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Abstract

Field programmable gate arrays (FPGAs) are one of the most attractive pro-

grammable platforms because they combine the flexibility of software programmed

CPUs and the performance and efficiency of custom ASICs. FPGAs enable rapid

prototyping and development of complex ASICs and facilitate deployment of em-

bedded systems with performance nearing ASICs. Consequently, FPGAs are now

the workhorses behind a broad variety of applications including aerospace, super-

computing, high-speed signal processing, and cryptography. Additionally, FPGAs

are a highly attractive implementation platform for secure systems due their lack of

application design information at manufacture-time, which mitigates the risk if the

supply chain is compromised. Cryptographic applications and security protocols can

be efficiently implemented on FPGAs and they can easily be modified in the field

unlike their ASIC counterparts.

The configuration bitstream is a persistent source of security vulnerability in

FPGA designs. The possible compromise of configuration data by the attacker poses

significant threats for deployed systems in the field. These threats include cloning

the FPGA configuration for use in counterfeit/unauthorized systems, modifying the

FPGA configuration to increase side-channel emissions, and adding malicious Tro-

jan hardware into the compromised design. To ensure design protection, FPGA man-

ufacturers have implemented bitstream encryption and authentication, flash FPGAs,

and active defense mechanisms for FPGA test and support circuits. However, these

security measures can be circumvented in a number of ways, which includes direct

probing the key storage, side-channel attacks on the bitstream decryption logic, and

attacks on the test and verification support circuits. Furthermore, as is common with

hardware implementations, cryptographic systems implemented on FPGAs leak in-

advertent side-channel information (i.e., power, timing, electromagnetic emissions)

that can be exploited by an attacker to bypass the security of the algorithms. One
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highly effective and easy-to-mount side-channel attack is power analysis, which ex-

ploits the data-dependent power consumption in the hardware. Hiding and masking

countermeasures seek to achieve resistance against power side-channel attacks at the

expense of significant timing, area, and energy overheads; however, these techniques

are vulnerable against a number of successful side-channel attacks.

In this thesis, we present a secure hardware-entangled FPGA design in order to

address these FPGA security concerns. The proposed FPGA design never stores the

configuration data in the clear, even at the lowest level of the hardware. We deeply

hardware-entangle both the reconfigurable logic and interconnect by one-time pad

encrypting the bitstream using a secret die-specific response. Physical unclonable

functions (PUFs) are used in the implementation as a mechanism to generate this se-

cret response. By leveraging our recent work in efficient PUF design with both low

VLSI overheads (i.e., area, power, delay) and strong security metrics (i.e., random-

ness, uniqueness, reliability), we tightly integrate a PUF bit with every configuration

bit. This has significant security benefits that include high resistance to probing at-

tacks and unique per-die configuration bitstreams. Also, PUFs can be fired on-the-fly

during FPGA operation for enhanced security against probing attacks. In addition

to bitstream protection, the proposed FPGA fabric has resistance to power analysis

attacks embedded within the reconfigurable fabric that enables side-channel secure

operation. The fabric uses post-charged dynamic logic with self-timed discharge

operation to ensure secure operation of user designs. Hardware-entangled secure

FPGAs are a promising alternative to layering countermeasures on top of insecure

conventional-off-the-shelf (COTS) FPGAs.
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Chapter 1

Introduction

1.1 Motivation

As process technologies scale down to nanometer-regime, the long development time and high

non-recurring engineering costs associated with modern integrated circuit design are becoming

increasingly infeasible for all but the highest-volume parts. These factors have pushed many sys-

tem designers to use programmable ICs, rather than costly, complex, custom ASICs. Field pro-

grammable gate arrays (FPGAs) are one of the most attractive programmable platforms, because

they occupy middle ground between CPUs and custom ASICs, offering much of the flexibility of

software programmed CPUs, but still achieving much of the performance and efficiency of cus-

tom ASICs. FPGAs enable rapid prototyping and development of complex ASICs and facilitate

deployment of embedded systems with performance nearing ASICs. Consequently, FPGAs are

widely used in a broad variety of applications including aerospace, supercomputing, high-speed

signal processing, and cryptography [1].

The reconfigurable structure of FPGAs makes them a highly attractive implementation plat-

form for secure systems due to their lack of application design information at manufacture-time,

which mitigates risk in the event of compromise of the supply chain. Cryptographic applications

and security protocols are efficiently implemented on FPGAs and are easily modified in the field

2
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unlike their ASIC counterparts. While this reconfigurability is useful for designers, it creates

a new set of vulnerabilities for FPGA designs. A persistent source of security vulnerability in

FPGA designs is the configuration bitstream. Although the actual design content is hidden until

programming, the bitstream is required to configure an FPGA and needs to be protected against

reverse-engineering. Possible compromise of configuration data by the attacker poses significant

threats for deployed systems in the field. These threats include cloning the FPGA configuration

for use in counterfeit/unauthorized systems, modification of the FPGA configuration to increase

side-channel emissions, and adding malicious Trojan hardware into the compromised design

[1, 2].

Another important FPGA security concern is the secure operation of FPGA designs running

in the fabric. As is common with any other hardware implementations, cryptographic systems on

FPGAs leak inadvertent side-channel information (i.e., power, timing, electromagnetic emissions

etc.) that are exploited by the attacker to bypass the security of the algorithms [3, 4, 5]. One

highly effective and easy-to-mount side-channel analysis (SCA) attack is power analysis, which

exploits the data-dependent power consumption in the hardware [4, 6, 7].

1.2 Secured vs. Secure FPGA

FPGA security concerns are addressed at different levels of abstraction that includes

software/algorithm, register-transfer level (RTL), and hardware level depending on the coun-

termeasure. In order to ensure bitstream protection, FPGA manufacturers have implemented

various countermeasures within the standard FPGA design flow at both software/algorithm and

hardware levels that includes bitstream encryption [1, 2, 8, 9]. However, these security measures

can be circumvented in a number of ways that includes side-channel analysis (SCA) attacks on

the bitstream decryption logic [1, 2, 10]. The job of the attacker is made simpler by the fact

that the encryption key consists of relatively small number of bits (e.g., 128b keys in Microsemi

FPGAs [9], 256b keys and 57b device ID in Xilinx FPGAs [8]) and that the bitstream decryptor

is a single, identifiable point of attack. The fundamental problem is that the design configuration
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Figure 1.1: FPGA hardware entanglement concept using one-time pad encryption of the configuration bitstream
using a secret die-specific response as the codebook.

data is stored in the clear at some level of hardware.

Secure operation is mainly addressed at the register-transfer-level (RTL) by layering counter-

measures on an unsecured conventional-off-the-shelf (COTS) FPGA [6, 11, 12, 13, 14, 15, 16]

instead of at the hardware level, since doing so requires modification on the FPGA fabric. These

countermeasures achieve resistance against power SCA attacks at the expense of significant tim-

ing, area, and enery overheads [6, 11, 12, 13, 14, 15, 16]. Additionally, these techniques often

require significant rework in the standard tool/programming flow since they involve low-level

manipulation and relocation of logic on the FPGA fabric.

In this thesis, we present a secure FPGA design, wherein the hardware security features are

implemented in the FPGA itself, rather than at the tool/application level. We alter the FPGA

fabric itself in order to build security features. By this method, the FPGA is hardened in a vir-

tually user-transparent manner. More specifically, we protect bitstream by hardware-entangling

the configuration deep in the hardware with a secret die-specific response. This is equivalent to

a one-time pad encryption of the true configuration data using the secret die-specific response

as the codebook (Figure1.1). Hence, the proposed FPGA design never stores the configuration

data in the clear, even at the lowest level of the hardware. Furthermore, we also address one

of the most common side-channel vulnerabilities, power side-channel, by using a side-channel

resistant logic embedded in the fabric. This is a circuit-level hiding countermeasure employed

in the fabric to reduce side-channel information leakage. We show that the hardware-entangled

secure FPGA design is more efficient for iso-security against the existing countermeasures.
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1.3 Dissertation Organization

In Chapter 2, we provide background on the fundamentals of FPGA. We review the internal

structure and security features of FPGAs with special attention to the major security concerns of

bitstream protection and secure operation.

In Chapter 3, we discuss a novel hardware-entanglement method for FPGA bitstream pro-

tection against reverse-engineering attacks. We quantitatively evaluate area, performance, and

power overheads of the hardware-entangled scheme, as well as evaluate the security benefits.

In Chapter 4, we introduce a secure FPGA fabric that employs a novel post-charged differen-

tial dynamic logic style with self-timed discharge (PCDL-STD) to achieve side-channel analysis

(SCA) resistant secure operation. We compare VLSI metrics of the secure FPGA tile (i.e., area,

delay, energy) against a reference unsecured static FPGA tile and the D-WDDL countermeasure

layered on this unsecured FPGA. We also evaluate power SCA resistance of the secure PGA tile

using the metric of normalized energy deviation (NED).

Finally, in Chapter 5, we present the implementation of the prototype testchip implementa-

tion for a proof-of-concept for our secure FPGA design. We describe the testchip details and

present the measured silicon results, which includes benchmark implementation, PUF reliability

analysis, power-SCA resistance evaluation.



Chapter 2

Background

In the introduction, we provided motivation and context for the thesis. In this chapter, we pave

the way to FPGA security. First, we discuss the fundamentals of FPGA, cover the basic structure,

and describe the programmable logic and interconnect. Then, we shift our focus to security by

reviewing reverse-engineering attacks and their countermeasures. Next, we cover side-channel

analysis (SCA) attacks and their countermeasures. Then, we discuss the security implications

of reverse-engineering and SCA attacks to FPGA. Finally, we review the major FPGA security

concerns of bitstream protection and side-channel resistant secure operation.

2.1 The Internals of an FPGA

Figure 2.1 shows the basic architecture of a typical island-style FPGA that consists of identical

tiles. Each tile consists of a Configurable Logic Block (CLB) and Switch Box (SB). Each CLB

contains a look-up table (LUT) that is configured to implement a logic function. The interconnect

is programmed to connect CLBs together in order to implement more complicated circuits on an

FPGA.

The stream of data that specifies how the LUTs and the interconnect should be programmed

in order to implement a benchmark circuit is referred to as a configuration bitstream. The FPGA

configuration bitstream can be stored in a number of ways. FPGAs are usually categorized

6
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with respect to their configuration storage options (i.e., SRAM-based, flash, anti-fuse.). In the

following, we describe different FPGA configuration options and how an FPGA is programmed

by the user.

Figure 2.1: Architecture of a typical island-style FPGA. Configurable logic blocks (CLBs) are islands surrounded
by routing channels. Each CLB contains a look-up table (LUT) that is configured to implement a logic function.
The interconnect is also reconfigurable and it connects CLBs together to implement more complicated circuits on
FPGA.
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2.1.1 FPGA Configuration Storage

Table 2.1: FPGA configuration storage options

Storage Option Re-configurable Non-volatile No extra No external
process steps NVM

FLASH 3 3 7 3

Antifuse 7 3 7 3

SRAM 3 7 3 7

Both the reconfigurable logic and interconnect are programmed by the user based on their

desired application via the configuration bitstream. The user writes an RTL description of the

application that is converted into the configuration bitstream by FPGA-vendor-supplied CAD

tools, which have detailed information regarding the FPGA internal structure embedded into

them. The user can also input some low-level information regarding desired performance, power,

and block placement to guide the final configuration.

The configuration bitstream of the FPGA can be stored in a number ways. Table 2.1 compares

FLASH, antifuse, and SRAM configuration storage options. For example, FLASH FPGAs use

a non-volatile memory (NVM) to store the configuration bitstream on the FPGA die. Antifuse

FPGAs are also non-volatile but they use fuses that can be set one-time, hence they cannot be

reconfigured. On the other hand, most sytems use volatile SRAM cells as the configuration

storage due to high costs for an integrated NVM/logic fabrication process. These SRAM-based

FPGAs require a separate NVM chip on the board, typically FLASH memory, as the FPGA die

itself does not contain any NVM. At system power-up, the configuration bitstream is transferred

to SRAM configuration storage bits on the FPGA from the NVM to configure the reconfigurable

logic and interconnect. For the remainder of the thesis, we will focus on SRAM-based FPGAs.

2.1.2 Reconfigurable Logic

FPGA can be configured to look like any arbitrary set of interconnected logic gates. These logic

gates are implemented by using look-up tables (LUTs) on the FPGA fabric. Each LUT is very

generic because it can implement any k-input function (22k possible functions). A k-input LUT
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consists of an N:1 multiplexer (MUX), where N=2k, and N configuration bits. Each configuration

bit corresponds to a different output row in the truth table.

(a) (b)

Figure 2.2: (a) 2-input AND gate and its truth table. (b) 2-input LUT that is configured to implement an AND gate.
6T-SRAM cells are used to store LUT configuration bits.

Any logic gate with a corresponding truth table can be mapped into an FPGA by program-

ming the LUTs with the appropriate truth table. For example, a two-input LUT that is configured

to implement an AND gate is shown in Figure 2.2b. An AND gate outputs logic-1 only when

both the inputs are logic-1 (i.e., A = 1 and B = 1), otherwise the output is logic-0 (Figure 2.2a).

Therefore, the logic-1 that is stored in the configuration bit 3 is selected at the LUT output when

both A and B are logic-1. For all other input combinations, the LUT output is logic-0. Any other

logic function can be programmed in similar fashion.

2.1.3 Reconfigurable Interconnect

Each CLB contains a LUT that can be configured to implement any logic function. More complex

circuits are implemented by connecting multiple CLBs via the programmable interconnect. An

example connection between two CLBs via two programmed SBs is illustrated in Figure 2.3.

Only length-1 (i.e., wires that only connect neighboring SBs) wires are shown for simplicity, but

commercial FPGAs typically have routing tracks of varying lengths that connect distant SBs.



10 CHAPTER 2. BACKGROUND

Called segmented architecture, these tracks are shown to lead to a higher density, performance,

and energy efficiency [17, 18, 19, 20].

An SB is formed when a horizontal and vertical routing channel intersect as shown in Fig-

ure 2.1. It contains a matrix of switches that interconnect wires. This structure allows nets to

turn corners or extend farther down the routing channel [17]. A full crossbar implementation in a

switch matrix (SM) requires N2 connections [1, 20, 21]. Despite the higher flexibility/routability,

full crossbar SM increases both the SB area and the number of configuration bits to program the

SB [17, 18, 22]. Sparse SMs, on the other hand, are smaller at the cost of reduced flexibil-

ity/routability. There is a trade-off between the flexibility/routability and area efficiency of SM

implementation.

Figure 2.3: FPGA interconnect architecture. Each CLB implements a logic gate. More complex circuits are
implemented by connecting multiple CLBs via the programmable interconnect. An example connection between
two CLBs via two programmed SBs is highlighted in blue.

Switch design is very critical for modern FPGAs because the area is dominated by the in-

terconnect (i.e., 80-90% FPGA area in the interconnect); the interconnect accounts for most of

the FPGA’s delay and energy [20, 21]. Designers explored different SM designs to have a high

flexibility/routability while maximizing the area efficiency [18, 22, 23]. Switches, which influ-

ence the flexibility/routability, can either be bi-directional or uni-directional. Figure 2.4a shows

a bi-directional switch that consists of tri-state drivers (i.e., pass transistors). Channel wires can

be driven from both sides of the pass transistors. In contrast, Figure 2.4b shows a uni-directional

switch that replaces tri-state drivers with regular drivers and the channel wires are driven in one

direction. Uni-directional switches are shown to be more efficient in terms of area, performance,
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and energy [17].

(a) (b)

Figure 2.4: (a) A bi-directional switch that consists of tri-state drivers (i.e., pass transistors). (b) a uni-directional
switch in which tri-state drivers are replaced with regular drivers. Note that two sets of wires for are shown in each
direction: (1) incoming and (2) outgoing. Uni-directional switches are shown to be more efficient in terms of area,
performance, and energy [17].

2.2 Reverse-Engineering Attacks and Countermeasures

2.2.1 Reverse-Engineering Attacks

A myriad of security vulnerabilites can be exposed via the reverse-engineering of the integrated

circuits (ICs) contained in electronics systems. The goal of IC reverse-engineering is to uncover

the functionality and internal structure (e.g., gate netlist, circuit schematic, layout, manufactur-

ing process details) of the chip via techniques such as depackaging/delayering, high-resolution

imaging, probing, and side-channel examination. With this knowledge, an attacker can mount

various attacks more efficiently (e.g., fault injection, side-channel), clone/counterfeit the design

possibly with hardware Trojans inserted, and discover trade secrets (e.g., proprietary algorithms,

hard-coded keys and instruction sequences) [24, 25, 26, 27, 28]. A number of commercial enti-

ties, such as ChipWorks [29] and TAEUS [30], routinely reverse-engineer chips on even the most

advanced process technologies.
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2.2.2 Countermeasures

To combat reverse-engineering, researchers have proposed a number of countermeasures that

include gate camouflaging wherein an attacker cannot discern the functionality of a particular

logic gate based solely on its observable physical characteristics. One proposed camouflaging

technique by Rajendran et al. uses a mix of dummy and real vias/contacts to obscure the gate

function [31]. Another technique from SypherMedia [32] uses look-alike gates made with spe-

cial structures requiring special layers, DRC waivers, and other low-level process manipulations.

The security of these camouflaging techniques relies on the limited ability of the attacker to dis-

tinguish between real and dummy structures. However, delayering and imaging capabilities of

state-of-the-art reverse-engineering are likely advanced enough to not be fooled by such struc-

tures [29, 30]. Alternatively, Erbagci et al. proposed using threshold voltage (VTH) defined

(TVD) camouflaged gates [33] that use different VTH transistors, but with identical layouts, to

determine the logic gate function. Every TVD logic gate has the same physical layout and is

one-time mask programmed with different threshold implants for different boolean functions.

Akkaya et. al. proposed a post-manufacturing programmable version of TVD logic (PMP-TVD)

to obscure the design IP from an untrusted foundry and to combat reverse-engineering [34]. In-

tentional hot-carrier injection (HCI) is used to program PMP-TVD gates with different threshold

voltages [34].

