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Abstract

It has been observed [Awo16, Fio12] that the rules governing the essentially algebraic notion of
a category with families [Dyb96] precisely match those of a representable natural transformation
between presheaves. This provides us with a natural, functorial description of essentially algebraic
objects which are used to model dependent type theory—following Steve Awodey, we call them
natural models.

We can view natural models from several different viewpoints, of which we focus on three in
this thesis. First, natural models are essentially algebraic, meaning that they can be described
by specifying operations between sorts, subject to equational axioms—this allows us to assemble
natural models into a category with certain beneficial properties. Second, since natural models
are natural transformations between presheaves, they are morphisms in a locally cartesian closed
category, meaning that they can be regarded as polynomials [GK13]. Third, since natural models
admit interpretations of dependent type theory, we can use them to provide a functorial semantics.
This thesis develops the theory of natural models in three new directions by viewing them in these
three ways.

Natural models as essentially algebraic objects. The first development of the thesis is to bridge
the gap between the presentation of natural models as models of an essentially algebraic theory,
and the functorial characterisation of natural models as representable natural transformations. We
demonstrate that the functorial characterisations of natural models and morphisms thereof align as
we hope with the essentially algebraic characterisations.

Natural models as polynomials. The next development is to apply the theory of polynomials in
locally cartesian closed categories to natural models. In doing so, we are able to characterise the
conditions under which a natural model admits certain type theoretic structure, and under which
a natural transformation is representable, entirely in the internal language of a locally cartesian
closed category. In particular, we prove that a natural model admits a unit type and dependent
sum types if and only if it is a polynomial pseudomonad, that it admits dependent product types
if and only if it is a pseudoalgebra, and we prove various facts about the full internal subcategory
associated with a natural model.
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vi Abstract

Natural models as models of dependent type theory. The final development of the thesis is to
demonstrate their suitability as a tool for the semantics of dependent type theory. We build the
term model of a particularly simple dependent type theory and prove that it satisfies the appropriate
universal property, and then we proceed by describing how to turn an arbitrary natural model into
one admitting additional type theoretic structure in an algebraically free way.
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2 Introduction

Outline of the thesis

In Chapter 1 we provide the fundamental definitions and results underlying the rest of the thesis.
We begin with an informal overview of dependent type theory in Section 1.1, followed by a review
of polynomials and locally cartesian closed categories in Section 1.2 and of presheaves and rep-
resentability in Section 1.3. I do not claim originality for any of the definitions or results in these
sections.

Chapter 2 focuses on natural models in their capacity as models of an essentially algebraic theory.
In Section 2.1 we recall the basic definitions and results from [Awo16], before explicitly spelling
out the essentially algebraic theories of natural models and of natural models admitting certain
type theoretic structure in Section 2.2, and discussing morphisms of natural models in Section 2.3.
The goal of this chapter is to provide an explicit demonstration that the convenient, functorial
characterisation of natural models as representable natural transformations captures the essentially
algebraic notion.

In Chapter 3 we enter the realm of locally cartesian closed categories, now viewing natural models
in their capacity as polynomials. In Section 3.1 we connect natural models with the theory of in-
ternal categories, in particular exploring the properties of their associated full internal subcategory.
We build upon this in Section 3.2 by using the perspective of internal categories to motivate the
definition of a notion of 3-cell in a tricategory of polynomials, which allows us to extract a sense
in which a natural model admitting a unit type, dependent sum types and dependent product types
gives rise to a polynomial pseudomonad and pseudoalgebra. In Section 3.3, we explore the prop-
erties possessed by representable natural transformations which can be expressed internally to a
locally cartesian closed category.

We sink our teeth into the semantics of dependent type theory in Chapter 4, in which we discuss the
matter of building the free natural model of a dependent type theory. After introducing the problem
and building a free natural model on a very basic type theory in Section 4.1, we proceed to discuss
how to algebraically freely admit new type theoretic structure to a natural model in Sections 4.2
to 4.5.

A mathematician’s work is never done, and this thesis is no exception—in Chapter 5 we discuss
some possible directions for future research that are suggested by the work in this thesis.

A remark on foundations

The official metatheory of this thesis is Zermelo–Fraenkel set theory with the axiom of choice
(ZFC) together with a fixed Grothendieck universe U, which is a transitive set containing the von
Neumann ordinal ω and closed under taking power sets and under unions indexed by sets in U.
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3

We will omit reference to U by referring to those sets which are elements of U as small sets and
to those which are not as large sets. We remark that U is itself a model of ZFC, and its existence
is equivalent (under ZFC) to the existence of a strongly inaccessible cardinal. This is one of many
solutions to the issues of size arising in category theory—a discussion in far more depth can be
found in [Shu08]—though our results do not depend on which solution is chosen.

Conventions on notation and terminology

Categories will typically be denoted using calligraphic font C ,D , . . . , but small categories—that
is, those whose sets of objects and of morphisms are small—will typically be denoted using black-
board bold font C,D, . . . .

When working in an n-category (strict or otherwise) for n> 1, the n-cells will be denoted by arrows
with n horizontal lines. Thus for example a natural transformation from a functor F to a parallel
functor G will be denoted by ϕ : F ⇒ G, and its components by ϕC : F(C)→ G(C).

Constructions and verifications

On many occasions in the thesis, we will define a mathematical object and then prove that it behaves
as we say it does. Rather than separating the definition from the theorem proving that the definition
makes sense, we combine the two into a single ‘construction’, which reads like a definition of an
object, with a subsequent ‘verification’, which reads like a proof that the object we defined behaves
as required. See Construction 4.5.4, for instance.

Supporting references

We will assume basic results from category theory and type theory. Useful references for category
theory include [Mac71] and [Awo10], references for type theory include [ML84] and [Uni13], and
discussions of categorical models of type theory can be found in [Jac99] and [Joh02]. The results
in Section 3.2 appear in [AN18].

3
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6 Chapter 1. Background

Section 1.1

Dependent type theory

The term dependent type theory refers to any one of a number of logical systems derived from
those proposed by Per Martin-Löf in the 1970s (see e.g. [ML75] and [ML84]), which in turn are
descendents of Alonzo Church’s λ -calculus [Chu32] and, by transitivity, of Bertrand Russell’s
theory of types [Rus08].

This section is aimed at a mathematician with a classical mathematical training—that is, first-order
logic and ZFC set theory (Zermelo–Fraenkel set theory with the axiom of choice). It intended to
be a (very) informal exposition of what dependent type theory is, together with a brief survey of
some existing accounts of the semantics of type theory. We will emphasise the similarities and
differences between dependent type theory and classical foundations.

Useful references on the syntax and semantics of dependent type theory include [Hof97] and
[Jac99].

Types and terms

The basic objects of dependent type theory are types and terms. This is in contrast to classical
foundations, where all objects are sets. We write a : A to mean that the term a has type A. We
assume that each term has a unique type—although this assumption is not universally accepted
by type theorists, we will need it in order for our notion of ‘model’ (Definition 2.1.1) to be well-
defined.

In some settings, it is helpful for the purpose of intuition to think about a type as being a set,
with terms of the type being the elements of the set. In some other settings, it is helpful to think
about a type as being a proposition, with the terms of the type being the proofs of the proposition.
We will keep this apparent duality between types-as-sets and types-as-propositions, known as the
Curry–Howard correspondence, in mind.

To illustrate, let A and B be types. We can form their product A×B, whose canonical terms are
pairs 〈a,b〉, where a : A and b : B. Under the types-as-sets interpretation, we think of A×B as the
cartesian product of A and B, whose terms we think of as ‘ordered pairs of elements’. Under the
types-as-propositions interpretation, we would think of A×B as the conjunction of A and B, whose
terms we think of as ‘concatenations of proofs’: indeed, what is a proof of ‘A and B’ if not a proof
of A followed by a proof of B?

This highlights a key difference between classical foundations and dependent type theory. In clas-

6



Section 1.1. Dependent type theory 7

sical foundations, we build the theory of sets as a layer on top of first-order logic—the propositions
we prove are not themselves the objects of the theory. In dependent type theory, there are just
terms and types; we reason about types by constructing terms of new types, which we think about
as proofs of propositions. This has the knock-on effect that when we change our theory (say, by
adding an axiom), we are also changing the logical system we are working in.

Type dependency, contexts and substitutions

What sets dependent type theory apart from its predecessors is that a type may depend on variable
terms of other types. For instance, we might consider the type Vecn(R) of n-dimensional vectors
of real numbers, where n is a variable of type N. A list of typed variables that a type may depend
on is called a context, which is a (possibly empty) list of the form

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . ,xn−1)

where the parentheses denote the variables the type depends on. We will usually denote contexts by
upper-case Greek letters Γ ,∆ ,Θ , . . . , and we will denote the assertion that A is a type in a context
Γ by writing Γ ` A, or Γ ` A(~x) if we want to make the variables explicit.

Under the types-as-sets interpretation, a type-in-context x : A ` B(x) is interpreted as an A-indexed
family of sets (B(x) | x∈ A), or equivalently as a map B→ A, where the ‘set’ B(x) corresponds with
the preimage of x∈ A. Under the types-as-propositions interpretation, a type-in-context x : A ` B(x)
is interpreted as a proposition B(x) depending on a variable term x : A, which in turn might be
thought of as a hypothesis (together with its proof), or as a variable element of a set.

If A is a type in a context Γ , we can form the context extension of Γ by a variable x of type
A, denoted Γ , x : A; moreover, all contexts can be generated from the empty context by context
extension. A type ` A in the empty context is called a basic type; for example, N is a basic type.

If Γ ` A is a type-in-context, we denote by Γ ` a : A the assertion that a is a term of type A in the
presence of the variables Γ . For example, whenever Γ ` A, it is always the case that Γ , x : A ` x : A.
We may also assert (definitional) equality of types or of terms, but again relative to a context. Thus
Γ ` A = B asserts that the types-in-context Γ ` A and Γ ` B are equal; and Γ ` a = a′ : A asserts
that the typed terms-in-context Γ ` a : A and Γ ` a′ : A are equal. Expressions to the right of the `
symbol are called judgements.

Given contexts Γ = x1 : A1, . . . ,xn : An(x1, . . . ,xn−1) and ∆ = y1 : B1, . . . ,ym : Bm(y1, . . . ,ym−1), a
substitution from ∆ into Γ is a list of terms

∆ ` t1 : A1, ∆ ` t2 : A2(t1), ∆ ` tn : An(t1, t2, . . . , tn−1)

where Ai(t1, . . . , ti−1) denotes the type obtained by replacing the free variables x1, . . . ,xi−1 in Ai by
the terms t1, . . . , ti−1, respectively.

7



8 Chapter 1. Background

The contexts and substitutions (quotiented by provable equality between types and terms) of de-
pendent type theory form a category, called the category of contexts of the type theory. Given a
substitution σ from ∆ to Γ , write ∆ ` A[σ ] for the result of substituting the variables of Γ in a type
Γ ` A according to σ , and write ∆ ` a[σ ] : A[σ ] for the result of substituting the variables of Γ in
a term Γ ` a : A according to σ .

Specifying a type

In ZFC set theory, a set is determined by its elements—this is the content of the axiom of extension-
ality, which says that two sets with the same elements are equal. In dependent type theory, on the
other hand, types are defined according to rules which describe how they interact with other types.
In practice, these rules come in four kinds: formation rules, introduction rules, elimination rules
and computation rules.

• Formation rules tell us how to build the new type out of old types;

• Introduction rules tell us how to use terms of the old types to obtain terms of the new type;

• Elimination rules tell us how to use the terms of the new type to obtain terms of old types;

• Computation rules tell us how the terms constructed from the introduction and elimination
rules interact.

These rules are typically specified relative to an arbitrary context Γ .

The computation rules are further broken down into β -reduction rules, which tell us what happens
when we apply an elimination rule after an introduction rule and η-expansion rules, which tell
us what happens when we apply an introduction rule after an elimination rule. The β -reduction
and η-expansion rules can be thought of as the ‘existence’ and ‘uniqueness’ parts, respectively, of
universal properties satisfied by the types.

To illustrate, we now proceed by specifying the rules defining the unit type, dependent sum types
and dependent product types; these will be of importance to us throughout the thesis.

1.1.1 Definition — Unit types
Define the unit type to be the dependent type 1 defined according to the following rules.

(1-F) Γ ` 1;

(1-I) Γ ` ? : 1;

(1-η) If Γ ` x : 1, then Γ ` x = ? : 1.

8



Section 1.1. Dependent type theory 9

Rule (1-F) says that 1 is a type in any context; rule (1-I) says that there is a term ? of type 1 in
any context; and rule (1-η) says that ? is the unique term of type 1 in any context. There are no
elimination or β -reduction rules for the unit type.

Under the types-as-sets interpretation, we think of the unit type as being a singleton set, whose
unique element is ?. The η-expansion rule is what gives us uniqueness of the ‘element’ of 1.

Under the types-as-propositions interpretation, we think of the unit type as being the ‘true’ propos-
ition >. The η-expansion rule tells us that there is a unique proof of >, which implies that that
specifying a proof of a proposition A is equivalent to specifying a proof of >→ A.

1.1.2 Definition — Dependent sum types
The dependent sum type constructor Σ is defined according to the following rules.

(Σ-F) If Γ ` A and Γ , x : A ` B(x), then Γ ` ∑
x:A

B(x);

(Σ-I) If Γ ` a : A and Γ ` b : B(a), then Γ ` 〈a,b〉 : ∑
x:A

B(x);

(Σ-E-l) If Γ ` p : ∑
x:A

B(x), then Γ ` fst(p) : A;

(Σ-E-r) If Γ ` p : ∑
x:A

B(x), then Γ ` snd(p) : B(fst(p));

(Σ-β-l) If Γ ` a : A and Γ ` b : B(a), then Γ ` fst(〈a,b〉) = a : A;

(Σ-β-r) If Γ ` a : A and Γ ` b : B(a), then Γ ` snd(〈a,b〉) = b : B(a);

(Σ-η) If Γ ` p : ∑
x:A

B(x), then Γ ` p = 〈fst(p),snd(p)〉 : ∑
x:A

B(x).

Under the types-as-sets interpretation, we think of the dependent sum type ∑
x:A

B(x) as the disjoint

union of the A-indexed family of sets (B(x) | x ∈ A), with the element 〈a,b〉 being thought of as the
element b in the component of the disjoint union given by the index a.

Under the types-as-propositions interpretation, we think of the dependent sum type ∑
x:A

B(x) as the

existentially quantified formula ∃x : A, B(x), with the proof 〈a,b〉 being thought of as a specification
of a witness a : A together with the proof of B(a).

1.1.3 Definition — Dependent product types
The dependent product type constructor Π is defined according to the following rules.

(Π-F) If Γ ` a : A and Γ , x : A ` B(x), then Γ ` ∏
x:A

B(x);

(Π-I) If Γ ` a : A and Γ , x : A ` b(x) : B(x), then Γ ` λx:Ab(x) : ∏
x:A

B(x);

9



10 Chapter 1. Background

(Π-E) If Γ ` f : ∏
x:A

B(x) and Γ ` a : A, then Γ ` app( f ,a) : B(a);

(Π-β ) If Γ ` a : A and Γ ,x : A ` b(x) : B(x), then Γ ` app(λx:Ab(x),a) = b(a) : B(a);

(Π-η) If Γ ` f : ∏
x:A

B(x), then Γ ` f = λx:Aapp( f ,x) : ∏
x:A

B(x).

Under the types-as-sets interpretation, we think of the dependent product type ∏
x:A

B(x) as the set

of choice functions for the A indexed family of sets (B(x) | x ∈ A); that is, we think of a term
f : ∏

x:A
B(x) as a function f : A→

⋃
x∈A B(x) such that app( f ,a) (= f (a)) ∈ B(a) for each a ∈ A.

Under the types-as-propositions interpretation, we think of the dependent product type ∏
x:A

B(x) as

the universally quantified formula ∀x : A, B(x). A proof f : ∏
x:A

B(x) is then a family app( f ,x) : B(x)

of proofs parametrised by x : A.

Proof relevance

Under the types-as-propositions interpretation, the only way we can assert that a proposition is
‘true; is by exhibiting a term of the corresponding type. Whereas in first-order logic we can say
something like ‘N is uncountable’, in type theory we would need to first construct a type A asserting
(under the types-as-propositions interpretation) that N is uncountable, and then exhibit a proof
term, that is a term ` a : A. This aspect of dependent type theory is known as proof relevance,
meaning that there is that there is no way to assert the truth of a proposition without also providing
a proof—in particular, any proof of an existential statement must provide a witness. This reflects
the computational and constructive character of dependent type theory.

Categorical semantics

We now briefly survey some of the existing notions of categorical model of dependent type theory.

The first notion is that of a contextual category, introduced by John Cartmell in his doctoral thesis
[Car78] and later studied by Vladimir Voevodsky under the name C-systems [Voe16].

1.1.4 Definition — Contextual categories [Car78, Car86]
A contextual category consists of:

• A small category C with a terminal object �;

• A tree structure on the objects of C with root �—write Γ /A to denote the assertion that Γ is
the parent of A in the tree;

10



Section 1.1. Dependent type theory 11

• For each Γ ,A ∈ ob(C) such that Γ /A, a morphism pA : A→Γ in C and, for each σ : ∆ →Γ

in C, an object A[σ ] with ∆ /A[σ ] and a morphism σ •A : A[σ ]→ A in C;

such that

(i) The following square commutes and is a pullback;

A[σ ] A

∆ Γ

pA[σ ]

σ •A

pA

σ

(ii) A[idΓ ] = A;

(iii) A[σ ◦ τ] = A[σ ][τ] for each Θ
τ−→ ∆

σ−→ Γ ; and

(iv) (σ ◦ τ) •A = (σ •A)◦ (τ •A[σ ]) for each Θ
τ−→ ∆

σ−→ Γ .

In Vladimir Voevodsky’s C-systems approach, the tree structure on ob(C) is replaced by a grading
(ob(C)n)n∈N of the objects of C, together with functions ob(C)n+1→ ob(C)n for each n ∈ N.

1.1.5. Contextual categories are very close to the syntax of dependent type theory, in the following
sense. Viewing C as the category of contexts and substitutions of a dependent type theory T, the
tree structure on ob(C) gives, for each Γ ∈ ob(C), a unique factorisation:

Γ
!Γ−→ � = An

pAn−−→ An−1
pAn−1−−−→ ·· ·

pA2−−→ A1
pA1−−→ �

Viewing morphisms A→ Γ as dependent types Γ ` A, this tells us that every object Γ of C is built
in a finite way from the empty context � by context extension. The terms Γ ` a : A are then given by
sections of pA. Conditions (i)–(iv) then say that substitution respects typing and respects identity
and composition strictly.

Another notion of categorical model introduced by John Cartmell in his thesis is that of categories
with attributes, although presentation we use is due to Andrew Pitts [Pit01].

1.1.6 Definition — Categories with attributes [Car78, Pit01]
A category with attributes consists of:

• A small category C with a terminal object �;

• For each object Γ of C, a set Ty(Γ );

11



12 Chapter 1. Background

• For each Γ ∈ ob(C) and each A ∈ Ty(Γ ), an object Γ •A of C and a morphism pA : Γ •A→Γ

in C and, for each σ : ∆ → Γ in C, a function (−)[σ ] : Ty(Γ )→ Ty(∆) and a morphism
σ •A : ∆ •A[σ ]→ Γ •A;

such that

(i) The following square commutes and is a pullback;

∆ •A[σ ] Γ •A

∆ Γ

pA[σ ]

σ •A

pA

σ

(ii) A[idΓ ] = A;

(iii) A[σ ◦ τ] = A[σ ][τ] for each Θ
τ−→ ∆

σ−→ Γ ; and

(iv) (σ ◦ τ) •A = (σ •A)◦ (τ •A[σ ]) for each Θ
τ−→ ∆

σ−→ Γ .

1.1.7. We view the elements of Ty(Γ ) as depedent types in context Γ ; then the object Γ •A repres-
ents the result of extending the context Γ by the type A. Note that every contextual category has
the structure of a category with attributes: given Γ ∈ ob(C), take Ty(Γ ) = {A ∈ ob(C) | Γ /A},
and then define Γ •A = A. The removal of the tree structure on the objects of C implies that there
may be objects that are not obtained from the terminal object � by context extension. As such,
categories with attributes are further removed from the syntax of dependent type theory. As with
contextual categories, terms are interpreted as sections of maps of the form pA : Γ •A→ Γ .

The notion of a category with families was introduced by Peter Dybjer in [Dyb96].

1.1.8. Denote by Fam the category of families of (small) sets. An object of Fam is a pair (I,(Ai)i∈I)
consisting of a set I and an I-indexed family of sets (Ai)i∈I , and a morphism from (I,(Ai)i∈I) to
(J,(B j) j∈J) is a pair ( f ,(gi)i∈I) consisting of a function f : I → J and an I-indexed family of
functions (gi : Ai→ B f (i))i∈I .

1.1.9 Definition — Categories with families [Dyb96]
A category with families is a category C with a distinguished terminal object �, together with the
following data:

• A functor T : Cop → Fam—we write T (Γ ) = (Ty(Γ ),Tm(Γ ,A)A∈Ty(Γ )) and denote by
A[σ ] ∈ Ty(∆) and a[σ ] ∈ Tm(∆ ,A[σ ]) the result of applying T (σ : ∆ → Γ ) to an element
A ∈ Ty(Γ ) and a ∈ Tm(Γ ,A), respectively;

12



Section 1.1. Dependent type theory 13

• For each Γ ∈ ob(C) and each A ∈ Ty(Γ ), an object Γ •A of C, a morphism pA : Γ •A→ Γ of
C and an element qA ∈ Ty(Γ •A,A[pA]);

such that, given any object ∆ of C, morphism σ : ∆ → Γ and element a ∈ Tm(∆ ,A[σ ]), there is a
unique morphism 〈σ ,a〉 : ∆ → Γ •A such that σ = pA ◦ 〈σ ,a〉 and a = qA[〈σ ,a〉].

1.1.10. As the notation suggests, in a category with families we view the elements of Ty(Γ ) as
dependent types Γ ` A, and the elements of Tm(Γ ,A) as terms Γ ` a : A.

The final notion of categorical model that we introduce is that of a universe category, introduced
by Vladimir Voevodsky [Voe15].

1.1.11 Definition — Universe categories [Voe15]
A universe category consists of:

• A small category C with a terminal object �;

• A morphism p : Ũ →U in C; and

• A universe structure on p—that is, an assignment to each Γ ∈ ob(C) and each A : Γ →U
an object Γ •A and morphisms pΓ

A : Γ •A→ Γ and qΓ
A : Γ •A→ Ũ ;

such that for each Γ ∈ ob(C) and each A : Γ →U , the following square is a pullback.

Γ •A Ũ

Γ U

pΓ
A

qΓ
A

p

A

1.1.12. In [Voe15], Vladimir Voevodsky describes how to obtain a C-system from a universe cat-
egory. As suggested by the notation, we view morphisms A : Γ →U as dependent types Γ •A. The
pullback condition tells us that morphisms a : Γ → Ũ such that p◦a = A correspond with sections
of pΓ

A , which we can thus think about as terms Γ ` a : A, as we did for contextual categories and
categories with attributes.

The approach we will use is that of natural models [Awo16], which bear similarities with both
categories with families and universe categories—they will be defined in Section 2.1 and explored
in depth in this thesis.

13
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Section 1.2

Polynomials in locally cartesian closed categories

1.2.1 Definition — Locally cartesian closed categories
A locally cartesian closed category is a category E with a terminal object 1 and with all slices
E /A cartesian closed.

1.2.2. Locally cartesian closed categories E are characterised by the fact that every morphism
f : B→ A induces a triple of adjoint functors

E /A E /B∆ f

Σ f

Π f

⊥

⊥

where Σ f is given by postcomposition with f and ∆ f is given by pullback along f . Since we have
adopted the convention that locally cartesian closed categories have a terminal object, it follows
that they are cartesian closed and have all finite limits. We emphasise that locally cartesian closed
categories are categories with additional structure. In particular, given an object (X ,x) of E /A, the
functor ∆ f : E /A→ E /B gives a choice of pullback ∆ f (x) : ∆ f (X)→ B of x : X → A along f .

1.2.3 Example
Examples of locally cartesian closed categories include the category Set of sets, the category Ĉ=
SetC

op
of presheaves on a small category C, and more generally, any topos. The category Cat of

categories is not locally cartesian closed, even though it is cartesian closed.

1.2.4. Every locally cartesian closed category E has an internal language [See84], which provides
a convenient syntactic way of reasoning about the objects and morphisms of E . When reas-
oning internally, we will view an object (X ,x : X → A) of E /A as an A-indexed family of ob-
jects (Xa | a ∈ A), and a morphism (X ,x)→ (Y,y) in E /A as an A-indexed family of morphisms
(Xa→ Ya | a ∈ A). Given a morphism f : B→ A of E , the action on objects of the functors Σ f , ∆ f

and Π f can be described by

Σ f (Yb | b ∈ B) =

(
∑

b∈Ba

Xb

∣∣∣∣∣ a ∈ A

)

∆ f (Xa | a ∈ A) =
(

X f (b)
∣∣ b ∈ B

)
Π f (Yb | b ∈ B) =

(
∏

b∈Ba

Yb

∣∣∣∣∣ a ∈ A

)

14



Section 1.2. Polynomials in locally cartesian closed categories 15

Note that when E = Set we really can identify an object (X ,x) of Set/A as an A-indexed family
(Xa | a ∈ A) by defining Xa = x−1[{a}] for each a∈A. The sum and product operations are realised
in this case as the disjoint union and dependent product, respectively.

1.2.5 Theorem — Beck–Chevalley condition
Let f ,g,u,v be morphisms in a locally cartesian closed category E fitting into the following pull-
back square.

B D

A C

v

f
y

g

u

There are natural isomorphisms ∆gΣu ∼= Σv∆ f and ∆gΠu ∼= Πv∆ f .

1.2.6 Theorem — Distributivity law [Web15]

Let C u−→ B
f−→ A be morphisms in a locally cartesian closed category E . Construct the following

commutative diagram, in which v = Π f (u) is the dependent product of u along f , w = ∆ f (v) is the
pullback of v along f , and e is the component at h of the counit of the adjunction ∆ f aΠ f .

P D

C B A

q

we
y

v

u f

There is a natural isomorphism Π f Σu ∼= ΣdΠq∆e.

1.2.7. In the internal language of E , the Beck–Chevalley conditions say, parametrically in d ∈ D,
that

∑
a∈Ag(d)

Xa ∼= ∑
b∈Bd

X f (b) and ∏
a∈Ag(d)

Xa ∼= ∏
b∈Bd

X f (b)

and the distributivity law says, parametrically in a ∈ A, that

∏
b∈Ba

∑
c∈Cb

Xc ∼= ∑
d∈Da

∏
p∈Pd

Xe(p)
∼= ∑

m∈ ∏
b∈Ba

Cb

∏
b∈Ba

Xm(b)

For this reason, the distributivity law is sometimes referred to as the (type theoretic) axiom of
choice. This is slightly misleading, since although it resembles the axiom of choice, it is a theorem
rather than an axiom.

15
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Polynomials and polynomial functors

1.2.8 Definition — Polynomials [GK13]
A polynomial F = (s, f , t) in a locally cartesian closed category E is a diagram of the form

I s←− B
f−→ A t−→ J

We say that F is a ‘polynomial from I to J’ and write F : I s←− B
f−→ A t−→ J or just F : I |→ J.

1.2.9. Polynomials generalise morphisms (by taking I = J = 1) and spans (by taking B=A and f =
idA). Since most of our attention will be focused on polynomials from 1 to 1, we will brazenly blur

the distinction between morphisms f : B→ A and polynomials 1 !B←− B
f−→ A !A−→ 1. Beware, though,

that composition of polynomials (see Definition 1.2.13) differs from composition of morphisms of
E .

1.2.10 Definition — Polynomial functors [GK13]

The extension of a polynomial F : I s←− B
f−→ A t−→ J in a locally cartesian closed category E is the

functor PF = ΣtΠ f ∆s : E /I → E /J . Internally, we can define PF by

PF (Xi | i ∈ I ) =

(
∑

a∈A j

∏
b∈Ba

Xs(b)

∣∣∣∣∣ j ∈ J

)
A polynomial functor is a functor that is naturally isomorphic to the extension of a polynomial.

When f : B→A is a morphism of E , we obtain an endofunctor P f = P(!B, f ,!A) : E ∼= E /1→ E /1∼= E ,
and this endofunctor is described in the internal language of E quite simply as

P f (X) = ∑
a∈A

XBa

This explains the use of the term polynomial.

We recall the following technical lemma from [Awo16]; it will be useful for us later on.

1.2.11 Lemma — See [Awo16, Lemma 5]
Let f : B→ A be a morphism in a locally cartesian closed category E . There is a natural (in X and
in Y ) correspondence between morphisms g : Y → P f (X) = ∑

a∈A
XBa and pairs (g1,g2) of morphisms

with g1 : Y → A and g2 : ∆g1(B)→ X .

X ∆g1(B) B

Y A

g2

∆g1 ( f )

y
f

g1

16



Section 1.2. Polynomials in locally cartesian closed categories 17

The following lemma of a similar flavour will also be useful.

1.2.12 Lemma
Let f : B→ A be a morphism in a locally cartesian closed category E . There is a natural corres-
pondence between morphisms

g : Y → ∑
a∈A

∑
m∈ABa

∑
b∈Ba

Bm(b)

and quadruples (g1,g2,g3,g4) of morphisms, with

• g1 : Y → A in E ;

• g2 : ∆g1(B)→ A in E ;

• g3 : (Y,g1)→ (B, f ) in E /A; and

• g4 : (∆g1(B),g2)→ (B, f ) in E /A.

Sketch of proof. The is a direct translation of argument on [Awo16, pp. 18-19] into the more gen-
eral setting of an arbitrary locally cartesian closed category.

1.2.13 Definition — Composition of polynomials [GK13]

The polynomial composite of polynomials F : I s←− B
f−→ A t−→ J and G : J u←− D

g−→ C v−→ K in a
locally cartesian closed category E is the polynomial G ·F : I s◦n←−− N

q◦p−−→M v◦w−−→ K indicated in the
following diagram, which is constructed as follows: first take the pullback (1); then form (2) from
H h−→ D

g−→C as in Theorem 1.2.6; and finally take the pullback (3) of k ◦ e along f .

N L M

H

B A D C

I J K

y

n

p

(3)

y
q

e

w
(2)

y
hk

(1)
f

s
t u

g

v

17
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1.2.14. We will make use of the following explicit descriptions of the objects H,L,M,N in the
internal language of E .

• H = ∑
d∈D

Au(d);

• M = ∑
c∈C

∏
d∈Dc

Au(d);

• L = ∑
(c,m)∈M

Dc;

• N = ∑
(c,m)∈M

∑
d∈Dc

Bm(d).

The morphisms e,h,k,n, p,q,w are then the appropriate projection morphisms.

1.2.15 Theorem — Extension preserves composition [GK13]

Let F : I s←− B
f−→ A t−→ J and G : J u←− D

g−→ C v−→ K be polynomials in a locally cartesian closed
category E . Then PG·F ∼= PG ◦PF , where · represents polynomial composition and ◦ represents the
usual composition of functors.

Proof. With notation as in Definition 1.2.13, we proceed by calculation.

PG ◦PF = ΣvΠg∆uΣtΠ f ∆s by Definition 1.2.10
∼= ΣvΠgΣh∆kΠ f ∆s by Beck–Chevalley (Theorem 1.2.5)
∼= ΣvΣwΠq∆e∆kΠ f ∆s by distributivity (Theorem 1.2.6)
∼= ΣvΣwΠq∆k◦eΠ f ∆s by functoriality
∼= ΣvΣwΠqΠp∆n∆s by Beck–Chevalley
∼= Σv◦wΠq◦p∆s◦n by functoriality
∼= PG·F by Definitions 1.2.10 and 1.2.13

Each of these isomorphisms is natural and strong.

1.2.16 Definition
Let F : I s←− B

f−→ A t−→ J and G : I u←− D
g−→C v−→ J be polynomials from I to J in E . A morphism of

polynomials ϕ from F to G consists of an object Dϕ of E and a triple (ϕ0,ϕ1,ϕ2) of morphisms in
E fitting into a commutative diagram of the following form, in which the lower square is a pullback:

18



Section 1.2. Polynomials in locally cartesian closed categories 19

B A

I Dϕ A J

D C

f

s t

y
ϕ1

ϕ2

ϕ0

g

u v

We write ϕ : F |⇒ G to denote the assertion that ϕ is a morphism of polynomials from F to G.

Each morphism ϕ : F |⇒ G of polynomials induces a strong[a] natural transformation PF ⇒ PG,
which we shall by abuse of notation also call ϕ , whose component at ~X = (Xi | i ∈ I) can be
expressed in the internal language of E by

(ϕ~X) j : ∑
a∈A j

∏
b∈Ba

Xs(b)→ ∑
c∈C j

∏
d∈Dc

Xu(b); (ϕ~X) j(a, t) = (ϕ0(a), t · (ϕ2)a · (ϕ1)
−1
a )

1.2.17 Definition
A morphism ϕ : F |⇒ G is cartesian if ϕ2 is invertible.

As the name suggests, if ϕ : F |⇒ G is a cartesian morphism, then the induced strong natural
transformation PF ⇒ PG is cartesian.

1.2.18. Every cartesian morphism of polynomials has a unique representation as a commutative
diagram of the following form.

B A

I J

D C

s

f

ϕ1

y

ϕ0

t

u
g

v

(1.2.1)

Indeed, if (ϕ0,ϕ1,ϕ2) is cartesian, replacing ϕ1 in the above diagram by ϕ1 ◦ϕ
−1
2 yields the desired

diagram. Conversely, if (ϕ0,ϕ1) are as in the above diagram, then (ϕ0,ϕ
′
1,ϕ

′
2) is a cartesian morph-

ism of polynomials, where ϕ ′1 : ∆ϕ0D→D is the chosen pullback of ϕ0 along g and ϕ ′2 : ∆ϕ0D→ B

[a]Every polynomial functor has a natural strength, and the natural candidate for morphisms between polynomial functors
are those natural transformations which are comptable with the strength. See [GK13] for more on this.

