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Abstract

In policy analysis, individual preferences are used to measure welfare across the popula-

tion. Nonetheless, individuals are heterogeneous in both what they want or their preference

content, and whether they know what they want or their preference structure. Prior work

typically restricts preference heterogeneity analysis to differences in preference content. This

dissertation explores the intersection of public policy analysis with preference heterogeneity

along these two dimensions. We present a general framework for analyzing and discovering

preference content and structure from choice data. Our framework extends welfare mea-

surement to fully account for preference heterogeneity and can help to better understand

the welfare impacts of new policies for sub-populations. As heterogeneity in preference can

be related to judgment structure, we first study how heterogeneity in preference content is

related to heuristic judgment. We establish the relationship between judgment and choice for

cumulative flood risks. Second, we propose a model that can directly determine differences

in both preference content and structure for individual decision makers empirically using

graph matching methods. Finally, we measure heterogeneity in preference content across

sub-populations. We develop and test a method to uncover relevant sub-populations in

a choice model automatically using machine learning tools. We illustrate the approach

discovering relevant socioeconomic covariates in a recent and real decision facing the Chilean

government about the environmental impacts of electricity generation. Our framework can

help to design policy interventions tailored for the heterogeneous preferences of the public.
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1
Introduction

Policy analysis is often concerned with the determinants of preference and choice. In

policy analysis, individual preferences are used to measure welfare across the population.

Thus, individual preferences are first modeled and later aggregated to evaluate different

policy schemes and forecast their consequences for society. Nonetheless, individuals are

heterogeneous in both what they want or their preference content, and whether they know

what they want or their preference structure. Prior work typically restricts preference

heterogeneity analysis to differences in preference content. This dissertation explores the

intersection of public policy analysis with preference heterogeneity along these two dimensions.

We present a general framework for analyzing and discovering preference content and structure

from choice data. Our framework extends welfare measurement to fully account for preference

heterogeneity and can help to better understand the welfare impacts of new policies for

sub-populations. Our framework can help to design policy interventions tailored for the

heterogeneous preferences of the public.

For over a century, the dominant paradigm for preference analysis has been a set of
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axioms that are necessary and sufficient for behavior to be consistent with the maximization

of a well-behaved utility function, an idea dating back to the nineteenth century theorist

Jeremy Bentham [21]. This paradigm requires decision-makers to be able to consistently

rank any set of alternatives that they come across, restricting preference structure to a total

order [177]. Following this paradigm, discrete choice modeling has been the workhorse for

preference learning, requiring a complete, monotonic and transitive preference map [166]. In

sum, discrete choice models assume individuals map attributes that describe each alternative

to a real-valued scale, then choose the alternative with the highest utility, up to noise. Even

more, it is required that this preferences map is continuous. Continuity in preferences refers

to the condition that individuals take into account all available information when making a

choice in a compensatory process [166].

Humans are largely heterogeneous, with preferences that vary over time [237]. Decision-

makers are also susceptible to subtle but inconsequential changes in how the alternatives are

described or made available such as framing effects, context effects, or reference dependence

[248, 122, 246, 23]. Therefore, other cyclic preference structures besides a total order have

been observed both in lab and in the wild. Hereafter, we provide methods on how to address

these other structures in policy analysis. Further, psychological research finds that the

cognitive burden of selecting the best alternative is often impossible to overcome, and to

cope with the complexities of choice, individuals use simple heuristics to make a decision [89].

For example, continuity often does not hold, with decision-makers using choice rules that are

non-compensatory [178, 238], ignoring some information [178, 109].

From a practical standpoint, in a policy analysis, the modeler has to design the experimen-

tal paradigm, test if the axioms of the theory are fulfilled, choose the parameters to include in

the model, the proper functional form and select the appropriate error structure. This task is

often daunting and will force the use of oversimplified methods and models that can lead to

biased parameter estimates, resulting in harmful distortions when used for decision-analysis
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and policy evaluation. Figure 1.1 organizes the challenges faced by the preference modeler.

First, decision-makers might not be impervious to changes in the elicitation procedure. For

example, participants can fail to understand the information provided, changing their answer

depending on how information is presented. The modeler can address this issue by controlling

for those factors in the experimental design and later in the model specification. Next, choice

data needs to comply with several requirements established by the choice theory to allow the

use of modern discrete choice methods. When those requirements are not fulfilled, results can

be seriously misleading. A preference modeler must be able to detect those inconsistencies

and propose alternatives to address them. Further, the modeler needs to select the proper

choice model specification ex-ante. Finally, statistical model selection is performed and

out-of-sample predictive accuracy of the model is tested.

Figure 1.1: Preference modeling scheme

In this dissertation, we provide new methods for the first three topics exposed in Figure 1.1,

with three case studies. As heterogeneity in preference can be related to judgment structure,

we first studied how heterogeneity in preference content is related to heuristic judgment.

In the second chapter, we study failures of procedural invariance associated with different
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perceptions of cumulative risks depending on risk information, and its influence in insurance

decisions. Catastrophic events, such as floods, earthquakes, hurricanes, and tsunamis are rare,

yet the cumulative risk of an event occurring at least once over an extended time period can

be quite substantial. We study how failures in cumulative risk judgments can bias individual

choices and how to correct these potential failures, improving risk communications. We used

flood risks as a most relevant application.

In the third chapter, we propose a model that can directly determine differences in both

preference content and structure for individual decision makers empirically using graph

matching methods. Our method can discover non-traditional (and traditional) preference

structures empirically using the directed graph representation for a sequence of choices,

constrained optimization graph matching methods, and kernel-based clustering algorithms.

We are able to identify individuals with similar preferences in both content and structure

from pairwise comparison data. Our method helps analysts discover differences in choice

patterns without any prior assumptions. We apply the approach to identify intransitivity or

discontinuity in preferences in new implementations of classic experiments as well as newer

stated preference studies.

Finally, we measured heterogeneity in preference content across sub-populations. We

developed and tested a method to uncover relevant parameters in a choice model automatically

using machine learning tools, the sparse multinomial logit model. The approach is flexible

enough to model a wide variety of phenomena while retaining a parametric form that is readily

interpretable, making it useful for aiding individual and societal decisions. We illustrate the

approach discovering relevant socioeconomic covariates with multinomial logit models in a

recent and real decision facing the Chilean government about the environmental impacts of

electricity generation. We believe enhancing models of preference can benefit policy-makers

by helping them understand the welfare impacts of new policies, and help design policy

interventions customized for the demands of the population.
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"A wealth of information creates
a poverty of attention"

Herbert Simon, 1971

2
Understanding cumulative risk

perception from judgments and choices

Catastrophic events, such as floods, earthquakes, hurricanes, and tsunamis are rare, yet

the cumulative risk of each event occurring at least once over an extended time period can

be substantial. In this work we assess the perception of cumulative flood risks, how those

perceptions affect the choice of insurance, and whether perceptions and choices are influenced

by cumulative risk information. We find that participants’ cumulative risk judgments are

well represented by a bimodal distribution, with a group that severely underestimates the

risk and a group that moderately overestimates it. Individuals who underestimate cumulative

risks make more risk-seeking choices compared to those that overestimate cumulative risks.

Providing explicit cumulative risk information for relevant time periods, as opposed to annual

probabilities, is an inexpensive and effective way to improve both the perception of cumulative

risk and the choices people make to protect against that risk.
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2.1 Introduction

Probabilistic information about a hazard, such as the harmful side effect of a medication

[221], the likelihood of a flood [59], or the chance of a stroke [83], is typically provided in the

form of annual percentage rates or base rates (e.g. in chances per year) [254]. This form of

risk presentation focuses attention on the probability of suffering an event in each period,

obscuring the fact that the probability of at least one event occurring over many time periods

becomes large over repeated exposure [216]. In general, people have a poor understanding of

how risks accumulate over time, with many perceiving no accumulation at all [70, 243]. A

possible reason for this misperception is that people use simple heuristics to cope with the

complex computations required to accurately assess cumulative risks [244]. Although under

some circumstances these heuristics can lead to accurate risk assessments [89], they can also

lead to an underestimation or overestimation of the risk, impacting individual choices [216].

There are two main streams of work on cumulative risks perception, using either judgments

or choices. Many previous studies have examined judgments of cumulative risk [59, 216, 134,

163, 162, 215, 199, 147, 225, 226, 127, 223]. In most of these studies, participants are directly

asked to compute cumulative risks over a specified number of events (time periods) when

given information about the probability of each event occurring. For example, Doyle provided

participants with annual probabilities of a flood (0.5%, 1%, 2%, 3%, 5%, or 8%) and asked

them to estimate the probability of being hit by a flood at least once over a certain time

period (either 1, 5, 10, 25, or 50 years) [59]. The total cumulative probability of suffering an

event X at least once during T years is given by:

P (X ≥ 1) = P (
T⋃
t=1

Xt = 1) =
T∑
t=1

p · (1− p)t−1 = 1− (1− p)T (2.1)

where p is the annual probability of an event and t is an index for each time period. People

do not generally compute those probabilities when asked about cumulative risks. Instead,
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Juslin et al. proposed that people use one of two heuristics to assess cumulative risks [127].

The first is an additive heuristic where decision-makers sum up the probabilities over each

time period t (
∑T

t=1 pt · t) [127], which is the same as a multiplicative rule p × T when pt

is constant over time [59, 199]. A linear model of this judgment heuristic would have an

interaction of the base rate p and time period T , with slope one and intercept at zero [156].

Someone using an additive heuristic would give a cumulative risk assessment of 30% when

faced with a 1% annual flooding risk for 30 years. The second is a mean heuristic, where

decision-makers give cumulative probabilities that correspond to the average of all periods

(1/T ·
∑T

t=1 pt) [127], which is the same as a constant probability if the annual probability pt

is constant over time [59, 199]. Someone who uses a mean heuristic would give a cumulative

risk assessment over 30 years of 1% when faced with a 1% annual flooding risk. For flood

risks, Doyle finds that the dominant heuristic used by people is the additive heuristic, which

can be fairly close to the actual cumulative risk computed using small probabilities or for few

time periods [59].

Other studies have focused on choices, rather than judgments, to understand the rela-

tionship between heuristic use and cumulative risk perceptions [214, 15, 6, 46, 45, 47, 48,

229, 34]. Choice studies provide participants with a set of alternatives for them to choose

among, and identify bias in cumulative risk judgments based on violations of expected utility

theory [256]. Most choice studies have identified an underestimation of cumulative risk [15, 6,

46]. For example, Bar-Hillel asked subjects to choose between two lotteries, a simple lottery

depending on a single draw from a random variable (e.g., roll of a die), and a compound

lottery depending on the outcomes of multiple random variables in a sequence that represent

cumulative risk (e.g., the roll of one die, and if successful, the roll of another) [15]. Although

the probabilities and outcomes were formally equivalent in the simple and compound lotteries,

participants generally preferred the simple lottery, suggesting an underestimation of the

probability of winning, and violation of the axiom of expected utility theory that lotteries
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over the same outcomes with formally equivalent probability distributions are equivalent (the

reduction of compound lotteries axiom) [256, 15].

In this paper, we aim to understand how the heuristics people use when assessing

cumulative risks affect long-term decisions. The relationship between perception of risk

and choice should be strong according to normative theories like expected utility theory,

where risks form the basis of probability assessments which are then multiplied by the utility

of outcomes to form a measure of the desirability of an alternative [256]. However, prior

evidence suggests that “risk perceptions have significant, albeit small, associations with both

intentions and behavior” [202], where the use of choice rules other than expected utility would

diminish the impact of risk judgments on choice. In this work, we use previously described

judgment strategies as a system to label and classify judgments into groups and measure

their effect on choices. We use the classification system from Juslin et al., expecting that

decision-makers use one of two heuristics to assess cumulative risk [127]: 1) a mean heuristic

(i.e. the probability is constant over time periods) resulting in underestimation of risk, and 2)

an additive heuristic (i.e. adding up the event probabilities over the time periods) resulting

in overestimation of risk.

We use flooding risk as a familiar and concrete example. Flooding corresponds to one of

the most devastating hazards in the U.S. [219], yet demand for flood insurance is woefully

inadequate despite subsidized premiums [171]. Although the magnitude of its effect is yet

to be fully understood, the tendency to disregard low probability risks (a possible failure

to account for cumulative risks), could in part explain the “underinsurance problem” [42].

Hence, we aim to identify one possible mechanism of low demand for flood insurance. Further,

we aim to identify how cumulative flood risks might be better communicated to those who

may be exposed to the hazard. To do so, we test the effect of providing cumulative risk

information directly.

We extend prior work by proposing two novel hypotheses. The first is that presenting

8



cumulative risk information will help those who use the mean heuristic recognize their faulty

risk assessment. By providing decision-makers with the correct cumulative probability of

an event for a 1% annual base rate, we expect those who use the mean heuristic to realize

that their cumulative risk assessments can’t possibly be correct. Yet, recognizing the time-

dependence of cumulative risk does not mean decision-makers figure out what the dependence

should be, only that there should be some dependence [69]. One likely outcome is that they

switch from the use of a mean heuristic to the use of an additive heuristic. This switch as a

result of information should generally improve cumulative risk assessments, but can lead to

large inaccuracies for long time periods, where the additive heuristic fails (and when used

blindly, can yield probabilities greater than one).

To test this hypothesis we randomize participants to one of two conditions, either an

example of how annual risks accumulate over time, called “information” hereafter (“Please

note that a 1% chance of flooding each year is the same as a 26% chance within 30 years”), or

no cumulative risk information. This manipulation contrasts with probabilistic information

usually provided by governmental agencies to the public in the form of the chance of flooding

occurring per year [121], with only a few efforts offering cumulative risk information [121,

65]. Our manipulation, although heavy-handed, provides one additional point on the curve

relating base rates and the time period of exposure (1% and 30-years) to cumulative risk [69].

The manipulation may help respondents think of that curve, providing insight into how risks

accumulate over time. One alternative explanation is that instead of helping decision-makers

deduce the correct relationship between base rates, time period, and cumulative risk, the single

piece of information may lead them to abstract an alternative rule [164], such as the additive

heuristic, which would lead to an overestimation of cumulative risk [127]. A second alternative

is that the manipulation may provide a new anchor that respondents adjust depending on

the base rate and time period, without invoking the additive heuristic or learning the true

relationship [231, 164]. The anchoring explanation would lead to increasing inaccuracy of risk
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assessments as they deviate from the 1% and 30 year time period, although those deviations

would not be systematic overestimates, as in the case of the additive heuristic.

Our second hypothesis is that errors in cumulative risk assessments are reflected in choices

to insure against flooding. We propose that choices over risky prospects first involve an

assessment of the probability of each outcome, followed by integration of those probabilities

with other information to yield a choice. This two-stage process can be understood as the

editing phase and evaluation phase described in Prospect Theory [129], where a decision

maker first edits risk information with a judgment function π(p, T ) that depends on base

rate p and time period T [240], then later integrates that judgment with outcomes to yield a

choice [240]. This leads to the prediction that participants who use a mean heuristic, who

underestimate the risk, will make more risk-seeking choices, while those that use an additive

heuristic, who overestimate the risk, will make more risk-averse choices.

To test these hypotheses we asked participants to make cumulative flood risk assessments

directly, along with choices about insurance policies, imagining that they own a house in a

flood-prone area. In our judgment task, participants are asked questions such as “imagine

that the risk of a flood is p% each year. Please estimate the risk for a period of T years”. In

the choice task, risk perception is inferred through a series of binary choices between a risky

and a safe option, representing no insurance coverage and full insurance coverage respectively.

We then compare the heuristics implied by their judgments and choices, as well as modeled

choices as a function of the judgment heuristics they used. In the next section we provide

more details regarding the design of the study, and the judgment and choice tasks.

2.2 Study design

Our survey consists of three sections: a judgment task, a choice task, and a general section

with follow-up questions and socioeconomic information. A full version of the questionnaire

and the survey data is available online (osf.io/uqp25). A randomly assigned group is provided
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the following sentence (“information condition”) during both their judgment and choice tasks:

“Please note that a 1% chance of flooding each year is the same as a 26% chance within 30

years”. All participants were asked to complete both judgment and choice tasks, with the

order randomized between subjects, resulting in a 2× 2 between-subjects design, with order

of the tasks as the first factor, and cumulative risk information (either provided or not) as

second factor. In Figure 2.1 we provide a schematic of our experimental design.

We recruited participants using Amazon Mechanical Turk (MTurk), a platform for

recruiting that is comparable to laboratory experiments [52]. Inclusion criteria were age of

at least 18 years, IP address in the U.S., and completion of more than 1,000 hits with an

approval rate of 95% or higher. We provided a payment of $0.5 per participant and a $1

bonus payment if the participant answered three of four attention checks correctly. These

questions were two choice sets with a dominated alternative, and two memory questions

about the hypothetical scenario. Approximately 90% of the sample answered three questions

correctly and were paid the bonus. Our main analysis includes all participants, and is robust

to exclusion of those who failed the attention checks.

We administered the survey between December 18th and December 20th 2015, recruiting

997 participants. Participants were on average 37 years old (standard deviation of 11) and

49% where female. Participants had on average 15 years of education (standard deviation of

4) and 34% reported that they finished high school with grade A in mathematics. Although

21% stated they had experienced a flood, only a few had been physically injured in a flood

(1%) or experienced financial loss (9%). Further, 7% of the sample had experience with online

flood risk calculators and 6% had flood insurance.
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Figure 2.1: Experimental design schematic. Participants were randomly assigned to the
information or no-information condition. Then they were also randomly assigned to receive
the judgment task first or the choice task first. We initially hypothesized that, if the choice
task was focused only on a 30-year period, a judgment task for both a 20 and a 30-year
period could provide a sense of inconsistency across the experiment. Hence, we randomly
assigned participants in the no-information condition that received the judgment task first
to make risk assessments about a 20 and 30-year period, or to make assessments only for a
30-year period. Judgments and choices were not significantly different in these two groups, so
we grouped the responses.

