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Abstract

Electrical energy storage resources (ESRs) offer a promising solution to many

of the issues facing the electric grid. In order for this promise to be fully real-

ized, new intelligent decision-making technologies are required. This dissertation

studies the operation and valuation of ESRs in an uncertain electric grid en-

vironment. ESRs can include both stationary battery energy storage systems

(BESSs) and distributed deferrable loads such as plug-in electric vehicles (EVs).

An ESR can be operated to provide multiple services simultaneously, maximiz-

ing its value. An EV can provide transportation services as well as participate

in electric grid frequency regulation. A BESS can also provide frequency reg-

ulation while providing load peak shifting. In this thesis, we propose new and

innovative solutions that enable optimal operation and accurate valuation of

multi-function ESRs under uncertainty. New Markov decision problems (MDPs)

for smart charging of EVs are developed for cases of price, ancillary services, and

driver behavior uncertainty. In order to compare the proposed MDP approaches

with deterministic optimization approaches, a Dynamic Monitoring and Decision

Systems (DYMONDS) energy market simulation is developed. We also propose

an infinite horizon MDP approach to estimating the net present value of a BESS

that degrades over time. In order to optimize the economic scheduling of an ESR

that provides frequency regulation service, one needs a predictive model of the

automatic generation control (AGC) signal. We investigate timeseries and other

statistical models for the prediction of an AGC signal and its cumulative effect

on the state of charge of an ESR.

iii



Acknowledgments

This dissertation was advised and supported by Professor Marija Ilić. I am
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Chapter 1

Introduction

1.1 Background and Motivation

In order to reduce harmful emissions from electric power generation, significant amounts of

wind and solar power are being installed in many countries. The power supplied by these

renewable energy resources is intermittent and cannot be predicted perfectly, creating new

challenges in safely and efficiently operating electric power grids. Electric power grids must

become more robust, flexible, and responsive to integrate a high percentage of intermittent

renewable power generation.

Electric grids are typically operated using a hierarchical control strategy. Economic

scheduling of supply and demand happens on the minutes to hours timescale through market

mechanisms. On the seconds to minutes timescale, the system AC frequency is maintained

by a centralized controller which broadcasts an automatic generation control (AGC) signal

to flexible producers or consumers who have committed to providing frequency regulation ca-

pacity over a time period. Decentralized droop control and inertial response halts frequency

deviations on faster timescales. Many balancing areas have exhibited a trend of decreas-

ing system intertia, resulting in larger frequency deviations from imbalances of supply and

demand [1], leaving more frequency regulation to be done by AGC.
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[2] shows that Independent System Operators (ISO) must procure additional capacity

for ancillary services, such as frequency regulation, to compensate for production forecast

errors for intermittent generation resources. Additional ancillary services can be provided

by keeping more generation capacity online and idling. Alternatively, adjustment of flexible

power consumption could provide ancillary services without fuel costs or emissions. [2] also

shows that the main mechanism through which wind power would effect an electric grid

is through hourly timescale ramping events. During such events, more flexibility during

economic dispatch could reduce the burden on AGC.

Internet enabled two-way communications enable more demand side resources to interact

with the electric grid at value and respond to electric grid conditions. The framework for

value based participation of resources in the economic and stable operation of the electric

grid is commonly referred to as transactive energy [3]. The GridWise Architecture Council

defines transactive energy as such :

“... techniques for managing the generation, consumption or flow of electric

power within an electric power system through the use of economic or market-

based constructs while considering grid reliability constraints. The term trans-

active comes from considering that decisions are made based on a value. These

decisions may be analogous to or literally economic transactions.”

Specific methods and algorithms for implementing transactive energy are actively being

researched. One such method is Adaptive Load Management (ALM) and the Dynamic

Monitoring and Decision Systems (DYMONDS) framework[4, 5]. In the ALM approach to

transactive energy for distributed loads, load serving entities (LSEs) create price-sensitive

energy bid functions based on physical modeling of appliances and the preferences of end-

users.

Plug-in battery powered electric vehicles (EVs) have become a mainstream reality in

recent years, with U.S. sales topping 120,000 in 2014 [6]. However, EVs remain prohibitively

expensive for most people. EVs also represent a new significant load on the electric grid. If

2



EVs are not charged in an intelligent way, power system peak demands will grow, resulting in

higher energy costs for all energy consumers [7]. EV owners only care that their battery has

sufficient charge to support transportation, leaving significant flexibility for an intelligent EV

to choose when and how much energy to charge. This gives EVs the potential to participate

in transactive energy systems such as ALM, reduce their energy costs, and add flexibility to

the electric grid. Price responsive EVs in the ALM system could respond to hourly ramping

events mentioned in [2]. [8] describes EVs as an ideal resource for providing frequency

regulation service. If an EV commits to providing regulation capacity and varies its charge

rate according to the AGC signal, an EV can actually earn revenue, greatly reducing the cost

of ownership. Intelligent EVs have the potential to become a multi-functional energy storage

resource for the electric grid. An EV is firstly a transportation resource, but can function as

a price-sensitive, dispatchable, demand-response resource, or a frequency regulation resource

for the electric grid.

Another option for managing the balance of supply and demand in the electric grid is

battery energy storage systems (BESS). BESSs have been deployed in the PJM ISO and

in microgrid demonstration projects [9, 10]. The California Public Utilities Commission

(CPUC) recently approved a mandate for utilities to procure 1.3 GW of energy storage

resources by 2020 [11]. Also, the EV manufacturer Tesla Motors has begun sales of BESSs

suitable for home or office behind-the-meter applications [12]. In order to extract maximum

value from a BESS it must perform multiple functions for the electric grid. BESSs can

charge at night and discharge during the day to perform what is called peak-shifting. A

BESS profits from peak-shifting by arbitraging the cycle of energy market prices. Peak-

shifting will ultimately lower the high peak time energy prices for consumers. BESSs can

simultaneously provide frequency regulation service to the grid. These two services conflict

and so operations for multiple functions must be optimized considering the trade-off. Policy

makers and investors must appropriately estimate the value of BESSs that perform multiple

functions and degrade over time.
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FERC Order 755 [13] requires ISOs to pay for ancillary services based on the accuracy

of a providers response to the AGC signal. Fast responding resources such as EVs or BESSs

can follow an AGC signal accurately, increasing their incentive to provide regulation capac-

ity. When a multi-functional resource optimizes the tradeoff between providing regulation

service and providing transportation or peak-shifting, it must understand how providing

frequency regulation will affect its battery state of charge (SOC). Stochastic models of the

AGC signal must be developed in order for multi-functional devices to properly optimize

frequency regulation decisions.

1.2 Contributions

In this section we summarize the contributions made in this dissertation.

In chapter 2 we analyze the decision making problem of an EV that must fulfill a battery

charging requirement by a deadline, but can also earn revenues by selling frequency regulation

capacity. We formulate the decision making problem as a finite horizon model predictive

control (MPC) problem and also as a Markov decision problem (MDP). These problem

formulations assume that the EV decides on a fixed quantity of energy to charge before

market clearing prices are known. This approach assumes that the EV does not affect

energy prices and so the EV acts as a price-taker. The MDP approach directly considers

uncertainty and autocorrelation in prices as well as the random effect of the AGC signal on

battery SOC. We also introduce a stochastic dynamic programming heuristic which allows

for approximate optimization over a continuous space of charging decisions. Using stochastic

process models of energy prices, regulation service prices, and the AGC signal, we simulate

an EV being charged under the MPC and MDP approaches. Simulation results show that

the MDP based decision making approach results in lower expected costs to the EV owner.

This work resulted in two publications [14, 15].

As large numbers of EVs begin to charge from the electric grid, their aggregate charging
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behavior will have an influence on energy prices. In chapter 3 we analyze the decision making

problem of an EV that must fulfill a battery charging requirement by a deadline, but we

relax the price taker assumption of chapter 2. We present two approaches that enable EVs

to act as price-sensitive bidders in energy markets using the ALM framework. An MPC

based approach to EV decision making is developed using the existing ideas of the ALM

framework. Also, a new MDP based approach for EV decision making and aggregation

in the ALM framework is developed. The MDP approach allows price sensitive bidding

assuming correlation in price forecasting errors. In order to evaluate these two approaches

to EV charging, we will develop a multi-agent DYMONDS energy market simulation in

chapter 5.

The EV charging methods described in chapters 2 and 3 assume that each time a driver

finishes a trip, he knows when and where his next trip will be with certainty. This is not a

common behavior today and may be a mental burden on EV owners. Therefore, in chapter

4, we develop a new approach to optimal EV charging that does not require drivers to

input a transportation schedule. This optimal autonomous charging problem is formulated

as an infinite horizon average reward MDP. In this problem, we assume a Markov model of

transportation behaviors and energy prices. Charging problems are formulated for plug-in

hybrid electric vehicles (PHEVs) as well as battery only EVs. We analyze the resulting

optimal charging policy for EVs, which is quite conservative. This work has been published

in [16]

In order to evaluate decision making methods for intelligent EVs and their effect on

energy markets, we develop a multi-agent DYMONDS energy market simulation in chapter 5.

The simulation is developed using the Smart Grid in a Room Simultator (SGRS) distributed

simulation architecture. The structure of the simulation as well as DYMONDS market agent

models are presented in detail. We then use the simulation to evaluate the performance of

various EV charging strategies when EV charging can significantly effect market prices. The

MDP based ALM approach developed in chapter 3 is shown to charge with the lowest average
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cost per energy charged of the tested strategies.

In chapter 6 we propose leveraging the infinite horizon MDP framework to estimate and

Maximize the NPV of a grid-scale BESS that performs multiple grid functions and degrades

with use. An MDP is formulated for maximizing BESS revenues by performing peak shifting

and providing frequency regulation service. We demonstrate how this detailed model of short

term operations can be used to estimate the long run rate at which revenues are earned

without conducting simulations. We then develop a Markov reward process (MRP) model of

battery degradation. This model is then used to estimate the long run rate of degradation

under an operating policy. We also show how the MRP of degradation can be used to design

an optimal operating policy that considers long run degradation costs. Finally, we present

a new method for estimating and maximizing the net present value (NPV) of a BESS using

the tools developed in this chapter.Some of the work presented in chapter 6 was published

in [17], which won the best student paper and presentation award at the North American

Power Symposium 2013, and in [18].

In this thesis, we investigate methods for the operation and valuation of multi-functional

energy storage resources while considering uncertainty. One of the functions that we focus

on is electric grid frequency regulation. In many of the methods presented in this thesis,

we assume that models of the ISO’s AGC signal are available. To date, very little work

has focused on analyzing the AGC signal as an exogenous input to be forecast. Therefore,

in chapter 7 we investigate the application of statistical timeseries methods to predicting

the AGC signal’s energy, which will affect battery SOC. We also present nonparametric

approaches to forecasting the AGC signal’s effect on energy storage without perfect energy

conversion efficiency. This work resulted in the publishing of [19].
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Chapter 2

Stochastic Optimization of Grid to

Vehicle (G2V) Frequency Regulation

Capacity

This chapter investigates stochastic optimization methods for the optimal scheduling of

charging and frequency regulation capacity by an electric vehicle (EV) in a smart electric

grid environment. We formulate a Markov decision problem (MDP) to minimize an EVs

expected cost over a fixed charging horizon. We account for both Markov random prices

and a Markov random effect from the automatic generation control (AGC) signal. We also

propose a heuristic enhancement to the classical discrete stochastic dynamic programming

method for the solution of the MDP. This heuristic allows optimization over a continuous

space of decision variables via linear programming at each state. Simple stochastic process

models are built from real data and used to simulate the implementation of the proposed

method. The proposed method is shown to outperform deterministic model predictive control

in terms of average EV charging cost. Work shown in this chapter was first published in [14]

and [15].
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2.1 Introduction

EVs are a flexible load that could be controlled in order to provide ancillary services to the

electric grid. EV drivers want to drive when and where they desire without waiting for the

battery to charge, but would also like to charge their batteries for minimum cost. Cost is

a major barrier to EV adoption, so reducing the cost of EV ownership is a high research

priority. In liberalized electric power systems, such as PJM, ancillary services are procured

through a market. If an EV provides ancillary services to the electric grid, the EV owner

would earn revenue at the market price, offsetting the cost of charging.

One ancillary service that EVs are well suited to provide is secondary frequency reg-

ulation, also simply referred to as regulation. An EV could effectively provide regulation

service without discharging into the electric grid by committing to a baseline charge rate

and a capacity for regulation before the start of a regulation service period, usually lasting

one hour. For the duration of the contracted period, the EV would receive an automatic

generation control (AGC) signal, which is broadcast by the ISO. The EV would then vary its

charging power according to the AGC signal and its commitments. This scheme is known as

grid to vehicle (G2V) regulation. If the EV also discharges into the grid, the scheme would

be called vehicle to grid (V2G) regulation.

Recent literature has investigated the potential for V2G in a assisting integration of

variable renewable resources in the electric grid [20], [8]. The feasibility of the concept has

also been demonstrated in hardware [21]. Other work has focused on implementable methods

for optimizing EV charging and regulation capacity decisions. [22] develops a deterministic

model predictive control (MPC) problem for V2G charging of a single EV. Some research has

focused on the charging and regulation capacity bids of an EV aggregator. [23] investigates

various optimization models to be used by an EV aggregator. The models are formulated

as deterministic MPC problems and are solved using linear programming. The problems

incorporate constraints that might be imposed on the aggregate consumption of a fleet of
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EVs. [24] also takes a deterministic MPC approach to the V2G EV aggregator problem.

An EV providing ancillary services in a deregulated market environment faces many

forms of uncertainty. Market prices for energy and regulation service as well as the AGC

signal are unknown before an EV would commit to providing regulation for some contract

period. Providing regulation service would make the battery’s future state of charge (SOC)

uncertain. This motivates the use of stochastic optimization methods when determining an

EV’s baseline charge rate and capacity for regulation. Stochastic optimization, which directly

considers parameter uncertainty, results in lower expected realized costs than deterministic

methods, which simply optimize using the expected values of parameters [25]. Optimization

and control under uncertainty is a mature field with rich theory and various applications as

introduced in [26, 25, 27] as well as many other references.

Recently, attempts have been made to apply stochastic optimization methods to V2G

and G2V charging problems for single EVs. [28] describes the V2G problem as a Markov

decision problem (MDP) with uncertain energy prices and a small set of available control

actions. Q-learning is used to create a control policy in an online and model-free way. It

is not clear if this method would outperform other methods in the literature or how long

it would take to train good control policies in the real world. [14] formulates a G2V MDP

for a single EV, and also provides an approximate solution method based on mixed integer

linear programming and stochastic dynamic programming (SDP) backwards recursion. The

MDP model presented in [14] directly considers that the integrated energy of the AGC signal

will have a random effect on battery SOC. Some advantages of a stochastic approach over a

deterministic dynamic programming approach are demonstrated in [14] .

This chapter extends the existing literature by formulating the G2V charging problem for

a single EV as an MDP with multiple sources of uncertainty. The work presented here could

easily be modified for the V2G situation. We optimize EV charging and regulation capacity

decisions assuming that the hourly price of energy, the hourly price of regulation service,

and the integrated hourly energy of the AGC signal follow Markov random processes. Addi-
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tionally, we introduce an intuitive approximate SDP method which allows for optimization

over a continuous space of charging and regulation capacity bids. This approximate SDP

recursion is applicable to any convex sequential decision making problem under uncertainty.

A parallelized implementation of the proposed method is described. Finally, we demonstrate

that the proposed method results in lower expected charging costs than the deterministic

MPC method. Although the proposed method is more computationally demanding than the

deterministic MPC method, we show that it could still be practical to use for hourly decision

making.

In this paragraph we present an outline of the remainder of the chapter. In the next

section we formulate the G2V problem as an MDP with multiple sources of uncertainty.

In section 2.3, we briefly review the available approaches for solving multi-stage stochastic

optimization problems. This is followed by the development of the proposed approximate

SDP approach in section 2.4. In order to simulate the implementation of the proposed

method, we analyze real data and construct models of the random processes of the prices

and AGC signal in section 2.5. In section 2.6 we describe our simulation experiments and

interpret our results.

2.2 Problem Formulation

In this section, we formulate the EV’s G2V decision making problem as an MDP. First,

however, we describe the convention for notation used throughout this thesis. Random

variables are noted by bold font while a specific realization will be the same variable without

bolding. Time indexing is done with brackets such as in P [h], function arguments are inside

of parentheses as in f(x), varible naming is done in superscripts such as in Pmin, and indexing

of set elements is done with subscripts such as ei.
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2.2.1 Decision Making Scenario

In liberalized energy markets, generators and loads determine the amount of regulation ca-

pacity which they are willing to provide. It is the responsibility of the local electrical grid ISO

to ensure that an adequate amount of regulation capacity has been procured. The ISO must

also determine an AGC signal which maintains the systems alternating current frequency.

The resources that have committed to providing regulation capacity are then obligated to

respond to the ISOs AGC signal. In this chapter we analyze a decision optimization problem

from the perspective of an EV that is a direct market participant. Although, we assume

that the EV charges with perfect efficiency in this chapter, the approaches presented here

could easily be modified for case of lossy charging.

Our goal is to minimize the charging costs for a single EV owner who is able to provide

G2V service. In this chapter, we assume that an EV bids fixed quantities as a price-taker in

both the energy and ancillary services markets. We assume that individual EVs are either

operating in a smart electric grid where they can bid directly into markets, or that they

communicate their bids to a 3rd party aggregator, who then bids the sum of many EVs

decisions into the markets. This aggregation step would be necessary to provide G2V service

in todays markets because an individual EV does not consume enough power to participate.

The focus of the work in this chapter is a decision making method for a single EV, and

not on aggregation or system level effects. We assume that EVs make decisions without

coordination. There are situations that would warrant the coordination of charging and

regulation capacity bids, such as low voltage in distribution networks or market power.

We assume that the ISO knows the total capacity for regulation in the system and

computes an AGC signal for restoring the electric grids AC frequency to nominal on a 5

minute basis. The AGC signal can then be normalized to the total regulation capacity

and broadcast to all participating generators or flexible loads. When a generator or load

specifies a regulation capacity, it specifies how much it is willing to vary its power generation
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or consumption. A generator would then change its power output by the normalized AGC

signal multiplied by its agreed upon regulation capacity. Loads would respond to the negative

of the normalized AGC signal, which is intended for generators.

We assume that when an EV is plugged in at the driver’s home or workplace, the EV

driver communicates a planned unplugging time to a smart EV charger. We assume that

the EV driver agrees to not unplug the EV before this scheduled time, or else he might face

some financial penalty. At the beginning of each hour, h, while the EV is plugged in, the

smart charger decides on and commits to a baseline charge rate, P [h] (kW), and capacity for

regulation, B[h] (kW), before knowing the true hourly energy price, regulation service price,

or AGC signal. The smart EV charger should choose P [h] and B[h] in such a way that it

minimizes the total expected cost to charge the EV to maximum SOC, emax, by the known

unplugging time. In the following subsections we will develop the finite horizon MDP that

a smart charger must solve in order to determine the best bids, P [h] and B[h], to commit

to at each hourly decision epoch. The theory of finite horizon MDPs is developed in [27].

2.2.2 Decision Epochs

Charging and regulation capacity decisions are made at each hourly decision epoch h of the

finite decision-making horizon h ∈ {1, . . . , H}, where H is the number of hours the EV will

be plugged in.

2.2.3 System State

The system state vector s[h] = (e[h], y[h − 1], ρr[h − 1], ρe[h − 1]) ∈ S[h] includes the EV

battery state of charge e[h] (kWh), the last observed hourly time integral of the normalized

AGC signal y[h − 1] (hr), the last observed hourly price of regulation capacity ρr[h − 1]

($/kW), and the last observed hourly price of energy ρe[h− 1] ($/kWh). The battery SOC

has a feasible range of [0, emax]. The optimal charging and regulation decisions will depend
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on the values of each dimension of the state vector. for simplicity of notation, we will often

refer to the component dimensions of s without the timestep indexing [h] and [h − 1] as

s = (e, y, ρr, ρe).

2.2.4 State Dynamics

Given the hourly baseline charge rate P [h] and the hourly regulation capacity B[h] decisions,

the random charge rate at any time within the hour is given by P[t] as determined in (2.1),

where x[t] (unitless) is the random normalized AGC signal broadcast by the ISO. x[t] is

assumed to be normalized so that it takes on values between −1 and 1.

P[t] = P [h]− x[t]B[h] (2.1)

On an hourly basis, the battery SOC evolves according to (2.2), which is referred to as a

state transition function. y[h] (h) is the hourly time integral of the normalized AGC signal,

x[t], and is uncertain when the decisions are made. Realizations of y[h] can take on any

value between −1 and 1 with some probability distribution. This makes the next battery

SOC, e[h + 1] , uncertain with a distribution that depends on our decisions as well as the

probability distribution of the AGC signal.

e[h+ 1] = e[h] + ∆hP [h]− y[h]B[h] (2.2)

If we separate out the exogenous components of the state vector, the full state vector can

be written as s[h] = (e[h], sx[h]) where the exogenous state vector is given by sx[h] =

(y[h−1], ρr[h−1], ρe[h−1]). Future values of sx are modeled as a vector of random variables

sx which has statistical dependence on its previous value as in (2.3). f is a continuous

probability density function. We refer to the random variables in sx as state variables

because the last observed values give information that is useful for optimal decision making.

These are modeled as exogenous random variables which our decisions do not effect.

sx[h+ 1] ∼ f (sx[h]) (2.3)
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Hourly electric energy prices, ancillary service prices are known to have a statistical depen-

dence on recently observed values [29]. Our own analysis of the hourly dependence for an

AGC signal was shown in chapter 7 and [19]. Markovian dependence is a simple approxima-

tion of the real behavior of these random variables. In reality, electric energy prices depend

on a variety of seasonal and exogenous factors not included in our state vector. Our problem

has a finite horizon on the scale of half a day, so the state distributions can be estimated

conditionally given the state of other factors known at time h = 1. We assume that the state

and time of day captures the majority of the information that would be useful in predicting

the next hourly prices and AGC signal.

