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Abstract

Our goal is to establish a rigorous formulation for modeling the locomotion of a

broad class of robotic systems. Recent research has identified a number of systems

with the structure of a principal fiber bundle. This framework has led to a number

of tools for analysis and motion planning applicable to various robotic configurations

in different environments, but it also requires a number of assumptions that limit

its usefulness to certain “idealized” systems. Systems that cannot be fully described

with a principal fiber bundle or cannot make full use of the subsequent tools include

those whose joints are not fully controllable, those with control inputs or dynamics

external to their mechanism, and those whose external configurations do not form

a symmetry group. In addition, the motion planning techniques derived from this

structure have traditionally assumed a mapping from internal joint configurations to

external position configurations. The reverse of this mapping will be discussed in this

thesis, as well as the analysis and solutions for problems violating each of the above

assumptions in turn. For each case, we introduce one or two motivating examples of

robotic systems and discuss novel locomotive characteristics that do not previously

appear under the standard assumptions. This thesis expands the applicability of

the principal fiber bundle model, as well as derivative tools for analysis and motion

planning, to a larger variety of locomoting systems.
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Chapter 1

Introduction

For many robots and biological organisms, locomotion is a fundamental aspect of how

they operate in the world. While the nuances of locomotion across different systems

vary, the goal is generally the same—the agent exploits the underlying structure of

its body and the environment to effect movement in a desired way. This structure is

mathematically captured in the configuration spaces of these systems, and by identi-

fying common geometric elements of arbitrary systems, one can produce analysis and

synthesis methods that are adaptable to seemingly disparate problems. But while

such techniques are powerful, they are currently limited in implementation due to the

assumptions that traditionally define them. For example, that a given system has

unrestricted control over its internal degrees of freedom is a common assumption in

both the robotics and biological literature, such as the direct control that a horse can

exert over its legs. The objective of this thesis thus seeks to greatly expand the scope

of systems that can be treated using analysis and motion planning tools from and

inspired by geometric approaches to locomotion science.

More specifically, robotic locomotion research has borrowed from differential ge-

ometry the structure of a principal fiber bundle to model the configuration space of

a variety of robots. This bundle distinguishes between a robot’s internal or joint

configurations—the base space—and the robot’s external position and orientation—

the fiber space. Base trajectories can be mapped to fiber trajectories through a

time-independent mapping called a connection. This machinery has led to a number

17



of novel tools to conduct analysis, for example identifying describing physical phe-

nomena or assessing controllability, and engineer the design of gaits, cyclic paths in

the base space, for motion planning.

However, the tradeoff for such utility is that the applicability of the principal fiber

bundle framework and the aforementioned tools is strictly limited to systems for which

all of the degrees of freedom of the system can be neatly categorized into either the

base space or the fiber space. In prior work, when coordinating the internal variables

to produce motion in the external ones, the base degrees of freedom are typically fully

controlled. In addition, the fiber space must correspond to a symmetry group, which

means that system properties, such as kinetic energy, do not depend on where the

system is located in the associated space.

While the above assumptions may hold or approximately hold for a number of

“idealized” systems, we assert that these make up only a portion of a larger landscape

of locomoting systems. For example, a subset of the joints of a multi-link robot may

fail during operation and become passive, or control may be applied in the form of a

flow field rather than internally to the robot’s joints. In these cases, in addition to

using the knowledge of how the robot’s internal joint motions effect locomotion in the

external degrees of freedom, the robot must also coordinate the physical interaction

between the uncontrolled internal degrees of freedom and any possible external forces,

allowing it to indirectly control the joint behaviors that lead to desired locomotion.

The goal of this thesis is to consider how the classical notion of the principal fiber

bundle structure must thus be recast to expand the current landscape of applicable

systems, introduce new design and analysis techniques to be used with elements of

the established theory, and perform validation through simulation and experiments

with representative robots in each case.

1.1 Locomotion

The problem of locomotion is inherently broad and appears not just in robotics, but

also in biology and moving components in general mechanical systems. While the
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nuances of locomotion in the different fields may vary, the goal is generally the same—

the engineer or agent utilizes the knowledge and structure of the particular system to

effect movement in the world in a desired way. The diverse modes of locomotion found

in nature have inspired a parallel development in robots and mechanical systems,

inviting rich opportunities for analysis.

Among terrestrial biological organisms, many locomote using legs or limbs that

support the body from the ground [33, 68]. The number of limbs may vary, and the

same is true for biomimetic robots based on examples from nature [83]. Bipedal robots

have rapidly improved in performance and functionality, with locomotion planning

ranging from higher-level walking patterns [41] to lower-level feedback control [100];

bipedal mechanisms also benefit by being dynamically stable due to their passive

dynamics [20, 58]. On the other hand, quadrupedal robots are usually statically

stable and can adaptively synthesize gaits [38] on many different terrains [30, 48];

BigDog [84] from Boston Dynamics was a prominent example that can locomote on

rough uneven terrain. Finally, as the number of legs and thus degrees of freedom

increases to six (or more), locomotive control of these hexapod robots has relied on

central pattern generators [19] to produce high-level gaits and distributed control

[8, 29] to adapt to different environments. While most hexapods in nature are found

in insects, six legged robots have appeared in different sizes and are capable of fast

and robust motions [94], a notable example being the RHex robot [87].

There is just as much biological diversity to be found in terrestrial organisms that

locomote without legs at all, inspiring a field devoted to snake-like and slithering

robots [39]. These robots are often termed hyper-redundant mechanisms [15, 16], be-

cause they have many more degrees of freedom than legged robots, allowing for flexible

adaptability to terrains and navigation in tight spaces. Two classes of such robots

in recent development include so-called active cord mechanisms [64, 65], composed

of serial chains of segments with passive wheels attached to each, and snake robots

that locomote directly with their bodies over the ground, such as the unified modular

snake robot [102, 103]. Gaits for lateral undulation have been produced for the former

[65], while the latter have also been shown to be able to execute sidewinding [12] and
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sinus-lifting gaits [40].

Organisms and machines that locomote in fluids often do so via whole-body inter-

actions with the surrounding medium [14], like those of terrestrial undulating mecha-

nisms. The simplest models of these swimming agents consider deformable cylinders

and circles that can accelerate from rest in ideal fluids [62, 86] as well as low Reynolds

number fluids [9, 93]; motion planning for these systems can be cast as control prob-

lems [46, 47] optimizing for locomotive efficiency [2, 92]. While these models may

appear primitive, they work well for microorganisms, whose locomotion is charac-

teristic of low Reynolds number models [51, 80, 97]. The hydrodynamics governing

these systems also lead to non-trivial interactions between multiple bodies [42, 79] that

can be observed in bacteria and cellular systems [49], such as phase synchronization

during motion [32, 81]. On the other hand, articulated mechanisms, for example com-

posed of multiple rigid bodies, can achieve locomotion without requiring deformable

components [3, 7, 31, 59, 96]. The gaits that emerge from these models are often

reminiscent of those used by macroscopic swimmers, namely fishes and cetaceans,

whose locomotion has been considerably addressed in biology [71, 88, 98, 104]. The

robotics community has subsequently addressed the mechanics and control of fishlike

robots [18, 45, 63]. Finally, more intricate swimming mechanical systems with differ-

ent types of degrees of freedom [52] have also recently received attention, such as a

hydrofoil with an internal rotor [44].

There is a miscellany of robots that are not directly biomimetic, but whose lo-

comotion can be described using many of the geometric tools summarized in the

next section. Many of them move using passive wheels that provide traction on the

ground to provide no-slip nonholonomic constraints. Systems in this category range

from the canonical two-wheeled robot [46] and multi-trailer system [85] to the active

cord mechanisms based on snakes [64, 65], from toys like the Snakeboard [77] and the

Robotrikke [17] to more exotic systems such as the ballbot [69], Chaplygin beanie

[45], landfish [24], and all their variants. Given the prevalance of these systems, a

large literature exists on aspects of their control [10] and motion planning [53, 67, 76].

Analogous to nonholonomic constraints governing the locomotion of mechanical sys-
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tems is the principle of momentum conservation, which either works in tandem with

the constraints or determines the systems’ behavior completely, the latter describing

free-floating robots and satellites [21, 70, 99].

We have summarized what appears to be an exposition of work in disparate ar-

eas, but it is desirable to find structures or techniques that are common to multiple

problems. This would allow for a deeper understanding of, for example, relation-

ships between certain robot morphologies and their biological counterparts, so that

knowledge on one side can be carried over to the other. Or this would allow for the

application of similar motion planning techniques to multiple classes of robots.

1.2 Geometric Mechanics

In recent decades, techniques and methods from geometric mechanics have been a

popular way to model and control mechanical systems. A key idea is that of symme-

tries in a system’s configuration space, which allows for the reduction of the equations

of motion to a simpler form. This has been addressed for general mechanical systems

by Marsden [55, 56, 57], as well as nonholonomic systems by Bloch [11] and Ostrowski

[72]. For locomotive systems, geometric reduction is often leveraged in tandem with a

decomposition of the configuration variables into actuated shape variables, describing

internal system configuration, and position variables. If such a splitting is possible,

then the configuration space often takes on a fiber bundle structure, whereby a map-

ping called the connection relates trajectories between each subspace. Analysis of

the connection can then give us intuition into ways to perform motion planning and

control of the system [46, 74].

Much of the progress in the geometric mechanics of locomotion is predicated on

the assumption that the symmetries of a system coincide exactly with the external,

or position, degrees of freedom. Following work by Ostrowski [75], Shammas eluci-

dated a spectrum of systems whose motion and mathematical structure are governed

by constraints only, momentum conservation only, or a mixture of both [89, 90, 91].

The former two categories are identified to be kinematic, or drift-free, while the last
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category of systems are known as dynamic. For systems with two shape variables,

Shammas proposed visualizations of a local form of the connection to aid in motion

planning without requiring the parameterization of gaits. Hatton significantly im-

proved this visual method for kinematic systems by optimizing coordinate choice to

reduce the misleading effects of noncommutativity in the configuration space [35, 36].

More recently, there has been investigation of more general aspects of mechani-

cal systems from a geometric perspective. For example, Kelly showed that a system

governed by both momentum conservation as well as viscous dissipation exhibits two

separate connections in its equations of motion [47], and certain means of locomotion

result in a phenomenon known as self-recovery [25]. There has also been a push to

make the geometric models more realistic by including skidding and friction, partic-

ularly for nonholonomic systems [6] such as the rolling disk [5] and the three-link

kinematic snake [27]. Finally, we have also presented a geometric exposition of dif-

ferential flatness [26], allowing for yet another means of nonlinear control of these

systems.

1.3 Contributions

This thesis furthers the usefulness of geometric mechanics and the associated non-

linear control and motion planning techniques for locomoting systems. Traditionally,

the configuration space of an applicable locomoting system must have a particular

principal fiber bundle structure, wherein a splitting exists between a shape and a po-

sition space, as described previously. Simultaneously, however, the system must have

symmetries in all of its position variables (and since the position variables often form

a Lie group, they are group-invariant), and the system is fully actuated in all of its

remaining shape variables. Our work seeks to relax some of the above requirements

to broaden the landscape of relevant systems and elucidate the usage of both the

established techniques as well as some new approaches based on nonlinear control for

motion planning.

Chapter 2 introduces the necessary mathematical background for this work, mainly
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based on geometric mechanics as applied to locomotion. We introduce structures such

as groups, Lie algebras, manifolds, and fiber bundles. We also present the standard

equations of motion, along with the different variations of the connection, and discuss

how it is broken down for kinematic and mixed dynamic systems. We also summarize

the usage of connection vector fields and connection curvature plots for visual motion

planning in the shape space.

Chapter 3 introduces the modifications to the basic fiber bundle in order to re-

move the assumptions listed above by either partitioning the existing structures or

amending them with vector fields or a subset of variables. We show that these mod-

ifications are general enough for a number of locomoting system classes that do not

meet all of the standard assumptions. We also show that each of these classes can be

identified based on the new structure’s mapping relationships with the original fiber

bundle part of the configuration space.

In Chapter 4 we present a detailed analysis of a multi-link nonholonomic snake

robot with three or more links and one or more passive joints. Depending on the com-

bination of joint and input configurations, we are able to derive either a kinematic or

dynamic model for such a robot. In the kinematic case, we obtain different models of

the robot’s locomotion based on the relative locations of the actuated joints; the sys-

tem’s original geometric structure will inform us how to extract “useful” locomotion

while avoiding stationary configurations in extra joints. With the dynamic model, we

utilize joint harmonics and phase analysis to describe the passive shape trajectories

and inform motion planning in tandem with the original connection picture.

Chapter 5 continues to utilize the example of a nonholonomic snake robot in the

context of external actuation and dynamics. A simple example is subjecting it while

completely passive to a constant external force field, such as gravity. A more complex

scenario arises if we are able to control the ambient medium that affects the system,

for example via coupling to an underlying movable platform. This system helps us

illustrate the idea of a “stratified” fiber bundle with multiple fibers pertaining to

one system. We show how the problem of external actuation can be easily solved

using this structure, and how the problem of symmetry preservation comes into play
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depending on the external inputs’ frame of reference. We close the chapter by briefly

discussing the impact of dissipative friction on the geometric structure of locomoting

systems, namely the dynamic snakeboard.

In summary, we expand the applicability of the principal fiber bundle model,

as well as derivative tools for analysis and motion planning, to a larger variety of

locomoting systems. This will allow for greater integration with other classes of

techniques used in the motion planning and control communities, particularly for

complex systems that may benefit from both the analytical methods of this thesis as

well as empirical methods from these fields.
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Chapter 2

Mathematical Background

We begin by reviewing the necessary geometric mechanics and motion planning back-

ground for this thesis. We first devote a section to relevant concepts from differential

geometry, which allows us to define the principal fiber bundle in the abstract sense.

We then turn our attention to the Lagrangian mechanics formulation, starting with

the Euler-Lagrange equations and then defining symmetries in order to perform a re-

duction process. We end up modeling the configuration space of a mechanical system

as a principal bundle along with a connection mapping. Finally, we summarize the re-

cent work in algebraic and visual analysis of the connection form for motion planning

in the configuration space of a mechanical system, describing tools such as connection

vector fields and curvature functions, as well as higher-order approximations.

2.1 Differential Geometry

The configuration space of a mechanical system often contains a subset of degrees of

freedom that make up a Lie group. This Lie group can be used to model physical mo-

tions of a rigid body, where motions correspond to group actions, and configuration

velocities corresponding to the degrees of freedom live in a tangent space. By defin-

ing these structures and the corresponding maps associated with the configuration

variables, we may be able to identify the entire configuration space with a principal

fiber bundle structure. This section will introduce these ideas at a high level, but also

25



grounded with examples for physical intuition. For a more in-depth coverage of these

concepts, we refer the reader to [4, 43, 66].

2.1.1 Lie Groups and Group Actions

A group (G, ∗) is a set G with a map ∗ : G×G→ G that satisfies the four properties

of closure, associativity, identity, and inverse. The latter two properties give rise to

an identity element e of G, such that e = gg−1. If the map ∗ is commutative, i.e. for

g1, g2 ∈ G we have g1 ∗ g2 = g2 ∗ g1, then the group is Abelian. The Cartesian product

of two groups (G1, ∗1) and (G2, ∗2) is a direct product group (G, ·) = (G1×G2, ·).The

new map · applies the maps ∗1 and ∗2 to the respective group elements. Furthermore,

if G1 and G2 are Abelian, then so is G1×G2. In this document we may write G as a

shorthand for (G, ∗) and g1g2 to denote g1 ∗ g2.

If a group (G, ∗) is also a differentiable manifold, then G is known as a Lie group.

Specifically this requires that the associated map ∗ as well as the inverse map to be

differentiable. Two important examples of Lie groups that are relevant for rigid body

motion are SO(n) and SE(n), both with the operations of matrix multiplication. The

special orthogonal group SO(n) is defined as

SO(n) = {R ∈ Rn×n : RRT = In×n, det R = 1}

and corresponds to the group of rigid rotations. The set elements R are also known

as rotation matrices. The special Euclidean group SE(n) is defined as

SE(n) =


Rn×n pn×1

01×n 1

 : p ∈ Rn, Rn×n ∈ SO(n)


and corresponds to the group of rigid translations and rotations in n-dimensional

space.

Given a Lie group G and an arbitrary set Q, a left action of G on Q is a smooth

mapping Φ : G×Q→ Q such that
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1. Φ(e, q) = q for all q ∈ Q,

2. Φ(g,Φ(h, q)) = Φ(gh, q) for all g, h ∈ G and q ∈ Q.

As a shorthand, we may write the action as Φg : Q→ Q, such that Φg(q) = Φ(g, q).

A physical example of a group action is that of a rigid body transformation, such as

a rotation or translation, of a robot.

We note that in the above definition of a group action we assumed that Φg plays

the role of a left action Lg, since Φg acts on the group part of the configuration on

its left. It is also possible to define a right action Rg in a similar manner, such that

Rg(Rhq) = Rhgq. We will not make much use of this mapping, except in the definition

of the adjoint map in the following subsection.

2.1.2 Lifted Actions and Lie Algebras

We can define the tangent space TqQ of a manifold Q at a point q as the vector space

spanned by the tangent vectors to all curves on Q passing through q, at q. Vectors

that live in the tangent space often correspond to velocities of trajectories on the

manifold. If an action of a group G acts on Q, then we can also define a lifted action

TqΦg as

TqΦg : TqQ→ TΦgqQ.

Thus, the action maps between points on Q, while the lifted action maps between the

corresponding velocities.

If we consider the action and lifted action of a group G on itself, then two impor-

tant examples of lifted actions are TgΦg−1 , which maps from TgG to TeG (the tangent

space at the identity), and TeΦg, which maps from TeG to TgG. In fact, TeG is often

identified with the Lie algebra of the group g. Like TeG, g is a vector space, but with

the additional requirement that it posseses a Lie bracket operation [·, ·] : g × g → g

that satisfies bilinearity, skew commutativity, and the Jacobi identity. It is often

desirable to perform analysis in g, since it has a linear vector space structure.

A special mapping can be defined on the Lie algebra itself. Consider the inner

automorphism Ig : G → G, defined as Ig(h) = ghg−1. This applies a left action of g

27



and a right action of g−1 on h. This expresses a notion of the non-commutativity of

the group action, since Ig is very often not equivalent to the identity map. If we now

take the tangent of this map at the identity of the group, i.e.,

TeIg : TeG→ Tgeg−1G,

then we have defined an automorphism on the Lie algebra, since that is associated

with the above tangent space. We call this the Adjoint map and denote it Adg : g→ g.

In addition to using the lifted action to map between the Lie algebra and tangent

spaces on the group, we can also associate group configurations to an algebra element.

The exponential map is an operation that takes an element in the Lie algebra ξ ∈ g

and maps it to the group element g = exp(tξ). g is the result of flowing along TeΦgξ

for time t with initial velocity ξ.

As an example of the above ideas, the Lie algebra of the special orthogonal group

SO(3), the group of 3D rotations, is denoted so(3) and is defined as

so(3) = {ω̂ ∈ R3×3 : ω̂T = −ω̂}.

This is simply the set of 3 by 3 skew-symmetric matrices and is a linear, vector-space

representation of an angular velocity. Conversely, given an angular velocity and an

angle θ, the exponential map recovers the group element

exp(θω̂) = I + ω̂ sin θ + ω̂2(1− cos θ),

which is the rotation matrix about the angular velocity vector ω by an angle θ.

2.1.3 Principal Fiber Bundles

Suppose that we have a manifold Q and a subspace B, and define the fiber G such that

B = Q/G. Suppose also that we have a canonical projection mapping π : Q→ B. If

π is differentiable and Q = G × B locally, then we refer to Q as a fiber bundle with

base space B and fiber space G. If Q = G× B globally, then the bundle is trivial ; if
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Figure 2-1: A typical visualization of a fiber bundle with base space B, fiber G, and
a projection mapping π from from the full bundle Q down to B.

G has a Lie group structure, then the bundle is principal.

If we consider the lifted map Tπ : TqQ → Tπ(q)B, then we can partition TqQ as

follows. Define the vertical space as

VqQ = ker(Tqπ)

and the horizontal space as the complement of the vertical space such that

TqQ = VqQ⊕HqQ.

This direct sum decomposition of the tangent space means that any tangent vector

vq can be written as a linear combination of vertical and horizontal components as

vq = hor vq + ver vq,

where vq ∈ TqQ, hor vq ∈ HqQ, and ver vq ∈ VqQ.

In the same way that the exponential map takes Lie algebra elements to a group

element, we can take a single Lie algebra element ξ and define a vector field ξQ

everywhere in the bundle. The vector field ξQ is known as the infinitesimal generator

of the corresponding group action Φ due to ξ and is given by

ξQ(q) =
d

dt
Φ(exp tξ, q)|t=0.
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Figure 2-2: The exponential map takes ξ and flows along the fiber G to a group
element g. The exponential generator is a velocity at the configuration q.

The vector that appears at the origin of the tangent space at the configuration q tells

us how it would change if acted upon by Φ with the group element exp tξ, the flow

due to ξ for t seconds. Because we are taking the derivative at t = 0, this gives us an

infinitesimal change.

Finally, it is also possible to use the infinitesimal generator to produce a vector

field in the Lie algebra. For a given ξ ∈ g, we can define a vector field ξg(η) at every

η ∈ g, just as we have a vector field ξQ(q) at every q ∈ Q. This vector field is denoted

adξη. It can be shown that this is equivalent to the Lie bracket operation of ξ and η;

i.e., [ξ, η] = adξη.

