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Abstract

Computer security in deployed systems is a dynamic interaction between attackers and defenders.

These interactions can be formalized as computer security games between multiple parties, each

of which interacts through actions such as finding a zero-day vulnerability, using an exploit,

and deploying a patch. Computer security games provide a framework to think through players’

choices and consequences, as well as serve as a model of components for optimizing security

analysis. In this dissertation, we consider games where each party is modeled as an algorithm.

We call these games autonomous computer security games.

This dissertation investigates autonomous computer security games from both a game-theoretical

and a system perspective. In particular, we study concrete system instances of players as repre-

sented by Cyber Reasoning Systems (CRS) found in the DARPA Cyber Grand Challenge (CGC)

such as Mayhem and Mechanical Phish. Nonetheless, autonomous computer security games are

general games that are also applicable to other scenarios such as cyber warfare.

This dissertation is composed of two main lines of research. First, we research players’ strat-

egy based on game-theoretical models. We consider the interaction between multiple players,

seek for the optimal strategy corresponding to an equilibrium of the associated game, and ex-

plore the factors that affect the outcome of the game. Second, we study critical actions in the

theoretical model and investigate the techniques that realize such actions in real systems.
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Chapter 1

Introduction

Software security is critical. According to the Common Vulnerabilities and Exposures (CVE)

Entries [112], the number of vulnerabilities reported in 2017 has exceeded 14,000, which was

2.5 times as many as that of in 2016 [3]. Meanwhile, the number and the complexity of software

is also growing, and such growth will potentially cause more vulnerabilities in the future [122].

To address security issues in cyberspace and protect the billions of computers running many

software, security researchers have been seeking new advanced offense and defense software

security techniques. Offense, for example, includes techniques such as automatic exploit gen-

eration [19, 37, 65, 66, 99, 101]. Defense, for example, includes techniques such as binary

hardening [15, 82, 102, 121] and software patching [86, 109].

However, software security techniques have their merits in practice only to the extent they

can be used to achieve a goal. In principle, the goal, under security context, is to maximize

one’s security outcome. More specifically, different parties — individuals, companies or nations

— implement offense and defense techniques as components in networked systems, and the

systems strategically interact with each other. Under networked environment, parties need to

defend against security attacks and meanwhile may exploit their opponents to achieve their own

good purposes. For instance, party A uses its offense component to attack party B for learning

B’s secret, and party B uses its defense component to protect the secret from being stolen by A.
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Currently, the problem of offense and defense strategy for software vulnerabilities remain

open. For example, if an individual, a company or a nation discovers a vulnerability, should it

disclose or withhold the vulnerability, in order to be secure? It has been shown that disclose right

away may not be the best strategy in practice, since patches released along with vulnerability

disclosure may induce the generation of the corresponding exploit [34]. If it plans to withhold,

then how long should it keep for a secret? These questions need to be answered accurately so

that a party will act optimally using the current software security techniques. These questions

also need to be answered efficiently. Otherwise, the party may miss the best time to execute the

offense or/and defense actions.

For example, the WannaCry attack [9], happening in 2017, is the most serious ransomware

attack in history [12]. The attack infected 300,000 computers [11] and caused 4 billion dollars

of losses [10]. One of the critical reasons for the severe consequence is the decision made by

NSA. NSA first discovered the vulnerability in 2012. Instead of disclosing the vulnerability to

the software vendor and have it release the patch, NSA retained the vulnerability for five years

from 2012 to 2017. If NSA has had disclosed the vulnerability earlier, the software vendor would

have released the patch earlier, and we would have more time to patch the machines before the

attack came. Did the NSA’s strategy make at least mathematical sense, or was it suboptimal? We

will introduce and discuss more details in Section 1.1.

In this dissertation, we holistically study software security considering both software security

techniques and offense and defense strategy. We abstract the offense and defense interactions in

computer security as a game involving multiple players, each of which has a set of internal states

as well as explicit offense and defense actions. We discuss the case that players are allowed

to discover a new vulnerability, create an exploit, generate a patch, decide to play an exploit,

decide to release a patch and so on. More specifically, we investigate autonomous computer

security games and concrete system instances of players as represented by Cyber Reasoning

Systems (CRS) found in the DARPA Cyber Grand Challenge (CGC, Section 6.3.1) such as May-

hem [56] and Mechanical Phish [105]. Nonetheless, autonomous computer security games are

2



general games that are also applicable to other scenarios such as cyber warfare. For example, if

a government organization such as NSA finds a zero-day vulnerability is discovered, it needs to

strategically decide whether it should retain the vulnerability and attack, or disclose the vulner-

ability and patch. We show that the autonomous computer security game model (§ 1.3) can be

used for calculating optimal strategies (§ 5) and evaluating the strategic impact (§ 6) of binary

analysis techniques (§ 3, § 4).

This dissertation makes contributions to both software security techniques and security game

strategy. We propose two new techniques: ByteWeight and ShellSwap, and we develop security

games that capture a richer set of actions than previous work. Furthermore, this dissertation uses

techniques and strategy to inform what new techniques would help maximize security outcome.

For example, we develop ShellSwap, a technique to automatically generate new control flow

hijacking exploits with customized shellcodes. This technique improves offense skill; in specific,

it gives a party the capacity to retaliate by enabling those who have received attacks to generate

exploits with their payload. Based on the autonomous computer security game model, we found

that if players have the ShellSwap technique, attackers will be less likely to attack. In particular,

if all players have the ShellSwap technique and also patch fast, it is possible that no players attack

(see Section 6). Overall, we argue that both techniques and strategy are essential and we need to

combine them to reason about software vulnerability mitigation.

1.1 Real-World Example: The WannaCry Attack

1.1.1 The Story

The WannyCra attack [9] is a worldwide cyberattack occurring in May 2017. The attacker used

vulnerability CVE-2017-0144 [2] to exploit computers and encrypt the data in compromised

machines. After encryption, the attacker asked the victim for ransom payment to decrypt and

recover the data in the compromised computer.
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The vulnerability CVE-2017-0144 exists in a majority of Windows operating systems, in-

cluding Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1,

Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 and Windows

Server 2016 [2]. Due to the large population of Windows operating system victim users, the

WannaCry attack infected 300,000 machines [11] and caused $4 billion losses [10] in the end,

and it became a significant ransomware attack in history [12].

We start the study of the WannaCry attack with the timeline of the vulnerability. Figure 1.1

shows the brief timeline of the vulnerability and the WannaCry attack [6]. The detailed informa-

tion is as follows:

• 2012 (or possibly earlier): The vulnerability is identified by the U.S. National Security

Agency. The NSA learned that the vulnerability affects many Windows operating systems,

and it decided to withhold the vulnerability and produce its exploit called EternalBlue. The

EternalBlue exploit was used as a weapon targetting to computers in other countries such

as Iran, India, and Syria.

• January 2017: The EternalBlue exploit was stolen by the Shadow Broker, and NSA no-

ticed the possible leak of the vulnerability.

• February 2017: NSA told Microsoft about the vulnerability.

• March 2017: The vulnerability was published as CVE-2017-0144, and the patch was

released on March’s Patch Tuesday [4].

• May 2017: The WannaCry attack started. It was ransomware using vulnerability CVE-

2017-0144. The first outbreak lasted for 4 days. Later this attack was attributed to North

Korea, according to the U.S. government [8].
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Jan 2017 NSA learned about a possible leak

Feb 2017 NSA disclosed the vulnerability

2012 NSA discovered the vulnerability

May 2017 WannaCry attack started

Microsoft released the patchMar 2017

Figure 1.1: The timeline of the WannaCry attack.

1.2 Enabling Cyber Autonomy in Software Security

Binary analysis techniques are a group of techniques of program analysis on compiled executa-

bles. Binary analysis is capable of investigating specific program behavior such as heap and stack

manipulation and the investigation is essential since an exploit is specific to binary executions.

Offense and defense strategy determines the actions that will be executed by each player. In

this thesis, players are algorithms that use binary analysis techniques to find vulnerability, patch

and create exploits. An optimal strategy considers the best use of automated techniques and

maximizes the security interests of a party.

We consider combining both techniques and strategy in this thesis. Moreover, we consider

autonomous systems that deal with software programs in discovering vulnerabilities and making

offense and defense decisions.

1.3 Autonomous Computer Security Game

Autonomous computer security games investigate the attack-defense interaction between

multiple players. Players in autonomous computer security games have the capability to dis-
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cover a vulnerability, create an exploit (to attack) and generate a patch (to defend), and when

they discover a vulnerability, they need to choose when to attack and when to defend. Mean-

while, players may not be aware whether or not the other players have already discovered the

same vulnerability, so players may not know if they are the first to discover the vulnerability.

Under such circumstance, players need to act between defense and attack to maximize its ratio-

nal outcome. For instance, consider an autonomous computer security game in which each player

represents a nation. What should a player act upon discovery of a zero-day vulnerability? Is it

better to pass the information to the relevant software vendor and improve everyone’s security, or

would it be more prudent to keep the vulnerability hidden and develop a zero-day exploit? After

developing a zero-day exploit, when should it initiate the attack? Should it attack right away or

retain it and use it later? Also, what should a player act when another player attacks it? The

above questions will be answered by every player in the game.

We introduce our approach to modeling multi-agent interaction as the autonomous computer

security game. First, we represent the setup of each agent and its technique components, states

and actions. Next, we introduce the interactions between players, and we show how the inter-

actions happen over time by an example. In the end, we list the assumptions of autonomous

computer security games.

1.3.1 Player Setup

Technique Components. In autonomous computer security games, each player is represented

as an autonomous system. Although different players have different designs and implementations

for the system, they share the common goal, which is to meet its own interests by attacking

the other players and protecting themselves. Therefore, we model the player by dividing the

autonomous system into components with different functionalities. In specific, we consider three

components listed as follows:

• Vulnerability Awareness Component
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The vulnerability awareness component is responsible for realizing the existence of a vul-

nerability. When the component acquires a vulnerability, it will trigger the offense and

defense components to generate an exploit and a patch for the vulnerability, respectively.

In addition, the player will start to decide the strategy for the vulnerability and play the

defensive or/and offensive actions.

There are many ways to learn a vulnerability. For example, the component can get a

vulnerability by discovering crashes from programs, detecting attacks through network

or studying vulnerability databases such as the Common Vulnerabilities and Exposures

(CVE) [112] entries. These means can be used simultaneously; one can implement multi-

ple techniques for the vulnerability awareness component, and it will help the autonomous

system learn vulnerabilities more effectively and more efficiently.

• Offense Component

The offense component aims to weaponize a vulnerability to exploits that carry out the

player’s intended execution such as to install backdoors, to exfiltrate sensitive information

and so on. A player with the generated exploit can choose to attack the other players, and

the attack might bring benefits to the attacker in the autonomous computer security game.

This component can be realized by techniques that generates exploits in general, such

as automatic exploit generation [19], automatic patch-based generation [34] and Shell-

Swap [25].

• Defense Component

The defense component is to generate a patch that protects a player from attacks. However,

patch releasing takes time, during which a player may still be attacked due to the incom-

plete process. Patch releasing is also public, in the sense that the released patch will be

known by all players in the game. This reflects the reality since patch releasing is usually

acted by software vendors, which is a party exclusive from any players and their goal is

to patch all users. This component can be realized by automatic patching engine such as
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Patcherex [106].

Player States and Player Actions For each vulnerability, the players in autonomous computer

security games either know it or not know it. We use player state to represent whether or not a

player has known the vulnerability. Each player i has a state denoted by θi in each round, where

θi ∈ Θi = {¬D,D}. ¬D refers to the situation in which a player has not yet learned of a

vulnerability, while D refers to the situation in which a player knows the vulnerability.

In each round, players choose one of the following actions: {ATTACK, PATCH, NOP, STOCK-

PILE}, where the semantics of ATTACK, PATCH, and NOP have their literal meaning, and STOCK-

PILEmeans holding a zero-day for future use.

Players are limited in their actions by their state. In particular, while a player in state ¬D

can only act NOP, a player in state D can choose an action among ATTACK, PATCH and STOCK-

PILEbefore the patch is released, and between ATTACK and NOP after the release, depending on

their skill at detecting attacks or generating patch-based exploits.

1.3.2 Interaction Between Players

The players in autonomous computer security games interact with each other as shown in Fig-

ure 1.2. There are two kinds of interactions: attacking and patching. For attacking, it has a

culprit and a victim, which we call the attacker and the defender. We assume that if the defender

detects the attack, he will know the attacker. For patching, we assume that it is public and thus

all players know which player releases the patch.

Interactions happen over time. For example, Figure 1.3 shows the timeline of a game instance

of two players (player 1 and player 2). At the beginning of the game, both players are in state

of ¬D. Player 1 realizes a vulnerability at T1, after which he weaponizes the vulnerability at

T2 and generates a patch at T4. After T2 and T4, player 1 starts to attack at T3 and patch at T5.

While player 1 is patching, if player 2 has not yet discovered the vulnerability, he will know the

vulnerability from the disclosure of the patch, and he will generate exploit and determine when
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Figure 1.2: The interaction of two autonomous systems (shown underlined).

to attack and when to defend.

Scope. In this dissertation, we consider the game within the scope of the following assump-

tions:

• We assume that players are monitoring their systems, and may probabilistically detect an

attack. We also assume they may be able to then ricochet the exploit to other players.

We note that the detection may come through monitoring the network (in the case of net-

work attacks), or other measures such as honeypots, dynamic analysis of suspicious inputs,

etc. For example, Vigilante [41] detects exploits and creates a self-certifying alert (SCA),

which is essentially a replayable exploit. We note that such attacks may be detected over

a network (e.g., in DEFCON CTFs these are called reflection attacks [95]) or via dynamic

analysis, as with Vigilante.

• We assume that patching is always public. Once a patch reveals, players can patch their

machines, and those who have not yet generated the exploit can take advantage of the
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0.    A vulnerability is introduced 
1.  Player 1 realizes the vulnerability 
2.  Player 1 weaponizes the vulnerability 
3.  Player 1 launches an attack 
4.  Player 1 generates a patch 
5.  Player 1 starts to patch and Player 2 

realizes the vulnerability 

Player 1’s State 

Player 2’s State 

¬D D

¬D D

Time 

T1 T2 T3 T4 T5 T0 

Figure 1.3: Timeline for an automatic computer security game

patch information. For example, Brumley et al. shows this can be done in some instances

automatically [34].

• We assume that the defender knows the attacker for the detected attacks. We do not con-

sider the situation that a player eavesdrops the communication of the other players to learn

a vulnerability from the attacks between the others.

• We focus on one vulnerability for the autonomous computer security model, assuming that

vulnerabilities are used independently. Modeling the game with multiple vulnerabilities

are challenging since players are uncertain about what vulnerabilities the other players

have. We leave this as a task, which is to explore the possible solutions for modeling the

autonomous computer security game with multiple vulnerabilities (see Task 4).

1.4 Methodology

Techniques and strategy complements in software security, and the research of techniques and

strategy interplay with each other. As more techniques are developed, more strategies become
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Figure 1.4: The approach to combining techniques and decision making in software security
study.

feasible, and thus decision making progress needs to be improved to consider more strategy

kinds. On the other hand, as decision making progress highlights the critical techniques for

security outcome it guides the development of specific techniques.

Based on the above statement, we form up a methodology of outcome-oriented software

security research, shown in Figure 1.4. In this methodology of research, new decision making

algorithm is studied as new techniques are proposed, and new techniques are inspired by the

investigation of a decision making algorithm.

1.5 Contributions

In this dissertation, we model the autonomous computer security game to reason about the mit-

igation of software vulnerability. We show that the autonomous computer security game model

can be used for calculating strategies, identifying the critical components and evaluating the

strategic impact of the techniques in autonomous cyber reasoning systems. This dissertation

makes the following high-level contributions:

• We provide a framework to systematically reason about vulnerability mitigation, and we

propose a holistic approach to software security. Our methodology which combines both

techniques and decision making is novel for software security research.

• We build the autonomous computer security game model, which can be used to reason
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about decision making for vulnerabilities and qualitatively evaluate known techniques.

• We propose algorithms to find the optimal strategy for vulnerabilities.

• We investigate critical technical components in autonomous cyber reasoning systems and

develop those new techniques.

1.6 Outline

The dissertation is structured as follows. In Chapter 2 we present the background and the re-

lated work of autonomous computer security game. In Chapter 3 and Chapter 4, we introduce

two innovative binary techniques, and in Chapter 5, we discuss the algorithm to calculate op-

timal strategy in the autonomous computer security game model. In Chapter 6, we investigate

the autonomous computer security model by showing how to apply it to qualitative technique

evaluation, which measures the security impact of a technique or a technique class. In the end,

we conclude this dissertation in Chapter 7.
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Chapter 2

Background

In this chapter, we discuss the background and the related work in software security research.

Overall, researchers have worked on both techniques and strategy in software security. How-

ever, the current automated binary analysis techniques are often too costly to be scalable, and the

strategies are based on models that oversimplify the actual real-world scenarios. Furthermore,

there is a disconnect between technique and strategy. Strategies come up with actions, yet strate-

gies overlook the limitations that techniques face when techniques perform actions in practice.

For example, a reasonable theoretical strategy for the discovery of a zero-day vulnerability is to

patch the vulnerable machines immediately. Unfortunately, it is impossible to instantly create

and distribute a patch, so such an action cannot be part of a practical strategy.

2.1 Game Models & Nash Equilibrium

We show the relationship of game models in Figure 2.1. In cyber security games, players hide

information about their exploits. To accommodate this, we set up the model as an incomplete

information game where the players in the model do not know whether other players have dis-

covered a zero-day or not. This assumption is natural: an exploit is only a zero-day from the

perspective of each player having never seen it before.
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Figure 2.1: The Relationship of game models.

Because cyber security games last from hours to days, it is possible for players to take mul-

tiple actions in a game. For example, a player could hold a vulnerability at the beginning of the

cyber security game and exploit other players later. In order to support these strategies, we create

our model a multi-stage game.

The players may find a vulnerability at any time during the game, changing the state of the

game from that point. This property is supported by the concept of a stochastic game (SG). For

an SG, the game played at any given iteration depends probabilistically on the previous round

played and the actions of players in the previous round. SG can also be viewed as a multi-player

version of Markov Decision Process (MDP) [51].

Combining these concepts, if a game 1) has players with incomplete information, 2) consists

of multiple rounds, and 3) players’ knowledge may change during the game, then the game is a

partially observable, stochastic game (POSG). A POSG can also be considered as a multi-player

equivalent of a partially observable Markov decision process (POMDP). A POSG is identical to

a POMDP except that instead of a single action, observation, and reward a POSG has one for

each player which are expressed together as a joint-action, joint-observation and joint-reward.

A Nash equilibrium is a strategy profile in which players will not have more to gain by

changing their strategy. In this dissertation, we will focus on building the game model and finding

the Nash equilibrium of the game. Although there are cases of games calling for significantly

more refined equilibrium concepts (e.g., perfect Bayesian equilibrium or sequential equilibrium),

we follow the argument from previous work [81], claiming that the generally coarser concept of
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Nash equilibrium adequately captures the strategic aspects of cyber security games.

2.2 Computer Security Game Models

Game theory has been applied in many security contexts, most commonly with a focus on net-

work security or the economics of security, e.g., [18, 36, 39, 57, 77, 78, 80, 83, 94, 111]. We

focus exclusively on game theory as it is explicitly applied to the cyber domain. In this subsec-

tion, we will describe existing approaches to modeling computer security games and discuss our

improvements over these techniques.

Moore et al. [81] proposed the cyber-hawk model in order to find the optimal strategy for

both players. The cyber-hawk model describes a game where each player chooses to either keep

vulnerabilities private (and create exploits to attack their opponent) or disclose. They conclude

that the first player to discover the vulnerability should always attack, precluding vulnerability

disclosure.

This model has three limitations. First, it limits the number of players to 2. Second, it

assumes that both players will eventually discover the same zero-day vulnerabilities. Third, it

models a one-shot game where players are only allowed to make one choice between attack and

disclosure. After this choice, the game is over.

The cyber-hawk model raised new questions that need to be explored, such as if a player de-

termines to use a vulnerability offensively, how soon they should commence the attack. Schramm [97]

proposes a dynamic model to answer this question. The model indicates that waiting reduces a

player’s chance of winning the game, which implies that if a player determines to attack, he

should act as soon as possible.

The Schramm model relies on a key assumption of full player awareness, requiring that play-

ers know whether, and how long ago, their opponent discovered a vulnerability. This assumption

is unlikely to be valid in real-world scenarios because nations keep the retained vulnerabilities

(if they have any at all) secret. Additionally, it is still limited to two players and supports only
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single taken action, after which the game ends.

We observe three things missing in previous models that are vital for choosing players’ best

strategies in computer security games. First, players in a computer security game often have

multiple actions over multiple rounds. As an example of a multiple round game, consider the

NSA case. Although NSA claimed to disclose 91% of all zero-day vulnerabilities, it did not

mention whether they first exploited before disclosing or not.

Second, players in a computer security game are uncertain as to the other players’ state,

specifically, whether other players have discovered vulnerabilities. This uncertainty influences

players’ decision, as a player must account for all the possible states of the other players in order

to maximize his expected utility. Previous approaches cannot be extended to handle multiple

steps with partial information and dependencies.

Third, both attacking and disclosing reveal the information of a vulnerability. Previous work

shows that a patch may be utilized by attackers to generate new exploits [34]. However, we show

that attacking leaks information, and we introduce the notion of ricochet into the game theory

model. In the automated patch-based exploit generation (APEG) [34] technique, a player infers

the vulnerable program point from analyzing a patch and then creates an exploit. Also, in the ric-

ochet attack technique, a player detects an exploit (e.g., through network monitoring or dynamic

analysis) and then turns around and uses the exploit against other players. For instance, Costa

et al. have proposed monitoring individual programs to detect exploits, and then replaying them

as part of their technique for self-certifying filters [41], where the filters self-certify by essen-

tially including a version of the original exploit for replay. Both inadvertent disclosures through

attack and patching create new game actions, but previous work does not take it into account.

Policy makers and other users of previous models [81, 97] can reach incorrect conclusions and

ultimately choose suboptimal strategies.
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2.3 Automatic Exploit Generation

The technique of automatically generating an exploit with a piece of shellcode is called automatic

exploit generation (AEG) [19, 34, 74, 99]. There are two steps for automatic exploit generation:

identify the exploitable crash and generate an exploit with the shellcode. For the first step,

there are fuzzing, symbolic execution and hybrid methods to find the exploitable crashes. For

the second step, Helaan et al. [63] proposed how to place shellcode in memory: scan through the

memory and find symbolic memory gaps that are big enough to hold the entire piece of shellcode.

For each gap, they try to put shellcode at different offsets by constraining symbolic memory bytes

beginning at that offset to the actual bytes of the shellcode. This procedure continues until the

shellcode is put in a memory gap or all gaps have been tried.

2.4 Automated Patch-based Exploit Generation

Brumley et al. [34] have shown that automated patch-based exploit generation is possible and

the technique can be used for generating exploits for real-world vulnerabilities. The existence

of such technique highlights that an autonomous system is capable of generating exploits from a

released patch, and generating exploits from a released patch is more effective than discovering

vulnerabilities from a program. Therefore, we should take into account such technique for the

autonomous computer security game.
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Part I

Binary Analysis Techniques
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In this part, we present two new binary analysis techniques that we have developed. These

techniques improve the defense and offense in software security. ByteWeight (Chapter 3) is a

reverse engineering technique for identifying functions in stripped binaries. It helps to abstract

binary programs and can be used for binary patching. ShellSwap (Chapter 4), on the other

hand, is a technique to generate new exploits based on a receiving exploit automatically. It helps

victims to retaliate if the victims capture the incoming attack.
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Chapter 3

Function Identification for Stripped

Binaries

Function identification is a preliminary and necessary step in many binary analysis techniques

and applications. For example, one property of CFI is to constrain inter-function control flow

to valid paths. In order to reason about such paths, however, binary-only CFI infrastructures

need to be able to identify functions accurately. In particular, COTS-CFI [121], CCFIR [120],

MoCFI [50], Abadi et al. [16], and extensions like XFI [54] all depend on accurate function

identification to be effective.

CFI is not the only consumer of binary-level function identification techniques. For example,

Rendezvous [69] is a search engine that operates at the granularity of function binaries; incorrect

function identification can therefore result in incomplete or even incorrect search results. De-

compilers such as Phoenix [98], Boomerang [115], and Hex-Rays [61] recover high-level source

code from binary code. Naturally, decompilation occurs on only those functions that have been

identified in the input binary.

There is disagreement in the community on the efficiency of previous technique. Kruegel

et al. argued in 2004 that function start identification can be solved “very well” [72, §4.1] in

regular binaries and even some obfuscated ones. Perkins et al. described static function start
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identification as “a complex task in a stripped x86 executable” [86, §2.2.3] and therefore applied

a dynamic approach in their ClearView system. A similar opinion is also shared by Zhang et al.,

who stated that “it is difficult to identify all function boundaries” [121, §3.2] and used a set of

heuristics for this task.

So how good are the current tools at identifying functions from stripped, non-malicious bi-

naries? To find out, we collected a dataset of 2,200 Linux and Windows binaries generated by

GNU gcc, Intel icc, and Microsoft Visual Studio (VS) with multiple optimization levels. We

then used our dataset to evaluate the most recent release of three popular off-the-shelf solutions

for function identification: (i) IDA (v6.5 at submission), used in CodeSurfer/x86 [22], Choi

et al.’s work on statically determining binary similarity [38], BinDiff [28], and BinNavi [29];

(ii) the CMU Binary Analysis Platform (BAP-legacy), used in the Phoenix decompiler [98] and

the vulnerability analysis tool Mayhem [37]; and (iii) the unstrip utility in Dyninst (dated

2012-11-30), used in BinSlayer [31], Sharif et al.’s work on dynamic malware analysis [104],

and Sidiroglou et al.’s work on software recovery navigation [108].