2.2.5 Actions

P [h] and B[h] can be referred to together as the decision or action vector a = (P,B). The

constraints (2.4)-(2.9) describe the set of feasible action vectors given the system state at

decision epoch h, A[h](s). Over the course of the hour, the instantaneous charge rate may

take any value between (P [h] − B[h]) and (P [h] + B[h]). Since we are analyzing a G2V

scenario where the EV does not discharge into the grid, the chosen action vector should not

allow the possibility of a negative charge rate, giving constraints (2.4)-(2.6). The choice of

P [h] and B[h] is also constrained by the maximum charge rate of the EV and smart charger,

Pmax (kW) as in (2.7). If the battery SOC, e[h], were to reach maximum SOC, emax (kWh),

before the end of the hour, the EV would stop charging and would not be able to modify

its charge rate in a way that effectively provides regulation service to the grid. This would

violate the contract to provide regulation service for the whole hour. We add constraint

(2.8) to avoid violation of the regulation service contract. ∆h (h) is the time-step length of 1

hour. We assume that the EV driver requires the battery SOC to be emax by the scheduled

unplugging time h = H + 1. In order to guarantee that the EV will be fully charged by

the known unplugging time, we add decision constraint (2.9). In this constraint, emin[h+ 1]
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(kWh) is the minimum SOC needed at the start of the next hour to ensure that the EV

SOC will be able to reach emax before unplugging. emin[h + 1] can be calculated for each

hour based on and the number of hours remaining until the EV unplugs and Pmax.

0 ≤ B[h] (2.4)

0 ≤ P [h] (2.5)

B[h] ≤ P [h] (2.6)

B[h] + P [h] ≤ Pmax (2.7)

e[h] + ∆hP [h] + ∆hB[h] ≤ emax (2.8)

e[h] + ∆hP [h]−∆hB[h] ≥ emin[h+ 1] (2.9)

2.2.6 Cost Function

Given that the EV was in some state s[h] at decision epoch h and an action vector a was

chosen, the EV will incur random cost or reward r[h](s, a) as shown in (2.10). This represents

the total cost incurred during the period between decision epoch h and h+ 1. The expected

value of r[h](s, a) is r̄[h](s, a). If we assume that the random variables are conditionally

independent given sx[h− 1], then the expectation of (2.10) is given by (2.11).

r[h](s, a) = ρe[h](∆hP [h]− y[h]B[h])− ρr[h]B[h] (2.10)

r̄[h](s, a) = ρ̄e[h](∆hP [h]− ȳ[h]B[h])− ρ̄r[h]B[h] (2.11)

2.2.7 Markov Decision Problem

J [h](s), commonly called the cost to go, is the expected total future cost of having some

state s at decision epoch h and making optimal decisions for the remainder of the problem

horizon. The cost to go for when the EV first plugs in is the result of solving the finite

horizon MDP given in (2.12). Solving the MDP also results in an optimal decision-making
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policy π∗. For finite horizon MDPs, a decision-making policy π is a collection of decision-

making rules π = {d[h](s), . . . , d[H](s)} that take in the current state and return a decision

or action vector. A decision-making policy must be in the set of feasible decision-making

policies Π, ensuring that d[h](s) = a ∈ A[h](s), ∀s ∈ S[h], ∀h.

J [1](s) = min
π∈Π

Eπ
[

H∑
h=1

r̄[h] (s, d (s))

∣∣∣∣∣ s[1]

]
(2.12)

2.3 Possible Solution Approaches

In reality, the problem in 2.12 involves continuous states, random variables, and space of

available decisions given by (2.4)–(2.9). Such problems are very difficult to solve or even

approximate. Existing solution approaches are examined in this section. Ultimately, each

examined method leaves something to be desired, so we develop a new heuristic approach in

the next section.

A simple sub-optimal approach to decision making is to approximate the problem in (2.12)

with a deterministic MPC problem, (2.13), where uncertain parameters are replaced by their

joint expected values given s[1]. The state transition equation (2.2) is simply replaced by the

deterministic state transition equation in (2.14). This method was used in [23] and [24] for

the V2G aggregator problem. The method is simple and fast, but it results in sub-optimal

control decisions. In fact, the optimal decisions for a deterministic optimization problem are

not guaranteed to be anywhere near the optimal decisions for the true stochastic problem

[25].

JMPC [1](s) = min
P [h], B[h], e[h+1]∀h

H∑
h=1

ρ̄e[h](∆hP [h]− ȳ[h]B[h])− ρ̄r[h]B[h] (2.13)

s.t. (2.4)–(2.9), (2.14)

e[h+ 1] = e[h] + ∆hP [h]− ȳ[h]B[h] (2.14)

The problem in (2.12) also fits into the framework of stochastic linear programming
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(SLP). The SLP framework is most powerful when there are many state and decision vari-

ables, but only a few decision stages. When uncertain data have correlation over time, solving

multi-stage SLP problems is impractical. This is because SLP problems grow exponentially

in the number of decision stages. They become very difficult to even approximately solve by

using scenario reduction [30] or nested Benders decomposition [25, 31].

It is common practice to approximate an MDP that has continuous states and decision

variables with a discrete MDP, having only discrete sets of possible states and decisions.

This approach is used in [32] for an infinite horizon MDP. [32] also demonstrates that it

is often necessary to develop approximation schemes when applying SDP to real problems.

This reference cannot apply the discrete methods of [27] directly because the state transition

equations do not necessarily lead to states that have been evaluated. Instead they rely on

linear interpolation for approximating the cost to go at the next state. This encourages us

to find an SDP approximation scheme which enables us to optimize over a continuous space

of actions.

The management of hydropower reservoirs has motivated practical solution methods for

solving multistage stochastic optimization problems with continuous control variables. These

solution methods have been developed by recognizing the shared theory of the MDP and

SLP frameworks. [33] describes how hydropower management problems can be decomposed

by decision stages in a fashion similar to discrete MDPs. It also shows that continuous

cost to go functions can be created and updated using SLP theory. The stochastic dual

dynamic programming (SDDP) method of [33] can be thought of as a specific implementation

of nested Benders decomposition, which avoids the discretization of controlled endogenous

state variables. [34] extends [33] and propose solution methods which consider uncertain

and Markovian energy prices. These solution methods approximate the exogenous random

process for price with a finite set of states and transition probabilities, and are described as

a combination of SDP and SDDP.

However, the methods proposed in [33] and [34] cannot be directly applied to the G2V

17



problem. These methods do not allow uncertain decision variable coefficients in the state

transition equation. For the G2V problem, equation 2.2 shows a random variable, y[h],

multiplying a decision variable, B[h], in the state transition equation. Therefore, we develop

an approximate SDP scheme which is inspired by the hydropower operations literature to

leverage SLP theory.

2.4 Proposed Stochastic Dynamic Programming Solu-

tion Heuristic

We propose an SDP algorithm for minimizing an approximation of the expected future costs

given by Problem 1. The proposed algorithm consists of a single backwards recursion over

a discrete set of possible states. We propose an intuitive way to optimize over a continuous

space of decisions given each state. We begin by approximating (2.12) with a discrete MDP

and then extending it.

2.4.1 Discrete MDP Approximation and SDP

Since our random variables are truly continuous we first assume that the stochastic processes

for the energy price, regulation service price, and AGC signal are well approximated as

discrete and Markovian. This allows us to discretize the random exogenous state vector

into a discrete set of possible values, sx[h] ∈ S̃x[h]. To create a discrete MDP, the range of

possible values for the SOC, must also be discretized into a set of values e[h] ∈ Ẽ [h] from

which we can guarantee e[H+1] = emax when the vehicle unplugs. A discrete MDP optimizes

over a discrete set of decisions, a ∈ Ã[h](s). A discrete MDP also requires state transition

probabilities of the form Pr[h] (sj | si, ak), the probability of transitioning from state si at

time h to state sj at time h + 1 when action ak was chosen. This discrete MDP can then

be decomposed into hourly decision problems by the principle of optimality, yielding the
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recursive equation in (2.15). The SDP backwards recursion solves the MDP by recursively

solving (2.15). The procedure begins at the final decision epoch H and evaluates (2.15) for

Jdisc[H](si) for all states i in S̃[H]. The timestep is decremented to H−1 and the evaluation

is repeated. The decrementing and evaluating repeats until the current decision time, h = 1

is reached. Since the state is known for h = 1, only one state must be evaluated.

Jdisc[h](si) = min
k

r̄[h](si, ak) +
∑
j

Pr[h] (sj | si, ak) Jdisc[h+ 1](sj) (2.15)

2.4.2 Approximate SDP with a Continuous Space of Actions

We now turn our attention to the case where decisions can take any value in the feasible

region of (2.4)-(2.9). In this case e[h + 1] is not necessarily an element of Ẽ [h + 1], the

discrete set of SOCs that were evaluated in the previous step of the backwards recursion.

We propose using a piecewise linear convex function of the SOC as an approximation of

the cost to go. This approach will allow the approximation of expected future costs for any

action in the feasible space and will allow the use of linear programming methods to find

the best action given some state. This approximation method can be used more generally

to create an approximate cost to go function of controlled endogenous states, such as e[h],

whenever the recursive equation of an MDP is a convex optimization problem.

The recursion shown in (2.16) is linear programming problem based on (2.15) which

enables optimization over a continuous space of actions. Ĵ [h](si) is the approximate cost to

go which approximates expected future costs given some state. In order to solve (2.16) given

some state si at decision epoch h, one must know the inequality constraint coefficients of

(2.18), αk,j[h+1] and βk,j[h+1], the expected values of random variables for immediate cost

function r̄[h](si, a), and the state transition probabilities Pr[h](sxj | sxi ) from exogenous state

sxi at decision epoch h to exogenous state sxj at epoch h+1. For some decision P [h] and B[h],

the next SOC when the exogenous state transitions to sxj would be ẽj as given in (2.17). ẽj

is not necessarily one of the states that was previously evaluated in the backwards recursion,
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so we use the variable J̃j to approximate the cost to go at that SOC. For each outcome j of

the exogenous state, the constraints in (2.18) form a piecewise-linear convex function in the

dimension of SOC. J̃j is minimized subject to (2.18), so J̃j will take the value of the largest

constraint corresponding to outcome j. An instance of the recursive equation in (2.16) can

be solved over a continuous space of decisions using linear programming methods.

Ĵ [h](si) = min
P [h], B[h], ẽj ,J̃j

r̄[h](si, a) +
∑
j

Pr[h](sxj | sxi )J̃j (2.16)

s.t. 2.4–2.9, 2.17, 2.18

ẽj = ei[h] + ∆hP [h]− yj[h]B[h], ∀j ∈ S̃x[h+ 1] (2.17)

J̃j ≥ αk,j[h+ 1]− βk,j[h+ 1]ẽj, ∀j ∈ S̃x[h+ 1], ∀k ∈ Ẽ [h+ 1] (2.18)

At each decision epoch of the proposed SDP backwards recursion, one solves for Ĵ [h](si), ∀i ∈

S̃[h]. This also yields the inequality coefficients, αi[h] and βi[h] as will be explained next. The

inequality coefficients are then used in the next earlier timestep of the backwards recursion

to represent a piecewise linear convex approximation of the cost to go in the dimension of

SOC for each exogenous state.

2.4.3 Derivation of Value Function Inequality Coefficients

An instance of the linear programming problem in (2.16) can be rewritten in the general

form (2.19) with parameter matrices W and A, vector T , and price vector q. The current

stage decision vector is shown as x, and the given SOC, e[h], is represented as z. Solution

of (2.19) given some z0 results in cost Q(z0) and the optimal dual variable vector λ0.

Q(z0) = min
x

{
qTx | Ax = W − Tz0 : λ0

}
(2.19)
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A lower bound for the primal function Q(z) for all z can be constructed from the optimal

dual variables of (2.19). Construction of this lower bound is shown in (2.20)-(2.22) [25].

β0 = λT0 T (2.20)

α0 = λT0W (2.21)

Q(z) ≥ α0 − β0z (2.22)

We can calculate the coefficients αj,k[h] and βj,k[h] for each of the constraints in (2.18) after

solving (2.16) given state sj,k = (ek, s
x
j ). The constraints in (2.18) form a piecewise linear

convex function of battery SOC for each possible outcome of sx. Because the constraints in

(2.18) are an under approximation of Ĵ [h+ 1](s), J̃j will be less than or equal to Ĵ [h+ 1](s)

with the same SOC as ẽj. The transition probability weighted sum of J̃j calculates the

expectation of approximate future costs with a continuous space of decisions. In order

to solve for the initial decision when h = 1, approximate cost to go functions must be

constructed recursively for h = H, . . . , 2.

2.4.4 Reduction of Problem Size

The problem in (2.16) can grow in size very quickly with the refinement of the discretization

of states. If each exogenous state dimension is discretized into K values, then the number

of possible next states is |S̃x[h]| = K3. Constraint set (2.18) consists of |S̃x[h]| × | ˜E [h]|

constraints. This motivates finding some way to reduce the size of (2.16) .

In order to reduce the size of (2.16) at decision epoch h and state si,j,k,l[h] = (ei[h], yj[h−

1], ρrk[h − 1], ρel [h − 1]), we propose taking the expectation of the approximate cost to go

function coefficients with respect to ρr and ρe, reducing the dimensionality of the ap-

proximate cost to go function from four to two. Here, we index the inequality coeffi-

cients as αm,n,o,p[h + 1] and βm,n,o,p[h + 1] resulting from the solution of (2.16) given state

sm,n,o,p[h+ 1] = (em[h+ 1], yn[h], ρro[h], ρep[h]). We use the state transition probabilities of the

Markov random processes to compute the expectation of the inequality constraint coefficients
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as shown in (2.23) and (2.24), assuming that the random variables are independent.

αm,n[h+ 1] =
∑
o

∑
p

Pr[h] (ρro | ρrk) Pr[h]
(
ρep | ρel

)
αm,n,o,p[h+ 1] (2.23)

βm,n[h+ 1] =
∑
o

∑
p

Pr[h] (ρro | ρrk) Pr[h]
(
ρep | ρel

)
βm,n,o,p[h+ 1] (2.24)

Using the reduced number of inequality constraints in (2.23) and (2.24), we formulate the

new approximate SDP recursive equation shown in (2.25). (2.25) is a linear programming

problem for each state s[h].

Ĵ [h](si,j,k,l) = min
P [h], B[h], ẽn,J̃n

r̄[h](si,j,k,l, a) +
∑
n

Pr[h](yn | yj)J̃n (2.25)

s.t. 2.4–2.9, 2.26, 2.27

ẽn = ei[h] + ∆hP [h]− yn[h]B[h], ∀n (2.26)

J̃n ≥ αm,n[h+ 1]− βm,n[h+ 1]ẽn, ∀m, ∀n (2.27)

2.4.5 Proposed SDP Algorithm

Assuming that each exogenous state is discretized into K values and the SOC is discretized

into I values the proposed SDP algorithm is a backwards recursion that successively solves

I ×K3 instances of the linear programming problem (2.25) for each decision epoch. Using a

modern multi-core desktop computer, we can solve the batch of problems for each decision

epoch in a parallel fashion. The approximate cost to go constraint coefficients of 2.27 are

then calculated and incorporated into the next batch of earlier decision problems, back

propagating expected future costs. This is repeated until the recursive procedure reaches

the first decision epoch. At the first decision epoch, only one instance of (2.25) must be

solved, as the current SOC and previously observed exogenous states are known. This

decision can then be submitted to an aggregator or ISO.
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I.) For h = H, . . . , 2

1.) Parallel For si,j,k,l[h] ∈ ˜S[h]

1) If h 6= H calculate αm,n[h+ 1], and βm,n[h+ 1] as in (2.23) and (2.24)

2) Solve the linear program (2.25)

3) Calculate αi,j,k,l[h], βi,j,k,l[h]

End Parallel For

End For

II.) Solve (2.25) for Ĵ [1](s)

Table 2.1: Proposed SDP Algorithm

2.5 Stochastic Process Models for Simulation

In order to simulate an EV charging by our proposed method, we construct models of the

stochastic processes of the exogenous data. These models will allow us to generate random

realizations from continuous distributions and evaluate EV charging methods by simulation.

Given these continuous stochastic process models, we must estimate discrete Markov models

of the random variables to solve the MDP by the proposed dynamic programming recursions

in (2.16) or (2.25). Also, we will use the continuous stochastic process models to estimate

expected values for input into the MPC charge optimization method.

2.5.1 Estimating Continuous Stochastic Process Models

Models for energy price and regulation service price were built from PJM ISO market data

from the year 2011 [35]. 5 weeks of AGC signal data was also gathered from PJM ISO [35].

We made slightly different assumptions in modeling each stochastic process. The random

variables are assumed to be independent of each other. In our simulation experiments, we

assume that the EV pays the real-time hourly energy market price for energy consumed. In

order to model real-time energy market prices, we first assume that day-ahead energy markets
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are the best predictors of real-time prices available a day in advance. This motivates building

a model of the differences between real-time and day-ahead prices, which can then be added

back to the known day-ahead prices. Real-time energy prices are known to exhibit higher

variance during peak load hours, when it is more likely that the electric grid is bound by

capacity constraints, than during low load hours. And so, we modeled the energy price

differences using a unique marginal distribution for each hour of the day. We use empirical

cumulative density functions (CDFs) to model each marginal distribution [36]. In order to

model Markovian dependence in the price differences, a Gaussian copula model was fit to each

pair of distributions for adjacent hours of the day. The Gaussian copula uses rank correlation

to model the dependence between random variables of arbitrary marginal distributions [36].

By fitting a different copula to each pair of distributions, we model the dependence as varying

with hour of the day. This model allows us to simulate realizations of the next price difference

given the difference of the current hour. We can then add this difference to the day-ahead

price and call it a realization from the real-time price distribution.

The hourly regulation service price appears to exhibit cyclical daily patterns. This moti-

vates modeling the regulation service price with a unique marginal probability distribution

for each hour of the day. An empirical CDF was used to estimate the unique marginal distri-

butions in each hour of the day. A Gaussian copula model was fit to each pair of distributions

for adjacent hours of the day.

Due to the limited amount of data available, we modeled the AGC signals normalized

energy, y[h], with the same marginal probability distribution in all hours. The distribution

used is the empirical CDF of the collected data. y[h] is restricted to take values between -1

and 1. A single Gaussian copula was fit to model the dependence between y[h] and its last

observed value.
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2.5.2 Simulation Input Data

The proposed SDP recursions in (2.16) or (2.25) require a discrete Markov model for each

exogenous random state. In order to create a discrete Markov model, we first estimate the

states of the model by discretizing each random variables distribution in each hour. This is

done by evaluating each distributions inverse CDF at kequally spaced values between 0 and

1, exclusive. For the Markov model of energy price differences, we simply add the error state

values to the day-ahead prices to get real-time price states.

We must also estimate state transition probabilities, Pr[h]
(
sxj | sxi

)
, for each state of the

discrete Markov process. In order to estimate transition probabilities, we used a Monte

Carlo and maximum likelihood estimation approach. Given each possible state of the dis-

crete random processes, we generate 500,000 conditional realizations of the next hours data

with the continuous distribution stochastic process models of section 2.5.1. The generated

realizations are binned according to which discretized state has the closest CDF value. Bin

counts are divided by the total number of generated realizations to yield estimated state

transition probabilities [37].

For each state of the Markov models, we must estimate conditionally expected next

values of random variables. these expected values are then used in the cost function of the

SDP recursions, r̄[h](s, a). The same generated realizations used to estimate state transition

probabilities are used to estimate expected values. The conditionally expected values can be

estimated by simply taking the mean of the generated values.

During the simulation of EV charging, realizations of random variables will be generated

from the continuous stochastic process models after each charging decision is made. The

EV will then make a charging decision given the new state sx[h]. If an EV is charging using

the proposed SDP algorithms, new conditionally expected values of random variables and

transition probabilities must be estimated for only this new state at time h. The EV can then

solve one instance of the recursive problem in (2.16) or (2.25) using previously computed
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value function inequality constraint coefficients. If the EV is making charging decisions with

the MPC approach, then a new forecast of random variables must be made for the remaining

planning horizon from h to H. These forecasts are made using a Monte Carlo approach.

500,000 traces are generated for each random variable over the remaining planning horizon.

The mean value of each random variable at each time is used as its forecast value for that

time period.

2.6 Simulation Experiments

We investigated the value of using the proposed SDP approach for determining G2V charg-

ing and regulation bids as opposed to using a deterministic MPC approach. Using both

approaches, we simulated 20,000 trials of an EV charging overnight given the same vehicle

parameters, initial state, and day-ahead energy prices. The mean charging costs and dis-

tributions of charging costs are compared for the different methods. We also compared the

SDP algorithm solution times when using the dynamic programming heuristic in (2.16) or

(2.25). The simulation procedure and results are described below.

2.6.1 Simulation Procedure

After the initial input data is calculated, we use the procedure presented in this subsection

to simulate each of the 20,000 EV charging trials. For the proposed SDP recursions in

(2.16) or (2.25), a single backwards recursion computes all of the approximate cost to go

inequality coefficients needed to solve for any charging or regulation bid of the fixed charging

horizon. Given the known current state, we then solve an instance of (2.16) or (2.25) for

the first SDP based charging and regulation capacity decisions. For the first MPC based

charging and regulation capacity decisions, an instance of (2.13), which does not require a

backwards recursion to be completed, is solved. After the bids are submitted, the continuous

distribution stochastic process models of section 2.5 are used to generate the next realization
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of each random state variable. Then running total incurred costs and current states are

updated.

Given the new state, data for the next decision epochs instance of (2.13), (2.16), or (2.25)

must be created. For the SDP method, new state transition probabilities and expected

exogenous state values are estimated for only the current decision epoch using as described

in subsection 2.5.2. Using these new state transition probabilities, the weighted average

constraint coefficients must be recalculated by (2.23) and (2.24). For the MPC method,

expected values of the exogenous states are estimated for the remainder of the charging

horizon given the current state as was described in subsection 2.5.2. Given the new state

and data, (2.13), (2.16), or (2.25) is solved for new bids. This fixed horizon simulation

procedure continues in each simulation trial until either the EV reaches maximum SOC or

the unplugging time is reached.

