
Power/Performance Modeling and Optimization:

Using and Characterizing Machine Learning

Applications

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Ermao Cai

B.S., Applied Physics, Shanghai Jiao Tong University

Carnegie Mellon University
Pittsburgh, PA

May 2018

c© 2018 Ermao Cai.
All rights reserved.

iii

Acknowledgements

The pursuit of PhD during the past five years has been a fruitful adventure for me, not only

in my academic, but also in my personal life. I could not have achieved so much without

the support from these resourceful, sincere, and brilliant people.

First and foremost, I would like to thank my advisor, Prof. Diana Marculescu. It has

been an honor to have such a caring mentor, dedicated researcher, and a knowledgeable

instructor to lead me over the years. When Diana first brought me to the research world, I

had little experience and almost no engineering background. She trusted me, helped me, and

created an unconstrained environment for me to explore and develop as a researcher. Her

guidance and support made me more precise, more profound, and more creative. I sincerely

hope when Diana looks back, she will think of taking me in as a right decision.

I would like to thank my committee member and collaborator, Dr. Da-Cheng Juan.

Da-Cheng has set an example of excellence for a Ph.D. student. For the past five years, he

not only has offered me helpful advice on tackling research problems and exploring ideas,

but also has shown me how to enjoy research and life at the same time.

I would like to thank Prof. Radu Marculescu and Prof. Shawn Blanton for being my

thesis committee members and providing invaluable guidance and feedback through this

process.

I would like to thank my fellow researchers and collaborators: Mr. Dimitrios Stamoulis,

Prof. Aarti Singh, Dr. Jinpyo Park, and Prof. Siddharth Garg for their great work, thoughts

and ideas.

I would also like to thank my internship mentor: Dr. Florentin Dartu, for instructing

me to solve real industrial challenges with my research skills.

My days at CMU were made enjoyable in large part due to the many friends and groups

that became a part of my life. They are:

Mr. Guangshuo Liu, Mr. Zhuo Chen, Mr. Ruizhou Ding, Mr. Ting-Wu Chin, and Mr.

Ahmet Fatih Inci, from EnyAC;

iv

Mr. Bolun Li, Mr. Minghao Ruan, Dr. Sanxi Yao, Dr. Huang-Kai Peng, Dr. Renzhi

Liu, and Mr. Xi He.

I would like to acknowledge the funding support received from Samsung Electronics,

National Science Foundation (including Grants CCF-1314876, CCF-1514206, CNS-1128624,

CNS-1331804, and CNS-1564022), and Carnegie Mellon University that has made pursuing

my research possible.

Lastly, I would like to thank my family for all their love and support: my parents and

my brother who have supported me in all my pursuits. And most of all, my loving and

encouraging fiancée - I could not have done this without her.

v

Abstract

Energy and power are the main design constraints for modern high-performance computing

systems. Indeed, energy efficiency plays a critical role in performance improvement or energy

saving for either state-of-the-art general purpose hardware platforms, such as FinFET-based

multi-core systems, or widely-adopted applications such as deep learning applications and

in particular, convolutional neural networks. To achieve higher energy efficiency, power and

performance models are key in enabling various predictive management algorithms or opti-

mization techniques. To have accurate models, one needs to consider not only technology-

related effects, including process variation, temperature effect inversion, and aging, but also

application-related effects, such as the interaction between applications with software and

hardware layers.

In this thesis, we study these effects and propose to combine machine learning tech-

niques and domain knowledge to learn the performance, power, and energy models for

high-performance computing systems. For technology-aware multi-core system design, we

learn accurate performance and power models for FinFET-based multi-core systems con-

sidering various technology effects. By applying these models, we propose efficient power-

/performance-related management algorithms for multi-core systems to 1) increase perfor-

mance under iso-power constraints; 2) reduce power while keeping the same performance;

and 3) decrease aging effects with negligible power overhead for the same performance. For

application-aware computing system design, we propose a hierarchical framework based on

sparse polynomial regression to predict the serving power, runtime, and energy consumption

of deep learning applications, including convolutional neural networks. Extensive experi-

mental results confirm the effectiveness of our proposed models, algorithms, and framework.

Contents

Contents vi

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Challenges . 2

1.2 Thesis contributions . 3

1.3 Thesis organization . 5

2 Background 6

2.1 Technology-aware computing system design 6

2.2 Application-driven computing system design 9

3 Learning for many-core system optimization 11

3.1 Chapter overview . 11

3.1.1 Chapter contributions . 12

3.2 Power model and performance metrics . 13

3.3 Model learning process . 14

3.3.1 Learning the frequency-power relationship 15

3.3.2 Learning the utilization-power relationship 18

3.3.3 Model validation . 20

vi

CONTENTS vii

3.4 Constrained optimization . 21

3.4.1 Constrained energy minimization . 21

3.4.2 Constrained throughput maximization 22

3.5 Implementation flow . 23

3.6 Experimental results . 24

3.6.1 Iso-performance energy optimization 24

3.6.2 Iso-power performance optimization 26

3.6.3 Impact of discrete V/F levels . 28

3.6.4 Impact of core cluster size . 29

3.6.5 Comparisons of bulk CMOS and FinFET 30

3.6.6 Effects of core count in FinFET CMPs 31

3.7 Discussion . 32

4 Temperature effect inversion in multi-core systems 34

4.1 Chapter overview . 34

4.1.1 Chapter contributions . 35

4.2 Performance and power models for TEI analysis 37

4.2.1 Performance . 37

4.2.2 Dynamic power . 37

4.2.3 Static power . 38

4.3 Optimization methodology . 40

4.3.1 Temperature-dependent V/F pairs 40

4.3.2 TEI-induced sweet spots . 42

4.3.3 Efficient TEI-aware V/F scaling . 44

4.3.4 Complexity analysis . 48

4.4 Experimental results . 49

4.4.1 Experimental setup . 49

4.4.2 The impact of TEI . 51

CONTENTS viii

4.4.3 Evaluation of TEI-aware algorithms 54

4.4.4 Scalability of TEI-Turbo algorithm 59

4.4.5 Scalability of TEI-LP algorithm . 61

4.5 Discussion . 63

5 Aging-reduction in multi-core systems 65

5.1 Chapter overview . 65

5.1.1 Chapter contributions . 66

5.2 Performance and power models . 67

5.2.1 Introducing TEI- and aging-awareness 67

5.2.2 Power and performance metrics . 68

5.3 Multi-objective optimization . 70

5.3.1 Thermal, aging and power considerations 70

5.3.2 Proposed approach: AgingMin . 72

5.3.3 Accounting for thermal effects . 74

5.4 Experimental results . 74

5.4.1 Experimental setup . 75

5.4.2 TEI effect on aging . 76

5.4.3 Evaluation of AgingMin . 79

5.5 Discussion . 80

6 Convolutional neural network: power and latency 82

6.1 Chapter overview . 82

6.1.1 Chapter contributions . 83

6.2 Power and runtime modeling . 84

6.2.1 Layer-level power and runtime modeling 84

6.2.2 Network-level power, runtime, and energy modeling 87

6.2.3 Dataset collection . 87

6.3 Experimental results . 89

CONTENTS ix

6.3.1 Layer-level model evaluation . 89

6.3.2 Network-level model evaluation . 92

6.3.3 Energy-precision ratio . 97

6.3.4 Models on other platforms and development frameworks 98

6.4 Discussion . 102

7 Related work 103

8 Conclusion and future work 107

Bibliography 110

List of Tables

3.1 Target architecture. 19

3.2 Validation error of the learned P̂ . 20

4.1 Validation error of the learned dynamic power. 38

4.2 Learning leakage power model. 40

4.3 Learning temperature-dependent V/F pairs. 41

4.4 V/F levels for worst case (-25 ◦C). 41

4.5 Target architecture. 49

5.1 Target architecture. 75

5.2 V/F level matching for θ =-25◦C. 75

6.1 Target platform. 88

6.2 Comparison of runtime models for common CNN layers – Our proposed runtime

model consistently outperforms the state-of-the-art runtime model in both root-

mean-square-error (RMSE) and the Root-Mean-Square-Percentage-Error (RM-

SPE). 90

6.3 Power model for common CNN layers. 92

6.4 Performance model comparison for the whole network. We can easily observe that

our model always provides more accurate predictions of the total CNN runtime

compared to the best published model to date (Paleo). We assess the effectiveness

of our model in five different state-of-the-art CNN architectures. 94

x

List of Tables xi

6.5 Evaluating our power predictions for state-of-the-art CNN architectures. 96

6.6 Evaluating our energy predictions for state-of-the-art CNN architectures. 97

6.7 EPR metric for different CNN architectures and Energy-per-Image (EPI) values.

Network choices could be different for different α values: AlexNet for α = 1, 2, 3,

VGG-16 for α = 4. 98

6.8 Runtime and power model for all layers using TensorFlow on GTX 1070. 99

6.9 Evaluation of NeuralPower on CNN architectures using TensorFlow on GTX 1070. 99

6.10 Runtime and power model for all layers using Caffe on GTX 1070. 100

6.11 Evaluation of our model on CNN architectures using Caffe on GTX 1070. 100

6.12 Runtime and power model for all layers using TensorFlow on Jetson TX1. . . . 101

6.13 Evaluation of NeuralPower on CNN architectures using TensorFlow on Jetson

TX1. 101

List of Figures

2.1 Maximum operating frequency under a wide range of temperature values for

FinFET. 8

2.2 Maximum operating RO frequency under the impact of TEI and aging. 9

2.3 Prediction accuracy versus energy consumption of popular CNN models. This

figure is adopted from [91]. Some models are pruned with either magnitude-based

pruning [29] or energy-aware pruning [91]. For the architectures that achieve

similar accuracy levels during test phase, the energy consumption can vary by

close to 10×. 10

3.1 Hierarchical grid-based modeling of process variations for a CMP die with 16

cores. Different grey levels represent different PV values. The PV pattern used

here is only for illustration. 15

3.2 Maximum frequency, dynamic power and static power with respect to process

variations. All three PV parameters have a significant impact on static power.

They also affect delay and dynamic power across a wide range of operating fre-

quency. 17

3.3 Implementation flow for the proposed framework. 23

xii

List of Figures xiii

3.4 Average energy minimization results across 10 variation maps under 100% and

90% throughput constraints. Top: 3σ (standard deviation) of process parameters

is 10% of their nominal values. PV-ExDVFS achieves the lowest energy points,

the average reduction compared with the baseline approach is 22.88% for 100%

throughput (hard) constraint and 47.13% for 90% throughput (soft) constraint.

Bottom: 3σ is 30%. The corresponding energy reduction of PV-ExDVFS is

31.09% for hard constraint and 59.59% for soft constraint. 25

3.5 Average throughput improvement results across 10 variation maps with 100%

and 110% power budgets. Top: 3σ (standard deviation) of process parameters

is 10% of their nominal values. PV-ExDVFS achieves the highest throughput

points, the average improvement compared with the baseline approach is 6.25%

for 100% power (hard) budget and 6.93% for 90% power (soft) budget. Bottom:

3σ is 30%. The corresponding throughput improvement of PV-ExDVFS is 11.46%

for hard constraint and 18.17% for soft constraint. 27

3.6 Energy savings (top) and speedups (bottom) for PV-Steepest Drop [88] and PV-

ExDVFS compared with the baseline PV-MaxBIPS [40] i.e., exhaustive search

of best energy (top) and performance (bottom) configuration. 29

3.7 Energy savings (top) and speedups (bottom) for PV-ExDVFS with different core

cluster sizes compared with the baseline (PV-ExDVFS with chip-wise V/F domain). 30

3.8 Energy saving and speedup further improve as number of cores and PV level

increase. Top: energy savings under 100% throughput constraint in mild (10%)

and extreme (30%) PV levels. Bottom: Speedups with 100% power budget in

mild and extreme PV levels. 31

4.1 Normalized leakage power under a wide range of temperature values for FinFET. 39

4.2 Dynamic voltage frequency pairings for different temperatures. 42

4.3 Normalized energy efficiency across all frequency levels. 43

4.4 Example process of determining sweet spots. 44

List of Figures xiv

4.5 Simplified floorplan for a 16-core nehalem-like [2] chip-multiprocessor with only

cores and L3 cache. 50

4.6 The absolute temperature changes for each core during one control epoch (1 ms)

for different benchmarks. 51

4.7 Normalized throughput improvement of TEI-aware Steepest Drop algorithm over

TEI-unaware version. 52

4.8 Normalized energy saving of TEI-aware Steepest Rise algorithm over TEI-unaware

version. 53

4.9 Relative throughput loss of TEI-Turbo compared with TEI-aware Steepest Drop. 54

4.10 Relative runtime speedup of TEI-Turbo over TEI-aware Steepest Drop. 55

4.11 Energy efficiency improvement of TEI-Turbo over TEI-aware Steepest Drop. . . 56

4.12 Relative energy consumption for TEI-LP compared with TEI-aware Steepest Rise. 57

4.13 Relative runtime speedup of TEI-LP over TEI-aware Steepest Rise. 58

4.14 Energy efficiency improvement of TEI-LP over TEI-aware Steepest Rise. 59

4.15 Scalability of TEI-Turbo compared with TEI-aware steepest drop: (a) Through-

put loss with respect to frequency level count; (b) Speedup with respect to fre-

quency level count; (c) Runtime of TEI-Turbo with respect to frequency level

count; (d) Throughput loss with respect to core count; (e) Speedup with respect

to core count; (f) Runtime of TEI-Turbo with respect to core count. 60

4.16 Scalability of TEI-LP compared with TEI-aware steepest rise: (a) Extra energy

consumption with respect to frequency level count; (b) Speedup with respect to

frequency level count; (c) Runtime of TEI-LP with respect to frequency level

count; (d) Extra energy consumption with respect to core count; (e) Speedup

with respect to core count; (f) Runtime of TEI-LP with respect to core count. . 62

5.1 Prediction accuracy of δPsta (Equation 5.2): Ideally, all points should lie along

the diagonal. 69

5.2 Proposed flow for determining the steady state operating temperature. 74

List of Figures xv

5.3 Improvement of TEI-Aware over TEI-Unaware DLS for aging reduction for a

typical application. 77

5.4 Improvement of TEI-Aware over TEI-Unaware DLS for aging reduction under

various performance constraints. 78

5.5 Improvement of TEI-Aware over TEI-Unaware DLS for power savings under var-

ious performance constraints. 78

5.6 Improvement of TEI-Aware over TEI-Unaware DLS for temperature reduction

under various performance constraints. 78

5.7 The extended lifetime of AgingMin against TEI-Aware DLS under different per-

formance constraints. 80

5.8 The extra power consumed from AgingMin against TEI-Aware DLS under dif-

ferent performance constraints. 80

6.1 NeuralPower quickly predicts the power, runtime, and energy consumption of

a CNN architecture during service phase. Therefore, NeuralPower provides the

machine learners with analysis and guidance when searching for energy-efficient

CNN architectures on given software/hardware platforms. 83

6.2 Comparison of best-performance model with respect to each polynomial order for

the fully-connected layers. In this example, a polynomial order of two is chosen

since it achieves the best Root-Mean-Square-Error (RMSE) for both runtime and

power modeling. At the same time, it also has the lowest Root-Mean-Square-

Percentage-Error (RMSPE). 89

6.3 Comparison of runtime prediction for each layer in NIN and VGG-16: Our models

provide accurate runtime breakdown of both network, while Paleo cannot. Our

model captures the execution-bottleneck layers (i.e., conv4 in NIN, and fc6 in

VGG-16) while Paleo mispredicts both. 93

6.4 Comparison of power prediction for each layer in NIN and VGG-16. 95

Chapter 1

Introduction

Power and energy issues have become the major design constraints in developing high-

performance computing systems. Several hardware- and software-based techniques exist to

resolve them. For multicore processors, Dynamic Voltage and Frequency Scaling (DVFS)

is widely used in both academia and industry, mainly to reduce the power consumption

while maintaining the same performance. Upscaling of voltage/frequency (V/F) for multi-

core processors has also been explored by processor manufacturers, e.g., in Intel’s Turbo

Boost [15]. Similar techniques are also discussed in other work [88][45]. Nevertheless, as

CMOS technology aggressively scales down to deca-nanometer technology nodes, these issues

have also emerged as important reliability threats throughout the system lifetime. Aging

concerns have therefore gathered a significant momentum and they have already triggered

extensive research on aging modeling and mitigation techniques for older planar MOSFET-

based system design.

From a technology standpoint, CMOS technology evolution has recently provided funda-

mental advancements in addressing power, thermal and aging problems. FinFET has been

widely chosen as the next generation CMOS technology, especially for sub-20 nm technology

nodes. Because of the different structures between planar CMOS and FinFET, different

performance characteristics have been observed between them [54]. In terms of aging con-

siderations, we have recently experienced a “paradigm shift” from older MOSFET-based

1

CHAPTER 1. INTRODUCTION 2

models to more accurate and detailed aging models [26]. Moreover, in terms of thermal

considerations, the patterns of gate delay for FinFET with respect to temperature are quite

different when compared with planar CMOS. The effect is called temperature effect inversion

(TEI) [57]. TEI refers to the phenomenon in which the gate delay of FinFET decreases as

temperature increases in superthreshold voltage region.

From the application perspective, deep learning, especially convolutional neural networks

(CNNs) have been widely used in several important areas, such as text processing and

computer vision, in both academic and industrial setups. That is because CNNs have claimed

dominance over other existing methods in these domains [31] [36]. However, the high energy

consumption of CNNs, which can be attributed to both (a) high power consumption and (b)

long runtime, has limited the types of platforms that CNNs can be deployed on. Therefore,

it is necessary to introduce energy-efficient CNNs to platforms with limited resources. To

achieve energy-efficient CNN designs, it is critical to have accurate power, runtime and

energy models.

1.1 Challenges

To resolve the power and energy issues for high-performance computing systems, there are

two major challenges. The first is to have accurate power and performance models. Due to

the fact that the complexity of the computing systems is increasing, it is always a challenge to

have accurate power and performance models. As long as the models are found, one needs

to face the second challenge: efficient system optimization. The optimization techniques

usually vary greatly from one system to another. Therefore, we need to tackle the challenges

case by case. Sometimes, domain knowledge can help to develop new techniques. We list

several challenges in details in the following.

The first challenge is to address process variations (PVs). Near-Threshold Computing

(NTC) has emerged as a promising solution to greatly increase the energy efficiency of next-

generation multi-core systems. However, PVs expose an important effect on the performance

CHAPTER 1. INTRODUCTION 3

of NTC. Therefore, it is significant to understand and model the PVs, especially when NTC

is adopted in emerging computing systems.

Second, it is critical to utilize TEI. As CMOS technology continues scaling, FinFET has

recently become the common choice for multi-core systems. In contrast with planar CMOS,

FinFET is characterized by lower delay under higher temperatures in super-threshold voltage

region, i.e., TEI. To fully utilize the potential of FinFET, it is critical to understand and

consider TEI before optimizing the computing systems.

The third challenge comes from the thermal effects, especially aging. Power and thermal

issues are the main constraints for high-performance multi-core systems. As the current

technology of choice, FinFET is observed to have TEI. While it has been shown that system

performance can be improved under power constraints, as technology aggressively scales

down to sub-20nm nodes, thermal issues emerge as important reliability concerns throughout

the system lifetime.

Finally, it is always hard to analyze the energy efficiency of deep learning applications,

such as convolutional neural networks (CNNs). With the increased popularity of CNNs

deployed on the wide-spectrum of platforms (from mobile devices to workstations), the

related power, runtime, and energy consumption have drawn significant attention. From

lengthening battery life of mobile devices to reducing the energy bill of datacenters, it is

important to understand the efficiency of CNNs during serving for making an inference,

before actually training the model. However, the complexity introduced from both the

software side and hardware side makes it difficult to understand CNN efficiencies.

1.2 Thesis contributions

In this thesis, we combine machine learning techniques and domain knowledge to learn the

performance, power models for high-performance computing systems. Experimental results

show that our learning-based performance and power models on these systems have a high

accuracy.

CHAPTER 1. INTRODUCTION 4

For technology-aware FinFET-based multi-core systems, we propose power-/performance-

related management algorithms, including 1) increasing performance at iso-power; 2) reduc-

ing power while keeping the same performance; 3) decreasing aging effects with negligible

power overhead at iso-performance. For application-aware computing systems which run

various deep learning applications, especially CNNs, we apply our learning based model

to predict the power, runtime, and energy for various neural network configurations and

hardware platforms. The detailed contributions are described in the following.

Learning-based power/performance models: We evaluate PVs and learn the power

and performance models for multi-core systems operating under extended range: including

near-threshold, nominal, and Turbo modes. We propose to model the problem of the energy

minimization or throughput maximization under given requirements as constrained convex

optimization problems that can be solved efficiently. Considering PVs on FinFET-based

chip-multiprocessors (CMPs), experimental results show that at 30% PV levels, our proposed

method (1) reduces energy consumption by 31.09% at iso-performance and (2) increases

throughput by 11.46% at iso-power when compared with variation-agnostic nominal case

[7].

TEI-aware model and learning: We explore TEI-aware performance improvement

and energy savings for multi-core systems. Our experimental results show that on average

15.70% throughput improvement or 31.26% energy savings can be achieved in steady state

by a TEI-aware DVFS policy over a TEI-agnostic one. We observe multiple sweet spots

resulting from TEI effects and introduce fast algorithms which provide iso-power maximum

performance or iso-performance minimum energy consumption. Experimental results con-

firm the effectiveness of the proposed approach by exhibiting a 45.9-55.3x speedup when

compared to state-of-the-art algorithms while losing only 0.22% or 0.68% in achieved per-

formance or energy, respectively [9] [10].

Aging reduction: We are the first to provide a comprehensive evaluation of both TEI

and aging effects on the performance and power of FinFET-based multi-core systems with

multiple voltage/frequency levels. Our experimental results show that aging effects can be

CHAPTER 1. INTRODUCTION 5

reduced by up to 53.59% by exploiting the TEI effect. Based on a combined multivariate

objective for power and aging, this work proposes an aging-aware algorithm, dubbed Aging-

Min, to select the optimal TEI-aware voltage/frequency operation points for decreasing the

aging effects. Experimental results show that AgingMin improves the classic 10-year system

lifetime by an average of 1.61 years while introducing less than 1% power overhead when

compared to existing state-of-the-art techniques [11].

Modeling for CNN: we propose NeuralPower : a layer-wise predictive framework based

on sparse polynomial regression, for predicting the serving power, runtime, and energy con-

sumption of a CNN deployed on any GPU platform. Given the architecture of a CNN,

NeuralPower provides an accurate prediction and breakdown for power and runtime across

all layers in the whole network, helping machine learners quickly identify the power, run-

time, or energy bottlenecks. The experimental results show NeuralPower predicts the run-

time, power, and energy of state-of-the-art CNN architectures, with an average accuracy of

88.24%, 88.34%, and 97.21%, respectively. We comprehensively corroborate the effectiveness

of NeuralPower as a powerful framework for machine learners by testing it on different GPU

platforms [8].

1.3 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 introduces the background knowl-

edge related with PV, TEI, aging effects, and CNNs. Chapter 3 details the power and perfor-

mance modeling and optimization for process-variation aware multi-core systems. Chapter 4

provides TEI-aware power-performance optimization for FinFET-based multi-core systems.

Chapter 5 details the interaction of TEI and aging effects, and the algorithm to reduce aging

process by considering TEI effect. Chapter 6 discusses the modeling process and results for

power and runtime of convolutional neural networks. Chapter 7 provides the related work.

Chapter 8 concludes this thesis and discusses the possible future research directions.

Chapter 2

Background

2.1 Technology-aware computing system design

FinFET, a type of non-planar double-gate device, has become the next generation CMOS

technology of choice, especially for sub-20 nm technologies. In this section, we discuss the

effects associated with this technology, including process variations (PVs), temperature effect

inversion (TEI), and aging effects.

We first introduce PVs. As a compounding factor, when transistors scale down and

supply voltage reaches near-threshold levels, PVs complicate chip design. Therefore, a thor-

ough understanding of how PVs affect power-performance of CMPs is necessary. Due to the

differences in channel and gate formations between bulk CMOS and FinFET, their major

sources of process variations are not the same. FinFET has three parameters: gate length

(LG), work function (ΦG) and fin thickness (TSI), which dominate the PVs’ effects [16] [55].

Compared to bulk CMOS, we can see there are new dominant factors for PVs’ effects, like

fin thickness, which is unique for FinFET with 3D fins. Generally a process parameter Θ

affected by variations is described as: Θ = Θnom + δtotal, where Θnom denotes the nominal

value and δtotal is total variation from Θnom. In addition, It is widely known that variations

are composed of wafer-to-wafer (W2W), die-to-die (D2D) and within-die (WID) variation.

6

CHAPTER 2. BACKGROUND 7

Considering the spatial correlations induced by the manufacturing process, these random

variables are difficult to characterize.

Second, we move to explain how TEI occurs. It is well-known that the operating fre-

quency of a digital system is strongly affected by gate delays. The delay of a logic gate is

greatly controlled by the drive current. When the drive current decreases, the corresponding

gate delay increases, which finally determines a lower operating frequency of the system to

meet the timing.

In the case of traditional planar CMOS, it is well known that as temperature increases,

the corresponding drive current decreases in the superthreshold voltage region. Therefore,

under high operating temperature, processors composed of billions of CMOS devices have

to decrease their operating frequency to meet the timing and therefore, performance is

decreasing.

For FinFET devices, the trends are quite distinct. One of the biggest differences between

FinFET and planar CMOS devices is the structure of the channel. In contrast to planar

CMOS comprising of a flat channel with one gate on top of it, FinFET devices have a 3D

channel, which is called a “fin”. As technology node decreases, the fin becomes smaller and

thinner, thus becoming more vulnerable to structural effects. When temperature increases,

the tensile effect from the insulator layer below the fin becomes larger, which induces the

bandgap narrowing in the channel. The bandgap narrowing directly results in the drop

in threshold voltage. In addition, the tensile stress causes a slight increase in the carrier

mobility. Therefore, the increase in temperature results in a decrease in FinFET gate delay,

which is TEI.

One direct consequence of TEI is that the worst case timing takes place at lowest operat-

ing temperatures for FinFET-based circuits. As temperature increases, gate delay decreases,

which allows circuits to potentially run at a higher frequency. Digital systems are usually

designed to work in a temperature range from -25 ◦C to 125 ◦C [57]. Therefore, the worst

case timing in FinFET-based digital systems is at -25 ◦C, rather than 125 ◦C. To illustrate

this effect, we run SPICE simulations for a fan-out-of-four (FO4) ring oscillator (RO) from

CHAPTER 2. BACKGROUND 8

-20 0 20 40 60 80 100 120
Temperature (°C)

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 m
ax

im
um

 fr
eq

ue
nc

y 1.05V
0.95V
0.85V
0.75V
0.65V

Figure 2.1: Maximum operating frequency under a wide range of temperature values for
FinFET.