2.1.4 Principal Connections

A principal fiber bundle Q has an associated principal connection, a map A : TqQ→ g

that satisfies the following:

1. A(ξQ(q)) = ξ, ξ ∈ g

2. A(TqΦg(vq)) = AdgA(vq), g ∈ G, q ∈ Q, vq ∈ TqQ

The first condition defines A such that it maps any tangent vector that is an infinites-

imal generator of a Lie algebra element ξ back to ξ. The second condition means that

transforming a tangent vector via a lifted action in the bundle corresponds to trans-

forming the resultant Lie algebra element by the corresponding Adjoint map Adg.
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Figure 2-3: The local connection form −A(b) is a base-valued mapping that takes
base trajectories to fiber trajectories.

For generic vectors vq that may or may not be a generator, it is also required that

(A(vq))Q(q) = ver vq.

Therefore, the horizontal space HqQ is the kernel of the connection mapping, such

purely horizontal velocities hor vq have a zero vertical component [10].

For a trivial fiber bundle, the connection mapping can be written more explicitly

with a local form. Recall that a bundle Q = G × B is trivial if the direct product

structure holds globally. In this case, it can be shown [73] that

A(ġ, ḃ) = Adg(g
−1ġ + A(b)ḃ).

Note that this equation entails a separation between fiber components g and base

components b. The mapping A(b) is known as the local form of the principal con-

nection; the fact that it depends only on the base components allows us to study a

reduced system.

2.2 Lagrangian Mechanics

Methods from Lagrangian mechanics allow us to perform analysis for mechanical

systems in a streamlined way, starting with the quantity known as the Lagrangian

and then using that to arrive at the equations of motion for the system. However, that
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is often as far as the process will go; the resultant equations can be highly nonlinear

and difficult to tackle. Previous work in the geometric mechanics of locomotion has

sought to reveal common geometric features, such as symmetries, to a set of problems

in order to simplify these equations and write them in a standard form. We review

the standard Lagrangian approach, particularly in the way that it is used with the

geometric ideas from the previous section. For further details on the topics of this

section, we refer to [1, 10, 73, 89].

2.2.1 Euler-Lagrange Equations

A mechanical system is often described by a set of n configuration variables q, which

provide a representation for the degrees of freedom. These variables then make up

an n-dimensional configuration space Q. By studying the features and structures of

Q, we can often infer interesting features about the system at hand. An important

function is the Lagrangian, denoted L : TQ → R. It is defined as the difference

between kinetic and potential energy:

L(q, q̇) =
1

2
q̇TM(q)q̇ − V (q). (2.1)

Here, the first term on the right-hand side is the kinetic energy, with the mass matrix

M(q) defining a kinetic energy metric on the tangent space, while V (q) is the potential

energy.

Once we have a Lagrangian for a mechanical system, it is straightforward to

describe how it will evolve in time. The key descriptor is given by the Euler-Lagrange

equations of motion, which are generally written as

d

dt

(
∂

∂q̇i
L(q, q̇)

)
− ∂

∂qi
L(q, q̇) = τi, (i = 1, . . . , n).

There is one equation for each configuration variable. The term τi corresponds to

external forces acting directly on the ith configuration variable.

It is possible for a mechanical system to be subject to constraint forces. If such
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constraints are nonholonomic and there are k of them written in the Pfaffian form as

ω(q)q̇ = 0, then the equations of motion are

d

dt

(
∂

∂q̇i
L(q, q̇)

)
− ∂

∂qi
L(q, q̇) =

k∑
j=1

λjω
j
i (q) + τi, (i = 1, . . . , n).

The object ωji (q) refers to the ith column and jth row of ω(q). The quantity λj is a

Lagrange multiplier to be solved with the configuration variables.

2.2.2 Symmetries and Momentum Maps

It is often the case that while a mechanical system may move or change its config-

uration over time, there are underlying quantities, such as momentum, that remain

conserved. These conserved quantities often correspond to symmetries that exist in

the system itself. If the system’s configuration space has a principal fiber bundle

structure, i.e., Q = G × B, then the Lagrangian is invariant with respect to G (or

G-invariant) if

L(Φgq, TqΦg q̇) = L(q, q̇).

This relationship determines a symmetry—in other words, the result of the La-

grangian mapping does not change when the system configuration is changed via

a group action.

The notion of symmetries is closely related to that of momentum maps. Associated

with the velocity vq of a physical system is a momentum, which can be computed by a

map J : TqQ→ g∗. The space g∗ is the dual Lie algebra, whose elements (momenta)

are paired with Lie algebra elements (velocities) to produce a real number. This

pairing is defined mathematically as

〈J(vq), ξ〉 = 〈〈vq, ξQ(q)〉〉, ξ ∈ g,

where the mapping 〈〈·, ·〉〉 is the kinetic energy metric determined from the La-

grangian.
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In the above definition of the momentum map, suppose that vq is an element of

the infinitesimal generator of a Lie algebra element η, i.e., vq = ηQ(q). In this case

it is possible to relate ξ and η via the locked inertia tensor, a mapping I(q) : g→ g∗

defined as

〈Iη, ξ〉 = 〈〈ηQ(q), ξQ(q)〉〉.

As with J(vq), the object Iη lives in the dual Lie algebra, such that the pairing with

ξ produces a real number according to the kinetic energy metric of the Lagrangian.

The difference is that J acts on a velocity in the group, while I acts on a velocity in

the Lie algebra.

The two mappings are related by a connection form. Recall that a principal fiber

bundle has a principal connection A : TqQ→ g. For a system with a defined momen-

tum map and a locked inertia tensor, this mapping can be written as a mechanical

connection A(q, q̇) = I−1(q)J(q, q̇). As expected, this relates group velocities vq to

Lie algebra elements η, while specifying that the kinetic energy metric be preserved

through the definitions of the momentum map and locked inertia tensor.

2.2.3 Lagrangian Reduction

Having defined how the configuration of a mechanical system may take on geometric

structure, we can use that structure to simplify, or reduce, the complexity of the equa-

tions of motion. While these equations nominally refer to those derived through the

Euler-Lagrange formulation, we will also be able to recast them with the connection

form mapping made explicit.

When our Lagrangian is G-invariant, we have a freedom in choosing the coordi-

nates with which to describe the Lagrangian. One choice is to work at the group

identity element by using the action Φg−1 and the corresponding lifted action TgΦg−1 .

We refer to the Lagrangian written in this way as the reduced Lagrangian

l(b, ξ, ḃ) = L(g−1g, b, g−1ġ, ḃ) = L(e, b, ξ, ḃ).
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Here, we are explicitly defining ξ as the Lie algebra representation of the velocity

ġ; ξ is also the transformation of ġ to a frame attached rigidly to the system. For

example, in SE(2) ξ can be written as

ξ =


ξx

ξy

ξθ

 = TgΦg−1 ġ =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ġ. (2.2)

It can be shown [73] that the reduced Lagrangian can be written in the following

form:

l(b, ξ, ḃ) =
1

2

(
ξT ḃT

) I(b) I(b)A(b)

(I(b)A(b))T m(b)

ξ
ḃ

 .

Here, I(b) is a local form of the locked inertia tensor, given by I(b) = I(e, b); i.e., it

is the inertia tensor at the identity of the group, as the reduced Lagrangian is also

defined. A(b) is the local form of the mechanical connection.

Using the definition of the momentum map, it can be shown that [10]

p =
∂

∂ξ
l(b, ξ, ḃ)

is the local form of the momentum map that corresponds to the kinetic energy met-

ric of the reduced Lagrangian. For unconstrained systems, this is also called the

generalized momentum.

Because we have assumed that our Lagrangian is symmetric with respect to the

fiber variables, the reduced Lagrangian has no dependence on them. By applying the

Euler-Lagrange derivation to determine the equations of motion from the above form,

we can find the reconstruction equation:

ξ = −A(b)ḃ+ I(b)−1pT . (2.3)

The significance of Eq. (2.3) is that the evolution of the fiber variables is first-order

and depends only on the base variables and momenta. For a physical system, the
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fiber variables usually correspond to an external configuration, such as position and

orientation with respect to the environment. The base variables then usually describe

the physical shape of a system and are thus also known as shape, joint, or internal

variables. These may evolve according to their own dynamics, independent of the

fibers, or can be directly commanded. The evolution of the momentum terms can be

computed separately and often be done independently of the fiber velocities as well.

2.2.4 Kinematic and Dynamic Systems

In general, an unconstrained, n-dimensional system whose Lagrangian is G-invariant

can be described by the reconstruction equation. Alternatively, a system governed by

a set of k linearly independent Pfaffian constraints written in the form ω(q)q̇ = 0 has

a reconstruction equation as well, provided that the constraints are also G-invariant.

The latter condition requires that

ω(q)q̇ = ω(Φgq)TqΦg q̇,

where Φg is the group action. This then allows us to rewrite the constraint form ω in

a reduced fashion in terms of the base variables only:

ωξ(b)ξ + ωb(b)ḃ = 0. (2.4)

These constraints constitute a set of k equations linearly relating the fiber and base

velocities.

If the fiber space is l-dimensional, where l > k, an additional l − k equations can

be found by defining the generalized nonholonomic momentum. This restricts the

flow of the system along the allowed directions, as specified by the constraints, and

is given by

pnh =
∂

∂ξ
l(b, ξ, ḃ)ΩT ,

where ΩT is the null space of ωξ. It can be shown [89] that these equations can be
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rewritten l − k equations of the form

pTnh = ηξ(b)ξ + ηb(b)ḃ.

These equations have the same form as the constraint equations, and taken with them

together they constitute l linearly independent equations as 0

pTnh

 =

ωξ(b)
ηξ(b)

 ξ +

ωb(b)
ηb(b)

 ḃ.

They can thus be simultaneously solved to produce the reconstruction equation for a

system with nonholonomic constraints.

Systems that evolve according to the full reconstruction equation, in which at

least one momentum component of pT or pTnh is nonzero, are referred to as dynamic

systems. The reconstruction equation reflects the fact that such systems are governed

by both nonholonomic constraints as well as some form of momentum conservation,

which occurs when the former is insufficient to span the fiber degrees of freedom. An

unconstrained system may also incur drift with a nonzero and evolving pT when it is

not at rest initially.

Systems with k constraints, where k is equal to the fiber dimension l, will have

their motion completely defined by the constraint equations. Since ωξ is full rank, its

null space and hence the nonholonomic momentum do not exist—the system literally

cannot sustain motion without a nonzero base velocity input. These systems are

referred to as principally kinematic and are governed by a principal connection:

ξ = −ωξ(b)−1ωb(b)ḃ = −A(b)ḃ.

Example: Kinematic Snake Robot

A standard example of a principally kinematic mechanical system is the three-link

robot shown in Fig. 2-4. The configuration of this “kinematic snake” on the plane

is fully described by the group element g = (x, y, θ)T ∈ G = SE(2), representing

37



Figure 2-4: The three-link kinematic snake. The coordinates (x, y, θ) describe the
inertial position and orientation of the first link, which can also be described in a
body-attached frame with velocities (ξx, ξy, ξθ). The joint angles (α1, α2) describe the
relative link configurations thereafter.

the system’s position and orientation. The relative angles b = (α1, α2)T ∈ B = T2

between the links constitute the base variables. The system’s full configuration is

thus defined by q ∈ Q = G×B, in which Q is a fiber bundle over B with fiber G.

Now attached to each of the robot’s links is a nonholonomically constrained wheel.

These provide three constraints of the form

−ẋi sin θi + ẏi cos θi = 0,

where (ẋi, ẏi)
T is the velocity and θi is the orientation of the ith link. The equations

can be shown to be G-invariant and can be rewritten into the reduced Pfaffian form of

Eq. (2.4), where ωξ ∈ R3×3 and ωb ∈ R3×2. Finally, we can define the fiber velocities

relative to a frame fixed to the first link as ξ = (ξx, ξy, ξθ)
T , which is related to ġ by

the lifted action.

Since we have three constraint equations and the fiber is also of dimension three,

the constraints are sufficient to determine a principal connection for the system. The

reconstruction equation can be written as
ξx

ξy

ξθ

 = − 1

D


R
2

(cosα1 + cos(α1 − α2)) R
2

(1 + cosα1)

0 0

sinα1 + sin(α1 − α2) sinα1


︸ ︷︷ ︸

A(b)

ḃ, (2.5)
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where D = sinα1 + sin(α1 − α2) − sinα2. Note that ξy = 0, since the wheel on the

first link prohibits motion along this direction. Secondly, this equation is valid only

if D 6= 0, or α1 6= α2. Configurations in which the joint angles are equal are singular

configurations, in which one of the three constraints becomes linearly dependent on the

other two. Conventionally, the robot avoids operation near or at these configurations,

since they usually entail unbounded constraint forces or the violation of one of the

constraints. The compliant variation of this system, which can be designed to avoid

these problems, is studied in this thesis.

As opposed to constrained systems, mechanical systems without constraints are

governed fully by momentum conservation. In the special case that a system starts

from rest, its generalized momentum will be zero and remain zero throughout the

system’s locomotion. This system is referred to as purely mechanical, with the re-

construction equation taking the same linear (in velocities) form as the principally

kinematic case, since the momentum term vanishes. Here the local connection is

referred to as mechanical connection and can be denoted −Amech.

2.3 Tools and Analysis

Systems whose locomotion can be described by the reconstruction equation exhibit

a certain structure that can be exploited for motion planning. In particular, if we

assume that we have full control over the base variables, then the right side of the

reconstruction equation suffices to describe the motion of the entire system. This

process can be aided by visualizations of the local connection form through connec-

tion vector fields and constrained curvature functions1. Stokes’ theorem can also be

applied to find approximations for fiber displacement if cyclic base trajectories, or

gaits, are of interest. The full exposition of these tools can be found in [35, 89].

1These were also referred to as height functions in previous work
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2.3.1 Connection Vector Fields

The reconstruction equation (2.3) prescribes a linear relationship between base ve-

locities ḃ and body velocities ξ. This mapping is given by the local connection form

−A(b). For kinematic systems, analysis of A(b) is sufficient to describe the full loco-

motion of the system; for systems with drift, it is still useful to understand how base

trajectories are lifted to fiber velocities. From here through the end of the chapter,

we assume that we have direct command over all base velocities.

As the local connection acts like a Jacobian, each row corresponds to a fiber

component, while each column corresponds to a base component. For example, a

system in SE(2) with two joint variables α1 and α2 has a 3 by 2 local connection

matrix. The rows correspond to the body velocities ξx, ξy, and ξθ, respectively;

the columns are the full body velocities in response to unit velocities in α̇1 and α̇2,

respectively.

When the base space is two- or three-dimensional, then it is possible to visualize

each row of −A(b) as a vector field over B. These connection vector fields give us the

response in the body velocities for a particular base trajectory. Specifically, a trajec-

tory that generally flows in the same direction of the vectors will generate a positive

contribution to the body velocity component, while flowing in the opposite direction

will generate a negative contribution. Finally, flowing orthogonal to these vectors will

yield trajectories with zero contribution—the kernel of the local connection matrix.

Fig. 2-5 shows the vector fields corresponding to the x and θ rows of the local

connection for the kinematic snake, plotted using Eq. (2.5) with R = 1. Note that

magnitudes are greater near singularity configurations; base trajectories moving along

α1 ≈ α2 correspond to “flapping” motions between straightened and ‘C’ configura-

tions, leading to larger fiber motions. Conversely, moving along the antidiagonal

in these configurations corresponds to moving toward ‘S’ configurations and tend to

produce smaller displacement.

In addition to the body velocities, we may also be interested in the system’s raw

odometry ζ, or the net motion in each body direction, due to its base inputs. This is
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Figure 2-5: The x and θ connection vector fields, corresponding to the first and third
rows of the local connection of the kinematic snake.

given by
∫
ξ(τ) dτ and can be used to approximate the absolute displacement g under

certain conditions. We can then perform a change of coordinates from time to shape

to mathematically describe our previous observations about flow direction and body

velocities via a line integral of the reconstruction equation on the connection vector

fieldsa s

ζ(T ) = −
∫ T

0

A(b(τ))ḃ(τ) dτ = −
∫
ψ

A(b) db, (2.6)

where ψ : [0, T ]→ B is the base trajectory.

2.3.2 The Exterior Derivative

In the case that ψ is a closed trajectory, corresponding to a periodic input function,

then the line integral along the trajectory can be expressed in another way. According

to Stokes’ theorem, the line integral of a differential form ω along the boundary of a

closed manifold Ω is equal to the integral of the form’s exterior derivative over the

whole of Ω, i.e., ∫
∂Ω

w(u) du =

∫
Ω

dw(u).
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If we take a closed base trajectory ψ as the boundary of a region β in the base space,

then we can rewrite Eq. (2.6) as

ζ(T ) = −
∫
β

dA(b). (2.7)

For a two-dimensional base space, the integral becomes an area integral, and the

exterior derivative is the curl of the connection vector fields.

Plots of the exterior derivative of the connection form can significantly aid motion

planning and the understanding of the effects of various gaits in the base space. For

example, a trajectory may enclose a net nonzero area in the plot corresponding to x,

while enclosing a net zero area in y and θ. We can then conclude that such a gait

would produce net motion along the system’s body x axis only. It is also possible to

numerically optimize the net odometry by looking for regions that have maximal or

near-zero net area depending on the locomotion goal.

2.3.3 The Connection Curvature

By itself, the exterior derivative only captures the nonconservativity of a system, as

it is a measurement of displacement in the fibers resulting from a closed trajectory in

the base. Another aspect of a system’s locomotion capabilities that can be inferred

from its connection structure is its noncommutativity. For example, computing the

raw odometry of a car with drive and steer inputs will result in zero in the direction,

say y, perpendicular to the wheels. This is because the nonholonomic constraints

prohibit any motion along y. However, this does not sufficiently describe the car’s

capabilities, as it can perform parallel parking and achieve net displacement in y

through a series of maneuvers.

That a control system can achieve motion in a direction not prescribed by the

original control vector fields (in this case, the connection form) is due to the noncom-

mutativity of the underlying space. Given two vector fields X and Y , flowing along

the directions X, Y , −X, and −Y for an equal amount of time each may not neces-

sarily return us to the initial configuration. The resultant displacement between the
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Figure 2-6: The x, θ, and y connection curvature components for the kinematic snake.
The first two components are entirely due to the exterior derivative; the last is due
to the Lie bracket term.

initial and final configurations for an infinitesimal flow is given by the Lie bracket of

the vector fields. If X and Y are defined on an n-dimensional space, the Lie bracket

is a vector field defined as

[X, Y ] = ∇Y ·X −∇X · Y.

Thus for a two-dimensional base space, the local connection form has two columns

A1(b) and A2(b), and the noncommutative contribution to displacement in the fiber

directions is given by [A1, A2]. With this in hand we can also define the curvature of

the connection as

−DA(b) = −dA(b) + [A1(b), A2(b)].

Integrating this quantity over a region of the base space provides a more faithful

measure of the system’s resultant motion relative to the body-fixed frame.

Fig. 2-6 shows the three components of the connection curvature for the kinematic

snake, along with an arbitrary gait represented as a closed curve on these plots.

Since the base space is two-dimensional, the exterior derivative can be computed as

the curl of the vector fields. This is zero for the y component, while the x and θ

components have the form shown in the first two subplots. As expected, gaits closer

to the singularity configurations yield greater fiber motion, particularly in the body

x direction. The Lie bracket, on the other hand, is zero for the x and θ components,
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but not for y. This latter plot shows that the “parallel parking” motion can occur

for this robot, particularly for gaits that reach close to α1 = α2.

2.3.4 Planning Gaits

The drawback of the above analysis is that one is often more concerned with raw

displacement in the fiber variables with respect to an inertial frame, rather than a

body-fixed frame. This is given by

g(T ) =

∫ T

0

TeΦg(τ)ξ(τ) dτ, (2.8)

which may clearly have a dependence on the fiber variables. If the fiber is Abelian,

the lifted action loses its dependence on the system’s fiber configuration, and the raw

odometry is equivalent to the absolute displacement (the Lie bracket terms also van-

ish, such that the exterior derivative becomes identical to the curvature). Otherwise,

we can integrate the connection curvature as an approximation, being most useful for

gaits of small amplitude.

For example, the lifted action for SE(2), shown in Eq. (2.2), has an explicit de-

pendence on the fiber variable θ. This captures the discrepancy between the inertial

frame and a frame attached to the system’s body. For a gait cycle in which θ does not

change too much, TeΦg can be considered nearly constant and can be taken outside

the integral in Eq. (2.8). On the other hand, it is possible that ζ(T ) is completely

different from g(T ) if the gait induces a large rotational displacement. If the system

is moving “forward” relative to its own frame while simultaneously rotating, then a

portion of its inertial displacement will occur either orthogonal or anti-parallel to the

inertial “forward” direction.

Again referring to the connection curvature plots in Fig. 2-6, we have a base

trajectory overlaid on each of the components. On the θ plot, the trajectory is located

in a region with a very small net area, and indeed over the course of the gait it can

be seen that θ does not change very much. The area integral of the region enclosed in

the x plot thus provides both a measure of raw odometry as well as an apprxoimation
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of absolute forward displacement. It is worth noting we would generally not have to

worry about the Lie bracket contribution to the y displacement, as long as we operate

away from singular configurations.

