current parameter values) and then drawing at random from the contributors
to that intensity, following the stochastic declustering procedure in Algorithm 2.2.
For efficiency, this part of the sampling algorithm was written in Cython, and the
rest in Python. Stochastic declustering is 𝑂(𝑛2) in practice, though 𝑢𝑖 for each 𝑖 can
be drawn in parallel.

7.5.3 A Hierarchical Model

Once we have a purely Bayesian self-exciting point process model of crime, it makes
sense to ask a further question: how do the dynamics of crime vary between cities,
or even within a single city? Do the parameters of the model vary widely or do
cities have broadly similar crime dynamics? A hierarchical model could answer this
question by allowing the model parameters to vary from city to city, being drawn
from prior distributions whose parameters are allowed to vary within a hyperprior
distribution.

A fully Bayesian hierarchical point processmodel has not been developed before,
though some existing models do allow their parameter values to vary in space. For
example, Ogata and Katsura (1988) allowed some parameters to vary smoothly in
space, with their variation controlled by a roughness penalty. Rather than following
this approach, we propose a hierarchical Bayesian model that lets parameters vary
between different spatial units of analysis.

The city-level conditional intensity function remains the same as in our original
model, but we apply city-level priors drawn from fixed hyperpriors to each param-
eter. The priors are introduced below.

Prior Specification – Normal Case

We chose to assign a separate parameter for each 𝛽𝑖 , in effect allowing estimates
of a single covariate’s effect to be pooled between cities but not pooling the covari-
ates together in any way. Consider a single coefficient 𝛽𝑖 in a particular city 𝑖 (the
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coefficient index is dropped for simplicity). We let

𝛽𝑖 ∣ 𝜇𝛽 , 𝜎𝛽 ∼ Normal(𝜇𝛽 , 𝜎2𝛽 )
𝜎𝛽 ∼ Uniform(0, 𝐴)
𝜇𝛽 ∼ Normal(𝑀, 𝑉 ).

Hence the covariate 𝛽𝑖 for each city is estimated by the model, along with the mean
value for all cities 𝜇𝛽 and the inter-city variance 𝜎2𝛽 ; only 𝐴, 𝑀 , and 𝑉 are fixed by
hyperprior specification.

In this case, we draw from the posterior of 𝜇𝛽 and 𝜎2𝛽 by the following procedure.
Conditioning on the data and the current value of 𝜎2𝛽 , 𝜇𝛽 has a conjugate posterior,
and can be drawn from

𝜇𝛽 ∣ {𝛽𝑖}, 𝜎2𝛽 ∼ Normal( 1
𝐷 (𝑀𝑉 + ∑𝛽𝑖

𝜎2𝛽
) , 1𝐷)

where
𝐷 = 1

𝑉 + 𝑛
𝜎2𝛽

.

This step is followed by a Metropolis sample from the posterior of 𝜎2𝜎 , conditioning
on the data and the new draw of 𝜇𝜎 . The Metropolis likelihood ratio is

𝐿(𝜎2∗𝛽 )
𝐿(𝜎2𝛽 )

=
𝑛
∏
𝑖=1

√2𝜋𝜎
2𝛽

√2𝜋𝜎
2∗𝛽

exp(−(𝛽𝑖 − 𝜇𝛽)2
2𝜎2∗𝛽

+ (𝛽𝑖 − 𝜇𝛽)2
2𝜎2𝛽

)

= (𝜎𝛽𝜎 ∗𝛽
)
𝑛/2

exp((− 1
2𝜎2∗𝛽

+ 1
2𝜎2𝛽

)
𝑛
∑
𝑖=1

(𝛽𝑖 − 𝜇𝛽)2)

Prior Specification – Log-Normal Case

The remaining parameters—𝜃 , 𝜎2 and 𝜔—must be nonnegative, so a normal prior
does not make sense for them. Instead, we use a log-Normal; for example, for 𝜔𝑖 in
a particular city 𝑖, we let

𝜔𝑖 ∣ 𝜎𝜔 , 𝜇𝜔 ∼ LogNormal(𝜇𝜔 , 𝜎2𝜔)
𝜎𝜔 ∼ Uniform(0, 𝐴)
𝜇𝜔 ∼ Normal(𝑀, 𝑉 ).

Note that 𝜇𝜔 and 𝜎2𝜔 are the mean and variance of the logarithm of 𝜔𝑖 , and so 𝐴, 𝑀 ,
and 𝑉 must all be specified on the scale of its logarithm.