All experiments were conducted on a desktop PC with an Intel 3930k 6 core processor and

12GB of RAM. Simulations were implemented in MATLAB, and CPLEX was used to solve

linear programs. During each decision stage of the SDP algorithms backwards recursions,

the many instances of linear program (2.16) or (2.25) were solved in parallel. This is done

using MATLABs Parallel Computing Toolbox. All other steps of the SDP algorithms are

run in serial.

In our experiments, we solve an example problem consisting of 12 hourly decision stages,

with H=12. Our EV plugs in at 8 p.m. and unplugs at 8 a.m.. The EVs initial SOC is 8

kWh and must charge to emax= 24 kWh. The maximum charge rate is Pmax=7 kW. These

values are typical of EVs currently on the market [38]. Typical January Day-ahead energy

prices are used in simulating energy prices.

The SDP based methods were implemented with the SOC discretized into |I| = 7 states

and each exogneous random variable discretized into K = 12 states. Due to memory lim-

itations, this is the finest discretization we successfully implemented for the SDP routine

using (2.16) . During the backwards recursion, 12 processing threads are used to solve linear
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Figure 2.1: Example EV charging simulation trial results

programs based on (2.25) in parallel. Again, due to memory limitations, the number of

processing threads was limited to 4 when executing the backwards recursion with (2.16) .

We suspect that the memory limitations are partially due to the amount of simulation data

we saved for analysis and partially due to how the Parallel Computing Toolbox clones data

for parallel processing.

2.6.2 Results

Fig. 2.1 shows the battery SOC trajectory resulting from a single simulation trial of an EV

charging and providing frequency regulation service. The solid black line shows how the SOC

would evolve if the battery charged at a rate of P [h] in each hour. The solid red lines show

the actual SOC trajectory including the effect of following the AGC signal. The random

effect of following the AGC signal is most noticeable following 11 p.m. and 4 a.m. The blue

lines show the maximum and minimum trajectories that the SOC could take over the hours

when the EV provides frequency regulation. The dashed red line at 24 kWh shows emax.

Figs. 2.2 and 2.3 show the evolution of prices during this simulation trial. Day-ahead energy

prices are shown as red circles in fig. 2.2, while the hourly means of the regulation service

price distributions are shown as red circles in fig. 2.3. The actual prices observed are shown

with blue cross marks while the expected price, given the last hour’s value, is shown with a
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Figure 2.2: Example energy price simulation

Figure 2.3: Example regulation service price simulation
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black square.

Table 2.2 summarizes the results of the three sets of simulation trials. Because the costs

are the result of a stochastic simulation, the mean cost varies with each batch of simulations.

In order to make a stronger statement about the relative performance of the evaluated

methods, we used basic statistics to estimate a 95% confidence interval for the true mean

cost of using each method. The upper and lower bounds of this confidence interval are given

in Table 2.2 in the rows labeled C.I. upper bound and C.I. lower bound. For this example

problem, the mean EV charging cost when using the proposed SDP method with (2.25) is

22% lower than the mean cost incurred when using MPC. The 95% confidence interval for

the mean cost when using SDP is completely below the confidence interval for the mean cost

when using MPC. Performing the SDP routine with the recurision in (2.25) instead of that

Method Used SDP SDP MPC

Problem (2.16) (2.25) (2.13)

Expected Cost ($) 0.056 0.057 0.072

C.I. Upper Bound 0.060 0.061 0.077

C.I. Lower Bound 0.052 0.052 0.067

Recursion Time (s) 15,590 212 N/A

Average Instance Solution Time (ms) 750 33 3

Table 2.2: G2V Simulation Results

in (2.16) results in a negligible difference in mean cost as is expected. However, using (2.25)

results in a significant reduction in computation time as shown in the rows of Table 2.2

labeled “Recursion time” and “Average instance solution time”. The recursion time refers

to the time required to execute the entire proposed SDP backwards recursion from H to 1,

while the Average instance solution time refers to the average amount of time required to

solve for hourly charging and regulation bids after the backwards recursion has completed.
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This highlights the importance of reducing the problem size as done in section 2.4.4.

Our results show that the proposed approximate SDP method could be a practical hourly

decision making strategy for EVs. An EV smart charger would need to perform the proposed

SDP backwards recursion once each time the EV plugs in for the night. The required

recursion time is less than four minutes in our implementation. At the beginning of each

hour while the EV is charging, the smart charger would optimize its bids by solving a

single linear program, requiring 33ms on average. The proposed method requires much

more computation than the MPC method, but it is still well within the abilities of todays

multi-core personal computers.
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Chapter 3

Electric Vehicles in the Adaptive

Load Management Framework

In chapter 2, we proposed an MDP for optimal decision making by an EV that partici-

pates in energy markets as a price taker. In this chapter, we move beyond the price taker

assumption and develop methods by which EVs can communicate the price sensitivity of

their demand to the market, enabling flexibility in the dispatch of generators and loads.

We propose integrating EVs into the Adaptive Load Management (ALM) framework for

aggregating distributed heterogeneous loads [4]. The existing ALM approach to aggrega-

tion relies on intelligent loads, such as EVs, to solve their own deterministic MPC problems

for optimal energy consumption. We extend the ALM framework to incorporate intelligent

demands that optimize consumption decisions under uncertainty using an MDP approach.

Two problem formulations are presented for EVs that participate in the ALM framework,

one is a deterministic MPC problem and the other is an MDP with Markov random energy

prices.
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3.1 Introduction

If EVs gain mass adoption, their load could add to system load peaks and increase electricity

prices for all consumers without intelligent control of charging [7, 39, 40]. Many approaches

have been investigated for optimal charging of a large EV fleet. [23, 41] propose centralized

approaches where an aggregator uses forecasts of EV energy needs and market prices to

optimize a charging schedule for a fleet of EVs. These aggregators purchase fixed quantities

from energy markets and pay whatever the market clearing price is. [39] shows that such

an aggregator approach can result in new load and price spikes during the overnight hours.

And so, new approaches have tried to address optimal charging when the EV load can

significantly effect energy prices. [42] proposes a similar aggregation approach to the others,

but optimizes charging schedules with an objective function that models the market power

effect of EV energy consumption on prices. The aggregator then submits a fixed quantity

bid into the energy market on behalf of the EV owners. [39] compares the performance of

an EV aggregator, which charges as a price taker based on a day ahead forecast, against a

fully centralized approach where generation dispatch and EV consumption are optimized in

a single problem. It is shown that the fully centralized approach will achieve lower system

costs.

Iterative decentralized approaches have also been suggested to optimize the charging of

EVs who communicate with a system operator in [43, 44, 45, 46]. [43, 44, 45] propose methods

for optimizing EVs for “valley filling”, which minimizes variation in the total system load

profile during overnight hours. In these papers, total system load acts as a proxy for energy

price. [43] also demonstrates the application of an iterative decentralized optimization to

online control of charging for valley filling. [46] presents a Lagrangian relaxation and heuristic

approach to coordinating load and generation to minimize system cost with non-convexities.

[47] describes how Lagrangian relaxation can be used to coordinate supply and demand and

also respect power system thermal line limits.
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Iterative approaches can take a large number of iterations to converge when power net-

work constraints are considered, making them feasible for day ahead scheduling but challeng-

ing to implement in real-time energy markets. [4, 48, 49] introduce the real-time Adaptive

Load Management (ALM) framework for integrating price-sensitive demand into real-time

energy markets, which clear on sub-hourly timesteps and without the need for iterations.

This framework readily lends itself to the integration of EVs, as well as other heterogeneous

loads.

In this chapter we propose two methods for integrating EVs in the ALM framework. The

first method is that which is described in [4, 48, 49]. In this approach an aggregate demand

bid function is created based on the price sensitivity of intelligent loads. The aggregate

price sensitivity is determined by a procedure where each load solves a deterministic MPC

optimization problem for energy consumption under forecast energy prices and with pertur-

bations to the forecast price of the next market period. The perturbations do not propagate

through the entire forecast as would be expected when prices exhibit autocorrelation, which

is typically seen in electric power markets. Therefore, we propose a new approach to de-

veloping an aggregate demand bid function based on intelligent loads that optimize energy

consumption considering uncertainty and autocorrelation in energy prices. This new ap-

proach will model price forecast errors using a Markov chain model, and decisions will be

optimized by solving an MDP. The new procedure should result in better decision making

and lower energy costs.

3.2 Deterministic MPC based Real-Time ALM

In this section, we describe a possible approach to integrating EVs into the real-time ALM

framework. Below, we describe the procedure of the real-time ALM framework in math-

ematical detail. We also present a deterministic MPC problem formulation for EVs that

participate in the ALM framework.
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1. Given historical market data up to the current moment, the LSE creates a forecast

of energy prices over a planning horizon ρ̂e = [ρ̂e[1], ρ̂e[2], . . . , ρ̂e[T ]]T ($/MWh) and

broadcasts it to its NL intelligent loads.

2. Each load solves three optimization problems for energy consumption over the planning

horizon based on the end-user’s preferences and the appliance’s physics. For an EV

that only charges electric energy from the grid, the MPC problem is shown in 3.1. In

this optimization problem, the EV battery is modeled as having linear dynamics and

a constant efficiency η. Constraint (3.2) enforces that the EV must charge enough

energy to support the transportation needs of the driver. (3.3) and (3.4) limit the

choice of battery charge rate to be positive and less than the maximum power Pmax.

We assume that the driver communicates an unplugging time, T , and travel plans to

the EV charger, which can estimate a required SOC for the trip ereq (kWh). All of

the parameters and variables of 3.1 can vary from EV to EV, but the subscript l is

omitted.

min
P [t]

T∑
t=1

ρ̂e[t]P [t]∆t (3.1)

s.t. (3.2)− (3.4)

e[1] + η
T∑
t=1

∆tP [t] = ereq (3.2)

0 ≤ P [t], ∀t (3.3)

P [t] ≤ Pmax, ∀t (3.4)

This optimization problem will be solved three times. Once given the forecast energy

prices, ρ̂e, once given a positive perturbation to the next forecast price, ρe+ = [ρ̂e[1](1+

δ), ρ̂e[2], . . . , ρ̂e[T ]]T , and once given a negative perturbation to the next forecast price

ρe− = [ρ̂e[1](1 − δ), ρ̂e[2], . . . , ρ̂e[T ]]T . The resulting optimal charging powers for the

immediate market period will be noted as P ∗[1], P+[1], and P−[1] Additionally, the

EV should calculate a lower limit, ∆tP
min[t], and upper limit ∆tP

max[t], for energy

36



consumption during the next market period t. Pmin[t] will be the smallest charge rate

such that the EV will still be able to meet its energy requirement by the unplugging

time and Pmax[t] will respect the maximum charging power and the maximum SOC of

the EV battery. Finally, the three price, quantity demand points and demand limits

are transmitted to the LSE.

3. Once the LSE has collected the optimization results from all N l of the intelligent loads,

it sums the total energy given each price, resulting in the three price quantity points of

(3.5). The total energy consumed, E is given by (3.6), where l indexes the individual

EVs. (
E+, ρe+[1]

)
, (E∗, ρ̂e[1]) ,

(
E−, ρe−[1]

)
(3.5)

E = ∆t

N l∑
l=1

Pl[1] (3.6)

Using these three points, the LSE uses linear regression to estimate the slope and

intercept of the marginal benefit function MB of consuming energy as in (3.7).

MB(E) = β0 + β1E (3.7)

The marginal benefit function is integrated to form the benefit function B(E) shown

in (3.8).

B(E) = β0E +
β1

2
E2 (3.8)

The aggregate minimum and maximum energy demand for the market period are also

calculated by (3.9) and (3.10) respectively.

Emin = ∆t

N l∑
l=1

Pmin
l [t] (3.9)

Emax = ∆t

N l∑
l=1

Pmax
l [t] (3.10)

The LSE then transmits the benefit function and dispatch limits to the ISO
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4. Given quadratic cost and benefit functions from generators and LSEs, the ISO solves

the DYMONDS dispatch problem proposed in [5, 50]. In the DYMONDS framework,

generators and LSEs create cost and benefit functions in a look-ahead fashion as de-

scribed in steps 1 through 3. This method for creating bid functions is said to “in-

ternalize dynamics”, creating an economic dispatch problem for a single period. This

approach to economic dispatch requires much less computational effort than solving

a centralized look-ahead economic dispatch MPC problem for the whole system, sub-

jected to simplified ramp rate constraints. The DYMONDS economic dispatch problem

is shown in (3.11). This problem is in terms of energy as opposed to power because we

assume a timestep that is not 1hr. The optimization variables are the energy dispatch

of each generator EG
i (MWh) and the energy dispatch of each aggregated LSE load EL

j

(MWh). NL is the number of LSEs while NG is the number of generators. Constraint

(3.12) enforces the supply demand balance for energy, where EIFk (MWh) is the total

uncontrollable load at bus k. Constraint (3.13) ensures that absolute value of the real

power flows on each transmission line are less than the line’s thermal limit, given by

the vector Fmax. In (3.13), DF is the power transfer distribution factor matrix and

(E ′G − E ′L − E ′IF )/∆t gives the net power injection at all buses other than the slack

bus. The ′ symbol denotes that the slack bus element of the vector is omitted.

min
EG

i , E
L
j

NG∑
i=1

Ci(E
G
i )−

NL∑
j=1

Bj(E
L
j ) (3.11)

s.t. (3.12), (3.15)

NG∑
i=1

EG
i =

NIF∑
k=1

EIF
k +

NL∑
j=1

EL
j (3.12)

∣∣DF × (E ′G − E ′L − E ′IF )/∆t
∣∣ ≤ Fmax (3.13)

EL,min
j ≤ EL

j ≤ EL,max
j (3.14)

EG,min
i ≤ EG

i ≤ EG,max
i (3.15)
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5. Given the results of the dispatch, LSE j must divide EL
j
∗

MW amongst the EVs. To

do this, the LSE calculates a dispatch percentage ,θj, of the distance that EL
j
∗

lies

between EL,min
j and EL,max

j as shown in (3.16). θj is then broadcast to all of the

individual loads.

θj =
EL
j
∗ − EL,min

j

EL,max
j − EL,min

j

(3.16)

6. Given θj, all individual loads of LSE j consume power Pl according to the equation in

(3.17). In simulation, the loads will then update their states using Pl and the timestep

length ∆t, before the procedure goes back to step 1.

Pl[t] = Pmin
l [t] + θj(P

max
l [t]− Pmin

l [t]) (3.17)

3.3 MDP based ALM

The difference between the given ALM framework and the proposed framework lies in the

intelligent load’s internal decision making method and models. In the proposed framework,

an intelligent load determines its optimal energy consumption by the solution of an MDP

that includes a Markov model of the energy price. An MDP based approach will enable an

intelligent demand to better consider uncertainty in energy prices as well as the evolution of

future prices given a deviation from the forecast. This approach will require more information

about the prices than just a point forecast and could be estimated based on historical data

gathered by an EV or EV LSE.

3.3.1 Energy Price Markov Model

The energy price Markov model used in the EV’s MDP for ALM will be created from the

superposition of the latest energy price forecast and a finite horizon Markov model of forecast

errors. This will allow the Markov model to accurately represent time of day and day of week

seasonality, which is not accounted for in the Markov models described in [78]. The prices
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used in the MDP can be constructed by addition of the latest forecast ρ̂e to the state values

of the forecast error Markov model. The LSE will store price forecasts as well as actual

market clearing prices and fit the Markov model to this data. If an intelligent load’s MDP is

composed of Nρ price states for each decision epoch, the LSE will create bid functions using

Nρ price, demand points.

For now, we assume a simple Markov model for price forecast errors built by discretizing

a multivariate Gaussian distribution. We assume that the marginal distribution for each

forecast horizon from 1 to T time steps ahead has the same standard deviation σ and mean

0. The marginal distribution at each forecast horizon is then discretized into a set of Nρ

error states of evenly spaced cumulative density function (CDF) values. For example, if we

are constructing a Markov chain with 5 states, then the set of error states at all forecast

horizons Sε will be as given by (3.18), where Φ−1 is the inverse CDF of a normal distribution

with standard deviation σ.

Sε =
{

Φ−1(0.1),Φ−1(0.3),Φ−1(0.5),Φ−1(0.7),Φ−1(0.9)
}

(3.18)

We assume that each pair of neighboring error distributions has the same coefficient of

correlation βr. Transition probabilities between the states can be determined analytically

using the bivariate normal distribution function. Given an error state εi ∈ Sε the next error

εj ∈ Sε will be distributed according to (3.19) with a continuous model. We refer to the

CDF of the distribution in (3.19) as Φj|i.

εj ∼ N(βrεi, σ
2(1− βr2)) (3.19)

State transition probabilities are then calculated by (3.20). b+
j and b−j are the cell boundaries

of state j in terms of CDF value. For example, if there are 5 error states and the CDF value

of εj is 0.5 then b+
j = 0.6 and b−j = 0.4. If state j is the largest state, then b+

j = 1 and if

state j is the smallest state, then b−j = 0.

Pr (εj | εi) = Φj|i
(
Φ−1

(
b+
j

))
− Φj|i

(
Φ−1

(
b−j
))

(3.20)
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3.3.2 MDP Formulation

In this section we develop a finite horizon Markov decision problem (MDP) for an EV that

must fill its battery by a known deadline and faces Markovian random prices . Unlike the

MDP formulated in chapter 2, we formulate the problem as if the EV knows the energy price

in the current period with certainty, but future prices are uncertain. This way, the result of

the MDP tells us what the optimal charge rate would be given each price state. We then

use these price, quantity points to construct a price sensitive demand-side bid function that

approximates how much power the EV would optimally consume across a range of prices.

• Decision Epochs

Charging decisions are made at each decision epoch t of the finite decision-making

horizon t ∈ [1, . . . , T ], where T is the number of market periods the EV will be plugged

in. The length of time between market periods is ∆t (h).

• System State

The system state vector s[t] = (e[t], ρe[t]) ∈ S[t] includes the EV battery state of charge

e[t] (kWh) and the price of energy ρe[t]($/kWh). In order to solve an MDP using the

discrete SDP backwards recursion, we model the space of states as being a discrete

set. The optimal charging and regulation decisions will depend on the values of each

dimension of the state vector.

• Actions

The action vector a only consists of the charging power P . The constraints (3.21)-(3.24)

describe the space of feasible actions given the system state at decision epoch t, A[t](s).

We assume that the EV does not discharge into the grid, giving constraint (3.21). The

choice of P [t] is constrained by the maximum charge rate of the EV and smart charger,

Pmax (kW) by (3.22). The charge rate is also limited according depending on its SOC

and by the battery’s maximum SOC, emax (kWh), such that it does not over charge

the battery in (3.23). We assume that the EV driver requires the battery SOC to have
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sufficient charge for the next trip, ereq (kWh), by the scheduled unplugging time T +1.

In order to guarantee that the EV will be sufficiently charged by the known unplugging

time, we observe constraint (3.24), where emin[T + 1] = ereq and emin[t] ∀t < T + 1 is

the minimum SOC at time t such that the EV SOC can still reach ereq by time T + 1.

The value of emin[t] is determined by the maximum charging rate, charging efficiency

η, the final SOC required for transportation ereq, and the number of market periods

remaining until the vehicle unplugs.

0 ≤ P [t] (3.21)

P [t] ≤ Pmax (3.22)

e[t] + η∆tP [t] ≤ emax (3.23)

e[t] + η∆tP [t] ≥ emin[t+ 1] (3.24)

For each state and time of the decision making horizon, we discretize the space of

possible actions into the discrete set of possible charge rates.

• State Dynamics

Given the charge rate P [t], the next SOC is determined according to (3.25).

e[t+ 1] = e[t] + η∆tP [t] (3.25)

Since the SOC state transition equation (3.25) doesn’t always lead to a SOC in the set of

states S[t+1], we represent state transitions in the MDP using transition probabilities

calculated as shown in (3.26) and (3.26). e+[t+1] represents the SOC in S[t+1] which

is the closest SOC greater than or equal to e[t+1] as calculated by (3.25), and e−[t+1]

is the closest SOC less than e[t+ 1]. For SOCs other than e−[t+ 1] and e+[t+ 1], the
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state transition probability is set to 0.

Pr (e[t+ 1] | e[t], P [t]) =



(e[t]+η∆tP [t])−e−[t+1]
e+[t+1]−e−[t+1]

, e[t+ 1] = e+[t+ 1]

1− (e[t]+η∆tP [t])−e−[t+1]
e+[t+1]−e−[t+1]

, e[t+ 1] = e−[t+ 1]

0, otherwise

(3.26)

Energy prices are modeled as following a discrete Markov process over the finite plan-

ning horizon as in (3.27). Calculation of price state transition probabilities is described

in 3.3.1.

Pr (ρe[t+ 1] | ρe[t]) , ∀ρe[t] ∈ S[t], ∀ρe[t+ 1] ∈ S[t+ 1] (3.27)

The total state transition probability is then written as in (3.28)

Pr (s[t+ 1] | s[t], a[t]) = Pr (e[t+ 1] | e[t], P [t]) Pr (ρe[t+ 1] | ρe[t]) (3.28)

• Cost Function

Given that the EV was in some state s[t] at decision epoch t and an action vector a[t]

was chosen, the EV will incur cost r[t](s, a) as shown in (3.29). This represents the

total cost incurred during the period between decision epoch t and t+ 1.

r[t](s, a) = ρe[t]∆tP [t] (3.29)

• Markov Decision Problem

J [t](s), commonly called the cost to go, is the expected total future cost of having

some state s at decision epoch t and making optimal decisions for the remainder of the

problem horizon. The cost to go at the current decision epoch is the result of solving

the finite horizon MDP given in (3.30). Solving the MDP also results in an optimal

decision-making policy π∗. A decision-making policy π is a collection of decision-

making rules π = {d[1](s), . . . , d[T ](s)} that take in the current state and return a

decision or action vector. A decision-making policy must be in the set of feasible
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decision-making policies Π, ensuring that d[t](s) = a ∈ A[t](s), ∀s ∈ S[t], ∀t.

