
Advances in Nonlinear Model Predictive Control for

Large-Scale Chemical Process Systems

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

the degree of

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

DEVIN WADE GRIFFITH

B.S., CHEMICAL ENGINEERING, UNIVERSITY OF OKLAHOMA

CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA

August, 2018



Copyright c© 2018, Devin Wade Griffith

All rights reserved



Acknowledgments

First of all, I would like to thank my advisor Larry Biegler for everything that he has done
for me. Larry is most well known for his contributions to our field, but his biggest impact
on the world has surely been made through his skill as an advisor. Thank you, Larry, for
giving me both so much guidance and so much freedom.

Next, I would like to thank my committee members, Professors Erik Ydstie, Nick Sahini-
dis, Marija Illic, and Aaron Johnson, as well as my collaborators over the years Xue Yang,
Mingzhao Yu, Victor Zavala of the University of Wisconsin, Sachin Patwardhan, and Sachin’s
group at IIT Bombay. It has been a privilege to learn from and work with such great people.

I would also like to say thank you to my many other great teachers over the years. To
Linda Smith for being kind to me and giving me a reason to enjoy math, to Brenda Hebert
for first teaching me how to do proofs, and to my OSSM professors, Donald Murphy and
Michelle Miller, for bringing opportunities to a small town. Also many thanks to Robert
Shambaugh for giving me my first research experience, Lance Lobban for inspiring me to
pursue process control and suggesting that I go to CMU, Miguel Bagajewicz for introduc-
ing me to the PSE field, and the rest of my great professors and peers from the University
of Oklahoma for giving me a strong foundation.

I would like to gratefully acknowledge support from the National Science Foundation
Graduate Research Fellowship Program Grant No. DGE1252522 and DGE1745016, the
Pittsburgh Chapter of the ARCS Foundation, ExxonMobil, the Bertucci family, and the
Choctaw Nation of Oklahoma. My success would not be possible if not for those that
generously invest in the future of research and graduate students.

I also owe a great debt of gratitude to those who have made the last few years much
more enjoyable than they otherwise would have been. To Nikos Lappas, Anirudh Sub-
ramanyam, John Eason, Wei Wan, Zach Wilson, the rest of Larry’s group, and the PSE
community at CMU, I am very fortunate to have been able to spend this time here with all
of you.

Finally, I would like to dedicate this work to my family. To my grandparents Cloyis and
Mary Clay, Charles and Velma Jean Griffith, and Ginger Morgan, thank you for all the love
and support you have given me. To my stepmother Joni Griffith and her family for adding
so much to mine. To my mother Lisa Clay for always encouraging my success, and to my
father Kevin Griffith for instilling in me all of my best qualities. Thank you all, and I hope
I will make you proud.

Devin Wade Griffith
Pittsburgh, PA

August, 2018

ACKNOWLEDGMENTS

i



Abstract

Model predictive control is an optimization based form of control that is commonly used in
the chemical industry due to its natural handling of multiple-input-multiple-output sys-
tems and inequality constraints. Nonlinear model predictive control takes advantage of
fully nonlinear process models in order to provide higher accuracy across a wider range
of states. However, linear MPC is still much more common in the chemical industry than
nonlinear MPC due to various additional complications in the implementation. This thesis
seeks to ease the implementation and increase performance of NMPC for large-scale sys-
tems via fundamental developments that leverage both control and optimization theory.

First, we address the issues of NMPC applied with plant-model mismatch. Robust
NMPC methods tend to be computationally expensive or lead to conservatism in perfor-
mance. Therefore, we propose a framework by which NMPC may be given a straight-
forward robust reformulation in order to ensure nonlinear programming properties that
connect to the continuity properties of the Lyapunov function used to show robustness.
These reformulations are shown to be easily extended to the more specialized NMPC for-
mulations shown later in the thesis. Also, we show a method by which robustness bounds
may be calculated for processes under control by NMPC.

Next, we consider the computation of terminal conditions (regions and costs). Termi-
nal conditions are a critical aspect of NMPC formulations that is closely intertwined with
stability of the controller and feasibility of the optimization problem. We formulate ter-
minal conditions via the quasi-infinite horizon methodology, and propose an extension for
bounding nonlinear system effects that allows application to large-scale nonlinear systems.
We demonstrate these calculations on examples of varying scales from the literature.

Also, we consider the application of economic NMPC (eNMPC) to large-scale systems.
We propose an eNMPC scheme which enforces stability though a stabilizing constraint,
a method which we deem eNMPC-sc. We show that eNMPC-sc is input-to-state prac-
tically stable (ISpS) with a robust reformulation, and we demonstrate on computational
examples, including a large-scale distillation system, that eNMPC-ec can provide better
economic performance without burdensome offline calculations to ensure stability.

Finally, we consider the selection of the predictive horizon length. In particular, we con-
sider a method for updating horizon lengths online that we call adaptive horizon NMPC
(AH-NMPC). We show an algorithm utilizing NLP sensitivity calculations from sIPOPT
that provides sufficient horizon lengths in real time, and we leverage the terminal con-
ditions from the quasi-infinite horizon approach in order to show both nominal and ro-
bust stability (ISpS) in the case of horizons changing from timepoint to timepoint. We
then demonstrate this controller on benchmark examples from the literature, including
the large-scale distillation system analyzed earlier, and note significant decreases in the
average solve time of the NLP solved online.
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Chapter 1

Introduction

Chemical manufacturing processes are a critical aspect of the modern economy, and have

been for at least as long as recorded history, given our propensity for fermentation and

distillation. This criticality is only amplified by our current reliance on fossil fuels and

petroleum products. Although the most basic of chemical processes, such as home-brewing

or cooking, may be operated by hand, today’s economically-vital chemical manufacturing

processes are comprised of large-scale and vastly complex systems of interacting elements

that are controlled, and even optimized, by advanced computer algorithms. Given the

apparent importance of the operation of these processes, this thesis seeks to further in-

vestigate the intricacies and possibilities of computer control algorithms in the chemical

industry.

In this chapter, we discuss the background of process control in the chemical industry.

First we give the context of the hierarchical control structure, and then we specifically focus

on the role of advanced process control. Furthermore, observations are made on the recent

advances and trends in research. Finally, we state the motivation and problem statement

for this work, and give an outline of the content contained herein.

1.1 Hierarchical Process Operations

Given the vastly disparate time-scales of the various decisions made in regards to chemical

manufacturing processes, these decisions are typically separated into a hierarchy of layers,
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1.1 HIERARCHICAL PROCESS OPERATIONS

Figure 1.1: Hierarchy of process operations [1]

as shown in Figure 1.1. Although it seems obvious that a simultaneous consideration of

all layers would lead to the best enterprise operation, this is generally infeasible due to the

computational complexity and modeling difficulties of such a problem. Thus, the layers

are treated separately, with decisions being passed from the top down, from slower time

scales to faster time scales. The planning layer is concerned with the long-term production

goals of the enterprise, and operates on the scale of weeks to months. This layer decides

what products to make and what feedstocks to buy based on economic forecasts of the mar-

ket, with the actual operation of the plant modeled coarsely or not at all. The uncertainty

in the planning layer is mostly comprised of price, supply, and demand. The scheduling

layer is then concerned with determining an order of tasks that accomplishes the overall

production goals, and typically operates on the timescale of days to weeks, using very sim-

plified models of the plant. This layer decides what products to make when, in what order,

and on what equipment, with the primary goal of fulfilling demand in a given time frame.

The uncertainty in the scheduling layer is largely comprised of equipment breakdoqn and

production time. Both the planning and scheduling layers may be operated heuristically,
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1.1 HIERARCHICAL PROCESS OPERATIONS

or by a rigorous optimization problem formulated as a mixed integer program (MIP) that

often accounts for uncertainty explicitly [4].

In the real-time optimization (RTO) [5] layer, an economically optimal steady-steady is

calculated from a detailed process model. For a given product specification, and current

operating plant parameters, RTO determines the most desirable operating conditions for

the plant, and operates on the time scale of hours. The uncertainty here is mostly in the

process parameters which may range from reaction rate constants, to fouling factors, to

real-time energy prices. Thanks to advances in computation power, the RTO problem may

be formulated and solved as a nonlinear program (NLP).

In the advanced control layer, which operates on the time scale of minutes, dynamic

control trajectories are determined that steer the process to the steady-state determined by

the RTO. Until the 1970s, the industrial standard for this layer was proportional-integral-

derivative control (PID), however applying PID to such multi-dimensional systems with

operating constraints is troublesome. Today, this layer typically takes the form of model

predictive control (MPC) [6] which optimizes a linearized dynamic model in order to de-

termine control actions. This optimization usually takes the form of a linearly constrained

quadratic program (QP). The model is typically obtained from data-driven input-output

response methods, such as in the historically significant dynamic matrix control (DMC)

software [7]. However, this linear data-driven model may not be consistent with the RTO

model, and furthermore may be inaccurate over wider ranges of operating conditions.

Thus the motivation for nonlinear model predictive control (NMPC), which takes advan-

tage of a nonlinear, dynamic, first-principles process model to provide greater accuracy.

This comes with many implementation issues, which will be the focus of this thesis and ex-

pounded upon throughout. The uncertainties in this layer come from unknown dynamic

model parameters as well as noise.
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1.2 ADVANCED PROCESS CONTROL

Finally, we have the regulatory control layer, which operates on the time scale of sec-

onds. The regulatory control is purposed to ensure that the control trajectories determined

by the advanced control layer are actually realized by the valves. Since the dynamics here

are typically concerned with the fast interactions between a given valve and flow rate, for

example, PID is still the standard here. The uncertainties in this layer are mostly in valve

dynamics.

1.2 Advanced Process Control

Here we further consider the advanced control layer, as well as the other pieces that it

directly interacts with, which can be seen in Figure 1.2. The RTO calculates an econom-

ically optimal steady-state based on raw material specifications, product specifications,

energy prices, etc., that is then sent to the control layer. The control layer then sends con-

trol actions to the plant based on the optimization of a dynamic process model. For the

remainder of this work, we assume that control actions are implemented accurately and

further discussion of the regulatory control layer is omitted. The process, which also re-

ceives disturbances that may come in any form of plant-model mismatch, then outputs

measurements to parameter and state estimation. Estimators are then used to provide a

state estimate as an initial condition for the dynamic process model, as well as parameter

estimates to update both the steady-state and dynamic models.

For the purposes of this work, we assume that the estimation tasks are completed accu-

rately, although we later investigate their effects on the dynamics via influencing changes

in the steady-state. Common nonlinear estimators include the Extended Kalman Filter

(EKF) and the Unscented Kalman Filter (UKF) [8, 9]. More recent applications include

moving horizon estimation (MHE), which is the estimation analogue of NMPC and is the
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Figure 1.2: Advanced control structure

subject of recent research that allows for fast implementations [10] as well as handling of

gross errors [11].

Although the focus of this work will be on the control layer, we would be remiss to ig-

nore interactions with the RTO layer. In recent studies there has been a push to combine

the RTO and control layers into one dynamic real-time optimization (DRTO) [12] or eco-

nomic nonlinear model predictive control (eNMPC) [13] layer. The benefits of this are in

the elimination of inconsistencies between the two layers, as well as running an economic

optimization at a faster time scale in order to better respond to disturbances. However,

setpoint stabilization is still an important characteristic to industrial practitioners, so it

seems unlikely that steady-state calculations will be removed completely in the near fu-

ture. Also, there has been considerable work to integrate other layers of the hierarchy,

such as planning and scheduling [14], scheduling and RTO [15], as well as scheduling and

control [16, 17]. However, we do not address interactions with planning or scheduling

here.

As mentioned previously, a broad spectrum of controllers of varying performance qual-
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ities and computational difficulties have been implemented in the chemical industry over

the last several decades, from PID, to LQG [18], to more advanced forms of optimization-

based control. Model predictive control (MPC) has seen a variety of applications in chem-

ical processes, and its advantages include a natural way of handling inequality constraints

and multiple-input-multiple-output systems due to the optimization formulation of the

problem. A survey of industrial uses of MPC is given in [19], and a thorough treatment of

MPC is given in [20]. The most common forms of MPC currently would be DMC-plus, as

well as its various peers, which use linear data-driven models. These softwares are attrac-

tive to the practitioner because they include constructive methods for obtaining a process

model to use for control, and dynamic optimization problems with linear constraints are

generally easier to formulate and solve. Because of this, such applications still greatly out-

number NMPC applications in the industry. However, due to the highly nonlinear nature

of thermodynamics and reaction kinetics in chemical processes, NMPC has the potential

to provide great benefits in certain applications, such as polymer grade transitions, and

NMPC softwares based on nonlinear first-principles models such as NOVA-NLC [21] and

PFC [22] have had significant success. An introduction to NMPC is given in [23], and an

overview of industrial NMPC applciations is given in [24]. Furthermore, if a sensible ini-

tialization strategy is used, an exact solution to the nonlinear programming (NLP) problem

is not required, as shown in [25]. Recent work in advanced-step NMPC allows for control

regardless of model solution time, as developed in [26] and [27], although these technolo-

gies require an online implementation of NLP sensitivity calculations. The applicability

of NMPC is sure to grow as control and optimization strategies improve, but there is cur-

rently a large gap between academic research and industrial applications. There are many

interesting theoretical developments in the literature whose application to or relevance for

systems beyond toy problems is not apparent. Therefore, the future of advanced process
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control largely depends on the researcher with the motivation of an engineer.

1.3 Research Problem Statement

The main motivation for this thesis is that, due to the complexity of its implementation,

NMPC is still relatively uncommon in industrial applications compared to linear MPC,

despite the significant benefits that it can provide for highly nonlinear chemical processes.

This is true even if a first-principles dynamic process model and enough computational

power to optimize it are both available; even in this case, the formulation of an optimiza-

tion problem that gives desirable control performance is not straightforward for nonlinear

systems. We seek to investigate all pieces of the NMPC formulation in order to develop

advanced methods that lead to more practical implementations for large-scale systems.

Importantly, we see this task through both the lenses of control and optimization theory,

and we always keep in mind that the optimization problem we write must provide prac-

tical control benefits, be reasonably straightforward to formulate for systems with many

states, and be solved online. To that end, we propose extensions to traditional MPC the-

ory as well as recent literature advances that are practical from the engineering point of

view, and we then give them a deep analysis from the academic perspective. Finally, any

advances we propose should be demonstrable on a system with many (hundreds) of states.

1.4 Thesis Outline

Thesis thesis is organized by chapters that each focus on different aspects of the NMPC

problem as shown in Figure 1.3, and is further organized as follows:

Chapter 2 establishes the basic notation and definitions, stability theory, results and op-

timization properties that we utilize throughout this work. Also, the fundamental formu-
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Figure 1.3: Thesis topics

lations of NMPC are introduced.

Chapter 3 deals with the robustness issues that arise with state-dependent inequality

constraints, which can be important for safety, performance, or stability. We handle these

constraints via a robust reformulation of the NLP that can be shown to have properties that

ensure continuity with respect to parametric perturbations and thus continuity of the Lya-

punov function. We use this to show that NMPC with a robust reformulation satisfies the

input-to-state stability property (ISS), which includes a robustly positive invariant region

around the setpoint that scales with the magnitude of plant-model mismatch. Moreover,

we show throughout this thesis that this approach may be easily extended to more special-

ized NMPC formulations. Finally, we show a method by which robustness bounds of ISS

may be calculated.

Chapter 4 addresses the calculation of terminal conditions for NMPC. Terminal condi-

tions (regions and costs) are vital components of an NMPC formulation that are used to

show stability and recursive feasibility. However, the calculation of terminal conditions

for nonlinear systems is not straightforward. We address this through the quasi-infinite

horizon framework, by which terminal conditions are chosen to approximate the infinite
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horizon problem in a region close to setpoint, so that the NMPC problem sis comprised of

a rigorous finite horizon and an approximated infinite horizon. We extend this framework

to be more easily applied to large-scale systems through a new method of bounding non-

linear system effects. Furthermore, we show how these calculations may be applied even

in the case of steady-states that change online. We demonstrate the calculation of these ter-

minal conditions and the effect of tuning parameters on benchmark examples, including a

large-scale distillation system.

Chapter 5 address economic NMPC (eNMPC). This is a popular topic in the literature,

especially in regards to integrating NMPC with higher levels in the control hierarchy. In

eNMPC, the tracking objective is replaced with an economic objective, so that the economic

performance of the system is being optimized online. However, the stability properties of

NMPC are typically shown by leveraging properties of the tracking (usually quadratic)

objective function. It has been shown that eNMPC may be stabilized by adding suffi-

ciently large tracking terms to regularization the economic objective, however calculating

these terms is cumbersome and may lead to conservative performance. Thus, we propose

to include a stabilizing constraint to the optimization problem in place of regularization

weights, an approach that we deem eNMPC-sc. We show that eNMPC-sc with a robust

reformulation is input-to-state practically stable (ISpS) with a stability constant that de-

pends on the bounds on control actions. Furthmore, we show that eNMPC-sc may take

advantage of the terminal condition calculations of the previous section in order to elim-

inate the need for endpoint constraints. We demonstrate the effectiveness of eNMPC-sc

on examples from literature, and show significant increases in economic performance over

regularized eNMPC without needing cumbersome offline calculations.

Chapter 6 concerns the selection of predictive horizon lengths for NMPC. Horizon lengths

directly effect both the robustness and computational cost of NMPC. Furthermore, we note
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that there is a significant trade-off in this choice, as a longer horizon is more likely to satisfy

reachability assumptions in the face of uncertainty, but leads to larger optimization prob-

lems and therefore longer control delay, and vice versa. This motivates the development

of a method for adapting horizon lengths online that we deem adaptive horizon NMPC

(AH-NMPC). We propose a method utilizing sensitivity calculations from sIPOPT to find

sufficient horizon lengths online. Leveraging the quasi-infinite horizon properties estab-

lished earlier, we then show that AH-NMPC is asymptotically stable in the nominal case,

as well as ISpS in the robust case with a stability constant that depends on the level of

uncertainty in the terminal region. We then demonstrate AH-NMPC on literature exam-

ples, including the distillation system introduced earlier, and show significant decreases

in average computational time with adaptive horizons.

Chapter 7 provides the concluding remarks for this thesis and enumerates the main

contributions contained herein. Also, recommendations are made for future work, both

from the perspective of direct extensions to this thesis, as well as more general directions

of the field.
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Chapter 2

Nonlinear Model Predictive Control

2.1 Introduction

This section presents the basic notation, definitions, and standard results that will be re-

ferred to for the remainder of this thesis. This includes the state-space representations

of the plant and the model used for the controller, Lyapunov stability theory, nonlinear

programming properties, and the general tracking formulation of NMPC.

2.2 Notation and Definitions

We note that chemical processes are typically modeled as a system of dynamic and alge-

braic equations (DAEs). Many methods are available for the solution of DAEs [28], and in

particular collocation methods have been shown to be very effective for the simultaneous

optimization of DAEs [29, 30]. Thus, for the purposes of this work, we directly consider

the discrete time system:

xk+1 = fp(xk, uk, wk) (2.1)

with the model:

xk+1 = f(xk, uk) := fp(xk, uk, 0) (2.2)
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where xk ∈ X ⊂ Rnx is a vector of states that fully defines the model at time k, uk ∈ U ⊆

Rnu is the vector of control actions implemented at time k, and wk ∈W ⊂ Rnw is the vector

of disturbances that are realized at time k. Note that X is not a state constraint set to be

added to the optimization problem, but rather the set on which the system is defined and

ultimately the region of attraction of the controller. We use | · | as the Euclidean vector

norm and ‖ · ‖ as the corresponding induced matrix norm. R is the set of real numbers,

Z is the set of integers, and the subscript + indicates their nonnegative counterparts. We

define the truncated disturbance sequence at time k ∈ Z+ as wk = [w0, . . . , wk−1, 0, . . . ],

and the full disturbance sequence w = [w0, w1, w2, . . . ]. We also define the setW := {w :

wk ∈ W for all k = 0, 1, 2, . . . }. We note that the state at time k, xk, is an implicit function

of x0 and wk for a given control scheme, but these arguments are not shown for simplicity.

We also make the following basic assumptions on the model and the plant.

Assumption 1. (Plant properties) (A) fp(x, u, w) : Rnx × Rnu × Rnw → Rnx is uniformly con-

tinuous with respect to w (B) The set X ⊂ Rnx is control robustly positive invariant for fp(·, ·, ·).

That is, there exists u ∈ U such that fp(x, u, w) ∈ X holds for all x ∈ X , w ∈ W. (C) The set X

is closed and bounded, and contains the origin in its interior (D) The set U is closed and bounded,

and contains the origin in its interior. (E) The set W is bounded and ||w|| := supk∈Z+
|wk|.

Assumption 2. (Model properties) (A) f : Rnx × Rnu → Rnx is twice differentiable in x and u

with Lipschitz continuous second derivatives (B) The set X ⊂ Rnx is control positive invariant for

f(·, ·) That is, there exists u ∈ U such that f(x, u) ∈ X holds for all x ∈ X . (C) The setpoint

(xs, us) = (0, 0) satisfies 0 = f(0, 0).
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2.3 Lyapunov Stability Theory

This section presents the basics of Lyapunov stability theory, named for Russian mathe-

matician Aleksandr Lyapunov [31], that will be used to analyze differing NMPC formula-

tions for the remainder of this thesis. Note that a detailed handling of nonlinear systems

and stability theory is given in [32] and [33].

2.3.1 Nominal Stability

Definition 3. (Comparison Functions) A function α : R+ → R+ is of class K if it is continuous,

strictly increasing, and α(0) = 0. A function α : R+ → R+ is of class K∞ if it is a K function and

lims→∞ α(s) =∞. A function β : R+ × Z+ → R+ is of class KL if, for each t ≥ 0, β(·, t) is a K

function, and, for each s ≥ 0, β(s, ·) is nonincreasing and limt→∞ β(s, t) = 0.

Definition 4. (Attractivity). The system (2.2) is attractive on X if limk→∞ xk = 0 for all x0 ∈ X .

Definition 5. (Stable Equilibrium Point) The point x = 0 is called a stable equilibrium point of

(2.2) if, for all k0 ∈ Z+ and ε1 > 0, there exists ε2 > 0 such that |xk0 | < ε2 ⇒ |xk| < ε1 for all

k ≥ k0.

Definition 6. (Asymptotic Stability) The system (2.2) is asymptotically stable onX if limk→∞ xk =

0 for all x0 ∈ X and x = 0 is a stable equilibrium point.

Definition 7. (Lyapunov Function) A function V : X → R+ that satisfies the following:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.3a)

V (xk+1)− V (xk) ≤ −α3(|xk|) (2.3b)

where α1, α2, α3 ∈ K∞ is said to be a Lyapunov Function for (2.2).

Theorem 8. Under Assumption 2, if system (2.2) admits a Lyapunov function for someα1, α2, α3 ∈

K∞, then (2.2) is asymptotically stable on X .
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See Appendix B of [20] for the proof of the preceding.

2.3.2 Robust Stability

The idea of input-to-state stability (ISS) is used to extend stability analysis to systems with

uncertainty. The property was originally described for continuous time (CT) systems in

[34] and was extended to discrete time (DT) systems in [35]. Furthermore, ISS has been

proposed as a framework for NMPC [36], and it provides a very convenient and natural

way of thinking about robust stability.