Our finding was that while IDA performed better than BAP-legacy and Dyninst on our

dataset, its result can still be quite alarming—in our experiment, IDA returned 41.81% true

positive rate, 21.38% false negative rate, and 36.81% false positive rate. While there is no doubt

that such failures can have a negative impact on downstream security analyses, a real issue is in

setting the right expectation on the subject within the security research community. If there is a

publicly-available function identification solution where both its mechanism and limitations are

well-understood by researchers, then researchers may be come up with creative strategies to cope

with the limitations in their own projects. The goal is to explain our process of developing such

a solution and to establish its quality through evaluating it against the aforementioned solutions.

We draw inspirations from how BAP-legacy and Dyninst perform function identification

since their source code is available. Both solutions rely on fixed, manually-created signatures.

Dyninst, at the version we tested, uses the byte signature 0x55 (push %ebp in assembly) to

recognize function starts in ELF x86 binaries [53]. BAP-legacy v0.7 uses a more complex sig-
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nature, but it is also manually generated. Unfortunately, the process of manually generating such

signatures does not scale well. For example, each new compiler release may introduce new id-

ioms that require new signatures to capture. The myriad of different optimization settings, such

as omit frame pointers, may also demand even more signatures. Clearly, we cannot expect to

manually catch up.

One approach to recognizing functions is to automatically learn key features and patterns.

For example, seminal work by Rosenblum et al. proposed binary function start identification as

a supervised machine learning classification problem [1]. They model function start identifica-

tion as a Conditional Random Field (CRF) in which binary offsets and a number of selected

idioms (patterns) appear in the CRF. Since standard inference methods for CRF on large, highly-

connected graphs are expensive, Rosenblum et al. adopted feature selection and approximate

inference to speed up their model. However, using hardware available in 2008, they needed 150

compute-days just for the feature selection phase on 1,171 binaries.

We propose a new automated analysis for inferring functions and implement it in our Byte-

Weight system. A key aspect of ByteWeight is the ability to learn signatures for new compilers

and optimizations at least one order of magnitude faster than as reported by Rosenblum et al. [1],

even after generously accounting for CPU speed increase since 2008. In particular, we avoid

using CRFs and feature selection, and instead opt for a simpler model based on learning prefix

trees. Our simpler model is scalable using current computing hardware: we finish training 2,064

binaries in under 587 compute-hours. ByteWeight also does not require compiler information of

testing binaries, which makes the tool more powerful in practice. In the interest of open science,

we also make our tools and datasets available to seed future improvements.

At a high level, we learn signatures for function starts using a weighted prefix tree, and

recognize function starts by matching binary fragments with the signatures. Each node in the tree

corresponds to either a byte or an instruction, with the path from the root node to any given node

representing a possible sequence of bytes or instructions. The weights, which can be learned

with a single linear pass over the data set, express the confidence that a sequence of bytes or
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instructions corresponds to a function start. After function start identification, we then use value

set analysis (VSA) [22] with an incremental control flow recovery algorithm to find function

bodies with instructions, and extract function boundaries.

To evaluate our techniques, we perform a large-scale experiment and provide empirical num-

bers on how well these tools work in practice. Based on 2,200 binaries across operating systems,

compilers and optimization options, our results show that ByteWeight has a precision and recall

of 97.30% and 97.44% respectively for function start identification. ByteWeight also has a preci-

sion and recall of 92.84% and 92.96% for function boundary identification. Our tool is adaptive

for varying compilers and therefore more general than current pattern matching methods.

In general, we make the following contributions for solving the function identification prob-

lem:

• We propose a new function start identification algorithm based on prefix trees. Our ap-

proach is automatic and does not require a priori compiler information (see §3.3). Our

approach models the function start identification problem in a novel way that makes it

amenable to much faster learning algorithms.

• We evaluate our method on a large test suite across operating systems, compilers, and

compiling optimizations. Our model achieves better accuracy than previously available

tools.

• We make our test infrastructure, data set, implementation, and results public in an effort to

promote open science (see §4.5).

3.1 Function Identification Example

We start with a simple example written in C, shown in Code 3.1. In this program, three functions

are stored as function pointers in the array funcs. When the program is run, input from the

user dictates which function gets called, as well as the function arguments. We compiled this
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1 #include <stdio.h>
2 #include <string.h>
3 #define MAX 10
4 void sum(char *a, char *b)
5 {
6 printf("%s + %s = %d\n", a, b, atoi(a) + atoi(b));
7 }
8 void sub(char *a, char *b)
9 {

10 printf("%s - %s = %d\n", a, b, atoi(a) - atoi(b));
11 }
12 void assign(char *a, char *b)
13 {
14 char pre_b[MAX];
15 strcpy(pre_b, b);
16 strcpy(b, a);
17 printf("b is changed from %s to %s\n", pre_b, b);
18 }
19 int main(int argc, char **argv)
20 {
21 void (*funcs[3])(char *x, char *y);
22 int f;
23 char a[MAX], b[MAX];
24 funcs[0] = sum;
25 funcs[1] = sub;
26 funcs[2] = assign;
27 scanf("%d %s %s", &f, a, b);
28 (*funcs[f])(a, b);
29 return 0;
30 }

Code 3.1: Function identification example in C Code. IDA 6.5 failed to identify functions
sum, sub, and assign in the compiled binary with source code shown above.

example code on Linux Debian 7.2 x86-64 using gcc with -O3, and stripped the binary using

the command strip. The disassembly of the compiled code is shown in Code 3.2. We then

used IDA to disassemble the binary and perform function identification. Many security tools use

IDA in this way as a first step before performing additional analysis [35, 68, 85]. Unfortunately,

for our example program IDA failed to identify the functions sum, sub, and assign.

IDA’s failure to identify these three critical functions has significant implications for security

analyses that rely on accurate function boundary identification. Recall that the CFI security pol-

icy dictates that runtime execution must follow a path of the static control flow graph (CFG). In
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1 00400660 <assign>:
2 mov %rbx,-0x10(%rsp)
3 mov %rbp,-0x8(%rsp)
4 sub $0x28,%rsp
5 mov %rdi,%rbp
6 lea 0xf(%rsp),%rdi
7 ...
8
9 004006b0 <sub>:

10 mov %rbx,-0x18(%rsp)
11 mov %rbp,-0x10(%rsp)
12 mov %rsi,%rbx
13 mov %r12,-0x8(%rsp)
14 xor %eax,%eax
15 sub $0x18,%rsp
16 ...
17
18 00400710 <sum>:
19 mov %rbx,-0x18(%rsp)
20 mov %rbp,-0x10(%rsp)
21 mov %rsi,%rbx
22 mov %r12,-0x8(%rsp)
23 xor %eax,%eax
24 sub $0x18,%rsp
25 ...

Code 3.2: Assembly compiled by gcc -O3.

this case, when the CFG is recovered by first identifying functions using IDA, any call to sum,

sub, or assign would be incorrectly disallowed, breaking legitimate program behavior. In-

deed, any indirect jump to an unidentified or mis-identified function will be blocked by CFI. The

greater the number of functions missed, the more legitimate software functionality incorrectly

lost. Secondly, suppose we are checking code for potential security-critical bugs. In our sample

program, the function assign is vulnerable to a buffer overflow attack, but is not identified by

IDA as a function. For tools like ClearView [86] that operate on binaries at the function level,

missing functions can mean missing vulnerabilities.

3.2 Problem Definition and Challenges

The goal of function identification is to determine the set of functions in a binary. Accuracy

is compared to a special debug build with ground truth. Determining what functions exist and
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which bytes belong to which functions is trivial if debug information is present. For example,

“unstripped” Linux binaries contain a symbol table that maps function names to locations in

a binary, and Microsoft program database (PDB) information contains similar information for

Windows binaries. We start with notation to make our problem definition precise and then for-

mally define three function identification problems. We then describe several challenges to any

approach or algorithm that addresses the function identification problems. In subsequent sections

we provide our approach.

3.2.1 Notation and Definitions

A binary program is divided into a number of sections. Each section is given a type, such as

code, data, read-only data, and so on. In this dissertation, we only consider executable code,

which we treat as a binary string.

Let B denote a binary string. For concreteness, think of this as a binary string from the

.text section in a Linux executable. Let B[i] denote the ith byte of a binary string, and B[i :

i + j] refer to the list of contiguous bytes B[i], B[i + 1], . . . , B[i + j − 1]. Thus, B[i : i + j] is

j-bytes long (with j ≥ 0).

Each byte in an executable is associated with an address. The address of byte i is calculated

with respect to a fixed section offset, i.e., if the section offset is ω, the address of byte i is i+ ω.

For convenience, we omit the offset, and refer to i as the ith address. Since the real address can

always be calculated by adding the fixed offset, this can be done without loss of generality.

A function Fi in a binary B is a list of addresses corresponding to statements in either a

function from the original compiled language or a function introduced directly by the compiler,

denoted as

F = {B[i], B[j], . . . , B[k]}

Note that function bytes need not be a set of contiguous addresses. We elaborate in §4.1.2 on

real optimizations that result in high-level functions being compiled to a set of non-contiguous
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intervals of instructions.

Towards our goal of determining which bytes of a binary belong to which functions, we

define the set of functions in a binary

FUNCS(B) = {F1, F2, . . . , Fk}.

Note that functions may share bytes, i.e., it may be that F1∩F2 6= ∅. We give examples in §4.1.2

where this is the case.

We call the lowest address of a function Fi the function start address si, i.e., si = min(Fi).

The function end address ei is the maximum byte in a function body, i.e., ei = max(Fi). We

define the function boundary (si, ei) as the function start and end addresses for Fi.

In order to evaluate function identification algorithms, we define ground truth in terms of

oracles, which may have a number of implementations:

Function Oracle. Ofunc is an oracle that, given a binaryB, returns a list of functions FUNCS(B)

where each Fi is a set of bytes representing higher-level function i, as defined above.

Boundary Oracle. Obound is an oracle that, given B, returns the set of function boundaries

{(s1, e1), (s2, e2), . . . , (sk, ek)}.

Start Oracle. Ostart is an oracle that, givenB, returns the set of function start addresses {s1, s2, . . . , sk}.

These oracles are successively less powerful. For example, implementing a boundary oracle

Obound from a function oracle Ofunc requires simply taking the minimum and maximum element

of each Fi. Similarly, a start oracle Ostart can be implemented from either Ofunc or Obound by

finding the minimum element of each Fi.

We do not restrict ourselves to a specific oracle implementation, as realizable oracles may

vary across operating system and compiler. For example, the boundary oracle can be imple-

mented by retaining debug information for Windows or Linux binaries. The function oracle can

be implemented by instrumenting a compiler to output a list of instruction addresses included in
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each compiled function.

3.2.2 Problem Definition

With the above definitions, we are now ready to state our problem definitions. We start with

the least powerful identification (function start) and build up to the most difficult one (entire

function).

Definition 3.2.1. The Function Start Identification (FSI) problem is to output the complete list

of function starts {s1, s2, . . . , sk} given a binary B compiled from a source with k functions.

Suppose there is an algorithmAFSI(B) for the FSI problem which outputs S = {s1, s2, . . . , sk}.

Then:

• The set of true positives, TP, is S ∩Ostart(B).

• The set of false positives, FP, is S −Ostart(B).

• The set of false negatives, FN, is Ostart(B)− S.

We also define precision and recall. Roughly speaking, precision reflects the number of times

an identified function start is really a function start. A high precision means that most identified

functions are indeed functions, whereas a low precision means that some sequences are incor-

rectly identified as functions. Recall is the measurement describing how many functions were

identified within a binary. A high recall means an algorithm detected most functions, whereas a

low recall means most functions were missed. Mathematically, they can be expressed as

Precision =
|TP|

|TP|+ |FP|

and

Recall =
|TP|

|TP|+ |FN| .

A more difficult problem is to identify both the start and end addresses for a function:

Definition 3.2.2. The Function Boundary Identification (FBI) problem is to identify the start and
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end bytes (si, ei) for each function i in a binary, i.e., S = {(s1, e1), (s2, e2), . . . , (sk, ek)}, given

a binary B compiled from a source with k identified functions.

Suppose there is an algorithm AFBI(B) for the FBI problem which outputs

S = {(s1, e1), (s2, e2), . . . , (sk, ek)}

We then define true positives, false positives, and false negatives similarly to above with the ad-

ditional requirement that both the start and end addresses must match the output of the boundary

oracle, i.e., for oracle output (sgt, egt) and algorithm output (sA, eA), a positive match requires

sgt = sA and egt = eA. A false negative occurs if either the start or end address is wrong.

Precision and recall are defined analogously to the FSI problem.

Finally, we define the general function identification problem:

Definition 3.2.3. The Function Identification (FI) problem is to output a set {F1, F2, . . . , Fk}

where each Fi is a list of bytes corresponding to high-level function i given a binary B with k

identified functions.

We define true positives, false positives, false negatives, precision, and recall for the FI prob-

lem in the same ways as FSI and FBI but add the requirement that all bytes of a function must be

matched between agorithm and oracle.

The above problem definitions form a natural hierarchy, where function start identification is

the easiest and full function identification is the most difficult. For example, an algorithm AFBI

for function boundaries can solve the function start problem by returning the start element of

each tuple. Similarly, an algorithm for the function identification problem needs only return the

maximum and minimum element to solve the function boundary identification problem.
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3.2.3 Challenges

Identifying functions in binary code is made difficult by optimizing compilers, which can ma-

nipulate functions in unexpected ways. In this section we highlight several challenges posed by

the behavior of optimizing compilers.

Not every byte belongs to a function. Compilers may introduce extra instructions for align-

ment and padding between or within a function. This means that not every instruction or byte

must belong to a function. For example, suppose we have symbol table information for a binary

B. One naive algorithm is to first sort symbol-table entries by address, and then ascribe each

byte between entry fi and fi+1 as belonging to function fi. This algorithm has appeared in sev-

eral binary analysis platforms used in security research, such as versions of BAP-legacy [26] and

BitBlaze [30]. This heuristic is flawed, however. For example, in Code 3.3, lines 7–8 are not

owned by any function.

1 <func1>:
2 100000e20: push %rbp
3 100000e21: mov %rsp,%rbp
4 100000e24: lea 0x69(%rip),%rdi
5 100000e2b: pop %rbp
6 100000e2c: jmpq 100000e5e <_puts$stub>
7 100000e31: nopl 0x0(%rax)
8 100000e38: nopl 0x0(%rax,%rax,1)
9 <func2>:

10 ...

Code 3.3: Lines 7–8 do not belong to any function.

Functions may be non-contiguous. Functions may have gaps. The gaps can be jump ta-

bles, data, or even instructions for completely different functions [93]. As noted by Harris

and Miller [62], function sharing code can also lead to non-contiguous functions. Code 3.4

shows code that starts out with the function ConvertDefaultLocale. Midway through

the function at lines 17–21, however, the compiler decided to include a few lines of code for
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FindNextFileW as an optimization. Many binary analysis platforms, such as BAP-legacy [26]

and BitBlaze [30], are not able to handle non-contiguous functions.

1 <ConvertDefaultLocale>:
2 7c8383ff: mov %edi,%edi
3 7c838401: push %ebp
4 ...
5 7c83840c: jz 7c848556
6 7c838412: test %eax, %eax
7 7c838414: jz 7c83965c
8 7c83841a: mov $1024,%ecx
9 7c83841f: cmp %ecx,%eax

10 7c838421: jz 7c83965c
11 7c838427: test $252,%ah
12 7c83842a: jnz 7c838442
13 7c83842c: mov %eax,%edx
14 ...
15 7c838442: pop %ebp
16 7c838443: ret 4
17 ; Chunk of function <FindNextFileW>
18 7c838446: push 6
19 7c838448: call sub_7c80935e
20 7c83844d:
21 ; End of chunk
22 ...
23 7c83965c: call <GetUserDefaultLCID>
24 7c890661: jmp 7c838442
25 ...
26 7c848556: mov $8,%eax
27 7c84855b: jmp 7c838442

Code 3.4: Lines 17–21 show code from FindNextFileW included in the middle of
ConvertDefaultLocale.

Functions may not be reachable. A function may be dead code and never called, but nonethe-

less appear in the binary. Recognizing such functions is still important in many security scenar-

ios. For example, suppose two malware samples both contain a unique, identifying, yet uncalled

function. Then the two malware samples are likely related even though the function is never

called. One consequence of this is that techniques based solely on recursive disassembling from

program start are not well-suited to solve the function identification problem. A recursive disas-

sembler only disassembles bytes that occur along some control flow path, and thus by definition

will miss functions that are not called.
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Unreachability may occur for several reasons, including compiler optimizations. For ex-

ample, Code 3.5 and Code 3.6 shows a function for computing factorials called fac. When

compiled by gcc -O3, the result of the call to fac is precomputed and inlined. Although the

code of fac appears, it is never called in the binary code. Security policies such as CFI and XFI

must be aware of all low-level functions, not just those in the original code.

1 int fac(int x)
2 {
3 if (x == 1) return 1;
4 else return x * fac(x - 1);
5 }
6
7 void main(int argc, char **argv)
8 {
9 printf("%d", fac(10));

10 }

Code 3.5: The source program of the unreachable code example.

1 80483f0 <fac>:
2 ...
3 8048410 <main>:
4 ...
5 movl $0x375f00,0x4(%esp)
6 movl $0x8048510,(%esp)
7 call 8048300 ;call printf without fac
8 xor %eax,%eax
9 add $0x8,%esp

10 pop %ebp
11 ret

Code 3.6: The assembly of the unreachable code exmaple, compiled by gcc -O2.

Functions may have multiple entries. High-level languages use functions as an abstraction

with a single entry. When compiled, however, functions may have multiple entries as a result of

specialization. For example, the icc compiler with -O1 specialized the chown failure ok

function in GNU LIBC. As shown in Code 3.7 and Code 3.8, a new function entry called

chown failure ok. (note the period) is added for use when invoking chown failure ok

35



with NULL. The compiled binary has both symbol table entries. Unlike shared code for two func-

tions that were originally separate, the compiler here has introduced shared code via multiple

entries as an optimization.

Identifying both functions is necessary in many security scenarios, e.g., CFI needs to identify

each function entry point for safety, and realize that both are possible targets. More generally,

any binary rewriting for protection (e.g., memory safety, control safety, etc.) would need to

reason about both entry points.

1 extern bool
2 chown_failure_ok (struct cp_options const *x)
3 {
4 return ((errno == EPERM || errno == EINVAL)
5 && !x->chown_privileges);
6 }

Code 3.7: The source code of the multiple-entry function chown failure ok.

1 <chown_failure_ok>:
2 804f544: mov 0x4(%esp),%eax
3 <chown_failure_ok.>:
4 804f548: push %esi
5 804f549: push %esi
6 804f54a: push %esi
7 ...

Code 3.8: The assembly code of the multiple-entry function chown failure ok, com-
piled by icc -O1.

Functions may be removed. Functions can be removed by function inlining, especially small

functions. Compilers perform function-inlining to reduce function call overhead and expose

more optimization opportunities. For example, the function utimens symlink is inlined

into the function copy internal when compiled by gcc with -O2. The source code and

assembly code are shown in Code 3.9 and Code 3.10. Note that function inlining does not have to

be explicitly declared with inline annotation in source code. Many compilers inline functions

by default unless explicitly disabled with options such as -fno-deault-inline [59]. This
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indicates that for those binary analysis techniques which need function information, even though

source code is accessible, a robust function identification technique should still operate on the

program binary. If using source code, function identification may be less precise due to functions

that are inlined during compilation.

1 static inline int
2 utimens_symlink (char const *file,
3 struct timespec const *timespec)
4 {
5 int err = lutimens (file, timespec);
6 if (err && errno == ENOSYS)
7 err = 0;
8 return err;
9 }

10
11 static bool
12 copy_internal (char const *src_name,
13 char const *dst_name,
14 ...)
15 {
16 ...
17 if ((dest_is_symlink
18 ?utimens_symlink (dst_name,
19 timespec)
20 :utimens (dst_name, timespec))
21 != 0)
22 ...
23 }

Code 3.9: The source code of a program with function utimens symlink removed due
to function inlining optimization.

Each compilation is different. Binary code is not only heavily influenced by the compiler

but also the compiler version and specific optimizations employed. For example, icc does not

pre-compute the result of fac in Code 3.5, but gcc does. Even different versions of a compiler

may change code. For example, traditionally gcc (e.g., version 3) would only omit the use of

the frame pointer register %ebp when given the -fomit-frame-pointer option. Recent

versions of gcc (such as version 4.2), however, opportunistically omit the frame pointer when

compiled with -O1 and -O2. As a result several tools that identified functions by scanning for
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1 <copy_internal>:
2 100003170: push %rbp
3 100003171: mov %rsp,%rbp
4 100003174: push %r15
5 100003176: push %r14
6 ...
7 10000468c: test %r14b,%r14b
8 10000468f: je 100005bfd
9 100004695: lea -0x738(%rbp),%rsi

10 10000469c: mov -0x750(%rbp),%rdi
11 1000046a3: callq 10000d020 <_lutimens>
12 1000046a8: test %eax,%eax
13 1000046aa: mov %eax,%ebx
14 ...

Code 3.10: The assembly code of a program with function utimens symlink removed
due to function inlining optimization, compiled by gcc -O2.

push %ebp break. For example, Dyninst, used for instrumentation in several security projects,

relies on this heuristic to identify functions and breaks on recent versions of gcc.

In conclusion, functions are diversified in binary as a result of compilation and optimization.

Function boundary identification, as a fundamental step for binary analysis so that would bring

cumulative effect on the advanced techniques based on this, must be tackled comprehensively. A

successful function boundary identification tool should be able to overcome these challenges.

3.3 ByteWeight

In this section, we detail the design and algorithms used by ByteWeight to solve the function

identification problems. We first start with the FSI problem, and then move to the more general

function identification problem.

We cast FSI as a machine learning classification problem where the goal is to label each

byte of a binary as either a function start or not. We use machine learning to automatically

generate literal patterns so that ByteWeight can handle new compilers and new optimizations

without relying on manually generated patterns or heuristics. Our algorithm works with both

byte sequences and disassembled instruction sequences.
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Figure 3.1: The ByteWeight function boundary inference approach.

Our overall system is shown in Figure 3.1. Like any classification problem, we have a train-

ing phase followed by a classification phase. During training, we first compile a reference corpus

of source code to produce binaries where the start addresses are known. At a high level, our al-

gorithm creates a weighted prefix tree of known function start byte or instruction sequences. We

weight vertices in the prefix tree by computing the ratio of true positives to the sum of true and

false positives for each sequence in the reference data set. We have designed and implemented

two variations of ByteWeight: one working with raw bytes and one with normalized disassem-

bled instructions. Both use the same overall algorithm and data structures. We show in our

evaluation that the normalization approach provides higher precision and recall, and costs less

time (experiment 3.4.2).

In the classification phase, we use the weighted prefix tree to determine whether a given

sequence of bytes or instructions corresponds to a function start. We say that a sequence corre-

sponds to a function start if the corresponding terminal node in the prefix tree has a weight value

larger than the threshold t. In the case where the sequence exactly matches a path in the prefix

tree, the terminal node is the final node in this path. If the sequence does not exactly match a

path in the tree, the terminal node is the last matched node in the sequence.

Once we identify function starts, we infer the remaining bytes (and instructions) that belong

to a function using a CFG recovery algorithm. The algorithm incrementally determines the CFG

using a variant of VSA [22]. If an indirect jump depends on the value of a register, then we over-
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approximate a solution to the function identification problem by adding edges that correspond to

locations approximated using VSA.

3.3.1 Learning Phase

The input to the learning phase is a corpus of training binaries T, and a maximum sequence

length ` > 0. ` serves as a bound on the maximum tree height.

In ByteWeight, we first generate the oracle Obound by compiling known source using a variety

of optimization levels while retaining debug information. The debug information gives us the

required (si, ei) pair for each function i in the binary.

In this dissertation, we consider two possibilities: learning over raw bytes and learning over

normalized instructions. We refer to both raw bytes and instructions as a sequence of elements.

The sequence length ` determines how many raw sequential bytes or instructions we consider for

training.

Step 1: Extract first ` elements for each function (Extraction). In the first step, we iterate

over all (si, ei) pairs and extract the first ` elements. If there are fewer than ` elements in the

function, we extract the maximum number of elements. For raw bytes, this is B[s : s+ `] bytes,

and for instructions, it is the first ` instructions disassembled linearly starting from B[s].

Step 2: Generate a prefix tree (Tree Generation). In step 2, we generate a prefix tree from

the extracted sequences to represent all possible function start sequences up to ` elements.

A prefix tree, also called a trie, is a data structure enabling efficient information retrieval.

In the tree, each non-root node has an associated byte or instruction. The sequence for a node

n is represented by the elements that appear on the path from the root to n. Note that the tree

represents all strings up to ` elements, not just exactly ` elements.