PTM [12] library in a 16 nm FinFET technology node, which is validated against ITRS

roadmap [77]. Figure 2.1 shows the normalized maximum operating frequencies for different

supply voltage levels in high-performance mode. It is clear that the operating frequency of

FO4 RO increases as temperature gets higher. The same effect is also observed in low-power

mode.

Finally, we introduce aging effects for FinFET. As described before, TEI allows for

devices to run faster at higher operating temperatures. In Figure 2.2, the solid lines cor-

respond to the normalized maximum operating ring oscillator (RO) frequency under the

TEI effect. Nonetheless, the manifestation of aging has an exact opposite, counteracting

effect: BTI/RTN mechanisms generate traps to capture minority carriers that eventually

leads to ∆Vth fluctuations from the nominal threshold voltage value [85]. Consequently,

existing TEI-aware analyses and system-level models inherently fail to account for aging-

induced performance degradation, thus resulting in overly-optimistic results. To illustrate

this key observation, the dotted lines in Figure 2.2 show the normalized maximum operating

RO frequency under the TEI effect and under aging for three and ten years. To achieve a

representative comparison, we repeat the HSPICE simulation for the same supply voltage

levels as in the aging-unaware cases.

CHAPTER 2. BACKGROUND 9

−40 −20 0 20 40 60 80 100 120 140
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
or

m
al

iz
ed

 m
ax

im
um

 R
O

 fr
eq

ue
nc

y

Temperature (oC)

0.85 V − 0 years
0.85 V − 3 years
0.85 V − 10 years
1.05 V − 0 years
1.05 V − 3 years
1.05 V − 10 years

+δ f
TEI

−δ f
aging

Figure 2.2: Maximum operating RO frequency under the impact of TEI and aging.

We can easily observe that overall performance throughout the RO lifetime is affected by

both the TEI effect and the aging mechanisms. Thus, a model that inherently accounts for

both these effects is essential for developing an effective yet representative aging reduction

scheme for FinFET-based many-core systems.

2.2 Application-driven computing system design

In recent years, CNNs have been widely applied in several important areas, such as text

processing and computer vision, in both academia and industry. However, the high energy

consumption of CNNs has limited the types of platforms that CNNs can be deployed on,

which can be attributed to both (a) high power consumption and (b) long runtime. GPUs

have been adopted for performing CNN-related services in various computation environments

ranging from data centers, desktops, to mobile devices. In this context, resource constraints

in GPU platforms need to be considered carefully before running CNN-related applications.

CHAPTER 2. BACKGROUND 10

Table 1. Performance metrics of various dense and pruned models.

Model Top-5
Accuracy

of Non-zero
Weights (×106)

of Non-skipped
MACs (×108)1

Normalized
Energy (×109)1,2

AlexNet (Original) 80.43% 60.95 (100%) 3.71 (100%) 3.97 (100%)
AlexNet ([8]) 80.37% 6.79 (11%) 1.79 (48%) 1.85 (47%)
AlexNet (Energy-Aware Pruning) 79.56% 5.73 (9%) 0.56 (15%) 1.06 (27%)

GoogLeNet (Original) 88.26% 6.99 (100%) 7.41 (100%) 7.63 (100%)
GoogLeNet (Energy-Aware Pruning) 87.28% 2.37 (34%) 2.16 (29%) 4.76 (62%)
SqueezeNet (Original) 80.61% 1.24 (100%) 4.51 (100%) 5.28 (100%)
SqueezeNet ([8]) 81.47% 0.42 (33%) 3.30 (73%) 4.61 (87%)
SqueezeNet (Energy-Aware Pruning) 80.47% 0.35 (28%) 1.93 (43%) 3.99 (76%)

1 Per image.
2 The unit of energy is normalized in terms of the energy for a MAC operation (i.e., 102 = energy of 100 MACs).

AlexNet SqueezeNet

GoogLeNet

BWN (1-bit)

ResNet-50
VGG-16

AlexNet

SqueezeNet

AlexNet SqueezeNet

GoogLeNet

77%

79%

81%

83%

85%

87%

89%

91%

93%

5E+08 5E+09 5E+10

To
p

-5
 A

cc
u

ra
cy

Normalized Energy Consumption

Original CNN Magnitude-based Pruning Energy-aware Pruning

Figure 3. Accuracy versus energy trade-off of popular CNN models. Models pruned with the energy-aware pruning provide a better
accuracy versus energy trade-off (steeper slope).

Table 2. Compression ratio1 of each layer in AlexNet.

[8] This Work
of

Classes 1000 1000 100 10
(Random)

10
(Dog)

CONV1 16% 83% 86% 89% 89%
CONV2 62% 92% 97% 97% 96%
CONV3 65% 91% 97% 98% 97%
CONV4 63% 81% 88% 97% 95%
CONV5 63% 74% 79% 98% 98%

FC1 91% 92% 93% ∼100% ∼100%
FC2 91% 91% 94% ∼100% ∼100%
FC3 74% 78% 78% ∼100% ∼100%

1 The number of removed weights divided by the number of
total weights. The higher, the better.

computation-related energy consumption. However,
pruning reduces the energy of both weight and feature
map movement, as well as computation. In addition, the
weights in CONV1 and FC3 of BWN are not binarized
to preserve the accuracy; thus BWN does not reduce the
energy consumption of CONV1 and FC3. Moreover,
to compensate for the accuracy loss of binarizing the
weights, CONV2, CONV4 and CONV5 layers in BWN
use 2× the number of weights in the corresponding lay-

C
O
N
V1

C
O
N
V2

C
O
N
V3

C
O
N
V4

C
O
N
V5

FC
1

FC
2

FC
3

0

2

4

6

8

10

12

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

×10
8

Input Feature Map Movement

Output Feature Map Movement

Weight Movement

Computation

Figure 4. Energy consumption breakdown of different AlexNets in
terms of the computation and the data movement of input feature
maps, output feature maps and filter weights. From left to right:
original AlexNet, AlexNet pruned by [8], AlexNet pruned by the
proposed energy-aware pruning.

ers of the original AlexNet, which increases the energy
consumption.

• A lower number of MACs does not necessarily lead
to lower energy consumption. For example, the pruned
GoogleNet has a fewer MACs but consumes more en-
ergy than the SqueezeNet pruned by [8]. That is because
they have different data reuse, which is determined by the
shape configurations, as discussed in Sec. 2.1.

5693

Figure 2.3: Prediction accuracy versus energy consumption of popular CNN models. This
figure is adopted from [91]. Some models are pruned with either magnitude-based pruning
[29] or energy-aware pruning [91]. For the architectures that achieve similar accuracy levels
during test phase, the energy consumption can vary by close to 10×.

In this thesis, we focus on the testing or service phase since, CNNs are typically deployed

to provide services (e.g., image recognition) that can potentially be invoked billions of times

on millions of devices using the same architecture. Therefore, testing runtime and energy

are critical to both users and cloud service providers. In contrast, training a CNN is usually

done once. Orthogonal to many methods utilizing hardware characteristics to reduce energy

consumptions, CNN architecture optimization in the design phase is significant. In fact,

given the same performance level (e.g., the prediction accuracy in image recognition task),

there are usually many CNNs with different energy consumptions. Figure 2.3 shows the

relationship between model testing accuracy and energy consumption for a variety of CNN

architectures [91]. We observe that several architectures can achieve a similar accuracy

level. However, the energy consumption drastically differs among these architectures, with

the difference close to 10× in several cases. Therefore, seeking for energy-efficient CNN

architecture without compromising performance seems intriguing, especially for large-scale

deployment.

Chapter 3

Learning for many-core system

optimization

3.1 Chapter overview

Nowadays, power consumption plays a more and more important role in designing modern

processors. Near-threshold computing (NTC) is a promising technique for power consump-

tion reduction by lowering supply voltage to a value near the threshold voltage of transistors

[37]. Operating frequency also scales down with supply voltage to give extra reduction in dy-

namic power consumption. However, as the frequency scales, the degradation in performance

increases. In the context of multi-core systems, under performance constraint, it is not al-

ways possible to down-scale voltage/frequency due to the increased performance penalty. On

the other hand, Turbo Boost (TB), where the operating voltage and frequency are upgraded

higher than nominal values, has been widely implemented to improve the performance [15].

Although DVFS has been well studied for dynamic power management, extended range

DVFS (ExDVFS)−DVFS over a wide operating range of voltage and frequency from NTC

all the way to TB−remains to be further explored. In the turbo mode, one can upscale

voltage/frequency points to achieve better performance, while in NTC mode, supply voltage

decreases further to reduce power consumption. By allowing for an extended excursion for

11

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 12

the voltage/frequency pairs, one can more efficiently trade-off power or performance slack

across cores running imbalanced threads so as to achieve better power efficiency or higher

performance increase.

In addition to architecture-level advancement, FinFET, a type of non-planar double-gate

device, has become main stream below the 22nm technology node. In the NTC region, since

supply voltage is close to threshold voltage, the overdrive voltage is greatly affected by the

change of threshold voltage induced by process variations (PVs). Although, PVs in FinFET

have been extensively studied at the circuit level [90] [16], their impact in architecture level is

yet to be explored. Therefore, there are more challenges considering FinFET-based computer

systems with PVs.

As transistor technology evolves, it naturally motivates us to explore how power and

performance optimization works on FinFET-based CMPs. Previous work addressed power

and performance optimization on bulk-CMOS based CMPs [84] [44] [24] [63]. However, none

of them has studied similar topics on FinFET-based CMPs, especially considering PVs. Our

work in this chapter not only constructs a power and performance optimization framework,

but also characterizes the impact of PVs and core count in FinFET-based CMPs. The

detailed results will be discussed in Section 3.6.5.

3.1.1 Chapter contributions

To the best of our knowledge, the following novel contributions are described and supported

in this chapter:

• We perform the quantitative characterization of PV effects in FinFET and propose an

accurate multivariate polynomial model to learn power-PV parameter relationship. We

then integrate PV information for each individual core in CMPs to get the contraint-

posynomial frequency-power model.

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 13

• By leveraging the convexity of learned model, we convert the problem of the energy

minimization under performance requirements into a constrained convex optimization

problem that can be solved efficiently.

• As opposed to energy minimization, we also determine the maximum possible perfor-

mance under a given power budget over a wide-operating range.

• In addition, further experiments uniquely show the benefits from our methods signif-

icantly increase with increasing core count and variation level, either in energy savings

or throughput improvements. Our work also shows that iso-performance energy sav-

ings or iso-power performance improvements in FinFET technology are similar to those

obtained for bulk CMOS, but the effect of PVs magnifies these benefits in the case of

FinFET implementations.

3.2 Power model and performance metrics

Now we introduce the model used to characterize the dynamic and static power. For a logic

module, the power can be divided into dynamic power (Pdyn) and static power (Psta), which

can be written as:

Ptot = Pdyn + Psta = α · Ctot · V 2
dd · F + ksta · Ileak · Vdd (3.1)

where α is the switching activity rate, Ctot is load capacitance for the switching gates, and

ksta is a constant proportional to the transistor count of that module. In addition, F is the

clock frequency, Ileak is the gate leakage current, and Vdd is the supply voltage.

However, the dynamic power and static power for a core in a CMP are more complicated

than the expression in Equation 3.1. To achieve a good abstraction of core level power

model, we adopt the convex power similar to the one proposed by Juan et al. [44]. The total

power consumption of a core is formulated as:

P (F) = P peak
dyn · fd(F) · u(F) + P peak

sta · fs(F) (3.2)

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 14

where P peak
dyn and P peak

sta are the peak dynamic power and static power respectively, which are

determined for the case in which all process parameters, operating voltage/frequency are

at nominal values and the utilization is full. The fd(F) and fs(F) are two functions which

characterize the dynamic power and static power in terms of the operating frequency and

implicitly supply voltage. Finally, u(F) expresses the change in dynamic power due to the

change of workload, i.e., the change in the utilization. As the utilization is implicitly a

function of frequency, we use u(F) to denote this.

One of the main drawbacks of the power model stated in Equation 3.2 is that it doesn’t

take PVs into consideration. To address this problem, we propose a hierarchical two-level

regression model in Section 3.3.1.

After obtaining the model for fd and fs in Equation 3.2, we still need an accurate model

for u. As shown in previous work, for CMPs, instructions committed per cycle (IPC) is

a good approximate for the activity rate of one core. Based on prior work [66] [4], we

approximate the dynamic power as a linear function of IPC. As the other components in

Equation 3.2 are utilization independent, it follows that u is a linear function of IPC:

u = c1 · IPC + c2 (3.3)

To measure the performance of a CMP, we use the total throughput (TP) as the metric.

Then, performance can be calculated as:

TP =
n∑
i=1

IPCi · Fi (3.4)

where IPCi and Fi are the instructions per cycle (IPC) and the operating frequency for core

i, while n is the total number of cores.

3.3 Model learning process

The proposed power model has two components: (1) the frequency function f , and (2)

the utilization function u. To learn f̂ and û 1, we adapt constrained-posynomial functions
1As a notation convention in machine learning and statistics, any symbol with a ĥat represents an

estimate, instead of actual values or functions

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 15

to map both operating frequency and utilization to the corresponding power consumption

by using leave-one-out cross validation (LOOCV). Compared to CMOS-based CMPs, we

integrate process variations in the learning process for FinFET-based CMPs. The accuracy

and overall validation of the learned model are also provided.

3.3.1 Learning the frequency-power relationship

Extended range operation, especially near-threshold voltage, is more severely affected by

process variations than nominal operation and thus, PV effects must be incorporated for

a robust model. To address this issue, we propose a variation-aware regression model cus-

tomized for each core based on PV maps.

D

C1 C2 C3 C4
C5 C6 C7 C8

C9 C10 C11 C12
C13 C14 C15 C16

Die level

Core level

Core component
level

Figure 3.1: Hierarchical grid-based modeling of process variations for a CMP die with 16
cores. Different grey levels represent different PV values. The PV pattern used here is only
for illustration.

First, we implement a hierarchical grid-based PV model considering spatial correlation

as shown in Figure 3.1, a similar one used by Agarwal et al. [1]. Specifically, for component

j in core i, the total variation can be expressed as:

δtotali,j = δD + δCi
+ δRj

(3.5)

where δD is die-level variation, δCi
core-level variation and δRj

component-level variation.

The three components in Equation 3.5 are independent identical Gaussian random variables

(RVs) [1] [14] with mean zero. In addition, we assume their standard deviation is σ. For

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 16

LG and TSI , we consider two cases, 3σ as 10% and 30% of the corresponding nominal value.

For ΦG, we also consider two cases, 3σ as 10% and 30% of |ΦG,N − ΦS|, where ΦG,N is

the corresponding nominal value and ΦS is the work function of the intrinsic semiconductor

material [16].

Next, we propose a grid-based modeling methodology in which we first learn the power

model for every grid cell (representing a core component) as a function of the process pa-

rameters in that grid cell and Vdd. To quantify the impact of process parameters, we propose

a model for total power consumption in a module (or core component) as:

Pm(X) = P peakm,dyn · fm,d(X) · um(F) + P peakm,sta · fm,s(X) (3.6)

where X = [Vdd, LG,ΦG, TSI]. Vdd is paired with F for a set of PV parameters. P peak
m,dyn and

P peak
m,sta are the peak dynamic and static power, respectively. fm,d(X) and fm,s(X) are two

functions which characterize the dynamic/static power in terms of process parameters and

Vdd. By using process variation maps, one can integrate all components of a specific core,

and obtain the final (p`,F`) data for a typical core as in Section 3.3.1.

We evaluate the dominant process parameters LG, TSI and ΦG. We use PTM model cards

for 16nm FinFET technology node to form a 23-stage Ring Oscillator (RO) in HSPICE to

characterize the delay and total power, and a two-stage inverter chain to characterize the

static power. We vary the process parameter values to get their effects on the performance

and power. We also change the supply voltage Vdd from 0.35V to 1.05V (nominal value

is 0.85V) to change operating mode from NTC all the way to TB. Refering to [41], the

operation models are defined as: (1) NTC: Vdd = [0.35, 0.55]; (2) regular DVFS range: Vdd =

[0.55, 0.85]; (3) TB: Vdd = [0.85, 1.05]. We change the Vdd and process parameters values to

measure the frequency, dynamic power, and static power for the RO in HSPICE. Figure 3.2

shows HSPICE simulation results - the normalized maximum frequency, dynamic power and

static power corresponding to the three process parameter variations for two cases: mild

variation (3σ = 10%) and extreme variation (3σ = 30%), with respect to different Vdd values.

It shows mild (extreme) variation introduce up to 26.13% (81.89%) variation in delay,

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 17

19.42% (51.59%) in dynamic, and 3.55X (217X) in leakage power. Furthermore, these

variations tend to have a higher impact on delay near threshold, while for dynamic/static

power they tend to be higher in nominal and turbo modes.

0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

Norm. V
dd

N
o

rm
.

M
a

x
.

fr
e

q
u

e
n

c
y

L
G

 variation

0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

Norm. V
dd

N
o

rm
.

M
a

x
.

fr
e

q
u

e
n

c
y

Φ
G

 variation

0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

Norm. V
dd

N
o

rm
.

M
a

x
.

fr
e

q
u

e
n

c
y

T
SI

 variation

−30%

−10%

 0%

+10%

+30%

0.2 0.4 0.6 0.8 1 1.2
0

1

2

Norm. V
dd

N
o

rm
.

d
y
n

a
m

ic
 p

o
w

e
r

0.2 0.4 0.6 0.8 1 1.2
0

1

2

Norm. V
dd

N
o

rm
.

d
y
n

a
m

ic
 p

o
w

e
r

0.2 0.4 0.6 0.8 1 1.2
0

1

2

Norm. V
dd

N
o

rm
.

d
y
n

a
m

ic
 p

o
w

e
r

0.2 0.4 0.6 0.8 1 1.2
10

−5

10
0

10
5

Norm. V
dd

N
o

rm
.

s
ta

ti
c
 p

o
w

e
r

0.2 0.4 0.6 0.8 1 1.2
10

−5

10
0

10
5

Norm. V
dd

N
o

rm
.

s
ta

ti
c
 p

o
w

e
r

0.2 0.4 0.6 0.8 1 1.2
10

−5

10
0

10
5

Norm. V
dd

N
o

rm
.

s
ta

ti
c
 p

o
w

e
r

Figure 3.2: Maximum frequency, dynamic power and static power with respect to process
variations. All three PV parameters have a significant impact on static power. They also
affect delay and dynamic power across a wide range of operating frequency.

For frequency and dynamic power, we choose a multivariable polynomial regression

model. For static power, an exponential multivariable polynomial regression model is a

better choice. That is because the static power follows an exponential dependency with

respect to the threshold voltage.

Let’s consider the dynamic power (for simplicity, we denote it as fm(X)) as example to

illustrate how we establish our power model for a module. After experimenting with different

multivariable polynomial regression models, we finally choose the one with a total degree of

up to four:

fm(X) =
∑
i

ci · V p
dd · L

q
G · Φr

G · T sSI (3.7)

p, q, r, s ∈ {N, 0}, p+ q + r + s ≤ 4.

Using a similar learning-based regression process as shown in Section 3.3.1, we achieve a

Root-Mean-Square-Percentage-Error (RMSPE) as low as 0.25% for the dynamic power in

the cross validation phase. The same technique applies to the regression of the maximum

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 18

frequency F with cross validation RMSPE of 0.38%. For static power, the exponential

multivariable polynomial model achieves a cross validation RMSPE of 0.96%.

We continue to collect the power and frequency for the cores in the CMPs. As mentioned

before, we use grid-based PV maps to simulate the PVs in CMPs. Specifically, there are

three variation sources, die level, core level and core component level. In our experimental

setup, one die has 4×4 cores, and each core is composed of 8×8 grid cells, which is illustrated

in Figure 3.1. Therefore, the total variation δtotali,j for each grid cell j in core i is composed

of three Gaussian RVs: δD in that die, δCi
in core i and δRj

in grid cell j as described in

Equation 3.5. Given a set of PV maps, the power consumption for each core only depends on

the resulting voltage/frequency pair while considering process variations as described above.

By using the accurate power-frequency model we get from the detailed per-core variation

information, we achieve unique values for F, fd and fs for each Vdd of each core, based on

the following rules. F is the minimum frequency across all the grid cells in the core so as to

satisfy the timing within each core, while fd or fs is the sum of fm,d or fm,s for all grid cells

in that core for a given Vdd. After this integration step, we get the pair (p`,F`) for each core.

Due to this integration of PVs, our proposed power models are implicitly heterogeneous,

even for a homogeneous multi-core architecture.

3.3.2 Learning the utilization-power relationship

After f̂d and f̂s are obtained, we now learn the utilization-power relationship, u(F). As prior

work [4] has pointed out, the dynamic power can be approximated as a linear function of

IPC, since IPC approximately represents the activity rate of a processing core. Therefore,

u(F) can be expressed as:

u(F) = c1 · IPC + c2 (3.8)

where c1 and c2 are fitting coefficients. From the dataset, a positive correlation between IPC

and dynamic power consumption has been observed. In other words, higher IPC contributes

to higher dynamic power dissipation, and vice versa, which leads to a positive slope c1.

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 19

Furthermore, c2 is also positive since power is still consumed even for a very low (or close to

zero) IPC. Therefore, both c1 and c2 are positive and the convexity of model is maintained.

Equation 3.8 is a constrained posynomial with d = 1 (the highest order of the polynomial is

one), and we repeat the learning procedure described in Section 3.3.1 to learn ĉ1, ĉ2 with d

set to one.

Table 3.1: Target architecture.

Parameters Values

Number of cores 16

Nominal frequency 2660 MHz

Core model Intel R©-X86 Gainestown R©-like

L2 caches Private 256KB, 4-way SA, LRU

L3 caches Shared 32MB, 16-way SA, LRU

DRAM 4GB

Technology 16nm node with FinFET

Here, we describe the dataset (p`, IPC`) used to learn the ĉ1, ĉ2 of û(F). The operating

frequency of (p`, IPC`) is fixed at the nominal value, and therefore the changes in dynamic

power dissipation come only from the workload characteristics, not voltage/frequency scaling.

We use Sniper [13] as the architectural simulator to collect IPCs (IPC`) and other required

workload characteristics. The target architecture is described in Table 3.1. Default settings

are used for the parameters not mentioned here. To demonstrate our approach, we use both

PARSEC [3] and SPLASH-2 [89] benchmarks that contain a wide spectrum of multi-threaded

parallel applications. For power, we use McPAT [58] to collect dynamic power traces (p`).

The temperature here is set to 330K, a typical stable temperature for our target processors.

McPAT also provides 16nm FinFET technology parameter set to simulate power, area, and

timing under 16nm node. Therefore, McPAT can simulate power of Intel Gainestown-like

cores in 16nm FinFET technology. Finally, the average error of the learned is û(F) 2.84%.

Similar results are also reported by others [4]. After f̂d(F), f̂s(F) and û(F) are obtained, we

are in position to examine the overall learned model P̂ (F).

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 20

3.3.3 Model validation

So far, the accuracies of f̂d(F), f̂s(F) and û(F) have been determined separately, and therefore

the accuracy of the overall learned P̂ (F) remains unknown. In this section, P̂ (F) is validated

with the power consumption of a whole processor at different frequencies under various

workload characteristics. By plugging f̂d(F), f̂s(F) and û(F) into Equation 3.2, the overall

power function P̂ (F) can be expressed as:

P̂ (F) = P peakdyn · f̂d(F) · û(F) + P peaksta · f̂s(F) (3.9)

= P peakdyn

(5∑
i=0

α̂iF
i

)(
ĉ1 · IPC + ĉ2

)
+ P peaksta

(6∑
j=0

α̂′jF
j

)

We collect the power traces, both dynamic and static power, from McPAT with the settings

described in Section 3.3.2. In addition to the nominal frequency (2.66GHz), the frequencies

are also set to the range (from 3.06GHz to 1.46GHz) at which McPAT has been extensively

validated. Please note that NTC is not included here, since McPAT has not been validated

for NTC voltage values. Furthermore, only the power values at the nominal frequency are

used to train û(F) as described in Section 3.3.2. In other words, the power values calculated

not at the nominal frequencies are not involved in any part of the training process of û(F)

(and thus P̂ (F)) − they are “clean” to test the accuracy of P̂ (F).

Table 3.2: Validation error of the learned P̂ .

Benchmark blackscholes canneal dedup fluidanimate
3.06GHz 3.72% 1.12% 10.19% 3.05%
1.46GHz 5.10% 3.69% 12.08% 3.57%

Benchmark streamcluster swaptions vips ferret
3.06GHz 7.17% 1.49% 12.56% 1.90%
1.46GHz 9.20% 1.77% 14.26% 2.56%

Benchmark barnes fmm lu.cont ocean.cont
3.06GHz 7.02% 4.79% 6.22% 6.47%
1.46GHz 5.95% 3.68% 6.83% 7.69%

Benchmark radiosity radix water Average
3.06GHz 2.24% 5.11% 0.98% 4.94%
1.46GHz 1.09% 5.55% 1.02% 5.33%

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 21

Table 3.2 illustrates that the overall average error is 4.94% and 5.33% for the two

modes, respectively, or 5.14% on average across various benchmarks in both PARSEC

and SPLASH-2. This confirms that the learned model can accurately describe the power-

performance relationship under different voltage/frequency levels and work variations.

3.4 Constrained optimization

We construct a convex power model expressed in Equation 3.2. As mentioned in Section

3.2, P peak
dyn and P peak

sta are two positive design parameters. fd and fs are two posynomial

function of F. The remaining u is a linear function of IPC with two positive coefficients

c1, c2. Therefore, Equation 3.2 is convex with respect to F when given a certain IPC value.

In this chapter, we perform a limit study for ExDVFS, with and without PVs and con-

sidering various multi-threaded benchmarks on a CMP. To achieve that, we assume here

that the voltage/frequency pairs are continuous across the wide operating range, which may

not be practical, but offers a conservative upper bound on savings achieved when evaluating

ExDVFS. We make use of convex program to formulate and analyze the two following op-

timal problems: (1) minimize energy consumption under iso-performance requirement; (2)

maximize performance under iso-power conditions.

3.4.1 Constrained energy minimization

We first study the energy minimization under given throughput constraint. In this work,

we assume that the workload characteristic, especially the IPC for each core in each control

epoch can be obtained from performance counters. Based on this, this problem for an n-core

CMP can be formulated as a convex program during each control epoch:

Objective : argmin
Fi

n∑
i=1

Pi(Fi)

Subject to :
n∑
i=1

IPCi · Fi ≥ Perfconst (3.10)

Fmin ≤ Fi ≤ Fmax , ∀i (3.11)

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 22

As IPCi for each core i is given, the power function Pi of that core is a convex function

of Fi. There are two constraints that need to be satisfied for each ExDVFS control epoch:

(1) the throughput should be at least equal to a specific value to meet the iso-performance

requirement, and (2) the operating frequency F for each core should be in proper operating

ranges, which is defined by our operating ranges in HSPICE. Please note that the power

model Pi varies from one core to another due to the PVs.