It has been shown [82, 35] that the connection curvature DA is the first term

in an expansion that can approximate g(T ). This expansion is due to Magnus and

provides that the exponential coordinates z(t) for the displacement over a gait φ can

be approximated as

z(t) =

∫
φa

−DA(b) db+ higher-order terms,

where φa is the area enclosed by φ. g(T ) can be computed by exponentiating z(T ).
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Chapter 3

Beyond the Fiber Bundle Model

The framework summarized in the preceding chapter is powerful, as it allows for a

structural separation between a system’s internal (base) and external (fiber) degrees

of freedom. Many mechanical systems have a configuration space that can be modeled

as a principal fiber bundle, including wheeled robots on a homogeneous plane like the

kinematic snake, as well as swimming robots in high or low Reynolds fluids. For

all of these seemingly disparate systems, we are able to use this common underlying

structure to understand how different modes of actuation produce locomotion as well

as actively design gaits for movement. Analysis of the principal connection associated

with the bundle is especially effective for motion planning as long as the base variables

are fully actuated and the fiber variables do not factor into the system’s dynamics.

However, the listed categories rigidly limit the scope of applicable systems. It is

often the case that even slight physical variations of the examples listed above do not

fit into this picture. These include those whose joints are not fully controllable, those

with controlled degrees of freedom external to their mechanism, and those whose

external configurations do not form a symmetry group. In this chapter we describe

how some of the basic assumptions of the fiber bundle model limit analysis of these

systems using these geometric tools. In all of these cases, we show that we can either

amend or partition the standard bundle with a richer structure. This will turn out

be be descriptive for a number of locomoting system classes that do not meet all

of the standard assumptions, while each of these classes can be identified based on
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the new structure’s mapping relationships with the original fiber bundle part of the

configuration space.

3.1 Systems with Base Dynamics

Rather than directly commanding the position or velocity of a robot’s joint degrees of

freedom, it is often the case that there exist non-negligible internal dynamics between

the actuator and the joint’s actual movement, or perhaps that the joints cannot be

controlled at all. These issues may arise because of physical phenomena, such as

nonlinear dissipation within the joints, by design when joints are turned off due to

power limitations, or unintentionally due to failure during operation.

In the original derivation of the reconstruction equation [74], the evolution of the

base variables can be found via the Euler-Lagrange equations. Assuming the existence

of a G-invariant connection, we can define a constrained Lagrangian

lc(b, ḃ, p) = l(b, ξ, ḃ)|ξ=−Aḃ+I−1p.

This representation of the Lagrangian reduces the dynamics down to the base and

momentum variables only. For kinematic systems, this expresses the fact that the

evolution of the base variables is sufficient to recover the overall behavior of the

system, since they do not depend on the fibers. If the base degrees of freedom are

actuated via G-invariant forces τ , then the base variables evolve according to

d

dt

(
∂

∂ḃi
lc(b, ḃ, p)

)
− ∂

∂bi
lc(b, ḃ, p) = τi.

It can subsequently be shown [74] that these equations can be rewritten in the form

M̃(b)b̈+ ḃT C̃(b)ḃ+ Ñ(b, p) +
∂V (b)

∂b
= B(b)τ. (3.1)

While the full derivation of each of the terms in Eq. (3.1) has been done, this

equation is generally bypassed in the development of the geometric motion planning
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Figure 3-1: A fiber bundle with a subset of its base variables bp ∈ Bp evolving
according to a set of dynamics rather than being directly commanded.

tools. However, systems for which we do not assume direct control over all base

variables will have to incorporate the full base dynamics. For this type of system,

we partition the base space as B = Bc × Bp. We thus separately identify directly

actuated base degrees of freedom bc ∈ Bc from indirectly actuated or unactuated joint

variables bp ∈ Bp.

This partition also distinguishes the notion of the full base space B from the

control space Bc. In previous work where these were assumed to be the same, the

local connection −A(b) neatly lifted trajectories in Bc to the fibers. For systems in

which Bp is not null, the connection is unchanged, but trajectories in Bc are no longer

sufficient to determine system motion, since the fibers themselves depend on both bc

and bp. The bp variables then evolve according to Eq. (3.1) as vector fields on B,

removing our ability to freely dictate their trajectories independently of bc. This new

fiber bundle structure is visualized in Fig. 3-1.

Example: Snake Robot with a Passive Joint

As an example, suppose that we only have direct control of one of the two joints of the

three-link nonholonomic snake robot, say α1. The other joint angle, α2 is left to evolve

passively, following the dynamics of a mass-spring-damper model. Thus, we have

α1 ∈ Bc = S1 and α2 ∈ Bp = S1. Note that the modified system remains kinematic,

as the nonholonomic constraints and thus local connection remain unchanged.

We use the Euler-Lagrange equations to derive the dynamics of the passive joint.

As with the constraints, the kinetic energy is group-symmetric and does not depend
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on the position and orientation of the system (although there is a base dependency in

the potential energy). Denoting the inertial position of the passive joint as (xp, yp),

we can derive the Lagrangian

L(b, ξ, ḃ) =
1

2

3∑
i=1

(
Mi(ẋ

2
i + ẏ2

i ) + Jiθ̇
2
i

)
− 1

2
kpα

2
2. (3.2)

Here the quantities Mi and Ji are the masses and inertias of the respective links; kp

is the spring constant of the passive joint. We can then define a reduced Lagrangian

l(b, ξ, ḃ) to work in the body frame, followed by a set of reduced Euler-Lagrange

equations in the form

d

dt

(
∂l

∂ξi

)
= (ωξ)

T
i λ,

d

dt

(
∂l

∂α̇2

)
− ∂l

∂α2

= (ωb)
T
2 λ− dpα̇2.

The object (ωξ)i refers to the ith column of ωξ in Eq. (2.4) (and similarly for ωb),

while the Lagrange multipliers λ ∈ R3 represent the constraint forces. The constant

dp is a damping coefficient and the term dpα̇2 is appended to the α2 equation to

capture any damping model component.

The above equations of motion display much more complexity than the recon-

struction equation. As noted previously, we can use the latter to eliminate these

dynamics’ dependence on the fiber velocities ξ, while further manipulation can elim-

inate the Lagrange multipliers. Doing so will give us the vector fields dictating the

evolution of α2 trajectories in response to α1 inputs, written generally as

α̈2 = f(α2, α̇2, α1).

This differential equation is represented as a vector field on the base space. These

fields (not to be confused with the connection vector fields) restrict the set of base

trajectories that can arise given the system parameters and other directly controlled

base inputs. We will explore a generalized version of this system and its dynamics in
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Figure 3-2: Left: A fiber bundle with an internal and an external fiber with controls
in the base. Right: Controls in the external fiber determine trajectories in the base.

more detail in the next chapter.

3.2 Systems with External Interactions

The fiber bundle description of a system assumes that all of its configuration variables

can be neatly categorized into either the base or the fiber. However, this is no longer

sufficient when other configuration variables exist, such as the evolution of a non-

static ambient medium. In such a scenario, these additional variables will form a

third subspace, whose role depends on its interaction with the original fiber bundle

and whether system symmetries are still preserved.

3.2.1 Stratified Fiber Bundle

If we consider the example of the three-link snake robot on a moving platform, then

the position of that platform would live in a new space. However, just as the robot’s

position (its fibers) do not have any role in determining the overall system’s dynamics

and energetics1, the platform’s position is not important either. Therefore, we can say

that the platform’s position corresponds to another set of symmetries in the system,

and hence makes up a second fiber space.

For this type of system, the fiber space takes on a stratified structure G = Gi×Ge.

1This is also true for the robot’s orientation if the platform’s position is prescribed in the robot’s
body frame; the alternative, being prescribed in the body frame instead, is discussed in the next
subsection.

51



We separately identify fiber variables associated with the configuration of the system

gi ∈ Gi making up an internal fiber, describing the configuration of the robot, from

those describing the configuration of the medium ge ∈ Ge, the external fiber. This

is visualized in Fig. 3-2(left). Note that the original fiber bundle is unchanged and

we retain our original connection −Ai(b). In addition, a second connection −Ae(b)

from the robot’s base configuration to the medium’s configuration can be derived in

a manner analogous to −Ai(b).

The structures of the two connections −Ai(b) and −Ae(b) can both be analyzed

in the same visual manner using the connection curvature functions. For example, if

we care only about the robot’s fiber motion in response to certain joint trajectories

without regard to how the platform moves, then we need only look at −Ai(b), and

the problem is unchanged from before. On the other hand, looking at −Ae(b) tells

us how the robot’s joint trajectories lead to motion of the platform. Finally, a more

interesting problem still is that of trying to effect certain fiber motion in both Gi and

Ge, which would involve simultaneous search or optimization of base trajectories on

both exterior derivative plots.

In this thesis, and in particular for the robot-platform system, we consider both

the traditional problem of mapping base trajectories to the external fiber, as well as

the reverse problem of having the controls in the external fiber Ge, with the base

variables remaining passive. As shown in Fig. 3-2(left), the original splitting between

B and Gi allows for analysis to be limited to the response of the base trajectories

due to controls in Ge. Once we know our trajectories in B, the original connection

−Ai(b) ultimately lifts them to the internal fiber Gi. The problem of relating Ge to

B is more difficult as the “inverse” mapping of −Ae(b) may not be well defined. In

our work we mainly consider cases in which an inverse can easily be found, and point

to some alternative approaches when this is not possible.

3.2.2 Fibers Without Symmetries

In the robot-platform problem, the stratified fiber description and preservation of

symmetries hold as long as all quantities are prescribed or expressed relative to the
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Figure 3-3: Trajectories in the base space determine the dynamics through which the
“non-symmetric” fiber components evolve. These base trajectories are then mapped
through the connection −As to trajectories in Gs.

robot’s body-fixed frame. If we do not have this luxury, e.g., the platform inputs are

prescribed relative to an inertial frame, then one of the fiber components, the robot’s

orientation θ, breaks this assumption. This is because θ must be known in order to

determine the effect of the robot’s and platform’s movements on each other.

In general, this situation may also arise even if the ambient medium remains static

but contains position-dependent disturbances that act on the system. Alternatively,

the medium may facilitate interactions among multiple systems, but these interactions

take place in a local manner, for example depending on the relative configurations of

two neighboring swimmers.

In all of these cases, the system’s dynamics will no longer be symmetric with

respect to a subset of the fiber degrees of freedom. However, we may still be able

to define a principal bundle on the base variables and the remaining fibers that are

symmetric. For example, a falling, reorienting robot is affected by gravity in one

fiber direction (or two, if orientation is also considered). A visual representation is

shown in Fig. 3-3; like Fig. 3-2 we see the addition of a third subspace, but with two

main differences. The first is that no separate connection lifts base trajectories to

the non-symmetric fibers; second, the original connection now depends on both base

trajectories as well as non-symmetric fiber trajectories.

To facilitate analysis we again consider a partitioning of the fiber space as G =

Gs×Gn, such that the system Lagrangian is only symmetric with respect to gs ∈ Gs
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but not gn ∈ Gn. In other words,

L(Φ(gs,e)q, TqΦ(gs,e)q̇) = L(q, q̇)

is true, but not necessarily the broader invariance statement in which the action is

due to a general group element Φg.

To see how this changes the derivation of the equations of motion, we write the

reduced Lagrangian in the following way:

l(gn, b, ξs, ġn, ḃ) =
1

2

(
ξs

(
ġn ḃ

)) Is(gn, b) Is(gn, b)As(gn, b)

(Is(gn, b)As(gn, b))T mn,b(g
n, b)




ξsġn
ḃ




Here ξs refers to the velocities of the symmetric fiber variables transformed into a

body frame. Conversely, we are not able to transform the velocities ġn to a body-

fixed representation. While the Lagrangian is fundamentally unaltered from before,

the new groupings change the quantities that we use to compute the reconstruction

equation. In particular, the new local connection form As : Gn × B → gs lifts

combined trajectories in both the base and the nonsymmetric fibers to trajectories in

Gs.

For physical systems, however, it will be the case that the mass matrix of the

Lagrangian has explicit dependencies on gn in addition to b. For example, the kinetic

energy of a fluid due to two bodies moving within is determined by the distance

between the two bodies. Thus, the components Is(gn, b) and As(gn, b) determine the

new reconstruction equation as

ξs = −As(gn, b)

ġn
ḃ

+ Is(gn, b)−1pT . (3.3)

By writing the equation in this way, it is clear that the variables gn play a similar

role as the base variables. The difference, however, is that we do not have control

over gn. Thus, if we define Bn = Gn ×B as an extended base space, we return to the
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problem in which we have incomplete control over all the base variables. The gn are

in effect passive base variables whose dynamics can be analyzed independently of ξs

in a way analogous to Eq. (3.1). This “extended connection” mapping is depicted in

Fig. 3-3.

3.2.3 Example: Snake Robot on a Movable Platform

Our motivating example for the ideas in this section is that of a completely passive

three-link robot on a movable platform. The position of the platform, which we denote

by (xp, yp), is itself a symmetry goup Gp since neither the robot’s nor the system’s

dynamics depends on where the platform is located in space. The configuration

manifold is now rewritten as Qp = G × Gp × B = SE(2) × R2 × T2. It is important

to note that the connection relationship of Eq. (2.5) still holds, as the nonholonomic

constraints are unchanged with the addition of the platform.

This system has a stratified bundle structure. In addition to the original con-

nection between the robot’s base variables B and the robot’s fiber variables G, a

second mechanical connection, derived using conservation of momentum rather than

the presence of constraints, lifts trajectories from B to Gp, the fiber variables corre-

sponding to the position of the platform. That is, a relationship between the motion

of the robot’s joints and the motion of the platform can be derived without regard to

the robot’s x-y location relative to the platform. This relationship can be exploited

for motion planning for a completely passive robot, as we show in Chapter 5.

If the platform’s position and velocities are written with respect to the robot’s

body frame, the above description would be sufficient for a motion control problem.

Practically speaking, this may not be the case on a real system, for example if the

platform’s movement were confined to two fixed inertial directions. In such a case,

the fiber space of the robot would be split in order to identify the robot’s orientation

θ as a non-symmetric fiber variable. In other words, G = Gs ×Gn, where gs = (x, y)

and gn = θ. This splitting captures the fact that the robot’s interaction with the

moving platform depends on its relative orientation but not its relative position. In

Chapter 5 we will explore this scenario as well.
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3.3 Summary

We have presented an exposition of specific system classes that do not fit into the tra-

ditioanl geometric mechanics framework. These include systems with base dynamics,

particularly those with passive joints, and systems exhibiting interactions with an ex-

ternal medium. For the first case, we must modify our geometric structure to include

dynamics on the base. These dynamics then complement the original connection

mapping on the bundle in order to fully determine system behavior.

The second class of systems gives rise to two complexities. The first is the possibil-

ity of multiple fibers, representing the configuration of external elements in addition

to the fibers of the original system. While the separate fiber spaces may not interact

with each other directly, they do so via separate connection mappings from the orig-

inal base space. A second complexity is the possibility of any of the fiber variables

breaking the symmetries of the original system, thus preventing full reduction of the

problem as before. While we have described the general modification in the form of

Eq. (3.3), specific methods for tackling the problem and extracting useful structure

will depend on the example at hand.

Finally, we have briefly described modifications to the original three-link nonholo-

nomic snake robot system to show how it may fit in any of the new problem statements

above. These new instances will each be analyzed in detail in the following chapters.
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Chapter 4

Systems with Base Dynamics

As we described in the previous chapter, the traditional fiber bundle model assumes

full command of all base degrees of freedom. We made a simple modification to

the nonholonomic three-link snake robot and showed that a single passive joint can

increase the complexity of the locomotion model. While the reconstruction equation

remains unchanged, the passive joint’s dynamics are highly nonlinear and require

further analysis for use in motion planning.

In this chapter we revisit this system, but in the context of a generalized m-link

robot. This system shares many locomotion characteristics with a three-link robot,

but the main difference is that a robot with four or more links cannot achieve arbi-

trary configurations in all of its joints without violating at least one nonholonomic

constraint. Therefore, we must control this system by allowing at most two joints to

be actuated. We show that the inputs to the actuated joints completely determine

the passive dynamics of this system, contributing to overall locomotion, and show

how one may consider gait design to achieve desired motion. This is done within

both a kinematic and dynamic context, the former of which assumes two actuated

joints and yields a chained form of equations, while the latter allows for the addi-

tion of compliance to the joints and assumes only one actuated input. We are also

able to model the robot’s locomotion when passing through singular configurations,

which were previously difficult to handle with traditional kinematic models and full

actuation of the robot.
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Figure 4-1: An m-link nonholonomic snake robot. The coordinates (x, y, θ) denote the
inertial configuration of the proximal link, which also has body velocities (ξx, ξy, ξθ).
Relative joint angles starting from the proximal link are denoted (α1, . . . , αm−1).

4.1 Kinematic Model

We first consider a kinematic model for the generalized m-link robot. Actuation will

be limited to two joints at a time; any more than that will lead to an overconstrained

system, as we show below. We describe how singularities and locking behaviors arise

due to relative phase relationships among the joints, and then show how the robot is

able to execute more natural “slithering” gaits that lead to overall locomotion.

The system shown in Fig. 4-1 is a visual representation of a five-link nonholonomic

snake robot. An m-link robot simply has the requisite number of links appended

or removed as necessary. Each link has an identical length R and a nonholonomic

constraint at the link center. The actuation of the joints and subsequent rotation of

the links induce locomotion of the overall system, governed by the velocity constraints.

The robot’s configuration is denoted q ∈ Q, where the configuration space Q

is a product of two distinct subspaces, G × B. For this system, g = (x, y, θ)T ∈

G = SE(2) are Lie group variables specifying the position and orientation of the

proximal link (identical to the fiber of the three-link robot), and the joint angles

b = (α1, . . . , αm−1)T ∈ B = Tm−1 describe the links’ relative orientations to one

another. Links are numbered 1 (proximal) through m (distal) and joints 1 through

m− 1, with joint i connecting links i and i+ 1.

The kinematics of the system are described by the set of nonholonomic constraints

on the wheels, which prohibit motion perpendicular to each of the links’ longitudinal
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directions. They can be written as m equations of the form

−ẋi sin θi + ẏi cos θi = 0, (4.1)

where (ẋi, ẏi) is the velocity and θi is the inertial orientation of the ith link. These

quantities can be computed recursively in order to express them as functions of q.

Starting with the proximal link, we have that (x1, y1, θ1) = (x, y, θ); for i = 2, . . . ,m,

θi = θi−1 + αi−1,

xi = xi−1 +
R

2
(cos θi−1 + cos θi),

yi = yi−1 +
R

2
(sin θi−1 + sin θi). (4.2)

Typically, one assumes that input commands are sent to the joint variables b. For

a three-link robot, the number of constraints concides exactly with the dimension of

the fiber. By specifying trajectories in both joint (shape) variables, fiber trajectories

are then determined exactly by the constraint equations. For a robot with greater

than three links, or m > 3, each additional joint degree of freedom is added along

with a new constraint on the overall system’s motion, preventing the system from

gaining an additional free controlled input. We can therefore arbitrarily control at

most two joint degrees of freedom if all the constraints are to hold.

In this section we consider systems with exactly two input degrees of freedom at

any given time, denoted as bc = (αi, αj)
T . The rest of the joint variables are denoted

bp and evolve kinematically according to the constraints. The kinematics of the robot

can then be rewritten as

ξ = −Ac(b)ḃc,

ḃp = Ap(b)ḃc. (4.3)

Here we explicitly separate the mappings from ḃc to ξ and ḃc to ḃp; Ac(b) ∈ R3×2 is the

local connection form as before, while Ap(b) ∈ R(m−3)×2 is a Jacobian-like relationship
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(though not a connection) between the commanded joint velocities ḃc and the passive

ones ḃp. Eq. (4.3) can be further simplified into a chained form as follows.

Proposition 1. Suppose that bc = (αi, αj)
T where i < j. Then

α̇k =


fk(αk, αk+1, . . . , αj−1, αj)ḃc, k < i;

fk(αi, αi+1, . . . , αk−1, αk)ḃc, k > j;

fk(αi, αi+1, . . . , αj−1, αj)ḃc, i < k < j.

(4.4)

Furthermore, the kinematics of the proximal link can be written as

ξ = −Ac(α1, α2, . . . , αj−1, αj)ḃc. (4.5)

In other words, the kinematics of any joint only depend on the joint configurations

between itself and the most distal controlled joint in both directions.

Proof. Due to the recursive nature of how the constraint equations are defined, one

can algebraically show that the constraint matrices in Eq. (2.4) for this system have

the forms

ωξ =



0 1 0

− sinα1 cosα1 f(α1)

− sin(α1 + α2) cos(α1 + α2) f1,2

...
...

...

− sin

(
m−1∑
l=1

αl

)
cos

(
m−1∑
l=1

αl

)
f1,m−1


,
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ωb =



0 0 0 · · · 0

R/2 0 0 · · · 0

f(α2) R/2 0 · · · 0

f2,3 f(α3) R/2
. . .

...
...

...
. . . . . . 0

f2,m−1 f3,m−1 . . . f(αm−1) R/2


,

where fi,j = f(αi, αi+1, . . . , αj).

The kth row of each matrix, which corresponds to the kth constraint equation,

only has dependencies on the joint angles α1, . . . , αk−1. Furthermore, since all m

constraints are independent, the first j+1 rows of the matrices yield j+1 independent

equations. These equations are linear in the body velocities (ξx, ξy, ξθ) as well as the

joint velocities (α̇1, . . . , α̇j). Given that we have command over the two joints αi and

αj, this leaves us with j+1 unknown velocity quantities (three fibers plus j−2 joints),

which can be linearly solved.

We now have a solution for the joint velocities α̇k with k < j. The kinematic

maps for these solutions have dependencies from α1 to αj only, since no equations

past the first j + 1 rows of the constraint matrices are used. This thus proves Eq.

(4.5). We can now solve for the joint velocities k > j by successively using each of

the constraint equations in order starting from row j + 2 of the constraint matrices.

Each equation has dependencies up to αk and introduces one unknown joint velocity

α̇k, which can be solved since the previous velocities are already known.