105



7. conclusions and future work

In this case, we draw from the posterior of 𝜇𝜔 and 𝜎2𝜔 by the following procedure.
Conditioning on the data and the current value of 𝜎2𝜔 , 𝜇𝜔 has a conjugate posterior:

𝜇𝜔 ∣ {𝜎2𝑖 }, 𝜎2𝜔 ∼ LogNormal ( 1
𝐷 (𝑀𝑉 + ∑ log𝜔𝑖

𝜎2𝜔
) , 1𝐷)

where 𝐷 is defined as before and log is the natural logarithm.
This step is followed by a Metropolis sample for 𝜎2𝜔 . The Metropolis likelihood

ratio here is

𝐿(𝜎2∗𝜔 )
𝐿(𝜎2𝜔)

=
𝑛
∏
𝑖=1

𝜔𝑖√2𝜋𝜎2𝜔
𝜔𝑖√2𝜋𝜎2∗𝜔

exp (−(log𝜔𝑖 − 𝜇𝜔)2
2𝜎2∗𝜔

+ (log𝜔𝑖 − 𝜇𝜔)2
2𝜎2𝜔

)

= (𝜎𝜔𝜎 ∗𝜔
)
𝑛/2

exp((− 1
2𝜎2∗𝜔

+ 1
2𝜎2𝜔

)
𝑛
∑
𝑖=1

(log𝜔𝑖 − 𝜇𝜔)2)

Because of the parametrization of the log-Normal in terms of the mean and
variance of the logarithm of the random variable, we can equivalently write the
model as

log(𝜔𝑖) ∣ 𝜎𝜔 , 𝜇𝜔 ∼ Normal(𝜇𝜔 , 𝜎2𝜔)
𝜎𝜔 ∼ Uniform(0, 𝐴)
𝜇𝜔 ∼ Normal(𝑀, 𝑉 ).

Provided 𝐴, 𝑀 , and 𝑉 are kept on the log scale, the same conjugate and Metropolis
updates used in the normal case can be used on log(𝜔𝑖). This simplifies our model
implementation.

7.5.4 Next Steps

With the basics of the Bayesian hierarchical model established, several extensions
and applications can be explored in future work. It will be necessary to extend the
diagnostics tools of Chapter 4 to the Bayesian hierarchical model, and to explore
further simulations of model misspecification to understand the role of the model
priors and hyperpriors. Other simulations could compare the performance of the
Bayesian model against the maximum likelihood estimator presented in this thesis,
to determine if pooling across cities improves predictive performance.

Once the model is well-understood, it could be applied to an analysis of crime
in several cities at the same time, giving the first ever systematic comparison of
crime dynamics between multiple cities. (It would also be possible to compare mul-
tiple regions of the same city, such as neighborhoods of New York or Chicago.) The
Bayesian model could be extended and used in other ways as well. For example, a

106



7.5. Bayesian Modeling

hierarchical multivariate model—modeling multiple types of events which mutually
excite each other, such as multiple types of crimes—could pool parameter informa-
tion between event types, while still allowing their excitation effects to differ. Or
city-level covariates could be introduced to account for the differences in parame-
ter values among cities. And, of course, there are many other possible applications,
some of which undoubtedly haven’t occurred to anyone yet. Self-exciting point pro-
cess models are flexible and powerful tools whose uses are only just beginning to
be discovered.
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A

Raw Data and Source Code

In the interests of reproducibility, data and source code are available for themethods
described in this thesis, as well as all plots and analyses presented in this thesis.

All statisticalmethodswere implemented in Python 3. The codewaswrapped up
into a Python package, available at https://bitbucket.org/capnrefsmmat/crime-
mapping, containing functions to load data, fit the models described in this thesis,
evaluate predictive performance, and produce visualizations and diagnostics. The
complete source code revision history is available as a Git repository. Installation
instructions are given in the included README.md file.

Separately, the analyses and plots produced as a part of this thesis were written
as Python scripts using the analysis package, and fully automated with aMakefile to
automatically generate the results needed for this thesis. These scripts are available
in a separate archive at https://www.refsmmat.com/files/thesis-files.zip.