3.4.2 Constrained throughput maximization

We also consider the dual problem of performance improvement under power constraint, in

other words, how much the variation-aware ExDVFS approach can improve the throughput

under given power budget. Similarly, given IPC (IPC) for all cores in each ExDVFS control

epoch, we can express this problem in a n-core CMP as:

Objective : argmax
Fi

n∑
i=1

IPCi · Fi

Subject to :
n∑
i=1

Pi(Fi) ≤ Powerconst (3.12)

Fmin ≤ Fi ≤ Fmax , ∀i (3.13)

The objective is a linear function of F. There are two constraints: (1) the total power

consumption is at most equal to the power budget, which is convex constraint, and (2)

the frequency range constraint is the same as Equation 3.11. The above is still a convex

optimization problem since the objective is the maximum of a concave function and the

constraints are convex.

Convex optimization problem can be solved efficiently by Interior Point method and Dual

methods [6]. In this work, we implement the Interior Point method by using Matlab R© to

obtain the optimal F that minimizes the energy consumption of a CMP while satisfying

the throughput and other physical constraints. The Interior Point method is extremely fast,

taking only 5ms in Matlab to select the best F each control epoch. Therefore, implementing

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 23

it as part of the OS kernel will be much faster, which opens the possibility of its applicability

in an online setting.

3.5 Implementation flow

Optimal

Model validation
with accuracy

Full power
model

Design
specifications

PV-aware posynomial
learning for

linear utilization
model

PV maps Grid level polynomial
regression for

Power measurement for
different

Power collection for
different utilizations

Constrained optimization

Design
constraints

: Our tools

Figure 3.3: Implementation flow for the proposed framework.

The flowchart is provided in Figure 3.3. To begin with, we collect the dataset (p`,F`)

for learning f̂(F) that captures the changes of power consumptions at wide-range operat-

ing frequencies (from NTC to turbo mode) as described in Section 3.3.1. To collect the

variation-aware dataset for each core, we make the power measurement across various Vdd

and dominant process parameters (LG, TSI , and ΦG), and perform the regression for grid

level power f̂m(X) and the integration of PV maps. Next, we learn û(F) that models the

dynamic power changes according to the workload variations as described in Section 3.3.2.

The design-specific P peak
dyn is set to 70% of thermal design power (TDP)2 for a core, and

P peak
sta is set to 30% TDP, which is approximately an average proportion for our experimental

results and is also similar to results for Intel Xeon core in McPAT paper [58]. By plugging

f̂d(F), f̂s(F) and û(F) into Equation 3.2, P̂ is obtained. We then validate the learned P̂ with

the performance and power values provided by Sniper and McPAT executing PARSEC and

2TDP refers to the average maximum power a processor can dissipate to avoid overheating.

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 24

SPLASH-2 benchmarks at different operating frequencies, as described in Section 3.3.3. The

average RMSPE is 5.14%. Furthermore, the overhead of voltage transitions for DVFS is

less than 9ns [65] and therefore is negligible during each control epoch (1ms). We emphasize

that the proposed learning framework is generic and is not restricted to a certain simulator

or application. To perform the limit study of the maximum benefits of deploying wide-range

operations from NTC to turbo mode, the workload characteristics of each processing core

along with user-specified constraints are fed into the optimization framework described in

Section 3.4.1 and 3.4.2 to select the best F for each control epoch. Note that workload char-

acteristics from other sources, such as on-chip performance counters, can also be plugged into

the proposed framework for calculating the best F. Finally, the performance constraint in

Equation 3.10 and the power constraint in Equation 3.12 are set to the throughput achieved

and power consumed, respectively, under the nominal Vdd and F for each benchmark. To

reduce the randomness, our results are based on at least ten independent sets of PV maps.

3.6 Experimental results

In this section, we establish our experiments and perform the convex optimization as formu-

lated in Section 3.4. We set normalized operating frequency from 0.05 to 1.22 (nominal F=

2.66GHz), which covers from NTC up to turbo mode.

3.6.1 Iso-performance energy optimization

For simplicity, we use ExDVFS to denote the DVFS over wide operating ranges: NTC,

nominal and turbo mode. To achieve a comprehensive analysis of the effects due to PVs, we

compare the following approaches:

• Baseline: the approach without ExDVFS or variation-aware adaption. All cores run

at the same nominal Vdd and conservative F (the slowest F across all cores).

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 25

0.2

0.4

0.6

0.8

1

1.2

blacks
choles

canneal
dedup

fluidanimate

stre
amclu

ste
r

swaptions
vip

s
ferret

barnes
fmm

lu−
cont

ocean−c
ont

radiosity radix

water−n
sq

mix−
c100p

mix−
c75p

mix−
c50p

mix−
c25p

mix−
c0p

AverageN
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

PV−aware 100% PV−ExDVFS 100% PV−aware 90% PV−ExDVFS 90% of throughtput constraints

0.2

0.4

0.6

0.8

1

1.2

blacks
choles

canneal
dedup

fluidanimate

stre
amclu

ste
r

swaptions
vip

s
ferret

barnes
fmm

lu−
cont

ocean−c
ont

radiosity radix

water−n
sq

mix−
c100p

mix−
c75p

mix−
c50p

mix−
c25p

mix−
c0p

AverageN
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

PV−aware 100% PV−ExDVFS 100% PV−aware 90% PV−ExDVFS 90% of throughtput constraints

Figure 3.4: Average energy minimization results across 10 variation maps under 100% and
90% throughput constraints. Top: 3σ (standard deviation) of process parameters is 10% of
their nominal values. PV-ExDVFS achieves the lowest energy points, the average reduction
compared with the baseline approach is 22.88% for 100% throughput (hard) constraint and
47.13% for 90% throughput (soft) constraint. Bottom: 3σ is 30%. The corresponding
energy reduction of PV-ExDVFS is 31.09% for hard constraint and 59.59% for soft constraint.

• PV-aware: the approach only integrating fine-grained PV information. In this case,

cores run individually at the highest F for the same Vdd. No dynamic adaptation is

performed.

• PV-ExDVFS: the newly proposed approach based on fine-grained PV information in

addtion to ExDVFS. In this case, Vdd/F levels are customized for each core based on

the PV information, and the optimal levels are chosen in a workload-aware fashion as

described in Section 3.6.1 and 3.6.2.

We evaluate the energy minimization under iso-performance constraints by comparing

the experimental results of the above approaches on different workloads and their mixtures

from PARSEC and SPLASH-2 benchmark suites. The evaluations are based on region-of-

interest (ROI) [13], excluding the initialization and cleanup phases for parallel benchmarks.

Each workload mixture is composed of benchmarks randomly chosen from the two suites to

represent a kind of heterogeneous multi-threaded workload. For example, mix-c75p means

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 26

75% of threads are core-bound while the rest are memory-bound. The classification is

similar to the one used in [3][89]. The results of all approaches normalized by the baseline

case (Baseline) are listed in Figure 3.4. All results are the average improvements across

ten randomly generated variation maps. Furthermore, we evaluate the case with “soft”

constraints. Namely, we set the total throughput at 90% of the baseline in Equation 3.10 to

explore the case where we further reduce energy in exchange of only 10% of total throughput.

Figure 3.4(top) illustrates that PV-ExDVFS achieves the lowest energy points, the aver-

age reduction compared with the baseline approach is 22.88% for 100% throughput (hard)

constraint and 47.13% for 90% throughput (soft) constraint. From the figure, we can see

that PVs have a great impact on the power and performance in CMPs. Without ExDVFS

algorithms, CMPs can still achieve 32.70% energy reduction on average with knowledge

of only process variation information for the soft constraint case, but the benefit increases

by a half when ExDVFS is enabled. We note that among the PARSEC and SPLASH-2

benchmarks analyzed, ferret is the most imbalanced benchmark in terms of computation

requirements per thread and therefore benefits the most from an extended DVFS paradigm.

Indeed, in this case we observe a 10X power reduction at iso-performance, while for 10%

performance drop, a 20X power reduction is observed. To further evaluate the effects of

PV induced on CMPs, we perform similar comparisons on CMPs with extreme PV level (3σ

= 30%). Comparing the top and bottom figures of Figure 3.4, we find that more energy is

saved in all cases. For the hard constraints, an additional 5.68% and 8.21% are saved by

PV-aware and PV-ExDVFS, respectively. For the soft constraints of 90% throughput, the

corresponding additional savings are 13.58% and 12.46%.

3.6.2 Iso-power performance optimization

Similar to the analysis in Section 3.6.1, in this section we also evaluate the three approaches

using the same baseline. We also consider the “soft” constraints. Namely, we increase the

total power to 110% of the baseline in Equation 3.12 to find out how further to improve

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 27

0.8

0.9

1

1.1

1.2

1.3

blacks
choles

canneal
dedup

fluidanimate

stre
amclu

ste
r

swaptions
vip

s
ferret

barnes
fmm

lu−
cont

ocean−c
ont

radiosity radix

water−n
sq

mix−
c100p

mix−
c75p

mix−
c50p

mix−
c25p

mix−
c0p

Average

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PV−aware 100% PV−ExDVFS 100% PV−aware 110% PV−ExDVFS 110% of power budget

0.8

1

1.2

1.4

1.6

blacks
choles

canneal
dedup

fluidanimate

stre
amclu

ste
r

swaptions
vip

s
ferret

barnes
fmm

lu−
cont

ocean−c
ont

radiosity radix

water−n
sq

mix−
c100p

mix−
c75p

mix−
c50p

mix−
c25p

mix−
c0p

Average

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

PV−aware 100% PV−ExDVFS 100% PV−aware 110% PV−ExDVFS 110% of power budget

Figure 3.5: Average throughput improvement results across 10 variation maps with 100%
and 110% power budgets. Top: 3σ (standard deviation) of process parameters is 10% of
their nominal values. PV-ExDVFS achieves the highest throughput points, the average
improvement compared with the baseline approach is 6.25% for 100% power (hard) budget
and 6.93% for 90% power (soft) budget. Bottom: 3σ is 30%. The corresponding throughput
improvement of PV-ExDVFS is 11.46% for hard constraint and 18.17% for soft constraint.

throughput in exchange of 10% more power consumption. The results of all approaches

normalized by the baseline case are listed in Figure 3.5.

Figure 3.5(top) shows that the average improvement in the throughput in PV-ExDVFS

are 6.25% under 100% power budget (hard constraint) and 6.93% under 110% power budget

(soft constraint) when 3σ for PVs is 10%. For PV-aware approach, the performance increase

is 1.54% or 2.19% with hard or soft power constraint, which appears to be a modest result

for performance improvement. However, when the PV level increases to 3σ of 30%, the

improvements become significant. Figure 3.5(bottom) illustrates the average improvements

in throughput under the same constraints as in the top case. It is clear that PV-ExDVFS

gains 11.46% or 18.17% in the hard or soft constraint cases respectively. Correspondingly,

the gains of throughput for PV-aware approach also reach to 3.16% or 8.78% under hard

or soft constraint, which are higher than the lower PV levels in Figure 3.5(top).

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 28

3.6.3 Impact of discrete V/F levels

PV-ExDVFS is based on the assumption that V/F levels are continuous across extended

operating range. We have proven (given the convexity of the model) that PV-ExDVFS

achieves the theoretical optimal result either in energy savings or throughput maximizations

under given constraints. However, many algorithms or heuristics for energy savings or per-

formance improvements are based on a few discrete V/F levels. Therefore, comparisons with

state-of-the-art algorithms that operate under these assumptions help to quantify how far

these algorithms are from the theoretical optimal provided by PV-ExDVFS. In this work, we

discretize the normalized frequencies into four levels, [0.05, 0.80, 1.00, 1.22], which represent

the NTC, low, nominal and TB modes [23] [41]. In the iso-power throughput improvement

part, MaxBIPS [40] guarantees optimal results for throughput maximization with discrete

V/F levels. MaxBIPS is essentially an exhaustive search algorithm. While many heuristics

exist for minimizing power under performance constraints, for fairness of results, we modify

the MaxBIPS algorithm to perform iso-performance energy optimization through exhaustive

search of state space. Therefore, we add PV effects to MaxBIPS and its modified version as

the baseline for comparison. For further comparison, we also implement a PV-aware version

of Steepest Drop [88], a state-of-the-art heuristic to accelerate throughput maximization un-

der iso-power constraints. Combining the key idea of Steepest Drop and our formulations, we

add PV effects and develop a heuristic for iso-performance energy savings. Eight-core CMPs

are chosen because the run time for MaxBIPS is too large for systems with 16 cores or more.

As stated before, to achieve fair comparisons, MaxBIPS and Steepest Drop are modified to

include PV effects (denoted by PV-MaxBIPS and PV-Steepest Drop in the sequel).

Figure 3.6 shows the relative energy savings and throughput improvement for PV-ExDVFS

and PV-Steepest Drop when compared with exhaustive search (PV-MaxBIPS). On aver-

age, PV-ExDVFS consume 9.50% less energy under iso-performance constraints than PV-

MaxBIPS for mild (3σ = 10%) PV level and 3.71% less for extreme (3σ = 30%) PV level.

In addition, PV-ExDVFS achieve 4.54% more throughput under iso-power constraints than

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 29

PV−Steepest Drop (min energy version) PV−ExDVFS (min energy version)
−0.1

0

0.1

0.2

N
o
rm

.
e
n
e
rg

y
 s

a
v
in

g
s

3σ = 10% variation level

3σ = 30% variation level

PV−Steepest Drop (max throughput version) PV−ExDVFS (max throughput version)

−0.05

0

0.05

0.1

N
o
rm

.
s
p
e
e
d
u
p
s

3σ = 10% variation level

3σ = 30% variation level

Figure 3.6: Energy savings (top) and speedups (bottom) for PV-Steepest Drop [88] and
PV-ExDVFS compared with the baseline PV-MaxBIPS [40] i.e., exhaustive search of best
energy (top) and performance (bottom) configuration.

PV-MaxBIPS for mild (3σ = 10%) PV level and 3.35% more for extreme (3σ = 30%) PV

level. We also observe that as one of the best heuristics for performance improvement under

iso-power conditions, PV-Steepest Drop is about 1% away from PV-MaxBIPS, which is also

stated in [40] for the simpler case of throughput improvement without PV effects. The com-

parison between PV-MaxBIPS and the theoretical limit given by PV-ExDVFS shows that

up to 21.53% extra energy savings and 13.45% extra performance improvements are possible

with increased number of V/F levels.

3.6.4 Impact of core cluster size

In this work, we target per-core DVFS, namely a core cluster size of one. However, not all

existing platforms have this setting. Our algorithm is adaptable for other core cluster sizes.

Indeed, by adding extra constraints on the final frequency/voltage choices (i.e., same V/F

for all cores in the same cluster), one can perform PV-ExDVFS for eight-core CMPs with

core cluster size eight (chip-wise V/F domain), four, two, and one (per-core). By doing so,

one can see the impact of core cluster size on our algorithm by comparing these four setups.

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 30

We set PV-ExDVFS for CMPs with one chip-wise V/F domain (core cluster size eight) as

the baseline, by which all results from the other three setups are normalized by. The relative

energy savings and throughput improvement results for the other three setups compared with

the baseline are shown in Figure 3.7. As it can be seen, there is a steady increase for either

energy savings or throughput improvement with decreased core cluster size. On average,

per-core PV-ExDVFS (core cluster size equals one) save 17.75% more energy under mild

PV level than the baseline and 22.84% more energy under extreme PV level. In addition,

per-core PV-ExDVFS (core cluster size equals one) achieves 4.68% more throughput under

mild PV level than the baseline and 8.45% more throughput under extreme PV level.

4 2 1

0

0.2

0.4

0.6

N
o

rm
.

e
n

e
rg

y
 s

a
v
in

g
s

3σ = 10% variation level

3σ = 30% variation level

4 2 1

0

0.1

0.2

0.3

N
o

rm
.

s
p

e
e

d
u

p
s

3σ = 10% variation level

3σ = 30% variation level

Core cluster size

Core cluster size

Figure 3.7: Energy savings (top) and speedups (bottom) for PV-ExDVFS with different core
cluster sizes compared with the baseline (PV-ExDVFS with chip-wise V/F domain).

3.6.5 Comparisons of bulk CMOS and FinFET

In bulk-CMOS-based 20-core CMP, algorithms proposed in [84] achieve 12-17% increase in

throughput with a given power budget. Our work in this chapter shows that in FinFET-based

16-core CMP, one can get 11.46% performance increase under power constraints in extreme

PV level. In [44], 22.33% energy is saved through extended range DVFS under a given power

budget in CMOS-based CMPs. In comparison, our framework reduces energy consumption

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 31

up to 31.09% under similar constraints, but with FinFET-based CMPs. This shows that

with similar configurations, bulk CMOS and FinFET implementations produce benefits that

trend similarly, with slightly better results achieved for FinFET designs. Furthermore, our

work is unique in showing that these benefits significantly scale with core count and PV

levels for FinFET implementations.

3.6.6 Effects of core count in FinFET CMPs

We also explore the effects of core count on ability of PV-ExDVFS to determine the optimal

energy savings or performance improvement. We vary the core count from four all the way

up to 128, with each configuration being run for ten variation maps. Figure 3.8(top) shows

4 8 16 32 64 128
0.2

0.4

0.6

0.8

N
o
rm

.
e
n
e
rg

y
 s

a
v
in

g
s

3σ = 10% variation level

3σ = 30% variation level

4 8 16 32 64 128

0.1

0.2

0.3

N
o
rm

.
s
p
e
e
d
u
p
s

3σ = 10% variation level

3σ = 30% variation level

Core count

Core count

Figure 3.8: Energy saving and speedup further improve as number of cores and PV level
increase. Top: energy savings under 100% throughput constraint in mild (10%) and extreme
(30%) PV levels. Bottom: Speedups with 100% power budget in mild and extreme PV
levels.

the optimal energy savings for given hard throughput constraints and Figure 3.8(bottom)

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 32

shows the optimal speedups3 for given hard power budgets with each core count under each

variation level. Figure 3.8 illustrates the improvements significantly increase as core count

goes up, either for energy savings or speedups, subject to mild (10%) or extreme (30%)

variation level. However, these increasing trends slow down when core count is large (over

32 in our experiments). For each fixed core count, PV-ExDVFS in the presence of extreme

PVs provides better benefits than the mild PV one. In addition, extreme PV case introduces

larger variance than the mild variation case. As see in Figure 3.8, one can conclude that as

technology nodes keep decreasing (variation level is increasing) and core count continues to

go up, PV-ExDVFS can save about 60% in energy or increase performance throughput

by 30% without using any other technique. Furthermore, while the variance in savings is

higher for extreme PVs (red, higher bars) than for mild ones (blue, lower bars), they are

largely independent on the core count which demonstrate the stability of the results.

3.7 Discussion

In this chapter, we adapt the model-selecting technique and LOOCV from machine learning

to learn the best PV-aware constrained-posynomial P̂ for modeling the workload-dependent

power-frequency relationship over an extended range for FinFET-based CMPs. Based on

the convexity provided by the learned P̂ , two optimization frameworks are proposed: en-

ergy minimization under throughput constraints and throughput maximization under power

constraints. Experimental results shows PV-ExDVFS achieves an average (1) 22.88%

or 31.09% power reduction under iso-performance conditions and (2) 6.25% or 11.46%

throughput improvement under iso-power conditions, with mild (3σ = 10%) or extreme

(30%) PV levels, respectively. We validate the effectiveness of PV-ExDVFS by quantifying

the impact of discrete V/F levels and core cluster sizes. In addition, further experiments

uniquely show the benefits from our methods significantly increase with increasing core

3Speedup here is referred as normalized throughput improvement relative to the baseline case, assuming
workloads are perfectly balanced.

CHAPTER 3. LEARNING FOR MANY-CORE SYSTEM OPTIMIZATION 33

count and variation level, either in energy savings or throughput improvements. Our work

also shows that iso-performance energy savings or iso-power performance improvements in

FinFET technology are similar to those obtained for bulk CMOS, but the effect of PVs

magnifies these benefits in the case of FinFET implementations.

Chapter 4

Temperature effect inversion in

multi-core systems

4.1 Chapter overview

Power and thermal issues have become the major constraints in developing high-performance

microprocessors. Several hardware- and software-based techniques exist to resolve them.

Among them, Dynamic Voltage and Frequency Scaling (DVFS) is widely used in both

academia and industry, mainly to reduce the power consumption while maintaining the

same performance. Upscaling of voltage/frequency (V/F) for multi-core processors has also

been explored by processor manufacturers, e.g., in Intel’s Turbo Boost [15]. Similar tech-

niques are also discussed in other work [88] [45]. For simplicity, we use the term “Turbo” in

this chapter to refer to techniques that increase performance while keeping power consump-

tion under a given budget. As the number of cores integrated in a single chip increases, the

complexity of Turbo algorithms becomes one of the key points for real application.

CMOS technology evolution provides fundamental advances in mitigating power and

thermal problems. FinFET has become the next generation CMOS technology of choice,

especially for sub-20 nm technologies. Because of the different structures in planar vs.

tri-dimensional CMOS devices, their power and performance characteristics are likewise

34

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS35

distinct [54]. One of these stark differences is the behavior of FinFET gate delay as a

function of temperature. This phenomenon present in FinFET devices is called temperature

effect inversion (TEI) [57] and refers to the reverse dependency between gate delay and

temperature: gate delay decreases as temperature increases. In contrast, the gate delay

of planar CMOS increases when temperature goes up. Figure 9 in [68] shows clearly that

CMOS transistor delay grows as temperature increases in superthreshold voltage region1.

The advantage of TEI is obvious: FinFET-based designs can operate faster at higher

temperature. Therefore, it is important to quantify how TEI affects FinFET-based multi-

core systems. Furthermore, existing Turbo algorithms are fast in current multi-core systems.

However, they may not be fast enough for many-core systems comprised of hundreds of cores.

Can we further reduce the runtime overhead without losing performance or energy efficiency

for future large-scale multi-core systems? After performing a detailed analysis of TEI, our

answer is yes.

In this chapter, we first characterize how much extra performance TEI brings to existing

Turbo algorithms. After further analysis of TEI in multi-V/F level systems, we observe

TEI-induced temperature-dependent “sweet spots”, which are essentially locally best V/F

levels. By exploiting these sweet spots first, one can greatly reduce the size of search space

to decrease the runtime for performing DVFS. Based on these sweet spots, we propose fast

algorithms, including Temperature Effect Inversion-aware Turbo Boost (TEI-Turbo) and its

energy minimizing counterpart TEI-aware Low Power (TEI-LP) which we compare against

corresponding state-of-the-art approaches.

4.1.1 Chapter contributions

Compared with previous state-of-the-art techniques, our work makes the following novel

contributions:

1Supply voltage is larger than threshold voltage.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS36

• Our work is the first to characterize the impact of TEI on power and performance of

multi-core systems. Our experimental results show that on average 15.70% through-

put improvement or 31.26% energy saving can be achieved in steady state for a TEI-

aware DVFS policy over a TEI-agnostic one.

• We discover TEI-induced sweet spots in multi-level operating regions, which are uniquely

associated with FinFET-based processors. These V/F sweet spots are strongly depen-

dent on chip temperature.

• Based on these sweet spots, we propose a fast algorithm called TEI-Turbo, to deter-

mine the best performance under given power budget. This algorithm has a worst-case

complexity of O(nlog(n)), which is better than state-of-art existing Turbo algorithms,

like Steepest Drop [88].

• For power optimization, we propose an algorithm dubbed TEI-LP to determine the

optimal power for a given throughput constraint. TEI-LP also has a worst-case com-

plexity same as TEI-Turbo (O(nlog(n))).

• We evaluate our proposed algorithm on a multi-core simulator [13] with various multi-

threaded benchmarks [3] [89]. Experimental results show that TEI-Turbo achieves

an average of 45.9× in runtime speedup and only 0.22% loss of performance, when

compared with TEI-aware version of existing state-of-the-art algorithms. Similarly,

TEI-LP achieves an average of 55.3× in runtime speedup and only 0.68% more in

energy consumption, when compared with TEI-aware version of existing state-of-the-

art algorithms.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS37

4.2 Performance and power models for TEI analysis

As the focus of this chapter is on multi-core systems, performance and power are the two main

metrics to quantitatively characterize them. In this section, we introduce both performance

metrics and power models used in this chapter below.

4.2.1 Performance

One of the key metrics to measure the performance of a multi-core system is the total

throughput (TP), i.e., the total number of instructions executed per unit time for all cores.

Given the average number of instructions per cycle (IPC), and the operating frequency (F),

for a chip-multiprocessor (CMP) with n cores, the total throughput can be calculated as:

TP =
n∑
i=1

IPCi · Fi (4.1)

where i is the index for cores. IPC can be obtained at runtime from hardware counters (such

as the Performance Counter Monitor by Intel [87]). The total throughput is essentially the

aggregate instructions per second (IPS) for all cores.

4.2.2 Dynamic power

The power consumption in CMOS circuits can be divided into dynamic power and static

power. Dynamic power for a core can be expressed as: Pdyn = αCLV
2
dd · F, where α is the

activity factor, CL is the capacitance for output load, and F is operating frequency.

However, this model cannot be used as such in real systems. In addition, prior work [4]

pointed out that dynamic power has strong correlation with IPC, since IPC approximately

represents the activity rate (or utilization) of a processing core. Therefore, similar to [4], we

assume a linear dependency to characterize dynamic power for each core:

Pdyn = V 2
dd · F · (a · IPC + b) (4.2)

where a and b are coefficients that need to be determined.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS38

To obtain the model in Equation 4.2, we use the multi-core system-level performance

simulator Sniper [13] and power simulator McPAT [58] to collect data. We run multi-

threaded benchmarks from PARSEC [3] and SPLASH-2 [89] on FinFET-based CMPs under

three different V/F states (nominal: 0.85 V/3.0 GHz, high: 1.05 V/3.5 GHz, and low: 0.55

V/1.7 GHz).

In addition, we develop a machine learning-based approach to learn the best model for

each benchmark. The process is divided into two phases: training phase and cross-validation

phase [5]. We implement a ten-fold cross validation approach [5] to learn the best coefficients

for Equation 4.2. Generally, the data are divided randomly into ten equal subsets. The first

one is chosen as the cross-validation (testing) set, the rest as training set. For the training

phase, a linear regression is performed on the training set to obtain the coefficients (a, b).

In the validation phase, this set of coefficients are applied to the validation set to obtain the

squared percentage error for each data point. We repeat this process for all ten subsets, so

that each data point is associated with a squared percentage error. Based on these, we can

easily obtain the Root-Mean-Square-Percentage-Error (RMSPE) in the validation phase.

Table 4.1 shows the RMSPE for the validation phase of the dynamic power model in

Equation 4.2. The average RMSPE across all benchmarks in Table 4.1 is 6.47%.

Table 4.1: Validation error of the learned dynamic power.