We now know that the kinematics must be of the form

α̇k =

fk(α1, . . . , αj)ḃc, k < j;

fk(α1, . . . , αk)ḃc, k > j.

(4.6)

A symmetry argument can be applied. Our choices of the proximal link and the joint

α1 are arbitrarily defined, with the physical kinematics of the system being unchanged

if we had instead chosen to start α1 from the most distal link. Therefore, by defining

the constraints relative to that link and going through the same procedure as above,
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Figure 4-2: The Jacobian exterior derivative of Ai+2 when αi+2 is close to but less
than π.

we would obtain (in the original coordinates)

α̇k =

fk(αk, . . . , αm−1)ḃc, k < i;

fk(αi, . . . , αm−1)ḃc, k > i.

(4.7)

In order for both Eqs. (4.6) and (4.7) to simultaneously hold, the dependencies

must only occur in their intersection. In other words, the function fk has a dependency

on an arbitrary joint αl only if this is true in both equations. Eq. (4.4) can then be

proved by applying this observation to each joint velocity in turn.

4.1.1 Adjacent Commanded Joints

In considering the overall locomotion of the multi-link snake robot, we first take

the case in which the two commanded joints are adjacent to each other, i.e., bc =

(αi, αi+1)T . Since each successive joint’s kinematics depend only on that of the joints

before it, the evolution of the passive joint variables increases in complexity as they

get farther away from αi or αi+1.
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Stationary Passive Joint

Our analysis for a three-link robot helps us understand the types of gaits that would

emerge for a robot with more than three links, where the commanded joints are αi

and αi+1 and the ones on either side of them are passive. In general, the kinematics

of a joint αi+2 (or αi−1 by symmetry) in response to two adjacent joints αi and αi+1

are given by

α̇i+2 =
cos(1

2
αi+2)

sin(1
2
(αi − αi+1))

(
sin(1

2
(αi+1 − αi+2))

cos(1
2
αi)

α̇i −
sin(1

2
(αi − 2αi+1 + αi+2))

cos(1
2
αi+1)

α̇i+1

)

, Ai+2

 α̇i

α̇i+1

 . (4.8)

An immediate observation, other than the same singularity of αi = αi+1 of a three-

link robot, is that αi+2 = ±π are equilibria, as α̇i+2 is zero at these configurations.

This corresponds to the passive joint rotating all the way around such that link

i+ 2 coincides with link i+ 1, normally an undesirable behavior. We must therefore

investigate the stability of the equilibrium at π; in order to not remain stationary,

α̇i+2 should be negative if αi+2 = π−ε and positive if αi+2 = −π+ε, where ε is a small

positive number. It can be shown that Eq. (4.8) is simply negated when between the

two cases, so any solution that causes one equilibrium to be unstable will also be

sufficient for the other.

In the same way that we visualize the exterior derivative of the connection form,

we can also visualize the exterior derivative of Ai+2 of Eq. (4.8). By plotting the

magnitude of the curl of Ai+2, we can see whether a given combination of αi and αi+1

pushes αi+2 toward or away from ±π. This is shown as the surface in Fig. 4-2 for

αi+2 = π − ε, where ε is a small positive number (again, this would be negated for

αi+2 = −π+ε). While the absolute magnitudes are not important, it is clearly positive

everywhere. Any closed loop that is traversed in a counterclockwise direction on the

surface will yield a positive net area, pushing αi+2 toward π. In order to obtain the

opposite result, we must have gaits corresponding to clockwise loops, which integrate

to negative values and push αi+2 away from π. In the αi-αi+1 space, clockwise loops
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Figure 4-3: Trajectories of commanded inputs α1 and α2, and the passive response
α3. The inputs’ relative phase determines the convergent behavior of α3; α3 moves
toward a stationary configuration when α1 leads α2, while α3 oscillates when the
opposite is true.

are those in which αi+1 leads αi; i.e., their phase difference is between 0 and π.

Fig. 4-3 shows two simulations for a four-link robot verifying our conclusion. The

commanded inputs (dashed lines) are α1 = 0.3 cos(t)+0.4 and α2 = 0.3 cos(t+φ)−0.4,

where φ = 4π
3

in the first simulation, causing α2 to lag α1, and φ = π
6

in the second, so

that α2 leads α1. In the former case, the passive response of α3 (solid line) converges

toward π and stays there throughout the trajectory. The opposite is true in the

second plot, even though α3 starts out very close to π and is even initially drawn to

it before the end of the first gait cycle.

Oscillating Passive Joints

Assuming that αi and αi+1 are prescribed so that the adjacent passive joint αi+2 does

not remain stationary, αi+2 will have a steady-state oscillatory response. From the

second plot of Fig. 4-3, we see that α3 converges toward a trajectory that is nearly

completely out of phase with α2. This observation holds exactly if α3 happens to

intersect α2 anywhere along its steady-state trajectory, i.e., α3(τ) = α2(τ) for some

time τ , as Eq. (4.8) reduces to α̇3(τ) = −α̇2(τ). This means that the two trajectories

are out of phase with each other.

Based on simulations and a linearization analysis of Eq. (4.8), we make the fol-

lowing observations about the oscillatory response of αi+2 due to sinusoidal inputs

with the same frequency but possibly different phase. We assume that φ is chosen
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Figure 4-4: Trajectories of commanded inputs α1 and α2, and the passive response of
joint angles α3, α4, and α5.

so that αi+2 does not end up stationary. We also assume that the magnitudes and

offsets are such that the αi and αi+1 trajectories do not intersect, ensuring that the

robot avoids singular configurations.

1. The magnitude of αi+2 depends on φ. When the commanded joints are in-

phase, αi+2 has a magnitude close to the sum of the magnitudes of αi and αi+1

(i.e., they are superimposed). Otherwise, it is about the same magnitude as

the smaller of αi and αi+1.

2. αi+2 operates nearly out of phase to αi+1, regardless of the original phase φ.

3. The offset of αi+2 is closer to that of αi than αi+1, so that the proximal robot

configuration tends toward a “zig-zag” shape.

These observations can be carried over to passive joints beyond αi+2. Although

the kinematics of an arbitrary joint αj become increasingly complex and depend on

all of the joints preceding it, the principal response of αj is to move “opposite” to

αj−1. Thus, a natural mode of locomotion is that each successive joint trajectory

alternates between the two forms set by the commanded joints, with slight decays in

magnitude, phase, and offset going down the links. Fig. 4-4 depicts the trajectories

of three passive joints in response to arbitrary inputs to α1 and α2. The first passive

joint α3 follows a trajectory close to α1, while leading α2 by about the same phase

that α2 leads α1. The same statements can be made for α4 and α5, each relative
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Figure 4-5: Depiction of the natural “zig-zag” configuraiton achieved by the passive
joints (α3 and α4) of a five-link robot.

to the preceding joints. Note that the magnitudes and sinusoidal form increasingly

decay as we move down the chain, since each passive joint does not perfectly replicate

the opposite gait of the preceding one. A snapshot of the robot’s configuration during

these joint trajectories is shown in Fig. 4-5. This dynamic zig-zag shape is maintained

throughout the locomotion of the robot.

We can make several statements about the overall locomotion of the robot as a

result of different joint interactions. First, because the kinematics are of a chained

form, the presence of links and passive joints beyond the standard three-link case

does not change the locomotion of the proximal link as long as α1 and α2 are the

commanded joints. Second, commanding successive joints in the interior of the robot,

i.e., joints that are neither α1 nor αm−1, is to be avoided in order to prevent an

adjacent passive joint from becoming stationary. If αi leads αi+1, αi+2 will lock, as

per our earlier conclusion; if the opposite is true, αi+1 leads αi and so αi−1 will lock.

Since it is inevitable that a passive joint on either side of the two controlled ones will

become stuck, we can conclude that the two actuated joints must be located at either

the proximal or distal end of the robot to avoid any of the joints becoming stationary.

4.1.2 Non-Adjacent Commanded Joints

The analysis of the previous subsection can be extended to situations in which the

commanded subset of joints is not adjacently located. Previously, we found that to
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Figure 4-6: The exterior derivative of the Jacobian Ai close to a singularity, for
αi ≈ 1

2
(αi−1 + αi+1).

avoid joint convergence to stationary configurations, the two adjacent commanded

joints must be located at either the front end (α1, α2) or the back end (αm−1, αm),

making the robot’s fiber locomotion equivalent to that of a three-link robot. In other

words, the kinematic model asserts that adding an arbitrary number of passive joints

and links to a three-link robot with the original joints actuated does not change how

the robot moves. Here we show that non-adjacent commanded joints can potentially

avoid becoming stationary and allow for commanded joints away from the ends of the

robot. The kinematics of a passive joint αi between two commanded ones αi−1 and

αi+1 are given by

α̇i =
cos(1

2
αi)

sin(1
2
(αi−1 − 2αi + αi+1))

(
sin(1

2
(αi − αi+1))

cos(1
2
αi−1)

α̇i−1 +
sin(1

2
(αi − αi−1))

cos(1
2
αi+1)

α̇i+1

)

, Ai

α̇i−1

α̇i+1

 . (4.9)

The form of this equation shares some similarities with Eq. (4.8). However, in

addition to again having undesired equilibria at αi = ±π, it is now also possible for

the robot to passively find itself in a singular configuration if the sine term in the

denominator goes to zero. Note that the singularities here are of a different nature
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Figure 4-7: Trajectories of commanded inputs α1 and α3, and the passive response
α2. The inputs’ relative phase determines the convergent behavior of α2; the left
simulation shows α2 oscillating in a stable manner, whereas the right one has α2

converging toward a singularity, preventing the simulation from running forward.

from those of Eq. (4.8), which correspond to the two adjacent joints having equal

values. In that case, the inputs can directly be chosen to avoid those configurations.

Here, in Eq. (4.9) a singular configuration is one in which αi = 1
2
(αi−1 +αi+1), where

the critical difference from the previous example is that the left-hand side is a quantity

that we do not directly control.

Valid gaits are those that would push αi away from the average of αi−1 and αi+1

when it is near the aforementioned value. As before, we can visualize the exterior

derivative of the Jacobian Ai of Eq. (4.9), shown in Fig. 4-6 for αi = 1
2
(αi−1+αi+1)−ε,

where ε is again a small positive number. Since we would like αi to decrease, we seek

a loop that encloses a negative net area. From inspection, we have that a loop

lying mostly above the αi−1 = αi+1 line (upper left side of the plot) should run

counterclockwise, and vice-versa for a gait below that line. Unlike in Fig. 4-2, the

surface of Fig. 4-6 is not sign-definite; the phasing of the gait is no longer sufficient

to determine the sign of the enclosed area, and integration is required to determine

the net area for gaits in which the averages of αi−1(t) and αi+1(t) are close in value.

A rule of thumb is that the joint trajectory whose average value is smaller (a lower

offset) should lead the other.

Fig. 4-7 shows the joint trajectories for a four-link robot, in which α1 and α3

are controlled and α2 is passive. In both simulations, α1(t) = 0.3 cos(t) + 0.4 and

α3(t) = 0.3 cos(t + φ) + 0.5, with φ = −π
3

in the first and φ = π
3

in the second.
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Figure 4-8: Using α3 to shape α2 over time (top left) and achieving a desired trajectory
in the α1-α2 space (right). Bottom left: The robot’s fiber motion.

In the first case, the α1 trajectory, which has a smaller average value, leads α3, so

that α2 is not attracted into the singular configuration and instead settles into an

oscillatory trajectory with an offset opposite the trajectories on either side of it. This

is consistent with what we found in Fig. 4-4, in which the roles of α2 and α3 are

switched but the trajectories remain similar. However, when α3 is made to lead α1

in the second plot of Fig. 4-7, we have that α2 is attracted to the value of 1
2
(α1 +α3)

at t = 2.9, at which point the kinematic model produces a singularity.

If we have a valid gait trajectory that can avoid singular configurations, the general

characterizations of the passive joint behaviors in the previous subsection can be

applied here to inform a rudimentary feedback controller for locomotion. For example,

suppose that we have a four-link robot in which the two outer joints α1 and α3 are

commanded and the inner joint α2 is passive. Since we know that locomotion of

the proximal link can be found from α1 and α2 only, we can achieve desired α1 and

α2 trajectories by prescribing α1 and then “shaping” α2 using α3. The qualitative

aspects of a shaping controller are as follows.

1. The phase of α2 is approximately the average of the phases of α1 and α3, plus

an additional π offset.
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2. The offset of α2 depends on its initial value, but can be changed by shifting the

offset or magnitude of α3 relative to α1 in the opposite direction.

3. The magnitude of α2 is determined by its phase with respect to the commanded

joints. A larger magnitude can be achieved by scaling α3 proportionally when

the trajectories are close to in-phase.

Given a fixed trajectory α1 and a desired trajectory for α2, we can use the above

guidelines to impose proportional or more complex feedback controllers on the pa-

rameters of α3. However, these controllers do not necessarily always converge, since

the ability to shape the passive joint is rigidly limited by the possibility of hitting

singular configurations. For example, the offset of α2 may not be so close to the other

two trajectories that it intersects them, limiting how much control we have over its

magnitude. The robustness and convergence of this or an improved controller will be

considered in future work.

In the simulation of Fig. 4-8, we have prescribed α1(t), but we desire α2(t) to be

farther away from the origin with an offset ad and a phase φ2. We use a feedback

controller of the form α2(t) = α1(t− 2φ2) + a3(t), where

a3(t) = kp

(
1

2
(α1(t)− α2(t))− ad

)
,

where kp is the controller gain. As can be seen in the top left plot, the effect of the

controller is to shrink α3 (green) in magnitude and shift it downward over time. In

response, α2 (blue) decreases its offset away from α1 and α3. The right plot shows

a sampling of the trajectories in α1-α2 space, where they are mostly elliptical loops

starting near the α1 axis (orange) and then eventually moving downward toward the

α1 = −α2 line (blue). Finally, from the robot’s connection curvature plots, we know

that these gaits will increase the reorientation of the robot from negative to zero,

which is verified by the bottom left plot of the robot’s fiber trajectory showing the

change in curvature over time. If α2 is further decreased, then the gaits become closer

to the negative regions of dAθ, which will cause the robot’s trajectory to acquire the

opposite curvature.
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4.2 Dynamic Model

We have shown that the kinematic model of the m-link robot is derived solely from

the constraints, with each passive joint described by a first-order differential equation

depending only on the joint angles between it and the commanded ones. Such a

model is useful if exactly two joints are commanded. If only one joint is commanded,

then a more general dynamic model is required to determine the interactions among

all of the passive joints.

In addition, we have also seen that purely kinematic trajectories can be susceptible

to joint locking, as well as singular configurations, such that the robot cannot execute

arbitrary trajectories following the two prescribed inputs. We will show in this section

that a full dynamic model (with only one commanded input) allows the robot to be

designed or controlled in a way as to avoid joint locking and singularities.

We assume that each link i has mass M l
i and moment of inertia Ji, in addition to

the identical lengths R. Each joint αi is represented as a point mass M j
i , for example

capturing motor mass, as well as spring constant ki, which represents torsional springs

on the passive joints; we assume that the resting configurations are all αi = 0. Now

the Lagrangian of the whole system can be written as

L =
1

2

m∑
i=1

(
M l

i ((ẋ
l
i)

2 + (ẏli)
2) + Jiθ̇

2
i

)
+

1

2

m−1∑
i=1

(
M j

i ((ẋji )
2 + (ẏji )

2)− kiα2
i

)
, (4.10)

where (xli, y
l
i) and θi are the position and orientation of the ith link defined by Eq.

(4.2), and (xji , y
j
i ) is the position of the ith joint. If the body velocities ξ are sub-

stituted in for the inertial fiber velocities, then the Lagrangian can be reduced to a

form

l(b, ξ, ḃ) =
1

2

[
ξT ḃT

]
M̃(b)

ξ
ḃ

− 1

2

m−1∑
i=1

kiα
2
i , (4.11)

where M̃(b) is a reduced mass matrix with dependencies on the system parameters

and joint angles only.

The second-order Euler-Lagrange equations of motion can then be derived, giving
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us three equations
d

dt

(
∂l

∂ξ{x,y,θ}

)
= λ(t)ωξ,{x,y,θ} (4.12)

and m− 1 equations

d

dt

(
∂l

∂α̇i

)
− ∂l

∂αi
= λ(t)ωb,i − diα̇i. (4.13)

Here, ωξ,{x,y,θ} and ωb,i are the indicated columns of the constraint matrices in Eq.

(2.4), and λ(t) = (λ1(t), . . . , λm(t)) is a horizontal vector of Lagrange multipliers

corresponding to each of the constraints. Simple viscous dissipation terms diα̇i can

be appended to the latter equations to ensure stability, where di are damping con-

stants. Along with the constraint equations themselves, Eqs. (4.12) and (4.13) can

be integrated in order to find the dynamic solutions of the robot.

The dynamical equations can be further reduced to the space of the joint variables

only if desired. By solving the constraint equations along with Eqs. (4.12) and (4.13)

as a linear system in the Lagrange multipliers, we can eliminate the λ(t) variables

and obtain a system in b only as

M̃b(b)b̈+ C̃(b, ḃ) + K̃(b) = 0. (4.14)

These equations can then be analyzed for passive joint behaviors in response to com-

manded ones, without having to worry directly about the constraints or the fiber

motion of the robot. Note that the reduced shape mass matrix M̃b(b) is different from

the reduced mass matrix of Eqn. (4.11).

We note here that the dynamics also allow us to consider additional noise such as

wheel slip close to singular configurations. If the kinematics are indeed modeled by

“soft” rather than “hard” constraints to allow for wheel slip on arbitrary links, then

it would be possible to allow for more than three commanded joints. The realization

of soft constraints will be considered in future work.
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Figure 4-9: Left: The robot in an arc singular configuration, where α1 = α2 = α. The
directions of the three constraint forces (λ1, λ2, λ3) all intersect at a common point,
meaning that one is redundant given the other two. Right: A joint trajectory of a
three-link robot overlaid on the ξx vector field component of the connection. Because
the trajectory satisfies α̇1 = −α̇2, it is able to pass through the α1 = α2 singular
configuration without violating the constraints.

4.2.1 Singular Configurations

In our kinematic analysis of the multi-link robot, we have seen that singular con-

figurations, i.e., those for which the constraints are angled such that at least one is

rendered redundant, can be problematic for locomotion since they lead to large con-

straint forces. For the three-link case, a closer look at the connection from Eq. (2.5)

shows that the denominator D goes to zero when α1(t0) = α2(t0) for some time

t = t0. Geometrically, the constraint directions intersect at a common point, as

shown in Fig. 4-9(left), because any one of the constraints is redundant given the

other two. Substitution of α1 = α2 into the constraints (Eq. (2.4)) yields a restric-

tion on the velocities such that α̇1 = −α̇2. If this velocity condition is satisfied, the

robot exhibits a hybrid behavior in which it enters a dynamic drifting state at t = t0,

followed by a transition back to a kinematic state after t = t0.

Fig. 4-9(right) shows how the above condition appears on the vector field rep-

resentation of the ξx component of the connection (prior to conversion to a scalar
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function via the curl of the field). As stated previously, the singularity configurations

occur along the line α1 = α2. In order for the robot to cross these configurations

without violating any constraints, its joint velocities must satisfy α̇1(t0) = −α̇2(t0),

an example of which is shown by the trajectory overlaid on the vector plot.

Away from singularities, the line integral of the vector field along the trajectory

provides us a measure of displacement along the body frame direction corresponding

to the plotted field. For example, if the trajectory in Fig. 4-9(right) were traversed

in a clockwise direction, the line integral would increase nearly everywhere along

the path, and the robot would acquire a positive displacement in the body’s forward

direction. At the time t0 where the path crosses α1 = α2, the corresponding vector has

infinite magnitude. However, because the trajectory is such that α̇1(t0) = −α̇2(t0), it

passes exactly perpendicularly to the vector field direction, allowing the line integral

contribution and thus displacement to be identically zero.

Although the line integral approximation of body displacement is still valid with

this configuration at the singularities, we can no longer do the full Stokes conversion to

an area integral if the trajectory passes through α1 = α2, even if we ensure that α̇1 =

−α̇2 at those points. This is because any closed trajectory passing through a singular

configuration actually encloses two distinct areas, one on either side of the singularity

line. Because area integrals over these types of shape space regions can be challenging

to compute, we use the vector field line integrals for displacement approximations,

but will continue to use the scalar curl functions for visual representation.

With regard to our dynamic model of locomotion, we know that with only one

commanded joint input, the solution of Eq. (4.14) for the remaining passive joint also

satisfies α̇1(ti) = −α̇2(ti) if the solution contains singularity configurations at times

ti. Since such gaits are symmetric about the origin of the joint space in the steady

state, this allows for forward locomotion of the robot without net rotation, as we have

seen from the curvature plots (Fig. 2-6). Fig. 4-10 shows two simulated trajectories of

a four-link robot, where α1(t) = 0.3 cos(0.5t). All parameters are assigned to a value

of 1 in both, except the spring constant on the passive joints k2 and k3, which are 0 in

the first plot. Without stabilizing springs, α2 is able to drift away from the origin and
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Figure 4-10: Left: α2 and α3 are completely passive joints, so that they can drift
away from the origin. Right: α2 and α3 have stabilizing springs.

would in fact converge toward π if damping were also nonexistent (d2 = 0), a situation

detrimental to overall locomotion. In contrast, when k2 = 1 the passive joints have

stable oscillatory motions with amplitude and offset roughly equal to those of α1.