Figure 3.2a shows an example tree on instructions, where node callq 0x43a28 represents

the instruction sequence:
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mov %rbx,-0x10(%rsp) 	


push %ebp	
 mov %esp,%ebp	


mov %rbp,-0x8(%rsp) 	


sub $0x20,%rsp 	


mov %rsi,%rbx 	


callq 0x43a28 	


callq 0x401320 	

Ø 	


…	


…	


0.1445	
 0.9883	
 0.0159	


0.0320	


0.9728	


0.9419	
0.9694	
0.8459	


0.0000	


(a) Unnormalized

mov %rbx,-0x[1-9a-
f][0-9a-f]*\(%rsp\) 	


push %ebp	
 mov %esp,%ebp	


mov %rbp,-0x[1-9a-
f][0-9a-f]*\(%rsp\) 	


sub (?<! -)0x[1-9a-
f][0-9a-f]*,%rsp 	


mov %rsi,%rbx 	


call[q]* +0x[0-9a-
f]*	


Ø 	


…	


…	


0.1445	
 0.9883	
 0.0219	


0.8459	
 0.9694	


0.9728	


0.9419	


0.0000	


(b) Normalized

Figure 3.2: Example of unnormalized (a) and normalized (b) prefix tree. Weight is shown above
its corresponding node.
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1 push %ebp ; saved stack pointer
2 mov %esp,%ebp ; establish new frame
3 callq 0x43a28 ; call another function

If the sequence is over bytes, the prefix tree is calculated directly, although our experiments

indicate that a prefix tree calculated over normalized instructions fairs better. We perform two

types of normalization: immediate number normalization and call & jump instruction normaliza-

tion. As shown in Table 3.1, normalization takes an instruction as input and generalizes it so that

it can match against very similar, but not identical instructions. These two types of normalization

help us improve recall at the cost of a little precision (Table 3.2). In our running example, only

the function assign is recognized as a function start when matched against the unnormalized

prefix tree (Figure 3.2a), while functions assign, sub, and sum can all be recognized when

matched against the normalized prefix tree (Figure 3.2b).

Type Unnormalized Signature Normalized Signature

Immediate

all
mov $0xaa,%eax mov \$-*0x[0-9a-f]+,%eax

mov %gs:0x0,%eax mov %gs:-*0x[0-9a-f]+,%eax

mov 0x80502c0,%eax mov -*0x[0-9a-f]+,%eax

zero
mov $0xaa,%eax mov \$-*0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:0x0+,%eax

mov 0x80502c0,%eax mov -*0x[1-9a-f][0-9a-f]*,%eax

positive
mov $0xaa,%eax mov \$(?<! -)0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:-0x[0-9a-f]+|0x0+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[1-9a-f][0-9a-f]*,%eax

negative

mov $0xaa,%eax mov \$(?<! -)0x[0-9a-f]+,%eax

mov %gs:0x0,%eax mov %gs:(?<! -)0x[0-9a-f]+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[0-9a-f]+,%eax

movzwl -0x6c(%ebp),%eax movzl -0x[1-9a-f][0-9a-f]*\(%ebp\),%eax

npz
mov $0xaa,%eax mov \$(?<! -)0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:0x0+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[1-9a-f][0-9a-f]*,%eax

movzwl -0x6c(%ebp),%eax movzl -0x[1-9a-f][0-9a-f]*\(%ebp\),%eax

Call & Jump call 0x804cf32 call[q]* +0x[0-9a-f]*

Table 3.1: Normalizations in signature. For immediate normalization, we generalize immediate
operands. There are five kinds of generalization: all, zero, positive, negative, and npz. For jump
and call instruction normalization, we generalize callee and jump addresses.
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Step 3: Calculate tree weights (Weight Calculation). The prefix tree represents possible

function start sequences up to ` elements. For each node, we assign a weight that represents

the likelihood that the sequence corresponding to the path from the root node to this node is a

function start in the training set. For example, according to Figure 3.2, the weight of node push

%ebp is 0.1445, which means that during training, 14.45% of all sequences with prefix of push

%ebp were truly function starts, while 85.55% were not.

To calculate the weight, we first count the number of occurrences T+ in which each prefix in

the tree matches a true function start with respect to the ground truth Ostart for the entire training

set T.

Second, we lower the weight of a prefix if it occurs in a binary, but is not a function start.

We do this by performing an exhaustive disassembly starting from every address that is not a

function start [72]. We match each exhaustive disassembly sequence of ` elements against the

tree. We call these false matches. The number of false matches T− is the number of times a

prefix represented in the tree is not a function start in the training set T. The weight for each

node n is then the ratio of true positives to overall matches

Wn =
T+

T+ + T−
. (3.1)

Since the prefix tree can end up being quite large, it is beneficial to prune the tree of unnec-

essary nodes. For each node in the tree, we remove all its child nodes if the value of T− for this

node is 0. For any child node, the value of T− is never negative and never larger than the value

of T− for the parent node. Hence, if T− is 0 for a parent node, then the value must be 0 for all

of the child nodes as well. The intuition here is that if a child node matches a sequence that is

not a function start, then so must the parent node. Thus, if the parent node does not have any

false matches, then neither can a child node. Based on Equation 3.1, if T− = 0 and T+ > 0,

then the weight of the node is 1. Since the child nodes of such a node also have a T− value of 0

and are not included in the tree if T+ = 0, they must also have a weight of 1. As discussed more

43



in Section 3.3.2, child nodes with identical weights are redundant and can safely be removed

without affecting classification.

This pruning optimization helps us greatly reduce the space needed by the tree. For example,

pruning reduced the number of nodes in the prefix tree from 2,483 to 1,447 for our Windows x86

dataset. Moreover, pruning increases the speed of matching, since we can determine the weight

of test sequences after traversing fewer nodes in the tree.

3.3.2 Classification Phase Using a Weighted Prefix Tree

The output of the learning phase is a weighted prefix tree (e.g., Figure 3.2). The input to the

classification step is a binary B, the weighted prefix tree, and a weight threshold t.

To classify instructions, we perform exhaustive disassembly of the input binary B and match

against the tree. Matching is done by tokenizing the disassembled stream, performing normal-

ization as done during learning, and walking the tree. To classify bytes rather than instructions,

we again start at every offset but instead match the raw bytes instead of normalized instructions.

The weight of a sequence is determined by last matching node (the terminal node) during the

walk. For example, given the tree in Figure 3.2a, and our running example with sequences

1 mov %rbx,-0x10(%rsp)
2 mov %rbp,-0x8(%rsp)
3 sub %0x28,%rsp

the matching node will be mov%rbp,-0x8(%rsp), giving a weight of 0.9694. However, for

another sequence:

1 push %ebp
2 and $0x2,%esp

we would have weight 0.1445. We say the sequence is the beginning of a function if the output

weight w is not less than the threshold t.
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3.3.3 The Function Identification Problem

At a high level, we address the function identification problem by first determining the start ad-

dresses for functions, and then performing static analysis to recover the CFG of instructions that

are reachable from the start. Direct control transfers (e.g., direct jumps and calls) are followed

using recursive disassembly. Indirect control transfers, e.g., from indirect calls or jump tables, are

enumerated using VSA [22]. The final CFG then represents all instructions (and corresponding

bytes) that are owned by the function starting at the given address.

CFG recovery starts at a given address and recursively finds new nodes that are connected

to found nodes. The process ends when no more vertices are added into graph. Starting at the

addresses classified for FSI, CFG recovery recursively adds instructions that are reachable from

these starts. A first-in-first-out vertex array is maintained during CFG recovery.

At the beginning, there is only one element the start address in the array. In each round, we

process the first element by exploring new reachable instructions. If the new instruction is not in

the array, it will be appended to the end. Elements in the array are handled accordingly until all

elements have been processed and no more instructions are added.

If the instruction being processed is a branch mnemonic, the reachable instruction is the

branch reference. If it is a call mnemonic, the reachable instructions include both the call ref-

erence and the instruction directly following the call instruction. If it is an exit instruction,

there will be no new instruction. For the rest of mnemonics, the new instruction is the next

one by address. We handle indirect control transfer instruction by VSA: we infer a set that

over-approximates the destination of the indirect jump and thus over-approximate the function

identification problem.

Note that functions can exit by calling a no-return function such as exit. This means that

some call instructions in fact never return. To detect these instances, we check the call reference

to see if it represents a known no-return function such as abort or exit.
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3.3.4 Recursive Function Call Resolution

Pattern matching can miss functions; for example, a function that is written directly in assembly

may not obey calling conventions. To catch these kinds of missed functions, we continue to

supplement the function start list during CFG recovery. If a call instruction has its callee in the

.text section, we consider the callee to be a function start. We then do CFG recovery again,

starting at the new function start until there are no more functions added into the function start

list. We will refer to this strategy as recursive function call resolution (RFCR). In §3.4.3, we

discuss the effectiveness of this technique in function start identification.

3.3.5 Addressing Challenges

In this section, we describe how ByteWeight addresses the challenges raised in §4.1.2.

First, ByteWeight recovers functions that are unreachable via calls because it does not depend

on calls to identify functions. In particular, ByteWeight recovers any function start that matches

the learned weighted prefix tree as described above. Similarly, our approach will also learn

functions that have multiple entries, provided a similar specialization occurs in the training set.

This seems realistic in many scenarios since the number of compiler optimizations that create

multiple entry functions are relatively few and can be enumerated during training.

ByteWeight also deals with overlapping byte or instruction sequences provided that there is a

unique start address. Consider two functions that start at different addresses, but contain the same

bytes. During CFG recovery, ByteWeight will discover that both functions use the same bytes,

and attribute the bytes to both functions. ByteWeight can successfully avoid false identification

for inlined functions when inlined function does not behave like an empirical function start (does

not weighted over threshold in training).

Finally, note that ByteWeight does not need to attribute every byte or instruction to a function.

In particular, only bytes (or instructions) that are reachable from the recovered function entries

will be owned by a function in the final output.
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3.4 Evaluation

In this section, we discuss our experiments and performance. ByteWeight is a cross-platform tool

which can be run on both Linux and Windows. We used BAP-legacy [26] to construct CFGs.

The rest of the implementation consists of 1988 lines of OCaml code and 222 lines of bash shell

script. We set up ByteWeight on one desktop machine with a quad-core 3.5GHz i7-3770K CPU

and 16GB RAM. Our experiments aimed to address three questions as follows:

• Does ByteWeight’s pattern matching model perform better than known models for function

start identification? (§3.4.2)

• Does ByteWeight perform function start identification better than existing binary analysis

tools? (§3.4.3)

• Does ByteWeight perform function boundary identification better than existing binary

analysis tools? (§3.4.4)

In this section, we first describe our data set and ground truth (the oracle), then describe the

results of our experiments. We performed three experiments answering the above three questions.

In each experiment, we compared ByteWeight against existing tools in terms of both accuracy

and speed.

Because ByteWeight needs training, we divided the data into training and testing sets. We

used standard 10-fold validation, dividing the element set into 10 sub-sets, applying 1 of the 10

on testing, and using the remaining 9 for training. The overall precision and recall represent the

average of each test.

3.4.1 Data Set and Ground Truth

Our data set consisted of 2,200 different binaries compiled with four variables:

• Operating System. Our evaluation used both Linux and Windows binaries.

• Instruction Set Architecture (ISA). Our binaries consisted of both x86 and x86-64 bi-
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naries. One reason for varying the ISA is that the calling convention is different, e.g.,

parameters are passed by default on the stack in Linux on x86, but in registers on x86-64.

• Compiler. We used GNU gcc, Intel icc, and Microsoft VS.

• Optimization Level. We experimented with the four optimization levels from no opti-

mization to full optimization.

On Linux, our data set consisted of 2,064 binaries in total. The data set contained pro-

grams from coreutils, binutils, and findutils compiled with both gcc 4.7.2 and

icc 14.0.1. On Windows, we used VS 2010, VS 2012, and VS 2013 (depending on the require-

ments of the program) to compile 68 binaries for x86 and x86-64 each. These binaries came

from popular open-source projects: putty, 7zip, vim, libsodium, libetpan, HID API, and pbc (a

library for protocol buffers). Note that because Microsoft Symbol Server releases only public

symbols which do not contain information of private functions, we were unable to use Microsoft

Symbol Server for ground truth and include Windows system applications in our experiment.

We obtained ground truth for function boundaries from the symbol table and PDB file for

Linux and Windows binaries, respectively. We used objdump to parse symbol tables, and

Dia2dump [52] to parse PDB files. Additionally, we extracted “thunk” addresses from PDB

files. While most tools do not take thunks into account, IDA considers thunks in Windows

binaries to be special functions. To get a fair result, we filtered out thunks from IDA’s output

using the list of thunks extracted from PDB files.

3.4.2 Signature Matching Model

Our first experiment evaluated the signature matching model for function start identification.

We compared ByteWeight and Rosenblum et al.’s implementation in terms of both accuracy

and speed. In order to equally evaluate the signature matching models, recursive function call

resolution was not used in this experiment.

The implementation of Rosenblum et al. is available as a matching tool with 12 hard-coded
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signatures for gcc and 41 hard-coded signatures for icc. Their learning code was not available,

nor was their dataset. Although they evaluated VS in their paper, the version of the implementa-

tion that we had did not support VS and was limited to x86. Each signature has a weight, which is

also hard-coded. After calculating the probability for each sequence match, it uses a threshold of

0.5 to filter out function starts. Taking a binary and a compiler name (gcc or icc), it generates

a list of function start addresses. To adapt to their requirements, we divide Linux x86 binaries

into two groups by compiler, where each group consists of 516 binaries. We did 10-fold cross

validation for ByteWeight, and use the same threshold as Rosenblum et al.’s implementation.

We also evaluated another two varieties of our model: one without normalization, and one

with a maximum tree height of 3, which is same as the model used by Rosenblum et al. and

ByteWeight (3), respectively.

GCC ICC

Precision Recall Time(sec) Precision Recall Time(sec)

Rosenblum et al. 0.4909 0.4312 1172.41 0.6080 0.6749 2178.14

ByteWeight (3) 0.9103 0.8711 1417.51 0.8948 0.8592 1905.34

ByteWeight (no-norm) 0.9877 0.9302 19994.18 0.9727 0.9132 20894.45

ByteWeight 0.9726 0.9599 1468.75 0.9725 0.9800 1927.90

Table 3.2: Precision/Recall of different pattern matching models for function start identification.

Table 3.2 shows precision, recall, and runtime for each compiler and each function start

identification model. From the table we can see that Rosenblum et al.’s implementation had

an accuracy below 70%, while both ByteWeight-series models achieved an accuracy of more

than 85%. Note that ByteWeight with 10-length and normalized signatures (the last row in

table) performed particularly well, with an accuracy of approximately 97%, a more than 35%

improvement over Rosenblum et al.’s implementation.

Table 3.2 also details the accuracy and performance differences among ByteWeight with dif-

ferent configurations. Comparing against the full configuration model (ByteWeight), the model

with a smaller maximum signature length (ByteWeight (3)) performs slightly faster (3% improve-
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ment), but sacrifices 7% in accuracy. The model without signature normalization (ByteWeight

(no-norm)) has only 1% higher precision but 6.68% lower recall, and the testing time is ten times

longer than that of the normalized model.

3.4.3 Function Start Identification

The second experiment evaluated our full function start identification against existing static anal-

ysis tools. We compared ByteWeight (no-RFCR)—a version without recursive function call

resolution, ByteWeight, and the following tools:

IDA. We used IDA 6.5, build 140116 along with the default FLIRT signatures. All function

identification options were enabled.

BAP-legacy. We used BAP-legacy 0.7, which provides a get function utility that can be

invoked directly.

Dyninst. Dyninst offers the tool unstrip [114] to identify functions in binaries without debug

information.

Naive Method. This matched simple 0x55 (push %ebp or push %rbp) and 0xc3 (ret or

retq) signatures only.

We divided our data set into four categories: ELF x86, ELF x86-64, PE x86, and PE x86-

64. Unlike the previous experiment, binaries from various compilers but the same target were

grouped together. Overall, we had 1032 ELF x86 and ELF x86-64 binaries, and 68 PE x86

and PE x86-64 binaries. We evaluated these categories separately, and again applied 10-fold

validation. During testing, we used the same score threshold t = 0.5 as in the first experiment.

Note that not every tool in our experiment supports all binary targets. For example, Dyninst

does not support ELF x86-64, PE x86, or PE x86-64 binaries. We use “-” to indicate when the

target is not supported by the tool. Also, we omitted 3 failures in ByteWeight, and 10 failures in

Dyninst during this experiment. Due to a bug in BAP-legacy, ByteWeight failed in 3 icc com-

piled ELF x86-64 binaries: ranlib with -O3, ld new with -O2, and ld new with -O3. Dyninst
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ELF x86 ELF x86-64 PE x86 PE x86-64

Naive 0.4217/0.3089 0.2606/0.2506 0.6413/0.4999 0.0000/0.0000

Dyninst 0.8877/0.5159 − − −

BAP 0.8910/0.8003 − 0.3912/0.0795 −

IDA 0.7097/0.5834 0.7420/0.5550 0.9467/0.8780 0.9822/0.9334

ByteWeight (no-RFCR) 0.9836/0.9617 0.9911/0.9757 0.9675/0.9213 0.9774/0.9622

ByteWeight 0.9841/0.9794 0.9914/0.9847 0.9378/0.9537 0.9788/0.9798

Table 3.3: Precision/Recall for different function start identification tools.

failed in 8 icc compiled ELF x86-64 binaries and 2 gcc compiled ELF x86-64 binaries. The

results of our experiment are shown in Table 3.3.

As evident in Table 3.3, ByteWeight achieved a higher precision and recall than ByteWeight

without recursive function call resolution. ByteWeight performed above 96% in Linux, while all

other tools all performed below 90%. In Windows, we have comparable performance to IDA in

terms of precision, but improved results in terms of recall.

Interestingly, we found that the naive method was not able to identify any functions in PE

x86-64. This is mainly because VS does not use push %rbp to begin a function; instead, it

uses move instructions.

3.4.4 Function Boundary Identification

The third experiment evaluated our function boundary identification against existing static anal-

ysis tools. As in the last experiment, we compared ByteWeight, ByteWeight (no-RFCR), IDA,

BAP-legacy, and Dyninst, classified binaries by their target, and applied 10-fold validation on

each of the classes. The results of our experiment are shown in Table 3.4.

Our tool performed the best in Linux, and was comparable to IDA in Windows. In particular,

for Linux binaries, ByteWeight and ByteWeight (no-RFCR) have both precision and recall above

90%, while IDA is below 73%. For Windows binaries, IDA achieves better results than Byte-

Weight with x86-64 binaries, but is slightly worse for x86 binaries.
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ELF x86 ELF x86-64 PE x86 PE x86-64

Naive 0.4127/0.3013 0.2472/0.2429 0.5880/0.4701 0.0000/0.0000

Dyninst 0.8737/0.5071 − − −

BAP 0.6038/0.6300 − 0.1003/0.0219 −

IDA 0.7063/0.5653 0.7284/0.5346 0.9393/0.8710 0.9811/0.9324

ByteWeight (no-RFCR) 0.9285/0.9058 0.9317/0.9159 0.9503/0.9048 0.9287/0.9135

ByteWeight 0.9278/0.9229 0.9322/0.9252 0.9230/0.9391 0.9304/0.9313

Table 3.4: Precision/Recall for different function boundary identification tools.

3.4.5 Performance

Training. We compare ByteWeight against Rosenblum et al.’s work in terms of time required

for training. Since we do not have access to either their training code or their training data, we

instead compare the results based on the performance reported in paper. There are two main

steps in Rosenblum et al.’s work. First, they conduct feature selection to determine the most

informative idioms – patterns that either immediately precede a function start, or immediately

follow a function start. Second, they train parameters of these idioms using a logistic regression

model. While they did not provide the time for parameter learning, they did describe that feature

selection required 150 compute days for 1,171 binaries. Our tool, however, spent only 586.44

compute hours to train on 2,064 binaries, including overhead required to setup cross-validation.

Testing. We list the performance of ByteWeight, IDA, BAP-legacy, and Dyninst for testing.

As described in section 3.3, ByteWeight has three steps in testing: function start identification

by pattern matching, function boundary identification by CFG and VSA, and recursive function

call resolution (RFCR). We report our time performance separately, as shown in Table 3.5.

IDA is clearly the fastest tool for PE files. For ELF binaries, it takes a similar amount of time

to use IDA and ByteWeight to identify function starts, however our measured times for IDA also

include the time required to run other automatic analyses. BAP-legacy and Dyninst have better

performance on ELF x86 binaries, mainly because they match fewer patterns than ByteWeight
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ELF x86 ELF x86-64 PE x86 PE x86-64

Dyninst 2566.90 − − −

BAP 1928.40 − 3849.27 −

IDA* 5157.85 5705.13 318.27 371.59

ByteWeight-Function Start 3296.98 5718.84 10269.19 11904.06

ByteWeight-Function Boundary 367018.53 412223.55 54482.30 87661.01

ByteWeight-RFCR 457997.09 593169.73 84602.56 97627.44

* For IDA, performance represents the total time needed to complete disassembly and auto-analysis.

Table 3.5: Performance for different function identification tools (in seconds).

and do not normalize instructions. This table also shows that function boundary identification

and recursive function call resolution are expensive to compute. This is mainly because we use

VSA to resolve indirect calls during CFG recovery, which costs more than typical CFG recovery

by recursive disassembly. Thus while ByteWeight with RFCR enabled has improved recall, it is

also considerably slower.

3.5 Discussion

Recall that our tool considers a sequence of bytes or instructions to be a function start if the

weight of the corresponding terminal node in the learned prefix tree is greater than 0.5. The

choice to use 0.5 as the threshold was largely dictated by Rosenblum et al., who also used 0.5

as a threshold in their implementation. While this appears to be a good choice for achieving

high precision and recall in our system, it is not necessarily the optimal value. In the future, we

plan to experiment with different thresholds to better understand how this affects the accuracy of

ByteWeight.

While there are similarities betwen Rosenblum et al.’s approach and ours, there are also

several key differences that are worth highlighting:

• Rosenblum et al. considered sequences of bytes or instructions immediately preceding

functions, called prefix idioms, as well the entry idioms that start a function. Our present
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model does not include prefix idioms. Rosenblumet al.’s experiments show prefix idioms

increase accuracy in their model. In the future, we plan to investigate whether adding

prefix matching to our model can increase its accuracy as well.

• Rosenblum et al.’s idioms are limited to at most 4 instructions [1, p. 800] due to scalability

issues with forward feature selection. With our prefix tree model, we can comfortably

handle longer instruction sequences. At present, we settle on a length of 10. In the future,

we plan to optimize the length to strike a balance between training speed and recognition

accuracy.

• Rosenblum et al.’s CRF model considers both positive and negative features. For exam-

ple, their algorithm is designed to avoid identifying two function starts where the second

function begins within the first instruction of the first function (the so-called “overlapping

disassembly”). Although we consider both positive and negative features as well, in con-

strast the above outcome is feasible with our algorithm.

While our technique is not compiler-specific, it is based on supervised learning. As such,

obtaining representative training data is key to achieving good results with ByteWeight. Since

compilers and optimizations do change over time, ByteWeight may need to be retrained in order

to accurately identify functions in this new environment. Of course, the need for retraining

is a common requirement for every system based on supervised learning. This is applicable

to both ByteWeight and Rosenblum et al.’s work, and underscores the importance of having a

computationally efficient training phase.

Despite our tool’s success, there is still room for improvement. As shown in Section 4.5, over

80% of ByteWeight failures are due to the misclassification of the end instruction for a function,

among which more than half are functions that do not return and functions that call such no-return

functions. To mitigate this, we could backward propagate information about functions that do

not return to the functions that call them. For example, if function f always calls function g,

and g is identified as a no-return function, then f should also be considered a no-return function.
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We could also use other abstract domains along with the strided intervals of VSA to increase the

precision of our indirect jump analysis [22], which can in turn help us identify more functions

more accurately.

One other scenario where ByteWeight currently struggles is with Windows binaries com-

piled with hot patching enabled. With such binaries, functions will start with an extra mov

%edi,%edi instruction, which is effectively a 2-byte nop. A training set that includes bina-

ries with hot patching can reduce the accuracy of ByteWeight. Because the extra instruction

mov %edi,%edi is treated as the function start in binaries with hot patching, any subsequent

instructions are treated as false matches. Thus, any sequence of instructions that would nor-

mally constitute a function start but now follows a mov %edi,%edi is considered to be a

false match. Consider a hypothetical dataset where all functions start with push %ebp; mov

%esp,%ebp, but half of the binaries are compiled with hot patching and thus start functions with

an extra mov %edi,%edi. Half of the time, the sequence push %ebp; mov %esp,%ebp

will be treated as a function start, but in the other half it will not be treated as such, thus leav-

ing the sequence with a weight of 0.5 in our prefix tree. In order to deal with this compiler

peculiarity, we would need give special consideration to mov %edi,%edi, treating both this

instruction and the instruction following it as a function start for the sake of training.

Although training ByteWeight for function start identification is relatively fast, training for

function boundary identification is still quite slow. Profiling reveals that most of the time is spent

building CFGs, and in particular resolving indirect jumps using VSA. In future work, we plan to

explore alternative approaches that avoid VSA altogether.

Finally, obfuscated or malicious binaries which intentionally obscure function start informa-

tion are out of scope.
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3.6 Related Work

In addition to the already discussed Rosenblum et al. [1], there are a variety of existing binary

analysis platforms tackle the binary identification problem. BitBlaze [30] assumes debug infor-

mation. If no debug information is present, it treats the entire section as one function. BitBlaze

also provides an interface for incorporating Hex Rays function identification information.

Dyninst [62] also offers tools, such as unstrip [114], to identify functions in binaries without

debug information. Within the Dyninst framework, potential functions in the .text section are

identified using the hex pattern 0x55 representing push %ebp. First, Dyninst will start at the

entry address and traverse inter- and intra-procedural control flow. The algorithm will scan the

gaps between functions and check if push %ebp is present. This does not preform well across

different optimizations and operating systems.