19



20 Chapter 1. Background

is the canonical isomorphism induced by the universal property of pullbacks, as illustrated in the
following:

B A B A

I J = I ∆ϕ0D A J

D C D C

f

s

ϕ1

y t

ϕ0

f

s t

y
ϕ ′1

ϕ ′2 ∼=

ϕ0

g

u v

g

u v

(1.2.2)

Note that, in general, for each diagram of the form (1.2.1), there are possibly many cartesian
morphisms inducing it. Conversely, there are many potential ways of turning a diagram of the
form (1.2.1) into a cartesian morphism. Another possibility would be to take the induced cartesian
morphism to be (ϕ0,ϕ1, idB). Theorem 3.2.12 below implies that these are essentially equivalent.

In particular, when I = J = 1, we can regard pullback squares as cartesian morphisms in a canonical
way.

We are now ready to assemble polynomials into a bicategory (and polynomial functors into a 2-
category). In fact, as proved in [GK13], more is true:

1.2.19 Theorem
Let E be a locally cartesian closed category.

(a) There is a bicategory PolyE whose 0-cells are the objects of E , whose 1-cells are polynomials
in E , and whose 2-cells are morphisms of polynomials.

(b) There is a 2-category PolyFunE whose 0-cells are the slices E /I of E , whose 1-cells are
polynomial functors, and whose 2-cells are strong natural transformations.

(c) Extension defines a biequivalence Ext : PolyE
'−→ PolyFunE .

(d) Parts (a)–(c) hold true if we restrict the 1-cells to cartesian morphisms of polynomials in
PolyE and cartesian strong natural transformations in PolyFunE ; thus there is a bicategory
Polycart

E and a 2-category PolyFuncart
E , which are biequivalent.

We finish this section with the following technical lemma, which will simplify matters for us greatly
down the road as it allows us in most instances to prove results about polynomials in the case when
I = J = 1.

1.2.20 Theorem
For fixed objects I and J of a locally cartesian closed category E , there are full and faithful functors

S : PolyE (I,J)→ PolyE /I×J
(1,1) and Scart : Polycart

E (I,J)→ Polycart
E /I×J

(1,1)

20
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Proof sketch. Given a polynomial F : I s←− B
f−→ A t−→ J, define S(F) = 〈s, f 〉 : B→ I×A over I× J

(considered as a polynomial 1 |→ 1 in E /I×J) as in

B I×A

I× J

〈s, f 〉

〈s,t◦ f 〉 idI×t

Given a morphism of polynomials ϕ : F |⇒ G, as in

B A

I Dϕ A J

D C

f

s t

y
ϕ1

ϕ2

ϕ0

g

u v

define S(ϕ) = (idI×ϕ0,ϕ1,ϕ2) : S(F) |⇒ S(G), as in the following diagram, where we consider E
as an object over I× J via 〈s◦ϕ2, t ◦ f ◦ϕ2〉 : E→ I× J.

B I×A

Dϕ I×A

D I×C

〈s, f 〉

y
ϕ1

ϕ2

idI×ϕ0

〈u,g〉

It is easy to see that idI ×ϕ0, ϕ1 and ϕ2 are morphisms over I× J and that the lower square of
the above diagram truly is cartesian, so that S(ϕ) is a morphism in PolyE /I×J

(1,1). Verifying
functoriality, fullness and faithfulness of S is elementary but tedious.

21
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That S restricts to a full and faithful functor Scart : Polycart
E (I,J)→ Polycart

E /I×J
(1,1) is immediate,

since S(ϕ) is cartesian if and only if ϕ2 is invertible, which holds if and only if ϕ is cartesian.

22
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Section 1.3

Presheaves and representability

This section lays out the basic definitions and results concerning presheaves and representability
which we will use, normally without citation, in the rest of the thesis. Most of the results in this
section can be found in the standard references for category theory, such as [Mac71], [Joh02] and
[Awo10]. They are recalled here because of their fundamental importance to the work to follow.

1.3.1 Definition — Presheaves
A presheaf on a small category C is a functor P : Cop→ Set. The category of all presheaves on C
and natural transformations between them is denoted by Ĉ.

Given an object A ∈ ob(C), an element x ∈ P(A) and a morphism f : B→ A, we will write x[ f ]
rather than P( f )(x) when P is understood from context. Note that the rules for P being a functor

say precisely that x[idA] = x and x[ f ][g] = x[ f ◦g] for all C
g−→ B

f−→ A and all x ∈ P(A), so that we
might think of a presheaf P as defining a right action of the morphisms of C on an ob(C)-indexed
family of sets.

1.3.2 Definition — Yoneda embedding
The Yoneda embedding is the functor y : C→ Ĉ defined on objects by y(A) = C(−,A).

1.3.3 Definition — Representable presheaves
Let C be a small category. A presheaf X : Cop → Set is representable if X ∼= y(A) for some
A ∈ ob(C). The object A is called a representing object for X .

1.3.4 Theorem — Yoneda lemma
Let C be a small category. For each presheaf P over C and each object A of C, there is a bijection
Ĉ(y(A),P)∼= P(A). Moreover this bijection is natural in both A and P.

In light of the Yoneda lemma, we will brazenly and unapologetically identify elements x ∈ P(A)
with natural transformations x : y(A)→ P, and we may even use phrases such as ‘the element
x : y(A)→ P’. A consequence of the Yoneda lemma is that the Yoneda embedding is full and
faithful.

1.3.5 Definition — Category of elements
The category of elements of a presheaf P is the category

∫
C P =

∫
P, whose objects are pairs (C,x)

with C ∈ ob(C) and x ∈ P(C), and whose morphisms f : (C,x)→ (D,y) are morphisms f : C→ D
in C such that y[ f ] = x.

Elementary computations reveal that
∫
C y(A)∼= C/A for all A ∈ ob(C), and that Ĉ/P ∼=

∫̂
C P for all

P : Cop→ Set. Combining these results, we see that Ĉ/A ∼= Ĉ/y(A) for each A ∈ ob(C).

23



24 Chapter 1. Background

Note that there is an evident forgetful functor π :
∫
C P→ C.

1.3.6 Theorem — Every presheaf is the colimit of representables
Let C be a small category and let P be a presheaf over C. Then P is a colimit of the functor∫

C
P π−→ C y−→ Ĉ

In particular, it is a colimit in Ĉ of presheaves of the form y(Γ ) for Γ ∈ ob(C).

1.3.7 Theorem
Let C and D be small categories. Each functor F : C→ D induces an adjoint triple

Ĉ D̂

F!

F∗

F∗
⊥

⊥

where F∗ is given by precomposition by F . The functors F! and F∗ are the left Kan extension and
right Kan extension operations along F , respectively. Explicitly, the functors F∗ and F! can be
computed as follows.

F∗(X)(D)∼= D̂(y(D),F∗(X))∼= Ĉ(F∗y(D),X)∼= Ĉ(D(F(−),y(D)),X)

F!(X)∼= lim−→
(A,x)∈

∫
X

y(FA)

In particular, we may choose the values of F! such that it commutes with the Yoneda embedding
F! ◦ y = y ◦F : C→ D̂.

1.3.8 Lemma — Adjoint functors lift
Given a pair of functors R : C→ D and L : D→ C. If L a R, then L∗ a R∗ and, therefore, R! ∼= L∗.

Ĉ D̂

C D

L∗

R∗
⊥

R

y

L

⊥

y

Sketch of proof. Let η : idD ⇒ RL and ε : LR⇒ idC be the unit and counit, respectively, of the
adjunction L a R. Define σ : idĈ⇒ R∗L∗ = (LR)∗ by letting (σP)C = P(εC) : P(C)→ P(LR(C)) for
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all P : Cop→ Set and all C ∈ ob(C), and define τ : L∗R∗ = (RL)∗⇒ idD̂ by letting (τQ)D = Q(ηD) :
Q(RL(D))→ Q(D) for all Q : Dop→ Set and all D ∈ ob(D). Verifying that σ ,τ are well-defined
natural transformations forming the unit and counit, respectively, of the adjunction L∗ a R∗, is
elementary. That L∗ ∼= R! follows from uniqueness of left adjoints up to natural isomorphism.

We conclude this section with the definition of a representable natural transformation, which is the
fundamental component of a natural model Definition 2.1.1, the main object of study in this thesis.

1.3.9 Definition — Representable natural transformation
Let C be a small category and let X and Y be presheaves over C. A natural transformation f : Y →X
is representable if all of its fibres are representable, in the sense that for each A ∈ ob(C) and each
x ∈ X(A), there exists B ∈ ob(C), g : B→ A in C and y ∈ Y (B) such that the following square is a
pullback.

y(B) Y

y(A) X

y(g)

y

f

x

The definition of a representable natural transformation can be found in [Sta18, Tag 0023] and has
been attributed to Alexander Grothendieck [Awo16].
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Section 2.1

Natural models

It was observed independently by Steve Awodey [Awo12, Awo16] and Marcelo Fiore [Fio12] that
the notion of a representable natural transformation (Definition 1.3.9) captures the type theoretic
rules for context extension. We might, therefore, be tempted to take representable natural trans-
formations as our notion of model of dependent type theory and leave it at that. However, we would
like to provide an essentially algebraic account of the semantics of type theory (Section 2.2)—
Definition 1.3.9 does not quite do this because it posits mere existence, rather than a choice, of data
witnessing representability of the natural transformation.

2.1.1 Definition — Natural models [Awo16]
A natural model is a small category C with a distinguished terminal object �, presheaves U and.
U over C, a natural transformation p :

.
U → U and, for each Γ ∈ ob(C ) and A ∈ U (Γ ), the

following representability data: an object Γ •A of C , a morphism pA = pΓ
A : Γ •A→ Γ in C , and

an element qA = qΓ
A ∈

.
U (Γ •A), such that the following square is a pullback for all such Γ and A:

y(Γ •A)
.

U

y(Γ ) U

qA

y(pA)
p

A

2.1.2. As explained in detail in [Awo16], we can informally view a natural model as a model of
dependent type theory in the following way. The category C represents the category of contexts
and substitutions, with the terminal object � representing the empty context. For each object Γ , the
set U (Γ ) represents the set of types in context Γ , and the set

.
U (Γ ) represents the set of terms

in context Γ , with the function pΓ :
.

U (Γ )→ U (Γ ) sending a term to its unique type. (This is
where we used the uniqueness of typing, as discussed in Section 1.1.) The action of U and

.
U

on morphisms is that of substitution. Naturality of p says that substitution represents typing, in
the sense that if Γ ` a : A and σ : ∆ → Γ is a substitution, then ∆ ` a[σ ] : A[σ ]. The object Γ •A
represents the extension of a context Γ by a new variable x : A; then pA : Γ • A→ A represents
the weakening substitution and qA ∈

.
U (Γ •A) represents the new variable x. Finally, the universal

property of the pullback says that Γ •A truly does satisfy the syntactic rules for context extension.

2.1.3. Under the axiom of choice, every representable natural transformation gives rise to a natural
model. Moreover, since representability is defined by a pullback condition, given any Γ ∈ ob(C)
and A ∈ U (Γ ), the representability data (Γ •A,pA,qA) are unique up to canonical isomorphism,
in the sense that for any other choice (Γ̃ •A, p̃A, q̃A) of representability data, there is a unique iso-
morphism θ : Γ •A→ Γ̃ •A such that p̃A ◦θ = pA and q̃A[θ ] = qA.
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2.1.4. We will adopt the following notation conventions:

• tΓ is the unique morphism Γ →� in C;

• In the internal language of Ĉ, write [A] =
.

UA for the fibre of p over A ∈U ;

• Given an object Γ of C and an element A ∈ U (Γ ), write
.

U (Γ ;A) for the preimage of
pΓ :

.
U (Γ )→U (Γ ) over A—we may, further, say ‘Γ ` A in (C, p)’ to mean that A∈U (Γ ),

and ‘Γ ` a : A in (C, p)’ to mean that a ∈
.

U (Γ ;A);

• Given a morphism σ : ∆ → Γ in C, an element A ∈U (Γ ) and an element a ∈
.

U (∆ ,A[σ ]),
write 〈σ ,a〉A for the unique morphism ∆ → Γ •A induced by the universal property of pull-
backs;

• For each a ∈
.

U (Γ ;A), write s(a) = 〈idΓ ,a〉 : Γ → Γ •A—note that pA ◦ s(a) = idΓ , so that
s(a) is a section of pA.

2.1.5. In order to avoid writing a long list of symbols each time we refer to a natural model, we will
typically write just (C, p), leaving the naming of the remaining data implicit. We will adopt the
convention that when we write (C, p), the additional data is named as in Definition 2.1.1 and, when
we write (D,q), the chosen terminal object of D is denoted by ?, that q :

.
V → V in D̂, and that

the representability data for a given Γ ∈ ob(D) and A ∈ V (Γ ) is denoted by Γ ◦A, uA : Γ ◦A→ Γ

and vA ∈
.

V (Γ ). Furthermore, internally to D̂, write 〈A〉=
.

VA rather than [A] for the fibre of q over
A ∈ V .

2.1.6 Construction — Canonical pullback squares
Let (C, p) be a natural model. For all σ : ∆ → Γ in C and all A ∈U (Γ ), there is a pullback square

∆ •A[σ ] Γ •A

∆ Γ

σ •A

pA[σ ]

y
pA

σ

Pullback squares of this form are called canonical pullback squares.

Verification. Construct the following diagram using representability data for (C, p).
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30 Chapter 2. Categories of natural models

y(∆ •A[σ ]) y(Γ •A)
.

U

y(∆) y(Γ ) U

y(pA[σ ])

qA[σ ]

y(pA)

qA

y
p

y(σ)

A[σ ]

A

The right and outer squares are pullbacks by representability of p. The universal property of the
right-hand pullback yields a morphism y(∆ •A[σ ])→ y(Γ •A) as indicated, which is of the form
y(σ •A) for some σ •A : ∆ •A[σ ]→ Γ •A in C since the Yoneda embedding is full and faithful. The
left-hand square is a pullback by the two pullbacks lemma, and hence the square in the statement
of this construction is a pullback since the Yoneda embedding reflects limits.

2.1.7 Lemma
Let (C, p) be a natural model, let Θ

τ−→ ∆
σ−→ Γ in C and let A ∈ U (Γ ). With notation as in

Construction 2.1.6, we have

(σ ◦ τ) •A = (σ •A)◦ (τ •A[σ ]) : Θ •A[σ ◦ τ]→ Γ •A

Proof. This is an immediate consequence of the two pullbacks lemma.

Lemma 2.1.7 demonstrates that, in a way that mirrors that of Vladimir Voevodsky’s ‘universes’
[Voe09], natural models overcome the coherence problem for interpreting type theory in a locally
cartesian closed category.

Admitting type theoretic structure

The proofs of Theorems 2.1.8 to 2.1.10 can be found in [Awo16].

2.1.8 Theorem — Admitting a unit type [Awo16]
A natural model (C, p) admits a unit type if and only if there are morphisms

1̂ : 1→U and ?̂ : 1→
.

U

in Ĉ exhibiting id1 : 1→ 1 as a pullback of p.
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1
.

U

1 U

?̂

y
p

1̂

2.1.9 Theorem — Admitting dependent sum types [Awo16]
A natural model (C, p) admits dependent sum types if and only if there are morphisms

Σ̂ : ∑
A:U

U [A]→U and p̂air : ∑
A:U

∑
B:U [A]

∑
a:[A]

[B(a)]→
.

U

in Ĉ exhibiting the projection π : ∑
A:U

∑
B:U [A]

∑
a:[A]

[B(a)]→ ∑
A:U

U [A] as a pullback of p.

∑
A:U

∑
B:U [A]

∑
a:[A]

[B(a)]
.

U

∑
A:U

U [A] U

π

p̂air

y
p

Σ̂

Moreover the map π is precisely the polynomial composite p · p.

2.1.10 Theorem — Admitting dependent product types [Awo16]
A natural model (C, p) admits dependent product types if and only if there are morphisms

Π̂ : ∑
A:U

U [A]→U and λ̂ : ∑
A:U

.
U [A]→

.
U

in Ĉ exhibiting ∑
A:U

p[A] as a pullback of p.

∑
A:U

.
U [A]

.
U

∑
A:U

U [A] U

λ̂

∑
A:U

p[A]

y
p

Π̂
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32 Chapter 2. Categories of natural models

Moreover the map ∑
A∈U

U [A] is precisely the morphism Pp(p) obtained by applying the extension

Pp of p to p itself.

Recall (Paragraph 1.2.18) that in a locally cartesian closed category (such as Ĉ), pullback squares
correspond with cartesian morphisms of polynomials. Therefore we can succinctly rephrase The-
orems 2.1.8 to 2.1.10 in terms of cartesian morphisms of polynomials.

2.1.11 Corollary
Let (C, p) be a natural model.

(a) (C, p) admits a unit type if and only if there is a cartesian morphism η : i1 |⇒ p in PolyĈ;

(b) (C, p) admits dependent sum types if and only if there is a cartesian morphism µ : p · p |⇒ p
in PolyĈ;

(c) (C, p) admits dependent product types if and only if there is a cartesian morphism ζ :
Pp(p) |⇒ p in PolyĈ;

Our notation is deliberately suggestive of a monad and an algebra; exploring this topic further is
the subject of Section 3.2.
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Section 2.2

The essentially algebraic theory of natural models

A (single-sorted) algebraic theory is one which is specified by operation symbols σ with arities,
which are natural numbers, subject to conditions which can be expressed as (universally quantified)
equations. For example, the theory of groups has an operation unit of arity 0, an operation inv
of arity 1, and a binary operation mult of arity 2, subject to equations describing associativity,
inverse and unit laws. A model M of an algebraic theory is then a set M together with functions
σM : Mα(σ)→M for each symbol σ whose arity is α(σ), such that the functions σM satisfy the
specified equations; thus a model of the theory of groups is a group.

More generally, given a set S of sorts, an S-sorted algebraic theory is again specified by oper-
ation symbols subject to equations, but now the arities of the operation symbols are sequences
of elements of S. A symbol σ whose arity is (s1, . . . ,sn,s) (which we suggestively write as
s1× ·· ·× sn → s) can be thought of as an n-ary operation, whose ith input has sort si and whose
value has sort s. A model M of an S-sorted algebraic theory is then given by an S-indexed family
of sets (Ms | s ∈ S ) with functions σM : Ms1×·· ·×Msn →Ms for each operation symbol σ of arity
s1×·· ·× sn→ s, which satisfy the equations of the theory.

The notion of an (S-sorted) essentially algebraic theory generalises that of an (S-sorted) algebraic
theory even further by allowing operations to be partial, meaning that operation symbols may
be defined only on inputs which satisfy certain equational conditions stated in terms of already-
specified operation symbols. An example of such a theory is that of categories, whose sorts are Obj,
the sort of objects, and Mor, the sort of morphisms. The composition operation comp with arity
Mor×Mor→Mor is partial, since the composite g◦ f of two morphisms on a category is defined
only when cod( f ) = dom(g). The interpretation compM is then a partial function from MMor×
MMor to MMor, whose domain of definition is given by {(g, f ) ∈MMor | codM( f ) = domM(g)}.

A precise definition of an essentially algebraic theory, and a model thereof, can be found in [AR94].

Our goal in this section is to exhibit the theory of natural models as an essentially algebraic theory
TNM. Once we have done so, natural models will automatically assemble into a category NM,
whose objects are the models of TNM and whose morphisms are homomorphisms of models of
TNM—that is, families of functions between the sorts which commute in the appropriate sense with
the operation symbols. The general theory of essentially algebraic categories will then apply to the
category NM.

The practical power of natural models comes from their functorial, rather than algebraic, descrip-
tion; as such, the main takeaway of this section is that the functorial description captures the algeb-
raic one, and we will provide a functorial account of the algebraic notion of a homomorphism of
models of TNM in Section 2.3.
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34 Chapter 2. Categories of natural models

2.2.1 Definition
The theory of natural models is the essentially algebraic theory T= TNM described as follows.

The set S of sorts is {Ctx,Sub,Type,Term};

Note: In all of what follows, the sorts of the variables are

∆ ,Γ : Ctx σ ,τ,υ : Sub A,B : Type a,b, f , p : Term

The set Σ of symbols and their arities is defined in the following table.

Name Symbol (with arity & sorts) Shorthand
domain† dom : Sub → Ctx
codomain† cod : Sub → Ctx
identity† id : Ctx → Sub id(Γ ) = idΓ

composition comp : Sub×Sub → Sub comp(σ ,τ) = τ ◦σ

empty context† empty : Ctx empty = �
subn to empty† esub : Ctx → Sub esub(Γ ) = tΓ
typing† typeof : Term → Type
context of types† ctxofty : Type → Ctx ctxofty(A) = ctxof(A)
context of terms† ctxoftm : Term → Ctx ctxoftm(a) = ctxof(a)
subn on types substty : Sub×Type → Type substty(σ ,A) = A[σ ]
subn on terms substtm : Sub×Term → Term substtm(σ ,a) = a[σ ]
context extension† cext : Type → Ctx cext(A) = Γ •A ‡

projection† proj : Type → Sub proj(A) = pA
variable† var : Type → Term var(A) = qA
induced subn indsub : Sub×Term×Type → Sub indsub(σ ,a,A) = 〈σ ,a〉A

† denotes total symbols

‡ When we write Γ •A = cext(A), we are implying that Γ = ctxof(A).
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The set E of equations is defined as follows:

• Category of contexts

(i) dom(idΓ ) = Γ

(ii) cod(idΓ ) = Γ

(iii) dom(τ ◦σ) = dom(σ)

(iv) cod(τ ◦σ) = cod(τ)

(v) σ ◦ idΓ = σ

(vi) id∆ ◦ τ = τ

(vii) (υ ◦ τ)◦σ = υ ◦ (τ ◦σ)

• Empty context is terminal

(viii) dom(tΓ ) = Γ

(ix) cod(tΓ ) = �
(x) tΓ ◦ f = t∆

• Presheaf of types

(xi) A[idctxof(A)] = A

(xii) A[τ ◦σ ] = A[τ][σ ]

(xiii) ctxof(A[σ ]) = dom(σ)

• Presheaf of terms

(xiv) a[idctxof(a)] = a

(xv) a[τ ◦σ ] = a[τ][σ ]

(xvi) ctxof(a[σ ]) = dom(σ)

• Typing is natural

(xvii) ctxof(typeof(a)) = ctxof(a)

(xviii) typeof(a[σ ]) = typeof(a)[σ ]

• Representability

(xix) dom(pA) = Γ •A

(xx) cod(pA) = Γ

(xxi) ctxof(qA) = Γ •A

(xxii) typeof(qA) = A[pA]

(xxiii) dom(〈σ ,a〉A) = dom(σ)

(xxiv) cod(〈σ ,a〉A) = cod(σ) •A

(xxv) pA ◦ 〈σ ,a〉A = σ

(xxvi) qA[〈σ ,a〉A] = a

(xxvii) 〈pA ◦σ ,qA[σ ]〉A = σ

The domains of definition of the partial symbols are given as follows:

Def(comp( f ,g)) = {cod( f ) = dom(g)}
Def(substty(σ ,A)) = {ctxof(A) = cod(σ)}
Def(substtm(σ ,a)) = {ctxof(a) = cod(σ)}
Def(indsub(σ ,a,A)) = {cod(σ) = ctxof(A), typeof(a) = A[σ ]}

2.2.2 Theorem — Natural models are captured by TNM

Specifying a model of the theory TNM (Definition 2.2.1) is equivalent to specifying a natural model
(Definition 2.1.1).

Proof. A model M of T consists of four sets MCtx, MSub, MType and MTerm, together with fif-
teen functions domM,codM, . . . , indM whose domains and codomains are determined by the sorts,
arities and domains of definition described in Definition 2.2.1.

Equations (i)–(vii) say precisely that the data (MCtx,MSub,dom
M,codM, idM,compM) defines a
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36 Chapter 2. Categories of natural models

(necessarily small) category C. Equations (viii)–(x) say precisely that �M is a terminal object of
C, with esubM(Γ ) : Γ → �M being the unique morphism from an object Γ of C to �M. We need
not (and do not) specify esubM when defining a natural model, since its unique existence follows
from the assertion that �M is terminal.

Equations (xi)–(xiii) say that MType and the functions ctxofMty and substMty together define a presheaf
U : Cop→ Set in the following way: the set U (Γ ) is given by (ctxofMty )

−1(Γ ) ⊆MType, and the
action of U on morphisms is defined by U (σ) : A 7→ substMty (σ ,A), with the equations telling us
that this action is contravariantly functorial with the correct domain and codomain. Conversely,
given a presheaf U : Cop → Set, we can take MType to be the disjoint union of the sets U (Γ ),
with ctxofMty given by the projection map to MCtx = ob(C) and the function substMty given by
(σ ,A) 7→ U (σ)(A). Likewise, equations (xiv)–(xvi) say that specifying MTerm and the functions
ctxofMtm and substMtm is equivalent to defining a presheaf

.
U : Cop→ Set.

Equations (xvii)–(xviii) say that typeofM defines a natural transformation p :
.

U → U . Indeed,
equation (xvii) says that the restriction of typeofM to

.
U (Γ )= (ctxofMtm)

−1(Γ ) has image contained
in U (Γ ) = (ctxofMty )

−1(Γ ), so that we obtain a function pΓ :
.

U (Γ )→U (Γ ); and equation (xvii)
says that the naturality squares for p commute for each morphism σ : ∆ → Γ in C.

Equations (xix)–(xxvii) say precisely that for each Γ ∈ ob(C) and A∈U (Γ ), the data cextM(Γ ,A),
projM and varM exhibit p as a representable natural transformation. Indeed, equations (xix)–(xxi)
say that these data have the required types; equation (xxii) says that the following square commutes;

y(cextM(Γ ,A))
.

U

y(Γ ) U

varM(A)

y(projM(A)) p

A

and equations (xxiii)–(xvii) exhibit the square as a pullback, with indsubM giving the morphisms
induced from the universal property of pullbacks. Note that we need not (and do not) specify
indsubM when defining a natural model, since its unique existence follows from the universal
property.

2.2.3. Categories with families (Definition 1.1.9) can also be described as models of TNM—that is,
natural models and categories with families are different (but equivalent) presentations of the same
essentially algebraic theory.
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Type theoretic structure as essentially algebraic structure

2.2.4 Definition — Theory of natural models with a distinguished set of basic types
Given a set I, the theory of natural models admitting an I-indexed set of basic types is the
theory T(tyi)i∈I extending T by adding a new total symbol btypei : Type for each i ∈ I, together with
the equation ctxof(btypei) = � for each i ∈ I.

Evidently we have the following characterisation of natural models with a distinguished set of basic
types.

2.2.5 Theorem
Specifying a model M of the theory T(tyi)i∈I is equivalent to specifying a natural model (C, p)
together with an I-indexed set {Oi | i ∈ I} ⊆U (�).

2.2.6 Definition — Theory of natural models with a distinguished set of terms of basic types
Given a set J, the theory of natural models admitting a J-indexed set of terms of basic types
is the theory T(tm j) j∈I extending T by adding a new total symbol bterm j : Term for each j ∈ J,
together with the equation ctxof(bterm j) = � for each j ∈ J.

2.2.7 Theorem
Specifying a model M of the theory T(tm j) j∈J is equivalent to specifying a natural model (C, p)

together with an J-indexed set {o j | j ∈ J} ⊆
.

U (�).

Note that a natural model admitting a J-indexed set of basic terms automatically has the structure
of a natural model admitting a J-indexed set of basic types by taking {p�(o j) | j ∈ J} to be the
distinguished set of basic types. As a result, there is a forgetful functor from the category of natural
models admitting a J-indexed set of basic types to the category of natural models admitting a
J-indexed set of basic types.

2.2.8 Definition — Theory of natural models admitting a unit type
The theory of natural models admitting a unit type is the essentially algebraic theory T1 ex-
tending T as follows.

• The new symbols and their arities are indicated in the following table.

Name Symbol (with arity & sorts) Shorthand
unit type† unit : Type
term of unit type† star : Term

• The new equations are as follows.

(i) ctxof(unit) = �
(ii) typeof(star) = unit
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38 Chapter 2. Categories of natural models

(iii) punit = t�•unit

(iv) qunit = star[t�•unit]

• There are no additional domains of definition to specify, since both new symbols are total.

2.2.9 Theorem
Specifying a model M of T1 is equivalent to specifying a natural model (C, p) together with
elements 1̂ ∈U (�) and ?̂ ∈

.
U (�) such that the following square is a pullback.

y(�)
.

U

y(�) U

?̂

y
p

1̂

Proof. Take 1̂= unitM and ?̂= starM. Equations (i) and (ii) say that these have the correct types
and that the square in the statement of the theorem commutes. Equation (iii) is redundant since the
codomain of p

1
is terminal.

Equation (iv) is equivalent to the assertion that the square is a pullback. Indeed, suppose (iv) holds,
and let Γ ∈ ob(C) and a ∈

.
U (Γ ; 1̂[tΓ ]).

y(Γ )

y(�)
.

U

y(�) U

y(tΓ )

a

y(tΓ )

?̂

p

1̂

Then we have

a = qunit[〈tΓ ,a〉unit] by Definition 2.2.1(xxvi)

= star[t�•unit][〈tΓ ,a〉unit] by Definition 2.2.8(iv)

= star[punit][〈tΓ ,a〉unit] by Definition 2.2.8(iii)

= star[punit ◦ 〈tΓ ,a〉unit] by Definition 2.2.1(xv)

= star[tΓ ] by Definition 2.2.1(xxv)
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Section 2.2. The essentially algebraic theory of natural models 39

Uniqueness of tΓ is immediate from the fact that its codomain is terminal.

Conversely, if the square is a pullback, then take Γ = � • 1̂ and a = q
1̂

in the above. Since t�•1̂ is
the morphism induced by the universal property of the pullback, we have ?̂[t�•1̂] = q

1̂
, so that (iv)

holds.

2.2.10 Definition — Theory of natural models admitting dependent sum types
The theory of natural models admitting dependent sum types is the essentially algebraic theory
TΣ extending T as follows.

• The new symbols and their arities are indicated in the following table.

Name Symbol (with arity & sorts) Shorthand
dependent sum type sigma : Type×Type → Type
pairing pair : Type×Type×Term×Term → Term
first projection fst : Type×Type×Term → Term
second projection snd : Type×Type×Term → Term

• The new equations are as follows:

� Dependent sum type-former
(i) ctxof(sigma(A,B)) = ctxof(A)

(ii) sigma(A,B)[σ ] = sigma(A[σ ],B[σ •A])

� Pairing term-former
(iii) typeof(pairA,B(a,b)) = sigma(A,B)

(iv) pairA,B(a,b)[σ ] = pairA[σ ],B[σ •A](a[σ ],b[σ ])

� First and second projections
(v) typeof(fstA,B(p)) = A

(vi) fstA,B(p)[σ ] = fstA[σ ],B[σ •A](p[σ ])

(vii) typeof(sndA,B(p)) = B[〈idctxof(A), fstA,B(p)〉A]
(viii) sndA,B(p)[σ ] = sndA[σ ],B[σ •A](p[σ ])

� Computation rules
(ix) fstA,B(pair(a,b)) = a

(x) sndA,B(pair(a,b)) = b

(xi) pairA,B(fstA,B(p),sndA,B(p)) = p

• The domains of definition of the partial symbols are given as follows.
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40 Chapter 2. Categories of natural models

Def(sigma(A,B)) = {ctxof(A) •A = ctxof(B)}
Def(pairA,B(a,b)) = {ctxof(A) •A = ctxof(B), typeof(a) = A, typeof(b) = B[〈idctxof(A),a〉A]}
Def(fstA,B(p)) = {ctxof(A) •A = ctxof(B), typeof(p) = sigma(A,B)}
Def(sndA,B(p)) = {ctxof(A) •A = ctxof(B), typeof(p) = sigma(A,B)}

2.2.11 Theorem
Specifying a model M of TΣ is equivalent to specifying a natural model (C, p) together with natural
transformations Σ̂ and p̂air such that the following diagram is a pullback.

∑
A:U

∑
B:U [A]

∑
a:[A]

[B(a)]
.

U

∑
A:U

U [A] U

π

p̂air

y
p

Σ̂

Proof. Suppose M is a model of TΣ with underlying natural model (C, p). By Lemma 1.2.11 there
is a natural bijection

ξΓ :

(
∑

A∈U
U [A]

)
(Γ )∼= ∑

A∈U (Γ )

U (Γ •A)

so define Σ̂Γ to be the composite with ξΓ of the restriction of sigmaM to ∑
A∈U (Γ )

U (Γ •A). Equation

(i) ensures that the image of Σ̂Γ is contained in U (Γ ), so that the functions Σ̂Γ have the correct
codomains, and equation (ii) tells us that Σ̂ is natural.

Likewise, by Lemma 1.2.12 there is a natural bijection

ζΓ :

(
∑

A∈U
∑

B∈U [A]
∑

a∈[A]
[B(a)]

)
(Γ )∼= ∑

A∈U (Γ )
∑

B∈U (Γ •A)
∑

a∈
.

U (Γ ;A)

.
U (Γ ;B[s(a)])

which allows us to translate between pairM and p̂air; equation (iii) tells us that the components
of p̂air have the correct types and that the square commutes, and equation (iv) tells us that it is a
natural transformation.

Equations (v)–(viii) then describe the morphisms induced by the universal property of the pull-
backs, as indicated in the following diagram, in which we have A ∈ U (Γ ), B ∈ U (Γ • A) and
p ∈

.
U (Γ ; Σ̂Γ (A,B)).

40
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y(Γ )

∑
A:U

∑
B:U [A]

∑
a:[A]

[B(a)]
.

U

∑
A:U

U [A] U

(A,B)

p

(A,B,fstM(A,B,p),sndM(A,B,p))

π

p̂air

p

Σ̂

Equations (ix) and (x) then say that the dashed morphism makes the required triangles commute,
and equation (xi) says that it is the unique such morphism.

2.2.12 Definition — Theory of natural models admitting dependent product types
The theory of natural models admitting dependent product types is the essentially algebraic
theory TΠ extending T as follows.

• The new symbols and their arities are indicated in the following table.

Name Symbol (with arity & sorts)
dependent product type pi : Type×Type → Type
λ -abstraction lambda : Type×Type×Term → Term
application app : Type×Type×Term×Term → Term

• The new equations are as follows.

