
An Approach to Specifying and Automatically

Optimizing Fourier Transform Based Operations

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Doru Adrian Thom Popovici

B.S., Computer Science Department, Politehnica University Timisoara

M.S., Engineering Department, Carnegie Mellon University Pittsburgh

Carnegie Mellon University

Pittsburgh, PA

December 2018

c©Doru Adrian Thom Popovici, 2018

All Rights Reserved

Acknowledgments

A couple of pages seems insufficient to thank all the people who encouraged and

supported me to bring this work to a closure. As such, I will try to keep it brief.

First and foremost, I would like to thank my committee members – Dr. Kathy

Yelick, Dr. Paul Kelly, Dr. James Hoe, Dr. Tze Meng Low and of course my

adviser Dr. Franz Franchetti – for being part of this process. Your questions and

feedback helped me improve the overall quality of the work, for which I am grateful.

Franz, thank you for choosing my application and giving me the opportunity to

join your group and CMU. Your dedication and guidance made me the sarcastic

researcher I am today. Tze Meng, I would also like to thank you for always putting

the way I tackle problems into check with questions like “what” and “why”. Your

perspective on things made me question everything that’s out there.

Second, I would like to thank the people in the SPIRAL group and in the

A-level, past and present. You are amazing friends, who made my stay in Pittsburgh

a lot more pleasant. I would like to extend a warm thank you to Richard Veras, who

always found the time to listen to my half baked idea and debate its importance,

whether it was in the office, over the internet or out drinking several beers. Special

shout-out to Milda Zizyte, who proved to be a true and wonderful friend. I would

like to thank you for always finding the time to chat about various things or to go

to all sorts of concerts and events around Pittsburgh. I would also like to thank

Daniele Spampinato, Anuva Kulkarni, Joe Melber, and Upasana Sridhar for going

iii

through the dissertation and providing feedback about grammar mistakes, spelling

errors and incoherent story flow. I am really grateful for the effort put into that and

I am sorry for causing you all a headache. There are a lot more people I would like

to thank, however the sheer amount of people requires an appendix.

Lastly, I would like to thank my parents, Mariana and Doru Popovici. Thank

you! You have always been there for me, whether to chat about some of daily

problems I have encountered during the PhD program or whether to simply say

hello and see whether I have eaten. You both supported me since I was six years

old. You gave me the chance of trying multiple things from painting, sculpture,

music to math, physics and finally computers. You opened my mind to what is

important. For that I am truly grateful.

The work in this dissertation could not have happened without of the Defense

Advanced Research Projects Agency (DARPA) under Contract No. FA8750-16-2-

0033, and HR0011-13-2-0007, the United States Department of Defense (DoD) under

Contract No. FA8702-15-D-0002 and the National Science Foundation (NSF) under

Contract No. 1116802.

Doru Adrian Thom Popovici

Carnegie Mellon University

September 2018

iv

Abstract

Ideally, computational libraries and frameworks should offer developers two key

benefits. First, they should provide interfaces to capture complicated algorithms

that are otherwise difficult to write by hand. Second, they should automatically

map algorithms to efficient implementations that perform at least as well as ex-

pert hand-optimized code. In the spectral methods domain there are frameworks

that address the first benefit by allowing users to express applications that rely on

building blocks like the discrete Fourier transform (DFT). However, most current

frameworks fall short on the second requirement because most opt for optimizing

the discrete Fourier transform in isolation and do not attempt to integrate the DFT

stages with the surrounding computation. Integrating the DFT computation with

the surrounding computation requires one to expose the implementation of the DFT

algorithm. However, due to the complexity of writing efficient DFT code, users typ-

ically resort to implementations for the DFT stages, in the form of black box library

calls to high performance libraries such as MKL and FFTW. The cost of this ap-

proach is that neither a compiler nor an expert can optimize across the various DFT

and non-DFT stages.

This dissertation provides a systematic approach for obtaining efficient code

for DFT-based applications like convolutions, correlations, interpolations and par-

tial differential equation solvers, through the use of cross-stage optimizations. Most

of the applications follow a pattern: they permute the input data, apply a multi-

v

dimensional discrete Fourier transform, perform some computation on the Fourier

transform result, apply another multi-dimensional discrete Fourier transform and

possibly another data permutation. Applying optimizations across the multiple

stages is enabled by the ability to represent the DFT and the additional computa-

tion with the same high level mathematical representation. Capturing the compute

stages of the entire algorithm with a high level representation allows one to apply

high level algorithmic transformations like fusion and low level optimizations across

the stages, optimizations that otherwise would not have been possible with the black

box approach.

The first contribution of this work is a high level API for describing most

common DFT-related problems. The API translates the problem specification into

a mathematical representation that is readable by the SPIRAL code generator. The

second contribution of this work is the extension to the SPIRAL framework to allow

for cross-stage optimizations. The current work extends SPIRAL’s capabilities to

automatically apply fusion and other low level architecture dependent optimizations

to the DFT and non-DFT stages, before generating the code for the most common

CPUs. We show that the generated code, that adopts the proposed approach,

achieves 1.2x to 2.2x performance improvements over implementations that use DFT

library calls to MKL and FFTW.

vi

Contents

Acknowledgments iii

Abstract v

List of Figures xi

List of Tables xix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 State-of-the-Art Approaches . 5

1.2.1 Frameworks for the DFT . 6

1.2.2 Frameworks for DFT-based Algorithms 9

1.3 The Approach in this Dissertation 12

1.4 Contributions . 14

1.5 Outline . 16

Chapter 2 Notation and Language to Describe the DFT 17

2.1 What is a Fourier Transform? . 18

2.1.1 Definition . 18

vii

2.1.2 Extending the DFT to Higher Dimensions 21

2.2 Why Use the Fourier Transform? . 23

2.2.1 Linearity . 26

2.2.2 Time and Frequency Shift . 27

2.2.3 Convolution and Modulation 29

2.2.4 Correlation . 29

2.2.5 Time Difference . 30

2.2.6 Trigonometric Interpolation and Differentiation 31

2.3 SPL, the Language to Represent DFTs 34

2.3.1 Kronecker Product . 35

2.3.2 Specialized Matrices . 38

2.3.3 SPL Constructs and Extensions 41

2.3.4 The Decomposition of the 1D DFT 43

2.3.5 Extending to Higher Dimensions 48

2.4 Summary . 50

Chapter 3 Fusing the DFT with the Surrounding Computation 52

3.1 From SPL to Loop Fusion . 53

3.1.1 Loop Fusion . 53

3.1.2 Fusion in the Context of SPL 55

3.2 Systematic Way of Merging the DFT and non-DFT Stages 58

3.2.1 Merging the Compute Stages for 1D DFT-based Convolutions

for Power of Two Problem Sizes 59

3.2.2 Merging the Compute Stages for 1D DFT-based Convolutions

for Prime Number Problem Sizes 68

viii

3.2.3 Merging the Compute Stages for Multi-Dimensional DFT-

based Convolutions . 72

3.3 Summary . 79

Chapter 4 From High Level Representation to Optimized Implemen-

tation 80

4.1 The Structure of the Framework . 81

4.2 High Level Interface for DFT-based Operations 84

4.2.1 Basic Interface for DFT-based Operations 84

4.2.2 Passing the Point-wise Computation as a Pointer to a Data

Structure . 86

4.2.3 Passing the Point-wise Computation as a Pointer to a Function 88

4.2.4 Advanced Interface for DFT-based Operations 91

4.3 Low Level Optimizations . 95

4.3.1 Single Instruction Multiple Data (SIMD) 96

4.3.2 Arithmetic Operations on Complex Data Points 98

4.3.3 Data Permutations using SIMD 101

4.3.4 Zero-padding for Non-Powers of Two 106

4.4 Summary . 109

Chapter 5 Results and Discussion 110

5.1 Methodology . 110

5.2 To Fuse or Not To Fuse the 1D DFT-based Convolution 113

5.3 Fusing 3D DFT-based Operations . 121

5.3.1 Non-Separable Point-wise Multiplication 122

5.3.2 Separable Point-wise Multiplication 131

ix

5.4 Summary . 139

Chapter 6 Concluding Remarks 141

6.1 Limitations . 144

6.2 Future work . 146

Appendix A Using the FFTW Interface To Create and Execute 3D

DFT-based Convolutions 148

Appendix B Using the API To Create and Execute 3D DFT-based

Convolutions 156

Bibliography 160

x

List of Figures

1.1 Performance plot for the 3D DFT-based differentiation operation on

Intel Kaby Lake 7700K. The first implementation (red line) represents

the performance achieved by the implementation using the proposed

approach. The next two implementations use MKL and FFTW for

the DFT stages and hand-written code for the point-wise multiplication. 4

1.2 C Code implementation for the DFT-based convolution operation.

The code uses the FFTW interface for the forward and inverse DFT,

while the point-wise multiplication is hand-written. 7

1.3 C Code implementation of the convolution operation using the in

house API. The user creates the convolution operation by specifying

a pointer to an array that stores the pre-computed values required

for the point-wise multiplication. 13

2.1 The decomposition of a continuous sequence into its composing sinu-

soids. Each sinusoid oscillates with a different fundamental frequency.

The Fourier transform maps the continuous time representation d(t)

to the frequency representation. 19

xi

2.2 The figure on the left shows the first interpretation of the construct

Im⊗Bn where the matrix Bn is multiplied with n contiguous blocks.

The figure on the right shows the same construct, however viewed as

a matrix-matrix multiply. 36

2.3 The figure on the left shows the first interpretation of the construct

Am ⊗ In where the matrix Am is multiplied with elements located at

a stride of n. The figure on the right shows the matrix interpretation. 37

2.4 The figure presents a block transposition. 40

2.5 The four stages of a DFT of size 16. The input data is viewed as a ma-

trix of size 4×4. The first stage applies the DFT in the columns, the

second stage transposes the matrix, the third stage does a Hadamard

product and finally the last stage applies the DFT again in the columns. 43

2.6 Recursively decomposing the (DFTm ⊗ In) gradually adds another

dimension to the data set. The DFT computation always starts with

the newly added dimension. 45

2.7 The implementation of the 2D DFT algorithm. Data is viewed as a

2D matrix of size n × m, with the x-dimension laid out in the fast

dimension in memory. First 1D DFTs are applied in the rows and

then 1D DFTs are applied in the columns. Image is reproduced from [1]. 49

2.8 The implementation of the 3D DFT algorithm. Data is viewed as

a 3D cube of size k × n × m, with the x-dimension laid out in the

fast dimension in memory. The 1D DFTs are applied in all three

dimensions one by one. Image is reproduced from [1]. 51

3.1 Example of loops that can be and cannot be fused. 54

xii

3.2 Example of more complicated loops. The loop in Figure 3.2a can be

fused, while the loop in Figure 3.2b cannot be fused. 55

3.3 The C/C++ loop equivalent of some of the SPL constructs. 56

3.4 The Kronecker product and fusing the compute stages. The first two

constructs can be merged since the DFTs are applied in the same

direction. The last constructs cannot be merged since the DFTs are

applied in different directions. 57

3.5 Shuffling the data within the diagonal for the SPL construct Ln3n4
n3
·

DN/n3
· Ln1pn3

n1p . 63

3.6 Zooming inside the convolution operation where the right child of the

inverse DFT, the main diagonal and the left child of the forward DFT

need to be merged. The data-sets need to be reshaped in order for

the fusing operation to succeed, since the assumption is that n2 > n3. 65

3.7 Zooming inside the convolution operation where the right child of the

inverse DFT, the main diagonal and the left child of the forward DFT

need to be merged. No reshaping is need since n2 = n3. 66

3.8 The two possibilities of fusing the stages that compose the 2D DFT-

based convolution. The first method fuses the stages so that the

1D convolution is applied in the column direction, while the second

method fuses the compute stages so that the 1D convolution is applied

in the row direction. 75

4.1 The structure of the framework. The front-end deals with the API

and the translation layer, while the back-end deals with generating

and optimizing the code for a specific problem and architecture. The

generate code is linked back to the front-end. 81

xiii

4.2 The data-structures and functions provided by the proposed API. . . 83

4.3 The basic API for creating DFT-based operations for which the point-

wise multiplication is non-separable. The point-wise computation is

passed as a pointer of type spiral pointwise. The spiral pointwise

data structure provides either a pointer to an array or a pointer to a

predefined function. 85

4.4 Example of creating a basic plan for a 1D DFT-based operation where

the the point-wise multiplication will be computed using a temporary

array that stores the pre-computed values. The configuration param-

eters specify that the operation uses the forward DFT as the first

stage and enforces the fact that the third argument is a data pointer

that requires to reorderd. 87

4.5 Example of creating a DFT-based time shift. The configuration pa-

rameters specify that the operation uses the forward DFT as the first

stage, the pointer is to a function and computation is done on the fly. 89

4.6 The advanced interface for expressing convolution-like operations where

the point-wise multiplication is separable on dimensions. The dft

and dft op represent the two data structures to create the DFT and

convolution-like operations. 91

4.7 C/C++ description of the 2D differentiation operation using the pro-

posed framework. The 2D differentiation operation has a separable

point-wise computation. 93

xiv

4.8 AVX instructions used within the DFT computation. The first in-

struction loads four contiguous elements in the vector register. The

second instruction replicates one element in all four locations. The

third instruction performs a so called in-register shuffle. The fourth

instruction applies a separate addition to all four data points. 96

4.9 Performing a data transposition for data stored in SIMD vector reg-

isters. Each SIMD register contains four elements. If the data stored

in the SIMD registers is viewed as the rows of a matrix, the SIMD

algorithm performs a matrix transposition, where the registers store

the columns of the matrix. 97

4.10 Computing complex multiplication when data is stored in complex in-

terleaved versus block complex interleaved. The complex interleaved

format requires shuffle instructions interleaved with the compute in-

structions. The block complex interleaved format requires data to be

packed and unpacked in advance. Picture is reproduced from [2]. . . 99

4.11 Hiding the data format change within the shuffle instructions for dou-

ble precision AVX instructions. Part of the computation is done using

the complex interleaved format, while part of it is done using the block

complex interleaved. Picture is reproduced from [2]. 100

4.12 The pictorial representation of the SPL notation from equation 4.12. 104

4.13 DFT decomposition with zero-padding for size N = 15 and vector

length ν = 2. Light boxes represent inserted zero value cells, and

staggered pairs of cells represent SIMD vectors or SIMD vectorized

DFT kernels. Data flows from right to left. Picture is reproduced

from [3]. 107

xv

5.1 The hand-written code for computing the point-wise multiplication

for the 1D DFT-based convolution when using MKL and FFTW for

the DFT calls. 115

5.2 The performance for the 1D DFT-based convolution of our approach

and the implementations that use FFTW and MKL as library calls.

The figure on the left shows the performance on the Intel Haswell,

while the figure on the right shows the performance on the Intel Kaby

Lake. 116

5.3 The performance improvement when removing the point-wise multi-

plication from the 1D DFT-based convolution. The left figure shows

a performance improvement of almost 10% when removing the point-

wise multiplication. The right figure emphasize the fact that the

point-wise multiplication does not modify performance if the forward

and inverse DFT are merged. 118

5.4 The performance results when using the complex interleaved versus

block complex interleaved data format. The results are for the fused

version of the forward and inverse DFT without the point-wise com-

putation. The left image shows the results on the Intel Haswell, while

the right image shows the results on the Intel Kaby Lake. 120

5.5 The performance results for the 3D DFT-based convolution. The red

line represents the performance results for the generated convolution

using our approach, where some of the compute stages are fused. The

other two lines represent the 3D DFT-based convolutions where the

3D DFTs are computed using the implementations offered by MKL

and FFTW. 124

xvi

5.6 The advantages of fusing the compute stages for the constructQk,mn =(
DFTH

k × Imn
)
Dkmn (DFTk ⊗ Imn) as seen in equation 5.3. 126

5.7 Performance results for the batch 2D DFT. The red line represents the

performance of the generated code using our in-house code generator,

while the other two lines represent the performance of the 2D DFTs

using MKL and FFTW. 128

5.8 Performance results of the 3D DFT convolution when increasing the

number of threads from 1 to 4 on the Intel Kaby Lake. 129

5.9 The performance results for the optimized version of the 3D DFT

using the double buffering approach as suggested in [1]. We compare

the performance numbers against the achievable peak performance if

bandwidth is efficiently utilized. 130

5.10 Performance plot for the 3D DFT-based differentiation operation on

Intel Haswell 4770K. The first implementation (red line) represents

the performance achieved by our approach. The other two imple-

mentations use MKL and FFTW forthe DFT stages and have hand-

written code to compute the point-wise multiplication. 132

5.11 The advantages of fusing the compute stages for the constructRk,mn =(
DFTH

k ·Dk ·DFTk

)
⊗ Imn as seen in equation 5.5. 133

5.12 Performance results of the 3D DFT differentiation when increasing

the number of threads from 1 to 4 on the Intel Kaby Lake. 136

xvii

5.13 The performance results of the 3D DFT-based interpolation for non-

power of two problem sizes. The blue line represents the performance

achieved by our approach. While the red and brown lines represent

the performance of the implementations that use FFTw and MKL for

the DFT computation. For this experiment we use PseudoFLOPs/cycle.138

xviii

List of Tables

1.1 Category of applications where the DFT is being used. 2

2.1 The main DFT properties. 26

5.1 The architectures used to obtain experimental results. The table

outlines some of the main CPU features. 111

5.2 The DFT sizes and the corresponding number of additions and mul-

tiplications. 112

xix

Chapter 1

Introduction

The thesis of this dissertation is that for most Fourier-based algorithms there is a

systematic way of achieving efficient code through cross-stage optimizations. Most

Fourier-based algorithms like convolutions, correlations, interpolations or partial

differential equation (PDE) solvers typically follow the same pattern, where discrete

Fourier transform (DFT) stages are interleaved with other compute stages. This

insight suggests that the focus of optimizations should be on the DFT-based algo-

rithms rather than the DFT itself. Performance gains can be achieved by having

a wider view of the entire algorithm, since high level loop transformations and low

level optimizations can be applied across compute stages.

1.1 Motivation

In the spectral methods [4] for numerically solving certain differential equations, the

discrete Fourier transform (DFT) has proven to be an ubiquitous mathematical tool.

Various applications like LAMMPS [5, 6, 7],HACC [8, 9], XGC [10], WarpX [11],

NWChemEx [12, 13, 14], AMReX [15] from different scientific domains as outlined

1

Category DFT Requirements

Field Calculations for Particle-In-Cell large 3D DFTs of 109 - 1012 points

Molecular Dynamics relative small 3D DFTS of 106 - 107

points

First-Principles Calculations or Chem-
istry and Materials

relative medium size but many 3D
DFTs of 2563 data points

Domain-Decomposed PDE solvers relative medium size 3D DFTs of at
most 2563

Table 1.1: Category of applications where the DFT is being used.

in Table 1.1, spend up to 40% of their total execution in the computation of the

DFT on supercomputers. The importance of the DFT comes from the fact that it

simplifies expensive computations by performing a change of basis from time/space

domain to the frequency domain. For example, solving partial differential equations

or computing long-range contributions to forces between particles in time/space

domain become point-wise computation in the frequency domain. Hence, most

applications that rely on the DFT to simplify computation follow a specific pattern

as seen in Algorithm 1, where a forward DFT is applied on the input, the result

is point-wise multiplied with pre-computed values and finally an inverse DFT is

applied to convert the sequence back to the original domain.