IDA using proprietary heuristics and FLIRT [55] technique attempts to help security re-

searchers recover procedural abstractions. However, updating the signature database requires an

amount of manual effort that does not scale. In addition, because FLIRT uses a pattern matching

algorithm to search for signatures, small variations in libraries such as different compiler opti-

mizations or the use of different compiler versions, prevent FLIRT from recognizing important

functions in a disassembled program. The Binary Analysis Platform (BAP-legacy) also attempts

to provide a reliable identification of functions using custom-written signatures [32].

Kruegel et al. perform exhaustive disassembly, then use unigram and bigram instruction mod-

els, along with patterns, to identify functions [72]. Jakstab uses two pre-defined patterns to

identify functions for x86 code [71, §6.2].

3.7 Conclusion

We introduce ByteWeight, a system for automatically learning to identify functions in stripped

binaries. In our evaluation, we show on a test suite of 2,200 binaries that ByteWeight outperforms
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previous work across two operating systems, two compilers, and four different optimizations.

In particular, ByteWeight misses only 44,621 functions in comparison with the 266,672 func-

tions missed by the industry-leading tool IDA. Furthermore, while IDA misidentifies 459,247

functions, ByteWeight misidentifies only 43,992 functions. To seed future improvements to the

function identification problem, we are making our tools and dataset available in support of open

science at http://security.ece.cmu.edu/byteweight/.
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Chapter 4

Automatic Exploit Reuse for Control Flow

Hijacking Exploits

This chapter of the dissertation focuses on automatic exploit reuse technique. At a high level,

automatic exploit reuse is an active defense technique: a victim who receives an attack can have

the ability to take advantage of the received attack and generate his own attack, especially for

control flow hijacking exploits which is a critical type of exploit that could take the full control

of the compromised machine. In this chapter, we describe how we initiate the automatic exploit

reuse problem and introduce our design of the automatic exploit reuse technique for control flow

hijacking exploits.

Remote exploits are extremely dangerous. With the help of remote exploits against a piece of

software running on a victim computer, an attacker can install backdoors and exfiltrate sensitive

information without physical access to the compromised system, leading to real-world impacts

on the finances and reputation of the victim.

However, developing a remote exploit is not easy. A comprehensive understanding of the

vulnerability is a must, and complex techniques to bypass defenses on the remote system are

necessary. When possible, rather than developing a new exploit from scratch, attackers prefer

to reuse existing exploits in their attacks, making necessary changes to adapt these exploits to
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new environments. One such adaptation is the replacement of the original shellcode (i.e., the

attacker-injected code that is executed as the final step of the exploit) in the original exploit

with a replacement shellcode, resulting in a modified exploit that carries out the actions desired

by the attacker as opposed to the original exploit author. We call this a shellcode transplant.

Shellcode transplanting has many applications, including reversing command and control proto-

cols, understanding captured exploits, and replaying attacks. Thus, this capability is very helpful

in situations ranging from rapid cyber-response (i.e., quick analysis of and response to 0-day

attacks) and adversarial scenarios (like cyber-security Capture-The-Flag competitions or cyber

warfare in the real world). Unfortunately, current techniques to transplant shellcode generally

require an analyst to have a decent understanding of how the original exploit interacts with the

program, what vulnerability it triggers, and how it bypasses deployed exploit mitigations. As a

result, the analyst must put a lot of effort into development and debugging, which negates much

of the advantage of shellcode transplanting.

In investigating this problem, we identified three main challenges to tackling the shellcode

transplant problem. First, there is generally no clear boundary separating the shellcode from the

rest of an exploit. Second, as an exploit’s shellcode is commonly constructed through non-trivial

data transformations, even if the bytes representing the original shellcode could be separated

from the exploit, rewriting these bytes to a replacement shellcode would be non-trivial. Third,

the shellcode and the remainder of the content in an exploit can be mutually dependent on each

other (e.g., a field in the exploit payload may dictate the size of the embedded shellcode). Such

relations can pose potentially complex constraints on any replacement shellcode that might be

transplanted. When those constraints are violated by replacement shellcode, it is challenging to

modify the exploit and/or the replacement shellcode in order for the modified exploit to function

properly.

Previous work in the field of automated exploit generation generates exploits by constraining

the memory bytes in each attacker-controlled buffer to the target shellcode. They enumerate

all possible offsets in every attacker-controlled buffer until a solution is found [37, 63]. Such
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methods are insufficient. In the worst case, when attempting to compensate for the case of

conflicting constraints on the replacement shellcode, these methods degenerate to a symbolic

exploration of the program, which generally ends in a path explosion problem or is hampered by

the inability of the symbolic execution engine to efficiently reverse complex data transformations.

In fact, as we show in our evaluation, less than a third of the original exploits in our dataset can

be modified by existing techniques.

In this chapter, we present ShellSwap, an automated system that addresses the shellcode

transplant problem. ShellSwap takes an existing exploit and a user-specified replacement shell-

code as input and produces a modified exploit that targets the same vulnerability as the original

exploit does but executes the replacement shellcode after exploitation. ShellSwap tackles the

challenges discussed above with a mix of symbolic execution and static analysis techniques,

applying novel techniques to identify the original shellcode, recover the data transformation per-

formed on it, and resolve any conflicts introduced by the transplant of the replacement shellcode.

By utilizing information obtained from the original exploit and creatively transforming the re-

placement shellcode, ShellSwap rarely degrades to a pure symbolic exploration, and is thus more

efficient and effective compared to previous solutions.Additionally, the use of carefully-designed

systematic approaches enables ShellSwap to transplant more shellcode variants. In our experi-

ment, ShellSwap successfully generates new exploits for 85% of all cases, which is almost three

times the success rate of prior techniques.

To the best of our knowledge, ShellSwap is the first automated system that modifies exploits

based on shellcode provided by analysts. In terms of offense, ShellSwap greatly reduces the

overhead in attack reflection, which enables prompt responses to security incidents like 0-day

attacks, especially in a time-constrained, competitive scenario such as a hacking competition or

cyber warfare. ShellSwap also makes it possible for entities to stockpile exploits in bulk, and

tailor them to specific mission parameters before they are deployed at a later time. As orga-

nizations such as the National Security Agency are commonly known to be stockpiling caches

of vulnerabilities, such a capability can greatly reduce the overhead in using weapons from this
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cache. ShellSwap is also helpful in defense, where it can be used to debug exploits discovered in

the wild (i.e. by transplanting a piece of shellcode that is benign or implements monitoring and

reporting functionality) and rediscover vulnerabilities being exploited.

Specifically, our work makes the following contributions:

• We design the ShellSwap system, which is the first end-to-end system that can modify

an observed exploit and replace the original shellcode in it with an arbitrary replacement

shellcode. Our system shows that the automatic exploit reuse is possible: even a person

who has little understandings about security vulnerabilities can retrofit an exploit for their

custom use-case.

• We propose novel, systematic approaches to utilize information from the original exploit

to prevent ShellSwap from degenerating to inefficient symbolic exploration, and revise

the replacement shellcode without changing its semantics to fit constraints implicit to the

original exploit. Those approaches are essential to the performance of ShellSwap.

• We evaluate our system on 100 cases — 20 original exploits, each with 5 different pieces

of shellcode. Our system successfully generates modified exploits in 85% of our test set,

and all new exploits work as expected. We also compare our system with the previous state

of the art, and we find that previous methods only work for 31% of our test set. The fact

that ShellSwap exhibits a success rate almost triple that of the previous solution implies

that the impact of the challenges inherent in shellcode transplant were under-estimated,

and that future work targeting this problem will be beneficial.

4.1 Overview

ShellSwap takes, as an input, a vulnerable program, the original exploit that had been observed

being launched against this program, and a replacement shellcode that the original shellcode

in the original exploit should be replaced with. Given these inputs, it uses a combination of
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symbolic execution and static analysis to produce a modified exploit that, when launched against

the vulnerable program, causes the replacement shellcode to be executed.

Original 
Exploit 

Vulnerable 
Program 

Symbolic 
Tracing 

Exploitable 
State 

Path 
Constraints 

Shellcode 
Transplant 

Replacement 
Shellcode 

Modified Exploit 
or 
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Figure 4.1: The architecture of the ShellSwap system.

Our intuition for solving the shellcode transplant problem comes from the observation that

a successful control flow hijacking exploit consists of two phases: before the hijack, where

the program state is carefully set up to enable the hijack, and after the hijack, when injected

shellcode carries out attacker-specified actions. We call the program state after the first phase

the exploitable state, and we call the instruction sequence that the program executes until the

exploitable state the exploit path. An input that makes the program execute the same path as the

original exploit does will lead the program to an exploitable state. Therefore, if we find an input

that executes the instructions of the original exploit path in the first phase and the new shellcode

in the second phase, that input represents the modified exploit.

Given these inputs, it proceeds through a number of steps, as diagrammed in Figure 4.1. The

steps for generating the new exploit are as follows:

• Symbolic Tracing. The path generator replays the exploit in an isolated environment

and records the executed instructions. The output of the path generator is a sequence of

instruction addresses, which we call the dynamic exploit path.

The path generator passes the dynamic exploit path to the symbolic tracing engine. Then

tracer sets the input from the exploit as a symbolic value and starts symbolically executing

the program. At every step of this execution, the tracer checks if the current program state
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violates a security policy. There are two reasons for this: a) we want to double check that

the exploit succeeds, and b) we need to get the end of the normal execution and the start

of malicious computation, where the exploit diverts the control flow of the program to the

shellcode. When the tracer detects that the security policy has been violated, it considers

the trace complete and the exploitable state reached.

The tracing engine records the path constraints introduced by the program on the exploit

input in order to reach the exploitable state, and the memory contents of the exploitable

state itself. These will be used in the next step to surmount challenges associated with

shellcode transplanting.

• Shellcode Transplant. Shellcode transplant is the critical step in the ShellSwap system.

It takes the exploitable state, the path constraints, and the replacement shellcode as input,

and outputs a modified exploit that takes advantage of the vulnerability and executes the

replacement shellcode. After this step, the system will output either the modified exploit

or an error indicating that a modified exploit could not be found.

These steps are further described in Section 4.2 (for Symbolic Tracing) and Section 4.3 (for

Shellcode Transplant).

ShellSwap focuses on exploits against control-flow hijacking vulnerabilities, which are a type

of software bug that allows an attacker to alter a program’s control flow and execute arbitrary

code (specifically, the shellcode). Control-flow hijacking vulnerabilities have been considered as

the most serious vulnerabilities, since the attacker can take control of the vulnerable system. Un-

fortunately, control-flow hijacking vulnerabilities are the most prevalent class of vulnerabilities

in the real world: over the past 18 years, 30.6% of reports in the Common Vulnerabilities and

Exposures database represent control-flow hijacking vulnerabilities [42]. Thus, while the ability

to reason about other types of exploits would be interesting, we leave the exploration of this to

future work.
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4.1.1 Motivating Example

To better communicate the concept of shellcode transplant and demonstrate the challenges in-

herent to it, we provide a motivating example. We first introduce a vulnerable program and an

original exploit, and then discuss the challenges posed by two different instances of replacement

shellcode.

Vulnerable Program. Consider a vulnerable program with source code shown in Code 4.1,

where the program receives a string terminated by a newline, checks the first character and cal-

culates the length of the string. Note that the source code is for clarity and simplicity; our system

runs on binary program and does not require source code.

1 int example(){
2 int len = 0;
3 char string[20];
4 int i;
5 if (receive_delim(0, string, 50, ’\n’) != 0)
6 return -1;
7 if(string[0] == ’ˆ’)
8 _terminate(0);
9 for(i = 0; string[i] != ’\0’; i++)

10 len++;
11 return len;
12 }

Code 4.1: Motivating Example.

This program has a control-flow hijacking vulnerability in the processing of the received in-

put. The string variable is a 20-byte buffer defined at line 3. However, the string received from

user input can have up to 50 characters, which will overflow the buffer string and eventually

overwrite the return address stored on the stack if the provided string is long enough. Figure 4.2

shows the stack layout of the example function. The saved return address (shown as saved

%eip) is 36 bytes above the beginning of buffer string. This implies that if the received input

has more than 36 characters, the input will overwrite the saved return address and change the

control flow of the program when function example returns.
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Figure 4.2: The stack layout of the example function.

1 shellcode = "\x31\xc0\x40\x40\x89\x45\xdc"
2 exploit = shellcode + "\x90" * (36 - len(shellcode)) + "\x50\xaf\xaa\

xba\n"

Code 4.2: The original exploit with shellcode.

Original Exploit. Listing 4.2 shows the original exploit for the running example. The shell-

code starts at the beginning of the exploit, followed by padding and the address with which to

overwrite the return address. When the vulnerable program executes with the original exploit,

the return address for function example will be changed to 0xbaaaaf50, which points to the

beginning of buffer string, and when function example returns, the control flow will be

redirected to the shellcode.

4.1.2 Challenges

To demonstrate the challenges inherent in the shellcode transplant problem, we first consider

a naive approach: if we find the location of the old shellcode in the original exploit, we could

generate a new exploit by replacing, byte by byte, the old shellcode with the new one. We call this

the shellcode byte-replacement approach. However, this naive approach assumes two things, that
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the shellcode stays in its original form throughout execution and that the replacement shellcode

is the same size as the original shellcode. As we discussed previously, both of these assumptions

are too strict for real-world use cases.

For example, consider the following replacement shellcode for the original exploit in our

motivating example:
1 xor %esi,%esi ; 31 f6
2 lea 0x1(%esi),%ebx ; 8d 5e 01
3 lea 0x8(%esi),%edx ; 8d 56 08
4 push 0xaaaaaaaa ; ff 35 aa aa aa aa
5 push $0xdddddddd ; 68 dd dd dd dd
6 mov %esp,%ecx ; 89 e1
7 lea 0x2(%esi),%eax ; 8d 46 02
8 int $0x80 ; cd 80

Code 4.3: The disassembly of the replacement shellcode shellcode1.

If we apply the shellcode byte-replacement method, the modified exploit be:

1 shellcode = "\x31\xf6\x8d\x5e\x01\x8d\x56\x08\xff\x35\xaa\xaa\xaa\xaa\
x68\xdd\xdd\xdd\xdd\x89\xe1\x8d\x46\x02\xcd\x80"

2 exploit = shellcode + "\x90" * (36 - len(shellcode)) + "\x50\xaf\xaa\
xba\n"

Code 4.4: The modified exploit for shellcode1 using the shellcode replacement
approach.

However, the modified exploit will not work when applied to our motivating example. Fig-

ure 4.3a shows the stack layout before function example starts. Besides saved registers, there

are two variables between string and the saved %eip. When the program receives an input,

the resulting stack layout is shown in Figure 4.3b. However, control is not immediately trans-

ferred to the shellcode. The program continues, and because variable len is updated before

returning, the value at this address changes. By the time the function transfers control flow to

the shellcode, the program changes the 20th through the 28th bytes of the replacement shell-

code, as shown in Figure 4.3c. In our example, this represents unexpected modification to the

replacement shellcode, rendering it nonfunctional.

In some cases, previous work is, using very resource-intensive techniques, capable of re-
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Figure 4.3: The stack layout of function example at runtime.

finding the vulnerability and re-creating an exploit, but these systems all suffer from extreme

scalability issues because they approach vulnerability detection as a search problem. If we do

not want to re-execute these resource-expensive systems to re-identify and re-exploit vulnerabil-

ities, a new approach is needed. To this end, we identified two main categories of challenges in

shellcode transplanting: one dealing with the layout of memory at the time the vulnerability is

triggered, and the other having to do with the actions taken in the path of execution before the

vulnerability is triggered.
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Memory Conflicts. Previous work [37, 63] places shellcode in memory by querying a con-

straint solver to solve the constraints generated in the Symbolic Tracing step and concretizing a

region of memory to be equal to the desired shellcode. However, as is the case in our naive byte-

replacement approach, this is not always possible: often, when dealing with fine-tuned exploits,

there is simply not enough symbolic data in the state to concretize to shellcode [107].

For example, recall the shellcode in Listing 4.4 in the context of our motivating example.

This piece of shellcode is 26 bytes long, which should have fit into the 50 bytes of user input.

However, the 20th through the 28th byte are overwritten, and the 36th through 40th byte must be

set to the address of the shellcode (to redirect control flow). This leaves three symbolic regions: a

20-byte one at the beginning of the buffer, an 8-byte one between the ret and len variables and

the saved return address, and the 10 bytes after the saved return address. None of these regions

are big enough to place this shellcode, causing a memory conflict for the shellcode transplanting

process.

Path Conflicts. To drive program execution to the exploited state, the content of the modified

exploit must satisfy the path constraints recovered from the Symbolic Tracing step. However, by

requiring the replacement shellcode to be in the memory of the exploitation state, we add new

constraints (“shellcode constraints”) on the exploit input. These new conditions may be conflict

with those generated along the path. We call such conflict the path conflict. In the presence of

such a conflict, if we locate the replacement shellcode in the exploitation state (and discard the

path constraints that conflict with this), the exploit path will change, and the new program state

resulting from the changed path may not trigger the vulnerability.

For example, consider the replacement shellcode in Listing 4.5 in the context of the motivat-

ing example.

1 push $0x0 ; 6a 00
2 push $0xa65 ; 68 65 0a 00 00
3 push $0x646f636c ; 68 6c 63 6f 64
4 push $0x6c656873 ; 68 73 68 65 6c
5 mov $0x2,%eax ; b8 02 00 00 00
6 mov $0x1,%ebx ; bb 01 00 00 00

69



7 mov %esp,%ecx ; 89 e1
8 mov $0xa,%edx ; ba 0a 00 00 00
9 lea 0x10(%esp),%esi ; 8d 74 24 10

10 int $0x80 ; cd 80

Code 4.5: The disassembly of the replacement shellcode shellcode2.

When the running example executes with an input string, the for loop body before the return

increments i until string[i] is a null byte. For the original exploit, the loop will repeat for

40 times (the length of the exploit string), meaning that the path constraints will mandate that the

first 40 bytes of string are not null. For the replacement shellcode, however, if we locate the

new shellcode at the beginning of string, the loop will only iterate once, because the second

byte of the shellcode is null. This creates a contradiction between the path constraints and the

shellcode constraints.

Surmounting the Challenges. The intelligent reader can certainly envision approaches to

achieve shellcode transplanting in the motivating example. However, this example is just 12

lines of code. One can see that, with bigger examples and in the general case, these challenges

can be quite complicated to surmount.

In the rest of the chapter, we will discuss how to identify conflicts while transplanting the

shellcode and how to satisfy both memory and path conflicts to successfully transplant shellcode

in a wide variety of exploits.

4.2 Symbolic Tracing

Essentially, ShellSwap separates the entire execution of the original exploit into two phases:

before the control-flow hijack and after the control-flow hijack. The Symbolic Tracing step

analyzes the former. The goal of this step is to generate the exploitable state of the program and

record the path constraints that are induced by conditional branches that are encountered on the

path. This involves two main considerations.
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First, we must determine when the control-flow hijack occurs. We do this by leveraging the

concept of security policies, which has been thoroughly explored by researchers [33, 50, 67, 75,

117]. In our work, we use the well-studied taint-based enforceable security policy [96, 117].

This policy determines whether or not a program state is safe by checking the instruction being

executed. If the instruction directly is tainted by remote input, then the program state is deemed

unsafe and the path is terminated.

Second, we must determine how to perform the tracing, as there are several possible tech-

niques that might be used here. For example, we could use dynamic taint analysis to identify

when executed instructions are tainted by input data. While this would be relatively fast, taint

analysis is not sufficient. Although it can identify violations to our security policy caused by

tainted input, it cannot recover and track path constraints. Thus, in our system, we apply con-

colic execution to trace the path that the exploit runs on the program. We ensure tracing accuracy

in two ways: we record a dynamic trace of the exploit process (and require that our symbolic

trace conform to the same instructions), and we pre-constrain the symbolic data to be equal to the

original exploit. The former avoids the path explosion inherent in concolic execution exploration

(because we only care about the branch that the exploit chooses), and the latter greatly simplifies

the job of the symbolic constraint solver during tracing (by providing it with a pre-determined

solution). This method is similar to the pre-constraint tracing and the input pre-constraining ap-

proach proposed by Driller [110] (and, in fact, part of the implementation derives off of Driller’s

tracing module).

The trace-directed symbolic execution takes a program and an original exploit and produces

path constraints and the exploitable state. The exploitable state includes the symbolic value of

registers and memory at the moment that the program starts to execute the shellcode. After this

step completes, the pre-constraints introduced in the beginning are removed, making it possible

to constrain some of the memory in the exploitable state to contain values representing, for

example, the replacement shellcode. The remaining path constraints guarantee that any satisfying

input will make the program to execute the same execution trace and triggers the vulnerability.
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4.3 Shellcode Transplant

After the exploitable state and the path constraints associated with it have been recovered, Shell-

Swap can attempt to re-constrain the shellcode to be equal to the replacement shellcode by

adding shellcode constraints. However, as discussed in Section 4.1, the shellcode constraints

may conflict with the path constraints. Previous work [37, 63] addresses this issue by trying

other shellcode locations, but even the simple motivating example in Section 4.1 is too compli-

cated for this to work.

The Shellcode Transplant steps attempts to resolve these conflicts. If it can do so, the mod-

ified exploit, containing the replacement shellcode, is produced. If it fails, it returns an error

indicating that the exploit could not be found.

The step proceeds in several phases, in a loop, as shown in Figure 4.4. First, in the Prepro-

cessing phase, ShellSwap identifies possible memory locations into which replacement shellcode

(or pieces of it) can be placed. Next, in the Layout Remediation phase, it attempts to remedy

memory conflicts (as discussed in Section 4.1.2) and fit the replacement shellcode into the iden-

tified memory locations, performing semantics-preserving modifications (such as code splitting)

if necessary. If this fails due to a resulting conflict with the path constraints (a path conflict,

as discussed in Section 4.1.2), ShellSwap enters the Path Kneading phase and attempts to iden-

tify alternate paths that resolve these conflicts while still triggering the vulnerability. If such a

path can be found, its constraints replace the path constraints, and the system repeats from the

preprocessing phase.

If ShellSwap encounters a situation where neither the memory conflicts nor the path con-

flicts can be remedied, it triggers the Two-Stage Fallback and attempts to repeat the Shellcode

Transplant stage with a fallback, two-stage shellcode.
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Figure 4.4: The phases of the Shellcode Transplant step.

4.3.1 Preprocessing

Before the system tries to locate the new shellcode, it scans the memory in the exploitable state

to identify symbolic buffers. A symbolic buffer is a contiguous memory where all bytes are

symbolic. To find symbolic buffers, our system iterates the bytes of the memory, marking each

contiguous region. After finding all symbolic buffers, we sort the buffers by the length and the

number of symbolic input variables involved in each buffer. Buffers with bigger length and more

symbolic values has more varieties of concrete values, and thus are more likely to be able to hold

the replacement shellcode.

4.3.2 Layout Remediation

Given symbolic buffers from the previous phase, the system attempts to fit the replacement shell-

code into the exploitable program state. As an innovation over prior work, ShellSwap does not

consider a piece of shellcode as an integrated memory chunk. Instead, we model the new shell-

code as a sequence of instructions. It is not necessary to keep these instructions contiguous; we

could insert jmp instructions to “hop” from one shellcode instruction in one symbolic buffer to

another instruction in another buffer. Thus, we attempt to fit pieces of the shellcode (plus any

necessary jump instructions) into previously-identified symbolic buffers.
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Input :
SH : The new shellcode
ST : The current exploitable program state. ST .mem[j] means the memory at j in the state ST
I: The symbolic buffers generated by preprocessing
C: The constraints set
i: The index of the instruction of the shellcode
a: The start address that we plan to put SH [i]
Output:
E: A new exploit or Not Found

1 if i > len(SH ) then
2 // We have successfully put the entire piece of shellcode to

the exploitable state.
3 E ← Solve(C);
4 return E;
5 end
6 else if i < 0 then
7 // We cannot successfully put the entire piece of shellcode to

the exploitable state if we put SH[i] at a.
8 return Not Found;
9 end

10 else
11 if I has enough space after a then
12 // Construct the new constraint asserting the memory at a

concretize to the i-th byte of the replacement shellcode.
13 c← (ST.mem[a : a+ len(SH[i])] == SH[i]);
14 C ′ ← C + c;
15 if Solve(C’) has solution then
16 ST ′ ← a new state with ST.mem[a : a+ len(SH[i])] = SH[i];
17 a′ ← Next(I, a+ len(SH[i]));
18 return Locate(SH, ST ′, I, C ′, i+ 1, a′);
19 end
20 else
21 // We cannot put SH[i] at a. Instead, we need to find

another location for SH[i] and hop to the location.
22 if Hop(SH, ST, I, C, i, a) == Not Found then
23 return Not Found;
24 end
25 else
26 ST ′, a′, C ′ ← Hop(SH, ST, I, C, i, a);
27 return Locate(SH, ST ′, I, C ′, i+ 1, a′);
28 end
29 end
30 end
31 return Not Found;
32 end

Algorithm 1: The algorithm of the Locate function.
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Input :
SH: The new shellcode
ST : The current exploitable program state. ST.mem[j] means the memory at j in the state ST
I: The symbolic buffers generated by preprocessing
C: The constraints set
i: The index of the instruction of the shellcode. SH[i] means the bytes for the i-th instruction of
the shellcode SH .
a: The start address that we plan to put SH[i]
Output:
ST ′: The updated exploitable program state, with the jump instruction and SH[i] in the memory.
C ′: The updated constraints set
a′: The start address for the next instruction

1 if i < 0 then
2 // We cannot successfully hop SH[i].
3 return Not Found;
4 end
5 else
6 // find an address to put SH[i]
7 a′ ← None;
8 at ← Next(I, a+ lenjmp));
9 while at is not None do

10 c← (ST.mem[at : at + len(SH[i])] == SH[i]);
11 C ′ ← C + c;
12 if Solve(C’) has solution then
13 // SH[i] can be put at ST.mem[at]
14 cjmp ← jump instruction constraint;
15 C ′′ ← C ′ + cjmp;
16 if Solve(C ′′) has solution then
17 // The jump instruction can be put at ST.mem[a]
18 ST ′ ← a new state with SH[i] and jump instruction;
19 a′ ← Next(I, at + len(SH[i]));
20 return ST ′, a′, C ′;
21 end
22 end
23 else
24 at ← Next(I, at));
25 end
26 end
27 // We cannot hop to an address with SH[i] after address a. Then

we roll back and hop to the previous instruction.
28 ST ′, a′, C ′ ← Rollback(SH, ST, C, I, a);
29 return Hop(SH, ST ′, I, C ′, i− 1, a′);
30 end

Algorithm 2: The algorithm for the Hop function.
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Algorithm 1 and Algorithm 2 shows the algorithms for Layout Remediation. The system

invokes function Locate, and function Locate calls out to function Hop when needed. Both

functions take five arguments as input: SH , ST , I, C, i, a, where SH is the shellcode, ST is the

exploitable state, I is the symbolic buffers, C is the set of constraints for ST , i is an index into the

not-yet-written bytes of the replacement shellcode, and a is the memory address being currently

considered by the algorithm.