� Dependent product type-former
(i) ctxof(pi(A,B)) = ctxof(A)

(ii) pi(A,B)[σ ] = pi(A[σ ],B[σ •A])

� λ -abstraction term-former
(iii) typeof(lambdaA,B(b)) = pi(A,B)
(iv) lambdaA,B(b)[σ ] = lambdaA[σ ],B[σ •A](b[σ •A])

� Application
(v) typeof(appA,B( f ,a)) = B[〈idctxof(A),a〉A]

(vi) appA,B( f ,a)[σ ] = appA[σ ],B[σ •A]( f [σ ],a[σ ])

� Computation rules
(vii) appA,B(lambdaA,B(b),a) = b[〈idctxof(A),a〉A]
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42 Chapter 2. Categories of natural models

(viii) lambdaA,B(appA,B( f [pA],qA)) = f

• The domains of definition of the partial symbols are given as follows.

Def(pi(A,B)) = {ctxof(A) •A = ctxof(B)}
Def(lambdaA,B(b)) = {ctxof(A) •A = ctxof(B), typeof(b) = B}
Def(appA,B( f ,a)) = {ctxof(A) •A = ctxof(B), typeof( f ) = pi(A,B), typeof(a) = A}

2.2.13 Theorem
Specifying a model M of TΠ is equivalent to specifying a natural model (C, p) together with natural
transformations Π̂ and λ̂ such that the following square is a pullback.

∑
A:U

.
U [A]

.
U

∑
A:U

U [A] U

λ̂

∑
A:U

p[A]

y
p

Π̂

Proof. Suppose M is a model of TΠ with underlying natural model (C, p). Again using Lemma 1.2.11
there is a natural bijection

ξΓ :

(
∑

A∈U
U [A]

)
(Γ )∼= ∑

A∈U (Γ )

U (Γ •A)

so define Π̂Γ to be the composite with ξΓ of the restriction of piM to ∑
A∈U (Γ )

U (Γ •A). Equation

(i) ensures that the image of Π̂Γ is contained in U (Γ ), so that the functions Π̂Γ have the correct
codomains, and equation (ii) tells us that Π̂ is natural.

Likewise, by Lemma 1.2.11 again, there is a natural bijection

ζΓ :

(
∑

A∈U

.
U [A]

)
(Γ )∼= ∑

A∈U (Γ )

.
U (Γ •A)

which allows us to translate between lambdaM and λ̂ ; equation (iii) tells us that the components of
λ̂ have the correct types and that the square commutes, and equation (iv) tells us that it is a natural
transformation.
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Section 2.2. The essentially algebraic theory of natural models 43

Equations (v)–(vi) then describe the morphisms induced by the universal property of the pull-
back indicated in the following diagram, in which we have A ∈ U (Γ ), B ∈ U (Γ • A) and f ∈.
U (Γ ;Π̂Γ (A,B)).

y(Γ )

∑
A∈U

.
U [A]

.
U

∑
A∈U

U [A] U

f

(A,B)

(A,λx:A.appM( f ,x))

∑
A∈U

U [A]

λ̂

p

Π̂

Equation (vii) then say that the dashed morphism makes the required triangles commute, and equa-
tion (viii) says that it is the unique such morphism.

2.2.14. Although we have only discussed adding type theoretic structure to a ‘pure’ natural model,
we can combine the theories above in a modular way in order to add structure to an already struc-
tured natural model. For example, a natural model admitting a unit type and dependent sum types
is a natural model equipped with data making it both a model of T1 and of TΣ, or equivalently
a natural model equipped with data satisfying the hypotheses of both Theorem 2.2.9 and The-
orem 2.2.11.

All of the theories discussed above are finitary essentially algebraic theories, except possibly for
the theories of natural models admitting an I-indexed family of basic types or a J-indexed family
of basic terms, which are max{|I|, |J|}-ary (and finitary when I and J are finite).

2.2.15 Definition — Locally presentable categories [AR94]
Let λ be a regular cardinal and let C be a category. An object A of C is λ -presentable if the functor
C (A,−) : C → Set preserves λ -directed colimits. The category C is locally λ -presentable if it is
cocomplete and has a small set A ⊆ ob(C ) of λ -presentable objects such that every object of C is
a λ -directed colimit of objects in A .

It is known [AR94, Theorem 3.36] that for an regular cardinal λ , a category is a model of a λ -ary
essentially algebraic theory if and only if it is locally λ -presentable. As such all of our categories
of suitably structured natural models will satisfy the properties enjoyed by locally presentable
categories more generally, such as cocompleteness.
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44 Chapter 2. Categories of natural models

In particular, given a dependent type theory T, the category NMT of natural models admitting the
type theoretic structure in T has an initial object (CT, pT). A long term goal for future work is to
prove that (CT, pT) can be described as the term model Construction 4.1.1 of T, for an arbitrary
type theory T.

Moreover, given a subtheory T′ ⊆ T, we obtain from the essentially algebraic character of natural
models a forgetful functor U : NMT→ NMT′ , which has a left adjoint F : NMT′ → NMT. Given
a natural model (C, p) admitting the type theoretic structure of T′, the object F(C, p) of NMT is
then the free natural model on C which supports the type theoretic structure of T. In Chapter 4, we
will describe some examples explicitly.
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Section 2.3. Morphisms of natural models 45

Section 2.3

Morphisms of natural models

Since a natural model is a model of an essentially algebraic theory, there is a canonical notion of
homomorphism of natural models, namely maps between the sorts commuting with the structure.

2.3.1 Definition — Morphisms of natural models
Let (C, p) and (D,q) be natural models. A morphism of natural models is a homomorphism
from (C, p) to (D,q), with (C, p) and (D,q) considered as models of the essentially algebraic
theory TNM (Definition 2.2.1). The category of all natural models and morphisms between them is
denoted by NM.

Explicitly, Definition 2.3.1 says that a morphism of natural models is a quadruple of functions
(FCtx,FSub,FTerm,FType) such that:

• (FCtx,FSub) defines a functor C→ D strictly preserving distinguished terminal objects;

• FTerm : ∑
Γ∈ob(C)

U (Γ )→ ∑
Γ∈ob(D)

V (Γ ) respecting contexts and substitutions;

• FType : ∑
Γ∈ob(C)

.
U (Γ )→ ∑

Γ∈ob(D)

.
V (Γ ) respecting contexts and substitutions;

and such that the representability data and typing are preserved, in the sense that for each Γ ∈ ob(C)
and each A ∈U (Γ ), we have

FCtx(Γ •A) = FCtx ◦FA, FSub(pA) = uFType(A) and FTerm(qA) = vFType(A)

and FTerm(a) ∈
.

V (FCtx(Γ ),FType(A)) for all a ∈
.

U (Γ ,A). Identity and composition of natural
models are then given by the corresponding identity functions and composites of functions, re-
spectively.

Note that the structure specified for models of TNM but not for natural models, that is the substitu-
tions tΓ : Γ →� and 〈σ ,a〉A : ∆ →Γ •A, are preserved automatically provided the above conditions
hold.

The goal of this section is to provide characterisations of morphisms of natural models which will
be more convenient for our purposes.

2.3.2 Theorem — Morphisms of natural models via categories of elements
Let (C, p) and (D,q) be natural models. Specifying a morphism F : (C, p)→ (D,q) is equivalent to
specifying a functor F0 : C→ D preserving distinguished terminal objects, together with functors

F1 :
∫
C

U →
∫
D

V and F2 :
∫
C

.
U →

∫
D

.
V
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46 Chapter 2. Categories of natural models

such that

• The following diagram of categories and functors commutes;

∫
C

.
U

∫
D

.
V

∫
CU

∫
DV

C D

F2

∫
p

π

∫
q

π

F1

π π

F0

• F1 and F2 respect the adjunctions
∫

p a p∗ and
∫

q a q∗, in the sense that F2 ◦ p∗ = q∗ ◦F1 and,
letting (η ,ε) and (σ ,τ) be the respective (unit, counit) pairs, the following pasting diagrams
commute.

∫
CU

∫
CU

∫
C

.
U

∫
C

.
U

∫
DV

∫
DV

∫
D

.
V

∫
D

.
V

p◦p∗

id

ε

F1 F1

id

q∗◦q

η

F2 F2

q◦q∗

id

τ

id

q∗◦q

σ

Proof. Evidently the functor F0 is precisely the functor determined by FCtx and FSub. The func-
tor F1 determines and is determined by FType; explicitly, on objects (Γ ,A) we have F1(Γ ,A) =
(FCtx(Γ ),FType(A)) and on morphisms σ : ∆ → Γ by F1(σ) = FSub(σ). The fact that F1 is a func-
tor is immediate from the facts that F0 is a functor and that FType respects contexts and substitutions.
The correspondence between F2 and FTerm is obtained likewise.

Commutativity of the bottom and outer squares is equivalent to the assertion that F1 and F2 agree
with F0 on their first components, which is immediate from their construction. Commutativity of
the top square is equivalent to the assertion that FType and FTerm respect typing.

That F1 and F2 respect the adjunctions
∫

p a p∗ and
∫

q a q∗ is equivalent to preservation of repres-
entability data. Indeed, the equation F2 ◦ p∗ = q∗ ◦F1 says that FCtx(Γ •A) = FCtx(Γ ) •FType(A) and
FTerm(qA) = vFType(A)

; preservation of counits says that FSub(pA) = uFType(A)
. Preservation of units

corresponds with preservation of induced substitutions 〈σ ,a〉A.
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Section 2.3. Morphisms of natural models 47

The characterisation of morphisms of natural models as a triple of functors given by Theorem 2.3.2
is useful because it is easy to mediate between this description and the explicit description of
homomorphisms of models of TNM, and composition is simply given by composition of functors.
A drawback of this description, however, is that when working with natural models directly, it
becomes cumbersome to construct categories of elements and keep track of units and counits.

Our next characterisation of morphisms of natural models allows us to work more directly with the
representable natural transformations themselves. Recall that every functor F : C→ D between
small categories induces an adjoint triple F! a F∗ a F∗ between the corresponding categories of
presheaves, where F∗ is given by precomposition by F .

Ĉ D̂

F!

F∗

F∗
⊥

⊥

A morphism of natural models F : (C, p)→ (D,q) then induces functions U (Γ )→ V (FΓ ) =

F∗V (Γ ) and
.

U (Γ )→
.

V (FΓ ) = F∗
.

V (Γ ), given by the restrictions of FType and FTerm, respect-
ively. We will see (Theorem 2.3.7) that these functions are the components of natural transform-
ations ϕ : U → F∗V and

.
ϕ :

.
U → F∗

.
V , respectively, which correspond under the adjunction

F! a F∗ with natural transformations F!U → V and F!
.

U →
.

V .

The choice of whether to work with the left adjoint F! or the right adjoint F∗ is largely arbitrary, and
we will translate between the two freely. The left adjoint convention will be convenient in some
settings because F! commutes with Yoneda embeddings; meanwhile, the right adjoint convention
will be convenient in other settings because F∗ can be described explicitly with ease.

2.3.3 Definition — Premorphisms of natural models
Let (C, p) and (D,q) be natural models. A premorphism of natural models from (C, p) to (D,q)
is a triple (F,ϕ,

.
ϕ) consisting of a functor F : C→ D preserving distinguished terminal objects,

and natural transformations ϕ : F!U → V and
.

ϕ : F!
.

U →
.

V satisfying q◦ .
ϕ = ϕ ◦F! p.

F!
.

U
.

V

F!U V

.
ϕ

F! p (?) q

ϕ

2.3.4. We will write F : (C, p)⇁ (D,q) to denote the assertion that F = (F,ϕ,
.

ϕ) is a premorphism
from (C, p) to (D,q). Given Γ ∈C, A∈U (Γ ) and a∈

.
U (Γ ), write FA for the element of V (FΓ )
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48 Chapter 2. Categories of natural models

given by composite
y(FΓ ) = F!y(Γ )

F!A−−→ F!U
ϕ−→ V

and write Fa for the element of
.

V (FΓ ) given by the composite

y(FΓ ) = F!y(Γ )
F!a−→ F!

.
U

.
ϕ−→

.
V

Note that commutativity of (?) implies that if Γ ` a : A in (C, p), then FΓ ` Fa : FA in (D,q), since

qFΓ (Fa) = qFΓ ◦
.

ϕ ◦F!a = ϕ ◦F! pΓ ◦F!a = ϕ ◦F!(pΓ (a)) = ϕ ◦F!A = FA

2.3.5. In Definition 2.3.3 we adopted the left adjoint convention. Under the right adjoint con-
vention, a premorphism from (C, p) to (D,q) consists of a functor F : C→ D preserving distin-
guished terminal objects and natural transformations ϕ : U → F∗V and

.
ϕ :

.
U → F∗

.
V satisfying

F∗q ◦ .
ϕ = ϕ ◦ p. Then given Γ ∈ ob(C), A ∈ U (Γ ) and a ∈

.
U (Γ ;A), the elements FA and Fa

described in Paragraph 2.3.4 are given by FA = ϕΓ (A) and Fa =
.

ϕΓ (a).

2.3.6 Lemma — Lax preservation of context extension
Let F : (C, p)⇁ (D,q) be a premorphism of natural models. For each Γ ∈ ob(C) and A ∈U (Γ ),
there is a unique morphism τA : F(Γ •A)→ FΓ •FA in D such that uFA ◦ τA = FpA and vFA[τA] =
FqA.

Proof. We obtain τA as the morphism 〈FpA,FqA〉FA : F(Γ •A)→ FΓ •FA in D.

y(F(Γ •A))

y(FΓ •FA)
.

V

y(FΓ ) V

y(FpA)

y(FqA)

τA

vFA

y(uFA)

y
q

FA

To see that the outer square truly does commute, note that it is obtained as the outer square of the
following diagram.

y(F(Γ •A)) F!y(Γ •A) F!
.

U
.

V

y(FΓ ) F!y(Γ ) F!U V

y(FpA)

F!qA

F!y(pA)

.
ϕ

F! p q

F!A ϕ
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Section 2.3. Morphisms of natural models 49

The left-hand square commutes since F! commutes with Yoneda embeddings; the middle square
commutes since it is the result of applying F! to the pullback square exhibiting y(pA) as a pullback
of p; and the right-hand square commutes since (F,ϕ,

.
ϕ) is a premorphism of natural models.

2.3.7 Theorem — Functorial characterisation of morphisms of natural models
Let (C, p) and (D,q) be natural models. Specifying a morphism of natural models from (C, p) to
(D,q) is equivalent to specifying a premorphism (F,ϕ,

.
ϕ) : (C, p) ⇁ (D,q) such that F respects

context extension (in the sense that F(Γ •A) = FΓ •FA for each Γ ∈ ob(C) and A ∈ U (Γ )), and
such that the morphisms τA : F(Γ •A)→ FΓ •FA of D are all identity morphisms.

Proof. Specifying a premorphism (F,ϕ,
.

ϕ) is equivalent to specifying a homomorphism of the the-
ory of a category with a terminal object and a natural transformation between presheaves (equations
(i)–(xviii) of Definition 2.2.1). To see this, note that specifying a functor F : C→ D is equivalent
to specifying the pair (FCtx,FSub).

We will use the right adjoint convention (see Paragraph 2.3.5) for the natural transformations ϕ,
.

ϕ .
For each Γ ∈ ob(C), the component ϕΓ : U (Γ )→ V (FΓ ) corresponds with the appropriate re-
striction of FType, and likewise the component

.
ϕΓ :

.
U (Γ )→

.
V (FΓ ) corresponds with the appro-

priate restriction of FTerm. That ϕ and
.

ϕ are natural corresponds with the fact that they respect
substitutions, and that the square (?) commutes corresponds with the fact that they respect typing.

Finally, given Γ ∈ ob(C) and A ∈ U (Γ ), then note that FpA = uFA and FqA = qFA if and only if
τA = idF(Γ •A), since by the universal property of pullbacks, τA is the unique morphism satisfying
uFA ◦ τA = FpA and vFA[τA] = FqA.

We will use the characterisation of morphisms of natural models given in Theorem 2.3.7 almost
exclusively in our proofs, so from now on we will typically use the term ‘morphism of natural
models’ to mean a premorphism preserving representability data.

2.3.8. Let (F,ϕ,
.

ϕ) : (C, p)→ (D,q) and (G,ψ,
.

ψ) : (D,q)→ (E,r) be morphisms of natural mod-
els.

(a) Under the left adjoint convention, the composite (G,ψ,
.

ψ) ◦ (F,ϕ, .
ϕ) : (C, p)→ (E,r) is

given by (G◦F,ψ ◦G!ϕ ◦µ,
.

ψ ◦G!
.

ϕ ◦ .
µ), where µ : (GF)!U →G!F!U and

.
µ : (GF)!

.
U →

G!F!
.

U are the canonical isomorphisms (Theorem 1.3.7).

(b) Under the right adjoint convention, the composite (G,ψ,
.

ψ) ◦ (F,ϕ, .
ϕ) : (C, p)→ (E,r) is

given by (G◦F,F∗ψ ◦ϕ,F∗
.

ψ ◦ .
ϕ).
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50 Chapter 2. Categories of natural models

Weak morphisms of natural models

Theorem 2.3.7 suggests that we may obtain a weaker notion of morphism of natural models by
weakening the requirement that the morphism τA : F(Γ •A)→ FΓ •FA be an identity morphism to
the requirement that it be an isomorphism.

2.3.9 Definition — Weak morphisms of natural models
Let (C, p) and (D,q) be natural models. A weak morphism of natural models from (C, p) to
(D,q) is a premorphism (F,ϕ,

.
ϕ) such that the morphisms τA : F(Γ •A)→ FΓ •FA are isomorph-

isms for each Γ ∈ ob(C) and each A ∈U (Γ ).

2.3.10. Write F : (C, p)→ (D,q) to denote the assertion that F = (F,ϕ,
.

ϕ) is a (strict) morphism of
natural models, and write F : (C, p)→wk (D,q) to denote the assertion that F = (F,ϕ,

.
ϕ,σ ,(τA))

is a weak morphism of natural models. We denote the category of natural models and weak morph-
isms by NMwk. Note that there is an embedding NM ↪→ NMwk obtained by taking the coherence
isomorphisms to be identities.

We will now explore some ways of characterising weak morphisms of natural models.

2.3.11 Definition — Preservation of canonical pullback squares
A premorphism of natural models F : (C, p) ⇁ (D,q) (weakly) preserves canonical pullback
squares (Construction 2.1.6) if, for each σ : ∆ →Γ in C and each A∈U (Γ ), the following square
is a pullback

F(∆ •A[σ ]) F(Γ •A)

F∆ FΓ

F(σ •A)

FpAσ
FpA

Fσ

We say F strictly preserves canonical pullback squares if, additionally, we have

F(∆ •A[σ ]) F(Γ •A) F∆ ◦FA[Fσ ] FΓ ◦FA

F∆ FΓ F∆ FΓ

F(σ •A)

FpAσ
FpA

Fσ◦FA

uFA[Fσ ]

y
= uFA

Fσ Fσ

2.3.12 Lemma
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Section 2.3. Morphisms of natural models 51

Let (C, p) be a natural model. The map p :
.

U →U is covered by

∑
(Γ ,A)∈

∫
U

pΓ
A : ∑

(Γ ,A)∈
∫

U

y(Γ •A)−→ ∑
(Γ ,A)∈

∫
U

y(Γ )

Proof. Since U is a colimit of representable presheaves, indexed by
∫
CU , we have a cover

ρ = [A | (Γ ,A) ∈
∫
CU ] : ∑

(Γ ,A)∈
∫

U

y(Γ )�U

Representability of p yields the following pullback square

∑
(Γ ,A)∈

∫
U
y(Γ •A)

.
U

∑
(Γ ,A)∈

∫
U
y(Γ ) U

.
ρ

∑ypΓ
A

y
p

ρ

where
.
ρ =

[
qΓ

A

∣∣ (Γ ,A) ∈
∫
CU

]
. Since ρ is a regular epimorphism, so is

.
ρ .

2.3.13 Lemma
Let F = (F,ϕ,

.
ϕ) : (C, p)⇁ (D,q) be a premorphism of natural models. Then F is a weak morph-

ism of natural models if and only if F weakly preserves canonical pullback squares.

Proof. Given σ : ∆ → Γ in C and A ∈U (Γ ), consider the following diagram:

F∆ ◦FA[Fσ ] FΓ ◦FA

F(∆ •A[σ ]) F(Γ •A)

F∆ FΓ

Fσ◦FA

pFA[Fσ ]
pFA

F(σ •A)

FpA[σ ]

τA[σ ]

FpA

τA

Fσ
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52 Chapter 2. Categories of natural models

The outer square is a pullback by representability of q, and the fact that (F,ϕ,
.

ϕ) is a premorphism
of natural models yields the morphisms τA and τA[σ ] as indicated and making the diagram commute.

Now F is a weak morphism of natural models if and only if τA and τA[σ ] are coherent isomorphisms.
If they are coherent isomorphisms, then the inner square is a pullback, so that F preserves display
pullbacks.

Conversely, if F preserves display pullbacks, then the inner and outer squares are both pullbacks.
This implies that τA and τA[σ ] are the canonical isomorphisms induced by the universal property of
pullbacks, and hence that they satisfy the coherence laws necessary for F to be a weak morphism
of natural models.

2.3.14 Lemma
Let F : (C, p)→ (D,q) be a weak morphism of natural models. Then the following square is a
pullback.

F!
.

U
.

V

F!U V

.
ϕ

F! p (?) q

ϕ

Proof. By Lemma 2.3.13 it suffices to assume that F preserves canonical pullback squares. Since
F! is a left adjoint, it preserves coproducts and regular epimorphisms, and furthermore F! com-
mutes with the Yoneda embedding. Thus by applying F! to the pullback square in the proof of
Lemma 2.3.12 and pasting (?) on the right, we obtain the following diagram:

∑
(Γ ,A)∈

∫
U
yF(Γ •A) F!

.
U

.
V

∑
(Γ ,A)∈

∫
U
y(FΓ ) F!U V

F!
.
ρ

∑yFpΓ
A

.
ϕ

F! p (?) q

F!ρ ϕ

The outer square is a pullback since F preserves canonical pullback squares. Since F!ρ and F!
.
ρ are

regular epimorphisms, it suffices to prove that the left-hand square is a pullback, for which, in turn,
it suffices to check this on the individual components (Γ ,A) of the left-hand vertical coproduct.
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Section 2.3. Morphisms of natural models 53

To this end, fix Γ ∈ C and A ∈ U (Γ ). It suffices to check the universal property of pullbacks on
representables, so let D ∈ D and let d ∈ (F!

.
U )(D) and δ : D→ FΓ such that F!A◦ yδ = F! p◦d.

yD

yF(Γ •A) F!
.

U

yFΓ F!U

d

yδ

yFpA F! p

Since F!
.

U is covered by representables indexed by
∫
CU (Lemma 2.3.12), there is some ∆ ∈ C,

B ∈U (∆) and d′ : D→ F(∆ •B) such that d factors through yd′. Writing δ ′ = FpB ◦d′ : D→ F∆ ,
we obtain the following commutative diagram.

yD

yF(∆ •B)

F!
.

U

yF(Γ •A)

yF∆

F!U

yFΓ

yδ ′

yδ

yd′

d

yFpB

F! p

yFpA
F!B

F!A

Now note that, in the category Set, we have

(F!U )(D)∼=

(
∑

(Γ ,A)∈
∫

U

D(D,FΓ )

)/
∼
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54 Chapter 2. Categories of natural models

where ∼ is the equivalence relation determined by the characterisation of colimits as coequalisers,
and the component at (Γ ,A) of the quotient map ∑(Γ ,A)∈

∫
U D(D,FΓ )→ (F!U )(D) is given by

(F!A)D : D(D,FΓ )→ (F!U )(D).

Now identifying maps yD→ F!U with elements of (F!U )(D) (as usual, by the Yoneda lemma),
we have

(F!A)D(δ ) = F!A◦ yδ = F! p◦d = F!B◦ yFpB ◦ yd′ = F!B◦ yδ
′ = (F!B)D(δ

′)

and so δ and δ ′ are in the same ∼-equivalence class. It follows that there exists a zigzag of
morphisms in

∫
CU connecting δ with δ ′, in the sense that there exist:

• A natural number n> 1;

• Objects (Θi,Ci) ∈
∫
CU for all 06 i6 2n, with (Θ0,C0) = (Γ ,A) and (Θ2n,C2n) = (∆ ,B);

• Morphisms Θ2i
θ2i←−Θ2i+1

θ2i+1−−−→Θ2i+2 for all 06 i< n, such that C2i+1[θ2i] =C2i and C2i+1[θ2i+1] =
C2i+2 for all i; and

• Morphisms δi : D→ FΘi for all 06 i6 2n, with δ0 = δ and δ2n = δ ′, such that Fθ2i◦δ2i+1 =
δ2i and Fθ2i+1 ◦δ2i+1 = δ2i+2 for all 06 i < n;

By the assumption that F preserves canonical pullback squares, and since the Yoneda embedding
preserves limits, there is a zigzag of pullbacks connecting yFpA with yFpB as indicated by squiggly
arrows in the following diagram.

yD

yF(∆ •B)

F!
.

U

yF(Γ •A)

yF∆

F!U

yFΓ

yδ ′

yδ

yd′

d

yFpB

F! p

yFpA
F!B

F!A
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The detail of this zigzag of pullbacks is illustrated in the following commutative diagram.

yD

yF(Γ •A) yF(Θ1 •C1) yF(Θ2 •C2) yF(Θ2n−2 •C2n−2) yF(Θ2n−1 •C2n−1) yF(∆ •B)

yFΓ yFΘ1 yFΘ2 yFΘ2n−2 yFΘ2n−1 yF∆

F!U

yδ2n

yδ2n−1yδ2n−2yδ2
yδ1

yδ0

yd′

yFpA yFpC1

yx

yFpC2

···

yFpC2n−2
yFpC2n−1

yx

yFpB

···

F!A

F!C1
F!C2 F!C2n−2

F!C2n−1

F!B

We proceed by induction. Let d2n = d′ : D→F(∆ •B). The universal property of the rightmost pull-
back square yields a unique morphism d2n−1 : D→Θ2n−1 •C2n−1 making the appropriate triangles
commute, and composing with F(θ2n−1 •C2n−1), we obtain a morphism d2n−2 : D→ F(Θ2n−2 →
C2n−2) which satisfies FpC2n−2

◦d2n−2 = δ2n−2 : D→ FΘ2n−2.

Repeating this process n−1 more times yields sequence of morphisms di : D→ F(Θi •Ci) making
the required triangles commute; in particular, we obtain a morphism d0 : D→ F(Γ •A) satisfying
FpA = δ0 and F!qA ◦ yd0 = d, as illustrated in the following diagram.
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yD

yF(Γ •A) yF(Θ1 •C1) yF(Θ2 •C2) yF(Θ2n−2 •C2n−2) yF(Θ2n−1 •C2n−1) yF(∆ •B)

yFΓ yFΘ1 yFΘ2 yFΘ2n−2 yFΘ2n−1 yF∆

F!U

yδ2n

yδ2n−1yδ2n−2yδ2
yδ1

yδ0

yd2n

yd2n−1
yd2n−2yd2

yd1

yd0

yFpA yFpC1

yx

yFpC2

···

yFpC2n−2
yFpC2n−1

yx

yFpB

···

F!A

F!C1
F!C2 F!C2n−2

F!C2n−1

F!B

To see that d0 is the unique such morphism, suppose d̂0 were another. Repeating the above process
from left to right (rather than from right to left) yields a sequence of morphisms d̂i : D→ F(Θi •Ci)
induced from the fundamental property of pullbacks. It follows that d̂2n = d2n, and hence working
again from right to left, we obtain d̂i = di for all 06 i6 2n. In particular, d̂0 = d0, so that (?) is a
pullback square.

Proving or refuting the converse to Lemma 2.3.14 is a topic for future work. It would be convenient
if it were true—for example, it would imply that weak morphisms of natural models (C, p)→
(C,q) over a common base category C correspond with cartesian morphisms of polynomials p |⇒ q
(Definition 1.2.17).

Preservation of type theoretic structure

Having found a convenient way to describe morphisms of natural models, we now extend that de-
scription to natural models admitting extra structure. Again, we start with the essentially algebraic
notion.

2.3.15 Definition — Morphisms of natural models preserving type theoretic structure
Let S ⊆ {( tyi | i ∈ I ) ,

(
tm j

∣∣ j ∈ J
)
,0,1,Σ,Π, . . .} be a set describing additional type theoretic
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structure that a natural model may possess (Section 2.2) and let (C, p) and (D,q) be natural models
admitting the type theoretic structure in S. A morphism of natural models preserving S from
(C, p) and (D,q) is a homomorphism from (C, p) to (D,q) considered as models of the essentially
algebraic theory TS. Write NMS for the category of natural models admitting structure from S.

If S′ ⊆ S then there is a forgetful functor NMS→ NMS′ . In particular, there is a forgetful functor
NMS→ NM for any set S of additional type theoretic structure that a natural model may possess.
With this in mind, a morphism on NMS has an underlying morphism of natural models (F,ϕ,

.
ϕ) in

the sense of Theorem 2.3.7, so may be described as a triple (F,ϕ,
.

ϕ) satisfying some properties.

If the additional structure consists only of basic types, terms, an empty type or a unit type, then it is
immediately clear that a morphism of natural models admitting this structure is simply one which
maps the distinguished types and terms of its domain to the corresponding distinguished types and
terms of its codomain.

It remains to describe preservation of dependent sum types and dependent product types. For this,
we note the following two technical lemmas concerning polynomials and presheaves.

2.3.16 Lemma — Precomposition by a functor preserves polynomial composition and application
Let F :C→D be a functor between small categories, and let f : B→A and g : D→C be morphisms
in D̂. Then there are isomorphisms in Ĉ→

F∗(g · f )∼= F∗(g) ·F∗( f ) and F∗(Pg( f ))∼= PF∗(g)(F
∗( f ))

Sketch of proof. To see that F∗(g · f )∼= F∗(g) ·F∗( f ), note that the functor F∗ preserves limits as it
is a right adjoint, and the polynomial composite g · f is obtained by composing a particular pullback
of f with a particular pullback of g (Section 3.2). To see that F∗(Pg( f ))∼= PF∗(g)(F∗( f )), note that
the following diagram commutes up to isomorphism.

1 D̂ D̂/D D̂/C D̂

Ĉ Ĉ/F∗(D) Ĉ/F∗(C) Ĉ

f

F∗( f )

∆D

F∗

Πg

F∗

ΣC

F∗ F∗

∆F∗(D) ΠF∗(g) ΣF∗(C)

The composite from the top left to bottom right along the top gives F∗(Pg( f )), and the composite
along the bottom gives PF∗(g)(F∗( f )).

2.3.17 Lemma — Polynomial composition preserves commutative squares
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58 Chapter 2. Categories of natural models

Let E be a locally cartesian closed category. Polynomial composition extends to a functor

(−) · (−) : E→×E→→ E→

Sketch of proof. Given morphisms f , f ′,g,g′ in E , chase commutative squares f → f ′ and g→ g′

through the construction of the polynomial composites g · f and g′ · f ′ Definition 1.2.13 using the
universal properties of pullbacks and of dependent products. Functoriality follows from uniqueness
in the universal property.

2.3.18 Theorem — Functorial description of preservation of dependent sum types
Let (C, p) and (D,q) be natural models admitting dependent sum types. A morphism of natural
models F : (C, p)→ (D,q) preserves dependent sum types if and only if the following diagram in
Ĉ→ commutes.

p · p p

F∗q ·F∗q F∗(q ·q) F∗q

(Σ̂,p̂air)

(ϕ,
.
ϕ)·(ϕ, .ϕ) (ϕ,

.
ϕ)

∼= F∗(Σ̂,p̂air)

Proof. The morphism (ϕ,
.

ϕ) · (ϕ, .
ϕ) can be expressed in the internal language of Ĉ via the follow-

ing commutative square

∑
A∈U

∑
B∈U [A]

∑
a∈[A]

[B(a)] ∑
A′∈F∗V

∑

B′∈(F∗V )〈A′
∑

a′∈〈A′〉
〈B(a)〉

∑
A∈U

U [A]
∑

A′∈V (FΓ )
V (FΓ •A′)

p·p

((ϕ,
.
ϕ)·(ϕ, .ϕ))1

F∗q·F∗q

((ϕ,
.
ϕ)·(ϕ, .ϕ))0

The component at Γ of this diagram, after application of Lemmas 1.2.11 and 1.2.12, is given by
the following commutative square of sets and functions.
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Section 2.3. Morphisms of natural models 59

∑
A∈U (Γ )

∑
B∈U (Γ •A)

∑

a∈
.

U (Γ ;A)

.
U (Γ ;B(a)) ∑

A′∈V (FΓ )
∑

B′∈V (FΓ ◦A′)
∑

a′∈
.

V (FΓ ;A′)

.
V (FΓ ;B′(a′))

∑
A∈U (Γ )

U (Γ •A) ∑
A′∈F∗V

(F∗V )〈A〉

π π

The morphisms at the top and bottom apply F to each component.

As such, the original square commutes if and only if for all Γ ∈ ob(C), A ∈U (Γ ), B ∈U (Γ •A),
a ∈

.
U (Γ ;A) and b ∈

.
U (Γ ;B(a)), we have

FΣ̂(A,B) = Σ̂(FA,FB) and F p̂air(A,B,a,b) = p̂air(FA,FB,Fa,Fb)

This says that the square in the statement of the theorem commutes if and only if F preserves
dependent sum types, as required.
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Section 3.1

Internal categories

3.1.1 Construction — Full internal subcategories [Jac99]
Let f : B→ A be a morphism in a locally cartesian closed category E . The full internal subcat-
egory of E induced by f is the internal category S( f ) of E defined by

• The object of objects S( f )0 is simply A;

• The object of morphisms S( f )1 together with the pair ∂ = 〈∂0,∂1〉 : S( f )1→ A×A is given
as an object of E /A×A by taking the exponential f f1

2 , where f1 = ∆π1( f ) : B1 → A×A and
f2 = ∆π2( f ) : B2→ A×A are the pullbacks of f along the projections A π1←− A×A π2−→ A.

B B1 B2 B

A A×A A

f
f1

x

f2

y
f

π1 π2

In the internal language of E , we have S( f )1 = ∑
a,a′∈A

BBa
a′ ;

• The identities morphism A→ ∑
a,a′∈A

BBa
a′ is given by a 7→ 〈a,a, idBa〉;

• The composition morphism

∑
a,a′,a′′∈A

BBa′
a′′ ×BBa

a′ → ∑
a,a′′∈A

BBa
a′′

is given by internal composition in E in the expected way.