Other than obscuring the logical functionality at the layout level, researchers have proposed

transformations on the register transfer level (RTL) hardware description language (HDL) (e.g.,

Verilog, VHDL) to make reverse-engineering more challenging [35, 36]. As these synthesized

designs often have significant whitespace, researchers have also proposed adding unused dummy

gates and interconnections [37]. These countermeasures are in an arms race against reverse-

engineering tools that offer significant capabilities to descramble obfuscated designs [29, 38, 39,

40, 41, 42, 43].

Adding gates with some form of reconfigurability has also been offered as a way to conceal

design intent from reverse-engineer threats. These methods typically require a memory element
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in order to store the configuration in working designs in the field [38, 44, 45]. Thus, even if the

basic design database does not contain the design information, the deployed systems do and thus

are vulnerable to reverse-engineering.

2.3 Side-Channel Analysis Attacks and Countermeasures

2.3.1 Side-Channel Analysis Attacks

Side-channel analysis (SCA) attacks target inadvertent information leakage in physical imple-

mentations rather than the weaknesses of cryptographic algorithms (Figure 2.7). One highly

effective and easy-to-mount SCA attack is power analysis, which exploits the data dependent

power consumption in the hardware [4, 6, 7]. Types of power analysis include simple power

analysis (SPA), differential power analysis (DPA), correlation power analysis (CPA), and leak-

age power analysis (LPA). All of these attacks have different requirements and limitations.

Figure 2.5: Side-channel emissions from device under attack (DUA): optical, power, electromagnetic (EM), and
acoustic [46].

SPA attacks focus on the use of visual inspection techniques to identify relevant power fluctu-

ations during cryptographic operations [4]. Hence, SPA attacks often require detailed knowledge

about the implementation of the cryptographic algorithm that is executed by the device-under-

attack (DUT). Alternatively, DPA attacks do not require detailed knowledge about the attacked
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device. However, more power traces are required by DPA attacks because they use statistical

analysis and error correction techniques to extract information correlated to secret keys [4]. CPA

attacks involve the evaluation of the degree of correlation between variations within the set of

measurements [4]. LPA attacks exploit the dependence of leakage current of the circuits on their

inputs, rather than the dynamic power [47]. Among the types of power analysis, DPA is the most

prevalent and effective according to research on various crypto-systems in [4, 16, 48, 49].

2.3.2 Countermeasures

Hiding and masking countermeasures seek to achieve resistance against power SCAs at the ex-

pense of significant timing, area, and energy overheads [6, 11, 12, 13, 14, 15, 50, 51]. As illus-

trated in Figure 2.6, masking logic seeks to remove the correlation between the input data and

side-channel emissions from intermediate values by using a random mask at the selected nodes in

a specific design. However, the success of masked logic is limited because it is vulnerable against

a number of successful higher order power SCAs [52, 53, 54]. Hiding technique decreases the

signal-to-noise ratio (SNR) by either increasing the noise or reducing the signal. One method to

reduce SNR is to make the side-channel emissions independent of the data being processed.

Various logic families achieve low side-channel leakage. One common use is dynamic differ-

ential pre-charge logic (DDPL), wherein a single switching event per clock cycle is guaranteed

independent of input data [14, 50, 51, 55, 56]. For instance, wave dynamic differential logic

(WDDL) uses traditional static CMOS gates to produce complementary versions of every out-

put, and each output is pre-charged to ensure every output transitions exactly once in each clock

cycle. In WDDL, a design is duplicated into a true and a complementary part by restricting the set

of logic for each part to AND- and OR-gates to avoid glitches. These two parts are dual and one

can be derived from the other by inverting the inputs and changing AND-gates to OR-gates, vice

versa. The precharge phase of WDLL is unique such that a block in WDDL precharges without

disturbing a global precharge signal to each individual gate as is normally done in DDPL [15].

Since WDDL consists of AND- and OR-gates, whenever the inputs of these gates are logic-0,
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Figure 2.6: Masked logic vs. differential logic to achive power side-channel analysis resistance [16]. Masked logic
seeks to remove the correlation between the input data and side-channel emissions from intermediate values by
using a random mask at the selected nodes in a design. Differential logic, on the other hand, seeks to to make the
side-channel emissions independent of the data being processed.

the output will be logic-0 as well. During the precharge phase, all of the inputs of a WDDL

design are set to logic-0 and each individual gate will eventually have all its inputs and outputs at

logic-0. This allows the precharge wave propagation throughout the combinational gates. At the

same time, the data rate is halved since every evaluation cycle is followed by a logic-0 propaga-

tion. WDDL has significant overheads (i.e., up to 4x, 3x, 3.5x in area, delay, energy, respectively

[14]). Furthermore, differences in output loading between complementary outputs and internal

switching differences can cause data-dependent power consumption, which can be exploited by

power SCAs [16, 57].

In order to remove the requirement for equal loading, an unconditional discharge phase on

differential outputs is introduced. For example, Three-phase Dual-Rail Pre-charge Logic (TDPL)

has a three-phase operation, in which (1) precharge and (2) evaluation phases are followed by (3)

an unconditional discharge phase [51]. However, this requires complex three-phase clock gener-

ation and distribution that makes TDPL vulnerable to attacks on the clocking infrastructure. An
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attacker can potentially alter the clock generation to separate the discharge phase from the eval-

uate phase (or even completely eliminate it), which bypasses the countermeasure [55]. Hence, a

self-timed version of TDPL (ST-TDPL) has been introduced [55]. ST-TDPL uses a single clock,

versus three in conventional TDPL, thus eliminating the need for complicated three-phase clock

generation and distribution. In a chain of ST-TDPL gates, each gate controls the discharge phase

of the previous stage. Each stage discharges once the following stage completes the evalua-

tion. However, with the increased gate fan-out, this hand-shake mechanism between the stages

complicates the design of ST-TDPL gates.

Switch-Capacitor Logic (SCL) uses a different hiding approach. In this scheme, the internal

power supply is isolated with a large capacitor rather than modifying each logic gate to decrease

data-dependent power consumption [58]. It has three phases of operation: (1) precharge, (2)

evaluation, and (3) discharge. During precharge, the capacitor is charged to VDD from the global

power supply of the chip. During evalution, the capacitor disconnects from the power supply and

the circuit draws current from the capacitor. During discharge, the capacitor is shunted to a

consistent reference voltage. Hence, the SCL circuit uses a constant amount of power even with

the use of standard CMOS logic gates [58]. However, if the attacker surpasses the protection,

the sensitive circuit will be unprotected. SCL also incurs significant area, delay, and energy

overheads [58].

2.4 FPGA Security

2.4.1 Design Protection against Reverse-Engineering

The underlying platform for FPGA does not reveal information about the actual design until

programming. Hence, the physical attacks discussed in Section 2.2 are irrelevant at the time of

manufacturing. However, the configuration bitstream has the sensitive design information and

needs to be protected against reverse-engineering during all stages from bitstream generation to

device programming.
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Figure 2.7: Bitstream encryption scheme for protection against reverse-engineering attacks. At the time of bitstream
generation in the CAD tool, the user inputs an encryption key that is used to encrypt the configuration data and
the encrypted bitstream is stored in NVM on the FPGA board. The same key is used for decryption during the
programming [2]. The plaintext and the encrypted bitstream are shown in blue and orange, respectively.
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FPGA manufacturers have implemented various countermeasures in the standard FPGA de-

sign flow [1]. Among these are bitstream encryption, bitstream authentication/validation, active

defense mechanisms on FPGA test and support circuits, and flash FPGAs. At the time of bit-

stream generation in the CAD tool, the user inputs an encryption key that is used to encrypt

the configuration data [2]. The same encryption key is stored on the FPGA in a small amount of

non-volatile memory (e.g., using e-fuses) or a battery-backed volatile memory [8] for decryption.

However, the decryptor block remains vulnerable to both direct probing of key storage and

SCA attacks, in which the encryption key can be successfully extracted [1, 2, 10, 59, 60, 61].

Furthermore, despite the bitstream encryption, the plaintext configuration bitstream is stored in

the lowest level of hardware (i.e., configuration storage on FPGA die) that can be potentially

extracted with low-level probing techniques [10, 62, 63, 64, 65].

A unique device ID can be used to validate the bitstream on the FPGA (e.g., a 57b device

ID along with 64-byte factory flash ID used in Xilinx FPGAs [8]). Bitstream encryption is used

in conjunction with bitstream encryption to prevent any unauthorized access to FPGA. Further,

active defense mechanisms can monitor and protect the testing and programming ports [8]. In

FLASH FPGAs, there is no optical difference after configuration, which makes direct probing

attacks highly complex [2].

2.4.2 Side-Channel Analysis Resistant Secure Operation

The majority of power SCA resistant logic families discussed earlier cannot be ported directly to

FPGA due to problems with flow and integration. Hence, the options to implement SCA-resistant

circuits on FPGA are very limited. WDDL is a representative example of such circuits. Tiri et. al.

proposes a synthesis flow to implement WDDL circuits on FPGA [15]. This technique combines

standard FPGA building blocks to make secure compound standard cells with low power side-

channel leakage.

Any imbalance or asymmetry between the routings of complementary parts can be exploited

to decrease power side-channel resistance of WDDL [16, 57]. However, balancing differential
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nets is not a trivial task; it requires precise control over the placement and routing of the comple-

mentary parts on the FPGA. The techniques to address routing problems include double-WDDL

(D-WDDL) [16], seperated-DDL [66], and divided backend multiplication [67]. These tech-

niques involve low-level manipulation and relocation of logic on the FPGA fabric, hence require

a rework in the tool/programming flow.

Figure 2.8: Double Wave Dynamic Differential Logic (D-WDDL) route preserving design duplication. Dual
WDDL modules (i.e., true and false) with precisely matched routing are generated for power SCA resistance [16].

For instance, D-WDDL generates two complementary WDDL instances (i.e., true and false)

by following a WDDL conversion step. Then, as shown in Figure 2.8, a symmetrical routing

technique is employed to precisely match these dual modules. Further details can be found in

the original D-WDDL paper [16]. D-WDDL has been shown to withstand power SCA attacks at

the expense of significantly increased area and energy overhead over WDDL [16] (i.e., twice the

size of WDDL).

2.5 Summary

In this chapter, we discussed the basic FPGA internal structure and the two major aspects of

FPGA security: (1) design protection against reverse-engineering and (2) side-channel analysis

resistant secure operation. In next chapters, we will address these security concerns. In Chapter

3, we explain a novel hardware-entanglement technique to ensure design protection. In Chapter

4, we discuss secure operation with an inherently side-channel resistant fabric.



Chapter 3

Hardware-Entanglement for FPGA Design

Protection

In this chapter, we address one of the major FPGA security concerns: design protection. We

present a novel hardware-entanglement method for bitstream protection on FPGA against reverse-

engineering attacks. In this method, the configuration data is never stored in the clear, even at the

lowest level of the hardware. This is possible through deep hardware-entanglement of the recon-

figurable logic and interconnect through one-time pad encryption of the bitstream using a secret

die-specific response that is generated by physical unclonable functions (PUFs). In this chapter,

we introduce the concept and then discuss the design and details, which includes an evaluation

of area, performance, and power overheads, and security benefits of the hardware-entanglement.

3.1 Attacker Model

The primary goal of the attacker is to reverse-engineer the FPGA configuration bitstream. To

do so, the attacker must know both the value of the plaintext configuration bits and how these

bits correspond to the programmable structures on the FPGA. Within our work, we focus on

the attacks mounted against deployed systems in the field by a capable outside attacker. By

compromising the configuration bitstream, the attacker can:

20
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• clone the FPGA configuration for use in counterfeit/unauthorized systems

• modify the FPGA configuration to introduce faults

• increase side-channel emissions

• add malicious Trojan hardware

• understand the internal organization of the FPGA to clone the base FPGA design

We assume that the attacker has direct physical access to multiple (but limited) device un-

der attack (DUA) samples, a reasonable amount of time to mount the attack, and state-of-the-

art integrated circuit reverse-engineering capabilities. These capabilities include decapsulation

and delayering of ICs, advanced probing/imaging technologies (e.g., pico-probe, photonic de-

tection, scanning electron, atomic-force microscopy), and focused ion beam (FIB) IC alteration

and probing capability. We also assume that the FPGA design, manufacturing, and application

programming are secure. While in reality this is not necessarily the case, other researchers have

explored protection schemes for these vulnerabilities [68, 69, 70, 71], and thus these scenarios

are beyond the scope of this thesis.

3.2 Concept

In conventional FPGAs, SRAM cells are used to store the configuration bits for the reconfig-

urable logic and interconnect on the FPGA die. These SRAM cells store the configuration in the

clear, as the bitstream has already passed through the decryption block if bitstream encryption is

being used. Rather than using a centralized decryption block with a single short key, we propose

to deeply hardware entangle the FPGA configuration bits by pairing each SRAM configuration

bit with a secret response distributed across die [72]. The SRAM bits will store a one-time pad

(OTP) encrypted version of the configuration bitstream, with the secret response serving as the

encryption codebook. Only when the SRAM bit is XORed with the corresponding secret bit

will the true plaintext configuration bit be generated. Hardware-entanglement of a 3-input LUT

block is illustrated in Figure 3.1. Any configuration bit can be hardware-entangled in the similar
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manner.

Figure 3.1: Hardware-entanglement of a 3-input LUT block. Each SRAM bit is paired with a random secret bit
by an XOR gate and stores an OTP encrypted version of the configuration bitstream. Hence, the configuration bit
is never stored in the clear. The SRAM bits will store an encrypted version of the configuration bitstream, with the
secret bit serving as the encryption codebook. Only when the SRAM bit is XORed with the secret bit will the true
plaintext configuration bit be generated. S and T denote the corresponding random secret bit and true configuration
bits, respectively.

Hardware-entanglement technique requires a secret response that is distributed across the

FPGA die. This secret response can be either stored on die in a non-volatile memory (NVM)

[46, 73, 74] or generated on die [75, 76, 77, 78]. Emerging embedded NVM technologies have

very compact bitcells, long endurance, and fast write/speeds; however, they face challenges in

terms of process compatibility, manufacturing yield, performance variability, and reliability [79].

Alternatively, physical unclonable functions (PUFs) are increasingly used for secret key gener-

ation on die. PUFs provide an attractive alternative to storage of random secret bits in NVM

memory, which are vulnerable to attacks [46]; PUFs generate these bits during each instance that

the PUF is evaluated [80]. Hence, we use PUFs as a mechanism to generate the secret response

to implement our hardware-entanglement concept. Notably, the concept is independent from the

mechanism used to generate the secret response during implementation. For the remainder of

thesis, we use the term PUF instead of secret response.
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3.3 System Design and Use

The steps of system design and use for hardware-entanglement scheme are summarized in Figure

3.2a. At manufacture-time, the PUF response for each FPGA instance is read out via a secure

scan chain. After this initial read of the PUF response, the scan chain should be permanently

disabled. The security of PUF response scan chain backdoor is critical and can be achieved

through various designs [81, 82, 83]. A simple method to secure the scan chain is to use multiple

e-fuses along the scan path, which makes FIB repair of the scan chain challenging as there are

multiple points spread across the die that must be repaired. Alternatively, we explored the re-

configurability feature of our PUF design in order to potentially eliminate the requirement of

reading-out the PUF responses. The results are discussed in Chapter 5.

When working with the hardware-entanglement scheme, the user writes the application RTL

description as usual; however, at the time of bitstream generation, the CAD tool one-time pad

encrypts the plaintext bitstream with the PUF response and generates a die-unique configuration

bitstream. If portions of the FPGA are not protected using our OTP scheme due to PUF overhead

issues, the bitstream can also be conventionally encrypted (e.g., using AES-128) via bitstream

protection technique. The hardware-entanglement scheme is orthogonal and complimentary to

conventional protection measures. Per standard methods, the bitstream is stored in NVM on the

FPGA board.

In the field, the configuration data is transferred from the NVM to the FPGA SRAM configu-

ration storage at the time of system power-up. The data transferred from the NVM is encrypted,

thus an attacker reading out the bits from the NVM or snooping on the configuration transfer

bus cannot capture useful information. At the time of FPGA power-up, the PUF response bits

are evaluated and XORed with the incoming configuration bits from the NVM, which calculate

the true plaintext configuration bits. These bits are used throughout the design for to configure

logic and interconnect. Potentially, the output node of the combining XOR gate is vulnerable

to low level probing techniques. However, the attacker needs to probe hundreds of thousands to

millions of nodes in order to begin to uncover the plaintext configuration bitstream. Additionally,
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(a) (b)

Figure 3.2: System design and use of hardware-entanglement scheme (a) during manufacturing and design times
(b) run-time (i.e., in the field).
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the PUF design that we are proposing for the hardware-entanglement has a small delay and can

fire within only 1 clock cycle. Hence, the PUFs could be fired on-the-fly, rather than only at

power-up. The strength of the on-the-fly firing scheme is enhanced security and the downside is

the addition of PUF delay to the forward logic.

With the core FPGA design remaining the same, changes are only required in the imple-

mentation of the configuration bits. Hardware-entanglement scheme requires the addition of a

PUF bit per SRAM configuration bit, the combining XOR gate, and a secure PUF scan chain

for manufacture-time PUF response read out. Due to the fact that large FPGA has millions of

configuration bits, we require a high density, high performance, low power, and high reliability

PUF design to ensure feasible design overheads. In addition, hardware-entanglement protection

scheme requires full entropy for maximum security. As a result, any systematic bias within the

PUF design that might reduce entropy is minimized. Hence, we also require a PUF design with

high randomness.

3.4 Implementation

3.4.1 Physical Unclonable Functions

A PUF is a die-specific random function or a silicon biometric that is unique for every instance of

the die [80]. PUFs derive their randomness from uncontrolled, and usually undesirable, random

variations in the IC manufacturing process to create practically unclonable functions even if the

original design files are compromised.