J [1](s) = min
π∈Π

Eπ
[

T∑
t=1

r[t] (s, d (s)) | s[1]

]
(3.30)

This finite horizon MDP can be solved by the SDP backwards recursion procedure as

described in [27] and 2.3.
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Chapter 4

Optimal Autonomous EV Charging

with Stochastic Driver Behavior

This chapter proposes the application of the Markov decision problem (MDP) framework

for optimizing the autonomous charging of individual plug-in electric vehicles (EVs). Two

infinite horizon average cost MDP formulations are described, one for plug-in hybrid electric

vehicles (PHEVs) and one for battery only electric vehicles (BEVs). In both formulations,

we assume no direct input from the driver to the smart charger about the driver’s travel

schedule. Instead, we use stochastic models of plug-in and unplug behaviors as well as energy

required for transportation to represent a driver’s charging requirements. We also assume

that electric energy prices follow a Markov random process. These stochastic models can be

built from historical data on vehicle usage. The objective of the MDPs is to minimize the

sum of electric energy charging costs, driving costs, and the cost of any driver inconvenience.

We demonstrate the solution of the MDP for a BEV and analyze the results. This chapter

presents a new approach to minimizing long-run EV charging costs while reducing the need

for trip planning by a driver.
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4.1 Introduction

In order to make EVs more attractive to consumers, recent research has focused on ways

to minimize EV charging costs. Chapters 2 and 3 of this dissertation present approaches to

optimizing EV decisions as price-taker and as a price-sensitive bidder respectively. Chapters

2 and 3 both assume known unplugging times and energy requirements and plan for only the

next driving trip. [45] and [43] propose decentralized approaches to coordinating vehicles for

overnight “valley filling”, which should minimize the total charging cost for a fleet of vehicles

that can influence wholesale market prices. These approaches are proposed for day-ahead

scheduling of vehicle charging given deterministic driving schedules. [23] proposes methods

for an EV aggregator which optimally charges a fleet of EVs which also sell ancillary services

to the electric grid. This centralized approach assumes that EV drivers communicate their

driving schedules to an aggregator. The proposed aggregator uses a derating constant to

protect against randomness in driver behaviors. [51] proposes scheduling the charge rates of

an aggregation of EVs by chance constrained convex optimization. The method proposed

in [51] assumes that drivers communicate a driving schedule a day in advance and complete

trips in the planned order. However, the durations of sojourns or stops are modeled as

random, motivating the use of chance constraints. The methods proposed in the literature

all optimize over a finite planning horizon and assume that a driver communicates his driving

schedule to a smart EV charger hours in advance.

The work presented in this chapter seeks to address two challenges to minimizing the

energy cost of charging an electric vehicle. First, scheduling future driving trips is a men-

tal burden that could dissuade consumers from purchasing an EV or participating in an

optimized charging program. We propose an approach to minimizing EV charging costs

that does not require drivers to communicate a driving schedule. Instead, we use Markov

chain models of plug-in and unplug behaviors as well as energy required for transportation

to represent a driver’s charging requirements. A second challenge is to minimize charging
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costs over a longer planning horizon than just one day. The average daily driving distance

for american drivers is 33 mi per day, while EVs such as the Nissan Leaf provide an average

drving range of 84 mi [38]. It is very possible that an EV would not need to be charged for

every trip or even every day. The approach proposed in this chapter minimizes costs in the

long-run over an infinite planning horizon based on patterns in driving behavior as modeled

by Markov chains. Additionally, we aim to optimize charging in such a way that it results in

a price sensitive energy demand bid for use in the ALM framework as was done in chapter

3.

We assume that an EV or smart EV charging device can record data on plug-in and

unplug times, battery state of charge (SOC), and fuel consumption on each trip. Given this

data, an EV or smart charger can construct Markov chain models of EV connection patterns

and energy needs. Alternatively, if many EVs periodically connect to the Internet and share

their data, an individual’s Markov chain models can be constructed using the data of many

vehicles, helping to alleviate data sparsity issues. Given the appropriate Markov models, we

propose formulating the optimization problem for minimizing long-run EV charging costs in

the absence of a predetermined driving schedule as an infinite horizon average cost MDP,

also known as an average reward MDP. The infinite horizon MDP approach has been applied

to many energy storage management problems such as supervisory control of hybrid electric

vehicle batteries [52]. The infinite horizon MDP approach is a natural fit for optimizing

autonomous charging of EVs with stochastic driver behavior.

Solving an MDP results in an optimal operating policy, which is simply a look-up table.

Once the MDP has been solved, the optimal look-up table of charging actions could be

downloaded to the EV or smart charger. An Internet based architecture for gathering data,

fitting Markovian driver behavior models, solving the MDP, and downloading the optimal

policies is shown in Figure 4.1. In order to make optimal charging decisions in real-time, the

smart charger would need minimal computing power. The smart charger would only need to

sense the relevant system state information and perhaps interpolate between the actions in
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Figure 4.1: Proposed system architecture for optimizing autonomous charging policies

the look-up table. By including a price state in the MDP, a smart EV charger could translate

the price sensitivity of the optimal charging policy into a price sensitive demand bid as was

shown in chapter 3. The optimal policy could even be updated seasonally if driver behaviors

changed with the seasons of the year.

4.2 Markov Decision Problem Formulation

In this section, we describe the infinite horizon average cost MDP for optimal autonomous

charging of EVs in detail. We describe how each component of the MDP represents or

approximates the true vehicle charging problem. The MDP framework is developed in detail

in [27].
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4.2.1 Decision Epochs

At each decision epoch t the smart vehicle charger decides on a charging rate P [t] (kW).

While plugged-in, we assume that decisions are made every 15 minutes. Charging decisions

are only made while the vehicle is plugged-in. If the vehicle unplugs, the length of time

until the next decision epoch is random and depends on when the vehicle plugs back into

the electric gid. We assume that there are an infinite number of decision epochs such that

t ∈ T = {1, 2, . . . ∞}.

4.2.2 State Vector

The system state vector of the MDP is s = (e, w, ρe) ∈ S. e is the vehicle state of charge

(SOC) which is in units of fraction of maximum storage capacity. e can take on values in

the range [0, 1]. The maximum charge storage capacity is emax (Ah). In order to solve a

discrete MDP, we must discretize e into a finite set of states E . w is time of the week on a

15 minute basis and can take discrete values such that w ∈ W = {1, . . . , 672}. By including

time of the week in our MDP, we are able to account for time of day seasonality as well as

weekday versus weekend seasonal effects on parameter values. ρe is the electric grid energy

price ($/kWh), which we will model as being part of a two-dimensional discrete Markov

random process along with w. We assume that there is a finite set of possible values that ρe

can take for each w such that ρe ∈ Re(w), ∀w ∈ W .

4.2.3 State Transitions

In this section, we describe the MDP system state dynamics for each state dimension.

The dynamics for time of the week are described by the four possible cases in (4.1), which
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holds for all decision epochs t.

w[t+ 1] =



w[t+ 1]; Iplug,[t] = 1,

w[t] ∈ {1, . . . , 671}

1; Iplug[t] = 1, w[t] = 672

w[t] + L[t]; Iplug[t] = 0, L[t] = L[t],

w[t] + L[t] ∈ {2, . . . , 672}

w[t] + L[t]− 672; Iplug[t] = 0, L[t] = L[t],

w[t] + L[t] > 672

(4.1)

When the vehicle remains plugged-in, the time of the week w is assumed to follow the

natural progression of time as shown in the first two cases of (4.1). Given that the vehicle

is plugged-in at some decision epoch, it is not known if the vehicle will remain plugged-in

for the entirety of the 15 minute period. We represent random unplugging behavior with

the {0, 1} indicator random variable Iplug. If the vehicle remains plugged-in for the entire 15

minute period, then Iplug = 1. If the vehicle unplugs at some point before the end of the 15

minute period, then Iplug = 0. One can imagine that travel patterns have strong seasonality

due to work or recreation schedules, so we model the probability of unplugging as depending

on the time of week state, w.

If a vehicle unplugs, the length of time that the vehicle is unplugged for is represented

by L. The outcome of L will determine the time of the week at the next decision epoch as

shown in the final two cases of (4.1). L is modeled as a discrete random variable in units of

15 minute periods. When Iplug = 0, L takes a positive value in the set L = {1, 2, . . . , Lmax}.

The maximum number of periods elapsed over a driving trip, Lmax, is likely to be less than 12

hours. We hypothesize that L will depend on the time of the week w. This dependence could

be due to traffic patterns or the driver’s regular schedule. After estimating the probability

mass functions (PMFs) Pr
(
Iplug | w

)
and Pr

(
L | Iplug, w

)
we can use the cases in (4.1) to
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estimate the state transition probabilities Pr (w[t+ 1] | w[t]).

The possible state transitions for battery SOC are described in (4.2), which holds for all

decision epochs t.

e[t+ 1] =


e[t] + ∆e(e[t], P [t]); Iplug[t] = 1

e[t]− G[t]
emax ; Iplug[t] = 0, G[t] = G[t]

(4.2)

The change in battery state of charge between decision epochs depends on whether or not

the vehicle remains plugged in until the next decision epoch, the choice of battery charge

rate P (kW), and the driving behavior of the vehicle owner. The first case of (4.2) describes

the state transition when the vehicle stays plugged-in while the second case of (4.2) describes

the state transition when the vehicle unplugs and goes driving. When the vehicle remains

plugged-in and is charged with power P , the rate of change of the battery SOC is ė as shown

in (4.3). ė is the rate of change in SOC according to the static circuit equivalent model of the

vehicle battery pack shown in Figure 4.2. V oc(e) is the open circuit voltage (V) of the battery

and Rint(e) is the internal resistance (Ohms). Both the internal resistance and open-circuit

voltage of the battery can depend on the battery SOC. (4.3) can be derived by writing the

equation for conservation of power in the circuit and applying the quadratic equation to

solve for current as a function of power. The total change in SOC between decision epochs

when the vehicle remains plugged-in will be the integral of ė over the 15 minute time period

∆t (hrs) as shown in (4.4).

ė =
−V oc(e) +

√
V oc2(e) + 4000Rint(e)P

2emaxRint(e)
(4.3)

∆e(e, P ) =

∫ ∆t

0

ė dt (4.4)

G (Ah) is the battery charge consumed for driving between when the vehicle unplugs and

when the vehicle plugs back in. We model the charge consumption of PHEVs and BEVs

separately as GPHEV and GBEV respectively. These random variables depend on Iplug as

there is no driving if the vehicle does not unplug. Because the battery SOC cannot be
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Figure 4.2: Static circuit equivalent model of the vehicle battery

negative or exceed 1, the distribution of GPHEV or GBEV will depend on the SOC when

the vehicle unplugs, e. For PHEVs, GPHEV may take negative values depending on how

the hybrid power split between the combustion engine and electric motor is managed while

driving. The support of GPHEV could be [emax(e− 1), emaxe] given Iplug = 0. BEVs cannot

charge the battery while driving, so GBEV can only take on positive values. The support of

GBEV is [0, emaxe]. Also, it is natural to assume that the charge consumed is related to the

length of time the vehicle is unplugged L, as driving longer distances requires more time and

more battery charge. Charge consumption could additionally depend on w as traffic can be

seasonal and trip time is a function of both distance and traffic conditions.

We want to model the distribution of BEV battery charge consumption in a way that

respects the preferences of the driver. We assume that at any time, the driver may want to

take a trip that could be accomplished with a full SOC. If the driver attempts to take a trip

and the battery SOC is inadequate for the driver’s trip, we assume that the driver manually

changes the charging power to Pmax and waits for the battery to charge to an adequate

level. When the driver returns from the trip and plugs back in, we assume that the trip will

have consumed all of the battery’s charge. We model the PMF of change in BEV charge

consumption under these assumptions as in (4.5), where Gmax is the charge consumed by a
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BEV that has a full SOC when it unplugs.

Pr
(
GBEV | e

)
= Pr

(
min (Gmax, emaxe) = GBEV

)
(4.5)

Due to the dependence of G on L the outcome of e[t+1] will be dependent on w[t+1]. Using

the estimated PMFs Pr
(
Iplug | w

)
, Pr

(
L | Iplug, w

)
, and Pr

(
G | L, Iplug, w, e

)
along with the

state transition equations (4.1) and (4.2), we can calculate the PMF Pr (e[t+ 1] | w[t], w[t+ 1], e[t], P [t])

The electric grid energy market price ρe[t] is assumed to be known at the start of each

decision epoch, but future values are uncertain. Energy market prices are known to exhibit

seasonal patterns and so we model ρe[t] as a discrete Markov random process that depends

on w[t] but not on the decision epoch t. The energy market price transitions randomly

according to the PMF Pr (ρe[t+ 1] | ρe[t], w[t], w[t+ 1]).

Given the PMFs described earlier in this section we can calculate the full state transition

probability as in (4.6).

Pr (s[t+ 1] | s[t], P [t]) = Pr (w[t+ 1] | w[t])×

Pr (e[t+ 1] | e[t], w[t], w[t+ 1])×

Pr (ρe[t+ 1] | w[t], w[t+ 1], ρe[t], P [t]) (4.6)

4.2.4 Feasible Actions

At each decision epoch t, the smart vehicle charger must choose an action a ∈ A(s). In the

MDP presented here, the action a is simply the choice of charging power P . A(s) is the

set of feasible actions given the current state s as defined by constraints (4.7)-(4.9). In this

work, we do not consider discharging of the vehicle into the grid, so P must be positive as

shown in constraint (4.7). We assume that there is a maximum rated charging power Pmax

of the vehicle or charger that limits the choice of P as in constraint (4.8). Also, the choice of

P must respect the maximum charge capacity of the battery. Constraint (4.9) ensures that
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the battery is not charged above its maximum capacity.

P ≥ 0 (4.7)

P ≤ Pmax (4.8)

e+ ∆e(e, P ) ≤ 1 (4.9)

4.2.5 Cost function

At each decision epoch, the vehicle will pay a random cost, r(s, a) ($), for taking action

a while in state s. The cost function for PHEVs is shown in (4.10). If the vehicle stays

plugged-in, then the driver must pay to withdraw energy from the electric grid at a price of

ρe ($/kWh), giving the first term. If the vehicle unplugs and goes driving, then a random

amount of gasoline, g (l) is consumed at a cost of ρg ($/l). g could be dependent on w as

the distribution of traffic and therefore driving time could be dependent w. Since the vehicle

must either be powered by charge from the battery or fuel, we assume that the distribution

of fuel consumption is also dependent on the SOC when the vehicle unplugs, e.

rPHEV (s, a) = P ∆t ρ
e Iplug + g ρg (4.10)

The cost function for BEVs is shown in (4.11). The first term of (4.11) is charging costs,

while the second term is an inconvenience cost to the driver. If the driver attempts to take

a trip and the battery SOC is inadequate for that trip, we assume the driver will manually

command the vehicle to charge at maximum power and wait until the battery is charged to a

sufficient level. This inconveniences the driver and so we model the driver’s displeasure with

an inconvenience cost. The inconvenience cost is defined by the driver’s inconvenience price,

ρwait ($/h), multiplied by the amount of time the vehicle must spend charging at Pmax to

cover the next trip’s charge deficit Gdef (Ah). The driver would need to communicate ρwait

to the smart charging device at least once for the proposed approach to accurately account
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for driver preferences.

rBEV (s, a) = P ∆t e Iplug +
Gdef

4emax∆e(e, Pmax)
ρwait (4.11)

The PMF of Gdef is defined in (4.12).

Pr
(
Gdef | e

)
= Pr

(
max (Gmax − emaxe, 0) = Gdef

)
(4.12)

4.2.6 Optimization Problem

The infinite horizon average cost MDP for the system we have described is shown in (4.13).

(4.13) can be solved for γ∗(s) for each state s. γ∗(s) is composed of a bias for starting in

some initial state, b∗(s), and the gain or stationary cost, γ∗, as shown in (4.14). The optimal

gain can be interpreted as the minimum per-period average expected cost.

γ∗(s) = min
π∈Π

lim
N→∞

1

N
Eπs

[
N∑
t=1

r(s[t], π(s[t])) | s[1] = s

]
(4.13)

γ∗(s) = b∗(s) + γ∗ ∀s ∈ S (4.14)

A decision making policy π must be in the set of feasible decision making policies Π, ensuring

a ∈ A(s)∀s. π ∈ Π is a stationary policy which takes the form of a look-up table, listing a

feasible action to take given the current state of the system, regardless of the decision epoch.

(4.13) can be solved using algorithms such as value iteration, policy iteration, or modified

policy iteration as detailed in [27]. Solving (4.13) for the optimal gain and biases also

results in the optimal policy π∗. To use the optimal policy in online operations for charging,

where the states are truly continuous, one can use interpolation or a nearest-neighbor rule

to determine the correct action to take.

In the smart charging architecture shown in Figure 4.1, this optimization problem is

solved offline by a remote service provider. The service provider may solve the autonomous

charging MDP seasonally for each EV, or more frequently to incorporate new driver behavior

or energy price data.
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4.3 Numerical Example

In this section, we develop, solve, and analyze results realistic examples of the proposed au-

tonomous charging MDP for a BEV. First, we will describe parameter data and distributions

of random variables. Some parameter values are based on real data, while some information

was assumed based on intuition. Then we describe the computational effort required to

solve the problem under different levels of discretization. The effect of discretization refine-

ment on solution time and quality is investigated. Finally, we analyze how important driver

inconvenience price may be to the usefulness of the proposed autonomous charging system.

4.3.1 Input Data

Although the focus of this chapter is the proposed MDP formulation and general appraoch,

an effort was made to build a realistic example problem. This is done so that we might

develop some intuition about the real world performance and usefulness of the autonomous

charging system proposed here. We attempted to model the decision making problem for a

small commuter BEV such as a Nissan Leaf.

Energy Prices

Wholesale energy market price data was collected for the year 2011 in the PJM ISO [35].

The entire year’s worth of data was used to fit a Markov model where the next energy price

depends on the time of day, whether it is a weekday or weekend, and the last observed

energy price. On both weekdays and weekends, a distribution of energy prices was estimated

for each hour of the day by kernel smoothing density estimation [53]. The distributions

were then discretized into states using equally spaced values of their estimated cumulative

distribution functions (CDFs). Energy price transition probabilities were estimated for each

pair of states in consecutive hours with a Gaussian Copula model [36]. A Copula model uses

rank correlation to model the dependency between random variables of arbitrary marginal
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Figure 4.3: Energy market prices on a weekday and a weekend day at 5 different CDF points

distributions. Figure 4.3 shows the energy prices for each hour of a weekday and a weekend

day at 5 equally spaced values of each hour’s CDF. The legend in Figure 4.3 lists the CDF

value corresponding to each price. The daily pattern of prices has different characteristics

at different CDF levels. At the lowest CDF level the energy price has two nearly equal

high price periods around the start and end of the work day with smooth transitions. This

contrasts with the price pattern at the highest CDF level, which has one dominant price

peak around hour 15.

Battery Model

We constructed a 65 Ah battery pack model based on the pack used in the Nissan Leaf EV

[54]. Using the generic Li-Ion battery model in the MATLAB SimPowerSystems Simulink

package, we calculated typical values for open-circuit voltage of the pack at various SOCs

[55]. We the internal resistance of the battery pack is calculated to be 0.0554 Ohms. Figure

4.4 shows how open circuit voltage changes as a function of state of charge. In our imple-

mentation, we assume that the battery must always be kept above 10 % state of charge.

We assume that the BEV has a level-2 charger, giving a maximum charging power of 6.6
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Figure 4.4: Open circuit voltage curve of the EV battery pack

kW. We assume that the BEV charger can vary the charging power and so we discretize

the charge rate into 5 possible values for each SOC. The state transition equation for SOC

(4.2) will not necessarily lead to the discretized levels of SOC of the MDP. We overcome this

challenge by adjusting the state transition probabilities. We split each possible outcome of

e[t + 1], e[t + 1], into two outcomes and assign them the values of the two nearest discrete

states. We then calculate transition probabilities to the two new outcomes such that their

probability weighted sum is e[t+ 1].

Driver Behaviors

In the proposed MDP, driving behaviors are modeled by the probability of unplugging

Pr
(
Iplug | w

)
, the PMF of duration of driving trips Pr

(
L | Iplug, w

)
, and the PMF of bat-

tery charge consumed during a driving trip Pr
(
G | L, Iplug, w, e

)
. Probabilities are assumed

based on typical driver behavior. The probability of unplugging is plotted for each 15 minute

period of a weekday and weekend in 4.5(a) and 4.5(b) respectively. On weekdays, we as-

sume the vehicle is used for commuting to work and back, with some small probability of
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Figure 4.5: Probability of unplugging at different times of day on weekdays (a) and on weekends

(b)

non-commuting trips throughout the day. On weekends, we assume it is likely to take a

mid-day or evening trip. In this first implementation, we assume that battery charge use

while driving, G, is a deterministic function of the length of time unplugged. When the

EV battery has a full SOC, we assume that charge use follows an exponential function that

approaches the capacity of the battery. This is a reasonable assumption as we do not expect

that the vehicle is driving for the entire time that it is unplugged. An alternative approach

for estimating the distribution of G in the absence of real charge consumption data would

be to gather transportation survey data and simulate energy consumption with a dynamic

vehicle model as done in [56]. We also assume that the vehicle is unplugged for a maximum

of 4 hours at a time.

4.3.2 Results and Analysis

We have implemented the value iteration algorithm for the solution of the infinite horizon

average cost MDP. The algorithm was implemented in Matlab in such a way that does not

require storing a full system state transition probability matrix, which would be a square

matrix of size |S|. The value iteration algorithm is used to find an ε-optimal policy for the
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Table 4.1: Summary of Results

Pmax (kW) |Re| |E| gain time (min.) #it

6.6 5 5 0.397 158 3987

6.6 5 10 0.251 250 3086

6.6 10 5 0.397 317 3987

6.6 10 10 0.253 511 3086

20 5 10 0.044 10 134

average cost MDP. For some tolerance ε, we can guarantee that we find a policy with a gain

that is within ε
2

of the gain of the true optimal solution. In our experiments, we use a value

of ε = 0.15. In order to achieve convergence, we also applied an aperiodicity transformation

to the cost function and transition probabilities. The value iteration algorithm for average

cost MDPs is developed in detail in [27].