3.1.2. More generally, a full internal subcategory of a locally cartesian closed category E is an
internal category S of E for which there is a full and faithful fibred functor over E from the exter-
nalisation of C to E→. Every full internal subcategory is isomorphic to one of the form S( f ). This
matter is discussed in great detail in [Jac99], and we will explore the externalisation of full internal
subcategories of Ĉ in Section 3.3.

3.1.3 Definition — Associated full internal subcategory of a natural model
Let (C, p) be a natural model. Its associated full internal subcategory is the full internal subcat-
egory U= S(p) of Ĉ induced by p. Explicitly, we have U0 = U and U1 = ∑

A,B∈U
[B][A], so that we

can think of U as a category whose objects are types and whose morphisms are functions between
types.
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In the same vein as Lemma 1.2.11 and Lemma 1.2.12, the following lemma will allow us to work
more concretely with full internal subcategories.

3.1.4 Lemma
Let f : B→ A be a morphism in a locally cartesian closed category E . Morphisms x : X→ ∑

a,a′∈A
BBa

a′

in E correspond naturally with triples (x1,x2, x̃), where x1,x2 : X→ A in E and x̃ : ∆x1( f )→ ∆x2( f )
in E /X .

Proof. First note that a morphism x : X → ∑
a,a′∈A

BBa
a′ gives rise to a morphism (x1,x2)→ f f1

2 in

E /A×A, where x1 and x2 are the composites of x with the respective projections ∑
a,a′∈A

BBa
a′ → A.

X ∑
a,a′∈A

BBa
a′

A×A

x

(x1,x2)
f f1
2

Now f f1
2 = Π f1∆ f1( f2), so under the adjunction ∆ f1 a Π f1 , a morphism x : (x1,x2)→ f f1

2 corres-
ponds with a morphism x′ : ∆ f1(x1,x2)→ ∆ f1( f2) in E /B1 . Hence it suffices to show that morphisms
x′ : ∆ f1(x1,x2)→ ∆ f1( f2) in E /B2 correspond with morphisms x̃ : ∆x1( f )→ ∆x2( f ) in E /X .

Consider now following diagram, in which all three squares are pullbacks—the fact that the bottom
and front squares are pullbacks follows from the fact that ∆ f (xi)∼= ∆ fi(x1,x2) for i = 1,2. Our goal
is to prove that there is a correspondence between morphisms x′ and morphisms x̃ fitting into the
diagram as indicated with dashed arrows.
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64 Chapter 3. Polynomials and representability

B3

∆x2(B) B2

∆x1(B) B1

X A×A

∆ f2 ( f1)

∆ f1 ( f2)

∆ f (x2)

f2

∆x1 ( f )

∆ f (x1)

x̃

x′

f1

∆x2 ( f )

(x1,x2)

Given x̃, we obtain x′ from the universal property of the right pullback square as the pair x′ =
(∆ f (x2) ◦ x̃,∆ f (x1)). Conversely, given x′, we obtain x̃ from the universal property of the front
pullback as the pair x̃ = (∆ f2( f1)◦x′,∆x1( f )). That the assignments x̃ 7→ x′ and x′ 7→ x̃ are mutually
inverse follows immediately from the ‘uniqueness’ part of the universal property.

3.1.5. As a result of Lemma 3.1.4, when reasoning internally about a full internal subcategory
S( f : B→ A) of a locally cartesian closed category E , we can view the object of objects S( f )0
as an A-indexed family (a | a ∈ A) and the object of morphisms S( f )1 as an A×A-indexed family
( f : Ba→ Ba′ | a,a′ ∈ A). This allows us to reason internally to E about full internal subcategories,
as well as internal functors and internal natural transformations between them, much like we reason
about categories, functors and natural transformations externally.

3.1.6 Lemma
Let (C, p) be a natural model with associated full internal subcategory U. For each object Γ of C,
there is a bijection

U1(Γ )
∼=−→ ∑

A,B∈U (Γ )

C/Γ ((Γ •A,pA),(Γ •B,pB))

which is natural in Γ .

Explicitly, given g ∈ U1(Γ ) and σ : ∆→ Γ in C, if g corresponds with a triple (A,B,h), where
A,B ∈ U (Γ ) and h : Γ •A→ Γ •B over Γ , then g[σ ] corresponds with (A[σ ],B[σ ],h[σ ]), where
h[σ ] : ∆ • A[σ ]→ ∆ • B[σ ] over ∆, as indicated with a dashed arrow in the following diagram in
which the front and back squares are canonical pullback squares (Construction 2.1.6).
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∆ •B[σ ] Γ •B

∆ •A[σ ] Γ •A

∆ Γ

pB[σ ]

σ •B

pB

pA[σ ]

h[σ ]

σ •A

pA

h

σ

Proof. Apply Lemma 3.1.4 with f = p and X = y(Γ ).

3.1.7. Lemma 3.1.6 proves that the associated full internal subcategory of a natural model is equi-
valent to context-indexed family of types [CD14, Proposition 1], the latter regarded as a C-indexed
category rather than a category internal to Ĉ, although these notions are equivalent.

3.1.8 Construction — Cartesian morphisms of polynomials induce full and faithful internal functors
Let f : B→ A and g : D→ C be morphisms in a locally cartesian closed category E . Given a
cartesian morphism of polynomials ϕ : f |⇒ g, let S(ϕ) : S( f )→ S(g) be the full and faithful
internal functor defined in the internal language of E as follows.

• S(ϕ)0(a) = ϕ0(a) for a ∈ A; and

• S(ϕ)1(m : Ba→ Ba′) = ϕa′ ◦̇ k ◦̇ϕ−1
a ) for a,a′ ∈ A;

The assignment ϕ 7→ S(ϕ) extends to a functor S : Polycart
E (1,1)→ Cat(E ).

Verification. We work internally to E . To see that S(ϕ) defines a functor, note that for a,a′,a′′ ∈ A
and m : Ba→ Ba′ and n : Ba′ → Ba′′ , we have

S(ϕ)(n)◦S(ϕ)(m) = ϕa′′ ◦n◦ϕ
−1
a′ ◦ϕa′ ◦m◦ϕa = ϕa′′ ◦n◦m◦ϕ

−1
a = S(ϕ)(n◦m)

and evidently S(ϕ)(idBa) = idDϕ0(a)
.

To see that the assignment ϕ 7→ S(ϕ) is functorial, note that evidently S(id f ) = idS( f ) for each
f : B→ A in E , and given ϕ : f |⇒ g and ψ : g |⇒ h, we have

S(ψ ◦ϕ)0 = (ψ ◦ϕ)0 = ψ0 ◦ϕ0 = S(ψ)0 ◦S(ϕ)0

and for m : Ba→ Ba′ we have

S(ψ ◦ϕ)1(m) = (ψ ◦ϕ)a′ ◦m◦ (ψ ◦ϕ)−1
a = ψϕ0(a′) ◦ϕa′ ◦m◦ϕ

−1
a ◦ψ

−1
ϕ0(a)

= S(ψ)1(S(ϕ1)(m))

as required.
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66 Chapter 3. Polynomials and representability

In the following, given an object A of a locally cartesian closed category E , we will write |A| for
the discrete internal category on E , whose object of objects and of morphisms are both A and with
domain, codomain, identities and composition morphisms given by idA.

3.1.9 Definition — Internally cartesian closed categories [Jac99]
Let A be an internal category of a locally cartesian closed category E .

• A has an internal terminal object if the terminal internal functor ! : A→ |1| has an internal
right adjoint tobj : |1| → A.

• A has internal binary products if the diagonal internal functor ∆ :A→A×A has an internal
right adjoint.

• A with internal binary products has internal exponentials if the internal functor

prod : |A0|×A→ |A0|×A

has a right adjoint exp, where prod is defined as follows and where ×̇ : A×A→ A is the
internal binary product functor.

� prod0 : A0×A0→ A0×A0 is defined by prod0(A,B) = (A,A ×̇B); and

� prod1 : A0×A1→ A0×A1 is defined by prod1(A, f ) = (A, idA ×̇ f );

We say A is internally cartesian closed if it has an internal terminal object, internal binary
products and internal exponentials.

3.1.10 Theorem — Cartesian closure of the associated full internal subcategory
Let (C, p) be a natural model and let U= S(p) be its associated full internal subcategory. If (C, p)
admits a unit type, dependent sum types and dependent product types, then U is internally cartesian
closed.

Proof. Let η = (1̂, ?̂) : i1 |⇒ p, µ = (Σ̂, p̂air) : p · p |⇒ p and ζ = (Π̂, λ̂ ) : Pp(p) |⇒ p be the cartesian
morphisms of polynomials arising from the unit, dependent sum and dependent product type struc-
ture for (C, p), as in Corollary 2.1.11.

To see that U has an internal terminal object, let tobj= S(η) : S(y(�)) = |1| → S(p) =U. Now for
A ∈U and x ∈ 1, there is a natural correspondence between morphisms

1!A→ 1x and [A]→ [tobj(x)]

Indeed, the only morphism 1!A → 1x in |1| is id1, and the only morphism [A]→ [1̂] is λa. ?̂. So
! a tobj as required.

To see that U has internal products, we will define an internal functor

×̇ : U×U→ U
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on objects by A ×̇B = Σ̂(A,B), where B = λx.B ∈U [A], and on morphisms ( f ,g) ∈ [C][A]× [D][B]

by letting f ×̇g : [A ×̇B]→ [C ×̇D] be defined by

( f ×̇g)(〈a,b〉) = p̂air( f (a),g(b))

To see that ∆ a ×̇, note that for A,B,C ∈U there is a map

[A][C]× [B][C]→ [A ×̇B][C]

given by ( f ,g) 7→ λc. p̂air( f (c),g(c)) and with an inverse given by

h 7→ (λc.fst(h(c)), λc.snd(h(c)))

Hence ∆ a ×̇ as required.

To see that U has internal exponentials, define an internal functor

exp : |U |×U→ |U |×U

on objects by exp0(A,B) = (A,Π̂(A,B)) and on morphisms (A,B)
(idA, f )−−−−→ (A,C) by letting

exp( f ) : Π̂(A,B)→ Π̂(A,C)

be defined by exp( f )(t) = λ̂ (A, t ◦ f ). To see that prod a exp, note that for A,B,C ∈U there is a
map

|U |(A,C)× [D][A×̇B]→ |U |(A,C)× [Π̂CD]

which is trivial when A 6= C and is defined by the usual currying and uncurrying correspondence
when A =C. This proves that prod a exp.

We will use the following construction in Theorem 3.1.13 in order to characterise when a natural
model admits dependent sum types.

3.1.11 Construction
Given full internal subcategories A = S(B f−→ A) and I = S(J g−→ I) of a locally cartesian closed
category E , there is an internal category FamI(A) of E defined as follows.

• FamI(A)0 = ∑
i∈I

AJi (= Pα(A));

• FamI(A)1 = ∑
(i,a),(i′,a′)

∑

α∈JJi
i′

∏
j∈Ji

B
Ba( j)

a′(α( j));

• The domain and codomain morphisms dom,cod : FamI(A)1 → FamI(A)0 are given by the
evident projections;

67



68 Chapter 3. Polynomials and representability

• The identities morphism ids : FamI(A)0→ FamI(A)1 is defined in the internal language of
E by

ids(i,a) =
(
(i,a), (i,a), λ j. j, λ j.λb.b

)
• Composition is given by internal composition in E ; explicitly, the object of composable pairs

of morphisms is given by

FamI(A)2 = ∑
(i,a),(i′,a′),(i′′,a′′)

∑
β :J

Ji′
i′′

∑
α:JJi

i′

∏
j∈Ji

B
Ba′(α( j))

a′′(β (α( j)))×B
Ba( j)

a′(α( j))

and the composition morphism comp : FamI(A)2→ FamI(A)1 is given by

comp

(
(i,a),(i′,a′),(i′′,a′′),β ,α,λ j.(b′j,b j)

)
=
(
(i,a),(i′′,a′′),β ◦̇α,λ j.(b′j ◦̇b j)

)
Verification. The fact that A and I allow us to check the required equations using the internal
language of E ; but these equations are exactly the ones that demonstrate that the regular Fam
construction defines a category (see e.g. [Jac99]).

3.1.12 Construction
Let A be an full internal subcategory with an internal terminal object 1 ∈ A. By anology with the
diagonal functor ∆ : A→ A×A, define an internal functor ∆̃ : A→ FamA(A) defined internally
on objects by ∆̃(a) = (a,1) and on morphisms f : Ba→ Ba′ by ∆̃( f ) = ( f : Ba→ Ba′ , idB1 : B1→
B1).

3.1.13 Theorem
Let (C, p) be a natural model admitting a unit type and let U= S(p) be its associated full internal
subcategory. Then (C, p) admits dependent sum types if and only if the internal functor ∆̃ : U→
FamU(U) has an internal right adjoint.

Proof. First recall (Corollary 2.1.11) that a natural model (C, p) admits dependent sum types if
and only if there exists a cartesian morphism (p̂air, Σ̂) : p · p |⇒ p of polynomials in Ĉ, as indicated
in the following pullback square:

∑
A,B

∑
a:[A]

[B(a)]
.

U

∑
A:U

U [A] U

p̂air

p·p

y
p

Σ̂
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Write p̂air(A,B,a,b) = 〈a,b〉 and Σ̂(A,B) = ΣAB.

First suppose that (C, p) admits dependent sum types, and define sigma : FamU(U)→U as follows:

• sigma0 = Σ̂ : ∑
A:U

U [A]→U , so that sigma0(A,B) = ΣAB for each (A,B) ∈ (FamU(U))0.

• For (A,B),(C,D) ∈ ∑
A:U

U [A] and ( f ,g) ∈ FamU(U)((A,B),(C,D)), define

sigma1( f ,g) = λ p.〈 f (p.0),gp.0(p.1)〉 : [ΣAB]→ [ΣCD]

First note that sigma is an internal functor. That it respects identities is evident; to see that it
respects composition, note that

sigma1(( f ′,g′)◦ ( f ,g)) = sigma1( f ′ ◦ f ,λa. g′f (a) ◦ga)

= λ p. 〈 f ′( f (p.0)),g′f (p.0)(gp.0(p.1))〉

= λ p. sigma1( f ′,g′)(〈 f (p.0),gp.0(p.1)〉)
= λ p. sigma1( f ′,g′)(sigma1( f ,g)(p))

= sigma1( f ′,g′)◦ sigma1( f ,g)

To see that ∆̃ a sigma, let C ∈U and let (A,B) ∈ ∑
A∈U

U [A]. We obtain a map

FamU(U)((C,1),(A,B))→ U(ΣC1,ΣAB)

via ( f ,g) 7→ λ 〈c,?〉. ( f (c),gc(?)); and we obtain a map

U(ΣC1,ΣAB)→ FamU(U)((C,1),(A,B))

via h 7→ (λc. h(c).0, λc. λx : 1. h(c).1〉).

These maps are mutually inverse, and so ∆̃ a sigma as required.

Conversely, suppose now that ∆ has an internal right adjoint sigma : FamU(U)→ U. Define Σ̂ :
∑

A:U
U [A]→U . Then sigma1 gives for each (A,B),(C,D) ∈ ∑

A∈U
U [A] a map

sigma1 : ∑
f :[C][A]

∏
a∈[A]

[D( f (a))][B(a)]→ [ΣCD][ΣAB]

Given a∈ [A] and b∈ [B(a)], let fa : [1]→ [A] be given by fa(?)= a and let gb : [1(a)] = [1]→ [B(a)]
be given by gb(?) = b. Then

sigma1( fa,gb) : [Σ11]→ [ΣAB]
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70 Chapter 3. Polynomials and representability

Define p̂air(A,B,a,b) = sigma1( fa,gb)(〈?,?〉).

By construction, these are maps of the appropriate sorts, and p◦ p̂air = Σ̂◦ (p · p). To see that the
desired square is a pullback, note that the fibre of p · p over (A,B) is mapped bijectively via p̂air to
the fibre of p over ΣAB.

In future work, we hope to find a result analogous to Theorem 3.1.13 which characterises when a
natural model admits dependent product types in terms of an internal adjunction.
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Section 3.2

Polynomial pseudomonads

3.2.1 Definition
A polynomial monad is a monad in the bicategory Polycart

E . Specifically, a polynomial monad is a
quadruple P= (I, p,η ,µ) consisting of an object I of E , a polynomial p : I |→ I in E and cartesian
morphisms of polynomials η : i1 |⇒ p and µ : p · p |⇒ p, satisfying the usual monad axioms, namely

µ ◦ (µ · p) = µ ◦ (p ·µ) and µ ◦ (η · p) = idp = µ ◦ (p ·η)

3.2.2 Remark
What is usually (e.g. [GK13]) meant by a polynomial monad is a monad (P,η ,µ) on a slice E /I of
E , with P : E /I → E /I a polynomial functor and η ,µ cartesian natural transformations; equival-
ently, this is a monad in the 2-category PolyFuncart

E . We recover this notion from Definition 3.2.1
by applying the extension bifunctor Polycart

E → PolyFuncart
E . Furthermore, every polynomial monad

in the usual sense is the extension of a polynomial monad in the sense of Definition 3.2.1.

Recall Corollary 2.1.11, which says that a natural model (C, p) admits a unit type if and only if there
is a morphism η : i1 |⇒ p in Polycart

Ĉ
, admits dependent sum types if and only if there is a cartesian

morphism µ : p · p |⇒ p in Polycart
Ĉ

, and admits (C, p) admits dependent product types if and only if
there is a cartesian morphism ζ : Pp(p) |⇒ p in Polycart

Ĉ
. It is natural to ask whether (y(�), p,η ,µ)

is a polynomial monad in the sense of Definition 3.2.1, and that (p,ζ ) is an algebra for this monad
in a suitable sense, but unfortunately, this turns out to be false. For example, consider the monad
unit laws µ ◦(η · p) = idp = µ ◦(p ·η)—they state precisely that the following equations of pasting
diagrams hold:

U̇ ∑
A,B

∑
a:[A]

[B(a)] U̇ U̇ U̇ U̇ ∑
A,B

∑
a:[A]

[B(a)] U̇

U ∑
A:U

U [A] U U U U ∑
A:U

U [A] U

p

(η ·p)1

p·p

µ1

p p= p p

(p·η)1

= p·p

µ1

p

(η ·p)0 µ0 (p·η)0 µ0

However, the monad laws do not hold strictly in general. Indeed, in the internal language of Ĉ, we
have

(µ ◦ (η · p))0(A) = ∑
x:A

1 = A×1 and (µ ◦ (p ·η))0(A) = ∑
x:1

A = 1×A

But in type theory, the types A×1, A and 1×A are not generally equal, although there are canonical
isomorphisms between them. We therefore cannot, in general, expect the monad laws to hold
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72 Chapter 3. Polynomials and representability

strictly, for instance if the natural model is one arising from the syntax of dependent type theory
(Schema 5.0.1). However, it is still reasonable to expect this structure to satisfy the laws of a
pseudomonad.

Much as monads naturally live in bicategories, pseudomonads naturally live in tricategories [Mar99,
Lac00]. To define the notion of a polynomial pseudomonad, we therefore need to endow the bicat-
egory Polycart

E with 3-cells turning it into a tricategory.

A tricategory of polynomials

In general, tricategories are fiddly, with lots of coherence data to worry about [GPS95, Gur13]—
fortunately for us, our situation is simplified by the fact that composition of 2-cells of polynomials
is strict, so that the 3-cells turn the hom categories Polycart‘E (I,J) into 2-categories, rather than
bicategories. The emerging structure is that of a 2Cat-enriched bicategory.

3.2.3 Definition — 2Cat-enriched bicategories
A 2Cat-enriched bicategory B consists of:

• A set B0, whose elements we call the 0-cells of B;

• For all 0-cells I,J, a 2-category B(I,J), whose 0-cells, 1-cells and 2-cells we call the 1-cells,
2-cells and 3-cells of B, respectively;

• For all 0-cells I,J,K, a 2-functor ◦I,J,K : B(J,K)×B(I,J)→ B(I,K), which we call the
composition 2-functor;

• For all 0-cells I, a 2-functor ιI : 1→B(I, I), which we call the identity 2-functor, where 1
is the terminal 2-category;

• For all 0-cells I,J,K,L, a 2-natural isomorphism

B(K,L)×B(J,K)×B(I,J) B(J,L)×B(I,J)

B(K,L)×B(I,K) B(I,L)

◦J,K,L×id

id×◦I,J,K ◦I,J,L
⇒

αI,J,K,L

◦I,K,L

called the associator;

• For all 0-cells I,J, 2-natural isomorphisms
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Section 3.2. Polynomial pseudomonads 73

B(I,J)×1 B(I,J)×B(I, I)

B(I,J)

id×ιI

∼=
◦I,I,J

λI,J
⇒

B(J,J)×B(I,J) 1×B(I,J)

B(I,J)

◦I,J,J

ρI,J
⇒

ιJ×id

∼=

called the left unitor and right unitor, respectively.

such that for all compatible 1-cells I
f−→ J

g−→ K h−→ L k−→M, the following diagrams commute:

((k ◦h)◦g)◦ f (k ◦h)◦ (g◦ f ) k ◦ (h◦ (g◦ f ))

(k ◦ (h◦g))◦ f k ◦ ((h◦g)◦ f )

αI,J,K,M

αJ,K,L,M◦ f

αI,K,L,M

αI,J,L,M

k◦αI,J,K,L

(g◦ ιJ)◦ f g◦ (ιJ ◦ f )

g◦ f

αI,J,J,K

λJ,K◦ f g◦ρI,J

Every 3-category is trivially a 2Cat-enriched bicategory, and every 2Cat-enriched bicategory is a
tricategory. Every 2Cat-enriched bicategory has an underlying bicategory, obtained by forgetting
the 3-cells, and every bicategory can be equipped with the structure of a 2Cat-enriched bicategory
by taking only identities as 3-cells. An equivalent viewpoint is that 2Cat-enriched bicategories are
tricategories, whose hom-bicategories are 2-categories and whose coherence isomorphisms in the
top dimension are identities.

Connections between polynomials and 2Cat-enriched bicategories have been studied in different
but related settings by Tamara von Glehn [vG15] and by Mark Weber [Web15] (the latter referring
to them as ‘2-bicategories’).

In order to motivate our definition of 3-cells, recall that Construction 3.1.8 yields a functor

S : Polycart
E (1,1)→ Cat(E )

However, Cat(E ) has the structure of a 2-category, so it is therefore reasonable to expect that
when we equip PolyE with 3-cells, the functor S should extend to a 2-functor. In particular, any

73



74 Chapter 3. Polynomials and representability

3-cell between cartesian morphisms of polynomials should induce an internal natural transforma-
tion between the induced internal functors. However, since the association of internal functors to
morphisms of polynomials works only for cartesian morphisms of polynomials, we cannot simply
take internal natural transformations as the 3-cells of PolyE . Lemmas 3.2.4 and 3.2.5 provide a
correspondence between internal natural transformations S(ϕ)⇒ S(ψ) and particular morphisms
of E in a way that generalises to the case when ϕ and ψ are not required to be cartesian.

3.2.4 Lemma
Let f : B→ A and g : D→ C be polynomials in a locally cartesian closed category E and let
ϕ,ψ : f |⇒ g be cartesian morphisms of polynomials. There is a bijection between the set of
morphisms α : ∆ϕ0D→∆ψ0D in E /A and the set of morphisms α̂ : A→ S(g)1 in E /C×C, as indicated
by dashed arrows in the following diagrams, where ϕ2,ψ2 are canonical isomorphisms induced by
the universal property of pullbacks.

∆ϕD ∆ψ0D

B B

A

α

ϕ2 ∼= ψ2∼=

f f

S(g)1

A C×C

∂
α̂

〈ϕ0,ψ0〉

Proof. Given α : ∆ϕ0D→ ∆ψ0D in E /A, the exponential transpose of α in E /A is, as a morphism in

E , a section α : A→H of the projection H→ A, where H = ∑
a∈A

D
Dϕ0(a)

ψ0(a)
. This projection is precisely

the pullback of S(g)1→C×C along 〈ϕ0,ψ0〉, as illustrated in the following diagram:

H S(g)1

A C×C

y
∂

〈ϕ0,ψ0〉

α

But sections of the pullback correspond with diagonal fillers α̂ : A→ S(g)1 of the pullback square.
This is as required, since such a filler making the lower triangle commute makes the upper triangle
commute automatically. This concludes the proof of (a).

3.2.5 Lemma
Let f : B→A and g : D→C be polynomials in a locally cartesian closed category E , let ϕ,ψ : f |⇒ g
be cartesian morphisms of polynomials, and let α, α̂ be as in Lemma 3.2.4. The following are
equivalent:
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Section 3.2. Polynomial pseudomonads 75

(i) α̂ is an internal natural transformation S(ϕ)⇒ S(ψ);

(ii) In the internal language of E , we have S(ψ)(k)◦αa = αa′ ◦S(ϕ)(k) for a,a′ ∈ A and k ∈ BBa
a′ ;

(iii) In the internal language of E , we have γa′ ◦ k = k ◦ γa for a,a′ ∈ A and k ∈ BBa
a′ , where γ =

ψ2 ◦α ◦ϕ
−1
2 : B→ B;

(iv) α is a morphism in E /B, i.e. ψ2 ◦α = ϕ2.

Proof. We prove (i)⇔(ii)⇔(iii)⇔(iv).

(i)⇔(ii) In light of Lemma 3.2.4, this is just a translation into the internal language of E of the
definition of an internal natural transformation.

(ii)⇔(iii) Consider the following ‘internal’ diagram, parametrised by a,a′ ∈ A and k ∈ BBa
a′ .

Ba Dϕ(a) Dψ(a) Ba

Ba′ Dϕ(a′) Dψ(a′) Ba′

k

(ϕ2)
−1
a

S(ϕ)(k)

αa

S(ψ)(k)

(ψ2)a

k

(ϕ2)
−1
a′

αa′ (ψ2)a′

The left- and right-hand squares commute by functoriality of S(ϕ) and S(ψ). The centre
square commutes if and only if (ii) holds, and the outer square commutes if and only if (iii)
holds. But the centre square commutes if and only if the outer square commutes.

(iii)⇔(iv) Let a ∈ A and b ∈ Ba, and let k ∈ BBa
a be the constant (internal) function with value b. If (iii)

holds, then
γa(b) = γa(k(b)) = k(γa(b)) = b

so that (γa = idBa | a ∈ A) holds. But this says precisely that γ = idB, and hence ψ2 ◦α = ϕ2.
The converse (iv)⇒(iii) is immediate.

3.2.6 Definition
Let F : I s←− B

f−→ A t−→ J and G : I u←−D
g−→C v−→ J be polynomials and let ϕ,ψ : F |⇒G be morphisms

of polynomials, as in:
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B A B A

I Dϕ A J I Dψ A J

D C D C

f

s t

f

s t

y
ϕ1

ϕ2

ϕ0
y

ψ1

ψ2

ψ0

g

u v

g

u v

An adjustment α from ϕ to ψ , denoted α : ϕ |V ψ , is a morphism α : Dϕ → Dψ over B:

Dϕ Dψ

B

α

ϕ2 ψ2

3.2.7. Lemma 3.2.5 tells us that, when ϕ and ψ are cartesian, adjustments α : ϕ |V ψ can equival-
ently be described as internal natural transformations α̂ : ϕ ⇒ ψ .

We can now, at least, state the following conjecture.

3.2.8 Conjecture
There is a 2Cat-enriched bicategory PolyE , whose underlying bicategory is PolyE and whose
3-cells are adjustments.

Unfortunately, the details required to fully prove Conjecture 3.2.8 turned out to be somewhat labor-
ious and, since its full force is not required for our main results, we have left the task of verifying
these details for future work. Our progress so far is outlined in Lemma 3.2.9 and Paragraph 3.2.10,
and we prove the analogous result with attention restricted to cartesian morphisms of polynomials
in Theorem 3.2.12.

3.2.9 Lemma
Let I and J be objects in a locally cartesian closed category E . There is a 2-category PolyE (I,J)
whose underlying category is PolyE (I,J) and whose 2-cells are adjustments.

Proof. Given polynomials F,G : I |→ J, the category PolyE (I,J)(F,G) has morphisms of poly-
nomials F |⇒ G as its objects and adjustments as its morphisms, with identity and composition
inherited from E /B.

Given a polynomial F : I s←− B
f−→ A t−→ J, we have an evident functor 1→PolyE (I,J)(F,F) picking

out the identity morphism F |⇒ F and the identity adjustment on this morphism.
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Let F,G,H : I |→ J be polynomials. The composition functor

c : PolyE (I,J)(G,H)×PolyE (I,J)(F,G)→ PolyE (I,J)(F,H)

is defined as follows. The composite c(ψ,ϕ) of ϕ : F |⇒ G and ψ : G |⇒ H is defined using a
pullback construction, as defined in [GK13, 3.9]—in particular, the morphism (ψ ◦ϕ)2 : Dψ◦ϕ → B
is induced by the universal property of pullbacks. This yields, for each pair of adjustments α : ϕ |V
ϕ ′ and β : ψ |V ψ ′, a unique morphism Dψ◦ϕ → Dψ ′◦ϕ ′ in E induced by the universal property of
pullbacks, which is an adjustment since it makes the required triangle in E /B commute. We take
this morphism to be c(β ,α). Functoriality of c is then immediate from the universal property of
pullbacks.

It can be easily verified that this data satisfies the required identity and associativity axioms. Thus
we have a 2-category.

3.2.10. In order to prove Conjecture 3.2.8 in its entirety, it remains to define the coherence 2-
natural isomorphisms α,λ ,ρ , as described in Definition 3.2.3, and verify that the required diagrams
commute.

To give the reader an idea of the flavour of this task, we present some progress towards defining the
associator 2-natural transformation α . For each quadruple of objects I,J,K,L of E , this must assign

to each triple of polynomials I
F
|→ J

G
|→ K

H
|→ L a morphism of polynomials αF,G,H : (H ·G) ·F |⇒

H · (G ·F) and, to each triple of morphisms of polynomials

ϕ : F |⇒ F ′, χ : G |⇒ G′, ψ : H |⇒ H ′

an adjustment

αϕ,χ,ψ : ψ · (χ ·ϕ)◦αF,G,H |V αF ′,G′,H ′ ◦ (ψ ·χ) ·ϕ : (F ·G) ·H |⇒ F ′ · (G′ ·H ′)

which satisfy naturality laws and behave well with respect to composition and identity.

Restricting to the case I = J = K = L = 1, let f : B→ A, g : D→C and h : F→ E be morphisms of
E , considered as polynomials 1 |→ 1 as usual. We will construct an invertible (and hence cartesian)
morphism of polynomials α f ,g,h : (h ·g) · f |⇒ h ·(g · f ). Such a morphism must fit into the following
pullback square:

∑
e,n,q

∑
f∈Fe

∑
d∈Dn( f )

Bq( f ,d) ∑
e,p

∑
f∈Fe

∑
d∈Dc f

Bm f (d)

∑
e∈E

∑
n∈CFe

∏
f∈Fe

∏
d∈Dn( f )

A ∑
e∈E

∏
f∈Fe

∑
c∈C

∏
d∈Dc

A

(h·g)· f

(α f ,g,h)1

y

h·(g· f )

(α f ,g,h)0
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In the above, we have overloaded the letter f , which is ambiguous between the morphism f : B→ A
of E and an internal ‘element’ f ∈ Fe; and we have written p( f ) = (c f ,m f ) for p ∈ ∏

f∈Fe

∑
c∈C

∏
d∈Dc

A

and f ∈ Fe.

The isomorphism (α f ,g,h)0 is given by applying the type theoretic axiom of choice to exchange the
middle ΣΠ. Specifically, we have

(α f ,g,h)0(e,n,q) = (e,λ f .〈n( f ),q( f )〉)

The isomorphism (α f ,g,h)1 acts trivially; that is, we have

(α f ,g,h)1(e,n,q, f ,d,b) = ((α f ,g,h)0(e,n,q), f ,d,b)

We suspect that the definition of αϕ,χ,ψ will also be an instance of the type theoretic axiom of
choice. From this, it will be an exercise in symbolic manipulations to check that the ‘Mac Lane
pentagon’ commutes.

The situation in which we restrict our attention to cartesian morphisms of polynomials is greatly
simplified by the following lemma, allowing us to prove Conjecture 3.2.8 for this case in The-
orem 3.2.12.

3.2.11 Lemma
Let ϕ and ψ be morphisms of polynomials. If ψ is cartesian then there is a unique adjustment from
ϕ to ψ .

Proof. When ψ is cartesian, the morphism ψ2 is invertible, so that α = ψ
−1
2 ◦ϕ2 is the only morph-

ism making the required triangle commute.

From Theorem 1.2.19(d) and Lemma 3.2.11, we immediately obtain the following theorem.

3.2.12 Theorem
There is a 2Cat-enriched bicategory Polycart

E whose underlying bicategory is Polycart
E and whose

hom 2-categories Polycart
E (I,J) are locally codiscrete for all objects I,J of E .

Proof. The description of the 2Cat-enriched bicategory data is described in Paragraph 3.2.10. The
coherence data is uniquely defined and satisfies the required equations by Lemma 3.2.11.

Before moving on, we extend Theorem 1.2.20 to our tricategorical setting.
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Section 3.2. Polynomial pseudomonads 79

3.2.13 Lemma
For fixed objects I and J of a locally cartesian closed category E , there are full and faithful 2-
functors

S : PolyE (I,J)→PolyE /I×J
(1,1) and Scart : Polycart

E (I,J)→Polycart
E /I×J

(1,1)

Proof. Let F : I s←− B
f−→ A t−→ J and G : I u←− D

g−→ C v−→ J be polynomials I |→ J, and let ϕ,ψ be
morphisms of polynomials F |⇒ G. An adjustment α : ϕ |V ψ is simply a morphism α : ϕ2→ ψ2
in E /B. Since S(ϕ)2 = ϕ2 and S(ψ)2 = ψ2, an adjustment S(ϕ) |V S(ψ) is a morphism ϕ2→ ψ2
in (E /I×J)/〈s,t◦ f 〉 ∼= E /B. So we can take S to be the identity on adjustments. This trivially extends
the functors S and Scart of Theorem 1.2.20 to full and faithful 2-functors.

3.2.14 Theorem
Fix objects I and J in a locally cartesian closed category E . There is a locally full and faithful
2-functor

A(−) : Polycart
E (I,J)→ Cat(E /I×J)

whose underlying 1-functor is as in Construction 3.1.8.