PUF designs are generally classified as either delay-based or bi-stable depending on the phe-

nomenon of response generation. Delay-based PUFs (i.e., arbiter, ring oscillator) compare nom-

inally identical delay paths, whereas bi-stable PUFs (i.e., SRAM, sense amplifier) use the acti-

vation state of a nominally balanced bi-stable element to determine a response bit [84]. Both

delay-based and bi-stable PUFs offer good randomness and uniqueness properties [84]. How-

ever, the reliability of the raw PUF response bits has been found to be insufficient for direct
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use in applications that require high reliability [84]. For this reason, PUFs usually require tech-

niques like error control coding (ECC) or fuzzy extraction to increase reliability at the expense

of significantly increased area, delay, and power overheads [84].

Recent work in bi-stable PUF design, specifically sense amplifier (SA) based PUFs using hot-

carrier injection (HCI) response reinforcement, shows that costly ECC techniques are mitigated

by using HCI aging to improve reliability [80, 85]. HCI SA-PUF achieves high reliability that

is targeted by many ECC implementations. This avoids the need for ECC and its corresponding

overheads, which results in a very compact, fast, and low power PUF design. Hence, we use

HCI SA-PUF in the proposed hardware-entanglement scheme. Further details about the original

design can be found in the original HCI-SA PUF work [80, 85].

Despite having very high reliability without ECC, HCI-SA PUF is approximately 20x the

size of a 6T SRAM cell. While this is very compact compared to other PUF implementations,

we need a more compact PUF design since we alter the configuration storage to add a PUF bit.

In the following section, we explain the HCI phenomenon and discuss our improved HCI-SA

PUF design.

3.4.2 Hot-Carrier Injection

HCI is a phenomenon by which the threshold voltage (VTH) of a transistor may be permanently

altered post-manufacturing when high energy carriers become trapped in the gate oxide [85].

The increase in VTH due to HCI stress makes the transistors slower. Figure 3.3 provides an

overview of the HCI phenomenon for the NMOS. Figure 3.3a shows the NMOS transistor under

normal biasing. Figure 3.3b shows the NMOS under HCI stress. With increasing VDS voltage

and current, electrons at saturation velocity continue to acquire kinetic energy. These high energy

electrons are called hot carriers. A small fraction of these hot carriers acquire enough energy to

overcome the silicon-oxide barrier energy and inject into the gate oxide (i.e., the brown square

in Figure 3.3b). Transistors with carriers trapped in the oxide require a higher VGS for inversion,

which effectively increases their VTH [85]. As shown in 3.3c, VTH of the device has increased.
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Figure 3.3: (a) Pre-stress NMOS transistor with normal biasing. (b) NMOS transistor under HCI stress conditions.
A high VDS generates a large current resulting in some hot electrons getting injected deep into the gate oxide (shown
as the brown square). (c) After HCI stress, when the NMOS transistor is biased normally, it sees an increased
threshold voltage (VTH ). The increase is significant (> 100mV ) when current is in the opposite direction as during
the stress conditions. The increase in VTH , however, is small when current flows is the same direction as during the
stress conditions [85].
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Notably, the resulting increase in VTH from HCI is higher if the normal operation current of the

MOS is in the opposite direction as during the stress conditions.

3.4.3 Improved HCI-SA PUF Design

For the PUF core design, we use a latch-style SA instead of a StrongArm style (Figure 3.4a). This

improved design uses HCI response reinforcement to improve reliability. It is designed to have

the similar current density and voltage drop across HCI-stressed devices as in the original HCI-

SA PUF [85]. Also, the latch-style PUF core has a smaller number of devices compared to the

StrongArm PUF core. We also remove the storage unit that is used for self-reinforcement in HCI

SA-PUF [85]. Storage of golden PUF responses occurs in already available FPGA configuration

SRAM cells during the offset polarity measurement step. Then, the stored values are used to

stress highlighted transistors (i.e., M1 or M2 depending on the golden PUF response). Figure

3.4b shows the layout capture of this improved PUF design.

Assume initially that VTH,M2 > VTH,M1, hence A goes low and AB remains high when the

PUF fires. This response is stored in SRAM configuration bit (highlighted in Figure 3.4a) by

asserting a high pulse on STORE. Then, HCI EN goes high and HCI ENBH goes low. This will

cause a high current (i.e., around 200uA) flowing from VDDH to the ground through M2 (shown

in red in Figure 3.4a). Note the use of thick gate PMOS transistor connected to VDDH (3V). At

this time, AB node is low (i.e., few tens of mVs) and M1 is off. After tens of seconds of HCI

stress, HCI EN goes low and HCI ENBH goes high to put the PUF back in the normal operation.

However, VTH,M2 is increased due to injected hot carriers deep in the gate oxide of M2. Hence,

the difference between VTH,M2 and VTH,M1 is increased, which improves the reliability of the

PUF.

HCI circuitry constitutes around 40% of total PUF area. This area penalty can be amortized

by sharing the HCI circuitry between multiple PUFs. Therefore, HCI circuitry is shared between

every two PUF bits to decrease the area overhead. While this doubles the total stress time, HCI

reinforcement is one-time and on the order of tens of seconds. Hence, doubling of HCI-stress
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(a) (b)

Figure 3.4: (a) Schematic of improved HCI SA PUF. HCI circuitry is highlighted in blue. The initial PUF responses
are stored in already available FPGA configuration SRAM cells. Then, the stored values are used to stress M1 or
M2. The current directions in normal operation and during HCI stress are shown in green and red, respectively. (b)
Layout capture of an array of 2x4 improved HCI SA PUFs. HCI circuitry is shared between every two PUF bits.
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time is tolerable. The improved HCI SA PUF design achieves a much smaller area with the

layout 3.75x the size of a 6T SRAM cell. While this this appears to indicate an important area

overhead for the proposed scheme, FPGA area is actually dominated by the interconnect (i.e., 80-

90% FPGA area in the interconnect) with the majority of the needed logic devices fitting under

the wiring. Thus, much of the overhead is hidden. Further, we can choose to protect only select

portions of the bitstream using OTP encryption (e.g., OTP encrypting the LUT configuration,

but not the interconnect configuration). As further described in Section 3.6, we have layed out

the necessary LUT and interconnect structures (including HCI SA-PUF bits) for this scheme in

an industrial 65nm bulk CMOS process in order to quantitatively evaluate the area, power, and

performance overheads.

When the FPGA is powered-down, the PUF response data is not stored in any kind of mem-

ory cell. Rather, it is a function of the inherent (and artificially enhanced via HCI) VTH variations

within the devices in the sense amplifier differential pair. Thus, the response is not probe-able

using conventional methods. Even if a method was devised to determine individual device VTH

to mV level accuracy, millions of devices would need to be probed to decrypt the bitstream.

Additionally, any probing would need to be non-destructive (i.e., delayering would not be per-

missible), as the configuration bitstreams are FPGA die-unique. The application of standard

anti-tamper techniques could further hinder direct probing [86].

3.5 Experimental Methodology

3.5.1 FPGA Architecture

Our baseline FPGA architecture derives from the widely used VTR [87] and COFFE [88] FPGA

compilation tools. We use their suggested base FPGA structure, which is designed for a perfor-

mance and power balanced design [89]. The logic cluster (LC) in our base architecture consists

of N = 10 basic logic elements (BLEs) and each BLE is fitted with a single K = 6-input look-up-

table (LUT). The BLE structure consists of a K-input LUT and a Flip-Flop (FF) that can be used
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together to provide additional computation and routing flexibility. Additionally, 2-input muxes

are added into the design, which can potentially improve both speed and density of the BLE [89].

To further improve speed and density, local interconnect and feedback are utilized, which means

that the BLE outputs can be fed back to the current LC and to global interconnect structure [88].

The number of cluster inputs (I = 40) is determined by the equation I = K(N + 1)/2 in order to

maximize the LC utilization [90].

The structure is a combination of switch boxes (SB), connection blocks (CB), and wires

(length-L) [87, 90]. The width of channel (W) is set to 120, which is a 20% increase over the

suggested minimum width necessary to route our benchmark circuits [20, 87]. All wires span

4 LCs, L = 4, which is the recommended length for area and speed utilization [89]. Figure 3.5

shows the island style FPGA structure that employs both vertical and horizontal routing channels

encircling each LC. Connection block flexibility, Fcin and Fcout that controls the number of input

and output connections between the LC and the global routing structure is taken as default from

the VTR initial setup [87] (i.e., Fcin = 0.15*W and Fcout = 0.10*W). The flexibility of the switch

boxes, which determines factor how many directions an incoming signal can be redirected, is set

as Fs = 3, which is standard in most modern FPGAs [89].

3.5.2 VTR and COFFE Tool Flow

We use Verilog-to-Routing (VTR) [87] to evaluate the overhead of hardware-entangling recon-

figurable logic in terms of VLSI metrics of delay, area, and power. VTR flow has been widely

used for exploring architectures for FPGAs and implementing benchmark circuits on a proposed

FPGA fabric. We use the recent Circuit Optimization For FPGA Exploration (COFFE) [88] tool

in conjunction with VTR in order to calculate transistor sizes in an FPGA tile. COFFE is a fully-

automated transistor sizing tool for FPGAs that enables more accurate architecture evaluation by

providing area, delay and power estimates of properly sized FPGA circuitry.

We use a modified version the COFFE tool to describe our new hardware-entangled logic

architecture. This incorporates PUF bits and XOR gates into baseline FPGA architecture as
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Figure 3.5: Island-style FPGA architecture and detailed view of a tile. Each tile consists of K-input LUTs and FFs,
a connection block to select the inputs from the routing channel that connect to LUTs, and a switch box to select the
outputs from LUTs that connect to routing channels.

defined earlier. In addition, already available 65nm PTM [91] models are used with VTR and

COFFE tools during the evaluations since PUF blocks are implemented in an industrial 65nm

bulk CMOS process.

3.5.3 Architectures

We evaluate four FPGA architectures: (1) baseline, (2) LUT-entangled, (3) interconnect-entangled,

and (4) fully-entangled. The fully-entangled architecture pairs a PUF bit with each configuration

bit in LC, CB, and SB. Interconnect-entangled architecture secures only the interconnect con-

figuration that leaves LUTs unprotected. LUT-entangled architecture secures LUTs with PUF

bits. While both the interconnect- and LUT- entangled architectures provide less security than

a fully-entangled design, the PUF overheads are reduced and prior art in design obfuscation

indicates that securing only the logic gates or the interconnect provide significant protection.

Interconnect-entanglement is similar to split-manufacturing [92, 93, 94], wherein the layout of

the design is split into the front-end-of-line (FEOL) and back-end-of-line (BEOL) layers. FEOL

layers consist of transistors and other lower metal layers (i.e., ≤metal-4), while BEOL layers
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consist of the top metal layers (i.e., >metal-4) [92, 93, 94, 95]. These layers are fabricated sepa-

rately in different foundries. FEOL layers in advanced technology nodes are often fabricated in

high-end untrusted foundries; BEOL layers are fabricated in trusted low-end foundries. This pre-

vents a malicious party FEOL foundry from having all the information about the designs that are

fabricated there (i.e., not all of the interconnects are known). LUT-entanglement, on the other

hand, is similar to logic obfuscation by camouflaging gates [31, 33]. Therefore, interconnect-

and LUT- entangled architectures provide significant security with reduced overhead compared

to fully-entangled architecture.

3.5.4 Benchmark Applications

Based on circuit-level simulations, COFFE calculates the area, delay, and power estimates of

our baseline FPGA architecture. COFFE is modified to describe LUT-, interconnect-, and fully-

entangled architectures to extract the corresponding area, delay, and power estimates. We use

some common cryptographic primitives as benchmarks, namely AES-128, DES, SHA-160 and

SHA-256. Each benchmark is mapped onto baseline, LUT-, interconnect-, and fully-entangled

architectures in VTR. The corresponding critical path, LC utilization, and total power are calcu-

lated.

3.6 Experimental Results

3.6.1 Area Results

The detailed area breakdown for all architectures is shown in Table 3.1. Tile area includes LC and

interconnect. Local routing area, which is occupied by local multiplexers and buffers within LC,

is considered as interconnect area in this analysis. The number of occupied LC blocks are 647,

126, 228, and 334 for AES-128, DES, SHA-160, and SHA-256, respectively. The LC utilization

for each benchmark circuit is the same across all architectures. The tile area overhead is 1.4X,

1.98X, and 2.47X for LUT-, interconnect-, and fully-entangled architectures, respectively.
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Table 3.1: Tile area breakdown

Baseline LUT- Interconnect- Fully-
entangled entangled entangled

Block Area (µm2) % Area (µm2) % Area (µm2) % Area (µm2) %
LUT 2733 35 5832 53 3137 20 6305 33

Local mux & buffers 1965 25 2000 18 4800 31 5210 27
Connection block 1166 15 1184 11 2948 19 3065 16

Switch box 1934 25 2049 19 4247 27 4751 25
Tile 7798 100 11029 100 15486 100 19332 100

The area penalty is further decreased with a more compact PUF block. One method to make

PUF blocks smaller is to share more HCI circuitry with multiple PUF bits. However, the initial

HCI stress time for PUF blocks increases proportionally with the amount of sharing. Different

PUF topologies with smaller areas can further decrease the area overhead. In addition, PUF bits

can be shared between multiple configuration bits to decrease the area overhead at the cost of

decreased security (i.e., a compromise of a PUF bit would reveal information about multiple true

configuration bits).

Table 3.2: Benchmark clock cycle results (ns)

Baseline LUT- Interconnect- Fully- PUFs fired
entangled entangled entangled on-the-fly

AES-128 5.34 5.45 (+2%) 6.05 (+13%) 6.2 (+16%) +1.49%
DES 3.55 4.38 (+23%) 4.4 (+23%) 4.45 (+25%) +2.25%

SHA-160 9.77 9.80 (+0.3%) 10.4 (+6.4%) 10.6 (+8.5%) +0.8%
SHA-256 10.47 10.95 (+4.5%) 11.2 (+7%) 11.8 (+12.7%) +0.76%
Average 7.28 7.64 (+5%) 8.01 (+12.6%) 8.26 (+13.4%) +1.1%

3.6.2 Timing Results

Table 3.2 shows the critical path delay of each of the benchmarks for all architectures. Overhead

percentage with respect to the baseline architecture is reported next to each timing value. The

timing penalty varies with the number of LCs and interconnect distance traversed. Therefore, the

actual penalty depends on the circuit that is programmed on the FPGA fabric. The average timing

overhead are 5%, 12.6%, and 13.4% for LUT-, interconnect-, and fully-entangled architectures,
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respectively.

While the PUF evaluation delay is quite fast (i.e., post-layout extracted delay of 80ps), it

does not contribute to the forward delay of the logic or interconnect. All PUF blocks evaluate in

parallel immediately after the FPGA powers on. As a result of the addition of PUF bits, both the

interconnect and logic cluster area are increased. This causes interconnect loading and distance

to also increase, which adversely impacts delay. Alternatively, PUFs could also be fired on-the-

fly, rather than only at power-up, for enhanced security. In this case, PUF delay adds to the

forward logic delay. However, the additional timing overhead as shown in Table 3.2 is low since

all PUFs fire in parallel at the beginning of every clock cycle with a small evaluation delay (i.e.,

2.25% for the fastest benchmark).

3.6.3 Power Results

The average power overhead across all benchmarks are 18.6%, 47%, and 62.9% for LUT-,

interconnect-, and fully-entangled architectures, respectively. All power values are summarized

in Table 3.3. Overhead percentage with respect to the baseline architecture is reported next to

each power value.

Table 3.3: Benchmark power results (mW)

Baseline LUT- Interconnect- Fully-
entangled entangled entangled

AES-128 32.63 39 (+19.5%) 49 (+50%) 53.7 (+64%)
DES 2.92 3.12 (+6%) 3.98 (+36%) 4.2 (+42%)

SHA-160 2.71 3 (+9%) 4.2 (+55%) 4.45 (+64%)
SHA-256 4.07 5.2 (+27%) 6 (+47%) 6.7 (+65%)
Average 10.52 12.5 (+18.6%) 15.8 (+47%) 17.24 (+62.9%)

3.6.4 Overheads

The timing overhead of the entanglement is relatively modest at below 13.4% on average and

below 25% even for full entanglement and the worst benchmark (i.e., SHA-256). The power
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overhead, while not as small as the timing overhead, is reasonable, especially given the secu-

rity gains. Although the more pronounced area overhead may seem significant (40% for LUT-

entanglement), it is important to note that this is less than the area gains from one technology

generation step. Designers may also choose to hardware-entangle only a portion of the FPGA

design, thus reducing the hardware overheads. Further, the proposed hardware-entanglement

scheme has significant security benefits that offset the hardware overheads. We will discuss

these security benefits next.

3.7 Security Evaluation

3.7.1 Security Metric

There are different metrics to evaluate the security of hardware obfuscation schemes. For in-

stance, the hardness of reverse-engineering camouflaged gates is measured by the correlation

of the inputs and the outputs in presence of the camouflaged gates [31]. Chakraborty et. al.

quantifies the security of obfuscation-based designs by the amount of verification mismatch be-

tween the original and the obfuscated designs, which is reported by a formal-verification-based

equivalence checker tool. The higher level of obfuscation implies better security [36].

Alternatively, Rajendran et. al. describes that the security of obfuscation-based designs

can be measured by the number of test patterns required by an attacker to determine the keys

inserted in original design [96]. The number of patterns needed to decipher the obfuscated design

increases exponentially with the number of total key bits inserted in the design. We adopt a

similar metric and our security evaluation is based on the total number of guesses (2N for an

N-bit bitstream) required to decipher the configuration bits secured with PUF bits. The security

offered by all entanglement options increases exponentially with the number of PUF bits.

The total number of PUF bits required is calculated by multiplying the number of occupied

tiles and the number of configuration bits. Each tile has a total of 2020 configuration bits (i.e.,

640 bits for LUTs and the rest for the interconnect). Even for the smallest benchmark circuit
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(i.e., DES, 126 LCs) with LUT-entangled scheme, the number of guesses is 2126∗640, which

makes it impractical to reverse-engineer the configuration bitstream. Hence, LUT-entangled

logic provides significant security with the least overhead compared to interconnect- and fully-

entangled versions.