In order to analyze the computational effort required to solve the MDP, we solved MDPs

with different granularities of discretization. Table 4.1 shows a summary of results from

solving the BEV MDP. Each row of table 4.1 represents a different case that was solved.

The columns labeled |Re| and |E| give the discretization size for the energy price and state

of charge state dimensions respectively. The gain column shows the estimated value of the

long-run per-period average expected cost under the resulting policy. We also list the total

computation time in minutes and number of iterations required to solve the MDP in the final

two columns respectively. All cases in table 4.1 assume a driver inconvenience cost of 20$/hr.

The last row of the table shows results for a case when Pmax is set to 20 kW, as opposed to

the value of 6.6 kW used in the other cases. Increasing the number of energy price states

increases computation time more than increasing the number of state of charge states. This

is due to our implementation’s frequent recalculation of energy price transition probabilities
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during a single iteration of the value iteration algorithm. Discretizing SOC more finely and

increasing the maximum charging power appear to lower the gain.

We also investigated the impact of the driver’s inconvenience price, ρwait, and the max-

imum charging power, Pmax, on the usefulness of the proposed MDP. 3 cases were solved,

all having |Re|=5 and |E|=10. In the two cases with Pmax =6.6 kW, the optimized policies

charge at maximum power in 92.4% of all states when ρwait is set to 5 $/hr and 96.5% of

all states when ρwait is set to 50$/hr. However, when given Pmax =20 kW and ρwait set to

20 $/hr, the optimal policy charged at maximum power in only 78.8% of states. A higher

maximum charge rate gives more flexibility and makes an optimized charging policy more

valuable. Although we describe the policy in terms of percentage of all states, this does not

mean the optimal policy will charge at Pmax for the same percentage of time, since states

will be visited with different frequencies. The tolerance for optimality, ε=0.15, seems large

compared to the size of the gains resulting from solving the BEV charging MDPs. Yet, satis-

fying this tolerance already requires significant computation time. A more efficient solution

method is needed. If sparse matrices can be used to store entire system state transition

probability matrices in computer memory, the policy iteration algorithm could be used to

solve the MDPs. Policy iteration requires fewer and more computationally intensive itera-

tions than value iteration, but many of the intensive matrix operations required for policy

iteration are efficiently implemented in Matlab.

The formulation presented in this chapter models energy prices as being random and

Markovian. This enables the construction price sensitive demand functions as was done

in chapter 3. The formulation studied in this chapter appears to be too computationally

challenging to be of practical use in the ALM system. However, If the EV driver pays for

energy under a deterministic retail tariff, then the energy price would not be needed as a state

in the MDPs. This would greatly reduce the computational burden of the proposed approach

to optimal autonomous charging with stochastic driver behavior. The methods shown in this

chapter would likely be more practical in the case of deterministic retail energy tariffs.
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Chapter 5

Evaluation of the System Wide

Impacts of Smart EVS Using the

Smart Grid in a Room Simulator

Architecture

In this chapter, we introduce our approach to evaluating the interaction between a fleet

of EVs and electric energy markets. In particular, we develop a simulation of the real-

time DYMONDS energy market proposed in [48]. The simulation is implemented using the

Smart Grid in a Room Simulator (SGRS) distributed simulation architecture. Agent models

are developed for many of the components of a real-time electric energy market, including

stochastic inflexible load, a price forecaster, EVs, EV drivers, and Generators. We describe a

simulation experiment to evaluate and compare the performance of different decision making

methods for the charging of EVs. Simulation results are then analyzed in detail.

Five different EV decision making methods are evaluated using the simulation developed

in this chapter. The first method is uncontrolled charging, where EVs begin charging at

maximum power as soon as they plug-in, and charge until their batteries are full. The
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second approach is time of use (TOU) pricing, where EVs optimize charging given a fixed

TOU energy price tariff. In the third approach, EVs optimize charging under real-time

energy prices and bid into energy markets as price-takers. The next method we evaluate

is deterministic MPC based price-sensitive bidding as developed previously in section 3.2,

which we refer to as MPC-ALM. The final method we evaluate is the MDP based price-

sensitive bidding strategy that was developed in section 3.3, referred to here as MDP-ALM.

The various EV charging methods have their own advantages and disadvantages. In this

chapter, we use the SGRS based simulation to evaluate the ability of the different methods

to minimize EV charging costs by responding to seasonal patterns, short-term fluctuations,

and unexpected emergency conditions.

5.1 SGRS Overview

The SGRS distributed simulation architecture enables distributed software modules to co-

ordinate with each other and conduct a simulation. Each software module is executed by a

separate computing process. The SGRS architecture provides 3 interfaces for use by modules,

enabling distributed simulation without a centralized process scheduler. The three interfaces

are the broker interface, the communication interface, and the data logging interface. Users

must define a simulation in terms of what the software modules are, the directories where

they are located, and what communication links need to be established between modules.

Currently, this definition is stored in a database.

Using this simulation definition, a central broker module starts the execution of the

user’s software modules. The broker interface then provides each of the user’s modules with

communication channels to its neighbors, as defined in the simulation definition. The broker

interface also provides database credentials to modules. These database credentials are used

to read from an initialization parameter database and write simulation results to a results

database. Module initialization data can also be stored in local files. If the user’s software
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modules are distributed across different computers, a broker web application must be running

on each computer. This local broker web application executes broker functions on the local

machine and passes information about the status of local modules to the central broker.

The communication interface allows user modules to communicate with each other over

the Internet. The communicated information is encoded using the JSON format. The com-

munication interface is implemented as an object with methods enabling a user module to

read messages from or write messages to other user modules. The communicator converts

Matlab structs to JSON strings and vice versa. We have adopted the convention of writing

structures containing fields for a message type, a timestamp, and the actual message pay-

load, which can be a structure itself. User modules that communicate with each other must

agree on the information protocol for the message payload. In other words, the user must

ensure that a transmitting module sends the information payload that a receiving module is

expecting. It is also up to the user to ensure that modules are using the communication in-

terface to properly execute the intended sequence of events for the simulation. If one module

executes a blocking read with the communication interface, that module will wait until the

transmitting module has sent its message. If the simulation sequence of communications is

not properly implemented by the modules, a module could wait indefinitely for a message,

resulting in a stalled simulation.

The final interface is the data logging interface. The data logging interface allows modules

to write simulation results to a central results database. It also provides functionality for

retrieving results for analysis.

Fig. 5.1 shows the SGRS architecture. A disk icon represents a database and a globe icon

represents a broker web application. A useful web interface also allows users to designing

simulation instances, launch simulations, and plot results in real time as they are logged to

the results database. Fig. 5.2 shows an example web page for plotting from a live simulation

in real time.
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Figure 5.1: SGRS simulation architecture

Figure 5.2: Screen capture of the web interface plotting live simulation results
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5.2 Implementation of the Real-Time DYMONDS En-

ergy Market Simulation

In this section, we describe the simulation of the real-time DYMONDS energy market as

implemented using the SGRS simulation architecture. The simulation we have implemented

can be described generally as a stochastic, discrete time simulation. This stochastic sim-

ulation is driven by randomly generated values of inflexible load, randomly generated EV

transportation behavior, and the logic in the EV LSE and generator modules.

Fig. 5.3 shows the modules involved in the simulation and the communication channels

between the modules. In the SGRS architecture, an independent computing process executes

each module. The modules that compose the simulation of the real-time DYMONDS energy

market are the Inflexible Load, Price Forecaster, Generator, EV LSE, and the ISO modules.

In a simulation with multiple generators or LSEs, each generator or LSE is simulated by

an independent module. The modules are implemented based on object oriented design,

allowing us to intuitively model the multi-layered ALM system for EVs. EV decision making,

charging, and transportation is simulated within the process of the EV LSE module. EVs are

implemented as individual objects with unique parameters for transportation behavior and

energy consumption. The ISO module contains logic for communication with other modules

and organizing market bids, but encapsulates the power system object, which models the

electric power grid and computes optimal market dispatches.

The overall simulation sequence of events is shown below. Detailed descriptions of the

mathematical models and methods implemented within each module are described in section

5.3. The simulation is based on a 10 minute timestep.

1. The Inflexible Load module forecasts the inflexible load for each bus for the current

simulation timestep and the next 8 hours. This forecast is transmitted to the Price

Forecaster module.
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Figure 5.3: Schematic of modules and communications implemented in the SGRS simulation ar-

chitecture
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2. The Inflexible Load generates a value of the inflexible load at each bus for the current

simulation timestep and transmits the new load values to the ISO.

3. The Price Forecaster creates a price forecast for the current market period and the

following 8 hours. The price forecasts are transmitted to the Generator and EV LSE

modules.

4. Generators and EV LSEs create supply and demand bid functions and transmit them

to the ISO.

5. The ISO updates the power system object with new inflexible load, supply bid, and

demand bid data.

6. The Power System object solves the DYMONDS linearized optimal power flow (DCOPF)

problem for optimal supply and demand dispatch.

7. The ISO sends optimal dispatch quantities to Generator and EV LSE modules.

8. After receiving the optimal dispatch quantities, Generator and EV LSE modules ad-

vance their internal clocks and wait for the next price forecast.

9. The ISO sends the market clearing price and total system load to the Price Forecaster

10. The Price Forecaster adds the new market data to its internal data record, and may

re-fit its price forecasting model to the stored data.

11. The Price Forecaster updates its internal clock and waits for the next load forecast.

12. The ISO sends a notification to the inflexible load that the market period has ended,

updates its internal clock, and waits for the next periods power system data.

13. The Inflexible Load reads the ISO’s notification, updates its internal clock, and returns

to step 1.
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5.3 Mathematical Modeling

In this section, we detail the mathematical models and methods embedded within the indi-

vidual modules. Modeling and methods for the EV LSE module was previously described in

section 3. The DYMONDS DCOPF problem used by the ISO was shown in (3.11).

5.3.1 Inflexible Load

The uncontrollable inflexible load is modeled using a statistical time series approach. Time

series approaches are popular for modeling power system load and stochastic renewable power

output [57, 58]. This model is used for both generating new load values and forecasting future

load values. We model the time varying, seasonal mean of total power system load µ[h] as

being a linear regression function of factors such as time of day and whether or not it is a

workday. The model for the seasonal mean system load is given in (5.1). Ii[h] is an indicator

variable that has a value of 1 when the hour of timestep h is i and a value of 0 otherwise.

Iw[h] is an indicator variable that has a value of 1 when timestep h is during a workday and

a value of 0 otherwise. The parameters β are coefficients that need to be fit to data. For

sub-hourly timesteps t, we model the seasonal mean µ[t] by linear interpolation of µ[h] from

the two nearest hours to timestep t.

µ[h] = β0 + βwIw[h] +
24∑
i=2

βiIi[h] +
24∑
i=2

βw,iIw[h]Ii[h] (5.1)

The total load at bus j, Lj is given by (5.2). The total load at each bus is modeled as the

sum of the scaled seasonal mean plus a stochastic process of correlated noise for bus j, xj[t].

The seasonal mean load for each bus is the seasonal system mean times a scaling factor,

sj. The scaling factors must be in the range [0, 1] and sum to 1. The stochastic process of

xj[t] is modeled in (5.3) using the seasonal autoregressive moving average modeling approach

(SARMA) [59, 36]. xj[t] is correlated with its previous value and the process innovation 24

hours ago. In (5.3), K would be the number of smaller timesteps t in an hour h. In order
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for xj[t] to be stationary with finite variance both φ and Φ must be positive and less than 1.

Lj[t] = sjµ[t] + xj[t] (5.2)

xj[t] = φxj[t− 1] + Φ (xj[t− 24K]− φxj[t− 24K − 1]) + εj[t] (5.3)

The stochastic process errors εj[t] are drawn from a multivariate normal distribution with

covariance matrix Σ as shown in (5.4). This approach models spatial correlation in the load

across the power system buses. The covariance matrix is assumed to be time-invariant.

ε ∼ N(0,Σ) (5.4)

Load forecasts are created for each bus by the sum of the deterministic seasonal mean and a

forecast the stochastic process x̂j[t] as shown in (5.5). Given the realizations of the stochastic

process up to time t The stochastic process is forecast for time t + τ by recursively using

(5.6) for τ = 1, . . . , T , where T is the forecast horizon. When the time indices on the right

hand side of (5.6) are in the future, forecast values are used in place of measured values.

L̂j[t+ τ ] = sjµ[t+ τ ] + x̂j[t+ τ ] (5.5)

x̂j[t+ τ ] = φxj[t+ τ − 1] + Φ (xj[t+ τ − 24K]− φxj[t+ τ − 24K − 1]) (5.6)

5.3.2 Generator

In this subsection, we describe the models used to simulate generators that participate in

a DYMONDS framework for economic dispatch. Models and methods for electric power

generators that participate in the DYMONDS economic dispatch were introduced in [5, 50].

The generator’s decison making problem is shown in (5.7). Given a forecast of electric energy

prices ρ̂e = [ρ̂e[1], ρ̂e[2], . . . , ρ̂e[T ]]T , a generator optimizes a power generation schedule, P

(MW), seeking to maximize its profits subject to its internal dynamics. The profit is the

market energy price minus the power generation cost function C(P ). We assume that the

cost function of the generator follows a quadratic function such as that shown in (5.10). The
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internal dynamics are modeled by a static ramp rate constraint (5.8) with maximum ramp

rate R (MW) and the maximum and minimum generation limits (5.9).

max
P [t]

T∑
t=1

ρ̂e[t]P [t]∆t − C(P [t]) (5.7)

s.t. (5.8), (5.9)

|P [t]− P [t− 1]| ≤ R, ∀t (5.8)

Pmin ≤ P [t] ≤ Pmax, ∀t (5.9)

C(P ) = β1P + β2P
2 (5.10)

This optimization problem will be solved three times. Once given the forecast energy

prices, ρ̂e, once given a positive perturbation to the next forecast price, ρe+ = [ρ̂e[1](1 +

δ), ρ̂e[2], . . . , ρ̂e[T ]]T , and once given a negative perturbation to the next forecast price

ρe− = [ρ̂e[1](1 − δ), ρ̂e[2], . . . , ρ̂e[T ]]T . The resulting optimal generation powers for the

immediate market period will be noted as P ∗[1], P+[1], and P−[1].

Using the three price, energy points in (5.11), the generator applies linear regression to

estimate the slope and intercept of the DYMONDS marginal cost function of energy MC(E)

shown in (5.12), where E = P∆t.(
∆tP+[1], ρe+[1]

)
,
(
∆tP ∗[1], ρ̂e[1]

)
,
(
∆tP−[1], ρe−[1]

)
(5.11)

MC(E) = β0 + β1E (5.12)

The marginal cost function is integrated to form the cost function of dispatched energy

Cdym(E) shown in (5.13). Creating a cost function in this way is said to “internalize dynam-

ics” of the generator [5].

Cdym(E) = β0E +
β1

2
E2 (5.13)

The minimum and maximum power generation limits for the current market period are also

calculated by (5.14) and (5.15) respectively. Here, P [0] is the current power generation
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setpoint, resulting from the previous market period. The minimum and maximum dispatch

in terms of energy are then shown in (5.16) and (5.17).

Pmin[t] = max
(
Pmin, P [0]−∆tR

)
(5.14)

Pmax[t] = min
(
Pmax, P [0] + ∆tR

)
(5.15)

Emin[t] = ∆tPmin[t] (5.16)

Emax[t] = ∆tPmax[t] (5.17)

The generator then transmits its cost function and dispatch limits to the ISO.

5.3.3 EV Driver

In this subsection, we describe the probabilistic model of the EV driver’s tranportation be-

havior. Each time an EV finishes a trip and plugs in, this model is used to randomly generate

the next trip’s start time, end time, and energy requirement. The energy requirement is the

minimum battery SOC needed to complete the trip. The generated trips depend on the time

of day and day of the week when the EV finishes the trip and plugs in. The generated trip

can also depend on the EVs SOC when it plugs in. Three types of trips can be generated:

a trip to work, a trip home from work, and a weekend trip.

A “to work” trip is generated whenever the EV arrives at home from work between

Monday and Thursday inclusive. Additionally, a “to work” trip is generated for Monday

morning when an EV finishes its last trip on Sunday. A “to work” trip starts between 6:50

am and 7:50 am with uniform probability.The average American commuting trip by car takes

25 min and travels a distance of 20 mi [60]. Because our simulation is run on ten minute

timesteps, we model the trip to work as taking either 10, 20, or 30 minutes with uniform

probability. The Nissan Leaf EV has a 24 kWh battery and a range of 84 mi[38]. Using data

for the Nissan Leaf and the average commute, we estimate that an EV will use 2.3 kWh per

ten minutes of driving.
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A “to home” trip is generated whenever the EV arrives at work. The starting time of

the “to home” trip is assumed to be between 7 and 9 hours after the EV’s arrival time at

work, with uniform probability. The length of time spent driving is again either 10, 20, or

30 minutes with uniform probability.

A weekend trip is generated whenever an EV arrives home from work on a Friday and

whenever an EV finishes a trip and plugs in on a weekend. When an EV arrives home from

work on a Friday or finishes its last trip on a Saturday, the earliest possible start time for

the next trip 8:50 am the next day. Otherwise, if the EV plugs in during the weekend earlier

than 7:30 pm, the earliest start time of the next trip is ten minutes later. The latest possible

start time of the next trip is 7:40 pm. The start time is then determined by generating

binomial random variables for each time period between the earliest and latest start time.

The probability of each variable taking a value of 1 is set to 2%. The earliest of these

binomials to take a value of 1 is chosen as the trip start time. If none of these variables

take a value of 1, then the EV’s next trip will be on the next day, and the appropriate trip

is generated. The time spent driving is between 1 and 10 time periods, with an additional

restriction that the EV must finish driving by 7:50 pm. A check is also performed to make

sure the trip is feasible given the parameters and SOC of the EV and the trip start time. If

the generated trip is not feasible, then the length of time spent driving is shortened to be

feasible.

To illustrate the resulting transportation behavior of the above model, we simulated

10,000 EVs on a workday and weekend day. Figs. 5.4 and 5.5 show the percentage of

EVs connected to the grid at each time over the course of a weekday and a weekend day

respectively.
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Figure 5.4: Weekday EV connection profile

Figure 5.5: Weekend EV connection profile
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5.3.4 Price Forecaster

Electric energy prices are known to be highly correlated with the system load. [61] developed

stochastic volatility models of energy prices in power systems as a function of load and supply

curve. Fig. 5.6 shows one week of real system price data for the PJM system [35]. This data

shows that the system energy price can modeled very well with a cubic function of the system

load, with a coefficient of determination R2 = 0.97. This relationship has also motivated

research on coordinating EV charging to perform “valley filling” where EVs charge overnight

in a way that smooths the total system load as much as possible [45, 43]. We seek to develop

a price forecaster that will help EVs plan their charging to minimize the cost of charging

as well as smooth the total system load. The prices are forecast according to (5.18). This

linear regression model of price is fit to the total system load, but forecast energy prices ρ̂e

are created as a function of forecast inflexible load L̂, which doesn’t include EV load. This

model may not forecast the actual market clearing prices accurately, but it will allow the

EV LSE to determine which times are more preferable for charging, where periods having

lower inflexible load are more preferable for charging.

ρ̂e[t] = β0 + β1L̂[t] (5.18)

5.4 Simulation Input Data

In this section, we provide specifics on the data used for our simulation experiments. Fig.

5.7 shows the power system network used in our simulations. The four buses are labeled with

their respective numbers. Generators 1 and 2 are connected to buses 1 and 2 respectively. All

buses have some uncontrollable inflexible load, shown by red arrows. EVs will be connected

to bus 4, shown with a green arrow. Generator parameters are shown in table 5.1 and line

parameters are shown in table 5.2. Line parameters are taken from an example system in

[62]. The line power flow limits are assumed to be much larger than the flows such that line
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Figure 5.6: PJM system price as a function of load

congestion does not occur.

Table 5.3 gives parameter data related to EVs. We assume Level 1 charging and the same

size battery pack as a Nissan Leaf EV [38]. In order to simulate the system in a reasonable

amount of time, 20 EVs are simulated. If all EVs charge at their maximum charging power,

the load from EVs would be approximately 24% of the mean total system uncontrollable

load.

The inflexible load model described in 5.3.1 was fit to hourly load data for the DUQ node

of the PJM power system [35]. The seasonal mean model in (5.1) is fit by ordinary least

squares regression. The parameters of (5.1) are then scaled so that the mean of the total

system load is µ̄ = 280 kW. This small load value was chosen so that we could simulate EVs

as a large percentage of the system load in a reasonable amount of time. The total system

load is then distributed to the four buses according to the values in table 5.4. Figs. 5.8 and

5.9 show the seasonal mean load for the four buses on weekdays and weekends respectively.

The SARMA stochastic process model described in (5.3) is fit to the hourly data with

K = 1. These same parameter values are then used to simulate the stochastic process on

77



Figure 5.7: Power system network used for simulations

Generator 1

Pmax 2 MW

Pmin 0 MW

R 0.5 MW

β1 20

β2 100

Generator 2

Pmax 2 MW

Pmin 0 MW

R 2 MW

β1 30

β2 120

Table 5.1: Generator Parameter Data
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line impedance (P.U.)