Name blks. bdyt. cnnl. ddp. fcsm. frrt.
RMSPE(%) 4.14 14.01 2.68 4.91 4.36 9.25

Name fldn. frqm. rytr. strm. swpt. vips
RMSPE(%) 3.22 2.33 4.09 6.98 3.71 14.06

Name x264 brns. chlk. fft fmm lu
RMSPE(%) 7.33 6.29 11.81 3.65 8.73 3.49

Name ocn. rdst. rdx wtr. AVERAGE
RMSPE(%) 11.46 8.35 3.64 3.99 6.47

4.2.3 Static power

For planar CMOS devices, the leakage-temperature loop is well known: when temperature

increases, leakage power increases, which further determines the temperature to increase,

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS39

and so on so forth. The change in leakage power in this loop is mainly caused by subthresh-

old leakage. What happens in the case of FinFET devices? The leakage-temperature loop

still exists, but is affected by TEI effect. Figure 4.1 shows the leakage power for 16 nm

FinFET two-stage FO4 inverter chains. Several models have been proposed to characterize

the leakage power of FinFET circuits with respect to Vdd and temperature [75].

-20 0 20 40 60 80 100 120
Temperature (°C)

0

500

1000

1500

N
or

m
al

iz
ed

 le
ak

ag
e

po
w

er 1.05V
0.95V
0.85V
0.75V
0.65V

Figure 4.1: Normalized leakage power under a wide range of temperature values for FinFET.

In multi-core systems, we propose a simple system-level model to characterize static

power for cores. The static power can be expressed as:

Psta = Vdd · C(θ) = Vdd · c0 · exp(c1 · θ2 + c2 · θ + c3) (4.3)

where c0 is the normalization factor. c1, c2 and c3 are the coefficients to determine. c1 models

the nonlinear part of log(Psta) with respect to temperature (θ), while c2 and c3 model the

corresponding linear part. The reason for choosing a quadratic function in the exponent

instead of a linear one is that simulation data shows log(Psta) behaves as a sublinear function

of θ. A quadratic function with negative value for c1 can accurately model this trend.

To validate this model, we collect leakage power data from the widely used system-level

power simulator McPAT [58]. We modify McPAT to make it support 16 nm FinFET. We

update the subthreshold current (Isub) model with SPICE simulation based on PTM models.

Similar to the process in Section 4.2.2, we implement cross validation techniques [5] to train

and validate the model in Equation 4.3 across a wide temperature range (from -25 ◦C to 125

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS40

◦C) and voltage range (from 0.45 V to 1.05 V). The results shown in Table 4.2 illustrate

that the RMSPE is only 1.67% in a ten-fold cross-validation process. 1.67% indicates the

Equation 4.3 is an accurate system-level static power model, especially considering the wide

operating temperature and voltage range.

Table 4.2: Learning leakage power model.

c0 c1 c2 c3 RMSPE

Value 0.154 -0.000101 0.0498 -2.50 1.67%

4.3 Optimization methodology

In this section, we first discuss the TEI-induced dynamic voltage-frequency pairing. We

then introduce the concepts of “sweet spots” resulting from TEI. Based on that, we discuss

two fast algorithms: (i)TEI-Turbo for performance boosting under given power budgets and

(ii) TEI-LP for energy saving with given throughput constraints. Finally, we discuss the

complexity of the proposed algorithms.

4.3.1 Temperature-dependent V/F pairs

Due to TEI, it is important to quantify the effect of temperature on voltage/frequency pair

selection. Prior work [33] has used the frequency of a ring oscillator (RO) as a sufficiently

accurate approximation for the frequency of a core. Similarly, we use a RO to quantify the

TEI effect on V/F pairing. We apply the ten-fold cross validation method to perform model

selection for the maximum operating frequency Fmax for a given supply voltage Vdd with

given temperature θ. When tested with a large set of various models, the model shown in

Equation 4.4 achieves the best cross-validation error, which is the result of model selection

technique [5]. In Equation 4.4, d0 models the nonlinear part of Fmax with respect to Vdd,

while d1 quantifies the coupling effect from Vdd and θ on Fmax. d2, d3, and d4 are coefficients

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS41

that model the linear part from Vdd and θ.

Fmax = d0 · V 2
dd + d1 · Vdd · θ + d2 · θ + d3 · Vdd + d4 (4.4)

Table 4.3 shows the values of the coefficients and the RMSPE for the test phase. The results

confirm the accuracy of our temperature-dependent V/F pairing model.

Table 4.3: Learning temperature-dependent V/F pairs.

d0 d1 d2 d3 d4 RMSPE
Value -4.27 0.0042 0.0052 10.6 -2.66 0.49%

Since V/F levels are always discrete in real multi-core systems, Equation 4.4 can not be

directly used. Instead, it provides a direct guidance for the dynamic matching, namely the

smallest available Vdd whose Fmax is larger than the required frequency at a given temperature

θ.

To illustrate these guidelines, let us determine a set of V/F levels first. Like in prior

work [33], we use a RO to determine V/F levels other than nominal (0.85 V, 3.0 GHz). Due

to TEI, the worst-case timing happens at the lowest temperature (-25 ◦C in this chapter).

Therefore, one V/F-pairing example is illustrated in Table 4.4 for the worst-case delay (-25

◦C). This example includes 13 V/F pairs, which is close to typical values for Intel Xeon

processors (15 V/F levels on Xeon E5-2670 processor [50]).

Table 4.4: V/F levels for worst case (-25 ◦C).

Level 0 1 2 3 4 5 6
F 1.05 1.40 1.70 2.00 2.25 2.45 2.65
Vdd 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Level 7 8 9 10 11 12
F 2.85 3.00 3.15 3.30 3.40 3.50
Vdd 0.80 0.85 0.90 0.95 1.00 1.05

As temperature changes, the V/F pairings are different, as shown by Equation 4.4. The

process is shown in Figure 4.2.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS42

0.4 0.6 0.8 1
Vdd

0

2

4

6

8
10
12

C
or

e
fre

qu
en

cy
 le

ve
l

T=0°C
T=60°C

Figure 4.2: Dynamic voltage frequency pairings for different temperatures.

4.3.2 TEI-induced sweet spots

Energy efficiency (EE) is defined as throughput per unit power consumption, as shown for

any given core in Equation 4.5.

EE =
TP

Ptotal
=

IPC · F
V 2
dd · F · (a · IPC + b) + C(θ) · Vdd

=
1

Vdd
· 1

a · Vdd + b·Vdd
IPC

+ C(θ)
IPC·F

(4.5)

where a, b > 0, C(θ) > 0, IPC > 0.

By studying EE in Equation 4.5, we can see that energy efficiency is dependent on Vdd, F,

θ, and IPC. As Vdd increases, EE decreases. However, the trend is opposite when looking at

F. We can easily see that EE generally increases as V/F levels are decreased and therefore,

the global best EE is achieved near the lowest V/F levels. However, the lowest V/F levels

are characterized by very low performance levels which are unlikely to meet requirement or

make use of available power budget. Therefore, to meet the performance requirement or

exploit the power budget, it becomes desirable to search operating V/F levels with better

EE locally, especially around the performance requirement or power budget.

With TEI, we observe the sweet spots, which are the operating V/F levels with relatively

better EE in their local ranges. Later in the chapter (Section 4.3.3), we will see that these

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS43

sweet spots can help us find the better EE quickly around the requirement or power budget.

The V/F level j is defined as a sweet spot (SS) if it satisfies the following conditions:

EE ′j = EEj−1 + (EEj+1 − EEj−1) ·
fj − fj−1
fj+1 − fj−1

(4.6)

EEj − EE ′j
EE ′j

> threshold (4.7)

where threshold is 5% in this chapter. EE ′j is the value interpolated from the adjacent two

states. The rationale behind this definition is that EE is generally decreasing as V/F level

increases. TEI effect can slow down this decreasing trend or even reverse it for some local

states. This interpolation method plus a certain threshold can select these states as sweet

spots.

Figure 4.3 shows the normalized energy efficiencies for different frequency levels. From

the figure we can see that Level 1, 4, 7, 10 will be chosen as SSs.

0 5 100.8

1

1.2

1.4

1.6

Core frequency level

N
or

m
. e

ne
rg

y
ef

fic
ie

nc
y Sweet Spots

Figure 4.3: Normalized energy efficiency across all frequency levels.

Let us consider Figure 4.4 as an example to illustrate the process of determining sweet

spots at a given temperature. Please note the V/F level numbers mentioned here are referring

only to the frequency levels, since the corresponding voltage levels change due to TEI. For

example, when temperature increases to 42 ◦C, Vdd at Level 8 drops from 0.75 V to 0.7 V

(which the red/rightmost arrow indicates in Figure 4.4), while Vdd at Level 7 remains 0.7 V .

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS44

The formula in Equation 4.5 clearly shows that the drop in Vdd will increase the EE of Level

8. At this temperature, Level 8 has the same Vdd as Level 7, but with higher frequency than

Level 7. According to Equation 4.5, these levels have comparable EE values. Level 9 gets

a voltage drop to 0.75 V at 33 ◦C (which the blue/leftmost arrow indicates in Figure 4.4),

and stays at 0.75 V around 42 ◦C. There is no change of its EE at 42 ◦C. Therefore, the

clear increase of EE for Level 8 will designate it as a sweet spot based on Equation 4.7. We

can also see that when temperature is between 33 ◦C and 42 ◦C, Level 9 becomes a sweet

spot instead of Level 8.

-30 -20 -10 0 10 20 30 40 50 60 70 80
Temperature (°C)

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

M
ax

im
um

 fr
eq

ue
nc

y

0.85V
0.80V
0.75V
0.70V
0.65V

Level	9

Level	8

Level	7

Figure 4.4: Example process of determining sweet spots.

From the example above, we can conclude that: (1) sweet spots are based on relative

power-performance difference between adjacent levels, therefore are highly local; (2) sweet

spots vary as operating temperature changes.

4.3.3 Efficient TEI-aware V/F scaling

Due to thermal constraints, power is always subject to certain requirements. Power-limited

multi-core systems with increasing number of cores are likely to dominate future designs

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS45

[42]. Therefore, an efficient online algorithm to determine the optimal throughput under a

given power budget becomes a necessity.

However, performance optimization via V/F scaling can be formulated as a NP-hard

problem [46], which is what MaxBIPS [40] implements via exhaustive state search. One of

the state-of-the-art efficient heuristics is Steepest Drop [88], which is based on a directed local

search method. The Steepest Drop algorithm has computational complexity of O(mnlog(n)),

where m is the number of V/F levels, n is the number of cores. Can we do better in runtime,

but without much performance loss? Based on the observation of sweet spots in Section

4.3.2, we propose a fast algorithm, dubbed TEI-Turbo as shown in Algorithm 1. TEI-Turbo

is essentially making use of TEI-induced sweet spots to efficiently determine the V/F level

and then fine-tunes it to reach the final decision. It consists of three phases which are

detailed below.

The first phase (line 4 - line 11) has two functions. One is to identify idle cores and set

them into the lowest V/F state, while the other is to put all active cores into a heap ranked

by utilization (as discussed in Section 4.2.2, IPC is used as a proxy for utilization). The rest

of TEI-Turbo algorithm only focuses on active cores, therefore total power budget is reduced

by the power for those idle cores (line 7).

The second phase (line 12 - line 28) calculates sweet spots based on current temperature

and chooses V/F levels so resulting power fits within updated power budget. Based on the

method discussed in Section 4.3.2, we determine the sweet spots for the current temperature.

SS in line 12 is a list of all sweet spots, including the highest and lowest levels, which

determine the lower and upper bounds for power. We then calculate the power consumption

of all active cores in the same state listed in SS (PwSS). If the available power budget is

between two adjacent power values in PwSS, then the higher sweet spot state will be chosen

(line 20 - line 25).

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS46

Algorithm 1 TEI-Turbo

1: Input: IPC, Budget, N , θ
2: Output: V F levels for all cores
3: active cores: a min-heap for active cores

ranked by IPC
4: for i = 0; i < N ; i+ + do
5: if IPCi == 0 then
6: V Fi = lowest
7: Budget← Budget− Poweri,lowest
8: else
9: Push (i, IPCi) to the heap
active cores

10: end if
11: end for
12: SS: all sweet spots, from highest to low-

est levels
13: PwSS: total power for cores in each SS

state
14: if Budget ≥ PwSS[first] then
15: V Fi = highest, ∀i in active cores
16: return
17: else if Budget < PwSS[last] then
18: return CASE INFEASIBLE
19: else
20: for i = 0; i < length(SS) − 1; i + +

do
21: if PwSS[i] > Budget >

PwSS[i+ 1] then
22: s c = i
23: V Fj = SS[s c], ∀j in

active cores

24: active power = PowerSS[s c]
25: Break
26: end if
27: end for
28: end if
29: while True do
30: Pop the core i with smallest IPC in

active cores
31: Downgrade core i from state SS[s c]

to SS[s c+ 1]
32: temp power ← active power after this

downgrade
33: if temp power ≥ Budget then
34: V Fi = SS[s c+ 1]
35: active power ← temp power
36: else
37: for j = SS[s c] − 1; j ≥ SS[s c +

1]; j −− do
38: Downgrade from state SS[s c]

to j
39: temp power ← active power

after downgrade
40: if temp power ≤ Budget then
41: V Fi = j
42: return
43: end if
44: end for
45: end if
46: end while

The final phase (line 29 - line 46) is a fine-tuning process to find the V/F level in a best

effort manner. It starts from V/F choice from the second phase and tries to downgrade the

core with the lowest IPC from current SS state to next lower SS state, until power budget

is satisfied. Since there are several other states between SS states, we need to divide the last

downgrade step which aims to meet power budget into several steps checking all intermediate

states between the two adjacent SS states (line 37 - line 44). After this process, TEI-Turbo

returns the best found V/F level decision.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS47

Algorithm 2 TEI-LP

1: Input: IPC, throughput constr, N , θ
2: Output: V F levels for all cores
3: active cores: a max-heap for active cores

ranked by IPC
4: for i = 0; i < N ; i+ + do
5: if IPCi == 0 then
6: V Fi = lowest
7: else
8: Push (i, IPCi) to the heap
active cores

9: end if
10: end for
11: SS: all sweet spots, from highest to low-

est levels
12: TP SS: total throughput for cores in

each TP SS state
13: if throughput constr ≥ TP SS[first]

then
14: return CASE INFEASIBLE
15: else if throughput constr <

TP SS[last] then
16: V Fi = lowest, ∀i in active cores
17: return
18: else
19: for i = 0; i < length(SS) − 1; i + +

do
20: if TP SS[i] > throughput constr >

TP SS[i+ 1] then
21: s c = i+ 1
22: V Fj = SS[s c], ∀j in

active cores

23: curr tp = TP SS[s c]
24: Break
25: end if
26: end for
27: end if
28: while True do
29: Pop the core i with largest IPC in

active cores
30: Upgrade core i from state SS[s c] to

SS[s c− 1]
31: temp tp← temporary throughput af-

ter this upgrade
32: if temp tp < throughput constr

then
33: V Fi = SS[s c− 1]
34: curr tp← temp tp
35: else
36: for j = SS[s c] + 1; j ≤ SS[s c −

1]; j + + do
37: Upgrade from state SS[s c] to

j
38: temp tp ← temporary

throughput after upgrade
39: if temp tp ≥ throughput constr

then
40: V Fi = j
41: return
42: end if
43: end for
44: end if
45: end while

In addition, the ideas of the sweet spots can also be applied in the dual problem: the

minimum power consumption to meet the throughput constraints. We name this as TEI-LP

algorithm, the low-power mode of TEI-aware algorithm.

The pseudo code for TEI-LP is shown in Algorithm 2. The general idea of TEI-LP is to

make use of sweet spots to find the minimum power consumption in a fast way with a given

throughput constraint.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS48

The first phase (line 4 - line 10) has two functions. One is to identify idle cores and set

them into the lowest V/F state, while the other is to put all active cores into a heap ranked

by utilization (as discussed in Section 4.2.2, IPC is used as a proxy for utilization). The rest

of TEI-LP algorithm only focuses on active cores, which is similar as TEI-Turbo.

The second phase (line 11 - line 27) finds the sweet spots based on current temperature

and chooses V/F levels to meet the required throughput. Based on the method discussed in

Section 4.3.2, we determine the sweet spots for the current temperature. SS in line 11 is a

list of all sweet spots, including the highest and lowest levels, which determine the lower and

upper bounds for throughput. We then calculate the total throughput of all active cores in

the same state listed in SS (TP SS). If the throughput requirement is between two adjacent

throughput values in TP SS, then the lower sweet spot state will be chosen (line 19 - line

26).

The final phase (line 28 - line 45) is a fine-tuning process to find the V/F level in a best

effort manner. It starts from V/F choice from the second phase and tries to upgrade the

core with the highest IPC from current SS state to next higher SS state, until throughput

requirement is met. Since there are several other states between the two SS states, we need

to divide the last upgrade step which aims to meet throughput into several steps checking

all intermediate states between the two adjacent SS states (line 36 - line 43). After this

process, TEI-LP returns the best found V/F level decision.

4.3.4 Complexity analysis

The similar structure of TEI-Turbo and TEI-LP indicates that they have the same complex-

ity. Therefore, we only need to analyze the complexity of TEI-Turbo.

In our proposed algorithm TEI-Turbo, the three stages are separate. Therefore, we can

analyze them one by one. The first stage is essentially composed of a step iterating across

all n cores and a heap sort of no more than n cores. Thus, its complexity is O(nlog(n)).

The second stage iterates over m V/F levels. Its complexity is O(m). In the third stage, the

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS49

major loop iterates over n cores, resulting in a complexity of O(n). In real systems, m is

usually much smaller than n in real large systems. Therefore, we conclude that TEI-Turbo

has a worst-case complexity of O(nlog(n)). Similarly, we can conclude that TEI-LP has a

worst-case complexity of O(nlog(n)).

In summary, both TEI-Turbo and TEI-LP have a runtime complexity of O(nlog(n)). For

comparison, the Steepest Drop algorithm has a runtime complexity of O(mnlog(n)).

4.4 Experimental results

In this section, we first introduce the experimental setup. we then discuss how TEI affects the

state-of-the-art existing algorithm for performance improvement or energy saving. Finally,

we comprehensively evaluate our proposed algorithms against state-of-the-art algorithms.

4.4.1 Experimental setup

We use the Sniper [13] multi-core simulator as the performance simulator. The default

architecture used in this chapter is listed in Table 4.5. The voltage/frequency scaling control

epoch is set as 1 ms. Each core runs one thread, without any context switches or simultaneous

multi-threading. Furthermore, DVFS is performed independently on each core. Unless stated

Table 4.5: Target architecture.

Parameters Values
Number of cores 16
Number of core states 13
Nominal frequency 3.0 GHz
Core model Intel Nehalem-like
L2 caches Private 256KB, 8-way SA, LRU
L3 caches Shared 32MB, 16-way SA, LRU
DRAM 8GB
Technology 16 nm FinFET

otherwise, the experimental results are based on the default architecture. We modify the

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS50

system-level power simulator McPAT [58] as mentioned in Section 4.2.3 to support 16 nm

technology node with an accurate temperature-leakage model.

With respect to thermal effects, we use HotSpot [38] to obtain the die temperature. To

implement a real-time temperature feedback to simulate leakage, we modify HotSpot to run

one time during each control epoch to obtain instantaneous die temperatures throughout all

simulations. Based on area estimation provided by McPAT, we set up the floorplan for the

16-core CMP (with detailed configurations for each core) as in Figure 4.5. The total die area

is 126.6 mm2. In the Hotspot configuration, the heat spreader size is set to 0.013m×0.013m

based on the chip size. The heat sink size is set to 0.026m×0.026m accordingly. The ambient

temperature is 27 ◦C. The parameters not mentioned here are left unchanged as the default

values. In this work, the results are based on running multi-threaded benchmarks one at a

Execution Units

L1 Data Cache

Memory Ordering

& Execution

L2 Cache &

Interrupt

Servicing

Paging

Branch Prediction

Instruction Fetch

& L1 Cache

Instruction Decode

& Microcode

Instruction

Reordering

Scheduling &

Retirement

Shared L3 Cache

Figure 4.5: Simplified floorplan for a 16-core nehalem-like [2] chip-multiprocessor with only
cores and L3 cache.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS51

time from PARSEC [3] and SPLASH-2 [89] on Sniper from start until completion, except

explicit statements.

4.4.2 The impact of TEI

From the discussion of TEI in Section 4.3.1, we can conclude that the TEI effect makes the

V/F pairs no longer fixed at different operating temperatures. However, we assume that in

a control epoch, the temperatures across CMPs are stable. Therefore, V/F pairs are fixed

for each control epoch. Since V/F pairings are based on the temperature, we assume that

the temperature during each control epoch is stable. In reality, the temperature values are

always changing. To quantify the temperature changes for each core, we test with various

benchmarks and different temperature scenarios. The results are shown in Figure 4.6, with

the mean as 0.15 ◦C and the median as 0.03 ◦C. Figure 4.6 shows that most of the tem-

perature changes during one control epoch are less than 1.0 ◦C. In rare cases, the change is

over 1.0 ◦C, but less than 2.5 ◦C, with the maximum value as 2.33 ◦C. To implement V/F

0

0.5

1

1.5

2

Ab
so

lu
te

 te
m

pe
ra

tu
re

 c
ha

ng
e

(°
C

)

wate
r.n

sq
rad

ix

rad
ios

ity

oc
ea

n.c
on

t

lu.
co

nt
fm

mfft

ch
ole

sky
ba

rne
s

x2
64vip

s

sw
ap

tio
ns

str
ea

mclu
ste

r

ray
tra

ce

flu
ida

nim
atefer

ret

fac
es

im
de

du
p

ca
nn

ea
l

bo
dy

tra
ck

bla
cks

ch
ole

s

Figure 4.6: The absolute temperature changes for each core during one control epoch (1 ms)
for different benchmarks.

pairings in real system, an appropriate margin (e.g. 2.5 ◦C) should be added for the transi-

tion temperatures. Since the margin would be added uniformly throughout all the transition

temperatures, there would be no effect on the experimental results shown later in this chap-

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS52

ter. In addition, thanks to our proposed algorithm, the control epoch can be shortened

without significant overhead. Therefore, the temperature margin could be even smaller.

Performance improvement

To illustrate the impact of TEI in performance improvement under a given power budget,

we implement Steepest Drop [88], a heuristic to determine the optimal throughput under

a given power budget. For comparison, we set the original version of Steepest Drop as

the Baseline, namely TEI-unaware Steepest Drop. We combine TEI and Steepest Drop to

define a new policy: TEI-aware Steepest Drop. We set the same power budget for both

policies and compare the total throughput in each case for different temperatures due to

temperature-dependence for TEI. The results of total throughput for TEI-aware Steepest

Drop are normalized with respect to the corresponding TEI-unaware Steepest Drop baseline.

0

5

10

15

20

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rre

t

flu
id
an

im
at

e

ra
yt
ra

ce

st
re

am
cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es

ch
ol
es

ky fft
fm

m

lu
.c
on

t

oc
ea

n.
co

nt

ra
di
os

ity
ra

di
x

w
at

er
.n

sq

Ave
ra

ge

P
e

rc
e

n
ta

g
e

 t
h

ro
u

g
h

p
u

t
im

p
ro

v
e

m
e

n
t

20°C 40°C 60°C (steady temperature)

Figure 4.7: Normalized throughput improvement of TEI-aware Steepest Drop algorithm over
TEI-unaware version.

Figure 4.7 shows the relative throughput improvement of TEI-aware Steepest Drop over

the TEI-unaware case. From Figure 4.7, we can easily see that the relative throughput

improvement brought by the TEI-aware policy increases when temperature goes up. The

average throughput improvement is 4.39% under 20 ◦C, and 10.95% under 40 ◦C. When

CMPs work in steady state (under current power budgets, steady state is around 60 ◦C), the

TEI-aware Steepest Drop achieves an average of 15.70% performance improvement over TEI-

unaware Steepest Drop. Therefore, we can see that, even without changing current policies,

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS53

TEI can still bring an extra throughput enhancement of around 15.70% on average in steady

state.

Energy saving

To quantify the impact of TEI in energy saving with a given throughput constraint, we

implement a directed local search algorithm named Steepest Rise, inspired by Steepest Drop

[88]. Steepest Rise here is a heuristic to determine the nearly optimal energy consumption

with given throughput constraint. It starts with the lowest V/F states and chooses to

upgrade the core with the highest ratio of performance difference over energy difference.

This is repeated until the performance is met or all the cores are in the highest states.

For comparison, we set the TEI-unaware Steepest Rise as the Baseline. We combine TEI

and Steepest Rise to develop a new policy: TEI-aware Steepest Rise. We set the same

throughput constraint for both policies and compare the total energy consumption in each

case for different temperatures similar to Section 4.4.2.

0

5

10

15

20

25

30

35

40

bla
cks

ch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

ret

flu
ida

nim
ate

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64
ba

rne
s

ch
ole

sky fft
fm

m
lu.

co
nt

oc
ea

n.c
on

t

rad
ios

ity
rad

ix

wate
r.n

sq

Ave
rag

e

Pe
rc

en
ta

ge
 e

ne
rg

y
sa

vi
ng

s

20°C 40°C 60°C (steady temperature)

Figure 4.8: Normalized energy saving of TEI-aware Steepest Rise algorithm over TEI-
unaware version.

Figure 4.8 shows the extra energy saving of TEI-aware Steepest Rise over the TEI-

unaware case. From Figure 4.8, we can see that higher temperature yields better saving in

energy consumption. The average energy saving is 20.09% under 20 ◦C, 27.28% under 40

◦C, and 31.26% under 60 ◦C. Therefore, without changing current policies, TEI still brings

an extra energy saving of around 31.26% in steady state (around 60 ◦C).

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS54

4.4.3 Evaluation of TEI-aware algorithms

In this section, we evaluate the TEI-aware algorithms (TEI-Turbo and TEI-LP) proposed in

Section 4.3.3 by comparing their performance, energy, runtime, and energy efficiency against

existing state-of-the-art algorithms. The evaluation is divided into two separate parts: one

for TEI-Turbo and the other for TEI-LP.

TEI-Turbo algorithm

After quantifying the impact of TEI on Steepest Drop, we set TEI-aware Steepest Drop as

the Baseline to evaluate our proposed algorithms TEI-Turbo in this section. The reason why

we don’t use MaxBIPS as the baseline is because MaxBIPS is too slow to be an option for

an online V/F scaling policy in the experiment setting with 16 cores and 13 V/F levels.

We also quantify how much performance is lost by the use of our heuristics vs. existing

state-of-the-art algorithms based on Steepest Drop. Thus, we first compare the throughput

each algorithm achieves. We run different benchmarks with default setup under steady

state operation. Figure 4.9 shows the relative throughput for TEI-Turbo compared with

the baseline, TEI-aware Steepest Drop. On average, the throughput of TEI-Turbo is only

0.22% less than the Baseline.