Definition 9. (ISS). The system (2.2) is input-to-state stable (ISS) on X if |xk| ≤ β(|x0|, k) +

γ(||w||) holds for all x0 ∈ X and k ≥ 0, where β ∈ KL and γ ∈ K.

Definition 10. (ISS Lyapunov function) A function V : X → R+ that satisfies the following:

α1(|xk|) ≤ V (xk) ≤ α2(|xk|) (2.4a)

V (xk+1)− V (xk) ≤ −α3(|xk|) + σ(|wk|) (2.4b)

∀ x0 ∈ X , wk ∈W, k ∈ Z+

where α1, α2, α3 ∈ K∞, σ ∈ K, is said to be an ISS Lyapunov Function for (2.1).

Theorem 11. Under Assumption 1, if system (2.1) admits an ISS Lyapunov function for some

α1, α2, α3 ∈ K∞, σ ∈ K, then (2.1) is ISS on X .

We note that, in the nominal case (with no disturbances), ISS reduces to asymptotic

stability. The following is a useful variant of ISS.

Definition 12. (ISpS): Under Assumption 1, the system (2.1) is input-to-state practically stable

(ISpS) on X if |xk| ≤ β(|x0|, k) + γ(||w||) + c holds for all x0 ∈ X and k ≥ 0, where β ∈ KL,

γ ∈ K, and c ∈ R+.
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We note that Definition 12 is only useful given a reasonable bound on c. In the case that

c = 0, Definition 12 simplifies to Input-to-State Stability (ISS).

Definition 13. (ISpS Lyapunov function) A function V : X → R+ that satisfies the following:

α1(|xk|) ≤ V (xk) ≤ α2(|xk|) + c1 (2.5a)

V (xk+1)− V (xk) ≤ −α3(|xk|) + σ(|wk|) + c2 (2.5b)

∀ x0 ∈ X , wk ∈W, k ∈ Z+

where α1, α2, α3 ∈ K∞, σ ∈ K, and c1, c2 ∈ R+, is said to be an ISpS Lyapunov Function for

(2.1).

Theorem 14. Under Assumption 1, if system (2.1) admits an ISpS Lyapunov function for some

α1, α2, α3 ∈ K∞, σ ∈ K, and c1, c2 ∈ R+, then (2.1) is ISpS on X .

The reader is referred to [36] for more details on these definitions.

2.4 Nonlinear Programming Properties

In this section, we define NLP properties for the generic problem:

min
y

Φ(y, p) (2.6a)

s.t. c(y, p) = 0 (2.6b)

h(y, p) ≤ 0, (2.6c)

where p is a parameter.

Definition 15. The Lagrange function of (2.6) is:

L(y, ν, η, p) = Φ(y, p) + νT c(y, p) + ηTh(y, p) (2.7)
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where ν and η are multipliers of appropriate dimension. A point y∗ is called a KKT-point if there

exist multipliers ν and η which satisfy

∇yL(y∗, ν, η, p) = 0 (2.8a)

c(y∗, p) = 0 (2.8b)

h(y∗, p) ≤ 0 (2.8c)

ηTh(y∗, p) = 0 (2.8d)

η ≥ 0 (2.8e)

The set of all multipliers ν and η which satisfy the KKT conditions (2.8) for a parameter p is

M(p). The active constraint set is J = {j|hj(y∗, p) = 0}.

Definition 16. (LICQ, [37]) The linear independence constraint qualification (LICQ) holds at y∗

when the gradient vectors

∇c(y∗, p);∇hj(y∗, p) ∀ j ∈ J (2.9)

are linearly independent. LICQ also implies that the multipliers ν, η are unique.

Definition 17. (SSOSC, [38]) The strong second order sufficient condition (SSOSC) holds at y∗

with multipliers ν and η if

qT∇yyL(y∗, ν, η, p)q > 0 for all q 6= 0 (2.10)

such that

∇ci(y∗, p)T q = 0, i = 1, .., nc

∇hj(y∗, p)T q = 0, for ηj > 0, j ∈ J.
(2.11)

Definition 18. (SC, [38]) At y∗ of (2.6) with multipliers (ν, η), the strict complementarity condi-

tion (SC) holds if ηj − hj(y∗, p) > 0 for each j ∈ J .
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Definition 19. (MFCQ,[37]) For problem (2.6), the Mangasarian-Fromovitz Constraint Qualifi-

cation (MFCQ) holds at the optimal point y∗ if and only if:

• The rows of∇c(y∗, p) are linearly independent.

• There exists a vector q such that

∇yc(y
∗, p)Tq = 0 (2.12a)

∇yhj(y
∗, p)Tq < 0 ∀ j ∈ J (2.12b)

As shown in [39], the MFCQ implies that the set of Lagrange multipliersM(p) remains

bounded in a polyhedron.

Definition 20. (CRCQ, [40]) For Problem (2.6), the constant rank constraint qualification (CRCQ)

holds at (y∗, p0), when for any subset J̄ ⊂ J , the gradients:

∇hj(x, p) j ∈ J̄ , ∇c(x, p) (2.13)

retain constant rank near the point (y∗, p0).

Definition 21. (GSSOSC, [41]) The General Strong Second Order Sufficient Condition (GSSOSC)

holds at a KKT point y∗ if

qT∇yyL(y∗, ν, η, p)q > 0 ∀ q 6= 0 (2.14)

such that

∇yc(y
∗, p)Tq = 0,∇yhj(y

∗, p)Tq = 0 (2.15)

for all j ∈ {j | j ∈ J, ηj > 0}

holds for all ν, η ∈M(p).
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2.5 Nonlinear Model Predictive Control Formulations

This section presents the most basic and standard NMPC formulations. First, consider the

infinite horizon NMPC formulation [42]:

min
vi

∞∑
i=0

L(zi, vi) (2.16a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . .∞ (2.16b)

z0 = xk (2.16c)

vi ∈ U ∀ i = 0 . . .∞ (2.16d)

With a controllability assumption, i.e. existence of some solution to (2.16) that limits to

the origin, then (2.16) automatically ensures asymptotic stability when wk = 0 ∀k ∈ I+.

This is because recursive feasibility holds for (2.16) due to the principle of optimality, since

the solution at time k+1 is the same as the solution to the problem at time k, excluding the

first time point. However, this formulation is obviously not practical for real applications,

since (2.16) cannot be solved for nonlinear systems in general. Therefore, consider a finite

horizon formulation:

min
vi

N∑
i=0

L(zi, vi) (2.17a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (2.17b)

z0 = xk (2.17c)

vi ∈ U ∀ i = 0 . . . N − 1 (2.17d)

(2.17e)

CHAPTER 2. NONLINEAR MODEL PREDICTIVE CONTROL

18



2.5 NONLINEAR MODEL PREDICTIVE CONTROL FORMULATIONS

Although this formulation is immediately more attractive due to computational tractabil-

ity, it comes with the additional assumption that the horizon N is ”long enough”. This can

be analyzed, e.g., via the so-called ”turnpike property” [43], however this is difficult to

quantify for general nonlinear systems. Instead, consider the traditional terminal cost /

terminal region NMPC formulation [44]:

P(x) : VN (x) = min
vi

N−1∑
i=0

L(zi, vi) + ψ(zN ) (2.18a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (2.18b)

z0 = xk (2.18c)

vi ∈ U ∀ i = 0 . . . N − 1 (2.18d)

zN ∈ Xf (2.18e)

where z ∈ Rnx and v ∈ Rnu are the predicted states and controls, respectively. The

mapping L : X×U→ R+ is the tracking stage cost penalizing deviations from the setpoint,

and ψ : Xf → R+ is the terminal cost. At each time k, the NLP is solved for xk, and the

first control is implemented to the system, that is uk := v0|k . The principle idea of this

formulation is that the terminal cost ψ and terminal region X should somehow account for

what happens after the finite horizon N .

Note that it is also possible to formulate NMPC without a terminal region and only a

terminal cost [25, 45], however the construction of such a problem is not straightforward.

Furthermore, it is also possible to formulate NMPC with only a terminal region and no

terminal cost, however this assumes that a different stabilizing controller is implemented

once a region close to the setpoint is entered. This is known as dual-mode control [46, 47].

The following assumption imposes a basic requirement on the nature of the tracking

stage cost and other basic assumptions for tracking NMPC formulations.
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Assumption 22. (A) There exist αU , αL, αU,ψ, αL,ψ ∈ K∞ such that αU (|x|) ≥ L(x, u) ≥

αL(|x|) ∀ x ∈ X , u ∈ U and αU,ψ(|x|) ≥ ψ(x) ≥ αL,ψ(|x|) ∀ x ∈ Xf . (B) A solution to (3.1)

exists for all xk ∈ X . (C) The functions L(x, u), f(x, u), and ψ(x) are twice uniform continuously

differentiable with respect to x and u. (D) There exists αψ ∈ K∞ and a control law uf (x) such

that ψ(f(x, uf (x)))− ψ(x) ≤ −αψ(|x|) ∀ x ∈ Xf . (E) At the solution of (3.1), the control input

uk := v0|k satisfies Assumptions 2(B) and 1(B).

Definition 23. Weak controllability [48] is satisfied for a given NMPC formulation if there exists

a control trajectory vi, i = 0 . . . N − 1 satisfying

N−1∑
i=0

|vi| ≤ αwc(|x|) (2.19)

for some αwc ∈ K∞.

The upper bound αU (|x|) ≥ L(x, u) holds if weak controllability holds, since |vi| ≤ α(|x|)

holds ∀ i.

The tracking stage cost usually has the form

L(z, v) = zTQz + vTRv (2.20)

where Q,R are positive semidefinite matrices but other norms can also be used to satisfy

Assumption 22A [49, 50]. The following result is standard.

Theorem 24. Under Assumption 2 and weak controllability, VN (x) satisfies the conditions of a

Lyapunov function (2.3b), and thus system (2.2) under control by NMPC (3.1) is asymptotically

stable for all x0 ∈ X .

The proof of Theorem 24 follows along the same lines as that of linear MPC in [25].

The lower bound α1(|x|) ≤ VN (x) holds because of the quadratic tracking objective. The

upper bound VN (x) ≤ α2(|x|) holds because of weak controllability. The descent inequality
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VN (xk+1) − VN (xk) ≤ −α3(|xk|) holds because the terminal cost and region are chosen to

ensure recursive feasibility by Assumption 22 (D).

Finally, we also note that NMPC with an endpoint constraint:

min
vi

N−1∑
i=0

L(zi, vi) (2.21a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (2.21b)

z0 = xk (2.21c)

vi ∈ U ∀ i = 0 . . . N − 1 (2.21d)

zN = 0 (2.21e)

is a special case of the terminal region / terminal cost formulation with Xf = 0 and

ψ(zN ) = 0. This formulation avoids the difficult choice of ψ and X , but tightens the fea-

sibility assumption (22 (B)) in that the setpoint must be exactly reachable in N steps. This

can lead to a tightly constrained problem that may be difficult for a solver to provide a

solution for, and ultimately leads to larger N and therefore larger problem size.

Note that, since ψ and Xf have traditionally been considered difficult to calculate for

nonlinear systems, and the endpoint constraint can be quite restrictive, formulation (2.17)

is actually the most common in real-world applications. However, a conservatively long

N must typically be chosen, leading to large optimization problems, long computational

times, and therefore limited applicability of NMPC in general.
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Chapter 3

Robustness of NMPC

3.1 Introduction

Although the starting point for the analysis of any control scheme is to consider the nom-

inal case, i.e. wk = 0 ∀ k ∈ I+ and the process model is perfect, it is a natural re-

quirement of any controller that it be able to operate in the presence of uncertainty. Al-

though stability properties hold nicely for the case of NMPC with a perfect model, there

are examples where NMPC may not converge close to the setpoint for arbitrarily small

plant-model mismatch [51]. There have been many approaches in the literature to extend-

ing NMPC to better handle uncertainty, including Tube-based NMPC [52, 53], Min-max

NMPC [54, 55], back-off constraints [56, 57], contracting constraints [58], and multi-stage

NMPC [59]. However, all of these methods suffer from greatly increased computational

costs or conservativeness. Research on these so-called ”robust NMPC” schemes is still on-

going and has important applications, however we desire an easy and effective method of

ensuring that an NMPC formulation that is stable in the nominal case at least behaves in

a bounded fashion in the presence of plant-model mismatch. To that end, we introduce

the idea of a robust reformulation of the NMPC problem in order to ensure the continuity

properties that lead to the desired robust stability properties. Moreover, this method is of-

ten easily extended to apply to new NMPC formulations that are nominally stable, which

will be leveraged multiple times in the remainder of this thesis.

CHAPTER 3. ROBUSTNESS OF NMPC

22



3.2 ROBUST STABILITY VIA NLP REFORMULATIONS

3.2 Robust Stability via NLP Reformulations

Robustness issues with NMPC tend to arise with the addition of state constraints, which

include the terminal constraint mentioned previously, but may also account for operating

constraints along the path to the terminal constraint. In this case, the NMPC problem takes

the following form:

min
vi

N−1∑
i=0

L(zi, vi) + ψ(zN ) (3.1a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (3.1b)

z0 = xk (3.1c)

vi ∈ U ∀ i = 0 . . . N − 1 (3.1d)

zi ∈ X ∀ i = 0 . . . N − 1 (3.1e)

zN ∈ Xf (3.1f)

We introduce a robust reformulation of this problem, where these constraints are soft-

ened with a slack variable penalized in the objective, and the problem solved online be-

comes:

V r
N (x) = min

N−1∑
i=0

L(zi, vi) + ψ(zN )

+ρ

(
N−1∑
i=0

(
εupi + εloi

)
+ εf

)
(3.2a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (3.2b)

zi ≤ zup + εupi ∀ i = 0 . . . N − 1 (3.2c)
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zi ≥ zlo − εloi ∀ i = 0 . . . N − 1 (3.2d)

vi ∈ U ∀ i = 0 . . . N − 1 (3.2e)

z0 = x (3.2f)

|zN | ≤ cf + εf (3.2g)

εupi , ε
lo
i , εf ≥ 0 (3.2h)

This reformulation is constructed to ensure that the NLP solved online satisfies MFCQ

(Definition 19), and therefore the objective function V r
N , i.e. the Lyapunov function used

to show stability, is uniformly continuous in x. Also note that this formulation fits into the

framework of zone-tracking MPC [60]. Then we make use of the following result, from

Theorem 2 in [36], to show that V r
N is an ISS Lyapunov function.

Theorem 25. Suppose that Assumptions 1 and 2 hold, V (x) is a Lyapunov function for (2.2), and

V (x) is uniformly continuous in x. Then V (x) is also an ISS Lyapunov function for (2.1).

Thus, since NMPC admits a Lyapunov function, we need only to show the continuity

property, which we show the the properties of the NLP. In the following section it is ex-

plicitly shown that (6.24) satisfies MFCQ.

3.3 NLP Properties of NMPC

In order to show robust stability properties, we first show that the Lyapunov function is

uniformly continuous with respect to disturbances. To this end, we recognize that MPC is

a parametric programming problem with respect to x0. We then make use of Lemma 26

which is a consequence of Theorem 3.1 in [61].
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Lemma 26. If (6.24) satisfies the GSSOSC (Definition 21) and the MFCQ (Definition 19), then

there exists σV ∈ K such that

|V r
N (x1)− V r

N (x2)| ≤ σV (|x1 − x2|)

We now show that the MFCQ holds.

Lemma 27. Under Assumption 2, the NLP (6.24) satisfies the MFCQ.

Proof. Consider the constraints of (3.1) rewritten as the following:

z0 = xk (3.3a)

zi+1 = f(zi, vi) i = 0, . . . , N − 1 (3.3b)

gu(vi) ≤ 0 i = 0, . . . , N − 1 (3.3c)

gx(zi) ≤ 0 i = 0, . . . , N (3.3d)

Linearizing the equality constraints and the active inequality constraints of (3.3) at the

solution leads to:

Fzdz + Fvdv = 0 (3.4a)

GJx,zdz ≤ 0 (3.4b)

GJu,vdv ≤ 0 (3.4c)

where dz and dv are search directions in the states and controls, respectively, and we define

the matrices:

Fz =



I

−F 0
z I

−F 1
z I

. . . . . .

−FN−1
z I


(3.5a)
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Fv =



0

−F 0
v

−F 1
v

. . .

−FN−1
v


(3.5b)

GJx,z = diag{Gj0x,z, Gj1x,z, . . . , G
jN−1
x,z , GjNx,z} (3.5c)

GJu,v = diag{Gj0u,v, Gj1u,v, . . . , G
jN−1
u,v , 0} (3.5d)

where F iz and F iv are the Jacobians of f(zi, vi) with respect to variables zi and vi, GJix,z is

the Jacobian of the active constraints of gx at time i, and GJiu,v is the Jacobian of the active

constraints of gu at time i. We see that Fz is square and nonsingular and that the matrix

∇cT = [Fz | Fv | 0] is full row rank. Hence, the equality constraint gradients are linearly

independent. Also, the submatrices Gjix,z and Gjiu,v may be of variable dimension and even

be empty. Furthermore, the relaxation of the active state constraints of (3.3) at the optimum

leads to:

GJx,zdz − EJ,xdξ,x ≤ 0 (3.6a)

dξ ≥ 0 (3.6b)

GJu,vdv ≤ 0 (3.6c)

(3.6d)

where ξ is the concatenation of the `1 penalty relaxation variables and

∇gTJ =


GJx,z 0 −EJ

0 0 −I

0 GJu,v 0

 (3.7)
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where EJ is composed of the rows of the identity matrix that correspond to the active

inequalities.

Since the set U is convex and has an interior, we can find some d0
v such that gju(v∗+d0

v) <

0 ∀j ∈ J . Applying Taylor’s Theorem gives:

gju(v∗ + d0
v) = gju(v∗) +∇gju(v∗)Td0

v

+
1

2
(d0
v)
T∇2gju(v∗ + td0

v)d
0
v < 0 (3.8)

for j ∈ J and some t ∈ [0, 1]. Since gju(v∗) = 0 and by convexity 1
2(d0

v)
T∇2gju(v∗+td0

v)d
0
v ≥

0, we have

∇gju(v∗)Td0
v = gju(v∗ + d0

v)

−1

2
(d0
v)
T∇2gju(v∗ + td0

v)d
0
v < 0 (3.9)

so we have GJu,vd0
v < 0.

Now define the concatenated variables and set qT = [dTz | dTv | dTξ ] with dz = −F−1
z Fvd

0
v,

dv = d0
v. Then given d0

v choose dξ as follows:

EJdξ > −GJx,zF−1
z Fvd

0
v (3.10a)

and we see that ∇gTJ q < 0 and ∇cT q = 0 in Definition 19. Hence MFCQ is satisfied for

system (3.3). �

3.4 Computation of ISS Bounds for NMPC

The goal of this section is to explicitly calculate the values of ISS bounds for NMPC. The

chief difficulty for this problem lies in finding rigorous bounds that are small enough to
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be useful. To aid in this, the ISS theorem is extended to allow for an uncertain term that

depends on the state of the system as well as the realization of uncertainty. Also, general

forms of the comparison functions are proposed to be used for the case of NMPC. Then,

these comparison functions are used to formulate predictive ISS bounds through the ISS

Lyapunov theorem for DT systems. A method of finding the parameters of the comparison

functions is described, and computational examples include a scalar linear system and a

nonlinear CSTR. Note that the notation introduced in this section should be considered as

only being defined locally.

3.4.1 The ISS Lyapunov Theorem with a Modified Uncertain Term

Since, for NMPC, the controls uk are determined as some function uk = κ(xk) by the

optimizer, we will consider the system written as xk+1 = fu(xk, wk), xk ∈ X , wk ∈W, with

initial state x0. Recall that if the system is ISS, then:

|xk| ≤ β(|x0|, k) + γ(||wk||) ∀k ∈ I+ (3.11)

∀ x0 ∈ X , wk ∈ W

where β(·, ·) is of class KL, and γ(·) is of class K.

Furthermore, this property can be decomposed into two time periods: |xk| ≤ β(|x0|, k) ∀ k ∈

{0, . . . , k0 − 1} , and |xk| ≤ γ(||wk||) ∀ k ∈ {k0, k0 + 1, . . . }, where k0 is the first time that

|xk| ≤ γ(||wk||). That is, the system trajectory has an asymptotic bound β(|x0|, k), until the

first time that the trajectory crosses the boundary of the ball of radius γ(||wk||). This ball

is then positive invariant, meaning the system trajectory never leaves it, although the state

value of the trajectory may take any value inside the ball.

Here we state a version of the Lyapunov-based ISS theorem from [35] that is extended

to allow for a uncertain term that is a function of the state as well as the realization of
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uncertainty, which leads to a tighter bound since one value need not hold for all states.

The proof is also summarized, so that the functional forms of the bounds are apparent.

Note that we only show where the proof deviates from [35]. We also rely on the extension

to systems with state constraints shown in Appendix B of [20]. Assume that there exists a

Lyapunov function V (x) that admits the following comparison functions:

α1(|x|) ≤ V (x) ≤ α2(|x|) ∀ x ∈ X, (3.12a)

V (f(x,w))− V (x) ≤ −α3(|x|) + σ(|x|, |w|) (3.12b)

∀ x ∈ X, w ∈W

where α1(·), α2(·), and α3(·) ∈ K∞, σ(|x|, 0) = 0 and σ(|x|, |w|) is continuous and strictly

increasing with respect to either argument for nonzero |w|. Now define the functions α4(·),

ρ(·), and α̂4(·) to have the following properties: α4(·) = α3 ◦ α−1
2 (·), α̂4(s) ≤ α4(s) ∀ s,

id − α̂4(·) ∈ K∞, ρ(·) ∈ K∞, and id − ρ(·) ∈ K∞, where id denotes the identity function.