1-2 0.010+j0.050

1-3 0.007+j0.037

2-4 0.007+j0.037

3-4 0.013+j0.064

Table 5.2: Network Line Parameters

Emax (kWh) Pmax(kW ) η

24 3.3 0.95

Table 5.3: EV Parameter Data

Bus 1 Bus 2 Bus 3 Bus 4

0.1 0.34 0.4 0.16

Table 5.4: Distribution of load across buses

Figure 5.8: Weekday seasonal load profile at each bus
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Figure 5.9: Weekend seasonal load profile at each bus

a ten minute timestep with K = 6. The stochastic process model with K = 6 will not

accurately model the real DUQ load data, but it gives us a reasonable, stationary model of

load data to use for simulation purposes. To fit the model, we estimate parameters for φ,

Φ simultaneously via linear regression, ignoring the term with their product. The resulting

stochastic process model is shown in (5.19).

xj[t] = 0.98xj[t− 1] + 0.18xj[t− 24K]− 0.176xj[t− 24K − 1] + εj[t] (5.19)

In order to simulate load that is correlated across the different buses, the stochastic process

errors are drawn from a multivariate normal distribution. The covariance matrix Σ0 is used

to generate correlated errors ε0. The matrix Σ0 is given below in (5.20). The correlated

errors are then scaled to have a standard deviation proportional to mean load of the bus by

(5.21). µ̄ is the total system mean load. diag(s) is a matrix with the bus scaling factors sj

on the diagonal and zeros on the off diagonals .
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Figure 5.10: Example of forecast load and actual simulation load at Bus 2

Σ0 =


0.98 0.51 0.36 0.29

0.51 0.98 0.51 0.36

0.36 0.51 0.98 0.51

0.29 0.36 0.51 0.98


(5.20)

ε = 0.02µ̄diag(s)ε0 (5.21)

The inflexible load is forecast using the same models that are used to simulate the in-

flexible load, as described in section 5.3.1. Before each market period, the Inflexible Load

module forecasts the inflexible load for the market period and the 8 hrs following it. Fig.

5.10 shows an example trace of a load forecast and the actual simulation load at Bus 2.

Because the load model has high autocorrelation, we see that deviations from the forecast

persist for hours.

The price forecasting model is fit to the results of simulating the power system over one

week. Because the generator ramp rates are relatively fast and line limits are not binding,

the market clearing energy price is a deterministic linear function of the total system load.

Fig. 5.11 shows a scatter plot of price and system load. The resulting price model parameters
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Figure 5.11: The deterministic relationship between energy price and system load in the simulated

system

for (5.18) are β0 = 147.27 and β1 = 654.55.

5.5 Experiment Design

In this section, we describe the experiments and analysis conducted using the SGRS based

simulation of intelligent EVs in the DYMONDS energy market. The main objective of the

experiments is to compare the EV charging costs when different EV charging strategies are

used. An EV will need to intelligently respond to both seasonal patterns in prices and short

term randomness in order to minimize their charging costs. We also investigate the ability

of the EVs to respond to unforeseen disturbances in the power system.

Six different approaches to EV charging are tested. Under any MPC or MDP based

approach, EVs optimize charging based on a look-ahead horizon that includes the current

market period and the following 8 hours.

1. Fast Charging: Under this strategy, EVs simply charge at full power whenever they

are plugged in. Each EV charges until its battery is full.

82



Time Period Pricing Tier Price ($/kWh)

7:00 A.M. to 2:00 P.M. Shoulder 0.23

2:00 P.M. to 9:00 P.M. Peak 0.43

9:00 P.M. to 11:00 P.M. Shoulder 0.23

11:00 P.M. to 7:00 A.M. Off-Peak 0.10

Table 5.5: TOU Energy Pricing Tariff

2. MPC Based TOU Charging (TOU): For this method, we assume that EVs pay for

energy under a time of use (TOU) retail pricing scheme. We assume the TOU prices

are the weekday summer rates of the Pacific Gas and Electric EV-A tariff, which is

specifically offered for EV owners [63]. Table 5.5 shows the tariff. Given this tariff, EVs

optimize their charging schedule by solving the deterministic MPC problem shown in

3.1, but using the energy prices of table 5.5 in place of forecast energy prices. Under

this approach, no information about the current state of the power system is used to

optimize charging decisions.

3. MPC Based Price-Taker Charging (Price-Taker): In this appraoch to EV charg-

ing, EVs optimize their charging schedule by solving the deterministic MPC problem

shown in (3.1). At the start of each time period while the EV is plugged in, a new

forecast of energy prices is obtained from the price forecaster module. The optimal

charging powers for the next market period, resulting from solution of (3.1) by all EVs,

are then aggregated by the EV LSE. The EV LSE then purchases a fixed quantity of

energy as a price taker in the DYMONDS energy market.

4. MPC Based ALM Charging (MPC-ALM): This approach to EV charging is

detailed in section 3.2.

5. MDP Based ALM Charging (MDP-ALM): This approach to EV charging is

detailed in section 3.3. This approach is simulated twice to test the dependence of the
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charging strategy on the assumed Markov model of energy price forecast errors. In the

first simulation, we assume the forecast errors are highly correlated with a correlation

coefficient of βcorr = 0.95. In the second simulation, we assume a correlation coefficient

of βcorr = 0.2. In both simulations, we assume the distribution of price forecast errors

is constant for all prediction horizons with a mean of 0 and a standard deviation of 4.

In order to compare charging costs, a simulation is run with each EV charging method.

Each simulation is run for 4 weeks and one day. The extra one day is used to compare the

ability of the EV charging methods to respond to unpredictable disturbances in the power

system. On this last simulation day, a spike of 0.1 MW is added to the inflexible load

between 8 a.m. and 9:50 a.m.. This spike is not reflected in the price forecasts, but effects

the market clearing. This experiment simulates a situation similar to what would happen if

a large generator malfunctions and disconnects from the electric grid. The simulation time

begins at Jan. 1, 2008, which is a Tuesday.

5.6 Results

In this section we report the results of the simulation experiments developed in this chapter.

To analyze the charging behavior on weekdays, we have plot the EV fleet average total load

profile for weekdays for each charging strategy. The mean EV fleet load profile for weekdays

shows the average of the daily EV load profile over all Mondays, Tuesdays, Wednesdays, and

Thursdays, totaling 14 days. Fridays are left out because charging for Saturday driving may

occur on Friday night. To analyze the charging behavior on weekends, we plot the mean EV

fleet load profile for weekends for each charging strategy. The mean EV fleet load profile

for weekends shows the average of the total EV load profile spanning Friday, Saturday, and

Sunday. Friday is included in this profile because of its unique charging pattern. The mean

weekend profile averages 4 weekends. We also analyze charging behavior on particular traces.

Because the simulations are random and the amount of energy consumed by EVs varies from
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Figure 5.12: Average weekday energy price profile without EVs

simulation to simulation, the EV charging approaches are compared in terms of average cost

per MWh charged.

In order to better understand the effect of EV charging on energy market prices, we

first show results from a simulation of the power system with no EVs. Fig. 5.12 shows the

resulting average of system price profile for weekdays and fig. 5.13 shows the mean price

profile for weekends. On weekdays, the prices peak around 4 p.m. at 372 $/MWh and reach

a minimum of 295 $/MWh between 2 and 4 a.m. . On Saturday and Sunday, the maximum

price is around 350 $/MWh near 6 p.m. and the minimum price is around 280 $/MWh near

6 a.m.. In each subsection below, one can compare the resulting prices against these plots,

making the price effects of EVs more obvious.
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Figure 5.13: Average weekend energy price profile without EVs

5.6.1 Fast Charging

Under the Fast Charging strategy, EVs will charge at full power whenever they finish a trip,

charging until the battery is full. The aggregate EV load will depend on the transportation

behaviors of the EV drivers. Fig. 5.14 shows the mean EV fleet total load profile for

weekdays and fig. 5.15 shows the mean charging profile for weekends. Fig. 5.16 shows an

example charging profile. looking at figs. 5.4 and 5.5, we can see that charging occurs slightly

later than when EVs begin traveling. EV trips may be as short as one simulation period and

charging will begin as soon as an EV’s trip ends. One can also notice that the mean charging

profile is smoother than the single day’s profile. Figs. 5.17 and 5.18 show the resulting

average of system price profiles for weekdays and weekends respectively when using the Fast

Charging strategy. EV charging has a large influence on the market clearing prices, causing

two large price spikes on weekdays. On Friday Evening, energy prices are pushed up to 400

$/MWh. The impact is less obvious on Saturday and Sunday when charging is spread out

across the day, but price peaks are still increased by 15 to 25 $/MWh compared with when
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Figure 5.14: Mean EV fleet load profile for weekdays under the Fast Charging strategy
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Figure 5.15: Mean EV fleet load profile for a weekend under the Fast Charging strategy
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Figure 5.16: EV fleet load profile for a single weekday under the Fast Charging strategy

there are no EVs.
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Figure 5.17: Average system price profile for weekdays under the Fast Charging strategy
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Figure 5.18: Average system price profile for a weekend under the Fast Charging strategy
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5.6.2 MPC Based TOU Charging

Fig. 5.19 shows the mean EV fleet load profile for weekdays and fig. 5.20 shows the mean

charging profile for weekends under the TOU charging strategy. The charging behavior

clearly depends on the transportation patterns as well as the TOU tariff in table 5.5. Under

the TOU charging strategy on weekdays, EVs charge for their drive to work during the off-

peak hours of the TOU tariff, which spans from 11 p.m. to 7 a.m.. The fleet charges at a

constant power during this period. When charging for the trip home from work, EVs finish

charging before the peak period starts at 2 p.m. There is a very small amount of charging

that takes place near 3 p.m. . This is likely because the planning horizon of the EVs, 8

hours, is too short in the case of EVs that leave work early and arrive home to see peak

period prices during their entire charge planning horizon. When we look at the weekend

charging profile, we see this same effect on Friday afternoon, when EVs plan their charging

for much longer weekend trips on Saturday. On weekends, we see that EVs charge all of the

energy for their first trip of Saturday or Sunday before 7 a.m. of that day. On Saturdays

and Sundays, we see a spike in charging as EVs try to charge before the peak pricing period

starts at 2 p.m.. In fig. 5.21 we see flat charging profiles before leaving for work in the

morning and after arriving at work. The charging power in fig. 5.21 is not the same as in

5.19 due to variation in energy needed for driving. Figs. 5.22 and 5.23 show the resulting

average of system price profiles for weekdays and weekends respectively when using the TOU

charging strategy. This charging strategy raises the minimum price on weekdays and also

creates a new peak in energy prices before 2 p.m.. Each weekday, a sharp drop in prices

occurs at 2 p.m. when the EVs face peak prices. A jump in prices can also be seen each day

at 11 p.m., followed by a price drop at 7 a.m.. Price peaks that were seen under the Fast

Charging method are reduced significantly.

90



12AM  3AM  6AM  9AM 12PM  3PM  6PM  9PM 12AM

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time of Day

M
ea

n 
T

ot
al

 E
V

 C
ha

rg
in

g 
P

ow
er

 (
M

W
)

Figure 5.19: Mean EV fleet load profile for weekdays under the TOU charging strategy
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Figure 5.20: Mean EV fleet load profile for weekends under the TOU charging strategy
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Figure 5.21: EV fleet load profile for a single weekday under the TOU charging strategy
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Figure 5.22: Average system price profile for weekdays under the TOU charging strategy
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Figure 5.23: Average system price profile for weekends under the TOU charging strategy

5.6.3 MPC Based Price-Taker Charging

Fig. 5.24 shows the mean EV fleet load profile for weekdays and fig. 5.25 shows the mean

charging profile for weekends under the Price-Taker charging method. The charging behavior

clearly depends on the transportation patterns as well as the price pattern generated in the

absence of EVs. On weekdays, EVs charge all of the energy needed to drive to work when

the lowest prices would occur without EVs. EVs charge the energy they need for the drive

home from work as soon as they arrive at work. On weekends, EVs charge mainly between

midnight and 8 a.m.. EVs then have a second, smaller charging peak between 1 and 3 p.m..

Fig. 5.26 shows that actual charging peaks are less smooth and higher than the mean profile.

Figs. 5.27 and 5.28 show the resulting average of system price profiles for weekdays and

weekends respectively when using the Price-Taker charging strategy. On both weekdays and

weekends, nighttime charging creates a new significant price peak. On weekdays, we see a

new price peak around 9 a.m. when EVs arrive at work. However this new morning peak
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Figure 5.24: Mean EV fleet load profile for weekdays under the Price-Taker charging strategy
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Figure 5.25: Mean EV fleet load profile for weekends under the Price-Taker charging strategy
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Figure 5.26: EV fleet load profile for a single weekday under the Price-Taker charging strategy

does not push prices far above the existing system price peak in the early evening.
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Figure 5.27: Average system price profile for weekdays under the Price-Taker charging strategy
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Figure 5.28: Average system price profile for weekends under the Price-Taker charging strategy
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5.6.4 MPC Based ALM Charging

Fig. 5.29 shows the mean EV fleet load profile for weekdays and fig. 5.30 shows the mean

charging profile for weekends under the MPC-ALM charging method. The charging behavior

depends on the transportation patterns as well as the price pattern generated in the absence

of EVs, but to a lesser degree than the Price-Taker approach. EV charging for the trip to

work is spread over the entire time period from 6 p.m. to before 6 a.m. and some is charged

around 4 p.m. . On weekdays, EVs charge the energy they need for the drive home over a

wider range of time than for the Price-Taker charging approach. On weekends, there appear

to be morning and afternoon peaks in charging. The charging is spread out over much more

time than with the Price-Taker approach, leading to much smaller peaks in the average

charging profile. Because EVs demand bids are price sensitive, they might charge whenever

the market clearing price is lower than forecast and not necessarily when the lowest prices

are on average. Under the MPC-ALM strategy, charging peaks are much less than under

the Price-Taker approach. Fig. 5.31 shows that a single day’s charging profile appears to be

much noisier than the mean profile in 5.29.

Figs. 5.32 and 5.33 show the resulting average of system price profiles for weekdays

and weekends respectively when using the MPC-ALM charging strategy. The MPC-ALM

strategy does not create significant new price spikes on weekdays as happened with Price-

Taker charging.
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Figure 5.29: Mean EV fleet load profile for weekdays under the MPC-ALM charging strategy
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Figure 5.30: Mean EV fleet load profile for weekends under the MPC-ALM charging strategy
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Figure 5.31: EV fleet load profile for a single weekday under the MPC-ALM charging strategy
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Figure 5.32: Average system price profile for weekdays under the MPC-ALM charging strategy
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Figure 5.33: Average system price profile for weekends under the MPC-ALM charging strategy

5.6.5 MDP Based ALM Charging

Figs. 5.34 and 5.35 show the mean EV fleet load profile for weekdays under the MDP-ALM

charging strategy with the assumptions that price forecast errors are strongly or weakly

correlated respectively. Figs. 5.36 and 5.37 show the mean charging profile for weekends

under the MDP-ALM charging strategy with the assumptions that price forecast errors are

strongly or weakly correlated respectively. On weekdays when strong correlation is assumed,

there is a bi-modal charging profile with a high charge rate between 3 and 6 a.m. and again

between 8 and 10 a.m.. The charging profile with low correlation is much more spread out,

with significantly more energy being charged in the afternoon.

On weekends, MDP-ALM charging occurs mainly in the early morning for the first trip

and in the afternoon for other trips. The weekend charging peaks are much larger with the

assumption of stronger correlation than under the assumption of weaker correlation. The

charging profile is more spread out under the weak correlation assumption, with charging

power not reaching zero Friday or Saturday nights. There is also a large difference between
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Figure 5.34: Mean EV fleet load profile for weekdays under the MDP-ALM charging strategy,

assuming that price forecast errors are strongly correlated

the charging profiles near noon, depending on what is assumed about price forecast errors.

Figs. 5.38 and 5.39 show charging profiles from single days assuming strong and weak

correlation for price forecast errors respectively. These plots show rougher profiles than the

mean charging profiles.

Fig. 5.40 shows the resulting average of system price profiles for weekdays when using the

MDP-ALM charging strategy and assuming strong and weak correlation for price forecast

errors. There is interesting behavior in the results on either side of 6 a.m. and either side of

noon. At both times of day, the EVs charge energy earlier and at a lower price in the high

correlation case than in the low correlation case.

Fig. 5.41 shows the resulting average of system price profiles for weekends when using

the MDP-ALM charging strategy and assuming strong or weak correlation for price forecast

errors. We can see that around 9 a.m. Saturday and Sunday, there are higher prices from

more charging in the high correlation case than in the low correlation case. In the low

101



12AM  3AM  6AM  9AM 12PM  3PM  6PM  9PM 12AM
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time of Day

M
ea

n 
T

ot
al

 E
V

 C
ha

rg
in

g 
P

ow
er

 (
M

W
)

Figure 5.35: Mean EV fleet load profile for weekdays under the MDP-ALM charging strategy,

assuming that price forecast errors are weakly correlated
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Figure 5.36: Mean EV fleet load profile for weekends under the MDP-ALM charging strategy,

assuming that price forecast errors are highly correlated
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Figure 5.37: Mean EV fleet load profile for weekends under the MDP-ALM charging strategy,

assuming that price forecast errors are weakly correlated
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Figure 5.38: EV fleet load profile for a single weekday under the MDP-ALM charging strategy,

assuming that price forecast errors are strongly correlated
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Figure 5.39: EV fleet load profile for a single weekday under the MDP-ALM charging strategy,

assuming that price forecast errors are weakly correlated
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Figure 5.40: Average system price profile for weekdays under the MDP-ALM charging strategy
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Figure 5.41: Average system price profile for weekdays under the MDP-ALM charging strategy,

assuming that price forecast errors are weakly correlated

correlation case, there is more charging later in the day, around noon, resulting in higher

prices during those times.

5.6.6 Cost Comparison

In order to compare the overall performance of the various EV charging methods discussed

in this chapter we must first decide on a metric for comparison. Because the simulations

conducted in this chapter are stochastic, the total amount of energy consumed by EVs and

the inflexible load will vary from simulation to simulation. If EVs consume less energy in a

simulation trial, the total cost to the EVs is expected to be lower, holding all else is equal.

Therefore, we compare the charging methods on the basis of weighted average price per

MWh charged by EVs, W ($/MWh). The formula for this metric is given in (5.22). Because

price is also a function of the inflexible load, which will vary from simulation to simulation,

we analyzed the total energy consumed in each simulation. However, the total energy does
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EV Charging Method

Fast TOU Price-Taker MPC-ALM MDP-ALM hi MDP-ALM lo

EV Energy (MWh) 6.95 5.95 6.28 6.26 6.5 6.60

EV Cost ($) 2,540 1,973 2,117 2,111 2,149 2,202

W ($/MWh) 365.4 331.6 337.1 337.2 330.6 333.6

Total Energy (MWh) 182.70 183.00 183.34 183.52 183.56 183.66

Table 5.6: Summary of SGRS simulation results

not vary more than half a percent across simulations.

W =

∑
t ρ

e[t]E[t]∑
tE[t]

(5.22)

Table 5.6 shows the weighted average price paid per MWh charged by EVs under each

method. The table also lists the total energy consumed by EVs in the row labeled EV

Energy and total cost of charging EVs in the row labeled EV Cost for each simulation.

The Fast Charging method is the worst performing approach with W = 365.4 $/MWh.

The Price-Taker and MPC-ALM approaches performed similar to each other. The three

best approaches are MDP-ALM assuming low error correlation, TOU charging, and MDP-

ALM assuming high error correlation, which performed best. We also list the total energy

consumed in each simulation in the last row of table 5.6. The inflexible load might also

influence the energy prices, but we can see that the relative variation of the total energy

consumed across simulations is much lower than that of the EV energy consumption.

5.6.7 Real-Time Responsiveness

In this section, we investigate the ability of EV charging strategies to respond to unpre-

dictable conditions in the power system. Fig. 5.42 shows a spike in load of 0.01 MW that

begins at 8 a.m. on the 29th day of the simulation and ends at 9:50 a.m. on the same

day. This spike in load is not accounted for in any of the price forecasts received by EVs
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under any of the charging strategies, but will only effect charging through the clearing of

the energy market. Fig. 5.43 shows the effect of the spike on market prices when there are

no EVs present.
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Figure 5.42: Total power system load profile

without EVs and with a load spike
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Figure 5.43: Market clearing energy prices for

the day of the load spike

Fig. 5.44 shows the charging profile of each charging strategy during the load spike.

The Fast, TOU, and Price-Taker charging strategies do not respond to the spike in energy

prices. The MPC-ALM approach completely stops charging during the load spike. The

MDP-ALM method with the assumption of low price forecast error correlation, labeled

as MDP-ALM Low, also completely ceases charging during the price spike. However, the

MDP-ALM method with the assumption of high price forecast error correlation, labeled as

MDP-ALM High, does not completely stop charging during the first few timesteps of the

spike.

Fig. 5.45 shows the energy price profile under each charging strategy during the load

spike. Higher prices are observed during the spike under the Fast, TOU, and Price-Taker

charging strategies, which do not respond to the spike in energy prices. The MPC-ALM,

and MDP-ALM approaches result in lower energy prices than the unresponsive charging

methods. In the case using the MDP-ALM High strategy, the price is higher in the first few

timesteps, but then matches the prices in the MDP-ALM Low case once charging stops.

107



 7AM  8AM  9AM 10AM 11AM
0

0.01

0.02

0.03

0.04

0.05

0.06

Time of Day

E
V

 F
le

et
 C

ha
rg

in
g 

P
ow

er
 (

M
W

)

 

 

Fast
TOU
Price−Taker
MPC−ALM
MDP−ALM High
MDP−ALM Low

Figure 5.44: EV fleet charging profiles for all charging strategies during a load spike
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Figure 5.45: System price profile for all charging strategies during a load spike
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5.7 Discussion

Many observations can be made based on the simulation experiments conducted in this

chapter. All of the controlled charging approaches lowered charging costs by at least 7%

versus uncontrolled Fast Charging on the basis of average price paid per MWh charged. The

Price-Taker approach is able to lower EV charging costs by moving consumption to periods of

low uncontrolled load. However, this approach concentrates EV charging in a few hours and

causes new price spikes, increasing costs. The TOU approach performed surprisingly well for

such a simple approach and considering that the tariff was not designed for this simulation.

The TOU approach encourages EVs to spread out their charging, avoiding the creation of

new price spikes, but also allows for targeting of time periods with low seasonal costs for

charging. The MPC-ALM approach to EV charging seemed have the noisiest charging profile

and spread charging over many hours. The MPC-ALM approach may be overly influenced

by short-term fluctuations in prices, since it does not model price forecast errors at future

timesteps or their correlation over time. The MDP-ALM approach assuming low correlation

between price forecast errors did better than the MPC-ALM approach at charging when the

inflexible load is lowest, but was also noisy and quite spread out.