We use the motivating example to demonstrate how the algorithm works. As mentioned in

Section 4.1.2, there will be three symbolic buffers in this example. Suppose the ShellSwap sys-

tem tries to fit the shellcode from Listing 4.3 to the stack of the exploitable state of the motivating

example. It calls Locate with i = 0 and a = &string, initially trying to put the first instruc-

tion of the replacement shellcode at the beginning of the buffer string.

The layout remediation process is shown in Figure 4.5. As the first 6 instructions of the

replacement shellcode satisfy the constraints in memory, the process will continue adding new

instructions until the 7th instruction (Figure 4.5b). At this point, the system fails to add the

7th instruction (because len is in the way), so it calls function Hop, trying to jump over len

and place the 7th instruction to into the next symbolic buffer (Figure 4.5c). In function Hop, it

successfully finds a location for the 7th instruction. However, the jmp instruction cannot fit after

the first 6 instructions (Figure 4.5d, so we roll back and call Hop to re-locate the 6th instruction

(Figure 4.5e). Since the jmp instruction still covers len, this rollback occurs again, until the 5th

instruction ends up relocated, and a jmp inserted after the 4th instruction to the 5th instruction.

In the end, this is repeated until the full shellcode is placed in memory, split into three parts as

shown in Figure 4.5f.

4.3.3 Path Kneading

If the system cannot find a new exploit for the new shellcode using the exploitable state of the

original exploit, we need to diagnose the cause of conflict and tweak the path to generate new
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Figure 4.5: The layout remediation process for the motivating example with shellcode1.
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exploitable states and new path constraints. To diagnose the cause of conflict, we first identify

the conflicting path constraints and then check which instructions generated them.

Since shellcode is placed to the exploitable state instruction by instruction, we can retrieve

the smallest set of shellcode constraints that cause a path conflict as soon as Locate terminates

unsuccessfully. Let c be the constraint for locating the current instruction, and let C be the set of

path constraints set of the current state. We already know that c and C are conflicted (otherwise,

a location for the last instruction would have been found), which implies that c ∧ C = False.

To understand the cause of the conflict, we find the smallest set of path constraints S such that:

S ⊆ C, such that:

c ∧ S = False and c ∧ (S − C) = True.

After finding the conflict subset, ShellSwap identifies the source of each constraint in this

subset by checking the execution history for when it was introduced. If the conflicting constraint

was introduced by condition branch, ShellSwap will tweak the path to avoid the path constraints

in the conflict subset. The intuition for this is as follows: if the shellcode constraint contradicts

a path constraint, then the shellcode constraint does not contradict the negation of that path

constraint. For path constraints created by conditional branches, our idea is to negate the conflict

path constraints by selecting the other branch in the program. In this way, if the program executes

along the path with the opposite branch, the new path constraints will contain the negation of the

previously-conflicting path constraint, and the new path constraints will not conflict with the

shellcode constraint c.

For example, consider the motivating example and the replacement shellcode in Listing 4.5.

As we described in Section 4.1.2, we encounter a path conflict because the for loop in our

example, which runs 40 times for the original shellcode, only runs once for the replacement

shellcode. Let E be the exploit, and let Ei be the i-th byte in E. The symbolic value of string

in the exploitable state is equal to:

Concatenate(E0, E1,... , E18, E40)
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which means the string from the 0th to the 40th byte of the input. In this case, the path

constraints include the following:

E0 6= ’\x00’ ∧ E1 6= ’\x00’ ∧ . . .∧ E40 6= ’\x00’

However, because the second character of the replacement shellcode is ’\x00’, the shell-

code constraints conflict with the path constraints1.

Suppose that ShellSwap identifies this situation while trying to place the first instruction of

the replacement shellcode at the beginning of string. After analyzing the conflicting con-

straint subset, we know that the conflict stems from the path constraint E1 6= ’\x00’, and

this constraint is created at address 0x080482F3, shown in Figure 4.6. Specifically, the conflict

constraint occurs at the second iteration of the for loop.

080482E6 mov     eax, [ebp+var_24]

080482E9 movsx   eax, [ebp+eax+buf]

080482EE cmp     eax, 0

080482F3 jz      loc_8

080482F9 mov     eax, [ebp+len]

080482FC add     eax, 1

08048301 mov     [ebp+len], eax

08048304 mov     eax, [ebp+var_24]

08048307 add     eax, 1

0804830C mov     [ebp+var_24], eax

0804830F jmp     loc_80482E6

08048314 mov     eax, [ebp+len]

08048317 mov     [ebp+ret], eax

…	

…	

Figure 4.6: Part of the control flow graph for the motivating example.

To generate a new path, we negate the conditional jump associated with the conflicting path

constraint by modifying the trace to force an exit from the loop after the second iteration. How-
1The inquisitive reader might question why the part of the shellcode with the null byte could not be written after

the return address to bypass this loop. However, a closer look at the replacement shellcode would reveal null bytes
in many other locations as well.
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ever, after this change, we need to merge the diversion back to the original path. We accomplish

this by leveraging static analysis. First, we find the function containing the divergence point, and

build a control flow graph for the specific function. Next, we statically find the descendants of

the diverted node and see if any of the descendants appear in the original path after the negated

node. For each satisfying descendant, we attempt to construct a new path that is identical to the

original path until the negated node, followed by the detected detour back to the descendent node

that appears in the original path, and then ending with the postfix from the descendant node to

the end of the original path.

Figure 4.7 shows the generation of a new path. Suppose node nc is negated to nc′ , and node

nd is the descendant of node nc′ . For the new path, the basic blocks do not change before nc′

or after nd. In between, we insert an intraprocedural path from nc′ to nd G(nc′ , nd), which can

be generated using the control graph of the function. In the best case, the question is equivalent

to finding a path between two nodes in a directed graph. However, it is possible that there is no

such path to rejoin the original path, or that the problem reduces to symbolic exploration (if the

divergence is too big). In this case, ShellSwap falls back on the Two-Stage Fallback.

n1 nd n0 nc 

nc’ 

nd+1 

n1 n0 nd nd+1 

… 

… 

… 

… 

nc+1 … Original Path 

New Path G(nc’, nd) 

nc+2 nc+3 

… 

Figure 4.7: The generation of a new path. G(x, y) means a path between node x and y found by
static analysis.

In the motivating example, as simply exiting the loop already rejoins the original path, the

detour back to the path is trivial: it is the direct jump to the return site of the example function.

After constructing the new path, the ShellSwap system generates the new exploitable program

state and a new set of path constraints using the Symbolic Tracing step. Meanwhile, it also checks

if the new program state is still exploitable. If the new program state is exploitable, our system

starts again from the preprocessing phase to fit the replacement shellcode into the new exploitable

program state. Otherwise, the system will attempt to construct the other paths and generate the
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other program states, falling back on the Two-Stage Fallback if it is unable to do so.

4.3.4 Two-Stage Fallback

If ShellSwap is unable to overcome the memory and path conflicts and fit the replacement shell-

code into the exploitable state, then it falls back on pre-defined a two-stage shellcode instead of

the provided replacement shellcode. The motivation of this fallback is straightforward: if the

provided shellcode cannot fit the exploitable state, even after Path Kneading, we try a smaller

first-stage replacement shellcode that can then load an arbitrary second-stage shellcode.

There are several options for a first-stage shellcode. One option is a shellcode that reads

shell commands from the socket and executes them. Another, to bypass modern defenses such as

Data Execution Protection, could read a Return Oriented Programing payload over the stack and

initiates a return. For our prototype, we implemented a stack-based shellcode-loading first-stage

payload that reads a second-stage payload onto the stack and jumps into it. While this is not

immune from DEP techniques, it is only meant as a proof of concept for our prototype.

Consider the motivating example. The program receives input by using the DECREE syscall

receive() (more information on DECREE is provided in Section 4.5), which is a system

call similar to recv() in Unix/Linux. If the new shellcode is longer than 50 bytes, we cannot

generate a new exploit because the program is able to receive 50 bytes at most. In this case, we

could consider the following template for generating a two-stage shellcode:

1 xor %eax,%eax ; 31 c0
2 inc %eax ; 40
3 inc %eax ; 40
4 inc %eax ; 40
5 xor %ebx,%ebx ; 31 db
6 inc %ebx ; 43
7 mov %esp,%ecx ; 89 e1 ecx: &dst
8 mov _ ,%edx ; 8b _ edx: len
9 mov _,%esi ; 8b _ esi: &ret

10 int $0x80 ; cd 80
11 jmp *%esp ; ff e4

Code 4.6: The disassembly of the template for a two-stage shellcode.
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This first-stage shellcode reads a string, stores at the bottom of the stack (%esp) and jumps

to the received string. There are two blanks in the template – we need to fill the receiving length

and the address of return value for register %edx and %esi, respectively. After completing the

template, our system will restart the layout remediation process with the two-stage shellcode as

the replacement shellcode. If the system cannot find a modified exploit using the Two-Stage

Fallback, it returns an error indicating that no modified exploit could be found.

Although the two-stage shellcode helps to solve the shellcode transplant problem by increas-

ing the situations in which ShellSwap can function, we consider this purely as a fallback. This

is because two-stage exploits may be less robust than the other exploits, as they assume that the

victim machine can receive extra bytes from the attacker. This assumption does not always hold.

For instance, the victim machine may be protected by other mechanisms which block the mes-

sage, such as an external firewall, or the network connection over which communication happens

might already be closed when the vulnerability triggers. Therefore, our system prioritizes the

conflict resolution approaches, and it will not trigger the Two-Stage Fallback when the previous

layout remediation process fails.

4.4 Implementation

ShellSwap is implemented on top of angr [107], a binary analysis platform. We rely on angr’s

symbolic tracing component [7], which also leverages the QEMU emulator [5] for exploit replay

and symbolic tracing. The core of our system, consists of about 2000 lines of Python code.

4.4.1 Finding Infeasible Constraint Sets

Finding a minimal subset of infeasible constraints, which is an essential part of Path Kneading,

is not a trivial problem. The underlying constraint solver Z3, which is used in angr (and thus in

ShellSwap), provides an unsat core function to retrieve the smallest subset of an unsatisfiable
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set of constraints. However, in our experiment, we found that unsat core can be very time

consuming, and sometimes even lead to crashes of Z3. Since we weren’t able to pinpoint the

root cause of the problem, we further implement a constraint set slimming method (as described

below) to resort to in case unsat core fails.

The constraint set slimming is a divide-and-conquer approach. Given a constraint set A and

a constraint c that contradicts A, constraint set slimming will try to find a subset of constraints

in A (but not the smallest subset) that still contradicts c. We first divide A into two subsets

and check if any of them is contradictory to constraint c. If both subsets contradict c, the final

infeasible constraint set will include conflicting constraints subsets from the two. If only one

subset contradicts c, the other subset can be safely discarded as the result will only contain

conflicting constraints from the contradictory subset. We repeat this procedure on contradictory

subsets recursively until we find the very last contradictory subset, which either contains a single

constraint that contradicts c, or several constraints that none of which contradicts c if considered

individually. The union of all conflicting subsets of constraints represent the slimmed set of

constraints.

4.4.2 Optimizations

Much of the execution in symbolic tracing does not involve symbolic data. To speed up the trac-

ing step, ShellSwap enables code JIT’ing (through the use of Unicorn Engine [90]) by default,

which allows instructions in the original exploit to be executed natively instead of being emu-

lated. While it greatly speed up symbolic tracing, we find that this step is still the bottleneck in

ShellSwap: as discussed in Section 4.5, an average of 95% of execution time is spent in this step.

To avoid generating an entire control-flow graph in our path kneading component, we used a

fast function detection approach to pick out the exact function for which to generate the control

flow [23].

In the course of the development of this system, we have upstreamed many big-fixes and
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some improvements to angr and its tracing module. With these fixes, we observed a 1000-times

speed improvement on some samples in our evaluation.

4.5 Evaluation

In this section, we present our evaluation of ShellSwap. We first describe the data set, including

all vulnerable programs and exploits, used in our evaluation (Section 4.5.1). Then, we show the

experimental setup in Section 4.5.2. Next, we demonstrate the effectiveness of our approach in

Section 4.5.3 by evaluating both ShellSwap and a reference implementation of previous work

on 20 original exploits and 5 pieces of replacement shellcode. There, we show the necessity

of ShellSwap in effectively transplanting shellcode. In the end, we evaluate the efficiency of

ShellSwap and display the results in Section 4.5.4.

4.5.1 Data Set

Our evaluation data set contains three parts: 11 vulnerable binaries, 20 original exploits, and 5

pieces of replacement shellcode. We present how the data set is constructed below.

Vulnerable Binaries. We selected 11 vulnerable binaries (see Table 4.1) from the qualifying

event as well as the final event of DARPA Cyber Grand Challenge (CGC). These binaries are

shipped with source code, reference exploits, and actual exploits generated by other CGC par-

ticipants, making them a perfect fit for our evaluation. All of the binaries are standalone x86

binaries with a special set of system calls (DECREE syscalls), roughly analogous to the Linux

system calls recv (as DECREE’s receive), send (as DECREE’s transmit), mmap (as

DECREE’s allocate), munmap (as DECREE’s deallocate), select (as DECREE’s

fdwait), get random (as DECREE’s random), and exit (as DECREE’s terminate).

Sizes of those binaries range from 83 KB to 18 MB. Those vulnerable binaries cover a wide

range of subtypes of control flow hijack vulnerabilities, including stack overflow, heap overflow,
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integer overflow, arbitrary memory access, improper bound checking, etc.

Exploits. As the CGC provides generators for reference exploits, we generated a few exploits

for each vulnerable binary, for a total of 20 reference exploits (as is shown in Table 4.1). It is

worth noting that exploits (or Proofs of Vulnerability in CGC terminology) in CGC are special

in the sense that each of them should demonstrate attacker’s ability to fully control values in two

registers: the instruction pointer and one other register. As a result, some generated exploits do

not contain any shellcode. We manually post-processed all exploits to make sure each one of

them has a piece of shellcode to execute in the end of the exploitation.

Shellcode. As shown in Table 4.2, we collected five instances of replacement shellcode from

three different sources, four of which are from CGC finalists (ForAllSecure and Shellphish), and

one of which is manually crafted by ourselves. This range of replacement shellcode instances is

important: with the shellcode coming from multiple sources, we can mimic the setting of cyber

attack customization in our experiments. We refer to these instances as S1 through S5. Therefore,

with five instances of replacement shellcode for each of the 20 original exploits in our dataset,

we have a total of 100 modified exploits for ShellSwap to generate.

4.5.2 Experiment Setup

One of the applications of transplanting shellcode is to automatically reflect, or ricochet, an

attack coming from a rival. In this scenario, the victim first detects an exploit coming from the

attacker. They then automatically replace the payload (the shellcode) in the exploit and replay

the modified exploit against the attacker. We try to simulate such a scenario in our experiment,

where the attacker emits original exploits and the victim (or replayer/reflector) replays a modified

exploit with the shellcode replaced.
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Shellcode Length # Instruction Source
S1 26 Bytes 7 ForAllSecure
S2 29 Bytes 11 ForAllSecure
S3 22 Bytes 12 Shellphish
S4 37 Bytes 8 Shellphish
S5 37 Bytes 12 ShellSwap

Table 4.2: The shellcode information.

Our System DECREE 
Proof of 

Vulnerability 

Original Exploit 

Modified Exploit 

Vulnerable Binary 

Replacement 
Shellcode 

Figure 4.8: Experiment setup.

Machines. Our experimental setup contains two machines: one machines hosts the DARPA

Experimental Cyber Research Evaluation Environment (DECREE), and the other runs Shell-

Swap. DECREE runs on a virtual machine built using an image provided by DARPA CGC [13,

14], which offers an isolated environment for running and testing vulnerable programs. It is as-

signed 1 CPU core and 1 GB of memory on a host machine with Intel Core i7 2.8 GHz. The

ShellSwap machine is a standalone server with Intel Xeon E5-2630 v2 as CPU and 96 GB of

memory, running Ubuntu 14.04 LTS.

Process. As is shown in Figure 4.8, the original exploits are pre-generated for each vulnerable

binary. ShellSwap takes as input each pair of original exploit and replacement shellcode and

attempts to generate a modified exploit. We verify the modified exploit against the binary in

DECREE box to make sure that it works and that the replacement shellcode is executed with

intended results. For testing and verification, we modified the utility script cb-replay-pov

shipped in DECREE.

87



Reference system for comparison. To demonstrate the necessity of our approach in tackling

the shellcode transplant problem, we reimplemented the shellcode placement method in the work

of Cha et al. [37] in a new system on top of angr and used it as our reference system (codenamed

SystemM). We simulate shellcode transplanting in SystemM by first re-triggering the exploit

and then re-constraining individual symbolic blocks in memory to the replacement shellcode

one by one until the modified exploit is created. If none of the symbolic memory blocks is

sufficiently large to hold the replacement shellcode, or constraining every symbolic memory

block to replacement shellcode leads to an unsatisfiable exploitation state (due to path conflicts),

then we deem the shellcode transplanting as having failed.

Shellcode Layout Remediation Path Kneading
S1 12 7
S2 13 5
S3 14 5
S4 9 8
S5 9 3

Total 57 28

Table 4.3: The number of the generated exploits for each shellcode and each approach.

Shellcode Length # Success Success Rate
S3 22 Bytes 19 95%
S1 26 Bytes 19 95%
S2 29 Bytes 18 90%
S4 37 Bytes 17 85%
S5 37 Bytes 12 60%

Table 4.4: Success rate for each instance of replacement shellcode, sorted by length.

4.5.3 Effectiveness

Table 4.1 presents the effectiveness comparison between SystemM and ShellSwap. There is a

significant difference between the number of modified exploits the two systems successfully gen-

erated: SystemM successfully generated 31 exploits, whereas ShellSwap successfully generated
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85 exploits. The success rate for SystemM and ShellSwap are 31% and 85%, respectively. Not

surprisingly, our method generated more new exploits than previous work.

Statistics for all modified exploits successfully generated by SystemM and ShellSwap are

shown in Table 4.3. ShellSwap generated 57 exploits using only Layout Remediation and 28

more by leveraging Path Kneading. For comparison, we also extended SystemM with Layout

Remediation, resulting in, as expected, an additional 26 more exploits over the base SystemM

implementation. Only 57% of all cases are successfully replaced with new shellcode without

Path Kneading, which demonstrates the importance of conflict identification and kneading of the

exploit path during shellcode replacement.

In addition, we evaluate the two-stage fallback on all 20 exploits: we replace the original

shellcode in each exploit with the fallback shellcode and generate new exploits2. In our ex-

periment, the two-stage fallback worked on 19 out of 20 exploits. This is because the fallback

shellcode is shorter (19 bytes) than any instance of the replacement shellcode, and is thus more

likely to fit into buffers under attacker controls.

Meanwhile, we observe that the success rate of shellcode transplanting varies between differ-

ent instances of replacement shellcode (see Table 4.4). There is an expected negative correlation

between the success rate and the length of the replacement shellcode. For example, shellcode S4

and S5, which are both 37 byte long, have lower success rates than other replacement shellcode

that are shorter. This fits with our intuition that the longer a piece of shellcode is, the more con-

flicts it might produce during the shellcode transplant step, and the more difficult it will be to

generate a modified exploit.

Other results are less intuitive. For instance, S5 has a lower success rate than S4, which is the

same size. We looked into failure cases, and we found that the failure is related to the null byte

in S5. S4 does not contain any null bytes. This conforms to the common knowledge that null

bytes complicate shellcode, which is why they are generally avoided by exploit authors: since

null bytes are so frequently used as string terminators, the existence of null bytes may negatively

2We do not evaluate all five instances of shellcode since any shellcode will work in the second stage.
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impact the success of the exploit if data is moved around using something like strcpy.

4.5.4 Efficiency

Shellcode Layout Remediation Path Kneading
S1 18.85 5638.30
S2 21.05 10993.84
S3 20.38 8017.11
S4 21.01 7993.11
S5 17.36 14492.62

Average 19.73 9426.99

Table 4.5: Average time cost (in seconds) for each instance of replacement shellcode and each
approach.

Table 4.5 shows the time cost for each instance of replacement shellcode and each approach.

The average time cost for Layout Remediation is 19.73 seconds, while the average time cost for

Path Kneading is 9426.99 seconds. The dramatic difference between the two is because the latter

requires one or more iterations of symbolic tracing, which, as we have previously discussed,

is an extremely time consuming process. We leave further performance improvement as future

work, and note that there are example optimizations in related work that could be applied to this

problem.

4.6 Discussion

ShellSwap’s results open up new possibilities for the fast adaptation and analysis of software

exploits. In this section, we explore the implications of these results, the limitations of the

system, and the direction of our future work.
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4.6.1 Ethical Concerns

ShellSwap raises the concern that it enables malicious attackers to quickly adapt exploits against

unwitting victims on the internet. Unfortunately, such criticism can be applied to almost all

security research. Similar to known techniques such as automatic exploit generation [19, 37]

or automatic patch-based exploit generation [34], the merit of the ShellSwap system and its

solution of the shellcode transplant problem is to show the potential abilities of attackers and to

highlight the possibility that one can automatically modify exploits to tailor attacks to custom

requirements. Our hope is that, by showing that this is possible, ShellSwap will motivate new

research into defenses against customized exploits.

4.6.2 Limitation

While ShellSwap makes fundamental contributions toward the solution of the shellcode trans-

plant problem, there is still work left to be done. Here, we discuss specific weaknesses of the

system that could be addressed by future work.

Other Types of Vulnerabilities. Our system focuses solely on control-flow hijack vulnerabil-

ities, and we do not address other vulnerability types, such as Information Leakage and Denial

of Service (DoS). To consider these types of vulnerabilities, as well as other popular types, the

shellcode transplant problem would need to be redefined, as shellcode is not utilized in exploits

targeting these vulnerabilities. Thus, to generalize ShellSwap, we must first define the analogous

problem in the context of a different vulnerabilities, and then discuss possible designs to solve it.

We define the analogous problem for information leakage vulnerabilities as the generation of

a modified exploit that leaks a different piece of data (whether a memory location, a file, a vari-

able in the program, etc.) than the original exploit does. This is a complex task to accomplish:

information leakage exploits are hard to detect in the first place because monitoring the informa-

tion flow through a program is not EM-enforceable in general. However, weaker variants such as
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taint tracking can find a smaller set of information leakage vulnerabilities. For example, evidence

shows that Valgrind can detect information leakage exploits such as the Heartbleed attack [116],

given test cases that trigger it (i.e., an exploit). Since, by definition, ShellSwap receives such an

exploit as input, a possible method for ShellSwap to function on information leakage is to use

symbolic execution to find the correlation between the exploit and the leaked information or its

reference, and modify it accordingly. In this case, the memory conflicts will likely not come into

play (since they are specific to placing replacement shellcode in memory), but path conflicts will

still occur, and will need to be kneaded away, due to the modifications required to re-target the

leak. After identifying the relation, one can come up with an exploit by solving the constraints.

We define the ricochet problem for Denial of Service vulnerabilities as the generation of a

modified exploit that causes the same effect to the vulnerable program. Of course, there is little

modification required – if the original exploit makes the program crash or hang at a given point,

the modified exploit should have the same effect. In this case, ShellSwap is used purely as an

exploit replaying system.

Exploit Replayabilty. ShellSwap assumes that the original exploit is deterministically replayable,

in the sense that the exploit always succeeds when re-launched against the target. However, this

assumption does not always hold. For instance, a vulnerable server may implement a challenge-

response protocol that requires the client to send messages with a nonce that the two sides nego-

tiated at the beginning of the session. This nonce would change when we replay the exploit, and

the exploit would fail. Asymmetric encryption and sources of randomness from the environment

can also manifest in such failures. To generate the modified exploit for such case, ShellSwap

would have to consider an exploit as a state machine rather than a series static bytes, which

would require fundamental extensions of the design.