See lemma B.1 of [35] for proof that α̂4(·) exists. Now, assume that we have a solution to

the following auxiliary optimization problem:

min b (3.13a)

s.t. ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||w||) ∀ x : V (x) ≤ b (3.13b)

ρ ◦ α̂4 ◦ V (x) ≥ σ(|x|, ||w||) ∀ x : V (x) > b (3.13c)

b ≥ 0 (3.13d)

where ||w|| is an upper bound on |wk|. Assuming a solution to (3.13) is the key point

that allows σ to be a function of |x|. In words, this problem is to determine the smallest

Lyapunov function value, b, that defines a sublevel set in the state space that is positive

invariant for f and a superlevel set that has an asymptotic descent property. Note that the

two constraints above can be simplified to solvable forms for specific cases (see Section
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3.4.5). We can now say that the system is ISS, and we can construct β and γ by following

the proof of Lemma 3.5 in [35]. Consider the set D = {x : V (x) ≤ b}. If x ∈ D, then we

have:

V (fu(x,w)) ≤ V (x)− α3(|x|) + σ(|x|, ||w||) (3.14a)

≤ V (x)− α4 ◦ V (x) + σ(|x|, ||w||) (3.14b)

≤ V (x)− α̂4 ◦ V (x) + σ(|x|, ||w||) (3.14c)

= (id− α̂4) ◦ V (x) + σ(|x|, ||w||) (3.14d)

≤ (id− α̂4) ◦ b+ σ(|x|, ||w||) (3.14e)

= (id− α̂4) ◦ b+ σ(|x|, ||w||)

+ρ ◦ α̂4 ◦ b− ρ ◦ α̂4 ◦ b (3.14f)

≤ (id− α̂4)(b) + ρ ◦ α̂4(b) (3.14g)

= −(id− ρ) ◦ α̂4(b) + b ≤ b (3.14h)

∀ x ∈ D, x ∈ X , w ∈ W

Note that step (3.14f) to (3.14g) holds due to satisfaction of (3.13b). Thus, the constant b

is the Lyapunov function value that corresponds to the invariant ball, so set γ(||wk||) =

α−1
1 (b). Now consider x /∈ D:

V (fu(x,w))− V (x) ≤ −α3(|x|) + σ(|x|, ||w||) (3.15a)

≤ −α4 ◦ V (x) + σ(|x|, ||w||) (3.15b)

≤ −α̂4 ◦ V (x) + σ(|x|, ||w||) (3.15c)

= −α̂4 ◦ V (x) + ρ ◦ α̂4 ◦ V (x) + σ(|x|, ||w||)

−ρ ◦ α̂4 ◦ V (x) (3.15d)
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≤ −α̂4 ◦ V (x) + ρ ◦ α̂4 ◦ V (x) (3.15e)

= −(id− ρ) ◦ α̂4 ◦ V (x) (3.15f)

∀ x /∈ D, x ∈ X , w ∈ W

Note that step (3.15d) to (3.15e) holds due to satisfaction of (3.13c). Furthermore, following

from (3.15f), we have that:

V (xk+1) ≤ (id− (id− ρ) ◦ α̂4) ◦ V (xk) (3.16a)

V (xk+1) ≤ (id− (id− ρ) ◦ α̂4) ◦ α2(|xk|) (3.16b)

xk+1 ≤ α−1
1 ((id− (id− ρ) ◦ α̂4) ◦ α2(|xk|)) (3.16c)

|xk| ≤ (α−1
1 ((id− (id− ρ) ◦ α̂4) ◦ α2(|x0|)))k

=: β(|x0|, k) (3.16d)

∀ x /∈ D, x ∈ X , w ∈ W

where the superscript k denotes the function of a function, k times (the result of the expres-

sion is plugged back in, in place of |x0|, k times). Note that the right-hand side of (3.16b) is

of class K∞. The final expression holds true ∀ k ∈ {0, . . . , k0 − 1}, where k0 is the first time

such that |xk| ≤ γ(||wk||).

3.4.2 A Degree of Freedom in the Bounds

Notice that ρ(·) can be any function that fulfills ρ(·) ∈ K∞, and id − ρ(·) ∈ K∞. To see

the effect of ρ(·), inspect (3.13) and (3.16d). The choice of ρ(·) affects the magnitude of

b and therefore affects γ(||wk||) as it appears in (3.11). If we choose ρ(s) to be close to

s, then we are effectively choosing a smaller value b and a smaller γ(||wk||). This means

that j0 becomes a point further forward in time, and γ(||wk||) only has to bound xk after

some larger fraction of the initial state has decayed. This gives tighter bounding of |xk| as
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k → ∞. On the other hand, β(|x0|, k) becomes larger. The opposite holds if we make ρ(s)

close to 0. Thus, varying ρ(·) will lead to different functions β(·, ·) and γ(·), and they will

correspond to different b, γ(||wk||), β(|x0|, k), and j0.

For ease of use, we will define ρ(s) = ε1s, ε1 ∈ (0, 1), so that ε1 close to 1 gives the

tightest γ(||wk||), and ε1 close to 0 gives the tightest β(|x0|, k).

3.4.3 Application to NMPC

The goal of this section is to describe simple but useful forms for the functions α1, α2, α3,

and σ that can be put to use in the context of NMPC to calculate γ(||wk||) and β(|x0|, k).

Previous work, for example [62, 63], has shown that functions exist, but derived them

in terms of Lipschitz constants and a controllability function that would be difficult to

find and would provide loose bounds. So instead, we propose a general form for these

functions with parameters that can be calculated.

Suppose that we let the Lyapunov function bounds have a power law form, αi(|x|) =

Ni|x|µi , where Ni and µi are positive parameters that can be found from open loop calcu-

lations. The function σ will be addressed in detail in the next section. Note that α1(|x|) and

α2(|x|) must provide strict lower and upper bounds on VN (x), respectively, and N3|x|µ3

must provide a strict lower bound to l(x0, u0). Also, we require that µ1 ≥ µ2, so that

α2(|x|) ≥ α1(|x|) holds true near the origin.

Now we need to define α̂4(·) so that α̂4(s) ≤ α4(s) ∀ s and id − α̂4(·) ∈ K∞ are

satisfied. The function α̂4(·) can be constructed piecewise from combinations of α4(·) and

the identity function. First, for convenience, define θ = N3N2
−µ3/µ2 and B = µ3/µ2, so

that α4(·) = θ(·)B . Now, we must consider three possible cases: B < 1, B > 1, or B = 1.
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If B < 1, then:

α̂4(s) :=

 ε2s , s ∈
[
0,
(
ε2
θ

) 1
B−1

)
θsB , s ∈

[(
ε2
θ

) 1
B−1 ,∞

) (3.17)

If B > 1, then:

α̂4(s) :=


θsB , s ∈

[
0,
(

1
Bθ

) 1
B−1

)
ε2s+ θ

(
1
Bθ

) B
B−1

−ε2
(

1
Bθ

) 1
B−1 , s ∈

[(
1
Bθ

) 1
B−1 ,∞

) (3.18)

If B = 1, then:

α̂4(s) := ε2θs , ε2 < 1/θ (3.19)

In all cases, ε2 is user determined, ε2 ∈ (0, 1), and a larger ε2 gives a tighter bound. It is

easily verifiable that these particular forms of α̂4(·) have the necessary properties.

3.4.4 Expressions for the Uncertain Term

Guaranteed form

First consider the expression for the uncertain term in [62], σ(·) = lV lw(·), where lV is

the Lipschitz constant of the Lyapunov function, and lw is the Lipschitz constant of f with

respect to w. Instead of treating lV as a constant, let lV (|x|) = c|x|+ t with constants c > 0

and t > 0, and define it to be an upper bound on |dVn(x)/d|x||. As we will see in the

examples section, this form for lV works well for bounding real data. Note that this will

be referred to as the “guaranteed” form of σ.

Approximate form

Now, consider a form for σ(·) that includes a further assumption. Suppose that the

system xk+1 = fu(xk, 0) exhibits nominal stability, so that there exists a Lyapunov function
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with the following properties:

α1(|x|) ≤ V (x) ≤ α2(|x|) (3.20a)

V (f(x, 0))− V (x) ≤ −α3(|x|) (3.20b)

∀ x ∈ X

With the assumption that that fu(·, ·) is Lipschitz continuous with respect to its second

argument so that |fu(x,w)| ≤ |fu(x, 0)|+ lw|w|, and that |fu(x, 0)| << lw||w||, then:

V (fu(x,w))− V (f(x, 0))

≤ α2(|fu(x,w)|)− α1(|fu(x, 0)|) (3.21a)

⇒ V (fu(x,w))− V (x)

≤ −α3(|x|) + α2(|fu(x,w)|)− α1(|fu(x, 0)|) (3.21b)

≤ −α3(|x|) + α2(|fu(x, 0)|+ lw||w||)

−α1(|fu(x, 0)|) (3.21c)

≤ −α3(|x|) + α2(|fu(x, 0)|+ lw||w||) (3.21d)

≈ −α3(|x|) + α2(lw||w||) (3.21e)

∀ x ∈ X , w ∈ W

This implies that σ(|w|) = α2(lw||wk||), which removes dependence on |x|. Notice that this

form may no longer be a strict bound due to the assumption mentioned above. A way

of stating this assumption in practical terms is that, after control is applied, any deviation

from the setpoint is much more due to the uncertainty than the control action. This as-

sumption seems to work well when the uncertainty is only due to memoryless noise. This

will be referred to as the “approximate” form of σ.
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3.4.5 Reformulation of Auxiliary Problem

We now find a way to solve (3.13). The constraints as written are not usable, since we

do not have an analytical expression for V (x). However, they may be reformulated into

usable constraints. For the first constraint we have:

ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||wk||) ∀ x : V (x) ≤ b (3.22a)

⇐ ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||wk||) ∀ x : α1(|x|) ≤ b (3.22b)

⇔ ρ ◦ α̂4 ◦ b ≥ σ(|x|, ||wk||) ∀ x : |x| ≤ α−1
1 (b) (3.22c)

⇐ ρ ◦ α̂4 ◦ b ≥ σ(α−1
1 (b), ||wk||) (3.22d)

Then for the second constraint we have:

ρ ◦ α̂4 ◦ V (x) ≥ σ(|x|, ||wk||) ∀ x : V (x) > b (3.23a)

⇐ ρ ◦ α̂4 ◦ α1(|x|) ≥ σ(|x|, ||wk||) ∀ x : V (x) > b (3.23b)

⇐ ρ ◦ α̂4 ◦ α1(|x|) ≥ σ(|x|, ||wk||) ∀ x : α2(|x|) > b (3.23c)

⇐ ρ ◦ α̂4 ◦ α1(|x|) ≥ σ(|x|, ||wk||) ∀ x : |x| ≥ α−1
2 (b) (3.23d)

Substitute |x| = α−1
1 (b) to see that (3.23d) satisfies (3.22d). Thus, once specific functional

forms are chosen, solving this problem simplifies to solving a nonlinear equation ((3.23d)

as an equality) and checking derivatives (that is, verifying that the derivative w.r.t. |x| of

the LHS of (3.23d) is greater than or equal to that of the RHS in the necessary range). Note

that, although this reformulation leads to (3.13) being solvable, the resulting value of bwill

be larger than the optimal value of the original problem.
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3.5 Case Studies

3.5.1 Scalar LQR Example

Consider the scalar example: f(x, u, w) = Ax + Bu + w = .75x + .25u + w, l(x, u) =

x2 + u2. Also, let Xf be the steady state. To solve this problem, we will use infinite hori-

zon discrete-time linear quadratic regulator (LQR), and the Lyapunov function bounds

may be found analytically. In this case, the Lyapunov function has the form V∞(x) =
∞∑
k=0

(xTkQx + uTkRuk) = xTJx where x is the initial condition and J solves a discrete time

Riccati equation. This gives J = 2, so set N1 = N2 = 2. We also have uk = Kxk,

where K = −(BTJB + R)−1BTJA. So, to find N3, we calculate Q + KTRK, which gives

N3 = 1.11. Also, since we have V∞(x) = 2x2 = 2|x|2, we can use lV = 4|x|.

We will consider the case where the guaranteed form of the uncertain term is used.

Consider uniform noise with w ∈ [−1, 1] and x0 = 10. Now, we must make a choice for

ε1, since many are possible and will provide different information. Consider ε1 = 0.6 and

ε1 = 0.8, with results in Figure 3.1. Recall that the trajectory of the system is bounded,

as shown in (3.11), by β(|x0, k) until the trajectory crosses γ(||wk||), after which time the

trajectory will always be bounded by γ(||wk||).

Notice that this gives a rather loose bound, but it is an absolute guarantee. We can

also compute γ(||wk||) for ε1 ≈ 1, which gives γ(||wk||) = 3.6, still a rather loose bound.

However, it is a guarantee no matter the realization of the noise. Now, consider the case

where wk = 1 ∀ k. See Figure 3.2, with ε1 ≈ 1. Now, with a much ”worse” case realization

of the uncertainty,γ(||wk||) gives a much tighter bound. Notice that since we chose ε1 ≈ 1,

β(|x0|, k) is nearly constant, so we have no guarantee of when |x| will be bounded by

γ(||wk||).
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Figure 3.1: Scalar system, uniform noise
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Figure 3.2: Scalar system, wk = 1, ε1 = 1

3.5.2 CSTR Example

Consider a CSTR with the consecutive competitive reactionsA+B
k1−→ C andB+C

k2−→ D.

The CSTR has three feeds with volumetric flow rates FA and FB and concentrations CFA

and CFB
. Each reactant feed only contains one component, and the volumetric flow rates

are the control variables. Flow of pure water, FW , is also available as a control variable. All

three have an upper limit of 20. The CSTR has exiting concentrations CA, CB , CC , & CD.

These are the state variables. The exiting volumetric flow rate is FT = FA + FB + FW . The

problem will be considered with parameters shown in Table 3.1. The steady state objective

is min FAPFA
+FBPFB

+FWPFW
−FTCCPC where PFi is the purchase price of feed i, and

PC is the sales price per mole of the product. The solution to the steady state problem is

shown in Table 3.2.

We use a quadratic stage cost with Q = I4 and R = I3, as well as additive state noise.

As in the last example, let Xf be the steady state. Now we need to find estimates for N1,

N2, and N3 from open loop tests, since this is not an LQR problem. To do this, we choose a

sample space of the states. The bounds on the sample space are 0.5Ci,ss ≤ Ci ≤ 1.5Ci,ss ∀ i,

where i denotes the reaction component. A uniform distribution of initial points is taken
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Table 3.1: Nonlinear CSTR Parameters

k1 = 10 k2 = 4 CFA = 5

CFB = 5 V = 10 PFA
= 1

PFB
= 1 PFW

= 0.5 PC = 1

Table 3.2: Nonlinear CSTR steady state values

CAss = 1.665 CBss = 0.200 CCss = 1.044 CDss = 0.349

FAss = 14.650 FBss = 9.305 FWss = 0 lss = −1.044

across the sample space, and 100,000 points are chosen. An open loop control problem

is solved with the initial state at each one of these points. We use a step size of 0.1 and

a controller horizon time of 50. Three point Radau collocation is used to discretize the

differential equations, and IPOPT [64] is used to solve the optimization problems. We

found that, for αi(|x|) = Ni|x|µi , N1 = 1.4, N2 = 2.9, µ1 = 2.2, and µ2 = 1.85 provide

valid bounds within this range. The bounds are shown in Figure 3.3. Note that the bound

parameters are chosen to give the tightest possible bounds that are true.
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Also, since the stage cost is quadratic, N3 = 1 and µ3 = 2 provide a valid lower bound

for the first stage cost. Finally, to approximate lV , we compute, for a given initial point xg,

|V (xg)− V (xa,i)|/|xg − xa,i| for the eight points xa,i, i = 1 . . . 8 closest to xg. We then take

the maximum value of these eight numbers, and use that as the local | dVN/d|x| | associated

to xg. These values are then plotted against the norm, and a linear over-estimator lV (|x|) =

c|x|+ t with c = 5.4 and t = 0.24 is chosen. This is shown in Figure 3.4.

So now everything needed is available to provide predictive trajectory bounds. Note

that for a dynamic simulation, the initialization for the first NLP will be linear with time,

and the subsequent NLPs will be initialized with the solution from the previous NLP

moved one time step backward. This aligns with the theory in [25] to allow for stability

even without an exact solution to a given NLP.

Consider the case with Ci,0 = 1.5Ci,ss and wki ∈ [−0.1Ci,ss, 0.1Ci,ss] ∀ k, i. First use

the approximate form of σ from (3.21e). The trajectory of the system and ISS bounds for

the cases that ε1 = 0.7 and ε1 = 0.9 are shown in Figure 3.5. Again, although the bound

appears to work well here, it is not a guarantee for all realizations of the noise.
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Figure 3.5: CSTR with approximate γ and uniform noise

The guaranteed sensitivity expression is very conservative for this system. If we set

ε1 = 1 and calculate the size of the invariant ball, then we see γ(||wk||) = 0.937 for the

approximate expression and γ(||wk||) = 6.326 for the guaranteed expression. Although

the guaranteed bound is true, it is not particularly useful. This shows the limitations with

an increasing number of states.

3.6 Conclusions

This chapter has discussed the robustness issues that arise with NMPC. Instead of other

robust NMPC formulations that may be computationally cumbersome or conservative in

performance, we propose a straightforward method for reformulating the NLPs solved

online so that they satisfy the NLP properties that ensure the continuity of the objective,

which can be used to show robustness. This is easily extended to other, more specialized

NMPC formulations that will be shown later in the thesis.

Furthermore, wextend the ISS results for NMPC to calculate predictive state trajectory

bounds. The ISS theorem for discrete time systems is extended to allow for an uncertain
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term that depends on the state as well as the realization of uncertainty. Functional forms

for the Lyapunov function bounds are proposed, and a method for calculating their param-

eters is shown. Example calculations are shown for a linear scalar system and a nonlinear

CSTR. The difficulty of scaling this method to larger systems highlights a weakness of

the ISS framework, in that proving the existence of ISS bounds does not take the place of

simulations or tuning.
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Chapter 4

Terminal Constraints

4.1 Introduction

Terminal conditions are an important aspect of ensuring the stability of NMPC. However,

calculating terminal constraints and costs for the nonlinear case is not straightforward. In

[65], terminal conditions are calculated via the construction of a linear differential inclusion

(LDI) and the solution of a linear matrix inequality. However, the construction of the LDI

can be prohibitively difficult for large-scale systems.

In [44], a quasi-infinite horizon approach is proposed in which the terminal cost is com-

puted based on a controller for the linearized system, and the terminal region represents a

region of attraction for the linear controller applied to the nonlinear system. This method

was applied to an experimental quad-tank system in [3] and further extended in [66]. This

method was developed for discrete time models in [67] and [68], which eliminates the

need for a small discretization step upon implementation. These methods require finding

a Lipschitz constant for the nonlinear part of the system or solving a series nonconvex opti-

mization problems to global optimality, either of which makes application to a large system

cumbersome. Instead, we propose a method of bounding only the higher order nonlinear

effects of the system via simulations under LQR control. This appears more practical and

leads to a method of calculating terminal conditions that is scalable. We demonstrate this

method on three systems from the literature, including a large-scale distillation system.
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4.2 Quasi-Infinite Horizon NMPC

Establishing Assumption 22 (D) is a key difficulty in ensuring the stability of (3.1). This

assumption is satisfied if there exists a stabilizing controller in the terminal region with

ψ(x) as a control Lyapunov function.

In [44], it is proposed to use an infinite-horizon LQR applied to the linearized system

as the stabilizing controller in the terminal region. Finding the size of the terminal region

is then a question of finding the largest region around the setpoint in which the LQR is

stabilizing for the nonlinear system. This is done in previous works by finding a Lipschitz

constant for the nonlinear system and analyzing the descent of the Lyapunov function, or

by solving a sequence of global optimization problems. The terminal cost is then the cost

function of the LQR, ψ(x) = xTPx.

The main issue with this method is that finding the terminal region via a Lipschitz con-

stant bound or by solving a sequence of global optimization problems can be cumbersome

when applied to a large system. In the next section we propose a more practical method

of finding the size of the terminal region via a bound on the higher order nonlinear effects

of the system that applies more easily to large systems. We also do the analysis in discrete

time, as in [67] and [68].

4.2.1 Extension for Large-Scale Systems

Consider (2.2) broken down into linear and nonlinear parts with the terminal control law

uf (x) = −Kx applied, so that

xk+1 = f(xk,−Kxk) = AKxk + φ(xk,−Kxk) (4.1)

where A = ∂f(0,0)T

∂x , B = ∂f(0,0)T

∂u , AK = A − BK, the pair (A,B) is assumed to be

stabilizable, and φ : X × U → X is the nonlinear part of the system dynamics. For the
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terminal control law uf we choose infinite horizon LQR applied to the linearized system,

so that

ψ(x) = xTPx = min

∞∑
i=0

zTi Q̃zi + vTi R̃vi (4.2a)

s.t. zi+1 = Azi +Bvi ∀ i = 0 . . .∞ (4.2b)

z0 = x. (4.2c)

where Q̃ := Q + ∆Q, ∆Q � 0, R̃ := R + ∆R, and ∆R � 0. Define W := Q + KTRK,

∆W := ∆Q + KT∆RK, and W̃ := Q̃ + KT R̃K. In order to show a stability region of the

linear controller for the nonlinear system, it is necessary to show a bound on the nonlinear

system effects. To that end, we show the existence of a bound of the following form.

Theorem 28. There exists M, q ∈ R+ such that

|φ̄(x)| ≤M |x|q ∀ x ∈ X (4.3)

where φ̄(x) = φ(x,−Kx).

Proof. Define f̄(x) := f(x,−Kx). Then the nonlinear part of the system is φ̄(x) :=

f̄(x)−AKx. By Taylor’s Theorem we have

φ̄j(x) = φ̄j(0) +∇φ̄j(0)Tx

+
1

2

∫ 1

0
xT∇2φ̄j(xτ)x dτ ∀ i = 1 . . . nx (4.4)

where j is indexed over each state. Note that, at x = 0, φ̄j(x) = 0 and∇φ̄j(x)T = ∇f̄j(x)T−

∇(AK,j , xj) = AK,j −AK,j = 0. Then

φ̄j(x) =
1

2

∫ 1

0
xT∇2φj(xτ)x dτ (4.5)
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Since f is twice continuously differentiable, we define:

λm := max
x∈X ,j∈{1...nx}

‖ ∇2φ̄j(x)‖ (4.6)

and thus

|φ̄j(x)| ≤ λm
2
|x|2 ∀ j = 1 . . . nx (4.7)

which gives

|φ̄(x)|2 =

nx∑
j=1

|φ̄(x)|2 ≤ nx
(
λm
2
|x|2
)2

(4.8)

therefore

|φ̄(x)| ≤
√
nx
λm
2
|x|2 (4.9)

Thus (4.3) is satisfied with M =
√
nx

λm
2 and q = 2.

Note that, in general, (4.1) represents an implicit discretization of a set of differential

and algebraic equations (DAEs) so that φ cannot be obtained explicitly, and actually quan-

tifying (4.3) may be tedious. Instead, for practical purposes we will find M and q in (4.3)

explicitly via simulations from a sampling of initial conditions in the state space, as will

be shown in Section 4.3. Here the key advantages of this method are apparent, in that we

only need to solve a series of one step simulations using the linear control, and do not need

to iterate on regions for which a Lipschitz constant is valid. It is also possible, however, to

obtain larger terminal regions, since a power law bound on a nonlinear term is expected

to be a better fit than a linear bound. Although we recognize that it is not possible to guar-

antee that Theorem 4.3 is satisfied by parameters found through simulations, the kinds

of examples that we consider tend to be well-behaved so that overestimating M and q to

ensure that Theorem 4.3 can easily be done with practical certainty.
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To find the terminal region, we consider the LQR controller (4.2) applied to the fully

nonlinear system (2.2). From the optimality conditions for (4.2) the infinite horizon cost

matrix P ∈ Rn×n satisfies the discrete-time Riccati equation

ATPA− P − (ATPB)(BTPB + R̃)−1(BTPA) + Q̃ = 0 (4.10)

This also gives the gain matrix K = (R̃ + BTPB)−1BTPA such that uf (x) = −Kx. Then,

this satisfies the Lyapunov equation:

ATKPAK − P + W̃ = 0 (4.11)

Since P =
∑∞

k=0(ATK)kW̃ (AK)k solves this equation, we can write

‖P‖ ≤
∞∑
k=0

‖(ATK)kW̃ (AK)k‖ ≤
λmax
W̃

1− σ̂2
(4.12)

where λmax
W̃

is the maximum eigenvalue of W̃ and we assume the maximum singular value

of AK , σ̂ ∈ [0, 1). Similarly, we have:

‖ATKP‖ ≤ ‖AK‖
∞∑
k=0

‖(ATK)kW̃ (AK)k‖ ≤
σ̂λmax

W̃

1− σ̂2
(4.13)

To show the descent of the Lyapunov function under evolution of (4.1) in the terminal

region we have:

ψ(xk+1)− ψ(xk) (4.14a)

= xTk+1Pxk+1 − xTk Pxk (4.14b)

= (AKxk + φ̄(xk))
TP (AKxk + φ̄(xk))− xTk Pxk (4.14c)

= xTk (ATKPAK − P )xk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)

TPφ̄(xk) (4.14d)

= −xTk W̃xk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)

TPφ̄(xk) (4.14e)

= −xTkWxk − xTk ∆Wxk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)

TPφ̄(xk) (4.14f)
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≤ −λmin∆W |xk|2 + 2σ̂
λmax
W̃

1− σ̂2
M |xk|q+1 +

λmax
W̃

1− σ̂2
M2|xk|2q ∀ xk ∈ Xf (4.14g)

where λmin∆W is the minimum eigenvalue of ∆W , which gives the stability condition

−λmin∆W + 2σ̂ΛPM |xk|q−1 + ΛPM
2|xk|2(q−1) ≤ 0 (4.15)

where ΛP =
λmax
W̃

1−σ̂2 . Then by the quadratic formula:

|x| ≤ cf

:=

−σ̂ΛP +
√

(σ̂ΛP )2 + λmin∆WΛP

ΛPM


1

q−1

(4.16)

which will be used to define Xf = {x | |x| ≤ cf}.