Proof. Let ϕ,ψ : F |⇒G be cartesian morphisms of polynomials I |→ J. We proved in Lemma 3.2.5
that adjustments α : ϕ |Vψ correspond bijectively with internal natural transformations α̂ : S(ϕ)⇒
S(ψ). Moreover, by Lemma 3.2.11, there is a unique internal natural transformation S(ϕ)⇒ S(ψ).
As such, defining Aα = α̂ for all adjustments α , we automatically obtain a 2-functor, which is
locally full and faithful since the hom-sets

Polycart
E (I,J)(F,G)(ϕ,ψ) and Cat(E /I×J)(S( f ),S(g))(S(ϕ),S(ψ))

are both singletons.

Polynomial pseudomonads

We are now ready to define the notion of a polynomial pseudomonad. First, we recall the defini-
tion of a pseudomonad in a 2Cat-enriched bicategory (in fact, the definition works just fine in an
arbitrary tricategory).

3.2.15 Definition
Let B be a 2Cat-enriched bicategory. A pseudomonad T in B consists of:

• A 0-cell I of B;

• A 1-cell t : I→ I;
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• 2-cells η : idI ⇒ t and µ : t · t ⇒ t, called the unit and multiplication of the pseudomonad,
respectively;

• Invertible 3-cells α,λ ,ρ , called the associator, left unitor and right unitor of the pseudo-
monad, respectively, as in

t · t · t t · t t t · t t

t · t t t

t·µ

µ·t µα
V

t·η

idt
µ

λ
V

ρ
V

η ·t

idt

µ

such that the following equations of pasting diagrams hold:

t · t · t · t t · t · t t · t · t · t t · t · t

t · t · t t · t · t t · t t · t · t t · t t · t

t · t t t · t t

t·t·µ

µ·t·t t·µ·t
t·µ

t·α

V

t·t·µ

µ·t·t ∼=
t·µ

µ·t

µ·t

V
α·t t·µ

µ·t α
V µ

= t·µ

µ·t µ

α

V

α

V

µ

µ µ

t · t · t t · t t · t · t t · t

t · t t · t t t · t t

t·µ

µ·t µ
α

V

t·µ

t·ρV
µ

=

idt·t

t·η ·t
λ ·t V

µ

t·η ·t=

µ

idt·t

3.2.16. We reserve the following terminology for particular cases of pseudomonads in 2Cat-enriched
bicategories:

• When the 3-cells α,λ ,ρ are identities, we call T a 2-monad in B. Note that a 2-monad
in B restricts to a monad in the underlying bicategory of B, and that every monad in the
underlying bicategory of B is automatically a 2-monad in B.

• When B = 2Cat is the 3-category of 2-categories, 2-functors, pseudo-natural transforma-
tions and modifications, and the underlying 0-cell of T is a 2-category K , we say that T is a
pseudomonad (or 2-monad) on K .
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3.2.17 Definition
A polynomial 2-monad (resp. polynomial pseudomonad) is a 2-monad (resp. pseudomonad) in
the 2Cat-enriched bicategory Polycart

E . Specifically, a polynomial pseudomonad consists of the
following data:

• An object I of E ;

• A polynomial p : I |→ I;

• Cartesian morphisms of polynomials η : iI |⇒ p and µ : p · p |⇒ p;

• Invertible adjustments α : µ ◦ (p ·µ) |V µ ◦ (µ · p), λ : µ ◦ (η · p) |V idp and ρ : µ ◦ (p ·η) |V
idp;

such that the adjustments α,λ ,ρ satisfy the coherence axioms of Definition 3.2.15.

A consequence of Theorem 3.2.12 is that all parallel pairs of cartesian morphisms of polynomials
are uniquely isomorphic. It follows that, in this case, simply specifying the data for a polynomial
monad suffices for defining a polynomial pseudomonad—this is stated precisely in the following
lemma, whose proof is immediate.

3.2.18 Lemma
Let I be an object of E , let p : I |→ I be a polynomial and let η : iI |⇒ p and µ : p · p |⇒ p be
cartesian morphisms of polynomials. Then there are unique adjustments α,λ ,ρ such that the
septuple P= (I, p,η ,µ,α,λ ,ρ) is a polynomial pseudomonad in E .

The next result allows us to lift polynomial 2-monads and polynomial pseudomonads in E to 2-
monads and pseudomonads on the hom 2-categories of Polycart

E . This will play a key role in
identifying the sense in which a natural model p : U̇ →U is a pseudoalgebra over the polynomial
pseudomonad it induces.

3.2.19 Theorem
Let P= (p,η ,µ,α,λ ,ρ) be a polynomial 2-monad (resp. pseudomonad) on an object I of a locally
cartesian closed category E . Then P lifts to a 2-monad (resp. pseudomonad) P+ = (P,h,m, . . .) on
Polycart

E (I, I).

Proof. By Lemma 3.2.13, we may take I = 1 without loss of generality, so thtat p is just a morphism
p : Y → X in E and η ,µ are pullback squares in E (cf. Paragraph 1.2.18).

For notational simplicity, write K to denote the 2-category Polycart
E (1,1). Note K has as its

underlying category the wide subcategory E→cart of E→ whose morphisms are the pullback squares.
Thus the 0-cells of K are the morphisms of E , the 1-cells of K are pullback squares in E , and
between any two 1-cells there is a unique 2-cell by Theorem 3.2.12.
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First we must define a 2-functor P : K →K . Define P on the 0-cells of K by letting P( f )=Pp( f )
for all f : B→ A in E . Given a 1-cell ϕ : f |⇒ g of K —that is, a pullback square in E —let P(ϕ)
be the result of applying the extension Pp of p to the pullback square defining ϕ , as in:

∑
x∈X

BYx ∑
x∈X

DYx

∑
x∈X

AYx ∑
x∈X

CYx

Pp(ϕ1)

Pp( f )

y

Pp(g)

Pp(ϕ0)

Note that P(ϕ) is indeed a pullback square, since polynomial functors preserve all connected limits
[GK13]. Thus P(ϕ) is a 1-cell from P( f ) to P(g) in K .

Now P respects identity 1-cells in K , since if f : B→ A is a 0-cell then

P(id f )0 = Pp(idB) = idPp(B) = (idP( f ))0

and likewise P(id f )1 = (idP( f ))1; and P respects composition of 2-cells in K , since for i ∈ {0,1}
we have

P(ψ ◦ϕ)i = Pp((ψ ◦ϕ)i) = Pp(ψi ◦ϕi) = Pp(ψi)◦Pp(ϕi) = P(ψ)i ◦P(ϕ)i = (P(ψ)◦P(ϕ))i

Hence the action of P defines a functor on the underlying category of K .

The fact that P extends to a 2-functor is trivial: given an adjustment α : ϕ |V ψ , there is a unique
adjustment P(ϕ) |V P(ψ). We take this to be P(α), and note that the axioms governing identity
and composition of 2-cells hold trivially by uniqueness of adjustments.

The pseudo-natural transformations h : idK ⇒ P and m : P ◦ P⇒ P giving the unit and multi-
plication of P+ are induced by the unit η : i1 |⇒ p and µ : p · p |⇒ p of P. Specifically, define the
components h f : f |⇒ P( f ) and m f : P(P( f )) |⇒ P( f ) at a 0-cell f : B→ A of K to be the following
squares, respectively:
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B ∑
x∈X

BYx ∑
(x,t)∈ ∑

x∈X
XYx

B

(
∑

y∈Yx
Yt(y)

)
∑

x∈X
BYx

A ∑
x∈X

AYx ∑
(x,t)∈ ∑

x∈X
XYx

A

(
∑

y∈Yx
Yt(y)

)
∑

x∈X
AYx

(Pη )B

f

y

P( f )

(Pµ )B

P(P( f ))

y

P( f )

(Pη )A (Pµ )A

Note that these squares commute and are cartesian by naturality and cartesianness of the exten-
sions Pη ,Pµ of η ,µ . That h and m extend to pseudo-natural transformations is immediate from
Theorem 3.2.12: the pseudo-naturality 2-cells in K are adjustments, so they exist uniquely and
satisfy the coherence axioms for pseudo-natural transformations automatically.

If P is a polynomial 2-monad, it is now easy to verify that the 2-monad laws hold for P+. If P is a
polynomial pseudomonad, then the pseudomonad laws for P+ concern existence of and equations
between adjustments, hence are trivially true by Theorem 3.2.12.

3.2.20 Definition
Given a polynomial monad (resp. pseudomonad) P, the lift of P is the 2-monad (resp. pseudo-
monad) P+ as in Theorem 3.2.19.

3.2.21 Definition
Let T= (T,h,m,α,λ ,ρ) be a pseudomonad on a 2-category K . A pseudoalgebra over T consists
of

• A 0-cell A of K ;

• A 1-cell a : T (A)→ A in K ;

• Invertible 2-cells σ ,τ of K , as in:

T (T (A)) T (A) A T (A)

T (A) A A

T (a)

mT aσ
⇒

hA

idA
a

τ
⇒

a

such that the following equations of pasting diagrams hold:
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T 3A T 2A T 3A T 2A

T 2A T 2A TA T 2A TA TA

TA A T (A) A

T Ta

mTA T mA
TaT σ

⇒

T 2a

mTA ∼= TamA

mA

⇒
αA

Ta

mA σ
⇒ a

= Ta

mA
a

σ

⇒

σ

⇒

a

a a

T 2A TA T 2A TA

TA TA TA TA A

Ta

mA
a

σ

⇒

Ta

T τ
⇒

a
=

idTA

T hA

λA

⇒

a

T hA
=

a

idTA

3.2.22 Definition
Let P= (1, p : Y → X , . . .) be a polynomial pseudomonad in a locally cartesian closed category E .
A polynomial pseudoalgebra over P is a pseudoalgebra over the lift P+. Specifically, it consists
of:

• A polynomial f : B→ A;

• A cartesian morphism of polynomials ζ : Pp( f ) |⇒ f ;

• Invertible adjustments σ ,τ whose types are as in Definition 3.2.21;

such that the adjustments σ ,τ satisfy the coherence conditions of Definition 3.2.21.

Much like with polynomial pseudomonads (Lemma 3.2.18), merely specifying the data for a poly-
nomial pseudoalgebra suffices for the conditions to hold—again, this follows immediately from
Theorem 3.2.12.

3.2.23 Lemma
Let P= (I, p : Y → X , . . .) be a polynomial pseudomonad in a locally cartesian closed category E ,
let f : B→ A be a polynomial and let ζ : Pp( f ) |⇒ f be a morphism of polynomials. Then there are
unique adjustments σ ,τ making ( f ,ζ ,σ ,τ) into a polynomial pseudoalgebra over P.

We are now ready to precisely state the sense in which a natural model admitting a unit type and
dependent sum types ‘almost’ gives rise to a polynomial monad, and one admitting dependent
product types ‘almost’ gives rise to an algebra over this monad.
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3.2.24 Theorem
Let (C, p) be a natural model.

(a) (C, p) supports a unit type and dependent sum types if and only if p can be equipped with
the structure of a polynomial pseudomonad P in Ĉ.

(b) (C, p) additionally supports dependent product types if and only if p can be equipped with
the structure of a polynomial pseudoalgebra over P.

Proof. By Theorems 2.1.8 and 2.1.9, (C, p) supports a unit type and dependent sum types if and
only if there exist cartesian morphisms of polynomials η : i1 |⇒ p and µ : p · p |⇒ p, and by The-
orem 2.1.10, (C, p) additionally supports dependent product types if and only if there exists a
cartesian morphism of polynomials ζ : Pp(p) |⇒ p. By Lemmas 3.2.18 and 3.2.23, there are unique
adjustments turning (p,η ,µ) into a polynomial pseudomonad P, and unique adjustments turning
(p,ζ ) into a polynomial pseudoalgebra over P.

3.2.25. Theorem 3.2.24 makes a connection between logic and algebra by exhibiting a correspond-
ence between laws concerning dependent sums and dependent products in type theory with laws
concerning monads in algebra. Specifically, for η : ι1 |⇒ p, µ : p · p |⇒ p and ζ : Pp(p) |⇒ p, the
pseudomonad and pseudoalgebra isomorphisms in Polycart

Ĉ correspond to certain type isomorph-
isms as follows:

Name Monads and algebras Type theory

Monad associativity µ ◦ (p ·µ)∼= µ ◦ (µ · p) ∑
x:A

∑
y:B(x)

C(x,y)∼= ∑
〈x,y〉: ∑

x:A
B(x)

C(x,y)

Monad unit (left) µ ◦ (p ·η)∼= idp ∑
x:A

1∼= A

Monad unit (right) µ ◦ (η · p)∼= idp ∑
x:1

A∼= A

Algebra multiplication ζ ◦ (p ·ζ )∼= ζ ◦ (µ · p) ∏
x:A

∏
y:B(x)

C(x,y)∼= ∏
〈x,y〉: ∑

x:A
B(x)

C(x,y)

Algebra unit ζ ◦ (η · p)∼= idp ∏
x:1

A∼= A
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Section 3.3

Representability revisited

Representability and cocontinuity

The first goal of this section is to identify a condition for a natural transformation p :
.

U → U
between presheaves over a small category C to be representable in terms of cocontinuity of its
polynomial extension Pp : Ĉ→ Ĉ. We will prove that if p is representable, then Pp is cocontinuous.
For the converse, we will need to assume some conditions on the base category C, namely that it is
Cauchy complete and has finite products.

We begin with a discussion of Cauchy completeness and its relation to so-called tiny objects in
presheaf categories. This matter is confused somewhat by the fact that there are different notions
of tininess and, even more confusingly, different words have been used by different authors to refer
to the same notion of tininess, and different notions of tininess have been referred to by different
authors by the same word! With this in mind, we will first fix our own terminology.

3.3.1 Definition — Tiny and atomic objects
Let E be a locally small, cocomplete, locally cartesian closed category and let X be an object of E .
Then:

(i) X is internally atomic if (−)X : E → E has a right adjoint;

(ii) X is internally tiny if (−)X : E → E is cocontinuous;

(iii) X is externally atomic if E (X ,−) : E → Set has a right adjoint;

(iv) X is externally tiny if E (X ,−) : E → Set is cocontinuous.

Condition (i) goes back to William Lawvere, who referred to the right adjoint to the functor (−)X

as the amazing right adjoint. An object satisfying (i) is called infinitesimal by Lawvere [Law80],
atomic by Anders Kock [Koc81] and tiny by David Yetter [Yet87]. An object satisfying condition
(iv) is called an atom by Marta Bunge [Bun11] and is called small-projective by Max Kelly [Kel82].

3.3.2. When E = Ĉ for some small category C, it follows from Freyd’s adjoint functor theorem that
each of the functors (−)X and Ĉ(X ,−) is cocontinuous if and only if it has a right adjoint. Thus
a presheaf is internally atomic (in Ĉ) if and only if it is internally tiny, and is externally atomic if
and only if it is externally tiny. For this reason, since we will focus on presheaves from now on,
we will simply use the term internally tiny to refer to conditions (i) and (ii) together, and externally
tiny to refer to conditions (iii) and (iv) together.
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3.3.3 Definition — Cauchy complete category, [BD86]
A category C is Cauchy complete if every idempotent in C splits—that is, if for each e : A→ A
in C such that e◦ e = e, there exists a factorisation of e in C as A r−→ B i−→ A such that r ◦ i = idB.

3.3.4. We briefly recall some results from [Kel82, §5.5], [BD86] and [Yet87] concerning tiny ob-
jects and Cauchy completions. A presheaf X : Cop→ Set over a small category C is externally tiny
in Ĉ if and only if it is a retract of a representable functor. Writing C̄ for the full subcategory of
Ĉ whose objects are the retracts of representable functors, we have that C̄ is small and the Yoneda
embedding y : C ↪→ Ĉ factors through the embedding k : C ↪→ C̄. The category C̄ is the Cauchy
completion of C; moreover, the functor k∗ : ̂̄C→ Ĉ is an equivalence of categories, and if C has
finite products then so does C̄. A category C is Cauchy complete if and only if k itself is an equi-
valence. In particular, a category C is Cauchy complete if and only if the externally tiny objects of
Ĉ are exactly the representable functors. If C is Cauchy complete and has a terminal object, then
externally tiny objects are internally tiny; the converse holds if C has finite products.

3.3.5 Theorem — Characterisation of representability by cocontinuity
Let C be a small category and let p :

.
U →U be a natural transformation between presheaves over

C.

(a) If p is representable, then its extension Pp : Ĉ→ Ĉ is cocontinuous.

(b) If the extension Pp : Ĉ→ Ĉ of p is cocontinuous and C is Cauchy complete with finite
products, then p is representable.

Proof. By Lemma 1.2.11, for each Γ ∈ ob(C), there is a natural (in X and in Γ ) bijection

Pp(X)(Γ ) =

(
∑

A∈U
X [A]

)
(Γ )∼= ∑

A∈U (Γ )

Ĉ(∆A(
.

U ),X)

If p is representable, then ∆A(
.

U ) ∼= y(Γ •A) for some object Γ •A of C, so ∆A(
.

U ) is externally
tiny and we see that Pp preserves colimits. This proves (a).

Conversely, if Pp preserves colimits then so does Πp, so that ∆A(
.

U ) is internally tiny. If C is
Cauchy complete and has finite products, then as discussed above we have that ∆A(

.
U )∼= y(Γ •A)

for some object Γ •A of C, so that p is representable. This proves (b).

3.3.6 Corollary
Let C be a small category with finite products and let p :

.
U → U be a natural transformation

between presheaves over C such that Pp : Ĉ→ Ĉ is cocontinuous. By transporting p along the

equivalence Ĉ' ̂̄C discussed in Paragraph 3.3.4, we obtain a representable natural transformation
p̄ between presheaves over C̄.
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Proof. Note that P p̄ : ̂̄C→ C̄ is cocontinuous since k∗ : ̂̄C→ Ĉ is an equivalence. Since C has
finite products, so does C̄, and since C̄ is Cauchy complete, it follows from Theorem 3.3.5 that p̄
is representable.

3.3.7. In [Kel82, Theorem 5.26] it is proved that a category E is equivalent to the category Ĉ of
presheaves on a small category C if and only if E is cocomplete and there is a small set of tiny
objects constituting a strong generator of E . The category C is obtained as the full subcategory of
E determined by this set of tiny objects.

Representability and full internal categories

3.3.8. We recall from [Jac93, §4] and [Jac99, §7] some facts about full internal subcategries. Given
any morphism f : B→ A of a locally cartesian closed category E , the full internal subcategory
S( f ) of E (Construction 3.1.1) gives rise to a fibration E( f )→ E together with a full and faithful
cartesian functor E( f )→ E→ over E .

E( f ) E→

E

π cod

The category E( f ) is the externalisation of S( f ), which can be described as follows.

• The objects of E( f ) are morphisms x : X → S( f )0 = A in E ;

• Given x : X → A and y : Y → A, a morphism from x to y in E(p) is a pair (σ ,h) consisting of
a morphism σ : X → Y in E and a morphism ∆x( f )→ ∆y◦σ ( f ) in E /X .

The fibration π : E( f )→ E sends each object x : X → A to its domain X and each morphism (σ ,h)
to its first component σ ; and the cartesian functor E( f )→ E→ sends an object x : X → A of E( f )
to the morphism ∆ f (x) : ∆ f (B)→ X and a morphism (σ ,h) : x→ y to the square described by σ

and h.

When p :
.

U → U is a natural transformation between presheaves over a small category C, this
construction gives rise to a full and faithful fibred functor E(p)→ Ĉ→ over Ĉ. The fibre E(p)y(Γ )

over a representable presheaf y(Γ ) is then exactly the (external) category S(p)(Γ ) obtained by
applying the data defining S(p)∈Cat(Ĉ) to the object Γ of C. By pulling back π :E(p)→ Ĉ along
the Yoneda embedding y : C→ Ĉ, we obtain a fibration π ′ : E′(p)→C, where E′(p)Γ = E(p)y(Γ ).
By abuse of notation, we will simply write π : E(p)→ C for this fibration.
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We prove in Theorem 3.3.12 that representability of p can be characterised by the existence of a
full and faithful fibred functor (over C) from E(p) to the full subcategory of C→ determined by
the morphisms in C classified by p (Definition 3.3.9). First, we remark that the codomain fibration
restricts to this subcategory.

3.3.9 Definition
Let p : Y → X be a natural transformation between presheaves over a small category C. We say a
morphism σ : ∆ → Γ of C is classified by p if y(σ) : y(∆)→ y(Γ ) arises as a pullback of p in
Ĉ. Write Fp to denote both the set of morphisms of C classified by p, and the corresponding full
subcategory of C→.

3.3.10 Lemma
Let (C, p) be a natural model and let σ : Γ ′ → Γ in C. Then σ ∈Fp if and only if there is an
isomorphism (Γ •A,pA)→ (Γ ′,σ) in C/Γ for some A ∈U (Γ ).

Proof. The morphism σ is classified by p if and only if there exist A ∈U (Γ ) and a ∈
.

U (∆ ,A[σ ])
such that the following square is a pullback.

y(∆)
.

U

y(Γ ) U

a

y(σ)

y
p

A

By representability of p, the natural transformation y(pA) is also a pullback of p, hence the result
follows from the universal property of pullbacks together with the fact that the Yoneda embedding
is full and faithful.

3.3.11 Lemma — Classified morphisms yield a fibration
Let C be a small category and p :

.
U →U be a natural transformation between presheaves over C.

The codomain functor Fp→ C is a Grothendieck fibration.

Proof. It suffices to prove that pullbacks of morphisms in Fp along arbitrary morphisms of C
exist and are in Fp. To this end, let γ : Γ ′ → Γ ∈Fp and let σ : ∆ → Γ be a morphism in C.
By Lemma 3.3.10, there is an isomorphism θ : (Γ •A,pA)

∼= (Γ ′,σ) in C/Γ . Now consider the
following diagram
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∆ •A[σ ] Γ •A Γ ′

∆ Γ Γ

σ •A

pσ

y
θ

∼=

pA

y
γ

σ

The square on the left is a canonical pullback square (Construction 2.1.6) and the square on the right
is a pullback since it commutes and θ is an isomorphism, so that the outer square is a pullback.
But then (σ ,θ ◦ (σ •A)) is a cartesian lift of σ .

3.3.12 Theorem — Characterisation of representability from full internal subcategories
Let C be a small category and let p :

.
U →U be a natural transformation between presheaves over

C. Then p is representable if and only if there is a fibred equivalence χ : E(p)→Fp over C.

E(p) Fp

C

π

χ

'

cod

Proof. (⇐) Suppose there is a fibred equivalence χ : E(p)→ Fp, and let Γ ∈ ob(C) and A ∈
U (Γ ). Then A∈ ob(E(p)Γ ), so that χΓ (A)∈ (Fp)Γ . Define Γ •A= dom(χΓ (A)) and pA = χΓ (A).
Since pA ∈Fp, there is a morphism qA : y(Γ •A)→

.
U making the following square a pullback

y(Γ •A)
.

U

y(Γ ) U

qA

pA p

A

This demonstrates that p is representable, and that specifying χ gives rise to representability data
for a natural model (C, p).

(⇒) Suppose p is representable. Representability of p is equivalent to the existence, for each object
Γ of C and element A ∈ U (Γ ), of a morphism pA : Γ •A→ Γ of C such that y(pA) is a pullback
of p. Let the action of χ on objects choose such a morphism for each pair (Γ ,A). By Lemma 3.1.4
and by definition of E(p), morphisms from A ∈U (∆) to B ∈U (Γ ) in E(p) correspond naturally
with pairs (σ ,τ), where σ : ∆ → Γ is a morphism of C and τ is a morphism from (Γ •A[σ ],pA[σ ])
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to (Γ •B,pA) in C/Γ ; but this correspondence precisely gives us the action of χ on morphisms and
tells us that it is full and faithful (since the correspondence is bijective) and fibred over Γ (since
the codomain is respected). Moreover, χ is essentially surjective: given σ : Γ ′→ Γ ∈ ob(Fp), it
follows from Lemma 3.3.10 that for some A ∈U (Γ ) we have σ ∼= χ(Γ ,A) in Fp.

3.3.13 Corollary
Specifying a natural model (C, p) is equivalent to specifying a category C with a terminal object
�, a natural transformation p :

.
U → U between presheaves over C, and a fibred equivalence

E(p)→Fp over C.

Closure properties of representable natural transformations

3.3.14 Theorem — Closure properties of representable natural transformations
Let C be a small category. The class R ⊆ C→ of all representable natural transformations over C
enjoys the following closure properties:

(a) R is closed under composition in Ĉ;

(b) R is closed under pullbacks (in Ĉ) along arbitrary morphisms of Ĉ;

(c) R is closed under polynomial composition in Ĉ;

(d) R is closed under isomorphisms in Ĉ→;

(e) R is closed under (small) coproducts in Ĉ→.

Proof.

(a) Let p : Y → X and q : Z→Y be representable natural transformations and let C ∈ ob(C) and
x ∈ X(C). Using representability of p and of q, construct the following diagram in which the
top and bottom squares are pullbacks.

y(E) Z

y(D) Y

y(C) X

z

g

y
q

y

f

y
p

x
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By the two pullbacks lemma, the outer square is a pullback, so that p◦q is representable.

(b) Let p : Y → X be a representable natural transformation and let f ,g,q be natural transform-
ations fitting into the following pullback square.

Y ′ Y

X ′ X

g

q

y
p

f

Let C ∈ ob(C) and x ∈ X ′(C). Then fC(x) ∈ X(C), so there exist D ∈ ob(D), y ∈ Y (D) and
f : D→C in C making the outer square of the following diagram a pullback.

y(D) Y ′ Y

y(C) X ′ X

y( f )

y′

y

g

q

y
p

x f

By the universal property of pullbacks, there is an element y′ ∈ Y ′(D) fitting into the dia-
gram as indicated with the dashed morphism, making the left square a pullback by the two
pullbacks lemma. Hence q is representable.

(c) Let p : Y → X and q : V → U be representable natural transformations. As described in
Definition 1.2.13, the polynomial composite q · p obtained by composing a pullback of p
with a pullback of q; by parts (a) and (b), it follows that q · p is representable.

(d) An isomorphism in Ĉ→ is, in particular, a pullback square, so if p : Y → X is representable
and q : V →U is isomorphic to p in Ĉ→, then q is representable by part (b).

(e) Let I be a set and let ( pi : Yi→ Xi | i ∈ I ) be an I-indexed family of representable natural
transformations. Let p : Y → X be their coproduct, i.e.

p = ∑
i∈I

pi : ∑
i∈I

Yi→∑
i∈I

Xi

Let C ∈ ob(C) and let x ∈ X(C). Then x = (i,x′) for some i ∈ I and x′ ∈ Xi(C). By repres-
entability of pi, there exist D ∈ ob(C), y′ ∈ Yi(D) and f : D→C in C making the left square
in the following diagram a pullback.
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y(D) Yi Y

y(C) Xi X

y′

y( f )

y
pi

ιi

p

x′

x

ιi

Checking that the outer square is a pullback is a straightforward verification of the universal
property of pullbacks. Hence p is representable.

We know by Theorem 3.3.14(c) that the composite of two representable natural transformations
is representable. By chasing the representability data through the respective proofs that pullbacks
and composites of representable natural transformations are representable, we obtain the following
construction of the polynomial composite of natural models.

3.3.15 Construction — Polynomial composite of natural models
Fix a small category C. The polynomial composite of natural models (C, p) and (C,q) is the
natural model (C,q · p) with representability data given by

• Context extension. The extension of Γ ∈ ob(C) by (A,B) ∈ ∑
A:V

U 〈A〉 is given by (Γ ◦A) •B;

• Projection. The projection (Γ ◦A) •B→ Γ is given by the composite

uA ◦pB : (Γ ◦A) •B
pΓ◦A

B−−→ Γ ◦A
uΓ

A−→ Γ

• Variable. The new variable term in context (Γ ◦A) •B is (A,B,vΓ
A ,q

Γ ◦A
B ).

Verification. Using Definition 1.2.13, we can express the polynomial composite q · p as the regular
composite r ◦ r′ of morphisms in E indicated in the following commutative diagram, in which the
unlabelled arrows are the appropriate projection morphisms.
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∑
A,B

∑
a∈〈A〉

[B(a)] ∑
A,B
〈A〉 ∑

A:V
U 〈A〉

U ×
.

V

.
U U

.
V V

r′ r

p q

Note that the left- and right-hand ‘squares’ are cartesian, exhibiting r as a pullback of q and r′ as a
pullback of p.

We now proceed chase the representability data of p and of q through the proofs that pullbacks and
composites of representable natural transformations are representable. To this end, let Γ ∈ ob(C)

and let (A,B) ∈
(

∑
A:V

U 〈A〉
)
(Γ ).

Since q is representable and the right-hand square of the above diagram is cartesian, we may form
the following pasting of pullback squares:

y(Γ ◦A) ∑
A,B
〈A〉

.
V

y(Γ ) ∑
A:V

U 〈A〉 V

(A,B,vA)

vA

y(uA)

y

r

y
q

(A,B)

A

and since the left hand square is cartesian, we may form the following pasting diagram of pullback
squares:
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y((Γ ◦A) •B) ∑
A,B

∑
a∈〈A〉

[B(a)]
.

U

y(Γ ◦A) ∑
A,B
〈A〉 U

(A,B,vA,qB)

qB

y(pB)

y

r′

y
p

(A,B,vA)

A

Pasting the left-hand squares of the previous two diagrams vertically, we obtain the desired pullback
square.

y((Γ ◦A) •B) ∑
A,B

∑
a∈〈A〉

[B(a)]

y(Γ ) ∑
A∈V

.
U 〈A〉

(A,B,vA,qB)

y(uA◦qB)

y

q·p

(A,B)

This proves that q · p is representable, with representability data as indicated in the statement of
this construction, so that (C,q · p) is a natural model.
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Section 4.1

Free natural models

In Section 2.2, we saw that the various theories of natural models equipped with type theoretic
structure are essentially algebraic. As we discussed at the end of that section, we can use this
fact to apply the machinery of essentially algebraic categories and locally presentable categories
to categories of the form NMT for a given dependent type theory T—for example, such categories
have initial objects (since they are cocomplete), and there are free–forgetful adjunctions between
such categories.

The goal of this chapter is to explicitly describe the initial object of NMT for a couple of basic
dependent type theories T, and to provide an explicit description of some of these left adjoints to
forgetful functors.

In this section, we construct the free natural model on a set of basic types—or, more precisely, on
an indexed family of elements of U (�). In the subsequent sections, we describe how to freely add
type theoretic structure to a natural model without additional type theoretic structure.

A basic free model

We construct the free model on the theory T(tyi)i∈I of an I-indexed family of basic types, where I is
a fixed set.

4.1.1 Construction — Free model of the theory of a family of basic types
The free natural model on the theory T(tyi)i∈I is the natural model (CI, pI) given by the following
data:

• The underlying category CI is (Fin/I)
op.

• The (only, and hence) chosen terminal object of CI is (∅, !I : ∅→ I).

• The presheaf of types UI : Cop
I → Set is the codomain functor Fin/I → Set, or equivalently

the constant functor ∆(I) with value I. Thus UI(A,u) = I for all (A,u) and UI( f ) = idI for
all f .

• The presheaf of terms
.

UI is the domain functor dom : Fin/I → Set. Thus
.

UI(A,u) = A for
all (A,u) and

.
UI( f ) = f for all f .

• The natural transformation pI :
.

UI →UI is given simply by (pI)(A,u) = u : A→ I.

• The representability data is defined as follows. Given (A,u) and j ∈ I, we define
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� (A,u) • j = (A+1, [u, j])—thus (A+1)i = Ai if i 6= j and (A+1)i = A j +1 if i = j;

� p j : (A,u) • j→ (A,u) in CI is given by the left inclusion function A→ A+1 in Fin/I .

� q j ∈
.

UI((A,u) • j) = A+1 is the added element ? ∈ A+1.

Verification. The only part of the verification that is not immediate is representability of pI as
witnessed by the given representability data.

The set-up is as follows. Take (A,u) ∈ CI and j ∈ I. We need to prove that the following square is
a pullback

y((A,u) • j)
.

UI

y(A,u) UI

p j

q j

pI

j

It evidently commutes, so it suffices to check the universal property on representables.

To this end, let (B,v) ∈ CI , let f : (B,v)→ (A,u) in CI (so that f is a function A→ B over I) and
let b : y(B,v)→

.
UI , and suppose that pI ◦b = j ◦ y( f ).

y(B,v)

y((A,u) • j)
.

UI

y(A,u) UI

y( f )

b

y(p j)

q j

pI

j

By the Yoneda lemma, b is an element of B, and commutativity of the outer square says that

v(b) = (pI)(B,v)(b) = UI( f )( j) = j

We need to prove that there is a unique g : (B,v)→ (A,u) • j in CI such that q j ◦ y(g) = b and
p j ◦g = f . Now:
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• As a morphism in CI , the map g must be a function A+1→ B over I, which is equivalent to
saying that g = [g′,b′] for some function g′ : A→ B over I and some element b′ ∈ B j;

• The requirement that p j ◦g = f in Ci is equivalent to the requirement that g′ = f ;

• The requirement that q j ◦ y(g) = b is equivalent to the requirement b′ = b.

So g = [ f ,b] : (B,v)→ (A,u) • j is the unique morphism satisfying the required conditions. Hence
the square is a pullback, and so the representability data of Construction 4.1.1 truly does witness
representability of pI .

4.1.2 Example
Take I = 0. The category C0 is the terminal category 1; the presheaves U0,

.
U0 are empty and the

natural transformation p0 :
.

U0→U0 is the empty natural transformation.

4.1.3 Example
Take I = 1. Then C1 ' Finop, which is the free category with finite limits on one object. The
presheaf U1 is the constant presheaf ∆(1) and the presheaf

.
U1 is the inclusion Fin ↪→ Set. The

natural transformation p1 :
.

U1→U1 is then uniquely determined since U1 is terminal.

We now prove that the term model (CI, pI) satisfies the appropriate universal property.

4.1.4 Lemma — Context extension by a basic type is a product
Let (C, p) be a natural model. If Γ ∈ ob(C) and A ∈U (�). The span

Γ
pA←− Γ •A[tΓ ]

tΓ •A−−→ � •A

is a product diagram in C.

Proof. Note that the following square is a canonical pullback square (Construction 2.1.6).

Γ •A[tΓ ] � •A

Γ �

tΓ •A

pA[tΓ ] pA

tΓ

But � is terminal in C, so this says precisely that Γ •A[tΓ ] is a product of Γ and � •A, with the
required projection morphisms.
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4.1.5 Theorem — Universal property of the model (CI , pI)
Let (C, p) be a natural model and let {Oi | i ∈ I} ⊆U (�). There is a unique morphism of natural
models F : (CI, pI)→ (C, p) such that F(i) = Oi for all i ∈ I. Hence (CI, pI) is initial in the
category NM(tyi)i∈I .