2.2.1 Judgment task

In the judgment task we ask participants to assess the cumulative probability of a flood over

periods of 20 or 30 years when the base occurrence rates are 1%, 2% or 4%. We selected risk

levels based on the definition of high risk area in the U.S. [65]. A high-risk area is exposed

to a chance of at least 1% of a catastrophic flood in any given year. The 1% benchmark is

commonly used in brochures to communicate flood risks [121, 65]. Base rates of catastrophic

flood events higher than 4% are uncommon and may have made the task implausible, so we
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did not use numbers greater than 4% [71]. Specifically, participants were asked the following

(below we show example for base rate of 1%):

“Imagine that you have just moved to a city that may experience floods. You

plan to buy a house for $300,000 on a 20 or a 30-year mortgage. If a flood hits

your property, the house will be entirely destroyed. Suppose there is a 1% chance

each year that your house will be destroyed by a flood. If you buy a house with

a 20-year mortgage (30-year mortgage), what is the percent chance that a flood

will destroy your house during that period?”

2.2.2 Choice task

For the choice task, participants were asked to make choices about different insurance options

given varying cumulative flooding risks. Participants made 10 choices between two options,

A and B, with one representing full insurance coverage and the other no insurance coverage,

both for a fixed decision time period of 30 years. Two choices were dominated (1 and 10 in

Table 2.1), where one of the alternatives was strictly better on all dimensions. For example,

in choice 1, we offered full insurance coverage at zero cost in Option B, which should always

be preferred over no insurance coverage in Option A. We randomized the order of options

across participants. Participants were asked to make choices given the following hypothetical

scenario:

“Imagine that you have just moved to a city that may experience floods. You

plan to buy a house for $300,000 on a 30-year mortgage. If a flood hits your

property, the house will be entirely destroyed. To protect your house from the

flood risk during your mortgage period, your bank offers you a 30-year insurance

policy bundled into your mortgage payments. For an additional yearly fee, the

insurance policy will pay you for some of the house’s value if it is destroyed by a

flood.”
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The options described the probability of a flood each year (with annual base rate proba-

bilities of 1%, 2% or 4%), the monetary loss when a flood does ($300,000) or does not occur

($0), and the insurance premium that the participant needs to pay each year throughout the

duration of a 30-year contract. Insurance premiums used in the study are designed to provide

more than actuarially fair premiums, corresponding to a contract where total premiums are

equal to expected losses. If the annual flood risk was 1%, the annual premium was either

$1,000 or $1,500. If the annual flood risk was 2%, the premium was either $1,500, $3,000

or $5,000. Finally, if the annual risk was 4% the premium was $2,000, $5,000 or $8,000.

Table 2.1 presents stimuli for the choice task. The first column presents choice set ID and

flood annual risk in parenthesis, columns two to four present cumulative risks under different

heuristics, columns five and six present insurance yearly premiums, and columns seven to ten

present both expected loss and expected cost in each option.

Table 2.1: Choice stimuli. Each option is composed of the monetary loss at stake, the
chance of a flood each year, and the insurance premium for a 30-year contract. Option A
(no coverage) implies the loss of the $300,000 house in case of a flood and a zero insurance
premium. Option B (full coverage) implies no loss in case of a flood at the stated insurance
premium. Additive heuristic judgments are truncated at 100% when necessary. Expected
loss is computed with a 0% discount rate.

Cumulative risk Insurance premium A (no coverage) B (full coverage)
(% 30-year period) ($ per year) ($ per 30-years) ($ per 30-years)

Accurate Mean Additive A B E(Loss) E(Cost) E(Loss) E(Cost)

1 (1%) 26% 1% 30% 0 0 78K 0 0 0
2 (1%) 26% 1% 30% 0 1,000 78K 0 0 30K
3 (1%) 26% 1% 30% 0 1,500 78K 0 0 45K
4 (2%) 45% 2% 60% 0 1,500 135K 0 0 45K
5 (2%) 45% 2% 60% 0 3,000 135K 0 0 90K
6 (2%) 45% 2% 60% 0 5,000 135K 0 0 150K
7 (4%) 71% 4% 100% 0 2,000 213K 0 0 60K
8 (4%) 71% 4% 100% 0 5,000 213K 0 0 150K
9 (4%) 71% 4% 100% 0 8,000 213K 0 0 240K
10 (4%) 71% 4% 100% 0 2,000 213K 0 213K 60K
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Each insurance contract corresponds to a screening device designed to separate individuals

according to their risk perception [222, 191, 220], where premiums are selected to attract

individuals either exposed to a high or a low risk [191]. In our case, risk exposure is the same

across individuals, but cumulative risk judgments heuristics can potentially lead to different

risk perceptions [220]. For example, a decision maker that faces a 2% chance of suffering a

catastrophic flood (or equivalently a 45% chance during a 30-year mortgage) should prefer

full insurance coverage at a premium of $1,500 per year (an expected cost of $45,000 in a

30-year period) over an excepted loss of $135,000 if no insurance coverage is purchased. The

same applies if risk is perceived as higher. In contrast, if a decision maker follows a mean

heuristic, expected loss is estimated only at $6,000, and no insurance coverage should be the

choice.

According to expected utility theory, when offered a fair insurance premium, a risk-averse

individual with accurate judgment should prefer a full insurance coverage contract [252].

Moreover, risk-averse individuals should be willing to pay an additional amount or risk

premium on top of the actuarially fair premium (e.g., the risk premium is $74,000 for the

example, if we assume a square-root constant relative risk aversion (CRRA) utility function).

The same applies to individuals that overestimate the risk by using an additive heuristic.

In contrast, if individuals severely underestimate cumulative risk by using a mean heuristic,

they would consider themselves worse off buying insurance, instead preferring no insurance

coverage. Thus, depending on the judgment heuristic participants use, individuals might

choose to seek more or less coverage than expected utility maximization would prescribe. In

Figures 7.1 and 7.2 in the appendix section we graphically illustrate the screening device and

the effect of risk aversion.

Risk aversion is present when decision makers frame the purchase for insurance in terms

of gains with respect to the worst-case scenario (a catastrophic flood) [258]. However, the

purchase of insurance could be also be framed as a loss with respect to best-case scenario (no
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flood) [258]. When choice is framed as a monetary loss, Prospect Theory predicts subjects

are risk-seeking [129], which in our case would lead to preferences for no insurance over

full coverage. This presents a challenge to the inference that only individuals using a mean

heuristic (i.e. those that underestimate the risk) would prefer the no insurance coverage

option.

Prospect Theory also predicts overweighting of low probabilities and underweighting of

high probabilities in choice [129, 241]. Accordingly, a decision-maker following an additive

heuristic, tending to overestimate cumulative risks, when combined with the Prospect Theory

probability weighting function, should have that overestimation dampened in choice, and

vice versa for those who use a mean heuristic. As a result, Prospect Theory preferences will

tend to mitigate the effect of risk assessment heuristics. Finally, our analyses assume the

insurance policy would be paid during the entire contract period. Many insurance contracts

forfeit future payments after an event. If participants assumed insurance would not be paid

for the entire 30 years, the expected value difference between no insurance coverage and full

insurance coverage would be harder to distinguish.

2.3 Results

2.3.1 What heuristics do people use for cumulative risks judgments?

Based on their judgments, we classified participants into three groups. The first two were

defined according to their similarity with an additive heuristic or a mean heuristic. A third

group was identified as being accurate (i.e. close to the real cumulative risk value). The three

groups were identified as follows: suppose πi is the subjective cumulative probability [240]

over time period T provided by participant i for an event with annual probability p. Then, if

πi − (1− (1− p)T ) ≥ 0 and |πi − p× T | < |πi − (1− (1− p)T )|, the participant’s cumulative
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risk assessment πi is closer to an additive heuristic (p×T ) than to accurate judgment, and we

categorize the judgment as following an additive heuristic. If instead |πi − (1− (1− p)T ) < 0

and |πi − p| < |πi − (1− (1− p)T )|, judgments are categorized as following a mean heuristic.

Otherwise, judgments are categorized as accurate. In Figure 2.2, we show the proportion of

participants in each group, for judgments with 1%, 2% and 4% base rates. Non-monotonic

judgments (i.e. chance of a flood greater for a 20-year period than for a 30-year period) were

excluded from the analysis (67 participants) [199].

Figure 2.2: Proportion using different heuristics and 90% confidence intervals. 20 subjects
provided decimal responses, which we transformed to percentages. Me: Mean, Acc: Accurate,
Add: additive.
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We used a series of chi-squared tests of independence χ2(k) with Bonferroni correction and

k = 1 degrees of freedom to evaluate differences in pairs of proportions between conditions

[260]. Contrary to previous findings [59], we observed the mean heuristic as the most prevalent

strategy in the no-information condition for all annual base rates (all χ2(1) ≥ 140, p < 0.01).

Indeed, for all cases where no cumulative risk information is provided, approximately 70%

of our participants used a mean heuristic. Moreover, the proportion using a mean heuristic

was not statistically different for all annual base rates (all χ2(1) ≤ 2.87, p ≥ 1). When

additional information was provided to participants, the proportion using a mean heuristic

was significantly reduced (all χ2(1) ≥ 183, p < 0.01). Surprisingly, even when the correct

information was provided, the proportion of participants underestimating the risk was

significantly greater than zero (χ2(1) = 48, p < 0.01). The use of the base rate as an anchor

to provide risk judgments might be harder to overcome than initially expected.
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No information Information

Figure 2.3: Probability judgment densities by heuristic use. Kernel density estimates are
presented separately for 1%, 2% and 4% base rates, and for a 30-year time period.
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When the cumulative risk information was available, the majority of participants were

accurate for the 1% and 2% base rates (74% and 68% respectively), but this was not true for

the 4% base rate (36%), where the additive heuristic fails to give accurate risk assessments.

Accuracy was significantly reduced as the base rates increased (all χ2(1) ≥ 3.4, p < 0.03).

Figure 2.3 shows kernel density plots of risk assessments for 1%, 2% and 4% base rates for a

30-year period. The left panel in Figure 2.3 corresponds to the no-information condition and

the right panel corresponds to the information condition. For the no information condition,

we found that judgments were well represented by a bimodal distribution, with a group that

severely underestimates the risk and a group that moderately overestimates risk. Judgment

distributions varied significantly between the no-information and information condition,

where the additional information improved accuracy. We reject the null hypothesis of equal

judgment distributions using a Kolmogorov-Smirnov test (all D614,383 > 0.5, p < 0.01 with

Bonferroni correction), where u and v in test statistic Du,v are sample sizes for each empirical

distribution. For the accurate group, participants likely use other judgment heuristics. For

example, those in the information condition classified as with accurate judgment, seemed to

be anchoring on the 26% value, then adjusting based on the base rate information. The mode

for this group closely resembles a multiplicative factor of the anchor (26%) and the ratio

between the base rates (e.g. 2%
1%
× 26% = 2× 26% = 52% and 4%

1%
× 26% = 4× 26% = 104%)

2.3.2 Can heuristics affect flooding protection choices?

In Figure 2.4 we compare the proportion of participants that chose no insurance coverage

according to their judgment heuristic. For the choice task, we classified participants into one of

the three groups (mean heuristic, additive heuristic, accurate) by majority rule. Because there

were three base rates, this meant that participants were assigned to the group that best fit

two of the three judgments. As expected, as insurance gets more expensive, more participants
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prefer no insurance coverage. Participants that follow a mean heuristic were more likely to

prefer no insurance coverage. This conclusion holds across all insurance premium levels and

base rates, with the exception of the stimuli of a $1000 insurance premium combined with a

1% base rate (all χ2(1) > 2.3, p < 0.05). Individuals that underestimated cumulative risk in

their judgments (i.e. those that use the mean heuristic) tended to be more risk-seeking than

other individuals (i.e. they were more frequently not willing to pay for insurance coverage).

The proportion of risky choices (i.e. no insurance coverage) for participants that followed

an additive heuristic was not significantly different from the choices of those with accurate

judgments (all χ2(1) ≤ 2.9, p ≥ 0.09).

Figure 2.4: Proportion that choose the no insurance coverage option with 90% Wald confidence
interval. At the top of the plot, we show the insurance yearly fee. Me: Mean, Acc: Accurate,
Add: additive.
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In order to better understand our participants’ choices, we used multinomial (MNL)

and latent class (LC) logit models [235, 98]. In all models, as we assumed utility is a

linear function, the probability of choosing no insurance coverage depends on the subjective

expected value in the no insurance and insurance alternatives PA = eSEVA

eSEVA+eSEVB
[8]. Weighted

additive approximations for the subjective expected utility of each option are: SEVA ≈

(α+βMean) ·p+
∑L

l=1 γlSl+
∑K

k=1 δkDk+A and SEVB ≈ ρ ·y, where p is the probability of a

flood and y is the insurance premium each year. Here Sl are L socioeconomic variables, Dk are

K dummy variables controlling for experimental factors such as order of the task (Order) or

treatment condition (Condition), and the sub-index indicates the alternative (A or B). Notice

that in alternative A, monetary loss in case of a flood is invariant ($300K) and hence omitted

from the equation. Likewise, in alternative B full insurance coverage limits the loss to zero

and hence expected utility is unaffected by the risk. Mean is a dummy variable accounting

for the use of a mean heuristic as an interaction term with base rate p, and the constant

term A measures an unexplained tendency to prefer no insurance coverage. A, γl, δk, α, β

and ρ are coefficients to be estimated. A latent class logit models allows inferring preference

heterogeneity, and hence different coefficients, in different sample segments assuming a finite

mixture of q classes. An LC model where q = 1 is equivalent to a multinomial logit model.

Table 2.2 provides the results of those regressions.

Model MNL 1 in Table 2.2 shows participants are sensitive to increments in risk (base rate

p), where a negative coefficients shows that increasing base rates will reduce the attractiveness

of no insurance coverage. If we disregard treatment effects and the constant term, MNL 1

model predicts that using a mean heuristic will make preference for no insurance coverage

less affected by base rates with SEVA ∝ −14.9× p, compared to an additive heuristic where

SEVA ∝ −33.8× p. Figure 2.5 presents logit probabilities. In the first panel in Figure 2.5,

we observe that individuals using a mean heuristic (in a red solid line) are more likely to

prefer the risky option than individuals using an additive heuristic (in a black dashed line).
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Table 2.2: Multinomial (MNL) and latent class (LC) logit models for probability of no
coverage.

Dependent variable:

P(no coverage)

(MNL 1) (MNL 2) (LC:Class 1) (LC:Class 2)

Base rate (p) −33.8∗∗∗ −34.1∗∗∗ −52.8∗∗∗ −47.1∗∗∗
(3.1) (3.1) (6.8) (6.0)

Insurance premium (y) −3.4 ×10−4∗∗∗ −3.4 ×10−4∗∗∗ −5.8 ×10−4∗∗∗ −7.2 ×10−4∗∗∗

(1.5 ×10−5) (1.5 ×10−5) (3.2 ×10−5) (5.6 ×10−5)
Constant (A) −1.0∗∗∗ −1.1∗∗∗ −2.8∗∗∗ 0.2

(0.1) (0.2) (0.2) (0.2)
Base rate (p):Mean 18.9∗∗∗ 19.3∗∗∗ 8.3∗∗ 18.7∗∗∗

(2.0) (2.0) (3.9) (5.8)
Condition (No information) −0.4∗∗∗ −0.4∗∗∗ −0.7∗∗∗ −0.5∗∗∗

(0.1) (0.1) (0.2) (0.2)
Order (Judgment first) 0.2∗∗ 0.2∗∗ −0.1 0.1

(0.1) (0.1) (0.2) (0.2)
Condition:Order 4.4 ×10−3 0.03 0.9∗∗∗ 0.3

(0.1) (0.1) (0.3) (0.3)
Age (years) −0.001

(0.002)
Gender (female) 0.02

(0.1)
Education (years) 0.002

(0.01)
Math grade in high school (A) 0.2∗∗∗

(0.1)
Experienced a flood 0.02

(0.1)
Injured in a flood −0.6∗

(0.3)
Experienced financial loss in a flood −0.03

(0.1)
Flood insurance −0.3∗∗

(0.1)

Constant (Class 2) −0.6∗∗∗
(0.03)

Observations 7,658 7,650 7,658
Log Likelihood −4,608 −4,592 −3,507
BIC 9,218 9,188 7,018

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Further, a higher insurance premium y, will make SEVB lower, where a negative coefficient

indicates that full insurance coverage becomes less attractive as the premium increases [232].

Also in the first panel in Figure 2.5, increasing insurance premiums from $2, 000, to $5, 000
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and $8, 000 per year systematically increases the chance of choosing no insurance coverage.

Further, model MNL 2 in Table 2.2 shows participants that had been injured in a flood

or that currently hold flood insurance, with a negative coefficient, had a lower probability

of choosing no insurance coverage. Strikingly, participants with higher numeracy, with a

positive coefficient, had a higher probability of preferring no insurance coverage. A logistic

regression model showed that among several covariates, only numeracy skill was significantly

related with a lower probability of risk underestimation in the judgment task (p < 0.1).

Figure 2.5: Probability of choosing option with no insurance coverage with 90% parametric
bootstrapped confidence interval with 10,000 draws from MNL model and a LC model.