Depending on the application, the computation pattern may slightly differ.

Different applications require different shapes, sizes and types of DFTs. For ex-

ample, some applications require medium size 3D DFTs of at most 1024 elements

in each dimension, while some applications require large 3D DFTs of up to 10240

points in each dimension. Some applications require the DFT to be applied on com-

plex data points, while some require the DFT to be applied on real data points.

In addition to the DFT requirements, the point-wise computation may also vary.

The point-wise computation may exhibit symmetry properties. For example, some

2

Algorithm 1 DFT-based convolution operation

1: function Conv(x, h, y,N) . Where x, h - input arrays, y - output array, N - length
2: X = dft(x)
3: H = dft(h), can be pre-computed or computed on the fly
4: for i = 0 to N − 1 do
5: Y [i] = X[i]H[i]
6: end for
7: y = idft(Y)
8: end function

applications require multi-dimensional DFT-based operations where the point-wise

computation is symmetric and thus can be separated on the dimensions of the data-

set. Under this scenario, instead of computing the point-wise operation after the

full forward multi-dimensional DFT, the point-wise computation can be decomposed

and done locally in each dimension immediately after each 1D DFT computation.

Given all these degrees of freedom and also given the complexity of writing efficient

DFT code, most users resort to hand-written implementations tailored for the spe-

cific problem, where the DFT computation is done by invoking high performance

libraries like MKL [16], FFTW [17], cuFFT [18] or armPL [19].

Main Problem. Implementing any DFT-based operation using library calls

comes at the cost that neither a compiler nor an expert can optimize across the

various DFT and non-DFT compute stages. Library calls are typically viewed as

black boxes and inter-procedural optimizations [20] cannot be applied. Hence, per-

formance is still left on the table. For example, Figure 1.1 shows the performance

difference between three different implementations for a 3D DFT-based operation

with separable point-wise operation. The point-wise operation is separable into

smaller point-wise operations that are applied in each dimensions. Moreover, the

3D DFT is also a separable operation. The forward and inverse 3D DFTs can be

decomposed in multiple forward and inverse 1D DFTs, that are applied in each di-

3

24 25 26 27 28 29
0

2

4

6

8

Diffk×k×k

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single-thread, AVX

Extended Spiral
MKL

FFTW

Figure 1.1: Performance plot for the 3D DFT-based differentiation operation on
Intel Kaby Lake 7700K. The first implementation (red line) represents the perfor-
mance achieved by the implementation using the proposed approach. The next two
implementations use MKL and FFTW for the DFT stages and hand-written code
for the point-wise multiplication.

mension. This suggests that the DFT and non-DFT computation can be efficiently

grouped to reduce the number of stages. In addition, the forward 1D DFT, local

point-wise operation and the inverse 1D DFT can further be merged. More details

about merging the compute stages for multi-dimensional DFT-based operations with

separable point-wise can be found in Chapter 3. Overall, the implementation that

efficiently fuses the DFT and non-DFT stages (red line) outperforms the other two

implementations (blue and brown line) by almost 2x for problem sizes that fit within

the cache hierarchy and problem sizes that reside in main memory. It is well known

that the DFT and point-wise computation are memory bound. As the problem size

increases, the computation stalls waiting for data to be brought from the lower levels

of the memory hierarchy. This affects the implementations that do not fully merge

4

the DFT and non-DFT stages (blue and brown line). However, fusing the compu-

tation alleviates this problem by reducing the number of round-trips to the lower

levels of the memory hierarchy. Once data is brought into the upper levels of the

memory hierarchy, the local 1D DFTs and point-wise computation are immediately

applied one after the other before writing the data back to memory. Chapter 3 goes

into more details about fusing the computation and also about applying other low

level optimizations across the stages, optimizations that would not be possible if the

DFT-based operations are implemented using black box library calls.

1.2 State-of-the-Art Approaches

Over the past years the focus has mostly been on delivering efficient implementations

for the DFT or other linear transforms that can replace the DFT computation.

Users typically resort to writing code around library calls in order to implement

more complicated algorithms, which comes with two drawbacks. On one side, users

must understand the underlying system to efficiently write code and on the other

side performance can still be gained since optimizations cannot be applied across

stages. Therefore, frameworks like AccFFT [21, 22], Halide [23] and Indigo [24] have

attempted to integrate the DFT within the larger picture of the entire application.

They recognize the importance of having a wider view of the application to reason

about cross stage optimizations, however even in these cases the DFT is not fully

merged with the surrounding computation. In the following we discuss the two

categories and outlines the drawbacks that are addressed by this work.

5

1.2.1 Frameworks for the DFT

In this section, we present frameworks that deal with generating efficient DFT code.

The main drawback of using such frameworks is that neither a compiler nor an

experts can apply optimizations across the stages.

SPIRAL. SPIRAL [25] is a framework built upon the Signal Processing

Language (SPL) [26, 27] used to describe various linear transforms such as the

discrete Fourier transform [28], the discrete Cosine transform [29] and many more.

The framework is composed of several stages, where each stage performs a specific

operation. The first stage takes in a problem described in the SPL notation and

implements that problem using one of the algorithms stored in its database. For

example, power of two DFTs are typically implemented using the Cooley-Tukey [30]

algorithm. The second stage converts the SPL algorithm into the so-called
∑

-SPL,

where the notion of loops is introduced [31]. This stage applies optimizations to the∑
-SPL representation. Finally, the optimized

∑
-SPL is converted to code for a

given architecture. The generator can target architectures with features like Single

Instruction Multiple Data (SIMD) instructions [32] and multiple threads [33].

The SPIRAL framework was built for generating high performance linear

transforms such as the DFT. However, in recent years there has been work ex-

tending the framework to other domains. We extend the SPIRAL framework to

capture DFT-based operations using the SPL representation and to perform cross

stage optimizations. Having the high level mathematical representation enabled us

to perform algorithmic transformation such as fusion and low level optimizations

specific for the underlying architecture.

FFTW. FFTW [34, 35] is a framework to generate and auto-tune DFT

code for different CPU architectures, ranging from Intel and AMD to ARM and

6

1 #inc lude <f f tw3 . h>
2

3 i n t main (i n t argc , char ∗∗ argv) {
4 f f tw complex ∗x , ∗X, ∗H, ∗y , ∗Y; // H i s precomputed
5 f f tw p l an pF , pI ; // f f tw plans f o r the forward and i nv e r s e DFT
6

7 // c r e a t e the DFTs
8 plan pF = f f tw p l a n d f t 1 d (N, x , X, FFTWFORWARD, FFTWESTIMATE) ;
9 plan pI = f f tw p l a n d f t 1 d (N, Y, y , FFTWBACKWARD, FFTWESTIMATE) ;

10

11 // DFT based convo lut ion
12 f f tw exe cu t e (pF) ; // forward DFT
13 f o r (i n t i = 0 ; i != N; ++i) {
14 Y[i] = X[i] ∗ H[i] ; // point−wise mult ip ly
15 }
16 f f tw exe cu t e (pI) ; // i nv e r s e DFT
17

18 // plan de s t ru c t i on and memory d e a l l o c a t i o n
19 }

Figure 1.2: C Code implementation for the DFT-based convolution operation. The
code uses the FFTW interface for the forward and inverse DFT, while the point-wise
multiplication is hand-written.

IBM Power. FFTW is viewed as the gold standard when it comes to DFT code

generation, since it targets most features like (SIMD) and thread parallelism. The

framework offers various functions to create and execute DFTs. The user can request

for multi-dimensional DFTs, he/she can specify the data type or even the directions

in which the DFTs are applied. For example, Figure 1.2 shows an example of

implementing a 1D DFT-based convolution, where first the forward and inverse

DFTs are created and then they are executed around the hand-written code that

performs the point-wise complex multiplication.

Implementing any of the DFT-based algorithms using the FFTW interface

as shown in Figure 1.2 does not allow optimizations to be applied across compute

stages. Compilers cannot identify how the DFT code is implemented and thus can-

not optimize the code. An alternative is to extend the framework. FFTW provides

7

a language to describe the operations and thus the framework can be extended to

support DFT-based operations. However, the performance will lack since most of

the assumptions for optimizing the DFT cannot easily be extended to DFT-based

operations.

MKL. MKL [16] is the Mathematical Kernel Library from Intel that pro-

vides implementations for a multitude of mathematical kernels. The DFT is among

the offered kernels. MKL’s DFT implementation is highly efficient and highly opti-

mized on most Intel architectures. They support multi-dimensional DFTs, real and

complex DFTs. However, they do not provide a rich interface similar to FFTW to

allow the description of the dimensions in which the DFT can be applied. This com-

plicates the life of the user. Data must be orchestrated to follow the requirements of

the Intel API. Therefore, the user write and optimize the code that performs data

rotations and movement.

Similar to FFTW, implementing DFT-based algorithms using MKL can be

done following the same recipe as shown in Figure 1.2. First the forward and inverse

DFTs must be constructed and glue code around the DFT compute functions must

be written. Again the compiler treats the library calls as black boxes and does not

attempt to optimize or fuse the various stages. MKL is closed source, therefore

extending the framework to applications that build upon DFTs is not possible.

FFTE. The FFTE [36] package offers Fortran implementations for the Fourier

transform for complex and real inputs. The package targets problem sizes of the

form 2p3q5r and provides support for CPUs and GPUs. The code is hand opti-

mized and it follows the details presented in the papers from Daisuke Takahashi.

In the papers, the author describes various methods for blocking the memory ac-

cess of the DFT for the cache hierarchy [37] and shared-memory processors [38].

8

He also discusses the extension of the 1D and 3D DFTs for clusters of CPUs and

GPUs [38, 39].

Similar to the previous packages, FFTE also imposes that each stage be

written separately. In contrast to FFTW and MKL, the FFTE code needs to be

compiled simultaneously with the main code that implements the DFT-based al-

gorithms. Therefore, compilers can attempt to perform inter-procedural optimiza-

tions [20] across the compute stages. However, due to the sheer complexity of writing

the DFT code, the compiler may or may not actually identify the possibilities of

merging the stages or even apply other optimizations. An alternative is to extend the

existing code to allow for the DFT-based operations to be computed, task that may

prove to be quite labor intensive. In addition, such approach is not maintainable in

the long run.

1.2.2 Frameworks for DFT-based Algorithms

In this section, we present some frameworks that identify that the DFT stages need

to be merged with the surrounding computation to reduce the effects of long latencies

to main memory, however due to the complexity of decomposing and implementing

the DFT most of them still treat the computation in isolation and resort to MKL

or FFTW for the DFT computation.

Halide. Halide [23, 40, 41] is a framework for describing, optimizing and

generating code for image processing pipelines. The framework decouples the algo-

rithm or the stages of the algorithm from the optimizations. The users can specify

the order in which the optimizations are applied. In addition, there is an autotuner

that tries out the different variants of the optimizations and chooses one that gives

good performance. They provide a high level language to express the problems and

9

a code generator that interprets the language and generates the appropriate nested

loops. Since the framework was used to describe image processing pipelines, in the

work by Ragan-Kelly [23] they implemented a 2D DFT computation that is applied

on multiple images, or batches of data. They have shown that the performance of

their implementation of the batch 2D DFT outperformed FFTW’s implementation

by almost 4x on ARM based systems.

The framework allows the description of applications composed of different

pipelines. In addition it offers the benefit of allowing users to describe a list of

optimizations and most important the order in which the optimizations must be

applied. However, the 2D DFT is still optimized in isolation. The framework does

not decompose the DFT and attempt to merge the stages with the computation that

surrounds it. The focus has mostly been on optimizing the entire image processing

pipeline, and therefore there has not been any work using the Halide language to

express and decompose the DFT and DFT-based operations.

Indigo. Indigo [24] is a domain specific language used to describe image

reconstruction algorithms. The framework proposes expression trees to represent

linear operators. The leaves within the trees are represented either by matrix driven

operators backed by explicit sparse or dense matrices and implemented using BLAS

routines [42, 43, 44] or matrix-free operators such as the DFT where the matrix

representing the DFT is implicit and never actually stored. The non-leaf nodes

represent basic operations such as summations and products. The idea is that the

expression tree gives better insight on how to apply high level loop transforms like

loop reordering and loop fusion to improve performance and reduce memory foot-

print. It is shown that for applications like MRI, ptychography, magnetic particle

imaging and fluorescent microscopy, the approach provides significant improvements.

10

The framework allows the description of algorithms that use the Fourier

transform as a building block. Expressing the entire algorithm as an expression tree

allows one to optimize the entire pipeline. However, once again the DFT computa-

tion is left as is and implemented using library calls to high performance libraries

like MKL, FFTW and cuFFT. As mentioned in the paper, the implementation of

the DFT algorithms leverage the structure of the DFT matrix in order to get per-

formance, however since the decomposition of the DFT algorithm is not exposed to

the pipeline, performance is still left for grabs.

AccFFT. AccFFT [21, 22] is a parallel framework used to compute 3D DFTs

on distributed CPU/GPU systems. It provides an API to describe 3D DFTs and

under the hood it creates the transforms by calling FFTW and/or cuFFT. The

FFTW and cuFFT invocations are required for the creation of the local computa-

tion. The framework provides various implementations for the 3D DFT to improve

scalability of the algorithm when increasing the number of nodes (the slab-pencil

and pencil-pencil decompositions). In addition, the framework uses a k-way all-to-all

communication [45] to improve overall data traffic. While previously built only for

large scale 3D DFTs, the framework was extended for DFT-based algorithms. The

API currently offers functions to create the necessary code for computing parallel

Poisson Solvers and other spectral operators such as gradient, divergence, Laplace

and biharmonic operators.

The framework offers functionalities for applications that use the DFT as a

main building block. However, as with all other state-of-the-art frameworks, Ac-

cFFT does not attempt to expose the DFT computation and integrate it with the

surrounding computation. The framework uses FFTW and/or cuFFT for perform-

ing the local DFT computation and uses glue code around the library calls for

11

implementing the DFT-based operations covered by the API. Compilers cannot op-

timize across the stages and leave the code untouched. Although users do not have

to deal with implementing the DFT-based operations, extending the framework for

other computations may prove to be difficult.

1.3 The Approach in this Dissertation

In this dissertation, we focus on DFT-based algorithms like convolutions, corre-

lations, interpolations and partial differential equation solvers and provide an ap-

proach for specifying and optimizing the entire algorithm rather than just optimizing

the DFT computation in isolation. We make two observations:

• Most DFT-based operations follow a specific pattern where typically a point-

wise computation is performed between a forward and inverse DFT. Depending

on the DFT-based operation the point-wise computation may exhibit symme-

try properties.

• Knowing the decomposition of the forward and inverse DFT using algorithms

like the Cooley-Tukey algorithm permits for a systematic way of applying

optimizations across the DFT and non-DFT stages.

The first observation is based on the properties of the Fourier transform,

which are covered in more detail in Chapter 2. Most DFT-based operations follow

the same computational pattern, where a forward DFT is followed by a point-wise

and an inverse DFT. Hence, specifying and optimizing the entire DFT-based oper-

ation seems more logical. Instead of specifying only the DFT and writing glue code

around the DFT calls as seen in Figure 1.2, one can specify the entire DFT-based

operation using a simple API. For example, Figure 1.3 shows the steps required to

12

1 #inc lude <s p i r a l . h>
2

3 // . . .
4

5 i n t main (i n t argc , char ∗∗ argv) {
6 sp i r a l c omp l ex ∗x , ∗H, ∗y ; // H i s precomputed
7 s p i r a l p l a n pConv ; // convo lut ion plan
8

9 // plan c r e a t i on
10 pConv = sp i r a l p l an c onv 1d (N, x , y , H, SPIRAL FORWARD) ;
11

12 // DFT based convo lut ion
13 s p i r a l e x e c u t e (pConv) ;
14

15 // plan de s t ru c t i on and memory d e a l l o c a t i o n
16 }

Figure 1.3: C Code implementation of the convolution operation using the in house
API. The user creates the convolution operation by specifying a pointer to an array
that stores the pre-computed values required for the point-wise multiplication.

create a 1D DFT-based with the proposed in-house API. The user is required to

use a create function which is similar to the FFTW DFT create function. The only

difference is that the spiral plan conv 1d takes an additional argument, namely a

pointer to an array or to a function meant to compute the point-wise multiplication.

In this example, the pointer is to an array that stores the pre-computed values of

H. More details about the API and its capabilities are provided in Chapter 4.

The second observation suggests that knowing the decomposition of the for-

ward and inverse DFT and representing the compute stages in a high level language,

one can apply optimizations in a systematic way across the various compute stages.

In this work, we use the SPL notation defined within the SPIRAL framework to rep-

resent and apply optimizations on the entire algorithm. However, the optimizations

are not bound to the language, any high level language that is expressive enough can

be used. We simply use SPL since it has been successfully used with expressing and

optimizing the DFT computation and it can easily be used to represent DFT-based

13

operations. For example, the Algorithm 1 implemented with the proposed API as

seen in Figure 1.3 can further be described using SPL as

Convn = iDFTn ·DiagHn ·DFTn, (1.1)

where the DFTn and iDFTn represent the the forward and inverse DFT of size n.

Here, the DiagHn stores the pre-computed values of H[k]. The DFTN and iDFTN

are further decomposed using algorithms like Cooley-Tukey. Using properties of

the DFT like iDFT = DFTH
n , where (·)H represents the conjugate-transpose oper-

ation, the decompositions of the forward and inverse transform can be re-organized

so as to alleviate the burden of merging the compute stages. Chapter 3 primarily

presents the systematic approach of decomposing the DFTs and identifying the ap-

propriate decompositions that allows for efficient stage merging. In Chapter 5, we

show the benefits of merging the compute stages for both 1D and multi-dimensionl

DFT-related operations. We offer a thorough analysis of when dealing with merg-

ing various stages of the algorithm, based on the different flavors of DFT-based

operations.

1.4 Contributions

In this dissertation, the goal is to show that the DFT computation can systematically

be integrated with the surrounding computation. This work provides the following

contributions to the spectral methods domain:

• We identify that, although the DFT is an important mathematical kernel, the

focus of optimizations should be on the DFT-based operations and not solely

on the DFT. Most DFT-based operations follow the same pattern, where a

14

forward DFT is followed by a point-wise operation and an inverse DFT. Thus,

having a view of the entire algorithm offers more opportunities for optimiza-

tions.