Proof. Define the underlying functor F : CI → C on objects by

F(A,u) = Ou(a0) • . . . •Ou(am−1)

Let f : (A,u)→ (B,v) in CI , so that f is a function B→ A over I. By Lemma 4.1.4 (and an
easy induction), the objects Ou(a0) • . . . •Ou(am−1) and Ov(b0) • . . . •Ov(bn−1) are the products of their
respective component basic types. With this in mind, let

F( f ) = 〈π f (b0),π f (b1), . . . ,π f (bn−1)〉 : Ou(a0) • . . . •Ou(am−1)→ Ov(b0) • . . . •Ov(bn−1)

where πak : Ou(a0) • . . . •Ou(am−1)→ Ou(ak) is the product projection onto the kth component.

In order to see that F( f ) is well-defined, we need the codomain of π f (b`) to be Ov(b`) for each
` < n. To see this, note that for given ` < n we have f (b`) = ak for some k < m, so that the
codomain of π f (b`) is Ou(ak). Now u(ak) = u( f (b`)) = v(b`) since f is a morphism over I, and
hence Ou(ak) = Ov(b`), as required.

That the assignment f 7→ F( f ) is functorial follows from elementary computations using product
projections.

The natural transformation ϕ : UI → F∗U is defined by

ϕ(A,u) : I→U (Ou(a0) • . . . •Ou(am−1)), i 7→ Oi

and the natural transformation
.

ϕ :
.

UI → F∗
.

U is defined by
.

ϕ(A,u) : A→
.

U (Ou(a0) • . . . •Ou(am−1)), ak 7→ qOu(ak)

Note that, in particular, we have F(i) = ϕ(0,!I)(i) = Oi, as required.

To see that ϕ and
.

ϕ are natural, let f : (A,u)→ (B,v) in CI , so that f is a function B→ A over I.

• The naturality square for ϕ is as follows:

I U (Ou(a0) • . . . •Ou(am−1))

I U (Ov(b0) • . . . •Bv(bn−1))

ϕ(A,u)

ϕ(B,v)

idI U (〈π f (0),...,π f (n−1)〉)

101



102 Chapter 4. Natural model semantics

Both composites ϕ(A,u) ◦ idI and U (〈π f (0), . . . ,π f (n−1)〉)◦ϕ(B,v) send i ∈ I to Oi ∈U (Ou(a0) •

. . . •Ou(am−1)), and so ϕ is indeed natural.

• The naturality square for
.

ϕ is as follows:

A
.

U (Ou(a0) • . . . •Ou(am−1))

B
.

U (Ov(b0) • . . . •Ov(bn−1))

.
ϕ(A,u)

.
ϕ(B,v)

f
.

U (〈π f (0),...,π f (n−1)〉

To see that this commutes, let b ∈ B. Then b = b` for some ` < n. Let k < m be such that
f (b`) = ak. It is then evident that both composites send b to qOu(ak)

, so that
.

ϕ is natural.

It is immediate from its definition that F0 preserves chosen terminal objects.

To see that F∗(p)◦ .
ϕ = ϕ ◦ pI , note that for all (A,u) ∈ CI we have

F∗(p)(A,u) ◦
.

ϕ(A,u)(ak) = pF(A,u)(qOu(ak)
) definition of

.
ϕ and F∗

= Ou(ak) definition of p and qOu(ak)

= ϕ(A,u)(u(ak)) definition of ϕ

= ϕ(A,u) ◦ (pI)(A,u)(ak) definition of pI

To see that F preserves the representability data, fix (A,u) ∈ CI and j ∈ I. Then:

• F((A,u) • j) = Ou(a0) • . . . •Ou(am−1) •O j = F(A,u) •F( j);

• pF( j) = pO j
: Ou(a0) • . . . •Ou(am−1) •O j → Ou(a0) • . . . •Ou(am−1) is given by projection onto the

first m components, which is precisely F(p j);

• F(q j) =
.

ϕ(A,u)• j(?) = qO j
= qFty( j).

Hence F is a morphism of natural models.

It remains to prove that F is unique. Suppose that G = (G,γ,
.
γ) : (CI, pI)→ (C, p) is another

morphism of natural models such that G(i) = Oi for all i ∈ I. It follows by induction on |A| that
G(A,u) = F(A,u) for all (A,u) ∈ CI . That G = F then follows from the fact that G preserves
context extension and all morphisms in CI are given by projections.
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A word of warning

In the next four sections, we describe left adjoints to forgetful functors of the form NMT→ NM
when T is, respectively, the theory of a term of a basic type (Section 4.2), the theory of an (extern-
ally) indexed family of basic types (Section 4.3), the theory of a unit type (Section 4.4), and the
theory of dependent sum types (Section 4.5). Before we do so, it is worth pointing out what we do
not do.

• We do not prove the initiality of the term model of a dependent type theory T in the category
NMT, which is the natural model built out of the syntax of the theory T. We could do so
either by proving that a given term model is isomorphic to the constructed free model, or by
proving that the term model satisfies the universal property of the free model. For more on
this, see the discussion around Schema 5.0.1.

• We do not compose our free constructions. For instance, suppose we are given an arbitrary
natural model (C, p). We could use the work in Section 4.3 to freely adjoin a basic type,
and the work in Section 4.5 to freely adjoin dependent sum types to the resulting model; or
we could first freely adjoin dependent sum types, and then freely adjoin a basic type. The
two resulting natural models would, in general, not be isomorphic, since we have implicitly
composed with the forgetful functor NMty → NM in the first case, and with the forgetful
functor NMΣ → NM in the second case. In order to resolve this issue, we would need to
describe the left adjoint to at least one (preferably both) of the forgetful functors

NMty,Σ→ NMty and NMty,Σ→ NMΣ

With such adjoint functors described, we would expect the free constructions to commute in
the desired way—that is, the composites of free functors

NM→ NMty→ NMty,Σ and NM→ NMΣ→ NMty,Σ

will be naturally isomorphic.

We leave the task of overcoming these limitations to future work.
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Section 4.2

Extending a natural model by a term of a basic type

In a given dependent type theory T, the contexts Γ = x1 : A1,x2 : A2, . . . ,xn : An satisfy the property
that each Ai is a type in context x1 : A1, . . . ,xi−1 : Ai−1. In particular, A1 is a basic type. If we
introduce a new term o : O of a basic type O, the contexts x1 : A1, . . . ,xn : An in the resulting type
theory T′ satisfy the property that each Ai may additionally depend on the new term o : O. Thus
the contexts of T′ are precisely those obtained by taking a context x : O,x1 : A1, . . . ,xn : An in T and
then (semantically) substituting o : O for x : O.

Intuitively speaking, then, given a model M of type theory T such that M satisfies the judgement
` o : O, we can interpret a context of T′ by first interpreting the corresponding context x : O,x1 :
A1, . . . ,xn : An of T in M, and then substituting o for x in M.

Transferring this intuition to a natural model (C, p), when we freely adjoin a term of a basic type
O∈U (�), the contexts of the new natural model ‘should’ look like O •Γ , where Γ is an old context.
Unfortunately it is not always possible to make sense of the expression O •Γ , unless Γ is itself of
the form � •A1 •A2 • . . . •An. In order to overcome this obstacle, we instead take our new contexts
to be those of the form Γ •O •A1 • . . . •An. A technicality we must take care of is that the inclusion
from (C, p) to the new natural model, which sends a context Γ to the weakened context Γ • O,
must preserve context extension—in order to do this, we only formally extend the contexts, and we
reduce the contexts to a normal form by pushing the variable x : O as far to the right as possible, so
that the formally extended contexts Γ •O •A and (Γ •A) •O become identified whenever A ∈U (Γ ).

4.2.1 Definition — Swap isomorphisms
Let (C, p) be a natural model. For each Γ ∈ ob(C) and A,O ∈U (Γ ), the swap isomorphism

swO,A : Γ •O[tΓ ] •A[pO]
∼=−→ Γ •A •O[tΓ •A]

is the isomorphism given by the respective canonical pullback squares for pA and pO; we will write
Γ •O •A and Γ •A •O to simplify notation.

Γ •O •A

Γ •A •O Γ •O

Γ •A Γ

pO•A

pA

swO,A

pA•O

pO pO

pA
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Furthermore, given a list (A1, . . . ,An) with Ai+1 ∈U (Γ •O •A •A1 • . . . •Ai) for each i < n, we obtain
isomorphisms

sw : Γ •O •A •A1 •A2 • . . . •An
∼=−→ Γ •A •O •A1 •A2 • . . . •An

where again we have suppressed the substitutions. We will also refer to these as swap isomorph-
isms.

Note that swap isomorphisms cohere with representability data since they are the isomorphisms
induced from the universal property of canonical pullback squares.

4.2.2 Construction — Category of contexts extended by a term
Let (C, p) be a natural model and let O ∈U (�). The category of contexts extended by a term x
of type O is the category Cx:O defined as follows.

• The objects of Cx:O are (n+ 1)-tuples (Γ ;A1, . . . ,An), where n > 0, Γ ∈ ob(C) and Ai ∈
U (Γ •O[tΓ ] •A1 • . . . •Ai) for each i < n, and we additionally identify the list (Γ •A;A1, . . . ,An)
with the list (Γ ;A[pO],A1, . . . ,An), where we have suppressed the swap isomorphisms.

The object (Γ ;~A) of Cx:O represents the result of extending a context Γ first by a variable
x : O and then by variables of types which may depend on x. Each object ~Γ of Cx:O has
a unique expression as an (n+ 1)-tuple (Γ ;A1, . . . ,An) with n minimal, which we call the
normal form of ~Γ , representing the result of pushing the new variable x : O as far to the
right as possible by swap isomorphisms.

Unless otherwise specified, all expressions of objects of Cx:O as lists (Γ ;A1, . . . ,An) will be
assumed to be in normal form. Note that if (Γ ;A1, . . . ,An) is in normal form and n > 0, then
(Γ ;A1, . . . ,An,B) is in normal form.

• A morphism σ : (∆ ;B1, . . . ,Bm)→ (Γ ;A1, . . . ,An) in Cx:O is a morphism

σ : ∆ •O[t∆ ] •B1 • . . . •Bm→ Γ •O[tΓ ] •A1 • . . . •An

commuting with the canonical morphisms to � •O, as indicated in the following diagram.
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∆ •O[t∆ ] •B1 • . . . •Bm Γ •O[tΓ ] •A1 • . . . •An

∆ •O[t∆ ] Γ •O[tΓ ]

� •O

∆ Γ

�

σ

p~B p~A

t∆ •OpO[t∆ ]

y
tΓ •O pO[tΓ ]

y

pO

t∆ tΓ

There is a full and faithful functor E : Cx:O→ C/�•O defined on objects by letting E(Γ ;~A) be the
composite

Γ •O[tΓ ] •~A
p~A−→ Γ •O[tΓ ]

tΓ •O−−→ � •O

in C/�•O, and on morphisms by E(σ) = σ , so that Cx:O is equivalent to a full subcategory of C/�•O.

Verification. That Cx:O is a category follows immediately from the fact that composition and iden-
tity are inherited from C/�•O. The functor E evidently respects domains and codomains, and is full
and faithful since it acts as the identity on morphisms. Furthermore, every full and faithful functor
corestricts to an equivalence between its domain and its image.

When clear from context, we will abuse notation by writing ‘O’ to refer simultaneously to the
element O ∈U (�), the object � •O ∈ C and the elements O[tΓ ] ∈U (Γ ) for all Γ ∈ ob(C).

4.2.3. We will denote by C(O) the full subcategory of C/O which is the image of Cx:O under E.
Thus the objects of C(O) are morphisms of C of the form (tΓ • O) ◦ p~A for (Γ ;~A) ∈ ob(Cx:O).
Since E is full and faithful, the corestriction E : Cx:O→ C(O) is an equivalence of categories. The
‘product with O’ functor ∆O : C→C/O given by Γ 7→ (Γ •O, tΓ •O : Γ •O→O) (see Lemma 4.1.4)
factors through the inclusion C(O) ↪→ C/O, and so we obtain an adjunction ΣO a ∆O : C� C(O).

4.2.4 Lemma
Let (C, p) be a natural model and let O ∈U (�). The functor ∆O : C→ C(O) factors through the
functor E : Cx:O→ C(O).
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C

Cx:O C(O)

I
∆O

E

Moreover, the functor I : C→ Cx:O is right adjoint to the composite Cx:O
E−→ C(O)

ΣO−→ C.

Proof. Since Γ
pO←− Γ •O tΓ •O−−→ O is a product diagram in C, we can take ∆OΓ = (Γ •O, tΓ •O :

Γ •O→O) for each Γ ∈C. But then ∆OΓ = E(Γ ); so define IΓ = (Γ ) and I(σ : ∆ → Γ ) = σ •O :
(∆)→ (Γ ), and observe that this defines a functor C→Cx:O with ∆O = E ◦ I, which is well-defined
since (∆) and (Γ ) are in normal form.

To see that ΣO ◦E a I, observe that we have the following chain of equalities and natural isomorph-
isms.

C(ΣO(E(∆ ;~B),Γ )

∼= C(O)(E(∆ ;~B),∆Γ ) since ΣO a ∆O

= C(O)(∆ •O •B1 • . . . •Bm, t∆ •O ◦p~B),(Γ •O, tΓ •O) definitions of ∆O and of E

= Cx:O((∆ ;~B),(Γ )) definition of morphisms in Cx:O

= Cx:O((∆ ;~B), IΓ ) definition of I

4.2.5 Construction — Free natural model extended by a term
Let (C, p) be a natural model and let O ∈U (�). The free natural model extended by a term x of
type O is the natural model (Cx:O, px:O :

.
Ux:O→Ux:O) defined by the following data. The under-

lying category is Cx:O (Construction 4.2.2) with distinguished terminal object (�). The presheaves
Ux:O,

.
Ux:O : Cop

x:O → Set and the natural transformation px:O :
.

Ux:O → Ux:O are obtained from

p :
.

U →U by precomposing with the composite Cx:O
E−→ C(O)

Σ0−→ C. Explicitly, we have

Ux:O(Γ ;A1, . . . ,An) = U (Γ •O •A1 • . . . •An)

and likewise for
.

Ux:O, and then

(px:O)(Γ ;A1,...,An)(a) = pΓ •O•A1•...•An(a)

for all (Γ ;A1, . . . ,An) ∈ ob(Cx:O) and all a ∈
.

Ux:O(Γ ;A1, . . . ,An).

The representability data is defined for (Γ ;~A) = (Γ ;A1, . . . ,An) as follows.
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• Let (Γ ;A1, . . . ,An) •A = (Γ ;A1, . . . ,An,A)—note that if n > 1 then this is automatically in
normal form, and if n = 0 and A = A′[pO] for some A′ ∈ U (Γ ), then the normal form is
given by (Γ ) •A = (Γ •A′);

• Let pA : (Γ ;~A,A)→ (Γ ;~A) be the usual morphism pA : Γ •O •A1 • . . . •An •A→Γ •O •A1 • . . . •An

in C (or pA ◦ sw−1 : Γ •A′ •O→ Γ •O in the case discussed above); and

• Let qA ∈ Ux:O(Γ ;A1, . . . ,An,A) = U (Γ •O •A1 • . . . •An •A) be the usual element qA (or the
element qA[sw

−1] ∈U (Γ •A′ •O) in the case discussed above).

The distinguished term x ∈
.

Ux:O(�x:O;O) is given by the element qO ∈
.

U (� •O).

Verification. That Ux:O and
.

Ux:O are presheaves and that px:O is a natural transformation are im-
mediate from the fact that they are obtained from p by applying the functor (ΣO ◦E)∗ : Ĉ→ Ĉx:O.

To see that px:O is representable, let ~Γ = (Γ ;A1, . . . ,An) ∈ ob(Cx:O) and A ∈Ux:O(~Γ ) and consider
the following square in Ĉx:O.

y(~Γ •A)
.

Ux:O

y(~Γ ) Ux:O

pA

qA

px:O

A

Composing with swap isomorphisms if necessary, we can take pA and qA to be the respective
morphism and element of C. To see that the square is a pullback, let ~∆ =(∆ ;B1, . . . ,Bm)∈ ob(Cx:O)

and let σ : ~∆ → ~Γ and a ∈
.

Ux:O(~∆ ;A[σ ]).

y(~∆)

y(~Γ •A)
.

Ux:O

y(~Γ ) Ux:O

σ

a

pA

qA

px:O

A
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Again composing with swap isomorphisms if necessary, we can take σ to be a morphism from
∆ •O •B1 • . . . •Bm to Γ •O •A1 • . . . •An in C(O) and a ∈

.
U (∆ •O •B1 • . . . •Bm;A[σ ]). But then by

representability of p there is a unique morphism

〈σ ,a〉A : ∆ •O •B1 • . . . •Bm→ Γ •O •A1 • . . . •An •A

in C such that pA ◦ 〈σ ,a〉A = σ and qA[〈σ ,a〉A] = a. Moreover, this is a morphism in C(O) since

(tΓ •O)◦p~A,A ◦ 〈σ ,a〉A = (tΓ •O)◦p~A ◦pA ◦ 〈σ ,a〉A by definition of p~A,A
= (tΓ •O)◦p~A ◦σ by the universal property of pullbacks

= (t∆ •O)◦p~B since σ is a morphism in C(O)

So we see that 〈σ ,a〉A, perhaps composed with the relevant swap isomorphisms, is the desired
morphism of Cx:O. So px:O is representable.

4.2.6. Under the equivalence E : Cx:O ' C(O) ⊆ C/O, the new terminal object �x:O corresponds
with the identity morphism idO : O→O. The canonical section s(x) : (�)→ (�;O) of the new term
x ∈Ux:O(�x:O;O) is then given by the diagonal morphism δO : (O, idO)→ (O ·O,pO).

4.2.7 Lemma — Inclusion morphism
Let (C, p) be a natural model. The functor I : C→ Cx:O of Lemma 4.2.4 extends to a morphism of
natural models (I, ι ,

.
ι) : (C, p)→ (Cx:O, px:O).

Proof. In Construction 4.2.5 we have px:O = (ΣO ◦ E)∗(p). Since ΣO ◦ E a I, it follows from
Lemma 1.3.8 that (ΣO ◦E)∗ ∼= I!, so that we can take I!(p) = px:O. But then we can take

ι = idI!U : I!U → I!U = Ux:O and
.
ι = id

I!
.

U
: I!

.
U → I!

.
U =

.
Ux:O

Now note that (I, ι ,
.
ι) preserves context extension, since for all Γ ∈ ob(C) and A ∈U (Γ ) we have

IΓ • IA = (Γ ;A[pO]) = (Γ •A) = I(Γ •A)

by the identification of lists described in Construction 4.2.2. The fact that (I, ι ,
.
ι) is a morphism of

natural models now follows trivially from the fact that ι and
.
ι are identity morphisms.

4.2.8 Theorem — Extension of a morphism of natural models
Let (C, p) be a natural model and let O∈U (�). For each morphism of natural models F : (C, p)→
(D,q), there is a morphism of natural models Fx:O : (Cx:O, px:O)→ (Dy:FO,qy:FO) such that Fx:O◦ I =
I ◦F and F(x) = y ∈

.
V (?;FO).
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(C, p) (D,q)

(Cx:O, px:O) (Dy:FO,qy:FO)

∈

x:O

∈

y:FO

F

I I

Fx:O

We will see in Corollary 4.2.13 that the assignment F 7→ Ftm in fact extends to a functor.

Proof. Let F = (F,ϕ,
.

ϕ) : (C, p)→ (D,q) be a morphism of natural models.

Define the functor Ftm : Cx:O→ Dy:FO on objects by letting

Ftm(Γ ;A1, . . . ,An) = (FΓ ;FA1, . . . ,FAn)

and given a morphism σ : (∆ ;B1, . . . ,Bm)→ (Γ ;A1, . . . ,An) in Cx:O, let Ftm(σ) be the same morph-
ism from F∆ ◦FO ◦FB1 ◦ . . . ◦FBm to FΓ ◦FO ◦FA1 ◦ . . . ◦FAn in D as is given by F(σ) (with σ

considered as a morphism ∆ •O •B1 • . . . •Bm→ Γ •O •A1 • . . . •An in C). Then for each Γ ∈ ob(C)
we have

Fx:OIΓ = Fx:O(Γ ) = (FΓ ) = I(FΓ )

so that Fx:O ◦ I = I ◦F .

Define ϕx:O = I!(ϕ) : I!U ⇒ I!V and
.

ϕx:O = I!(
.

ϕ) : I!F!
.

U ⇒ I!
.

V . Note that we have

I!F! p = (I ◦F)! p = (Fx:O ◦ I)! p = (Fx:O)!I! p = Ftmpx:O

and I!q = qy:FO, so that ϕx:O and
.

ϕx:O have the correct type. To see that Ftm preserves context
extension, note that

FtmΓ •FtmA = (FΓ ) •FA[uFO] definition of Ftm and ϕx:O

= (FΓ ;FA[uFO]) context extension in (Cx:O, px:O)

= (FΓ ;FA[FpO]) F is a morphism of natural models

= (FΓ ◦FA) normal form

= (F(Γ ◦A)) F is a morphism of natural models

= Ftm(Γ •A) definition of Ftm

Finally note that Ftm preserves the remaining representability data, so that we have a morphism of
natural models as required.
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4.2.9. We are nearly ready to prove the universal property of (Cx:O, px:O). First we must do some
acrobatics involving terms of basic types. Given a natural model (C, p) with a basic type O∈U (�)
and a term o ∈

.
U (�;O), we obtain a section s(o) : � → O of the projection pO : O→ � from

representability of p—specifically, we have s(o) = 〈id�,o〉O.

Given any object Γ of C, this gives rise to a section s(o[tΓ ]) : Γ → Γ •O of pO •O : Γ •O→ Γ ;
we will just write s(o) for s(o)[tΓ ]. Hence for any object (Γ ;~A) of Cx:O, we obtain a section
s(o) •~A : Γ •~A[s(o)]→ Γ •O •~A of pO •~A : Γ •O •~A→ Γ •A[s(O)]. This is illustrated in the following
diagram, in which all four squares are canonical pullbacks and all horizontal composites are identity
morphisms.

Γ •~A[s(o)] Γ •O •~A Γ •~A[s(o)]

Γ Γ •O Γ

� O �

y

s(o)•~A

p~A[s(o)]

y
pO•

~A

p~A p~A[s(o)]

y
s(o)

tΓ

y
pO

tΓ •O tΓ

s(o) pO

In particular, the object of C obtained by pulling back the morphism E(Γ ;~A) = (tΓ •O)◦p~A along

s(o) exists and can be taken to be equal to Γ •~A[s(o)]. This yields a functor ∆s(o) : C(O)→ C.

4.2.10 Construction — Term substitution morphism
Let (C, p) be a natural model, let O ∈ U (�) and let o ∈

.
U (�;O). The substitution morphism

of o for x is the morphism of natural models So = (So,σo,
.
σo) : (Cx:O, px:O)→ (C, p) satisfying

So(x) = o ∈
.

U (�;O) and So ◦ I = id(C,p); it is defined as follows.

• The functor So : Cx:O→ C is the composite

Cx:O
E−→ C(O)

∆s(o)−−→ C/� ∼= C

where s(o) : �→ O is as discussed in Paragraph 4.2.9.

• The natural transformation σo : Ux:O → U is given by letting (σo)(Γ ;~A) : U (Γ • O •~A)→
U (Γ •~A[s(o)]) be the function U (s(o) •~A).

• Likewise,
.
σo :

.
Ux:O→

.
U is defined by (

.
σo)(Γ ;~A) =

.
U (s(o) •~A).
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112 Chapter 4. Natural model semantics

Verification. Note first that
So(�) = ∆s(o)(� •O

pO−→ �) = �

so that So preserves distinguished terminal objects. Given a morphism τ : (∆ ;~B)→ (Γ ;~A) in Cx:O,
the corresponding naturality squares for σo and

.
σo are obtained by applying U and

.
U , respectively,

to the following diagram C.

∆ •O •~B ∆ •~B[s(o)]

Γ •O •~A ∆ •~A[s(o)]

s(o)•~B

τ ∆s(o)(τ)

s(o)•~A

These diagrams commute in C, and so the naturality squares commute too.

To see that So preserves context extension, let (Γ ;~A) ∈ ob(Cx:O) and let A ∈Ux:O(Γ ;~A) = U (Γ •

~A •A), and note that

So(Γ ;~A) •So(A) = Γ •~A[s(o)] •A[s(o) •~A] by definition of So

= Γ • (~A •A)[s(o)] by our notation convention

= So(Γ •~A •A) by definition of So

And note that we have
So(pA) = ∆s(o)(E(pA)) = p

A[s(o)•~A]
= pSo(A)

and
So(qA) = qA[s(o) •~A] = qA[〈idΓ •~A,qA[s(o) •~A]〉A] = q

A[s(o)•~A]
= qSo(A)

so So is a morphism of natural models.

To see that So(x) = o, note that x = qO ∈
.

U (� •O), so we have

So(x) = qO[s(o)] = qO[〈id�,o〉O] = o

as required.

Finally note that for Γ ∈ ob(C) we have

So(I(Γ )) = So(Γ ) = ∆s(o)(Γ •O tΓ •O−−→ O) = Γ

Likewise it is easy to see that So ◦ I acts as the identity on substitutions, types and terms. So
So ◦ I = id(C,p), as required.
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We now have the components needed to prove the universal property of the natural model (Cx:O, px:O).

4.2.11 Theorem — Universal property of freely extending by a term
Let (C, p) be a natural model and let O ∈ U (�). Given any natural model (D,q), morphism
F : (C, p)→ (D,q) and element o ∈

.
V (?;FO), there is a unique morphism of natural models

F] : (Cx:O, px:O)→ (D,q) such that F] ◦ I = F and F](x) = o ∈
.

V (?;FO).

(C, p) (D,q) o ∈
.

V (?;FO)

(Cx:O, px:O) x ∈
.

Ux:O(�x:O;O)

F

I
F]

Proof. Define F] = So ◦Ftm, as indicated in the following diagram.

(C, p) (D,q)

(Cx:O, px:O) (Dy:FO,qy:FO) (D,q)

F

I I

Ftm

F]

So

Note that F] is a morphism of natural models since it is a composite of morphisms of natural
models; it satisfies F] ◦ I = F , since by Theorem 4.2.8 and construction 4.2.10 we have

F] ◦ I = So ◦Ftm ◦ I = So ◦ I ◦F = id(D,q) ◦F = F

Moreover we have F](x) = So(Ftm(x)) = So(y) = o, as required.

It remains to prove that F] is unique. To do so, we prove that actions of F] on contexts, substitu-
tions, types and terms are uniquely determined by (F,ϕ,

.
ϕ) and the element o ∈ V (?;FO).

For each (Γ ;~A) ∈ ob(Cx:O), we have F](Γ ;A1, . . . ,An) = FΓ •F~A[s(o)], so that the action of F] on
objects is determined by F , ϕ and o; likewise on morphisms.

Given A ∈Ux:O((Γ ;~A)) = U (Γ •O •~A), we have F](A) = FA[s(o) •F~A], so that the action of F] on
types is determined by F , ϕ and o.

Finally, given a∈
.

Ux:O((Γ ;~A);A) =
.

U (Γ •O •~A;A), we have F]a = Fa[s(o) •F~A], so that the action
of F] on terms is determined by F ,

.
ϕ and o.
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4.2.12. Although we defined F] in terms of Ftm and So, we could instead have defined F] directly
and recovered Ftm and So as instances of morphisms of the form G] for appropriate choices of G.
Specifically, we can take Ftm=(I◦F)] and So =(id(D,q))], with the evident choices of distinguished
term in each case.

4.2.13 Corollary — Freely extending by a term is functorial
The assignments (C, p) 7→ (Cx:O, px:O) and F 7→ Ftm extend to a functor (−)tm : NMty→ NMtm,
which is left adjoint to the forgetful functor NMtm→NMty. Furthermore, the component at (C, p)
of the unit of this adjunction is (I, ι ,

.
ι) : (C, p)→ (Cx:O, px:O).

Proof. Given natural models (C, p) and (D,q), an element O ∈ U (�), a morphism F : (C, p)→
(D,q), note that Ftm = (I ◦F)], where I : (D,q)→ (Dy:FO,qy:FO) and the distinguished term of
(Dy:FO,qy:FO) is y = qFO. That (−)tm is functorial is then immediate from the ‘uniqueness’ part of
Theorem 4.2.11, and that it is left adjoint to the forgetful functor with unit as stated is exactly the
content of Theorem 4.2.11.

4.2.14 Corollary — Free model on a family of basic types and a family of terms
Let I be an arbitrary set and let J = { j0, j1, . . . , jn−1} be a finite set. The free model of the theory
of an I-indexed family of basic types and a J-indexed family of terms of basic types is the natural
model (CI;J, pI;J) defined by

(CI;J, pI;J) = (· · ·((CI+J, pI+J)x0: j0)x1: j1) · · ·)xn−1: jn−1

where (CI+J, pI+J) is the term model on the theory of an (I + J)-indexed family of basic types
(Construction 4.1.1). In particular, (CI;J, pI;J) is initial in the category NM(tyi)i∈I ,(tm j) j∈J with an
I-indexed family of basic types and a J-indexed family of terms of basic types.

Proof. As proved in Theorem 4.1.5, the natural model (CI+J, pI+J) is initial in NM(tyk)k∈I+J
. The

natural model (CI;J, pI;J) is obtained by applying functors of the form (−)tm finitely many times.
Since these functors are left adjoints, they preserve initial objects.
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Section 4.3

Extending a natural model by a basic type

4.3.1 Construction — Category of contexts extended by a basic type
Let (C, p) be a natural model. The category of contexts extended by a basic type X is the category
CX defined as follows.

• The objects of CX are 2(n+ 1)-tuples (Γ ,k0,A1,k1, . . . ,An,kn), where Γ ∈ ob(C), for each
i < n we have Ai ∈U (Γ •A1 • . . . •An) and ki ∈ N, and where we identify the lists

(Γ ,0,A1,k1, . . . ,An,kn) and (Γ •A1,k1, . . . ,An,kn)

Note that every object of CX is either of the form (Γ ,0) or has a unique representative of the
form (Γ ,k0,A1,k1, . . . ,An,kn) with k0 > 0.

The idea is that the list (Γ ,k0,A1,k1, . . . ,An,kn) should represent the context

Γ • X • . . . •X︸ ︷︷ ︸
k0 copies

• A1 • X • . . . •X︸ ︷︷ ︸
k1 copies

• . . . • An • X • . . . •X︸ ︷︷ ︸
kn copies

• A morphism from (∆ , `1,B1, `1, . . . ,Bm, `m) to (Γ ,k0,A1,k1, . . . ,An,kn) in CX is a pair (σ ,h),
where σ : ∆ •B1 • . . . •Bm→ Γ •A1 • . . . •An in C and h is a function from k0 + k1 + · · ·+ kn to
`0 + `1 + · · ·+ `m, with identity and composition inherited from C×Finop.

Define functors I : C→ CX , E : CX → C and G : CX → Finop by

• I(Γ ) = (Γ ,0) and I(σ) = (σ , id0);

• E(Γ ,k0,A1,k1, . . . ,An,kn) = Γ •A1 • . . . •An and E(σ ,h) = σ ;

• G(Γ ,k0,A1,k1, . . . ,An,kn) = k0 + k1 + · · ·+ kn and G(σ ,h) = h.

Then E ◦ I = idC, G ◦ I = 0 = ∆(∅) (the constant functor whose value is the empty set), and
〈E,G〉 : CX → C×Finop is an equivalence of categories.

Verification. Note that the hom sets of CX are well-defined under the identification

(Γ ,0,A1,k1, . . . ,An,kn)∼ (Γ •A1,k1, . . . ,An,kn)

and that the associativity and unit laws hold because identity and composition are inherited from
C×Finop. Well-definedness of I is clear, and well-definedness of E and G are immediate from the
fact that their action on morphisms is the same as that of the projection functors from C×Finop to
its components. Evidently E ◦ I = idC and G◦ I = 0.
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To see that 〈E,G〉 : CX → C×Finop is an equivalence, note that it is full and faithful since it acts
as the identity on morphisms, and it is essentially surjective, since a pair (Γ ,k) ∈ ob(C×Finop) is
already an object of CX , and

〈E,G〉(Γ ,k) = (E(Γ ,k),G(Γ ,k)) = (Γ ,k)

Hence 〈E,G〉 : CX ' C×Finop, as required.

4.3.2 Construction — Free natural model extended by a basic type
Let (C, p) be a natural model. The free natural model on (C, p) extended by a basic type X is
the natural model (CX , pX :

.
UX →UX) defined by the following data. The underlying category is

CX (Construction 4.3.1) with distinguished terminal object �X = (�,0). The presheaves UX ,
.

UX

and pX :
.

UX →UX are given by

pX = !+E∗p : G∗U +E∗
.

U → 1+E∗U

where U is the inclusion Fin→ Set, regarded as an object of F̂inop. Explicitly, we have

• UX(Γ ,k0,A1,k1, . . . ,An,kn) = {X}+U (Γ •A1 • . . . •An); and

•
.

UX(Γ ,k0,A1,k1, . . . ,An,kn) = (k0 + · · ·+ kn)+
.

U (Γ •A1 • . . . •An);

for all (Γ ,k0,A1,k1, . . . ,An,kn)∈ ob(CX), and where we have suggestively written X for the unique
element of 1(~Γ ).

The representability data is defined as follows. Given ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(CX), an
element of UX(~Γ ) is either X or is some A ∈UX(Γ •A1 • . . . •An).

• Define ~Γ •X = (Γ ,k0,A1,k1, . . . ,An,kn +1);

• The projection ~Γ •X → ~Γ in CX is given by the pair (idΓ •A1•...•An , i), where i : k0 + · · ·+kn ↪→
k0 + · · ·+ kn +1 is the inclusion function; and

• The new variable
.

UX(~Γ •X) = (k0+ · · ·+kn+1)+
.

U (Γ •A1 • . . . •An) is element given by the
‘+1’ term—identifying natural numbers with the corresponding von Neumann ordinals, we
can take this new element to be the natural number k0 + · · ·+ kn.