Source code for the package and thesis is licensed under the GNU General Pub-
lic License, version 2, meaning it may be freely reused and redistributed, under
certain terms. The full license is available at https://www.gnu.org/licenses/old-
licenses/gpl-2.0.en.html, and is provided in both source repositories in a LI-

CENSE.txt file.
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González, J. A., Rodrıǵuez-Cortés, F. J., Cronie, O., &Mateu, J. (2016). Spatio-temporal
point process statistics: A review. Spatial Statistics, 18, 505–544. doi:10.1016/
j.spasta.2016.10.002

Gorr, W. L. (2009). Forecast accuracy measures for exception reporting using re-
ceiver operating characteristic curves. International Journal of Forecasting, 25(1),
48–61. doi:10.1016/j.ijforecast.2008.11.013

Gorr, W. L., & Lee, Y. (2015). Early Warning System for Temporary Crime Hot Spots.
Journal of Quantitative Criminology, 31(1), 25–47. doi:10.1007/s10940-014-
9223-8

Gray, A. G., & Moore, A. W. (2003). Nonparametric Density Estimation: Toward
Computational Tractability. In SIAM International Conference on Data Mining
(pp. 203–211). Philadelphia, PA: Society for Industrial and Applied Mathemat-
ics.

Green, B., Horel, T., & Papachristos, A. V. (2017). Modeling Contagion Through So-
cial Networks to Explain and Predict Gunshot Violence in Chicago, 2006 to
2014. JAMA Internal Medicine, 177(3), 326–333. doi:10.1001/jamainternmed.
2016.8245

Guttman, A. (1984). R-trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of the 1984 ACMSIGMOD International Conference onManagement
of Data (pp. 47–57). SIGMOD ’84. doi:10.1145/602259.602266

Haberman, C. P., & Ratcliffe, J. H. (2012). The Predictive Policing Challenges of Near
Repeat Armed Street Robberies. Policing, 6(2), 151–166. doi:10.1093/police/
pas012

114

https://dx.doi.org/10.1068/a231025
https://dx.doi.org/10.1214/16-AOAS957
https://dx.doi.org/10.1080/01621459.2015.1135802
https://dx.doi.org/10.1146/annurev.earth.33.092203.122505
https://dx.doi.org/10.1146/annurev.earth.33.092203.122505
https://dx.doi.org/10.1198/016214506000001437
https://dx.doi.org/10.1016/j.spasta.2016.10.002
https://dx.doi.org/10.1016/j.spasta.2016.10.002
https://dx.doi.org/10.1016/j.ijforecast.2008.11.013
https://dx.doi.org/10.1007/s10940-014-9223-8
https://dx.doi.org/10.1007/s10940-014-9223-8
https://dx.doi.org/10.1001/jamainternmed.2016.8245
https://dx.doi.org/10.1001/jamainternmed.2016.8245
https://dx.doi.org/10.1145/602259.602266
https://dx.doi.org/10.1093/police/pas012
https://dx.doi.org/10.1093/police/pas012


Bibliography

Hart, T., & Zandbergen, P. (2014). Kernel density estimation and hotspot mapping.
Policing, 37(2), 305–323. doi:10.1108/PIJPSM-04-2013-0039

Harte, D. (2012). Bias in fitting the ETAS model: a case study based on New Zealand
seismicity. Geophysical Journal International, 192(1), 390–412. doi:10.1093/
gji/ggs026

Harte, D., & Vere-Jones, D. (2005). The Entropy Score and its Uses in Earthquake
Forecasting. Pure and Applied Geophysics, 162(6), 1229–1253. doi:10 . 1007 /
s00024-004-2667-2

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 51(1), 83–90. doi:10.1093/biomet/58.1.83

Hawkes, A. G., &Oakes, D. (1974). ACluster Process Representation of a Self-Exciting
Process. Journal of Applied Probability, 11(3), 493–503. doi:10.1017/S0021900200096273

Hodges, J. S., & Reich, B. J. (2010). Adding Spatially-Correlated Errors Can Mess Up
the Fixed Effect You Love. The American Statistician, 64(4), 325–334. doi:10.
1198/tast.2010.10052

Hunt, P., Saunders, J., & Hollywood, J. S. (2014). Evaluation of the Shreveport Predic-
tive Policing Experiment. RAND.