• We show that there is a systematic way of applying optimizations across the

DFT and non-DFT stages. Having domain specific knowledge about the DFT

decomposition and its properties, one can easily reason on how to optimize

across the various compute stages.

• We outline that fusing is important, especially when dealing with DFT and

point-wise operations, which are well known memory bound problems. Each

stage of the DFT-based operation stalls waiting for data to be brought from

memory. However, fusing the stages reduces the stall time by improving data

locality and cache utilization.

• We provide a thorough analysis of the benefits provided by fusing the compute

stages. We discuss different cases where the point-wise computation may have

symmetry properties and show that efficiently fusing the compute stages can

bring up to 2x performance improvements over the implementations where the

compute stages cannot be merged.

• We build a simple API that allows users to express most DFT-based oper-

ations. The API is built on top of the SPIRAL code generator. The code

generator is extended to optimize and generate code for DFT-based opera-

tions, targeting most modern CPU architectures. Most of the optimizations

carried across the DFT and non-DFT stages are automatically applied.

15

1.5 Outline

Chapter 2 presents the basic information related to the Fourier transform. In ad-

dition, the basic DFT properties are also outlined. Each property specifies that

complicated operations in one domain are converted into point-wise operations in

the dual domain. The chapter also introduces the language used to describe algo-

rithms for computing the DFT. The language is further used to describe DFT-based

operations like convolutions, correlations, interpolations and PDE solvers.

Chapter 3 presents presents the systematic approach of fusing the compute

stages. It first starts with what loop fusion is and how loop fusion connects to some

of the constructs used within the SPL notation. In the second part of the chapter,

the principles behind fusing the compute stages are presented. While the discussion

focuses on 1D DFT-based operations, the approach can easily be extended to higher

dimensional operations.

Chapter 4 discusses the details related to implementing an end-to-end frame-

work that allows the expression of DFT-based algorithms and that automatically

generates and optimizes the code. The chapter is broken down into two main sec-

tions, namely the front-end that deals with the high level API and the back-end

that are mainly represented by the code generator.

Chapter 5 presents a detailed analysis of the benefits of fusing the compute

stages for DFT-based operations. The chapter starts with the analysis for the 1D

DFT-based convolution. Then the discussion is moved to the 3D equivalent opera-

tion, where the point-wise operation is the one that will give different possibilities of

fusing. The different scenarios for fusing offer different performance improvements.

Chapter 6 presents concluding remarks and future directions.

16

Chapter 2

Notation and Language to

Describe the DFT

The first part of this chapter presents what the Fourier transform is and outline

its importance. We briefly describe the different variants of the Fourier transforms,

however focus more on the discrete Fourier transform (DFT) since it is the only one

that can be done on a computer. We present both the 1D DFT computation, but

also extend the definitions to multi-dimensional DFTs. We further present some of

the basic DFT properties and emphasize that complicated operations in one domain

are reduced to point-wise computations in the dual domain. The properties holds

for both 1D and multi-dimensional data-sets.

The second part of the chapter introduces the domain specific language (DSL)

used to describe the DFT and the various algorithms meant for the DFT computa-

tion. The goal of having a mathematical language to describe the entire algorithm

is to be able to apply optimizations at that level of abstraction rather than analyz-

ing and optimizing C code. In this work, we use the Signal Processing Language

17

(SPL), which is already used within the SPIRAL framework. While in prior work

the language was used to describe various algorithms for computing the DFT and

other transforms, we use the language to express DFT-based operations. We give

the basic definitions and properties of the language, outlining some of the important

aspects that allow us to reason about how to fuse the separate compute stages.

2.1 What is a Fourier Transform?

The Fourier transform belongs to the Spectral Methods domain as described in “The

Landscape of Parallel Computing Research: A View from Berkeley” [4]. The Spec-

tral Methods domain deals with solving various problems such partial differential

equations (PDE) by performing computation in the frequency domain rather than

the time or space domain. The premise is that computation in the frequency do-

main is simpler and less expensive. The Fourier transform is one of the most widely

known and used transforms to map a sequence from the time or space domain to

the frequency domain.

2.1.1 Definition

The Fourier transform decomposes a given function into its fundamental sinusoids or

harmonics, where each sinusoid is described by a fundamental frequency that shows

how fast the sinusoid oscillates. For example, figure 2.1 depicts the decomposition

of the continuous time function (signal) d(t) into its fundamental frequencies. It

is important to notice that the function can be expressed as a superposition of

three fundamental sinusoids. Each sinusoid oscillates at a specific frequency. The

continuous function can be fully described by the three composing frequencies, each

having a amplitude and a phase.

18

Figure 2.1: The decomposition of a continuous sequence into its composing sinu-
soids. Each sinusoid oscillates with a different fundamental frequency. The Fourier
transform maps the continuous time representation d(t) to the frequency represen-
tation.

Any function or sequence can be expressed as a finite or infinite sum of scaled

harmonics or sinusoids. For example, a random continuous aperiodic function x(t)

can be decomposed as an infinite sum of harmonics such as

x(t) =
1

2π

∞∫
−∞

X(jω)ejωtdω, (2.1)

where the continuous complex exponential ejωt represents the harmonic function.

The X(jω) term is the frequency representation of the x(t) function which is com-

puted as

X(jω) =

∞∫
−∞

x(t)e−jωtdt. (2.2)

The forward transform determines the frequency representation of a given signal or

function, while the inverse Fourier transform reconstructs the original time domain

19

sequence given the frequency domain representation. The Fourier transform always

goes in pairs. The forward and inverse Fourier transform can also be viewed as

projections of continuous functions x(t) and X(jω) onto the space spanned by the

complex harmonics [46].

There are four Fourier representations based on the properties of the in-

put and output signals or functions [46], namely discrete-time Fourier transform

(DTFT), continuous-time Fourier transform (FT), discrete-time Fourier series (DTFS)

and continuous-time Fourier series (CTFS). If the function is continuous and does

not have periodicity then the Fourier transform (FT) can be used to compute the

frequency representation. However, if the sequence is discrete and periodic the

discrete time Fourier series (DTFS) is the appropriate transform to determine the

frequency representation. However, there are methods to link the four transforms

by introducing mathematical tools like the δ function, sampling and interpolation

operations. The ability to switch between the transforms is important since cer-

tain operations or properties like differentiation can only be applied on continuous

functions and not discrete sequences. However, data points stored on a computer

are typically discretized samples of the original continuous function, in which case

operations like differentiation must be simulated.

It is important to state that out of the four Fourier representations the dis-

crete time Fourier series (DTFS) is the only transform that can be computed on a

computer. The DTFS is also known in the literature as the discrete Fourier trans-

form (DFT). Intrinsically the DFT assumes the sequence is periodic and computes

the frequency representation only on one period of the entire sequence

X[k] =

N−1∑
n=0

x[n]ωknN , where k = 0..N − 1 and ωknN = e−j
2π
N
kn. (2.3)

20

The X[k] sequence represents the spectral or frequency representation of the one

dimensional sequence x[n]. The length of the sequence X[k] is the same as x[n].

In addition, X[k] has the same period N as the input sequence x[n]. The complex

terms ωknN = e−j
2π
N
kn represent the complex roots of unity and they form the so-

called fundamental harmonics for the sequence x[n].

2.1.2 Extending the DFT to Higher Dimensions

The 1D DFT computation can be extended to higher dimensions. For example, given

a high dimensional discrete periodic sequence x[n0, . . . , np−1], where n0 = 0..N0, . . .,

np−1 = 0..Np−1 and p represents the number of dimensions, the p-dimensional DFT

is defined as

X[k0, . . . , kp−1] =

N0∑
n0=0

. . .

Np−1∑
np−1=0

x[n0, n1, . . . , np−1]e
−j2π

(
k0n0
N0

+...+
kp−1np−1
Np−1

)
. (2.4)

The complex exponential can be decomposed as a product of complex exponentials

such as

e
−j2π

(
k0n0
N0

+...+
kp−1np−1
Np−1

)
= e
−j 2π

N0
k0n0 · . . . · e−j

2π
Np−1

kp−1np−1
. (2.5)

Given this property the summation terms can be grouped.

For example, given a three dimensional function x[n0, n1, n2], the 3D DFT

can be re-written using the splitting of the complex exponentials as

X[k0, k1, k2] =

N0∑
n0=0

N1∑
n1=0

N2∑
n2=0

x[n0, n1, n2]e
−j 2π

N0
k0n0e

−j 2π
N1

k1n1e
−j 2π

N2
k2n2 . (2.6)

The summations can be grouped and can be computed in any order. For example,

21

grouping the terms as follows

X[k0, k1, k2] =

N0∑
n0=0

(
N1∑
n1=0

(
N2∑
n2=0

x[n0, n1, n2]e
−j 2π

N2
k2n2

)
e
−j 2π

N1
k1n1

)
e
−j 2π

N0
k0n0 .

(2.7)

suggests that the 3D function x[n0, n1, n2] is gradually converted to its Fourier

representation. First a 1D DFT is applied on the function in the third dimension n2.

Then 1D DFTs are applied in the dimension n1 and lastly 1D DFTs are applied in

the dimension n0. This process of gradually applying 1D DFTs in each dimension

requires a temporary array Xt0 [n0, n1, k2] to store the intermediary results. The

next two 1D DFTs are applied on the temporary X0 as

X[k0, k1, k2] =

N0∑
n0=0

(
N1∑
n1=0

X0[n0, n1, k2]e
−j 2π

N1
k1n1

)
e
−j 2π

N0
k0n0 . (2.8)

The algorithm of applying the 1D DFT in each dimension is called the pencil-pencil-

pencil algorithm. It requires three passes through the data, and each must apply

all its 1D DFTs before proceeding to the subsequent stages.

Grouping the terms in a different way gives a different algorithm. For ex-

ample, grouping two of the dimensions together and letting the third dimension be

computed at the end gives the following algorithm

X[k0, k1, k2] =

N0∑
n0=0

(
N1∑
n1=0

N2∑
n2=0

x[n0, n1, n2]e
−j 2π

N2
k2n2e

−j 2π
N1

k1n1

)
e
−j 2π

N0
k0n0 . (2.9)

The algorithm is called the slab-pencil algorithm since first a 2D discrete Fourier

transform is applied followed by a 1D discrete Fourier transform. In this example,

we grouped the first two dimensions. However, the last dimensions can be grouped

22

as well. In addition, due to the commutativity property of the Kronecker product

the order of operations can be changed and hence other dimensions can be grouped

to give other algorithms. All these re-orderings and groupings have effects on per-

formance. In the following sections, we show how to capture this information using

a domain specific language and in the following chapters we discuss how to opti-

mize data movement when dealing with high dimensional DFTs applied on high

dimensional data points.

2.2 Why Use the Fourier Transform?

Most sequences or functions can be expressed as a sum of scaled harmonics or

complex exponentials. In the case of a discrete time sequence x[n] of size N , the

sequence can be written as

x[n] =
1

N

N−1∑
k=0

X[k]ej
2π
N
kn, (2.10)

where X[k] terms are the complex coefficients computed using the forward DFT

applied on the sequence x[n]. The importance of expressing any sequence as a sum

of complex exponentials can be outlined in the context of the convolution operation,

or circular convolution since the DFT intrinsically assumes that the sequences are

periodic with fundamental period N .

The circular convolution of two discrete sequences x[n] and h[n] is expressed

as

y[n] = x[n] ~ h[n] =
N−1∑
k=0

x[n− k]h[k]. (2.11)

23

The result of the convolution is another discrete sequence y[n] that shows how the

sequence x[n] is modified by the sequence or system h[n]. It can be seen that

convolution operation requires one of the sequence to be inverted in time. For

example, in the above formula the sequence x[n] is inverted as x[n− k], where k is

the summation variable. Changing the input sequence x[n] to a complex exponential

of the form ej
2π
N
ln modifies the circular convolution as follows

ye[n] = ej
2π
N
n ~ h[n] (2.12)

=

N−1∑
k=0

ej
2π
N
l(n−k)h[k]

= ej
2π
N
ln
N−1∑
k=0

e−j
2π
N
lkh[k]

= ej
2π
N
lnH[i]|i=l,

where H[i] represents the complex coefficients of the discrete sequence h[n]. ye[n]

the result of the circular convolution is a scaled version of the original input, where

H[i] is evaluated at i = l.

This hints at eigenvalues and eigenvectors, where given a linear operator Am,

then the following holds

Av = λv (2.13)

where λ is a scalar. Therefore, instead of computing the matrix-vector multipli-

cation, one can easily scale the vector v with the scalar λ. The same can be said

about the circular convolution. Instead of computing the circular convolution with

the complex exponential ej
2π
N
kl, one can pre-compute the values H[i] and simply

scale the complex exponentials. This can be extended to arbitrary sequences x[n]

24

that can be expressed as a sum of scaled complex exponentials. The convolution op-

erator is a linear operator, which means that the circular convolution can be applied

to each term independently as shown in equation ??. Computing the complex coef-

ficients X[k] and H[k] with the help of the DFT the circular convolution becomes

the well know point-wise multiplication

y[n] = x[n] ~ h[n] (2.14)

=
1

N

(
N−1∑
k=0

X[k]ej
2π
N
kn

)
~ h[n]

=
1

N

N−1∑
k=0

X[k]
(
ej

2π
N
kn ~ h[n]

)
=

1

N

N−1∑
k=0

(X[k]H[k])︸ ︷︷ ︸
point-wise multiplication

ej
2π
N
kn

=
1

N

N−1∑
k=0

Y [k]ej
2π
N
kn,

where Z[k] = X[k]Y [k] represents the complex coefficients for the discrete sequence

y[n], the result of the circular convolution.

The convolution becomes a point-wise multiplication in the frequency do-

main. However, the convolution operation is not the only operation that becomes a

point-wise computation in the frequency domain. Other properties of the DFT as

shown in Table 2.1 simplify computation to point-wise operations. In the following

we present discuss in more detail the DFT properties that reduce computation in

one domain to point-wise operations in the dual domain.

25

Name Time domain ↔ Frequency domain

Linearity z[n] = x[n] + y[n]↔ Z[k] = X[k] + Y [k]

Time Shift y[n] = x[n− α]↔ Y [k] = e−j
2π
N
αkX[k]

Frequency Shift y[n] = e
2π
N
nαx[n]↔ Y [k] = X[k − α]

Convolution z[n] = x[n] ~ y[n]↔ Z[k] = X[k] · Y [k]

Multiplication z[n] = x[n] · y[n]↔ Z[k] = 1
N
X[k] ~ Y [k]

Correlation z[n] = x[n] ? y[n]↔ Z[k] = X[k] · Y ∗[k]

Time Difference
M−1∑
i=0

βiy[n− i] =
P−1∑
i=0

αix[n− i]↔ Y [k] =

P−1∑
i=0

αie
−j 2π

N
ki

M−1∑
i=0

βie
−j 2π

N
ki
X[k]

Differentiation y(t) = d
dt
x(t)|t=kn ↔ Y [k] = X[k] ·HDiff[k]

Table 2.1: The main DFT properties.

2.2.1 Linearity

The Fourier transform is a linear operator. Given any linear combination

y[n] =

p−1∑
i=0

αixi[n], (2.15)

where x0[n], x1[n], . . ., xp−1[n] are sequences that have the same length as y[n] and

α0, α1, . . ., αp−1 are constants, the DFT of the sequence y[n] is be computed as

Y [k] =

p−1∑
i=0

αiXi[k], (2.16)

where the Xi[k] represents the DFT of each of the components.

Although this property does not require any point-wise multiplications, it is

still an important property when dealing with combining and separating sequences.

Combining sequences may prove useful when number of DFT computations need to

be reduced. Instead applying the DFT p times on each of the components xi[n], the

26

DFT is applied once on the resultant sequence. Computing the stress and strain of

a material [47] makes use of this property. Once in frequency domain, they do the

point-wise computation, however they also reduce the dimensions of the sequence.

Overall they reduce the number of inverse DFT computations required to get the

sequence back to the time domain.

Combining sequences is also useful when computing the DFT of real se-

quences. The DFT of real sequences has conjugate symmetry. This implies that

computation can be reduced by almost half since only half of the complex coeffi-

cients are required. Therefore, two sequences can be combined to form a complex

sequence and one complex DFT is required for computation. Given two real se-

quences x[n] and y[n], we can define z[n] as

z[n] = x[n] + jy[n]. (2.17)

Using linearity, the DFT of z[n] is computed as

Z[k] = X[k] + jY [k], (2.18)

where X[k], Y [k] and Z[k] represent the Fourier representations for the three se-

quences. Using the conjugate symmetry properties of the DFT coefficients, X[k]

and Y [k] can be extracted by performing some extra computation.

2.2.2 Time and Frequency Shift

The time shift property refers to delaying or advancing a sequence by a specific

amount α. Shifting the sequence in time translates into the frequency domain to

a point-wise multiplication with complex exponentials. Given a sequence x[n] of

27

length N with X[k] the DFT coefficients, the DFT coefficients of the the delayed

sequence y[n] = x[n− α] is computed as

Y [k] = e−j
2π
N
kαX[k]. (2.19)

Discrete time sequences are only defined at integer value locations. However,

multiplying the frequency representation of a given sequence with the complex ex-

ponential e−j
2π
N

1
2
k means shifting the time domain representation by half a sample.

The result of the operation constructs the interpolated sequence. This means that

the result gives the samples between the integer values. Therefore multiplying the

complex representation of sequence with the complex exponential e−j
2π
N
αk, where α

is between 0 and 1 shifts the sequence by a non-integer number.

The Fourier transform is a dual operator. There is an equivalent operation

for the frequency domain. Hence, any shift in frequency translates to a complex

multiplication in the time domain. For example, the relationship Y [k] = X[k − α]

between two frequency coefficients translates in time domain to a point-wise complex

multiplication as follows

y[n] = ej
2π
N
nαx[n]. (2.20)

The operation is similar with the difference that the sign changes. Shifting in fre-

quency by −α means that in time domain representation is multiplied by the com-

plex exponential ej
2π
N
αn, where the − sign is dropped.

28

2.2.3 Convolution and Modulation

The convolution property is one of the most important properties when it comes to

the Fourier transform. Equation 2.14 shows how the time domain circular convo-

lution becomes a point-wise multiplication in the frequency domain. The circular

convolution assumes that the two sequence are periodic. However, a linear convo-

lution can be cast in term of circular convolutions if the two sequences are padded

with zero. For example, if both sequences x[n] and y[n] of length N are padded

with zeros to a length of at least 2N then the circular convolution becomes a linear

convolution.

Similar to the time/frequency shift property, there is an equivalent property

for doing convolution in the frequency domain. In other words, computing a scaled

circular convolution in frequency domain translates to a point-wise multiplication

in time domain such as

z[n] = x[n] · y[n] ⇐⇒ Z[k] =
1

N
X[k] ~ Y [k], (2.21)

where N represents the length of the two sequences. Either in time or in frequency

convolution is simplified to a point-wise multiplication.