Given A ∈U (Γ •A1 • . . . •An)⊆UX(~Γ ):

• Define ~Γ •A = (Γ ,k0,A1,k1, . . . ,An,kn,A,0);

• The projection ~Γ •A→ ~Γ in CX is given by the pair (pA, idk0+···+kn), where pA : Γ •A1 • . . . •
An •A→ Γ •A1 • . . . •An is as in (C, p);
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• The new variable
.

UX(~Γ • A) = k0 + · · ·+ kn +
.

U (Γ • A1 • . . . • An • A) is given by the usual
element qA ∈

.
U (Γ •A1 • . . . •An).

The distinguished basic type of (CX , pX) is X ∈ {X}+U (�) = UX(�,0).

Verification. To see that (�,0) is terminal, let ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(CX); there is
exactly one morphism Γ •A1 • . . . •An → � in C, namely tΓ •A1•...•An , and exactly one function 0→
k0 + k1 + · · ·+ kn, namely the empty function ∅, and hence (tΓ •A1•...•An ,∅) is the unique morphism
~Γ → (�,0) in CX . That UX and

.
UX are presheaves and that pX is natural are immediate from their

definitions, so it remains to prove that pX is representable.

So let ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn). To simplify notation, let k = G(~Γ ) = k0 + · · ·+ kn and write
Γ •~A for Γ •A1 • . . . •An. We check representability data separately for X ∈ 1(~Γ ) and for A∈U (Γ •A).

First consider the following diagram in ĈX .

y(~Γ •X) G∗U
.

UX

y(~Γ ) 1 UX

k

(id
Γ •~A,i) ! pX

X

Recall that i denotes the inclusion k ↪→ k+ 1, and X is name we are giving to the unique element
of 1(~Γ ), and so the diagram evidently commutes. We need to verify that it is a pullback. So take
an object ~∆ = (∆ , `0,B1, `1, . . . ,Bm, `m) of ob(CX), a morphism (σ ,h) : ~∆ → ~Γ and an element
j ∈

.
UX(~∆), and assume that (pX)~∆ ( j) = X [(σ ,h)]. Since X : y(~Γ )→ UX factors through the

inclusion 1 ↪→UX , it follows that j : y(~∆)→
.

UX factors through the inclusion G∗U ↪→
.

UX . So it
suffices to verify the universal property for the left-hand square. But then this amounts to verifying
that there is a unique morphism 〈σ , j〉X as indicated with a dashed arrow in the following diagram
in F̂inop.

y(`)

y(k+1) U

y(k) 1

j

h
i

k

!

X
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The existence and uniqueness of this morphism follows from representability of U → 1, which is
precisely the natural transformation p1 of Construction 4.1.1; in particular, the morphism from `
to k+1 in Finop is the function [h, j] : k+1→ `. The morphism ~∆ → ~Γ •A in ĈX is then given by
(σ , [h, j]).

Given A ∈U (Γ •~A)⊆UX(~Γ ), consider the following diagram in ĈX .

y(~Γ •A) E∗
.

U
.

UX

y(~Γ ) E∗U UX

y((pA,idk))

qA

E∗p pX

A

The diagram evidently commutes, so we need to verify that it is a pullback. So take an object ~∆ =
(∆ , `0,B1, `1, . . . ,Bm, `m) of ob(CX), a morphism (σ ,h) : ~∆ → ~Γ and an element a ∈

.
UX(~∆), and

assume that (pX)~∆ (a) = A[(σ ,h)]. Since A : y(~Γ )→ E∗U factors through the inclusion E∗U ↪→
UX , we have that a : y(~∆)→

.
UX factors through the inclusion a : E∗

.
U →

.
UX . So it suffices to

verify the universal property for the left-hand square. But then this amounts to verifying that there
is a unique morphism 〈σ ,a〉A as indicated with a dashed arrow in the following diagram in Ĉ.

y(∆ •~B)

y(Γ •~A •A)
.

U

y(Γ •~A) U

a

σ

qA

pA p

A

The existence and uniqueness of this morphism follows from representability of p; the morphism
~∆ → ~Γ •A in ĈX is then given by (〈σ ,a〉A,h).

Hence the representability data exhibits pX as a representable natural transformation, and so (CX , pX)
is a natural model, with X ∈ {X} ⊆UX(�,0) as its distinguished basic type.

We now work towards verifying that (CX , pX) satisfies the desired universal property.
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4.3.3 Lemma — Inclusion morphism
Let (C, p) be a natural model. The functor I : C→CX of Construction 4.3.1 extends to a morphism
of natural models (I, ι ,

.
ι) : (C, p)→ (CX , pX).

Proof. Recall that UX = 1+E∗U and
.

UX = G∗U +E∗
.

U ; since E ◦ I = idC and G◦ I = 0, we have

I∗UX = I∗1+ I∗E∗U = 1+U and
.

UX = I∗G∗U + I∗E∗
.

U = 0+
.

U (=
.

U )

so that I∗pX = !+ p :
.

U → U . Let ι : U → I∗UX = 1+U and
.
ι :

.
U → I∗

.
UX = 0+

.
U be the

respective inclusions. By the identification of objects in Construction 4.3.1, we have

IΓ • IA = (Γ ,0) •A = (Γ ,0,A,0) = (Γ •A,0) = I(Γ •A)

so that I respects context extension. Moreover we have

I(pA) = (pA, id0) and I(qA) = qA

so that I respects representability data. Hence I is a morphism of natural models.

4.3.4. Let (C, p) be a natural model admitting a basic type O∈U (�). By iterating swap isomorph-
isms (Definition 4.2.1), we obtain isomorphisms

θ : Γ • O • . . . •O︸ ︷︷ ︸
k0 times

• A1 • O • . . . •O︸ ︷︷ ︸
k1 times

• . . . •An • O • . . . •O︸ ︷︷ ︸
kn times

∼= Γ •A1 • . . . •An • O • . . . •O︸ ︷︷ ︸
k times

for each object (Γ ,k0,A1,k1, . . . ,An,kn) of CX , where k = k0 + k1 + · · ·+ kn and, as usual, we have
suppressed projection substitutions. We can choose these isomorphisms such that, for each j ∈ k,
the jth copy of O on the left corresponds with the jth copy of O on the right, in the sense we can
express θ as a composite of swap isomorphisms containing no swap isomorphisms of the form
swO,O. By Lemma 4.1.4, then, the object Γ • ~O •A1 • ~O • . . . •An • ~O is a product in C of Γ •A1 • . . . •An

and k copies of O. Furthermore, given another object (∆ , `0,B1, `1, . . . ,Bm, `m) of CX , each pair
(σ ,h) consisting of a morphism σ : ∆ •B1 • . . . •Bm→ Γ •A1 • . . . •An and a function h : k→ ` gives
rise to a morphism

∆ • ~O •B1 • ~O • . . . •Bm • ~O→ Γ • ~O •A1 • ~O • . . . •An • ~O

Explicitly, this morphism is indicated by the dashed arrow in the following diagram.

∆ • ~O •B1 • ~O • . . . •Bm • ~O Γ • ~O •A1 • ~O • . . . •An • ~O

∆ •B1 • . . . •Bm×O×·· ·×O︸ ︷︷ ︸
` times

Γ •A1 • . . . •An×O×·· ·×O︸ ︷︷ ︸
k times

θ ∼=

σ×〈πh(1),πh(2),...,πh(n)〉

θ−1∼=
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where π j is the projection O×·· ·×O→ O onto the jth coordinate.

4.3.5 Theorem — Universal property of freely extending by a basic type
Let (C, p) be a natural model and let (D,q) be natural models with distinguished basic type O ∈
V (?). For each morphism of natural models F : (C, p)→ (D,q), there is a unique morphism of
natural models F] : (CX , pX)→ (D,q) such that F] ◦ I = F and F]X = O.

(C, p) (D,q)

(CX , pX)

F

I
F]

Proof. Let F : (C, p)→ (D,q) be a morphism of natural models, and define F] : (CX , p)→ (DX ,q)
as follows. The underlying functor F] : CX → D is defined on objects by

F](Γ ,k0,A1,k1, . . . ,An,kn) = FΓ • O • . . . •O︸ ︷︷ ︸
k0 times

• FA1 • O • . . . •O︸ ︷︷ ︸
k1 times

• . . . •FAn • O • . . . •O︸ ︷︷ ︸
kn times

and on morphisms (σ ,h) : (∆ , `0,B1, `1, . . . ,Bm, `m)→ (Γ ,k0,A1,k1, . . . ,Am,km) by letting F](σ ,h)
be the morphism

F∆ • ~O •FB1 • ~O • . . . •FBm • ~O→ FΓ • ~O •FA1 • ~O • . . . •FAn • ~O

induced by Fσ : F∆ • FB1 • . . . • FBm → FΓ • FA1 • . . . • FAn and h : n→ m as described in Para-
graph 4.3.4. Functoriality of F] then follows from functoriality of F and the fact that F] acts by
conjugating by isomorphisms.

Given an object ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn), define

(ϕ])~Γ = [O,ϕ
Γ •~A] : {X}+U (Γ •~A)→ V (F]~Γ )

Thus we have F]X = O and F]A = FA for each A ∈U (Γ •~A). Likewise, define

(
.

ϕ
])~Γ = q+

.
ϕ

Γ •~A : k+V (F]~Γ )

where q : k→ V (F]~Γ ) is defined for j ∈ k by letting q( j) be the (suitably weakened) element vO

of
.

V (F~Γ ) corresponding with the jth copy of O in F~Γ . Thus we have F] j = vO (corresponding
with the appropriate copy of O), and F]a = Fa for each a ∈

.
U (Γ •~A;A).
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To see that (F],ϕ],
.

ϕ]) preserves representability data, let ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(CX)
and let A ∈U (Γ •~A)⊆UX(~Γ ). Then

F]~Γ •F]A

= (FΓ • ~O •FA1 • ~O • . . . •FAn • ~O) •FA by definition of F] and ϕ
]

= F](Γ ,k0,A1,k1, . . . ,An,kn,A,0) by definition of F]

= F](~Γ •A) by definition of context extension in (CX , pX)

and likewise we have

F]~Γ •F]X

= (FΓ • ~O •FA1 • ~O • . . . •FAn • ~O) •O

= F](Γ ,k0,A1,k1, . . . ,An,kn +1)

= F](~Γ •X)

so F] preserves context extension.

Finally, by the construction of the action of F] on morphisms, we immediately have that F](pA, idk)=
uFA = uF](A), F](id

Γ •~A,h) = uO, F](qA) = vFA = vF]A, and F](k) = vO. So F] is a morphism of
natural models.

We have already remarked that F](X) = O, as required.

To see that F] is unique, we prove that it is determined entirely by F : (CX , pX)→ (D,q) and the
value F]X .

For each ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn)∈ ob(CX), we have by preservation of context extension that

F](Γ ,k0,A1,k1, . . . ,An,kn)=F](Γ ,0) • F]X • . . . •F]X︸ ︷︷ ︸
k0 times

• F]A1 • F]X • . . . •F]X︸ ︷︷ ︸
k1 times

• . . . •F]An • F]X • . . . •F]X︸ ︷︷ ︸
kn times

But F](Γ ,0) = FΓ and F]Ai = FAi for each i, and so the action of F] on the objects of CX is
determined by F and F]X . The action of F] on morphisms is similarly determined, and hence so
is the entire functor F] : CX → D.

Moreover, we have

ϕ
]
~Γ
= F]X +ϕΓ •A1•...•An : {X}+U (Γ •A1 • . . . •An)→ V (F]~Γ )

so that ϕ] is determined by F]X and F ; and

.
ϕ
]
~Γ
= q+ϕΓ •A1•...•An : k+

.
U (Γ •A1 • . . . •An)→

.
V (F]~Γ )
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where k = k0 + k1 + · · ·+ kn, and q : k→
.

V (F]~Γ ) is defined by letting q( j) be the (appropriately
weakened) element vF]X of

.
V (F]~Γ ) corresponding with the jth copy of F]X in F]~Γ .

Hence the entire morphism (F],ϕ],
.

ϕ]) is determined by F and F]X , as required.

As a consequence of Theorem 4.3.5, if (D,q) is a natural model with distinguished basic type O ∈
U (�), then specifying a morphism of natural models (CX , pX)→ (D,q) preserving distinguished
basic types is equivalent to specifying a morphism (C, p)→ (D,q).

4.3.6 Corollary — Functoriality of freely extending by a basic type
Let (C, p) and (D,q) be natural models. For every morphism F : (C, p)→ (D,q), there is a unique
morphism of natural models Fty : (CX , pX)→ (DY ,qY ) such that Fty ◦ I = I ◦F and FX = Y ∈
VY (?Y ).

(C, p) (D,q)

(CX , pX) (DY ,qY )

F

I I

FX

Moreover, the assignments (C, p) 7→ (CX , pX) and F 7→ Fty define a functor (−)ty : NM→ NMty

which is left adjoint to the forgetful functor NMty→ NM, and the component at (C, p) of the unit
of this adjunction is I : (C, p)→ (CX , pX).

Proof. Define Fty = (I ◦F)]. Then by Theorem 4.3.5 we have that Fty is the unique morphism of
natural models preserving the distinguished basic type and satsifying Fty ◦ I = (I ◦F)] ◦ I = I ◦F .
Functoriality of (−)ty follows from uniqueness, and the fact that it is left adjoint to the forgetful
functor with the unit as described is exactly the content of Theorem 4.3.5.

4.3.7 Construction — Type insertion morphism
Let (C, p) be a natural model and let O ∈U (�). The type insertion morphism for O is the unique
morphism of natural models S : (CX , pX)→ (C, p) such that SX = O and S◦ I = id(C,p).

Verification. Take S = (id(C,p))], where the distinguished element of U (�) is O.

4.3.8 Corollary
Let (C, p) and (D,q) be natural models and let O ∈ V (?). For each morphism of natural models
F : (C, p)→ (D,q), the morphism F] : (CX , pX)→ (D,q) of Theorem 4.3.5 factors as F] = S◦Fty,
where S : (DY ,qY )→ (D,q) is the type insertion morphism for O.
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(C, p) (D,q)

(CX , pX) (DY ,qY ) (D,q)

F

I I

Fty

F]

S

Proof. Evidently S◦Fty is a morphism of natural models which preserves distinguished basic types
and extends F , so this follows by uniqueness of F].

4.3.9. The results in this section can be generalised to freely extend a natural model (C, p) by
an I-indexed family of basic types ~X = (Xi | i ∈ I ) for a given index set I. If I is finite, we can
simply iterate Construction 4.3.1, but it is in fact possible for index sets of arbitrary cardinality.
The new category of contexts C~X is equivalent to C× (Fin/I)

op, and the representability data is
similarly transported from that of (C, p) and of (FI, pI) (see Construction 4.1.1). The details of this
construction are omitted in this thesis, as they are even more cumbersome.
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Section 4.4

Extending a natural model by a unit type

4.4.1. To simplify notation in this section, given a natural model (C, p), we will write 1 = id1 :
1→ 1 for the identity morphism idy(�) on the terminal object y(�) of Ĉ and write •Γ for the unique
element of 1(Γ ) for each Γ ∈ ob(C); we may just write • if Γ can be inferred from context.

4.4.2 Theorem — Representability of 1+ p
Let (C, p) be a natural model. For each Γ ∈ ob(C), the following square is a pullback;

y(Γ ) 1+
.

U

y(Γ ) 1+U

•Γ

1+p

•Γ

and for each A ∈U (Γ ), the following square is a pullback.

y(Γ •A) 1+
.

U

y(Γ ) 1+U

qA

y(pA) 1+p

pA

In particular, 1+ p is representable.

Proof. The terminal natural transformation 1 : 1→ 1 is easily seen to be representable—indeed,
its pullback along y(Γ )→ 1 can be taken to be idy(Γ ) : y(Γ )→ y(Γ )—so the result follows from
Theorem 3.3.14(e).

4.4.3 Construction — Category of contexts with formal unit types
Let (C, p) be a natural model. The category of contexts with formal unit types of (C, p) is the
category C1 defined as follows.

• As with Construction 4.3.1, the objects of C1 are 2(n+ 1)-tuples (Γ ,k0,A1,k1, . . . ,An,kn),
where Γ ∈ ob(C), for each i < n we have Ai ∈U (Γ •A1 • . . . •An) and ki ∈ N, and where we
identify the lists (Γ ,0,A1,k1, . . . ,An,kn) and (Γ •A1,k1, . . . ,An,kn).
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The idea is that the list (Γ ,k0,A1,k1, . . . ,An,kn) should represent the context

Γ • 1 • . . . •1︸ ︷︷ ︸
k0 copies

• A1 • 1 • . . . •1︸ ︷︷ ︸
k1 copies

• . . . • An • 1 • . . . •1︸ ︷︷ ︸
kn copies

• A morphism from (∆ , `0,B1, `1, . . . ,Bm, `m) to (Γ ,k0,A1,k1, . . . ,An,kn) in C1 is a morphism
σ : ∆ •B1 • . . . •Bm→ Γ •A1 • . . . •An in C, with identity and composition inherited from C.

Define functors I : C→ C1 and E : C1→ C by

• I(Γ ) = (Γ ,0) and I(σ) = σ ;

• E(Γ ,k0,A1,k1, . . . ,An,kn) = Γ •A1 • . . . •An and E(σ) = σ .

These functors establish an equivalence of categories C' C1.

Verification. Note that the hom sets of C1 are well-defined under the identification

(Γ ,0,A1,k1, . . . ,An,kn)∼ (Γ •A1,k1, . . . ,An,kn)

and that the associativity and unit laws hold because composition and identity are inherited from
C. Well-definedness of I and E is immediate from the fact that they act trivially on morph-
isms. Furthermore we have E ◦ I = idC. To see that I ◦ E ∼= idC1 , note that for each object
(Γ ,k0,A1,k1, . . . ,An,kn) of C1 we have

(I ◦E)(Γ ,k0,A1,k1, . . . ,An,kn) = (Γ •A1 • . . . •An,0)

The component at (Γ ,k0,A1,k1, . . . ,An,kn) of the natural isomorphism I ◦E ∼= idC1 can thus be
taken to be the idenitity morphism idΓ •A1•...•An , which evidently defines a natural isomorphism.
Hence I and E yield an equivalence of categories C' C1.

4.4.4 Construction — Free natural model admitting a unit type
Let (C, p) be a natural model. The free natural model admitting a unit type on (C, p) is the
natural model (C1, p1), where C1 is as in Construction 4.4.3 with distinguished terminal object
(�,0), and where the presheaves U1,

.
U1 : Cop

1
→ Set and the natural transformation p1 :

.
U1 →

U1 are obtained from 1+ p : 1+
.

U → 1+U by precopmosing with the functor E : C1 → C
(Construction 4.4.3).

The representability data is defined for ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(C1) as follows.

• Let ~Γ • • = (Γ ,k0,A1,k1, . . . ,An,kn + 1) and, for each A ∈ U (Γ • A1 • . . . • An), let ~Γ • A =
(Γ ,k0,A1,k1, . . . ,An,kn,A,0).
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• Let p• : (Γ ,k0,A1,k1, . . . ,An,kn+1)→ (Γ ,k0,A1,k1, . . . ,An,kn) be the identity morphism on
Γ •A1 • . . . •An in C, and let pA : (Γ ,k0,A1,k1, . . . ,An,kn,A,0)→ (Γ ,k0,A1,k1, . . . ,An,kn) in
C1 be the morphism pA : Γ •A1 • . . . •An •A→ Γ •A1 • . . . •An in C.

• Let q• = •Γ •A1•...•An and let the element qA be as in (C, p).

The unit type structure is defined by 1̂= I(•�) and ?̂= I(•�).

Verification. Note that (�,0) is indeed terminal in C1, since morphisms (Γ ,k0,A1,k1, . . . ,An,kn)→
(�,0) in C1 are exactly morphisms Γ •A1 • . . . •An→� in C, of which there is exactly one.

Next, note that p1 = E∗(1+ p) : E∗(1+
.

U )→ E∗(1+U ), so that U1 and
.

U1 are presheaves over
C1 and p1 is a natural transformation. Since 1+ p is representable (Theorem 4.4.2), and since E is
an equivalence of categories (Construction 4.4.3) sending the described representability data to the
maps in the pullback squares witnessing representability of 1+ p, it follows that p1 is representable
and the representability data for p1 exhibits (C1, p1) as a natural model.

Finally, consider the following square in Ĉ1.

y(�,0)
.

U1

y(�,0) U1

?̂=I(•)

p1

1̂=I(•)

It is a pullback, since the corresponding square in Ĉ, namely the top square in the statement of
Theorem 4.4.2 with Γ = �, is a pullback, and I is an equivalence of categories.

4.4.5 Lemma — Inclusion morphism
Let (C, p) be a natural model. The embedding I :C ↪→C1 extends to a morphism of natural models
(I, ι ,

.
ι) : (C, p)→ (C1, p1).

Proof. First note that I∗U1 = U and I∗
.

U1 =
.

U , so we can let ι and
.
ι be the respective identity

natural transformations. Next note that

I(Γ •A) = (Γ •A,0) ?
= (Γ ,0,A,0) = (Γ ,0) •A = IΓ • IA

where the equation marked ? follows by our identification of presentations of objects of C1, as
described in Construction 4.4.3. Hence I preserves context extension. Furthermore, IpA is equal as
a morphism of C to pA : Γ •A→ A, and IqA and qA are equal elements of

.
U (Γ •A)⊆

.
U1(Γ •A,0),

so that (I, ι ,
.
ι) is indeed a morphism of natural models.
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4.4.6 Lemma — Extension of a morphism of natural models
For each morphism of natural models F : (C, p)→ (D,q), there is a morphism of natural models
F1 : (C1, p1)→ (D1,q1) which preserves unit type structure and for which F1 ◦ I = I ◦F .

(C, p) (D,q)

(C1, p1) (D1,q1)

F

I I

F1

Proof. Given a morphism of natural models F =(F,ϕ,
.

ϕ) : (C, p)→ (D,q), define F1=(F1,ϕ1,
.

ϕ1) :
(C1, p1)→ (D1,q1) as follows.

• Define F1 : C1→ D1 on objects by

F1(Γ ,k0,A1,k1, . . . ,An,kn) = (FΓ ,k0,FA1,k1, . . . ,FAn,kn)

and on morphisms by F1(σ) = F(σ).

• Define ϕ1 = ϕE and
.

ϕ1 =
.

ϕE ; explicitly, given ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(C1), we
have

(ϕ1)~Γ = 1+ϕΓ •A1•...•An : 1+
.

U (Γ •A1 • . . . •An)︸ ︷︷ ︸
=U1(~Γ )

→ 1+V (FΓ •FA1 • . . . •FAn)︸ ︷︷ ︸
=(F∗

1
V1)(~Γ )

and likewise (
.

ϕ1)~Γ = 1+
.

ϕΓ •A1•...•An .

To see that F is well-defined, note that a morphism

σ : (∆ , `0,B1, `1, . . . ,Bm, `m)→ (Γ ,k0,A1,k1, . . . ,An,kn)

in Ĉ1 is a morphism σ : ∆ •B1 • . . . •Bm→ Γ •A1 • . . . •An in C. Since F preserves context extension,
we have

F(σ) : F∆ •FB1 • . . . •FBm→ FΓ •FA1 • . . . •FAn

in C, so that F1(σ) = F(σ) is a morphism of the appropriate type in C1. That F1 preserves identity
and composition is then immediate from functoriality of F , and so F1 is a functor.

To see that F1 preserves distinguished terminal objects, note that

F1(�,0) = (F�,0) = (?,0)

since F preserves distinguished terminal objects.
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That ϕ1 and
.

ϕ1 are natural transformations of the appropriate types and that F∗
1

q1 ◦ϕ1 =
.

ϕ1 ◦ p1
is immediate from their definitions.

To see that F1 preserves context extension, take ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(C1) and A ∈
U1(~Γ ) = 1+U (Γ •A1 • . . . •An). If A = •, then

F1(~Γ • •) = F1(Γ ,k0,A1,k1, . . . ,An,kn +1) definition of context extension in C1

= (FΓ ,k0,FA1,k1, . . . ,FAn,kn +1) definition of F1
= (FΓ ,k0,FA1,k1, . . . ,Fn,kn) • • definition of context extension in D1

= F1~Γ •F1• since F•= (ϕ1)~Γ (•) = •

and if A ∈U (Γ •A1 • . . . •An), then FA ∈ V (FΓ •FA1 • . . . •FAn), and so

F1(~Γ •A) = F1(Γ ,k0,A1,k1, . . . ,An,kn,A,0) definition of context extension in C1

= (FΓ ,k0,FA1,k1, . . . ,FAn,kn,FA,0) definition of F1
= (FΓ ,k0,FA1,k1, . . . ,Fn,kn) •FA definition of context extension in D1

= F1~Γ •F1A since F1A = (ϕ1)~Γ (A) = FA

so F1 preserves context extension.

Now F1p• and pF1• are equal since they are both equal to the identity morphism on F1~Γ ; and F1pA
and pF1A are equal since, as morphisms of C, the former is equal to FpA and the latter is equal
to pFA, which are equal to each other since F is a morphism of natural models. Likewise F1q•
and qF1• are equal to the unique element of 1 ⊆ 1+V (FΓ •FA1 • . . . •FAn) = V1(F~Γ •F•), and
F1qA = FqA and qF1A = qFA as elements of V (FΓ • FA1 • . . . • FAn • FA) ⊆ V1(F~Γ • FA), so that
F1qA = qF1A since F is a morphism of natural models.

So F1 is a morphism of natural models; moreover, we have already established that F1 preserves
the unit type structure.

4.4.7. In a natural model (C, p) admitting a unit type 1 ∈
.

U (�), the morphism p1 : � •1→ � is an
isomorphism. By induction (and suppressing substitutions), each composite of the form

p~1 : Γ •1 •1 • . . . •1
p1−→ ·· ·

p1−→ Γ •1 •1
p1−→ Γ •1

p1−→ Γ

is an isomorphism for each Γ ∈ ob(C). It then follows that the substitution

p~1 •A : Γ •~1 •A[p
1
]→ Γ •A

is an isomorphism for all A ∈U (Γ ), since it is obtained by pulling back the isomorphism p~1 along
pA. To simplify notation, we will write the domain of p~1

~A as Γ •~1 •A. But now replacing Γ by
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Γ •~1 •A •~1, we see by iterating this process inductively that for each object (Γ ,k0,A1,k1, . . . ,An,kn)
of C1, there is an isomorphism

θ = θ(Γ ,k0,A1,k1,...,An,kn) : Γ •~1 •A1 •~1 • . . . •An •~1−→ Γ •A1 • . . . •An

in C. Hence for each pair of objects (∆ , `0,B1, `1, . . . ,Bm, `m) and (Γ ,k0,A1,k1, . . . ,An,kn) of C1

and each morphism σ : ∆ •B1 • . . . •Bm→ Γ •A1 • . . . •An, we obtain a morphism

σ
′ : ∆ •~1 •B1 •~1 • . . . •Bm •~1→ Γ •~1 •A1 •~1 • . . . •An •~1

defined by σ ′ = θ−1 ◦σ ◦θ , and moreover σ ′ is the unique morphism satisfying θ ◦σ ′ = σ ◦θ .

4.4.8 Construction — Unit insertion morphism
Let (C, p) be a natural model admitting a unit type. The unit insertion morphism is the unit type
preserving morphism of natural models N = (N,ν ,

.
ν) : (C1, p1)→ (C, p) satisfying N ◦ I = id(C,p),

which is defined as follows.

The functor N : C1→ C is defined on objects by

N(Γ ,k0,A1,k1, . . . ,An,kn) = Γ •~1 •A1 •~1 • . . . •An •~1

where the ith instance of ~1 has length ki. Given a morphism σ : (∆ , `0,B1, `1, . . . ,Bm, `m) →
(Γ ,k0,A1,k1, . . . ,An,kn) in C1, which is a morphism σ : ∆ • B1 • . . . • Bm → Γ • A1 • . . . • An in C,
define

N(σ) = θ
−1 ◦σ ◦θ : ∆ •~1 •B1 •~1 • . . . •Bm •~1→ Γ •~1 •A1 •~1 • . . . •An •~1

where the symbol θ refers in each case to the relevant isomorphism as described in Paragraph 4.4.7.

The natural transformation ν : U1→ N∗U is defined by letting the component of ν at an object
(Γ ,k0,A1,k1, . . . ,An,kn) of C1 be the function

ν(Γ ,k0,A1,k1,...,An,kn) = [1,U (θ)] : 1+U (Γ •A1 • . . . •An)→U (Γ •~1 •A1 •~1 • . . . •An •~1)

where θ : Γ •~1 •A1 •~1 • . . . •An •~1−→Γ •A1 • . . . •An is the isomorphism described in Paragraph 4.4.7.
The natural transformation

.
ν :

.
U1→ N∗

.
U is defined likewise.

Verification. First note that N defines a functor: it respects identity and composition since it is
defined on morphisms by conjugating by isomorphisms. Moreover N(�,0) = �, so that N preserves
distinguished terminal objects.

The naturality squares for ν and
.
ν are obtained by applying 1+U and 1+

.
U , respectively, to

squares in C of the form
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130 Chapter 4. Natural model semantics

∆ •~1 •B1 • . . . •~1 •Bm •~1 ∆ •B1 • . . . •Bm

Γ •~1 •A1 • . . . •~1 •An Γ •A1 • . . . •An

θ

θ−1◦σ◦θ σ

θ

These evidently commute in C, and so ν ,
.
ν are natural.

That p◦ .
ν = ν ◦ p1 follows from naturality of p and the fact that p1 = E∗(1+ p). That N preserves

the representability data and unit type structure is evident from the explicit definition given above.

4.4.9 Theorem — Universal property of the free natural model admitting a unit type
Let (C, p) be a natural model, let (D,q) be a natural model admitting a unit type, and let F :
(C, p)→ (D,q) be a morphism of natural models. There is a unique unit type structure preserving
morphism of natural models F] : (C1, p1)→ (D,q) such that F] ◦ I = F .

(C, p) (D,q)

(C1, p1)

F

I
F]

Proof. Define F] = N ◦F1, as indicated in the following diagram.

(C, p) (D,q)

(C1, p1) (D1,q1) (D,q)

F

I I

F1

F]

N

Since N and F1 preserve unit type structure (Lemma 4.4.6 and Construction 4.4.8), so does F].
Moreover we have

F] ◦ I = N ◦F1 ◦ I = N ◦ I ◦F = F

as required.
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To see that F] is the unique such morphism, we prove that its actions on contexts, substitutions,
types and terms are determined entirely by (F,ϕ,

.
ϕ).

To this end, note that for each ~Γ = (Γ ,k0,A1,k1, . . . ,An,kn) ∈ ob(C1), we have

F]~Γ = FΓ ◦~1 ◦FA1 ◦~1 ◦ . . . ◦FAn ◦~1

so that the action of F] on objects is determined by that of F . Furthemore F] is determined by F
on morphisms, since we have

F](σ) = N(F1(σ)) = N(F(σ)) = θ ◦F(σ)◦θ
−1

with the symbol θ representing the isomorphisms in D as discussed in Paragraph 4.4.7.

Now given A ∈U (Γ •A1 • . . . •An) and a ∈
.

U (Γ •A1 • . . . •An;A), we have F]A = FA and F]a = Fa;
and F] is uniquely determined on the unit type structure since it must preserve it.

Hence F] is the unique unit type preserving morphism satisfying F] ◦ I = I ◦F .

4.4.10 Corollary — Freely extending by a unit type is functorial
The assignments (C, p) 7→ (C1, p1) and F 7→ F1 determine a functor (−)1 : NM→ NM1, which
is left adjoint to the forgetful functor U : NM1→ NM. Moreover, the component at (C, p) of the
unit of this adjunction is (I, ι ,

.
ι) : (C, p)→ (C1, p1).

Proof. We can recover F1 as (I ◦F)], where I : (D,q)→ (D1,q1) is the inclusion morphism. As
such, functoriality of (−)1 follows from the ‘uniqueness’ part of Theorem 4.4.9. That this functor
is left adjoint to the forgetful functor NM1 → NM with unit as described is then precisely the
content of Theorem 4.4.9.
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Section 4.5

Extending a natural model by dependent sum types

The idea behind freely adjoining dependent sum type structure to a natural model (C, p) is similar
to that of freely adjoining unit type structure. First we modify the representable natural transform-
ation p to obtain a new representable natural transformation which additionally admits dependent
sum types, and then we replace the base category C by an equivalent one that allows formal exten-
sions of objects by dependent sum types.

Given a type A and a dependent type B over A, their dependent sum type ∑x:A B(x) has as terms
pairs 〈a,b〉, where a : A and b : B(a). Given a further dependent type C over B, we obtain a type
∑x:A ∑y:B(x)C(x,y), whose terms take the form 〈a,〈b,c〉〉, and a type ∑〈x,y〉:∑x:A B(x)C(x,y), whose
terms take the form 〈〈a,b〉,c〉. More generally, given n types A1,A2, . . . ,An, with Ai+1 depending
on Ai for all i < n, there is one iterated dependent sum type for each way of parenthesising a list
with n elements. As discussed in Paragraph 4.5.1, these correspond with particular kinds of trees.
In order to freely admit dependent sum types, then, we take these trees of types to be our new types,
whose terms are trees of terms (Definition 4.5.2, Construction 4.5.4).

4.5.1. Given a set S, the polynomial functor Set→ Set defined on objects by X 7→ S+X2 has an
initial algebra, which we can denote by Tree(S). The elements of Tree(S) are leaf-labelled finite
rooted binary trees with labels from S. We can generate the set Tree(S) inductively by declaring
that a ∈ Tree(S) for each a ∈ S and [T1,T2] ∈ Tree(S) for each T1,T2 ∈ Tree(S), so that specifying
an element T ∈ Tree(S) is equivalent to specifying an inhabited list a1,a2, . . . ,an of elements of S
together with a parenthesisation of the list. To illustrate, the following leaf-labelled finite rooted
binary tree is represented by the parenthesised list [[[a,b],c], [d,e]].

•

• •

• c d e

a b

We say two leaf-labelled finite rooted binary trees have the same shape if their underlying (un-
labelled) trees are isomorphic—in practice, this means that the parenthesised lists have the same
parenthesisation but may have different labels.

Write L(T ) = (a1,a2, . . . ,an) for the ordered list of the leaves of a tree T —more precisely, L is
defined inductively by L(a) = (a) and L([T1,T2]) = L(T1)

_ L(T2), where _ is concatenation of
sequences. For instance, L([[[a,b],c], [d,e]]) = (a,b,c,d,e).
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4.5.2 Definition — Type trees and term trees
Let (C, p) be a natural model and let Γ ∈ ob(C ).