This being said, our experiments showed that most of the exploits in our dataset are re-

playable, and our system is applicable for this majority. We intend to investigate the replaying of

non-deterministic exploits in future work.
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Modern Defense Mechanisms. Modern systems have memory protection mechanisms such as

Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP). However,

such protection mechanisms can be bypassed by properly-crafted exploits.

Our solution to the shellcode transplant problem is based on an functional original exploit,

which implies that this exploit has already bypassed the required defense mechanisms. When this

is the case, ShellSwap’s replacement exploit often bypasses these mitigation techniques as well.

For example, DEP is often bypassed through the use of Return Oriented Programming that chains

pieces of code (termed gadgets) in a program to map an executable page (using the Linux mmap

or DECREE allocate syscalls), insert shellcode into it, and execute it. Alternatively, the

page containing the shellcode (for example, the program stack) can simply be marked executable

by mprotect. For such exploits, ShellSwap bypasses DEP by reusing the original exploit’s

DEP bypass and replacing the final mapped shellcode with the replacement shellcode. If the

replacement shellcode cannot be located at the same location as the original shellcode, the final

control flow transfer of the mitigation bypass stage must be modified to point at the new location.

This can be done with the constraint solver as an adaptation of the Path Kneading phase discussed

in Section 4.3.

However, in the more general case of DEP bypass (for example, when a pure ROP payload

is used, with no mapped shellcode), future work is required to solve the ROP chain transplant

problem.

Bypassing ASLR is similar. One way to bypass ASLR, in the absence of DEP, is to overwrite

the instruction pointer to point to jmp *%reg with a register %reg referring to a register loca-

tion that currently points to the shellcode. A typical instance of the instruction is jmp *%esp.

For the ShellSwap system, the modified exploit is able to bypass the ASLR protection if 1) the

original exploit is able to bypass ASLR and 2) the beginning of the replacement shellcode is

placed at the same start address as the shellcode in the original exploit (to which control flow

is transferred after DEP bypass, for example). In this way, when the program dereferences a

function pointer or returns a function, it will jump to the address of the start of the original shell-
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code, which is also the start of the replacement shellcode, and the modified exploit will succeed.

Again, the final shellcode location can be modified through an adaptation of the Path Kneading

phase.

More complex cases, including exploits that require an information disclosure step (to break

ASLR), are currently not supported by ShellSwap. We plan to explore these in future work, and

would welcome collaboration in this area.

4.6.3 Future Work

We plan to explore, and hope to see other researchers investigate, four main areas of future work.

First, ShellSwap can be extended to deal with encrypted, packed, or obfuscated traffic. In

theory, our approach can handle these cases, because we assume knowledge the encryption key

and because the decryption/decoding/deobfuscation functionality is in the original binary. How-

ever, the exploration of cases that do not assume knowledge of the encryption key would be

interesting (albeit probably impossible in cryptographically-secure cases). A further generaliza-

tion of this is the ability to successfully transplant shellcode in the presence of nondeterminism.

Currently, ShellSwap cannot handle nondeterministic behavior, and some fundamental problems

would need to be addressed to enable its operation on this.

Second, it would be interesting to make ShellSwap usable in an on-line capacity, where in-

stead of modifying exploits and launching them at a later date, ShellSwap could perform the

exploit live against the remote system, modifying it as appropriate based on that system’s opera-

tion. Symbolic tracing is the current bottleneck of achieving this capability, but it can likely be

improved by leveraging optimizations from related work [20, 92, 100]. Interestingly, the ability

to function on-line would allow ShellSwap to reason about information disclosure in the course

of an exploit to defeat ASLR, which is something that is not currently possible.

Third, the extension of ShellSwap to the ROP chain transplant problem would be an inter-

esting future direction. Related work in the field of automatic ROP payload generation can be
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leveraged toward this end [99, 107].

Finally, ShellSwap can be expanded to support the generation of shellcode that is seman-

tically equivalent to the replacement shellcode while having different contents to satisfy path

constraints. Such shellcode polymorphism would increase the cases in which ShellSwap can

resolve path conflicts. For example, we could consider building up a dictionary of “instruction

synonyms”, or creating templates to interchange instructions without changing the semantics.

4.7 Related Work

4.7.1 Automatic Exploit Generation

An exploit is valuable to attackers only when it suits attackers’ specific goal. The technique of

automatically generating an exploit with a piece of shellcode is called automatic exploit genera-

tion (AEG) [19, 34, 74, 99]. Those work are mostly based on dynamic symbolic execution. AEG

is closely related to ShellSwap in the sense that they both take a vulnerable program and a piece

of shellcode and generate a viable exploit.

Helaan et al. [63] proposed how to place shellcode in memory: scan through the memory

and find symbolic memory gaps that are big enough to hold the entire piece of shellcode. For

each gap, they try to put shellcode at different offsets by constraining symbolic memory bytes

beginning at that offset to the actual bytes of the shellcode. This procedure continues until the

shellcode is put in a memory gap or all gaps have been tried.

As we have demonstrated in our evaluation, AEG techniques are not suitable for shellcode

transplanting, as they lack principled approach to diagnose and resolve conflicts imposed by

replacement shellcode, and must resort to symbolic exploration. Our system makes it possible to

adapt and retrofit an existing exploit to different instances of shellcode efficiently.
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4.7.2 Intrusion Detection

In ShellSwap we detect attacks triggering software vulnerabilities and capture exploits by en-

forcing a set of taint-based security policies during dynamic symbolic tracing. Traditionally,

taint tracking implemented on dynamic binary instrumentation frameworks (e.g. Pin [76] and

Valgrind [84]) is used to detect attacks during runtime, Xu et al. [117], Autograph[70], Vigi-

lante [41], and Bouncer [40] are all reasonable choices. While those solutions are more perfor-

mant than symbolic tracing, ShellSwap cannot use them as they do not record path constraints,

which are vital to our approach.

4.7.3 Manual Ricochet Attacks in the Wild

Ricochet attacks are widely adopted in competitive attack-defense contests today. The CTF team

Shellphish has stated at DEF CON:

“Stealing and replaying exploits has become very popular; basically, it is the main

way in which most teams attack others these days. I think that, during the last DEF

CON, a majority of our flags (aka points) were coming from running stolen exploits.”

The CTF team PPP has also stated they inspected network traffic to find new vulnerabilities,

which helped them score points and win DEF CON CTF in 2013 and 2014.

However, while the concept of ricochet attacks is well-known within the hacking-competition

community [95, 113], it does not appear to have received much direct attention elsewhere. To

the best of the knowledge, our system is the first end-to-end automatic ricochet attack generation

system.

4.8 Conclusion

In this chapter, we introduce the automatic shellcode transplanting problem. Given a program, an

exploit and a piece of shellcode, this problem asks how to automatically generate a new exploit
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that targets the potentially unknown vulnerability present in the program and executes the given

shellcode.

We also propose ShellSwap, which is the system for automatic shellcode transplant for re-

mote exploits. To our best knowledge, the ShellSwap system is the first automatic system that

generally apply different shellcode on the exploits for unknown vulnerabilities. In our exper-

iment, we evaluated the ShellSwap system on a combination of 20 exploits and 5 pieces of

shellcode that are independently developed and different from the original exploit. Among the

100 test cases, our ShellSwap system successfully generated 85% of the exploits. Our results

imply that exploit generation no longer requires delicate exploit skills. For those victims who are

not familiar with exploit knowledge, they can also generate their exploits.
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Part II

Offense and Defense Strategy
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Chapter 5

Computing Optimal Strategy via Nash

Equilibra

Automated techniques and tools for finding, exploiting and patching vulnerabilities are maturing.

In order to achieve an end goal such as winning a cyber-battle, these techniques and tools must

be wielded strategically. Currently, strategy development in cyber – even with automated tools

– is done manually, and is a bottleneck in practice. In this dissertation, we apply game theory

toward the augmentation of the human decision-making process.

Our work makes two novel contributions. First, previous work is limited by strong assump-

tions regarding the number of actors, actions, and choices in cyber-warfare. We develop a novel

model of cyber-warfare that is more comprehensive than previous work, removing these limita-

tions in the process. Second, we present an algorithm for calculating the optimal strategy of the

players in our model. We show that our model is capable of finding better solutions than previous

work within seconds, making computer-time strategic reasoning a reality. We also provide new

insights, compared to previous models, on the impact of optimal strategies.
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5.1 Introduction

In recent years, security researchers have pursued automated vulnerability detection and reme-

diation techniques, attempting to scale such analyses beyond the limitations of human hack-

ers. Eventually, automated systems will be heavily, and maybe predominantly, involved in the

identification, exploitation, and repair of software vulnerabilities. This will eliminate the bottle-

neck that human effort represented in these areas. However, the human bottleneck (and human

fallibility) will remain in the higher-level strategy of what to do with automatically identified

vulnerabilities, automatically created exploits, and automatically generated patches.

There are many choices to make regarding the specificities of such a strategy, and these

choices have real implications beyond cyber-security exercises. For example, nations have begun

to make decisions on whether to disclose new software vulnerabilities (zero-day vulnerabilities)

or to exploit them for gain [58, 118]. The NSA recently stated that 91% of all zero-days it

discovers are disclosed, but only after a deliberation process that carefully weighs the opportunity

cost from disclosing and finally forgoes using a zero-day [91]. Before disclosure, analysts at the

NSA manually consider several aspects, including the potential risk to national security if the

vulnerability is unpatched, the likelihood of someone else exploiting the vulnerability, and the

likelihood that someone will re-discover the vulnerability [45].

In this chapter, we explore the research question of augmenting this human decision-making

process with automated techniques rooted in game theory. Specifically, we attempt to identify

the best strategy for the use of an identified zero-day vulnerability in a “cyber-warfare” scenario

where any action may reveal information to adversaries. To do this, we create a game model

where each new vulnerability is an event and “players” make strategic choices in order to opti-

mize game outcomes. We develop our insight into optimal strategies by leveraging formal game

theory methodology to create a novel approach that can calculate the best strategy for all players

by computing a Nash equilibrium.

Prior work in the game theory of cyber warfare has serious limitations, placing limits on the
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maximum number of players, requiring perfect information awareness for all parties, or only

supporting a single action on a single “event” for each player throughout the duration of the

entire game. As we discuss in Section 3.6, these limitations are too restrictive for the models to

be applicable to real-world cyber-warfare scenarios. Our approach addresses these limitations

by developing a multi-round game-theoretic model that accounts for attack and defense in an

imperfect information setting. Technically, our game model is a partial observation stochastic

game (POSG) where games are played in rounds and players are uncertain about whether other

players have discovered a zero-day vulnerability.

Additionally, our model supports the concept of sequences of player actions. Specifically, we

make two new observations and add support for them to our model. First, attacks launched by

a player can be observed and reverse-engineered by that player’s opponents, a phenomenon we

term “attack ricocheting” [24]. Second, patches created by a player can be reverse-engineered

by their opponents to identify the vulnerability that they were meant to fix, a concept called

“automated patch-based exploit generation” (APEG) in the literature [34]. This knowledge, in

turn, can be used to create vulnerabilities to attack other players.

A central challenge in our work was to develop an approach for computing the Nash equi-

librium of such a game. A Nash equilibrium is a strategy profile in which none of the players

will have more to gain by changing the strategy. It characterizes the stable point of the game

interaction in which all players are rationally playing their best responses. However, computing

a Nash equilibrium is known as a Polynomial Parity Argument on Directed Graphs-complete

(PPAD-complete) problem [49], which is believed to be hard. We overcome this problem in our

context by taking advantage of specific characteristics of cyber-warfare games, allowing us to

split the problem of computing the Nash equilibrium into two sub-problems, one of which can

be converted into a Markov decision process problem and the other into a stochastic game. Our

algorithm is able to compute the Nash equilibrium in polynomial time, guaranteeing the tool’s

applicability to real-world scenarios. Using the new model and the new algorithm, our tool finds

better strategies than previous work [81, 97].
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Contrary to previous work, we find that players have strategies with more utility than to attack

or to disclose all the time throughout the game. Specifically, we find that in some situations,

depending on various game factors, a player is better served by a patch-then-attack strategy (e.g.,

the NSA could disclose the vulnerability, patch their software, and then still attack) or by a pure

disclose strategy (see § 5.5). These are new results not predicted by previous models. Our tool

not only found the order of the actions, but also provided a concrete plan for actions over rounds,

such as “patch, then attack after 2 rounds of patching”.

Moreover, we observe that a previous result of prior work in the area – the concept that it

is always optimal for at least one player to attack – does not stand in our expanded model (see

§ 5.5). We demonstrated this by showing an example where the optimal strategy for both players

is to disclose and patch. We also observe that a player must ricochet and patch fast enough in

order to prevent his opponent from attacking and forcing the vulnerability disclosure. If a player

is only able to either ricochet or patch fast enough, they might still get attacked.

The optimal strategies derived from our models have real-world consequences – as a case

study of our work, we apply our model to a recent fully-automated cyber security contest run by

DARPA, the Cyber Grand Challenge, which had 4.25 million dollars in prizes. Our study shows

that an adoption of our model by the third-place team, team Shellphish, would have heavily

improved their final standing. The specific strategy picked in the approach to cyber warfare

matters, and these choices have real-world consequences. In the CGC case, the consequence

was a difference of prize winnings, but in the real world (the challenges of which the CGC was

designed to mirror [47]), the difference could be more fundamental.

Overall, our work makes the following contributions:

• We develop a novel model of cyber-warfare that is more comprehensive than previous work

because it 1) considers strategies as a sequence of actions over time, 2) addresses play-

ers’ uncertainty about their opponents, and 3) accounts for more offensive and defensive

techniques that can be employed for cyber-warfare, such as ricocheting and APEG (Sec-
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tion 5.2).

• We present an algorithm for calculating the optimal strategy of the players in our model.

The original model is a POSG game, which, in general, is intractable to solve [79]. We

take advantage of the structure of cyber-warfare and propose a novel approach for finding

the Nash equilibrium (Section 5.3).

• We show that our model is capable of finding better solutions than previous work within

seconds. We also provide new insights, compared to previous models, on the impact of

optimal strategies. We demonstrate that optimal strategies in a cyber-warfare are more

complex than previous conclusions [81, 97], and one must take into consideration the

unique aspect of cyber-warfare (versus physical war), i.e., that exploits can be generated

by the ricochet and APEG techniques. This insight leads to new equilibriums not predicted

by previous work [81, 97] (Section 5.5).

5.2 Problem Statement and Goals

In this section, we formally state the cyber-warfare game. We will describe the problem setup,

lay out our assumptions, present the formalized POSG model and finally clarify the goal of our

work.

5.2.1 Problem Setup

The cyber-warfare game needs to be general and compatible with known cyber-warfare events

such as the Stuxnet event. One requirement is that the cyber-warfare game model must support

players with comprehensive techniques, rather than the simple choices that prior models allow.

Figure 5.1 shows the workflow of the player in our model. There are three ways for a player

to learn of a vulnerability. A player may detect an attack, receive the disclosure from other

players, or discover the vulnerability by himself. After a player learns a vulnerability, the strategy
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Parameter Definition

pi(t)
The probability distribution over time that player i discovers
a vulnerability at round t.

qi(t)
The probability to launch a ricochet attack with exploits that
player i received in the previous round.

hi(t)
The ratio of the amount of patched vulnerable resources
over the total amount of vulnerable resources by t rounds
after the vulnerability is disclosed.

δi

The number of rounds required by player i to generate a
patch-based exploit after a vulnerability and the correspond-
ing patch are disclosed.

ui(t)
The dynamic utility that player i gains by attacking his op-
ponents at round t.

Table 5.1: Parameters for player i.

generator will compute the strategy for the vulnerability.

Attacking Tool 

Patching Tool 

Strategy 
Generator 

Exploit 
Generation Tool 

Detection Tool 

Other Players’ 
Computers 

The Player’s 
Computers Detect an attack 

Discover an exploit 

Patch 

Exploit 

Other players 
disclose a vulnerability 

qi(t)

pi(t)

hi(t)

ui(t)

�i

Figure 5.1: The workflow of the player in the cyber-warfare game.

Players. All players are participating in a networked scenario. They are capable of finding

new vulnerabilities, monitoring their own connections and ricocheting an attack, patching after

vulnerability disclosure, and generating patch-based exploits. Players may have different levels

of skills, which are characterized using the parameters listed in Table 5.1.

These parameters are a substantial component of our model. For player i, the vulnerability
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discovery skill is denoted by pi(t), which is a function of probability that the player discovers

a zero-day vulnerability distributed over rounds. Their level of ricochet ability is characterized

by parameter qi(t), which is the probability of launching a ricochet attack with exploits they

recovered from the traffic received in the previous round.

A player’s patching skill is represented by function hi(t). hi(t) is the ratio of the amount of

patched vulnerable resources over the total amount of vulnerable resources by t rounds after the

vulnerability is disclosed. In the real world, while patching a single computer might take only

minutes, patching all vulnerable resources (depending on the organization, containing thousands

of instances) might take days to months [27]. While one player is patching, other players could

possibly attack, and any vulnerable resources that have not been patched will suffer from the

attack.

The last parameter, δi, describes player i’s level of APEG skills, which is the number of

rounds required by the player to generate a patch-based exploit after a vulnerability and the

corresponding patch are disclosed. Finally, the attacking utility, denoted as ui(t), encodes the

dynamic utility that player i gains by attacking his opponents at round t before the patch is

released.

Player States and Actions. Each player i has a state denoted by θi in each round, where

θi ∈ Θi = {¬D,D}. ¬D refers to the situation in which a player has not yet learned of a zero-

day, while D refers to the situation in which a player knows the vulnerability, either by actively

finding the vulnerability and developing an exploit or by passively “stealing” the exploit from an

attack or a patch.

In each round, players choose one of the following actions: {ATTACK, PATCH, NOP (no ac-

tion), STOCKPILE}, where the semantics of ATTACK, PATCH, and NOP have their literal meaning,

and STOCKPILE means holding a zero-day vulnerability for future use.

Players are limited in their actions by their state. This is acceptable for stochastic games and

does not impact the difficulty or insights of the model [73, §6.3.1]. In particular, while a player
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in state ¬D can only act NOP, a player in state D can choose an action among ATTACK, PATCH

and STOCKPILE before the patch is released, and between ATTACK and NOP after the release,

depending on their skill at detecting attacks or APEG.

5.2.2 Game Factors & Assumptions

Our model considers the game within the scope of the following factors and assumptions:

• We do not distinguish between a player discovering the vulnerability and knowing about how

to exploit it in our game. This is because in many cases, when a nation acquires a zero-day

vulnerability, the nation also learns about the zero-day exploit. For example, nations acquire

zero-day vulnerabilities by purchasing zero-day exploits from vulnerability markets [58, 60,

87]. We acknowledge that discovering a vulnerability and creating an exploit are conceptually

different, but we leave the separation of those two as future work.

• We do not distinguish between a player disclosing a vulnerability and releasing a patch. The

known patching mechanisms such as Microsoft update make secret patching unlikely to happen

in the real world, and in most cases, the disclosure of a vulnerability comes with a patch or a

workaround.

• We assume that players are monitoring their systems, and may probabilistically detect an at-

tack. We also assume they may be able to then ricochet the exploit to other players. We note

that the detection may come through monitoring of the network (in the case of network at-

tacks), or other measures such as honeypots, dynamic analysis of suspicious inputs, etc. For

example, Vigilante [41] detects exploits and creates a self-certifying alert (SCA), which is es-

sentially a replayable exploit. We note that such attacks may be detected over a network (e.g.,

in CTF competitions, these are called reflection attacks [95]) or via dynamic analysis, as with

Vigilante.

• We assume that once a patch reveals information about the vulnerability, other players can use

the patch to create an exploit. For example, Brumley et al. shows this can be done automatically

108



in some instances [34]. We note that patch-based exploit generation is useful because the

resulting exploit can be used before the patch is applied on all vulnerable systems.

5.2.3 Formalization

We formalize the cyber security game as a n-player zero-sum partial observation stochastic game:

POSG = 〈N P ,AP ,ΘP ,ΦP , RP 〉.

In this chapter, we focus on 2 players (|N P | = 2) called player 1 and player 2.

Game State. The complete game state ΘP is defined as T × R × Θ1 × Θ2, where T is the

round number, R is the specific round when the patch is released, and Θi is the set of player i’s

states (Θi = {¬D,D}). The round of releasing a patch is ∅ before a patch is released. The patch

release time is needed because it is a public indicator of the discovery of the vulnerability. We

use this to bound uncertainty, since after a patch is released every player has the potential (and

eventual) understanding of the vulnerability.

State Transition. In each round, the game is in a concrete state, but the players have incomplete

information about that state. The players make an observation and then choose an action. The

chosen actions transition the game to a new state. The transition function is public for both

players. Transitions in a game may be probabilistic. We denote the probability transition function

over game states by ΦP : ΘP × AP1 × AP2 → ∆(ΘP ) and show these transitions in Figure 5.2.

This divides the game state into five categories:

a. Neither player has discovered a vulnerability (Figure 5.2a, 〈t, ∅,¬D,¬D〉).

The available action for each player is NOP, and the probability that player i discovers a

vulnerability in the current round is pi(t). Since players discover vulnerabilities indepen-

dently, the joint probability of player 1 in state θ1 and player 2 in θ2 is equal to the product
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〈t, ∅,¬D,¬D〉 〈NOP, NOP〉

〈t+ 1, ∅,D,D〉

〈t+ 1, ∅,¬D,D〉

〈t+ 1, ∅,D,¬D〉

〈t+ 1, ∅,¬D,¬D〉

p1(t)p2(t)

(1− p1(t))p2(t)

p1(t)(1− p2(t))

(1− p1(t))(1− p2(t))

(a) Neither player has discovered a vulnerability.

〈t, ∅,¬D,D〉

〈t+ 1, t,¬D,D〉

〈t+ 1, ∅,¬D,D〉

〈t+ 1, ∅,D,D〉

〈t+ 1, ∅,D,D〉

〈t+ 1, ∅,¬D,D〉
〈NOP, ATTACK〉

〈NOP, STOCKPILE〉

〈NOP, PATCH〉 1

(1− p1(t))

p1(t)

q1(t) + p1(t)(1− q1(t))

(1− p1(t))(1− q1(t))

(b) One player (player 2) has discovered a vulnerability.

〈t, ∅,D,D〉

〈PATCH, ∗〉

〈∗, PATCH〉

〈ATTACK, STOCKPILE〉

〈ATTACK, ATTACK〉

〈STOCKPILE, STOCKPILE〉

〈STOCKPILE, ATTACK〉

〈t+ 1, ∅,D,D〉

〈t+ 1, t,D,D〉

1

1

(c) Both players have discovered and withheld the vulnerability.
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〈t, r,D,¬D〉

〈t, t− δ2,D,¬D〉

〈NOP, NOP〉

〈ATTACK, NOP〉

〈∗, ∗〉

〈t+ 1, r,D,D〉

〈t+ 1, r,D,¬D〉

〈t+ 1, r,D,¬D〉

〈t+ 1, t− δ2,D,D〉

q2(t)

1− q2(t)

1

1

(d) One player (player 1) has discovered and disclosed a vulnerability, while the other player has not
discovered the vulnerability.

〈t, r,D,D〉

〈ATTACK, NOP〉

〈ATTACK, ATTACK〉

〈NOP, NOP〉

〈NOP, ATTACK〉

〈t+ 1, r,D,D〉1

(e) Both players have discovered the vulnerability, and the vulnerability has been disclosed.

Figure 5.2: The transitions of game states. For each sub-figure, the left-hand side is the state of
the current round and the right-hand side is the state of the next round.
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each player is in his respective state.

b. Only one player has discovered a vulnerability (Figure 5.2b, 〈t, ∅,¬D,D〉 or 〈t, ∅,D,¬D〉).

Suppose player 2 has the exploit, then player 2 has three possible actions while player 1

has one. If player 2 chooses to ATTACK, the probability that player 1 transits to state D

is equal to the joint probability of finding the vulnerability by himself, and that detecting

player 2’s attack. If player 2 chooses to STOCKPILE, the probability that player 1 will be

in state D in the next round is equal to the probability that he independently discovers the

vulnerability. If player 2 chooses to PATCH, player states remain unchanged and the patch

releasing round will be updated to t.

c. Both players have discovered the vulnerability and they withhold it (Figure 5.2c, 〈t, ∅,D,D〉).

If neither player releases a patch, the states and the patch-releasing round remain the same.

Otherwise, the game will transition to 〈t+ 1, t,D,D〉.

d. One player has disclosed the vulnerability, while the other player has not discovered it

(Figure 5.2d, 〈t, r,D,¬D〉 or 〈t, r,¬D,D〉).

Suppose player 1 releases the patch at round r, then player 2 will generate an exploit based

on this patch in δ2 rounds. If player 1 chooses to NOP during those rounds, then player

2 will keep developing the patch-based exploit until the (r + δ2)-th round. Otherwise, if

player 1 chooses to ATTACK, then player 2 will detect the attack with probability q2(t) and

transition to state D in the next round after doing so.

e. Both players have discovered the vulnerability, and the vulnerability has been disclosed

(Figure 5.2e, 〈t, r,D,D〉).

In this case, player states and the patch-releasing round remains unchanged.

Utility. Players’ utility for each round is calculated according to the reward function for one

round RP : AP1 × AP2 → R. This function is public, but the actual utility per round is secret
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NOT DISCOVER DISCOVER

NOP ATTACK STOCKPILE PATCH

NOT DISCOVER NOP 0 −u2(t) 0 0

DISCOVER

ATTACK u1(t) u1(t)− u2(t) u1(t) 0
STOCKPILE 0 −u2(t) 0 0

PATCH 0 0 0 0

Table 5.2: The reward matrix at round t before patch is released. The table shows the reward of
player 1 (the row player). The reward of player 2 (the column player) is the negative value of
that of player 1.