−0.5

0

0.5

1

1.5

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

si
m
fe

rre
t

flu
id
an

im
at

e

ra
yt
ra

ce

st
re

am
cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es

ch
ol
es

ky fft
fm

m

lu
.c
on

t

oc
ea

n.
co

nt

ra
di
os

ity
ra

di
x

w
at

er
.n

sq

Ave
ra

ge

P
e
rc

e
n
ta

g
e
 t
h
ro

u
g
h
p
u
t
lo

s
s

Figure 4.9: Relative throughput loss of TEI-Turbo compared with TEI-aware Steepest Drop.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS55

It it easy to notice a slightly abnormal case in Figure 4.9, the benchmark radiosity, which

has slightly better results for TEI-Turbo than for TEI-aware Steepest Drop. Since Steepest

Drop is also a heuristic, its results cannot guarantee optimality. Sometimes, TEI-Turbo

beats TEI-aware Steepest Drop, like in the case of benchmark radiosity. With further anal-

ysis, we found that TEI-Turbo performs better in the benchmarks with balanced or slightly

imbalanced workloads between different threads. In these scenarios, TEI-Turbo can quickly

narrow down the search space with the help of sweet spots to determine the find decision

on V/F levels. Sometimes, TEI-Turbo could be better than TEI-aware Steepest Drop since

TEI-Turbo use more sweet spots, such as for the benchmark radiosity. If the benchmark is

heavily imbalanced, TEI-Turbo ends up being disadvantaged in narrowing down the search

space with sweet spots. Therefore, TEI-Turbo may lose slightly more throughput compared

with the Baseline. However, the throughput loss is still very small: less than 1.5% even in

the worst case for benchmark x264.

30

40

50

60

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

si
m
fe

rre
t

flu
id
an

im
at

e

ra
yt
ra

ce

st
re

am
cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

ba
rn

es

ch
ol
es

ky fft
fm

m

lu
.c
on

t

oc
ea

n.
co

nt

ra
di
os

ity
ra

di
x

w
at

er
.n

sq

Ave
ra

ge

S
p

e
e

d
u

p

Figure 4.10: Relative runtime speedup of TEI-Turbo over TEI-aware Steepest Drop.

Second, we evaluate the runtime for each algorithm in each control epoch. We implement

both TEI-Turbo and TEI-aware Steepest Drop in Python to perform a fair comparison. Fig-

ure 4.10 illustrates the relative speepdup (1
Runtime

) for TEI-Turbo compared with the Baseline

(TEI-aware Steepest Drop) for different benchmarks. The average speedup is 45.9×, which

sets a big advantage for TEI-Turbo.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS56

−10

0

10

20

30

40

bla
cks

ch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

ret

flu
ida

nim
ate

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64
ba

rne
s

ch
ole

sky fft
fm

m
lu.

co
nt

oc
ea

n.c
on

t

rad
ios

ity
rad

ix

wate
r.n

sq

Ave
rag

ePe
rc

en
ta

ge
 e

ne
rg

y
ef

fic
ie

nc
y

im
pr

ov
em

en
t

Figure 4.11: Energy efficiency improvement of TEI-Turbo over TEI-aware Steepest Drop.

In addition to that, TEI-Turbo shows better energy efficiency than TEI-aware Steepest

Drop. As shown in Equation 4.5, energy efficiency in this chapter is defined as:Throughput
Power

,

namely the throughput achieved per unit power consumption. Although energy efficiency

is not the primary target of TEI-Turbo, experimental results shows that TEI-Turbo out-

performs TEI-aware Steepest Drop from this perspective. Figure 4.11 shows TEI-Turbo

achieves 5.32% more energy efficiency on average than TEI-aware Steepest Drop does, with

a best case of up to 40% for benchmark swaptions.

A further investigation of energy efficiency for the two algorithms indicates an advantage

of TEI-Turbo over TEI-aware Steepest Drop when dealing with ultra-low utilization cores.

TEI-Turbo sets aside those ultra-low utilization cores into the lowest V/F level, while Steep-

est Drop does not. Therefore, in some phase of a multi-threaded program, some cores are in

ultra-low utilization states. TEI-Turbo sets the corresponding cores directly into lowest V/F

level. However, Steepest Drop can’t guarantee to reach this better choice. It starts from the

highest level, downgrades V/F levels one by one until power budget is satisfied. In many

cases, these ultra-low utilization cores are still in some intermediate states, which consume

more power without gaining more performance. Benchmark swaptions is one representative

for this scenario.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS57

TEI-LP algorithm

We evaluate our proposed algorithm TEI-LP in this section. Low power mode is the version of

our proposed algorithm (-LP version) that minimizes power while preserving the throughput.

For comparison, we use the modified version of TEI-aware Steepest Rise as mentioned in

Section 4.4.2 for comparison. Same as in Section 4.4.2, we denote this method as TEI-aware

Steepest Rise.

In low-power mode, we first compare the energy consumption each algorithm achieves.

We run different benchmarks with default setup under steady state operation. Figure 4.12

shows the relative energy consumption for TEI-LP compared with the Baseline: TEI-aware

Steepest Rise. On average, the energy consumption of TEI-LP is 0.68% more than the

Baseline.

−1

0

1

2

3

4

5

bla
cks

ch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

ret

flu
ida

nim
ate

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64
ba

rne
s

ch
ole

sky fft
fm

m
lu.

co
nt

oc
ea

n.c
on

t

rad
ios

ity
rad

ix

wate
r.n

sq

Ave
rag

e

Pe
rc

en
ta

ge
 e

xt
ra

 e
ne

rg
y

Figure 4.12: Relative energy consumption for TEI-LP compared with TEI-aware Steepest
Rise.

From Figure 4.12, we can see that TEI-LP performs better than the Baseline in some

benchmarks, like water.nsq, etc. Since TEI-aware Steepest Rise is also a heuristic, its results

cannot guarantee optimality, which we have shown in Section 4.4.3. With further analysis, we

found that TEI-LP performs better in the benchmarks with balanced or slightly imbalanced

workloads between different threads, similar to TEI-Turbo. In these scenarios, TEI-LP can

quickly narrow down the search space with the help of sweet spots to determine the find

decision on V/F levels. Sometimes, TEI-LP ends up being better than TEI-aware Steepest

Rise since TEI-LP use more sweet spots, such as in the case of benchmark water.nsq. If the

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS58

benchmark is heavily imbalanced, TEI-LP ends up being disadvantaged in narrowing down

the search space with sweet spots. Therefore, TEI-LP may end up with a configuration

slightly less energy efficient compared with TEI-aware Steepest Rise. However, the energy

overhead is still very small: less than 5% even in the worst case for benchmark x264.

30

40

50

60

bla
cks
ch
ole
s

bo
dy
tra
ck

ca
nn
ea
l

de
du
p

fac
es
im
fer
ret

flu
ida
nim
ate

ray
tra
ce

str
ea
mc
lus
ter

sw
ap
tio
ns vip

s
x2
64
ba
rne
s

ch
ole
sky fft

fm
m
lu.
co
nt

oc
ea
n.c
on
t

rad
ios
ity
rad
ix

wa
ter
.ns
q

Av
era
ge

Sp
ee
du
p

Figure 4.13: Relative runtime speedup of TEI-LP over TEI-aware Steepest Rise.

Second, we evaluate the runtime for each algorithm in each control epoch. We imple-

ment both TEI-LP and TEI-aware Steepest Rise in Python to perform a fair comparison.

Figure 4.13 illustrates the relative speepdup for TEI-LP compared with the Baseline for

various benchmarks. The average speedup is 55.3×, which sets a big advantage for TEI-LP

in online implementation.

In terms of energy efficiency, however, TEI-LP generally shows slightly worse energy

efficiency than TEI-aware Steepest Rise. Figure 4.14 shows TEI-LP achieves 0.67% less

energy efficiency on average than TEI-aware Steepest Rise does, with a worst case of up

to 5% for benchmark x264. Comparing Figure 4.11 and Figure 4.14, we can see that TEI-

LP does not have the same behavior as TEI-Turbo in energy efficiency. TEI-Turbo makes

better decisions on ultra-low utilization cores than the Baseline. Since ultra-low utilization

cores have nearly no contribution to the total throughput, TEI-LP will not see a benefit

in performance like TEI-Turbo does when it uses the power slack created by low V/F level

operation.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS59

−6

−4

−2

0

2

bla
cks

ch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fac
es

im
fer

ret

flu
ida

nim
ate

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64
ba

rne
s

ch
ole

sky fft
fm

m
lu.

co
nt

oc
ea

n.c
on

t

rad
ios

ity
rad

ix

wate
r.n

sq

Ave
rag

ePe
rc

en
ta

ge
 e

ne
rg

y
ef

fic
ie

nc
y

im
pr

ov
em

en
t

Figure 4.14: Energy efficiency improvement of TEI-LP over TEI-aware Steepest Rise.

4.4.4 Scalability of TEI-Turbo algorithm

Scalability or the ability to use an increased number of cores is one of the most important

characteristics for modern CMPs. In this section, we discuss two orthogonal dimensions

to characterize the scalability for TEI-Turbo. One dimension is the number of V/F levels,

while the other is the number of cores in a single CMP. In this section, we continue to use

TEI-aware Steepest Drop as the Baseline to gauge the efficiency of TEI-Turbo.

Number of V/F levels scalability

We first vary the number of frequency levels to see the performance of TEI-Turbo compared

with the TEI-aware Steepest Drop. For fair comparison, we fixed the number of cores at the

default value 16, and test the results over all benchmarks used in Section 4.4.3. Figure 4.15(a)

to (c) show the average results of TEI-Turbo against the Baseline on all benchmarks.

From Figure 4.15(a), we can see that the average throughput improvement of TEI-Turbo

for any number of V/F levels listed is less than 1% away from the optimal of TEI-aware

Steepest Drop. We also notice from Figure 4.15(a) that for the case of five V/F levels, TEI-

Turbo outperforms TEI-aware Steepest Drop in throughput improvement, similar to the case

of benchmark swaptions discussed in Section 4.4.3. The reason is also the same: Steepest

Drop and TEI-Turbo are both heuristics. Based on the results shown in Figure 4.15(b),

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS60

5 7 9 11 13
−10

−8

−6

−4

−2

0

2

P
e
rc

e
n
ta

g
e
 t
h
ro

u
g
h
p
u
t
lo

s
s

Frequency level count
5 7 9 11 13

10

20

30

40

50

S
p
e
e
d
u
p

Frequency level count
5 7 9 11 13

0.13

0.14

0.15

0.16

0.17

A
lg

o
ri
th

m
 r

u
n
ti
m

e
 (

m
s
)

Frequency level count

(a) (b) (c)

4 8 16 32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

P
e
rc

e
n
ta

g
e
 t
h
ro

u
g
h
p
u
t
lo

s
s

Core count
4 8 16 32 64 128 256 512 1024

10
1

10
2

10
3

S
p
e
e
d
u
p

Core count
4 8 16 32 64 128 256 512 1024

10
−2

10
−1

10
0

10
1

A
lg

o
ri
th

m
 r

u
n
ti
m

e
 (

m
s
)

Core count

(d) (e) (f)

Figure 4.15: Scalability of TEI-Turbo compared with TEI-aware steepest drop: (a) Through-
put loss with respect to frequency level count; (b) Speedup with respect to frequency level
count; (c) Runtime of TEI-Turbo with respect to frequency level count; (d) Throughput
loss with respect to core count; (e) Speedup with respect to core count; (f) Runtime of
TEI-Turbo with respect to core count.

we can conclude that the speedup of TEI-Turbo over the Baseline increases linearly when

the number of V/F levels increases. Considering the analysis of complexity in Section 4.3.4,

TEI-Turbo has runtime complexity of O(nlog(n)), while the Baseline has O(mnlog(n)),

where m is the number of frequency levels and n is number of cores. When n is fixed, the

speedup of TEI-Turbo against the baseline increase linearly with m, which is confirmed by

the experimental results. Figure 4.15(c) shows the runtime of TEI-Turbo averaged across all

benchmarks. It shows a good scalability of TEI-Turbo with respect to the number of V/F

levels.

Core count scalability

Due to the increasing trend in core count, it is important to evaluate the scalability of TEI-

Turbo. This time, we keep the number of V/F levels fixed at the default value 13. We vary

the core count from four all the way up to 1024. Similar to Section 4.4.4, we compare the

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS61

average results over all benchmarks, which are shown in Figure 4.15 from (d) to (f). Since

a large number of cores (like 1024) is not realistic to simulate directly on HotSpot. To test

the scalability of our algorithm, we combined multiple 16-core floor plans together to get the

power and thermal information for core counts over 16. For a given number of cores/threads,

not all benchmarks can run that number of threads together. All benchmarks can have a

thread level parallelism of eight to 64 threads. Of the total, four benchmarks can run on a

quad-core, eleven benchmarks can run on a 128-core system. Only two benchmarks can run

on a 256- to 1024-core system. Therefore, if any single benchmark cannot be run on a given

configuration 128-core and over, we run multiple copies of the same benchmark to collect

data. By doing so, we can collect data for all benchmarks running on configurations with

core counts varying from eight to 1024.

Figure 4.15(d) demonstrates that TEI-Turbo’s best throughput is up to an average of

3% less than the Baseline. On the other hand, as shown in Figure 4.15(e), the speedup

of TEI-Turbo against the Baseline increases fast when core count increases. Even in the

case of the four-core setting, TEI-Turbo still achieves an average of 18.1× speedup against

the Baseline. For a 1024-core CMP, this speed up increase to 957×. The average runtimes

for all core counts shown in Figure 4.15(f) demonstrate a good scalability of TEI-Turbo

with respect to core count: only an average of 33.3× in runtime slowdown when core count

increases from four to 1024. The value of 33.3 is different than the result obtained for the

worst case analysis because it is calculated based on the average runtime, which is different

than the worst-case.

4.4.5 Scalability of TEI-LP algorithm

In this section, we discuss two orthogonal dimensions to characterize the scalability for TEI-

LP, similar to Section 4.4.4. One dimension is the number of V/F levels, while the other is

the number of cores in a CMP. In this section, we used the TEI-aware Steepest Rise as the

Baseline to gauge the efficiency of TEI-LP.

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS62

Number of V/F levels scalability

We first vary the number of frequency levels to evaluate how TEI-LP performs compared

with the TEI-aware Steepest Rise. For fair comparison, we fixed the number of cores at the

default value 16, and test the results over all benchmarks used in Section 4.4.3. Figure 4.16(a)

to (c) show the average results of TEI-LP against the Baseline on all benchmarks.

5 7 9 11 13−0.5

0

0.5

1

Pe
rc

en
ta

ge
 e

xt
ra

 e
ne

rg
y

Frequency level count
5 7 9 11 1310

20

30

40

50

60

Sp
ee

du
p

Frequency level count
5 7 9 11 130.12

0.125

0.13

0.135

0.14

Al
go

rit
hm

 ru
nt

im
e

(m
s)

Frequency level count

(a) (b) (c)

4 8 16 32 64 128 256 512 10240

1

2

3

4

Pe
rc

en
ta

ge
 e

xt
ra

 e
ne

rg
y

Core count
4 8 16 32 64 128 256 512 1024101

102

103

Sp
ee

du
p

Core count
4 8 16 32 64 128 256 512 102410−2

10−1

100

101

Al
go

rit
hm

 ru
nt

im
e

(m
s)

Core count

(d) (e) (f)

Figure 4.16: Scalability of TEI-LP compared with TEI-aware steepest rise: (a) Extra energy
consumption with respect to frequency level count; (b) Speedup with respect to frequency
level count; (c) Runtime of TEI-LP with respect to frequency level count; (d) Extra energy
consumption with respect to core count; (e) Speedup with respect to core count; (f) Runtime
of TEI-LP with respect to core count.

From Figure 4.16(a), we can see that the average energy savings of TEI-LP for any

number of V/F levels listed is less than 1% away from the level achieved by TEI-aware

Steepest Rise. We also notice from Figure 4.16(a) that for the case of five V/F levels, TEI-

LP outperforms TEI-aware Steepest Rise. The reason is also the same: Steepest Drop and

TEI-LP are both heuristics, which cannot guarantee the optimality. Based on Figure 4.16(b),

we can conclude that the speedup of TEI-LP over the Baseline increases linearly when the

number of V/F levels increases, which agrees with the results of complexity analysis in

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS63

Section 4.3.4. Figure 4.16(c) shows the average runtime of TEI-LP for all benchmarks. TEI-

LP shows a good scalability with respect to the number of V/F levels, similar to TEI-Turbo.

Core count scalability

In this section, we keep the number of V/F levels fixed at the default value 13. We vary

the core count from four all the way up to 1024. We compare the average results over all

benchmarks, which are shown in Figure 4.16 from (d) to (f). The average values are based

on the data collected as mentioned in Section 4.4.4.

Figure 4.16(d) demonstrates that TEI-LP’s energy consumption is up to an average of

4% more than the Baseline. On the other hand, as shown in Figure 4.16(e), the speedup of

TEI-LP against the Baseline increases fast with core count. Even in the case of the four-core

setting, TEI-LP still achieves an average of 20.7× speedup against the Baseline. For a 1024-

core CMP, this speed up increase to 598×. The average runtimes for all core counts shown

in Figure 4.16(f) demonstrate a good scalability of TEI-LP with respect to core count: only

an average of 33.4× in runtime slowdown when core count increases from four to 1024.

4.5 Discussion

In this chapter, we discuss the impact of temperature effect inversion (TEI) on FinFET-based

multi-core systems. We construct accurate system-level power and performance models

and apply them to evaluate the impact of TEI. We discover the TEI-induced sweet spots,

which are locally better V/F level choices. Based on these sweet spots, we propose our fast

algorithms, including TEI-Turbo determining the maximum throughput with a given power

budget and TEI-LP determining the minimum energy consumption for a given throughput

constraint. Experimental results shows that in a 16-core CMP setup, our algorithms achieve

an average speedup of 45.9× with losing only 0.22% in throughput (TEI-Turbo), or an

average speedup of 55.3× with only 0.68% more energy consumption (TEI-LP), compared

CHAPTER 4. TEMPERATURE EFFECT INVERSION IN MULTI-CORE SYSTEMS64

with TEI-aware versions of existing state-of-the-art algorithms. Results also show excellent

scalability of our algorithms in both core count and number of V/F levels.

Chapter 5

Aging-reduction in multi-core systems

5.1 Chapter overview

Power and thermal issues have become the major constraints in designing high-performance

microprocessors. Several hardware- and software-based techniques have been proposed to

increase performance while keeping power under a given Thermal Design Power (TDP)

budget. Nevertheless, as CMOS technology aggressively scales down to deca-nanometer

technology nodes, these issues have also emerged as important reliability threats throughout

the system lifetime. Aging concerns have therefore gathered a significant momentum and

they have already triggered extensive research on aging modeling and mitigation techniques

for older planar MOSFET-based system design.

FinFET has been widely chosen as the next generation CMOS technology. Prior art has

already explored TEI as means of operating FinFET-based processors at higher temperature

under iso-power or iso-frequency operation [9]. However, these works do not account for

the correlation between the TEI-induced operating regimes and the aging mechanisms of

FinFETs. On the other hand, existing system-level aging-aware methodologies consider

the evolution of aging under the assumption of constant temperature, frequency and Vdd

conditions throughout the entire lifetime [82] [25]. However, typical modern FinFET-based

processors are characterized by dynamically changing operating V/F levels, temperatures,

65

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 66

or performance characteristics; a typical example is the 15 V/F levels on Xeon E5-2670

processor [50].

Therefore, the key motivation of this chapter is to quantify the interplay between TEI

and aging effects in FinFET-based multi-core systems under multiple voltage/frequency

levels, and to select the level that would optimally decrease aging under power/ performance

constraints. To the best of our knowledge, we are first to provide a comprehensive model

of both TEI- and aging-aware power and performance characteristics of a FinFET-based

core in the context of large scale multi-core systems. Based on the key insight that Vdd

is the dominant factor for both power and aging issues, our experimental results show that

by considering a combined multivariate objective for power and aging while exploiting the

TEI effect, FinFET-based systems can inherently trigger aging reduction. To this end, we

propose AgingMin, an algorithm that selects the optimal V/F operating points throughout

the system lifetime, while accounting for time-dependent evolution of both TEI and aging

mechanisms.

5.1.1 Chapter contributions

Compared to existing works, our work makes the following novel contributions :

• This is the first work that simultaneously characterizes the impact of both TEI and

aging effects on power and performance of multi-core systems. To this end, we propose

a multivariate polynomial model to learn the core frequency and power under TEI and

aging effects. Our learning framework achieves fitting with error always less than 4%

when compared to detailed HSPICE and core-level simulation.

• We exploit TEI to effectively select the V/F operational points throughout the system

lifetime under performance constraints. Our experimental results show that aging

effects can be reduced by up to 53.59% by exploiting the TEI effect when compared

to a TEI-agnostic approach.

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 67

• We provide a system-wide investigation of the voltage acceleration mechanism previ-

ously reported from raw wafer-level measurements [52], which shows that the supply

voltage Vdd plays a key role in the aging of the multi-core systems. Based on this key

insight, we propose an aging-aware algorithm called AgingMin, to determine the op-

timal V/F operating regions throughout the system lifetime under given performance

constraints.

• We evaluate our proposed algorithm on multi-core simulator [13] with various multi-

threaded benchmarks [3] [89]. Experimental results show AgingMin improves the 10-

year system lifetime by an average of 1.61 years while introducing less than 1% power

overhead when compared to state-of-the-art techniques.

5.2 Performance and power models

5.2.1 Introducing TEI- and aging-awareness

To enable a representative evaluation of FinFET-based many-core systems, it is important to

incorporate TEI- and aging-awareness within our proposed performance and power models.

To this end, let us first reexamine the effect of TEI and aging on the nominal frequency

of a RO, as presented in Figure 2.2. We observe that both phenomena exhibit significant

temperature and Vdd dependence. Moreover, for the same temperature and Vdd conditions,

we observe the frequency degradation increases from three to ten years of lifetime compared

to the nominal value1.

Hence, the performance and power characteristics of a FinFET-based core depend on the

Vdd, temperature, and the threshold voltage degradation ∆Vth(t) throughout the lifetime,

which in turn is a function of temperature θ, Vdd, time t and duty factor df . To quantitatively

characterize the overall TEI- and aging-aware frequency δF and static power δP sta shift, we

1These observations are consistent with the results and the terminology used by several research groups:
temperature effect inversion [9], temperature- and time-critical [25], voltage- and time- acceleration [52].

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 68

use multivariate polynomial regression models:

δF(t) =
∑
i

ci · V p
dd · θq ·∆V r

th,pmos(t) ·∆V s
th,nmos(t) (5.1)

δPsta(t) =
∏
i

exp(c
′

i · V p′

dd · θq
′ ·∆V r′

th,pmos(t) ·∆V s′

th,nmos(t) (5.2)

After model selection experimentation, we finally choose regression models with a total

degree of up to four which provides best accuracy, i.e., p+q+r+s ≤ 4 and p′+q′+r′+s′ ≤ 4.

Note that we use an exponential multivariate polynomial for static power, to account for the

exponential dependency with respect to the threshold voltages. While not explicitly stated

here, we note that dynamic power is implicitly affected by TEI- and aging-aware effects

through the operating frequency.

As shown before, a ring oscillator (RO) provides a sufficiently accurate approximation for

the core frequency [33] [9]. Hence, to learn δPsta and δF, we perform curve fitting via HSPICE

simulations of Ring Oscillators (RO) in a 16 nm predictive technology model (PTM). We

form a 23-stage RO to characterize the delay and total power, and a two-stage inverter chain

to characterize the static power. To ensure an extensive analysis and accurate fitting of our

model, we sweep across a wide range of θ, Vdd and ∆Vth(t) values to capture their effects

on the performance and power. Given over 20, 000 Monte-Carlo HSPICE data points, we fit

the expressions for δPsta and δF.

Figure 5.1 shows the scatter plot of δPsta values predicted with Equation 5.2 versus the real

frequency degradation reported by HSPICE, using a testing set of 2, 000 data points. Our

proposed multivariate multinomial model achieves a negligible Mean-Squared-Prediction-

Error (MSPE) of 3.11% across 2, 000 testing data. Similarly, with Equation 5.1 for predicting

δF our model achieves an MSPE of 3.44% .

5.2.2 Power and performance metrics

As a representative metric to capture the TEI- and aging-induced performance degradation,

we use the total throughput TP of CMP with n cores, i.e., the total number of instructions

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 69

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ct

ua
l δ

P
st

a

Predicted

 δ
P

sta

Figure 5.1: Prediction accuracy of δPsta (Equation 5.2): Ideally, all points should lie along
the diagonal.

committed per unit time for all cores. Given the average number of instructions committed

per cycle (IPC), and the operating frequency (F), we have:

TP =
n∑
j=1

IPCj · Fnom
j · (1 + δFj

(t)) (5.3)

It is worth noting that Equation 5.3 inherently captures the lifetime performance degradation

due to thermal and aging implications at any point t of the core’s lifetime.

Another important aspect of the core functionality is the impact of the threshold voltage,

Vdd and temperature on the leakage characteristics of the core, mainly caused by subthreshold

leakage. Following the same rationale behind the exponential dependency with respect to

temperature θ, we use a simple system-level model to characterize static power of core j

under thermal and aging effects:

Pstaj = c · Vddj · exp(κ1 · θ2j + κ2 · θj + κ3) · (1 + δPstaj
(t)) (5.4)

where c is the normalization factor and κ1, κ2 and κ3 are the coefficients to determine.

Since log(Pstaj) behaves as a sublinear function of θ, we choose a quadratic function in the

exponent. Unlike existing modeling approaches for the same problem formulation [9], please

note again that our model captures the TEI- and aging-induced power degradation at any

point t of the core’s lifetime.

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 70

To validate this model, we collect leakage power data from the widely used system-level

power simulator McPAT [58] and we use HotSpot [38] to obtain the stable temperature.

We fit the model across a wide temperature range (from -25◦C to 125◦C) and voltage range

(from 0.45V to 1.05V), achieving Root-Mean-Square-Percentage-Error (RMSPE) less than

2%.

Finally, prior work [4] has shown that dynamic power has strong correlation with IPC,

since IPC approximately represents the activity rate (or utilization) of a processing core.

Therefore, similar to [4], we capture dynamic power for each core j as:

Pdynj
= V 2

ddj
· Fnom

j · (1 + δFj
(t))(a · IPCj + b) (5.5)

where a and b are coefficients that need to be fitted. To this end, we use a multi-core system-

level performance simulator, namely Sniper [13], and McPAT [58] to run multi-threaded

benchmarks from PARSEC [3] and SPLASH-2 [89] on FinFET-based chip-multiprocessors

(CMPs) for varying V/F levels. Across all the 22 benchmarks considered, we achieve an

RMSPE of 6.47% on average.

5.3 Multi-objective optimization

In this Section, we discuss the interdependencies between thermal, aging and power con-

siderations in FinFET-based multi-core systems. We then propose our aging-aware V/F

selection algorithm, dubbed AgingMin, to decrease the aging process under given perfor-

mance constraints.