(i) The set Utree(Γ ) of (dependent) type trees over Γ , and the set {Γ •T | T ∈ Utree(Γ )} of
extensions of Γ by type trees, are defined simultaneously inductively by the following rules.

• A ∈Utree(Γ ) for each A ∈U (Γ ), and Γ •A coincides with the regular notion;

• If T1 ∈ Utree(Γ ), Γ • T1 is defined, T2 = Utree(Γ • T1) and Γ • T1 • T2 is defined, then
[T1,T2] ∈Utree(Γ ) and Γ • [T1,T2] = Γ •T1 •T2.

(ii) The set
.

Utree(Γ ) of (dependent) term trees over Γ and the function (ptree)Γ :
.

Utree(Γ )→
Utree(Γ ) are defined simultaneously inductively by the following rules.

• a ∈
.

Utree(Γ ) for each a ∈
.

U (Γ ) and (ptree)Γ (a) = pΓ (a);

• If t1 ∈
.

Utree(Γ ), T1 = (ptree)Γ (t1) is defined, t2 ∈
.

Utree(Γ • T1) and (ptree)Γ •T1(t2) is
defined, then [t1, t2] ∈

.
Utree(Γ ) and (ptree)Γ ([t1, t2]) = [T1,T2].

Write
.

Utree(Γ ;T ) for the set of term trees t over Γ with (ptree)Γ (t) = T .

The following lemma is useful for working with the definitions of type trees and term trees given
in Definition 4.5.2.

4.5.3 Lemma
Let (C, p) be a natural model and let Γ ∈ ob(C).

(i) Given a type tree T over Γ with L(T ) = (A1,A2, . . . ,An), we have Ai+1 ∈U (Γ •A1 • . . . •Ai)
for each i < n; and

(ii) Given a term tree t over Γ with (ptree)Γ (t) = T and L(t) = (a1,a2, . . . ,an), the trees t and T
have the same shape and ai+1 ∈

.
Utree(Γ •A1 • . . . •Ai;Ai+1) for each i < n.

Proof. Both proofs are straightforward inductions using the inductive definitions of type trees and
term trees.

In light of Lemma 4.5.3, given a morphism σ : ∆ → Γ in a natural model (C, p) and a type tree T
over Γ with L(T ) = (A1,A2, . . . ,An), we will write σ •T for the iterated extension σ •A1 • . . . •An of
σ by the leaves of T .

4.5.4 Construction — Presheaves of type trees and term trees
Let (C, p) be a natural model.

(i) The presheaf of type trees in (C, p) is the presheaf Utree : Cop→ Set defined on objects as
in Definition 4.5.2(i) and defined on morphisms σ : ∆ → Γ inductively as follows: if T =
A∈U (Γ ), then define T [σ ] = A[σ ]; and if T = [T1,T2], then define T [σ ] = [T1[σ ],T2[σ •T1]].
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134 Chapter 4. Natural model semantics

(ii) The presheaf of term trees in (C, p) is the presheaf
.

Utree : Cop → Set defined on objects
as in Definition 4.5.2(ii) and defined on morphisms σ : ∆ → Γ inductively as follows: if
t = a∈

.
Utree(Γ ), then define t[σ ] = a[σ ]; and if t = [t1, t2], then define t[σ ] = [t1[σ ], t2[σ •T1]],

where T1 = (ptree)Γ (t1).

(iii) The natural transformation ptree :
.

Utree(Γ ) → Utree(Γ ) is defined componentwise as in
Definition 4.5.2(ii).

Verification. Most of what needs to be verified is immediate by induction on the trees. To see that
Utree is functorial, note that by iterating Lemma 2.1.7 we have

T [σ ][τ] = [T1[σ ][τ],(T2[σ •T1])[τ •T1[σ ]]] = [T1[σ ◦ τ],T2[(σ ◦ τ) •T1]]

and likewise for funtoriality of
.

U .

4.5.5 Theorem — Representability of ptree
Let (C, p) be a natural model. For each Γ ∈ ob(C) and each T ∈Utree(Γ ), the following square is
a pullback,

y(Γ •T )
.

Utree

y(Γ ) Utree

pT

qT

ptree

T

where pT and qT are defined inductively by the following two rules.

• If T = A ∈U (Γ ), then pT = pA and qT = qA;

• If T = [T1,T2] and pT1
,qT1

,pT2
,qT2

are defined, then let pT = pT1
◦pT2

and qT = [qT1
[pT2

],qT2
[pT1[pT ]

]].

In particular, ptree is representable.

Proof. We prove that the square commutes and is a pullback by induction on T . When T = A∈U ,
this is immediate, so suppose T = [T1,T2] and that we have the following two pullback squares.

y(Γ •T1)
.

Utree y(Γ •T1 •T2) Utree

y(Γ ) Utree y(Γ •T1) Utree

qT1

pT1

y
ptree pT2

qT2

y
ptree

T1 T2

134
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First we must prove that the square in the statement of the theorem commutes, which amounts to
showing that qT ∈

.
Utree(Γ •T,T [pT ]). Now Γ •T = Γ •T1 •T2 and

T [pT ] = [T1,T2][pT1
][pT2

]

= [T1[pT1
], T2[pT1

•T1]][pT2
]

= [T1[pT1
][pT2︸ ︷︷ ︸

=T1[pT ]

], T2[pT1
•T1][pT2

•T1[pT1
]]︸ ︷︷ ︸

=T2[pT •T1[pT ]]

]

and so what we must prove is that

qT1
[pT2

] ∈
.

Utree(Γ •T1 •T2;T1[pT1
][pT2

])

and that
qT2

[pT1[pT1
]] ∈

.
Utree(Γ •T1 •T2 •T1[pT ];T2[pT1

•T1][pT2
•T1[pT1

]])

The fact that qT1
[pT2

] ∈
.

Utree(Γ •T1 •T2;T1[pT1
][pT2

]) is immediate from naturality of ptree; note also
that the following diagram commutes by definition of pT .

y(Γ •T1 •T2) y(Γ •T1)
.

Utree

y(Γ ) Utree

y(pT2
)

y(pT )

qT1

y(pT1
)

y
ptree

T1

To see that qT2
[pT1[pT1

]] ∈
.

Utree(Γ •T1 •T2 •T1[pT ];T2[pT1
•T1][pT2

•T1[pT1
]]), consider the following

diagram.

y(Γ •T1 •T2 •T1[pT1
][pT2

]) y(Γ •T1 •T2)
.

Utree

y(Γ •T1 •T1[pT1
]) y(Γ •T1) Utree

y(Γ •T1) y(Γ )

y(pT1 [pT ])

y(pT2
•T1[pT1

]) y(pT •T1[pT ])

qT2

y(pT2
) ptree

y(pT1
•T1)=y(pT1 [pT1

])

y(pT1 [pT1
]) y(pT1

)

T2

y(pT1
)
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The top right square commutes by the induction hypothesis, and the top left and bottom left squares
commute since they are the results of applying the Yoneda embedding to canonical pullback squares
(Construction 2.1.6). The composite of the top two morphisms represents qT2

[pT1[pT ]
], and the fact

that this is an element of
.

Utree(Γ •T1 •T2 •T1[pT1
][pT2

];T2[pT1
•T1][pT2

•T1[pT1
]]) is exactly the assertion

that the pasting of the top two squares commutes.

Hence qT ∈
.

Utree(Γ •T ;T [pT ]) as required.

To see that the square in the statement of the theorem is a pullback, let σ : ∆ → Γ in C and let
t ∈

.
Utree(∆ ;T [σ ]), as indicated in the outer square of the following diagram.

y(∆)

y(Γ •T )
.

Utree

y(Γ ) Utree

t

σ

〈σ ,t〉T

pT

qT

ptree

T

Define 〈σ , t〉T = 〈〈σ , t1〉T1 , t2〉T2 . Then

pT ◦ 〈σ , t〉T = pT1
◦pT2

◦ 〈〈σ , t1〉T1 , t2〉T2 = pT1
◦ 〈σ , t1〉T1 = σ

and

qT [〈σ , t〉T ]
= [qT1

[pT2
],qT2

[pT1[pT ]
]][〈〈σ , t1〉T1 , t2〉T2 ] unpacking definitions

= [qT1
[pT2
◦ 〈〈σ , t1〉T1 , t2〉T2 ],qT2

[pT1[pT ]
◦ 〈〈σ , t1〉T1 , t2〉T2 •T1] by Construction 4.5.4(ii)

= [qT1
[〈σ , t1〉T1 ,qT2

[〈σ •T1, t2〉T2 ]] reducing

= [t1, t2] induction hypothesis

= t definition of t

Uniqueness of 〈σ , t〉T then follows from its having been defined by a universal property.

4.5.6 Construction — Category of contexts of trees
Let (C, p) be a natural model. The category of contexts of trees of (C, p) is the category Ctree

defined by
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• Objects are lists (Γ ,T1, . . . ,Tk), where k > 0, Γ ∈ ob(C) and Ti+1 ∈ Utree(Γ • T1 • . . . • Ti)
for all i < n, where we identify (Γ ,A,T1, . . . ,Tk) with (Γ •A,T1, . . . ,Tk) for all Γ ∈ ob(C),
A ∈U (Γ ) and type trees T1, . . . ,Tk;

• Morphisms. A morphism (∆ ,U1, . . . ,U`)→ (Γ ,T1, . . . ,Tk) in Ctree is a morphism σ : ∆ •U1 •

. . . •U`→ Γ •T1 • . . . •Tk, with identity and composition inherited from C.

Verification. Note that the hom sets of Ctree are well-defined under the identification

(Γ ,A,T1, . . . ,Tk)∼ (Γ •A,T1, . . . ,Tk)

and that the associativity and unit laws hold because composition and identity are inherited from
C.

4.5.7 Lemma
Let (C, p) be a natural model. The assignment Γ 7→ (Γ ) extends to a full embedding I : C ↪→Ctree,
and the assignment (Γ ,T1, . . . ,Tk) 7→ Γ •T1 • . . . •Tk extends to a full and faithful functor E : Ctree→
C. Moreover, the pair (I,E) is an equivalence of categories.

Proof. Functoriality of I and E is immediate from the definitions. Furthermore, we have E ◦ I =
idC. The natural isomorphism ε : I ◦E→ idCtree is defined componentwise by letting

ε(Γ ,T1,...,Tk) : (Γ ,T1, . . . ,Tk)→ (Γ •T1 • . . . •Tk)

in Ctree be the identity morphism Γ •T1 • . . . •Tk→ Γ •T1 • . . . •Tk in C. Naturality and invertibility of
ε are then trivial since all its components are identity morphisms.

4.5.8 Construction — Free admission of dependent sum types
Let (C, p) be a natural model. The free natural model admitting dependent sum types on (C, p)
is defined by the following data. The underlying category is CΣ = Ctree (Construction 4.5.6) with
distinguished terminal object (�). The presheaves UΣ,

.
UΣ : Cop

Σ
→ Set and the natural transform-

ation pΣ :
.

UΣ → UΣ are obtained from ptree :
.

Utree → Utree by precomposing with the functor
E : CΣ→ C (Lemma 4.5.7).

The representability data is defined for ~Γ = (Γ ,T1, . . . ,Tk) ∈ CΣ and T ∈UΣ(~Γ ) as follows.

• Let (Γ ,T1, . . . ,Tk) •T = (Γ ,T1, . . . ,Tk,T );

• Let pT : (~Γ ;T )→ ~Γ be the morphism pT : Γ •T1 • . . . •Tk •T → Γ •T1 • . . . •Tk in C defined in
the proof of Theorem 4.5.5.

• Let qT ∈
.

UΣ(~Γ ,T ) =
.

Utree(Γ • T1 • . . . • Tk • T ) be the element qT defined in the proof of
Theorem 4.5.5.
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138 Chapter 4. Natural model semantics

The dependent sum type structure is defined as follows.

• The natural transformation Σ̂ : ∑
T∈UΣ

U
(

.
UΣ)T

Σ
→UΣ is defined by letting Σ̂~Γ be the function

∑
T∈Utree(~Γ )

Utree(~Γ •T )
(T,T ′)7→[T,T ′]−−−−−−−−→UΣ(~Γ )

where we have implicitly composed with the natural isomorphism given by Lemma 1.2.11;

• The natural transformation p̂air : ∑
T,T ′

∑

t∈(
.

UΣ)T

(
.

UΣ)T ′(t)→
.

UΣ is defined by letting p̂air~Γ be the

function

∑
T∈Utree(~Γ )

∑
T ′∈Utree(~Γ •T )

∑
t∈

.
Utree(~Γ ;T )

.
Utree(~Γ •T ;T ′)

(T,T ′,t,t ′)7→[t,t ′]−−−−−−−−−→
.

UΣ(~Γ )

where we have implicitly composed with the natural isomorphism given by Lemma 1.2.12.

Verification. That (�) is terminal in CΣ is immediate from the fact that � is terminal in C. We have

UΣ = E∗Utree,
.

UΣ = E∗
.

Utree and pΣ = E∗(ptree)

so that UΣ and
.

UΣ are presheaves and pΣ is a natural transformation. Representability of pΣ with
representability data as defined follows immediately from Theorem 4.5.5 and the fact that E is an
equivalence C' CΣ which sends the representability data for ptree to that of pΣ (Lemma 4.5.7).

The functions Σ̂~Γ and p̂air~Γ respect substitution since Utree and
.

Utree are natural, so that Σ̂ and p̂air

are natural transformations. Given an object ~Γ of CΣ, consider the following square

∑

T∈Utree(~Γ )

∑

T ′∈Utree(~Γ •T )
∑

t∈
.

Utree(~Γ ;T )

.
Utree(~Γ •T ;T ′)

.
UΣ(~Γ )

∑

T∈Utree(~Γ )

Utree(~Γ •T ) UΣ(~Γ )

p̂air~Γ

π
(pΣ)~Γ

Σ̂~Γ

The square commutes since given (T,T ′, t, t ′) we have

(pΣ)~Γ (p̂air~Γ (T,T
′, t, t ′)) = (ptree)E(~Γ )([t, t

′]) = [T,T ′] = Σ̂~Γ (T,T
′) = Σ̂~Γ (π(T,T

′, t, t ′))
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It is a pullback since the function p̂air~Γ evidently restricts to bijections between the respective
fibres of π and of (pΣ)~Γ .

Hence the corresponding square in ĈΣ is a pullback, so that (CΣ, pΣ) admits dependent sum types.

4.5.9 Lemma — Inclusion morphism
Let (C, p) be a natural model. The embedding I : C ↪→CΣ extends to a morphism of natural models
(I, ι ,

.
ι) : (C, p)→ (CΣ, pΣ).

Proof. Note first that since E ◦I = idC we have I∗pΣ = I∗E∗ptree = ptree. Let ι : U ↪→ I∗UΣ =Utree

and
.
ι :

.
U ↪→ I∗

.
UΣ =

.
Utree be the respective inclusions, noting that for each Γ we have U (Γ ) ⊆

Utree(Γ ) and
.

U (Γ )⊆
.

Utree(Γ ). That these are natural and satisfy I∗(pΣ)◦
.
ι = ι ◦ p is immediate.

We must prove that I preserves distinguished terminal objects—which it does by definition—and
that (I, ι ,

.
ι) preserves the representability data. So let Γ ∈ ob(C) and A ∈U (Γ ).

• We have I(Γ ) • I(A) = (Γ ,A) = (Γ •A) = I(Γ •A), using the identification of lists described
in Construction 4.5.8;

• The projection pIA : (Γ ,A)→ (Γ ) in CΣ is precisely the morphism pA : Γ •A→ Γ in C, so
that IpA = pIA;

• The element qIA ∈
.

UΣ(Γ ,A) is exactly the element qA ∈
.

U (Γ •A), so that IqA = qIA.

Hence (I, ι ,
.
ι) is a morphism of natural models.

4.5.10 Lemma — Extension of a morphism of natural models
For each morphism of natural models F : (C, p)→ (D,q), there is a morphism of natural models
FΣ : (CΣ, pΣ)→ (DΣ,qΣ) which preserves dependent sum types and for which FΣ ◦ I = I ◦F .

(C, p) (D,q)

(CΣ, pΣ) (DΣ,qΣ)

F

I I

FΣ

Proof. Let (F,ϕ,
.

ϕ) : (C, p)→ (D,q) be a morphism of natural models, and define (FΣ,ϕΣ,
.

ϕΣ) as
follows.
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• The functor FΣ : CΣ → DΣ is defined on objects by FΣ(Γ ,T1, . . . ,Tk) = (FΓ ,FT1, . . . ,FTk)
and on morphisms by FΣ(σ) = F(σ). Note that FΣ respects the identification of lists since F
preserves context extension, so this specification is well-defined.

• The natural transformation ϕΣ : UΣ→ F∗
Σ
VΣ is given by defining

(ϕΣ)(Γ ,T1,...,Tk) : Utree(Γ •T1 • . . . •Tn)→ Vtree(FΓ •FT1 • . . . •FTk)

inductively by

(ϕΣ)~Γ (A) = ϕΓ •T1•...•Tk(A) and (ϕΣ)~Γ ([T,T
′]) = [(ϕΣ)~Γ (T ),(ϕΣ)~Γ •T (T

′)]

• The natural transformation
.

ϕΣ :
.

UΣ→ F∗
Σ

.
VΣ is defined likewise.

Naturality of ϕΣ and
.

ϕΣ then follows from naturality of ϕ and
.

ϕ , as does the fact that F∗
Σ

q ◦ .
ϕ =

ϕ ◦ p. This construction further ensures that FΣ preserves dependent sum types.

Note that FΣ preserves context extension, since

FΣ((Γ ,T1, . . . ,Tk) •T )

= FΣ(Γ ,T1, . . . ,Tk,T )

= (FΓ ,FT1, . . . ,FTk,FT )

= (FΓ ,FT1, . . . ,FTk) •FT

= F(Γ ,T1, . . . ,Tk) •FT

and similarly we see that FΣpT = pFΣT and FΣqT = qFΣT .

4.5.11. By Construction 3.3.15, in any natural model (C, p) admitting dependent sum types, there
is for each Γ ∈ ob(C) and each A ∈ U (Γ ) and B ∈ U (Γ •A) an isomorphism θ : Γ • Σ̂(A,B) ∼=
Γ •A •B over Γ .

Γ • Σ̂(A,B) Γ •A •B

Γ

p
Σ̂(A,B)

θ

∼=

pA◦pB

in C/Γ . Recalling that Σ̂(T ) is defined inductively for T ∈Utree(Γ ) by Σ̂(A) = A and Σ̂([T,T ′]) =
Σ̂(Σ̂(T ), Σ̂(T ′)) (Theorem 4.5.5), we see by induction that there are isomorphisms θ : Γ • Σ̂(T ) ∼=
Γ •T over Γ for each T ∈Utree(Γ ).
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Γ • Σ̂(T ) Γ •T

Γ

θ

∼=

p
Σ̂(T )

pT

Suppressing substitutions, for each (Γ ,T1, . . . ,Tk) ∈ ob(CΣ), we obtain an isomorphism

θ : Γ • Σ̂(T1) • . . . • Σ̂(Tk)
∼=−→ Γ •T1 • . . . •Tk

over Γ , defined by taking canonical pullbacks.

4.5.12 Construction — Tree summation morphism
Let (C, p) be a natural model admitting dependent sum types. The tree summation morphism is
the dependent sum type preserving morphism of natural models S = (S,σ ,

.
σ) : (CΣ, pΣ)→ (C, p)

satisfying S◦ I = id(C,p), which is defined as follows.

The functor S : CΣ→ C is defined on objects by

S(Γ ,T1, . . . ,Tk) = Γ • Σ̂(T1) • . . . • Σ̂(Tk)

Given a morphism τ : (∆ ,U1, . . . ,U`)→ (Γ ,T1, . . . ,T`) in CΣ, define

S(τ) = θ
−1 ◦ τ ◦θ : ∆ • Σ̂(U1) • . . . • Σ̂(Uk)→ Γ • Σ̂(T1) • . . . • Σ̂(T`)

where the symbol θ refers in each case to the relevant isomorphism as described in Paragraph 4.5.11.

The natural transformation σ : UΣ → S∗U is defined by letting the component of σ at an object
(Γ ,T1, . . . ,Tk) of CΣ be the function

σ~Γ = Σ̂◦Utree(θ) : Utree(Γ •T1 • . . . •Tk)→U (Γ • Σ̂(T1) • . . . • Σ̂(Tk))

and likewise
.
σ :

.
UΣ→ S∗

.
U is defined by

.
σ~Γ = p̂air ◦

.
Utree(θ).

Verification. First note that S defines a functor: it respects identity and composition since it is
defined on morphisms by conjugating by isomorphisms. Moreover S(�) = �, so that S preserves
distinguished terminal objects. To see that σ is natural, let τ : (∆ ,~U)→ (Γ ,~T ) in CΣ and note that

S∗U (τ)◦σ~Γ = U (Sτ)◦σ~Γ

= U (θ ◦ τ ◦θ
−1)◦U (θ)◦ Σ̂

= U (θ)◦U (τ)◦ Σ̂

= U (θ)◦ Σ̂◦UΣ(τ) since Σ̂ is natural

= σ~∆ ◦UΣ(τ)
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as required; likewise for
.
σ .

That S∗(p)◦ .
σ = σ ◦ pΣ and that S preserves representability data and dependent sum types follow

immediately from their definitions.

4.5.13 Theorem — Universal property of the free natural model admitting dependent sum types
Let (C, p) be a natural model, let (D,q) be a natural model admitting dependent sum types, and let
F : (C, p)→ D,q) be a morphism of natural models. There is a unique dependent sum preserving
morphism of natural models F] : (CΣ, pΣ)→ (D,q) such that F] ◦ I = F .

(C, p) (D,q)

(CΣ, pΣ)

F

I
F]

Proof. Define F] = S◦FΣ, as indicated in the following diagram.

(C, p) (D,q)

(CΣ, pΣ) (DΣ,qΣ) (D,q)

F

I I

FΣ

F]

S

Since S and FΣ preserve dependent sum types (Lemma 4.5.10 and Construction 4.5.12), so does
F]. Moreover we have

F] ◦ I = S◦FΣ ◦ I = S◦ I ◦F = F

as required.

To see that F] is unique, we prove that its action on contexts, substitutions, types and terms is
determined entirely by (F,ϕ,

.
ϕ).

We proceed by induction. First note that, since F] ◦ I = F , we have F](Γ ) = FΓ for each Γ ∈
ob(C), and F]A=FA and F]a=Fa for each A∈U (Γ )⊆UΣ((Γ )) and a∈

.
U (Γ ;A)⊆

.
U ((Γ );A).

Now suppose T = [T1,T2] ∈UΣ((Γ )) and t = [t1, t2] ∈UΣ((Γ );T ), and that the values F]T1, F]T2,
F]t1 and F]t2 are uniquely determined by F . Since F] preserves the dependent sum type structure
of CΣ, we have

F]T = Σ̂(F]T1,F]T2) and F]t = p̂air(F]t1,F]t2)
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so that the values F]T and F]t are uniquely determined by F .

Now let ~Γ = (Γ ,T1, . . . ,Tk)∈ ob(CΣ) and suppose that the action of F] on type trees and term trees
over Γ •T1 • . . . •Tk is determined by that of F . Let T ∈UΣ(~Γ ). Since F] preserves context extension,
we have F](~Γ •T ) = F]~Γ •F]T , which is uniquely determined by F by our induction hypotheses;
and then repeating the argument from the previous paragraph demonstrates that the action of F] on
type trees and term trees over ~Γ •T is uniquely determined by that of F .

Hence the entire morphism F] is uniquely determined by F , as required.

4.5.14 Corollary — Freely extending by dependent sum types is functorial
The assignments (C, p) 7→ (CΣ, pΣ) and F 7→ FΣ determine a functor (−)Σ : NM→ NMΣ, which
is left adjoint to the forgetful functor U : NMΣ→ NM. Moreover, the component at (C, p) of the
unit of this adjunction is (I, ι ,

.
ι) : (C, p)→ (CΣ, pΣ).

Proof. We can recover FΣ as (I ◦F)], where I : (D,q)→ (DΣ,qΣ) is the inclusion morphism. As
such, functoriality of (−)Σ follows from the ‘uniqueness’ part of Theorem 4.5.13. That this functor
is left adjoint to the forgetful functor NMΣ → NM with unit as described is then precisely the
content of Theorem 4.5.13.

4.5.15. Since (CΣ, pΣ) admits dependent sum types, we might hope—in presence of a unit type—
that the corresponding polynomial pseudomonad (as in Theorem 3.2.24) resembles the algebraically-
free monad [Kel80] on the polynomial endofunctor Pp : Ĉ→ Ĉ. However, the free dependent sum
type structure as described in Theorem 3.2.24 does not yield a strict monad in general: if it did, then
the type trees [[A,B],C] and [A, [B,C]] would be identified as a result of the associativity axiom.
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Chapter 5

Future work

The goal of this brief chapter is to outline some avenues for future research suggested by the work
in this thesis.

Adjusting adjustments

The definition of an adjustment α : ϕ |V ψ between morphisms of polynomials (Definition 3.2.6)
is motivated by the observation that adjustments between cartesian morphisms of polynomials
correspond with natural transformations between the full and faithful internal functors induced
by those cartesian morphisms. A consequence is that there is at most one adjustment between any
parallel pair of cartesian morphisms of polynomials. Unfortunately, we were not able to prove that
adjustments between arbitrary morphisms of polynomials correspond with anything meaningful,
or indeed that they form the 3-cells of a tricategory PolyE . So although the definition we provided
captures some notion of 3-cell, which works for our purposes, a worthwhile goal in future work is
to find a more suitable (and likely more general) notion of 3-cell, or to demonstrate that adjustments
do in fact form a meaningful notion of 3-cell.

Generalised natural models

Our work relating natural models with polynomials in Chapter 3 was done for the most part without
relying on any aspects of Ĉ other than its locally cartesian closed structure. It may therefore be
possible to extend the definition of natural model to a more general class of categories, so that a
natural model is a morphism p :

.
U →U in (say) a cocomplete, locally cartesian closed category

E , subject to certain conditions that are equivalent to representability in the case when E = Ĉ for
some small category C. In order to make this definition meaningful, it would need to be established
how to interpret the rules governing dependent type theory in such an object.
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146 Chapter 5. Future work

Along similar lines, recall that the main challenge of Section 3.2 was to find a notion of equivalence
with respect to which a natural model admitting certain type theoretic structure gave rise to a
pseudomonad, since we discovered that it does not give rise to a strict monad. If we were to define
the notion of a natural model within homotopy type theory, say, then it may be the case that the
conditions for a natural model to admit a unit type and dependent sum types can now be expressed
in terms of (homotopy) pullbacks yielding a monad (up to propositional equality). If this is the case,
then the results of Chapter 3 could be recast in terms of locally cartesian closed quasicategories,
with the rules for polynomial monads and algebras holding up to propositional equality.

Free natural models

In Section 4.5 we remarked that the set Tree(S) of finite rooted binary trees with leaves labelled by
elements of a set S is obtained as an initial algebra for the endofunctor X 7→ S+X ×X . Given a
natural model (C, p), it appears that the natural model (CΣ, pΣ) of Construction 4.5.8 is an initial
algebra for the ‘endofunctor’ f 7→ p+ f · f , where · refers to polynomial composition. Indeed, there
is a morphism of natural models (C, p)→ (CΣ, pΣ) (this is Lemma 4.5.9) and there is a cartesian
morphism of polynomials pΣ · pΣ

|→ pΣ since pΣ admits dependent sum types (Construction 4.5.8,
Theorem 2.1.9), and these morphisms satisfy nice universal properties. The problem is to find the
category in which f 7→ p+ f · f defines an endofunctor with respect to which (CΣ, pΣ) is an initial
algebra.

This train of thought could be explored even further. Just as polynomial endofunctors on Set
generalise those of the form X 7→ A0 +A1×X + · · ·+An×Xn, it would be worthwhile to explore
whether there is a similar generalisation of endofunctors of the form

f 7→ a0 +a1 · f +a2 · f · f + · · · +an · f · . . . · f

where a0, . . . ,an, f denote (suitable) morphisms in a (suitable) locally cartesian closed category,
and where · is polynomial composition. With such a notion established, it could be applied to
dependent type theory to see if a natural model can be freely extended by other kinds of type
theoretic structure by taking an initial algebra for such an endofunctor.

Much work remains to be done on the construction of free natural models. For example, it remains
an open problem to construct a left adjoint to the forgetful functor NMΠ → NM, thus obtaining
the free natural model admitting dependent product types on a given natural model (C, p). Fur-
thermore, as discussed at the end of Section 4.1, it remains open to find a general way to compose
these free functors.
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Term models and interpretations

The free natural models studied in Chapter 4 were algebraic, rather than logical, constructions. An
important task for the future is to define a logical notion of interpretation of a theory T in a natural
model (C, p), and to construct the term model on a given dependent type theory T, according to
the following schema.

5.0.1 Schema — Term model of a type theory T
Let T be a dependent type theory. The term model of T is the natural model (CT, pT :

.
UT→UT)

defined as follows.

• The underlying category CT has as its set of objects the quotient CtxT/≡Ctx, where CtxT is
the set of all well-formed contexts in T and ≡Ctx identifies Γ = x1 : A1,x2 : A2, . . . ,xm : Am

and ∆ = y1 : a1,y2 : A2, . . . ,yn : An if and only if m = n and x1 : A1, . . .xi−1 : Ai−1 ` Ai =
Bi is provable in T for each i. Given contexts Γ = x1 : A1,x2 : A2, . . . ,xm : Am and ∆ =
y1 : a1,y2 : A2, . . . ,yn : An, the hom set CT([∆ ], [Γ ]) is the quotient SubT(∆ ,Γ )/≡Sub, where
SubT(∆ ,Γ ) is the set of all well-formed substitutions (t1, t2, . . . , tm) from ∆ to Γ (see Sec-
tion 1.1), and≡Sub identifies (t1, t2, . . . , tm) with (t ′1, t

′
2, . . . , t

′
m) whenever ∆ ` ti = t ′i : Ai(t1, . . . , ti−1)

is provable in T for each i.

• The distinguished terminal object of CT is the (≡Ctx-equivalence class of the) empty con-
text.

• The presheaf of types UT is defined on objects by letting UT([Γ ]) be the quotient TypeT(Γ )/≡Type,
where TypeT(Γ ) is the set of well-formed types in context Γ and ≡Type identifies A with
A′ whenever Γ ` A = A′ is provable in T; and UT is defined on morphisms by letting
UT([σ ])([A]) = [A[σ ]].

• Likewise, the presheaf of terms
.

UT is defined on objects by letting
.

UT([Γ ]) be the quotient
TermT(Γ )/≡Term, where TermT(Γ ) is the set of well-formed terms in context Γ and ≡Term

identifies a with a′ whenever the types of a and a′ are identified by ≡Type and Γ ` a = a′ : A
is provable in T.

• The typing natural transformation pT :
.

UT → UT is defined componentwise by letting
(pT)[Γ ]([a]) be [A] for the unique [A] ∈UT([Γ ]) such that Γ ` a : A is provable in T.

• The representability data for (CT, pT) is defined for [Γ ] = [x1 : A1, . . . ,xn : An] ∈ ob(CT)
and [A] ∈UT([Γ ]) as follows.

� Let [Γ ] • [A] = [Γ ,x : A], where x is a fresh variable;

� Let pA = [(x1, . . . ,xn)] : [Γ ,x : A]→ [Γ ];

� Let qA = [x] ∈
.

UT([Γ ,x : A], [A]).

147



148 Chapter 5. Future work

• If the theory T admits a unit type, dependent sum types, dependent product types, or some
combination thereof, define the corresponding structure on CT in the evident way.

With this done, it should be the case that the term model is initial in NMT, and from this it would
follow that interpretations of T in a (suitably structured) natural model (C, p) correspond with
(structure preserving) morphisms of natural models (CT, pT)→ (C, p). The parenthetical remarks
about structure depend the doctrine in which the theory T lives—for example, if T is a theory in
the doctrine of dependent type theories with a unit type and dependent sum types, then the setting
for interpretations of T is the category of natural models admitting a unit type and dependent sum
types.

148



Index

2Cat-enriched bicategory, 72

adjustment, 75
atomic object, 86
axiom of choice

type theoretic —, 15

Beck–Chevalley condition, 15

cartesian closed
locally — category, 14

category
Cauchy complete —, 87
internal —, 62
locally cartesian closed —, 14

category with attributes, 11
category with families, 12
Cauchy complete category, 87
contextual category, 10

distributivity law, 15

essentially algebraic theory, 33
— of natural models, 34
— of natural models admitting a set of terms,

37
— of natural models admitting a set of basic

types, 37
— of natural models admitting dependent

product types, 41
— of natural models admitting dependent

sum types, 39
— of natural models admitting a unit type,

37

full internal subcategory, 62
— associated with a natural model, 62

internal
—ly cartesian closed category, 66
— category, 62

internal language, 14

morphism
— of polynomials, 18
— classified by a natural transformation, 89
— of natural models, 45, 49
— of natural models (weak), 50

natural model, 28
essentially algebraic theory of —s, 34
polynomial composite of —s, 93

polynomial, 16
— composite of natural models, 93
composition of —s, 17
extension of a —, 16
— functor, 16
— monad, 71
morphism of —s, 18
— pseudomonad, 71, 81

premorphism of natural models, 47
presheaf, 23

— of type/term trees, 133
pseudoalgebra, 83
pseudomonad, 71, 79

representable

149



150 Index

— natural transformation, 25, 86
— presheaf, 23

small
— category, 3
— set, 3

tiny object, 86
tree, 132

presheaf of type/term —s, 133
term —, 133
type —, 133

type insertion morphism, 122

universe
Grothendieck —, 2

universe category, 13

Yoneda
— embedding, 23

150



Bibliography

[Acz78] Peter Aczel. A general church-rosser theorem, 1978. Unpublished note. http://
www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.

pdf. Accessed: 2016-10-07.

[AG00] Peter Aczel and Nicola Gambino. Collection principles in dependent type theory.
In International Workshop on Types for Proofs and Programs, pages 1–23. Springer,
2000.

[AN18] Steve Awodey and Clive Newstead. Polynomial pseudomonads and dependent type
theory. arXiv preprint arXiv:1802.00997, 2018.
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