We can use a geometric approach to derive an instantaneous dynamic model de-

scribing the robot’s behavior while passing through a singular configuration α1 =

α2 = α. Since we lose a constraint, we have one greater fiber degree of freedom than

number of governing equations. We therefore derive a momentum quantity to obtain

the third equation. Since any velocity that satisfies two of the constraints will satisfy

the third, we can take any two of the three rows of ωξ from Eq. (2.4), make the

aforementioned substitutions, and obtain the reduced constraints

ω̃ξ(α)ξ + ω̃α(α)α̇ = 0 (4.15)

with ω̃ξ ∈ R2×3 and ω̃α ∈ R2×1. Allowed group velocities live in the null space of ω̃ξ,

which is given by

Ω̃ = span
(
R cos θ, R sin θ, 2 tan(α/2)

)
. (4.16)

We take the generalized momentum derived from the reduced form of the La-

grangian (3.2) as ∂l
∂ξ

and project it onto Ω̃T . This gives us an expression for the

generalized nonholonomic momentum p, which can be written as a linear combina-

tion of group and shape velocity components as

p = ηξ(q)ξ + ηα(α)α̇, (4.17)
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where ηg ∈ R1×3 and ηα is a scalar function of α only. Stacking Eqs. (4.15) and (4.17)

together gives us three independent equations, which can be rearranged in the same

way as the original constraints to produce a new reconstruction equation, which takes

the form

ξ = −A(α)α̇ + I(α)Tp. (4.18)

The system’s locomotion, which is now dynamic rather than kinematic, is thus de-

termined by a combination of actuation in α and momentum in p.

Practically, we know that these dynamics only apply when the system is in a

configuration in which the joint angles are equal. If α̇ 6= 0, the two joint angles

will instantaneously move in opposite directions, violating the initial assumption and

behaving kinematically once again. We can thus use a simplified model where only

α̇ = 0 is allowed:

ξ = I(α)−1p =
(R(1 + cosα), 0, 2 sinα)Tp

3(mR2 + 4J + (mR2 − 4J) cosα)
. (4.19)

In addition, p is conserved (ṗ = 0) since there are no dissipative forces acting on

the system and the system moves as a single rigid body. Eq. (4.19) thus shows

that the robot is only able to move dynamically if starting with some nonzero initial

momentum p0 in this regime.

4.2.2 Analysis of Passive Joint Dynamics

Here we look exclusively at the problem of generating particular passive joint trajec-

tories for a single-input multi-link robot, assuming stabilizing springs on the passive

joints for stable oscillatory motions. In particular, we are interested in the response

of the second joint α2 (assuming the input is at the first joint α1), since knowledge

of the first two joint trajectories is sufficient to determine overall system locomotion.

Assuming periodic inputs, we would like to be able to effect the shape and alignment

of the closed gait in the α1-α2 joint space, as we know from the connection exterior

derivative that the greatest area, and thus displacement, in the body x direction
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occurs close to and along the α1 = α2 axis.

Assuming that we only have sinusoidal inputs, and therefore sinusoidal gaits, this

allows us to narrow down our trajectories to only elliptical ones in the joint space.

The alignment of such an ellipse, or whether it is wider or narrower along the α1 = α2

direction, is therefore determined by the magnitude, phase, and offset parameters of

the input joint, just as with our observations for the kinematic case.

Joint Harmonics

The first assertion that we conclude is that the trajectory of α2 tends to track that of

α1, with the exception of a phase offset. In other words, suppose that we command a

finite sinusoidal trajectory α1 : R+ → B for a single-input m-link robot governed by

Eq. (4.14), where the remaining joints are all spring-loaded. Then the trajectory of the

proximal passive joint α2 will tend toward a phase-shifted version of α1, i.e., α2(t)→

α1(t − φ) for some finite φ over time. The solution of this robot’s nonlinear base

dynamics thus produces sinusoidal shape trajectories given that α1 is also sinusoidal.

For autonomous systems with a two-dimensional shape space, such solutions exist

as limit cycles and can be analyzed using the Poincaré-Bendixson theorem, as de-

scribed by [101, 34, 95]. [13] were able to analytically find limit cycle expressions for

the passive orientation response of a two-link robotic swimmer given an input gait at

its joint. However, our system cannot be simplified in the same way. An algebraic

method that is applicable toward systems such as the multi-link snake robot is the

harmonic balance method, presented and extended for various systems by authors

such as [37, 60, 54]. This can also be seen as an alternative to asymptotic analysis

via perturbation expansion, used by [78] to describe the dynamics of a three-link

swimmer with a passive joint.

The general idea of harmonic balance, which we will use to show our assertion,

is as follows. Instead of analyzing a nonlinear system of differential equations in

the time domain, we transform it into a nonlinear system of algebraic equations in

the frequency domain. The solution to the original differential equation, assumed to

take a sinusoidal form, can be written as a Fourier series, or linear combination of
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harmonics, and the coefficients of the harmonics are algebraically solved by balancing

the corresponding frequency domain component at each harmonic. It may not always

be possible to find exact solutions for all the chosen harmonics, particularly since in

practice the series representation of the solution is truncated when an infinite series is

required. However, the error in the difference is an indicative measure of the goodness

of fit.

What we will do here is assume a general sinuosidal input α1(t) = A1 +B1 cos(ωt).

In the method of harmonic balance, the passive joint α2(t) then follows a trajectory

described by the Fourier series

α2(t) = A2 +
N∑
k=1

B2,k cos(kωt) + C2,k sin(kωt). (4.20)

Here, the order N of the series is often chosen to replicate the system response as

closely as possible. A general system may have an infinite number of harmonics,

but from simulations of our robot we observe that only the first harmonic (the same

frequency as that of the input) is prevalent. If we choose to expand the series to

higher-order harmonics we would find that the corresponding coefficients are orders

of magnitude smaller.

We thus choose N = 1 and substitute both α1(t) and α2(t) and their time deriva-

tives into Eq. (4.14). We then end up with an equation that is a linear combination of

harmonics in cos(ωt), sin(ωt), cos(2ωt), sin(2ωt), and so on (higher order harmonics

appear from products of first-order ones). Each harmonic term yields an individual

algebraic equation for the coefficients in front of the harmonics, giving us a system of

equations in the unknowns A2, B2,1, and C2,1. Once we solve for these unknowns, we

find that the solution for A2 is approximately equal to A1, while the coefficients B2,1

and C2,1 determine the magnitude and phase of α2. Our numerical solutions indeed

show that the magnitude
√

(B2,1)2 + (C2,1)2 is approximately B1. Meanwhile, the

offset A2 generally tracks the input offset A1.

For robots with more than three links, the observation that the α2 joint, and

indeed each of the remaining passive joints, is simply phase-shifted from the joint
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Figure 4-11: An example of the phase of the passive α2 joint over a sweep of in-
put amplitudes B1 (where α1(t) = B1 cos(0.3t)) and frequencies ω (where α1(t) =
0.3 cos(ωt)). We note that we specifically chose to show the same numerical domains
of the two parameters. These functions are numerically computed using the harmonic
balance equations.

prior to it still holds true. In applying the method of harmonic balance, we would

have equivalent Fourier series representations, analagous to Eq. (4.20), for each of the

passive joints. The number of unknowns, and correspondingly algebraic equations,

then increases linearly with the number of additional links.

Joint Phase

In the harmonic balance equations above, the unknown coefficients of the passive

response α2 are solved via nonlinear equations in the known parameters of the input.

Specifically, the values B2,1 and C2,1 change as functions of the input amplitude B1

and frequency ω, and different value combinations of B2,1 and C2,1 then determine

the resultant phase shift of the trajectory of α2 from α1.

While the harmonic balance equations are not very insightful and too lengthy to

write out, we can visually show how the phase shift changes as functions of input

amplitude and frequency. Fig. 4-11 shows the variation in phase as functions of

magnitude and frequency, where the inputs are α1(t) = B1 cos(0.3t) in the former

and α1(t) = 0.3 cos(ωt) in the latter. We see that in general, phase increases as input

magnitude increases or as input frequency decreases.

These results are useful for locomotion when viewed from a geometric perspective.
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Figure 4-12: Two gaits of a four-link snake robot with a commanded α1 joint and
passive α2. The gait with a phase of 150 degrees (blue) acquires less displacement
per cycle than the one with a phase of 80 degrees (red).

Despite the robot having more than three links and only one commanded joint, the

connection equation of Eq. (2.3) and the associated connection curvature plots are

still valid descriptions of the robot. In other words, periodic gaits in the α1-α2 space

overlaid on those plots give us a qualitative measure of the forward and turning

displacement that the robot experiences when executing the corresponding α1 input

and experiencing the passive α2 response. Fig. 4-12 shows two such gaits for a four-

link robot, one with a phase of 150 degrees (blue) and the other 80 degrees (red),

overlaid on the x component of the connection exterior derivative. For the same input

magnitude, the latter is able to acquire significantly more displacement per cycle, as

it is more aligned with the α1-α2 axis.

4.2.3 Gait Families

With the previous analysis, we know that we can exert some control over the passive

joint’s amplitude and offset, simply by changing the corresponding parameters of the

actuated joint, as well as the relative phase between the two, by finding the right

combination of amplitude and frequency in the actuated joint. However, despite the
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complexity introduced by all these free parameters, we find that we can easily classify

emergent gaits into one of two “gait families”—those that do not cross the singular

configuration and those that do. We illustrate these findings with simulations and

sample inputs, followed by a more general discussion.

Non-Singular Configuration Gaits

In the first scenario, we command the joint trajectory α1(t) = 0.5 + 0.3 cos t for a

three-link robot. The initial value for α2 is −0.4 and the passive joint parameters

are k2 = 1, d2 = 5. This is an example of a ratio of parameter values that causes

the robot to avoid singular configurations. In the steady state, α2 tends to oscillate

about the origin due to the spring restoring force, but not symmetrically. Because d2

is much higher than k2, the combination of dissipation and the increasing constraint

forces as α1 and α2 approach each other is large enough to stop α2 before α1 reaches

its minimum. At the maximum of α2, the spring and constraint forces push α2 back

toward the origin, thus giving rise to a periodic gait.

More importantly, this gait leads to nontrivial locomotion in the workspace, and

is similar to hand-designed gaits in that it can be represented on the corresponding

connection curvature functions, shown as the potato-shaped loop in the plots of the

second row of Fig. 4-13. From a design perspective, the relative impedance of the

passive joint due to the mass, spring, and damping values determine a tradeoff be-

tween gait amplitudes and the location in the joint space. A higher damping value

allows for α1 and α2 to oscillate nearer each other, placing the gait closer to the

high-volume, singular configurations to achieve greater displacement. However, this

will also reduce the amplitude of α2, leading to a narrow elliptical loop that encloses

less area than a more circular, equal-amplitude gait would.

Singular Configuration Gaits

Opposite to the case described previously, we now consider system parameters where

d2 is smaller relative to k2 or initial conditions where α2 starts off much closer to

the α1 trajectory. An example of both of these changes is shown in Fig. 4-14, where
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Figure 4-13: Top: The time trajectory of a gait that avoids the singular configuration
and the corresponding workspace trajectory of the robot. Bottom: The gait shown in
the robot’s shape space, overlaid on the x (left) and θ (right) connection curvatures.
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Figure 4-14: Top: The time trajectory of a gait that crosses the singular configuration
and the corresponding workspace trajectory of the robot. Bottom: The gait shown in
the robot’s shape space, overlaid on the x (left) and θ (right) connection curvatures.

α1(t) = 0.3 cos t, and k2 = d2 = 2. Because α2 lags α1 in the steady state, the

passive joint is in an asymptotically stable region of the phase space at almost all

times, allowing it to track α1). Note that α1 and α2 are allowed to periodically cross

each other. Such a gait would have been very unintuitive to design even for a fully

actuated system, as this single flow is the only trajectory that passes through without

the constraint forces becoming unbounded.

The fact that the resultant gait tracks so close to the singular configuration is

desirable from a locomotive efficiency standpoint. We overlay this gait on the x

connection curvature function as the red loop in Fig. 4-14 and see that much of

it encircles a high volume region (blue). This corresponds to a much larger forward

displacement compared to the previous emergent gait or any hand-designed gaits that

are restricted to half of the joint space to avoid the singularities. Directly comparing

Figs. 4-13 and 4-14 shows that for an input of equal amplitude in α1, the latter

is able to locomote about four times more in absolute displacement. Furthermore,
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because this particular gait is symmetric about the α1 = −α2 axis, it encloses minimal

net volume on the θ connection curvature function. This then leads to minimal net

rotation over the course of the gait, allowing the system to effectively move in a

straight line as shown in Fig. 4-14. This could be useful if movement only in a certain

direction is desired, for example.

The previous two gaits are representative of most types of gaits that can emerge

from this active-passive joint system. If we selectively vary initial conditions and

system parameters, we see that emergent gaits typically belong to one of two “fami-

lies.” Shown in Fig. 4-15, these gaits are either irregularly shaped non-singular loops

or narrow (meaning that the joints are out of phase) singular loops. While all of

these gaits provide different efficiencies for forward motion or reorientation, this is a

qualitative representation of the effect of the passive joint dynamics.

4.2.4 Feedback Control

In addition to changing the passive joints’ phase offset, the balance equations also

show that those joints’ magnitude and offset generally follow those of the commanded

joint. This is sufficient for achieving arbitrary fiber motions on the plane, since we

can use the kinematic model of geometric phase to approximate gaits that will mainly

move the robot forward in the same body direction (centered about the origin), or

those that turn the robot in a specific direction (offsetting the gait away from the

origin). Feedback controllers, as described for the kinematic model, can then be

imposed on the magnitude and offset of the input α1 in order to achieve the same

desired values for the passive joints. The net effect is to shift and shape the trajectory

along the α1 = α2 line in the first two dimensions of the joint space in order to achieve

a desired displacement and reorientation per cycle.

Fig. 4-16 shows an example of this controller applied to a four-link robot. The

joint trajectories initially start centered around 0.2 radians, with a magnitude about

the same. These are the loops centered around the first quadrant of the joint space

plot (bottom left). The input frequency was chosen such that the resulting phase

is about a third of a gait cycle. According to the θ connection curvature plot, the
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Figure 4-15: Two gait families that emerge in the active-passive three-link robot. The
top row corresponds to less efficient gaits that avoid the singular configuration. The
bottom row exhibits gaits that do cross the singular configuration, but efficiency is
largely determined by the shape or phase of the gait itself.
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Figure 4-16: Top: Feedback-controlled trajectory of α1 and passive responses of α2

and α3. Bottom left: The trajectory in α1-α2 space, shifting from first quadrant to
the third quadrant. Bottom right: The robot’s fiber trajectory, changing from a path
of small negative curvature to one of larger, positive curvature.

robot follows a trajectory of slightly negative curvature and with a small forward

displacement per gait cycle (bottom right). It is then desired for the robot to start

turning more sharply in the opposite direction—this corresponds to shifting the gait

downward to the third quadrant in α1-α2 space and increasing its magnitude. As

shown in the top plot, this is achieved by increasing the magnitude and decreasing

the offset of α1 over time, causing both α2 and α3 to follow.

This controller design can be applied to robots with an arbitrary number of links.

The passive joint trajectories will change since the presence of additional joints down

the line couple into their dynamics. However, the commanded joint can still use

feedback to shape the adjacent joint, followed by the remaining ones down the chain,

with each successive one down the chain following its predecessor.
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Figure 4-17: Left: Top view of an experimental four-link robot, actuated by one joint
with a servo motor and the rest passively compliant. Middle: Closeup of the first two
links and servo joint. Right: Detail of the linear spring implementation between the
passive joints of the robot. The effective stiffness can vary in the number of springs.

4.3 Experimental Results

To verify some of our theoretical observations and analyses, experimental apparatuses

resembling the three- and four-link nonholonomic snake robot models are used to

qualitatively assess gait, joint-angle, and workspace trajectories. To facilitate easy

development of different and modular configurations, we use prefabricated parts from

Actobotics as the primary source of components for the robot. A physical realization

of a four-link robot with a single commanded input joint and passively compliant

joints is shown in Fig. 4-17(left and middle).

We use skate wheels made of polyurethane with standard ball bearings to realize

the single wheel shown in the model. Note that while each link contains two wheels

instead of one, the nonholonomic constraint on a single wheel is identical to those

acting on the two wheels on each link in the experiments. Linear springs are used to

model passive compliance. By attaching one end of the spring to a lever arm extended

over a joint and the other end to the neighboring link, the spring can undergo linear

deflections. The lever arm thus experiences a force similar to that of a torsional

spring. An example of the configuration of each spring is shown in Fig. 4-17(right).

The modular nature of our system easily allows for the robot to contain an arbi-

trary number of links, from three to four or more. Each link is about 6 inches long and
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Figure 4-18: The experimental setup with camera and markers, along with the four-
link robot in the workspace.

connects to neighboring links using identical parts for consistency and symmetry. The

total lengths of the three- and four-link robots are about 24 inches and 33.5 inches,

respectively. At the proximal input joint, the robot is equipped with an Adafruit Pro

Trinket to control a servo motor. Communications and power are handled via an

XBee Series 1 wireless communication module and a 6 V, 350 mAh NiMH battery.

Tracking of the robot is done via the position and orientation of each individual

robot link, atop which is affixed two yellow markers equidistant from the center of the

link. These markers’ trajectories are tracked relative to the laboratory frame, which

is defined also by four yellow markers placed at the corners of the general workspace

area.

We capture video using a Raspberry Pi and Pi camera and postprocess these videos

using MATLAB, in which the positions of each marker is identified and recorded on

a frame-by-frame basis. These positions determine the centroid and thus position of
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Figure 4-19: Shape space (top) and workspace (bottom) trajectories of a 3-link robot
undergoing an amplitude sweep ranging from 20 degrees to 70 degrees for the com-
manded α1 joint at frequency 0.3 Hz.

each link relative to the laboratory frame. Link orientations are determined using

relative measurements between neighboring links. In all experiments, the orientation

and trajectory of the robot relative to the laboratory frame is computed using the sec-

ond link. The Raspberry Pi and Pi camera are mounted 10 feet above the workspace

providing an effective area approximately 6 feet wide and 10 feet long. Fig. 4-18 shows

a perspective of the workspace and the previously described components, along with

the four-link robot in the space.

4.3.1 Parameter Sweeps

Recall that we observed that the relative phase of the robot’s first two joint trajec-

tories generally varies with both the amplitude and the frequency of the sinusoidal

input. We perform sweeps in both parameters to show that the experimental robot

exhibits qualitatively similar behavior. From our geometric understanding of the

system, we also know that the relative phase directly affects locomotive efficiency,

measured by displacement per gait cycle per amplitude. This relationship can be

visually understood by the alignment of the closed loop in α1-α2 space.
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Figure 4-20: Shape space (top) and workspace (bottom) trajectories of a 3-link robot
undergoing a frequency sweep ranging from 0.2 Hz to 1 Hz for the commanded α1

joint at amplitude 55 degrees.

Fig. 4-19 shows an amplitude sweep for a three-link robot, where the amplitude of

the input trajectory varies from 20 to 70 degrees while the frequency is kept constant

at 0.3 Hz. As expected, the phase depiction of the gaits in the shape space shows

the ellipses moving from alignment with the −α1-α2 diagonal to alignment with the

α1-α2 diagonal. Such a transition in the gait phase, as well as the fact that the

subsequent experiments have a higher magnitude per gait cycle, results in the robot

obtaining a higher displacement per cycle in the latter experiments. The workspace

trajectories are shown side by side in the second plot of Fig. 4-19; they are placed at

regular intervals along the y axis and reoriented such that the second link is aligned

with the laboratory x axis. Note that at 70 degrees the workspace trajectory actually

starts to turn away from its original heading. This is not surprising as large swings of

the robot’s links are prone to incur unmodeled effects such as slipping and resistance

against neighboring links.

Similarly, Fig. 4-20 depicts a frequency sweep, where the frequency of the input

varies from 0.2 to 1 Hz while the amplitude is kept constant at 55 degrees. As

frequency increases, the shape space depiction of the gait becomes more anti-aligned

with the positive α1-α2 diagonal. Since amplitude remains the same in each instance

(i.e., the path length of the shape space representation remains almost constant),

90



Figure 4-21: Shape space (top) and workspace (bottom) trajectories of a 4-link robot
continuously varying its input offset parameter. When the commanded joint α1 ac-
quires an offset, the compliant joint α2 is offset as well, resulting in a workspace
trajectory with nonzero curvature.

we can fairly compare the effect of the relative gait phase on overall displacement,

and we see that anti-alignment produces markedly less displacement per cycle than

alignment with the α1-α2 diagonal. Note that at 1 Hz, the robot fails to generate any

appreciable locomotion, hence the lack of a trajectory corresponding to that frequency

in the second plot.

In the previous experiments, the offset of the sinusoidal input is zero, resulting in

a mostly straight workspace trajectory aligned with the robot’s initial heading. As

we recall from the equation corresponding to the θ component of the robot’s body

velocity, as well as the corresponding connection curvature plot, a nonzero offset

will introuce a nonzero curvature to the robot’s trajectory. Fig. 4-21 shows that by

introducing an offset into the input, the passive joint will track this offset as well.

The offset of the commaned joint α1 is continuously increased from the beginning of

the experiment, resulting in the workspace trajectory having an increasing curvature.

4.3.2 Navigation

It is possible to use our knowledge about the dependence of workspace displacement

and trajectory curvature on the robot’s input parameters to conduct navigation of
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Figure 4-22: Three shape-space segments of a full trajectory of a 4-link robot modu-
lating the offset of its input joint α1. Starting at the origin, the robot has a positive
offset, leading to initial orientation to its left. The second segment is a transition to
a negative offset in order to zero out out the workspace curvature. The last segment
smoothly increases the offset back to zero.