NOT DISCOVER DISCOVER

NOP ATTACK NOP

DISCOVER
NOP 0 −u2(t)h1(t− r) 0

ATTACK u1(t)h2(t− r) u1(t)h2(t− r)− u2(t)h1(t− r) u1(t)h2(t− r)
NOT DISCOVER NOP 0 −u2(t)h1(t− r) 0

Table 5.3: The reward matrix at round t after patch is released. The table shows the reward of
player 1 (the row player). The reward of player 2 (the column player) is the negative value of
that of player 1.

to players because players do not always know the action of the other players. We assume that

the amount of utility that a player gains is equal to the amount that the other player loses, which

makes our game zero-sum.

The reward function is calculated using the attacking utility functions u1,2(t) and the patching

portion functions h1,2(t). We define the reward function before and after patching separately,

which are shown as Table 5.2 and Table 5.3. In both tables, player 1 is the row player and player

2 is the column player.

5.2.4 Goals

We focus on calculating the pure strategy Nash equilibrium for our cyber-warfare model. How-

ever, computing the Nash equilibrium of a general POSG remains open even for a two-player

game, due to nested belief [79, 119]. This means that players are concerned about not only the

game state, but also the other player’s belief over the game state. The players’ 0-level beliefs are
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represented as probabilities over the game state. Based on 0-level beliefs, players must meta-

reason about the beliefs that players hold about others’ beliefs. These levels of meta-reasoning

– called nested beliefs – can keep going indefinitely to infinite levels. If a player stops at a lim-

ited level of nested belief, the other players can reason about further levels of nested beliefs and

change the result of the game. A player must include the infinite nested belief as part of their

utility calculation when determining an optimal strategy.

5.3 Finding Equilibriums

Although the POSG model, as an incomplete information game, characterizes the uncertainty in-

herent in cyber-warfare, computing the equilibriums of a general POSG remains open. However,

we discover three insights, specific to cyber-warfare, that help us reduce the complexity of the

game and calculate the Nash equilibrium for our cyber-warfare game model.

First, if player i releases a patch, then all players subsequently know player i has found the

vulnerability. We use this to split the cyber war game into two phases: before disclosure and

after disclosure.

Second, players can probabilistically bound how likely another player is to discover a vulner-

ability based upon their skill level. This is because the probability is inferred based on players’

attributes, such as the discovery probability, ricochet probability, and those attributes are public

to all players.

Finally, although players are uncertain about the state of the other players (which they repre-

sent as a probability distribution of player states), they know the probability of their opponents

being in a state given the public information of the opponents, such as the vulnerability discovery

probability (e.g., based upon prior zero-day battles) and the ricochet probability.

Based on the above insights, we convert the POSG model to a stochastic game model by

encoding the belief of each player into the game state. In our game, the belief of a player is the

probability that the player thinks the other player has found the vulnerability. We can compute
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the Nash equilibrium for the converted stochastic game by dynamic programming. We will also

discuss the observation of players’ strategy after vulnerability disclosure.

5.3.1 The Stochastic Game

As our assumption that a player’s belief about the state of opponent players can be estimated

from the globally-known player properties, the POSG model reduces to a much more tractable

stochastic model in the pre-disclosure phase. We define the stochastic game (SG) model

SG = 〈N S,AS,ΘS,ΦS, RS〉

We retain the definition of players in POSG, N P = N S = {player 1, player 2}.

Player Actions. The player action in SG is defined as a combination of player actions under

different player states. For example, if player i plays ATTACK in state D and NOP in state ¬D,

the corresponding action in the SG model is {D : ATTACK,¬D : NOP}. For each player action

ai, we will use ai[D] and ai[¬D] to denote the action in state D and ¬D, respectively.

Game State. The game state ΘS in the SG model is defined as ΘS = T ×R×R×R. Besides

the current round number T and the patch releasing round number R, a game state includes the

beliefs of the two players about each other, which is the probability that a player has discovered

a vulnerability from the other player’s perspective, bi ∈ [0, 1]. A game state θS ∈ ΘS can

be represented as θS = 〈t, r, b1, b2〉, in which player 2 thinks the probability that player 1 has

discovered the vulnerability is b1, and player 1 thinks the probability that player 2 has discovered

the vulnerability is b2.

Unlike the POSG model, the game states in the SG model include the uncertainty of a player

about the other player’s state. In each round of the game, players know their own states; although

they do not know the other player’s state, they infer the likelihood of the other player’s state based
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on the other player’s parameters. In addition, a player also knows the other player’s beliefs about

the game state because the player also knows the parameters of himself. Therefore, we are able

to convert to the SG model under the structure of the game states above.

State Transition. We define the state transition function of the SG model as ΦS : ΘS ×AS1 ×

AS2 → ∆(ΘS). We represent the probability that a game transitions to θS using ΦS(·)[θS]. The

transition between the game states is shown in Figure 5.3. The game states are divided by the

time before and after vulnerability disclosure, because the actions and information available to

players are different between the two phases.

Before Disclosure (Figure 5.3a). Suppose the game is in state 〈t, ∅, b1, b2〉. If neither player acts

ATTACK, the probability that player i discovers the exploits at the current round is pi(t) and the

probability that player i discovers the exploit by the current round is 1− (1− bi)(1− pi(t)). The

game transits to state 〈t+ 1, ∅, 1− (1− b1)(1− p1(t)), 1− (1− b2)(1− p2(t))〉.

If a player chooses to ATTACK, the probability that their opponent will acquire the exploit in

the current round is the joint probability that the opponent discovers the vulnerability by himself

and that he detects the exploit. Meanwhile, if the opponent detects the exploit, they will be

certain that the attacker has the exploit. For example, if player 1 ’s action is {D : ATTACK,¬D :

NOP} while player 2 ’s action is {D : STOCKPILE,¬D : NOP}, the game will transition to

〈t + 1, ∅, 1 − (1 − b1)(1 − p1(t)), 1 − (1 − b2)(1 − p2(t))(1 − q2(t))〉 with the probability of

1− q2(t) and 〈t+ 1, ∅, 1, 1− (1− b2)(1− p2(t))(1− q2(t))〉 with the probability of q2(t).

Similarly, if both players act ATTACK in state D, the game will transition to one of four

possibilities. If neither player detects the exploit, the game state will be 〈t+1, ∅, 1− (1−b1)(1−

p1(t))(1− q1(t)), 1− (1− b2)(1− p2(t))(1− q2(t))〉. If player 1 detects the exploit while player

2 does not, the game state will be 〈t + 1, ∅, 1 − (1 − b1)(1 − p1(t))(1 − q1(t)), 1〉. If player

2 detects the exploit while player 1 does not, the game state will be 〈t+ 1, ∅, 1, 1− (1− b2)(1−

p2(t))(1−q2(t))〉. Finally, if both players detect the exploit, the game state will be 〈t+1, ∅, 1, 1〉.

If one player acts PATCH, both players will patch immediately. If player 1 releases a patch,
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the game will transition to 〈t + 1, t, 1, b2〉, as everyone is certain that player 1 has the exploit.

If player 2 releases a patch, the game will transit to 〈t + 1, t, b1, 1〉 and if both player release a

patch, the game will transition to 〈t+ 1, t, 1, 1〉.

After Disclosure (Figure 5.3b). After disclosure, both players will know the vulnerability so

they will stop searching for it. Also, the player disclosing a vulnerability is public so both play-

ers know that the player is in state D. Suppose player 1 discloses a vulnerability in round r. In

response, player 2 starts APEG and will generate the exploit by round r+ δ2. Meanwhile, player

2 still has the chance to ricochet attacks if player 1 attacks. Therefore, the belief of player 2 ’s

possession of the exploit will increase if player 1 attacks in the previous round. authnotetifSea-

Greenit can expand.m

Utility. We calculate players’ utility by the single-round reward functionRS : ΘS×AS1×AS2 →

R. Given a game state and players actions, the single-round reward is equal to the expected

reward over player states.

Given player i and a player state θi, the probability that the player is in state θi when the SG

game state is θS = 〈t, r, b1, b2〉, which is denoted by P (θS, θi), is equal to

P (θS, θi) = P (〈t, r, b1, b2〉, θi) =

 bi if θi = ¬D

1− bi if θi = D

Recall the reward function for the POSG modelRP : AP1 ×AP2 → R takes as input the players’

actual actions and produces as output the utility of one player (because the utility of the other is

the negative value for zero-sum game). We calculate the reward for the SG model using RP . In

specific, we have

RS(θS , aS1 , a
S
2 ) =

∑
θ1

∑
θ2

P (θS , θ1)P (θS , θ2)RP (aS1 [θ1], aS2 [θ2])

5.3.2 Compute the Nash Equilibrium

A Nash equilibrium is a strategy profile where neither player has more to gain by altering its

strategy. It is the stable point of the game when both players are rational and making their best
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response. Let NES : ΘS → R denote player 1 ’s utility when both players play the Nash

equilibrium strategy in the SG model. Since the game is a zero-sum game, the utility of player

2 is equal to −NES .

We compute the Nash equilibrium inspired by the Shapley method [103], which is a dynamic

programming approach for finding players’ best responses. For game state θs = 〈t, r, b1, b2〉,

the utility of player 1 is equal to sum of the reward that player 1 gets in the current round

and the expected utility that he gets in the future rounds. In the future rounds, players will

continue to play with their best strategies, so the utility in the future rounds is equal to the one

that corresponds to the Nash equilibrium in the future game states. Therefore, the utility of the

Nash equilibrium of a game state is as following:

NES(θS) = max
aS1 ∈AS

min
aS2 ∈AS

{
RS(θS , aS1 , a

S
2 )+

∑
θ∈ΘS

ΦS(θS , aS1 , a
S
2 )[θ] ·NES(θ)

} (5.1)

In theory, the game could go for infinite rounds when neither players discloses a vulnerability. In

this case, the corresponding utility will be equal to 0, positive infinity or negative infinity. How-

ever, for implementation, we need to set a boundary to guarantee that the recursive calculation

of Nash equilibrium will stop. We introduce MAXt to denote the maximum round of the game,

and we assume that

NES(〈t, r, b1, b2〉) = 0, if t ≥MAXt. (5.2)

5.3.3 Optimize the Game After Disclosure

Equation 5.1 is only applicable for calculating the Nash equilibrium of the SG model. Nonethe-

less, we find an optimized way to compute the Nash equilibrium after the vulnerability is dis-

closed (r 6= ∅). The optimized approach is based on the finding that if a player discloses a vul-

nerability, the other player should attack right after he generates the exploits. We call the player

who discloses the vulnerability the explorer, and the other player who witness the disclosure of

the vulnerability the observer. Intuitively, disclosure implies that the explorer has discovered the
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SG〈t, r, 1, b2〉

POSG〈t, r,D,¬D〉

POSG〈t, r,D,D〉 POSG〈t+ 1, r,D,D〉

POSG〈t+ 1, r,D,¬D〉

POSG〈t+ 1, r,D,¬D〉

POSG〈t+ 1, r,D,D〉

〈ATTACK, ATTACK〉

〈ATTACK, STOCKPILE〉

〈STOCKPILE, ATTACK〉

〈STOCKPILE, STOCKPILE〉

〈ATTACK, NOP〉

〈STOCKPILE, NOP〉

b2

1− b2

1

1

1− q2(t)

q2(t)

Figure 5.4: The relationship between the SG and the POSG models after disclose a vulnerability.
SG〈·〉 denotes the game state of the SG model and POSG〈·〉 denotes the game state of the POSG
model. Suppose player 1 discloses a vulnerability.

vulnerability, and the observer’s attack will not reveal to the explorer any new information about

the vulnerability. Therefore, there is no collateral damage if the observer attacks, and the ob-

server’s best strategy is to constantly attack until his adversary completes patching. We formally

prove the finding as follows.

Theorem 1. If one player discloses a vulnerability, the best response of the other player is

{D : ATTACK,¬D : NOP}.

Proof. Without loss of generality, we assume that player 1 discloses a vulnerability, and the

current game state for the SG model is SG〈t, r, 1, b2〉. The corresponding game state for the

POSG model is either POSG〈t, r,D,D〉 or POSG〈t, r,D,¬D〉, shown in Figure 5.4.

If player 2 has not discovered the vulnerability, then the actual game state is POSG〈t, r,D,¬D〉.

Player 2 can only play NOP, so their action is NOP when they are in state ¬D.

If player 2 has discovered the vulnerability, then the actual game state is POSG〈t, r,D,D〉.

Player 2 chooses actions between ATTACK and STOCKPILE, and the game will deterministically

transition to state POSG〈t + 1, r,D,D〉. Recall that RP (a1, a2) represents the utility of player

1 when player 1 chooses action a1 and player 2 chooses action a2. Let NEP (θP ) denote the
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utility of player 1 in state θP when both players play the Nash equilibrium strategy. Thus, we

have
NEP (〈t, r,D,D〉)

= max
aP1 ∈AP

min
aP2 ∈AP

{
RP (aP1 , a

P
2 ) +NEP (〈t+ 1, r,D,D〉)

}
= max
aP1 ∈AP

min
aP2 ∈AP

RP (aP1 , a
P
2 ) +NEP (〈t+ 1, r,D,D〉)

(5.3)

According to the reward matrix in Table 5.3, ATTACK dominates STOCKPILE, and the best

strategy for player 2 in state D is ATTACK. Overall, the best strategy for player 2 is {D :

ATTACK,¬D : NOP}.

A special case is that both players disclose a vulnerability at the same round. Under this

situation, both players will attack right after disclosure, since both players are the observers and

the explorers. As observers, the players will attack once they can; as explorers, the players know

how to exploit.

Given the above theorem, the SG model after disclosure becomes a Markov decision process

in which the explorer makes a decision given a state of the stochastic game.

Next, we discuss how to compute the best response for the explorer. Given a game state, the

explorer chooses one action between ATTACK and STOCKPILE. Suppose player 1 is the explorer.

First, we discuss the algorithm to compute the best response for the POSG game state. If

player 2 is in state D, then the game state is 〈t, r,D,D〉. According to Table 5.3, player 1 should

play ATTACK:

NEP
(
〈t, r,D,D〉

)
= RP (ATTACK, ATTACK)+

NEP
(
〈t+ 1, r,D,D〉

) (5.4)

Let ΦS(θX)[θY ] be the probability that a game transitions from θX to θY . If player 2 is in

state ¬D and the game is in state 〈t, r,D,¬D〉, player 1 should choose the action with greater

utility according to the following formula:

NEP
(
〈t, r,D,¬D〉

)
= max
aP1 ∈{ATTACK,STOCKPILE}

{
RP (aP1 , NOP) +

∑
θ∈ΘP

ΦP
(
〈t, r,D,¬D〉

)
[θ]NEP (θ)

} (5.5)
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Finally, given a game state of the SG model SG〈t, r, 1, b2〉, the best response for player 1 is the

action with greater expected value of the utilities over POSG states.

NES
(
〈t, r, 1, b2〉

)
= max
aP1 ∈{ATTACK,STOCKPILE}

{
b2 ·NEP

(
〈t, r,D,D〉

)
+

(1− b2) ·NEP
(
〈t, r,D,¬D〉

)}
(5.6)

5.4 Implementation

In the previous section, we proposed algorithms to calculate the Nash equilibrium of the game.

The game is divided into two stages, each of which is solved by dynamic programming. We

implemented the code in Python. In this section, we show our pseudo-code in order to convey a

clearer structure of the method.

Algorithm 3 shows the calculation for the Nash equilibrium before a vulnerability is dis-

closed. Given a round index and beliefs of the players, the goal is to compute player utility

when both players rationally play their best response. If the round index is equal to or larger

than MAXt, which is the maximum number of rounds argument self-configured for the game,

then the calculation will stop. Otherwise, the algorithm finds the Nash equilibrium according to

Equation 5.1 and Figure 5.3a. For each Nash equilibrium candidate, if players do not disclose

the vulnerability, the game will continue in the before-disclosure phase, else the game will step

to the after-disclosure phase.

Algorithm 4 shows the computation for the Nash equilibrium after a vulnerability is dis-

closed. If the game has equal to or more than MAXt rounds, then the game is over. Otherwise,

we update players’ state according their APEG skill. If both players have generated the exploit,

then both of them should attack. If not, the player who did not disclose the vulnerability should

attack once he has generated the exploit. The other player who disclosed the vulnerability should

choose between attack and stockpile depending on the sum of the utilities at the current round

and that in the future.
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Input :
t: The index of the current round
b1, b2: The probability that player 1 and player 2 have discovered the vulnerability.

Output:
NES(〈t, ∅, b1, b2〉)[i]: The utility of player i under the Nash equilibrium at round t before

disclosure.

1 if t >= MAXt then
2 Game is over.
3 end
4 θS ← 〈t, ∅, b1, b2〉;
5 ΘT ← set of possible states transiting from θS;
6 max← −∞;
7 foreach aS1 ∈ AS do
8 min←∞;
9 foreach aS2 ∈ AS do

10 t← R(θS, aS1 , a
S
2 ) +

∑
θ∈ΘS ΦS(θS, aS1 , a

S
2 )[θ]NES(θ);

11 if min > t then
12 min← t;
13 end
14 end
15 if max < min then
16 max← min;
17 end
18 end
19 NES(〈t, ∅, b1, b2〉)[1]← max;
20 NES(〈t, ∅, b1, b2〉)[2]← -max;
21 return NES(〈t, b1, b2〉);

Algorithm 3: The before-disclosure game algorithm.
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Input :
t: The index of the current round
r: The index of the round at which a vulnerability is disclosed
b1, b2: The probability that player 1 and player 2 have discovered the vulnerability.

Output:
NES(〈t, r, b1, b2〉): The player utility under the Nash equilibrium at round t after the

vulnerability is disclosed at round r.

1 if t >= MAXt then
2 Game is over.
3 end
4 foreach i ∈ {1, 2} do
5 if bi < 1 and t > r + δi then
6 bi ← 1;
7 end
8 end
9 if b1 == 1 && b2 == 1 then

10 NES(〈t, r, b1, b2〉)← NEP (〈t, r,D,D〉);
11 end
12 else if b2 < 1 then
13 NES

(
〈t, r, b1, b2〉

)
←

maxaP1 ∈{ATTACK,STOCKPILE}
{
b2 ·NEP

(
〈t, r,D,D〉

)
+ (1− b2) ·NEP

(
〈t, r,D,¬D〉

)}
;

14 end
15 else
16 NES

(
〈t, r, b1, b2〉

)
←

minaP2 ∈{ATTACK,STOCKPILE}
{
b1 ·NEP

(
〈t, r,D,D〉

)
+ (1− b1) ·NEP

(
〈t, r,¬D,D〉

)}
;

17 end
18 return NES(〈t, r, b1, b2〉);

Algorithm 4: The after-disclosure game algorithm.
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5.5 Evaluation and Case Studies

In this section, we apply our algorithm to calculate the Nash equilibrium of cyber-warfare games

and discuss the following questions:

• The Attack-or-Disclose Question (§ 5.5.1). Previous models [21, 44, 81, 97] limit that a

player is allowed to choose only one action which is either attack or disclose. We extend to

allow players playing a sequence of actions. Will a player get more utility if he is allowed

to play a sequence of actions?

• The One-Must-Attack Question (§ 5.5.2). The cyber-hawk model [81] concludes that at

least one player will attack. Does our model support this conclusion? If not, is there any

counter-example? What causes the counter-example?

• The Cyber Grand Challenge Study (§ 6.3.1). How to apply the model to published

cyber-conflict events such as the Cyber Grand Challenge, which is a well-designed com-

petition approximating a real-world scenario? Does our model improve the competitor’s

score if the other players do not change their actions in the game?

• The MAXt Effect Evaluation (§ 5.5.4). How does the configuration of MAXt affect the

results?

• Performance Evaluation (§ 5.5.5). What is the runtime performance of the automatic

strategic decision-making tool?

We investigate the questions by performing several case studies. Although these cases have

concrete parameter values, they characterize general situations in cyber warfare where players

have different levels in one or more technical skills.

5.5.1 The Attack-or-Disclose Question

Previous models assert that a player should either always attack, or always disclose. However,

using our tool, we find cases where a player has a better strategy than to attack or to disclose all
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the time. For example, consider a game with the parameters in Table 5.4. In this case, player 1’s

optimal strategy is to disclose and then attack 2 rounds after disclosure.

Intuitively, there are three reasons for player 1 to choose the disclose-then-attack strategy.

First, player 1 has more vulnerable resources than player 2, so he will lose if both players attack

before disclosure. Second, player 2 has a relatively high ricochet probability, so he will be very

likely to generate ricochet attacks if player 1 attacks. Finally, player 1 patches faster than player

2, so he will finish patching earlier, when player 2 is still partially vulnerable. Therefore, player

1 prefers disclose-then-attack strategy over only attacking or only disclosing.

Player 1 Player 2
pi(t) ∀t, p1(t) = 0.5 ∀t, p2(t) = 0.5
ui(t) ∀t, u1(t) = 1 ∀t, u2(t) = 20
qi(t) ∀t, q1(t) = 0.2 ∀t, q2(t) = 0.9
δi δ1 = 20 δ2 = 20
hi(t) h1(t) = 1− 0.9t, t < 2 h2(t) = 1− 0.1t, t < 10

h1(t) = 1, t ≥ 10 h2(t) = 1, t ≥ 10

Table 5.4: Case I. Player 1’s best strategy is to disclose then attack.

5.5.2 The One-Must-Attack Question

Previous work concludes that at least one player must attack [81]. However, we argue that the

conclusion is inaccurate, by showing cases in which neither player prefers attacking. Consider

the game with the settings shown in Table 5.5. We find that both players will choose to PATCH

after they find the vulnerability. The intuition is that player 1 should never choose to ATTACK

because he will suffer a greater loss if player 2 launches ricochet attacks. Player 1 should also

never choose to STOCKPILE, because player 2 may re-discover the vulnerability and then AT-

TACK. Therefore, player 1’s best strategy is to PATCH once he discovers the vulnerability. After

player 1 discloses a vulnerability, player 2 receives the patch and generates exploits based on the

patch, which costs him δ2 rounds. Within the rounds, player 1 would have completely patched

his own machines, which makes any future attack from player 2 valueless.
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Furthermore, we observe two necessary elements leading to players’ not attacking strategy:

ricochet capability and patching capability. To illustrate our observation, we computed the Nash

equilibrium of two other games, where we only changed the value of the ricochet or patching

parameters, and we found that one player will prefer attacking in new games.

First, we consider the scenario excluding ricochet. We keep the parameters Table 5.5, but

set qi(t) = 0,∀t. We observe that both players will attack until the end of the game. Because

ATTACK always bring positive benefit while STOCKPILEand NOP always bring 0 benefit, ATTACK

dominates STOCKPILEand NOP at any round. Therefore, the optimal strategy for both players is

to attack as soon as they discover the vulnerability.

Second, we consider the scenario where one player slows down his patching speed. Suppose

we replace the original patching function h2(t) with h2(t) = 1 − 0.1t, t < 20 and h2(t) =

1, t ≥ 20. We observe that the best strategy for player 1 is to attack, since some of the player 2’s

resources remain vulnerable after player 1 is done with patching. This case indicates that even

though the ricochet attack exists, if a player does not patch fast enough, he will still be attacked

by his opponent. In conclusion, we find that both ricochet and speedy patching are necessary in

order to prevent adversaries from attacking.

Player 1 Player 2
pi(t) ∀t, p1(t) = 0.8 ∀t, p2(t) = 0.01
ui(t) ∀t, u1(t) = 2 ∀t, u2(t) = 20
qi(t) ∀t, q1(t) = 0.2 ∀t, q2(t) = 0.9
δi δ1 = 20 δ2 = 20
hi(t) h1(t) = 1− 0.9t, t < 10 h2(t) = 1− 0.1t, t < 10

h1(t) = 1, t ≥ 10 h2(t) = 1, t ≥ 10

Table 5.5: Case II. Both players’ best strategy is to disclose without attacking.

5.5.3 The Cyber Grand Challenge Study

The Cyber Grand Challenge (CGC) is an automated cyber-security competition designed to mir-

ror “real-world challenges” [47]. This competition provides an excellent opportunity to evaluate
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the strategies suggested by our model against those actually carried out by competitors. The CGC

final consists of 95 rounds. In this case study, we experimented on the ranking of the third-place

team in the Cyber Grand Challenge, Shellphish. Based on their public discussions regarding their

strategy, Shellphish simply attacked and patched right away [48]. This made them an optimal

subject of this case study, as, since they would use their exploits as soon as possible (rather than

stockpiling them), we can closely estimate their technical acumen for the purposes of testing our

model. We call our modified, more strategic, player “Strategic-Shellphish”.

In our experiment, we adapted our model to the CGC final in the following way. First, we

update the reward function on the CGC scoring mechanism. As the CGC final is not a zero-sum

game, we compute the Nash equilibrium by focusing on the current round. Second, we separate

the game by binaries, and for each binary we model Strategic-Shellphish as one player while all

the non-Shellphish team as the other player. Third, we estimated the game parameters according

to the data from the earlier rounds, then calculated the optimal strategy and applied the strategy

in the later rounds. For example, we get the availability score for the patch by deploying it in

the earlier rounds. The data is from the public release from DARPA, which includes the player

scores for each vulnerable binaries in each round.