Finally, our latent class model in Figure 2.5 uncovers two classes that may be interpreted

as a framing process, where Class 1 individuals (35%) are risk-averse with a negative constant

term A favoring preference for insurance, and Class 2 individuals (65%) are risk-seeking with
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a positive constant term A (although not significant) favoring preference for no insurance

coverage. Class 1 individuals are unaffected by judgment heuristics as evidenced in Figure

2.5 by red and black dashed lines being very close to each other in the middle panel.

2.4 Discussion

In this study we examined the heuristics people use when assessing cumulative flooding risks,

the effect of those assessments on their choices, and a simple method of improving those

judgments and choices. Given prior work showing that respondents use either a mean heuristic

that leads to underestimation of cumulative risk or an additive heuristic that overestimates

cumulative risk, we hypothesized that respondents that use the mean heuristic will make

risk-seeking insurance choices, while those that use the additive heuristic will make risk-averse

insurance choices. Furthermore, we hypothesized that providing a simple piece of information

with the correct cumulative risk for one scenario (1% and 30-years) would lead to less reliance

on the mean heuristic overall, and as a result, more accurate cumulative risk perception, and

more risk averse choices.

To test our hypotheses, MTurk respondents completed an online survey experiment

with both judgment and choice tasks. In line with prior studies, we found that cumulative

risk judgments could be represented by a bimodal distribution, with a group that severely

underestimates the risk and a group that moderately overestimates the risk. Contrary

to previous findings, where the majority of individuals used an additive heuristic and

overestimated the risk [59], we found that the majority of individuals used a mean heuristic to

assess the cumulative probability of a catastrophic flood, leading to systematic underestimation

of the risk [127]. For comparison, Doyle presented flood base rate risks as both the percentage

chance per year and the frequency of occurrence (number of houses affected per 1,000 units),

finding overestimation [59]. It is matter of future investigation to discover if the dominant
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judgment heuristic depends on the metric used to present risks (such as relative frequencies

versus probabilities).

Individuals that used a mean heuristic were also less inclined to pay for insurance,

inappropriately taking their chances with the cumulative flood risks that they underestimated.

The simple provision of cumulative risk information (in addition to annual probabilities)

substantially reduced that tendency. If applied more broadly, such a simple approach could

significantly improve insurance decisions among homeowners not legally bound to pay for

insurance [118]. Similar results might hold for other protection decisions that could be paid

out on a long term loan, such as increasing house elevation, investing in wet or dry flood

proofing, and building flood barriers. However, consistent with the finding that individuals

generally fail to infer the normative principles of judgment and decision-making from examples

[69], the benefit of providing the correct cumulative risk for a 1% annual probability was

seriously diminished when decision-makers faced a 4% annual probability, suggesting that

cumulative risks would have to be provided for all levels of risk, not just for a single annual

probability.

As previously proposed [59, 199, 225, 226, 127], results from the judgment task suggest

that participants are likely using an anchoring and adjustment heuristic [244]. We propose

that participants first intuitively consider the base rate p as a plausible answer. If bias is

not detected [128], minor adjustments occur through an addition process p+ α, leading to

responses that are close to the base rate. On the other hand, if information with the correct

cumulative risk probability is provided, bias is detected and participants search for a new

heuristic [128]. A variant of an additive rule, p× T corresponds to the most likely available

rule [223, 227, 242]. Interestingly, several participants using an additive rule truncated

their answer to 100% when asked for cumulative risk judgments with 4% base rate and

30-year period [59, 199]. It seems that when this heuristic leads to unreasonable values,

participants improve responses by an anchoring and subtraction process (p× T − β), rather
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than recognizing their flawed reasoning and adjusting the heuristic itself [199]. Alternatively,

participants may have used the additional information (26% for a 1% annual base rate) as a

new anchor, then when faced with a new base rate, tried to adjust that anchor in a seemingly

reasonable way, by multiplying by the new base rate ( p
1%
× 26% + γ, with γ < 0 when the

heuristic apparently yields unreasonable results). An open question is how many points on

a cumulative risk curve a decision-maker requires before that curve can be reliably learned

[164].

Participants showed significant heterogeneity in insurance decisions even after accounting

for the judgment heuristic they used. One explanation for this result is that participants

may have framed the decision differently, perceiving the insurance option to be either a gain

or loss relative to an unobserved individual-specific reference point [129]. If the reference

point corresponds to the best-case scenario (no flood), paying for insurance is seen as a loss,

leading to risk-seeking behavior [129, 258, 241], and preference for no insurance coverage

over full insurance coverage. If the reference point corresponds to the worst-case scenario (a

catastrophic flood), paying for insurance is seen as a gain [129, 241]. Although predicting

framing processes at an individual level is difficult [67], our latent class model uncovers two

hidden classes that may be interpreted as a framing process, where Class 1 individuals are

risk-averse and Class 2 individuals are risk-seeking. Interestingly, Class 1 individuals are

unaffected by judgment heuristics.

With the exception of numeracy, we did not find a significant effect of different covariates

on cumulative risk estimation. However, the work presented here is not a comprehensive

analysis of all the factors that may influence cumulative risk assessments. For example, Keller

et al. showed that affect is related to flood risk perception by presenting photographs depicting

houses during a flood, observing an increase in perceived risk [134]. Likewise, Knäuper et

al. tested whether people underestimate the cumulative risk of HIV infection of potential

attractive partners, showing an underestimation of risk associate with a motivational bias [137].
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Other studies have also shown a direct relation between emotions an flood protective behavior

[230, 265, 205]. These results are in line with the use of an “affect heuristic” (i.e. judgments

are based on emotions) [217]. “Anticipatory emotions” such as "fear, worry and anxiety" [151],

or “anticipated emotions” such as "regret, guilt or shame" [151] under a catastrophic scenario

might also explain bias in cumulative risk judgments [147, 202, 151]. Strikingly, participants

with higher numeracy had a higher probability of preferring no insurance coverage. Although

high numeracy individuals are more likely to select the appropriate mathematical rule, they

may extract more “affective meaning from numbers”, clouding the decision process [179].

Experience plays an important role in risk perceptions and decisions [263]. This is also

true for flood hazards [38, 132]. Previous research has shown that past experience is a crucial

factor influencing risk perceptions [206, 192, 120, 139, 133, 134]. This phenomenon is related

with the availability heuristics [242], where perceived risk is intensified when past events can

be easily remembered. Past experiences also influence mitigation behavior [101, 204, 138],

where a history of flood-related damage can heavily impact flood insurance demand [17, 266,

28, 146]. However, previous studies have not addressed how experience affects cumulative

risk perceptions. Our results show that experience with a flood is a significant covariate

in the choice task, but not in the judgment task. Nonetheless, only participants that had

been injured in a flood were more likely to prefer full insurance coverage. It may be that

the severity of the consequences of past flood events is what truly molds preferences for

preventive measures [257, 228, 101, 205]. A possible explanation is that an event such as a

personal injury may be easier to retrieve from memory, heightening risk perception [134, 131].

Further, theories of experiential based choice found that the frequency and recency of an

event are the most relevant determinants of both risk judgments and choice [95, 115]. This is

true for flood events [16, 39] and could potentially impact cumulative risk perceptions as well.

Furthermore, our results may be domain specific [88]. It has been shown that psychometric

risk-domain characteristics such as control or familiarity can affect risk appraisals [72, 262].
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Future work should test if our conclusions are driven mainly due to the flood risk context or

whether the errors apply more generally.

2.5 Conclusions

Respondents in our study demonstrated a poor understanding of how risks accumulate over

time, with many perceiving no accumulation at all. The typical approach of providing

information about the annual risk of an adverse event, such as a catastrophic flood, is unlikely

to help, as decision-makers are unable to reliably transform that information into cumulative

risks, resulting in judgments that underestimate the actual risk, and choices that fail to

protect against that risk. Explicit cumulative risk information is an inexpensive and effective

way to improve both the perception of cumulative risk (measured using judgment), and the

choices people make to protect against that risk. When provided for the appropriate time

period of actual decisions, such a strategy has the potential to improve both the public’s

perception of the cumulative risks of natural hazards, and their choices in the face of uncertain

outcomes.
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"It is by logic that we prove, but
by intuition that we discover"

Henri Poincaré, 1908

3
Learning preference structure from

choices with graph matching

Approaches that elicit preferences from choices people make assume decision-makers know

what they want. That is true if decision-makers can consistently order available alternatives,

yielding transitive preferences, and are not susceptible to subtle changes in how alternatives

are described. We leverage recent advances in graph matching and non-linear embeddings, to

cluster decision-makers based on what they want or preference content, and whether they

know what they want or preferences structure. Across three pairwise comparison experiments,

including classic studies of risky choice and a two-attribute study about electricity generation

portfolios, we are able to characterize heterogeneity of both the content and structure of

preferences. Decision-makers frequently choose in a way consistent with utility maximization,

yet some decision-makers make choices consistent with heuristic rules, while others appear to

be uncertain about their preferences. As a generalization of traditional preference analysis, the

approach can be used to make recommendations for those with consistent preferences, uncover

complex choice rules, and suggest paths toward clarification for those who are uncertain.
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3.1 Introduction

The relationship between preference and choice is one of the most important topics in

Psychology [209, 239, 68, 40, 189], Economics [21, 177, 195, 3, 129, 250, 245, 167], and the

Decision Sciences [211, 241, 247, 66]. The recent emergence of massive amounts of data

on individual choices, from product purchases in online marketplaces, to voting in local or

national elections, has led to the development of sophisticated statistical models that aim

to determine the basic attributes that people use to make their choices. For example, many

recommender systems use the similarity of individuals’ past choices to make suggestions

about products [91], the value of the statistical life is modeled using econometric estimates

of the compensation individuals require in exchange for doing a job that has a higher risk

of death [253, 5, 103], and votes are tallied under the assumption that each vote contains a

well-defined expression of the voter’s preference [187].

In each case, individual choice behavior reveals preferences that are consistent with

utility maximization only if decision-makers can order the available alternatives [256, 11],

and are not susceptible to subtle but inconsequential changes in how the alternatives are

described or presented (framing effects, context effects, reference dependence) [246, 23]. If

these conditions hold, it is possible to define a rank ordering of the alternatives according to

the decision-maker’s preferences, and there exists an ordinal utility function corresponding to

that ranking.

Researchers in the decision sciences have found that, in many circumstances, preferences

are not always well-behaved [246, 23]. One reason for these deviations is that the burden of

selecting the best alternative among a large set, considering the potential costs and benefits

of each alternative, is too difficult [66], forcing individuals to use short-cuts or heuristics to

make their choices [210, 89, 178]. For example, one psychologically plausible way to deal

with complex choices is to use only the most important attribute unless the alternatives are
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psychologically indistinguishable on that attribute. Tversky’s lexicographic semiorder is such

a process [239], and can lead to intransitive behavior.

In simple decisions between two alternatives, each with few attributes, cognitive overload

is less likely to occur. However, decision-makers may still behave in a manner that is

inconsistent with utility maximization if they are unsure about what they want. For example,

a prospective homeowner may begin searching based on square footage, but, after touring a

few homes, decide that the number of full bathrooms is the more important attribute. Such

changes in decision rules, whether systematic or random, will lead to inconsistent choices

and an inability to construct a proper ranking over alternatives. If that inconsistency arises

from random fluctuations in preference, there is a substantial literature around stochastic

transitive preferences that can be used to model choice data [160, 56]. If inconsistency arises

only in the short-run, then giving decision-makers more time or more opportunities to choose

will lead to stable preferences [40]. Yet not all choice inconsistencies can be characterized as

random deviations from well-ordered preferences or failures to reach long-run stability [246,

23].

To separate decision-makers that know what they want from decision-makers that are

uncertain or use choice heuristics, we develop a statistical approach that uses pairwise

comparisons to cluster decision-makers based on the content and structure of their preferences.

To do this we leverage recent advances in graph matching and non-linear embeddings. We

first represent individual choices as preference graphs, then compute the distance between

preference graphs for a sample of decision-makers, embed these distances into a lower

dimensional space, and finally clusters decision-makers based on these embeddings. In

what follows we describe the method and we apply the approach to uncover clusters of

decision-makers with different preference content and structure across three experimental

tasks.

32



3.2 Learning preference structure

In the following section we describe our approach. Figure 3.1 summarizes the four steps of our

method for a simulated sample of 100 decision-makers. As aforementioned, first we construct

preference graphs for each decision maker, then compute dissimilarities in both content

and structure between all pairs of decision-makers. Next, we estimate a lower dimensional

embedding for each dissimilarity matrix. Finally, we find clustering allocations and propose a

decision rule for each cluster.

Figure 3.1: Method summary. The schema summarizes the four steps of our method for a
simulated sample of 100 decision-makers. First, we represent choices as preference graphs.
Next, we compute dissimilarities on both content and structure. Further, we estimate a lower
dimensional embedding for each dissimilarity matrices. Finally, we find clustering allocations.

3.2.1 Preference representation as graphs

For step 1 in Figure 3.1, our basic unit of analysis is an individual decision-maker’s preference

graph G = (V,E), which consists of a set of vertices V and edges E where vertices represent
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alternatives and edges represent binary preference relations between alternatives. For all

pairs of alternatives a and b, one and only one of the following three preference relations

holds [30]: i) if a � b, the decision maker strictly prefers a over b, then there is a directed

edge a→ b and not b→ a in the graph (strict preference or aPb). ii) If a ∼ b, the decision

maker is indifferent between a and b, then a and b are connected by an undirected edge a− b

(indifference or aIb). iii) If a is incomparable with b, then no edge between a and b exists

(incomparability or aJb). Although the preference graph representation is quite general, we

focus on tournaments [174], where all alternatives are compared and all preference relations

are strict. The four types of tournament structures possible for four alternatives are shown in

Figures 3.2a, 3.2b, 3.2c, and 3.2d [55]. Preference graphs can also be represented in terms of

their adjacency matrices A, where each cell Aij in the matrix is a 1 if alternative i is strictly

preferred to j, and 0 otherwise. Adjacency matrices are shown in Figures 3.2e, 3.2f, 3.2g, and

3.2h, with reflexive preferences (along the main diagonal) omitted.

Preference graphs can be oriented such that alternatives with a higher score are placed

closer to the top, where the score for an alternative is the number of times it is preferred

to each other alternative [174]. Arrows are omitted when going from top to bottom in the

graph if transitivity holds, and curved upward arrows show transitivity violations. With four

alternatives, the maximum score is 3 (an alternative that is preferred to all others), and the

minimum is zero (an alternative preferred to no others). A score vector of s = [3, 2, 1, 0] is a

complete ranking of the alternatives, or a chain, shown in Figure 3.2i, and is consistent with

classical utility maximization [249, 2]. In contrast, the lexicographic semiorder is a preference

graph that can contain cycles [239], such as those shown in Figures 3.2j, 3.2k, and 3.2l, where

the exact structure of the cycle is determined by the alternatives and their attributes.

The value of the preference graph approach is apparent when considering the decision

analysis that an individual with each preference structure must undertake. Given a choice

between any subset of four alternatives, a decision-maker with a chain provides a ranking
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Figure 3.2: Tournament graphs for four alternatives. First row, preference graphs. Second
row, adjacency matrices. Third row, unlabeled tournament structures over four alternatives
can be defined by their score vectors: chain (s = [3, 2, 1, 0]) (i), cycle at bottom (s = [3, 1, 1, 1])
(j), cycle at top (s = [2, 2, 2, 0]) (k), long cycle (s = [2, 2, 1, 1]) (l). Adjacency matrices show
ones in black and zeros in grey.
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consistent with the global ranking over four alternatives. A decision-maker with a cycle at

the top can consistently rank only the worst alternative, and likewise, the decision-maker

with a cycle at the bottom can consistently rank only the best alternative. A decision-maker

with the long cycle has a consistent ranking over any subset of alternatives, but no global

ranking.

3.2.2 Graph matching and dissimilarity estimation

To complete step 2 in Figure 3.1, our primary analytical tool is a method of calculating the

distance between preference graphs for both content and structure.

The content of preferences

A common distance metric between two graphs G1 = (V1, E1) and G2 = (V2, E2), is the

minimum number of edges that need to be rearranged to make them equal, known as the

Hamming distance dH(G1, G2) = ||vec(G1)− vec(G2)||1 [102]. Decision-makers that have a

small Hamming distance between their preference graphs tend to choose similar alternatives,

or have similar preference content. For a sample of n individuals, the dissimilarity between

all pairs of decision-makers can be represented in an n × n dissimilarity matrix D where

Dij contains the Hamming distance between the preference graphs of decision-maker i and

decision-maker j. We use standard graph similarity tools to identify clusters of graphs with

similar content, which in the case of ordinal multidimensional scaling, is equivalent to Coombs’

multidimensional unfolding [49].

The structure of preferences

Preference structure cannot be obtained from these Hamming distance calculations. A chain

graph A → B → C has the same structure as the chain graph C → B → A but their
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Hamming distance is equal to the number of distinct pairs (3). To capture the notion of

structure, we use a measure of the structural distance between two preference graphs, which

will be zero if and only if two preference graphs are isomorphic [1], meaning there is a bijection

f : V1 → V2 such that the edges of all pairs of vertices u, v ∈ V1 in G1 have the same edges

for f(u), f(v) ∈ V2 in G2 (and vice versa). The automorphism group Aut(G) of a graph G

contains all the graphs that are isomorphic to it [14], making it possible to test whether two

graphs are isomorphic by determining whether their automorphism groups intersect. This

is a well studied problem in computer science, called the graph isomorphism problem [14].

The minimum Hamming distance between two graphs across their automorphism groups

then gives their structural distance dS [41]: dS(G1, G2) = min(dH(Aut(G1), Aut(G2))). If

two graphs are similar (but not isomorphic), their structural distance should be small.