2.2.4 Correlation

The correlation is also a widely used operation to measure the similarity or difference

between two input sequences. The correlation operation is similar to the convolution

operation. In contrast to the convolution operation, none of the sequence requires

29

a time reversal. The correlation operation is defined as

z[n] = x[n] ? y[n] =
N−1∑
k=0

x[k]y[k + n] (2.22)

Similar to the convolution property, the DFT simplifies the computation by

converting the correlation operation to a point-wise multiplication as

Z[k] = X[k] · Y ∗[k], (2.23)

where Y ∗[k] represents the complex conjugate of the frequency representation Y [k].

Complex conjugate requires flipping the sign in front of the imaginary component

of the complex number. Given c = a + jb, the complex conjugate c∗ is defined as

a− jb.

2.2.5 Time Difference

Time differences appear frequently in linear systems where summations of shifted

versions of the input sequence are equal to summations of shifted versions of the

output sequence. In other words two discrete time sequences x[n] and y[n] are

connected by the following formula

M−1∑
i=0

βiy[n− i] =

P−1∑
i=0

αix[n− i], (2.24)

the αi and βi values are constant values. Solving such systems may become cum-

bersome. However, using the DFT, linearity and time shift properties computation

30

is significantly simplified. In the frequency domain the expression becomes

Y [k] =

P−1∑
i=0

αie
−j 2π

N
ki

M−1∑
i=0

βie
−j 2π

N
ki

X[k]. (2.25)

It can be seen that once again the values of Y [k] are computed by point-

wise multiplying the frequency representation X[k] with a constant value. The sum
P−1∑
i=0

αie
−j 2π

N
ki

M−1∑
i=0

βie
−j 2π

N
ki

may become complicated. However, the values can be pre-computed.

The summation may even have a closed form solution in which case it can be com-

puted on the fly, and no extra storage is required. Finally, to compute the time

domain sequence the inverse DFT is applied on the result.

2.2.6 Trigonometric Interpolation and Differentiation

All computations on a computer are done on discretized data. Therefore, differen-

tiation must also be done on discretized data. “Notes on FFT-Based differentia-

tion” [48] presents algorithms for simulating the differentiation operator on discrete

sequences using the DFT. The algorithms are based on the idea that the DFT is an

approximation of the Fourier series described by the equation

y(t) =
∞∑

k=−∞
Y [k]e

2π
N
kt. (2.26)

Applying differentiation on the continuous function gives

d

dt
y(t) =

∞∑
k=−∞

(
j

2π

N
k · Y [k]

)
e

2π
N
kt. (2.27)

31

This suggests that the Fourier coefficients of the derived function d
dty(t) can be

computed by point-wise multiplying the coefficients of the original function with

constant values.

This result seems appealing since it follows the computation pattern dis-

cussed so far in this dissertation. However, computing the derivative requires the

continuous function and converting the discrete sequence to the continuous func-

tion may not be possible. In such cases, differentiation must be applied on the

interpolated values of the sequence. One simple interpolation is the one where the

time-shift property is used. Recall that shifting in time a sequence by a value α

requires a complex multiplication in the frequency domain. Moreover, if α is chosen

between 0 and 1 then the samples between the original samples can be obtained.

This interpolation though has significant errors due to aliasing. The sequences ob-

tained from interpolation are not unique. Now for the sequence itself, aliasing is not

a problem, however the differentiated sequence may suffer from significant errors.

More details can be found in [48, 49].

An alternative solution is to use a better trigonometric interpolation that

minimizes errors and the so called oscillations between the samples. One interesting

property of the DFT is the trigonometric interpolation polynomial defined as

y(t) = Y [0] +
∑

0<k<N
2

(
Y [k]ej

2π
N
kt + Y [N − k]e−j

2π
N
kt
)

+ YN
2

cos(πt), (2.28)

where the Y [k] coefficients represent the DFT of coefficients for the sequence y[n].

The YN
2

term appears when the value N is even. If N is odd the term disappears.

This interpolation has two interesting properties. First, the polynomial consists

of sinusoids that have the smallest possible values for the frequencies and thus the

smallest oscillations. Second, if the original sequence y[n] is real then the polynomial

32

Algorithm 2 Computing the first-order derivative of a discrete time sequence y[n]
using the DFT.

1: function firstDeriv(x, y,N) . Where x - input array, y - output array, N - length
2: X = dft(x)
3: for k = 0 to N − 1 do
4: if (k < N/2) Y [k] = j2πk/NX[k]
5: if (k == N/2) Y [k] = 0
6: if (k > N/2) Y [k] = j2π(k −N)/NX[k]
7: end for
8: y = idft(Y)
9: end function

only returns real samples. Details about the interpolation polynomial can be found

in [46].

Using the trigonometric interpolation polynomial, one can determine and

define the specific algorithms for computing the first and second order derivatives

for the discrete sequence y[n]. Taking the first order derivative of the polynomial

and sampling it at sample rate of N samples, the discrete derived sequence can be

computed as

y′[n] =
∑

0<k<N
2

j
2π

N
k
(
Y [k]ej

2π
N
kt − Y [N − k]e−j

2π
N
kt
)
. (2.29)

Given the inverse DFT where y′[n] =
N−1∑
k=0

Y ′[k]ej
2π
N
kn and using pattern matching,

the Y ′[k] coefficients can be computed. The Y ′[k] coefficients represent the DFT

coefficients of the derived sequence. Using algorithm 2, one can simulate the first

order derivative of the discrete time sequence y[n]. Similarly, the second order can

be computed. Applying the derivation step a second time and again sampling the

function at N samples the second order derivative can be computed following algo-

rithm 3. There are other methods that provide more accurate results for computing

the derivative [9].

33

Algorithm 3 Computing the second-order derivative of a discrete time sequence
y[n] using the DFT.

1: function secondDeriv(x, y,N) . Where x - input array, y - output array, N - length
2: X = dft(x)
3: for k = 0 to N − 1 do
4: if (k <= N/2) Y [k] = −[2πk/N]2X[k]
5: if (k > N/2) Y [k] = −[2π(k −N)/N]2X[k]
6: end for
7: y = idft(Y)
8: end function

It can be seen that all these operations and properties require a forward

Fourier transform, followed by a point-wise multiplication and an inverse Fourier

transform. The properties are shown in the context of 1D operations, however

the properties can easily be extended to higher dimensions. All follow the pattern

emphasized in this dissertation. This shows that although the DFT is an important

computational kernel, the focus should be on the algorithms that use the DFT as

a building block. Optimizing the algorithms as a whole rather than optimizing the

DFT in isolation may prove to be more beneficial. Using a domain specific language

to express the entire computation allows one to reason about what optimizations

can be applied across the compute stages. In the following section we introduce

the SPL language already used to describe DFT computation. However, we use to

describe DFT-base operations and apply optimizations across the compute stages.

More details about the optimizations can be found in Chapter 3 and 4.

2.3 SPL, the Language to Represent DFTs

In this section, we focus on the language used to describe Fourier transforms and

algorithms that decompose the Fourier transform. The language we use to capture

various algorithms is called the Signal Processing Language (SPL) [26, 27]. The lan-

34

guage is built around the Kronecker product [50] and structured sparse matrices. In

the following paragraphs we first present the Kronecker product and the structured

sparse matrices like diagonal or permute matrices. We then introduce the DFT and

some of the algorithms used to decompose the DFT computation using the SPL

notation. We set the ground for the next chapter, where we use the SPL notation

to express DFT-based operations and show optimizations can easily applied. In

Chapter 3, we mostly focus on the step by step process of merging the compute

stages. While in Chapter 4, we present some other low level optimizations required

to obtain competitive implementations.

2.3.1 Kronecker Product

The Kronecker product also know the tensor product is the back-bone of the Signal

Processing Language (SPL). Given two dense square matrices Am ∈ Rm×m and

Bn ∈ Rn×n, the Kronecker product is defined as

Am ⊗Bn =



a0,0Bn a0,1Bn . . . a0,m−1Bn

a1,0Bn a1,1Bn . . . a1,m−1Bn
...

...
. . .

...

am−1,0Bn am−1,1Bn . . . am−1,m−1Bn


, (2.30)

where ai,j are the elements within the Am matrix and the product ai,jBn represents

the multiplication of each element of Bn with the scalar element ai,j . The result

is a larger matrix of size mn ×mn. Am and Bn are square matrix. However, the

Kronecker product accepts rectangular matrices as well, e.g. An,m ∈ Rn×m.

First, if the Am matrix is replaced with the identity matrix then the above

35

Figure 2.2: The figure on the left shows the first interpretation of the construct
Im⊗Bn where the matrix Bn is multiplied with n contiguous blocks. The figure on
the right shows the same construct, however viewed as a matrix-matrix multiply.

expression becomes

Im ⊗Bn =



Bn O . . . O

O Bn . . . O

...
...

. . .
...

O O . . . Bn


, (2.31)

where O is the zero matrix that has the same size as Bn. If the Im ⊗Bn construct

is applied on a vector x of size mn, then the matrix Bn is applied on continuous

blocks of size n. The matrix Bn is applied m times on m disjoint blocks. A common

practice is to view the 1D array x of size mn as a 2D array X of size n×m stored

in column major. Then the Im ⊗ Bn construct can be viewed as multiplying the

matrix Bn with the matrix X as seen in figure 2.2. The Im ⊗ Bn construct is well

suited for thread parallelism [33], where each thread applies the same operation Bn

on its own disjoint portion of the array x.

Second, if matrix Bn is replaced by the identity matrix In then the Kronecker

36

Figure 2.3: The figure on the left shows the first interpretation of the construct
Am ⊗ In where the matrix Am is multiplied with elements located at a stride of n.
The figure on the right shows the matrix interpretation.

product changes again

Am ⊗ In =


a0,0In . . . a0,m−1In

...
. . .

...

am−1,0In . . . am−1,m−1In

 . (2.32)

Each value of Am is multiplied with the identity matrix. Since only the diagonal

of the identity is non-zero, all the elements of Am are replicated on the diagonals.

The construct is used for representing operations that favor SIMD instructions [51].

If the construct Am ⊗ In is multiplied with an array x of size mn, then matrix Am

is multiplied with data points located at a stride of n elements apart. Similarly

splitting the 1D array into a 2D matrix X of size n ×m stored in column major,

the Am ⊗ In construct can be viewed as the matrix multiplication between X and

Am as shown in figure 2.3. Note that for this construct matrix Am appears on the

right hand size of the multiplication.

The Kronecker product is separable. Given two matrix An and Bm, the

tensor product between An and Bm can be separated as

An ⊗Bm = (An ⊗ Im) · (In ⊗Bm) , (2.33)

37

where the identity matrices have the same size as An and Bm. This property suggests

that the overall operation can be split into two stages, where matrix Bm is applied

on contiguous data and matrix An is applied on strided data.

The Kronecker product allows compute stages to be merged. Given two

matrices An and Cn, where the number of columns of An is equal to the number of

rows of Cn, fusing computation is done as

(An ⊗ Im) · (Cn ⊗ Im) = ((An · Cn)⊗ Im) (2.34)

(Im ⊗An) · (Im ⊗ Cn) = (Im ⊗ (An · Cn)) (2.35)

This two properties are useful when dealing with DFT-based convolutions. The

idea is that decomposing the forward and inverse DFT properly and exposing such

constructs, stages can be automatically be merged. There are other properties; for

more details the reader is pointed towards the following papers [52].

2.3.2 Specialized Matrices

Constructs can be built by simply using the identity matrix along side the Kronecker

product. However, besides the identity matrix, SPL offers other specialized matrices

such as diagonal matrices or various permutation matrices.

The diagonal matrix Dn defined as

Dn =



d0,0 0 . . . 0

0 d1,1 . . . 0

...
...

. . .
...

0 0 . . . dn−1,n−1


, (2.36)

is the matrix where only the diagonal elements are non-zero. This matrix is used

38

to compute a point-wise multiplication or scaling operation. The elements on the

diagonal can take any values. However, in most cases, the values are pre-determined

and most often pre-computed. The diagonal matrix can also be combined with

the identity matrix through the Kronecker product. This translates to duplicating

elements in different forms. For example, the construct Im ⊗Dn creates m replicas

of Dn, while Dn ⊗ Im duplicates each element of Dn m such that the duplicate

elements are consecutive.

SPL allows various permutation matrices that shuffle the input data based

on a given permutation. For example, the L matrix defined as

Lmnm : in+ j 7→ jm+ i, 0 ≤ i < m, 0 ≤ j < n (2.37)

represents the stride permutation. The L operator is applied on a 1D array. How-

ever, viewing the input data as 2D array of size n ×m, the L operator transposes

the original matrix into a matrix of size m× n. The L operator commutes the Am

and Bn matrix within the Kronecker product as follows

(Am ⊗Bn) = Lmnm (Bn ⊗Am)Lmnn (2.38)

(Am ⊗Bn)Lmnm = Lmnm (Bn ⊗Am) (2.39)

Transposing or applying the Hermition symmetry on Lmnm , gives another operator

Lmnn that transposes the matrix from m×n to n×m as shown in Equation 2.40. Mul-

tiplying the same L operator with the transposed version of itself give the identity

matrix as shown in equation 2.41. The transposition matrices can be decomposed

into block transpositions and transpositions within blocks as shown in Equation 2.42

39

Figure 2.4: The figure presents a block transposition.

and Equation 2.43.

(
Lmnm

)H
=
(
Lmnm

)T
= Lmnn (2.40)(

Lmnm
)H · Lmnm = Imn (2.41)

Lkmnn =
(
Lknn ⊗ Im

)
·
(
Ik ⊗ Lmnn

)
(2.42)

Lkmnkm =
(
Ik ⊗ Lmnm

)
·
(
Lknk ⊗ Im

)
. (2.43)

Transposing blocks or transposing within blocks is expressed the Kronecker product

between the L operator and the identity matrix I. For example, the Ik ⊗ Lmnm

construct suggests applying the permutation matrix locally on k chunks of data,

while the Lnkn ⊗ Im construct performs a permutation of blocks of size m as shown

in figure 2.4.

SPL allows users to define their own permutations. For example, the follow-

ing two permutations

Wp : i 7→ gi mod p, 0 ≤ i < p, (2.44)

Vn : i 7→
(
k

⌊
i

k

⌋
+m (i mod k)

)
mod n, 0 ≤ i < p.

are used later in this section within algorithms like Rader or Good-Thomas, used

40

to decompose the DFT under specific conditions.

2.3.3 SPL Constructs and Extensions

The Kronecker products Am⊗ In and Im⊗Bn replicate the elements from the same

matrix Am and Bm, respectively. However, there are case that will be discussed in

Chapter 3, where matrices need to be blocked into disjoint and distinct blocks. The

blocks are different from each other. A more general construct that allows indexing

is the direct sum
⊕

operator. Given m matrices B
(i)
n , the direct sum is defined as

m−1⊕
i=0

B(i)
n =



B
(0)
n O . . . O

O B
(1)
n . . . O

...
...

. . .
...

O O . . . B
(m−1)
n


. (2.45)

Each matrix B
(i)
n is applied on disjoint data points. Now, if all the matrices B

(i)
n

are equal to the same matrix Bn, then the direct sum is identical to the Kronecker

product Im ⊗Bn as

m−1⊕
i=0

Bn =



Bn O . . . O

O Bn . . . O

...
...

. . .
...

O O . . . Bn


. (2.46)

The direct sum can be used to describe the Kronekcer-equivalent construct

for Am ⊗ In, when the matrix Am depends on an index value i. Recall that the

permutation matrix L commutes the Kronecker product such that Am ⊗ In =

Lmnm (In ⊗Am)Lmnn , where the construct In ⊗ Am is replaced with
n−1⊕
i=0

Am. This

41

suggests that given n distinct matrices Aim, the equivalent construct can be written

using the direct sum as

Lmnm ·

(
n−1⊕
i=0

A(i)
m

)
· Lmnn . (2.47)

The direct sum is useful when blocking the diagonal matrix into disjoint components

such as

Dmn =
m−1⊕
i=0

D(i)
n , (2.48)

where D
(i)
n represents a disjoint part of the main diagonal. Using this property the

diagonal can be fused with the surrounding computation when computing a DFT-

based operation. The forward and inverse DFT dictate how to block the diagonal.

Some operations require zero padding and un-padding. For example, the

construct

Im×n =

 In

Om−n×n

 , m ≥ n, (2.49)

where Om−n×n is a rectangular matrix with all elements equal to 0, defines the zero-

padding operation. The matrix Im×n reads an array of size n and appends m − n

0s to it. The transposed version In×m where m ≥ n does the opposite, un-padds

the array. Such operators are useful when dealing with odd size DFTs and DFT-

based operations as shown in the implementation of the phase shift interpolation [3]

presented in Chapter 4.

42

Figure 2.5: The four stages of a DFT of size 16. The input data is viewed as a
matrix of size 4 × 4. The first stage applies the DFT in the columns, the second
stage transposes the matrix, the third stage does a Hadamard product and finally
the last stage applies the DFT again in the columns.

2.3.4 The Decomposition of the 1D DFT

The DFT of n input samples x0, . . . , xn−1 is defined as the matrix vector product

y = DFTnx with

DFTn = [ωk`n]0≤k,`<n with ωn = exp(−2πj/n). (2.50)

Computing the DFT as a matrix-vector multiplication incurs a O(n2) arithmetic

complexity. Fast Fourier transform (FFT) algorithms, such as the Cooley-Tukey

algorithm, reduce complexity to O(n log(n)). The Cooley-Tukey algorithm works

when the problem size n is a composite number. However, for prime numbers algo-

rithms like Rader or Bluestein need to be used. Basically the Rader and Bluestein

algorithm are DFT based convolutions on data that is padded with zeros.

In this section, we present the different algorithms used to decompose the

DFT. All the algorithms are expressed in terms of SPL. We start with the Cooley-

Tukey algorithm [53] that can be applied on composite problem sizes where N = mn.

The algorithm can be expressed using SPL as follows

DFTmn = (DFTm ⊗ In) · Tmnn · Lmnm · (DFTn ⊗ Im) . (2.51)

43

The algorithm recursively decomposes the DFT of size mn into smaller DFTs of

size m and n. If n and m are composite numbers the Cooley-Tukey decomposes the

DFTm and DFTn. The algorithm stops when it hits the base cases. For power of

two problem size the base case is the so called butterfly matrix DFT2 defined as

DFT2 =

1 1

1 −1

 (2.52)

For composite numbers that are not powers of two, the base cases are prime sizes for

which the Cooley-Tukey algorithm cannot be applied. Other algorithms like Rader,

Bluestein can be applied. In some cases for small size prime numbers it is beneficial

to simply compute the matrix-vector multiplication directly.