Johnson, D. H. (1996). Point process models of single-neuron discharges. Journal of
Computational Neuroscience, 3(4), 275–299. doi:10.1007/bf00161089

Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J., Rengert, G., &
Townsley, M. (2007). Space–Time Patterns of Risk: A Cross National Assess-
ment of Residential Burglary Victimization. Journal of Quantitative Criminol-
ogy, 23(3), 201–219. doi:10.1007/s10940-007-9025-3

Kennedy, L.W., Caplan, J. M., & Piza, E. L. (2010). Risk Clusters, Hotspots, and Spatial
Intelligence: Risk Terrain Modeling as an Algorithm for Police Resource Allo-
cation Strategies. Journal of Quantitative Criminology, 27(3), 339–362. doi:10.
1007/s10940-010-9126-2

Kennedy, L. W., Caplan, J. M., Piza, E. L., & Buccine-Schraeder, H. (2015). Vulnera-
bility and Exposure to Crime: Applying Risk Terrain Modeling to the Study of
Assault in Chicago. Applied Spatial Analysis and Policy. doi:10.1007/s12061-
015-9165-z

Knox, E. G. (1964).TheDetection of Space-Time Interactions.Applied Statistics, 13(1),
25–30. doi:10.2307/2985220

Kumazawa, T., & Ogata, Y. (2014). Nonstationary ETAS models for nonstandard
earthquakes.TheAnnals of Applied Statistics, 8(3), 1825–1852. doi:10.1214/14-
aoas759

Lang, D. (2004). Fast Methods for Inference in Graphical Models (Doctoral dissertation,
University of British Columbia). Retrieved from http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.83.9783&rep=rep1&type=pdf

115

https://dx.doi.org/10.1108/PIJPSM-04-2013-0039
https://dx.doi.org/10.1093/gji/ggs026
https://dx.doi.org/10.1093/gji/ggs026
https://dx.doi.org/10.1007/s00024-004-2667-2
https://dx.doi.org/10.1007/s00024-004-2667-2
https://dx.doi.org/10.1093/biomet/58.1.83
https://dx.doi.org/10.1017/S0021900200096273
https://dx.doi.org/10.1198/tast.2010.10052
https://dx.doi.org/10.1198/tast.2010.10052
https://dx.doi.org/10.1007/bf00161089
https://dx.doi.org/10.1007/s10940-007-9025-3
https://dx.doi.org/10.1007/s10940-010-9126-2
https://dx.doi.org/10.1007/s10940-010-9126-2
https://dx.doi.org/10.1007/s12061-015-9165-z
https://dx.doi.org/10.1007/s12061-015-9165-z
https://dx.doi.org/10.2307/2985220
https://dx.doi.org/10.1214/14-aoas759
https://dx.doi.org/10.1214/14-aoas759
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.9783&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.9783&rep=rep1&type=pdf


bibliography

Lasko, T. A., Bhagwat, J. G., Zou, K. H., & Ohno-Machado, L. (2005). The use of
receiver operating characteristic curves in biomedical informatics. Journal of
Biomedical Informatics, 38(5), 404–415. doi:10.1016/j.jbi.2005.02.008

Levine, N. (2008). The “Hottest” Part of a Hotspot: Comments on “The Utility of
Hotspot Mapping for Predicting Spatial Patterns of Crime”. Security Journal,
21(4), 295–302. doi:10.1057/sj.2008.5

Lewis, E., Mohler, G., Brantingham, P. J., & Bertozzi, A. L. (2011). Self-exciting point
processmodels of civilian deaths in Iraq. Security Journal, 25(3), 244–264. doi:10.
1057/sj.2011.21

Lewis, P. A. W., & Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson pro-
cesses by thinning. Naval Research Logistics Quarterly, 26(3), 403–413. doi:10.
1002/nav.3800260304

Lippiello, E., Giacco, F., Arcangelis, L. d., Marzocchi, W., & Godano, C. (2014). Pa-
rameter estimation in the ETAS model: Approximations and novel methods.
Bulletin of the Seismological Society of America, 104(2), 985–994. doi:10.1785/
0120130148

Loeffler, C., & Flaxman, S. (2017). Is Gun Violence Contagious? Journal of Quantita-
tive Criminology. doi:10.1007/s10940-017-9363-8

Mares, D. (2013). Climate change and crime: monthly temperature and precipitation
anomalies and crime rates in St. Louis, MO 1990–2009. Crime, Law and Social
Change, 59(2), 185–208. doi:10.1007/s10611-013-9411-8

Marsan, D., & Lengliné, O. (2008). Extending earthquakes’ reach through cascading.
Science, 319(5866), 1076–1079. doi:10.1126/science.1148783

Marsan, D., & Lengliné, O. (2010). A new estimation of the decay of aftershock den-
sity with distance to the mainshock. Journal of Geophysical Research, 115(B9),
B09302. doi:10.1029/2009JB007119

McLachlan, G. J., & Krishnan, T. (2008).The EM Algorithm and Extensions (2nd). Wi-
ley.