With a few alternatives the structural distance between graphs can be quickly calculated

using exhaustive search. However, the problem is NP-hard [1], requiring approximation

techniques for large graphs with more than 8 alternatives. We recast the structural distance

calculation as an inexact graph matching problem [150], where the objective is to find the

permutation matrix P∗ over the set of permutations that makes two adjacency matrices A1

and A2 as similar as possible. The objective function is [1, 150, 255]:

P∗ = argmin
P∈P

f(P ) = disA1→A2(P) = ||A1 − P TA2P || (3.1)

where A1, A2 are the adjacency matrices for the preference graphs of two decision-makers,

and P is in the set of permutation matrices P . If the squared Frobenius (L2) norm is used,

the problem is know as quadratic assignment (QAP) with non-deterministic polynomial

time complexity [140]. Because the solution set P is not convex, a common approach is to

replace P by its convex hull D, the set of doubly stochastic matrices (all entries greater than

equal to zero and each row and column sums to 1). This relaxation leads to a quadratic
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program (QCV), solvable in polynomial time [149, 1]. Because this relaxation can lead to

inaccurate results [1], we instead use Vogelstein’s approach (rGM) [255] that replaces the

objective function f(P ) by the identity −tr(A1PAT2 P
T ), leading to a non-convex problem,

where ∇2f(P ) = B ⊗ A1 + AT2 ⊗ AT1 is not positive definite [255]. Vogelstein et al. proposed

to solve this problem sequentially with Frank-Wolfe algorithm [78, 255]. We initialized the

optimization with the QCV solution [157].

3.2.3 Lower dimensional dissimilarity embedding

For n decision-makers, the n× n matrix DH of pairwise Hamming distances contains infor-

mation about the content of decision-maker preferences, while the matrix DS of pairwise

structural distances carries information about their structure. Our approach aims to classify

decision-makers into groups with similar preference content and structure simultaneously,

so in step 3 in Figure 3.1, we first embed DH and DS into lower dimensional spaces with

dimension n× d1 and n× d2, respectively, then concatenate the embeddings into an n× d

matrix D that carries information about both the content and structure of preference, where

d = d1 + d2. To construct the embeddings, we convert dissimilarities in DH and DS to values

between zero and one using a radial basis kernel, with σH and σS fixed at the median of

the respective dissimilarities [136, 130]. Next we train an autoencoder to embed each n× n

kernel dissimilarity matrix into an n × d1 and n × d2 space [96], seeking to minimize the

reconstruction error:

min
W,b,c

L(x) = −
∑
j

xj log(x̂j) + (1− xj) log(1− x̂j)

The autoencoder encodes the input space x into a lower dimensional space h(x) at its

output layer, then reconstructs (decodes) the original input space as x̂(h) [96]. We used the

non-linear sigmoid activation function for both the encoder h(x) = Wx+ b and the decoder
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x̂ = Wh+ c, where W is a matrix with weights and b and c are bias vectors. We used a 0.1

learning rate and 1,000 epochs. In Figure 3.3, we show the autoencoder network. We selected

the number of dimensions in the embedding d using the elbow method, and we pretrained

the autoencoder with a Restricted Boltzmann Machine [119, 259].

Figure 3.3: Autoencoder summary. Each original dissimilarity matrix is encoded into a lower
dimensional space minimizing reconstruction error [259].

3.2.4 Clustering allocation and merging

In step 4 in Figure 3.1, we use clustering techniques on the n× d dissimilarity embedding

matrix, with the main assumption being that decision-makers with small distances between

each other indicate a common pattern of preference in a population of decision-makers,

partially masked by noise. We use the k-medians algorithm to determine cluster allocation

[212], solving the following optimization problem:

min
µ,C

J(γ, µ) =
n∑
i

k∑
j

γij||xi − µj||1

We initialized the algorithm with centroids from a prior hierarchical k-means solution [106,

155, 9]. Here γ is a binary allocation matrix, k is the apriori defined number of clusters,

C is the cluster allocation, and µ the vector with medians for each group. We used the

gap-statistic to determine the number of clusters k [234]. If necessary, clusters are merged to

provide a more general solution.
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3.2.5 Within-cluster modeling and prediction

To understand the choice rules decision-makers use within each cluster, we take a simple

modeling approach, allowing us to compare within-cluster behavior to prior work. We use

the multinomial logit (MNL) model to approximate decision rules within each cluster. The

MNL model assumes the probability that an individual in cluster q chooses alternative

i ∈ J is Piq = eViq∑
j∈J e

Vjq
where Viq =

∑
l βlq × xl is a (usually linear) utility function [166],

with x a vector of attributes and l an index for the elements of x. We tested both multi-

attribute (compensatory) and single attribute (non-compensatory) utility functions, where

other attributes are disregarded. We predict out-of-sample choices using a mixture of the

within-cluster multinomial logit models, where the choice of alternative i ∈ J has a probability

Pi =
∑

q πqPiq, with πq as the probability that an individual belongs to cluster q. In a purely

predictive approach, where no information about a decision-maker m’s choices are available,

predictions about the new decision-maker’s behavior are simply the weighted average behavior

of individuals within each cluster in the training sample, where cluster weights πq are the

in-sample proportion of individuals in each cluster. If T choices for the new decision-maker

m are available, then we can place more weight on the clusters that are most consistent with

the decision-maker’s behavior using Bayes’ Rule:

πq|T = P (m ∈ q|T ) =

∏
t∈T Ptq × πq∑

q

∏
t∈T Ptq × πq

Predictions about a new decision-maker’s choices are also a weighted average, but where

the weights are posterior probabilities Pi|T =
∑

q πq|TPiq given the decision-maker’s T choices.
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3.3 Results

3.3.1 Overview

We collected choice data from Amazon Mechanical Turk (MTurk) workers for three stated

preference tasks: 1) choices between two risky options based on a classic study by Tversky [239]

(transitivity task), 2) choices between risky prospects similar to those used in a recent choice

prediction competition [60] (anomalies task), and 3) choices between electricity generation

options for one’s state that trade-off CO2 emissions and electricity bill impacts [197] (CO2

task). For each task, we recruited 200 MTurk participants, using inclusion criteria of: age

of at least 18 years, IP address in the U.S. and completion of more than 100 hits with an

approval rate of 95% or higher. A full version of the questionnaires and survey data is

available online (osf.io/pf7jn). We provided a payment of $1 per participant and a $0.5 bonus

if the participant answered an attention check correctly. The attention question was a choice

set with a deterministically dominated alternative. Figure 3.4 shows an example of each

choice tasks in the first column. For both the transitivity and the anomalies task probabilities

are presented as pie charts. In the CO2 task attributes are also presented graphically. The

approach uncovered six, two, and seven clusters in the three tasks, respectively. The second

column in Figure 3.4, presents the visualization of the dissimilarity embeddings and clustering

using the t-Distributed Stochastic Neighbor algorithm (t-SNE) to project the embeddings to

two dimensions [158]. Clusters are indicated using different colors and shapes, with Voronoi

polygons used to show cluster separation.
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Transitivity task

Anomalies task

CO2 task

Figure 3.4: Choice set examples in each task. Transitivity task: Choice set example alternative
b vs. c. CO2 task: Choice set example a vs. b. Anomalies task: Choice set example a vs.
k. Visualization of embeddings in two dimensions with t-Distributed Stochastic Neighbor
Embedding (t-SNE) [158]. Clusters are described with different numbers, colors and shapes.
Voronoi polygons are plotted to show cluster separation.
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3.3.2 Transitivity in risky choices

In the transitivity task, participants chose between the pairs of gambles included in Table 8.1(a)

in the appendix section, from Tversky’s classic paper on intransitive preferences [239], along

with five additional gambles. As shown in Figure 3.4(a), probabilities were presented as pie

charts without numeric information. Participants were presented all pairs of alternatives (45

pairs in total), with three repetitions for each pair (in a randomized order), yielding a total

of 135 choices per participant. Almost all participants (95%) were paid the bonus for passing

the attention check. Our approach yielded six clusters: four with chain structures, one with

a small cycle, and one with multiple cycles.

In Table 8.3 in the appendix section, we test three decision rules to explain decision-maker

choice behavior in each cluster: 1) maximize expected value Vi1 = β1 × EVi, 2) maximize

probability of winning Vi2 = β2 × P (winning)i, 3) and maximize payoffs Vi3 = β3 × Payoffi.

Figure 3.5a shows the expected adjacency matrices for the preference graphs in each cluster,

where alternatives are arranged so a lower triangular adjacency matrix indicates choices based

strictly on probabilities, and an upper triangular adjacency matrix indicates choices based

strictly on payoffs. Significant heterogeneity can be seen in both the content of preferences

(with most choosing based only on payoffs), and the structure (with clusters 1-4 showing

clear chain structures, and clusters 5-6 with one or more intransitive cycles). Figure 3.5b

shows the predicted probabilities from the logistic regressions that fit the data the best in

each cluster, finding that for clusters 1-4, a decision rule based on a single attribute (either

probabilities or payoffs) fit the data better than an expected value rule. Decision-makers in

clusters 1, 2 and 3 preferred the alternative with a higher probability in 87%, 96% and 100%

of choices (respectively). Decision-makers in cluster 4 almost always chose the alternative

with the higher payoff (93% of the time). Although decision-makers in cluster 5 and 6 showed

a cyclic structure, the proportion of choices favoring the option with the higher probability of
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Cluster 1 (13%) Cluster 2 (22%) Cluster 3 (30%) Cluster 4 (9%) Cluster 5 (10%) Cluster 6 (16%)

a) Expected adjacency matrix per cluster

b) Logit probabilities c) Model accuracy

Figure 3.5: Clustering results transitivity task. First row, weighted expected adjacency matrix
in each cluster for the transitivity task. We used a color scale to easy ease interpretation
with adjacency matrices colored from one in darker tones and zeros in lighter tones. We
also present moon graphs to explicitly differentiate preference structure. The proportion of
the sample in each cluster is presented last. Second row on left, logit probabilities P(A) of
choosing the alternative with a higher probability of winning (A) per cluster. Second row
on right, model accuracy on 1,000 bootstrapped samples as more choices are observed from
participants. Observed choice sets are order according with their mutual observation with
respect to a vector with the cluster assignments.
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winning is significantly different from 50%, suggesting their choices were not entirely random.

Figure 3.5c shows that using a mixture of multinomial logit models based on our clustering

approach performs as well as a pooled multinomial logit model fit on all the data, when no

choices for a decision-maker are observed. However, prediction accuracy rapidly improves

for our mixture approach when just a few choices are observed, because those choices sort

individuals into clusters with common preference content and structure. In sum, the majority

of decision-makers in the sample used a single-attribute choice rule (clusters 1-4), simplifying

the task, and leading to transitive preferences within-cluster. Decision-makers whose choices

could not be easily explained by a single attribute were also more likely to have intransitive

preferences (clusters 5 and 6).

3.3.3 Anomalies in risky choices

Over the past 50 years, one of the most important findings from the decision sciences is that

decision-makers exhibit systematic deviations from behavior predicted by expected utility

theory [32, 26, 24, 40, 189, 60]. In the Anomalies task, we selected five anomalies that formed

the foundation for Prospect Theory [129, 241, 60]: 1) the certainty effect, 2) the reflection

effect, 3) overweighting of rare events, 4) loss aversion and 5) risk aversion. In Table 8.1(b)

in the appendix section, we present the alternatives in the experiments and the expected

preference relation for all anomalies. We used 11 gambles resulting in 55 pairs with three

replications per pair with their order randomized. The attention check was a choice between

a lottery with a 50% chance of winning $1,000 and 50% chance of winning $500, against

a lottery that offered $450 for sure. Only 55% of the sample passed the attention check,

suggesting they either did not understand the task, were not paying attention, or have more

severe violations of expected utility theory than previously considered (dominance).

As shown in Figure 3.6, two groups emerged from our structure learning approach, both
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with a chain structure. In Table 8.5 in the appendix section, we modeled decision-maker

behavior within each cluster with four decision rules [60]: 1) maximize expected value and

minimize variance [256, 144]; 2) maximize the probability of a better outcome [251]; 3)

maximize a weighted additive function of outcomes [178]; and 4) maximize the probability of

winning the high outcome [60]. Both clusters chose largely based on the probability of the

better outcome [251]. Although participants in both clusters deviate from expected utility

maximization, both clusters are transitive in expectation. Given that choice patterns in the

two clusters are very similar, we do not pursue further analysis. At a first glance, it seems

the anomalies emerged from the same process.

Cluster 1 (45%) Cluster 2 (55%)

Figure 3.6: Clustering results anomalies task. In the first row, weighted expected adjacency
matrix in each cluster for the anomalies task. We used a color scale to easy ease interpretation
with adjacency matrices colored from one in darker tones and zeros in lighter tones. We also
present moon graphs to explicitly differentiate preference structure.
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3.3.4 CO2 mitigation choices

Policy-focused researchers have used multi-attribute discrete choice models to estimate

policy-relevant quantities, such as the market share of existing and new products [114,

97], substitution patterns [112], implicit discount rates [172], willingness-to-pay [165, 108],

and consumer’s surplus [218, 264]. In the CO2 task, we collected data based on a recent

paper by Sergi et al. [197], who estimated willingness to pay for CO2 emission reductions.

In our extension of their experiment, participants are asked to make trade-offs between

higher (or lower) impacts of electricity generation on climate change and a higher (or lower)

electricity bill. As shown in Table 8.1(c) in the appendix section, participants were presented

all pairs from 8 alternatives (28 pairs) with no repetitions. In this task, 97% of the 200

participants passed the attention check. Here our approach yielded seven clusters: five with

chain structures, and two with multiple cycles.

To model behavior in each cluster, in Table 8.4 in the appendix section, we used a

weighted additive linear utility model with no intercept over both attributes (bill and CO2)

as Vi = βBill · Billi + βCO2 · CO2i. Figure 3.7a shows the expected adjacency matrices per

cluster. Alternatives are arranged so a lower triangular adjacency matrix indicates choices

based strictly on electricity bill savings and an upper triangular adjacency matrix indicates

choices based strictly on CO2. As we observe in Figure 3.7a, decision-makers tended to

focus either on CO2, or the electricity bill. Decision-makers in cluster 1 chose strictly based

on a lower electricity bill. Decision-makers in cluster 4 chose only based on lowering CO2

emissions. Decision-makers in clusters 2, 3, 5 and 6 were willing to trade-off a higher bill

for reductions in CO2 emissions. Almost 30% of the sample has intransitive cycles in their

preference structure in expectation, indicating some level of incoherence. Decision-makers

in cluster 7 showed multiple cycles and are clearly uncertain about what they want. In

Figure 3.7b we present coefficient values for the weighted additive linear utility model in
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Cl 1 (18%) Cl 2 (8%) Cl 3 (13%) Cl 4 (6%) Cl 5 (14%) Cl 6 (25%) Cl 7 (16%)

a) Expected adjacency matrix per cluster (Cl: Cluster)

b) Coefficients c) Model accuracy

Figure 3.7: Clustering results CO2 task. First row, weighted expected adjacency matrix in
each cluster for the CO2 task. We used a color scale to easy ease interpretation with adjacency
matrices colored from one in darker tones and zeros in lighter tones. We also present moon
graphs to explicitly differentiate preference structure. The proportion of the sample in each
cluster is presented last. Second row on left, coefficients for both attributes assuming a
weighted additive linear utility model with no intercepts (Vj = βbill · Bill − βCO2 · CO2).
Given their similarities we merged clusters 2 and 3; and clusters 5 and 6. Second row on
right, model accuracy on 1,000 bootstrapped samples as more choices are observed from
participants. Choice sets are order according with their mutual observation with respect to a
vector with cluster assignments.
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each cluster for both bill and CO2. Clusters 1 and 7 are insensitive to changes in CO2 with

coefficients close to zero. Finally, Figure 3.5c shows again that a mixture of multinomial

logit models performs better than a pooled multinomial logit model, when a few choices are

used to assign cluster membership. In short, more than half the participants do not have

well-behaved preferences and are either using simplifying choice heuristics based on a single

attribute (clusters 1 and 4) or have intransitive preferences (clusters 3 and 7).

3.3.5 Classification of decision rules

To better understand the relationship between the clusters for each task, we use a hierarchical

clustering approach [135]. As shown in Figure 3.8a for the transitivity task, the hierarchical

clustering sorts decision-makers according to the primary attribute they used to make their

decisions, with clusters 1, 2, 3, 5 and 6 deciding based on probabilities and cluster 4 deciding

based on payoffs. Next, decision-makers varied on the degree to which they could discriminate

between the probabilities, which were shown only in graphical form [25], where those in

clusters 1, 2, and 3 had high discrimination, and those in 5 and 6 had low discrimination.

Those with low discrimination also tended to have intransitive cycles in their preferences.

For the CO2 task, as shown in Figure 3.8b, individuals either were "Greens" (clusters 4, 5

and 6), focusing on CO2, or "Bills" (1, 2, 3 and 7), focusing on saving money. At the next

level in the hierarchy, decision-makers in clusters 2, 3, 4, and 6 tended to use a compensatory

decision rule (giving weight to both attributes), versus those in clusters 1, 4, and 7 who

used a non-compensatory decision rule (using only either CO2 or bill to make their choice).

Finally, some individuals were uncertain about their preferences, as in clusters 3 and 7, who

had intransitive cycles.
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(a) Transitivity task (b) CO2 task

Figure 3.8: Hierarchical clustering on the expected adjacency matrices for each cluster in the
transitivity and CO2 tasks.