The 1D DFT is applied on 1D arrays. However, based on the decomposition

of the 1D DFT using Equation 2.51, the input array can be viewed as a 2D matrix,

where the size of the matrix is n × m given the decomposition of the problem

N = mn. Hence, the four stages of the DFT decomposition can easily be explained

as operations on the 2D matrix representation. The first stage applies the DFTn on

the input column direction m times. The data then is transposed from a matrix of

size n ×m to a matrix of size m × n. The result is scaled by the values stored in

the diagonal matrix Tmnn defined as

Tmnn = [e−j
2π
mn

kl], where 0 ≤ k < m− 1 and 0 ≤ l < n− 1, (2.53)

the so-called twiddle diagonal matrix. Finally, the last stage applies the DFTm on

the column direction n times.

Each DFT decomposition adds another dimension to the data-set. Decom-

posing the DFTmn allowed one to view the computation as being applied on a 2D

44

Figure 2.6: Recursively decomposing the (DFTm ⊗ In) gradually adds another di-
mension to the data set. The DFT computation always starts with the newly added
dimension.

matrix. Decomposing the children recursively increases the number of dimensions

as shown in Figure 2.6. In addition, the computation of the smaller DFTs is al-

ways applied in the newly created dimension. Assuming data is stored in row-major

order, the DFT computation always applies the DFTs in the slowest dimension in

memory. This implies that data is always accessed at large strides. This are covered

in more details in Chapter 4, where we discuss optimizations to reduce the effects

of non-unit strided accesses.

There are other algorithms for powers of two such as Stockham or Pease. All

these algorithms can be expressed using SPL and are simply different decompositions

of the main problem. The Stockham [54, 26] algorithm, for example, prefers sorting

the data as computation is performed, while Pease has very regular computation that

maps nicely to field-programmable gate arrays (FPGAs) implementations [54, 26],

however it requires an expensive permutation before computation can proceed. More

details about the algorithms and thei representation can be found in Van Loan [26].

It is though important to state that there are ways of going from one algorithm to

the other by modifying the SPL formulation and using the Kronecker properties.

There are other algorithms that decompose DFT computation. However,

the different decompositions work if certain conditions about the problem size are

45

satisfied. For example, Good-Thomas or the Prime Factor algorithm can only be

applied if the problem size N = mn satisfies gcd(m,n) = 1, where gcd represents

the greatest common divisor. The algorithm has at its core the Chinese Reminder

Theorem and can be formulated again using SPL as follows

DFTmn = V T
n · (DFTm ⊗ In) · (Im ⊗DFTn) · Vn, (2.54)

where the Vn matrix is the shuffle matrix defined above. The decomposition is

similar to the Cooley-Tukey algorithm. However, one key difference is that the

twiddle factors disappear at the cost of more expensive data shuffling operations

before and after the computation.

For prime numbers either Rader [55] or Bluestein [56, 57] can be applied to

compute the frequency representations of a given sequence. Both algorithms perform

a convolution. Since the convolution can be computed using the Fourier transform,

both algorithms resort to a DFT-based convolution approach. The Rader algorithm

for a given prime size p is defined as

DFTp = W−1
p ·(I1⊕iDFTp−1) · Ep · (I1⊕DFTp−1) ·Wp, (2.55)

where Wp is the shuffle matrix defined previously, ⊕ represents the mathematical

representation of the direct sum, and Ep represents a pseudo-diagonal matrix with

two additional off diagonal elements. The representation gives a strong resemblance

to a convolution operation of size p− 1 with some extra operations for the 0th fre-

quency element. The downside of the Rader algorithm is that the input and output

shuffle operations are expensive since the mapping function is a power function fol-

lowed by a modulo function of prime numbers, e.g mod p where p is prime. On most

46

modern architectures power functions incur long latencies.

Bluestein is an alternative to the Rader algorithm. Given a prime size p,

the Bluestein algorithm computes a convolution of size n ≥ 2p − 1. The algorithm

increases the problem size to sizes that may benefit from more efficient implemen-

tations like those offered by the Cooley-Tukey algorithm. The algorithm requires

some extra operations before performing the DFT-based convolution. The entire

algorithm can easily be expressed using the SPL notation as

DFTp = B′p · Ip×n · (iDFTn ·Dn ·DFTn) · In×p ·Bp, (2.56)

where B′p = BH
p and Bp is the diagonal matrix defined as

Bp =



1 0 . . . 0

0 e
−j π

p . . . 0

...
...

. . .
...

0 0 . . . e
−j π(p−1)

p


(2.57)

The two matrices are required to pre and post-scale the input and the output. The

two matrices Ip×n and In×p are the constructs that perform the padding and un-

padding of data from the size p to the size n. The operation in the middle can easily

be identified as a DFT-based convolution, where the matrix Dn is a diagonal matrix.

Dn has a closed form solution since it is computed from a circulant matrix defined

by the Bluestein algorithm. Both Rader and Bluestein are built from DFT-based

convolution, therefore merging compute stages should provide improvements.

47

2.3.5 Extending to Higher Dimensions

All of the algorithms described above focused on the 1D DFT decomposition. How-

ever, the language can also be used to capture higher dimensional DFTs since higher

dimensional DFTs have a matrix like representation. Recall that p-dimensional DFT

is defined as the p sums

X[k0, . . . , kp−1] =

N0∑
n0=0

. . .

Np−1∑
np−1=0

x[n0, n1, . . . , np−1]e
−j2π

(
k0n0
N0

+...+
kp−1np−1
Np−1

)
.

(2.58)

Given the product of exponents, the DFT matrix for a p-dimensional DFT is rep-

resented as

DFTn0×n1×...×np−1 = DFTn0 ⊗DFTn0 ⊗ . . .⊗DFTnp−1 , (2.59)

where n0, n1, . . ., np−1 represent the sizes of the p dimensions. One can use the

properties of the Kronecker product to separate and group the stages together.

Therefore algorithms such as the pencil-pencil or slab-pencil decomposition can be

expressed using SPL.

We continue by briefly describing the algorithms used for the 2D and 3D

DFT. We start with the 2D DFT and expand to the 3D DFT. The 2D DFT is

expressed as a dense matrix DFTn×m that can be decomposed using the Kronecker

as

DFTn×m = DFTn ⊗DFTm.

48

Figure 2.7: The implementation of the 2D DFT algorithm. Data is viewed as a
2D matrix of size n × m, with the x-dimension laid out in the fast dimension in
memory. First 1D DFTs are applied in the rows and then 1D DFTs are applied in
the columns. Image is reproduced from [1].

Using the separation properties, the 2D DFT can be further decomposed as

DFTn×m =
(
DFTn ⊗ Im

)︸ ︷︷ ︸
Stage 2

·
(
In ⊗DFTm

)︸ ︷︷ ︸
Stage 1

.

The overall operation described mathematically above is depicted in Fig-

ure 2.7. The data is viewed as a n×m matrix stored in row-major order. The first

stage of the 2D DFT applies 1D DFTs of size m in the rows, whereas the second

stage applies 1D DFTs of size n in the columns direction. The above decomposition

of the 2D DFT is called the pencil-pencil decomposition, where each pencil refers to

a 1D DFT applied in each dimension. Recall that the 1D DFTs require strided ac-

cess, therefore for large 2D DFTs each of the pencils require non-unit stride memory

accesses.

Similarly, using SPL one can decompose the 3D DFT. The 3D DFT is also

a matrix DFTk×n×m that can be decomposed using the separability property and

49

SPL representation as

DFTk×n×m =
(
DFTk ⊗ Imn

)︸ ︷︷ ︸
Stage 3

·
(
Ik ⊗DFTn ⊗ Im

)︸ ︷︷ ︸
Stage 2

·

(
Ikn ⊗DFTm

)︸ ︷︷ ︸
Stage 1

.

Data is viewed as a 3D cube of size k × n×m, stored in row major order with the

x-dimension corresponding to the size m laid out in the fastest memory dimension.

The pencil-pencil-pencil decomposition of the 3D DFT applies 1D DFTs in each of

the three dimensions. Figure 2.8 shows the pencil-pencil-pencil implementation of

the 3D DFT algorithm. However, stages can be grouped together and algorithms

such as the slab-pencil decomposition can be expressed. Grouping the last DFTs

applied in the m and n dimension one gets the slab-pencil decomposition described

once again using SPL as

DFTk×n×m =
(
DFTk ⊗ Imn

)︸ ︷︷ ︸
Stage 2

·
(
Ik ⊗ ((DFTn ⊗ Im) · (In ⊗DFTm))

)︸ ︷︷ ︸
Stage 1

.

Choosing between pencil-pencil-pencil and slab-pencil decompositions depends on

the problem size and the underlying architecture. Optimizations and more details

about the decomposition are discussed in Chapter 4.

2.4 Summary

In this chapter, we talked about the Fourier transform and some of its properties.

We mostly focused on the discrete Fourier transform (DFT) for signals or sequences

of any dimension. We presented some of the basic DFT properties where it was

50

Figure 2.8: The implementation of the 3D DFT algorithm. Data is viewed as a
3D cube of size k × n ×m, with the x-dimension laid out in the fast dimension in
memory. The 1D DFTs are applied in all three dimensions one by one. Image is
reproduced from [1].

shown that complicated operations become point-wise computations after applying

the DFT. This suggested that although the Fourier transform is an important math-

ematical kernel, the focus should be on DFT-based operations. Hence, frameworks

should focus on capabilities of expressing and optimizing entire DFT-based opera-

tions. Therefore, we discuss in Chapter 4 some implementation details on how to

build a simple API to allow users to express most common DFT-based operations.

In the second part of the chapter, we have presented the high level math-

ematical language that we use to represent DFT-based operations. The SPL rep-

resentation has successfully been used to represent multi-dimensional DFTs and

various algorithms like Cooley-Tukey, Rader or Bluenstein. However, we extend its

functionality by looking at DFT-based operations. Having a high level language to

express entire algorithms enables more opportunities for optimization. In Chapter

3, we discuss applying loop fusion across DFT and non-DFT stages and we use the

SPL language to outline the step by step process of achieving efficient stage merging.

51

Chapter 3

Fusing the DFT with the

Surrounding Computation

The goal of this dissertation is to apply optimizations across the DFT and non-

DFT stages in a systematic way. One such optimization is loop fusion [58]. Current

implementations of any DFT-based operation keeps the DFT and non-DFT stages

separate. Each stage requires a full pass through the data and as the problem

size increases data needs to be read from the lower levels of the memory hierarchy,

incurring longer latencies. This becomes a problem especially for memory bound

computations like the DFT and the point-wise operation. Hence, fusing the DFT

and non-DFT stages improves data locality and thus overall performance.

In the first part of this chapter, we focus on the definition of loop fusion and

the necessary conditions required by two or more loops to satisfy in order for loop

fusion to be applied. Typically a compiler needs to analyze the loops and decide

whether loop fusion can be applied. However, due to problems like pointer aliasing,

complicated loops and complicated indexing, they lack the necessary information

52

and most likely loops will not get merged. As such, in this work we resort to using a

mathematical representation, namely SPL, to represent the computation and apply

optimizations like loop fusion at this level of abstraction. Therefore, in the second

part of the chapter we outline the systematic approach of fusing the compute stages

for both 1D and multi-dimensional DFT-based operations. We provide a step by

step description of how to efficiently merge the compute stages.

3.1 From SPL to Loop Fusion

In this section, we talk about loop fusion and the difficulties a compiler must handle

in order to determine whether loops can be fused or not. Due to problems like

pointer aliasing, complicated loops and complicated indexing a compiler cannot effi-

ciently fuse loops. However, expressing the computation in a high level mathematical

language one can reason on how to merge the DFT and non-DFT stages.

3.1.1 Loop Fusion

Loop fusion is a compiler optimization and one of the seven loop transforms [58, 20,

59]. As the name says, the transform fuses loops together to improve data locality.

However, in order to fuse loops the following conditions must be satisfied:

• the loop iteration count must match

• the data dependencies must be preserved

For example, the two loops in Figure 3.1a can be merged into one single

loop as shown in Figure 3.1b. The two loops have the same iteration count and

the data dependencies are not broken once the loops are fused. Fusing the loops

also improves data locality since the value b[i] is updated and immediately used

53

1 i n t a [3 2] , b [3 2] , c [3 2] ;
2

3 f o r (i n t i = 0 ; i != 16 ; ++i) {
4 b [i] = a [i] + 3 ;
5 }
6

7 f o r (i n t i = 0 ; i != 16 ; ++i) {
8 c [i] = b [i] + 5 ;
9 }

(a) Two loops that can be fused.

1 i n t a [3 2] , b [3 2] , c [3 2] ;
2

3 f o r (i n t i = 0 ; i != 16 ; ++i) {
4

5 b [i] = a [i] + 3 ;
6

7 c [i] = b [i] + 5 ;
8

9 }

(b) The result of fusing the code in 3.1a.

1 i n t a [3 2] , b [3 2] , c [3 2] ;
2

3 f o r (i n t i = 0 ; i != 16 ; ++i) {
4 b [i] = a [i] + 3 ;
5 }
6

7 f o r (i n t i = 0 ; i != 16 ; ++i) {
8 c [i] = b [i + 1] + 5 ;
9 }

(c) Two loops that cannot be fused.

1 i n t a [3 2] , b [3 2] , c [3 2] ;
2

3 f o r (i n t i = 0 ; i != 16 ; ++i) {
4

5 b [i] = a [i] + 3 ;
6

7 c [i] = b [i + 1] + 5 ;
8

9 }

(d) The result of fusing the code in 3.1b.

Figure 3.1: Example of loops that can be and cannot be fused.

in the next instruction. However, fusion cannot be applied on the loops shown in

Figure 3.1c. Even though the two loops have the same iteration count, fusing them

breaks the dependencies. The second loop requires the value of b[i + 1] which

needs to be computed before it can be used. If the loops are left as is, the first loop

fully updates the array b and the second loop reads the updated version of the array.

However, if the loops are fused as shown in Figure 3.1d, each iteration updates b[i]

but b[i + 1] does not get the updated value until the following iteration. Fusing

the loops in Figure 3.1c requires other loop transformations like loop peeling, thus

increasing the likelihood that the compiler will not optimize the code.

In addition to the extra steps required to perform loop fusion, the code

may also be more complex. Applications typically have complicated loops with

54

1 complex in [1 6] , t [1 6] , out [1 6] ;
2

3 f o r (i n t i = 0 ; i != 4 ; ++i) {
4 complex ∗ inx = (in + 4 ∗ i) ;
5 complex ∗ tx = (t + 4 ∗ i) ;
6

7 dft comp (4 , inx , 1 , tx , 1) ;
8 }
9

10 f o r (i n t i = 0 ; i != 4 ; ++i) {
11 complex ∗ tx = (t + 4 ∗ i) ;
12 complex ∗outx = (out + 4 ∗ i) ;
13

14 dft comp (4 , tx , 1 , outx , 1) ;
15 }

(a) Two loops around a DFT of size 4.

1 complex in [1 6] , t [1 6] , out [1 6] ;
2

3 f o r (i n t i = 0 ; i != 4 ; ++i) {
4 complex ∗ inx = (in + 4 ∗ i) ;
5 complex ∗ tx = (t + 4 ∗ i) ;
6

7 dft comp (4 , inx , 1 , tx , 1) ;
8 }
9

10 f o r (i n t i = 0 ; i != 4 ; ++i) {
11 complex ∗ tx = (t + i) ;
12 complex ∗outx = (out + i) ;
13

14 dft comp (4 , tx , 4 , outx , 4) ;
15 }

(b) Two loops around a DFT of size 4.

Figure 3.2: Example of more complicated loops. The loop in Figure 3.2a can be
fused, while the loop in Figure 3.2b cannot be fused.

complicated memory access patterns. For example, Figure 3.2a and Figure 3.2b

show two code snippets where batches of DFTs are applied one after the other.

Each batch is basically a loop around a DFT function call. The DFT computation is

represented by the function dft comp, which takes as arguments the size of the DFT,

the input and output arrays and their corresponding leading dimensions. Because

of the extra components like the offsets into the arrays and the leading dimensions,

the compiler cannot identify which loops need to be merged. However, using a high

level mathematical representation to represent the loops and the computation can

alleviate the problem of how to fuse the stages. Therefore, in this work we opt for

using the SPL notation to represent and optimize the computation.

3.1.2 Fusion in the Context of SPL

In Chapter 2, we presented the SPL notation and some of the constructs. Each

SPL construct has a loop based equivalent as shown in [25, 31]. For example, the

55

1 complex x [1 6] , y [1 6] ;
2

3 f o r (i n t i = 0 ; i != 4 ; ++i) {
4 complex ∗ xf = (x + 4 ∗ i) ;
5 complex ∗ yf = (x + 4 ∗ i) ;
6

7 d f t (4 , xf , 1 , yf , 1) ;
8 }

(a) The C/C++ code representation of the
I4 ⊗DFT4 construct.

1 complex x [1 6] , y [1 6] ;
2

3 f o r (i n t i = 0 ; i != 4 ; ++i) {
4 complex ∗ xf = (x + i) ;
5 complex ∗ yf = (x + i) ;
6

7 d f t (4 , xf , 4 , yf , 4) ;
8 }

(b) The C/C++ code representation of the
DFT4 ⊗ I4 construct.

Figure 3.3: The C/C++ loop equivalent of some of the SPL constructs.

construct I4 ⊗ DFT4 which applies a DFT4 on four contiguous blocks of size four

is translated into a loop of four iterations around a DFT4 as shown in Figure 3.3a.

Since the DFT is applied on contiguous blocks of data, the leading dimension is

one and the offset into the input and output arrays is four. Similarly, the construct

DFT4⊗I4 which applies a DFT4 on four elements located at a stride distance of four

elements is translated into a loop of four iterations around a the DFT4 as shown

in Figure 3.3b. For this construct, the leading dimension is equal to four and the

offset into the arrays is equal to one.

Given this mapping, the loops in Figure 3.2a and Figure 3.2b can be re-

written using the SPL as follows. The code snippet in Figure 3.2a is translated into

SPL as

(I4 ⊗DFT4) · (I4 ⊗DFT4) , (3.1)

while the code snippet in Figure 3.2b is translated into SPL as

(I4 ⊗DFT4) · (DFT4 ⊗ I4) . (3.2)

56

Figure 3.4: The Kronecker product and fusing the compute stages. The first two
constructs can be merged since the DFTs are applied in the same direction. The
last constructs cannot be merged since the DFTs are applied in different directions.

Looking at the Kronecker product properties described in Chapter 2, only

the expression in Equation 3.1 can be merged since both DFTs are applied in the

same direction. The expression in Equation 3.2 cannot be merged since the DFTs in

each stage access data in different directions as shown in Figure 3.4. The first stage

requires elements at a stride while the second stage requires contiguous elements.