Note that it must also be verified that control constraints are satisfied in the terminal

region, that is −Kx ∈ U ∀ x ∈ Xf . If this does not hold then Xf must be decreased in size

until control constraints are satisfied.

Also note that we have increased the stage costs of the LQR (4.2) relative to Q and R

so as to enforce ψ(xk+1) − ψ(xk) ≤ −xTWx under evolution of the nonlinear dynamics

xk+1 = f(xk, uk), as in [67] and [68].

The procedure for finding the nonlinearity bound and calculating the terminal region

is summarized as follows, assuming that the user is starting with a continuous time DAE

model:

• Choose a steady state (xss, uss), e.g. via RTO

• Choose NMPC cost matrices Q and R and LQR cost matrices Q̃ � Q and R̃ � R

• Linearize the DAE model at (xss, uss)

• Discretize the linearizion of the DAE model with sampling time h to obtain A and B

• Calculate the discrete-time LQR cost-to-go P and gain K from the discrete time lin-

earization (A,B) and LQR cost matrices (Q̃, R̃)
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• Sample many initial conditions x in the region of interest in the state-space

• Simulate the DAE system forward one sampling time h under constant control u =

−Kx from every initial condition x to obtain f(x,−Kx)

• Calculate φ̄(x) = f(x,−Kx)− (A−BK)x for every initial condition x

• Create a scatter plot of ln|φ̄(x)| vs. ln|x|

• Choose slope q and intercept lnM to create a valid upper bound for ln|φ̄(x)|

• Calculate cf from (4.16) using M , q, A, B, Q, R, Q̃, R̃, and K

4.3 Case Studies

4.3.1 Two State Example

Here we consider the two-state example from [44].

ẋ1 = x2 + u(µ+ (1− µ)x1) (4.17a)

ẋ2 = x1 + u(µ− 4(1− µ)x2) (4.17b)

U = {u ∈ R− 2.0 ≤ u ≤ 2.0} (4.17c)

Q = 10TI2 (4.17d)

R = 0.05/T (4.17e)

The steady state is xss = (0, 0), uss = 0. Also, we define parameters ρx > 0 and ρu ≥

0 such that ∆Q := ρxQ and ∆R := ρuR. We consider terminal region calculations for

system (4.17) using a nonlinearity bound (4.3) found via simulations and terminal region

calculated via (4.16). We hold ρu = 1 constant, and so the nonlinearity bound must be

found for each combination of sampling time T and ρx. We show this in detail for one
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case, T = 0.1s and ρx = 1.1, in Table 4.1. This is done by simulating the system one step

forward under LQR control from a random sampling of 10, 000 initial conditions, and then

choosing M and q to bound the data. After this is completed for each case, the terminal

region area may be found as πc2
f , with results shown in Figure 4.2. The nonlinearity bound

parameters M and q as well as cf are summarized in Table 4.1 for each case.
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Figure 4.1: Chen and Allgöwer Example,

Nonlinear Bound for T = 0.1s, ρx = 1.1
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Figure 4.2: Chen and Allgöwer Example,

Terminal region calculations with non-

linearity bound

4.3.2 Hicks Reactor

Here we consider the CSTR system [69], which has been used as a benchmark problem in

the control literature [70], with model given in (4.18):

zc
dt

= (1− zc)/(U2sfu2)− k0zcexp(−Ea/zT ) (4.18a)

zT
dt

= (zfT − zT )/(U2sfu2) + k0zcexp(−Ea/zT )− νU1sfu1(zT − zcwT ) (4.18b)

xss = [0.6416, 0.5387]T (4.18c)

uss = [0.5833, .5]T (4.18d)
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Table 4.1: Chen and Allgöwer example, Terminal Region Results with Nonlinearity Bound

(M, q, cf )

T ρx = 1.1 ρx = 5 ρx = 10 ρx = 50 ρx = 200

0.1 -0.5,2,1.18e-3 -0.3,2,2.03e-2 -0.1,2,2.78e-2 0.3, 2,4.22e-2 0.6,2,5.39e-2

0.2 0.4,2.05,5.15e-3 0.7,2.05,6.77e-2 0.8,2.05,8.73e-2 0.9,2.05,0.118 1,2.05,0.129

0.3 0.9,2.1,1.15e-2 1,2.1,0.129 1.1,2.1,0.156 1.15, 2.1,0.184 1.2,2.1,0.190

0.4 1.2,2.15,0.020 1.3,2.15,0.186 1.35,2.15,0.214 1.4,2.15,0.238 1.45,2.15,0.243

0.5 1.4,2.15,2.82e-2 1.45,2.15,0.233 1.5,2.15,0.262 1.55,2.15,0.286 1.6,2.15,0.290

U = {u1, u2 ∈ R| − 0.4167 ≤ u1 ≤ 0.4167;−0.4750 ≤ u2 ≤ 0.5} (4.18e)

Q =

10 0

0 2

 (4.18f)

R =

1 0

0 0.5

 (4.18g)

where the states are dimensional concentration zc and dimensionless temperature zT .

The controls are u1 cooling water flow, and u2 inverse of the dilution rate, also dimension-

less. The model parameters and scaling factors are given in Table 4.2.

Let the time step h = 1min. First, we consider that ρx = 50 is held constant In this case,

the nonlinearity bound is changing with ρu since the controller gain K is changing. One

example of data used to find the nonlinearity bound is shown in Figure 4.4 for the case

that ρu = 0.1. Values of the bound parameters as well as cf are summarized in Table 4.3.

Terminal region area is shown as a function of ρu in Figure 4.4.
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Table 4.2: Hicks Reactor Parameters

Parameter Value

zcwT 0.38

zfT 0.395

Ea 5

ν 1.95× 10−4

k0 300

U1sf 600

U2sf 40
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Figure 4.3: LQR, Nonlinearity Bound

with ρx = 50

0 20 40 60 80 100
;u

0

1

2

3

4

5

6

7

8

T
er

m
in

al
re

gi
on

ar
ea

#10-5

Figure 4.4: LQR, Terminal Region Area

with ρx = 50

Now, we consider the case that ρψ = ρx = ρu. Results for the parameter cf are summa-

rized in Table 4.4, and results for the terminal region area are shown in Figure 4.5.

Here we show QIH-NMPC simulations for the Hicks reactor, with terminal region and

constraint determined via the LQR based approach with ρx = 50 and ρu = 35 and non-
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Table 4.3: Terminal Region Results with LQR and Nonlinearity Bound, ρx = 50

ρu M q cf

0.1 1.097e3 2.7 0.00231

10 54.5982 2.3 0.00472

20 28.50 2.25 0.00390

35 25.79 2.2 0.00204

50 23.34 2.18 0.00137

75 21.11 2.16 0.00083

100 20.09 2.15 0.00056
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Figure 4.5: LQR, Terminal Region Area with ρψ = ρx = ρu

Table 4.4: Terminal Region Results with LQR and Nonlinearity Bound, ρψ = ρx = ρu

ρψ .1 10 20 35 50 75 100

cf 0.00027 0.00156 0.00162 0.00164 0.00165 0.00166 0.00167
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linearity bound method. The horizon length is again chosen to be N = 10. The state

trajectories are shown in Figure 4.6, and the control trajectories are shown in Figures 4.7

and 4.8. As can be seen in the figures, each case shows asymptotic stability.
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Figure 4.6: Phase portrait of states under

discrete time QIH-NMPC
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Figure 4.8: Second manipulated variable trajectory
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4.3.3 Distillation Example

We consider the challenging nonlinear system shown in Figure 4.9 with two distillation

columns in series [2]. Each column is based on the model described in [71], with the main

difference that we consider three components, A, B, and C. The bottoms of the first col-

umn are the feed to the second column. The flowsheet is shown in Figure 4.9. The distillate

of the first column is to be 95% A, the distillate of the second column is to be 95% B, and

the bottoms of the second column is to be 95% C. The thermodynamics assume constant

relative volatility, and for tray hydraulics, we use the Francis weir formula, with constant

Kuf = 21.65 above the feed and constant Kbf = 29.65 below the feed. The weir height is

0.25, and the nominal liquid holdup is 0.5. Each column has 41 equilibrium stages includ-

ing the reboiler, giving a total of 246 states and 8 controls. The model for each column is

given below, with variable and parameter definitions in Table 4.5. Note that the subscript

denoting which column a variable pertains to is ignored in (4.19)-(4.26) and Table 4.5 for

concision.

Vapor Liquid Equilibria

ai,j = xi,jαj

∀ i ∈ {0, .., NT − 1}, j ∈ {A,B} (4.19a)

bi = xi,1(αA − 1) + xi,2(αB − 1) + 1

∀ i ∈ {0, .., NT − 1} (4.19b)

yi,j ∗ bi = ai,j (4.19c)

∀ i ∈ {0, .., NT − 1}, j ∈ {A,B}

Vapor Flows
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Figure 4.9: Distillation Flowsheet [2]

Vi = VB̄ ∀ i ∈ 1..NF − 1 (4.20a)

Vi = VB̄ + (1− qF )F ∀ i ∈ NF..NT − 1 (4.20b)

Liquid Flows

Li = Kbf

(
(Mi −Muw ) +

√
(Mi −Muw )2

2

)1.5

∀ i ∈ {2, .., NF} (4.21a)

Li = Kuf

(
(Mi −Muw ) +

√
(Mi −Muw )2

2

)1.5

∀ i ∈ {NF + 1, .., NT − 1} (4.21b)

LNT = LD̄ (4.21c)

Holdup Balances

dMi/dt = Li+1 − Li + Vi−1 − Vi
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∀i ∈ {2, .., NT − 1}/{NF} (4.22a)

d(Mixi,j)/dt = Li+1xi+1,j − Lixi,j + Vi−1yi−1,j

−Viyi,j ∀ i ∈ {2, .., NT − 1}/{NF}, j ∈ {A,B} (4.22b)

Feed Balance

dMNF/dt = LNF+1 − LNF + VNF−1 − VNF + F

∀ j ∈ {A,B} (4.23a)

d(MNFxNF ,j)/dt = LNF+1xNF+1,j − LNFxNF ,j

+VNF−1yNF−1,j − VNFyNF ,j + FzF j ∀ j ∈ {A,B} (4.23b)

Reboiler Balance (equilibrium stage)

dM1/dt = L2 − VB̄ − B̄ (4.24a)

d(M1x1,j)/dt = L2x2,j − VB̄y1,j − B̄x1,j ∀ j ∈ {A,B} (4.24b)

Condenser Balance

dMNT /dt = VNT−1 − LD̄ − D̄ (4.25a)

d(MNTxNT,j)/dt = VNT−1yNT−1,j − LD̄xNT,j

−D̄xNT,j ∀ j ∈ {A,B} (4.25b)

Concentrations

Mi dxi,j/dt = d(Mixi,j)/dt− xi,j dMi/dt

∀i ∈ {1, .., NT}, j ∈ {A,B} (4.26)
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Table 4.5: Distillation model definitions, i is indexed over trays, j is indexed over compo-

nents

Variable/Parameter Definition

ai,j ,bi thermodynamic parameters

yi,j vapor mol fraction

αi,j thermodynamic parameters

Vi vapor flow

VB̄ vapor boilup

NT number of trays

NF tray number of feed

Muw weir height

F feed flow

Li liquid flow

qF fraction of lquid in feed

LD̄ reflux flow

xi,j liquid mol fraction

Mi tray holdup

zF feed mol fraction

D̄ distillate flow

B̄ bottoms flow

Kuf ,Kbf weir constants

We set αA = 2 and αB = 1.5. The economic cost is the cost of feed and energy to the

reboilers minus the cost of the products, that is Lec = pF ·F1 + pV (VB̄,1 + VB̄,2)− pA ·D1−

pB · D2 − pC · B2, where pF = $1/mol is the price of feed, pi for i = A,B,C is the price
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of component i with pA = $1/mol, pB = $2/mol, and pC = $1/mol, pV = $0.008/mol is

the price per mole vaporized in the reboilers, and the indices represent the first or second

column. The feed is saturated liquid, and the composition of the feed is 0.4 mole fraction A,

0.2 mole fraction B, and 0.4 mole fraction C. The setpoint considered here is the economic

minimum steady state corresponding to a feed composition of zF = (0.4, 0.2, 0.4). The

purities are implemented as inequality constraints. We discretize the DAE system using

three point Radau collocation.

Again, we define parameters ρx > 0 and ρu ≥ 0 such that ∆Q := ρxQ and ∆R :=

ρuR.For the stage costs we set Q = 10I246 and R = I8, and for the discretization step we

set h = 1min. For this method we will utilize the extension for large-scale systems with

nonlinearity bound (4.3) and terminal regions characterized by (4.16). Furthermore, we

consider tuning the terminal regions via ρψ = ρx = ρu, so that K does not change, and

therefore the nonlinearity bound does not that to be recomputed. The results of 10, 000

one-step simulations (performed in Matlab with ode45) are shown in Figure 4.10, and the

nonlinearity bound parameters are found to be q = 1.8 and M = 0.0743. Then, cf is shown

as a function of ρψ in Figure 4.11, and numerical values are shown in Table 4.6. As can be

seen, there is little benefit in terminal region size to increasing ρψ beyond 100.

Finally, we show close-loop simulations of the distillation system under QIH-NMPC for

varying values of ρψ with N = 10. To accommodate the optimal control problem, we dis-

cretize the DAE system using three point Radau collocation. The models are implemented

in AMPL and solved with IPOPT on an Intel i7-4770 3.4 GHz CPU. The simulation results

can be seen in Figure 4.12. All cases are convergent to the setpoint, however setting very

high values for ρψ leads to degradation in the dynamic performance. This, combined with

the observation that high values of ρψ do not significantly increase the terminal region size,

leads to the conclusion that moderate values of ρψ are the most practical.
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Figure 4.10: Distillation example, nonlinearity bound
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4.4 Changing Steady-States

The calculation of terminal conditions may also be considered in the context of offset-free

MPC or steady-state updates [59, 72, 73]. In the case that some model parameter is being

estimated in real time, it may be desirable to update the steady-state based on real time

optimization (RTO) calculations [74]. Furthermore, the steady-state may change for other
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Table 4.6: Distillation Example, Terminal Region Results

ρψ cf

10 0.3773

100 0.4241

1000 0.4288

10000 0.4293

100000 0.4293

reasons as well, such as predetermined production scheduling. Suppose that the steady-

state and control are functions of the system uncertainty, xss(w) and uss(w). Now the

terminal control gain K(w) system linearization AK(w) become functions of the steady

state and therefore the uncertainty, and the nonlinear part of the system becomes:

φ(w, x,−K(w)(x−xss(w))) := f(x,−K(w)(x−xss(w)))−AK(w)(x−xss(w)) ∀ w ∈W, x ∈ X

(4.27)

Assumption 29. (A) xss : W→ Xss and uss : W→ Uss are uniformly continuous (B) xss(0) =

0 is contained in the interior of Xss and uss(0) = 0 is contained in the interior of Uss (C) Xss

and Uss are closed and bounded (D) f(xss(w), uss(w)) = 0 ∀ w ∈ W (E) |φ(w, x,−K(w)(x −

xss(w))| ≤M |x− xss(w)|q ∀ w ∈W, x ∈ X (F) ψ and cf are calculated as in Section 4.2.1 (G)

W is bounded and contains 0 (H) VN (xk, 0) admits a control Lyapunov function (Definition 7) (I)

VN (x,w) is uniformly continuous w.r.t. x and w

Notice that in Assumption 29(E) the nonlinearity bound is found to hold for all possible

steady states. The terminal cost matrix is again defined by (4.10), and the terminal region
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is defined as in (4.16), but with all terms becoming dependent on the steady state. So, if

the steady-state is updated in real time, then the terminal conditions P and cf must be

as well. However, if the nonlinearity bound is defined as in Assumption 29(E), with M

and q not dependent on w, then all of the necessary calculations to update the terminal

conditions (system linearization, Riccati equation solution, eigenvalue and singular value

calculations) are fast compared to the simulations necessary to find M and q. With chang-

ing steady-states, the NLP solved online becomes:

VN (xk, wk−1) = min
vi

N−1∑
i=0

(zi − xss(wk−1))TQ(zi − xss(wk−1)) (4.28a)

+ (vi − uss(wk−1))TR(vi − uss(wk−1)) + ψ(wk−1, zN ) (4.28b)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (4.28c)

z0 = xk (4.28d)

vi ∈ U ∀ i = 0 . . . N − 1 (4.28e)

|zN − xss(w)| ≤ cf (wk−1) (4.28f)

Theorem 30. Under Assumption 29, Quasi-infinite horizon NMPC with a changing steady state

(4.28) is ISS w.r.t. xss(0) = 0.

Proof.

VN (xk+1, wk)− VN (xk, wk−1) (4.29a)

= VN (fp(xk, uk, wk), wk)− VN (xk, wk−1)

+VN (fp(xk, uk, wk), 0)− VN (fp(xk, uk, wk), 0)

VN (xk, 0)− VN (xk, 0)
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+VN (fp(xk, uk, 0), 0)− VN (fp(xk, uk, 0), 0) (4.29b)

≤ |VN (fp(xk, uk, wk), wk)− VN (fp(xk, uk, wk), 0)|

+|VN (xk, 0)− VN (xk, wk−1)|

+|VN (fp(xk, uk, wk), 0)− VN (fp(xk, uk, 0), 0)|

+VN (fp(xk, uk, 0), 0)− VN (xk, 0) (4.29c)

≤ −α3(xk) + σ(||wk||) (4.29d)

for some σ ∈ K. Thus VN satisfies Theorem 5.7 with c1 = c2 = 0, and Quasi-infinite

horizon NMPC with a changing steady state is ISS.

Note that it would also be possible to simply choose the minimum cf over all steady

states, in order to have one terminal region that is always valid, however this may lead to

conservative performance.

4.5 Distillation example with changing steady states

Here we consider the simulation of the distillation system from Section 4.3.3 under multi-

ple setpoint changes. As described in Section 4.4, we find the nonlinear bounds parameters

M and q such that they hold for all steady states considered.

4.5.1 Terminal Region Calculations

We simulate multiple setpoint transitions, with setpoints calculated from the economic

steady state problem for differing nominal feed compositions. The nonlinearity bound,

terminal cost, and terminal region must then be calculated for each setpoint at minimum

economic cost. To weight the terminal cost we set ρψ = 100. The nonlinearity bound in all

cases is nearly identical to that found in Figure 4.10, which gives q = 1.8 and M = 0.0743
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Table 4.7: Terminal Region Results

Setpt # Feed Comp σmaxAK
λmaxW λminW cf cu

1 0.4, 0.2, 0.4 0.910 24.62 10 0.43 0.41

2 0.4, 0.4, 0.2 0.913 27.94 10 0.36 0.37

3 0.2, 0.4, 0.4 0.898 24.38 10 0.51 0.38

as holding for all steady states. The differences are in the LQR control computed from the

linearization at each setpoint, and the region which satisfies control constraints |zN | ≤ cu,

where cu is chosen to be the largest value that ensures ensure−KzN ∈ U. For this example,

we only consider the lower bounds of zero for each control. The parameter cf is calculated

as in (4.16), and smaller of cf and cu is chosen to define the terminal region, so that cf :=

min {cf , cu}. A summary of the terminal region calculations for each setpoint for different

feed compositions is shown in Table 4.7.

4.5.2 Simulations

The distillation column is simulation with setpoints given at k = 0, 50, 100 in the order

shown in Table 4.7. Since M and q are held constant, the computations to update terminal

conditions are trivial. We compare the cases of N = 25 with an endpoint constraint (2.21),

N = 15 with a terminal region and cost (3.1), and N = 10 with a terminal region and

cost. In Figure 4.13, results are shown for the nominal case (no uncertainty). In Figure 4.14,

results are shown for the case with 10% variance in the feed flow and composition. As can

be seen, the tracking performances are similar in all cases. There is slight degradation in

the tracking performance at around k = 30 for N = 10, which corresponds to a nonzero

slack on the terminal constraint (10−4), which indicates that the feasibility assumption
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Table 4.8: Average solve times for distillation system (s)

Case Nominal w/ uncertainty

N=25, endpt 154.7 157.3

N=15, term con 74.9 72.4

N=10, term con 40.2 35.7

does not hold, and N = 10 is too short. However, the case with N = 15 behaves nearly

identically to the case with N = 25, which shows the value of terminal conditions. Note

that the problem with an endpoint and a shorter horizon (N = 15 or N = 10) is infeasible.

Average solve times for each case are shown in Table 4.8. As can be seen, shorter horizons

lead to much faster solve times.
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Figure 4.13: Distillation system with

changing steady states, nominal
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changing steady states, noise in feed
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4.6 Conclusions

This section has shown a quasi-infinite horizon approach to calculating terminal costs and

regions for NMPC that scales to systems with many states. Applications to particular

systems were shown with a focus on the effects of tuning parameters. With this, it is

possible to formulate valid terminal conditions for practical applications that will allow

for reachability analysis and potentially shorter horizons. This is a significant advance in

NMPC technology, since formulations with no terminal constraints (2.17) are used in real

applications. Further, considerations were shown for the case with changing steady-states

and online updates of terminal conditions. In Chapter 6, the properties of the terminal

conditions derived from the quasi-infinite horizon framework will be leveraged in order

to adaptively update horizon lengths online.
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Chapter 5

Economic NMPC for Non-dissipative

Systems

5.1 Introduction

Standard stability and robustness analysis tools need to be modified when general (eco-

nomic) cost functions are used in MPC formulations. Asymptotic stability for economic

MPC (eMPC) can be established for systems that satisfy strict dissipativity [13, 48, 75]. In

such formulations, strict dissipativity requires the existence of a storage function which

can be naturally obtained in certain types of physical systems (e.g., mechanical or energy

systems) or that can be obtained if strong duality of the equilibrium point holds. Stability

of economic MPC can also be guaranteed if the system satisfies the so-called turnpike prop-

erty [76, 77], even in the absence of terminal constraints [43, 78]. Furthermore, it has been

shown that dissipativity and turnpike properties are closely related [79]. We highlight that

dissipativity and turnpike properties currently used in economic MPC are system-specific

properties. Consequently, they cannot be guaranteed in general applications and can be

difficult to check in practice. This is the case, for instance, in large-scale chemical processes

such as polymer plants, separation systems, and pulp and paper plants [80, 81, 82, 83].