Figure 4-23: Left: Value of the input joint’s offset over time, colored into three differ-
ent segments corresponding to the gait segments in the shape spaces above. Right:
Resultant workspace trajectory of the 4-link robot navigating around an obstacle.

the environment. For greater displacement per cycle, the robot commands the input

joint to either increase amplitude or decrease frequency until the desired velocity is

achieved. To turn around, the input must acquire a nonzero offset, with the sign

of the offset determing the turn direction. For this experiment we introduce an

obstacle along the robot’s unmodified trajectory and precompute suitable trajectory

segments that would allow the robot to navigate around it. These segments are then

stitched together via smoothing functions to obtain a continuous input command.

The resulting shape space depiction of α1 and α2, as well as the trajectory taken by

the robot, are shown in Figs. 4-22 and 4-23.
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4.4 Summary

In this chapter, we looked at a generalized m-link nonholonomic snake robot as an

example of a system with passive base dynamics. From the kinematic model of the

robot, we showed that such a system, with more than three links, in general must

have passive joints in order for all the constraints to hold. However, we were also able

to show that the joint kinematics take on a chained form, allowing us to determine

gaits with two adjacent or non-adjacent joints that can avoid locked and singular

configurations. We also characterized oscillatory modes for the passive joints that

qualitatively inform a class of feedback controllers.

The dynamic model, though more complex, allowed for elements such as stabilizing

torsional springs and locomotion of the robot by actuating only one joint. The method

of harmonic balance provided an approximate solution to the robot’s dynamics that

allowed us to characterize the phase response of the passive joints, which were then

connected to geometric phase analysis in order to describe the robot’s motion. In

particular, we showed that gaits tended to belong to a particular gait family, which

was helpful for easily determining feedback controllers for desired motions. Finally,

we were able to perform some experiments on a three- and four-link robot to show

the utility of our analyses, as well as primitive navigation results.

93



94



Chapter 5

Interactions with the Ambient

Medium

We now consider systems in which the locomotion of individual robots is due to

interactions with external forces or inputs. In these examples, the environment itself

may be passive, such as a constant force field, or it may be manipulated via user

command. As a result, the robot would have to coordinate its internal actuation with

the external interactions; if it is passive like the example of the previous chapter,

then we additionally have to again take into account base dynamics. We start with

an example of the three-link robot in a gravitational field to motivate the problem

and show possible novel behaviors that arise. The second example is having the

robot placed on an actuated medium, in which we illustrate the stratified bundle

structure as well as the problem of symmetry-breaking fibers. Finally, we close with

a slightly different example system, the snakeboard, in order to show interactions

between external viscous friction and a dynamic robotic system.

5.1 Constant Force Field

Recall that a general m-link robot enters a singular configuration when its joint

angles αi all become equal in value. In addition, we showed for the three-link case

(and indeed this is also true for a generalized m-link case) that the robot becomes
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dynamic and starts to drift it were to remain in such a configuration. In our previous

analysis, this behavior did not come into play in motion planning, whether a robot

was fully or partially actuated; any gaits that were used had the robot simply passing

through a singularity rather than remaining in one. We now return to this system and

consider placing it in a constant force field, e.g., gravity due to the robot being on a

slope. If one of the joints of a three-link robot remains completely passive, the other

can be switch-controlled so that the robot can enter or exit the singular configuration

and take advantage of its drifting behavior.

Gravity introduces a potential energy term in the form of

Uβ = β
3∑
i=1

M l
iyi, (5.1)

which can be subtracted from the kinetic energy to form a new Lagrangian Lβ =

T − Uβ. Here β governs the strength of the gravitational force, while yi is one of

the inertial fiber variables decribing the position of the ith link. Recall that when a

joint becomes passive, we gain an unactuated degree of freedom in the passive joint,

normally specified by the evolution of its dynamics. This degree of freedom can be

“pulled” by gravity into the singular configuration since internal actuation alone is

insufficient to do so. On the other hand, the introduction of gravity does not affect the

robot’s kinematic operation when both joints are actuated, as the three constraints

sufficiently determine the evolution of the three group variables.

The presence of gravity means that the group symmetries are broken—specifically,

the Lagrangian Lβ now has an explicit dependence on the group configuration. The

three equations corresponding to the group variables can be rederived using Lβ, and

we include a fourth equation for the passive joint:

d

dt

(
∂Lβ(q, q̇)

∂α̇j

)
− ∂Lβ(q, q̇)

∂αj
= (ωr)jλ. (5.2)

The λ is again the vector of constraint forces, while (ωr)j is the row of ωr(r) from

Eq. (2.4) corresponding to the unactuated joint.
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Figure 5-1: Simulation showing the passive joint α2 converging to the value of the
locked joint α1, entering a singular configuration, as the system rolls down a hill
(locomotes due to the effect of a constant force field).

In order to show that our new arrangement solves the problem of unbounded

constraint forces, consider the simulation results shown in Fig. 5-1, with β set to

10. Here we start the system with θ = 0.1 and α = (−0.1, 0)T , so that the first

link is oriented “downward” while the other two are horizontal with respect to the

slope direction. By keeping α1 locked and leaving α2 passive, the system obeys the

dynamic equations and starts moving down the hill. At the same time, we see that

the passive joint converges to the value of the locked one, naturally moving into a

singular configuration.

5.1.1 Stability

A simple observation about the stability of such a maneuver and the singular config-

uration can be made using a standard Lyapunov function V (α) = (α1 − α2)2. It is

positive as long as α1 6= α2. We can then compute the time derivative

V̇ (α) = 2(α1 − α2)(α̇1 − α̇2). (5.3)

For the simulation above, α̇1 = 0 and α2 starts at a greater value than α1. Since

gravity pulls on the system such that α̇2 is negative from the starting configuration,

we have that V̇ is negative and the singular configuration is asymptotically stable in

this particular domain.

In general, Eq. (5.3) says that the singular configuration is stable as long as gravity
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Figure 5-2: Illustration of a switching controller on the full hybrid model in a grav-
itational force field. Red portions of the trajectory indicate kinematic control, while
the blue (dashed) portion indicates a locked-passive joint configuration acted upon
by external forcing.

is either opening or closing the passive joint to match the locked one. For example,

we would not have the same guarantee if we kept the same initial conditions as the

previous simulation but flipped the robot around so that θ = π + ε, where ε is small

and positive. Gravity would pull in the opposite direction and tend to “open” α2

away from α1. Another consideration is that such a statement only holds starting

from rest; after the system gets moving, its momentum may interact with gravity to

produce non-trivial joint behavior.

5.1.2 Switching Controller

These observations suggest a switching controller for maneuvering downward on a

hill without joint actuation. By starting at rest and locking one joint, the system

will converge to the singular configuration and traverse an arc down the hill with a

curvature determined by the locked joint angle. To stop anywhere along the resultant

trajectory, both joints can be actuated from zero with opposite velocities, popping

the system out of the singular configuration and leaving us with full kinematic control

once again.

Fig. 5-2 shows an example of such a composite trajectory combining a kinematic

controller with dynamic movement. For the first part of our trajectory, we use the

98



simple gaits

α1(t) = cos t− 0.8,

α2(t) = sin t+ 0.8,

which avoid singularities and locomote the system mostly in the x direction with

some displacement in y. The first red solid portion of the trajectory plot shows the

resultant movement from time t = 0 to t = 13.5.

The second part of the trajectory, shown in blue dashed, involves the system

rolling dynamically down the hill starting from its current group configuration. We

lock α1 at its value at t = 13.5; practically, any other desired value can also be chosen

since we still assume full control of the joint, and the locked angle determines the

curvature of the trajectory undertaken by the system. For α2, we make it passive

starting from its current value, but it can also be reoriented closer to α1 if necessary.

As shown in the joint angles plot, α2 moves toward α1, overshoots, and corrects back

as the system rolls down along the circle trajectory. With the joint angles staying

so close together, such a maneuver would incur high constraint forces if relying on

internal joint actuation.

In the third and final segment, we again assume full kinematic control of the

system. From the current values of the joint angles at t = 16.8 we start actuating

both joints with opposite velocities to move them away from each other. The last

segment traveled is shown in the rightmost part of the trajectory in red in Fig. 5-2.

The joint angles may now be controlled, again with the aid of curvature functions or

other kinematic tools, to approach the most appropriate gaits for the next part of the

desired trajectory.

One can potentially combine the different gaits explored to order to produce more

flexible and complex trajectories. An example motion plan is shown in Fig. 5-3,

where we stitch together two singularity-crossing gaits with a locked joint maneuver

between them. The first and third parts of the motion plan effectively allow the

system to move forward, as we recall that net reorientation is zero or minimal with a
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Figure 5-3: A trajectory that combines the forward gait with the dynamic rolling gait
for reorientation.

gait symmetric about α2 = 0. The intermediate part pins the system on a trajectory

with constant known curvature, so this can be used to achieve a rotational transition

when desired. By combining individual trajectories like these in different ways, the

robot can travel between any two neighborhoods in SE(2), a significant result as we

are only controlling one degree of freedom at any given time.

5.2 A Controllable Medium

In the previous example, the robot’s environment did not fundamentally change the

overall system’s configuration space; rather, it contributed additional dynamics that

acted on the robot directly. Now we consider an environment that both increases

configuration complexity and again causes a loss of symmetries. The example here is

that of the same three-link robot placed atop a movable platform.

5.2.1 Snake Robot on a Platform

The addition of the platform to the snake robot system, as shown in Fig. 5-4, necessi-

tates a modification of the configuration space. The position of the platform, denoted

by (xp, yp), is itself a symmetry goup Gp since the modified system’s properties do

not depend on where the platform is located in space. The configuration manifold

is now rewritten as Qp = G × Gp × B = SE(2) × R2 × T2, although it is important

to note that the connection relationship of Eq. (2.5) still holds, as the nonholonomic

constraints depend solely on how the robot moves relative to the platform.
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Figure 5-4: A three-link nonholonomic snake robot on top of a movable platform.
The platform’s inertial position is given by (xp, yp).

Suppose that each of the links has identical mass M l and a moment of inertia J ,

while the platform has a mass Mp. Denoting the absolute positions of each of the

links as (x̃i, ỹi) = (xi, yi) + (xp, yp), the Lagrangian of the system is

L =
1

2

3∑
i=1

(
M l( ˙̃x2

i + ˙̃y2
i ) + Jθ̇2

i

)
+

1

2
Mp(ẋ2

p + ẏ2
p).

The momentum components of the entire moving system are given by the projec-

tion of ∂L
∂ġt

onto the directions of motion allowed by the constraints [11]. Since the

constraints are independent of ẋp and ẏp while completely determining the trajecto-

ries of (ẋ, ẏ, θ̇), the free directions of motion are simply the degrees of freedom of the

platform. The conserved momenta are given by

p =

p1

p2

 =

 ∂L
∂ẋp

∂L
∂ẏp

 = ρg(b)ġ + ρb(b)ḃ. (5.4)

Noting that the form of Eq. (5.4) is the same as the non-reduced form of Eq. (2.4),

we can stack them together to obtain a set of full-rank equations, which we can then

rearrange to obtainẋp
ẏp

 = −

cos θ − sin θ

sin θ cos θ

A2(b)ḃ+
1

M

p1

p2

 . (5.5)

where M = 3M l +Mp.

Here, the matrix −A2(b) is the external connection of our now stratified bundle
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Figure 5-5: The up (top) and vp (bottom) components of the connection exterior
derivative for the platform.

structure. It is also the local form of the mechanical connection, again named because

it is derived from the conservation of momentum for the combined robot-platform

system. In practice, we can drop the momentum drift terms if the platform starts at

rest. The main complexity comes from the rotation matrix in front of the mechanical

connection—the range of the connection is still the robot’s Lie algebra, or velocities

expressed in the robot-fixed frame. In the next subsection we first bypass this problem

by keeping track of the platform in the robot’s body frame.

5.2.2 Platform Position in Robot’s Body Frame

In deriving Eq. (5.5) we noted that the main difficulty in using it, even after dropping

the drift terms using a start from rest assumption, is the presence of the rotation

matrix. This relationship signifies a dependence on θ, the orientation of the robot

relative to the platform (and inertial frame). However, if we know or can prescribe the

platform’s position with respect to the robot’s body frame1, we can directly use the

external, mechanical connection −A2(b) without accounting for the effect of θ on the

robot-platform interaction. In other words, we can choose to specify the platform’s

1Of course, this assumes that we free control over the platform’s motion in all directions, rather
than along a set of fixed axes.
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velocity using the variablesu̇p
v̇p

 =

 cos θ sin θ

− sin θ cos θ

ẋp
ẏp

 . (5.6)

Again assuming that the system starts from rest, Eq. (5.5) then reduces to

u̇p
v̇p

 = −A2(b)ḃ. (5.7)

Since −A2(b) plays a role identical to that of the kinematic connection for the

robot, we can also plot its exterior derivative in the same way that we have done for

the robot. Fig. 5-5 shows their shape for a set of chosen system parameters. The

main observation one finds from these plots is that the xp plot is in general a flipped

version of the robot’s x connection curvature plot (Fig. 2-6).

As the robot moves in the forward or backward direction, we would expect the

platform to tend to move in the opposite direction, preserving net initial momentum

of zero. Interestingly, exterior derivative for vp (motion of the platform in a direction

lateral to the robot’s heading) looks like the robot’s θ connection curvature flipped.

This is sensible since rotating the robot also rotates the attached body frame, meaning

that the initial progression of the platform along the robot’s longitudinal direction

now rotates into the lateral direction.

With the derivation of Eq. (5.7) we are now also able to consider the novel problem

of controlling the platform’s locomotion and inducing a completely passive robot to

move. In other words, we will assume that we prescribe (u̇p, v̇p) in order to cause

motion in the robot’s fiber components ξ. This problem thus amounts to using

Eq. (5.7) to find resultant base trajectories given a set of platform velocity inputs,

and then lifting those trajectories to ξ using Eq. (2.5).

In this case, “inverting” Eq. (5.7) really amounts to analyzing and solving a first-

order ODE for the unknown shape trajectories b(t). Moreover, since we already have

the external connection −A2(b) and its associated visualizations (Fig. 5-5), we can
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Figure 5-6: Top: The platform velocity inputs, relative to the robot’s body frame,
required to obtain the base gait in Fig. 5-5. Bottom: The robot’s resultant fiber
trajectory, which advances forward without reorientation, as expected.

use these to inform the types of platform trajectories we should prescribe to obtain

desired shape trajectories. For example, suppose that we want the simple origin-

centered loop shown in red in Fig. 5-5. This gait has the effect of moving the robot

forward without reorienting it. From Eq. (5.7) and Fig. 5-5 we can find that the

corresponding platform trajectory is that shown in Fig. 5-6 (top). Then, using this

as the input to the system we see that we do indeed obtain the fiber trajectory of the

robot, as shown in Fig. 5-6 (bottom).

Of course, one of the main drawbacks with the above approach is that there is

no guarantee on the feasibility of platform input. For example, the required input of

Fig. 5-6 requires a constant nonzero offset in u̇p(t), meaning that the platform would

essentially have to move on the plane with the robot. If we are able to directly invert

Eq. (5.7), i.e., specify (u̇p, v̇p) to obtain a desired ḃ, then we can restrict ourselves to

feasible inputs only.

That Eq. (5.5) is reduced, i.e., we have eliminated all robot fiber dependencies

from the equation, allows us to consider only the interaction between the robot’s joints

and the platform fiber variables. Furthermore, the equation bears a resemblance to

the dynamics between a set of actuated and a set of unactuated joints on the same

robot; the only difference is that the “actuated joints” in this case are external to the

robot. This time, applying the harmonic balance method to analyze Eq. (5.5) shows

that periodic inputs (u̇p, v̇p) with no offset will also yield periodic joint trajectories in

ḃ, whose magnitude, offset, and phase depend on functions of the inputs’ magnitude

and phase.
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Figure 5-7: Top: A set of platform inputs in which the relative phase increases
over time. Bottom left: The offset of the gait in shape space shifts from the third
quadrant to the first. Bottom right: The resulting fiber motion of the robot, initially
a trajectory with a negative curvature and then shifting to a positive one.

For example, it can be numerically shown that increasing the relative phase be-

tween the two input directions will increase the offset of the resultant joint trajectories.

Such a gait is shown in Fig. 5-7 (top); note that v̇p lags u̇p more and more over time.

This has the effect of shifting the center of the gait in shape space (Fig. 5-7, bottom

left) from the third quadrant to the first quadrant. As we know from the θ connection

curvature, gaits with negative offsets in α1 and α2 acquire negative net orientation;

gaits with positive offsets acquire positive net orientation. In addition, the robot con-

tinues to move forward in its body direction while rotating, since all gaits enclose a

positive net area in the x connection curvature. All of these observations are apparent

in the robot’s fiber trajectory for this simulation (Fig. 5-7, bottom right). It starts

at the origin moving forward on a trajectory rotating clockwise (negative curvature)

and halfway in starts rotating counterclockwise (positive curvature), as the relative
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phase between u̇p and v̇p becomes large and the center of the resulting α1-α2 gait

becomes positive.

5.2.3 Inputs in the Inertial Frame

In the previous subsection, the assumption that we can actuate the underlying plat-

form relative to the robot body’s longitudinal and lateral directions requires that the

platform can freely move in all directions. An alternative scenario is that it may be

limited to move only in two fixed directions, corresponding to two independent de-

grees of freedom. Assuming that the system starts from rest, this model is described

exactly by Eq. (5.5).

Even if the system again starts from rest, dropping the momenta terms from the

equation, the dependency of Eq. (5.5) on the robot’s orientation θ introduces an

additional complexity. We assume that we know the robot’s orientation throughout

the system’s operation, for example via an overhead camera, so that θ is not an

unknown quantity. However, it is a symmetry-breaking fiber variable that changes

the form of the connection −A2(b) and its corresponding exterior derivative plots in

Fig. 5-5.

Fig. 5-8 shows the effect of θ on dA2(b); in other words, the plots show the exterior

derivative, for different values of θ, of a θ-dependent connection

Aθ(θ, b) =

cos θ − sin θ

sin θ cos θ

A2(b). (5.8)

The plots shown correspond to θ at 45, 90, and 180 degrees (of course, the nominal

plots of Fig. 5-5 correspond to θ = 0). As we would expect, the nature of the

interaction between the robot and platform changes with the former’s orientation.

As the robot rotates to 90 degrees, its body x axis points along the inertial y axis,

while its body y axis points along the inertial −x axis. The xp plot is thus identical

to the −vp plot in Fig. 5-5, while yp is identical to up. At 180 degrees, both xp and vp

are completely inverted from up and vp, the latter again corresponding to xp and yp
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Figure 5-8: The xp (top) and yp (bottom) components of the connection exterior
derivative for the platform, corresponding to the robot’s orientation θ at 45 (left), 90
(middle), and 180 degrees (right). The case in which the robot is aligned with the
platform (θ = 0) is the same as the plots in Fig. 5-5. Note that the plots undergo an
inversion as θ increase from 0 to 180.

at 0 degrees. Finally, as the robot reorients back to 0 degrees, both plots smoothly

deform back to their nominal forms (Fig. 5-5).

With a varying θ, robot base trajectories no longer solely lie on the α1-α2 plane

in interacting with the inertial platform velocities ẋp and ẏp. However, we are able

to simplify this problem and reduce motion planning to analysis of a single exterior

derivative function as before if θ is known to be periodic. In other words, the robot

may start out at some arbitrary orientation, but its net motion only moves it forward

in the body direction and does not turn it away from its initial orientation. From

Fig. 2-6 we know that such gaits are centered about the origin.

What we can do here is to decouple the dependency of the fiber trajectories on the

evolution of the non-symmetric fiber gn = θ. Assuming that the joint trajectories α1

and α2 are also periodic, we can apply harmonic balance on the third line of Eq. (2.5),

a first-order differential equation θ̇ = f(b, ḃ), to obtain a solution for θ(t) in terms of
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the parameters of α1(t) and α2(t). In other words, if

α1(t) = B1 cos(ωt),

α2(t) = B2 cos(ωt− φ),

then we can find

θ(t) = Θ cos(ωt− ψ) + C,

where Θ, ψ, and C are functions of B1, B2, and φ. Taking this procedure one step

further, we can apply trigonometric identities to write

θ = a1α1 + a2α2 + C, (5.9)

where a1 and a2 are the solutions of the nonlinear equations

Θ =
√

(a1B1)2 + (a2B2)2 + 2a1a2B1B2 cosφ,

ψ = −atan2(−a2B2 sinφ, a1B1 + a2B2 cosφ).

The unknowns can be analytically solved as

(a1, a2) = ±
(

Θ sin(φ− ψ)

B1 sinφ
,

Θ sinψ

B2 sinφ

)
. (5.10)

With the numerical values of a1 and a2 in hand, we can substitute Eq. (5.9)

into Eq. (5.8) and obtain a reduced connection mapping solely between the joint

variables bw and the platform fiber variables xp and yp, without regard to θ. Again,

this new connection assumes that θ is periodic and is only valid for the given or

known functional form of θ, whether through analysis or visual tracking. With this

connection form, however, we are able to reduce the previous exterior derivative plots

from three dimensions (α1, α2, and θ) back down to two (α1 and α2 only).

Two “effective” connection exterior derivatives over different ranges of θ are shown
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Figure 5-9: Top: The exterior derivatives of an “effective” Aθ for θ between π
2

and
2π
3

(middle plot corresponding to xp, right to yp). Bottom: Same functions but for
θ between π and 7π

6
. Note that some of the plots appear relatively unchanged from

those of Fig. 5-8; the others acquire deformations starting from the edges.

in Fig. 5-9. In the first row, θ has a range from about π
2

to about 2π
3

; in the second, θ

ranges from about π to about 7π
6

. In both rows, the representative exterior derivative

functions corresponding to xp and yp are shown. Interestingly, the xp plot in the

first row and yp plot in the second row are not very different from their constant θ

counterparts at 90 and 180 degrees, respectively. This indicates that those particular

surfaces are more stable and hold over large ranges of θ. On the other hand, the other

two plots are noticeably different, particularly on the edges. In both the yp plot in

the first row and xp plot in the second, the edges are the first regions to deform as θ

changes.