The second stage needs to wait for first stage finish computation before starting its

computation. Fusing the two stages would break the dependencies, similar to how

the dependencies were broken when fusing the code in Figure 3.1c. This implies

that SPL constructs can be merged if the expressions have the following form

(Im ⊗A) · (Im ⊗ C) = (Im ⊗ (A · C)) , (3.3)

(B ⊗ In) · (D ⊗ In) = ((B ·D)⊗ In) , (3.4)

where the number of columns in A is equal to the number of rows in C and the

57

number of columns in B is equal to the number of rows in D.

The fusion operation can be extended to the direct sum. Recall that the

direct sum is similar to the Kronecker product just that the construct deals with

operators that are dependent on an iteration count. Given two operators A(i) and

B(i) the fusion between the two direct sum is expressed as

(
n−1⊕
i=0

A(i)

)
·

(
n−1⊕
i=0

B(i)

)
=

n−1⊕
i=0

(
A(i) ·B(i)

)
. (3.5)

The iteration count for the direct sums must match and the number of columns in

matrix A(i) must be equal to the number of rows in B(i) for all values of i. Fusion

can also be done between the direct sum and the Kronecker product as follows

(In ⊗A) ·

(
n−1⊕
i=0

B(i)

)
=

n−1⊕
i=0

(
A ·B(i)

)
(3.6)(

n−1⊕
i=0

B(i)

)
· (In ⊗A) =

n−1⊕
i=0

(
B(i) ·A

)
(3.7)

Recall that the Kronecker product (In ⊗A) is a direct sum where the matrix A does

not depend on the index i. Again the conditions for being able to merge the two

constructs is that the iteration counts must be the same and the number of columns

in A must be equal to the number of rows in B(i) for all values of i.

3.2 Systematic Way of Merging the DFT and non-DFT

Stages

Most DFT-based operations follow a specific pattern, namely a forward DFT is

applied on the input data, followed by a point-wise multiplication and finally an

58

inverse DFT. The entire algorithm can be represented using SPL as

ConvN = iDFTN ·DN ·DFTN , (3.8)

where DN represents the diagonal matrix required for performing the point-wise

multiplication. DN stores the pre-computed values required for the point-wise com-

putation. Having a wider view of the entire algorithm and knowing up-front the

decompositions of the forward and inverse DFTs, we make the argument that there

is a systematic way of merging the DFT and non-DFT stages. In the following

sections, we cover the following

• the systematic approach of merging the stages within a 1D DFT-based con-

volution for problem sizes that are power of two

• the systematic approach of merging the stages within a 1D DFT-based con-

volution for prime number problem sizes

• the systematic approach of merging the stage within multi-dimensional DFT-

based operations

3.2.1 Merging the Compute Stages for 1D DFT-based Convolu-

tions for Power of Two Problem Sizes

In this subsection, we discuss the step by step approach of fusing the compute stages

for the 1D DFT-based convolution. Since all other computations boil down to a

point-wise computation in frequency domain, the steps for merging can be extended

to the other computations. We assume that the problem size N = 2p is a power

of two. Hence, the forward and inverse transforms can be decomposed using the

Cooley-Tukey algorithm. Since the forward and inverse DFT are independent, there

59

are cases that depended on the decompositions. N can have different factorizations

which implies different algorithms. For example, if N = 8 then one factorization is

n1 = 2 and n2 = 4 and another factorization is n3 = 4 and n4 = 2. For a problem

size N = n1n2 the forward DFT can be decomposed as

DFTN = (DFTn1 ⊗ In2) · Tn1n2
n2

· Ln1n2
n1

(DFTn2 ⊗ In1) , (3.9)

while the inverse DFT can be decomposed following a different factorization of

N = n3n4 and

iDFTN = (iDFTn3 ⊗ In4) · Tn3n4
∗

n4
· Ln3n4

n3
(iDFTn4 ⊗ In3) . (3.10)

The inverse DFT follows a similar decomposition of the as the forward DFT. The

only difference is that the twiddle factors must be complex conjugated. Therefore,

the decomposition of the iDFT can be thought as first decomposing a forward DFT

following the factorization N = n3n4 and then complex conjugating each term in

the twiddle diagonals.

The twiddle diagonals Tn1n2
n2

and Tn3n4
∗

n4
and the permutation matrices Ln1n2

n1

and Ln3n4
n3

can be fused with the DFT computation following the steps outline in [31].

The paper does not show how to merge the DFT computation. It only covers

the fusion of various permutations and point-wise computations. However, looking

closely at the decompositions of the forward and inverse DFTs, it can be seen that

the right child of the inverse DFT, the diagonal matrix representing the point-wise

60

computation and the left child of the forward DFT can further be merged

(iDFTn3 ⊗ In4) · Tn3n4
∗

n4
· Ln3n4

n3
(3.11)

(iDFTn4 ⊗ In3) ·DN · (DFTn1 ⊗ In2)︸ ︷︷ ︸
can be fused

·

Tn1n2
n2

· Ln1n2
n1

(DFTn2 ⊗ In1) .

Given the two DFT decompositions, the relationship n1n2 = n3n4 = N must

be satisfied. Based on the values n1, n2, n3 and n4 there are two cases that are

worth investigating:

1. n2 > n3 or n2 < n3: Let’s assume that n2 > n3. Since n2 > n3 and

N is a power of two that can be factorized as N = n1n2 = n3n4, there exists an

integer p > 1 such that n2 = n3p. The only constructs from within the DFT-based

convolution that can be merged, are

(iDFTn4 ⊗ In3) ·DN · (DFTn1 ⊗ In2) . (3.12)

Replacing the value n2 with n3p in above equation gives

(iDFTn4 ⊗ In3) ·DN · (DFTn1 ⊗ In3p) . (3.13)

Based on the property that In3p = In3 ⊗ Ip and the associative property of the

Kronecker product, the above formula can be re-written as

(iDFTn4 ⊗ In3) ·DN · ((DFTn1 ⊗ Ip)⊗ In3) . (3.14)

Now, using the fact that the permutation matrix L commutes the tensor product,

61

we can re-write the above construct as

Ln3n4
n4
· (In3 ⊗ iDFTn4) · Ln3n4

n3
·DN · Ln1pn3

n1p · (In3 ⊗ (DFTn1 ⊗ Ip)) · Ln1pn3
n3

, (3.15)

where n1p = n4. The middle construct Ln3n4
n3
·DN · Ln1pn3

n1p simply shuffles the data

within the diagonal matrix as shown in Figure 3.5. Let D′N = Ln3n4
n3
·DN ·Ln1pn3

n1p be

the diagonal that stores the shuffled data. Replacing the new diagonal in the above

expression gives

Ln3n4
n4
· (In3 ⊗ iDFTn4) ·D′N · (In3 ⊗ (DFTn1 ⊗ Ip)) · Ln1pn3

n3
. (3.16)

The two constructs In3 ⊗ DFTn4 and In3 ⊗ (DFTn1 ⊗ Ip) have the same identity

matrix In3 and the bothDFTn4 and (DFTn1 ⊗ Ip) are square matrices of size n4×n4.

This suggests that the two constructs can be merged following the idea presented

earlier in this chapter. In order to fuse the two constructs, the diagonal matrix

needs to be blocked into n3 disjoint chunks of size n4. Using the direct sum, the

diagonal D′N is re-expressed as

D′N =

(
n3−1⊕
i=0

D
′(i)
N/n3

)
, (3.17)

where D
′(i)
N represent a disjoint component of size n4 from the main diagonal. Re-

placing the diagonal with the direct sum expression gives

Ln3n4
n4
·

(
n3−1⊕
i=0

iDFTn4

)
·

(
n3−1⊕
i=0

D
′(i)
N/n3

)
·

(
n3−1⊕
i=0

(DFTn1 ⊗ Ip)

)
· Ln3n4

n3
(3.18)

It can be seen that the iteration count of all three direct sums is equal to n3. In

addition, the matrices within each direct sum have the same size. All constructs

62

Figure 3.5: Shuffling the data within the diagonal for the SPL construct Ln3n4
n3

·
DN/n3

· Ln1pn3
n1p .

are matrices of size n4 × n4. Following the ideas described in the beginning of this

chapter the three stages can be merged as

Ln3n4
n4
·

(
n3−1⊕
i=0

(
iDFTn4 ·D

′(i)
N/n3

· (DFTn1 ⊗ Ip)
))
· Ln3n4

n3
(3.19)

The permutation matrices before and after the direct sum suggest that the operation

within the direct sum is applied on strided elements. If the input data is viewed as

a 2D matrix of size n4 × n3, the the operation
(

iDFTn4 ·D
′(i)
N/n3

· (DFTn1 ⊗ Ip)
)

is

applied in the columns of the matrix.

The stages within the construct iDFTn4 ·D
′(i)
N/n3

· (DFTn1 ⊗ Ip) can also be

merged if the iDFTn4 can further be decomposed. However, the merging process

requires some extra steps:

1. the iDFTn4 must be decomposed using n4 = n41n42

(iDFTn41 ⊗ In42) · Tn41n42
∗

n42
· Ln41n42

n41
· (iDFTn42 ⊗ In41) ·D′(i)N/n3

· (DFTn1 ⊗ Ip)

(3.20)

2. the right child of the newly decomposed inverse DFT can be merged given

63

that n41n42 = n1p

(iDFTn41 ⊗ In42) · Tn41n42
∗

n42
· Ln41n42

n41
· (iDFTn42 ⊗ In41) ·D′(i)N/n3

· (DFTn1 ⊗ Ip)︸ ︷︷ ︸
can be fused

(3.21)

3. the three stages are similar to the ones in equation 3.12, thus the the merging

process repeats by analyzing whether n41 is smaller, equal or greater than p.

The steps are repeated until the problem sizes are DFTs of size two, namely the

base cases are hit.

If n2 < n3 then the process of merging is very similar. Given that n2 < n3

and N is a power of two that can be factorized as N = n1n2 = n3n4, there exists

an integer q such that n3 = qn2. Replacing this in equation 3.12 gives

(iDFTn4 ⊗ Iqn2) ·DN · (DFTn1 ⊗ In2) . (3.22)

The left child can be grouped such that iDFTn4 ⊗ Iqn2 = (iDFTn4 ⊗ Iq)⊗ In2 . This

exposes the In2 term, which is the same for both the left and right child. Repeating

the steps from the case where n2 > n3, the compute stages are fused as

Ln1n2
n1
·

(
n2−1⊕
i=0

(
(DFTn4 ⊗ Iq) ·D

′′(i)
N/n2

· iDFTn1

))
· Ln1n2

n2
, (3.23)

where D
′′(i)
N/n2

represents the blocked diagonal that stores the shuffled data points.

The main problem with this way of decomposing the forward and inverse

DFT is that the children become unbalanced after the first fusion step as shown in

Figure 3.6. One of the stages is a simple DFT while the other stage is a construct of

the form (DFT⊗ I). Applying fusion in the subsequent stages involves some extra

64

Figure 3.6: Zooming inside the convolution operation where the right child of the
inverse DFT, the main diagonal and the left child of the forward DFT need to be
merged. The data-sets need to be reshaped in order for the fusing operation to
succeed, since the assumption is that n2 > n3.

operations as shown above. For example, given that n2 > n3, the left child must

be decomposed first. The right child of the decomposition can be fused with the

diagonal and the other construct. However, if n2 < n3 then the roles are flipped.

The right child must be first decomposed, its left child must then be merged with

the diagonal and right the construct.

2. n2 = n3: Under this scenario the forward and inverse DFT are mirror

images of each other, more specifically the factorization of the inverse DFT is the

mirror image of the factorization of the forward DFT. For example, for a problem

size of N = 8 the inverse DFT decomposed using n1 = 4 and n2 = 2 is the mirror

image of the forward DFT which is decomposed following n3 = 2 and n4 = 4. This

suggests that the right child of the inverse DFT and the left child of the forward

DFT are identical

(iDFTn1 ⊗ In2) ·DN · (DFTn1 ⊗ In2) . (3.24)

65

Figure 3.7: Zooming inside the convolution operation where the right child of the
inverse DFT, the main diagonal and the left child of the forward DFT need to be
merged. No reshaping is need since n2 = n3.

The left and right child have the same ⊗In2 , therefore stages can be merged. The

steps discussed for the previous cases are repeated for this case as well. First the

tensor products are commuted using the L operator. Second the data within the

diagonal matrix DN is shuffled as shown in Figure 3.5. DN is surrounded by the

L matrices that commuted the tensor products. The diagonal D′N that stores the

shuffled data is blocked into n2 disjoint chunks of size n1 using the direct sum

expression. The fused version of the expression from equation 3.24 follows

Ln1n2
n2
·

(
n2−1⊕
i=0

(
iDFTn1 ·D

′(i)
N/n2

·DFTn1

))
· Ln1n2

n1
(3.25)

The fused stage
(

iDFTn1 ·D
′(i)
N/n2

·DFTn1

)
looks like a 1D DFT-based con-

volution, however smaller than the original. Therefore, the process of merging the

operations can be repeated.

Further optimizations can be brought to this decomposition. For example,

66

the stages can be merged repeatedly. Keeping everything in mirror image alleviates

the problem of deciding which of the stages needs to be first decomposed and then

merged. Under this scenario, both stages are recursively decomposed and merged

as shown in Figure 3.7.

Given N = n1n2 = n3n4 and the condition that n2 = n3, the decompositions

of the forward and inverse DFT are tied together. However, a stronger condition

can be imposed on the inverse DFT. It is know that the inverse transform is the

conjugate transposed of the forward transform, e.g. iDFT = DFTH , where (·)H

represents the conjugate transpose operator. Using this property and replacing the

inverse DFT with the conjugate transposed version of the forward DFT gives

ConvN =
(
DFTH

n2
⊗ In1

)
· Ln1n2

n2︸ ︷︷ ︸
Stage3

· (3.26)

Tn1n2
∗

n2
·
(
DFTH

n1
⊗ In2

)
·DN · (DFTn1 ⊗ In2)︸ ︷︷ ︸

Stage2

·

Tn1n2
n2

· Ln1n2
n1
· (DFTn2 ⊗ In1)︸ ︷︷ ︸

Stage1

.

Following the steps from [31] for fusing the twiddle and permutation matrices and

applying the necessary loop transformations to fuse the computation from the second

stage, the 1D DFT-based convolution is modified as follows

ConvN = Ln1n2
n2
·

(
n1−1⊕
i=0

DFTH
n2

)
· (3.27)

Ln1n2
n1
·

(
n2−1⊕
i=0

T ′n1n2
∗(i)

n2
·DFTH

n1
·D′(i)N/n2

·DFTn1

)
· Ln1n2

n2
·(

n1−1⊕
i=0

T ′n1n2(i)
n2

·DFTn2

)
· Ln1n2

n1
.

67

It can be seen that the middle stage can be computed in-place. The reading and

writing pattern are transposed versions of each other, therefore no extra buffer is

required for storage. The computation surrounding the middle stage are transposed

versions of each other. The right child reads data at a stride and outputs it sequen-

tial, while the left child reads data sequentially and outputs it at the same stride as

the right child. This construct favors in place computation. In addition, the inverse

DFT can simply be obtained by transposing the data-flow of the forward transform

and subsequently complex conjugating all the twiddle matrices.

All of the approaches described in this subsection require the diagonal and

twiddle matrices to be repartitioned, shuffled and reindexed. The problem is that

as the diagonal matrix is fused with the computation around it, data must be shuf-

fled. Recall that after reorganizing the DFT computation, the diagonal matrix is

surrounded by L operators. These operators permute data within the diagonal as

shown in Figure 3.5. In the current implementation of the code generator, as the di-

agonal matrices get reshaped and repartition, we a book keeping of the new mapping

in order to be able to construct the appropriate index mapping.

3.2.2 Merging the Compute Stages for 1D DFT-based Convolu-

tions for Prime Number Problem Sizes

The Cooley-Tukey algorithm works for composite numbers of the form N = mn.

However, if the problem size N is prime, then algorithms like Rader or Bluestein

fit better. Both algorithms are basically DFT-based convolutions that require ex-

tra permutations and data re-orderings. For example, Rader requires expensive

permutations based on power functions and modulos with prime numbers. The im-

plementation of these functions on most modern systems are expensive and incur

68

long latencies. Bluestein on the other hand requires zero-padding and extra com-

plex multiplications. Similarly, zero padding instructions are expensive. However,

having a view of the entire 1D DFT-based convolution, knowing the decomposition

of the forward and inverse DFT and imposing the condition that the iDFT = DFTH

can help to reduce redundant operations while merging the stages.

In this subsection, we present the step by step process of merging the compute

stages when dealing with prime number problem sizes. We first focus on applications

that use the Rader algorithm and then continue with the convolutions based on the

Bluestein algorithm. For both cases we outline the possibilities of reducing the

expensive operations and also the opportunities of merging the compute stages.

The Rader algorithm decomposes the DFT for a prime problem size p as follows

DFTp = W−1
p ·(I1⊕DFTH

p−1) · Ep · (I1⊕DFTp−1) ·Wp, (3.28)

where Wp represents the Rader permutation matrix. The permutation is based on

the function

Wp : i 7→ gi mod p, 0 ≤ i < p. (3.29)

The power and modulo functions are expensive instructions. Using the property

iDFT = DFTH , the 1D DFT-based convolution for prime sizes can be expressed

with SPL as

Convp = W−1
p ·(I1⊕DFTH

p−1) · E∗p · (3.30)

(I1⊕DFTp−1) ·Wp ·Dp ·W−1
p ·(I1⊕DFTH

p−1)·

Ep · (I1⊕DFTp−1) ·Wp,

69

where E∗p represents the complex conjugate of Ep. Given the Rader permutation,

the construct Wp ·Dp ·W−1
p shuffles the diagonal matrix Dp into D′p. The diagonal D′p

can again be blocked using the direct sum. The difference now is that the direct sum

blocks the matrix into two matrices of different sizes. The first matrix D′′N represents

the first element of the main diagonal, D′′1 is a 1 × 1 matrix. The second matrix

D′′′p−1 represents the diagonal matrix that contains the remaining p−1 elements, the

matrix is of size (p− 1)× (p− 1). The compute stages can be merged as follows

Convp = W−1
p ·(I1⊕DFTH

p−1) · E∗p · (3.31)(
D′′1⊕

(
DFTp−1 ·D′′′p−1 ·DFTH

p−1

))
·

Ep · (I1⊕DFTp−1) ·Wp

The Rader-based 1D convolution gains from reducing the number of expen-

sive permutations. Data still needs to be permuted at the beginning and end of the

1D DFT-based convolution, however no more permutations are required within the

computation. The diagonal must be shuffled, however this can be done apriori. For

convolutions that use the Bluestein algorithms, the merging simplifies data pack-

ing and reduces extra point-wise computation. Recall that the Bluestein algorithm

increases the problem size from p to N > 2p− 1 such as

DFTp = B′p · Ip×N ·
(
DFTH

N ·DN ·DFTN

)
· IN×p ·Bp, (3.32)

where Bp, B
′
p are extra point-wise operations required to scale the input and output

sequence and the IN×p and Ip×N operators are used to perform zero-padding and

un-padding. Once again, we use the fact that the inverse DFT is the conjugate

transpose of the forward DFT, iDFTN = DFTH
N . This insight allows us to re-write

70

the 1D convolution for the Bluestein decomposition as

Convp = BH
p · Ip×N ·

(
DFTH

N ·D∗N ·DFTN

)
· (3.33)

IN×p ·B′Hp ·Gp ·B′p · Ip×N ·(
DFTH

N ·DN ·DFTN

)
· IN×p ·Bp,

where Gp represents the convolution point-wise computation. Since DN is a diagonal

matrix and B′Hp and B′p are complex conjugate diagonal matrices of each other, B′Hp

and B′p cancel themselves. This brings the IN×p and Ip×N operators closer to the

diagonal Gp. The operators simply increase the size of the diagonal Gp to N by

appending zero elements to the Gp diagonal. Let G′N be the diagonal that contains

the 0 elements. This convolution is simplified as

Convp = BH
p · Ip×N · (3.34)(
DFTH

N ·D∗N ·DFTN

)
·G′N ·

(
DFTH

N ·DN ·DFTN

)
·

IN×p ·Bp,

where G′N represents the expanded diagonal matrix. Merging the compute stages for

the Bluestein-based convolution reduces computation and also reduces data padding.