3.4 Discussion

In this paper we use a graph representation of preference to uncover heterogeneity in the

content and structure of preferences across three samples of decision-makers. The approach

first represents the choices of individual decision-makers as graphs, then computes the

Hamming and structural distance between graphs for all pairs of decision-makers, embeds

those distance matrices into a smaller dimensional spaces, clusters decision-makers based

on their proximity in those spaces, and finally uncovers the underlying decision rule within

each cluster. We explore the approach with two new empirical implementations of classic

experiments in decisions under risk and a new policy-relevant stated preference task. In each

experiment we exploit regularities in choice patterns to identify individuals using similar

choice rules. In a classic experimental design by Tversky we find that the the vast majority

of the sample uses a single attribute (up to noise) to choose, undermining the plausibility of

other more complex rules like expected value calculations. In a set of preference anomaly

choice tasks, we find two groups that although deviate from expected utility maximization,
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are transitive in expectation. Lastly, in a policy-relevant choice task that asked respondents to

choose between savings on their electricity bill and CO2 emissions, we find non-compensatory

behavior in about 40% of the sample, with almost all of them (34%) unwilling to pay some

cost to avoid climate change.

In the transitivity task, a large proportion of decision makers showed choice patterns

consistent with a single attribute decision rule [32, 87, 213, 74]. Decisions based on simple

rules save time and effort required in the task, making them an attractive approach [198, 178,

86]. In our experiment, 65% of the sample chose only based on the probability of winning

a gamble, and 9% chose only based on the gamble’s payoff [27, 145, 27, 25]. The data are

consistent with a lexicographic order, where decision-makers use only one attribute unless

there are exact ties [74], rather than a lexicographic semiorder which allows for inexact

ties within a just-noticeable-difference [239]. None of the decision-makers made choices

consistent with subjective expected value, which would be some function of the product of the

probability and payoff attributes [256, 75]. Decision-makers in most clusters had transitive

preferences [181], likely because a simplifying single-attribute lexicographic decision rule

makes consistency (and transitivity) a foregone conclusion.

For the anomalies task, although as shown in Table 8.6 in the appendix section, decision-

makers in our sample were loss and risk averse. We were not able to replicate overweighting

of rare events, the certainty effect, or the reflection effect [129]. Even more troubling was the

inability of almost half of our respondents to choose a dominated alternative, suggesting either

severely irrational preferences or an inability to understand the task. Strikingly, even though

decision-makers tended to be loss averse, their preferences were transitive in aggregate for both

clusters, highlighting that although expected utility theory may not be descriptively valid, it

may still be possible to construct an ordinal representation of decision-maker preferences.

Lastly, in the CO2 task the majority of the sample (60%) used a compensatory decision

rule and were willing to make trade-offs between economic costs and climate protection, but
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a full 40% did not. A naive approach would fit a single multinomial logit model (MNL) with

two attributes on the full sample, leading to distorted policy analysis [169]. For example,

willingness to pay corresponds to the marginal rate of substitution (MRS) between an attribute

k and the cost of each alternativeMRSkc = ∂ui
∂xk

/∂ui
∂ci

. If a model was fitted assuming the utility

of each alternative is linear in its attributes, the function would be Vi = −8.3 ·Bill−4.5 ·CO2

on the whole sample, giving a willingness to pay (WTP) of WTP = 30 · −4.5/− 8.3 = 16

% increment in the monthly electricity bill for a 30% percent reduction in CO2 emissions.

That is, the population is willing to pay to avoid CO2 emissions. This calculation assumes

homogeneity in both the content and structure of preference [166]. A very different picture

emerges from our preference clusters, where many are unwilling to make the trade-off implied

by the marginal rate of substitution, or do not even have coherent preferences that could be

characterized by a utility function. Analysis of willingness to pay in aggregate would imply

trade-offs that much of the population is unwilling to make.

Our approach is able to separate decision-makers based on whether their choice patterns are

consistent with a specific theory of decision-making, such as utility theory or a lexicographic

order. It is also able to aid policy analysis, allowing subgroups with heterogeneous preference

content and structure to express the trade-offs that they are willing (or not willing) to make.

The approach can also improve predictive accuracy. In Figures 3.5 and 3.7, using 1,000

bootstrapped samples from the original observations for both the transitivity task and the

CO2 task, a mixture of multinomial logit models for each cluster with linear utility functions,

with individual mixing probabilities conditional on the observed choices, yields a higher

accuracy than a pooled multinomial logit model. Accuracy increases as more information is

available to estimate cluster membership. Predictive accuracy increased around 10% when

only a few choices were available to estimate mixing probabilities.

Finally, we highlight some limitations of our method. Clustering always has some

arbitrariness. For example, the number of dimensions to embed the dissimilarity matrices
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in a lower dimensional space was defined using the elbow method, a useful heuristic [96].

Allowing for the number of dimensions to be determined automatically by the data in the

optimization process would be an important improvement [50]. The data requirements also

present an important challenge. The number of pairwise comparisons required to complete

a tournament grows quadratically with the number of alternatives, increasing the risk of

decision-maker fatigue.

3.5 Conclusions

We present a general framework for analyzing and discovering preference content and structure

from choices. The approach can suggest new theories to decision researchers, or confirm

old ones, and lend strength to welfare analysis, or undermine it. Policy decisions ought

to be based on trade-offs decision-makers would make between different private or public

goods [12]. A major challenge faced by policy analysts is to identify decision makers that

are not willing to make such trade-offs. Respondents in our studies showed heterogeneous

patterns of choice, with a large proportion not willing to compromise. Our approach can

identify those groups and uncover heterogeneity in preference structure without requiring

any prior knowledge of those structures. Practitioners will be able to use this approach to

classify decision-makers according to their preference content and structure. This can inform

decision-makers themselves through decision analysis, as well as help policy-makers better

understand the welfare impacts of new policies, and design policy interventions that meet

the demands of the public.
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"The purpose of computing
is insight, not numbers"

Richard Hamming, 1962

4
Welfare analysis using the sparse

multinomial logit model

Variable selection approaches in econometric models are typically ad-hoc, do not select

the correct variables asymptotically, or yield biased parameter estimates. In this work we

address the variable selection problem for discrete choice models using a modification of the

multinomial logit model. We show how to debias the modified multinomial logit model with

an adaptive Lasso penalty, allowing asymptotically consistent variable selection and unbiased

parameter estimates that are useful for welfare analysis. We demonstrate the approach with

a real decision facing the Chilean government about what types of energy to produce, and

where production should take place to minimize environmental externalities.
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4.1 Introduction

Discrete choice models are widely used in economics and psychology to understand individual

preference [235]. The multinomial logit model is a canonical example, in part because of

its simplicity and ability to capture preference heterogeneity among measured subgroups of

decision-makers. Variation across these subgroups on key metrics, such as willingness-to-pay,

is of economic interest for both revealed preference studies and stated preference surveys

[168]. Applications of discrete choice models to understand welfare impacts on subgroups

include the valuation of insurance contracts [29, 203], the environmental and social quality of

products [188, 85, 54, 194, 172], quality of life improvements from health care [33, 44], and

the value of safety [104, 184, 185]. Subgroup analyses are also important for understanding

public policy impacts, such as mortality risks reductions [113, 141], morbidity effects [148,

126, 125], urban noise [84], and environmental [197, 105] and landscape impacts [186].

Although researchers sometimes have specific hypotheses about subgroup behavior, there

are often many more subgroups of interest than can be reasonably included in one statistical

model. Traditionally, choice models have included individual socioeconomic characteristics

such as age, income, gender, or marital status as interactions with observed attributes in the

model specification [167]. Other individual traits such as perceptions, beliefs, motivations,

and prior experience can also shape individual preferences [167]. For example, Madanat et al.

[159] included attitudes and perceptions, together with other socioeconomic variables, in a

discrete choice model of intentions to avoid traffic congestion, using the scores for different

psychometric scales as interactions with attributes of alternatives.

In this work we use a data driven approach for subgroup analysis by modifying the

multinomial logit model, called the sparse multinomial logit, allowing the most relevant

effects to emerge directly from the statistical model. Such an approach can improve both the

predictive power of the multinomial logit, as well as its interpretability, helping researchers
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focus only on the subgroups that are best for forecasting and have the strongest effects. The

approach can provide a check on theory-driven model specifications, help avoid researcher

degrees of freedom issues that arise from repeated model specification [208], and prevent

suboptimal model selection issues from insufficient specification search or use of simplifying

heuristics to choose subgroups.

The desirable characteristics of a statistical inference approach are traditionally lack

of bias, asymptotic consistency, and efficiency. Those characteristics typically say nothing

about which variables should enter the model, only that if the right ones are included, these

desirable properties hold. Approaches that conduct automatic covariate selection, on the

other hand, should have the oracle property, where the model asymptotically selects only the

variables that have truly non-zero coefficients (those parameters that are in the support of the

true model) [61]. Common approaches to covariate selection, such as forward or backward

variable selection, do not have this oracle property [233], nor does penalizing the model

negative log-likelihood by the absolute magnitude of the regression coefficients, as in the

Lasso (although such an approach does zero out some coefficients in a process known as

denoising [107, 81, 233, 201]). A suitable modification of the latter penalization approach,

called the adaptive Lasso, does have the oracle property [268].

While using the adaptive Lasso penalty combined with maximum likelihood estimation

has the oracle property, the price of that property is paid in bias, where regression coefficients

are too close to zero [80, 82]. Adding bias can actually reduce forecasting error [82], but in

economic and policy analysis it is usually the coefficients themselves, not forecasts, that are

of interest. For example, willingness-to-pay is a common metric used in economic and policy

analysis, and in a linear utility model, can be expressed as the ratio of an estimated coefficient

relative to the price coefficient [235]. Bias in the estimated coefficients would then lead to

biased policy analysis. Although penalized models have gained interest in economics [19, 20,

63], and more recently in non-parametric discrete choice models [90, 236, 64], sparsity-induced
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bias has limited their usefulness for welfare analysis, such as the valuation of public goods.

In this work we describe an approach that uses state-of-the-art methods to debias the

coefficients that result from applying the adaptive Lasso penalty to the multinomial logit

model, enabling them to be used for economic and policy analysis. We use the valuation

of environmental public goods as the test case in a recent, and real, decision facing the

Chilean government. The next section of the paper describes the model. Then we detail

convex optimization techniques that allow model estimation and bias correction. We then

use simulations and a survey to illustrate the value of the sparse multinomial logit model.

4.2 Model description and parameter estimation

Our objective is to develop an approach that automatically selects subgroups in a population

that are heterogeneous in their preferences, but without introducing bias into estimated

coefficients. We begin with the multinomial logit model, then describe the adaptive Lasso

penalty, which has the oracle property in its automatic selection of those sub-populations. In

the multinomial logit model, the utility of alternative i for individual n, Uni = Vni + εni, is

defined as the sum of a deterministic part Vni and a stochastic part εni with a Type-I extreme

value distribution [166]. The deterministic part of the utility Vni = Vni(xni, sni) depends on

the attributes of each alternative xni and interaction effects between those attributes and

characteristics of a decision maker zn (i.e. sni = xni × zn). The multinomial logit model

assumes that the probability that an individual n chooses alternative i depends linearly on

the deterministic utility assigned to each alternative Vni = ωi+
∑p

j αjxnij +
∑p

j

∑k
r βjrxnijznr,

where θ = {ω, α, β} is a vector of coefficients, ωi is an alternative specific constant, p is the

number of attributes in each alternative and k is the number of subgroup covariates (e.g.,

socioeconomic characteristics and other decision-maker variables).

A typical model will have main effects for each attribute and two-way interactions between
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attributes and socioeconomic variables, meaning the number of coefficients |θ| that need to be

estimated is |θ| = p+ k× p. For example, for a choice model where each alternative has p = 5

attributes, with generic coefficients for main effects and no alternative specific constants,

adding interaction effects for k = 15 covariates will involve estimating |θ| = 5 + 5× 15 = 80

coefficients. If we increase the number of covariates to k = 25, the number of coefficients

will increase to |θ| = 5 + 5× 25 = 130. Including so many coefficients can harm the model’s

inferential ability, forecasting skill, and interpretability. To address this, consider how the

model is estimated. For a multinomial logit model, the conditional probability Pni that

individual n chooses alternative i from a set of alternatives J is derived using the sigmoid (or

softmax) function [166]. The model is estimated by minimizing a loss function f(θ), usually

the negative log-likelihood function min
θ∈Θ
− l(θ) over parameter space Θ = R|θ|, where l(θ) is:

l(θ) =
N∑
n=1

J∑
i=1

Ini log(Pni) =
N∑
n=1

J∑
i=1

Ini log(
eVni∑J
j=1 e

Vnj

) (4.1)

and Ini is an indicator variable for whether alternative i was chosen by decision-maker n.

If we introduce a penalty Qλ(θ) into the loss function f(θ) we can induce sparse models,

that set some coefficients to zero [233]. The loss function f(θ) for a sparse multinomial logit

model will correspond to a Lasso penalized log-likelihood function as in [233]:

min
θ∈Θ

f(θ) = min
θ∈Θ

[
− l(θ) +Qλ(θ)

]
= min

θ∈Θ

[
− l(θ) + λ

p∑
i=j

γj|θj|
]

(4.2)

where λ ≥ 0 is a tuning parameter that determines how much the loss function is penalized

for having a larger magnitude parameter vector, and is selected by cross validation [261]. The

traditional Lasso weights each parameter equally, with γj = 1 for j > 0, except the intercept

(with γ0 = 0) [80]. The adaptive Lasso penalty scales λ by γj ≥ 0, giving the oracle property

[268], meaning that the estimator is consistent in variable selection for variables in the true

model support S (i.e., limn→∞ P (Sn = S) = 1, where Sn is the support of a model with n
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observations and S is the true model support), namely those elements in θ that should not be

mapped to zero [61, 268]. The weighting γj = (1/|θMLE|)δ has this property, where θMLE is

the maximum likelihood estimate of the θ vector, and δ is an additional tuning parameter that

can also be selected by (two-dimensional) cross-validation [268]. Intuitively, the weighting

scheme penalizes coefficients more if their MLE is closer to zero [268]. The adaptive Lasso

is only asymptotically unbiased [268], but a straightforward debiasing technique uses linear

interpolation between the unpenalized simulated maximum likelihood estimator (MLE) and

the penalized solution [170]. A similar approach uses the adaptive Lasso for variable selection

and the MLE for estimation on the selected variables, an approach known as hybrid estimation

[123].

To estimate the model, we notice −l(θ) is convex, but Qλ(θ) is not continuously differen-

tiable [61], ruling out second order methods like BFGS that use the Hessian of the objective

function [176, 92, 76, 37, 200]. For a Lasso regularized multinomial logit model we can

decompose f(θ) = g(θ) + h(θ), where g(θ) = −l(θ) and h(θ) = λ
∑p

i=1 γj|θj|. That is, f(θ)

can be decomposed into the sum of two parts, a convex and differentiable function g(θ) and

a convex non-differentiable function h(θ). The problem can then be efficiently solved using

proximal gradient descent [31], where we use a second order approximation of g without

modifying h, and define a proximal mapping proxt(x) = arg min
z

1
2t
||x− z||22 + h(z) [93]. It

follows that the proximal gradient descent update will be θ(l+1) = prox t(θ(l) − tl∇g(θ(l))).

The gradient of g(θ) can be obtain analytically deriving the log-likelihood function. The

update for the j-th coordinate for the proximal operator will be:

Sλγj(θj, t) =

 θj − λγjt sign(θj) |θj| > λγjt

0 |θj| ≤ λγjt
(4.3)
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Details of this derivation can be seen in [82]. The proximal operator can be written more

succinctly as the soft-thresholding operator with its j-th component as Sλγj(θj, λγjt) =

sign(θj) · max{|θj| − λγjt, 0} [143]. The proximal update will be θj(l+1) = Sλγj(θj(l) −

tl∇g(θj(l)), tl). This algorithm is known as iterative soft-thresholding, or ISTA, with an

O(1/ε) convergence rate [18]. The step size tl can be selected using backtracking line search to

satisfy a sufficient decrease condition (the Armijo condition) [176]. With minor modifications,

a convergence rate of O(1/
√
ε) can be achieved by extending the Nesterov acceleration method

[175] to composite functions, known as the FISTA method [18].

4.3 Simulation

As a proof of concept we apply the sparse multinomial logit model to simulated data from a

conjoint analysis experiment. Conjoint analysis is a stated preference method [153] where

respondents are asked to choose between hypothetical alternatives that differ in the level of

one or more attributes, including price, allowing researchers to infer the willingness-to-pay,

or the marginal rate of substitution between each attribute and price for each attribute

MRSk = θk/θprice [58, 105].

We simulated an experiment where a sample of 200 pseudo-individuals faced 10 choice

sets with three alternatives, drawn from an optimal orthogonal design with five attributes

and four levels, for a total of 2,000 choices [4]. We also simulated k = 25 uncorrelated

covariates that varied only across decision-makers, drawn from a standard multivariate

normal distribution. We assumed utility functions had coefficients for each attribute and

two-way interactions between decision-maker characteristics and each attribute, giving a

total of q = p+ p× k = 5 + 125 = 130 parameters. We used a vector of coefficients for each

generic attribute β = {4, 1,−1, 2,−2}, where the first coefficient β1 = 4 corresponds to the

cost attribute. We also generated a vector of 125 coefficients for each covariate α, drawing
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randomly from a uniform distribution between -2 to 2 with an 80% chance of being equal to

zero.

In Figure 4.1, the maximum likelihood estimator fails to set most of the coefficients to

zero. Next, we estimate coefficients by varying λ, known as the regularization path [80].