To enable asymptotic stability in a more general setting, it is possible to regularize the

economic cost function to make it strongly convex (e.g., by adding a tracking cost term)

[84, 85], including in cases with a cyclic steady state [86]. Regularization terms, however,
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are difficult to tune and can be conservative, limiting economic gains [87].

In [88] it is proposed to replace the regularization term with a stabilizing inequality con-

straint. The stabilizing constraint is derived by exploiting the inherent robustness margin

of an auxiliary and asymptotically stable MPC controller. It is demonstrated that this ap-

proach (that which we call eMPC-sc) provides high flexibility to optimize economic perfor-

mance while retaining stability. Moreover, it is shown that this approach is a special type

of regularization-based and Lyapunov-based MPC approaches. In particular, eNMPC-sc

provides adaptive regularization through the constraint (as in trust-region schemes used in

optimization). The eNMPC-sc controller also differs from the Lyapunov-based approach

(see [89]) in that feasibility of the stabilizing constraint can be guaranteed directly, while

in the Lyapunov approach the feasible set for the states needs to be adjusted to ensure

feasibility. A formulation for the tracking NMPC case with uncertainty with a similar sta-

bilizing constraint is provided in [90]. A closely related formulation is shown in [91], with

the main difference being that we avoid explicitly deriving a weighting function. In this

work, we analyze the robustness properties of eNMPC-sc, and show that the resulting

closed-loop system is (ISpS). We present small and large-scale studies to demonstrate the

applicability of the approach.

5.2 Regularized eNMPC Formulations

We now proceed to describe economic NMPC formulations. We define (xss, uss) as the

solution of the steady-state problem:

(xss, uss) := argmin
x,u

Lec(x, u) (5.1a)

s.t. x = f(x, u) (5.1b)

x ∈ X, u ∈ U (5.1c)
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where the mapping Lec : Rnx × Rnu → R is the economic stage cost. We assume, without

loss of generality, that (xss, uss) = (0, 0). The NLP solved by a standard economic NMPC

(eNMPC) controller is:

min
zi,vi

∑
i∈N

Lec(zi, vi) (5.2a)

s.t. zi+1 = f(zi, vi) ∀ i ∈ N (5.2b)

z0 = xk (5.2c)

zi ∈ X, vi ∈ U ∀ i ∈ N (5.2d)

zN = 0 (5.2e)

which includes an endpoint constraint for simplicity. Of course we expect better economic

performance from this formulation compared to tracking NMPC but asymptotic stability

of eNMPC is not guaranteed in general. This is because Assumption 22 (A) is not fulfilled

for general Lec(·, ·). Stability of eNMPC can be enforced by appending a tracking term that

regularizes the economic objective. Under this approach, the regularized eNMPC problem

is:

min
zi,vi

∑
i∈N

(Lec(zi, vi) + ωLtr(zi, vi)) (5.3a)

s.t. zi+1 = f(zi, vi) ∀ i ∈ N (5.3b)

z0 = xk (5.3c)

zi ∈ X, vi ∈ U ∀ i ∈ N (5.3d)

zN = 0 (5.3e)

where ω ∈ R+. We define the rotated stage cost Lrot(x, u) := Lec(x, u) + ωLtr(x, u) +

λ(x) − λ(f(x, u))), where λ : Rnx → R is a storage function. One choice for λ is to use

the Lagrange multipliers of (5.1), so that λ(x) − λ(f(x, u)) = νT (x − f(x, u)) is locally
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nonnegative. We denote this approach as eNMPC-reg.

Definition 31. The system (2.2) is strictly dissipative with respect to supply rate Lec(zi, vi) +

ωLtr(zi, vi) if there exists some α ∈ K∞ such that Lrot(x, u) ≥ α(|x|) ∀ x ∈ Rnx

As shown in [13, 48], if strict dissipativity holds, then eNMPC-reg is asymptotically

stable. In the case of [48], it is shown that strict dissipativity holds if the steady-state

problem (5.1) satisfies strong duality. When Ltr(·) is quadratic, weighting matrices Q and

R in (2.20) can be found by applying the Gershgorin circle theorem to the Hessian of the

rotated stage cost ∇2Lr(x, u), as is done in [84, 87]. Unfortunately, finding and tuning

weighting matrices is cumbersome for large problems. In particular, for a general NLP,

∇2Lr(x, u) must be checked at every x ∈ X and u ∈ U of (5.1) in order to ensure that the

Hessian is always positive definite. Furthermore, the end result is often conservative in

the sense that the regularization term may dominate the economic stage cost, thus limiting

economic performance.

Note that the robustness analysis shown in Section 3.2 extends trivially to eNMPC-reg.

5.3 eNMPC-sc Formulation

It has been recently suggested to replace the tracking regularization terms in the objective

with a stabilizing constraint [88]. This controller solves the NLP:

min
zi,vi

∑
i∈N

Lec(zi, vi) (5.4a)

s.t. zi+1 = f(zi, vi) ∀ i ∈ N (5.4b)

z0 = xk (5.4c)

zi ∈ X, vi ∈ U ∀ i ∈ N (5.4d)

zN = 0 (5.4e)
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∑
i∈N

Ltr(zi, vi)− V (k − 1,wk−1, x0)

≤ −δ Ltr(xk−1, uk−1) (5.4f)

where δ ∈ (0, 1] is a scalar parameter. After the NLP is solved, we inject the control law

u(xk) = v0 into the system and set

V (k,wk, x0) :=
∑
i∈N

Ltr(zki , v
k
i ), (5.5)

where zki , v
k
i is the solution of (5.4) at time k. We thus note that V (k − 1,wk−1, x0) is the

value function at time k − 1.

Once the control is injected into the system we wait for it to evolve to xk+1 and use the

value function V (k,wk, x0) in (5.4f) to solve (5.4) at xk+1, and repeat the procedure. Note

that, for the problem solved at time k = 0, the constraint (5.4f) may simply be excluded.

Also, the formulation of the stabilizing constraint (5.4f) is slightly different from that used

in [88]. The advantages of this formulation are that we do not require a solution to the

tracking problem, and this formulation provides a looser constraint with the same stability

properties.

We will prove that under this recursion the constraint (5.4f) forces the descent of V (k,wk, x0)

explicitly. We also note that the value function V (k,wk, x0) is a function of the path since

the solution of (5.4) depends on the previous value function. In Section 5.4.2 we will prove

that, despite this, the value function is a Lyapunov function satisfying the properties of

Theorem 32 and thus the system under eNMPC-sc is ISpS. We also note that δ = 1 in (5.4f)

corresponds to the most constrained Lyapunov function, and δ approaching zero corre-

sponds to the least constrained. The parameter δ is thus a tuning parameter that shapes

closed-loop behavior. A large δ forces a faster approach to the steady state, and small δ

allows for more economic flexibility.
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We highlight that V (k − 1,wk−1, x0) and Ltr(xk−1, uk−1) are fixed quantities in the NLP

and thus the stabilizing constraint (5.4f) can be written as
∑

i∈N L
tr(zi, vi) ≤ ∆k with

∆k := V (k − 1,wk−1, x0) − δ Ltr(xk−1, uk−1). If we consider positive definite matrices

Q and R, we have that Ltr(z, v) = zTQz + vTRv and the stabilizing constraint satisfies∑
i∈N (zTi Qzi + vTi Rvi) ≤ ∆k and thus defines a trust-region constraint with radius ∆k

around the origin (0, 0). This trust region defines a space that the controller can explore

at time instant k to improve economic performance while preserving stability. Moreover,

by dualizing the stabilizing constraint we can obtain formulation (5.3). Consequently, we

can see that the stabilizing constraint acts as a regularization term. The weight ω, however,

is determined by the optimal Lagrange multiplier of (5.4f) and thus changes at each time

instant k (i.e., the weight is adaptive). The Lagrange multiplier can be interpreted as the

price of stability. We highlight that this approach does not require dissipativity with respect

to stage costs appearing in the objective (i.e. Definition 31 with ω = 0) or turnpike proper-

ties, which contrasts with existing economic NMPC formulations [48, 76]. Because of this,

the approach has wider applicability. For instance, because this approach does not require

strong duality, any equilibrium point (xss, uss) can be used. For more details, see [88].

To establish ISpS for the proposed economic NMPC controller we must ensure uniform

continuity of the value function. This property is not guaranteed for the formulation (5.4).

This can be achieved by softening the state constraints, as is done in [92]. To do this, we

assume that X and U are expressed as constraints of the form X = {x : gx(x) ≤ 0} and

U = {u : gu(u) ≤ 0}. The eNMPC-sc problem is thus:

min
zi,vi

∑
i∈N

Lec(zi, vi)

+ ρ

(∑
i∈N

ξxi + ξS + ξss,L + ξss,U

)
(5.6a)

s.t. zi+1 = f(zi, vi) ∀ i ∈ N (5.6b)
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z0 = xk (5.6c)

gx(zi) ≤ ξxi ∀ i ∈ N (5.6d)

gu(vi) ≤ 0 ∀ i ∈ N (5.6e)

−ξss,L ≤ zN ≤ ξss,U (5.6f)∑
i∈N

Ltr(zi, vi)− V (k − 1,wk−1, x0)

≤ −δ Ltr(xk−1, uk−1) + ξS (5.6g)

ξxi , ξ
S , ξss,L, ξss,U ≥ 0 (5.6h)

where ξxi , ξ
S , ξss,L, ξss,U are slack variables and ρ ∈ R+ is a penalty parameter. Finding a

value for ρ for the formulations used in this paper is discussed in Remark 56. Constraint

softening allows us to leverage the following properties.

5.4 Stability Analysis

5.4.1 ISpS with a Modified Lyapunov Function

We use the ISpS Lyapunov theorem of [36] with a modified Lyapunov function. Tradition-

ally, the Lyapunov function is a function of the current state, V : Rn → R. In this work,

we analyze our proposed eNMPC-sc controller using a modified Lyapunov function that

is a function of the path, V : Z≥0,≤K × Rnw×K × Rnx → R where the first argument is

the time step, the second argument is the series of disturbances, and the third argument

is the initial state. We first show that the modified Lyapunov function satisfies the ISpS

properties established in [36]. This is formalized in the following result.

Theorem 32. Let Assumption 1 hold. If the system (2.2) admits a function V (k,wk, x0) satisfy-
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ing:

α1(|xk|) ≤ V (k,wk, x0) ≤ α2(|xk|) + c1 (5.7a)

V (k + 1,wk+1, x0)− V (k,wk, x0)

≤ −α3(|xk|) + σ(|wk|) + c2 (5.7b)

∀ x0 ∈ X , w ∈ W, k ∈ Z+

where α1, α2, α3 ∈ K∞, σ ∈ K, and c1, c2 ∈ R+ then the system is ISpS.

Lemma 33. For a function V (k,wk, x0) satisfying (5.7), there exists α4(·) ∈ K∞ such that

α3(|xk|) ≥ α4(V (k,wk, x0))− c̄ (5.8)

∀ x0 ∈ X , w ∈ W, k ∈ Z+

for some c̄ ∈ R+.

Given V (k,wk, x0) and its upper bound, we can find a lower bound of |xk|:

|xk| ≥


α−1

2 (V (k,wk, x0)− c1)

∀ V (k,wk, x0) ≥ c1

0 ∀ V (k,wk, x0) < c1

(5.9a)

⇒ α3(|xk|) ≥


α3 ◦ α−1

2 (V (k,wk, x0)− c1)

∀ V (k,wk, x0) ≥ c1

0 ∀ V (k,wk, x0) < c1

(5.9b)

≥



α3 ◦ α−1
2 (V (k,wk, x0)− c1)

∀ V (k,wk, x0) ≥ c1

(α3 ◦ α−1
2 (c1)/c1)V (k,wk, x0)− α3 ◦ α−1

2 (c1)

∀ V (k,wk, x0) < c1

(5.9c)

=: α4(V (k,wk, x0))− α3 ◦ α−1
2 (c1) (5.9d)
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Then set

α4(V (k,wk, x0))

:=



α3 ◦ α−1
2 (V (k,wk, x0)− c1) + α3 ◦ α−1

2 (c1)

∀ V (k,wk, x0) ≥ c1

(α3 ◦ α−1
2 (c1)/c1)V (k,wk, x0)

∀ V (k,wk, x0) < c1

(5.10)

and set

c̄ := α3 ◦ α−1
2 (c1) (5.11)

�

Lemma 34. For every β̂ ∈ KL and ĉ ∈ R+, there exists some β ∈ KL and c̃ ∈ R+ such that:

β̂(s+ ĉ, k) ≤ β(s, k) + c̃ ∀ s ∈ R+, k ∈ Z+ (5.12)

Proof. Consider c̃ = β̂(ĉ, 0) and any β̄ ∈ KL. Then let:

β(s, k) =

β̂(s+ ĉ, k)− c̃+ β̄(s, k)

∀ s ∈ R+, k ∈ Z+ s.t. β̂(s+ ĉ, k)− c̃ ≥ 0

β̄(s, k)

∀ s ∈ R+, k ∈ Z+ s.t. β̂(s+ ĉ, k)− c̃ < 0

(5.13)

Then β(s, k) clearly gives an upper bound to β̂(s + ĉ, k) − c̃, but to see that β ∈ KL,

consider more closely the expression β̂(s+ ĉ, k)− c̃. For constant k, β̂(s+ ĉ, k)− c̃ is a K∞

function minus a positive constant. Thus, the regions such that β̂(s + ĉ, k) − c̃ ≥ 0 and

β̂(s+ ĉ, k)− c̃ < 0 are described by intervals s ∈ [r,∞) and s ∈ [0, r), respectively, for some

r ∈ R+. Thus β(0, k) = 0, and β(s, k) is continuous and strictly increasing with respect to
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s. A similar observation holds for constant s. Now, the regions such that β̂(s+ ĉ, k)− c̃ ≥ 0

and β̂(s + ĉ, k) − c̃ < 0 are described by intervals k ≤ p and k > p, respectively, for some

p ∈ Z+. Thus β(s, k) is strictly decreasing with respect to k. Therefore, β ∈ KL. �

Proof of Theorem 32. We denote id as the identity function, and the notation α1 ◦ α2(·)

denotes α1(α2(·)). Define the functions ρ(·) and α̂4(·) to have the following properties:

α̂4 ∈ K∞, α̂4(s) ≤ α4(s) ∀ s, id− α̂4(·) ∈ K∞, ρ(·) ∈ K∞, and id− ρ(·) ∈ K∞. See Lemma

B.1 of [35] for a proof that α̂4(·) exists.

We now proceed by showing that β, γ, and c exist satisfying ISpS. Our proof follows

along the lines of Lemma 3.5 in [35]. Define the constant b := α̂−1
4 ◦ ρ−1(σ(||w||) + c̄ + c2)

with c̄ defined in Lemma 33 and consider the set D = {x : V (x) ≤ b}. If xk ∈ X ∩D then

we have from (5.7b), Lemma 33, and the definition of b that:

V (k + 1,wk+1, x0)

≤ V (k,wk, x0)− α3(|xk|) + σ(||w||) + c2 (5.14a)

≤ V (k,wk, x0)− α4(V (k,wk, x0))

+c̄+ σ(||w||) + c2 (5.14b)

≤ V (k,wk, x0)− α̂4 ◦ V (k,wk, x0)

+c̄+ σ(||w||) + c2 (5.14c)

= (id− α̂4) ◦ V (k,wk, x0) + c̄+ σ(||w||) + c2 (5.14d)

≤ (id− α̂4) ◦ b+ c̄+ σ(||w||) + c2 (5.14e)

= (id− α̂4) ◦ b+ ρ ◦ α̂4(b) (5.14f)

= −(id− ρ) ◦ α̂4(b) + b (5.14g)

≤ b. (5.14h)

This holds for all xk ∈ D ∩ X , w ∈ W . Consequently, the set D is positive invariant. So,
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set:

γ(||wk||) = α−1
1 ◦ α̂

−1
4 ◦ ρ

−1(σ(||w||) + c̄+ c2)

−α−1
1 ◦ α̂

−1
4 ◦ ρ

−1(c̄+ c2) (5.15)

and

c3 = α−1
1 ◦ α̂

−1
4 ◦ ρ

−1(c̄+ c2) (5.16)

so that

γ(||wk||) + c3 = α−1
1 (b) (5.17)

Note here that c3 is a K∞ function of c1 + c2, since c̄ is a K∞ function of c1. Then, for all

xk0 ∈ D, we have:

α1(|xk|) ≤ V (k,wk, x0) ≤ b ∀ k ≥ k0 (5.18)

⇒ |xk| ≤ γ(||wk||) + c3 ∀ k ≥ k0 (5.19)

Now consider xk ∈ X , xk /∈ D. Again, from (5.7b), Lemma 33, and the definition of b:

V (k + 1,wk+1, x0)− V (k,wk, x0)

≤ −α3(|xk|) + σ(||w||) + c2 (5.20a)

≤ −α4(V (k,wk, x0)) + c̄+ σ(||w||) + c2 (5.20b)

≤ −α̂4 ◦ V (k,wk, x0) + c̄+ σ(||w||) + c2 (5.20c)

= −α̂4 ◦ V (k,wk, x0) + ρ ◦ α̂4 ◦ V (k,wk, x0)

+c̄+ σ(||w||) + c2 − ρ ◦ α̂4 ◦ V (k,wk, x0) (5.20d)

≤ −α̂4 ◦ V (k,wk, x0) + ρ ◦ α̂4 ◦ V (k,wk, x0) (5.20e)

= −(id− ρ) ◦ α̂4 ◦ V (k,wk, x0) (5.20f)
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⇒ V (k + 1,wk+1, x0)

≤ (id− (id− ρ) ◦ α̂4) ◦ V (k,wk, x0) (5.20g)

∀ xk /∈ D, xk ∈ X, w ∈ W

Then by Lemma 4.3 of [93], there exists some β̂ ∈ KL such that:

V (k,wk, x0) ≤ β̂(V (0,w0, x0), k) (5.21a)

⇒ |xk| ≤ α−1
1 (β̂(α2(|x0|) + c1, k)) (5.21b)

∀ xk /∈ D, xk ∈ X , w ∈ W

and by Lemma 34, there exists some β ∈ KL and c4 ∈ R+ such that:

|xk| ≤ β(|x0|, k) + c4 (5.22)

∀ xk /∈ D, xk ∈ X , w ∈ W

Note that, by Lemma 34, c4 is a K∞ function of c1. Finally, add (5.22) and (5.19) together to

see that

|xk| ≤ β(|x0|, k) + γ(||w||) + c3 + c4 (5.23)

∀ x0 ∈ X , w ∈ W, k ∈ Z+

so ISpS is satisfied with c = c3 + c4 by Definition 12, and c is a K∞ function of c1 + c2. �

As can be seen, the constants c1, c2 used in the Lyapunov function definition (5.7) relax

the upper bound and the descent conditions of the traditional Lyapunov function used to

enforce the more stringent ISS conditions. Consequently, we highlight that ISS is recovered

for the special case in which c1 = c2 = 0.
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5.4.2 Properties of eNMPC-sc

In this section we discuss properties of the eNMPC-sc formulation, leading up to our main

robustness result. In particular, we will prove that the value function V (k,wk, x0) gen-

erated by the eNMPC-sc controller is a Lyapunov function satisfying the properties of

Theorem 32 and thus the system under eNMPC-sc is ISpS.

Assumption 35. (A) The set W is bounded (i.e., ||w|| is bounded) and contains zero in its interior.

(B) There exists a solution to (5.6) with zN = 0 ∀ x0 ∈ X , w ∈ W, k ∈ Z+ if wk−1 = 0. (C)

The penalty parameter ρ of (5.6) is chosen sufficiently large so that ξss,L, ξss,U , and ξS are zero at

the solution of (5.6) ∀ x0 ∈ X , w ∈ W, k ∈ Z+ if wk−1 = 0. (D) The functions gx(·), gu(·),

Ltr(·, ·), Lec(·, ·), and f(·, ·, ·) are twice continuously differentiable. (E) The set U is convex and

compact. (F) The GSSOSC is always satisfied at the solution of (5.6). (G) There exists α1 ∈ K∞

such that Ltr(x, u) ≥ α1(|x|) for all x ∈ Rnx , u ∈ Unu

Note that Assumption 35G cannot be relaxed to strict dissipativity since using a rotated

version of Ltr in (5.6g) is not necessarily equivalent, in contrast to the regularized case

where stage costs are always considered in the objective and optimizing a dissipative stage

cost is equivalent to optimizing its rotated counterpart.

Lemma 36. Under Assumption 35, there exists a solution to (5.6) with ξS = 0 for all k =

1 . . .K − 1, every x0 ∈ X , and every admissible wk ∈ W if wk−1 = 0.

Proof. Consider the solution to (5.6) computed at k−1, {zk−1
0 , zk−1

1 , . . . , zk−1
N , vk−1

0 , vk−1
1 , . . . , vk−1

N−1},

and assumewk−1 = 0. Then the shifted solution {zk−1
1 , zk−1

2 , . . . , zk−1
N , 0, vk−1

1 , vk−1
2 , . . . , vk−1

N−1, 0}

provides a feasible solution to (5.6) solved at time k, since xk = zk−1
1 . Furthermore, this so-

lution is feasible with ξS = 0 sinceLtr(zk−1
1 , vk−1

1 )+Ltr(zk−1
2 , vk−1

2 )+· · ·+Ltr(zk−1
N−1, v

k−1
N−1)−∑

i∈N L
tr(zk−1

i , vk−1
i ) = −Ltr(xk−1, uk−1). �
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Remark 37. Note that a penalty parameter ρ exists to satisfy Assumption 35 C when the MFCQ

and GSSOSC are satisfied. Choosing ρ larger than the appropriate norm of the multipliers of the so-

lution of problem (5.4) is sufficient to satisfy Assumption 35 C. Whether Assumption 35C holds can

be assessed through off-line simulation of (5.6), which includes checking for finite-time reachability

of xss.

Remark 38. ξS = 0 is only required in the nominal case. In the case with uncertainty, ξS relates

to σ(|wk|) in (5.7b); that is, σ(|wk|) gives an upper bound to ξS . Thus, ξS may be nonzero, but is

bounded because σ(|wk|) and ||w|| are bounded.

Remark 39. Note that xk ∈ X ∀ k = 1 . . .K is only guaranteed if x0 ∈ X, wk = 0 ∀ k =

0 . . .K − 1, a solution always exists to (5.4), and ρ is chosen large enough to force the solutions to

(5.4) and (5.6) to be equivalent.

In order to show that the controller is ISpS, we first show that the Lyapunov function is

uniformly continuous with respect to disturbances.