Meyer, S. (2010). Spatio-temporal infectious disease epidemiology based on point pro-
cesses. (Master’s thesis, Ludwig-Maximilians-Universität München).

Meyer, S., Elias, J., & Höhle, M. (2012). A Space-Time Conditional Intensity Model
for Invasive Meningococcal Disease Occurrence. Biometrics, 68(2), 607–616.
doi:10.1111/j.1541-0420.2011.01684.x

Meyer, S., & Held, L. (2014). Power-law models for infectious disease spread. Annals
of Applied Statistics, 8(3), 1612–1639. doi:10.1214/14-AOAS743

Meyer, S., Warnke, I., Rössler, W., & Held, L. (2016). Model-based testing for space–
time interaction using point processes: An application to psychiatric hospital
admissions in an urban area. Spatial and Spatio-temporal Epidemiology, 17, 15–
25. doi:10.1016/j.sste.2016.03.002

116

https://dx.doi.org/10.1016/j.jbi.2005.02.008
https://dx.doi.org/10.1057/sj.2008.5
https://dx.doi.org/10.1057/sj.2011.21
https://dx.doi.org/10.1057/sj.2011.21
https://dx.doi.org/10.1002/nav.3800260304
https://dx.doi.org/10.1002/nav.3800260304
https://dx.doi.org/10.1785/0120130148
https://dx.doi.org/10.1785/0120130148
https://dx.doi.org/10.1007/s10940-017-9363-8
https://dx.doi.org/10.1007/s10611-013-9411-8
https://dx.doi.org/10.1126/science.1148783
https://dx.doi.org/10.1029/2009JB007119
https://dx.doi.org/10.1111/j.1541-0420.2011.01684.x
https://dx.doi.org/10.1214/14-AOAS743
https://dx.doi.org/10.1016/j.sste.2016.03.002


Bibliography

Mohler, G. O. (2014). Marked point process hotspot maps for homicide and gun
crime prediction in Chicago. International Journal of Forecasting, 30(3), 491–
497. doi:10.1016/j.ijforecast.2014.01.004

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., & Tita, G. E. (2011).
Self-Exciting Point Process Modeling of Crime. Journal of the American Statis-
tical Association, 106(493), 100–108. doi:10.1198/jasa.2011.ap09546

Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L.,
& Brantingham, P. J. (2015). Randomized controlled field trials of predictive
policing. Journal of the American Statistical Association, 110(512), 1399–1411.
doi:10.1080/01621459.2015.1077710

Møller, J., & Rasmussen, J. G. (2005). Perfect Simulation of Hawkes Processes. Ad-
vances in Applied Probability, 37(3), 629–646. doi:10.1239/aap/1127483739

Musmeci, F., & Vere-Jones, D. (1992). A space-time clustering model for histori-
cal earthquakes. Annals of the Institute of Statistical Mathematics, 44(1), 1–11.
doi:10.1007/bf00048666

Nandan, S., Ouillon, G., Wiemer, S., & Sornette, D. (2017). Objective estimation of
spatially variable parameters of epidemic type aftershock sequence model:
Application to California. Journal of Geophysical Research: Solid Earth, 122(7),
5118–5143. doi:10.1002/2016jb013266

Nsoesie, E. O., Brownstein, J. S., Ramakrishnan, N., & Marathe, M. V. (2013). A sys-
tematic review of studies on forecasting the dynamics of influenza outbreaks.
Influenza andOther Respiratory Viruses, 8(3), 309–316. doi:10.1111/irv.12226

Ogata, Y. (1978). The asymptotic behaviour of maximum likelihood estimators for
stationary point processes. Annals of the Institute of Statistical Mathematics,
30(1), 243–261. doi:10.1007/BF02480216

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis
for point processes. Journal of the American Statistical Association, 83(401), 9–
27. doi:10.1080/01621459.1988.10478560

Ogata, Y. (1998). Space-Time Point-Process Models for Earthquake Occurrences. An-
nals of the Institute of Statistical Mathematics, 50(2), 379–402. doi:10.1023/A:
1003403601725

Ogata, Y. (1999). Seismicity Analysis through Point-process Modeling: A Review.
Pure and Applied Geophysics, 155(2-4), 471–507. doi:10.1007/s000240050275

Ogata, Y., & Katsura, K. (1988). Likelihood analysis of spatial inhomogeneity for
marked point patterns. Annals of the Institute of Statistical Mathematics, 40(1),
29–39.