Increasing the penalty term λ shrinks the coefficients towards zero as expected, also increasing

bias ||θ̂ − θ||1. We compute the Bayesian Information Criterion (BIC) for each value of λ in

the sequence, assuming degrees of freedom can be approximated by the number of non-zero

coefficients |S(θ̂)| [269]. As an alternative (but slower) approach, we select the penalty via

cross validation, using the value for λ that gives a classification error one standard deviation

above the minimum (λ ≈ 45) [79]. As shown in Figure 4.1 on right, BIC is also minimized

for values of λ in the range of those found with cross-validation [180].

In Figure 4.2, we represent the support recovered by each of the models tested using

a grey-scaled heat-map. A higher absolute value is represented by darker colors and ivory

represents coefficients equal to zero. We used estimates from the standard multinomial logit

model via maximum likelihood (MNL), the sparse multinomial logit model with a lasso

penalty (SMNL), and the adaptive version of the sparse multinomial logit (ASMNL). The

maximum likelihood estimator is clearly not sparse, with all coefficients different than zero.

The support recovered by the Lasso penalty is close to the original support, with a penalty

λ ≈ 45 selected with the one standard deviation rule. Nonetheless, the sparse multinomial

logit models fails to zero-out variables that are not in the original support in 12% of the

cases. Models that hold the oracle property overcome this issue, where the adaptive sparse

multinomial logit models recovers the true support with 100% accuracy with δ = 1 [268].

We extended the simulation experiment by varying the number of covariates k and the

correlation ρ between the covariates. In Table 4.1, we present results from several alternative

models in terms of the number of non-zero coefficients |S(θ̂)| and bias ||θ̂ − θ||1. In Table

4.1 we first present our simulation results for an oracle estimator, namely the maximum
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(a) Sparsity (b) Bias

Figure 4.1: Regularization path and bias. 2,000 choices of simulated data from a multinomial
logit model with five alternatives and 25 covariates. Increasing the penalty term λ shrinks
the coefficients towards zero. Increasing the penalty term λ allows for sparse models at the
cost of a higher bias.

(a) Original (b) MNL (c) SMML (d) ASMML

Figure 4.2: Support recovery for λ ≈ 45. Original support, maximum likelihood estimator
(MNL), sparse multinomial logit (SMNL), adaptive sparse multinomial logit (ASMNL). Low
values were jittered to ease comprehension. Darker colors indicate larger coefficients in
absolute value.

likelihood estimator assuming that the true support S(θ) is known apriori (Oracle). Second,

we present results for the standard multinomial logit model (MNL). Third, we present results
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for our sparse multinomial logit model (SMNL) and its adaptive version (ASMNL). Finally,

we present results from an hybrid approach (HASMNL) where the adaptive model is used to

discover the right support S(θ̂) and next a standard multinomial logit model is estimated

with all features with non-zero coefficients in S(θ̂). We simulated 100 samples with the

same specifications described above and λ = 45. Increasing correlation between covariates

deteriorates the model variable selection performance to some extent. In the scenario with

k = 25, if we increase correlation between covariates to ρ = 0.5 it becomes harder to discover

the original support. The error rate increases from %1 to %6 of the cases, where the model

assumed variables were zero when they were not (NZ) or it assumed variable were different

than zero when they should be zero-out (Z).

Table 4.1: Sparse multinomial logit simulation results. 100 simulated samples with different
number of covariates k and increasing correlation ρ. We fixed tuning parameter λ = 45 and
δ = 1. MNL: multinomial logit, SMNL: sparse multinomial logit, ASMNL: adaptive sparse
multinomial logit and HASMNL: hybrid adaptive sparse multinomial logit. NZ: variables
different than zero are zero-out, (Z): zero variables are not zero-out.

ρ = 0 ρ = 0.5

|S(θ̂)| ||θ̂ − θ||1 Z NZ |S(θ̂)| ||θ̂ − θ||1 Z NZ

k = 15
Oracle 23 (0.0) 2.2 (1.2) 0.0 0.0 23 (0.0) 2.4 (1.0) 0.0 0.0
MNL 80 (0.0) 9.3 (2.7) 57 0.0 80 (0.0) 11.2 (3.2) 57 0.0

SMNL 27.4 (2.2) 21.2 (0.4) 4.4 0.0 27.8 (2.1) 21.9 (0.5) 5.2 0.4
ASMNL 23 (0.1) 18.9 (0.6) 0.0 0.0 22.5 (0.7) 19.7 (0.7) 0.0 0.5

HASMNL 23 (0.1) 2.2 (1.2) 0.0 0.0 22.5 (0.7) 2.9 (1.3) 0.0 0.5
k = 25
Oracle 34 (0.0) 4.5 (2.4) 0.0 0.0 34 (0.0) 4.4 (1.9) 0.0 0.0
MNL 130 (0.0) 32.3 (9.6) 96 0.0 130 (0.0) 31.3 (9.9) 96 0.0

SMNL 40.7 (2.6) 34.1 (0.4) 6.8 0.2 37.9 (2.6) 34.6 (0.4) 5.7 1.8
ASMNL 33.7 (0.6) 29.8 (0.9) 0.0 0.4 31.8 (1.4) 30.4 (1.0) 0.0 2.2

HASMNL 33.6 (0.6) 4.3 (2.2) 0.0 0.4 31.8 (1.4) 6.0 (2.5) 0.0 2.2

To show how estimation bias in penalized models transfers to willingness to pay (WTP),
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we focused our analysis on the 25 uncorrelated covariates. Assuming the first attribute

corresponds to the cost vector, we computed the ratio of coefficients with respect to the four

non-cost attributes. All socioeconomic covariates were mean-centered, so are neglected in our

computations. Figure 4.3 presents the distribution for willingness to pay across simulations

for attributes 2 and 4. The red line shows the true WTP value. WTP for attributes 1

and 3 show the same pattern, but with the opposite sign. As it is unbiased, the maximum

likelihood estimator recovers the true willingness to pay, while both the sparse and the

adaptive sparse multinomial logit models introduce bias into the WTP (15% lower on average

for the Lasso model and 10% lower on average for the adaptive Lasso model). The hybrid

approach (HASMNL), on the other hand, debiases coefficient estimates, providing a solution

with both sparsity and accurate WTP estimates.

4.4 Empirical analysis

Finally, we use data from a conjoint analysis survey designed to estimate willingness to

pay (WTP) to avoid environmental impacts associated with different electricity generation

technologies. There have been several efforts to estimate willingness to pay values for

externalities of electricity generation. Previous experiments have valued wind power generation

externalities [7, 10], and hydroelectric generation externalities [94, 224]. However, electricity

supply is composed of several sources with different external costs. The simultaneous valuation

of several environmental goods is a complex empirical matter, as electricity generation can

account for numerous environmental externalities and any survey effort can deal at most with

only a small number of those impacts; otherwise the cognitive burden imposed on respondents

would be prohibitive. In this case, the conjoint analysis technique provides a simple way of

controlling simultaneously for the presence of several externalities of electricity generation

[154]. Only a handful of studies have investigated simultaneously willingness to pay values
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for external costs of different electricity sources. Landscape impacts, air pollution, wildlife

impacts and employment effects are assessed in [22] and greenhouse gas emissions, security of

energy supply and employment effects in [152]. Thus, the present work contributes to the

extension of the application of choice experiments to this subject.

We implemented the conjoint analysis valuation survey in Santiago, the capital of Chile

in January 2013, where samples were distributed among Santiago’s boroughs to mimic the

population income distribution. A full version of the questionnaire and the survey data

is available online (osf.io/uqtjb). At the time of the survey, a broad public debate was

taking place on how Chile should double electricity generation in the next 20-years to meet

steadily increasing demand. Chile has tremendous potential to develop water resources, and

Figure 4.3: Sample average willingness to pay values across simulations for attributes 2 and
4. 100 simulations with 25 uncorrelated covariates. True WTP values in red lines. WTP for
attributes 1 and 3 shows the same pattern, but with the opposite sign. We added a scalar 0.1
for attribute 4 to avoid overlapping between the figures.
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a large hydro-power dam project was planned for the Aysen Region, a world heritage area

for biodiversity in the southern part of the country. Large coal-fired power plants in the

Atacama Region in northern Chile could also provide a good option for electricity generation

at a reasonable private cost. Nevertheless, a share of non-traditional renewable sources, such

as wind or solar, could replace both thermoelectric and hydroelectric facilities if required.

Although Chilean authorities were considering a mix of these alternatives for future power

generation, none of them was universally accepted by the public. Large hydro-power projects

in the south of the country were subject to strong criticism from several environmental NGOs

and the civil society at large; coal-fired power plants near demand sites were opposed by

nearby residents due to health risks from pollution. Even nontraditional sources, such as

wind, met with resistance from local communities due their landscape impacts. Prior to this

study, political decisions focused only on private costs, without a thorough consideration of

externalities. Willingness to pay values to avoid the impacts of electricity generation would

help public decision-making in this hotly contested topic.

4.4.1 Survey design

In our survey, participants were asked to choose between alternative hypothetical public

electricity generation programs that differ in their level of four environmental impacts in

specific areas of the country. The hypothetical scenario was presented as a strategic program

seeking to understand household’s preferences regarding the future Chilean electricity mix

and its associated environmental local externalities [110]. Three alternatives were presented to

household heads: the electricity generation development plan at the moment of the survey (the

status quo), and two alternative plans, A and B. Each alternative presented the environmental

impacts of different scenarios for the electricity mix. In each scenario, individuals chose their

preferred option. The first option represented traditional electricity sources considered to
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be constructed in the business-as-usual scenario (BAU), with its associated environmental

impacts at zero additional cost. Alternatives A and B represented different development

plans with higher costs at a lower environmental impact. Respondents traded-off the level of

environmental impact with a higher or lower electricity cost, allowing us to infer willingness

to pay for each attribute [105].

The four environmental impacts considered in the scenarios were: destruction of native

forest (ha), respiratory and heart diseases due to air pollution (emergency room visits per

year), use of space (ha), and location either in pristine or non-pristine areas. Respondents

traded-off the level of environmental impact with a higher or lower electricity cost, allowing

inference about the willingness to pay for each attribute [105]. To select the alternatives

presented in the task, an efficient statistical design was chosen using the software NGENE

[190]. This design comprised twenty-four choice sets in two blocks of twelve choice sets per

individual. Figure 4.2 summarizes attributes, metrics, levels and magnitudes selected for the

survey. In Figure 4.4 we present an example of a choice set used to introduce the choice task

for each participant.

Our sample included 486 heads of household in Santiago, Chile. Interviewers were specially

trained for the occasion, and detailed socioeconomic and perception data were gathered

during the interviews. We selected the following variables as potential covariates for our

model: dummy variables that indicate if participants had directly seen any of the alternatives

for electricity generation, such as dams, power plants or other non-traditional sources, if

participants had visited any potentially affected area, or participants had family in those

areas. Additionally, we controlled for participants gender, age, ethnic origin, membership

in an environmental NGO, monthly electricity bill, income level, and family composition.

Four qualitative scales adapted from [35, 36] were included as candidate variables: a social

values scale with four factors (individual responsibility, responsibility of others, pro-social

and altruistic), a trust in government scale with two factors (integrity and competence), an
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Table 4.2: Experimental design. Levels for some of the attributes are also described graphically
illustrated with reference the area of Santiago, Chile. For example, 6,000 hectares are
equivalent to an area covered by five of Santiago’s boroughs (Providencia, Ñuñoa, Santiago,
Recoleta and Estación Central).The average monthly consumption of a household in Santiago
in 2014 was approximately 200 KWh. At a cost per KWh of CLP 125, the average monthly
electricity bill was CLP 25, 000 or USD ∼ 40 per month. The highest cost scenario of
CLP 5, 000 or USD 8, would imply a 20% increment in the monthly electricity bill. Each
emergency room visit is introduced as a lottery with a 25% chance of being hospitalized and
a 2.5% chance of dying.

Attribute Metric BAU (1) (2) (3) (4) (5) (6)

Native Forest Hectares 6,000 4,000 2,000 0

Morbidity Events per year 150 100 50 0

Use of Space Hectares 20,000 15,000 10,000 5,000

Location Pristine Non-pristine

Cost MCLP month 0 0.5 1 2 3 4 5

environmental beliefs scale with three factors (ecologist, economist, and trust in technology),

and environmental behavior scale with 3 factors (efficient, green, and activist). Scores were

constructed for each scale using factor analysis from a set of statements with polychoric

correlations [182]. Scale construction details are presented in Table 9.2 in the appendix section.

We also include a variable about participant belief on the percentage of the population willing

to pay to protect the environment.

The sample consisted of 56% female interviewees who were on average 48 years old. One

per cent of the sample declared they belonged to an environmental NGO, and four percent

declared an ethnic origin. Household average income was approximately USD16, 000 per

year, a little below the national purchasing power parity adjusted GDP per capita for 2014 of
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Figure 4.4: Choice set example (original in Spanish)

USD23, 000 (data.worldbank.org). 27% of the sample had seen a dam, 13% a power plant and

18% a wind farms. To avoid multicolinearity issues we finally selected the most meaningful

variables with a correlation ρ = 0.4 or lower in absolute value. A statistical summary and

a correlation matrix for the selected covariates can be found in Table 9.1 and Figure 9.1

in the appendix section, respectively. To control for hypothetical bias [173], we included a

“cheap talk" budget reminder adapting those in [53] and [161]. Further, participants were

randomly assigned to two conditions where either they were required or not to commit via a

signed oath to a truthful answer [124]. The oath was presented before the choice task and

stated: "I solemnly swear that during the following questions I will always answer truthfully,

responsibly, according to my personal opinions and considering my family budget". More

details of the survey design and data collection can be found in De la Maza et al. [57].
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4.4.2 Modeling results

We use the hybrid adaptive sparse multinomial logit model for estimation. We compare our

results with a standard multinomial logit model and a mixed-logit model [235]. Multinomial

and mixed logit models were estimated using mlogit R-package [51]. In the formulation,

Forest stands for native forest destroyed, Morbidity represents the number of emergency room

visits for respiratory or cardiovascular diseases, Use of space stands for land use and Location

stands for a dummy variable indicating pristine (1) or non-pristine (0) areas. Henceforth, we

defined the utility function for alternative i as:

Vi = αi +

p∑
j

αjxij +

p∑
j

k∑
l

βjlxijznl

+ β81 × Seen hydro× Forest

+ β82 × Seen hydro× Forest× Location

+ β83 × Seen power×Morbidity

+ β84 × Seen renewable× Use of space

+ β85 × Public support× Cost

(4.4)

Where:

xi is {Forest, Forest:Location, Morbidity, Use of space, Cost}

zn is {Signed oath, Gender, Age, Ethnicity, NGO, Electricity Bill, Income, Family, Chil-

dren, Past visits, Responsibility, Pro-social, Altruistic, Green, Trust Technology, Trust

Integrity}

The alternative specific constant for alternative B was set to zero to allow model identifi-

cation [235]. If we account for main effects for all attributes the number of total features
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q will be equal to 92: i) 5 coefficients for main effects including cost, ii) 2 coefficients for

alternative specific constants excluding alternative B and iii) 85 coefficients for the selected

interactions between attributes and covariates (q = 2 + p+ p× k = 2 + 5 + 5× 17 = 92). We

did not penalize main effects or alternative specific constants. Modeling results are presented

in Table 4.3. Our sparse model recovers 16 relevant two-way interactions between main effects

and covariates with the penalty that minimizes BIC equal to λ = 12. Taste heterogeneity is

well modeled using the approach, as the BIC from the sparse model is better than the mixed

logit model, which treats subgroup variation as unobserved heterogeneity (random effects)

[235]. Most of the reported coefficients are statistically significant (p ≤ 0.05).

As shown in Figure 4.5, all main effects are negative. This indicates that increments

in native forest destruction, use of space or morbidity effects will result in a lower utility

level for the decision maker and hence a detriment to the attractiveness of an alternative

that offers those increments. Additionally, as the alternative specific constant for choosing

alternative A is positive, there is positive tendency to choose the alternative located at the

middle beyond any other explanation offered by relevant covariates [186]. This tendency

could reflect a heuristic method to reduce the cognitive burden posed by the task [186]. No

relevant covariates were associated with impacts in native forest in non-pristine areas and

use of space. Participants who had seen a power plant assigned an extra premium to avoid

health impacts, possibly caused by an increased sense of risk [10]. Participants with a higher

electricity bill assigned an extra premium to avoid health impacts, recognizing the relation

between consumption and production. Moreover, participants that had visited the potentially

affected areas were willing to pay more to avoid health risks, accounting for a potential use

or option value [13]. Interestingly, older participants extracted a higher utility level from

increments in health impacts and hence from more thermoelectric generation, suggesting

generational differences on the definition of progress [35].