Lemma 40. Under Assumption 35, the NLP (5.6) satisfies the MFCQ.

Proof. The proof of Lemma 40 is nearly the same as that of Lemma 27, except with an

additional constraint of the following form:

g(z0, v0, z1.v1, . . . , zN−1, vN−1, zN ) ≤ 0 (5.24)

with the linearization

GJz dz +GJv dv ≤ 0 (5.25)

and the matrices

GJz =

[
Gj0z Gj1z . . . G

jN−1
z GjNz

]
(5.26a)
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GJv =

[
Gj0v Gj1v . . . G

jN−1
v 0

]
(5.26b)

and the relaxation at the optimum:

GJz dz +GJv dv − EJ,sdξ,s ≤ 0, dξ,s ≥ 0 (5.27)

which leads to

∇gTJ =



GJz GJv −EJ,s 0

0 0 −I 0

GJx,z 0 0 −EJ

0 0 0 −I

0 GJu,v 0 0


(5.28)

in place of (3.7). Set the search direction qT = [dTz | dTv | dTξ,s | dTξ ], and choose dξ,s as

follows:

EJ,sdξ,s > (GJv −GJzF−1
z Fv)d

0
v (5.29)

and we see that ∇gTJ q < 0 and ∇cT q = 0 in Definition (19). Hence MFCQ is satisfied for

system (5.4.2).

Remark 41. GSSOSC requires that the solution of the NLP satisfies the strong second order con-

ditions for every Lagrange multiplier in the bounded set defined under MFCQ. If this does not hold,

regularization to add positive curvature will be required. This can always be enforced by adding

||y−y∗||2Y to the objective of (2.6) after the KKT point y∗ is found, with matrix Y sufficiently pos-

itive definite [92]. This ensures that (5.6) satisfies GSSOSC and does not change the solution y∗.

Note that the stabilizing constraint of eNMPC-sc can help induce positive curvature if the tracking

stage cost is quadratic.
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5.4.3 ISpS of eNMPC-sc

We now prove our main result: that the dynamic system under the eNMPC-sc controller

is ISpS.

Theorem 42. If Assumptions 2 and 35 hold, there exists α1, α2, α3 ∈ K∞, σ ∈ K, and c1, c2 ∈ R+

such that V (k,wk, x0) satisfies (5.7), and the system under eNMPC-sc is ISpS with respect to

c = αc(û), for some αc ∈ K∞ for all x0 ∈ X ,w ∈ W, k ∈ Z+.

Proof. We assume that Ltr has a K∞ lower bound, so that α1(|x|) ≤ Ltr(x, u), which

gives a lower bound for the sum. Second, since we assume that (5.6g) holds with ξS = 0

in the nominal case, we have that α3(|x|) = δ α1(|x|) in (5.7). To show the upper bound

of V , we must assume uniform continuity of the stage cost Ltr(·, ·) and of the nonlinear

system f(·). This ensures that Ltr(x, u) ≤ σL(|x|+ |u|) and f(x, u) ≤ σf (|x|+ |u|) hold for

σL(·), σf (·) ∈ K. This allows us to establish an upper bound of the constrained sum from

(5.6g) of the form:

∑
i∈N

Ltr(zi, vi)

≤ σL(|xk|+ û) +

N−1∑
i=1

Ltr(zi, vi) (5.30a)

≤ σL(|xk|+ û) + σL(σf (|xk|+ û) + û) (5.30b)

+
N−1∑
i=2

Ltr(zi, vi) (5.30c)

≤ σL(|xk|+ û) + σL(σf (|xk|+ û) + û)

+ σL(σf (σf (|xk|+ û) + û) + û)

+

N−1∑
i=3

Ltr(zi, vi) (5.30d)

=: α(|xk|+ û) (5.30e)
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for some α ∈ K∞. We then have that (5.7a) holds with α2(|xk|) := α(|xk| + û) − α(û) and

c1 := α(û).

Next, by Assumption 35C, ρ is chosen large enough such that (5.6g) satisfies ξS = 0 in

the nominal case. Then, since (5.6) satisfies MFCQ by Lemma 27, and by Assumption 35F

the GSSOSC holds, we have from Lemma 26:

V (k + 1,wk+1, x0)− V (k,wk, x0) =

V (k + 1,wk+1, x0)− V (k + 1, (w0, . . . , wk−1, 0), x0)

+V (k + 1, (w0, . . . , wk−1, 0), x0)− V (k,wk, x0)

≤ −α3(|xk|) + σV (|wk|)

Consequently, (5.7) is satisfied and the system is ISpS with c1 = α(û), where α ∈ K∞, and

c2 = 0. Furthermore, from the proof of Theorem 32 we have that c is a K∞ function of c1.

�

Remark 43. It is important to highlight that there exists an upper bound on c, used in the definition

of ISpS, which depends on the bound û.. From the proof of Theorem 32, it is clear that the constant

c used in the definition of ISpS is a K∞ function of c1 which is in turn a K∞ function of û =

maxu∈U |u|. Consequently, c is a K∞ function of û.

5.4.4 Observations on the Nominal Case

The constant c1 = α(û) (and associated c) used in the proof of Theorem 42 play a critical

role in the theoretical properties of the eNMPC-sc controller and is tightly connected to

weak controllability (see Assumption 1 in [48]). To see the implications of this, we make

the following observations. First note that, since c2 = 0, eNMPC-sc becomes ISS if c1 = 0

holds (which implies that c = 0 holds as well). This is important because, whenever c1 = 0,

we have that asymptotic stability holds in the nominal case, and ISS holds in the case with
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uncertainty. In general, however, we have that c1 > 0 (and thus c > 0) holds and thus

eNMPC-sc is only ISpS and not necessarily asymptotically stable in the nominal case.

The upper bound condition of the cost function (5.30d) directly relates the constant c1

to violation of weak controllability. In particular, c1 > 0 implies that the implicit control

law u(xk) may not satisfy u(0) = 0, as is required for weak controllability, which can be

advantageous in terms of economic performance. If controller (5.6), satisfies Definition 31

with ω = 0 (a non-typical case), then weak controllability can be obtained, since uniform

continuity of the solution also holds. Otherwise, we can still show the following nominal

result.

Assumption 44. (A) wk = 0 ∀ k ∈ Z+ (B) There exists a solution to (5.6) with zN = 0

∀ x0 ∈ X . (C) The penalty parameter ρ of (5.6) is chosen sufficiently large so as to force ξss,L,

ξss,U , and ξS to zero at the solution of (5.6) ∀ k ∈ Z+ (C) The functions gx(·), gu(·), Ltr(·, ·),

Lec(·, ·), and f(·, ·, ·) are twice continuously differentiable. (E) The set U is convex and compact.

(D) There exists α1 ∈ K∞ such that Ltr(x, u) ≥ α1(|x|) for all x ∈ Rnx , u ∈ Unu

Theorem 45. If Assumption 44 holds, then the system under eNMPC-sc is attractive for all x0 ∈

X .

Proof. Take the infinite sum of (5.7b) with σ(|wk|) = 0 (true with no uncertainty) and

c2 = 0 (true for eNMPC-sc in general):

∞∑
k=0

α3(xk) ≤
∞∑
k=0

(V (k,wk, x0)− V (k + 1,wk+1, x0)) (5.31a)

= V (0,w0, x0) ≤ α2(|x0|) + c1. (5.31b)

�

Remark 46. In this work we have exclusively used an endpoint equality constraint. This terminal

constraint is only important to show recursive feasibility in Lemma 36. To that end, another termi-
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nal cost and/or terminal region could also be employed (as will be discussed in Section 5.6, but we

use the endpoint constraint here for simplicity.

5.5 Case Studies

5.5.1 Nonlinear CSTR

For our first example we consider a nonlinear continuously stirred tank reactor (CSTR)

from [48]:

dcA
dt

=
q

V
(cAf − cA)− kcA (5.32a)

dcB
dt

=
q

V
(−cB) + kcA (5.32b)

where cA and cB denote the concentrations of components A and B, respectively, in mol/l.

The manipulated input is q in l/min, the reactor volume is V = 10 l, the rate constant is

k = 1.2 l/(mol · min), and cAf = 1 mol/l is the feed concentration. In addition, we set

variable bounds as 10 ≤ q ≤ 20 and 0.45 ≤ cB ≤ 1 which are softened with slack variables

that are penalized in the objective function in the NLP. The economic stage cost is:

Lec(cA, cB, q) = −q
(

2cB −
1

2

)
(5.33)

The steady state used for the tracking objective is c∗A = 0.5, c∗B = 0.5, q∗ = 12, so Lecss = −6.

We compare the performance of eNMPC-sc with a regularized economic NMPC controller.

Regularization weights for the latter are calculated in [1] and are wA = 1.01, wB = 0.01,

and wq = 1.01 (assuming ω = 1), so the tracking stage cost is:

Ltr(cA, cB, q) = 1.01c2
A + .5c2

B + 12q2 (5.34)

We discretize the system using three point Radau collocation and a finite element length

of 1 min. The penalty parameter is chosen as ρ = 108. We use condition c0
A = .1, c0

B = 1.

We implement the problem in AMPL [94] and solve the NLPs with IPOPT [64].
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First we consider the effect of δ in (5.6g) on the performance of eNMPC-sc, using a hori-

zon of N = 100. To investigate this, we first simulate forward for 5 time steps, then solve

the NLP at the resulting initial condition. This case is repeated for several δ values. The

existence of an economically optimal periodic orbit causes eNMPC-sc to become oscilli-

tory, as shown in Figures 5.1 and 5.2. Results for this are shown in Table 5.1. The sum of

predicted costs shows a monotonic relationship with δ.

Table 5.1: CSTR example, comparison of solutions with varying δ, constant N = 100 and

xk

δ
∑

i∈N L
ec(zi, vi)− Lecss

.99 -28.0709

.9 -28.4348

.7 -28.461

.5 -28.4872

.3 -28.5134

.1 -28.5396

.01 -28.5514

Economic results for the case without uncertainty are shown in the left column of Table

5.2. Economic results for the case with additive state uncertainty wk (with standard devi-

ation of 0.01 and zero mean) are shown in the right column of Table 5.2. We use the same

realization of the uncertainty in every case. Both with and without uncertainty, we con-

sider the tracking case (3.1), the economic case (5.2), the regularization case eNMPC− reg

(5.3) with different fractions of the sufficient weight, and eNMPC-sc (5.6) with different

values of δ (inequality constraints are softened in each formulation with uncertainty). A
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short simulation length ofK = 9 is chosen so that we can focus on the dynamics that occur

before the set-point is reached.

Table 5.2: CSTR example withN = 100, comparing the accumulated

cost
∑K

k=0 L
ec(xk, uk)− Lecss

Case w/o uncertainty w/ uncertainty

Tracking -14.0177 -12.689

eNMPC-reg 100 % -14.3527 -13.0301

75% -14.4694 -13.1488

50% -14.7109 -13.3944

25% -15.5087 -14.2052

Average -14.7604 -13.4446

eNMPC-sc δ = 0.99 -20.8853 -19.3943

0 .9 -20.8774 -19.3459

0 .7 -20.9073 -19.3292

0.5 -20.9122 -19.3692

0.3 -20.9106 -19.3529

0.1 -20.9116 -19.389

0.01 -20.9168 -19.4038

Average -20.9030 -19.3692

Purely economic -21.7259 -20.2366

Similar trends are seen both with and without uncertainty. The cases with regularization

(5.3) have similar cost to the tracking case (3.1), and the cases with a stabilizing constraint

(5.6) have similar cost to the economic case (5.2). Costs roughly decrease with the regu-
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larization weight and with δ, although this relationship is not perfectly monotonic. Even

though we expect that total predicted costs to be monotonic with δ, the sum of imple-

mented costs does not need to be, due to potential local solutions and a finite horizon in

(5.6).

Finally we examine the dynamic behaviors for select cases. We show the eNMPC-sc

case with δ = 0.99, with and without uncertainty in Figures 5.1 and 5.2, respectively. We

include two different horizon lengths. We note that this system has the property that max-

imum economic performance is obtained under a periodic orbit [48], which explains the

oscillatory behavior. The proposed eNMPC-sc controller allows the system to explore that

orbit to gain economic performance but the stabilizing constraint eventually forces it to

converge to the equilibrium point. We note that the system converges to the equilibrium

point in the nominal case and to a neighborhood of the equilibrium point in the robust

case. However, the speed and manner of convergence is not guaranteed. Note that con-

vergence is much faster for the shorter horizon, as (5.6g) is more constraining in this case.

Also, for the case where δ = 0.01 (not shown in figures), convergence takes about 12,000

time steps.
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Figure 5.1: CSTR, eNMPC-sc with δ =

0.99, no uncertainty
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Figure 5.2: CSTR, eNMPC-sc with δ =

0.99 and uncertainty

The stabilizing constraint used in eNMPC-sc has demonstrated a clear economic benefit

for this example. Again, note that this constraint is easy to implement, unlike the regular-

ization weights, which require offline calculations and are overly conservative. Also note

that the economic performance is generally poorer with uncertainty, which commonly oc-

curs in eNMPC. Nevertheless, the eNMPC-sc provides clear benefits here as well.

5.5.2 Large-Scale Distillation System

As a larger computational example, we again consider the distillation system from Section

4.3.3 with model shown in equations (4.19)-(4.26). We use a finite element length of 1

min and N = 25. Each NLP (5.6) has 120, 000 variables, 108, 000 equality constraints, and

14, 000 inequality constraints. The models are implemented in AMPL and solved with

IPOPT.

Finding sufficient regularization weights in this case is much more cumbersome due to

the size of the system. Here, the Hessian of the steady state problem must be found at

many points in the state space. We refer to the regularized case using weights obtained
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from the Gershgorin Circle theorem as the 100% regularization instance and we relaxed

this instance by using smaller percentages. The Gershgorin weights are reported and com-

pared in [1]. We highlight that, in order to rigorously enforce strict dissipativity, the Hes-

sian must be checked at every possible point of operation in the state space, a difficult task

for a problem of this size and complexity. We also define Ltr such that these weights are

on the diagonals of matrices Q and R and Ltr(x, u) = xTQx+ uTRu.

We first compare solution times for the specific cases that eNMPC-sc (5.6) is imple-

mented with δ = 0.01 and of eNMPC-reg (5.3) with 100% of the Gershgorin weight. The

eNMPC-sc problems can be solved in approximately 271 seconds and 188 IPOPT itera-

tions, while eNMPC-reg averages 83 seconds and 70 iterations. This clearly illustrates that

regularization is beneficial for computational performance but sacrifices economic perfor-

mance.

A comparison of accumulated stage costs over ten time steps (
∑K

k=0 L
ec(xk, uk) − Lecss)

from the same initial condition for various cases is shown in the left column of Table 5.3.

Again, we choose a short simulation length of K = 9 to emphasize dynamic performance.

The penalty parameter is chosen as ρ = 104. The steady state cost, Lecss, is −0.223.
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Table 5.3: Distillation example,
∑K

k=0 (Lec(xk, uk)− Lecss)

Case nominal w/ uncertainty

Tracking -20.903 -20.736

eNMPC-reg 100 % -22.665 -21.662

75% -22.675 -21.599

50% -22.676 -21.511

25% -22.658 -21.361

Average -22.668 -21.534

eNMPC-sc, δ = 0.99 -25.876 -24.283

0.9 -28.933 -24.162

0.7 -28.406 -24.947

0.5 -29.701 -24.234

0.3 -27.481 -25.199

0.1 -29.453 -25.656

0.01 -29.693 -24.039

Average -28.506 -24.646

Economic -27.081 -24.479

From the nominal results, it is apparent that eNMPC-sc provides economic benefit over

regularized formulation eNMPC-reg, but the accumulated cost is again not monotonic

with δ, due to a short horizon and local solutions. It is also interesting that reducing the

regularization weight (by a given percentage) does little to improve performance.

We also consider the cases with uncertainty wk in the feed flow rate and composition in

(4.23). We use additive uncertainty with values of wk sampled from a normal distribution.

The disturbance wk has zero mean and standard deviation 0.1 for the feed flow rate and
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0.01 for the mole fractions of A and B. These results are shown in the right column of

Table 5.3, and eNMPC-sc (5.6) again shows a clearly improved economic performance over

eNMPC-reg (5.3). However, economic performance is decreased due to the presence of

disturbances.

5.6 eNMPC-sc with Terminal Constraints

We also note that the economic NMPC formulation shown in Section 5.3 can be extended

to a formulation with terminal constraints, using the quasi-infinite horizon framework

shown here. Then, the NLP solved online becomes:

min
vi

N−1∑
i=0

Lec(zi, vi) (5.35a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (5.35b)

z0 = xk (5.35c)

zi ∈ X, vi ∈ U ∀ i ∈ 0 . . . N − 1 (5.35d)

zN ∈ Xf (5.35e)

N−1∑
i=0

Ltr(zi, vi) + ψ(zN )− V (k − 1,wk−1, x0)

≤ −δ Ltr(xk−1, uk−1) (5.35f)

where δ ∈ (0, 1] is a scalar parameter. After the NLP is solved, we inject the control law

u(xk) = v0 into the system and set

V (k,wk, x0) :=

N−1∑
i=0

Ltr(zki , v
k
i ) + ψ(zkN ), (5.36)

where zki , v
k
i is the solution of (5.4) at time k. We thus note that V (k − 1,wk−1, x0) is the

value function at time k − 1.
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We can also extend the robust reformulation (5.6) of (5.4) to the case with terminal con-

straints:

min
vi

N−1∑
i=0

Lec(zi, vi)

+ ρ

(
N−1∑
i=0

ξxi + ξS + ξN

)
(5.37a)

s.t. zi+1 = f(zi, vi) ∀ i = 0 . . . N − 1 (5.37b)

z0 = xk (5.37c)

gx(zi) ≤ ξxi ∀ i = 0 . . . N − 1 (5.37d)

gu(vi) ≤ 0 ∀ i = 0 . . . N − 1 (5.37e)

|zN | ≤ cf + ξN (5.37f)

N−1∑
i=0

Ltr(zi, vi)− V (k − 1,wk−1, x0)

≤ −δ Ltr(xk−1, uk−1) + ξS (5.37g)

ξxi , ξ
S , ξN ≥ 0 (5.37h)

where ξxi , ξ
S , ξN are slack variables and ρ ∈ R+ is a penalty parameter. For this formu-

lation, we replace Assumption 35 with Assumption 47.

Assumption 47. (A) The set W is bounded (i.e., ||w|| is bounded) and contains zero in its interior.

(B) There exists a solution to (5.37) with zN ∈ Xf ∀ x0 ∈ X , w ∈ W, k ∈ Z+ if wk−1 = 0.

(C) The penalty parameter ρ of (5.37) is chosen sufficiently large so that ξN and ξS are zero at the

solution of (5.6) ∀ x0 ∈ X , w ∈ W, k ∈ Z+ if wk−1 = 0. (D) The functions gx(·), gu(·),

Ltr(·, ·), Lec(·, ·), and f(·, ·, ·) are twice continuously differentiable. (E) The set U is convex and
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compact. (F) The GSSOSC is always satisfied at the solution of (5.37). (G) There exists α1 ∈ K∞

such that Ltr(x, u) ≥ α1(|x|) for all x ∈ Rnx , u ∈ Unu

Then, formulation (5.37) is subject to the same analysis shown in Section 5.4.1, with the

additional modification that recursive feasibility (Lemma 36) relies on the properties of the

terminal controller.

Furthermore, we note that the terminal regions constructed via (4.16) also fulfill the as-

sumptions for economic NMPC with terminal constraints and stability shown via the dis-

sipativity property shown in [95].

5.6.1 Distillation Example

As a larger computational example, we again consider the distillation system from Section

4.3.3. We use a finite element length of 1 min and N = 25. We repeat the simulation

conditions introduced in Section 4.5.2, considering a sequence of setpoint changes both

with and without noise in the feed flow and composition. The setpoints and terminal

conditions introduced in Section 4.5.1 are used again here, with parameter values shown

in Table 4.7. We compare the tracking and economic performances of economic NMPC,

eNMPC-sc with two different values of the tuning parameter δ, economic NMPC with a

regularized objective, and tracking NMPC. These formulations are the same as discussed

previously in Section 5.5.2, except with the addition of terminal constraints (a terminal cost

ψ(zN ) and terminal constraint zN ∈ Xf ) in all cases.

The tracking performances are shown in Figure 5.3 for the nominal case, and Figure

5.4 for the case with uncertainty. First note that the performance of tracking and regular-

ized NMPC are nearly identical, since the regularization case is utilizing sufficiently large

weights to guarantee stability. Next, note that the purely economic case is not stable. Fi-

nally, eNMPC is attractive, but not necessarily stable, i.e. it converges to the steady state,
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even if convergence is slow. Higher values of the parameter δ tend to induce faster con-

vergence. Note that recursive feasibility is not guaranteed if δ > 1, but the attractivity

property holds if the problem is always feasible.

Economic performances are compared in Table 5.4, specifically the cost relative to steady

state summed over the simulation time,
∑K

k=0 (Lec(xk, uk)− Lecss). As can be seen, the same

trends hold regardless of the presence of uncertainty, although the uncertain case tends to

have worse performance overall. The purely economic case has the best performance, al-

though convergence to the steady state is never guaranteed. The tracking and regularized

cases have the worst performance, as they are forced to converge to the steady state rel-

atively aggressively. The cases with a stabilizing constraint have intermediate economic

performance, while still guaranteeing convergence to the steady state in the nominal case.
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Figure 5.3: Distillation with terminal

constraints, nominal case
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Figure 5.4: Distillation with terminal

constraint, w/ noise in feed

5.7 Conclusions

We have established robustness properties for an economic NMPC controller that trades

off convergence rate and economic performance, but does not require strict dissipativity
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Table 5.4: Distillation example with changing steady states,
∑K

k=0 (Lec(xk, uk)− Lecss)

Case Nominal w/ uncertainty

Economic -16.06 -15.87

eNMPC-sc w/ δ = 0.99 -15.93 -15.29

eNMPC-sc w/ δ = 2.5 -15.91 -15.23

Regularized -15.66 -14.90

Tracking -15.67 -15.07

with respect to stage costs used in the objective. In particular, we show that this controller

is input-to-state practically stable under reasonable assumptions. Computational studies

show significantly improved economic performance compared to existing regularization

approaches. Finally, we have shown an extension to allow for the inclusion of terminal

conditions that removes the need for a restrictive endpoint constraint.
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Chapter 6

Adaptive Horizon NMPC

6.1 Introduction

We now consider another major issue in NMPC design, which is the selection of horizon

length. In particular, we note a significant trade-off in this choice. The longer the hori-

zon length, the larger the computational burden of the NLP that is solved online. In this

case, control actions may be delayed, leading to degradation in control performance. The

shorter the horizon, the smaller the region of the state space from which the terminal region

is N -reachable. In this case, the problem solved online may become infeasible. Moreover,

we recognize that this trade-off can vary with the state of the system. Thus, it is desirable

to have a method for updating horizon lengths online.

One method for updating horizon lengths is known as variable horizon MPC [96, 97].

Here, the horizon length is treated as a decision variable in the optimization problem.