In addition, it exposes more stages that can further be merged. Typically, the

problem size N is increased to a power of two so that the Cooley-Tukey algorithm

can be used for the forward and inverse DFTs. Therefore, the above compute stages

can be merged following the steps presented in the previous subsection.

71

3.2.3 Merging the Compute Stages for Multi-Dimensional DFT-

based Convolutions

The step by step process of merging the compute stages can be extended to multi-

dimensional DFT-based operations. We use the DFT-based convolution as an exam-

ple, however we focus on the 2D DFT-based convolution. The steps can be extended

to any multi-dimensional DFT. However, the 2D DFT-based convolution is sufficient

to illustrate the cases where the point-wise computation exhibits symmetry prop-

erties. Depending on such properties the point-wise computation is non-separable

or separable on the dimensions of the data-set. We explore and show the merging

process for both cases.

2D DFT-based operation with non-separable point-wise. We first

discuss the case where the point-wise operation does not have symmetry properties

and thus cannot be decomposed on the dimensions of the data. The point-wise has

to wait for the 2D DFT to be fully computed before it can applied. Using SPL, the

2D DFT-based convolution is expressed as

Convm×n = iDFTm×n ·Dmn ·DFTm×n, (3.35)

where the iDFTm×n and DFTm×n are the 2D DFTs and Dmn is the diagonal matrix

for computing the point-wise multiplication. High dimensional DFTs are separable

operations. Therefore, using the pencil-pencil algorithm, where a 1D DFT is applied

in each dimension, the 2D DFT-based convolution can be re-written as

Convm×n = (iDFTm ⊗ In) · (Im ⊗ iDFTn) ·Dmn· (3.36)

(DFTm ⊗ In) · (Im ⊗DFTn)

72

Now, forcing the inverse transform to be the conjugate transposed representation of

the forward transform, re-shuffles the compute stages of the inverse 2D DFT such

that

Convm×n =
(
Im ⊗DFTH

n

)
· (3.37)(

DFTH
m ⊗ In

)
·Dmn · (DFTm ⊗ In)︸ ︷︷ ︸

can be fused

·

(Im ⊗DFTn)

The re-ordering exposes the compute stages that can be merged. In this

case the
(
DFTH

m ⊗ In
)

construct can be merged with the diagonal Dmn and the

(DFTm ⊗ In). Similar to the 1D case, we use the property that the L operator

commutes the Kronecker products and obtain the following

Convm×n =
(
Im ⊗DFTH

n

)
· (3.38)

· Lmnm ·
(
In ⊗DFTH

m

)
· Lmnn ·Dmn · Lmnm · (In ⊗ ·DFTm) · Lmnn ·

(Im ⊗DFTn)

Once again, the permutation matrices around the diagonal matrix Dm,n simply

shuffle data within the diagonal. Using the direct sum to replace the Kronecker

products and to block the diagonal matrix into disjoint components allows us to

73

merge the middle compute stages as

Convm×n =
(
Im ⊗DFTH

n

)
· (3.39)

· Lmnm ·

(
n−1⊕
i=0

(
DFTH

m ·D′(i)m ·DFTm

))
· Lmnn ·

(Im ⊗DFTn)

The 2D convolution operation reduces to two DFTs applied on consecu-

tive chunks of data and 1D convolution applied on strided data. The construct(
DFTH

m ·D
′(i)
m ·DFTm

)
can be optimized by further merging the compute stages

following the steps presented in this chapter. Basically the construct is a smaller

1D convolution.

In this example, we computed the forward 2D DFT by first applying the 1D

DFT in the row direction followed by a 1D DFT in the column direction as shown

in Figure 3.8. Due to the commutativity property of the Kronecker product, the

2D DFT can be compute by first applying 1D DFTs in the columns and then in

the rows. Since the forward and inverse DFT are tied through the property that

iDFT = DFTH , changing the order of computing the forward transform changes

the order of the inverse transform as well. This reordering gives a different schedule

of the compute stages, which in turns exposes the DFT compute stages done in the

row direction to be fused as follows

74

Figure 3.8: The two possibilities of fusing the stages that compose the 2D DFT-
based convolution. The first method fuses the stages so that the 1D convolution is
applied in the column direction, while the second method fuses the compute stages
so that the 1D convolution is applied in the row direction.

Convm×n =
(
DFTH

m ⊗ In
)
·
(
Im ⊗DFTH

n

)
·Dmn (3.40)

(Im ⊗DFTn) · (DFTm ⊗ In) .

For higher dimensional operations the number of possible schedules increases. For

75

example, for the 3D DFT there are three possibilities of re-organizing the compute

order depending on which dimension is computed first.

2D DFT-based operation with separable point-wise. In this part, we

discuss the case where the point-wise computation is separable on the dimensions

of the data-set since the point-wise computation exhibits symmetry. In the above

example, the assumption is that in order to apply the point-wise multiplication the

entire 2D DFT must be applied. However, there are cases where the point-wise

multiplication does not require the sequence to be fully converted to the frequency

domain. Take for example the differentiation operator d2

dxdy . The operation is sep-

arable on the x and y dimensions. Let i[n0, n1] be a 2D sequence of size m by

n. The 2D sequence is the discretized version of the continuous function on which

the differentiation operator is applied to. The basic procedure for computing the

operator d2

dxdy is to first apply a 2D DFT on the 2D sequence, apply a point-wise

multiplication with complex values defined as

Dmn[k0, k1] =



j 2π
m k0 · j 2π

n k1, k0 <
m
2 and k1 <

n
2

j 2π
m k0 · j 2π

n (k1 − n), k0 <
m
2 and k1 >

n
2

j 2π
m (k0 −m) · j 2π

n k1, k0 >
m
2 and k1 <

n
2

j 2π
m (k0 −m) · j 2π

n (k1 − n), k0 >
m
2 and k1 >

n
2

0, k0 = m
2 or n

2

(3.41)

and finally apply an inverse 2D DFT to obtain the differentiated sequence. Now,

it can be seen that D[k0, k1] = Dm[k0]Dn[k1] (is symmetric), where the values of

Dm and Dn are simply the differentiation values obtained when differentiating 1D

76

sequences by d
dx and d

dy respectively.

Dm[k0] =


j 2π
m k0, k0 <

m
2

j 2π
m (k0 −m), k0 >

m
2

0, k0 = m
2

(3.42)

Dn[k1] =


j 2π
n k1, k1 <

n
2

j 2π
n (k1 − n), k1 >

n
2

0, k1 = m
2

(3.43)

The point-wise multiplication can be decomposed on the dimensions of the

data-set. Due to the Kronecker product properties, the computation can be grouped

so that point-wise computation is locally done. The steps of computing the 2D

differentiation algorithm knowing the point-wise computation is separable is done

as follows

• apply m DFTs of size n in the row direction

• perform m point-wise multiplications with Dn[k1]

• apply m inverse DFTs of size n in the row direction

• apply n DFTs of size m in the column direction

• perform n point-wise multiplications with Dm[k0]

• apply n inverse DFTs of size m in the column direction

The compute stages can be merged. The 2D differentiation operation can be broken

down in two parts, first apply the differentiation in the m dimension, followed by

the differentiation in the n dimension.

77

Using the SPL notation, the diagonal Dm,n is re-written as

Dmn = Dm ⊗Dn = (Dm ⊗ In) · (Im ⊗Dn) , (3.44)

where the matrices Dmn, Dm and Dn are the smaller diagonal matrices. The Kro-

necker product connects the large diagonal Dmn with the smaller matrices Dm and

Dn, respectively. The smaller matrices are the point-wise operations that are ap-

plied in each dimension. The 2D DFT-based differentiation operator Diffm×n can

be re-written as

Diffm×n =
(
DFTH

m ⊗ In
)
·
(
Im ⊗DFTH

n

)
· (3.45)

(DFTm ⊗ In) · (Im ⊗Dn) · (DFTm ⊗ In) · (Im ⊗DFTn)

Using the properties of the Kronecker product, the compute stages can be re-

arranged. In addition, the compute stages can be grouped together and merged.

The fused version of the 2D DFT-based differentiation is expressed using SPL as

Diffm×n =
((

DFTH
m ·Dm ·DFTm

)
⊗ In

) (
Im ⊗

(
DFTH

n ·Dn ·DFTn

))
(3.46)

The
(
DFTH

m ·Dm ·DFTm

)
and

(
DFTH

n ·Dn ·DFTn

)
operations are 1D convolution-

like operations. Given that, the compute stages can be further merged following the

details discussed in this chapter.

The 2D DFT-based convolution has two cases for the point-wise computation.

It can be non-separable and thus the 2D DFT must fully be computed before the

point-wise can be applied. Or, it can be separable in which case the computation

is grouped together and locally done. However, as the dimensions of the operation

78

increases the number of possible algorithms increase as well. Take for example a 3D

DFT-based convolution. Depending on the symmetry properties of the point-wise

computation, there exist five possible algorithms. The point-wise computation can

be non-separable, it can be separable only on two of the dimensions or it can be

fully separable on all three dimensions.

3.3 Summary

In this chapter, we focused on fusing the various stages that compose any DFT-

based operation. As stated, most DFT-based operations follow a specific pattern,

e.g. a forward DFT is applied, followed by a point-wise operation and an inverse

DFT. We showed that there is a systematic way of fusing the compute stages if the

decomposition of the forward and inverse DFT is known up-front and if constraints

like iDFT = DFTH are imposed. We used the SPL notation to show the step by

step process of fusing the computation. However, the optimizations are not bound

to the language. The idea is that optimizations like fusion can be done easier if

the computation is expressed in a high level mathematical language such as SPL

compared to analyzing and optimizing C/C++. In addition, since SPL is used

within the SPIRAL framework, we extended the framework with the steps required

to automatically perform the fusion of the DFT and non-DFT stages. Moreover, we

developed a simple API to express most DFT-based operations built on top of the

SPIRAL code generator. In the next chapter, we present the implementations details

related to the proposed framework, namely we introduce the simple API meant to

express most DFT-based operations and show some other optimizations that are

dependent on the underlying architecture but are required to obtain competitive

implementations.

79

Chapter 4

From High Level Representation

to Optimized Implementation

In this chapter, we look at some of the details regarding the implementation of an

end-to-end framework to describe and optimize DFT-based operations. The entire

framework is built on the two main ideas presented in this work. First, most DFT-

based operations follow a specific pattern, namely a forward DFT followed by a

point-wise computation and an inverse DFT. Second, there is a systematic way of

applying loop transformations across the DFT and non-DFT stages. Therefore, in

this chapter we describe the structure of the entire framework. First, we focus on

the front-end part where we present a simple API to capture most common DFT-

based operations. Second, we move to the back-end part where we discuss some low

level optimizations that are dependent on underlying architecture but are required

to achieve competitive code.

80

Figure 4.1: The structure of the framework. The front-end deals with the API and
the translation layer, while the back-end deals with generating and optimizing the
code for a specific problem and architecture. The generate code is linked back to
the front-end.

4.1 The Structure of the Framework

The goal is to offer a framework to describe and optimize DFT-based operations for

various architectures. The proposed framework has two components as shown in

figure 4.1. The front-end part offers the basic functions to create and execute DFT-

based operations, while the second part generates and optimizes the code. Some

optimizations are automatically performed, however there still are some optimiza-

tions that need automation and thus are currently done by hand. We leave those

optimizations as future work.

The framework’s front-end is represented by the high level API and the trans-

lation layer. As shown in Figure 4.2 the API offers the appropriate data structures

and the functions that allow users to create, execute and delete a wide variety of

DFT-based operations. We go into details about each function and data structure

in the following subsections. The most important functions are the create functions,

81

since they read the specification provided by the user, translate the specification

into the mathematical representation and invoke the code generator to generate and

optimize the code for that specific DFT-based problem, targeting a given architec-

ture. The code generator returns a handle to the created functions. That handle

is afterwards used by the execute and clean-up function to run the code and then

clean-up when computation is not required anymore. The idea of creating a plan is

not new, FFTW offers such functionalities for generating DFT code. We build upon

that idea and extend it to DFT-based operations. The incentive is that scientific

applications already use FFTW. Developers are familiar with the FFTW interface,

thus modifying their code and replacing the FFTW code-base with the proposed

approach can be easily be done.

The framework’s back-end is the code-generator. The code generator in-

terprets the mathematical representation, generated and optimize the code for a

specific architecture. We use the SPL notation to express DFT-based operations

and extend the functionalities of the SPIRAL framework by adding the capabili-

ties to automatically fuse the DFT and non-DFT stages as described in Chapter

3. There are other high level loop optimizations meant to improve the execution

time of both DFT and DFT-based operations, like loop fission, loop interchange,

loop unrolling. Besides, the high level loop transforms, we also present some low

level optimizations that are dependent on the underlying architecture. Most systems

provide Single Instruction Multiple Data (SIMD) instructions. Therefore, we apply

SIMD vectorization across the DFT and non-DFT stages for DFT-based operations

for both power of two and non-power of two problem sizes. We automatically per-

form data format changes to make computation efficient. We automatically apply

efficient padding and un-padding for problem sizes that are not powers of two.

82

1 s p i r a l p l a n ∗plan ;

2

3 typede f s t r u c t {

4 double ∗ data po in t e r ;

5 void (∗ func) (double ∗ , double ∗ , int , i n t) ;

6 } s p i r a l p o i n tw i s e ;

7

8 typede f s t r u c t {

9 i n t s i z e ;

10 i n t i s t r ;

11 i n t o s t r ;

12 } s p i r a l d f t ;

13

14 typede f s t r u c t {

15 i n t dims ;

16 s p i r a l d f t ∗ forward op ;

17 s p i r a l d f t ∗backward op ;

18 s p i r a l p o i n tw i s e ∗ po in t e r ;

19 } s p i r a l d f t o p ;

20

21 s p i r a l p l a n ∗ s p i r a l c r e a t e b a s i c o p (s i z e t ∗dims , i n t n ,

s p i r a l p o i n tw i s e ∗ptr , unsigned i n t c on f i g) ;

22 s p i r a l p l a n ∗ s p i r a l c r e a t e advanc ed op (s p i r a l d f t o p ∗ops , i n t n ,

unsigned i n t c on f i g) ;

23

24 void s p i r a l e x e c u t e p l a n (s p i r a l p l a n ∗plan , double ∗output , double ∗

input) ;

25 void s p i r a l d e l e t e p l a n (s p i r a l p l a n ∗plan) ;

Figure 4.2: The data-structures and functions provided by the proposed API.

83

4.2 High Level Interface for DFT-based Operations

In this section we discuss the functionalities that allow developers to describe and

create DFT-based operations for 1D, 2D and 3D data-sets. We first focus on some

of the basic functions for describing basic DFT-based operations. The assumption

for this type of operations is that the point-wise multiplication is non-separable.

We then present the more advanced API to describe more complicated DFT-based

operations. The advanced interface allows users to specify data rotations/shuffles

and separable point-wise computations. The high level interface provides a multiple

create functions, an execution and a clean-up function as shown in Figure 4.2.

4.2.1 Basic Interface for DFT-based Operations

The basic API handles the plain three stage convolution-like operations, where a

forward DFT is followed by a point-wise multiplication and an inverse DFT. The

forward and inverse DFT can be swapped, since convolution in time/space or fre-

quency domain maps to point-wise multiplication in the dual domain. Therefore,

the inverse DFT can be applied first, followed by the point-wise multiplication and

finally the forward DFT. The DFT can also take any dimensions depending on the

problem type. The only fixed assumption is that the point-wise operation is assumed

to be non-separable. Figure 4.3 shows the basic API for creating such problems. We

show only the create function since the execute and delete functions do not change.

The API format is very similar to the API offered by FFTW [34] for creating DFT

code.

84

1 #i f n d e f MY SPIRAL OP

2 #de f i n e MY SPIRAL OP

3

4 // data s t r u c t u r e s

5 s p i r a l p l a n ∗plan ;

6

7 // the f i r s t b i t de c ide s the d i r e c t i o n

8 #de f i n e SPIRAL FORWARD 0

9 #de f i n e SPIRALBACKWARD 1

10

11 // the second b i t de c ide s the type o f po in t e r

12 #de f i n e SPIRAL DATAPOINTER 0

13 #de f i n e SPIRAL FUNCPOINTER 2

14

15 // func t i on s

16 s p i r a l p l a n ∗ s p i r a l c r e a t e b a s i c o p (s i z e t ∗dims , i n t n ,

s p i r a l p o i n tw i s e ∗ptr , unsigned i n t c on f i g) ;

17 #end i f

Figure 4.3: The basic API for creating DFT-based operations for which the point-
wise multiplication is non-separable. The point-wise computation is passed as a
pointer of type spiral pointwise. The spiral pointwise data structure provides
either a pointer to an array or a pointer to a predefined function.

The create function spiral create basic op requires four parameters or

arguments. The first argument specifies a pointer to an array that contains the sizes

of each dimension, while the second argument specifies the number of dimensions.

If the operation is a 1D operation, then the first argument is an array of length

1 and the second argument is equal to 1. If the operation is a 3D operation, the

the first argument is an array of length 3 containing the sizes for each dimension

85

and the second argument is equal to 3. The third argument is a pointer of type

spiral pointwise. This argument specifies what kind of point-wise computation

the code generator should expect, e.g. is the point-wise computation done with

pre-computed values stored in an array or is the point-wise compute on the fly by

a pre-defined function. The spiral pointwise data structure has two fields. The

first field accepts a pointer to an array, while the second field accepts a pointer to

a predefined function. The last argument specifies some configuration parameters.