Regarding native forest destruction on pristine areas, membership in an environmental
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Table 4.3: Modeling results

Dependent variable:

choice

(MNL) (MXL) (ASMNL)

Forest −0.04∗∗∗ (0.01) −0.05∗∗∗ (0.01) −0.04∗∗∗ (0.01)
Morbidity −0.35∗∗∗ (0.06) −0.48∗∗∗ (0.08) −0.28∗∗∗ (0.07)
Use of space −0.01∗∗ (0.003) −0.01∗∗ (0.004) −0.01∗∗ (0.004)
Cost −0.25∗∗∗ (0.01) −0.54∗∗∗ (0.05) −0.23∗∗∗ (0.02)
SQ 0.10 (0.14) −0.15 (0.18) 0.05 (0.15)
A 0.13∗∗∗ (0.04) 0.18∗∗∗ (0.05) 0.14∗∗∗ (0.04)
Forest:Location −0.07∗∗∗ (0.02) −0.10∗∗∗ (0.02) −0.04∗ (0.02)
sd(Forest) 0.03 (0.07)
sd(Morbidity) −0.02 (0.30)
sd(Use of space) −0.03 (0.03)
sd(Cost) 0.62∗∗∗ (0.07)
sd(Forest:Location) −0.02 (0.06)
Morbidity:Seen power −0.16∗∗ (0.07)
Morbidity:Age 0.12∗∗∗ (0.03)
Morbidity:Electricity Bill −0.08∗∗∗ (0.03)
Morbidity:Past visits −0.30∗∗∗ (0.07)
Cost:Signed oath −0.08∗∗∗ (0.02)
Cost:Public support 0.06∗∗∗ (0.01)
Cost:Responsibility 0.05∗∗∗ (0.01)
Cost:Pro-social 0.03∗∗∗ (0.01)
Forest:Location:Ethnicity 0.13∗∗∗ (0.03)
Forest:Location:NGO −0.17∗∗∗ (0.06)
Forest:location:Electricity Bill −0.03∗∗∗ (0.01)
Forest:Location:Responsibility −0.02∗∗∗ (0.01)
Forest:Location:Trust Technology 0.05∗∗∗ (0.01)
Forest:Location:Trust Integrity 0.04∗∗∗ (0.01)
Forest:Location:Family −0.08∗∗∗ (0.02)
Forest:Location:Past visits −0.13∗∗∗ (0.02)
Observations 4,395 4,395 4,395
Log Likelihood −4,599 −4,575 −4,348
BIC 9,258 9,251 8,922

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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NGO played a relevant role, showing a strong rejection from members for interventions on

the Patagonia regions (Aysen). Participants with a higher electricity bill and an elevated

sense of individual responsibility for the impacts, also assigned an extra premium to avoid the

destruction of native forest in pristine areas. Participants that had visited or had family in

the potentially affected areas were willing to pay more for their protection, again suggesting

a potential use or option value [13]. Not surprisingly, participants with a favorable trust in

government’s integrity to act in favor of the community or the belief that technology can

provide effective environmental protection, would accept a higher intervention in pristine

areas than the average population [36]. Finally, participants from indigenous ethnic groups

would extract a positive utility level from an intervention of the native forest in the Patagonia,

a land that was not occupied by their ancestors, perhaps foreseeing a withdraw of industry

pressure on their own native lands.

Regarding costs, head of households that forecast a large public support for an environmen-

tal fee, that held strong pro-social values and with strong feelings of individual responsibility,

assigned less importance to an increment in the electricity bill than the average population

in exchange for environmental protection. Further, in accord with results found in [124],

participants who committed themselves through a signed oath to a truthful answer assigned

more importance to the cost attribute than on average. As claimed by [124], this so-called

"truth telling commitment device" could induce respondents to bind themselves to their

budget constraints. That is to say, a higher importance of costs might bear relation to a

higher commitment to the survey instrument. The "oath effect", namely the commitment

made when abiding to the written oath [124], has not yet being thoroughly explored in this

kind of experiments and it presents an interesting alternative for reducing hypothetical bias.
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Figure 4.5: Estimated coefficients ASML model

4.4.3 Willingness to pay

Finally we estimate willingness to pay (WTP) values. WTP represents the marginal rate

of substitution between an specific attribute k and the cost attribute as MRSk = θk/θcost

[58]. In Table 4.4 we present in the first column marginal WTP values in monthly figures,

followed by sample mean values for each relevant covariate, where continuous covariates

were mean-centered. In the third column, we present average WTP values in yearly figures.

Finally, social willingness to pay for each impact is computed expanding average willingness

to pay values to all households in the country (approximately 6 million) [10]. To account

for uncertainty, HASML estimates were assumed to distribute asymptotically normal [268].

Confidence intervals were constructed with 10,000 simulations of parametric bootstrap drawing

the required coefficients from a multivariate normal distribution with parameters those from
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the model [207]. We extended this analysis to present the average external costs of electricity

generation by technology. To do so, we account for the impacts for each generation technology

as the average of the impact reported by companies in their environmental impact assessment.

Externalities in terms of average costs (USD/MWh) are estimated as follows:

WTP [USD/MWh] =
WTP [USD-metric/year] · Impact [metric/MW ]

8760 · CapacityFactor [%]
(4.5)

Table 4.4: Willingness to pay for hybrid adaptive sparse multinomial logit model

Mg.WTP Population Avg. WTP Social WTP
Impact (USD/unit-month) mean (USD/unit-year) (MUSD/unit-year)

Use of space (ha) 5.2 ×10−5 6.2 ×10−4 3.7 [1.8, 5.7]

Forest (ha) 2.6 ×10−4 3.2 ×10−3 18.9 [13.1, 24.9]

Forest:Location (ha) 2.4 ×10−4 2.9 ×10−3 20.9 [9.3, 32.8]

-:Ethnicity -5.9 ×10−4 4.3% -3.0 ×10−4

-:NGO 1.3 ×10−3 1.2% 1.9 ×10−4

-:Electricity Bill 4.0 ×10−4 0 0
-:Responsibility 3.6 ×10−4 0 0
-:Trust Technology -8.7 ×10−5 0 0
-:Trust Integrity -2.1 ×10−5 0 0
-:Family 7.4 ×10−4 12.4% 1.1 ×10−3

-:Past visits 1.1 ×10−3 20% 2.6 ×10−3

Morbidity (event-year) 1.7 ×10−2 2.0 ×10−1 1, 380 [950, 1, 800]

-:Seen power 2.7 ×10−2 17% 5.5 ×10−2

-:Age 9.6 ×10−3 0 0
-:Electricity Bill 2.2 ×10−2 0 0
-:Past visits 3.5 ×10−2 20% 8.5 ×10−2

Cost coefficient for participants who committed themselves through a signed oath to a truthful
answer.

In Figure 4.6, we present environmental impacts per technology. We complemented the
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analysis including the social cost of carbon as a triangular distribution with mode the current

carbon tax in Chile of USD 5 and minimum and maximum values of USD 0 and USD 20

per Ton of CO2 [183]. We also present in Table 9.3 and Table 9.4 in the appendix section,

the environmental impacts and private costs per technology, collected from stakeholders in a

participatory process [193]. Figure 4.6 shows that there is a large difference between social

costs and private costs for each technology. Coal-fired power plants account for the highest

external costs with roughly half of the total impacts associated with climate change. For

other thermoelectric technologies such as biomass, externalities are mainly associated with

local health impacts. Regarding hydro-power, externalities associated with dam projects

are one order of magnitude higher than those related to the “run-of-the river” technology.

Indeed, the main difference corresponds to native forest destruction impacts. Location can

vary this conclusion considerably as destruction of native forest in pristine areas more than

doubled base impacts. As an important caveat, health impacts were estimated for low

population areas (∼ 10, 000 inhabitants). If projects are constructed in sites that had been

commonly used for this purpose in the past, externalities could amount from ten to a hundred

times the ones presented here. We can observe in Figure 4.6 on right that as the exposed

population increased, the external impacts of coal also increased. If the population affected

is approximately ten times larger (∼ 100, 000 inhabitants) a solar project would hold a lower

social cost. These caveat extends to other external costs, as the average impact in native

forest could easily be exceeded three times depending on river gorge features. In the case of

non-traditional renewable sources, although use of space represents the main impact, total

external costs are valued well below the ones associated with traditional sources, a fact which

confirms the advantage of promoting this type of technologies.
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(a) (b)

Figure 4.6: Average externalities per technology. HDP: Health damaging pollutants. We
complemented the analysis including the social cost of carbon as a triangular distribution
with mode the current carbon tax in Chile of USD 5 and minimum and maximum values of
USD 0 and USD 20 per Ton of CO2 [183]. Coal-fired power plants account for the highest
external costs, followed by the externalities associated with dam projects. On left we observe
that as the exposed population increased, the external impacts of coal also increased. Based
on values reported in Table 9.3 and Table 9.4 in the appendix section.

4.5 Discussion

We developed and tested the sparse multinomial logit model that is able to automatically

identify relevant covariates in a choice process with an adaptive lasso penalty. As the model

can capture preference heterogeneity for different socioeconomic characteristics of decision

makers in a parsimonious fashion, within the estimation process, it provides the means to

recognize the stylized elements of subgroup behavior in a choice task. The approach is

flexible enough to model a wide variety of phenomena while retaining a parametric form that

is readily interpretable, making it useful for aiding individual and societal decisions. We

show how to estimate our model with state-of-the-art convex optimization methods. Our

model can systematically recover the true support at the cost of inducing bias in coefficients.

We also show a simple hybrid method on how to debiased our sparse model results to
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make them useful for welfare analysis, using an oracle estimator for variable selection and

later the unbiased maximum likelihood estimator on the selected variables. Other popular

regularization alternatives that give unbiased estimates and also hold oracle properties are

non-convex. Some examples are the smoothly clipped absolute deviation penalty (SCAD) [61],

the minimax concave penalty [267], or Bridge penalty [77]. The use of non-convex penalties

can be understood as different types of adaptive weighting schemes for the lasso penalty [62].

Future work should evaluate the benefits of using non-convex penalties.

We used data from a conjoint analysis survey designed to estimate willingness to pay

to avoid environmental impacts of electricity generation to test our model. The effect on

willingness to pay of experience with the impacts, ties with the affected sites, age, electricity

bill, ethnicity, membership in an environmental NGO, pro-social behavior, trust in government,

trust in technology, the sense of individual responsibility and perception of public support

for environmental protection was uncovered by the model. Regarding willingness to pay

estimation, according to our calculations, use of space is valued on average in USD 4, 000

[2, 000, 6, 000] per ha-year. Average social willingness to pay to avoid the destruction of native

forest was estimated at USD 19, 000 [13, 000, 25, 000] per ha-year, which roughly two-folds if

native forest is in a pristine area increasing in USD USD 21, 000 [9, 000, 33, 000] per ha-year.

Our results are in line with [94] results, that valued use of space in approximately in USD

6, 000 per ha-year and destruction of native forest in USD 21, 000 per ha-year, accounting for

the time value of money. Health impacts were valued in MMUSD 1, 4 [0.9, 1.8] per event-year.

Following [186], we introduced health impacts as a chain of events in which each subsequent

outcome has a higher level of illness intensity at a decreasing probability of occurrence,

ranging from an emergency room visits to an hospitalization, with death as the worst possible

outcome. Each emergency room visit is introduced as a lottery with a 25% chance of being

hospitalized and a 2.5% chance of dying. As our health endpoint is more comprehensive

than other studies, comparison becomes harder. Nonetheless, focusing only in mortality
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impacts can provide a counterfactual. In [183], the value of statistical life (VSL) for Chile

was assumed to be in a range from MMUSD 0.2 to MMUSD 2. If we use the higher end

in that range and a 2.5% chance of death, a lower bound for the value of our endpoint will

correspond to MMUSD 0.05, 30 times lower than our estimation. As VSL values in Chile are

commonly estimated in the context of motor vehicle accidents, this large differences could be

explained by differences in risk perception, as health risks associated with air pollution from

electricity generation might be perceived as uncontrollable and involuntary [73].

In order to develop an electricity mix that considers economic, environmental and social

aspects, authorities must thoroughly take into account external costs. Our estimated values

could be used to assess costs and benefits of alternative electricity grid scenarios as compared

with the status quo. Results indicate that external costs associated with thermoelectric power

plants are the highest among the evaluated technologies, followed by hydro-power and other

non-traditional renewable sources. Externalities related with health outcomes represent the

greater impact, followed by greenhouse emissions, native forest destruction and use of space.

Externalities can vary depending on particular technological specifications designed to reduce

environmental impacts or regarding location. These factors must be considered in defining the

electricity mix that maximizes social welfare. For example, health effects for thermoelectric

projects vary depending on the exposed population. If projects were developed in areas

closer to urban developments, externalities could be two orders of magnitude higher those

estimated. In addition, it should be noted that if new projects are developed in pristine areas,

it would imply an additional social welfare loss. Although these outcomes allow drawing some

conclusions, supplementary inquiries must be undertaken in order to determine willingness to

pay values for environmental impacts of electricity generation with more precision. In this

study, respondents do not represent those directly affected. On the contrary, estimations

correspond mainly to altruistic or option values of the main urban consumers of electricity

in the country, as one third of Chile’s population corresponds to Santiago residents. Hence,
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further work is required to extend these figures at a national level. Nevertheless, results

represent a good first approximation and could be applied to estimate social benefits for

alternative electricity mix scenarios vis-a-vis Business-as-usual, simulating dispatch merit

based on social costs. Henceforth, our results can provide valuable insights to determine the

mix that maximizes social welfare.

4.6 Conclusions

Discrete choice models are used in important domains, ranging from consumer product

recommendations, to valuing of environmental impacts, weighing the course of action in

individual and social decisions. In a typical modeling exercise, the modeler needs to select the

parameters to include in the model ex-ante. The model specification task can be challenging

when many socioeconomic variables can be relevant and could lead to the use of simple

heuristics to choose relevant subgroups in the sample. Oversimplified models can then lead to

biased parameter estimates, resulting in harmful distortions when used for policy evaluation.

Our method can aid the preference modeler to identify relevant covariates for the choice

model automatically, reducing reliance on the modeler’s judgment. Practitioners of value

elicitation methods will be able to use our approach to better understand taste heterogeneity

across a sample of decision-makers. The method can also inform policy-makers, to help them

better understand the welfare impacts of new policies for subgroups of the target population,

and to design policy interventions tailored for the heterogeneous preferences of different

communities.
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5
Summary and conclusions

In this dissertation, we present a general framework to model preference heterogeneity in

individual choices along two dimensions, preference content and structure. With our approach,

we extend welfare analysis to recognize for these differences in the preferences of the public.

We propose three new methods to improve preference learning for policy design. To evaluate

the methods, we present three case studies where we combine experimental design methods

from the decision sciences with machine learning algorithms. We first provide a new method to

improve choice experiments, avoiding judgment bias when risks accumulate on time. Thus, in

the first case study we assessed the perception of cumulative flood risks, how those perceptions
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affect insurance decisions, and whether those risk perceptions can be influenced providing

simple cumulative risk information. We found that participants’ cumulative risk judgments

were well represented by a bimodal distribution, with a group that severely underestimates

the risk and a group that moderately overestimates it. We also found that individuals who

underestimate cumulative risks made more risk-seeking choices. Our results show that a

common approach of providing information about the annual risk of an adverse event (rather

than cumulative risk) could expose public to a level of harm that they would not be willing

to accept when fully informed. Instead, materials aimed at helping decision makers improve

their choices should include cumulative risk information directly. Results from the judgment

task suggest that participants are likely using an anchoring and adjustment heuristic where

they first intuitively consider the base rate risk as a plausible answer. If the judgment error

in this response is detected, other heuristics are searched for an applied. An additive rule

such as multiplying the base rate risk by the number of periods is likely to be selected [227].

As we provide more information the cumulative risk functional form can be discovered by

participants. Nevertheless, additional information can also be used as a new anchor, to

construct cumulative risk judgments, without yet recognizing the true relation between time

of exposure and risk. Further research should show how many new points on a cumulative

risk curve are required to faithfully learn that curve [164]. Other factors influencing both

cumulative risk judgments and choices, such as emotions [217], numeracy skills [179] and

experience [95, 115], should be also better understood in the future. Furthermore, empirical

tests in other domain can uncover the generality of our findings and encourages a fruitful line

of future research.

Next, we designed a method to determine preference structure from choice data even

when those data are inconsistent with the axioms required by the choice theory the model

relies on. We leveraged recent advances in graph matching and non-linear embeddings,

combined with pairwise comparison choice data, to cluster decision-makers based on what
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they want (the content of their preferences) and whether they know what they want (the

structure of their preferences). Across three experiments, including classic studies of risky

choice and a two attribute study about state-level electricity generation portfolios, we found

significant heterogeneity in both the content and structure of decision-maker preferences.

Decision-makers most frequently choose in a way consistent with utility maximization, yet

some decision-makers make choices consistent with heuristic rules, while others appear to be

uncertain about their preferences. As a generalization of traditional preference analysis, the

approach can be used to make recommendations for people who know what they want, uncover

complex choice rules, and suggest paths toward clarification for those who are uncertain.

Although several individuals appear to be consistent with utility theory, we discovered a large

proportion of individuals with choice patterns consistent with a lexicographic order behavior,

choosing based on a single attribute. Although some individuals have cyclic preferences,

most groups were transitive in expectation. Nonetheless, some groups showed evidence of

intransitivity patterns both at individual and group level. Welfare calculations on decision-

makers who have intransitive preferences or transitive preferences that result from simplifying

heuristics can be misleading. The most harmful condition occurs when individuals use simple

heuristics that mimic utility maximization, resulting in overestimation of the willingness to

compromise in a population.

Our approach involves applying different procedures sequentially. We first represent

individual choices as graphs, then compute dissimilarities between graphs for all pairs of

decision-makers, embed those dissimilarities into a lower dimensional space, and later clusters

decision-makers based on their proximity in those embeddings. Henceforth, improvements

to our method can come from automatic selection of hyper-parameters in each stage such

as the number of clusters and the number of dimensions in the embedding process. Casting

hyper-parameter selection within the objective function used in each optimization procedure

within the algorithm could reduce reliance on expert judgment. Further, methods that can
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discover a hierarchy structure between the uncovered clusters can be useful to summarize

even further the structure of preferences. Sequential application of k-medians and hierarchical

clustering algorithms showed promising results, but future work should automate this process.

The experimental design also provides a challenge. A new experimental design method should

identify the minimal number of pairwise comparisons required to recover preference structure.

Empirical applications should be also extended to include more attributes and to other

experimental domains. A future challenge involves discovering the content and structure of

preferences with a unique statistical model. Methods that can perform both clustering and

classification simultaneously provide an attractive starting point.