Ogata, Y., Katsura, K., & Tanemura, M. (2003). Modelling heterogeneous space-time
occurrences of earthquakes and its residual analysis. Journal of the Royal Sta-
tistical Society: Series C (Applied Statistics), 52(4), 499–509. doi:10.1111/1467-
9876.00420

117

https://dx.doi.org/10.1016/j.ijforecast.2014.01.004
https://dx.doi.org/10.1198/jasa.2011.ap09546
https://dx.doi.org/10.1080/01621459.2015.1077710
https://dx.doi.org/10.1239/aap/1127483739
https://dx.doi.org/10.1007/bf00048666
https://dx.doi.org/10.1002/2016jb013266
https://dx.doi.org/10.1111/irv.12226
https://dx.doi.org/10.1007/BF02480216
https://dx.doi.org/10.1080/01621459.1988.10478560
https://dx.doi.org/10.1023/A:1003403601725
https://dx.doi.org/10.1023/A:1003403601725
https://dx.doi.org/10.1007/s000240050275
https://dx.doi.org/10.1111/1467-9876.00420
https://dx.doi.org/10.1111/1467-9876.00420


bibliography

Ogata, Y., & Zhuang, J. (2006). Space-time ETAS models and an improved extension.
Tectonophysics, 413, 13–23. doi:10.1016/j.tecto.2005.10.016

Ornstein, J. T., & Hammond, R. A. (2017). The Burglary Boost: A Note on Detecting
Contagion Using the Knox Test. Journal of Quantitative Criminology, 33(1),
65–75. doi:10.1007/s10940-016-9281-1

Papangelou, F. (1972). Integrability of expected increments of point processes and
a related random change of scale. Transactions of the American Mathematical
Society, 165, 483–483. doi:10.1090/s0002-9947-1972-0314102-9

Peng, R. D., Schoenberg, F. P., & Woods, J. A. (2005). A Space–Time Conditional In-
tensity Model for Evaluating aWildfire Hazard Index. Journal of the American
Statistical Association, 100(469), 26–35. doi:10.1198/016214504000001763

Perry,W. L., McInnis, B., Price, C. C., Smith, S. C., &Hollywood, J. S. (2013). Predictive
Policing: The Role of Crime Forecasting in Law Enforcement Operations. RAND
Corporation.

Porter, M. D., & White, G. (2012). Self-exciting hurdle models for terrorist activity.
Annals of Applied Statistics, 6(1), 106–124. doi:10.1214/11-AOAS513

Rasmussen, J. G. (2013). Bayesian inference for Hawkes processes.Methodology and
Computing in Applied Probability, 15(3), 623–642. doi:10.1007/s11009-011-
9272-5

Ratcliffe, J. H. (2009). Near Repeat Calculator. Temple University and National Insti-
tute of Justice. Retrieved from http://www.cla.temple.edu/cj/resources/

near-repeat-calculator/

Ratcliffe, J. H., & Rengert, G. F. (2008). Near-Repeat Patterns in Philadelphia Shoot-
ings. Security Journal, 21(1-2), 58–76. doi:10.1057/palgrave.sj.8350068

Ratcliffe, J. H., Taniguchi, T., Groff, E. R., & Wood, J. D. (2011). The Philadelphia foot
patrol experiment: A randomized controlled trial of police patrol effectiveness
in violent crime hotspots. Criminology, 49(3), 795–831. doi:10.1111/j.1745-
9125.2011.00240.x

Rathbun, S. L. (1996). Asymptotic properties of the maximum likelihood estimator
for spatio-temporal point processes. Journal of Statistical Planning and Infer-
ence, 51(1), 55–74. doi:10.1016/0378-3758(95)00070-4

Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society:
Series B, 39(2), 172–212.

Ross, G. J. (2016). Bayesian Estimation of the ETAS Model for Earthquake Occurrences.
Preprint. Retrieved from http://www.gordonjross.co.uk/bayesianetas.pdf

Rosser, G., Davies, T., Bowers, K. J., Johnson, S. D., & Cheng, T. (2017). Predictive
crime mapping: Arbitrary grids or street networks? Journal of Quantitative
Criminology, 33(3), 569–594. doi:10.1007/s10940-016-9321-x