However, in the nonlinear case, this leads to solving a mixed-integer nonlinear program

(MINLP) online, which is currently impractical for large systems with significant nonlin-

earities. Furthermore, auto-tuning of the time horizon in the context of adaptive control

has been discussed in [98].

Another approach is what we refer to as adaptive horizon NMPC (AH-NMPC), where

the prediction horizon is updated online based on some rule. A special case of this ap-

proach is shrinking horizon NMPC [99], but in the more general case we allow for an ex-

panding horizon as well as changes in the horizon of multiple step lengths. The methodol-
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ogy shown in [100] is also similar, except that our method does not necessitate knowledge

of the required horizon length at a given time point. Instead, we propose a new method by

which horizon lengths may be chosen in real time based on the current state. Regardless of

how the finite horizon length varies from timepoint to timepoint, the terminal conditions

serve to approximate the infinite horizon problem. To that end, we show a modified form

of the terminal conditions calculated in Chapter 5 that apply to the cases of both increasing

and decreasing horizons.

We also propose a method that utilizes sensitivity updates from sIPOPT [101] in order

to choose a sufficient horizon length in real time. We show that, under reasonable assump-

tions, AH-NMPC is Input-to-State Practically Stable (ISpS). Finally, we demonstrate our

methods on a quad-tank example and a large-scale distillation example.

6.2 Quasi-Infinite Adaptive Horizon NMPC (QIAH-NMPC)

6.2.1 Terminal Region Construction

For the case of adaptive horizons, we slightly modify the terminal region construction

shown in Section 4.2.1. Essentially, the method is the same, except that ρx = ρu = 0, so that

the stage costs of the LQR are not increased relative to the stage costs of the NMPC, as the

conceptual goal is to accurately approximate the objective function of the infinite horizon

problem. In this case, in place of (4.14) we have:

ψ(xk+1)− ψ(xk) (6.1a)

= xTk+1Pxk+1 − xTk Pxk (6.1b)

= (AKxk + φ̄(xk))
TP (AKxk + φ̄(xk))− xTk Pxk (6.1c)
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= xTk (ATKPAK − P )xk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)

TPφ̄(xk) (6.1d)

= −xTkWxk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)

TPφ̄(xk) (6.1e)

= −xTkWxk + 2xTkA
T
KPφ̄(xk) + φ̄(xk)

TPφ̄(xk) (6.1f)

≤ −λminW |xk|2 + 2σ̂
λmaxW

1− σ̂2
M |xk|q+1 +

λmaxW

1− σ̂2
M2|xk|2q ∀ xk ∈ Xf (6.1g)

and the terminal region becomes

|x| ≤ cf

:=

−σ̂ΛP +
√

(σ̂ΛP )2 + λminW ΛP

ΛPM


1

q−1

(6.2)

Thus, the descent property ψ(xk+1)−ψ(xk) ≤ −xTWx under evolution of the nonlinear

dynamics xk+1 = f(xk, uk) is no longer enforced, but rather ψ(xk+1) − ψ(xk) ≤ −α(|xk|)

for some α ∈ K∞. Now, ψ(x) is no longer a strict upper bound of the infinite horizon

cost inside of the terminal region, but rather an approximation. This is done to enable the

results in Lemmas 49 and 50.

6.2.2 Sensitivity Calculations

Here we briefly describe the NLP sensitivity calculations that will be used in the next

section. For sensitivity of the NLP solution, we note that problem (3.1) is parametric in the

initial condition xk, which here will be treated as parameter p, and the (3.1) can be written

as:

min
x

F (x, p), s.t. c(x, p) = 0, g(x, p) + y = 0, y ≥ 0 (6.3)

where x is the vector of all variables in (3.1), and y are slack variables. With interior-

point NLP solvers, inequality constraints of problem (6.3) are handled implicitly by adding

barrier terms to the objective function:
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min F (x, p)− µ
ny∑
j=1

ln(y(j)), (6.4a)

s.t. c(x, p) = 0, g(x, p) + y = 0 (6.4b)

where y(j) denotes the jth component of vector y. Solving (6.4) for the sequence of µl → 0,

with l = 0, 1, 2, . . . ,∞, leads to solution of (6.3). As discussed in [92], convergence of

solutions of (6.4) to (6.3) has been proved under mild second order conditions (GSSOSC)

and constraint qualifications (MFCQ).

For a given barrier parameter value µ, IPOPT ([64]) solves the KKT conditions of barrier

problems (6.4) directly, with an exact Newton method. At the ith Newton iteration, the

search direction is computed by linearization of these conditions, with the so-called KKT

matrix given by:

Ki =



Hi 0 Ac
i Ag

i

Ac
i
T 0 0 0

Ag
i
T I 0 0

0 Vi 0 Yi


(6.5)

where Ac
i := ∇c(xi, p), Ag

i := ∇g(xi, p) and Hi ∈ <n×n is the Hessian of the Lagrange

function. After solving a sequence of barrier problems for µ → 0, the solver returns the

primal-dual solution vector s∗,T (p) = [x∗,T y∗,T , λ∗,T ν∗,T ] for problem (6.3).

For sensitivity of the NLP solution, we note that problem (6.3) is parametric in the data

p and the optimal primal and dual variables can be treated as implicit functions of p. For

a sufficiently small µl, the KKT conditions of the barrier problem (6.4) can be expressed

as the equations ϕ(s∗(p), p) = 0. To compute approximate neighboring solutions around

an already available nominal solution s∗(p0), we apply the implicit function theorem to

ϕ(s∗(p), p) = 0 and obtain:

K∗(p0)
∂s∗

∂p
= − ∂ϕ(s(p), p)

∂p

∣∣∣∣
s∗(p0),p0

(6.6)
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where K∗(p0) is the KKT matrix (6.5) evaluated at s∗(p0), and first-order estimates of neigh-

boring solutions are obtained from:

s∗(p) = s∗(p0) +
∂s∗

∂p
(p− p0) +O(|p− p0|2) (6.7)

s̃(p) = s∗(p0) +
∂s∗

∂p
(p− p0) (6.8)

where s̃(p) is an approximate solution of s∗(p). This solution is implemented automatically

by sIPOPT, which we leverage in the following section. See [92] and [101] for more details

on the sensitivity calculations.

6.2.3 Adaptive Horizon Algorithm

An algorithm for choosing N based on sensitivity calculations is shown in Figure 6.1. The

first step is to determine Ns, a safety factor chosen through simulation, and Nmax, a suffi-

ciently long horizon length that guarantees feasibility of (3.1) and serves as an initialization

for N . We note that Ns also serves as a minimum horizon length. Then, at each time point

k, solve the NMPC problem P(xk) (3.1). Next, solve the sensitivity problem to obtain the

prediction using the successor state xk+1 as a parametric perturbation. We denote this sen-

sitivity problem as Ps(xk+1), which is calculated as in (6.8) by considering P(xk) (3.1) as

being parametric in the initial condition:

s̃(xk+1) = s∗(xk) +
∂s∗(xk)

∂xk
(xk+1 − xk) (6.9)

where s∗(xk) is the optimal primal and dual solution of P(xk) (3.1) calculated at time k

and s̃(xk+1) is a linearized approximation of s∗(xk+1) given by Ps(xk+1) (6.9).

If the state profile from Ps(xk+1) reaches the terminal region in Nk time steps, then we

determine ST , the time step at which the state enters the terminal region. We then set

Nk+1 = ST + Ns, k = k + 1 and proceed to the next NMPC problem. If the state profile
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from Ps(xk+1) does not reach the terminal region in Nk steps, then we set Nk+1 = Nmax

and k = k+ 1, and proceed to the next NMPC problem. In this fashion, the horizon length

is chosen based on a sensitivity prediction plus a safety factor, and Nmax is chosen as a

default in case the terminal region is not reached in Nk steps.

Figure 6.1: Algorithm to Determine Nk

Algorithm 48. Horizon Adaption

1: Determine Nmax, Ns

2: k := 0, N0 := Nmax

3: Solve NMPC problem P (xk) with horizon Nk and obtain xk+1 = f(xk, uk).

4: Use (6.8) to solve the sensitivity problem Ps(xk+1) as an approximation of P (xk+1) with hori-

zon Nk. Obtain zN from solution of Ps(xk+1).

5: if zN ∈ Xf then

6: Determine ST , step at which Xf is reached

7: Nk+1 := ST +Ns

8: else if zN /∈ Xf then

9: Nk+1 := Nmax
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10: end if

11: k := k + 1

12: go to Step 3

We include only one dynamic optimization problem and one sensitivity calculation at

each iteration for the sake of practical online implementation. With this method, we note

that the chosen horizon length is not the minimum required to reach the terminal region,

but rather the number of time steps for the optimum tracking objective. Although this

approach may lead to slightly increased computational costs, it is reasonable to expect

better tracking performance than the minimum horizon length for reachability.

6.3 Properties of QIAH-NMPC

First we establish relationships between the linear and nonlinear systems in Xf . Consider

the cost of the LQR control evaluated for (3.1):

V K
N (x) =

N−1∑
i=0

L(zi,−Kzi) + ψ(zN ) (6.10a)

where zN = 0, zi+1 = Azi +Bvi + φ(zi, vi) ∀ i = 0 . . . N − 1 (6.10b)

Lemma 49. There exists αNL ∈ K∞ such that |V K
N (x)− ψ(x)| ≤ αNL(|x|) ∀x ∈ Xf , N ∈ N .

Proof. First define the state trajectory according to LQR control and linearized dynamics,

zLi+1 = AKz
L
i ∀ i = 0 . . .∞, and the state trajectory according to LQR control and nonlinear

dynamics, zNLi+1 = AKz
NL
i + φ̄K(zNLi ) ∀ i = 0 . . .∞, both with initial condition x ∈ Xf .

The nonlinear trajectory is bounded by |zNLi+1| ≤ ||AK || |zNLi | + M |zNLi |q ≤ C|zNLi | where

C := ||AK ||+Mcq−1
f . Then for state trajectory bounds under linear or nonlinear dynamics
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we have:

|zLi | ≤ ||AK ||i|x| (6.11a)

|zNLi | ≤ Ci|x| (6.11b)

Define the function LK(x) := L(x,−Kx), then we have:

|V K
N (x)− ψ(x)| =

∣∣∣∣∣
N−1∑
i=0

LK(zNLi ) + ψ(zNLN )− ψ(x)

∣∣∣∣∣ (6.12a)

=

∣∣∣∣∣
N−1∑
i=0

[
LK(zNLi )− LK(zLi )

]
+ ψ(zNLN )− ψ(zLN )

∣∣∣∣∣ (6.12b)

≤
N−1∑
i=0

[
LK(zNLi ) + LK(zLi )

]
+ ψ(zNLN ) + ψ(zLN ) (6.12c)

≤
N−1∑
i=0

[
αU (|zNLi |) + αU (|zLi |)

]
+ αU,ψ(|zNLN |) + αU,ψ(|zLN |) (6.12d)

≤
N−1∑
i=0

[
αU (Ci|x|) + αU (||AK ||i|x|)

]
+ αU,ψ(CN |x||) + αU,ψ(||AK ||N |x|) (6.12e)

=: αNL(|x|) (6.12f)

where (6.12b) follows from the identity ψ(x) =
∑N−1

i=0 LK(zLi ) + ψ(zLN ), (6.12d) follows

from Assumption 22(A), and (6.12e) follows from (6.11). Although Lemma 49 only states

existence, αNL could be estimated from a sampling of simulations under LQR control.

Lemma 50. There exists αV ∈ K∞ such that |ψ(x)− VN (x)| ≤ αV (|x|) ∀ x ∈ Xf , N ∈ N

Proof. Consider the following parameterized problem:

V η
N (x, η) = min

N−1∑
i=0

(L(zi, vi) + ρηεi) + ψ(zN ) (6.13a)
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s.t. zi+1 = Azi +Bvi + γi ∀ i = 0 . . . N − 1 (6.13b)

|γi − φ(zi, vi)| ≤ εi, εi ≥ 0 ∀ i = 0 . . . N − 1 (6.13c)

|γi| ≤ η ∀ i = 0 . . . N − 1 (6.13d)

z0 = x (6.13e)

where η, ρ > 0. We use (6.13) to relate problem (3.1) and problem (4.2) via Lemma 50.

Note from (4.2) that V η
N (x, 0) = ψ(x). Also, from weak controllability there exists some

η = αη(|x|) such that V η
N (x, αη(|x|)) = VN (x) from (3.1) when ρ is chosen sufficiently large

so that εi = 0. Thus, (6.13) is parameterized in the evolution of the nonlinearities of the

system. Furthermore, it can be shown that the solution of (6.13) satisfies the Mangasarian-

Fromovitz Constraint Qualification (MFCQ) [84], since any control vi is feasible. Then

V η
N (x, η) is uniformly continuous in η, and there exists αg ∈ K∞ such that |V η

N (x, η) −

V η
N (x, 0)| ≤ αg(η). Thus, |ψ(x) − VN (x)| = |V η

N (x, 0) − V η
N (x, αη(x))| ≤ αg(αη(|x|)) =:

αV (|x|). Therefore, Lemma 50 holds.

Although Lemma 50 only states existence, αV could be estimated from a sampling of

open loop problems (3.1). Note that the necessity of the existence of αV and αNL is the

reason that ψ(x) is chosen to approximate V∞(x) rather than give it a strict upper bound

as in [67] and [68]. If the stage costs in (4.2) were increased so as to enforce ψ(x) ≥ V∞(x),

then Lemmas 49 and 50 may not hold.

6.3.1 Asymptotic Stability of QIAH-NMPC

We next consider the stability of (2.2) under control according to (3.1) with terminal con-

ditions described in Section 4.2, and a horizon length that is updated adaptively and as-

sumed to be feasible. For now, we assume no plant model mismatch, i.e., wk = 0 ∀ k ∈ I+.

Define the bounded set of acceptable horizon lengths N = {N |Ns ≤ N ≤ Nmax, N ∈ I+},
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and the subset of horizon lengths that define feasible problems (3.1) at time k that we

denote as Nk ⊂ N . Furthermore, define some process (e.g. Figure 6.1) that determines

horizon lengths H : Rn ×N × Rn → N so that Nk+1 = H(xk, Nk, xk+1) ∈ Nk+1.

Assumption 51. Problem (3.1) at time k is always feasible with Nk = Nmax. Furthermore, if

problem (3.1) at time k with xk andNk is feasible, then so is problem (3.1) solved at time k+1 with

xk+1 and Nk+1 = H(xk, Nk, xk+1). That is, H(xk, Nk, xk+1) ∈ Nk+1 ∀xk, xk+1 ∈ X , Nk ∈

Nk.

Note that, for our particular case, Assumption 51 is enforced by Algorithm 48 and

sIPOPT. However, for the sake of the proceeding theoretical results, we consider any H

that provides feasible horizon lengths.

Assumption 52. There exists a value of the parameter Ns such that the solution of (3.1) with

horizon Nk ≥ Ns satisfies

αL(|xk|)− αNL(|zNk|k |) ≥ α3(|xk|) if Nk+1 ≥ Nk (6.14a)

αL(|xk|)− αV (|zNk+1+1|k |) ≥ α3(|xk|) if Nk+1 < Nk (6.14b)

when wk = 0 for some α3 ∈ K∞, where Nk+1 = H(xk, Nk, xk+1), αL satisfies Assumption

22(A), and αNL, αV satisfy Lemmas 49 and 50, respectively.

Essentially, this condition means that costs due to nonlinear effects in the terminal region

must be small compared to the stage cost of the initial condition, and therefore (3.1) is a

good approximation of the infinite horizon problem. Note that, in the case of a lengthening

horizon (Nk+1 > Nk), choosing ψ(x) ≥ V∞(x) ∀ x ∈ Xf (as in [67] and [68]) would also

suffice. However, we instead employ Lemma 52 so that the horizon may be lengthened or

shortened freely.

Condition (6.14) may need to be checked through simulation and enforced by selection

of Ns. We recognize that a value of Ns that rigorously guarantees (6.14) may be difficult
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or impossible to find. However, in the case of our examples, it is straightforward to find a

value that leads to satisfactory simulation results.

We now show that AH-NMPC is asymptotically stable.

Theorem 53. Under Assumptions 2, 22, 51, and 6.14, there exist α1, α1, α3 ∈ K∞ with wk =

0 ∀ k ∈ I+ such that:

α1(|xk|) ≤ VNk
(xk) ≤ α2(|xk|) (6.15a)

VH(xk,Nk,xk+1)(xk+1)− VNk
(xk) ≤ −α3(|xk|) (6.15b)

∀ xk ∈ X , Nk ∈ Nk

and asymptotic stability holds.

Proof. The inequalities (6.15a) are satisfied by the form of the objective function and

weak controllability. The descent inequality (6.15b) is not as simple in the case of a vari-

able horizon length. We consider two cases in which the horizon increases or decreases.

Increasing horizon, Nk+1 ≥ Nk

In the case of an increasing horizon we define the initialization for (3.1) solved at time

k + 1 as the following:

v̂i|k+1 =


vi+1|k ∀ i = 0 . . . Nk − 2

−Kzi ∀ i = Nk − 1 . . . Nk+1 − 1

(6.16)

ẑ0|k+1 = z1|k (6.17a)

ẑi+1|k+1 = f(ẑi|k, v̂i|k) ∀ i = 0 . . . Nk+1 (6.17b)

CHAPTER 6. ADAPTIVE HORIZON NMPC

106



6.3 PROPERTIES OF QIAH-NMPC

with the value function V̂Nk+1
(xk+1). Then the descent inequality of the Lyapunov func-

tion is given as follows:

VNk+1
(xk+1)− VNk

(xk) (6.18a)

≤ V̂Nk+1
(xk+1)− VNk

(xk) (6.18b)

=

Nk+1−1∑
i=0

L(ẑi|k+1, v̂i|k+1) + ψ(ẑNk+1|k+1)

−
Nk−1∑
i=0

L(zi|k, vi|k)− ψ(zNk|k) (6.18c)

= −L(xk, uk)

+

Nk−2∑
i=0

(
L(ẑi|k+1, v̂i|k+1)− L(zi+1|k, vi+1|k)

)
+

Nk+1−1∑
i=Nk−1

L(ẑi|k+1, v̂i|k+1) + ψ(ẑNk+1|k+1)− ψ(zNk|k) (6.18d)

= −L(xk, uk) +

Nk+1−1∑
i=Nk−1

L(ẑi|k+1, v̂i|k+1)

+ ψ(ẑNk+1|k+1)− ψ(zNk|k) (6.18e)

= −L(xk, uk) + V K
Nk+1−Nk+1

(zNk|k)− ψ(zNk|k) (6.18f)

≤ −αL(|xk|) + αNL(|zNk|k|) (6.18g)

≤ −α3(|xk|) (6.18h)

where (6.18g) follows from Lemma 49 and (6.18h) follows from (6.14a).

Decreasing horizon, Nk+1 < Nk

In the case of a decreasing horizon we define the initialization for (3.1) solved at time
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k + 1 as the following:

v̂i|k+1 = vi+1|k ∀ i = 0 . . . Nk+1 − 1, (6.19)

again with the state initialization given by (6.17) and the value function denoted as

V̂Nk+1
(xk+1). Then the descent inequality of the Lyapunov function is given as follows:

VNk+1
(xk+1)− VNk

(xk) (6.20a)

≤ V̂Nk+1
(xk+1)− VNk

(xk) (6.20b)

=

Nk+1−1∑
i=0

L(ẑi|k+1, v̂i|k+1) + ψ(ẑNk+1|k+1)

−
Nk−1∑
i=0

L(zi|k, vi|k)− ψ(zNk|k) (6.20c)

= −L(xk, uk) +

Nk+1−1∑
i=0

(
L(ẑi|k+1, v̂i|k+1)− L(zi+1|k, vi+1|k)

)
+ ψ(ẑNk+1|k+1)−

Nk−1∑
i=Nk+1+1

L(zi|k, vi|k)− ψ(zNk|k) (6.20d)

= −L(xk, uk) + ψ(ẑNk+1|k+1)

−
Nk−1∑

i=Nk+1+1

L(zi|k, vi|k)− ψ(zNk|k) (6.20e)

= −L(xk, uk) + ψ(zNk+1+1|k)

− VNk−Nk+1−1(zNk+1+1|k) (6.20f)

≤ −αL(|xk|) + αV (|zNk+1+1|k|) (6.20g)

≤ −α3(|xk|) (6.20h)

where we use ẑNk+1|k+1 = zNk+1+1|k in (6.20f), (6.20g) follows from Lemma 50, and

(6.20h) follows from (6.14b).
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Thus VN (x) satisfies (6.15), and QIAH-NMPC is asymptotically stable. .

6.3.2 Robust Stability

We now relax the assumption that wk = 0 ∀ k ∈ I+, and instead assume that wk is

bounded. Consider a robust reformulation of (3.1):

V r
N (x) = min

N−1∑
i=0

L(zi, vi) + ψ(zN ) + ρεf (6.21a)

s.t. zi+1 = Azi +Bvi + φ(zi, vi) ∀ i = 0 . . . N − 1 (6.21b)

vi ∈ U ∀ i = 0 . . . N − 1 (6.21c)

z0 = x (6.21d)

|zN | ≤ cf + εf , εf ≥ 0 (6.21e)

Assumption 54. (A) The parameter ρ is chosen large enough so as to force the solution of V r
N (x)

(6.21) to that of VN (x) (3.1) ∀ x ∈ X , N ∈ Nk. (B) (6.21) satisfies the General Strong Second

Order Sufficient Condition (GSSOSC)

Note that GSSOSC is easily enforced by choosing L(zi, vi) = zTi Qzi + vTi Rvi with Q and

R large enough.

Lemma 55. Under Assumption 54, the robust reformulation (6.21) satisfies the Mangasarian-

Fromowitz Constraint Qualification and the optimal value function V r
N (x) of (6.21) is uniformly

continuous.

See [92] for proof of Lemma 55.
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Remark 56. Note that a penalty parameter ρ exists to satisfy Assumption 54 when the MFCQ and

GSSOSC are satisfied. Choosing ρ larger than the appropriate norm of the multipliers of the solution

of problem (3.1) is sufficient to satisfy Assumption 54. Furthermore, it is typically possible to

conservatively overestimate a sufficient value for ρ without significantly affecting the performance

of the NMPC.

Lemma 57. There exists c ∈ R+ such that |V∞(xk)− VN (xk)| ≤ c ∀ N ∈ Nk, x ∈ X .

Proof. Consider a parameterized problem similar to that used to (6.13):

V η
N,∞(x, η) = min

∞∑
i=0

L(zi, vi) + ρη
∞∑
i=N

εi (6.22a)

s.t. zi+1 = f(zi, vi) ∀i = 0 . . . N − 1 (6.22b)

zi+1 = Azi +Bvi + γi ∀ i = N . . .∞ (6.22c)

|γi − φ(zi, vi)| ≤ εi, εi ≥ 0 ∀ i = N . . .∞ (6.22d)

|γi| ≤ η ∀ i = N . . .∞ (6.22e)

z0 = x (6.22f)

where ρ > 0 is chosen sufficiently large. Note that V η
N,∞(x, 0) = VN (x) and V η

N,∞(x, αη(|x|)) =

V∞(x) for someαη ∈ K∞ large enough. Furthermore, since (6.22) satisfies MFCQ, V η
N,∞(x, η)

is uniformly continuous in η, and there exists some α∞ ∈ K∞ such that |V∞(x)− VN (x)| ≤

α∞(|x|). Thus, c exists since X is bounded, and we can see that the size of c depends on

αη, which bounds the nonlinear effects in the terminal region.