3.7.2 IC De-camouflaging Attacks

From the attacker’s perspective, the implementation method for obfuscation (i.e., hardware-

entanglement) is irrelevant. The designer hides some information from the attacker somehow

and the attacker only cares about the designer’s decision about what to hide (i.e., logic, intercon-

nect, or both). For instance, fully-entangled architecture obfuscates both the logic (i.e., LUT) and

the interconnect hence, it is not giving the attacker any useful information to work with. Alterna-

tively, LUT-entanglement, obfuscates only the logic and gives away the interconnect information.

As a result, the attacker has the information of how the LUTs are connected. This is the FPGA

equivalent of logic obfuscation by gate camouflaging techniques proposed for ASICs [33, 96]

wherein the attacker cannot discern the functionality of a particular logic gate based solely on

its observable physical characteristics. In order to decipher an obfuscated design, the attacker

has to assign the correct functionality to each camouflaged gate. To do so, a brute force attack

has to search all the camouflaged gates’ possible functionalities provided that candidate gates

are selected to be inferred and unresolvable [96]. The search space grows exponentially with the

number of camouflaged gates in the design, as well as the number of possible functionalities for

each camouflaged gate.

Notably, the search space is narrowed down significantly with IC de-camouflaging attacks.

Instead of applying randomly generated input patterns to iterate all possible functionalities as-

signed to camouflaged gates, these attacks use a much smaller subset of input vectors to reverse-

engineer a camouflaged netlist. For instance, the proposed attack by Massad et. al. [38] applies

only the input patterns that eliminate the possibilities of gate identities among all possible as-

signments to camouflaged gates. Such input patterns are defined as discriminating input patterns
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(DI) and computed by using a SAT solver [38]. By identifying and applying DIs iteratively,

the attacker can eliminate all incorrect assignments and obtain the correct assignment to each

camouflaged gate. Although the attack complexity grows only linearly with the number of cam-

ouflaged gates, the complexity increases exponentially with the number of possible identities for

camouflaged gates. The incremental SAT-based attack by Cunxi et. al. [97] uses an incremental

SAT solver to decrease the computational effort (i.e., CPU runtime) for the attack. Despite the

significant performance improvement (i.e., average speed-up of 6.5x), this incremental attack has

been shown to be ineffective when all the gates are camouflaged (i.e., full chip camouflaging).

The testing-based attack by Yasin et. al. [98], on the other hand, uses the input patterns generated

by conducting ATPG on the original netlist and uses the fault coverage (FC) to guide the attack.

The attack has been demonstrated to be ineffective beyond 30% camouflage ratio [98]. These at-

tacks have been proven to be effective against small-scale camouflaging. However, their success

rate reduces drastically for large-scale camouflaging and with increased possible gate identities

[38, 96, 97, 98].

A circuit mapped to a LUT-entangled FPGA is essentially a fully camouflaged circuit that

consists of obfuscated n-input LUTs with possible identities up to 22n . Unlike the general as-

sumption in de-camouflaging attacks, not all the obfuscated LUTs are identical in the sense that

not all n-inputs are used for each of them. Some of LUTs use fewer inputs, m<n, hence possible

identities are reduced. However, LUTs can still assume the maximum number of possible identi-

ties for any number of m (i.e., 22m). Therefore, LUT-entanglement provides significant security

against the state-of-the-art SAT-based and test-based attacks.

3.7.3 Physical Attacks

Table 3.4 compares the proposed hardware-entanglement technique against other common FPGA

protection schemes regarding the physical attack resistance. Due to the large number of PUF bits

used in our design, it is resistant to side-channel attacks (as there is no single point of attack)

and direct probing attacks (as there are thousands or millions of bits that would need to be non-



3.7. SECURITY EVALUATION 39

Table 3.4: Security comparison summary of various countermeasures

Attacks Unique
Countermeasures Read- Rev. eng. Side- Direct conf.

back /cloning channel probing per die
Bitstream enc. [2][8][9] 7 3 7 7 7

Bitstream auth. [8] 7 3 7 7 7

Active defense [8] 3 3 7 7 7

Flash FPGAs [2] [1] 7 3 7 3 7

This work 3 3 3 3 3

destructively probed).

There are several low level probing techniques [10, 62, 63, 64, 65]. One technique is to cap-

ture the photonic emissions of transistors to extract the contents of the small SRAM instances

[10]. The photon generation rate is proportional to transistor size, supply voltage, and the transis-

tor switching frequency. Photon emission only occurs in saturation region for high drain-source

voltages [10]. However, transistors operate in saturation mode for a very short period of time

during the transition between logic states. Therefore, the photonic emissions of transistors are

measured and integrated over time. The integration time ranges from a few tens of seconds to

minutes and even hours depending on the technique used for probing [10, 62, 63, 64, 65]. How-

ever, this type of attack requires significant time and resources even for a small SRAM instance

(i.e. several kilobits in size), thus making it more difficult to mount on our proposed hardware-

entanglement technique. Moreover, PUF responses are available for a few hundred of ps when

fired on-the-fly. Even then, the same PUFs may not fire again depending on the inputs at the

corresponding LUT. Even if we assume that they do fire consecutively, the sheer number of re-

quired measurements makes these probing attacks very challenging. For instance, a successful

probing attack by Helfmeir et. al. was demonstrated on a 2 kb SRAM array with an SRAM

feature size of 600nm [10]. This attack uses a 300s integration time that translates into more than

1012 measurements with on-the-fly PUF firing scheme.

PUF response data is not stored in any kind of memory cell, rather it is a function of the inher-

ent Vth variations in the devices in the sense amplifier differential pair. While transistor threshold

voltages are not directly discernable from delayering and imaging/probing the IC, there are vari-
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ous methods for measuring the channel doping, such as spreading resistance profiling, scanning

capacitance microscopy, and electron holography [99, 100, 101]. However, these techniques

have limitations in both spatial resolution and accuracy that make them unsuitable for large-scale

reverse-engineering of a modern IC [102, 103, 104, 105]. Even if the available techniques could

provide the needed resolution and accuracy, the sheer number of devices that would need to be

probed would present an additional barrier to the attacker.

Additionally, the PUF response is read once at manufacture-time via a secure scan-chain.

Hence, it is resistant to read-back attacks that target the test and verification support circuits.

Finally, the proposed deep hardware-entanglement makes each configuration bitstream unique

for each FPGA die. Thus, the compromise of one configuration bit does not pose a cloning or

tampering threat to other configured FPGAs.

3.7.4 Tool Chain Security

As noted in the attacker model, we assume that the application programming tool chain is secure.

For example, a PUF based software protection and authentication scheme described in [70] can

be used to secure the programming tool chain. Without a secure application programming tool

chain, the attacker could derive a configuration bitstream for a particular FPGA instance from

the configuration bitstream for another FPGA instance.

The scenario is as follows: Assume the attacker gained unauthorized access to application

programming flow and is capable of synthesizing two arbitrary designs: D1 and D2. Let PA and

PB be the PUF responses for FPGA instances A and B, respectively. Hence, the configurations

for D1 and D2 on A (A1 and A2) are:

A1 = D1⊕ PA (3.1)

A2 = D2⊕ PA (3.2)



3.7. SECURITY EVALUATION 41

Similarly, the configuration for D1 on B (B1) will be:

B1 = D1⊕ PB (3.3)

The following operation:

A1⊕ A2⊕ B1 = D2⊕ PB (3.4)

gives the configuration for D2 on B (B2). If the attacker can configure one design on an FPGA

instance, he/she can run the same design on different FPGA instances. As there are published

methods for securing the tool chain [70], we leave this type of vulnerability outside of the scope

of this work, and hence the attacker model assumes a secure tool chain.

Furthermore, the attacker could potentially recover parts of the PUF response if he/she has

knowledge of the bitstream configuration file and the FPGA internal architecture. The scenario

is as follows: Assume the attacker can inject a small design (e.g., with at most 40 bits) to the

system by XOR-ing it to the encrypted bitstream. The attacker knows the exact behavior of the

design and he/she can brute-force the 40 bits by adding all 240 possible patterns to the bitstream

at the location where the design should be on FPGA, provided that the design he/she injects

has one input pin and one output pin. For every possible bit pattern, the attacker checks for the

expected behavior. In this way, the attacker could achieve oracle access to the 40 bits of the

PUF response and eventually recover more of the PUF responses by using a divide-and-conquer

approach. However, the described attack not only requires significant access to the tool chain but

also knowledge of the bitstream configuration file format, FPGA internal architecture, and the

ability to either enforce a design at particular location or deduce the exact location of the injected

design on the FPGA fabric.

While this attack is theoretically possible, it is difficult in practice because FPGA manufac-

turers do not make the details of their FPGA architecture and bitstream configuration format

public. Although the latter can be compromised by reverse-engineering the tool chain [59, 60],

it is not straightforward for the attacker to deduce the mapping of the bits in the bitstream to the
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FPGA fabric (i.e., whether a particular bit in the bitstream is used to program a piece of LUT

or the interconnect and the exact mapping of the bits) without knowledge of the details of the

FPGA internal architecture even if he/she gains unauthorized access to application programming

flow. On the other hand, side-channel attacks on the bitstream encryption scheme only require

feeding the encrypted bitstream to the decryptor block. That significant level of knowledge on

the FPGA internal architecture including the ability to enforce a design at a particular location on

the FPGA fabric is not required since the attacker does not attack the entire FPGA fabric. He/she

rather targets the decryptor block on the FPGA. Therefore, this proposed scheme provides even

more barrier to the attacks compared to bitstream encryption.

3.8 Summary

In this chapter, we presented a novel hardware-entanglement technique to protect the config-

uration bitstream. The technique only needs modification to FPGA configuration storage; no

modification is required to the remainder of the FPGA fabric. We described the implementation

of a very compact HCI-based SA design to keep VLSI overheads (i.e., area, performance, power)

feasible for this protection method. In summary, hardware-entanglement offers significant secu-

rity benefits including high resistance to probing and reverse-engineering/cloning attacks, and

unique configuration per FPGA die that offset the hardware overheads.



Chapter 4

Power Side-Channel Attack Resistant

FPGA Fabric

In the previous chapter, we presented a novel hardware-entanglement technique to protect con-

figuration bitstream against reverse-engineering attacks. In this chapter, we focus on the secure

operation of user designs running on the FPGA against side-channel analysis (SCA) attacks,

specifically power SCA attacks. We first introduce a novel post-charged differential dynamic

logic style with self-timed discharge (PCDL-STD) to achieve resistance against these attacks.

PCDL-STD style is clock-less (i.e., asynchronous) and does not require a hand-shake of control

signals unlike the existing countermeasures (i.e., TDPL and ST-TDPL), hence mitigates the is-

sues described in Chapter 2.3.2. Our design goal is to achieve efficiency in area, performance,

and energy for iso-security with the existing countermeasures. In the following, we first set

PCDL-STD in context of previous work in asynchronous logic. Next, we describe PCDL-STD

operation in detail and discuss the cavaets with this logic style. Then, we detail our secure

FPGA tile that employs PCDL-STD. Finally, we compare VLSI metrics of the secure FPGA tile

(i.e., area, delay, and energy) against a reference unsecured static FPGA tile and the D-WDDL

countermeasure layered on this unsecured FPGA. We also evaluate power SCA resistance of the

secure FPGA tile using the metric of Normalized Energy Deviation (NED).

43
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4.1 Post-Charged Dynamic Logic with Self-timed Discharge

Figure 4.1: PCDL-STD logic and control signals. This logic style does not require a global clock and operates on
differential pulsed input signals. PCH and DCH signals are generated asynchronously within the gate.

PCDL-STD does not require a global clock (i.e., clockless) and operates on differential pulsed

input signals. It has three-phases of operation: (1) evaluate, (2) self-timed discharge, and (3) post-

charge. Unlike the ST-TDPL gates, which use explicit clock phases to evaluate and precharge,

and a self-timed signal to discharge, the three-phase operation in PCDL-STD is solely controlled

by a control logic as illustrated in Figure 4.1. There are two self-timed control signals: (1)

post-charge (PCH) and (2) discharge (DCH), which are generated in the logic structure itself,

similar to how asynchronous logic gates generate their own clocking/synchronization signals

[106, 107, 108] as illustrated in Figure 4.1. However, PCDL-STD control logic is much simpler

because there is no hand-shake between the adjacent logic stages as the typical asynchronous

logic gates do (i.e., a completion detector (CD) that consists of NOR gate or NOR gates a Muller

C-element [108] when required). In other words, the control signals for a particular PCDL-STD

gate are generated entirely based on the state of the true and complementary outputs.

Table 4.1 shows the control signals of PCH and DCH with the corresponding state informa-

tion that they encode. The control logic for PCDL-STD needs to sequence three phases (i.e.,

evaluate, discharge, and post-charge) instead of two (i.e., pre-charge and evaluate) to accomo-

date the unconditional discharge operation. In the following, we discuss PCDL-gate structure

and operation in more detail.
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Table 4.1: State encoding for PCDL-STD control logic

Gate output PCH DCH State To-do
00 1 0 Post-charged -

01/10 1 0 Eval Activate DCH
(Prev: post-charged)

11 1 1 Discharged Activate PCH / Deactivate DCH
(Prev: Eval)

00 0 0 Post-charged Deactivate PCH
(Prev: Discharged)

4.1.1 PCDL-STD Gate Operation

(a) (b)

Figure 4.2: (a) A PCDL-STD 2to1 MUX schematic. (b) Control logic to generate PCDL-STD control signals.
VDD of DCH signal generation logic is separate from the rest of the gate for some external controllability on the
output pulse width.

Figure 4.2a shows a simple PCDL-STD 2:1 multiplexer (MUX). Figure 4.2b illustrates asyn-

chronous control signals that are generated by the control block. Figure 4.3 is the timing diagram

of PCDL-STD 2:1 MUX for an input pulse. Initially, both OUT and OUTB are low so the PCH

signal is high. The gate is ready to fire and it evaluates as soon as an input pulse arrives. Assume

that SEL0 is high and SEL1 is low, the first MUX input will be selected at the output. Hence,

when IN0 goes high, INT goes low and OUT will go high. Following the evaluation phase, DCH

goes high, forcing INTB to undergo an unconditional discharge. This discharge phase is self-

timed, meaning that DCH signal goes low after a predetermined time within the control logic,

set by the NAND gate and the delay line. After the self-timed discharge phase, OUTB goes high,

causing PCH signal to go low, resetting the gate. Following the gate reset, PCH goes high again

and completes one fire-cycle.
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PCH

DCH

IN/INB 10 11 00

OUT/OUTB 10 11 00

Evaluate
Self-timed
discharge

Post-charge

pulse-width

Figure 4.3: Timing diagram of a PCDL-STD 2:1 MUX. SEL0 is 1 and SEL1 is 0. Hence, the first MUX input is
selected at the output. The gate evaluates as soon as an input pulse arrives. Following the evaluation, self-timed
unconditional discharge ensures that both differential outputs switch. The gate resets after the discharge operation.
True and complementary signals are shown in in dashed and straight lines, respectively. Pulse width (tPW ) is shown
in purple.

4.1.2 Chaining PCDL-STD Gates

In a chain of PCDL-STD gates, each stage resets itself following the evaluation and the uncon-

ditional discharge within each gate. An input pulse propogates in a wave like fashion through

the PCDL-STD stages. Figure 4.4 illustrates a chain of two PCDL-STD gates. Any number of

PCDL-STD gates can be chained in similar manner.

Gate-1 evaluates as soon as the input pulse from the flip-flop arrives. Note that we also

implement a PCDL-STD flop, which will be described in detail later in this chapter. Following

the evaluation, Gate-1 undergoes the self-timed discharge operation and then the post-charge

operation. In order for Gate-2 to evaluate correctly, the evaluation cycle for Gate-1 (i.e., tPW )

should be long enough and the post-charge operation for Gate-1 should finish before the Gate-2

resets. Fortunately, the regularity of FPGA makes these criteria easier to meet. Thus, PCDL-STD

logic is very suitable for FPGA implementation.
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D Q PCDL-STD
Gate-1

CLK

CLK

Gate-1

Gate-2

Post-chargeEvaluate Self-timed
Discharge

PCDL-STD
Gate-2

D Q

CLK

Figure 4.4: Simplified timing diagram of a chain of two PCDL-STD gates. An input pulse propogates in a wave
like fashion through the PCDL-STD stages. Each stage evaluates correctly provided that the input pulse is large
enough and the corresponding post-charge operation finishes before the next one as highlighted with dashed lines.
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4.1.3 The Caveat: Avoiding Potential PCDL-STD Timing Issues

Output pulse-width (tPW ) is defined as the time difference between the beginning of evaluation

(i.e., OUT goes high) and unconditional discharge (i.e., OUTB goes high) phases. OUT and

OUTB are valid within this window. tPW is set by the control logic that consists of a static 2-

input NAND gate and a delay path. It should be large enough so that the following stage has

enough time interval for evaluation. In advanced process nodes, maintaning the minimum tPW

for proper circuit operation can be problematic due to more pronounced variability. Therefore,

PCDL-STD gates are designed with some margin on tPW . We conservatively set tPW > 8*FO4

delay for PCDL-STD gates but they can be designed with larger (or smaller) margins depending

on the target technology and corresponding variability.

Although DCH pulse control is significant for the correct operation of PDCL-STD gates,

DCH signal is self-timed and generated asynchronously within the gate, not controlled exter-

nally. Despite the conservative margin imposed on tPW , VDD of DCH signal generation is also

separated from the rest of the gate to add some external controllability on tPW (Figure 4.2b). For

instance, now tPW can be tuned within ± 25% of the nominal value by modifying VDD in ±

20% range for the same core VDD, according to post-layout simulations.

In addition, inputs to a PCDL-STD gate should go low before the gate completes the post-

charge operation. If any (or both) of the inputs is high when PCH goes back to high, then, the

gate can misfire. To avoid this, PCDL-STD gates are designed in such a way that there is enough

separation between the end of input and output post-charge cycles.
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4.2 Secure FPGA Tile

Figure 4.5: Block diagram of the FPGA tile that consists of three sub-blocks: Logic Cluster (LC), Connection
Block (CB), and Switch Box (SB). LC includes the programmable logic and a crossbar to route LC inputs to LUT
inputs. CB selects and routes the corresponding channel wires to LC inputs and SB is the programmable interconnect
between the tiles.