The MDP-ALM approach assuming high correlation between price forecast errors per-

formed the best in terms of average price paid per MWh charged. This approach reduced

the average price paid per MWh by 9.5% versus uncontrolled Fast Charging. Since the in-

flexible load is driven by a high autocorrelation stochastic process, one would expect highly

correlated price forecast errors as the load drifts significantly. The MDP-ALM approach

assuming high correlation models changes in the expected future prices and is less influenced

by short-term noise. Looking at the results of section 5.6.7 we see that the MDP-ALM high

case does not react to the price spike as severely as the MPC-ALM or MDP-ALM low cases.

The MDP-ALM high case models movements in prices as highly correlated across time, so

when the price in the current market period moves, this approach assumes future prices will
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deviate similarly. This results in the MDP-ALM high case optimizing charging for seasonal

price patterns more closely than in the MPC-ALM or MDP-ALM low cases.
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Chapter 6

An MDP Approach to Valuation of

Multi-Function Battery Energy

Storage under Uncertainty

In this chapter, we propose using the modeling and computational techniques of the average

reward, infinite horizon, Markov decision problem (MDP) to estimate the net present value

(NPV) of a grid-scale battery energy storage system (BESS) that participates in energy

and ancillary services markets. First, we propose an MDP to optimize hourly operational

decisions under uncertainty. The solution of this MDP is then used to estimate the rate at

which the BESS earns profits and the rate at which the maximum energy storage capacity

of the BESS degrades. Finally, we utilize the methods developed in this chapter to estimate

and maximize the NPV of a BESS.

6.1 Introduction

Before constructing a BESS, investors must estimate its net present value (NPV). The NPV

of the BESS depends on its earnings and degradation. Both earnings and degradation depend
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on how the BESS is operated. Therefore an optimal operating policy must be designed to

maximize the NPV of the BESS by considering the interplay of operating strategy, earnings,

and degradation over time.

In order to maximize NPV, BESS operations should be optimized to consider multiple

sources of revenue simultaneously. Electric energy market prices exhibit a daily cycle, creat-

ing an opportunity for energy price arbitrage. A BESS can charge when prices are low and

discharge when prices are high, arbitraging prices and earning a profit. A BESS can also

provide ancillary services such as frequency regulation by varying its charge rate according

to the automatic generation control (AGC) signal of an electric grid’s Independent System

Operator (ISO). Providing regulation service makes a BESSs future charge rate uncertain,

but a BESS also needs control of its charge rate to arbitrage energy prices. Charging and

regulation service decisions conflict, and so the decisions must be co-optimized.

It has been suggested that BESSs could be constructed using degraded Li-ion electric

vehicle batteries that are no longer useful for transportation [64]. To date, multiple BESS

projects have been based on the same Li-ion technology as electric vehicle batteries [65].

The energy storage capacity of Li-ion batteries is known to decrease as a function of usage.

When optimizing the operating policy of a Li-ion BESS, degradation and its effect on future

earnings should be accounted for.

6.1.1 Background

In this subsection we review the existing work on assessing the value of an energy storage

resource (ESR) which participates in both energy and ancillary services markets. [66] asseses

the NPV of NaS batteries performing only energy price arbitrage and flywheels performing

only regulation service in NYISO. This assessment fixes an ESRs operating schedule and

then uses historical price data to calculate revenues that would have been earned.

[67, 68, 69] perform deterministic optimal scheduling of energy storage resources over
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weekly or monthly periods using historical market price data. In this way they are able to

estimate the maximum potential earnings of an ESR performing arbitrage or a combination

of ancillary services and arbitrage. [67, 68] also analyze cases where the operating sched-

ule is optimized according to the previous optimization periods prices, simulating predictive

scheduling. These papers find that this simple backcasting and scheduling approach captures

approximately 85% of the value captured with perfect foresight. [69] proposes estimating

the expected profits per period and per MW of power of various small ESRs. The approach

in [69] is to optimize an ESRs schedule over a 24 hr period, simulate price forecasting er-

rors, and estimate the expected profits of an ESR. [68, 69, 70] assume deterministic effects

of providing ancillary services on the ESRs state of charge (SOC), making their optimized

schedules not implementable in reality and overestimating the value of the ESR. [71] sim-

ulates electric vehicles as ancillary service providers. A single moving horizon stochastic

simulation simulates 3 months of operations, accounting for the effect of ancillary services

on a 5 minute basis, using historical data.

[72]computes the annual value of energy storage in a vertically integrated utility by per-

forming deterministic Unit Commitment and Economic Dispatch optimizations with ESRs in

a large power system. However, the stochastic effects of providing ancillary services on ESR

SOC are not simulated, making the ESRs scheduling not implementable. This approach

is able to capture the benefits of an ESR to a power system that cannot be captured by

modeling an ESR as a market participant.

In [66, 70, 71] degradation of the ESR is accounted for as a continuously incurred cost,

but the degradation does not affect the capacity of the storage used in the simulations.

6.1.2 Proposed Approach

To date, the engineering literature suggests that running numerous stochastic simulations

of ESR operations is the only way to realistically estimate the expected revenues of an
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ESR that participates in energy or ancillary service markets. In this chapter we propose

a markedly different approach for estimating and maximizing the NPV of a BESS that

participates in energy and ancillary service markets. Our proposed approach is based on the

MDP framework. The MDP framework allows us to model and optimize the operations of

an ESR whose SOC evolves stochastically due to providing ancillary services. The long-run

expected rate at which revenues are earned can then be determined from the solution of an

MDP, which models short term operations in detail. This approach could also be extended

to include uncertain and Markovian energy and ancillary service prices or a Markovian AGC

signal.

BESS energy storage capacity degrades with usage. This degradation depends on how

the BESS is used and cannot be accurately modeled using simplified manufacturers ratings in

terms of cycles as done in the literature. We propose an approach to modeling incremental

degradation as a Markov reward process(MRP). The MDP framework can then be used

to estimate the expected rate of degradation while using a given operating policy. We

then demonstrate how to penalize degradation causing actions when optimizing the BESS’s

operating policy.

Finally, we propose a method for estimating and maximizing the NPV of a BESS using the

MDP based tools we have developed. Estimating the BESSs NPV involves solving an MDP

for an optimal operating policy, estimating the expected rate of degradation, and estimating

the expected rate of earnings. This leads to estimates for total annual degradation and

earnings. Each year of the planning horizon, an MDP is solved given a new storage capacity,

modeling degradation from use. Annual earnings can then be used in a standard NPV

formula. NPV can then be maximized by tuning the degradation penalty used use during

policy optimization.
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6.2 MDP for BESS Operations under Uncertainty

In this section, we develop the infinite horizon average reward MDP to be solved by a BESS

that performs both arbitrage and provides regulation capacity under uncertainty. We present

a simplified model where the ISO’s AGC signal is the only random variable. In this chapter,

we assume that the BESS has perfect efficiency, and ignore possible correlation in the AGC

signal across time periods. We assume a fixed, deterministic pattern of energy prices that

repeats every 24 hours. We also assume that the price of regulation service capacity is fixed

at all times. This problem formulation fits the decision making problem for a business or

residence that may own a BESS and makes a service contract with the local utility. This

type of service contract may become common with the adoption of small BESSs such as

those recently announced by Tesla Motors [12].

6.2.1 BESS MDP Formulation

We now formulate the decision making problem for the BESS as an infinite horizon average

reward MDP. All sets of states and actions, as well as random variables, are discrete, finite,

and countable.

• Decision Epochs

We assume that the BESS submits its charging and frequency regulation decisions to

the ISO at the start of each hourly decision epoch t ∈ T = {1, 2, . . . ,∞} .

• System State

The MDP has the system state vector s = (e, h) ∈ S. e (MWh) is the BESS SOC,

while h is the hour of the day. The BESS SOC is discretized into a set of states

E = {0,∆e, . . . , emax} and the set of hours is H = {1, 2, . . . , 24} so that the total set of

states is S = E ×H. The set of possible system states does not depend on the decision

epoch t other than through the hour of the day state dimension h.

• Actions
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Given the state of the system at each decision epoch t, the BESS must decide on a

baseline charge rate P [t] (MW) and capacity for regulation B[t] (MW). The broadest

set of possible baseline charge rates is P = {−Pmax,−Pmax + 1, . . . , Pmax − 1, Pmax}

and the broadest set of possible regulation capacities is B = {0, 1, . . . , 2 ∗ Pmax}, both

with values in units of MW. Together, these form the action vector a[t] = (P [t], B[t]).

Actions must be chosen such that a[t] ∈ A(s) ,∀s ,∀t. The discrete and finite set of

feasible actions available at any time, A(s), will depend on the BESS SOC, and will

be the largest subset of P ×B with each action vector satisfying the constraints (6.1)-

(6.5). Constraint (6.1) restricts us to positive amounts of regulation capacity. (6.2)

restricts the combination of baseline charge rate and regulation capacity so that the

instantaneous charge rate commanded for regulation service will always be possible

given the maximum charge rate of the BESS Pmax. (6.3) restricts the combination

of baseline charge rate and regulation capacity so that the instantaneous charge rate

commanded for regulation service will always be possible given the maximum discharge

rate of the BESS, which we assume is −Pmax. (6.4) guarantees that we do not over

charge the battery in the worst case. (6.5) guarantees that we do not over discharge

the battery in the worst case.

0 ≤ B[t] (6.1)

P [t] +B[t] ≤ Pmax (6.2)

P [t]−B[t] ≥ −Pmax (6.3)

e[t] + ∆tP [t] + ∆tB[t] ≤ emax (6.4)

e[t] + ∆tP [t]−∆tB[t] ≥ 0 (6.5)

• State Dynamics

Given an action vector, the BESS SOC at the next decision epoch, e[t + 1], will be

random due to the effects of providing frequency regulation. The BESS SOC transitions
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according to (6.6), where z[t] is the hourly time integral of the AGC signal.

e[t+ 1] = e[t] + P [t]− z[t]B[t] (6.6)

We approximate the random state transition given s[t] and a[t] with the uniform proba-

bility distribution given by (6.7). This distribution could be adjusted to model battery

efficiency and the distribution of a real AGC signal.

Pr (e[t+ 1] | s[t], a[t]) =


1

2|B[t]|+1
, when

e[t] + P [t]−B[t] ≤ e[t+ 1]

and e[t] + P [t] +B[t] ≥ e[t+ 1]

0, otherwise

(6.7)

The hour of the day advances according to the deterministic daily cycle shown in (6.8).

h[t+ 1] =


h[t] + 1, h[t] ≤ 24

1, h[t] = 24

(6.8)

• Reward Function

Given that the BESS system was in some state s and an action vector a was chosen,

the BESS will earn random reward r(s, a) as shown in (6.9). r(s, a) represents the

total reward earned during the period between decision epochs. The reward function

does not have a subscript t, as the reward does not depend on the decision epoch. The

reward function does, however, depend on the hour of the day h, which is included in

the state of the system s, and the action a. In this problem formulation we assume

that energy prices, ρeh ($/MWh), follow a deterministic daily pattern and that the price

of regulation service capacity, ρr ($/MW) is known and constant. The expected value

of r(s, a) is written as r̄(s, a).

r(s, a) = ρrB − ρeh(e[t + 1]− e[t]) (6.9)
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• Markov Decision Problem

The infinite horizon average reward MDP for the system we have described is shown

in (6.10). (6.10) can be solved for γ∗(s), the maximum per-period average expected

reward over an infinite horizon when starting in state s, for each state s ∈ S. γ∗(s) is

composed of a bias for starting in some initial state, b∗(s), and the gain or stationary

reward, γ∗, as shown in (6.11).

γ∗(s) = max
π∈Π

lim
N→∞

1

N
Eπ
[

N∑
t=1

r̄(s[t], π(s[t])) | s[1] = s

]
∀s ∈ S (6.10)

γ∗(s) = b∗(s) + γ∗ ∀s ∈ S (6.11)

A stationary decision-making policy π(s) = a lists an action for each state. The policy π

must be in the set of feasible decision-making policies Π ensuring that π(s) = a ∈ A(s),

∀s, ∀t. Solving (6.10) for the optimal gain and biases also yields the optimal stationary

decision-making policy π∗.

6.2.2 Optimal Operating Policy

An example BESS MDP was analyzed for a BESS with a maximum energy storage capacity

of emax = 20 MWh and a maximum charge or discharge rate of Pmax = 10 MW. Energy

market prices from PJM ISO on 8/1/10, shown in fig. 6.1, are used as deterministic hourly

energy prices. We assumed a regulation capacity price of ρr = $20/MW . The BESS SOC

was discretized with 11 possible SOCs, giving 264 possible states. The MDP is solved using

the policy iteration algorithm, resulting in the optimal stationary Markov operating policy

[27].
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Figure 6.1: Hourly energy prices used for the BESS MDP
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Figure 6.2: Optimal BESS policy for baseline charge rate P
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Figure 6.3: Optimal BESS policy for regulation capacity B
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In Figs. 6.2 and 6.3, the vertical axis gives the BESS SOC in MWh and the horizontal

axis lists the hour of the day. The color of each grid square shows the optimal charging

or regulation capacity action to take when the system state matches the coordinates of the

square’s lower left vertex. The optimal policy is to arbitrage the price spikes in the middle

of the day and provide more regulation capacity at night when prices are relatively constant.

By solving the BESS MDP, we obtain the optimal stationary gain γ∗. For this problem

instance, the optimal gain is $261.7/hr. The optimal gain can be thought of as the expected

rate at which revenues are earned.

6.3 Estimating the Rate of Battery Capacity Degrada-

tion under a Markov Operating Policy

In the design, operation, and valuation of Li-Ion battery based systems, such as BESSs

or EVs, it is important to understand how a battery’s maximum energy storage capacity

will degrade over time. Typically, battery manufacturers provide degradation information

assuming simple charge and discharge cycles [73]. [74] models degradation based on the

number of fixed charging cycles expected from providing regulation service. In real world

applications, however, the power demands placed on a battery will vary with the users needs

and can be of arbitrary complexity, making the manufacturers information insufficient when

optimizing an operating policy.[75] presents a flexible approach to modeling degradation

in Li-Ion batteries based on a severity factor map. [73] integrates the severity factor map

approach into a Monte Carlo simulation of EV operations and estimates short run battery

degradation. We propose a new method for estimating long run Li-Ion battery degradation

without using Monte Carlo simulation of long run operations. We propose a new method

for estimating the rate of battery degradation under a Markov operating policy, such as that

shown in figs. 6.2 and 6.3. The ideas presented in this section were first developed and
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demonstrated in [18]. The approach that we propose is applicable to any battery chemistry

for which a severity factor map model of degradation, as described in [75], is appropriate.

6.3.1 Degradation Model

The severity factor map approach relates the state of the battery and charging current to

an amount of degradation per Ah-throughput at the given state. The battery state may

include temperature Θ, the battery SOC e, and charging current Ibatt. The severity factor

map is a function such as σ(Θ, e, Ibatt), which yields the rate of capacity degradation relative

to the average rate of degradation under a standard charging cycle. The total lifetime Ah-

throughput of a battery, Ahtot, is defined in (6.12) as the total charge into or out of a battery

under some standard charging and discharging cycle before the battery has reached its end

of life (EoL) degradation level. EoL is typically defined as the point where the maximum

charge capacity of the battery is 80% of its original value.

Ahtot =

∫ tEoL

0

|Ibatt,standard(t)| dt (6.12)

The amount of degradation accumulated over time and under arbitrary usage is the

effective Ah-throughput, Aheff , as shown in (6.13). The function σ should be determined

such that whenever Aheff = Ahtot the battery has reached EoL.

Aheff (t) =

∫ t

0

σ(Θ, e, Ibatt)|Ibatt(τ)| dτ (6.13)

If at any decision epoch, the system is in state s and action a is taken, then the expected

effective Ah-throughput incurred before the next decision epoch is Ah
eff

(s, a). If we assume

that the current is constant for a given state transition from s[t] to s′[t+ 1] with action a[t],

which is shown as Ībatt(s, a, s′), then Ah
eff

(s, a) can be approximated by (6.14). σ̄(s, a, s′)

is the average value of the severity factor map over the state transition, which can be found

by integrating σ and using the average value theorem of calculus.

Ah
eff

(s, a) =
∑
s′

Pr(s′ | s, a)σ̄(s, a, s′)|Ībatt(s, a, s′)| (6.14)
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6.3.2 Estimation of Capacity Degradation Rate

Given an MDP for operating a BESS, a stationary Markov operating policy, π, and the

relevant battery parameters, one can calculate Ah
eff

(s, π(s)), ∀s ∈ S. To estimate the

expected long run rate at which effective-Ah are accumulated under a policy π, we replace the

reward function of the MDP in (6.10) with Ah
eff

(s, π(s)) and execute the policy evaluation

step of the policy iteration algorithm. The policy evaluation step results in the gains and

biases for the MDP. The resulting gain would represent expected effective-Ah accumulated

per period under policy π, Ah
eff

(π). Given the appropriate battery data, Ah
eff

(π) can be

converted to MWh of capacity lost.

We now illustrate the proposed method for estimating the capacity degradation rate with

a numerical example. First, we assume that the severity factor map follows the function in

(6.15), where DOD is the depth of discharge as defined in (6.16).

σ(DOD) = 1 + 2(DOD)2 (6.15)

DOD[t] = 1− e[t]

emax
(6.16)

Assuming, a constant terminal voltage for the BESS of 1kV, we calculate a constant current

for each possible state transition, Ībatt(s, a, s′). Ah
eff

(s, π∗(s)) was then calculated using

for the optimal policy shown in figs. 6.2 and 6.3. The expected effective-Ah-throughput

is shown for each state under this policy in fig. 6.4. We can see in fig. 6.4 that more

degradation is caused in states where the optimal policy is a high charge or discharge rate or

in states with a low SOC. Using the policy evaluation step of the policy iteration algorithm,

we calculate the long run rate at which effective-Ah accumulates to be Ah
eff

(π) = 9, 017

(effective-Ah/h). One can interpret the policy evaluation step as calculating a probability

weighted sum of Ah
eff

(s, π∗(s)), using the long run fractions of time spent in each state as

the probability weights.

Given a value of Ahtot, the lifetime Ah-throughput under a standard test charging cycle,
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Figure 6.4: The expected effective-Ah throughput for each state, Ah
eff

(s, π∗(s)) under the policy

of section 6.2.2

the battery capacity degrades at a rate of Φ MWh of lost capacity per effective Ah-throughput

as given by 6.17.

Φ =
0.2emax

Ahtot
(6.17)

The expected long run rate of capacity loss in MWh is then ΦAh
eff

(π). Assuming a value

of Ahtot = 87.6 MAh, the BESS capacity would fade at a rate of 4.12E−4 MWh/h under the

operating policy of section 6.2.2.

6.4 Penalizing Battery Degradation Cost in the BESS

MDP

In this section, we will extend the MDP for optimal BESS operations described in section

6.2 to include battery degradation costs. Given a capital cost C ($/MWh capacity) for the

BESS, the expected battery degradation cost of being in state s and taking action a is δ(s, a)

defined in (6.18).
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δ(s, a) = ξAh
eff

(s, a)ΦC (6.18)

Depending on the relative importance of battery degradation, the degradation cost can be

scaled by a weighting factor ξ. The expected degradation cost can be subtracted from the

MDP reward function (6.9) of Section 6.2 in order to penalize actions that cause battery

degradation. We refer to the BESS MDP which uses this degradation penalizing reward

function as the BESS MDP with degradation cost.

Figs. 6.5 and 6.5 show the resulting optimal policy for the example BESS when C =

$1MM/MWh and ξ = 1. By comparing figs. 6.5 and 6.2 we see that charging starts earlier in

the morning and at lower rates than when it is not considered. In fig. 6.6 we can see that the

maximum amount of regulation capacity provided when battery degradation is considered is

only 8 MW. The maximum amount of regulation capacity is provided in fewer states when

battery degradation costs are considered. Figs. 6.5 and 6.5 show that in many states it is

optimal for the battery to take no action. All of these changes in the optimal operating policy

result from penalizing degradation causing actions. Fig. 6.7 shows the expected effective
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Figure 6.5: Optimal policy for baseline charge rate P with degradation cost and ξ = 1

Ah-throughput for each state under the policy optimized while considering degradation. By

comparing figs. 6.7 and 6.4, one can notice that many states have lower values of expected
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Figure 6.6: Optimal policy for regulation capacity B with degradation cost and ξ = 1

effective Ah-throughput when battery degradation is considered. Under the policy optimized

while penalizing degradation, the long run rate of battery capacity fade is estimated to be

8.6E−5 MWh/h. This is one fifth the rate of degradation of the policy that did not consider

degradation.

For the BESS MDP when considering degradation, we compute the expected revenue rate

by finding the stationary gain γ′ of the optimal policy, but with the reward function that

does not include a degradation cost. This is because we assume that no maintenance actions

are taken during operations, and so the BESS does not actually pay a degradation cost as

it operates. The degradation cost is simply a penalty added to the reward function when

optimizing the operating policy. The stationary gain is computed by the policy evaluation

step of the policy iteration algorithm. For this problem instance, the expected revenue rate

is $150.25/hr. Using the stationary gain to compute the expected earnings over a long period

of time ignores the fact that energy storage capacity degrades over time, which we address

in section 6.5.

126



4 8 12 16 20 24
0

4

8

12

16

20

Hour

S
O

C
 (

M
W

h)

 

 

E
ffe

ct
iv

e 
A

h−
T

hr
ou

gh
pu

t

0

0.5

1

1.5

2
x 10

4

Figure 6.7: The expected effective-Ah-throughput for each state, Ah
eff

(s, π∗(s)), under the policy

of section 6.4

6.5 Estimation and Maximization of NPV

The proposed method for estimating the NPV of a degrading BESS is given Table 6.1. This

method estimates the NPV with a planning horizon of ymax years, and a discount rate of

m. In each year, we solve the BESS MDP with degradation cost for an optimal policy for

year y, π∗y . We then estimate the rate at which revenues are earned for this policy, γ′y, by

executing the policy evaluation step for policy π∗y and the reward function of (6.9). The

annual earnings are calculated assuming the expected revenues are earned every hour of the

year. The expected rate of accumulation of effective-Ah under policy π∗y is then calculated

as described in section 6.3.2. We assume that the expected rate of degradation occurs each

hour of the year and calculate the new maximum energy storage capacity for the next year,

emaxy+1 .. This process repeats for each year of the planning horizon before calculating NPV.
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I.) For y = 1 . . . , ymax

1.) Solve the BESS MDP with degradation cost for π∗y

2.) Execute the policy evaluation step using reward function (6.9) and π∗y

3.) Set γy equal to the stationary gain from step 2.)