118

https://dx.doi.org/10.1016/j.tecto.2005.10.016
https://dx.doi.org/10.1007/s10940-016-9281-1
https://dx.doi.org/10.1090/s0002-9947-1972-0314102-9
https://dx.doi.org/10.1198/016214504000001763
https://dx.doi.org/10.1214/11-AOAS513
https://dx.doi.org/10.1007/s11009-011-9272-5
https://dx.doi.org/10.1007/s11009-011-9272-5
http://www.cla.temple.edu/cj/resources/near-repeat-calculator/
http://www.cla.temple.edu/cj/resources/near-repeat-calculator/
https://dx.doi.org/10.1057/palgrave.sj.8350068
https://dx.doi.org/10.1111/j.1745-9125.2011.00240.x
https://dx.doi.org/10.1111/j.1745-9125.2011.00240.x
https://dx.doi.org/10.1016/0378-3758(95)00070-4
http://www.gordonjross.co.uk/bayesianetas.pdf
https://dx.doi.org/10.1007/s10940-016-9321-x


Bibliography

Sarma, S. V., Nguyen, D. P., Czanner, G., Wirth, S., Wilson, M. A., Suzuki, W., &
Brown, E. N. (2011). Computing confidence intervals for point process models.
Neural Computation, 23(11), 2731–2745. doi:10.1162/NECO_a_00198

Schoenberg, F. P. (2003). Multidimensional Residual Analysis of Point Process Mod-
els for EarthquakeOccurrences. Journal of the American Statistical Association,
98(464), 789–795. doi:10.1198/016214503000000710

Schoenberg, F. P. (2013). Facilitated estimation of ETAS. Bulletin of the Seismological
Society of America, 103(1), 601–605. doi:10.1785/0120120146

Schoenberg, F. P. (2016). A note on the consistent estimation of spatial-temporal
point process parameters. Statistica Sinica, 26, 861–879. doi:10.5705/ss.2014.
150

Schoenberg, F. P., Hoffman, M., & Harrigan, R. (2017).A recursive point process model
for infectious diseases. https://arxiv.org/abs/1703.08202.

Short,M. B., D’Orsogna,M. R., Brantingham, P. J., & Tita, G. E. (2009). Measuring and
Modeling Repeat and Near-Repeat Burglary Effects. Journal of Quantitative
Criminology, 25(3), 325–339. doi:10.1007/s10940-009-9068-8

Silverman, B. (1986). Density estimation for statistics and data analysis. Chapman
and Hall.

Stan Development Team. (2016). Stan Modeling Language Users Guide and Refer-
ence Manual. http://mc-stan.org.

Tanemura, M. (2003). Statistical distributions of Poisson Voronoi cells in two and
three dimensions. Forma, 18, 221–247.

Taylor, B., Koper, C. S., &Woods, D. J. (2011). A randomized controlled trial of differ-
ent policing strategies at hot spots of violent crime. Journal of Experimental
Criminology, 7(2), 149–181. doi:10.1007/s11292-010-9120-6

Townsley, M., Homel, R., & Chaseling, J. (2003). Infectious burglaries: A test of the
near repeat hypothesis. British Journal of Criminology, 43(3), 615–633. doi:10.
1093/bjc/43.3.615

Van Patten, I. T., McKeldin-Coner, J., & Cox, D. (2009). A Microspatial Analysis of
Robbery: Prospective Hot Spotting in a Small City. Crime Mapping, 1(1), 7–32.

Veen, A., & Schoenberg, F. P. (2008). Estimation of Space–Time Branching Process
Models in Seismology Using an EM–Type Algorithm. Journal of the American
Statistical Association, 103(482), 614–624. doi:10.1198/016214508000000148

Vere-Jones, D. (1998). Probabilities and Information Gain for Earthquake Forecast-
ing. Computational Seismology, 30, 248–263.

Vere-Jones, D. (2009). Some models and procedures for space-time point processes.
Environmental and Ecological Statistics, 16(2), 173–195. doi:10.1007/s10651-
007-0086-0

119

https://dx.doi.org/10.1162/NECO_a_00198
https://dx.doi.org/10.1198/016214503000000710
https://dx.doi.org/10.1785/0120120146
https://dx.doi.org/10.5705/ss.2014.150
https://dx.doi.org/10.5705/ss.2014.150
https://dx.doi.org/10.1007/s10940-009-9068-8
https://dx.doi.org/10.1007/s11292-010-9120-6
https://dx.doi.org/10.1093/bjc/43.3.615
https://dx.doi.org/10.1093/bjc/43.3.615
https://dx.doi.org/10.1198/016214508000000148
https://dx.doi.org/10.1007/s10651-007-0086-0
https://dx.doi.org/10.1007/s10651-007-0086-0


bibliography

Wang, Q., Schoenberg, F. P., & Jackson, D. D. (2010). Standard Errors of Parameter
Estimates in the ETAS Model. Bulletin of the Seismological Society of America,
100(5A), 1989–2001. doi:10.1785/0120100001