Finally, we designed a method to aid the preference modeler to identify relevant covariates

for the choice model, improving the model specification task. In the third case, we used

tools from machine learning to discover relevant covariates in a discrete choice model. We

developed and tested a method for high-dimensional preference modeling, where irrelevant

coefficients are set to zero with an adaptive lasso penalty. Our model can systematically

recover the true support at the cost of inducing bias in coefficients. In economic and policy

analysis, bias in coefficients is a serious concern, as can lead to incorrect conclusions and

policy distortions. We show how to debias our sparse model results with state-of-the-art

convex optimization methods. Next we tested the model on a real data set. We used data

from a conjoint analysis survey designed to estimate willingness to pay to avoid environmental

impacts associated with different electricity generation technologies. The effect on willingness

to pay of trust, values, beliefs and socioeconomic characteristics was uncovered by the model.

Taste heterogeneity was well captured by the model, as our it improves upon the mixed logit

model, that mimics these differences as random effects.

Extensions of our sparse model can be used to automatically learn the nested structure

for the alternatives in a choice task with a nested logit model [169]. A nested logit model

can be approximated with a set of random alternative-specific constants [116]. The nesting
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structure will then be reflected in the variance-covariance matrix of those constants or the

error structure. A random effects approximation for a nested logit model requires knowing

the error structure ahead of time. Nevertheless, if utility functions can be written in terms of

random variables whose parameters determine the model structure, setting some of those

parameters to zero using sparsity constraints has the effect of selecting the appropriate error

structure.

Further, the model can be used to uncover different attribute non-attendance strategies

used by groups of decision makers with a sparse latent class model. A common violation

of preference continuity corresponds to ignore a subset of alternative attributes during the

choice, namely attribute non-attendance [43, 196, 117, 111, 142]. In a latent class model

[99, 100], individuals are assigned to different classes, based on observable features. The

probability that an individual chooses an alternative is then modeled as a finite mixture of

classes [99]. Each class can also represent an specific attribute non-attendance strategy, where

some attributes are ignored [117, 111, 142]. Enforcing sparsity constraints to the coefficients

in each class can then uncover attribute non-attendance patterns.

The three methods offered here can affect policy research in the decision-sciences, with

applications to health and environmental decision-making, as well as fundamental studies

of human cognition. Policy decisions ought to be based on individuals preferences and

trade-offs decision makers would make between different private or public goods [12]. A major

challenge faced by policy analysts is to design models that can capture individual preferences,

even when descriptions can be misleading; that can uncover heterogeneity in preference

structure to classify decision makers and extract insights from choice data even when data is

inconsistent with prior models; and that can better understand taste heterogeneity across

a sample of decision-makers, even when relevant parameters are unclear. Practitioners will

be able to use these methods to control judgment bias during the experimental task in the

model specification, classify decision-makers according to their preference structure, answering
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first if they know what they want and henceforth what they want or the content of those

preferences, and to build more parsimonious models that can identify the stylized elements

in a choice task. Our methods can be used in important domains, ranging from consumer

product recommender systems used by technology companies to sell products, to revealed

preference studies used by researchers to infer quantities like the value of a statistical life or

the value of other environmental externalities, to the design of voting schemes that determine

the trajectory of nations, weighing the course of action in individual and social decisions.

Modelers of preferences will be able to use these methods to inform decision-makers themselves

through decision analysis or to help policy-makers to better understand the welfare impacts

of new policies. Further, our methods can help to design policy interventions customized for

the demands that each subgroup of the population mandates, and encourage better public

decisions. We trust our contribution can promote a more sustainable common future.
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Appendix: Cumulative risk perception

from judgments and choices
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Figure 7.1: Expected loss for each option and risk premium under the assumption of a
constant relative risk aversion (CRRA) utility function with r=0.5 normalized between 0
and 1 (U(x) = (X1−r(1 − r))/(W 1−r

0 (1 − r))). Utility function and certainty equivalents
for option A (no coverage) with a 4%, 2% and 1% chance of a flood each year (A”, B” and
C”), and expected loss for the same gambles (A’, B’ and C’). If we assume participants are
risk-averse, participants should be willing to pay their expected loss (EL) plus an additional
risk premium (RP) to be protected. The red dots represent utility of option A (no coverage)
at different risk levels and the white dots represent utility of option B (full coverage) at
different insurance premiums assuming they decide based on final wealth levels.
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Figure 7.2: Indifference curves for individuals with accurate judgment, additive and mean
heuristics for a 2% chance flood each year. Each axis represents welfare in the state of the
world where either no flood or flood occurs. The x-axis represents final wealth in the state of
the world where there are no floods, or equivalently the agent initial wealth minus the cost of
the insurance policy. The y-axis is final wealth level in the state of the world where a flood
occurs, or equivalently initial wealth minus monetary loss plus insurance coverage minus the
cost of the insurance. When offered a fair insurance premium a risk-averse individual with
accurate judgment should prefer full insurance coverage, illustrated at the certainty line where
indifference curve intersects actuarially fair insurance line [252]. All contracts to the right of
the dotted line should be preferred to no insurance coverage. Thus, contracts represented
by points A ($150,000), B ($90,000) or C ($45,000) should be preferred to contract D (no
coverage). The same applies for an individual following an additive heuristic. Contracts A, B
or C fall left of a mean heuristic individual indifference curve and henceforth should be worst
than contract D.
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Table 8.1: Problems used for the choice experiments. See also problem ID in adjacency
matrix in Table 8.2

(a) Transitivity task based on [239]. Gambles from Tversky’s
classic paper on intransitive preferences [239] (a-e), along with
five additional gambles (f-j), where last two gambles a higher
probability is negatively correlated with a higher expected value.

Gamble Probability Payoff Expected Value ($)
a 7/24 5.00 1.458
b 8/24 4.75 1.583
c 9/24 4.50 1.688
d 10/24 4.25 1.771
e 11/24 4.00 1.833
f 12/24 3.75 1.875
g 13/24 3.50 1.894
h 14/24 3.25 1.895
i 15/24 3.00 1.875
j 16/24 2.75 1.833

(b) Anomalies task Gambles based on [129, 60]. In the column
labeled as P, we present the proportion of participants with anomalous
behavior. Proportion P, should be above 0.5 in all cases to match
previous findings [60].

Alt p.1 o.1 o.2 Anomalies P
a 1 3,000 0 Certainty (a � b) 0.7
b 0.80 4,000 0 Certainty (a � b)
c 0.25 3,000 0 Certainty (d � c)
d 0.20 4,000 0 Certainty (d � c) 0.3
e 1 -3,000 0 Reflection (f � e)
f 0.8 -4,000 0 Reflection (f � e) 0.3
g 1 50 0 Overweight (h � g)
h 0.01 5,000 0 Overweight (h � g) 0.3
i 1 0 0 Loss aversion (i � j) 0.7
j 0.5 1,000 -1,000 Loss aversion (j � i)
k 0.5 6,000 0 Risk aversion (a � k) 0.3

(c) Alternatives CO2 task (CO2 %, Bill %) based on [197]

a (-30%, 20%), b (-30%, 5%), c (-25%, 4%), d (-20%, 3%),
e (-15%, 2%), f (-10%, 1%), g (30%, -20%), h (30%, -5%)
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Table 8.2: Problem ID in adjacency matrix.

1 2 3 4 5 6 7 8



1 2 3 4 5 6 7 1
8 9 10 11 12 13 2

14 15 16 17 18 3
19 20 21 22 4

23 24 25 5
26 27 6

28 7
8

1 2 3 4 5 6 7 8 9 10



1 2 3 4 5 6 7 8 9 1
10 11 12 13 14 15 16 17 2

18 19 20 21 22 23 24 3
25 26 27 28 29 30 4

31 32 33 34 35 5
36 37 38 39 6

40 41 42 7
43 44 8

45 9
10

1 2 3 4 5 6 7 8 9 10 11



1 2 3 4 5 6 7 8 9 10 1
11 12 13 14 15 16 17 18 19 2

20 21 22 23 24 25 26 27 3
28 29 30 31 32 33 34 4

35 36 37 38 39 40 5
41 42 43 44 45 6

46 47 48 49 7
50 51 52 8

53 54 9
55 10

11

Table 8.3: Linear utility models per cluster transitivity task. l(s): log-likelihood model with a
single parameter, l(EV): log-likelihood model expected value rule, P(p): proportion choosing
the alternative with a higher probability of winning.

Cluster Content β̂ l(s) l(EV) P(p) N (%)
1 Probs 10∗∗∗ -542 -621 87%∗∗∗ 26 (13%)
2 Probs 23∗∗∗ -473 -773 96%∗∗∗ 44 (22%)
3 Probs 111∗∗∗ -30 -717 100%∗∗∗ 59 (30%)
4 Payoff 3∗∗∗ -284 -382 7%∗∗∗ 18 (9%)
5 Probs 5∗∗∗ -558 -586 71%∗∗∗ 20 (10%)
6 Probs 0.3∗ -1,029 -1,029 54%∗∗∗ 33 (16%)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8.4: Willingness to pay per cluster CO2 task

Cluster Content β̂CO2 β̂Bill WTP N
1 Bills 1.5∗∗ -12.5∗∗∗ -0.04 37 (18%)
2 Bills -5.1∗∗∗ -9.1∗∗∗ 0.17 17 (8%)
3 Bills -7.9∗∗∗ -13.8∗∗∗ 0.17 26 (13%)
4 Greens −9.2∗∗∗ -3.4 0.81 12 (6%)
5 Greens -15.6∗∗∗ -20.4∗∗∗ 0.23 28 (14%)
6 Greens -27.9∗∗∗ -37.7∗∗∗ 0.22 50 (25%)
7 Cycles -0.2 -3.4∗∗∗ 0.02 30 (15%)

Table 8.5: Latent decision rule model anomalies task

Dependent variable: Choice

Rule 1 (EV) Expected value 30.1∗ (17.8)
Standard deviation −30.3 (18.7)

Rule 2 (Better) P(Better outcome) 1.8∗∗∗ (0.2)
Rule 3 (Weighted additive) Outcome low −7.5∗∗∗ (1.1)

Outcome high 0.9∗∗ (0.2)
Rule 4 (Probability matching) Probability low 3.1∗∗∗ (0.9)

Rule 1 (π1 = 15%) "-"
Rule 2 (π2 = 38%) 0.9∗∗∗ (0.2)
Rule 3 (π3 = 36%) 0.9∗∗∗ (0.2)
Rule 4 (π4 = 11%) −0.3 (0.3)

Observations 11,000
Log Likelihood −7,052

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8.6: Proportion matching expected anomalies per cluster. (1) Certainty effect, (2)
Reflection effect, (3) Rare event overweighting, (4) Loss aversion, (5) Risk aversion

Cluster (1) (2) (3) (4) (5) N

All 0.2 0.2 0.3 0.7 0.7 200 (100%)
1 0.2 0.3 0.4 0.6 0.6 89 (45%)
2 0.2 0.1 0.3 0.7 0.8 111 (55%)
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Figure 9.1: Correlation matrix survey
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Table 9.1: Summary statistics

Variable n mean sd median mad min max skew

Have seen hydro 488 0.34 0.47 0 0 0 1 0.66
Have seen power 488 0.17 0.38 0 0 0 1 1.75
Have seen renewable 488 0.31 0.46 0 0 0 1 0.80
Signed oath 488 0.49 0.50 0 0 0 1 0.02
Public support 483 0.27 0.26 0.12 0.11 0.05 1 1.20
Gender (female) 486 0.56 0.50 1 0 0 1 -0.23
Age 474 49 16 48 16 17 90 0.13
Ethnicity 485 0.04 0.20 0 0 0 1 4.47
NGO 485 0.01 0.11 0 0 0 1 8.80
Electricity bill (USD/month) 479 47 27 41 20 4 263 2.37
Income (USD/month) 475 1, 146 843 940 836 188 3, 759 1.02
Others responsibility (Values) 437 0 1 0.05 1.18 -3.10 1.56 -0.54
Individual responsibility (Values) 437 0 1 0.36 0.99 -2.39 1.28 -0.72
Pro-social (Values) 437 0 1 0.19 1.41 -1.61 1.30 -0.24
Altruistic (Values) 437 0 1 0.27 0.82 -3.81 1.33 -1.07
Efficient (Behavior) 455 0 1 0.20 0.97 -2.72 1.32 -0.87
Green (Behavior) 455 0 1 0.04 1.08 -2.06 1.75 -0.14
Activist (Behavior) 455 0 1 -0.27 0.95 -1.48 2.71 0.85
Biocentric (Beliefs) 444 0 1 0.04 1.02 -2.24 2.64 0.13
Economicist (Beliefs) 444 0 1 0.15 1.12 -3.29 1.54 -0.56
Trust in technology (Beliefs) 444 0 1 0.27 0.85 -3.64 1.85 -0.86
Trust in government (integrity) 467 0 1 -0.02 1.16 -1.84 1.71 -0.21
Trust in government (competence) 467 0 1 -0.03 0.97 -2.99 1.94 -0.42
Family 485 0.12 0.33 0 0 0 1 2.28
Children 488 0.64 0.48 1 0 0 1 -0.56
Elder 488 0.34 0.47 0 0 0 1 0.68
Past visits 488 0.20 0.40 0 0 0 1 1.49
Future visits 484 0.33 0.47 0 0 0 1 0.70
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Table 9.2: Factor analysis qualitative scales

Statement (Scale 1 to 7) Factor α MR1 MR2 MR3 MR4

Trust in government
The government has the knowledge and human resources to
reduce environmental impacts

Competence 1 0.41

The government will act without political or industry pres-
sures to regulate electricity generation

Integrity 0.8 0.58 0.23

The government will take into account the interests of citizens
and the environment to regulate electricity generation

0.78 -0.14

The government has sufficient judgment to make good deci-
sions to regulate electricity generation

0.78

Social values
The industry is responsible for reducing environmental im-
pacts of electricity generation and not households like mine

Resp. Other 0.8 0.63

The government is responsible for reducing environmental
impacts of electricity generation and not households like mine

0.94 0.13

All households use electricity and should contribute to reduce
the impacts of its generation

Resp. Ind. 0.7 0.77 0.21

Households like mine should not be responsible for reducing
the environmental impacts of electricity generation∗

0.45 -0.17

It is my responsibility as a citizen to help reduce the envi-
ronmental impacts of electricity generation

0.65

I am not willing to collaborate to reduce the environmental
impacts of electricity generation if others are not∗

0.48 -0.10

It is my duty to help others when they can not help themselves 0.49 0.11 -0.22
Each individual is solely responsible for its well-being in life∗ Pro-social 0.4 0.13 0.31
My only responsibility is to provide welfare for my family
and I∗

-0.31 -0.16 0.99 0.16

Donations rarely improve the lives of others∗ Altruistic 0.2 0.10 0.30
My personal actions can improve the life of people I do not
know

0.34 -0.46

Environmental beliefs
Environmental problems can be solved with better
technology∗

Ecologist 0.6 0.73 -0.61

Plants and animals have the same right to live than humans 0.67
Humans are depleting the limited resources available on the
planet

0.64

People worry too much about the impact of economic devel-
opment

Economicist 0.7 0.78 0.20 0.15

Humans have the right to modify the natural environment 0.54
We care too much about the impacts on the environment
and not enough to create jobs today

0.51 -0.12

Nature is strong enough to withstand the impact of our
lifestyle∗

-0.50 0.19

The deterioration of the environment is not as bad as they
say∗

Technology 0.5 -0.22 0.27 0.42

There are more important things life than the environment∗ -0.24 0.21 0.25
Environmental behavior
I keep electric appliances unplugged when not using them Efficient 0.7 0.86
I take shorter showers to save water 0.67
I turn off lights when leaving a room 0.65
I save fuel biking or walking 0.31 0.18 0.20
I recycle newspapers, glass bottles and other items Green 0.7 -0.15 0.93
I prefer environmentally friendly products 0.63
I participate in protests for the protection of the environment Activist 0.5 -0.10 0.73
I donate money to environmental protection 0.53115



Table 9.3: Environmental impacts per technology

Use of Space Forest CO2e MP NOx SO2

Source (ha/MW) (ha/MW) (Ton/GWh) (Kg/GWh) (Kg/GWh) (Kg/MWh)

Biomass 0.1 0 24 170 1, 100 80
Coal 0.7 0 1, 001 90 610 610
Diesel 0.01 0 779 50 300 20
LNG 0.01 0 436 20 200 10
Wind 0.6 0 11 0 0 0
Geothermic 0.4 0 28 0 0 0
Dam 1.5 1.500 28 0 0 0
Run-of-the-river 0.2 0.200 7.200 0 0 0
Solar 1.4 0 48 0 0 0

Personal communication with experts from escenariosenergeticos.cl (2014) (Based on www.e-seia.cl)

Table 9.4: Private costs per technology

Investment Life use Capacity Investment O&M Fuel Total
Source (USD/kW) (years) (%) (USD/MWh) (USD/MWh) (USD/MWh) (USD/MWh)

Biomass 3, 610 40 0.6 70 21 23 114
Coal 2, 078 35 0.85 29 3 38 70
Diesel 500 25 0.85 7 15 144 166
LNG 893 25 0.9 13 3 81 97
Wind 1, 945 20 0.4 65 12 0 77
Geothermic 3, 896 40 0.85 54 13 0 67
Dam 2, 000 45 0.55 42 5 0 47
Run-river 2, 000 45 0.53 43 5 0 48
Solar 2, 110 25 0.24 110 11 0 121

Personal communication with experts from escenariosenergeticos.cl (2014)
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