Given that we are able to find single representative connection derivative plots

over a given range of θ, we can use this visual tool for locomotion analysis and

planning for the robot-platform system, whether the inputs are applied to the robot

on a passive platform or to an actuated platform underneath a passive robot. Of

course, the weakness of this approach is that the computed connection only holds

for the specific θ range. If this range changes, whether by shifting or scaling, a new

connection must be found.
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Figure 5-10: The configuration of the snakeboard. Parameters include M , L, J , Jr,
and Jw. The joint angle inputs are ψ and φ = φf = −φb. We can define a body frame
at the rotor, giving us body velocities ξx, ξy, and ξθ.

5.3 Dissipative Friction

The last example of external dynamics that we consider in this chapter is that of a

locomoting system being affected by friction. Unlike the other two cases, the system

cannot take advantage of friction to help it locomote, nor can we manipulate this

effect. Instead, a more realistic problem is finding motion controls for the system

that would work similarly to the case in which friction is not present. We detail our

work here with the snakeboard system, shown in Fig. 5-10. This system can move by

means of turning two nonholonomic wheelsets, one in the front and one in the back

of the body, as well as a momentum wheel in the center. Opposite to the three-link

snake robot, it is dynamic since there are fewer constraints (two) than fiber degrees

of freedom (three). However, because it has an analytical motion planning solution

[22], we can use this example to illustrate how to modify such a solution when viscous

friction is added.

5.3.1 Snakeboard Locomotion

The snakeboard’s configuration is given by q ∈ Q = (g, b), where the position variables

g = (x, y, θ) ∈ G = SE(2) locate the snakeboard in the world and the shape variables

b = (ψ, φ) ∈ M = S1 × S1 describe the joint configurations. The variables x and

y denote the global position of the center of mass at the rotor, while θ denotes the
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system’s orientation with respect to the inertial x axis. ψ denotes the rotor angle, and

φf and φb denote the angles of the front and back wheels, respectively, with respect

to the longitudinal axis. We enforce the constraint φf = −φb and henceforth use

φ = φf .

The snakeboard’s body frame is situated at the rotor, with its velocities ξ repre-

senting components in the forward, lateral, and rotation directions. We can relate ξ

to the world velocity ġ = (ẋ, ẏ, θ̇) by the usual mapping

ξ =


ξx

ξy

ξθ

 = TgΦg−1


ẋ

ẏ

θ̇

 . (5.11)

The snakeboard’s mass and inertia are denoted M and J , while the rotor and

wheel inertias are denoted Jr and Jw. We assume that ML2 = J + Jr + 2Jw is the

total inertia of the system, where the total length of the snakeboard is 2L.

The snakeboard’s Lagrangian is invariant to changes in the system’s position or

orientation in space (SE(2)) due to symmetry, so we can express it in body velocities

instead of world velocities. The Lagrangian in the body frame becomes

l(ξ, ṙ) =
1

2
M(ξ2

x + ξ2
y + L2ξ2

θ) +
1

2
Jrψ̇

2 + Jrξθψ̇ + Jwφ̇
2. (5.12)

Standard models assume no-slip nonholonomic constraints on the wheelsets. Like

the Lagrangian, the constraints are invariant with respect to transformations in SE(2),

so they can be written in terms of the local body coordinates only. They can be

expressed in Pfaffian form ω(r)ξ = 0, where

ω(r) =

ωf
ωb

 =

− sinφ cosφ L cosφ

sinφ cosφ −L cosφ

 . (5.13)

Instead of writing out the full Euler-Lagrange equations of motion, we take advan-

tage of the nonholonomic constraints to derive the reduced equations of motion. From

(5.12) and (5.13) we first compute the nonholonomic momentum using the definition
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pnh = 〈 ∂l
∂ξ

; Ω〉, where Ω is a basis of the null space of ω. We choose Ω = (L, 0, tanφ)T

and find

pnh = ML(ξx + Lξθ tanφ) + Jrψ̇ tanφ. (5.14)

Next we examine how joint velocities and momentum determine resultant body

velocities. Combining the constraints (5.13) and the momentum definition (5.14), we

find the following reconstruction equation.

ξ = −


Jr sin 2φ

2ML
0

0 0

Jr sin2 φ
ML2 0


ψ̇
φ̇

+


cos2 φ
ML

0

sin 2φ
2ML2

 pnh (5.15)

Finally, we solve for the momentum evolution equation, which describes how the

momentum changes in time. Referencing the formulation in [72], we have

ṗnh =

〈
∂l

∂ξ
; [ξ,Ω] + Ω̇

〉
= φ̇ sec2 φ(ML2ξθ + Jrψ̇), (5.16)

where [·, ·] denotes the Lie bracket operation. If we substitute in the constraint

equations ω(r)ξ = 0, we can eliminate the body velocities and obtain a differential

equation in pnh.

ṗnh = φ̇(pnh tanφ+ Jrψ̇) (5.17)

Equations (5.15) and (5.17) constitute the first-order equations of motion for the

snakeboard. Given shape inputs φ, ψ, and their derivatives, we can completely de-

termine the snakeboard’s configuration velocities. In particular, [76, 77] developed

periodic inputs, or gaits, to achieve motion primitives such as forward movement,

rotation, and parallel parking.

Motion Planning

Given a desired trajectory in space, the motion planning problem is to determine the

joint inputs that will allow the snakeboard’s COM to track it. A trajectory in SE(2)

is often described in inertial coordinates as functions of time; by the fundamental
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Figure 5-11: The geometry of the snakeboard’s trajectory. The COM’s velocity is
instantaneously tangent to a path with curvature κ. This allows us to define a circle
with radius R, with the wheelset axes intersecting at the circle center O.

theorem of curves [28], one can equivalently use an arclength and curvature param-

eterization. Let r(t) denote the distance along the path, at time t, from the path

starting point; for example, if t0 is the starting time, then r(t0) is necessarily equal to

0. Let κ(r) denote the curvature along the path. We can then define c(t) := κ(r(t))

to be the path curvature as a function of time. For example, c(t0) = κ(0) is the

curvature of the path starting point.

As in [91] and [22], we also require ξx to be instantaneously tangent to the path

while the COM tracking it, as shown in Fig. 5-11. If the local curvature at the point of

contact is κ, then R = |κ−1| is the radius of curvature from the instantaneous center of

rotation O. The snakeboard can then be represented by a generalized bicycle model,

which requires that the wheelsets’ disallowed directions of motion meet at O. This

provides us a simple geometric solution for the wheel angle input in terms of the

known path curvature function.

φ(t) = tan−1(Lc(t)) (5.18)

We can now establish a relationship between the body velocities and the trajectory

profile. First we note that imposing the body tangency requirement enforces that
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ξx(t), the forward velocity of the snakeboard, be exactly equal to ṙ(t), the magnitude

of the velocity vector along the trajectory. Combining this with the constraints (5.13),

we have that

ξ(t) =


ξx(t)

ξy(t)

ξθ(t)

 =


ṙ(t)

0

c(t)ṙ(t)

 . (5.19)

In the last step, we solve for the rotor input profile, ψ̇(t). If we differentiate the

momentum in (5.14) and equate it to (5.17), we can eliminate pnh and obtain an

equation in the body velocities and shape variables. Replacing the body velocities

with trajectory information using (5.19), we can obtain a solution for ψ̈(t) (and via

integration, ψ̇(t)).

ψ̈(t) = −M
Jr

(
1

c(t)
+ L2c(t)

)
r̈(t)− ML2

Jr
ċ(t)ṙ(t) (5.20)

Given (5.18) and (5.20), the joint inputs can be numerically determined from

the curvature and velocity profile of the desired trajectory. Certain trajectories may

yield analytical solutions for ψ̇ by explicit integration of (5.20). Dear et al. [22] goes

over these special trajectories in more detail, along with cases of zero and infinite

curvature; it is shown that we lose controllability in the former case, whereas the

latter can be dealt with using angular momentum conservation.

5.3.2 Viscous Friction in Travel Direction

We now consider friction acting on the wheels in the direction of travel. Ostrowski [72]

represented these forces by a group-invariant Rayleigh dissipation function, deriving

the new reduced equations and illustrating the results on the snakeboard’s forward

equations. We first briefly review these results and then incorporate them into the

inverse planning solutions for φ and ψ̈.
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Motion Planning Solution

In order to define the dissipation function, we require the velocities at the center of

each wheelset. Analogous to constraint directions ω(r) in (5.13), we can write down

similar equations for the reduced forward velocities of the wheelsets:vf
vb

 =

cosφ sinφ L sinφ

cosφ − sinφ L sinφ

 ξ, (5.21)

where vf and vb are the instantaneous velocity components of the front and back

wheelsets, respectively (see Fig. 5-11).

We assume the same damping coefficient, kd, for both wheelsets. Because the

velocities in (5.21) are group-invariant, we can write a reduced damping Rayleigh

dissipation function, proportional to the squares of the velocities.

Rdamp(r, ξ) =
1

2
kd(v

2
f + v2

b ) (5.22)

The inclusion of this dissipation function leaves our derivations unchanged up to

the the momentum evolution equation (5.16). As shown by [72], the time change in

momentum now takes on an additional term to account for the damping in the valid

travel directions.

ṗdamp =

〈
∂l

∂ξ
; [ξ,Ω] + Ω̇

〉
−
〈
∂Rdamp

∂ξ
; Ω

〉
(5.23)

The expression for pdamp is the same as that for pnh; we introduce the new variable as

its evolution equation (5.23) is different. Specifically, we can compute the new term

by using the same Ω as before, and add the result to (5.17) to obtain

ṗdamp = φ̇(pdamp tanφ+ Jrψ̇)− 2kd
M

(pdamp − Jrψ̇ tanφ). (5.24)

Note the change in behavior induced by the damping terms. As expected, there

is a retarding force on the system proportional to its current momentum pdamp. If we
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lock the wheelsets while locomoting (φ̇ = 0), then pdamp exponentially approaches an

equilibrium determined by ψ̇. Ostrowski [72] showed the effect of a range of damping

coefficients on various snakeboard gaits.

Our contribution is to incorporate the new damping terms into our joint solutions

for the motion planning problem. Note that the wheel angle solution (5.18) does not

change, as it is solely a function of trajectory curvature. On the other hand, if we

follow the same process in solving for the rotor profile by differentiating (5.14) and

equating it to (5.24), we obtain

ψ̈damp(t) = ψ̈(t)− 2kd
Jr

(
1

c(t)
+ L2c(t)

)
ṙ(t). (5.25)

Discussion and Simulations

The new solution (5.25) allows us to determine the required rotor input given a tra-

jectory to track. Unlike in [22], we cannot find ψ̇(t) explicitly for general trajectories

with constant velocity but varying curvature, due to integral dependence on c(t).

If instead we consider constant nonzero curvature c0, we can obtain an analytical

solution in the form

ψ̇cc(t) =− M

Jr

(
1

c0

+ L2c0

)
(ṙ(t)− ṙ(t0)) (5.26)

− 2kd
Jr

(
1

c0

+ L2c0

)
(r(t)− r(t0)) + ψ̇(t0),

where t0 is the time at which c(t) becomes constant.

Consider an example of a constant curvature trajectory with curvature function

c(t) = 0.1 and a velocity profile ṙ(t) = sin2(t). Here the snakeboard executes a

periodic stop-and-go trajectory around a circle of radius 10. Along with the initial

conditions (x(0), y(0), θ(0)) = (0, 0, 0), we use the following parameters, which will

be the same in all simulations that follow.

M = 4, Jr = 2, Jw = 0.5, J = 1, L = 1
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Figure 5-12: Comparison of resultant trajectories due to controllers without and with
damping compensation. The latter is able to travel the required distance while the
former lags far behind.

5 10 15 20 25 30
t

-50

-40

-30

-20

-10

ψ′(t)

No compensation

With compensation

Figure 5-13: Rotor velocity comparison for scenario in Fig. 5-12. While the latter
controller is superior for trajectory tracking, it causes the rotor velocity to grow
unbounded.

Fig. 5-12 simulates the snakeboard’s motion in the case of damping coefficient

kd = 0.2 for the two controllers (5.20) and (5.26) for about 31 seconds. Integrating

our velocity function ṙ(t) and evaluating the result at t = 31, we expect the system to

have traveled a distance of about 15.7, or a quarter of the circle. This is exactly what

we get with the damping-compensated controller (5.26), while the other is greatly

slowed down by damping.

However, we note that for practical purposes the controller (5.26) may be difficult

to implement. As shown in Fig. 5-13, the rotor velocity actually grows unbounded,

while the original controller does not lead to this effect. This is expected because
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Figure 5-14: Serpenoid trajectory comparison for controllers without and with damp-
ing compensation. The latter controller for ψ̇ saturates near small curvatures, but it
is still able to track the desired path much more closely than the former.

the amount of damping compensation, which leads to a slightly greater rotor velocity

each cycle, is cumulative as the snakeboard travels more distance.

The problem of unbounded rotor velocity can be addressed by utilizing a rotor

“reset.” To perform this maneuver, the snakeboard must be allowed to stop for a

finite amount of time; hence ṙ(t) = sin2(t) cannot be followed exactly. Once the

system is stopped, we rotate its wheel angles to φ = 0, rendering the snakeboard

uncontrollable. Because it cannot locomote in this state, we can then reset its rotor

velocity to 0, and then unrotate the wheel angles and resume as before. For further

details on this technique, see [22].

For solutions of the general controller (5.25), this reset manuever may be partic-

ularly useful for nearly straight trajectories or dealing with corners or kinks in the

path. As either c→ 0 or c→∞, ṙ would have to decrease appropriately; in the limit,

we have that a feasible ṙ must be 0 and the snakeboard stops moving for both cases.

However, we can observe that if the system reaches these difficult conditions only

momentarily, then (5.25) can still perform adequate tracking without deviating from

the trajectory to reset. We consider the serpenoid curve [39], which is characterized

by a curvature function of the form c(t) = a cos(bt), where a and b are parameters.

Here we take a = b = 1 and prescribe constant unit speed (ṙ = 1). On this trajectory,

the curvature periodically decreases to 0.

Fig. 5-14 compares the snakeboard’s motion for the controllers (5.20) and (5.25),

again with kd = 0.2. For the latter, we clip the velocity where it becomes large (the

clipping value is the maximum velocity from the solution of (5.20)). It is clear that

even with the imposed saturation on the rotor, (5.25) produces a serpenoid trajectory
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much closer to the friction-free case than that due to (5.20).

5.3.3 Skidding Orthogonal to Travel Direction

If the snakeboard’s wheels skid, then the nonholonomic constraints are violated, as

the wheel velocities have components in the no-travel directions. However, moving

orthogonal to the directions of the wheelsets should still generate large resistive forces.

We therefore propose to replace the “hard” nonholonomic constraints with “soft”

dissipative forces, modeled by a skidding Rayleigh dissipation function.

Rskid(r, ξ) =
1

2
ks
(
(ωfξ)

2 + (ωbξ)
2
)

(5.27)

Here, ks is a skidding coefficient, and the vectors ωf and ωb are the same as those in

(5.13). These directions are orthogonal to the ones used in the damping dissipation

function (5.22).

Equations of Motion

To compute the equations of motion, we can evaluate the reduced Euler-Lagrange

equations augmented with the dissipative forces from the Rayleigh dissipation func-

tion.
d

dt

(
∂l(r, ξ)

∂ξi

)
= −∂Rskid(r, ξ)

∂ξi
; i = x, y, θ (5.28)

Note that the partial derivatives of the Lagrangian with respect to the position vari-

ables vanish from the equations, as the Lagrangian is cyclic in those variables.

We can also reformulate the equations (5.28) in the form of a reconstruction

equation together with a momentum evolution equation, analogous to (5.15) and
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Figure 5-15: Resultant trajectories from constant curvature joint inputs over a range
of skidding constants. The path degrades more and more from the ideal, no-skid case
as ks decreases.

(5.16). Referencing [46, 47] for the inclusion of dissipation in this form, we have

ξ = −


0 0

0 0

Jr
ML2 0


ψ̇
φ̇

+


1
M

0 0

0 1
M

0

0 0 1
ML2

 p (5.29)

ṗ =


−2ks sin2(φ) 0 ksL sin(2φ)

0 −2ks cos(φ) 0

ksL sin(2φ) 0 −2ksL
2 cos2(φ)

 ξ,

where p = ∂l
∂ξ

is the generalized momentum. Unlike the nonholonomic momentum pnh,

there are three momenta components since there are no longer any hard constraints

restricting the system’s motion. From the above equations, we see that as ks → 0,

it becomes harder to change p and subsequently ξx and ξy. Indeed, in the absence

of friction entirely, applying a rotor input ψ̇ will only affect angular velocity due to

conservation of angular momentum.

To evaluate our model, we look at the behavior of the snakeboard over a range of

skidding coefficients ks. Consider the following shape inputs describing an oscillation

along a constant curvature path, ψ̇(t) = − sin(t) and c(t) = 0.5. With the regular

nonholonomic constraints in place, the snakeboard oscillates along the same curve

without going off its path, shown in Fig. 5-15. But if the system is allowed to skid,
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Figure 5-16: Front wheel velocities orthogonal to direction of travel (skidding veloci-
ties) for the trajectories in Fig. 5-15. The skidding components become larger as ks
decreases.

it deviates from its path and continues to do so as the gait is executed. Interestingly,

the resultant trajectories are reminiscent of the “parallel parking” gait described in

[72].

A second observation for this example is that the path deviations are more pro-

nounced for small ks; as ks increases, the resultant trajectory becomes closer to the

ideal one. We can also see this effect in Fig. 5-16, which shows the velocity component

of the front wheel in the skidding (perpendicular to travel) direction, denoted by ωfξ.

This quantity is 0 for the no-skid case, and becomes larger as ks decreases. Finally,

we note that while the skidding velocities for the ks = 0.1 and ks = 1 cases are quali-

tatively similar, the corresponding trajectories in Fig. 5-15 are still very different, as

the snakeboard is spinning more than translating in the former case.

Motion Planning Solution

Given our new model of system behavior, we would still like to derive explicit con-

trollers for the shape inputs to track a given trajectory. A first approach would be to

reuse the body velocity relationships with the desired trajectory (5.19). If we substi-

tute these equations into (5.28), we can then numerically solve for inputs that move
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Figure 5-17: Body velocities while executing the serpenoid curve with locked wheels.
All turning is effected by skidding.

the system around as if the constraints were in place.

0 = −Mr̈ + ks(L sin(2φ)c− 2 sin2(φ))ṙ (5.30)

Jrψ̈ = −ML2(cr̈ + ċṙ) + ksL(sin(2φ)− 2L cos2(φ)c)ṙ

Given that we know the parameterization of the desired trajectory in r(t) and c(t),

we can solve the first line of (5.30) for φ, followed by the solution for ψ̈ from the

second.

One implication of this solution is that for locomotion with constant forward

velocity (r̈ = 0), a trivial solution is that φ = 0, regardless of the path curvature. Any

change in orientation will be effected by the skidding velocity component, which in

turn comes solely from the rotor input. Consider again the serpenoid trajectory with

c(t) = cos(t) and constant forward velocity ṙ = 1. The snakeboard is able to perfectly

execute this gait without rotating its wheels; Fig. 5-17 shows the corresponding body

and skidding velocities over time. This kind of locomotion would be impossible with

the hard constraints in place, since rotor actuation has no effect when the wheels are

locked at φ = 0.

However, if we desire acceleration such that r̈ 6= 0, then the space of valid exact

solutions for this controller is actually quite restricted. In particular, the first line

of (5.30) will yield a solution for φ only if the ratio |r̈/ṙ| is bounded by a threshold

dependent on the system parameters and path curvature. This also implies that the

snakeboard cannot start from rest while exactly following a given path.

122



5 10 15 20
t

-6

-4

-2

2

4

ϕ[t]

ψ''[t]

Figure 5-18: Shape inputs for a trajectory with varying speed over terrain with skid-
ding constant ks = 10.

To illustrate this point, we simulate and solve for the shape inputs to execute the

following trajectory: ṙ(t) = 4 + sin(t), c(t) = 0.5. This commands the snakeboard to

locomote around a circle of constant curvature but with oscillating speed; here, we

used a skidding coefficient of ks = 10. The solved shape inputs are shown in Fig. 5-18.

This trajectory is only possible since the system starts off with nonzero speed. If the

system loses forward velocity (ṙ decreases), navigates a wider turn (c(t) decreases),

or experiences greater skidding (ks decreases), then an exact solution may not exist.

5.4 Summary

In this chapter we have discussed several examples of locomoting systems that are

affected by interactions with the ambient medium. A simple case is that of a constant

force field, such as gravity, acting on a locomoting robot. We showed with the three-

link robot how one may exploit this external force to get into unique configurations.

This allowed us to develop a switching control strategy utilizing combinations of

locked, passive, and actuated joints in order to alternate between kinematic and

dynamic motions.

A different example was one in which we were able to actively control the un-

derlying medium, in the case of the three-link robot on a movable platform. The

presence of the platform required an addition to the original configuration space; due

to preservation of symmetries in the new configuration variables, we were able to

derive a second connection mapping for the external fiber space. Both connections
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then inform the solution of finding specific platform inputs to achieve desired robot

motions, for example using the harmonic balance method to analyze the periodic re-

sponses of the robot’s joints. Finally, we also considered in this example the problem

of the relative orientation affecting the system dynamics, if specifying the platform

position and velocity in an inertial frame. By using the fact that this dependency

is generally periodic, we found representative connections and curvature plots in the

same reduced shape space for specific ranges of relative orientation.