Weisburd, D. (2015). The law of crime concentration and the criminology of place.
Criminology, 53(2), 133–157. doi:10.1111/1745-9125.12070

Youstin, T. J., Nobles, M. R., Ward, J. T., & Cook, C. L. (2011). Assessing the Gen-
eralizability of the Near Repeat Phenomenon. Criminal Justice and Behavior,
38(10), 1042–1063. doi:10.1177/0093854811417551

Zhuang, J. (2006). Second-order residual analysis of spatiotemporal point processes
and applications in model evaluation. Journal of the Royal Statistical Society:
Series B, 68(4), 635–653. doi:10.1111/j.1467-9868.2006.00559.x

Zhuang, J. (2011). Next-day earthquake forecasts for the Japan region generated by
the ETAS model. Earth, Planets and Space, 63(3), 207–216. doi:10.5047/eps.
2010.12.010

Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic Declustering of Space-
Time Earthquake Occurrences. Journal of the American Statistical Association,
97(458), 369–380. doi:10.1198/016214502760046925

Zhuang, J., Ogata, Y., & Vere-Jones, D. (2004). Analyzing earthquake clustering fea-
tures by using stochastic reconstruction. Journal of Geophysical Research, 109,
B05301. doi:10.1029/2003JB002879

Zipkin, J. R., Schoenberg, F. P., Coronges, K., & Bertozzi, A. L. (2015). Point-process
models of social network interactions: Parameter estimation andmissing data
recovery. European Journal of Applied Mathematics, 27(03), 502–529. doi:10.
1017/S0956792515000492

120

https://dx.doi.org/10.1785/0120100001
https://dx.doi.org/10.1111/1745-9125.12070
https://dx.doi.org/10.1177/0093854811417551
https://dx.doi.org/10.1111/j.1467-9868.2006.00559.x
https://dx.doi.org/10.5047/eps.2010.12.010
https://dx.doi.org/10.5047/eps.2010.12.010
https://dx.doi.org/10.1198/016214502760046925
https://dx.doi.org/10.1029/2003JB002879
https://dx.doi.org/10.1017/S0956792515000492
https://dx.doi.org/10.1017/S0956792515000492

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Predictive Policing Methods
	Hotspot Detection
	Risk Terrain Modeling
	Self-Exciting Point Processes

	Gaps in the Literature
	Summary of Contributions

	Self-Exciting Spatio-Temporal Point Processes
	Basic Theory
	Hawkes Processes
	Spatio-Temporal Form
	Marks
	Log-Likelihood

	Estimation and Inference
	Maximum Likelihood
	Stochastic Declustering
	Simulation
	Asymptotic Normality and Inference
	Bayesian Approaches
	Model Selection and Diagnostics

	Applications
	Earthquake Aftershock Sequence Models
	Crime Forecasting
	Epidemic Forecasting
	Events on Social Networks

	Summary

	The Extended Model
	Why Not Just Use Regression?
	Why Not Knox?
	Adding Covariates
	Expectation Maximization
	M Step
	Termination Criterion

	Simulation System
	Fast Dual-Tree Intensities
	k-d Trees
	Dual-Tree Intensity Algorithm
	Validation
	Performance

	Boundary Effects
	Summary

	Inference and Model Diagnostics
	Confidence Intervals and Coverage
	Hotspot-Based Hit Rate Metrics
	Search Efficiency Rate
	Prediction Accuracy Index
	Other Flaws
	ROC-Based Metrics

	Predictive Scores
	Residuals
	Residual Maps
	Accelerated Residual Calculation
	Residual Videos

	Robustness to Model Misspecification
	Triggering Function
	Omitted Variables and Confounding

	Summary

	Application to Pittsburgh Crime Data
	Pittsburgh Data
	Spatial Covariates
	Dealing with Aggregated Data
	Predicting Burglary
	Predicting Violent Crime

	Application to Baltimore Crime Data
	Baltimore Data
	Predicting Burglary
	Predicting Violent Crime
	Summary

	Conclusions and Future Work
	Distance Metrics
	Spatio-Temporal Covariates
	Leading Indicator Suppression
	Modeling Police Responses
	Bayesian Modeling
	The Partitioned Likelihood
	Conditioning on the Branching Structure
	A Hierarchical Model
	Next Steps


	Raw Data and Source Code
	Bibliography