4.) Calculate expected annual earnings, Earningsy = 8760 ∗ γy

5.) Calculate Ah
eff

(π∗y) as described in section 6.3.2

6.) Set emaxy+1 = emaxy − 8760φAh
eff

(π∗y)

End For

II.) Calculate NPV

NPV =

ymax∑
y=1

Earningsy
(1 +m)y

Table 6.1: Proposed Procedure for Estimating NPV

BESS owners want to operate the BESS in such a way that the NPV of the BESS is

maximized. The NPV depends heavily on how the battery is used and the degradation

caused by usage. To maximize the NPV of the BESS, one can tune the degradation cost

weight ξ in (6.18). This tuning must be done without having any explicit derivatives of

NPV available. Therefore, line search methods such as golden section search can be used to

optimize the NPV of a BESS.

6.5.1 Results

The proposed procedure for estimating NPV was executed for various values of ξ. Figure

6.8 shows how the battery capacity is expected to degrade over time when different weights

are placed on degradation cost. Figure 6.9 shows expected annual revenues for each year of

the planning horizon. When ξ is small, revenues are large in early years, but the battery

capacity quickly fades. When ξ is large, revenues are relatively smaller in the early years,

but larger in later years because the capacity has not degraded as much. However, larger

128



values of ξ do not necessarily increase NPV as revenue in later years is discounted. The

expected NPV is given for different degradation cost weights in Table 6.2. Of the values

tested, ξ = 0.5 yielded the largest expected NPV.
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Figure 6.8: Expected BESS Energy Storage Capacity

Case ξ = 0 ξ = 0.1 ξ = 0.5 ξ = 1

NPV ($MM) 8.575 9.644 12.659 11.101

Table 6.2: Estimated NPV for all Cases
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Figure 6.9: Expected BESS Annual Revenues
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Chapter 7

AGC Modeling for Energy Storage

Operations

Energy storage resources (ESRs) are being used for secondary frequency regulation in the

bulk electric power grid. In order to optimize the economic scheduling of an ESR using look-

ahead model predictive control, predictive models of the automatic generation control (AGC)

signal and its effect on an ESRs state of charge are needed. In this chapter we investigate

predictive methods that would be useful to an ESR that provides regulation service in a

liberalized market setting.

7.1 Introduction

ESRs, such as electrochemical batteries or flywheels, can rapidly change power output and

are well suited for providing secondary frequency regulation service in bulk electric power

systems. In this chapter, we investigate forecasting tools that can be used by an ESR

participating in both liberalized electric energy markets and frequency regulation capacity

markets. These markets are typically cleared on an hourly basis. At the start of each hour,

we assume that an ESR would submit a baseline charge or discharge rate and a capacity
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for frequency regulation to the system operator or balancing authority. Between the hourly

decision epochs, the ESRs instantaneous power demand or supply is dictated by the ESRs

hourly decisions and the balancing authority’s AGC signal. Responding to the AGC signal

over an hour can have a significant cumulative effect on the amount of energy stored in

the ESR, known as the state of charge (SOC). An ESR can use model predictive control

(MPC)[76] to optimize its hourly decisions and maximize profits. An MPC approach requires

a forecast of the AGC signal and the AGC signals cumulative effect on the ESR SOC on an

hourly basis. Some previous work has analyzed real-world AGC signals. Frequency domain

and seasonal analyses of an AGC signal on sub-hourly timescales are demonstrated in [77].

However, little work has focused on the prediction of the AGC signal or forecasting the

SOC of an ESR that provides frequency regulation. Timeseries models have been popular

in power systems for forecasting price or wind power[29, 78].

7.2 Hourly AGC Modeling

In this section we explore statistical models for predicting the hourly integral of a capacity

normalized AGC signal, which we refer to as the hourly AGC energy. In the Bonneville

Power Administration (BPA), imbalance generation is dispatched every 5 minutes and is

analogous to an AGC signal. Fig. 7.1 shows a histogram of the hourly AGC energy from

BPA in 2012 [79]. Normalizing the dispatched power with respect to imbalance generation

capacity gives unitless values between -1 and 1. Integrating these values with respect to time

gives units of hours. A value of 1 corresponds to the imbalance generation being dispatched

to maximum output for an entire hour, a value of -1 corresponds to dispatch to minimum

output for an entire hour, and a value of zero indicates dispatch for equal amounts of energy

up and down over an hour. As can be seen in Fig. 7.1, the distribution of AGC energy is

centered near zero with significant positive and negative values occurring frequently. This

suggests that it would be prudent for an ESR to consider the effect of an AGC signal on
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Figure 7.1: Distribution of imbalance generation dispatched in BPA

SOC when scheduling over a planning horizon of more than one hour.

Fig. 7.2 (a) is a scatter plot with the vertical axis measuring an hours AGC energy and

the horizontal axis measuring the previous hours AGC energy. Fig. 7.2 (b) plots each hours

AGC energy on the vertical axis and the normalized AGC signal broadcast 5 minutes prior

to the start of each hour on the horizontal axis. Various

Table 7.1 shows three possible time series models for forecasting hourly AGC energy. We

analyzed the last 2763 hours of the BPA dataset since it was not missing any data. In all

models, the predicted value is y[h], the hourly AGC energy in hour h. Model 1) is a linear

regression model using the last observed AGC signal (on a 5-minute basis), x[t− 1], as the

predictor. This type of purely stationary prediction is applied in [78] for wind power. Model

2) also incorporates daily seasonal terms where hour[h] is the time of day for data h. The

seasonal terms S and C are defined in (7.1) and (7.2) .

ST [h] = sin

(
2π hour[h]

T

)
(7.1)

CT [h] = cos

(
2π hour[h]

T

)
(7.2)

Model 3) is an autoregressive, moving average, lag 2 model, or ARMA(2,2), which uses

the last two previous prediction errors, , and the last two previously observed values of the
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Figure 7.2: Scatter plot of hourly AGC energy with the previous hour’s AGC energy (a) and the

last observed AGC signal (b)

Model Fit MSE

1 y[h] = 0.010 + 0.532x[t− 1] 0.023

2 y[h] = 0.01 + 0.73x[t − 1] − 0.30y[h − 1] + 0.06C12(hour[h]) −

0.03S12(hour[h]) + 0.02C24(hour[h])− 0.05S24(hour[h])

0.020

3 y[h] = 0.02+0.31y[h−1]+0.12y[h−2]−0.11ε[h−1]+0.11ε[h−2] 0.032

Table 7.1: Fitted Models

hourly AGC energy as predictors [59]. Models 1) and 2) are fit by least squares and model

3) was fit using the armax function available in the Matlab System Identification Toolbox.

All of the model parameters in table 7.1 are statistically significant. These results tell us

that useful predictive models of AGC energy can be built from historical AGC data.

7.3 Forecasting the Next SOC

In this section, we propose a method for forecasting an ESRs next SOC given the ESRs

operational decisions and a forecast value of the hourly AGC energy. This method does not

require building or simulating from a sub-hourly timescale model of the AGC signal. First,
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however, we must explain in detail how providing regulation service affects the ESRs SOC.

In order to provide regulation service for the duration of hour h, an ESR must commit to

a baseline charge rate, P [h] (MW), and a regulation capacity, B[h] (MW). The balancing

authority then broadcasts a capacity normalized AGC signal, x[t], during time-step t of hour

h. This signal is broadcast every 5 minutes in BPA. The ESR then responds to the AGC

signal by supplying power Pout[t] (MW) to the grid or drawing power Pin[t] (MW) from the

grid as determined by (7.3) and (7.4).

Pout[t] = max (0, −P [h] +B[h]x[t]) (7.3)

Pout[t] = max (0, −P [h] +B[h]x[t]) (7.4)

In economic scheduling of ESRs, it is common to model the evolution of an ESRs SOC with a

discrete time linear dynamic equation such as 7.5 [71]. e[t] is the ESR state of charge (MWh)

at time t, α is the energy conversion efficiency (unitless), and the length of the time-step is

∆t (hrs). α has a value between 0 and 1.

e[t+ 1] = e[t] + αPin[t]∆t −
1

α
Pout[t]∆t (7.5)

Due to the energy conversion efficiency of an ESR, discharging and charging have different

effects on the ESRs SOC. This means that a forecast of the AGC energy is not sufficient to

determine the next ESR SOC. Given the operational decisions P [h] and B[h], the SOC at

the start of hour h, e[h], and a value of the hourly AGC energy, y[h], the expected value of

the ESRs SOC at the end of the hour is given by 7.6.

E [e[h+ 1] | e[h], P [h], B[h], y[h]] =e[h] + αE

[
t=12∑
t=1

Pin[t]∆t | e[h], P [h], B[h], y[h]

]

− 1

α
E

[
t=12∑
t=1

Pout[t]∆t | e[h], P [h], B[h], y[h]

]
(7.6)

We refer to the first expectation on the right side of (7.6) as the expected energy in and the

second expectation on the right as the expected energy out. If these two expectations can be
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Figure 7.3: A non-linear relationship between the hourly AGC energy and the energy out (a) or

energy in (b)

estimated, then we can estimate e[h+1]. Therefore, we suggest a method for determining the

expected energy in or out. The decisions P [h] and B[h] affect the energy in and out through

equations (7.3) and (7.4), so as an example we will estimate the expected energy in and out

with P [h] and B[h] set to 0 and 1 MW respectively. These decisions correspond to an ESR

that provides frequency regulation without a biased charge rate. Figs. 7.3 (a) and (b) show

the relationship between the energy out or in and the hourly AGC energy. These plots are

based on the same BPA dataset used in section 7.2. Given some value of y[h], we propose

estimating the expected energy in or out by using local linear regression with a Gaussian

weighting kernel [53]. We choose this approach because it does not require specifying or

fitting a complex function to the data, which appears to have different behavioral regimes.

Local linear regression solves the optimization problem in (7.7) for a given value of, X0, using

the whole data set of N points (X[i], Y [i]), and a bandwidth parameter H. In our problem,

the Xs are the hourly AGC energy and the Y s are the energy in or out.

min
a0, b0

N∑
i=1

1√
2π

exp

(
−(X[i]−X0)2

2H2

)
(Y [i]− a0 − b0X[i])2 (7.7)

The predicted value Ŷ0, which corresponds to X0, is then given by (7.8), where a∗0 and b∗0 are
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the solutions to (7.7).

Ŷ0 = a∗0 + b∗0X0 (7.8)

Fig. 7.3 shows the estimated expected values of energy in or out in black. These values are

calculated using a bandwidth of 0.1. When the hourly AGC energy is positive, the expected

energy out (in) is nearly equal to the AGC energy (nearly zero). When the AGC energy

is negative, the expected energy out (in) is nearly zero (equal to the opposite of the AGC

energy).

When forecasting the next ESR SOC e[h+ 1] at time h, y[h] is not known with certainty.

Therefore, a useful forecast of e[h+ 1] would be as in (7.9) without conditioning on y[h].

E [e[h+ 1] | e[h], P [h], B[h], y[h]] =e[h] + αE

[
t=12∑
t=1

Pin[t]∆t | e[h], P [h], B[h]

]

− 1

α
E

[
t=12∑
t=1

Pout[t]∆t | e[h], P [h], B[h]

]
(7.9)

As shown in section 7.2, a forecast ŷ[h] can be made using information available at time h.

Because the relationship between y[h] and energy in or out is apparently a convex function,

simply performing the local linear regression procedure described above for X0 = ŷ[h] would

underestimate the expected values of energy in or out without conditioning on y[h]. If the

error distribution for the forecast ŷ[h] is known, then an unbiased estimate of energy in or out

can be obtained by simulation. For example, if the random variable y[h] has a distribution

as in (7.10), values of y[h] can be sampled from the distribution. The local linear regression

approach can be applied to each sample to obtain corresponding samples of energy in and

out. The mean of the energy in or energy out samples can then be used as unbiased estimates

of the expected energy in or expected energy out. Given these estimates, a forecast of e[h+1]

can be computed by (7.9).

y[h] ∼ N (ŷ[h], σy) (7.10)
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Chapter 8

Conclusions and Future Work

8.1 Conculsions

One of the ways that the cost of EV ownership can be reduced is if they are made available to

provide frequency regulation service, earning revenues. In this thesis, we presented new MDP

problem formulation to optimize an individual EV’s decision making given knowledge of the

driver’s transportation schedule. This MDP has three sources of uncertainty and optimizes

charging and regulation capacity decisions as a price-taker. An approximate SDP algorithm

is presented for the optimization of an EVs charging and frequency regulation bids over a

continuous space of decisions. The proposed MDP formulation and SDP solution method

result in lower average EV charging costs than deterministic MPC charge optimization.

Although the improvement in mean charging cost is large in relative terms, it is still very

small in absolute terms. We also demonstrate that the proposed method can be solved in a

practical amount of time on a personal computer.

In reality, if large numbers of EVs are present in the electric grid, their charging decisions

would influence energy markets, so we investigate the integration of EVs into the real-time

ALM approach to Transactive Energy and the DYMONDS energy market. We developed

an extension to the real-time ALM framework to incorporate decision making that considers
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uncertainty and autocorrelation in energy prices. An MDP was formulated for EVs that

participate in the ALM framework and purchase energy as price sensitive bidders.

A large majority of the approaches for optimal charging of EVs in a power system de-

scribed in the research literature require EV drivers to communicate their transportation

schedule to a smart charging device up to a day in advance. Drivers are not used to planning

their transportation so far in advance, and would be overly burdened by such approaches.

Therefore, we developed an infinite horizon average reward MDP for optimal autonomous

EV charging with stochastic driver behavior. MDPs were described for PHEVs and EVs

and the MDP for EVs was solved. Solution of the MDP within a tight optimality tolerence

is difficult due to the problem’s size. The optimal policy for EVs is quite conservative since

the cost of inconveniencing the driver is very high relative to energy costs. This approach

to smart EV charging may be more practical under deterministic retail energy pricing than

under stochastic market pricing.

In order to compare the performance various EV charging approaches in a market setting,

and evaluate their system level impacts, we developed a stochastic, discrete-time, simulation

of a small electric power system using the SGRS distributed simulation architecture. Using

the simulation, we demonstrated that our proposed MDP based ALM approach outperforms

the existing MPC based ALM approach to aggregating loads and bidding in energy markets.

The MDP based ALM approach with the assumption of high correlation between price

forecast errors performed best in terms of average price paid per MWh. All of the ALM

approaches demonstrated the ability to respond to an unexpected price spike. The MDP

based ALM approach while assuming high correlation between price forecast errors responded

to the spike less so than when assuming low correlation. When the MDP assumes high

correlation in price forecast errors, it assumes that the relative attractiveness of charging at

one time or another does not change much, making it less responsive spikes. Surprisingly,

optimizing charging under TOU retail prices is also shown to have very good performance

in minimizing charging costs in the market setting.
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Before investing in a BESS, investors must estimate the NPV of such a system. The BESS

must optimize its operations under uncertainty to maximize NPV while considering battery

degradation. Revenues can be maximized by providing multiple electric grid functions si-

multaneously. We present a markedly different approach to estimating and maximizing the

NPV of a BESS when compared to the literature. Instead of relying on exhaustive Monte

Carlo simulation, we propose leveraging the analytical tools of the infinite horizon average

reward MDP. We demonstrate how to use these tools to estimate the long run rate at which

revenues are earned or degradation is incurred. We also demonstrate how considering degra-

dation can effect the optimal operations policy and NPV of a BESS. We show that the a

degradation penalty can be tuned in order to maximize the NPV of the BESS.

As energy storage resources such as EVs and BESSs provide more ancillary services, it is

important to develop predictive models of how providing ancillary services will affect SOC.

We apply timeseries statistical methods to the analysis of the integrated AGC energy in

the BPA balancing authority. These models are shown to be statistically significant and

useful for predicting integrated AGC energy. We then develop a nonparametric approach to

estimating the net effect of AGC energy on energy storage SOC. Our work shows that useful

predictive models can be made for real world AGC signals. These predictive models will be

useful whenever an energy storage resource optimizes its operating schedule in a look-ahead

way.

8.2 Future Work

In this thesis, we have developed a new MDP based method for EVs to participate in energy

markets as price-sensitive bidders and demonstrated its advantages. The methods in chapter

2 investigate the tradeoff between providing ancillary services and energy consumption of

an EV that acts as a price-taker. In today’s electric power grid, economic dispatch of

generators for energy and ancillary services is co-optimized. A DYMONDS market that
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co-optimizes energy and ancillary services should be developed in order to make the best use

of flexible generation and demand resources. This would require participants to submit a

bidding function of both energy and ancillary service capacity. Methods must be developed

for estimating such a multi-dimensional bidding function.

In chapter 4, an infinite horizon MDP for optimal autonomous charging with stochastic

driver behavior was presented. This problem was computationally difficult to solve, and

was not solved to within a tight tolerance. The policy iteration algorithm could not be

used for the solution of this MDP because of the large transition probability matrix size.

However, this matrix is very sparse. It may be possible to implement the policy iteration

algorithm using sparse matrix packages of Matlab. Otherwise, this autonomous approach to

smart charging of an EV may be better suited to applications where there are fixed retail

electricity tariffs. This approach to charging of EVs should also be validated using real

driving data. It would be interesting to compare the actual long-run rate of costs versus

those predicted by the MDP. This will require large datasets, tracking individual drivers

over extended periods of time.

In chapter 5, we presented a simulation study of EVs in a DYMONDS energy market.

The simulation study was very small, with only 20 EVs on a 4 bus network. Simulating a

large fleet of intelligent EVs in a reasonable amount of time will require splitting the fleet

into multiple EV LSE modules, and distributing these modules on multiple computers. This

simulation testbed should also be used to test the performance of other EV charging methods

from literature.

The methods presented in chapter 6 for estimating and maximizing a BESS’s NPV should

be further developed and validated. If the BESS operates in energy and ancillary services

markets, Markov models of energy prices, and regulation service prices could be added. After

showing in chapter 7 that an AGC signal exhibits autocorrelation over time, we might also

want to include a Markov model of AGC and its effect on SOC. The infinite horizon MDP

approach proposed in this thesis assumes that any random variables are well approximated by

142



a stationary Markov chain model. However, seasonal effects can still be modeled using a time

inhomogeneous Markov chain model. For example, A stationary but time inhomogeneous

Markov chain model of energy prices can be created by modeling price states and state

transition probabilities as depending on an hour of the day state h, but not decision epoch

t. This approach was used to model energy prices in chapter 4.

Energy prices also exhibit season of the year seasonal effects. Modeling season of the

year patterns within an hourly decision MDP would require an extremely large state space

and might not be practical to solve. In order to model this season of the year variation, we

could to solve 4 separate seasonal MDPs and estimate earnings and degradation on a season

by season basis.

The assumptions made while modeling degradation from providing frequency regulation

must also be revisited. In this thesis, we assumed that the current would be constant over the

hour. If the AGC signal is a mainly higher frequency signal, then the degradation caused by

providing ancillary services will need to be estimated in a more sophisticated way, possibly

by Monte Carlo simulation.

In order to understand the accuracy of the approach to modeling BESS online operations

proposed in chapter 6, the performance of the stationary MDP operating policy should be

compared against operations using finite horizon MPC or MDP methods. The stationary

policy would likely earn less revenue as it can’t make use of new forecast information. Finally,

the estimated revenues earned under the optimal stationary operating policy and Markov

models of random prices should be compared against the revenues earned by the stationary

policy when facing the actual prices. This will require running extensive simulations.

ISOs have recently been deploying new frequency control strategies to make better use of

fast responding energy storage resources. PJM ISO now broadcasts a separate AGC signal,

called RegD, for fast responding resources. It would be interesting to apply the methods of

chapter 7 to analyze the consequences of responding to RegD instead of the old AGC signal.
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tricity prices by time series models,” Power Systems, IEEE Transactions on, vol. 17,

no. 2, pp. 342–348, 2002.

[30] H. Heitsch and W. Römisch, “Scenario reduction algorithms in stochastic program-

ming,” Computational optimization and applications, vol. 24, no. 2-3, pp. 187–206, 2003.

[31] G. Infanger, Planning under uncertainty: solving large-scale stochastic linear programs.

Boyd & Fraser Publishing Company, 1994.

[32] C.-C. Lin, H. Peng, and J. Grizzle, “A stochastic control strategy for hybrid electric

vehicles,” in American Control Conference, 2004. Proceedings of the 2004, vol. 5. IEEE,

2004, pp. 4710–4715.

[33] M. Pereira, “Optimal stochastic operations scheduling of large hydroelectric systems,”

International Journal of Electrical Power & Energy Systems, vol. 11, no. 3, pp. 161–169,

1989.

[34] A. Gjelsvik, M. M. Belsnes, and A. Haugstad, “An algorithm for stochastic medium-

term hydrothermal scheduling under spot price uncertainty,” in Proceedings of 13th

Power Systems Computation Conference, 1999.

[35] “PJM markets and operations,” PJM. [Online]. Available:

http://www.pjm.com/markets-and-operations

[36] D. Ruppert, Statistics and data analysis for financial engineering. Springer, 2010.

[37] “Lecture 6: Statistical inference for discrete stochastic processes,” Carnegie

148



Mellon University, 2009. [Online]. Available: http://www.stat.cmu.edu/ cshal-

izi/462/lectures/06/06.pdf

[38] “Nissan leaf electric car, charging and range,” Nissan North America, Inc. [Online].

Available: http://www.nissanusa.com/electric-cars/leaf/charging-range/
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