Finally, we addressed the problem of motion planning in the presence viscous fric-

tion. For this chose to discuss the snakeboard, a dynamic system with an analytical

motion planning solution derived in previous work. We showed that the geometric

nature of the solution actually allowed for the incorporation of the dissipation func-

tion directly into the solution for the inputs, providing an easy way to compensate

for friction damping the robot’s movement. For the case of skidding, we replaced

the system’s hard constraints with a different dissipation function and found certain

conditions for which the robot is still able to exhibit regular behavior.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

We have expanded the usage of ideas and tools from geometric mechanics to under-

stand a larger landscape of locomoting systems. Whereas systems that were previ-

ously treated fell under a number of idealized assumptions, this thesis attempts to

remove such assumptions in order to increase the utility of these analytical methods

for more realistic or physical systems. In particular, we considered systems with pas-

sive joint dynamics and systems influenced by external interactions, all while staying

within the framework of the principal fiber bundle structure.

For systems with non-trivially actuated base degrees of freedom, we noted the

complexities of the emergent dynamics. However, it is still possible to use geomet-

ric structure that may have existed previously, as changing the actuation does not

invalidate the underlying system configuration. The example of the multi-link non-

holonomic snake robot was required to have passive joints in order to preserve all

constraints. For this system, we derived both kinematic and dynamic models of its

locomotion. In both cases, tools such as connection curvature functions and harmonic

analysis were used to understand the passive joint kinematics and dynamics. Such

analyses were naturally complementary to previous work exploiting the geometric na-

ture of the three-link snake robot. Finally, we also performed experiments verifying

our locomotion models.
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Separately from systems that have various internal dynamics, we also focused on

systems that locomote due to or in spite of external dynamics and interactions. This

would typically lead to a different problem structure, such as that of a stratified fiber

bundle to account for different components of the system configuration. More than

one connection would emerge, and we use these mappings in different ways depending

on where the “inputs” and “outputs” of the system are located. An example of the

flexibility of this problem was whether the inputs were supplied to the robot and

then transferred to a platform or vice versa, These external interaction problems

also typically break symmetries, such as that of the orientation of a robot moving in

response to an external platform or in a gravitational field. While such problems are

more difficult to model, we can still find approximations to perform reduction, such as

locking a joint degree of freedom as part of the motion plan or finding representative

connections for a given range of orientations. Finally, dissipative friction is a special

case of external forces that we addressed for the snakeboard system; rather than

exploiting this effect for locomotion, we showed that the system can overcome it and

locomote as if friction were not acting on it at all.

6.2 Future Work

The contributions of this thesis can neatly follow into several avenues of future work.

All of these continue the goal of making geometric methods more amenable to real

locomoting systems, particularly via tractable and intuitive control and accounting

for environmental considerations.

Sophisticated Motion Controllers

While we have mostly emphasized the utility of using connection curvature functions

to visually understand locomotive behavior, there are likely a wide range of sophisti-

cated controls that do not fit into that framework but work well with the new internal

or external dynamics that we have considered. In the case of the multi-link robot, we

fixedly assume that each joint is either actuated or passive. But it may be possible
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to turn combinations of joints on and off to achieve different desired configurations

of the remaining joints. This would involve a more thorough investigation of how the

passive joint responses change in the adjacent and non-adjacent commanded cases,

as well as how to provably avoid locking configurations. In our dynamic analysis,

the gaits that we considered are sufficient to propel and orient the robot in arbitrary

directions, but they have all emerged to be symmetric about one of the shape space

diagonals (i.e., they cross singularities). While offset gaits like those of the kinematic

model may not necessarily provide new locomotion modes, it may be interesting to

see whether a greater variety of gaits can indeed be induced.

A More United Framework

The similarities in some of our methods for dealing with both internal and external

dynamics hint that it may be possible to develope a more united framework for these

different classes of systems. For example, the inversion of the connection mapping

when pushing trajectories from one fiber to another in a stratified structure was done

by analyzing the harmonics of the passive joint variables, in a manner very similar to

that of a system with both actuated and passive base degrees of freedom.

It would also be desirable to link these results back to biological locomoting sys-

tems, from which many of the original ideas in locomoting robots had their inspiration.

For example, snake robots often locomote using slithering motions similar to those of

biological snakes. Since we have found that it is possible for a robot to to move in

this way without actuating all of its joints, a comparison to observations of a snake’s

muscle actuation during movement would shed some light into the “naturalness” of

this behavior. In addition, many organisms are often seen exploiting the forces in the

ambient medium to move, such as fish swimming through the vortex wakes of their

neighbors while exerting less effort.

Learning and Closing the Loop

An important aspect of matching models to reality is to derive the models from

physical observations and experiments in the first place. This approach is especially
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important when the system of interest is much too complicated for the governing

physics to produce a sufficiently reduced model, such as when dealing with frictional

forces at high speeds or fluids that are neither fully inviscid nor fully viscous. In these

cases, we can utilize reinforcement learning methods or model-predictive control to

empirically qualify these systems, but with an emphasis on preserving a reduced

structure that fits into previously established “ideal” frameworks. This effort would

also be useful for verification of approximations and assumptions that we preemptively

make when deriving our models from the underlying physics.
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Appendix A

Supplementary Example:

Interacting Spherical Swimmers

In this section we provide a supplementary example of a hydrodynamic system that

exhibits external interactions among multiple locomoting agents. Like the robot-

platform system, locomotion arises due to the underlying medium, but in this example

the medium facilitates interaction among two or more agents rather than causing

locomotion directly. The broken symmetry in this case is required for locomotion, as

a spherical swimmer attempting to achieve goemetric phase in isolation would not be

successful.

A.1 Hollow Spheres Model

We refer to the model shown in Fig. A-1, which shows two spherical bodies with

internal masses in an ideal fluid. The indicated axis connecting the centers of the

two spheres, or line of centers, is particularly useful for approximating the motions

of the two bodies. The derivation of the dynamics is done in detail by [50] and [61];

here, we briefly summarize the key points, since we want to focus on the geometric

structure of the problem rather than the specific interaction model. We start with a

hollow spheres model, assuming no internal masses.

From Fig. A-1, we see that a “body” frame {xb, yb} can be defined and attached
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Figure A-1: Two spherical swimmers with radii R1 and R2, each with an internal
mass. A body frame is attached to one body and oriented along the line of centers;
the distance between the two bodies is xb2. The positions of the internal masses can
be expressed relative to their respective sphere centers.

to one of the two spheres, just as we did in defining a body frame on the three-link

robot. The difference here is that the orientation of the frame will change with the

displacement of the second sphere relative to it, so that yb2 is always zero. Thus, the

frame is aligned with the line of centers connecting the two bodies. The velocities of

the spheres relative to this frame are (ẋb1, ẏ
b
1) and (ẋb2, ẏ

b
2), their radii are R1 and R2,

and their masses m1 and m2. The surrounding ideal fluid has density ρ.

The motion of the spheres within the fluid induces a velocity potential φ, which

must everywhere satisfy Laplace’s equation, ∇2φ = 0. The boundary conditions

are that the fluid is at rest infinitely far away from the spheres, while the motion

of the spheres leads to a flux boundary condition on the bodies’ surfaces. As we

showed in our previous work ([23]), a useful way of approximating the latter condition

is to superimpose the component corresponding to the spheres moving along the

line of centers (thus ensuring that ẏbi = 0 for both spheres) with the component

corresponding to motion perpendicular to the line of centers (ẋbi = 0).

The boundary condition can thus be approximated as

− ∂

∂n
φ(xb, yb) =

xbẋb1 + ybẏb1
R1

+
(xb − xb2)ẋb2 + ybẏb2

R2

, (A.1)

where−∂φ
∂n

is the flux going into each of the sphere surfaces. This flux can be viewed as

a linear combination of the velocity components of each sphere. For example, suppose

that the motion of the first sphere is entirely along the line of centers (ẏb1 = 0). In
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that case, the flux component of the first term is maximal when xb = ±R (the two

antipodes on the equator) and minimal when xb = 0 (the two poles).

A solution can be obtained for φ in the form of an infinite series using the method

of image doublets ([50, 61]). The kinetic energy of the fluid is given by the integration

Ths = −1

2
ρ

∫
φ
∂φ

∂n
dS1 −

1

2
ρ

∫
φ
∂φ

∂n
dS2 (A.2)

over the surfaces of each sphere, denoted by S1 and S2. The idea here is that −∂φ
∂n

is

the normal fluid velocity into each sphere, and ρφ is an impulse that generates the

motion. Integrating their product over both of the sphere surfaces then gives us the

total kinetic energy from their motion.

Again, the full solution of φ is an infinite series whose higher-order terms can be

effectively ignored, since the two spheres cannot approach arbitrarily close to each

other due to their finite radii. An analytical form for the kinetic energy can be written

as

Ths =
1

2
M1((ẋb1)2 + (ẏb1)2) +

1

2
M2((ẋb2)2 + (ẏb2)2)−N

(
ẋb1ẋ

b
2 −

1

2
ẏb1ẏ

b
2

)
(A.3)

where Mi are the effective masses of each swimmer and N is a cross-coupling term

between the two. Written up to order (xb2)−6, they are

Mi = mi +
2

3
πρR3

i

(
1 +

3R3
1R

3
2

(xb2)6

)
, i = 1, 2;

N = 2πρ
R3

1R
3
2

|xb2|3
.

For the simulations that we perform, higher-order terms are negligible even when the

spheres are adjacent to each other. The relative contributions of these terms can be

computed for different model parameters, but this truncation is generally sufficient

when the two spheres are of similar size.

Finally, if we limit the motion of the spheres to small oscillations, we can use the

results of [50] to simplify the dynamics. Assuming the same frequency for all velocity
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components, the mean value of the second-order terms in the Lagrange equations will

be 0. Along the line of centers, the average forces act on the spheres in opposite

directions with magnitude

Fx = 3πρR3
1R

3
2

2[ẋb1ẋ
b
2]− [ẏb1ẏ

b
2]

(xb2)4
, (A.4)

where [ẋb1ẋ
b
2] is the mean value of ẋb1ẋ

b
2 (and similarly for [ẏb1ẏ

b
2]). The mean of the

product of two sinusoidal functions differing by a phase is positive if the phase is

less than a quarter period and negative otherwise. Then if the overall numerator of

Eq. (A.4) is positive, the spheres experience repulsion from each another; otherwise,

the spheres experience an attractive force toward each other. Although the magnitude

of Fx varies inversely with the spheres’ distances from each other, we need not worry

about Fx becoming unbounded since we assume finite, rigid radii for both spheres.

Finally, there are also forces acting on the bodies perpendicular to their line of

centers. They are given as

Fy,1 = 3πρR3
1R

3
2

[(ẋb2 − ẋb1)ẏb2]

(xb2)4
,

Fy,2 = 3πρR3
1R

3
2

[(ẋb2 − ẋb1)ẏb1]

(xb2)4
. (A.5)

Unlike the forces along the line of centers, this one does not act equally on both

bodies in opposite directions. Instead, the two magnitudes will vary if ẏb2 and ẏb1 are

different.

A.2 Adding Internal Masses

We now consider the presence of a small mass inside each sphere, each of which can

move as an actuation mechanism for the spheres. If the masses inside swimmer 1 and

swimmer 2 are µ1 and µ2, respectively, and their configurations measured from their
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respective sphere centers are (ξ1,x, ξ1,y) and (ξ2,x, ξ2,y), then their kinetic energy is

Tµ =
µ1

2
((ξ̇1,x)

2 + (ξ̇1,y)
2) +

µ2

2
((ẋb2 + ξ̇2,x)

2 + (ξ̇2,y)
2). (A.6)

The total kinetic energy of the system is then T = Ths + Tµ, and we can use this

to obtain the updated equations of motion and description of forces on the spheres.

In particular, exciting µ1 and µ2 with periodic oscillations ensures that the force

contributions from Tµ have a mean value of 0, so Eqs. (A.4) and (A.5) acting on the

spheres remain unchanged.

We now recast this problem into the principal bundle formulation. We have a

base space B = R2×R2 formed by all possible mass configurations (ξ1,x, ξ1,y, ξ2,x, ξ2,y)

and a set of fibers R2 × R2 defined by the positions (xb1, y
b
1, x

b
2, y

b
2) over B. Because

of our definition of the “body frame,” none of the equations derived in the previous

subsection have an explicit dependence on the fiber variables, with the exception of xb2.

This is thus a symmetry-breaking fiber variable, capturing the role that the distance

between the two bodies plays in determing their interaction. In addition, unlike with

θ for the robot-platform system, xb2 generally does not have periodic trajectories in

the long term (i.e., the bodies may oscillate but may also displace).

In cases in which the spheres are sufficiently far away from each other, we can

make the following approximation of a principal connection. Momentum conservation

dictates the response of each sphere due to actuation of its own internal mass, ignoring

the presence of the other sphere. This gives us a constant, diagonal mechanical

connection relating the mass velocities to the sphere’s perturbation velocities as
ẋ1,k

ẏ1,k

ẋ2,k

ẏ2,k

 = −


µ1

µ1+M1
0 0 0

0 µ1
µ1+M1

0 0

0 0 µ2
µ2+M2

0

0 0 0 µ2
µ2+M2




ξ̇1,x

ξ̇1,y

ξ̇2,x

ξ̇2,y

 . (A.7)

In other words, we explicitly separate each fiber component (xbi , y
b
i ) = (xi,k, yi,k) +

(xi,d, yi,d). The first component solely captures the kinematic, oscillatory response
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Figure A-2: The attraction of two spheres in response to out-of-phase perturbations
of their internal masses. Solid trajectories xi(t) are computed via the full equations
of motion; the dashed x̂i(t) are a sum of individual and coupled approximations.

of the spheres due to interaction with their internal masses. The second component

captures the dynamic displacement of the spheres due to their interaction with each

other.

Thus, given known actuation of the internal masses, we first use Eq. (A.7) to find

the resultant oscillations. These are then used in a modified version of the external

force from Eqs. (A.4) and (A.5) to find the external interactions as

F̃x = 3πρR3
1R

3
2

2[ẋ1,kẋ2,k]− [ẏ1,kẏ2,k]

(x2,d)4
,

F̃y,1 = 3πρR3
1R

3
2

[(ẋ2,k − ẋ1,k)ẏ2,k]

(x2,d)4
,

F̃y,2 = 3πρR3
1R

3
2

[(ẋ2,k − ẋ1,k)ẏ1,k]

(x2,d)4
. (A.8)

The sum of the two responses, one kinematic and one dynamic, approximates the

complete motion of the system. An example simulation showing the validity of this

approximation is shown in Fig. A-2. We set the parameters ρ = 1, R1 = R2 = 2,

m1 = m2 = 0, µ1 = µ2 = 5, and command the inputs ξ1,x = cos t, ξ2,x = cos(t− 11π
12

).

For this simulation we constrain motion to occur along the line of centers, so that

ξi,y, ẏi,k, and F̃y,i are all zero.

Our first observation is that because the spheres’ oscillations are nearly a half-

cycle out of phase with each other, the forces on each are attractive, verifying Lamb’s
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assertion. Furthermore, the trajectories x̂i(t) obtained from superimposing the indi-

vidual and coupled responses of the spheres follow very closely the actual trajectories

xi(t) from the full equations of motion. They only begin to diverge around t = 90 as

the spheres nearly collide. On the other hand, if the spheres were actuated so as to

repel each other, this approximation would hold throughout.

A.3 Simplifying Motion Primitives

The value of the numerator terms of Eq. (A.8) can be arbitrarily designed by choosing

the desired oscillations with the right amplitude and phase. In particular, if all

oscillation components take the form

ẋi,k = Ax,i cos(ωt− φx,i),

ẏi,k = Ay,i cos(ωt− φy,i),

then Eq. (A.8) can be simplified to

F̃x =
3πρR3

1R
3
2

(x2,d)4

(
Ax,1Ax,2 cos(φx,1 − φx,2)− 1

2
Ay,1Ay,2 cos(φy,1 − φy,2)

)
,

F̃y,1 =
3πρR3

1R
3
2

(x2,d)4

Ay,2
2

(
Ax,2 cos(φx,2 − φy,2)− Ax,1 cos(φx,1 − φy,2)

)
,

F̃y,2 =
3πρR3

1R
3
2

(x2,d)4

Ay,1
2

(
Ax,2 cos(φx,2 − φy,1)− Ax,1 cos(φx,1 − φy,1)

)
. (A.9)

These equations effectively render all of the numerators as constants, since all time

dependence is eliminated. Producing a desired amount of force in the numerator term

then becomes a problem of solving the above nonlinear equations for the oscillation

parameters.

However, x2,d still appears in the denominators, generally changing the effective

forces on the bodies as they locomote. This difficulty normally necessitates an inte-

gration to find the resultant trajectories of the spheres, but certain motion primitives

can simplify or avoid this problem altogether. We propose three motion primitives—

attraction or repulsion, parallel motion, and orbiting around their centroid. The first

135



type has F̃x 6= 0, F̃y,i = 0, and the second two types have F̃x = 0, F̃y,i 6= 0.

Attraction and Repulsion

We have already shown how to induce either attraction or repulsion along the line

of centers only using different phase relationships in the input oscillations, e.g. in

Fig. A-2. In both cases, the ẏi,k component velocities were zero, leading to zero

net forces on the spheres in the yb direction. This can also be achieved if both ẋi,k

component velocities are zero and both ẏi,k components are nonzero. In either case,

we have that F̃y,1 = F̃y,2 = 0 and the displacement between the two spheres evolves

as

ẍ2,d ∼ (x2,d)
−4.

The numerical solution of this differential equation can then be used to inform the

scaling in the numerator of the first line of Eq. (A.9). For example, as x2,d decreases,

the acceleration ẍ2,d and force along the line of centers F̃x increases rapidly. Thus, in

order to maintain a constant force, the oscillation velocities must be correspondingly

reduced, which is easily done by simply scaling the inputs. The opposite would hold

if x2,d were to increase, with the force F̃x dropping off very quickly.

Parallel Motion

When the spheres move parallel to each other, x2,d remains constant, while F̃x = 0 and

F̃y,1 = F̃y,2. The easiest way to achieve these conditions is to first ensure that ẏ1,k =

ẏ2,k, leading to equal forces acting on both spheres in the direction perpendicular to

the line of centers. Then to have F̃x = 0, we can simultaneously solve this nonlinear

equation (using the first line of Eq. (A.9)) and either of the two F̃y,i equations (since

they are identical) for the desired amount of force.

Orbit Around Centroid

The last motion primitive for which Eq. (A.8) is useful is for the spheres to orbit

their centroid, thus keeping x2,d constant. This type of motion allows for the relative
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Figure A-3: The three types of motion primitives that can be easily effected using
Eq. (A.9). The first type, motion along the line of centers, was detailed previously
and only relies on F̃x to change x2,d. The other two, parallel and orbital motion, keep
x2,d relatively constant and thus can be planned without regard to the evolution of
the spheres’ configurations.

reorientation of the two bodies, which, when combined with displacement along and

perpendicular to the line of centers, leads to coverage of the entire plane. The first

condition for this motion is that F̃y,1 = −F̃y,2, which can be achieved if ẏ1,k = −ẏ2,k.

Secondly, F̃x must act attractively on the spheres with the same magnitude as F̃y,i.

These two stipulations thus inform the space of acceptable inputs for both ẋi,k and

ẏi,k.

Stitching Primitives Together

Simulations depicting the three types of motion primitives are shown in Fig. A-3. In

each of them, the spheres start at the positions indicated by the circles, and undergo

the trajectories shown in their respective colors. The overlays in red depict the mean

trajectories of the spheres. Note that in all of them, we can command oscillations

to the spheres so that they are able to execute their motions despite an arbitrary

starting orientation. This is particularly striking in the middle figure, in which the

spheres undergo parallel locomotion. The input oscillations to each sphere are not

symmetric, but their overall motions are still the same since the forces in the body

frame are identical.

These three motion primitives can be concatenated in various combinations to
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move two bodies to any two planar locations to cover all of R2. A systematic way of

doing so is as follows. Suppose we want to move the two bodies from their current

inertial locations (x1, y1) and (x2, y2) to two desired inertial locations (x∗1, y
∗
1) and

(x∗2, y
∗
2). We also define the quantities

d∗ =
√

(y∗2 − y∗1)2 + (x∗2 − x∗1)2,

θ∗ = atan2(y∗2 − y∗1, x∗2 − x∗1).

Then we simply execute the following motions in order:

1. Use attraction or repulsion to move the bodies along their current line of centers

such that d2,x = d∗.

2. The bodies should then undergo an orbital motion so that their relative orien-

tation θ = θ∗ ± π
2
. The bodies are now aligned orthogonally to their desired

final locations.

3. The bodies undergo parallel motion such that their current line of centers in-

tersects the centroid of the desired locations. In other words,

1

2
(x∗1 + x∗2) = x1 + c(x2 − x1),

1

2
(y∗1 + y∗2) = y1 + c(y2 − y1)

for some constant c.

4. Undo the orbital motion from Step 2 and align the bodies such that θ is equal

to θ∗.

5. The two displacement vectors between each body and its respective final loca-

tion are now parallel to each other. Thus, a final parallel movement is sufficient

to finish the sequence.

This particular concatenation of motion primitives allow two bodies to move from

any two initial positions to any two desired positions in the plane. This is of course
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in contrast to the case of a single spherical body by itself, which is unable to achieve

any net locomotion at all.
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