5.3.1 Thermal, aging and power considerations

First, let us discuss the complexity of the problem that we effectively tackle in the remainder

of the chapter. The goal is the implementation of an algorithm to perform V/F level selection

so as to minimize aging effects while maintaining the target performance throughout the

system lifetime. For the traditional multi-core systems with planar CMOS, this task is less

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 71

complicated thanks to the apparent coupling of temperature and leakage power: increased

temperature increases leakage power which in turn increases temperature further, forming

the leakage- temperature loop [67].

For FinFET-based multi-core system though, these coupling effects are complex: in-

creased temperature leads to TEI-induced effects on the V/F pairings, which directly result

in changes in the power characteristics of the core. Furthermore, leakage power is not only

affected by temperature, but also by voltage. The changes in both dynamic power and

leakage power will then change the temperature further. Nonetheless, higher temperature

could be exploited for supply voltage reduction (i.e., TEI-induced reduction in the power

consumption), which finally decreases the temperature. Thus, the feedback loop used for

identifying the optimal operating conditions for planar-CMOS-based systems [67], is no

longer representative of thermal and power considerations in FinFET-based systems. This

more complicated coupling effect with counteracting interdependencies has been previously

studied and motivated by different groups [57] [9] [79].

In terms of lifetime considerations, wafer-level measurements in sub-20nm FinFET tech-

nology nodes confirm that the aging mechanisms are highly associated with the operating

supply voltage and temperature, capturing the so-called voltage acceleration [52]. Hence,

aging and power optimization problems cannot be decoupled. In fact, power optimization

under performance constraints will result in near optimal working temperature. However,

for decreasing the aging process, online approaches may deviate from reaching this optimal

power consumption. Then, the working temperature will increase, which may finally increase

the aging process. Therefore, decreasing the aging process is likely not equivalent to opti-

mizing for power consumption as there may be competing criteria for both cases. Our work

is the first to comprehensively take thermal effects, aging process and power consumption

into consideration.

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 72

5.3.2 Proposed approach: AgingMin

As aforementioned in the previous Section, power optimization under performance con-

straints will result in significant benefits for thermal and aging reduction. However, the

resulting power-optimal operating points are unlikely to optimize aging reduction. By care-

fully studying the power and aging behaviors, we propose an aging-aware V/F selection

algorithm for FinFET-based multi-core systems, dubbed AgingMin. We first define a com-

prehensive score function as below:

S =
n∑
j=1

(Vddj − λ)ρ (5.6)

The score function is based on the consideration of both aging and power consumption

together. The common thing between power and aging is that they are highly dependent

on supply voltage. Indeed, performance degradation due to aging depends superlinearly on

supply voltage. Furthermore, total power depends on supply voltage superlinearly for the

dynamic portion and linearly for the static portion (Equations 5.4-5.5), while also being a

function of clock speed and static power variability, both of which superlinearly dependent on

supply voltage. To account for these effects in a single score function that can capture close

to optimal operations from both a power and aging standpoint, we have experimented with

various polynomial functions. The score function (Equation 5.6) effectively captures this

dependency, thus being an ideal candidate. Based on extensive tries, the empirical values

λ = Vth0 and ρ = 3 work well in decreasing the aging process when using an exhaustive

search method to mitigate aging.

Given this score function, we propose an aging-aware V/F selection algorithm, dubbed

AgingMin, as shown in Algorithm 3. Specifically, given the machine state (IPC), the per-

formance requirement Tmin, the temperature map θ and core count N , AgingMin finds the

best V/F choices to decrease aging. For initialization, AgingMin calculates the V/F pairs

for current temperature map and score functions defined in Equation 5.6 for each state in

each core (Line 5-6). Then it initializes all cores with the lowest states and prepares the

Candidates heap for potential state upgrade, ranked by priority values (Line 7-12). Then,

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 73

the algorithm moves on to achieve the performance requirement Tmin through a loop (Line

13-24). For each iteration, AgingMin selects one core with the smallest priority value to

upgrade one V/F level. The iteration continues until Tmin is satisfied or Candidates is

empty.

Let us consider the complexity of the AgingMin. Our proposed algorithm is composed

of two phases, the initialization phase and iteration phase. We assume that total core state

count is M . During the initialization part, the algorithm basically iterates over all states

for all cores to record the necessary information, with a complexity of O(MN). During

the iteration part, in the worst case, the algorithm iterates over all states for all cores in

the internal loop for up to two heap pops. This portion therefore has a complexity of

O(MNlog(N)). In summary, AgingMin has a complexity of O(MNlog(N)).

Algorithm 3 AgingMin

1: Input: IPC, TPmin, N , θ
2: Output: V F levels for all cores
3: Candidates: a min-heap for potential V F level upgrade ranked by priority
4: //initialization
5: Calculate all the matching V Fi for each Core i
6: Calculate the Score values Sij for Core i in State j
7: for i = 0; i < N ; i+ + do
8: V Fi ← lowest
9: TP ← TP + TPi,lowest

10: priorityi ← ∆Si/∆TPi if Core i upgrade one V F level
11: Push (i, priorityi) to the heap Candidates
12: end for
13: while (1) do
14: if TP ≥ TPmin then
15: return
16: else if Candidates is empty then
17: return INFEASIBLE
18: else
19: pop (i, priorityi) from Candidates
20: V Fi ← V Fi + 1
21: TP ← TP + ∆TPi
22: push new (i, priorityi) to Candidates if higher VF state is available
23: end if
24: end while

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 74

5.3.3 Accounting for thermal effects

As we stressed already, it is essential for our proposed model to account for the complex

thermal interdependencies between aging, TEI, performance, and power. That is, AgingMin

needs to determine the steady state operating temperature: since the V/F matching is based

on the temperature, AgingMin needs to obtain the temperature information before running

the algorithm. However, after the algorithm makes the final choice, there will be updated

steady temperature, which could be different than the values used for the process of V/F

matching. That would yield a matching that is not valid in the current temperature.

Initial Temperature Map Final Temperature Map

AgingMin

Update Temperature Map
Temperature

changed?

HotSpot

No
Yes

Figure 5.2: Proposed flow for determining the steady state operating temperature.

To effectively solve this problem, we propose an iterative approach as shown in Figure

5.2: we start with the temperature from the previous iteration of the algorithm to calculate

the V/F pairing. Then we use AgingMin to find the best V/F pairs. The updated power

map will be used to calculate the steady state operating temperature and use the updated

temperature map to repeat the whole process. We execute the loop until the temperature

map converges. In practice, the process converges very fast, with the average number of

iterations being three or four.

5.4 Experimental results

In this section, we first present the experimental setup. We then evaluate the impact of

TEI on decreasing the aging process. Finally, we comprehensively evaluate our proposed

aging-aware algorithm against the best-to-date baseline implementation.

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 75

5.4.1 Experimental setup

Chip aging is a long-term phenomenon, as encapsulated by the power law assumption [52].

To this end, we use the notion of the “aging cycle”, as it is already defined by long-term

aging analyses from several groups [82] [25]: the data from finer-grained simulations are

upscaled to the time range of the aging cycles, with granularity that can be flexibly set to

varying duration from 1 month to years. This allows for the time-dependent evaluation of

the aging mechanisms.

To collect the finer-grained data, we use the Sniper [13] multi-core simulator to profile the

performance for typical applications. The default architecture used in this chapter is listed

in Table 5.1. We adopt nine V/F levels with the default matching in Table 5.2. To enable

a detailed exploration, the aging cycle is set as 1 month. Moreover, we modify the leakage

power model in system-level power simulator McPAT [58] to incorporate the temperature-

and aging-induced leakage power variations. Finally, we use HotSpot [38] to evaluate the

thermal-related effects and to obtain the stable temperature. We adopt a typical 16-core

floorplan for evaluating our architecture [9].

Table 5.1: Target architecture.

Parameters Values
Number of cores 16
Number of core states 9
Nominal frequency 3.0 GHz
Core model Intel Nehalem-like
L2 caches Private 256KB, 8-way SA, LRU
L3 caches Shared 32MB, 16-way SA, LRU
DRAM 8GB
Technology 16nm FinFET

Table 5.2: V/F level matching for θ =-25◦C.

Level 0 1 2 3 4 5 6 7 8
F 1.05 1.40 1.70 2.00 2.25 2.45 2.65 2.85 3.00
Vdd 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 76

5.4.2 TEI effect on aging

Our goal is to achieve the slowest aging while maintaining the target performance. Given

the key insight that Vdd plays a key role in the both aging and power optimization, our

problem boils down to identifying the proper V/F operating regime throughout the system

lifetime. To this end, we propose AgingMin algorithm that employs directed local search

(DLS) to identify the optimal V/F pairs under the given performance and aging constraints.

It is worth noting that directed local search has been already assessed in terms of optimality

and effectiveness in power or performance optimization in multi-core systems [88].

To this end, we use power-oriented DLS as the baseline to extensively evaluate the impact

of TEI-induced effects on aging. In this case, we basically use DLS to optimize for power

and gauge the effects of doing so on aging. To capture the TEI effect throughout the system

lifetime, we implement two versions of DLS:

• TEI-Unaware DLS: No dynamic V/F matching that accounts for the TEI effect is

considered. That is, the directed local search is performed on the nominally assumed,

fixed V/F pairs.

• TEI-Aware DLS: Dynamic V/F matching is enabled to exploit the TEI effect, allowing

the directed local search to converge to the best V/F selection.

This best-to-date, baseline implementation provides us with a representative comparison

point against which we will later substantiate the optimality of our algorithm AgingMin.

We test the two versions of the DLS algorithm on various application scenarios profiled

from multi-threaded benchmark suits PARSEC [3] and SPLASH-2 [89]. We further set

different scales, namely low, medium, and high, in the performance requirements for further

evaluations. Low performance requirement is set as the throughput achieved by all cores

working at 1.5 GHz. The corresponding values for the medium and high performance are 2.2

GHz and 3.0 GHz. To illustrate the process of aging throughout the system’s lifetime, we

record the aging effects for a typical application scenarios for ten years (typical lifetime value)

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 77

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

Time (year)

N
or

m
al

iz
ed

 a
gi

ng

TEI−Unaware DLS
TEI−Aware DLS

Figure 5.3: Improvement of TEI-Aware over TEI-Unaware DLS for aging reduction for a
typical application.

under the two version of DLS algorithms separately for the high performance requirement,

shown in Figure 5.3. From Figure 5.3, we can see that TEI effect uniformly and significantly

reduces the aging rate. To quantify the impact of TEI comprehensively, we test them with

various application scenarios for different performance requirement. The results are shown

in Figures 5.4, 5.5, and 5.6.

Aging is evaluated as mean and variance values for ∆Vth over all cores. Figure 5.4

shows that TEI brings significant improvement in aging reduction under various applications

scenarios with different performance requirements. More specifically, TEI enables an average

of 27.73%, 36.46%, and 53.59% reduction in aging effects (as quantified by ∆Vth) for low,

medium, and high performance constraints respectively. These values are average on 22

applications profiled from benchmarks from [3] [89], which are also applicable for the test

in Section 5.4.3. As shown in Figure 5.5, TEI achieves an average of 17.52%, 19.59%, and

30.64% improvement in power savings for the different performance constraints respectively.

This is not a surprise, as the objective of the DLS heuristic in this case was to optimize power.

As a beneficial side effect from power savings, TEI reduces the average operating temperature

by 1.91◦C, 3.59◦C, and 10.60◦C for the different performance constraints, respectively.

Based on the general trend shown in Figures 5.4, 5.5, and 5.6, we observe that the

higher the performance constraint is, the larger the aging reduction rates, power savings,

and temperature reductions achieved by TEI effect. The reason behind this is that the higher

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 78

Low Perf. Medium Perf. High Perf.
20%

40%

60%

Ag
in

g
re

du
ct

io
n

Figure 5.4: Improvement of TEI-Aware over TEI-Unaware DLS for aging reduction under
various performance constraints.

Low Perf. Medium Perf. High Perf.

20%

30%

40%

50%

Po
w

er
 s

av
in

gs

Figure 5.5: Improvement of TEI-Aware over TEI-Unaware DLS for power savings under
various performance constraints.

Low Perf. Medium Perf. High Perf.
0

10

20

Te
m

pe
ra

tu
re

 re
du

ct
io

ns
 (°

C
)

Figure 5.6: Improvement of TEI-Aware over TEI-Unaware DLS for temperature reduction
under various performance constraints.

the performance needed, the larger the power consumption and temperature are. According

to TEI, the higher temperature makes more room to downgrade Vdd, thus saving more power

and achieving more temperature reduction, which confirms prior work in [57]. Therefore,

aging gets further decreased from lower power and temperature.

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 79

By comparing the results of medium performance requirement to the others in Fig-

ures 5.4, 5.5, and 5.6, we can see that the aging reduction under the medium performance

requirement is in the middle between low and high performance requirements while the

power and energy savings under the medium performance requirement are closer to the low

performance requirement.

5.4.3 Evaluation of AgingMin

Next, we substantiate the effectiveness of the proposed AgingMin algorithm in terms of the

overall aging reduction achieved. To the best of our knowledge, there is no TEI-aware and

aging-aware V/F selection algorithm for aging reduction while maintaining performance for

FinFET-based multi-core systems. As already mentioned, we have implemented a TEI- and

aging-aware DLS scheme, since it allows us to employ a representative comparison against

a best-to-date baseline. In our evaluations below, we compare AgingMin with TEI-Aware

DLS under various application scenarios and different performance requirements.

To enable long-term evaluation, we set the lifetime goal for a FinFET-based multi-core

system to ten years. We then evaluate the aging reduction achieved from the both methods

given this 10-years goal for the same application and performance requirements. The results

are shown in Figure 5.7. More specifically, Figure 5.7 confirms the effectiveness of AgingMin

in decreasing the aging process by showing that an average extended lifetime is 1.61, 0.70, and

0.55 years under low, medium, and high performance requirements respectively. As shown

in Figure 5.8, on the contrary, the corresponding average power overhead for AgingMin

compared with TEI-Aware DLS is only 0.19%, 0.81%, and 0.90% which are negligible. By

comparing the results of medium performance requirement to the others in Figures 5.7

and 5.8, we can see that the lifetime extention and power overhead for AgingMin under the

medium performance requirement are closer to the high performance requirement.

From the trend shown in Figures 5.7 and 5.8, we can see that it is harder to achieve

additional aging benefits from using the combined score function for power and aging (defined

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 80

in Equation 5.6) for higher performance than in lower one. In addition, the lower additional

benefit comes at a slightly higher power cost. However, considering the average power

overhead is less that 1%, it is worthwhile to spend it for up to an average of 1.61-year extra

lifetime. One thing to note here is that, AgingMin is compared with TEI-Aware DLS. When

compared to the state-of-the-art TEI-unaware algorithm, the benefit would be an additive

combination of both.

Low Perf. Medium Perf. High Perf.

0.5
1

1.5
2

2.5
3

Li
fe

tim
e

ex
te

ns
io

n
(y

ea
r)

Figure 5.7: The extended lifetime of AgingMin against TEI-Aware DLS under different
performance constraints.

Low Perf. Medium Perf. High Perf.

0.0%

0.5%

1.0%

Ex
tra

 p
ow

er
 c

on
su

m
pt

io
n

Figure 5.8: The extra power consumed from AgingMin against TEI-Aware DLS under dif-
ferent performance constraints.

5.5 Discussion

In this chapter, we are the first to provide a comprehensive evaluation of both TEI and aging

effects on the performance and power of FinFET-based multi-core systems with multiple

CHAPTER 5. AGING-REDUCTION IN MULTI-CORE SYSTEMS 81

voltage/frequency levels. To this end, we first propose a multivariate polynomial model to

learn the TEI- and aging-aware performance and power degradation with error always less

than 4% when compared to detailed HSPICE and core-level simulation. We then quantify

the interplay between TEI and aging effects in FinFET-based multi-core systems under

multiple voltage/frequency levels. Our experimental results show that aging effects can be

reduced by up to 53.59% by exploiting the TEI effect. Moreover, we propose an aging-aware

algorithm, dubbed AgingMin, to select the optimal TEI-aware voltage/frequency operation

points for decreasing the aging effects. Experimental results show AgingMin improves the

classic 10-year system lifetime by an average of 1.61 years while introducing less than 1%

power overhead when compared to existing state-of-the-art directed local search algorithm.

Finally, it is worth noting that that AgingMin is an orthogonal algorithm to the existing

aging reduction methods, such as thread mapping and dark silicon designs. Thus, our

proposed algorithm can be flexibly incorporated within existing aging mitigation techniques

to achieve further aging reduction, whose integration we leave for future work. Since multiple

voltage/ frequency levels are available in many FinFET-based multi-core systems, AgingMin

can be widely used to extend their lifetimes.

Chapter 6

Convolutional neural network: power

and latency

6.1 Chapter overview

To identify energy-efficient CNNs, the use of accurate runtime, power, and energy models is

of crucial importance. The reason for this is twofold. First, commonly used metrics charac-

terizing CNN complexity (e.g., total FLOPs1) are too crude to predict energy consumption

for real platforms. Energy consumption depends not only on the CNN architecture, but also

on the software/hardware platform. In addition, it is also hard to predict the correspond-

ing runtime and power. Second, traditional profiling methods have limited effectiveness in

identifying energy-efficient CNNs, due to several reasons: 1) These methods tend to be in-

efficient when the search space is large (e.g., more than 50 architectures); 2) They fail to

quantitatively capture how changes in the CNN architectures affect runtime, power, and en-

ergy. Such results are critical in many automatic neural architecture search algorithms [94];

3) Typical CNNs are inconvenient or infeasible to profile if the service platform is different

than the training platform.

1FLOP stands for “floating point operation”.

82

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY83

Therefore, it is imperative to train models for power, runtime, energy consumption of

CNNs. Such models would significantly help Machine Learning practitioners and developers

to design accurate, fast, and energy-efficient CNNs, especially in the design space of mobile

or embedded platforms, where power- and energy-related issues are further exacerbated.

Machine learners Target software/
hardware platform

Layer-level models

Network-level models

CNN architectureBuild

Detailed power,
runtime & energy,
with breakdowns

Analysis &
guidance

Figure 6.1: NeuralPower quickly predicts the power, runtime, and energy consumption of
a CNN architecture during service phase. Therefore, NeuralPower provides the machine
learners with analysis and guidance when searching for energy-efficient CNN architectures
on given software/hardware platforms.

In this chapter, we develop a predictive framework for power, runtime, and energy of

CNNs during the testing phase, namely NeuralPower , without actually running (or imple-

menting) these CNNs on a target platform. The framework is shown in Figure 6.1. That

is, given (a) a CNN architecture of interest and (b) the target platform where the CNN

model will be deployed, NeuralPower can directly predict the power, runtime, and energy

consumption of the network in service/deployment phase.

6.1.1 Chapter contributions

Compared to existing works, this chapter brings the following contributions:

• To the best of our knowledge, our proposed learning-based polynomial regression ap-

proach, namely NeuralPower , is the first framework for predicting the power consump-

tion of CNNs running on GPUs, with an average accuracy of 88.34%.

• NeuralPower can also predict runtime of CNNs, which outperforms state-of-the-art

analytical models, by achieving an improvement in accuracy up to 68.5% compared to

the best previously published work.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY84

• NeuralPower uses power and runtime predictions to predict the energy consumption

of CNNs running on GPUs, with an average accuracy of 97.21%.

• In addition to total runtime and average power, NeuralPower also provides the detailed

breakdown of runtime and power across different components (at each layer) of the

whole network, thereby helping machine learners to identify efficiently the runtime,

power, or energy bottlenecks.

6.2 Power and runtime modeling

In this section, we introduce our hierarchical power and runtime model framework -NeuralPower -

and the data collection process. NeuralPower is based on the following key insight: despite

the huge amount of different CNN variations that have been used in several applications, all

these CNN architectures consist of basic underlying building blocks/primitives which exhibit

similar execution characteristics per type of layer. To this end, NeuralPower first models the

power and runtime of the key layers that are commonly used in a CNN. Then, NeuralPower

uses these models to predict the performance and runtime of the entire network.

6.2.1 Layer-level power and runtime modeling

The first part of NeuralPower is layer-level power and runtime models. We construct these

models for each type of layer for both runtime and power. More specifically, we select to

model three types of layers, namely the convolutional, the fully connected, and the pooling

layer, since these layers carry the main computation load during CNN execution – as also

motivated by [69]. Nevertheless, unlike prior work, our goal is to make our model flexible for

various combinations of software/hardware platforms without knowing the details of these

platforms.

To this end, we propose a learning-based polynomial regression model to learn the coef-

ficients for different layers, and we assess the accuracy of our approach against power and

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY85

runtime measurements on different commercial GPUs and Deep Learning software tools.

There are three major reasons for this choice. First, in terms of model accuracy, polynomial

models provide more flexibility and low prediction error when modeling both power and

runtime. The second reason is the interpretability: runtime and power have clear physi-

cal correlation with the layer’s configuration parameters (e.g., batch size, kernel size, etc.).

That is, the features of the model can provide an intuitive encapsulation of how the layer

parameters affect the runtime and power. The third reason is the available amount of sam-

pling data points. Polynomial models allow for adjustable model complexity by tuning the

degree of the polynomial, ranging from linear model to polynomials of high degree, whereas

a formulation with larger model capacity may be prone to overfitting. To perform model

selection, we apply ten-fold cross-validation and we use Lasso to decrease the total number

of polynomial terms. The detailed model selection process will be discussed in Section 6.3.1.

Layer-level runtime model: The runtime T̂ of a layer can be expressed as:

T̂ (xT) =
∑
j

cj ·
DT∏
i=1

x
qij
i +

∑
s

c′sFs(xT) (6.1)

where xT ∈ RDT ; qij ∈ N; ∀j,
DT∑
i=1

qij ≤ KT .

The model consists of two components. The first component corresponds to the regular

degree-KT polynomial terms which are a function of the features in input vector xT ∈ RDT .

xi is the i-th component of xT . qij is the exponent for xi in the j-th polynomial term, and cj

is the coefficient to learn. This feature vector of dimension DT includes layer configuration

hyper-parameters, such as the batch size, the input size, and the output size. For different

types of layers, the dimension DT is expected to vary. For convolutional layers, for example,

the input vector includes the kernel shape, the stride size, and the padding size, whereas

such features are not relevant to the formulation/configuration of a fully-connected layer.

The second component corresponds to special polynomial terms F , which encapsulate

physical operations related to each layer (e.g., the total number of memory accesses and the

total number of floating point operations). The number of the special terms differs from

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY86

one layer type to another. For the convolutional layer, for example, the special polynomial

terms include the memory access count for input tensor, output tensor, kernel tensor, and

the total number of floating point operations for the all convolution computations. Finally,

c′s is the coefficient of the s-th special term to learn.

Based on this formulation, it is important to note that not all input parameters are

positively correlated with the runtime. For example, if the stride size increases, the total

runtime will decrease since the total number of convolutional operations will decrease. This

observation motivates further the use of a polynomial formulation, since it can capture such

trends (unlike a posynomial model, for instance).

Layer-level power model: To predict the power consumption P̂ for each layer type

during testing, we follow a similar polynomial-based approach:

P̂ (xP) =
∑
j

zj ·
DP∏
i=1

x
mij

i +
∑
k

z′kFk(xP) (6.2)

where xP ∈ RDP ; mij ∈ N; ∀j,
DP∑
i=1

mij ≤ KP .

where the regular polynomial terms have degree KP and they are a function of the input

vector xP ∈ RDP . mij is the exponent for xi of the j-th polynomial term, and zj is the

coefficient to learn. In the second sum, z′k is the coefficient of the k-th special term to learn.

Power consumption however has a non-trivial correlation with the input parameters.

More specifically, as a metric, power consumption has inherent limits, i.e., it can only take

a range of possible values constrained through the power budget. That is, when the com-

puting load increases, power does not increase in a linear fashion. To capture this trend,

we select an extended feature vector xP ∈ RDP for our power model, where we include the

logarithmic terms of the features used for runtime (e.g., batch size, input size, output size,

etc.). As expected, the dimension DP is twice the size of the input feature dimension DT .

A logarithmic scale in our features vector can successfully reflect such a trend, as supported

by our experimental results in Section 6.3.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY87

6.2.2 Network-level power, runtime, and energy modeling

We discuss the network-level models for NeuralPower . For the majority of CNN architectures

readily available in a Deep Learning models “zoo” (as the one compiled by [43]), the whole

structure consists of and can be divided into several layers in series. Consequently, using

our predictions for power and runtime as building blocks, we extend our predictive models

to capture the runtime, the power, and eventually the energy, of the entire architecture at

the network level.

Network-level runtime model: Given a network with N layers connected in series,

the predicted total runtime can be written as the sum of the predicted runtime T̂n of each

layer n:

T̂total =
N∑
n=1

T̂n (6.3)

Network-level power model: Unlike the summation for total runtime, the average power

can be obtained using both per layer runtime and power. More specifically, we can represent

the average power P̂avg of a CNN as:

P̂avg =

∑N
n=1 P̂n · T̂n∑N
n=1 T̂n

(6.4)

Network-level energy model: From here, it is easy to derive our model for the total

energy consumption Êtotal of an entire network configuration:

Êtotal = T̂total · P̂avg =
N∑
n=1

P̂n · T̂n (6.5)

which is basically the scalar product of the layer-wise power and runtime vectors, or the sum

of energy consumption for all layers in the model.

6.2.3 Dataset collection

Experiment setup: The main modeling and evaluation steps are performed on the platform

described in Table 6.1. To exclude the impact of voltage/frequency changing on the power

and runtime data we collected, we keep the GPU in a fixed state and CUDA libraries ready to

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY88

use by enabling the persistence mode. We use nvidia-smi to collect the instantaneous power

per 1 ms for the entire measuring period. Please note that while this experimental setup

constitutes our configuration basis for investigating the proposed modeling methodologies,

in Section 6.3.4 we present results of our approach on other GPU platforms, such as Nvidia

GTX 1070, and Deep Learning tools, such as Caffe by [43].

Table 6.1: Target platform.

CPU / Main memory Intel Core-i7 5820K / 32GB
GPU Nvidia GeForce GTX Titan X (12GB DDR5)
GPU max / idle power 250W / 15W
Deep learning platform TensorFlow 1.0 on Ubuntu 14
Power meter NVIDIA System Management Interface

CNN architectures investigated: To comprehensively assess the effectiveness of our

modeling methodology, we consider several CNN models. Our analysis includes state-of-

the-art configurations, such as the AlexNet by [51], VGG-16 & VGG-19 by [76], R-CNN

by [70], NIN network by [59], CaffeNet by [43], GoogleNet by [83], and Overfeat by [74]. We

also consider different flavors of smaller networks such as vanilla CNNs used on the MNIST

by [53] and CIFAR10-6conv [20] on CIFAR-10. This way, we can cover a wider spectrum of

CNN applications.