An FPGA tile consists of three sub-blocks: Logic Cluster (LC), Connection Block (CB), and

Switch Box (SB), as shown in Figure 4.5. LC includes the programmable logic and a crossbar

to route LC inputs to LUT inputs. CB selects and routes the corresponding channel wires to LC

inputs and SB is the programmable interconnect between the tiles. Each sub-block is described

in detail in the following section.

A MUX is the basic building block of an FPGA tile. Each tile consists of clusters of different

sized MUXes, whose sizes and numbers are dictated by the FPGA architecture parameters (Table
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4.2). The corresponding MUX sizes and their counts are summarized in Table 4.3.

Table 4.2: FPGA architecture parameters

Parameter Value

Number of LUT inputs 6

Number of BLEs 6

Number of LC inputs 24

Number of channel wires 120

Input connection flexibility 0.15

Output connection flexibility 0.16

Table 4.3: FPGA multiplexers

MUX type MUX size MUX count

Input crossbar 30:1 36

LUT 64:1 6

BLE output 2:1 12

FF input 2:1 6

Connection block 18:1 24

Switch box 11:1 60

Two-stage MUX architecture minimizes the number of configuration bits and is also shown

to have the optimum area*delay [109]. Hence, all MUXes, except LUT, are implemented in

two stages and have one-hot encoded select bits. LUT, on the other hand, has a different struc-

ture, since LUT select bits are not constant unlike the other FPGA MUXes. Therefore, LUT is

implemented in three-stages as described in more detail later.

PCDL-STD N:1 Multiplexer

The schematic and the control unit of PCDL-STD N:1 MUX are shown in Figure 4.6 and Figure

4.7, respectively. Control logic is modified to support different operating modes that are se-

lected by PC MODE signal. If PC MODE is 0, then post-charge mode is turned off and the gate

operates as a conventional domino logic gate with a global clock signal (CLK). In this mode,

DCH EN=1 (0) enables (disables) discharge operation. Domino mode is also used for the reset

at the initial power-up before switching to PCDL-STD mode enabled by PC MODE=1. As dis-

cussed before, PCDL-STD logic is designed with some margins to ensure correct functionality.

Fortunately, an FPGA consists of identical tiles and the regularity of FPGA fabric makes these

margins easier to meet. Hence, PCDL-STD logic is very suitable for an FPGA implementation.
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Figure 4.6: Schematic of a PCDL-STD N:1 MUX. There are N parallel 2-stack NMOS transistors, N one-hot-
encoded select bits select one out of N inputs. Keepers on dynamic INT and INTB nodes are not shown for simplic-
ity.

Figure 4.7: PCDL-STD control logic with different operating modes. If PC MODE is 0, then post-charge mode is
turned off and the gate operates as a conventional domino logic gate. A global CLK signal is used. In this mode,
DCH EN signal is used to enable/disable discharge operation. Domino mode is also used for the reset at the initial
power-up before switching to asynchronous PCDL-STD mode. PC MODE=1 enables PCDL-STD logic mode.
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4.2.1 Logic Cluster

LC consists of an XBAR and 6 BLEs. Each BLE has a 6-input LUT and a flip-flop (Figure 4.5).

Each LC has 24 inputs and 6 outputs (i.e., one for every LUT). Layout capture of a BLE and

LUT XBAR MUXes are shown in Figure 4.8. In the following, we describe each sub-block in

detail.

Figure 4.8: Layout capture of BLE and LUT input XBAR MUXes. Each sub-block is highlighted. LUT 64:1
MUX is implemented in three-stages. Hence, 3x 2:4 pre-decoders are used for generating 4x one-hot encoded select
signals at each MUX stage. A common control circuitry generates asynchronous PCH and DCH signals for both
LUT and XBAR MUXes. PUF activation circuitry controls on-the-fly firing of PUFs for improved security.

LUT

LUT consists of 64x hardware-entangled configuration bits (i.e., each SRAM configuration bit is

paired with a PUF bit, as described in the previous chapter) and a 64:1 MUX that is implemented

in three-stages (i.e., a total of 16x 4:1 MUXes) as shown in Figure 4.9 . 4x one-hot encoded

select signals required for each MUX stage are generated by 3x 2:4 pre-decoders (Figure 4.10a).

Each 2:4 pre-decoder consists of 4x 2-input PCDL-STD gates as shown in Figure 4.10b. The

loading on inputs A and B are balanced by using two NMOS stacks (i.e., A-B and B-A). The

schematic of a 4:1 MUX used in LUT MUX tree is shown in Figure 4.6 (N=4). The common

control logic in BLE generates the control signals for both LUT and XBAR MUXes (Figure 4.7).
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Figure 4.9: Block diagram of 6-input LUT. 64:1 LUT MUX is implemented in three-stages. Hence, 3x 2:4 pre-
decoders are used for generating 4x one-hot encoded select signals at each MUX stage. Also note the hardware-
entanglement of 64 LUT configuration bits (shown in orange). Each SRAM bit is paired with a PUF bit.

(a) (b)

Figure 4.10: (a) 2:4 pre-decoder structure with 2-input PCDL-STD AND gates are used to generate 4x one-hot
encoded select signals. (b) PCDL-STD 2-input AND gate schematic. Note, the loading on inputs A and B are
balanced by using two NMOS stacks (i.e., A-B and B-A). Keeper on dynamic INT node is not shown for simplicity.
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Input Crossbar

Input XBAR is fully populated and can route any 24 LC inputs to any LUT input. Therefore,

each input crossbar (XBAR) MUX has 30 inputs: 24 tile inputs from the channel and 6 from the

LUTs in basic logic elements (BLEs) (one for each LUT). There are 36 such MUXes (i.e., 6x

6-input LUTs, one for every LUT input). Each XBAR 30:1 MUX is implemented in two-stages:

the first stage has 2x 7:1 MUXes and 2x 8:1 MUXes, the second stage has a 4:1 MUX (Figure

4.11). The layout capture including BLE and the corresponding input XBAR MUXes is shown

in Figure 4.8.

Figure 4.11: Block diagram of an XBAR 30:1 MUX that is implemented in two-stages. The first stage has 2x 7:1
MUXes and 2x 8:1 MUXes, the second stage has a 4:1 MUX. There are 12 SRAM configuration bits (8 bits and 4
bits for the first and second stages, respectively) shown in blue.

Pulsed inputs are available for a certain amount of time, as defined by tPW . However, not all

LUT inputs arrive at the same time. In fact, there is an unbounded time difference between the

arrival times of different LUT inputs. We have observed that this time difference can range from

a few tens of ps to a few ns, depending on the benchmark circuits and the constraints. Therefore,

LUT inputs need to be latched until LUT evaluation is completed. Instead of using explicit

latches, input XBAR MUX is designed with inherent latching capability. This requires adding

full keepers to internal nodes in the first stage MUX circuits that were shown in Figure 4.6. The
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schematic of second stage 4:1 MUX is shown in Figure 4.12 with N=4. Once the gate evaluates,

the cross-coupled inverters will be locked. Thus, the output will be latched and immune to any

input change.

Figure 4.12: Schematic of PCDL-STD N:1 MUX with inherent latching capability. Pulsed inputs are available for
a certain amount of time, as defined by tPW . Hence, inherent latching is important for proper LUT operation due to
unbounded time difference between the arrival time of different LUT inputs. Once the gate evaluates, the output will
be latched and immune to any input change. Keepers on dynamic INT and INTB nodes are not shown for simplicity.

PUF Activation

PUFs can be fired on-the-fly for improved security. Each XBAR MUX output has an associated

READY signal. This signal is generated by a static 2-input balanced NAND gate (Figure 4.13a).

When, either one of the internal nodes at the second stage XBAR 4:1 MUX (i.e., INT or INTB)

goes low in evaluation, the corresponding READY signal goes high and PUF activation circuit

collects READY signals from all LUT inputs. If PUF-one-time-fire signal (POTF) is low, PUFs

are fired on-the-fly that is when all LUT inputs are ready. After LUT completes the discharge

phase, all READY signals will go low. Hence, PUFs will be reset until new inputs arrive. On

the other hand, if POTF is high, then PUFs are fired one-time. PUF activation circuit is shown in

Figure 4.13b.
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(a) (b)

Figure 4.13: (a) READY signal generation per LUT input. (b) PUF activation circuit schematic. It controls on-the-
fly firing of PUFs for improved security. If PUF-one-time-fire signal (POTF) is low, PUFs are fired when all LUT
inputs are ready (i.e., all READY signals are high). Otherwise, PUFs are fired one-time.

Secure PCDL-STD Flip-Flop

Secure PCDL-STD flip-flop (FF) consists of two parts: (1) a latch and (2) a shaper (Figure 4.14).

The latch becomes opaque as soon as an input pulse arrives. It becomes transparent again once

the shaper evaluates in rising clock edge. The shaper generates the pulsed signal at the output

and has a similar structure with the rest of PCDL-STD MUXes in FPGA fabric.

Figure 4.14: Schematic of a secure PCDL-STD FF. It consists of two parts: (1) a latch and (2) a shaper. The
latch becomes opaque as soon as an input pulse arrives. It becomes transparent again once the shaper evaluates in
rising clock edge. The shaper generates the pulsed signal at the output and has a similar structure with the rest of
PCDL-STD MUXes in FPGA fabric.

Secure PCDL-STD FF control logic is shown in Figure 4.15. It generates two pulses: CLKP

and RESETP. Since the captured data is stored in the latch, the shaper evaluates with CLKP

so that multiple firing is prevented. RESETP clears the latch and it becomes transparent again
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following the evaluation. Once the latch is opaque, it cannot capture a new input pulse. A pulsed

reset signal is used for a fast release of latch after the evaluation. CTRL is the active high enable

signal for the latch. Similar to the rest of fabric, PC MODE and DCH EN enable/disable the

post-charge mode and unconditional discharge, respectively.

Figure 4.15: Secure PCDL-STD FF control logic. It generates two pulses: CLKP and RESETP. Since the captured
data is stored in the latch, the shaper evaluates with CLKP so that multiple firing is prevented. RESETP clears the
latch and it becomes transparent again following the evaluation. Once the latch is opaque, it cannot capture a new
input pulse. A pulsed reset signal is used for a fast release of latch after the evaluation. CTRL is the active high
enable signal for the latch. Similar to the rest of fabric, PC MODE and DCH EN enable/disable the post-charge
mode and unconditional discharge, respectively.
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Consider the timing diagram shown in Figure 4.16. Initially the latch is in reset state (both Q

and QB are high), waiting for input. Assume that an input pulse (IN=1) arrives before the rising

edge of CLK. Hence, QB goes low, capturing the data. However, the pulsed inputs are available

for a certain amount of time. The captured data will be corrupted as soon as the input pulse

undergoes the unconditional discharge. Therefore, the latch is locked with CTRL going low and

no new data will be captured until CTRL goes high again. When the CLK goes high, CLKP will

be generated and shaper evaluates, OUT goes high. Following the evaluation phase, DCH goes

high, forcing OUTB to high as a result of the unconditional discharge phase. This will also cause

RESETP to go high a brief amount of time, clearing the latch. QB goes back high and CTRL

goes high again. This will make latch transparent again so that it can capture new data. After

discharge, PCH goes low, resetting the shaper. Following the reset, PCH goes high again and

completes one fire-cycle for the shaper.
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Figure 4.16: Timing diagram of a secure PCDL-STD flop. Assume that an input pulse arrives before the rising edge
of CLK, captured by the latch. It becomes opaque until the shaper evaluates with CLKP generated from the rising
edge of CLK. Then, the latch is cleared and becomes ready for a new input pulse.
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4.2.2 Connection Block

CB is used to select 24x LC inputs from the routing channel. Each LC input can select 18 out of

120 channel wires. Hence, CB consists of 24x 18:1 MUXes. Depending on the tile, different sets

of 18 channel wires can be tapped and there are 4 unique sets. Each set repeats in every 4-tiles

due to length-4 wires (i.e., they span 4 tiles before being driven again). Further details on CB

input patterns can be found in the original architecture paper [87].

Each CB 18:1 MUX is implemented in two-stages: the first stage has 3x 6:1 MUXes and the

second stage has a 3:1 MUX (Figure 4.17). The schematic of first stage 6:1 MUX and the second

stage 3:1 MUX is shown in Figure 4.6 with N=6 and N=3, respectively. The schematic of control

logic is shown in Figure 4.7. The layout capture of a CB MUX is shown in Figure 4.18.

Figure 4.17: Block diagram of a CB 18:1 MUX that is implemented in two-stages. The first stage has 3x 6:1
MUXes and the second stage has a 3:1 MUX. There are 9 SRAM configuration bits (6 bits and 3 bits for the first
and second stages, respectively) shown in blue.

Figure 4.18: Layout capture of a CB 18:1 MUX. It occupies 24 µm x 4 µm. The control block is shown on the left.
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4.2.3 Switch Box

SB is a programmable interconnect between the routing channels. Each routing channel has 120

directional, length-4 wires and each group of 8-wires constitutes a switch point (SP). There are

15 SPs in SB and each of them has 4 MUXes to drive wires in every direction (i.e., NORTH,

SOUTH, WEST, and EAST). Each SP MUX has 11 inputs: incoming direction, 8 perpendicular

directions (i.e., 4 NORTH (EAST) + 4 SOUTH (WEST) for EAST/WEST (NORTH/SOUTH)

direction, and 2 from different BLEs depending on the SP location [87] (Figure 4.19). Therefore,

there are 60x 11:1 SB MUXes in each tile.

Only 2 out of 8 wires in each direction are driven by a 11:1 SB MUX in a particular SP. For ex-

ample, in Figure 4.19, wires with the index <0:1> (i.e., WEST<0>, EAST<1>, NORTH<0>,

and SOUTH<1>) are driven. Hence, the notation SP<0:1> is used to describe the type of

SP (i.e., SP pattern). There are 4 different SP patterns in the programmable interconnect (i.e.,

SP<0:1>, SP<2:3>, SP<4:5>, and SP<6:7>). Each pattern drives wires with different indices

and is repeated in every 4-tiles in both vertical and horizontal directions due to length-4 wires

as shown in Figure 4.20. Further details on SPs and their patterns can be found in the work by

Lemieux et. al. [17, 87].

Each SB 11:1 MUX is implemented in two-stages: the first stage has a 5:1 MUX and a 6:1

MUX, the second stage has a 2:1 MUX (Figure 4.21). The schematics of first stage 5:1 MUX and

6:1 MUX are shown in Figure 4.6 with N=5 and N=6, respectively. On the other hand, the second

stage 2:1 MUX (Figure 4.12 with N=2) benefits from the inherent latching capability to set tPW

individually at each SB 11:1 MUX. By this way, if tPW of a particular pulsed signal is disturbed

in a channel wire (i.e., narrower or larger as a result of noise or crosstalk between consecutive

channel wires), the receiving SB 11:1 MUX will reinforce it, following the evaluation. The

layout capture of a SB MUX is shown in Figure 4.22.
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Figure 4.19: Each channel has 120 directional length-4 wires and each group of 8-wires constitutes a switch point
(SP). There are 15 SPs and each of them has 4 MUXes to drive wires in every direction (i.e., NORTH, SOUTH,
WEST, and EAST). Only 2 out of 8 wires in each direction are driven by a 11:1 SB MUX. Here wires with the
index <0:1> (i.e., WEST<0>, EAST<1>, NORTH<0>, and SOUTH<1>) are shown to be driven. Hence, the
notation SP<0:1> is used to describe the type of SP.
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Figure 4.20: There are 4 different SP patterns in the programmable interconnect (i.e., SP<0:1>, SP<2:3>,
SP<4:5>, and SP<6:7>). Each pattern drives wires with different indices in the corresponding SP. Each switch
pattern is repeated in every 4-tiles in both vertical and horizontal directions due to length-4 wires.

Figure 4.21: SB 11:1 MUX is implemented in two-stages: the first stage has a 5:1 MUX and a 6:1 MUX, the second
stage has a 2:1 MUX.
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Figure 4.22: Layout capture of a SB 11:1 MUX. The control block is shown on the right.

Wire-energy-save (WES) mode

Interconnect wires are heavily loaded since they span 4x FPGA tiles. Therefore, significant

energy is consumed during the unconditional discharge of interconnect wires. While setting

DCH EN=0 can disable the discharge operation, this is done for the entire fabric. Hence, control

logic for SB MUX is modified to add a wire-energy-save (WES) operation mode. When set to

1, WES signal disables unconditional discharge phase only for interconnect wires. Instead, post-

charge is directly activated after a certain delay to set the output pulse-width. WES mode offers

significant energy savings as will be shown in the results section.

Figure 4.23: Modified control logic used in SB MUX. Wire-energy-save (WES) signal disables unconditional
discharge phase for interconnect wires, instead post-charge is directly activated after a certain delay to set the output
pulse-width. This saves significant energy since interconnect wires span four adjacent FPGA tiles in every direction
and they are heavily loaded.
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4.3 Experimental Results

4.3.1 VLSI Overhead

Experimental Methodology

We implemented our secure FPGA tile in an industrial 65nm bulk CMOS process. The nominal

supply voltage for the technology is 1V. The sub-blocks of a static unsecured tile (i.e., LUT,

XBAR, CB and SB MUXes) were designed and layed out in the same technology for compari-

son. We compared our secure FPGA against D-WDDL countermeasure and the static unsecured

FPGA. The parasitic RC extraction for a large FPGA fabric that can accommodate all the security

benchmark circuits described in the previous section is not feasible. Instead, we extracted FPGA

sub-blocks and used the post-layout extracted simulation results in VTR flow. This simulation

strategy enabled us to evaluate the overhead of our secure FPGA fabric in terms of VLSI met-

rics of timing, area, and energy across multiple security-focused benchmarks. Furthermore, our

secure FPGA has different operating modes (Figure 4.24) that affect timing and energy of bench-

marks. Hence, the results are presented across different operating modes that are controlled by

PUF activation (i.e., one-time or on-the-fly) and WES (i.e., with or without unconditional wire

discharge) knobs.