Again, although Lemma 57 only states existence, c could be estimated from a sampling

of open loop problems (3.1) in the terminal region.

Theorem 58. Under Assumptions 2, 22, 51, 52, and 54, adaptive horizon NMPC with control

uk determined by (6.21) is input-to-state practically stable (ISpS) for all x0 ∈ X with constant

c := 2cr from Lemma 57.
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Proof. Define the true successor horizon length Nk+1 := H(xk, Nk, f(xk, uk, wk), and the

successor horizon length in the case of no plant-model mismatch,N ′k+1 := H(xk, Nk, f(xk, uk, 0)).

Then we have:

V r
Nk+1

(xk+1)− V r
Nk

(xk) (6.23a)

= V r
Nk+1

(fp(xk, uk, wk))− V∞(fp(xk, uk, wk))

+ V∞(fp(xk, uk, wk))− V∞(fp(xk, uk, 0))

+ V∞(fp(xk, uk, 0))− V r
N ′k+1

(fp(xk, uk, 0))

+ V r
N ′k+1

(fp(xk, uk, 0))− V r
Nk

(xk) (6.23b)

≤ |V r
Nk+1

(fp(xk, uk, wk))− V∞(fp(xk, uk, wk))|

+ |V∞(fp(xk, uk, wk))− V∞(fp(xk, uk, 0))|

+ |V∞(fp(xk, uk, 0))− V r
N ′k+1

(fp(xk, uk, 0))|

+ V r
N ′k+1

(fp(xk, uk, 0))− V r
Nk

(xk) (6.23c)

≤ −α3(|xk|) + σ(|w|) + c (6.23d)

where (6.23b) follows from addition and subtraction of V r
N ′k+1

(fp(xk, uk, 0))+V∞(fp(xk, uk, wk))+

V∞(fp(xk, uk, 0)), and (6.23d) follows from Lemma 57, Assumption 1, and Theorem 53.

Thus V r
Nk

(xk) satisfies Definition 5.7, and (2.1) is ISpS by Theorem 11.

6.4 Reformulation for State Constraints

Thus far, we have ignored state constraints other than the terminal constraint for simplicity

of presentation. Since the examples considered in this work include state constraints, we

may reformulate as in [92], where these constraints are softened with an auxiliary variable

penalized in the objective, and the problem solved online becomes (6.24):
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V r
N (x) = min

N−1∑
i=0

L(zi, vi) + ψ(zN )

+ρ

(
N−1∑
i=0

(
εupi + εloi

)
+ εf

)
(6.24a)

s.t. zi+1 = Azi +Bvi + φ(zi, vi) ∀ i = 0 . . . N − 1 (6.24b)

zi ≤ zup + εupi ∀ i = 0 . . . N − 1 (6.24c)

zi ≥ zlo − εloi ∀ i = 0 . . . N − 1 (6.24d)

vi ∈ U ∀ i = 0 . . . N − 1 (6.24e)

z0 = x (6.24f)

|zN | ≤ cf + εf (6.24g)

εupi , ε
lo
i , εf ≥ 0 (6.24h)

Although this formulation does not guarantee constraint satisfaction in the closed loop,

it does satisfy the Mangasarian-Fromovitz Constraint Qualification, and the continuity

property in Lemma 55 is preserved, as shown in [92].

6.5 Quad Tank Example

We consider the experimental quad tank system from [3] described by the following equa-

tions, ignoring state constraints for this work:

ẋ1 = − a1

A1

√
2gx1 +

a3

A1

√
2gx3 +

γ1

A1
u1 (6.25a)

ẋ2 = − a2

A2

√
2gx2 +

a4

A2

√
2gx4 +

γ2

A2
u2 (6.25b)
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ẋ3 = − a3

A3

√
2gx3 +

(1− γ2)

A3
u2 (6.25c)

ẋ4 = − a4

A4

√
2gx4 +

(1− γ1)

A4
u1 (6.25d)

−43.4 ≤ u1 ≤ 16.6 (6.25e)

−35.4 ≤ u2 ≤ 24.6 (6.25f)

x ≥ 0 (6.25g)

xss = [14, 14, 14.2, 21.3]T (6.25h)

The plant schematic is shown in Figure 6.2. The valve parameters are held constant at

γ1 = γ2 = 0.4. We discretize the system with sampling time h = 10.

6.5.1 Terminal Region Calculations

The LQR parameters are shown in Table 6.1. We then use these parameters to define the

LQR, which is then used to simulate the system and find the upper bound for φ. This

is done by simulating one step forward from many initial conditions and subtracting the

linear part of the system. The results for 10,000 such simulations are shown in Figure 6.3,

and the bound parameters are shown in Table 6.1. The terminal region is then found from

(6.2). In this case the terminal region is given by |zN | ≤ cf = 28.1, and we confirm that

the control constraints are satisfied for u = −Kx in this region. This region has a volume

1
2π

2c4
f = 3.15 × 106, which is significantly larger than the region of volume 3 × 104 given

in [3] using the method of [44]. We attribute the improvement in our method to a more

accurate bound on nonlinearities (4.3), although the original calculation was done for a

continuous time system and is therefore not a direct comparison.
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Table 6.1: Example parameters and results

h Q R M q cf

Quad tank 10 1.5I4 I2 0.005 2.1 28.3

Figure 6.2: Quad Tank Schematic [3]
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Figure 6.3: Quad Tank, nonlinearity bound

6.5.2 Nominal Results

We have implemented both standard and adaptive horizon NMPC for (6.25) using IPOPT

on an Intel i7-4770 3.4 GHz CPU. For standard NMPC, we set N = 25, and for AH-NMPC

we set Nmax = 25, Ns = 5. Note that Ns was chosen through simulation trial and error to

ensure that (6.14) holds. Also, sIPOPT is used with the initial condition as the sensitivity

parameter p for updated NMPC calculations. However, because our computed terminal

region is so large, we artificially reduce it to |zN | ≤ 1 in order to more adequately test the

adaptive horizon algorithm. Also, in order to simulate a disturbance for which the sensi-

tivity prediction is infeasible, we set the states to large predefined values at k = 0, 50, 100.

The norm of the state trajectories over time is shown in Figure 6.4. The tracking behaviors
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Table 6.2: Predefined state values

k x1 x2 x3 x4

0 40 40 0 0

50 40 0 40 0

100 40 0 0 40

of standard NMPC and AH-NMPC are nearly identical.

The difference between the two methods is in the horizon lengths and solve times,

shown in Figures 6.6 and 6.7, respectively. The standard NMPC case has a constant hori-

zon length and a higher average solve time. For the adaptive horizon case, under normal

process operation, the horizon is updated according to the sensitivity predictions. The

horizon length tends to decrease as the system approaches the steady state, leading to

faster average solution times. In the case of constant horizon NMPC, the average solve

time is 0.0115s, while the average solve time in the case of AH-NMPC is 0.0062s, which

shows a decrease of 46%. However, when the sensitivity prediction is infeasible (zN /∈ Xf )

due to a large disturbance, the algorithm detects this and defaults to Nk = Nmax, which

guarantees feasibility of (3.1) for all xk ∈ X . Thus, the horizon can be updated adaptively

under normal conditions, allowing for faster average solve times, but still retains robust-

ness in the case of large disturbances.
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6.5.3 Results with Uncertainty

Next we repeat the same simulation, but with additive state noise for each state with mean

of zero and variance of 1. The results show similar trends in this case, while retaining

robustness with noise. Results are shown in Figures 6.8 - 6.11. As can be seen, Algorithm
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48 successfully determines feasible horizon lengths even in the case of a noisy process.
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The summed tracking costs for each case are summarized in Table 6.3. These results

again show that NMPC and AH-NMPC are nearly identical in terms of tracking perfor-

mance. The average computational time in this case is 0.0129s for NMPC and 0.0087s for

AH-NMPC, which shows a 33% decrease. Thus, the computational benefits of a shorter
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Table 6.3: Quad tank summed tracking costs
∑K−1

k=0 xTkQxk + uTkRuk

Nominal w/ noise

NMPC 5.468 · 104 5.9644 · 104

AH-NMPC 5.468 · 104 5.9645 · 104

horizon are obtained when possible, without loss of robustness (since all problems are

feasible) or significant degradation of tracking performance.

6.6 Distillation Example

As a larger computational example, we again consider the distillation system from Section

4.3.3 with model shown in equations (4.19)-(4.26).

We discretize the DAE system using three point Radau collocation, and we use a finite

element length of 1 min. The problem size, however, is variable. For standard NMPC we

set N = 25, and each NLP has 120,000 variables and constraints. For AH-NMPC we set

Nmax = 25, Ns = 5, and each NLP varies from 120,000 to 24,000 variables and constraints.

Note that Ns was chosen through simulation trial and error to ensure Assumption 6.14.

This leads to large differences in solve time, as will be shown. The models are implemented

in AMPL and solved with IPOPT on an Intel i7-4770 3.4 GHz CPU. Also, sIPOPT is used

with the initial condition as the sensitivity parameter for updated NMPC calculations.

6.6.1 Terminal Region Calculations

We simulate multiple setpoint transitions, with setpoints calculated from the economic

steady state problem for differing nominal feed compositions. The nonlinearity bound,
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Table 6.4: Terminal Region Results

Setpt # Feed Comp σmaxAK
λmaxW λminW cf cu

1 0.4,0.2,0.4 0.9096 24.6187 10 0.43 0.41

2 0.4,0.4,0.2 0.9137 27.9409 10 0.36 0.37

3 0.2,0.4,0.4 0.898 24.3761 10 0.51 0.38

terminal cost, and terminal region must then be calculated for each setpoint at minimum

economic cost. This is the cost of feed and energy to the reboilers minus the cost of the

products, Lec = pF ·F1 + pV (VB̄,1 +VB̄,2)− pA ·D1− pB ·D2− pC ·B2, where pF = $1/mol

is the price of feed, pi for i = A,B,C is the price of component i with pA = $1/mol,

pB = $2/mol, and pC = $1/mol, pV = $0.008/mol is the price per mole vaporized in the

reboilers, and the indices represent the first or second column.

For the cost matrices of the LQR (and for NMPC) we use Q = 10I246 and R = I8, and

the terminal region is calculated as in (6.2). The nonlinear bound is found to be the same

in all three cases, with q = 1.8 and M = 0.0743 and the nonlinearity bound data being

nearly identical to that shown in Figure 4.10 in Section 4.3.3. The differences are in the

LQR control computed from the linearization at each setpoint, and the region which sat-

isfies control constraints |zN | ≤ cu, where cu is chosen to be the largest value that ensures

ensure −KzN ∈ U. For this example, we only consider the lower bounds of zero for each

control. A summary of the terminal region calculations for each setpoint for different feed

compositions is shown in Table 6.4.
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6.6.2 Nominal Results

First we consider a nominal simulation (i.e., no noise). Setpoints are changed at k = 50 and

k = 100, and have the order corresponding to feed compositions shown in Table 6.4. In

Figure 6.12, the distance to the setpoint |xk−xss| is plotted over time, for both the standard

NMPC and adaptive horizon NMPC cases, with the terminal region plotted for reference.

As seen, the tracking performances are nearly the same. This can also be seen in Figure

6.13, where the control deviation |uk − uss| is plotted over time for both cases.
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Figure 6.12: Nominal distillation, Norm
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The horizon lengths for each problem solved are shown in Figure 6.14. Standard NMPC

has a constant horizon length of N = 25 for the entire simulation. However, adaptive

horizon NMPC utilizes a horizon length that changes with time accord to predictions from

sIPOPT. The initial horizon length N0 is set to Nmax = 25, and then the horizon is allowed

to adapt over time. At times k = 50 and k = 100, the horizon lengths are also set to

Nk = 25 since the sensitivity prediction is infeasible, as per Algorithm 48. As seen in the

figure, the horizons shorten over time as the setpoint is approached, until the lower bound

of Ns = 5 is reached. This leads to a large difference in solve times, which is shown in
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Figure 6.15. The standard NMPC has an average solve time of 103.7s, and this does not

change much with the initial condition. However, AH-NMPC only has long solution times

at the beginning of transitions, with a worst-case time of 129.6s. However, the average

solve time is 17.4s. Solution times are much faster when the system is near the setpoint,

because the horizon length and, therefore, the size of the NLP, is smaller.
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6.6.3 Results with Uncertainty

Next, we repeat the same simulations, but with normally distributed uncertainty in the

feed flow F with standard deviation 1.41 and composition zF with standard deviation 0.03.

The norms of the state and control actions over time are shown in Figures 6.16 and 6.17,

respectively. The behaviors of AH-NMPC and NMPC are very similar here, although the

difference is larger than in the nominal case. The horizon lengths are shown in Figure 6.18

and are nearly the same as in the nominal case, showing that Ns = 5 provides a reasonable

degree of robustness, as every problem is feasible. The solve times are shown in Figure

6.19, and a significant improvement in solve time is seen here as well. The average solve

time for NMPC is 97.3s, while the average solve time for AH-NMPC is 16.5s. The results
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here show roughly the same behaviors as in the nominal case, but with additional noise in

the trajectory, as is expected from ISpS.
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Figure 6.16: Distillation w/ noise, Norm
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The summed tracking costs for each case are summarized in Table 6.5. Again, these

results show that NMPC and AH-NMPC are nearly identical in terms of tracking perfor-

mance.

CHAPTER 6. ADAPTIVE HORIZON NMPC

122



6.7 CONCLUSIONS

Table 6.5: Distillation summed tracking costs
∑K−1

k=0 xTkQxk + uTkRuk

Nominal w/ noise

NMPC 148.86 170.70

AH-NMPC 149.06 183.51

6.7 Conclusions

This chapter has presented an online method for updating prediction horizon lengths

adaptively, via a framework that retains stability properties of the NMPC under assump-

tions of the approximation of the infinite horizon NMPC problem. Furthermore, we show

robust stability properties via reformulation of the NLP. Finally, we demonstrate signifi-

cant performance improvements on two computational examples. Simulation results re-

veal that the proposed approach is able to achieve significant reduction in the average

computation time without loss in performance compared to fixed horizon NMPC, while

retaining robustness and feasibility of the optimization problems solved online. Possible

future extensions to this work will be discussed in the conclusion of this thesis.
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Chapter 7

Conclusions

7.1 Summary and Contributions

This thesis has examined all components of the NMPC problem and proposed practical

improvements with theoretical justification that focus on extending the applicability of

NMPC to larger and more complex systems. Further, control theory and optimization

theory are integrated such that they may work together in order to further the technology

of NMPC.

Chapter 1 gives the background and context of process control in the chemical industry.

The state-of-the-art in model predictive control is discussed, and challenges to the tech-

nology are explained. Chapter 2 presents the basic formulations and results for NMPC.

Further, the basics of Lyapunov stability theory and nonlinear programming properties

that will be leveraged later are defined.

In Chapter 3, robustness issues caused by state-dependent constraints are addressed via

robust reformulations of the NLP solved online. This may apply to path constraints, termi-

nal constraints, or Lyapunov stabilizing constraints. Although constraint satisfaction is not

guaranteed with a robust reformulation, this method is significantly easier to implement

than other forms of robust NMPC in the literature. The robustness of the NMPC is proved

by connecting the properties of the NLP solved online to the continuity of the Lyapunov

function. This framework is shown to be easily applied even in the case of more spe-

cialized NMPC formulations shown later in the thesis. Further, a method for calculating
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predictive bounds on robustness that can apply to large systems is shown. This method

is based on finding bounds on comparison functions used to prove ISS via simulations,

and this is demonstrated on two computational examples from the literature. The major

contributions of this chapter are listed as follows:

• Proposed a framework for reformulating NMPC in order to ensure robustness

• Analyzed the NLP properties of terminal region / terminal cost tracking NMPC with

a robust reformulation

• Proposed a method for calculating predictive robustness bounds for NMPC

• Applied robustness bound calculations to two examples

In Chapter 4, a scalable method of calculating terminal regions and costs for NMPC stabi-

lization is shown. This method is based on the quasi-infinite horizon framework in which

terminal conditions are designed to approximate the infinite horizon problem. The ex-

tension that allows for application to large systems concerns a method for bounding the

nonlinear effects of the system via a method utilizing simulations under LQR control. This

allows terminal regions and costs to be accurately calculated for larger systems than previ-

ously possible, and this eliminates the restrictiveness of endpoint constrains for these sys-

tems, while still ensuring the stability properties afford by conditions that are much more

difficult to check. Further, a method is shown for updating terminal conditions online in

the case of changing steady states. Terminal condition calculations are demonstrated on

examples from the literature, and simulation results are also shown. The major contribu-

tions of this chapter are listed as follows:

• Proposed a method for bounding nonlinear system effects that allows calculation of

terminal conditions for large-scale systems

• Proposed a procedure for updating terminal conditions online that retains stability

properties
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• Demonstrated terminal region calculations on three examples from literature, includ-

ing a large-scale distillation system

• Showed through simulations that terminal condition calculations may allow for NMPC

applications with shorter horizons

In Chapter 5, economic objective functions are addressed via a stabilizing constraint that

ensures stability properties and is easily scalable. This formulation is contrasted with for-

mulations involving objective regularization to ensure stability. The computational burden

and conservativeness of the regularization-based approach is avoided, and a connection is

drawn to multi-objective optimization in order to provide the intuition of the stabilizing

constraint. A robust reformulation is applied to this problem, and softening the stabilizing

constraint is justified. Constraint qualification of the NLP with a robust reformulation is

proved, and both nominal and robust stability properties are analyzed. Furthermore, and

extension is proposed to allow for eNMPC-sc with terminal regions and costs. The perfor-

mance of this controller is demonstrated on two process examples from the literature. The

major contributions of this chapter are listed as follows:

• Proposed an economic NMPC formulation with a stabilizing constraint (eNMPC-sc)

• Proved attractivity in eNMPC-sc in the nominal case

• Analyzed the NLP properties of a robust reformulation of eNMPC-sc

• Proved ISpS of eNMPC-sc with a robust reformulation

• Proposed an extension to allow for the inclusion of terminal regions and costs

• Demonstrated eNMPC-sc on a CSTR and a large-scale distillation system

In Chapter 6, a method for adapting horizon lengths online is detailed. By this approach,

it is possible to have both the benefit of fast NMPC solutions with short horizons when pos-

sible and the robustness of long horizons when necessary. Terminal regions are found to
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apply for the case of changing horizons, and we propose a method for updating horizon

lengths online via sIPOPT. This is done by analyzing the behavior of the sensitivity based

solutions in order to find a horizon length that is sufficient for reachability. We analyze the

nominal behavior of this problem, as well as the properties of the robust reformulation un-

der uncertainty. The theoretical results rely on proving fundamental relationships between

the LQR, finite horizon, and infinite horizon problems. Computational results are shown

for two examples from the literature. Furthermore, a direct extension to this project will

be proposed in the following section. The major contributions of this chapter are listed as

follows:

• Proposed a framework for allowing NMPC horizon lengths to adapt online called

adaptive horizon NMPC (AH-NMPC)

• Proposed a modification to previously shown terminal condition construction that

allows application to changing horizon lengths

• Proposed a method for finding sufficient horizon lengths online based on NLP sen-

sitivity calculations

• Proved nominal stability of AH-NMPC

• Proved ISpS of AH-NMPC with a robust reformulation

• Demonstrated AH-NMPC on a quad tank system and a large-scale distillation sys-

tem, both of which show robustness and significant reduction in computational time

The summation of this work represents a concerted effort to provide better strategies

for implementing NMPC so that the benefits of nonlinear dynamic optimization may be

obtained in more real-world applications.
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7.2 Recommendations for Future Work

Here we discuss recommendations for future work in this area. The first is a direct exten-

sion to the results of this thesis, and the second is a more general direction for the field to

take that represents a significant departure from previous work.

7.2.1 FASt-NMPC

The main immediate and obvious extension to the work in this thesis would be to fully

integrate the adaptive horizon developments of Chapter 6 with advanced-step NMPC (as-

NMPC) [27] and advanced-multi-step NMPC (amsNMPC) [26]. In asNMPC, a sensitivity

update is found at time k for the NLP solve begun at time k − 1 so that a near-optimal

control can be implemented without delay. In amsNMPC, this concept is generalized

so that a given NLP may take several time steps to solve. In the serial case, multiple

sensitivity solutions based on the same NLP will be implemented across multiple time

steps. In the parallel case, multiple NLPs are solved in parallel on multiple processors.

Integration with adaptive horizons could take the form of a controller that automatically

switches between NMPC, asNMPC, and amsNMPC , as horizon lengths adapt and solve

times change. We term this as flexible-advanced-step NMPC, or FASt-NMPC. Under this

framework, the NMPC scheme will change based on the solve time of the current problem

and user-defined bounds on control action delay and number of problems to be solved in

background. A simple example of this would be to alternate between NMPC and asNMPC

based on a threshold for solve time. If the NMPC solve time is less than the threshold, then

implement the NMPC solution. If the NMPC solve time exceeds the threshold, then imple-

ment the advanced-step solution. In this fashion, the exact NLP solutions are used when

they are fast enough, and advanced-step solutions are implemented when the NLP solve
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is too slow. This could be further extended to include transitions to amsNMPC if the NLP

solve time exceeds a full time step. This would allow for near-optimal solutions with a

bounded control action delay for systems of arbitrary size. The stability analysis in this

case becomes very complex, but, conceptually speaking, FASt-NMPC should inherit the

stability properties of amsNMPC in the worst case.

7.2.2 Terminal Conditions for MPC with discrete variables

Another important direction for MPC research is that of problems with discrete variables,

including scheduling problems [85, 102] or process control problems with discrete actua-

tors [103, 104]. This represents a major generalization of MPC theory, and could lead to

applications to many more types of problems, including those at significantly longer time

scales. However, there are significant difficulties in this pursuit. Particularly, the concept of

terminal conditions is much less clear in this context. In principle, the analysis in this case

would roughly follow that shown in Chapter 5, however, LQR does not apply to the case

with discrete variables unless heavy assumptions are made. Furthermore, the concept of a

steady-state may not even apply to the case of a scheduling problem. Therefore, defining

more general terminal constraints for these types of problems will require investigating

deep connections between control theory and scheduling or supply chain optimization

theory. It is likely that any developments in this area will be very case-dependent, with

particular results for systems that admit a periodic steady-state, or systems that admit cer-

tain heuristic policies that are positive invariant for some region of the state space. Even

if results in this vein are found to hold in the nominal case, the robustness of such a con-

troller is not clear. In particular, the continuity properties that are typically leveraged to

show robust stability properties do not hold in the case with discrete variables. The typical

procedure for showing robust stability employed in this thesis only holds for problems
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with discrete variables if it can be assumed that the discrete variables are held constant

inside of the robustly positive invariant region defined by the stability property, which is

a large assumption that somewhat requires putting the cart before the horse. If this as-

sumption does not hold, then entirely new avenues for showing robust stability will be

required.
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[78] L. Grüne and M. Stieler, “A lyapunov function for economic mpc without terminal

conditions,” in 53rd IEEE Conference on Decision and Control, pp. 2740–2745, 2014.
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