Data collection for power/runtime models: To train the layer-level predictive mod-

els, we collect data points by profiling power and runtime from all layers of all the considered

CNN architectures in the training set. We separate the training data points into groups based

on their layer types. In this chapter, the training data include 858 convolution layer samples,

216 pooling layer samples, and 116 fully connected layer samples. The statistics can change

if one needs any form of customization. For testing, we apply our learned models on the net-

work in the testing set, and compare our predicted results against the actual results profiled

on the same platform, including both layer-level evaluation and network-level evaluation.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY89

6.3 Experimental results

In this section, we assess our proposed NeuralPower in terms of power, runtime, and energy

prediction accuracy at both layer level and network level. Since the models for runtime

and power are slightly different from one to another, we discuss them separately in each

case. In addition, we validate our framework on other platforms to show the robustness of

NeuralPower .

6.3.1 Layer-level model evaluation

Model selection

To begin with model evaluation, we first illustrate how model selection has been employed

in NeuralPower . In general, NeuralPower changes the order of the polynomial (e.g., DT

in Equation 6.1) to expand/shrink the size of feature space. NeuralPower applies Lasso

to select the best model for each polynomial model. Finally, NeuralPower selects the final

model with the lowest cross-validation Root-Mean-Square-Error (RMSE), which is shown in

Figure 6.2.

1 2 3 4
Polynomial order

0

100

200

300

RM
SP

E
(%

)

Runtime

lowest RMSE

2.5

5.0

7.5

10.0

12.5

RM
SE

 (m
s)

1 2 3 4
Polynomial order

9.0

9.5

10.0

10.5

11.0

11.5

RM
SP

E
(%

)

Power

lowest RMSE

11

12

13

RM
SE

 (W
)

Figure 6.2: Comparison of best-performance model with respect to each polynomial order
for the fully-connected layers. In this example, a polynomial order of two is chosen since it
achieves the best Root-Mean-Square-Error (RMSE) for both runtime and power modeling.
At the same time, it also has the lowest Root-Mean-Square-Percentage-Error (RMSPE).

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY90

Runtime Models

Applying the model selection process, we achieve a polynomial model for each layer type in a

CNN. The evaluation of our models is shown in Table 6.2, where we report the Root-Mean-

Square-Error (RMSE) and the relative Root-Mean-Square-Percentage-Error (RMSPE) of

our runtime predictions for each one of the considered layers. Since we used Lasso in our

model selection process, we also report the model size (i.e., the number of terms in the

polynomial) per layer. More importantly, we compare against the state-of-the-art analytical

method proposed by [69], namely Paleo. To enable a comparison here and for the remainder

of section, we executed the Paleo code on the considered CNNs. We can easily observe that

our predictions based on the layer-level models clearly outperform the best published model

to date, yielding an improvement in accuracy up to 68.5% (calculated from the differences

of RMSPEs for pooling layer).

Table 6.2: Comparison of runtime models for common CNN layers – Our proposed runtime
model consistently outperforms the state-of-the-art runtime model in both root-mean-square-
error (RMSE) and the Root-Mean-Square-Percentage-Error (RMSPE).

Layer type
NeuralPower Paleo [69]

Model size RMSPE RMSE (ms) RMSPE RMSE (ms)
Convolutional 60 39.97% 1.019 58.29% 4.304
Fully-connected 17 41.92% 0.7474 73.76% 0.8265
Pooling 31 11.41% 0.0686 79.91% 1.763

Convolutional layer: The convolution layer is among the most time- and power-

consuming components of a CNN. To model this layer, we use a polynomial model of degree

three. We select a features vector consisting of the batch size, the input tensor size, the

kernel size, the stride size, the padding size, and the output tensor size. In terms of the

special terms defined in Equation 6.1, we use terms that represent the total computation

operations and memory accesses count.

Fully-connected layer: We employ a regression model with degree of two, and as

features of the model we include the batch size, the input tensor size, and the output tensor

size. It is worth noting that in terms of software implementation, there are two common

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY91

ways to implement the fully-connected layer, either based on default matrix multiplication,

or based on a convolutional-like implementation (i.e., by keeping the kernel size exactly

same as the input image patch size). Upon profiling, we notice that both cases have a

tensor-reshaping stage when accepting intermediate results from a previous convolutional

layer, so we treat them interchangeably under a single formulation.

Pooling layer: The pooling layer usually follows a convolution layer to reduce the

complexity of the model. As basic model features we select the input tensor size, the stride

size, the kernel size, and the output tensor size. Using Lasso and cross-validation we find

that a polynomial of degree three provides the best accuracy.

Power Models

As mentioned in Section 6.2.1, we use the logarithmic terms of the original features (e.g.,

batch size, kernel size, etc.) as additional features for the polynomial model since this

significantly improves the model accuracy. This modeling choice is well suited for the nature

of power consumption which does not scale linearly; more precisely, the rate of the increase

in power goes down as the model complexity increases, especially when the power values get

closer to the power budget limit. For instance, in our setup, the Titan X GPU platform has

a maximum power of 250W. We find that a polynomial order of two achieves the best cross

validation error for all three layer types under consideration.

To the best of our knowledge, there is no prior work on power prediction at the layer

level to compare against. We therefore compare our methods directly with the actual power

values collected from TensorFlow, as shown in Table 6.3. Once again, we observe that our

proposed model formulation achieves error always less that 9% for all three layers. The

slight increase in the model size compared to the runtime model is to be expected, given

the inclusion of the logarithmic feature terms, alongside special terms that include memory

accesses and operations count. We can observe, though, that the model is able to capture

the trends of power consumption trained across layer sizes and types.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY92

Table 6.3: Power model for common CNN layers.

Layer type
NeuralPower

Model size RMSPE RMSE (W)
Convolutional 75 7.35% 10.9172
Fully-connected 15 9.00% 10.5868
Pooling 30 6.16% 6.8618

6.3.2 Network-level model evaluation

With the results from layer-level models, we can model the runtime, power, and energy

for the whole network based on the network-level model (Section 6.2.2) in NeuralPower . To

enable a comprehensive evaluation, we assess NeuralPower on several state-of-the-art CNNs,

and we compare against the actual runtime, power, and energy values of each network. For

this purpose, and as discussed in Section 6.2.3, we leave out a set of networks to be used only

for testing, namely the VGG-16, NIN, CIFAR10-6conv, AlexNet, and Overfeat networks.

Runtime evaluation

Prior to assessing the predictions on the networks as a whole, we show the effectiveness of

NeuralPower as a useful aid for CNN architecture benchmarking and per-layer profiling.

Enabling such breakdown analysis is significant for machine learning practitioners, since it

allows to identify the bottlenecks across components of a CNN.

For runtime, we use state-of-the-art analytical model Paleo as the baseline. In Figure 6.3,

we compare runtime prediction models from NeuralPower and the baseline against actual

runtime values of each layer in the NIN and VGG-16 networks. From Figure 6.3, we can

clearly see that our model outperforms the Paleo model for most layers in accuracy. For the

NIN, our model clearly captures that conv4 is the dominant (most time-consuming) layer

across the whole network. However, Paleo erroneously identifies conv2 as the dominant

layer. For the VGG-16 network, we can clearly see that Paleo predicts the runtime of the

first fully-connected layer fc6 as 3.30 ms, with a percentage prediction error as high as -

96.16%. In contrast, our prediction exhibits an error as low as -2.53%. Since layer fc6 is the

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY93

dominant layer throughout the network, it is critical to make a correct prediction on this

layer.

From the above, we can conclude that our proposed methodology generally has a better

accuracy in predicting the runtime for each layer in a complete CNN, especially for the layers

with larger runtime values. Therefore, our accurate runtime predictions, when employed for

profiling each layer at the network level, can help the machine learners and practitioners

quickly identify the real bottlenecks with respect to runtime for a given CNN.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Runtime (ms)

conv1
cccp1
cccp2
pool0
conv2
cccp3
cccp4
pool2
conv3
cccp5
cccp6
pool3
conv4
cccp7
cccp8
pool4

La
ye

rs

NIN
Paleo
NeuralPower
Actual runtime

0 20 40 60 80
Runtime (ms)

conv1-1
conv1-2

pool1
conv2-1
conv2-2

pool2
conv3-1
conv3-2
conv3-3

pool3
conv4-1
conv4-2
conv4-3

pool4
conv5-1
conv5-2
conv5-3

pool5
fc6
fc7
fc8

VGG-16
Paleo
NeuralPower
Actual runtime

Figure 6.3: Comparison of runtime prediction for each layer in NIN and VGG-16: Our
models provide accurate runtime breakdown of both network, while Paleo cannot. Our
model captures the execution-bottleneck layers (i.e., conv4 in NIN, and fc6 in VGG-16)
while Paleo mispredicts both.

Having demonstrated the effectiveness of our methodology at the layer level, we proceed

to assess the accuracy of the network-level runtime prediction T̂total (Equation 6.3). It

is worth observing that in Equation 6.3 there are two sources of potential error. First,

error could result from mispredicting the runtime values T̂n per layer n. However, even if

these predictions are correct, another source of error could come from the formulation in

Equation 6.3, where we assume that the sum of the runtime values of all the layers in a CNN

provides a good estimate of the total runtime. Hence, to achieve a comprehensive evaluation

of our modeling choices in terms of both the regression formulation and the summation in

Equation 6.3, we need to address both these concerns.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY94

To this end, we compare our runtime prediction T̂total against two metrics. First, we

compare against the actual overall runtime value of a network, notated as Ttotal. Second,

we consider another metric defined as the sum of the actual runtime values Tn (and not the

predictions) of each layer n:

Ttotal =
N∑
n=1

Tn (6.6)

Intuitively, a prediction value T̂total close to both the Ttotal value and the actual runtime

Ttotal would not only show that our model has good network-level prediction, but also that

our underlying modeling assumptions hold.

We summarize the results across five different networks in Table 6.4. More specifically,

we show the networks’ actual total runtime values (Ttotal), the runtime Ttotal values, our

predictions T̂total, and the predictions from Paleo (the baseline). Based on the Table, we can

draw two key observations. First, we can clearly see that our model always outperforms Pa-

leo, with runtime predictions always within 24% from the actual runtime values. Compared

to the actual power value, our prediction have an RMSPE of 11.76%, or 88.24% in accuracy.

Unlike our model, prior art could underestimate the overall runtime up to 42%. Second, as

expected, we see that summing the true runtime values per layer does indeed approximate

the total runtime, hence confirming our assumption in Equation 6.3.

Table 6.4: Performance model comparison for the whole network. We can easily observe that
our model always provides more accurate predictions of the total CNN runtime compared
to the best published model to date (Paleo). We assess the effectiveness of our model in five
different state-of-the-art CNN architectures.

CNN Paleo [69] NeuralPower Sum of per-layer actual Actual runtime

name (ms) T̂total (ms) runtime Ttotal (ms) Ttotal (ms)
VGG-16 345.83 373.82 375.20 368.42
AlexNet 33.16 43.41 42.19 39.02

NIN 45.68 62.62 55.83 50.66
Overfeat 114.71 195.21 200.75 197.99

CIFAR10-6conv 28.75 51.13 53.24 50.09

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY95

Power evaluation

We present a similar evaluation methodology to assess our model for network-level power

predictions. We first use our methodology to enable a per-layer benchmarking of the power

consumption. Figure 6.4 shows the comparison of our power predictions and the actual power

values for each layer in the NIN and the VGG-16 networks. We can see that convolutional

layers dominate in terms of power consumption, while pooling layers and fully connected

layers contribute relatively less. We can also observe that the convolutional layer exhibits

the largest variance with respect to power, with power values ranging from 85.80W up to

246.34W.

Another key observation is related to the fully-connected layers of the VGG-16 network.

From Figure 6.3, we know layer fc6 takes the longest time to run. Nonetheless, we can see in

Figure 6.4 that its power consumption is relatively small. Therefore, the energy consumption

related of layer fc6 will have a smaller contribution to the total energy consumption of the

network relatively to its runtime. It is therefore evident that using only the runtime as a

proxy proportional to the energy consumption of CNNs could mislead the machine learners

to erroneous assumptions. This observation highlights that power also plays a key role

towards representative benchmarking of CNNs, hence illustrating further the significance of

accurate power predictions enabled from our approach.

75 100 125 150 175 200 225 250
Power (W)

conv1
cccp1
cccp2
pool0
conv2
cccp3
cccp4
pool2
conv3
cccp5
cccp6
pool3
conv4
cccp7
cccp8
pool4

La
ye

rs

NIN

NeuralPower
Actual power

75 100 125 150 175 200 225 250
Power (W)

conv1-1
conv1-2

pool1
conv2-1
conv2-2

pool2
conv3-1
conv3-2
conv3-3

pool3
conv4-1
conv4-2
conv4-3

pool4
conv5-1
conv5-2
conv5-3

pool5
fc6
fc7
fc8

VGG-16

NeuralPower
Actual power

Figure 6.4: Comparison of power prediction for each layer in NIN and VGG-16.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY96

Table 6.5: Evaluating our power predictions for state-of-the-art CNN architectures.

CNN NeuralPower Sum of per-layer actual Actual power

name P̂total (W) power Ptotal (W) Pavg (W)
VGG-16 206.88 195.76 204.80
AlexNet 174.25 169.08 194.62

NIN 179.98 187.99 226.34
Overfeat 172.20 168.40 172.30

CIFAR10-6conv 165.33 167.86 188.34

As discussed in the runtime evaluation as well, we assess both our predictive model

accuracy and the underlying assumptions in our formulation. In terms of average power

consumption, we need to confirm that the formulation selected in Equation 6.4 is indeed

representative. To this end, besides the comparison against the actual average power of

the network Pavg, we compare against the average value Pavg, which can be computed by

replacing our predictions P̂n and T̂n with the actual per-layer runtime and power values:

Pavg =

∑N
n=1 Pn · Tn∑N
n=1 Tn

(6.7)

We evaluate our power value predictions for the same five state-of-the-art CNNs in Table 6.5.

Compared to the actual power value, our prediction have an RMSPE of 11.66%, or 88.34%

in accuracy. We observe that in two cases, AlexNet and NIN, our prediction has a larger

error, i.e., of 10.47% and 20.48% respectively. This is to be expected, since our formulation

for Pavg depends on runtime prediction as well, and as observed previously in Table 6.4, we

underestimate the runtime in both cases.

Energy evaluation

Finally, we use Equation 6.5 to predict the total energy based on our model. To evaluate

our modeling assumptions as well, we compute the energy value Etotal based on the actual

per-layer runtime and power values, defined as:

Etotal =
N∑
n=1

Pn · Tn (6.8)

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY97

We present the results for the same five CNNs in Table 6.6. We observe that our approach

enables good prediction, with an average RMSPE of 2.79%, or 97.21% in accuracy.

Table 6.6: Evaluating our energy predictions for state-of-the-art CNN architectures.

CNN NeuralPower Sum of per-layer actual Actual energy

name Êtotal (J) energy Etotal (J) Etotal (J)
VGG-16 77.312 73.446 75.452
AlexNet 7.565 7.134 7.594

NIN 11.269 10.495 11.465
Overfeat 33.616 33.807 34.113

CIFAR10-6conv 8.938 8.453 9.433

6.3.3 Energy-precision ratio

In this subsection, we propose a new metric, namely Energy-Precision Ratio to be used as a

guideline for machine learners towards accurate, yet energy efficient CNN architectures. We

define the metric as:

EPR = Errorα · EPI (6.9)

where Error is the data classification error of the CNN under consideration, and EPI is

the energy consumption per data item classified. Different values of the parameter α dictate

how much importance is placed on the accuracy of the model, since a larger α places more

weight on the CNN classification error. To illustrate how α affects the results, in Table 6.7

we compute the EPR score values for VGG-16, AlexNet, and NIN, all trained on ImageNet

datasets (as Error value we use their Top-5 error). We also use our predictive model for

energy, and we compute the energy consumption per image classification.

Intuitively, a lower EPR value indicates a better trade-off between energy-efficiency and

accuracy of a CNN architecture. For instance, we can see that while VGG-16 has the lowest

error, this comes at the price of increased energy consumption compared to both NIN and

AlexNet. Hence, for α = 1 both AlexNet and NIN have a smaller EPR value. In this case,

a machine learner of an embedded Internet-of-Things (IoT) system could use the Energy-

Precision Ratio to select the most energy efficient architecture. On the contrary, with α = 4,

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY98

i.e., when accuracy is being heavily favored over energy efficiency, the EPR value of VGG-16

is smaller than EPR value of AlexNet.

Table 6.7: EPR metric for different CNN architectures and Energy-per-Image (EPI) values.
Network choices could be different for different α values: AlexNet for α = 1, 2, 3, VGG-16
for α = 4.

CNN name Top-5 Error EPI (mJ)
EPR

α = 1 α = 2 α = 3 α = 4
VGG-16 7.30% 1178.9 86.062 6.283 0.459 0.033
AlexNet 17.00% 59.3 10.086 1.715 0.291 0.050

NIN 20.20% 89.6 18.093 3.655 0.738 0.149

With the recent surge of IoT and mobile learning applications, machine learners need

to take the energy efficiency of different candidate CNN architectures into consideration, in

order to identify the CNN which is more suitable to be deployed on a energy-constrained

platform. For instance, consider the case of a machine learner that has to choose among nu-

merous CNNs from a CNN model “zoo”, with the best error of each CNN readily available.

Which network provides the best trade-off between accuracy for energy spent per image clas-

sified? Traditionally, the main criterion for choosing among CNN architectures has been the

data item classification accuracy, given its intuitive nature as a metric. However, there has

not been so far an easily interpretable metric to trade-off energy efficiency versus accuracy.

Towards this direction, we can use our proposed model to quickly predict the total energy

consumptions of all these different architectures, and we can then compute the EPR score

to select the one that properly trades off between accuracy for energy spent per image

classified. We postulate that the Energy-Precision Ratio, alongside our predictive model,

could therefore be used as a useful aid for machine learners towards energy-efficient CNNs.

6.3.4 Models on other platforms and development frameworks

Our key goal is to provide a modeling framework that could be flexibly used for different

platforms. To comprehensively demonstrate this property of our work, we extend our evalu-

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY99

ation to a different GPU platform, including desktop GPU - Nvidia GTX 1070, and mobile

GPU - Nvidia Jetson TX1.

Results on Nvidia GTX 1070

We first apply our framework to another GPU platform, and more specifically to the Nvidia

GTX 1070 with 8GB memory. We repeat the runtime and power data collection by executing

Tensorflow, and we train power and runtime models on this platform. The layer-wise evalu-

ation results are shown in Table 6.8. For these results, we used the same polynomial orders

as reported previously for the TensorFlow on Titan X experiments. Moreover, we evaluate

the overall network prediction for runtime, power, and energy values and we present the

predicted values and the prediction error (denoted as Error) in Table 6.9. Based on these

results, we can see that our methodology achieves consistent performance across different

desktop GPU platforms.

Table 6.8: Runtime and power model for all layers using TensorFlow on GTX 1070.

Layer type
Runtime Power

Model size RMSPE RMSE (ms) Model size RMSPE RMSE (W)
Convolutional 10 57.38 % 3.5261 52 10.23% 9.4097
Fully-connected 18 44.50% 0.4929 23 7.08% 5.5417
Pooling 31 11.23% 0.0581 40 7.37% 5.1666

Table 6.9: Evaluation of NeuralPower on CNN architectures using TensorFlow on GTX
1070.

CNN name
Runtime Power Energy

Value (ms) Error Value (W) Error Value (J) Error
AlexNet 44.82 17.40% 121.21 -2.92% 5.44 13.98%
NIN 61.08 7.24% 120.92 -4.13% 7.39 2.81%

Extending to other machine learning software environments: Caffe

Finally, we demonstrate the effectiveness of our approach across different Deep Learning

software packages and we replicate our exploration on Caffe. To collect the power and

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY100

runtime data for our predictive models, we use Caffe’s supported mode of operation for

benchmarking, namely time. While this functionality benchmarks the model execution

layer-by-layer, the default Caffe version however reports only timing. To this end, we extend

Caffe’s C++ codebase and we incorporate calls to Nvidia’s NVML C++ API to report power

values.

We present the per-layer accuracy for runtime and power predictions in Table 6.10.

Furthermore, we evaluate our model on the AlexNet and NIN networks in Table 6.11. Please

note that the execution of the entire network corresponds to a different routine under the

Caffe framework, so a direct comparison is not possible. We instead compare against the

Equations 6.6-6.8 as in the previous subsection. Same as for the TensorFlow case before

(Table 6.8), we observe that in this case as well the runtime predictions exhibit a larger

error in this platform when executing on the GTX1070 system. This is to be expected, since

the GTX 1070 drivers do not allow the user to clock the GPU to a particular frequency

state, hence the system dynamically selects its execution state. Indeed, in our collected

datapoints we observed that Caffe’s (and TensorFlow’s previously) higher variance in the

runtime values. To properly capture this behavior, we experimented with regressors other

that second and third degree polynomials. In these results for Caffe in particular, we select

linear models since they provided a better trade off between training error and overfitting.

Table 6.10: Runtime and power model for all layers using Caffe on GTX 1070.

Layer type
Runtime Power

Model size RMSPE RMSE (ms) Model size RMSPE RMSE (W)
Convolutional 32 45.58 % 2.2301 32 6.19% 11.9082
Fully-connected 18 48.41 % 0.6626 18 8.63% 8.0291
Pooling 30 37.38 % 0.1711 26 6.72 % 11.9124

Table 6.11: Evaluation of our model on CNN architectures using Caffe on GTX 1070.

CNN name
Runtime Power Energy

Value (ms) Error Value (W) Error Value (J) Error

AlexNet 51.18 -31.97% 107.63 -5.07 % 5.51 35.42%
NIN 76.32 0.36 % 109.78 -8.89% 8.38 8.56%

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY101

Results on Nvidia Jetson TX1

In addition to the traditional high-performance GPUs, many of the CNNs are running on

the mobile platforms to enable various services locally. Therefore, we apply our models on

the mobile platform to show that our method are versatile and widely suitable for various

platforms.

Table 6.12: Runtime and power model for all layers using TensorFlow on Jetson TX1.

Layer type
Runtime Power

Model size RMSPE RMSE (ms) Model size RMSPE RMSE (W)
Convolutional 44 20.00 % 0.437 48 21.69% 0.825
Fully-connected 12 32.64% 0.871 31 7.72% 0.103
Pooling 53 19.34% 0.2307 37 13.81% 0.315

We present the per-layer accuracy for runtime and power predictions in Table 6.12.

Different than GTX Titan X or 1070, Jetson TX1 has very limited memory resource and

power cap. Therefore, it cannot run large CNNs or CNNs with large batch size. For this

reason, the CNN architecture set used for Jetson TX1 is a little bit different than the one

used in the previous experiments. However, we can still see that NeuralPower is robust

on mobile GPU platforms. Furthermore, we evaluate our model on the Cifar10-6conv and

NIN networks in Table 6.13. Different with the results shown for GTX 1070, the results for

Jetson TX1 show the trend as underestimating the runtime, and overestimating the power

consumption. The similar thing is that they still have similar power, runtime, or energy

consumption error level.

Table 6.13: Evaluation of NeuralPower on CNN architectures using TensorFlow on Jetson
TX1.

CNN name
Runtime Power Energy

Value (ms) Error Value (W) Error Value (J) Error
Cifar10-6conv 26.69 -13.10% 11.39 18.79% 0.304 3.23%
NIN 75.38 -8.41% 8.23 2.53% 0.620 -6.09%

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORK: POWER AND LATENCY102

According to these results, we can conclude that our methodology achieves consistent

performance across different GPU platforms, thus enabling a scalable/portable framework

from machine learning practitioners to use across different systems.

6.4 Discussion

It is important to note that the overhead introduced by NeuralPower is very limited. More

specifically, NeuralPower needs to collect datasets to train the models, however, the overhead

for training is very small, e.g., around 30 minutes for GTX Titan X. This includes data

collection (under 10 minutes) and model training (less than 20 minutes). The process is

done once for a new platform. However, the model training process can be further shorten

by exploiting transfer learning, which exploits the similarity between different platforms. For

example, we find that the best performing models for GTX 1070 have the same polynomial

order as the corresponding models for GTX Titan X. Even for Jetson TX1, nearly all best

performing models share the same polynomial order as the corresponding models for GTX

Titan X, except the runtime model for fully-connected layers. In this case, the model training

process, especially the model selection phase, can be greatly simplified. Therefore, the

overhead would be negligible. If the training process starts from the scratch, the overhead

can still be offset if the CNN architecture search space is large. Even if machine learners

only evaluate a few CNN architectures, NeuralPower can still provide the detailed breakdown

with respect to runtime, power, and energy to identify bottlenecks and possible improvement

directions.

Chapter 7

Related work

In this chapter, we discuss related work with respect to two topics: technology-aware com-

puting system design and application-driven computing system design.

In technology-aware computing system design, there is a significant body of work ad-

dressing power/performance optimization via DVFS [40] [33] [88] [73] [61] [7] [18] [47] [48]

[60]. Isci et al. [40] proposed MaxBIPS, an exhaustive search algorithm to find the best V/F

levels to maximize performance under a given power budget. When considering process vari-

ations, Teodorescu et al. [84] used linear programming LinOpt to find the optimal voltage

and frequency levels for maximizing throughput, while Herbert et al. [34] employed algo-

rithm tuning. Hardware-based approaches for DVFS were first introduced by Choudhary et

al. [19] [62]. Sartori et al. [73] proposed three scalable approaches to improve many-core

throughput under given power budget. Winter et al. [88] proposed Steepest Drop, a di-

rected local search algorithm to explore best V/F level selection. Chen et al. [17] applied

reinforcement learning for DVFS-based performance optimization under power limits.

When applying DVFS, the effect of process variations (PVs) becomes increasingly im-

portant, especially for FinFET technology. In fact, PVs have been extenstively explored,

albeit mainly for bulk CMOS technology in the context of architectural and system level ex-

ploration [63] [64] [34] [35] [32] [81]. Agarwal et al. [1] proposed a statistical timing analysis

for the PVs considering spatial correlations. Sarangi et al. [72] constructed a model of PV

103

CHAPTER 7. RELATED WORK 104

and timing errors for microarchitects on bulk CMOS. For the FinFET technology, Xiong et

al. [90] investigated the sensitivity of FinFET based devices to PVs. Chaudhuri et al. [16]

established an accurate and fast 2D FinFET simulation model including the impact of PVs

in FinFET.

In addition to the PVs, FinFET technology has another feature in focus, called temper-

ature effect inversion (TEI). TEI has been studied for more than a decade [39] [49] [54] [9]

[11] [28] [95] [96] [56] [27]. Huang et al. [39] showed that fabricated FinFETs operate faster

when temperature increases in superthreshold voltage region. Kim et al. [49] analyzed this

effect for both n- and p-channel FinFET and explained that it is caused by stress-induced

bandgap narrowing. Soleimani et al. [79] and Lee et al. [54], also reported and discussed

this effect. Lee et al. [57] exploited TEI in FinFET-based circuits and proposed a dynamic

thermal management policy for FinFET-based mobile devices. Furthermore, they named

this effect Temperature Effect Inversion.