Figure 4.24: Operating modes of secure FPGA are controlled by PUF activation (i.e., one-time or on-the-fly) and
WES (i.e., with or without unconditional wire discharge) knobs.

For D-WDDL results, first, WDDL netlist conversion is done for all benchmarks by using the

methodology described in [15]. The combinatorial logic is synthesized with a limited standard
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cell library, which contains AND, OR and INV gates. INV gates are stripped off from this

intermediate design. The input of each INV gate now becomes a global output and the output of

each INV becomes a global input. The resulting design is used in VTR flow to get WDDL results.

Conversion from WDDL to D-WDDL using a symmetrical routing technique is described in

[16, 110] in detail. This procedure is FPGA architecture-specific and is described for Xilinx

Spartan 3E. For instance, an already available asynchronously-cleared transparent latch is used

as the memory element to implement pre-charge logic that is required by WDDL. D-WDDL is

shown to double the slice utilization in [16, 110]. Therefore, we doubled WDDL results for area

and energy results. For D-WDDL timing results, WDDL results are used. In fact, this approach

underestimates D-WDDL overheads since the area increase due to the implementation of pre-

charge logic is not considered here. The results are normalized against the static unsecured tile.

Area

Figure 4.25 shows the normalized area comparison. Area is calculated by multiplying the number

of occupied slices and layout area. The results are benchmark average values. Secure FPGA has

around 2x overhead while D-WDDL has around 4x overhead over unsecured FPGA.

Figure 4.25: Normalized area comparison results for unsecured FPGA, D-WDDL and secure FPGA.
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Timing

Figure 4.26 shows the normalized timing comparison. D-WDDL has around 2x timing overhead.

There is no timing overhead in our secure FPGA. In fact, it is faster in all different operating

modes. The actual speed-up depends on the PUF activation mode. For instance, secure FPGA is

1.25x faster when PUFs are fired one-time. The speed-up is 1.1x when PUFs are fired on-the-fly.

WES mode does not have any affect on the timing.

Figure 4.26: Normalized timing comparison results for unsecured FPGA, D-WDDL and secure FPGA. Timing
speed-up in secure FPGA depends on different operating modes.

Energy

Figure 4.27 shows the normalized energy comparison. D-WDDL has around 7.7x energy over-

head. On the other hand, the energy overhead in secure FPGA depends on the mode of operation.

For instance, in default mode (i.e., one-time PUF fire and no wire discharge), the energy over-

head is around 3x. It increases to 5x when PUFs are fired on-the-fly and interconnect wires are

discharged unconditionally.
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Figure 4.27: Normalized energy comparison results for unsecured FPGA, D-WDDL and secure FPGA. The energy
overhead in secure FPGA depends on the operating mode.

Overhead Discussion

The area overhead of secure FPGA is around 2x. While this may seem significant, it is still half

the overhead of D-WDDL countermeasure. The energy overhead, on the other hand, is more

pronounced. Depending on the mode of operation, it can range from 3x to 5x. However, secure

FPGA has the speed advantage over unsecured FPGA and D-WDDL. Hence, this performance

gain can be traded off for energy savings depending on the application. For instance, secure

FPGA consumes the highest energy when PUFs are fired on-the-fly and interconnect wires are

discharged unconditionally (i.e., Mode3).

Average delay and energy results in this mode across the supply voltage range of 0.6-1V are

shown in Figure 4.28. In this mode, secure FPGA is 3x more energy efficient compared to D-

WDDL countermeasure at iso-performance (i.e., when the supply voltage is lowered to 0.7V). In

order to find the optimum operating conditions, we also evaluated energy-delay product. Figure

4.29 illustrates energy-delay product scaling with voltage. The optimal range for energy-delay

product is around 0.8V.
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Figure 4.28: Benchmark average (a) delay and (b) energy across a supply voltage range of 0.6-1V. In this mode of
operation, PUFs are fired on-the-fly and interconnect wires are discharged unconditionally.

Figure 4.29: Energy-delay product scaling with supply voltage. In this mode of operation, PUFs are fired on-the-fly
and interconnect wires are discharged unconditionally.
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In addition, we have not included any hard macros (i.e., block RAMs, arithmetic units etc.)

in our secure FPGA tile. However, commercial FPGA designs have these hard macros in con-

junction with the programmable logic and the interconnect. Therefore, the actual area overhead

will be much less pronounced for secure FPGA fabric.

Furthermore, the secure fabric can be implemented in a dedicated region on FPGA die and

this secure section can be allocated for security-critical applications. All other applications will

be mapped to the conventional unsecured fabric. Alternatively, 2.5D or 3D integration tech-

nologies [111] can be used to integrate a dedicated secure FPGA die with larger conventional

unsecured FPGA dies. For example, a silicon interposer with through-silicon vias (TSVs) can be

used similar to Xilinx Virtex-7 heterogeneous 2.5D FPGAs [112]. This class of FPGAs use mul-

tiple dies on the same package rather than using a single large monolithic FPGA die to achieve

better yield, higher capacity and bandwidth, and better power efficiency [113]. We can use the

same rationale to implement heterogeneous secure FPGAs to significantly reduce the overall

area, delay, and power overheads.

4.3.2 Power Side-Channel Analysis Evaluation

One method of evaluating the power SCA resistance of a logic family is to simulate the gate

under all input transition conditions and measure the normalized energy deviation (NED) [50].

To calculate NED, the energy consumption for every possible input transitions is measured in

simulation. The energy per cycle is:

E = VDD ·
∫ T

0

IDD(t)dt (4.1)

The NED is the maximum difference in energy normalized to the maximum energy con-

sumed:

NED =
max(E)−min(E)

max(E)
(4.2)
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A design’s resistance against an attack is determined by its weakest point [3]. Therefore, our

approach is to focus on the building blocks of the secure FPGA tile. We calculate NED values

for (1) the LUT, (2) the secure FF, (3) the XBAR 30:1 MUX, (4) the CB 18:1 MUX, and (5) SB

11:1 MUX. Note that PUF bits are irrelevant in this evaluation regardless of the PUF firing mode

(i.e., one-time or on-the-fly) because PUF bits always consume the same amount of energy when

they are fired.

As discussed before, the LUT consists of identical 4:1 MUXes and is implemented in three

stages. All the other MUX blocks are implemented in two-stages and have one-hot encoded

select bits. The MUX architecture narrows down the total number of inputs, which we need to

calculate NED for. For instance, a CB 18:1 MUX has 3x identical 6:1 MUXes and a 3:1 MUX

in the first and second stages, respectively. Regardless of the selected MUX input (i.e., any one

of 18 inputs), only one out of 6 inputs will be activated in all the first-stage MUXes. In the

second stage, only one out of 3 inputs will be activated (i.e., the one that corresponds to the

selected input. From the power consumption perspective, only 3 MUX inputs will be relevant

(i.e., consumes dynamic power). Therefore, we need measure the energy consumption for only 8

(i.e., 23) input transitions, as opposed to 218 (i.e. for all input transitions). By the same logic, the

number of relevant input transitions is reduced significantly, including the LUT. For the SB 11:1

MUX, NED values are calculated for both WES=0 and WES=1 (i.e., interconnect discharge is

on and off, respectively).

Table 4.4: NED values for different FPGA building blocks

Block NED
LUT 0.28%

Secure FF 0.51%
XBAR 30:1 MUX 0.38%

CB 18:1 MUX 0.75%
SB 11:1 MUX (WES=0) 0.36%
SB 11:1 MUX (WES=1) 0.76%

As seen in Table 4.4, the NED values for the LUT, the secure FF, the XBAR 30:1 MUX, and

the CB 18:1 MUX are 0.28%, 0.51%, 0.38%, and 0.75%, respectively. Turning off the intercon-
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nect discharge (WES=1) increases the NED value of SB 11:1 MUX from 0.36% to 0.76%. Each

block has a NED value smaller than 1% threshold for a sufficient power analysis resistance [58].

4.4 Summary

In this chapter, we presented a power SCA resistant secure FPGA tile implemented using a novel

PCDL-STD logic style. The secure tile has also hardware-entangled LUT configuration bits for

bitstream protection as decribed in the previous chapter. The secure FPGA offers significantly

reduced area, delay, and energy overheads compared to D-WDDL countermeasure layered on

the reference unsecured FPGA. Next chapter, will detail the prototype secure FPGA testchip that

verifies the feasability of the proposed design.



Chapter 5

Secure FPGA Testchip

In the previous chapters, we introduced two security features for FPGA. We presented hardware-

entanglement for bitstream protection against reverse-engineering attacks and a built-in power

SCA attack resistant FPGA fabric for secure operation. Our design goal was to achieve effi-

ciency in area, performance, and energy for iso-security with the existing countermeasures on

FPGA against these security concerns. We implemented and taped-out a prototype hardware-

entangled secure FPGA testchip as a proof-of-concept for our design. The results from our

testchip demonstrate that hardware-entangled inherently secure FPGAs are a promising alterna-

tive to layering countermeasures on top of insecure conventional-off-the-shelf (COTS) FPGAs.

5.1 Test Chip Overview

We implemented the secure FPGA testchip in an industrial 65nm CMOS process with 9-metal

layers. Nominal supply voltage is 1V for standard devices and 2.5V for thick gate devices.

Measured fan-out-of-four (FO4) delay is 35ps at TTLH corner. Testchip dieshot is shown in

Figure 5.1. The die area is 3.14 mm x 2.47 mm and it has 170 I/O pads along the periphery.

Table 5.1 summarizes the technology and testchip features.

There are eight different voltage domains in the testchip and each has its own power grid.

Among these, VDDE and VDDHE (i.e., 3V) power the I/O ring, while VDDH (i.e., 3V) is used

73
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Table 5.1: Technology and testchip features

Technology 65nm CMOS, 9-metal Cu
FO4 35ps (TTLH)

Chip area 7.75 mm2 (3.14 mm x 2.47 mm)
Number of I/O pads 170

FPGA core area 3.45 mm2 (2.04 mm x 1.69 mm)
FPGA core interface 60 inputs - 60 outputs

Number of tiles 10x10
Number of LUTs 600

Number of PUF instances 38,400

Figure 5.1: Secure FPGA prototype testchip dieshot. The chip is implemented in an industrial 65nm bulk CMOS
process. It occupies 7.75 mm2 and has 170 I/O pads along the periphery. Secure FPGA core occupies 3.45 mm2

with 60 inputs and 60 outputs. It consists of 10x10 tiles with 600 LUTs and 38,400 HCI SA PUF instances.
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for HCI stressing the PUF bits. The supply voltage of the secure FPGA core (i.e., VDD CORE)

is seperate from the test infrastructures (i.e., VDD TEST) to enable measurements at different

supply voltage levels. The supply voltage of PUF instances (i.e., VDD PUF), discharge (i.e.,

VDD DCH) and postcharge (i.e., VDD PCH) pulse generator circuits within each PCDL-STD

logic gate, and SRAM configuration bits (i.e., VDD SRAM) are also separate from VDD CORE

for external tunability/controllability.

As shown in Figure 5.2, the testchip consists of a 10x10 secure FPGA core (2.04 mm x 1.69

mm), input shift registers and interface, output interface and shift registers, ring-oscillator (RO)-

based programmable clock generator, and controller circuitry for both FPGA configuration and

operation. In the previous chapter, we described the implementation details of a secure FPGA

tile. The remainder of chapter is dedicated to configuration circuitry, test infrastructure, silicon

results, and security analysis of the secure FPGA testchip.

Figure 5.2: Top level block diagram of the testchip. The testchip consists of a 10x10 secure FPGA core, input shift
registers and interface, output interface and shift registers, ring-oscillator (RO)-based programmable clock generator,
and controller circuitry for both FPGA configuration and operation. Clock lines and configuration/control signals
are highlighted in red and blue, respectively.
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5.2 FPGA Configuration Circuitry

There are a total of 150,000 configuration bits in the secure FPGA (i.e., 1500 bits per tile). The

number of configuration bits increases with the number of tiles that are present; a typical large

FPGA has hundreds of thousands of tiles. Consequently, the configuration circuitry can become

significantly large and complicated. Thus, we used a configuration circuitry [114] in which the

configuration cells are arranged in an array and are loaded with bitstream configuration data. The

circuitry is modified to support not only writing into configuration cells, but also reading out their

contents since the initial PUF responses are read via storing the responses in LUT configuration

cells.

In Figure 5.3, the overall structure of programming circuitry is described for MxN configu-

ration cells. All configuration bits are arranged in arrays of N-rows and M-columns similar to

an SRAM macro with N wordlines (WLs) and M bitlines (BLs). In this array structure, N+M

flops are required for NxM configuration bits. WL scan-chain activates the corresponding WL

(highlighted in red) and data scan-chain is used to load the corresponding data for the accessed

row (highlighted in blue). WL and data scan-chains consist of simple master-slave D flip-flops

(MS-DFF) and scannable MS-DFFs, respectively. The configuration data is scanned-in through

the data scan-chain under control of DATA SCLK. Each row is addressed by shifting a logic-1

token through WL scan-chain under control of WL CLK. Each time a frame of configuration

data is loaded and written into, the logic-1 token is shifted to the next flop in the chain to access

the next row.

Since secure FPGA has 10x10 tiles, there are 10 configuration columns in secure FPGAs

(M=10) and each column has 10 WLs (i.e., 10 rows). WL generation for configuration cells are

2-input AND gates. Figure 5.4 displays the details of read/write circuit. The cell BLs feed into

the read/write circuit that contains the read and write support circuits. During a write operation,

BLs are conditioned according to DATA IN value. A skewed inverter is used for single-ended

reads. BL reset transistors are also included in read/write circuit. BL half-keepers are not shown

for simplicity.
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Figure 5.3: Overal structure of FPGA programming circuitry for MxN configuration cells. All configuration bits
are arranged in arrays of N-rows and M-columns similar to an SRAM macro with N wordlines (WLs) and M bit-
lines (BLs). In this array structure, N+M flops are required for NxM configuration bits. WL scan-chain activates
the corresponding WL (highlighted in red) and data scan-chain is used to load the corresponding data for the ac-
cessed row (highlighted in blue). The configuration data is scanned-in through the data scan-chain under control of
DATA SCLK. Each row is addressed by shifting a logic-1 token through WL scan-chain under control of WL CLK.
Each time a frame of configuration data is loaded and written into, the logic-1 token is shifted to the next flop in the
chain to access the next row.
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Figure 5.4: The details of read/write circuit used in each configuration column. The cell BLs feed into the read/write
circuit that contains the read and write support circuits. During a write operation, BLs are conditioned according
to DATA IN value. A skewed inverter is used for single-ended reads. BL reset transistors are also included in
read/write circuit. BL half-keepers are not shown for simplicity.

5.3 Test Infrastructure

32-deep scan-enabled input and output shift registers are used for testing the benchmark circuit

implemented on secure FPGA core at speed. Input shift registers can hold 32 inputs and are

configured to operate in a circular manner to continuously provide input data, and the output

shift registers store the most recently processed 32 outputs. Input and output shift registers are

single-ended. Therefore, input and output interface circuits are required to generate (capture)

differential inputs (outputs) to (from) secure FPGA core. In PCDL-STD mode, they generate

(capture) pulsed inputs (outputs).

5.3.1 Input Test Structures

As shown in Figure 5.5, there are 60 input test structures (i.e., one per FPGA input) and each

consist of a 32b scannable register and an input interface circuitry. In scan mode, external data

is scanned in one bit at a time. In normal operation mode, scanned-in data is shifted to the right.
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For continuous operation and power measurements, the data outputs of the last input FFs are

connected as data inputs of the first FFs.

Figure 5.5: Input test structures consist of 32-deep scan-enabled shift registers that are configured to operate in a
circular manner to continuously provide input data in normal operation mode. Input registers are single-ended, thus
input interface circuits generate differential pulsed-inputs to secure FPGA core. Input scan-registers and interface
circuits operate in opposite clock edges.

Input registers are single-ended, therefore an input interface circuit is used for signal conver-

sion between input registers and the secure FPGA core (Figure 5.6). It is essentially a PCDL-

STD buffer with a modified control block, which generates a clock pulse (CLKP) in the rising

clock edge for evaluation of interface circuits so that the multiple firing is prevented (Figure 5.7).

PC MODE and DCH EN enable/disable the post-charge mode and unconditional discharge, re-

spectively.

Figure 5.6: Input interface circuits are used for single-ended to differential-pulsed-input conversion between input
registers to secure FPGA core. It is essentially a PCDL-STD buffer with a modified control block.
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Figure 5.7: Control logic of input interface circuits. It generates a clock pulse (CLKP) in the rising clock edge for
evaluation of interface circuits so that the multiple firing is prevented. PC MODE and DCH EN enable/disable the
post-charge mode and unconditional discharge, respectively.

IN

Evaluate
Self-timed
discharge

Post-charge

CLK

OUT/OUTB 10 11 00

DCH

PCH

Evaluate

CLKP

Figure 5.8: Timing diagram of input test structures. Assume that input scan register samples a logic-1 in the
falling clock edge. The interface circuit evaluates with CLKP generated from the rising edge of CLK. Evaluation is
followed by a self-timed discharge and reset for the next clock cycle.



5.3. TEST INFRASTRUCTURE 81

Consider the timing diagram of an input test structure shown in Figure 5.8. Scan registers and

interface circuits operate in opposite clock cycles. Assume that the input scan register samples

a logic-1 in the falling clock edge. At this time, both IN and INB are generated. The interface

circuit evaluates with CLKP generated from the rising edge of CLK. Evaluation is followed by a

self-timed discharge and reset for the next clock cycle.

5.3.2 Output Test Structures

There are 60 output test structures (i.e., one per FPGA output). Each consists of an output

interface circuitry and a 32b scannable register as shown in Figure 5.9. Output shift registers are

implemented similarly to input shift registers; however, last outputs are not connected back to the

first inputs. Last outputs store the most recently processed 32 outputs. In scan mode, captured

data from the secure FPGA core is scanned out one bit at a time. In normal operation mode,

captured data is shifted to the right to make room for new data.