In the first CGC experiment, we estimated the game parameters by the information of the

first 80 rounds of the game, and applied the model on the 80-95 rounds. This range included 11

challenge binaries, and we simulated Shellphish’s performance, if they had used our model for

strategy determinations, across these programs. The score comparison for each vulnerability is

shown in Figure 5.5, with the x axis representing the 11 binaries and the y axis representing the

scores. The new scores are either higher or equal to the original score. Among these binaries,

our model helps improve 5 cases out of 11. The overall score for the 11 vulnerabilities is shown

in Figure 5.6. The original Shellphish team got 38598.7 points, while our model got 40733.3

points. Moreover, our Strategic-Shellphish team won against all other teams in terms of these 11

vulnerabilities.

We observed that Strategic-Shellphish withdrew the patch of some vulnerabilities after the
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Figure 5.5: The per-vulnerability score comparison between the original Shellphish team and
Strategic-Shellphish – the Shellphish team + our model.

first round of patching. After the first round of patching, Strategic-Shellphish got the precise

score for availability, and this helped it compare the cost of patching to the expected lost in the

future rounds.

In the second CGC experiment, we estimated the game parameters by the information of

the first 15 rounds. Given the parameters, Strategic-Shellphish calculates the likelihood that the

other teams discovers the vulnerability, and it uses our algorithm to determine the best response.

Before it is well-aware of the patching cost, we assigned the cost to 0. After the first round of

patching, we updated the patching cost and adjusted the future strategy.

The score for the entire game is shown in Figure 5.7. The original Shellphish team got

254,452 points and ranked third in the game. On the other hand, the Strategic-Shellphish got

268,543 points, which is 6000 points higher than the score of the original 2nd-rank team. Our

experiment highlights the importance of our model as well as the optional strategy solution. If a

team such like Shellphish used our model, it could have achieved a better result compared to its

original strategy. In fact, in the Cyber Grand Challenge, the difference between third (Shellphish)

and second (Strategic-Shellphish) place was $250,000.
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Figure 5.8: Player 1’s Utility over different maximum number of round (MAXt).

5.5.4 The MAXt Effect Evaluation

To understand the effect of MAXt on the final result, we fixed the parameter values in Table 5.4

and varied the value of MAXt from 1 to 15. For each game, we computed the Nash equilibrium

and its corresponding players’ utilities. As the game is a zero-sum game and the utility of player

2 is always symmetric to that of player 1, we will focus on player 1’s utility.

Figure 5.8 shows player 1’s utility. We observed that when MAXt is small, the change

of MAXt will affect the Nash equilibrium and players’ utilities. As MAXt becomes larger,

the change of MAXt will no longer affect the Nash equilibrium, and the players’ utilities will

become stable. In our case, when MAXt = 1, player 1 will patch and player 2 will attack for

both rounds. When MAXt = 2, player 1 will disclose at the first round and attack at the second

round, while player 2 will attack for both rounds, and, meanwhile, patch if player 1 discloses

the vulnerability. When MAXt ≥ 3, player 1 will disclose at the first round and attack since

the third round. This observation implies that players tend to be more aggressive in a shorter

game. It also explains why the result of the cyber-hawk model [81] is suboptimal: if the game
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Figure 5.9: The time (in second) for computing the Nash equilibrium over different maximum
number of round MAXt.

is considered as a single-round game, players will neglect the loss in the future and make a local

optimal strategy rather than a global optimal one.

5.5.5 Performance Evaluation

In this evaluation, we fixed the player parameters and measured the time for computing the

Nash equilibrium under different MAXt values from 1 to 50. We show the time performance

in Figure 5.9. Based on the figure, we found that although the time of computing increases

as MAXt grows, our tool is able to find the Nash equilibrium of all games within seconds.

In practical, MAXt needs to be configured properly in order to balance between the action

frequency (i.e., should a player act per minutes or per day?) and the action performance (i.e.,

how long do we need to respond to the zero-day vulnerability events?).
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5.6 Discussion and Future Work

Our work advances zero-day strategy research by constructing a game model covering features

that are of great significance in real-world cyber warfare, such as activity over multiple rounds,

partial availability of information, and emergent offensive techniques like APEG and ricochet.

In this section, we discuss some aspects to be addressed in future work.

Irrational Players and Collusion. We focus on a setting with rational players engaged in zero-

sum games. It is well established that governments and people act irrational from time to time.

Nonetheless, an analysis of rational behavior highlights an important consideration point. We

leave the modeling of non-rational behavior and non-zero-sum games as future work.

Parameter Sensitivity. Our model employs parameters to capture players’ different skill levels.

These parameters need to be evaluated, and one way is to use a relevant benchmark proposed

by Axelrod et al. [21]. For example, one can estimate pi(t) by reasoning about the ratio of the

vulnerabilities independently rediscovered in software from the research by Bilge et al. [27]. As

the White House stated that the government weighed the likelihood that the other nations re-

discover the vulnerability, the evaluation approach should have already existed. In the future, we

need to investigate the robustness of the model under different parameter margins.

Multiple Nash Equilibria. It is possible that multiple Nash equilibria exist in a cyber-warfare

game. However, due to the zero-sum game property, player utilities remain the same for all Nash

equilibria. Therefore, any Nash equilibrium is players’ optimal strategy. Although we do not

discuss the entire set of possible Nash equilibria, finding them all is a straightforward extension

of our algorithm, in the way that one could record all strategies with same value as the maximum

one.

Deception. Although the game parameters are public, they can be manipulated by players. For

example, a player could pretend to be weak in generating exploits by never launching any attack

against anyone. In our dissertation, we do not consider player deception, and we leave it for

future work.
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Inferring Game State from Parameters. We consider that players infer the states of other

players by detecting attacks or learning vulnerability disclosure. However, we do not consider

that players could these state by reasoning about game parameters. For example, suppose we

have a game with public game parameters denoting that player 1 is able to capture all the attacks

and player 2 should always attack after he generates an exploit. In this case, if player 1 does not

detect attacks from player 2, then player 2 has not generated an exploit, and the belief on player

2 should be zero all the time until player 1 detects an attack. To tackle this problem, a possible

way is to solve the game separately with different groups of parameter conditions.

Multiple Vulnerabilities. Our game model focuses on one vulnerability. We assume that vul-

nerabilities are independent, and a game with multiple vulnerabilities can be viewed as separate

games each of which has a single vulnerability. To combine multiple vulnerabilities in a game,

a possible direction is to consider modification of the game parameters. For example, instead

of the probability that the opponent re-discovers the vulnerability, we could use the probability

that the opponent discovers any vulnerabilities. Also, we could extend the utility function by

including the utility gained from other vulnerabilities.

Limited Resources. When players are constrained by limited resources, they may have fewer

strategy choices. For example, if a player has limited resources, he may not be able to simulta-

neously generate an exploit and generate a patch. The limited resources may affect players’ best

response as well as the Nash equilibrium. In the future, we need to come up with updated model

and algorithm to address this issue.

The Incentives of Patching. In our model, we consider patching as a defensive mechanism that

only prevents players from losing utility. This leads to players not having incentives to disclose

a vulnerability. We argue that patching might bring positive benefits to players. For instance,

a player would have a better reputation if he chooses to disclose a vulnerability and patch their

machines. We leave the consideration of the positive reputation caused by disclosure as future

work.

135



5.7 Conclusion

In this chapter, we present a cyber-warfare model which considers strategies over time, addresses

players uncertainty about their opponents, and accounts for new offensive and defensive tech-

niques that can be employed for cyber-warfare, e.g., the ricochet attack and APEG. We propose

algorithms for computing the Nash equilibrium of the model, and our algorithm is able to find

better strategies than previous work within seconds. Moreover, by solving the game model, we

allow decision makers to calculate utility in scenarios like patch-then-exploit, as well as show

where, in the parameter space of the game model, it makes more sense to patch than to attack.

Our model also challenges previous results, which conclude that at least one player should attack,

by showing scenarios where attacking is not optimal for either player.
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Investigation
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Chapter 6

Qualitative Technique Evaluation on

Autonomous Computer Security Games

In previous chapters, we have presented the autonomous computer security game model and the

algorithm for finding the optimal strategy in the game model. We have also introduced multiple

software security related techniques such as function recovery for stripped binaries and exploit

reuse and shellcode transplant.

In this part of the dissertation, we investigate how techniques qualitatively change the out-

come of software security. More specifically, we consider software security instances that can be

modeled as autonomous computer security games, and evaluate how the Nash equilibrium and

utility of an autonomous computer security game changes due to a particular technique, given

the assumption that players in the game are rational, playing their optimal strategy.

This chapter is structured as follows. First, we introduce the methodology of how to qual-

itatively evaluate a software security-related technique (Section 6.1). Then we investigate how

the parameters in autonomous computer security game influence Nash equilibrium and expected

utility (Section 6.2). Finally, we take the Cyber Grand Challenge (CGC) final as a concrete

case and investigate how techniques such as ByteWeight and ShellSwap change the game result

(Section 6.3.1).
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6.1 Introduction

Evaluating techniques is essential because evaluation justifies and measures the merit of tech-

niques. Traditionally, techniques are evaluated in a quantitative way. For example, a vulnerabil-

ity discovery technique is evaluated by how many vulnerabilities are found using the technique,

and a vulnerability patching technique is evaluated by how many vulnerabilities are successfully

patched against attacks.

On the other hand, qualitative evaluation of how techniques change security outcome is also

very important in security study [64]. Security researchers have pointed out that an important

step forward in security research is to “stop insisting that quantitative is better than qualitative;

both types of measurement are useful” [43, 88, 89].

However, little research has discussed the methodology of how to evaluate techniques qual-

itatively, not mention the result about how software security-related techniques help to achieve

security. For example, the Offensive Defense is known as a famous doctrine for software security

research. Parties who are more skillful in the offense skills will find more vulnerabilities in an

earlier time, and these parties will be more proactive in defense. However, as more offensive

techniques are published as papers or even released with source code, those offensive techniques

do not exclusively belong to some parties. Instead, those published techniques are known and

can be used by all parties. Under such circumstance when everyone increases its attack ability,

will the technique still make the world more secure? Does “offensive defense” still hold? In

this section, we will introduce the approach to answering such question, and we will investigate

multiple binary analysis techniques.
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6.2 Evaluating a Technique Class on the Autonomous Com-

puter Security Game Model

In this section, we qualitatively evaluate a class of software analysis techniques on autonomous

computer security game model. For a class of software analysis techniques, we study whether

and how the development of such class impacts the outcome of software security.

Answering this question helps us to understand the benefit of developing a technique class.

Moreover, by comparing the benefit of different technique classes, an agent, such as a company

or a country, will be able to prioritize the development of techniques. For example, given a fixed

budget, a nation can use our method to investigate the benefits of defense and offense technique

classes and decide how to allocate resources for the two classes.

A class of techniques includes all techniques serving for the same purpose. For example,

Exploit generation is a class of techniques, which includes all techniques that find vulnerabilities

and produce exploits such as Driller [110], AEG [19], Mayhem [37], Q [99] and AFL [17].

Software security is abstracted as a model. In this model, a class of techniques is abstracted as

one or multiple parameters. For example, in the cyber-hawk model [81], the exploit generation

technique class is modeled as one parameter. Meanwhile, the outcome of software security

is represented as a function related to the parameters. For example, one security outcome is

players’ optimal strategy. For a game model such as cyber-warfare [24], Nash Equilibrium is the

strategy profile when all players are playing optimally. Therefore, we use Nash Equilibrium to

represent the function for the security outcome.

Essentially, the development of a technique in a technique class changes the value of the

related parameters, and the change of the parameters leads to the change of the value of the rep-

resenting function. In consequence, answering whether and how the development of a technique

class impacts security outcome, is equivalent to answering how the parameters, which behaves

as variables, change the value of the function.
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6.2.1 Case Study: Exploit Reuse

We evaluate the exploit reuse technique class on software security. In specific, we investigate

how exploit reuse changes the disclosure of vulnerability by the following questions:

• Does exploit reuse keep a player from being stealthily attacked by its opponent?

• Does exploit reuse stop both players from stealthily attacking each other?

To answer these questions, we use the autonomous computer security game (Chapter 1.3) as

the abstract software security model. Recall that the autonomous computer security game model

considers five parameters:

• pi(t): The probability distribution over time that player i discovers a vulnerability at round

t.

• qi(t): The probability to launch a ricochet attack with exploits that player i received in the

previous round.

• hi(t): The ratio of the amount of patched vulnerable resources over the total amount of

vulnerable resources by t rounds after the vulnerability is disclosed.

• δi: The number of rounds required by player i to generate a patch-based exploit after a

vulnerability is disclosed.

• ui(t): The dynamic utility that player i gains by attacking his opponents at round t.

In the model, parameter qi(t) represents exploit reuse, as exploit reuse is a kind of ricochet

attack. Therefore, we treat qi(t) as a variable. Vulnerability disclosure is related to players’

strategy. Assuming players are playing rationally, then vulnerability disclosure and players’ final

strategy are related to Nash Equilibrium, and the representing function for security outcome is

the Nash Equilibrium of the game model.

For the other parameters, we treat patching function (hi(t)), utility function (ui(t)) and patch-

based exploit generation (δi) as control variables by setting equal values for both players. We

set the vulnerability discovery function as variable function and calculate the Nash Equilibrium
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under different values of vulnerability discovery function and exploit reuse.

Note that we should treat all the other parameters as variables in theory. However, there are

infinite numbers of functions, and the domain of patch-based exploit generation is unlimited, and

thus enumerating patching function, utility function and patch-based exploit generation param-

eters is theoretically impossible. Also, those parameters are not of primary interests since they

are independent of exploit reuse. Therefore, in the evaluation we held constant and equal values

for the parameters of both players. Setting equal values for both players avoids Nash Equilib-

rium being influenced by the difference of these elements. However, the value itself may also

affect Nash Equilibrium. In this dissertation, we use this case for the purpose of demonstration

for qualitatively evaluating a technique class for security outcome. We leave the study for more

parameters (which essentially, is the investigation of the impact of higher dimensional variables

for the Nash Equilibrium of the autonomous computer security game model) as future work.

In specific, we set utility function as u1(t) = u2(t) = 1,∀t and patch-based exploit generation

parameter δ1 = δ2 = 0 throughout our evaluation. We set patching ratio function as h1(t) =

h2(t) = 1 − 0.5t, due to that a patching ratio function normally limits to 1 (patching should

approach to be complete). To scope vulnerability discovery function from infinite enumeration

with limited domain, we set p1(t) = p1,∀t and p2(t) = p2,∀t, and we call p1 and p2 vulnerability

discovery rates.

Does exploit reuse keep a player from being stealthily attacked by its opponent? To answer

this question, we need to figure out the relationship between players’ stealthy attack and the

representing function, Nash equilibrium. A stealthy attack occurs when a player plays {D :

ATTACK,¬D : NOP}before any players play {D : PATCH,¬D : NOP}. The action is made

according to a Nash equilibrium. A Nash equilibrium is a strategy profile denoting players’

optimal strategy. For autonomous computer security games, as partial observation stochastic

games, a player’s strategy is a sequence, where each element denotes the actions under two

different player states. For example, suppose Player 1’s optimal strategy for an autonomous
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computer security game with 2 rounds is

{D : ATTACK,¬D : NOP}, {D : PATCH,¬D : NOP}

This means that Player 1 plays {D : ATTACK,¬D : NOP}before he plays {D : PATCH,¬D :

NOP}, and if Player 2 does not play {D : PATCH,¬D : NOP}at the first round, then Player

1 stealthily attacks Player 2. Therefore, to check stealthy attack, we need to check if {D :

ATTACK,¬D : NOP}exists before the round when one player plays {D : PATCH,¬D : NOP},

after we calculate the Nash equilibrium.
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Figure 6.1: Vulnerability disclosure without exploit reuse.

Figure 6.1 shows vulnerability disclosure associating with players’ vulnerability discovery

rate. In the chart, the x-axis and the y-axis denote Player 1’s and Player 2’s vulnerability discov-

ery rates, respectively. Each dot represents the case where Player 1’s vulnerability discovery rate

is equal to its x-axis value and Player 2’s vulnerability discovery rate is equal to its y-axis value.

Blue dots means Player 1 discloses the vulnerability, and red dots means Player 2 discloses the

vulnerability.
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Figure 6.2: Vulnerability disclosure with exploit reuse function q1(t) = 0.1,∀t and q2(t) = 0,∀t.

Based on the figure, we find that when two players have equal or similar vulnerability dis-

covery rate, they do not disclose the vulnerability. When a player’s vulnerability discovery rate

is higher than the other player to some extent, the player with lower vulnerability discovery rate

discloses the vulnerability. Under this setup, at least one player always attacks the other player,

which is consistent with the observation of previous work [81].

Interestingly, we observed that a vulnerability is always disclosed at the beginning of the

game under all the enumeration. Our understanding is that this is related to the setup of the utility

function and patching function. Intuitively, for a player who prefers patching, early patching is

always better than late patching, unless attacking later helps him getting more utility from his

opponent, meaning that the opponent’s utility function increases in later rounds. We leave the

formal proof as the future work.

Figure 6.2, Figure 6.3 and Figure 6.4 show the vulnerability disclosure associating with dif-

ferent vulnerability discovery rates. In these figures, we disable Player 2’s exploit reuse skill
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Figure 6.3: Vulnerability disclosure with exploit reuse function q1(t) = 0.2,∀t and q2(t) = 0,∀t.

by setting the function constantly zero, and we change Player 1’s exploit reuse function from

q1(t) = 0.1,∀t to q1(t) = 0.3,∀t.

Based on the figure, we find that exploit reuse stops a player from attacking, if its opponent is

capable of exploit reuse. The intuition is that, if a player’s opponent can reuse an exploit, then the

player should consider collateral damage if he attacks, and when the collateral damage is greater

than the expected attacking utility – which depends on both players’ vulnerability discovery skills

– the player should disclose the vulnerability instead of stealthily attack.

Does exploit reuse stop both players from stealthily attacking each other? In the previous

discussion, we find that although exploit reuse helps a player from being stealthily attacked by

the other player, there is still at least one player stealthily attack. As a followup question, we

study whether exploit reuse stops both players stealthily from attacking each other.

Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 shows the vulnerability disclosure of the

games with different attacking utility when both players have the skill of exploit reuse. For ex-
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Figure 6.4: Vulnerability disclosure with exploit reuse function q1(t) = 0.3,∀t and q2(t) = 0,∀t.

ample, if an exploit reuse technique is published through an academic conference, then with the

publicity all players will obtain the knowledge of the technique. We observed that when both

players are capable of exploit reuse, there are circumstances that both choose to disclose the vul-

nerability. As the exploit reuse skill increases, the both-disclose circumstances also increases.

When both players have full exploit reuse skill (meaning that both players are able to reuse all

exploits), at least one player discloses the vulnerability. Therefore, we conclude that when both

players have the exploit reuse skill, exploit reuse stops both players from stealthily attacking.

This observation is encouraging; it illustrates the importance of developing and publishing ex-

ploit reuse techniques. When everyone has the full capacity of exploit reuse, there will be no

zero-day attack in the world.
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Figure 6.5: Vulnerability disclosure with exploit reuse function q1(t) = q2(t) = 0.1,∀t.

6.3 Evaluating a Technique on a Security Case

In this section, we discuss qualitative technique evaluation on concrete security cases. The goal

of the evaluation is to investigate a technique’s security contribution to a specific security sce-

nario. Given a technique and a security case, the evaluation answers whether and how a technique

changes the security outcome of the case.

We first introduce the approach to the qualitative technique evaluation. Similar to the tech-

nique class evaluation, we need to abstract security cases to a model, identify the model parame-

ters related to the evaluating technique and define the function representing the security outcome.

In addition, we calculate the parameter values under two conditions: when the evaluating tech-

nique presents and does not present. Then we calculate the value of the representing function

associated with the two parameter values. Finally, we compare the value of the representing

function and the difference of the representing function shows the impact of the technique on the

concrete security case.
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Figure 6.6: Vulnerability disclosure with exploit reuse function q1(t) = q2(t) = 0.2,∀t.

6.3.1 Case Study: ByteWeight on Cyber Grand Challenge Final

As a case study, we evaluate ByteWeight on Cyber Grand Challenge Final. Cyber Grand Chal-

lenge is an offense-defense competition hosted by DARPA in 2016. In the final of the competi-

tion, 7 teams played and competed with each other. Each team has an identical server running

multiple programs. Those programs contain vulnerabilities, and the teams need to find the vul-

nerabilities, attack the other teams using the vulnerabilities and defend their own servers from

being exploited. The final is composed by 95 rounds. In each round, a team is allowed to attack

the other teams for one time. If the attack is successful, then the team wins the offense score.

Meanwhile, a team can also patch their own programs. If the patch is tested to be effective, then

the team gets defense score. If the patch is also tested to be robust, meaning that the patched

program passes performance and functionality test, then the team also gets performance score.

The total score is calculated by combining offense score, defense score and performance score.

In Cyber Grand Challenge final, players are represented by autonomous cyber reasoning
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Figure 6.7: Vulnerability disclosure with exploit reuse function q1(t) = q2(t) = 0.3,∀t.

systems with no human intervention. Under this setup, the systems discover vulnerabilities and

decide what to do with the vulnerability. Due to the complete publishing of the data and some of

the autonomous cyber reasoning systems, we use the data from Cyber Grand Challenge final for

some of the evaluation of our work. However, note that our research is not limited to the Cyber

Grand Challenge game; it is general for real-world scenarios such as nations and companies

strategy for zero-day vulnerabilities, as well as programs of daily use such as coreutils and

binutils packages.

In specific, we evaluate how ByteWeight contributes for team Shellphish in the Cyber Grand

Challenge final. ByteWeight [23] (Section 3) is a function identification technique. It was

adopted to team Shellphish’s system, Mechanical Phish, and the technique served for binary

patching. The representing function is Shellphish’s score. To evaluate ByteWeight, we disabled

ByteWeight, re-ran the patching component of Mechanical Phish and found the binaries with

failed patching [46]. We then calculated the strategy of these binaries, and we updated Shell-

phish’s score with the new strategy. In the last, we compared Shellphish’s score with the one
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Figure 6.8: Vulnerability disclosure with exploit reuse function q1(t) = q2(t) = 1,∀t.

Shellphish plays optimally (Strategic-Shellphish, see Figure 5.7).

Based on the evaluation, we found that Shellphish’s score did not change when ByteWeight

is disabled. This implies that ByteWeight does not contribute Shellphish’s performance in the

Cyber Grand Challenge. The reason is that, Shellphish’s optimal strategy does not involve patch-

ing. Although ByteWeight helps to improve patching, it does not change Shellphish’s optimal

strategy, and thus does not impact the security outcome of the game. This observation high-

lights that although techniques advance security skill, they may not improve security outcome for

agents who own the techniques.

6.4 Discussion

Pure-strategy Nash Equilibrium. In our investigation, we study the exploit reuse technique

class and evaluate it on a security model, the autonomous computer security game. In the eval-

uation, we found that pure-strategy Nash Equilibrium always exists. Although it is known that

151



Nash Equilibrium always exists for zero-sum games, pure-strategy Nash Equilibrium does not.

In the future, we plan to study the observation in a mathematical way and explore whether or in

what condition pure-strategy Nash Equilibrium exists for autonomous computer security game.

More Plot Investigation. We plan to investigate more cases under different parameters setup.

For example, in the technique class evaluation, we found that when both players have the exploit

reuse skills q1(t) > 0.5 and q2(t) > 0.5, the areas when both players disclose a vulnerability

are separated. One future work is to investigate the reason why the areas are separated and to

explore the analytical result for vulnerability disclosure in terms of a technique class such as

exploit reuse.

6.5 Summary

In this chapter, we introduce qualitative technique evaluation, which is to evaluate techniques

from the security outcome’s perspective. Different from known evaluations which typically mea-

sure techniques on specific skill level, qualitative technique evaluation focuses on the impact of

the overall security outcome, such as agent’s utility, vulnerability disclosure etc. Qualitative

technique evaluation is general for all software security techniques, and it measures an essential

question for software security — does a technique make us more secure? In addition, we pro-

pose two methods for qualitative technique evaluation, and we apply our methods to study two

binary analyses: the technique class of exploit reuse and ByteWeight, a function identification

technique. We found that exploit reuse helps to decrease zero-day attacks, and that ByteWeight

does not help Shellphish with more scores in the Cyber Grand Challenge final since Shellphish’s

optimal strategy does not involve the patches generated by the assistance of ByteWeight.
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Part IV

Conclusion
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Chapter 7

Conclusion

Software security techniques are essential; they enable the automation of the software analysis

process and efficiently protect software programs that we have heavily relied on in our life.

However, software security techniques have their merits in practice only to the extent they can be

used to achieve a goal. Unfortunately, the software security community has overlooked offense

and defense strategy for software vulnerabilities. Due to the lack of study in offense and defense

strategy, parties are making suboptimal decisions for software vulnerabilities, and those decisions

have resulted in a significant loss. For example, the WannaCry attack is majorly caused by NSA’s

zero-day vulnerability stockpiling, and that a team such as Shellphish suffered by suboptimal

strategy during the Cyber Grand Challenge final competition.

In this dissertation, we propose a holistic approach to reason about software security. The

approach considers both software security techniques and offense and defense strategy. We in-

troduce the connection between techniques and strategy, and we propose a new methodology to

holistically study software security. From the technical perspective, we invent ByteWeight and

ShellSwap, two new techniques for function identification and automatic exploit reuse, respec-

tively. From the strategy perspective, we abstract software security as autonomous computer

security games, and we show that the autonomous computer security game model can be used

for calculating optimal strategies. Finally, we blend techniques and strategy by establishing qual-
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itative technique evaluation, and we investigate the qualitative security impact for ByteWeight

and automatic exploit reuse.
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