The effects of PVs and TEI in FinFET technology are always related with thermal issues.

Among them, the effect of aging is significant. Many papers aim to capture aging-induced

performance degradation. Kukner et al. [52] has provided a comprehensive investigation

of BTI modeling as technology scales from planar FET to advanced 3-D FinFET devices

based on Ring Oscilator (RO) simulations. Weckx et al. [86] employed this exploration to

both RO and SRAM based netlists. However, this research does not extend the analysis

beyond gate-level simulations and it does not explore the aging implications to the system

level. Recently, system-wide BTI-aware flows have been proposed, aiming to either capture

the aging-induced path re-ordering of CPU modules [82] or to decrease aging on dark-

silicon systems [25]. Nonetheless, all proposed system-level design methodologies consider

planar CMOS technologies and they restrict their analysis to one frequency/voltage level.

Such assumption is non-representative of the extended operating range available in modern

systems [15].

For application-driven computing system design, we mainly discuss convolutional neural

networks (CNNs). Prior art, e.g., by [30], has identified the runtime overhead and power

CHAPTER 7. RELATED WORK 105

consumption of CNNs execution to be a significant concern when designing accurate, yet

power- and energy-efficient CNN models. These design constraints become increasingly

challenging to address, especially in the context of two emerging design paradigms, (i) the

design of larger, power-consuming CNN architectures, and (ii) the design of energy-aware

CNNs for mobile platforms. Hence, a significant body of state-of-the-art approaches aim to

tackle such runtime and power overhead, by accelerating the execution of CNNs and/or by

reducing their power-energy consumption.

To enable CNN architectures that execute faster, existing work has investigated both

hardware- and software-based methodologies. On one hand, with respect to hardware, sev-

eral hardware platforms have been explored as means to accelerate the CNN execution.

Examples of these platforms include FPGA-based methodologies by [92], ASIC-like designs

by [93]. On the other hand, with respect to software-based acceleration, several libraries,

such as cuDNN and Intel MKL, have been used in various deep learning frameworks to en-

able fast execution of CNNs, since these libraries provide specially-optimized primitives in

CNNs to improve their runtime.

To reduce power or energy consumption, recent work has focused on limiting the energy

and power consumption of CNNs. Several approaches investigate the problem in the context

of hyper-parameter optimization [71] [78] [80]. For instance, [71] have proposed an auto-

mated customization methodology that adaptively conforms the CNN architectures to the

underlying hardware characteristics, while minimally affecting the inference accuracy. [78]

have used a pair of trainer-trainee CNNs to incorporate accuracy and cost into the design of

neural networks. Beyond these methods which are based on hyper-parameter optimization,

another group of novel approaches focuses solely on the energy-efficient CNN implementa-

tion assuming a given network architecture. These approaches include techniques that draw

ideas from energy-aware computer system design, such as the methodologies by [30], [21]

and [22].

However, there is no comprehensive methodology that models the runtime, power, and

eventually the energy of CNN architectures. A work that shares similar insight with our

CHAPTER 7. RELATED WORK 106

methodology is the Paleo framework proposed by [69]. In their approach, the authors present

an analytical method to determine the runtime of CNNs executing on various platforms.

However, their model cannot be flexibly used across different platforms with different opti-

mization libraries, without detailed knowledge of them. More importantly, their approach

cannot predict power and energy consumption.

Chapter 8

Conclusion and future work

In this thesis, we have showed that our learning-based modeling methodologies work not only

for energy-aware computing systems, incorporating many scenarios like process variation,

temperature effect inversion, aging effects, but also for application-driven computing systems,

such as convolutional neural networks. In addition, we propose several fast and efficient

optimization techniques to further save energy, increase performance, or extend lifetime of

these computing systems. This chapter summarize the key results presented in the previous

chapters to conclude this thesis.

First, we include PVs in power/performance modeling and optimization for multi-core

systems. To be specific, we adapt the model-selecting technique and LOOCV from machine

learning to learn the best PV-aware constrained-posynomial P̂ for modeling the workload-

dependent power-frequency relationship over an extended range for FinFET-based CMPs.

Based on the convexity provided by the learned P̂ , two optimization frameworks are pro-

posed: energy minimization under throughput constraints and throughput maximization

under power constraints. Experimental results shows PV-ExDVFS achieves an average (1)

22.88% or 31.09% power reduction under iso-performance conditions and (2) 6.25% or

11.46% throughput improvement under iso-power conditions, with mild (3σ = 10%) or

extreme (30%) PV levels, respectively. We validate the effectiveness of PV-ExDVFS by

quantifying the impact of discrete V/F levels and core cluster sizes.

107

CHAPTER 8. CONCLUSION AND FUTURE WORK 108

Second, in parallel with PVs, we discuss the impact of TEI and how to utilize TEI

on multi-core systems. We construct accurate system-level power and performance models

and apply them to evaluate the impact of TEI. We discover the TEI-induced sweet spots,

which are locally better V/F level choices. Based on these sweet spots, we propose our fast

algorithms, including TEI-Turbo determining the maximum throughput with a given power

budget and TEI-LP determining the minimum energy consumption for a given throughput

constraint. Experimental results shows that in a 16-core CMP setup, our algorithms achieve

an average speedup of 45.9× with losing only 0.22% in throughput (TEI-Turbo), or an

average speedup of 55.3× with only 0.68% more energy consumption (TEI-LP), compared

with TEI-aware versions of existing state-of-the-art algorithms. Results also show excellent

scalability of our algorithms in both core count and number of V/F levels.

Third, to relieve the potential thermal issues associated with TEI, we explore the method-

ology for aging reduction. We are the first to provide a comprehensive evaluation of both TEI

and aging effects on the performance and power of FinFET-based multi-core systems with

multiple voltage/frequency levels. Moreover, we propose an aging-aware algorithm, dubbed

AgingMin, to select the optimal TEI-aware voltage/frequency operation points for decreasing

the aging effects. Experimental results show AgingMin improves the classic 10-year system

lifetime by an average of 1.61 years while introducing less than 1% power overhead when

compared to existing state-of-the-art directed local search algorithm. It is worth noting that

that AgingMin is an orthogonal algorithm to the existing aging reduction methods, such

as thread mapping and dark silicon designs. Thus, our proposed algorithm can be flexibly

incorporated within existing aging mitigation techniques to achieve further aging reduction.

Finally, we move to a higher level to model the application-aware computing systems,

i.e., the runtime, power, and energy consumption for CNNs. We propose NeuralPower ,

the first holistic framework to provide an accurate estimate of power, runtime, and energy

consumption. The runtime model of NeuralPower outperforms the current state-of-the-art

predictive model in terms of accuracy. Furthermore, NeuralPower can be used to provide

an accurate breakdown of a CNN network, helping machine learners identify the bottlenecks

CHAPTER 8. CONCLUSION AND FUTURE WORK 109

of their designed CNN models. Finally, we assess the accuracy of predictions at the network

level, by predicting the runtime, power, and energy of state-of-the-art CNN configurations.

NeuralPower achieves an average accuracy of 88.24% in runtime, 88.34% in power, and

97.21% in energy.

Future work in technology-aware computing system design can explore TEI actively in

harsh environments, such as the high-performance processors in autonomous vehicles. As

it is already known, TEI is dependent on temperature. Harsh environments require the

processors to work with fast-changing and wide-ranging ambient temperatures. Therefore,

it is important to explore TEI by controlling the operating temperature to save energy

or increase performance under certain constraints. For future work in application-driven

computing system design, one could extend the current models to work for other types of deep

neural network on a wide variety of hardware platforms. Recurrent neural network is another

popular type of deep neural networks which also needs accurate models. Nowadays, CNNs

are running on various type of platforms, including FPGAs, ASICs, CPUs, etc. Therefore, it

is important to extend current models to solve the challenges related to both new applications

and new platforms.

Bibliography

[1] Aseem Agarwal, David Blaauw, and Vladimir Zolotov. Statistical timing analysis for intra-die process

variations with spatial correlations. In Proceedings of the 2003 IEEE/ACM international conference on

Computer-aided design, page 900. IEEE Computer Society, 2003.

[2] Lal Shimpi Anand. Nehalem - everything you need to know about intel’s new architecture.

http://www.anandtech.com/show/2594/2, 2008.

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark suite:

Characterization and architectural implications. In Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, pages 72–81. ACM, 2008.

[4] W Bircher, Jason Law, Madhavi Valluri, and Lizy K John. Effective use of performance monitoring

counters for run-time prediction of power. University of Texas at Austin Technical Report TR-041104,

1, 2004.

[5] Christopher M Bishop. Pattern recognition and machine learning. springer New York, 2006.

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[7] Ermao Cai, Da-Cheng Juan, Siddharth Garg, Jinpyo Park, and Diana Marculescu. Learning-based

power/performance optimization for many-core systems with extended-range voltage/frequency scaling.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(8):1318–1331,

2016.

[8] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. Neuralpower: Predict and

deploy energy-efficient convolutional neural networks. In Asian Conference on Machine Learning, pages

622–637, 2017.

110

BIBLIOGRAPHY 111

[9] Ermao Cai and Diana Marculescu. Tei-turbo: Temperature effect inversion-aware turbo boost for finfet-

based multi-core systems. In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pages 500–507. IEEE Press, 2015.

[10] Ermao Cai and Diana Marculescu. Temperature effect inversion-aware power-performance optimization

for finfet-based multicore systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 36(11):1897–1910, 2017.

[11] Ermao Cai, Dimitrios Stamoulis, and Diana Marculescu. Exploring aging deceleration in finfet-based

multi-core systems. In Proceedings of the 35th International Conference on Computer-Aided Design,

page 111. ACM, 2016.

[12] YU Cao, Takashi Sato, Dennis Sylvester, Michael Orshansky, and C Hu. Predictive technology model.

Internet: http://ptm. asu. edu, 2012.

[13] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring the level of abstraction for

scalable and accurate parallel multi-core simulation. In Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, page 52. ACM, 2011.

[14] Hongliang Chang and Sachin S Sapatnekar. Statistical timing analysis under spatial correlations.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 24(9):1467–1482,

2005.

[15] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexandra Fedorova. Evaluation

of the intel R© core i7 turbo boost feature. In Workload Characterization, 2009. IISWC 2009. IEEE

International Symposium on, pages 188–197. IEEE, 2009.

[16] Sourindra Chaudhuri and Niraj K Jha. 3d vs. 2d analysis of finfet logic gates under process variations.

In Computer Design (ICCD), 2011 IEEE 29th International Conference on, pages 435–436. IEEE, 2011.

[17] Zhuo Chen and Diana Marculescu. Distributed reinforcement learning for power limited many-core

system performance optimization. In Proceedings of the 2015 Design, Automation & Test in Europe

Conference & Exhibition, pages 1521–1526. EDA Consortium, 2015.

[18] Zhuo Chen, Dimitrios Stamoulis, and Diana Marculescu. Profit: priority and power/performance opti-

mization for many-core systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2017.

BIBLIOGRAPHY 112

[19] Puru Choudhary and Diana Marculescu. Power management of voltage/frequency island-based systems

using hardware-based methods. TVLSI, 17(3):427–438, 2009.

[20] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural

networks with binary weights during propagations. In Advances in Neural Information Processing

Systems, pages 3123–3131, 2015.

[21] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized

neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1.

arXiv preprint arXiv:1602.02830, 2016.

[22] Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and RD Blanton. Lightnn: Filling the gap

between conventional deep neural networks and binarized networks. In Proceedings of the on Great

Lakes Symposium on VLSI 2017, pages 35–40. ACM, 2017.

[23] Ronald G Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and Trevor Mudge. Near-

threshold computing: Reclaiming moore’s law through energy efficient integrated circuits. Proceedings

of the IEEE, 98(2):253–266, 2010.

[24] Siddharth Garg and Diana Marculescu. 3d-gcp: An analytical model for the impact of process variations

on the critical path delay distribution of 3d ics. In Quality of Electronic Design, 2009. ISQED 2009.

Quality Electronic Design, pages 147–155. IEEE, 2009.

[25] Dennis Gnad, Muhammad Shafique, Florian Kriebel, Semeen Rehman, Duo Sun, and Jörg Henkel.

Hayat: Harnessing dark silicon and variability for aging deceleration and balancing. In Proceedings of

the 52Nd Annual Design Automation Conference, DAC ’15, pages 180:1–180:6, New York, NY, USA,

2015. ACM.

[26] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P. J. Wagner,

F. Schanovsky, J. Franco, M. Toledano Luque, and M. Nelhiebel. The paradigm shift in understanding

the bias temperature instability: From reaction-diffusion to switching oxide traps. IEEE Transactions

on Electron Devices, 58(11):3652–3666, Nov 2011.

[27] Xinfei Guo, Vaibhav Verma, Patricia Gonzalez-Guerrero, Sergiu Mosanu, and Mircea R Stan. Back to

the future: Digital circuit design in the finfet era. Journal of Low Power Electronics, 13(3):338–355,

2017.

BIBLIOGRAPHY 113

[28] Kyuseung Han, Jae-Jin Lee, Jinho Lee, Woojoo Lee, and Massoud Pedram. Tei-noc: Optimizing

ultralow power nocs exploiting the temperature effect inversion. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(2):458–471, 2018.

[29] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[30] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient

neural network. In Advances in Neural Information Processing Systems, pages 1135–1143, 2015.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[32] Sebastian Herbert, Siddharth Garg, and Diana Marculescu. Exploiting process variability in volt-

age/frequency control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(8):1392–

1404, 2012.

[33] Sebastian Herbert and Diana Marculescu. Analysis of dynamic voltage/frequency scaling in chip-

multiprocessors. In Low Power Electronics and Design (ISLPED), 2007 ACM/IEEE International

Symposium on, pages 38–43. IEEE, 2007.

[34] Sebastian Herbert and Diana Marculescu. Variation-aware dynamic voltage/frequency scaling. In

HPCA, pages 301–312. IEEE, 2009.

[35] Sebastian Herbert and Diana Marculescu. Characterizing chip-multiprocessor variability-tolerance. In

Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pages 313–318. IEEE, 2008.

[36] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew

Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine, 29(6):82–97, 2012.

[37] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-power digital design. In Low Power

Electronics, 1994. Digest of Technical Papers., IEEE Symposium, pages 8–11. IEEE, 1994.

[38] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankaranarayanan, Kevin Skadron, and

Mircea R Stan. Hotspot: A compact thermal modeling methodology for early-stage vlsi design. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14(5):501–513, 2006.

BIBLIOGRAPHY 114

[39] Xuejue Huang, Wen-Chin Lee, Charles Kuo, Digh Hisamoto, Leland Chang, Jakub Kedzierski, Erik

Anderson, Hideki Takeuchi, Yang-Kyu Choi, Kazuya Asano, et al. Sub-50 nm p-channel finfet. Electron

Devices, IEEE Transactions on, 48(5):880–886, 2001.

[40] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret Martonosi. An anal-

ysis of efficient multi-core global power management policies: Maximizing performance for a given power

budget. In Proceedings of the 39th annual IEEE/ACM international symposium on microarchitecture,

pages 347–358. IEEE Computer Society, 2006.

[41] Shailendra Jain, Surhud Khare, Satish Yada, V Ambili, Praveen Salihundam, Shiva Ramani, Sriram

Muthukumar, M Srinivasan, Arun Kumar, Shasi Kumar Gb, et al. A 280mv-to-1.2 v wide-operating-

range ia-32 processor in 32nm cmos. In Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2012 IEEE International, pages 66–68. IEEE, 2012.

[42] James Jeffers and James Reinders. Intel Xeon Phi coprocessor high-performance programming. Newnes,

2013.

[43] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio

Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv

preprint arXiv:1408.5093, 2014.

[44] Da-Cheng Juan, Siddharth Garg, Jinpyo Park, and Diana Marculescu. Learning the optimal operating

point for many-core systems with extended range voltage/frequency scaling. In Hardware/Software

Codesign and System Synthesis (CODES+ ISSS), 2013 International Conference on, pages 1–10. IEEE,

2013.

[45] Da-Cheng Juan and Diana Marculescu. Power-aware performance increase via core/uncore reinforce-

ment control for chip-multiprocessors. In Proceedings of the 2012 ACM/IEEE international symposium

on Low power electronics and design, pages 97–102. ACM, 2012.

[46] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[47] Ryan Gary Kim, Wonje Choi, Zhuo Chen, Janardhan Rao Doppa, Partha Pratim Pande, Diana Mar-

culescu, and Radu Marculescu. Imitation learning for dynamic vfi control in large-scale manycore

systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(9):2458–2471, 2017.

[48] Ryan Gary Kim, Wonje Choi, Zhuo Chen, Partha Pratim Pande, Diana Marculescu, and Radu Mar-

culescu. Wireless noc and dynamic vfi codesign: Energy efficiency without performance penalty. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 24(7):2488–2501, 2016.

BIBLIOGRAPHY 115

[49] Sang-Yun Kim, Young Min Kim, Kwang-Ho Baek, Byung-Kil Choi, Kyoung-Rok Han, Ki-Heung Park,

and Jong-Ho Lee. Temperature dependence of substrate and drain–currents in bulk finfets. Electron

Devices, IEEE Transactions on, 54(5):1259–1264, 2007.

[50] Shin-gyu Kim, Hyeonsang Eom, Heon Y Yeom, and Sang Lyul Min. Energy-centric dvfs controlling

method for multi-core platforms. Computing, 96(12):1163–1177, 2014.

[51] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint

arXiv:1404.5997, 2014.

[52] H. Kukner, P. Weckx, J. Franco, M. Toledano-Luque, M. Cho, B. Kaczer, P. Raghavan, Doyoung Jang,

K. Miyaguchi, M. G. Bardon, F. Catthoor, L. Van der Perre, R. Lauwereins, and G. Groeseneken.

Scaling of bti reliability in presence of time-zero variability. In 2014 IEEE International Reliability

Physics Symposium, pages CA.5.1–CA.5.7, June 2014.

[53] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[54] Chun-Yi Lee and Niraj K Jha. Cacti-finfet: An integrated delay and power modeling framework for

finfet-based caches under process variations. In Proceedings of the 48th Design Automation Conference,

pages 866–871. ACM, 2011.

[55] Chun-Yi Lee and Niraj K Jha. Fincanon: A pvt-aware integrated delay and power modeling framework

for finfet-based caches and on-chip networks. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 22(5):1150–1163, 2014.

[56] Woojoo Lee, Kyuseung Han, Yanzhi Wang, Tiansong Cui, Shahin Nazarian, and Massoud Pedram.

Tei-power: Temperature effect inversion–aware dynamic thermal management. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 22(3):51, 2017.

[57] Woojoo Lee, Yanzhi Wang, Tiansong Cui, Shahin Nazarian, and Massoud Pedram. Dynamic ther-

mal management for finfet-based circuits exploiting the temperature effect inversion phenomenon. In

Proceedings of the 2014 international symposium on Low power electronics and design, pages 105–110.

ACM, 2014.

[58] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and Norman P Jouppi.

The mcpat framework for multicore and manycore architectures: Simultaneously modeling power, area,

and timing. ACM Transactions on Architecture and Code Optimization (TACO), 10(1):5, 2013.

BIBLIOGRAPHY 116

[59] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.

[60] Shoumik Maiti and Sudeep Pasricha. Delca: Dvfs efficient low cost multicore architecture. In Proceedings

of the on Great Lakes Symposium on VLSI 2017, pages 107–112. ACM, 2017.

[61] Diana Marculescu. Profile-driven code execution for low power dissipation. In Low Power Electronics

and Design, 2000. ISLPED’00. Proceedings of the 2000 International Symposium on, pages 253–255.

IEEE, 2000.

[62] Diana Marculescu and Puru Choudhary. Hardware based frequency/voltage control of voltage frequency

island systems. In Hardware/Software Codesign and System Synthesis, 2006. CODES+ ISSS’06. Pro-

ceedings of the 4th International Conference, pages 34–39. IEEE, 2006.

[63] Diana Marculescu and Emil Talpes. Energy awareness and uncertainty in microarchitecture-level design.

IEEE Micro, (5):64–76, 2005.

[64] Diana Marculescu and Emil Talpes. Variability and energy awareness: a microarchitecture-level per-

spective. In Design Automation Conference, 2005. Proceedings. 42nd, pages 11–16. IEEE, 2005.

[65] Timothy N Miller, Xiang Pan, Renji Thomas, Naser Sedaghati, and Radu Teodorescu. Booster: Re-

active core acceleration for mitigating the effects of process variation and application imbalance in

low-voltage chips. In High Performance Computer Architecture (HPCA), 2012 IEEE 18th Interna-

tional Symposium on, pages 1–12. IEEE, 2012.

[66] Vidyasagar Nookala, David J Lilja, and Sachin S Sapatnekar. Temperature-aware floorplanning of

microarchitecture blocks with ipc-power dependence modeling and transient analysis. In Proceedings

of the 2006 international symposium on Low power electronics and design, pages 298–303. ACM, 2006.

[67] Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen, Muhammad Shafique, Minming Li,

and Jörg Henkel. Tsp: thermal safe power: efficient power budgeting for many-core systems in dark

silicon. In Proceedings of the 2014 International Conference on Hardware/Software Codesign and System

Synthesis, page 10. ACM, 2014.

[68] Yu Pu, Xin Zhang, Jim Huang, Atsushi Muramatsu, Masahiro Nomura, Koji Hirairi, Hidehiro Takata,

Taro Sakurabayashi, Shinji Miyano, Makoto Takamiya, et al. Misleading energy and performance claims

in sub/near threshold digital systems. In Proceedings of the International Conference on Computer-

Aided Design, pages 625–631. IEEE Press, 2010.

BIBLIOGRAPHY 117

[69] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural networks.

2016.

[70] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. In Advances in neural information processing systems, pages

91–99, 2015.

[71] Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar. Delight: Adding energy dimension

to deep neural networks. In Proceedings of the 2016 International Symposium on Low Power Electronics

and Design, pages 112–117. ACM, 2016.

[72] Smruti R Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano, Abhishek Tiwari, and Josep Torrel-

las. Varius: A model of process variation and resulting timing errors for microarchitects. Semiconductor

Manufacturing, IEEE Transactions on, 21(1):3–13, 2008.

[73] John Sartori and Rakesh Kumar. Three scalable approaches to improving many-core throughput for

a given peak power budget. In High Performance Computing (HiPC), 2009 International Conference

on, pages 89–98. IEEE, 2009.

[74] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Over-

feat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint

arXiv:1312.6229, 2013.

[75] Donghwa Shin, Sung Woo Chung, Eui-Young Chung, and Naehyuck Chang. Energy-optimal dynamic

thermal management: Computation and cooling power co-optimization. Industrial Informatics, IEEE

Transactions on, 6(3):340–351, 2010.

[76] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556, 2014.

[77] Saurabh Sinha, Greg Yeric, Vikas Chandra, Brian Cline, and Yu Cao. Exploring sub-20nm finfet design

with predictive technology models. In Proceedings of the 49th Annual Design Automation Conference,

pages 283–288. ACM, 2012.

[78] SC Smithsons, G Yang, WJ Gross, and WJ Gross. Neural networks designing neural networks: Multi-

objective hyper-parameter optimization. arXiv preprint arXiv:1611.02120, 2016.

BIBLIOGRAPHY 118

[79] S Soleimani, A Afzali-Kusha, and B Forouzandeh. Temperature dependence of propagation delay

characteristic in finfet circuits. In Microelectronics, 2008. ICM 2008. International Conference on,

pages 276–279. IEEE, 2008.

[80] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana Marculescu. Hyperpower: Power-and

memory-constrained hyper-parameter optimization for neural networks. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2018, pages 19–24. IEEE, 2018.

[81] Dimitrios Stamoulis and Diana Marculescu. Can we guarantee performance requirements under work-

load and process variations? In Proceedings of the 2016 International Symposium on Low Power

Electronics and Design, pages 308–313. ACM, 2016.

[82] Dimitrios Stamoulis, Dimitrios Rodopoulos, Brett H Meyer, Dimitrios Soudris, Francky Catthoor, and

Zeljko Zilic. Efficient reliability analysis of processor datapath using atomistic bti variability models.

In Proceedings of the 25th edition on Great Lakes Symposium on VLSI, pages 57–62. ACM, 2015.

[83] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[84] Radu Teodorescu and Josep Torrellas. Variation-aware application scheduling and power management

for chip multiprocessors. In ACM SIGARCH Computer Architecture News, volume 36, pages 363–374.

IEEE Computer Society, 2008.

[85] M. Toledano-Luque, B. Kaczer, J. Franco, P. J. Roussel, M. Bina, T. Grasser, M. Cho, P. Weckx, and

G. Groeseneken. Degradation of time dependent variability due to interface state generation. In VLSI

Technology (VLSIT), 2013 Symposium on, pages T190–T191, June 2013.

[86] P. Weckx, B. Kaczer, M. Toledano-Luque, P. Raghavan, J. Franco, P. J. Roussel, G. Groeseneken,

and F. Catthoor. Implications of bti-induced time-dependent statistics on yield estimation of digital

circuits. IEEE Transactions on Electron Devices, 61(3):666–673, March 2014.

[87] Thomas Willhalm, Roman Dementiev, and Patrick Fay. Intel performance counter moni-

torl. http://software.intel.com/en-us/articles/intel-performance-counter-monitor/, online, accessed

Jun. 2016.

[88] Jonathan A Winter, David H Albonesi, and Christine A Shoemaker. Scalable thread scheduling and

global power management for heterogeneous many-core architectures. In Proceedings of the 19th inter-

national conference on Parallel architectures and compilation techniques, pages 29–40. ACM, 2010.

BIBLIOGRAPHY 119

[89] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The

splash-2 programs: Characterization and methodological considerations. In ACM SIGARCH Computer

Architecture News, volume 23, pages 24–36. ACM, 1995.

[90] Shiying Xiong and Jeffrey Bokor. Sensitivity of double-gate and finfetdevices to process variations.

Electron Devices, IEEE Transactions on, 50(11):2255–2261, 2003.

[91] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural net-

works using energy-aware pruning. arXiv preprint, 2017.

[92] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-based

accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, FPGA ’15, pages 161–170, 2015.

[93] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. Approxann: an approximate computing

framework for artificial neural network. In 2016 Design, Automation and Test in Europe Conference

and Exhibition, pages 701–706. IEEE, 2015.

[94] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2016.

[95] Yazhou Zu, Wei Huang, Indrani Paul, and Vijay Janapa Reddi. T i-states: Processor power management

in the temperature inversion region. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM

International Symposium on, pages 1–13. IEEE, 2016.

[96] Yazhou Zu, Wei Huang, Indrani Paul, and Vijay Janapa Reddi. Ti-states: Power management in active

timing margin processors. IEEE Micro, 37(3):106–114, 2017.