Figure 5.9: Output test structures consist of an output interface circuit and 32-deep scan-enabled shift registers.
They store the most recently processed 32 outputs. Output interface circuit captures PCDL-STD signal from the
secure FPGA core and convert it to single-ended signal for output registers.

As illustrated in Figure 5.10a, output interface circuit captures PCDL-STD signal from the

secure FPGA core and convert it to single-ended signal for output registers. After the data is

captured, the latch in the output interface circuitry becomes opaque and cannot capture a new

data from the secure FPGA core. In the rising clock edge, the output registers sample and the

latch resets to capture a new data. As displayed in Figure 5.10b, control logic orchestrates locking

and releasing of the latch with respect to the rising clock edge. A pulsed reset signal is used for

a fast release of latch after the output register samples.
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(a) (b)

Figure 5.10: (a) Output interface circuits between the secure FPGA and output registers. (b) Control logic orches-
trates locking and releasing of the latch with respect to the rising clock edge. A pulsed reset signal is used for a fast
release of latch after the output register samples.

Consider the timing diagram of an output test structure as shown in Figure 5.11. Initially,

CTRL is high and latch is transparent. Assume that a pulsed input (IN=1) from the secure FPGA

core is captured in the latch, and QB goes low. This will also bring CTRL low and lock the latch.

In the following rising clock edge, the captured data within the latch is sampled by the output

register. This will trigger the RESET pulse generation and reset the latch. The latch becomes

transparent again to capture new data from the secure FPGA core.

IN/INB 10 11 00

Q/QB 1011 11

CLK

CTRL

RESET

Latch opaque Latch transparent

01 11 00

01

Figure 5.11: Timing diagram of output test structures. The latch in the output interface circuit becomes opaque
after capturing the data from the secure FPGA core. In the following rising clock edge, the captured data inside the
latch is sampled by the output register, and the latch is released.
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5.3.3 Clocking

The chip is clocked by using an on-chip ring-oscillator (RO) based clock-generator, which is

shown in Figure 5.12, that can be programmed externally for a wide-range of frequency options

(i.e., 500kHz to 5.7GHz). It consists of four ROs to generate the fast base clock (i.e., 2.9GHz,

3.8GHz, 4.6GHz, and 5.7GHz) and a twelve-stage divide-by-2 stages to generate clocks with a

wide-range of frequency options. Alternatively, the on-chip clock generator can be bypassed in

order to use an external clock supplied from the pads. A fast 14:1 MUX selects the programmed

frequency and feeds it to the secure FPGA core via a clock distribution network. Clock is dis-

tributed to each tile with a low-skew clock grid that is driven from both the top and bottom of the

FPGA core. It is re-buffered within each tile and can be gated for unused tiles to save power.

Figure 5.12: Programmable on-chip ring-oscillator based clock generator.

5.4 Measurement Results

We perform two sets of measurements: (1) benchmark measurements to evaluate performance,

power and energy consumption, and the energy-efficiency of the secure FPGA core in different

operating modes, and (2) PUF measurements to assess the reliability of PUF instances across
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environmental variations (i.e., voltage and temperature). In the following, we first present the

benchmark results and then we discuss the PUF measurement results.

5.4.1 Benchmark Measurements

Figure 5.13: Sample security primitive implemented on secure FPGA testchip. It consists of a Linear-Feedback-
Shift-Register (LFSR) and an AES S-Box. LFSR generates pseudo-random input patterns and AES S-Box output is
XORed with an 8-bit key. A key of 8’hAE (i.e., 174 in decimal) is used in all measurements.

For benchmark measurements, we implement the sample security primitive on secure FPGA

testchip. It consists of a Linear-Feedback-Shift-Register (LFSR) and an AES S-Box as shown

in Figure 5.13. LFSR generates pseudo-random input patterns and AES S-Box output is XORed

with an 8-bit key. A key of 8’hAE (i.e., 174 in decimal) is used in all measurements. We use our

VTR-based custom programming tool to map the verilog of the sample security primitive into

our secure FPGA. Figure 5.14 displays the operating modes of the secure FPGA testchip.

Figure 5.14: Operating modes of secure FPGA testchip. PUF activation can be one-time or on-the-fly and the
unconditional wire discharge can be turned off for the interconnect for additional power savings.
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Performance

The benchmark circuit runs at 350 MHz at 1V nominal supply voltage and 27◦C in one-time PUF

firing mode. On-the-fly PUF firing mode trades off performance to increase the security against

reverse-engineering attacks on the PUF bits. In this mode, PUFs are fired for a few hundred of ps

(i.e., when all LUT inputs are ready) and then reset until the next cycle. Thus, PUF delay adds to

the forward logic. The benchmark circuit operates at 290 MHz at 1V nominal supply voltage and

27◦C (i.e., 15% performance penalty). Figure 5.15 displays the Shmoo plot across a wide supply

range of 0.6-1.3V for both one-time and on-the-fly PUF firing modes. Note that WES mode does

not affect the operating frequency (i.e., same performance for both WES=0 and WES=1). The

performance is commensurate with commercial FPGAs in the same technology [115, 116].

Figure 5.15: Shmoo plot of the benchmark circuit implementation on the secure FPGA. Green and blue areas
represent the voltage-frequency points in which the chip is functional when PUFs are fired on-the-fly and one-time,
respectively. WES mode does not affect the operating frequency. At 27◦C, the benchmark circuit operates at 70-430
MHz and 90-500 MHz in one-time and on-the-fly PUF firing modes, respectively, across a supply range of 0.6-
1.3V. At the nominal supply voltage of 1V, the secure FPGA operates at 290 MHz and 350 MHz when PUFs fired
on-the-fly and one-time, respectively.

Power and Energy

Measured dynamic power consumption vs. supply voltage at 27◦C for all operating modes are

shown in Figure 5.16a-5.16b. At 1V nominal supply voltage, the benchmark circuit consumes
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574 mW of dynamic power when PUFs are fired one-time and the interconnect discharge is

turned on (i.e., Mode2). Turning off the interconnect discharge while firing PUFs one-time (i.e.,

default mode) saves 11% in dynamic power consumption. In default mode, the benchmark circuit

consumes 522 mW of dynamic power.
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Figure 5.16: Measured dynamic power consumption vs. supply voltage for (a) when PUFs fired are fired one-time
and (b) PUFs are fired on-the-fly. WES=0 and WES=1 modes are shown in magenta and red, respectively. Turning
off the interconnect discharge saves 11% and 6% in dynamic power consumption when PUFs are fired one-time and
on-the-fly, respectively.

Although PUFs consume dynamic power when fired on-the-fly, the benchmark circuit oper-

ates at a lower frequency and consumes less power compared to the modes in which PUFs are

fired one-time. The benchmark circuit consumes 473 mW of dynamic power when PUFs are

fired on-the-fly and interconnect is discharged (i.e., Mode3) at 1V nominal supply voltage. Turn-

ing off the interconnect discharge while keeping on-the-fly PUF firing mode (i.e., Mode1) saves

6% in power consumption. In Mode1, the benchmark circuit consumes 447 mW of dynamic

power. Clock gating for unused tiles saves in 18% in dynamic power consumption. The leakage

power consumption vs. supply voltage is shown in Figure 5.17. At 1V nominal supply voltage,

the fabric consumes 70 mW of leakage power.

Figure 5.18a-5.18b shows the average energy consumption for all operating modes. The

benchmark circuit consumes 1.5 nJ/cycle of energy in default mode. The energy consumption
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Figure 5.17: Measured leakage power consumption vs. supply voltage at 27◦C. At 1V nominal supply voltage, the
secure FPGA fabric consumes 70 mW of leakage power.
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Figure 5.18: Energy consumption per clock cycle for all operating modes. The highest energy (i.e., 1.7 nJ/cycle)
is consumed in Mode3, where PUFs are fired on-the-fly and the interconnect is discharged. The secure FPGA
consumes the lowest energy in default mode in which PUFs are fired one-time and the interconnect discharge is
turned off. WES=0 and WES=1 modes are shown in orange and purple, respectively.
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(a) (b)

Figure 5.19: Energy consumption breakdown for when PUFs are fired one-time, (a) WES=0 and (b) WES=1.
Turning on WES reduces the interconnect energy by 40%, but this only translates to 10% total energy savings due
to the LUT energy overheads.

(a) (b)

Figure 5.20: Energy consumption breakdown for when PUFs are fired on-the-fly, (a) WES=0 and (b) WES=1.
Turning on WES reduces the interconnect energy by 40%, but this only translates to 9.6% total energy savings due
to the LUT and PUF energy overheads.



5.4. MEASUREMENT RESULTS 89

increases to 1.65 nJ/cycle when the interconnect discharge is turned on (i.e., Mode2). Turning off

the interconnect discharge (i.e., WES=1) reduces the interconnect energy by 40%, but this only

translates to 10% total energy savings due to the LUT energy overheads (Figure 5.19a-5.19b).

Alternatively, the benchmark circuit consumes 1.55 nJ/cycle in Mode1, where PUFs are fired

on-the-fly and the interconnect discharge is turned off. Finally, the highest energy is consumed

when both PUFs are fired on-the-fly and the interconnect is discharged (i.e., 1.70 nJ/cycle energy

consumption in Mode3). Turning off the interconnect discharge (i.e., WES=1) reduces the inter-

connect energy by 40%, but this only translates to an approximately 10% total energy savings

due to the LUT and PUF energy overheads (Figure 5.20a-5.20b). While additional energy is con-

sumed to fire PUFs on-the-fly, this mode provides enhanced security against reverse-engineering

attacks on the PUF bits.

Energy-Efficiency

In order to find the optimum operating conditions, we evaluate the energy-delay product. Figure

5.21a-5.21b illustrates energy-delay product scaling with supply voltage in different operating

modes. The optimal range for energy-delay product is 0.8-1.1V for all operating modes.
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Figure 5.21: Energy-delay product scaling with supply voltage. The optimal range for energy-delay product is
0.8-1.1V for all operating modes.
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5.4.2 PUF Measurements

For measuring the PUF reliability, we perform the characterization as described in the original

HCI-SA PUF work [85]. We first perform small-scale measurements to identify the worst-case

corner for reliability and then proceed with large-scale measurements on the nominal and the

worst case corners.

Small-scale measurements

The following three steps are performed for small-scale measurements of reliability across envi-

ronmental variations of voltage and temperature as suggested by Bhargava et. al. [80].

1. The first step involves preliminary analysis. We perform 100 PUF evaluations for each

possible voltage (i.e., 0.8V, 1V, 1.2V) and temperature (i.e., -20◦C, 27◦C, 85◦C) combi-

nation, which results in a sizeable dataset because each PUF evaluation generates 38,400

response bits. We consider the majority vote of 100 responses at the nominal conditions

(i.e., 27◦C and 1V) as the golden response.

2. The second step includes error testing. We compare the response bits for all other voltage-

temperature combinations to those from the golden response. Errori,V1,T1 is defined as the

number of bits out of the 38,400 PUF responses that do not match the golden response for

the ith evaluation at voltage=V1 and temperature=T1
◦C.

3. The third step involves determination percent error (i.e., % errors). For all calculations, %

errors is defined as the maximum error across 100 evaluations of corresponding variations.

In other words, % errors is the largest % of bits that were erroneous for any of the voltage-

temperature combinations in any of 100 PUF evaluations performed at that voltage.

• For a voltage-temperature combination, ErrorV1,T1 is defined as the maximum

Errori,V1,T1 .

• For voltage-only variations, ErrorVonly
is the maximum error at all voltage variations

and at nominal temperature (i.e., the maximum of ErrorV0.8,T27 , ErrorV1,T27 , and
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ErrorV1.2,T27).

• For temperature-only variations, ErrorTonly
is the maximum error at all temperature

variations and at nominal voltage (i.e., the maximum of ErrorV1,T−20 , ErrorV1,T27 ,

and ErrorV1,T85).

• Overall ErrorV&T is the maximum error at all voltage and temperature combinations.

The measurements are performed for the die before and after different stress durations (i.e.,

10s intervals). Figure 5.22a shows the improvement in reliability for improved HCI-SA PUFs

with different stress durations (i.e., as decrease in the % error). As seen in Figure 5.22b, the

overall errors across all voltage-temperature combinations reduce from 4.4% to 0.05% when

stressed for 10s. After a total 20s of stress, there are no errors for any of the 38,400 PUF instances

across all of 100 evaluations for each voltage-temperature combination.

Figure 5.22b shows that variations in voltage have a slightly stronger impact on reliability

compared to temperature variations. For voltage-only variations and temperature-only varia-

tions, the % errors is reduced from 3.8% to 0.05% and from 3.4% to 0% with a stress of 10s,

respectively. After a total stress of 20s, there are no errors. The highest % errors is observed at

high-voltage and high-temperature combination (i.e., 1.2V and 85◦C).

Large-scale measurements

Following the identification of the worst-case corner for reliability (i.e., 1.2V and 85◦C), we

conduct large-scale experiments at the worst-case corner to experimentally measure bit error rate

(BER). After 872,000 measurements at the worst-case corner and 36 days of continuous testing,

no errors were observed. A very conservative assumption that the very next measurement would

be an error leads to a bit-error-rate (BER) < 2.98*10−11, which is on par with the theoretical BER

targeted by the ECC in the commercial PUFs (i.e., Intrinsic ID SRAM PUF BER < 3.9*10−12

[117]) and close to the reported BER of SRAMs at this technology node (i.e., BER for ST

SRAMs in 65nm node < 1.66*10−12 [118]). The total error rate (TER) of an N-bit key can be

defined as TER = 1 - (1 - BER)N [85]. In our secure FPGA testchip, LUT bits are protected with
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Figure 5.22: (a) Reliability of improved HCI-SA PUFs shown as a percentage of errors (100 - % reliability). Errors
shown are the maximum errors across 100 evaluations. (a) Errors across all the environmental conditions. They are
measured for voltage varions ±20% from nominal 1V and temperatures of -20◦C, 27◦C, 85◦C. (b) Errors across
only voltage, only temperature, and all voltage & temperature variations.
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a total of 38,400 LUT bits, hence, the TER for LUT-entanglement is less than 1.15*10−6.

Reliability of LUT-entanglement vs. Commercial FPGAs

In commercial FPGAs, failure rates are typically expressed in failure-in-time (FIT) units. 1 FIT

is equivalent to 1 failure in 1 billion or 109 device-hours [119, 120]. Devices operate under

high stress conditions (i.e., high temperature and high voltage) for failure rate calculations. In

addition, the reported failure rates do not distinguish LUT configuration bits from other bits (i.e.,

interconnect). However, commercial FPGAs typically have a few thousand to hundred thousand

LUTs [121, 122]. Therefore, the reported failure rates are conservative in comparison to PUF

bits that are used for hardware-entanglement (i.e., LUT-entanglement). Failure rates around 8-10

FIT are reported for 65nm Xilinx and Intel FPGAs [119, 120]. For example, 10 failures expected

out of 1 million components operating for 1,000 hours have a failure rate of 10 FIT. In other

words, if we had 1 million PUF instances running for 1000 hours under high voltage and high

temperature, then a TER of 10*10−9 would be expected.

While we do not have 1 million PUF instances implemented on our testchip, we experimen-

tally show that no error is detected after 872,000 measurements (i.e., BER < 2.98*10−11). This

BER is on par with the theoretical BER targeted by the ECC in the commercial PUFs and close

to the reported BER of SRAMs at this technology node. The source of reliability for HCI-SA

PUFs is the VTH shift (i.e., as a result of 20s of HCI stress) on the stressed transistor. A signif-

icant percentage of the VTH shift has been shown to be permanent with device aging [34, 85].

Bhargava et. al. [80, 85] reported that a reversal in VTH shift saturates around 30 mV mean

value beyond 1.7 years of aging (i.e., 1.5V and 100◦C). This level of saturation constitutes a very

small portion of the overall VTH shift (i.e., up to 300mV of VTH shift). All of our measurements

thus far are in the good direction without any error and we have not seen anything that suggests

otherwise.
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Uniqueness and Randomness of improved HCI-SA PUF

Uniqueness is a measure of how uncorrelated the bits are across chips. Ideally, the response bits

across chips differ with a 0.5 probability. The hamming distance (HD) of a k-bit response from

ideally unique chips follows a binomial distribution with parameters N=k, p = 0.5, a mean of k/2

[85]. In the secure FPGA, 64 PUF bits at each LUT are layed out as groups of 16 and physically

placed in the corners of the LUT. Therefore, we group PUF response bits as 16-bit words to

analyze the uniqueness of HCI-SA PUFs. We create 2,400 16-bit words from the measured

outputs of 38,400 PUF bits on 3 chips. These 16-bit words are generated at 27◦C and 1V after

the HCI-SA PUFs are stressed for 20s. Figure 5.23 shows that the pairwise HDs of response bits

from 3 chips are close to ideal (i.e., mean of 8) with means of 7.94, 8.02, and 7.96.
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Figure 5.23: Histogram of Hamming distance (HD) of 16-bit HCI-SA PUF response words from 3 chips. For HD
calculations, PUF response bits from 38,400 HCI-SA PUFs on each chip are grouped to create 2,400 16-bit words.
The pairwise HD of response bits from 3 chips is close to ideal (i.e., mean of 8) with means of 7.94, 8.02, and 7.96.

Randomness is a measure of the unpredictability of the PUF response bits. The %1’s and

%0’s in the response bits are ideally equal. From the measured responses of 38,400 HCI-SA

PUF bits across 3 chips after 20s of stress, the %1’s are found to be 48.6%, 48.8%, and 49.1%,
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which are very close to ideal (i.e., 50%). PUF response bits also pass the NIST randomness tests

with minimum P value of 0.976.

Programmability of HCI-SA PUFs

Based on the previous data, we can reach a very low BER (< 2.98*10−11) after an initial 20s

HCI response reinforcement. In the following experiment, we investigate the programmability

of HCI-SA PUFs. Instead of the initial 20s stress to increase the reliability, we applied an HCI

stress in the opposite direction to flip all PUF response bits (i.e., to write the opposite of the

golden response bits into PUFs). We find that 30s of stress is sufficient to flip all PUF response

bits (i.e., write the opposite of the golden response bits into PUFs) reliably across voltage (i.e.,

0.8V, 1V, 1.2V) and temperature (i.e., -20◦C, 27◦C, 85◦C) variations.

In order to analyze re-programmability of HCI-SA PUFs, we started with initially stressed

PUF bits (i.e., initial response reinforcement with a 20s of stress). Then, we applied longer

stress (i.e., 20s, 40s, 100s, 300s, 600s) at 27◦C and 1V in the direction to flip the PUF outputs

(i.e., to write the opposite of the golden response). Figure 5.24 shows that increasing stress

time has diminishing returns beyond 100s of stress. In other words, VTH shift will be less with

the increasing stress time due to HCI saturation and any further stress to increase VTH of one

transistor will not decrease the number of errors after 600s of total stress. Therefore, not every

single one of PUF bits can be flipped with high enough reliability (i.e., 100% reliability). There

are some outliers that are likely to be saturated in the initial side. For these outliers, 20s of initial

stress is too much and a smaller stress (i.e., < 20s) in the response reinforcement step is required.

If we want to re-program all the PUF bits with 100% reliability, the minimum amount of

stress necessary to get the target BER should be applied. Any more stress than the required

amount will hurt re-programmability. Due to this trade-off between the initial reliability and

re-programmability, a more relaxed BER target makes re-programmability easier. Alternatively,

instead of applying HCI-stress in a preferred direction to keep increasing VTH of one transistor,

techniques like charge de-trapping [123] can be explored to reverse the effect of HCI on the other
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Figure 5.24: Re-programming HCI-SA PUFs (i.e., writing the opposite value of the golden response) with via an
HCI stress in the opposite direction. After the 20s HCI response reinforcement at 27◦C and 1V (i.e., no errors),
PUFs cannot be re-programmed (i.e., their response cannot be flipped) due to HCI saturation. The number of errors
cannot be decreased with further stress.

transistor (i.e., cancel out the VTH increase by the previous programming cycles). Consequently,

the programmability of HCI-SA PUFs can be improved.

5.5 Power Side-Channel Analysis Security Evaluation

In order to evaluate power side-channel analysis (SCA) resistance of the secure FPGA fabric in

different mode operations, we mount a DPA attack on the sample security primitive that we used

for the benchmark measurements. This structure is the similar device-under-attack (DUA) that

was used in the original D-WDDL work [16, 110]. The DUA is a simplified version of a structure

found in many block ciphers, including AES. LFSR generates pseudo-random input patterns and

AES S-Box output is XORed with an 8-bit key. A key of 8’hAE (i.e., 174 in decimal) is used in

all measurements.
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5.5.1 Attack Methodology

The procedure for the DPA attack mounted on D-WDDL countermeasure is described in [16,

110]. We mount an identical DPA attack on our secure FPGA fabric to assess the power SCA

resistance. In this attack, the power consumption of DUT is estimated by using a power model

that combines the observed output values with an estimate for the key value. Then, the estimated

power for each key guess is correlated with the measured power. The correct key will have

highest correlation across all key guesses. The power model is the Hamming Weight (HW) of

a single bit of the AES S-Box input [16]. Then, the correlation plot for each of the 8-bits is

obtained and the maximum in each plot is identified. Majority voting among all bits is used to

find the final key.

HW (bit(IN, i)) |i=0. . . 7 = HW (bit(SBOX−1(OUT ⊗KEYguess), i)) |i=0. . . 7 (5.1)

Yu et al. obtained 20 sample points per clock cycle and used the 10th sample point for the

attack [16, 110]. In order to increase the attack success, we instead use 800 points for each clock

cycle (i.e., a total of 256 clock cycles). Then, we measure and save the power traces for DUA for

all possible 8-bit input combinations. Due to LFSR, we obtain a complete power trace (i.e., one

for each input) in 256 clock cycles. Furthermore, we repeat the measurements 100 times (i.e.,

collect 100x 256-cycle power traces) to average out the noise element. We also repeat the DPA

attack across all different mode of operations in order to demonstrate the power-SCA resistance

in each mode. For instance, the operation modes that have the interconnect discharge turned off

(i.e., default and Mode1) trade off the security with energy overhead. By mounting the attack in

these modes, we evaluate the effectiveness of the discharge operation for the interconnect wires.

5.5.2 Attack Equipment and Setup

We used an Agilent 548559A digital sampling oscilloscope, which has a bandwidth of 6 GHz

with a maximum sampling rate of 20 GS/s (i.e., Gigasamples per second). To obtain enough sam-
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ples, the DUA is clocked at 1 MHz. We bypass the on-chip programmable clock generator and

use an external clock from the Ni-DAQ 6259 board. The same external clock as the trigger signal

is used for the oscilloscope to register the power traces. Figure 5.25 shows the measurement and

test setup for the DPA attack mounted on the secure FPGA fabric.

Oscilloscope

Power supplies

Custom designed
test board

Ni-DAQ 
connectors

Figure 5.25: Measurement and test setup for the DPA attack mounted on the secure FPGA fabric.

The power traces are measured on a custom designed test board. Note that there are separate

voltage domains on the secure FPGA testchip. We only need to measure the power consumption

variation for secure FPGA fabric that was powered by VDD CORE supply. We remove all the

decoupling capacitors on our custom test board in order to maximize the success of detecting the

variations in the power consumption across different inputs.

We use a small resistor (i.e., 2 Ω) in series with the core power supply for measuring the

current drawn by the DUA as shown in Figure 5.26. We carefully pick the value of the resistor

because it creates negative feedback that interferes with the secure FPGA operation. When the

current (i.e., I) flowing through the resistor increases, the corresponding voltage drop (i.e., ∆V)

also increases. Since the power supply is fixed at a certain value (i.e., 1V), the voltage at the
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secure FPGA fabric also decreases proportionally. Consequently, the current drawn by the fabric

will decrease. The bigger resistor is preferable since it causes bigger voltage variations that can

produce enough ∆V for the signal to be detected by the oscilloscope. However, a very large

∆V will prevent the correct operation of the secure FPGA. Hence, we use a 2Ω resistor in our

measurements. We convert the measured ∆V to the current by dividing by 2. In the following,

we discuss the DPA attack results for all operation modes.

2Ω

VDD_DUA

+

DUA

I
+
V

Figure 5.26: Measuring the DUA current with a small resistor (i.e., 2Ω). The measured voltage drop (i.e., ∆V) is
converted to the current by dividing by 2.

5.5.3 Attack Results

Figure 5.27 shows the measured power trace for Mode1, where the PUFs are fired on-the-fly and

the interconnect discharge is turned off. The power traces for the other operation modes can be

found in Appendix A. Note the current peaks (highlighted in blue) and the corresponding voltage

dips on the supply of the secure FPGA fabric. The DUA evaluation window is highlighted in

light green. Only 4 cycles in a 255-cycle period (i.e., all LFSR inputs) for the 20th power trace

measurement is shown for simplicity.

We mount the DPA attack using the first 200 sample points out of 800 points in every clock

cycle (i.e., 200 attacks). We repeat the attacks across all modes of operation (i.e., 800 attacks in

total). Figure 5.28a-5.28h shows the correlation plots vs. key guesses (in decimal) for the DPA

attack mounted in Mode1 on each individual bits (i.e., from Bit-0 to Bit-7). Key guesses with the
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Figure 5.27: Measured power trace for Mode1, where PUFs are fired on-the-fly and the interconnect discharge is
turned off. The current (highlighted in blue) that is drawn by the secure fabric is measured through a 2Ω resistor
in series with the supply power. 4 cycles in a 255-cycle period (i.e., all LFSR inputs) for the 20th power trace
measurement are shown. The DUA evaluation windows are highlighted in light green.

highest correlation are highlighted in red. The key value 174 used in the DUA is highlighted in

green. The correlation plots for the other operation modes can be found in Appendix A.
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Figure 5.28: DPA attack in Mode1, where the PUFs are fired on-the-fly and the interconnect discharge is turned off.
Correlation plots vs. key guesses (in decimal) for DPA attack on (a) bit-0, (b) bit-1, (c) bit-2, (d) bit-3, (e) bit-4, (f)
bit-5, (g) bit-6, (h) bit-7 are shown. Key guesses with the highest correlation are highlighted in red. The key value
174 (highlighted in green) is used in the benchmark circuit.
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In each of these DPA attacks, the extracted key values have very small correlations with the

measured power variations and are random with no single outstanding value that dominates the

other key guesses. For instance, the attack on bit-7 has the maximum correlation of 0.074 at the

key value 8. The maximum correlation values for all other bits are smaller and correspond to

different key values. Thus, each bit leads to a different key guess.

Table 5.2: Correlation analysis results for the DPA attacks on each bit, where PUFs are fired on-the-fly and WES=1.

Correct key = 174 Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
Max. correlation 0.0533 0.0619 0.0650 0.0628 0.0529 0.0609 0.0696 0.0717
Min. correlation 0.00032 0.00006 0.00024 0.00011 0.00007 0.00003 0.00010 0.00009
Avg. correlation 0.0168 0.0161 0.0159 0.0158 0.0160 0.0188 0.0161 0.0176
Extracted key 194 6 251 237 11 191 144 8

Correlation of correct key 0.0344 0.0107 0.0009 0.0056 0.0083 0.0225 0.0096 0.0346
Rank of correct key 23 156 244 188 169 88 165 27

Furthermore, the correlation values for the actual key (i.e., 174) are much smaller than the

highest correlation values. Compared to key guesses with the highest correlations, the actual key

has also much lower ranks (Table 5.2). Thus, none of the key guesses will be the actual key even

if the attacker uses the first couple of the highest correlation values.

The extracted key values for each bit value and across all operation modes, which correspond

to the attack on the sample point with the highest correlation value, are summarized in Table 5.3.

Each entry represents the extracted key for the particular DPA attack (i.e., different bit and mode

of operation). In every mode, the attack on each bit leads to a different key in the correlation

process and all of these keys are equally likely. Hence, the secure FPGA withstands the DPA

attack in each mode of operation.

Table 5.3: DPA attack results for each operating mode. Each entry represents the extracted key for the particular
DPA attack. The extracted key values are random with no single outstanding value that dominates the other keys.

Operation Mode Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-5 Bit-6 Bit-7
Default 110 3 2 121 41 4 101 95
Mode1 194 6 251 237 11 191 144 8
Mode2 12 196 2 181 215 170 221 94
Mode3 235 140 19 1 29 144 253 159
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5.6 Summary

In this chapter, we discussed the details of our prototype hardware-entangled secure FPGA

testchip. We used an AES S-Box security primitive to benchmark the characteristics of the FPGA

fabric. We evalulated performance, power and energy consumption, and the energy-efficiency of

the secure FPGA core in different operating modes. We mounted a DPA attack to assess the

power side-channel resistance of our secure FPGA fabric for all modes of operation. We pre-

sented the PUF measurements to assess the reliability of PUF instances across environmental

variations (i.e., voltage and temperature).

In summary, we demonstrated a functional hardware-entangled secure FPGA prototype testchip

and showed that the secure fabric has significant power SCA resistance without the interconnect

discharge due to well-balanced differential wires (i.e., regularity of FPGA). Hence, the discharge

operation could be avoided to save energy. We also demonstrated a very compact HCI-SA PUF

design that achieved a very high reliability (i.e., bit-error rate < 2.98*10−11) without any ECC,

which is on par with the theoretical BER targeted by the ECC in the commercial PUFs and close

to the reported BER of SRAMs at this technology node. HCI-SA PUFs can be programmed one-

time due to HCI saturation. The programmability can be improved by HCI reversal techniques

to cancel out VTH increase from the previous programming cycles.
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Conclusion

The current trend in FPGA security is to address the security concerns at different levels of

abstraction including software/algorithm, RTL, and hardware. For design protection, FPGA

manufacturers implement various countermeasures within the standard FPGA design flow at

both software/algorithm and hardware levels (i.e., bitstream encryption). However, these secu-

rity measures are vulnerable to a variety of attacks. The fundamental problem is that at some

level of the hardware, the design configuration data is stored in the clear. Alternatively, secure

operation is mainly addressed at the RTL level with layered countermeasures on an unsecured

conventional-off-the-shelf (COTS) FPGA. FPGA designers are restricted by flow and integration

problems that limit the available countermeasures for secure FPGA operation. Additionally, the

countermeasures at their disposal have significant overheads in area, performance, and energy.

In this work, we took a different approach. Instead of mitigating the vulnerabilities of COTS

FPGA (i.e., to secure the FPGA), we proposed a secure FPGA design, wherein the hardware

security features are implemented within the FPGA itself. In order words, we altered the FPGA

fabric itself have built-in security features. We protect the bitstream by hardware-entangling

the configuration deep within the hardware with a secret die-specific response. Consequently,

the configuration data is stored encrypted at each level of hardware including the configuration

storage on the FPGA die (i.e., the lowest level of hardware). The configuration data is decrypted

on-the-fly for a very brief moment of time (i.e., a few hundred ps) during the FPGA operation,
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then stored in an encrypted form until the next time it is used. Hardware-entanglement technique

relies on a random secret response in order to encrypt the configuration bitstream. In the current

implementation, we used physical unclonable functions (PUF) to generate this random secret

response. We essentially used PUFs to generate a very wide encryption key that is distributed

across the FPGA die. Hence, the hardware-entanglement technique is valid regardless of the

key generation method. Furthermore, we addressed the most common SCA vulnerability (i.e.,

power-SCA) through use of a novel power-SCA resistant logic embedded within the fabric. Thus,

the proposed FPGA was found to be inherently secure by-design.

Silicon results from our prototype secure FPGA prove the feasibility of the secure FPGA.

We showed the viability of the hardware-entanglement scheme and demonstrated significant im-

provements over the original HCI-SA PUF design in terms of both reliability and compactness.

In addition, we explored the programmability feature of HCI-SA PUF design. As a result, our

prototype is the first-ever-reported FPGA that is designed specifically for secure operation. De-

spite the engineering effort, we show that there are significant security benefits with secure FPGA

and the corresponding overheads are much lower compared to existing countermeasures. Thus,

secure FPGA is a very promising alternative to layering countermeasures on top of insecure

COTS FPGAs.

Future Work

The ideas presented in this thesis are open to further exploration, improvement, and new direc-

tions. The reliability is the one the main challenges for PUF designs. We emprically demon-

strated a very low bit error rate with HCI response reinforcement in a planar 65nm CMOS pro-

cess. However, the viability of HCI response reinforcement is yet to be tested in more advanced

technology nodes (i.e., sub-28nm) and for different device structures (i.e., FinFET).

Although HCI-PUFs can be initially programmed, their re-programmability is restricted due

to HCI saturation. Instead of applying HCI-stress in a preferred direction to write into HCI-SA

PUFs, techniques like charge de-trapping [123] can be explored to reverse the effect of HCI from
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the previous programming cycles. Consequently, the programmability of HCI-SA PUFs can be

improved.

Instead of using PUFs to generate random secret response for hardware-entanglement, we can

store responses in a non-volatile memory (NVM). The emerging embedded NVM technologies

with high density, low energy, and high endurance can yield to more efficient hardware-entangled

implementations.

Security comes at a price. In the case of secure FPGAs, the price is relatively low compared

to the existing countermeasures. While some users are willing to pay the price for security-

critical applications, others have different design goals. For instance, some mobile applications

may prioritize area and energy efficiency over the security. In order to decrease the overheads

and make secure FPGAs more attractive for further applications, the concept of heterogeneous

secure FPGAs can be explored. The secure fabric can be implemented in a dedicated region on

FPGA die and this secure section can be allocated for security-critical applications. All other

applications will be mapped to the conventional unsecured fabric. Alternatively, 2.5D or 3D

integration technologies can be used to integrate a dedicated secure FPGA die with larger con-

ventional unsecured FPGA dies.
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Figure A.1: Measured power trace for Mode3, where PUFs are fired on-the-fly and the interconnect discharges.
The current (highlighted in blue) that is drawn by the secure fabric is measured through a 2 Ω resistor in series with
the supply power. 4 cycles in a 255-cycle period (i.e., all LFSR inputs) for the 20th power trace measurement are
shown.
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Figure A.2: Measured power trace for the default mode, where PUFs are fired one-time and the interconnect
discharge is turned off. The current (highlighted in blue) that is drawn by the secure fabric is measured through a
2 Ω resistor in series with the supply power. 4 cycles in a 255-cycle period (i.e., all LFSR inputs) for the 20th power
trace measurement are shown.
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Figure A.3: Measured power trace for Mode2, where PUFs are fired one-time and the interconnect discharges. The
current (highlighted in blue) that is drawn by the secure fabric is measured through a 2 Ω resistor in series with
the supply power. 4 cycles in a 255-cycle period (i.e., all LFSR inputs) for the 20th power trace measurement are
shown.
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Figure A.4: DPA attack in Mode3, where the PUFs are fired on-the-fly and the interconnect discharges. Correlation
plots vs. key guesses (in decimal) for DPA attack on (a) bit-0, (b) bit-1, (c) bit-2, (d) bit-3, (e) bit-4, (f) bit-5,
(g) bit-6, (h) bit-7 are shown. Key guesses with the highest correlation are highlighted in red. The key value 174
(highlighted in green) is used in the benchmark circuit.
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Figure A.5: DPA attack in Mode2, where the PUFs are fired one-time and the interconnect discharges. Correlation
plots vs. key guesses (in decimal) for DPA attack on (a) bit-0, (b) bit-1, (c) bit-2, (d) bit-3, (e) bit-4, (f) bit-5,
(g) bit-6, (h) bit-7 are shown. Key guesses with the highest correlation are highlighted in red. The key value 174
(highlighted in green) is used in the benchmark circuit.
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Figure A.6: DPA attack in the default mode, where the PUFs are fired one-time and the interconnect discharge is
turned off. Correlation plots vs. key guesses (in decimal) for DPA attack on (a) bit-0, (b) bit-1, (c) bit-2, (d) bit-3,
(e) bit-4, (f) bit-5, (g) bit-6, (h) bit-7 are shown. Key guesses with the highest correlation are highlighted in red. The
key value 174 (highlighted in green) is used in the benchmark circuit.
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