For example, if the parameter SPIRAL FORWARD is specified then the first stage of the

convolution-like operation is a forward DFT and the last stage is an inverse DFT.

If the parameter SPIRAL DATAPOINTER is specified then the point-wise operation are

passed in as a pointer to a data-structure data store the precomputed values. The

configuration arguments can be combined with the logic OR operator.

4.2.2 Passing the Point-wise Computation as a Pointer to a Data

Structure

The third argument in the create function spiral create basic op is a pointer to

either an array that stores per-computed values or to a function that computes the

values and the point-wise multiplication on the fly. If the configuration argument

SPIRAL DATAPOINTER is chosen, then the function will know that the pointer is

going to be towards a array. The array holds the pre-computed values. Under this

scenario, the user has to first create the array, initialize it with the precompute

values and finally pass it to the create function. The user must also take care of

de-allocating the temporary array once the required operations is not needed.

Figure 4.4 shows an example where a 1D DFT-based convolution is created

specifying that the point-wise operation is done using precomputed values. Recall,

86

1 #inc lude <s p i r a l h e ad e r . h>
2 // data s t r u c t u r e s
3 s p i r a l p l a n ∗plan ;
4 s p i r a l p o i n tw i s e spo in tw i s e ;
5

6 i n t main (i n t argc , char ∗∗ args) {
7 // . . .
8 double ∗ temp array = (double ∗) mal loc (2 ∗ n ∗ s i z e o f (double)) ;
9 spo in tw i s e . da ta po in t e r = temp array ;

10

11 // i n i t i a l i z e the array
12 i n i t i a l i z e (temp array) ;
13

14 plan = s p i r a l c r e a t e b a s i c o p (&n , 1 , &spo intwi se , SPIRAL FORWARD |
SPIRAL DATAPOINTER) ;

15

16 // . . .
17 re turn 0
18 }

Figure 4.4: Example of creating a basic plan for a 1D DFT-based operation where
the the point-wise multiplication will be computed using a temporary array that
stores the pre-computed values. The configuration parameters specify that the op-
eration uses the forward DFT as the first stage and enforces the fact that the third
argument is a data pointer that requires to reorderd.

in Chapter 3 we discussed about fusing the point-wise operation represented as a

diagonal matrix with the DFT stages. The diagonal matrix is always required to be

shuffled and partitioned based on how the surrounding computation is decomposed.

Therefore, the code generator automatically re-organizes the data as the diagonal

matrix is fused with the computation. Re-organizes the data is important since it

helps improve the access patterns to the array. Data is always accesses sequentially,

no strided accesses into the array are required.

The advantage of using an array to store pre-computed values is that the

code generator is in charge of generating the code around the array. The code

generator generates the load, compute and store instructions. Therefore, the code

generator can choose how the appropriate data format for having an efficient DFT

87

and point-wise computation. The downside of this approach is the fact that extra

storage is required. All DFT-based applications require an array equal in size to

the input and output arrays. Therefore, as the problem size increases, the amount

of data required may become a problem.

The DFT-based convolution specified using the API is translated to SPL,

which is interpreted and optimized by the code generator. For example, the 1D con-

volution described in Figure 4.4 is translated into the following SPL representation

ConvN = iDFTN ·DN ·DFTN , (4.1)

where the diagonal matrix DN contains the stored values.

4.2.3 Passing the Point-wise Computation as a Pointer to a Func-

tion

The point-wise computation can also be computed on the fly if a closed form solution

exists. Hence, the pointer of type spiral pointwise may be towards a pre-defined

function. The user must specify the SPIRAL FUNCPOINTER flag. This flag will enforce

the condition that the third argument is a pointer to function and therefore the code-

generator will not expect an array. The code generator will simply insert function

calls to the pre-defined computation within the generated code. This method allows

users to define their own computation. However, the user must follow a specific

function header so that the generated code knows about which function to invoke.

Figure 4.5 shows an example of creating a 1D DFT-based operation where the

pointer is to a function. The operation itself is a time shift operation computed using

the DFT method, which was covered in Chapter 3. Recall that a time shift operation

translates to a point-wise multiplication with complex exponentials e−j
2π
N
kα, where

88

1 #inc lude <s p i r a l h e ad e r . h>
2 i n t n ; // problem s i z e
3 s p i r a l p l a n ∗plan ;
4 s p i r a l p o i n tw i s e spo in tw i s e ;
5

6 // computing a time s h i f t in the time domain
7 void compute func (double ∗ in , double ∗out , i n t s i z e , i n t f requency) {
8 f o r (i n t i = 0 ; i != s i z e ; ++i) {
9 i n t f r e q p o i n t = frequncy + i

10 double re = cos (2 ∗ PI ∗ f r e q p o i n t ∗ 3 / n) ;
11 double im = −s i n (2 ∗ PI ∗ f r e q p o i n t ∗ 3 / n) ;
12

13 out [2 ∗ i + 0] = re ∗ in [2 ∗ i + 0] − im ∗ in [2 ∗ i + 1] ;
14 out [2 ∗ i + 1] = re ∗ in [2 ∗ i + 1] + im ∗ in [2 ∗ i + 0] ;
15 }
16 }
17

18 i n t main (i n t argc , char ∗∗ args) {
19 // . . .
20 spo in tw i s e . func = compute func ;
21

22 plan = s p i r a l c r e a t e b a s i c o p (&n , 1 , &spo intwi se , SPIRAL FORWARD |
SPIRAL FUNCPOINTER) ;

23

24 // . . .
25 re turn 0
26 }

Figure 4.5: Example of creating a DFT-based time shift. The configuration param-
eters specify that the operation uses the forward DFT as the first stage, the pointer
is to a function and computation is done on the fly.

α represents the amount of time the sequence is shifted. The user must write a small

snippet of code to perform the computation as seen in figure 4.5. We have shown

that all DFT properties require the point-wise multiplication to be dependent on

the frequency points k. Typically, the input and output array and the frequency

point should suffice.

Since the point-wise computation is recursively fused with the computation

until the DFT bases cases are met and since the DFT computation is typically

implemented using SIMD instructions, the point-wise function must allow users to

89

specify a frequency range. The function header imposes the following constraints:

the first two arguments must be pointers to the input and output arrays, the third

argument is an integer used to specify the frequency ranges and the last argument

specifies the starting frequency point. The frequency range is given by the granu-

larity at which the DFT computation is applied. Typically, the computation is at

the granularity of a cacheline. A typical cacheline can store four complex numbers,

therefore the function will start at the frequency point k and apply the computation

for k, k+1, k+2 and k+3. More details about this aspect are offered in the second

part of this chapter.

The advantage of providing a pointer to function is that the point-wise com-

putation is done on the fly. In addition, no extra storage is required compared to the

previous method. The function though may require expensive operations as shown

in Figure 4.5, however the latencies of computing those instructions may prove to

be smaller compared to the latencies of accessing data in main memory. The main

downside of this approach is that it falls on the user to write the code. The user

must follow the specified contract to write the function, otherwise the generated

code cannot invoke the function. In addition, the user must optimize the code snip-

pet. He/she must understand the data format between the DFT compute stages

and write the code appropriately, preferably using SIMD instructions. However, the

code snippet does not require a large amount of code.

Similarly to the previous case, the 1D convolution described in Figure 4.5 is

translated to SPL using the translation layer such as

Convn = iDFTn ·Dn (func) ·DFTn. (4.2)

In this case the diagonal is just a place-holder for the function. No data is stored.

90

1 #i f n d e f MY SPIRAL OP
2 #de f i n e MY SPIRAL OP
3

4 // d f t data s t r u c tu r e
5 typede f s t r u c t {
6 i n t s i z e ;
7 i n t i s t r ;
8 i n t o s t r ;
9 } s p i r a l d f t ;

10

11 // d f t opera t i on data s t r u c tu r e
12 typede f s t r u c t {
13 i n t dims ;
14 s p i r a l d f t ∗ forward op ;
15 s p i r a l d f t ∗backward op ;
16 s p i r a l p o i n tw i s e ∗ po in t e r ;
17 } s p i r a l d f t o p ;
18

19 // func t i on s
20 s p i r a l p l a n ∗ s p i r a l c r e a t e advanc ed op (s p i r a l d f t o p ∗ops , i n t n ,

unsigned i n t c on f i g) ;
21 #end i f

Figure 4.6: The advanced interface for expressing convolution-like operations where
the point-wise multiplication is separable on dimensions. The dft and dft op rep-
resent the two data structures to create the DFT and convolution-like operations.

Instead of re-shuffling the data as the diagonal is fused with the computation, the

code generator tracks how the indexing into the function changes and provides an

index mapping function.

4.2.4 Advanced Interface for DFT-based Operations

The interface discussed so far only deals with the case where the point-wise operation

is non-separable, meaning that the point-wise multiplication cannot be decomposed

on the dimension of the data set. However, there are applications where the point-

wise operation can be separated. Recall the 2D differentiation operation discussed

in Chapter 3. The differentiation is gradually applied on the data, immediately

after the 1D DFT the point-wise and inverse DFT are also applied. This reduces

91

the number of passes through the data and applies computation locally. In this

section, we focus on the API to capture separable operations.

We are required to add some extra data structures to express convolutions

with separable point-wise multiplications. Figure 4.6 shows the two data structures

and the create function required to create the separable convolution-like operations.

The first data structure spiral dft is identical to the FFTW’s [34] data structures,

e.g. fftw iodim. It is used to describe the forward and inverse DFT stages and

the dimensions in which the DFTs are applied. The first argument specifies the

size of the DFT, while the other two arguments specify the data access patterns.

For example, if the DFT size is 16, istr is equal to 1 and ostr is equal to 4, then

the DFT computation requires 16 consecutive elements and produces 16 elements,

where each element is written at a stride of 4 elements from each other.

The second data structure spiral dft op specifies how to combine the DFTs

to create the DFT-based operations. The first parameter, dims, specifies the dimen-

sions of the DFT-based operation. Both the forward and inverse DFT must have

the same dimension. The DFT constructs spiral dft are passed as pointers to

the fields forward dft and backward dft. The two pointers point to the same

DFT configuration if the forward and inverse problem do not change the problem

size. The only operation that requires different problem sizes is the interpolation

operation. Typically an interpolation increases the number of samples, thus the

forward DFT is smaller than the inverse DFT. Finally, the last argument is the

spiral pointwise pointer to specifies whether the point-wise computation either

a arrays that stores the pre-computed complex values or to a specific function that

computes everything on the fly.

92

1 s p i r a l p l a n ∗plan ;

2 spo in tw i s e sr , sc ;

3

4 i n t main (i n t argc , char ∗∗ argv) {

5 double ∗ d i f f r ow , ∗ d i f f c o l ; // i n i t i a l i z e d i f f e r e n t i a t i o n ar rays

6 s p i r a l d f t d f t rows [1] , d f t c o l s [1] ; s p i r a l d f t o p op [2] ;

7 d f t rows [0] . s i z e = N1 ;

8 d f t rows [0] . i s t r = 1 ;

9 d f t rows [0] . o s t r = 1 ;

10 d f t c o l s [0] . s i z e = N0 ;

11 d f t c o l s [0] . i s t r = N1 ;

12 d f t c o l s [0] . o s t r = N1 ;

13 s r . da ta po in t e r = d i f f r ow ;

14 sc . da ta po in t e r = d i f f c o l ;

15

16 op [0] . dims = 1 ;

17 op [0] . forward op = df t rows ;

18 op [0] . backward op = df t rows ;

19 op [0] . po in t e r = s r ;

20 op [1] . dims = 1 ;

21 op [1] . forward op = d f t c o l s ;

22 op [1] . backward op = d f t c o l s ;

23 op [1] . po in t e r = sc ;

24

25 plan = sp i r a l c r e a t e advan c e op (op , 2 , SPIRAL FORWARD |

SPIRAL DATAPOINTER) ;

26 re turn 0 ;

27 }

Figure 4.7: C/C++ description of the 2D differentiation operation using the pro-
posed framework. The 2D differentiation operation has a separable point-wise com-
putation.

93

The data structures are then passed to the create function. This func-

tion takes three arguments. The first argument is a pointer to an array of type

spiral dft op. The array stores the convolution-like configurations. The size of

the array depends on the how many dimensions can the point-wise computation

be decomposed upon. The size is specified in the second argument. For example,

for the 2D differentiation where the complex values are separated in the row and

column direction the value of n must be equal to two. The first argument is an array

that contains two distinct convolution-like operations. The last argument specifies

the different configuration options, similarly to the basic interface.

Figure 4.7 shows the C/C++ description of the 2D differentiation problem

using the proposed API. The first step is to declare the DFTs applied in the rows

and in the columns (lines 7 - 14). The first DFT is applied in the rows since the istr

and ostr are both equal to 1. The second DFT is applied in the column direction,

since The istr and ostr are set to N1. Lines 16 - 23 describe how the DFT-based

operations are constructed. Each construct defines the convolution-like operation

applied in the row and in the column direction. The forward op and backward op

fields point to the same array. This suggests that the dimensions of the input and

output do not change. Finally, each spiral dft op has the pointer pointer linked

to the specific arrays. The constructs are then passed to the create function. The

create function translates the specification into the appropriate SPL representation

DiffN0×N1 = ((iDFTN0 ·Dα ·DFTN0)⊗ IN1)

(IN0 ⊗ (iDFTN1 ·Dβ ·DFTN1)) , (4.3)

where Dα and Dβ represent the diagonal matrices that store the complex values

used for differentiation. The representation is then passed to the SPIRAL code

94

generator.

Both the basic and advanced create function translate the specifications into

the SPL representation and invoke the SPIRAL framework to automatically generate

and optimize the code. The code generator applies high level loop transformations

specified in Chapter 3 and merges the compute stages. However, since the DFT

computation is regular, the code is also automatically vectorized for a given archi-

tecture. It is well known that the DFT exhibits data parallelism, thus both the DFT

and the DFT-based operations must make us of the SIMD instructions for improved

performance. In the following section, we discuss some of the challenges required

to apply SIMD vectorization on operations that require complex multiplication and

also operations that require padding since not all problem sizes are power of two

and thus divisible by the SIMD vector length.

4.3 Low Level Optimizations

DFT computation requires basic arithmetics like addition, subtraction and multi-

plication with complex numbers. Moreover, the DFT computation requires all the

input samples to participate in the computation of all the outputs. This translates

to a transposition. The Cooley-Tukey for power of two problem sizes explicitly

has a transposition in the decomposition and a point-wise multiplication with com-

plex numbers. Therefore, generating an efficient implementation becomes difficult

especially when using CPU features like the Single Instruction and Multiple Data

(SIMD) instructions. To make things more complicated, some problem sizes are

not powers of two and require padding, thus implementing the computation with

SIMD instructions becomes cumbersome. In the next paragraphs we discuss some

of these challenges and offer solutions. First though we give a brief introduction to

95

Figure 4.8: AVX instructions used within the DFT computation. The first instruc-
tion loads four contiguous elements in the vector register. The second instruction
replicates one element in all four locations. The third instruction performs a so
called in-register shuffle. The fourth instruction applies a separate addition to all
four data points.

the SIMD programming model.

4.3.1 Single Instruction Multiple Data (SIMD)

Most modern architectures from vendors like Intel, AMD, ARM offer instructions

that apply the same operation on multiple data-points, e.g SSE, AVX [60] for In-

tel, AMD and Neon [61] for ARM. They offer wider registers that can store more

elements. The number of elements they can store is called the width of the SIMD

register ν. For example, Intel’s AVX can store up to four double precision or eight

single precision elements into one SIMD register, where the typical number of SIMD

registers is equal to 16 or 32. The underlying architecture stitch functional units

to be able to load and store multiple points at the same time. For example, the

AVX instruction mm256 load pd loads four double precision elements at a time and

96

Figure 4.9: Performing a data transposition for data stored in SIMD vector regis-
ters. Each SIMD register contains four elements. If the data stored in the SIMD
registers is viewed as the rows of a matrix, the SIMD algorithm performs a matrix
transposition, where the registers store the columns of the matrix.

stores them into a vector register, while instructions mm256 broadcast sd reads

one double precision element and replicates it four times within the SIMD vector

registers as seen in figure 4.8.

Most floating point operations like addition, subtraction and multiplication

have a SIMD counterpart. Similar to the load instructions, multiple functional units

that perform addition, subtraction and multiplication are as well stitched together to

be able to perform the same operation on different elements. Instead of computing

one operation per cycle, ν operations are computed in parallel. For example, the

AVX SIMD addition instruction depicted in figure 4.8 does four double precision

adds per cycle. Most modern architectures even offer more complicated instructions

like fused-multiply add (FMAs) instructions. The operation fuses the multiplication

and addition in one single instruction. While this is important for matrix-matrix

multiplication, operations like DFT do not see so much improvement when using it,

especially that the DFT is dominated by additions and subtractions.

There are also instructions that shuffle data within the SIMD registers. These

operations are important for transposing and rotating data. Take for example, the

permutation in figure 4.9, where 16 double precision elements are stored into four

97

SIMD registers. Assuming that the four SIMD registers store the rows of a 4x4

double precision matrix, the transposition shuffles the data so that at the end of it the

registers contains the columns of the matrix. The transposition operation within the

SIMD registers requires four SIMD shuffle instructions. The first two instructions

permute two elements locally, while the other two instructions permute the blocks

of two elements. The downside of shuffle instructions is that on most architectures

there is only one functional unit that executes shuffle operations. Therefore, in the

case of computing the DFT, the shuffle instructions become a significant bottleneck.

4.3.2 Arithmetic Operations on Complex Data Points

All DFT-based operations compute on complex data points. In addition, we assume

the complex data points to be stored in the typical complex interleaved format,

where the real and imaginary components are stored in consecutive order. While

this format does not influence computations like addition or subtraction, it affects

the multiplication operation especially when dealing with SIMD registers and opera-

tions. Addition and subtraction of two complex numbers is straight forward. Given

two complex number z0 = a + jb and z1 = c + jd, where j2 = −1, the addition is

expressed as

z = z0 + z1 = (a+ c) + j (b+ d) . (4.4)

It can be seen that adding two complex numbers means adding the real parts and

the imaginary parts independently. Switching to the SIMD implementation requires

replacing the scalar registers with SIMD registers and changing the addition/sub-

traction with the corresponding SIMD instruction. However, computing the complex

98

Figure 4.10: Computing complex multiplication when data is stored in complex in-
terleaved versus block complex interleaved. The complex interleaved format requires
shuffle instructions interleaved with the compute instructions. The block complex
interleaved format requires data to be packed and unpacked in advance. Picture is
reproduced from [2].

multiplication of the two complex numbers z0 and z1 is a bit more involved

w = z0 · z1 = (ac− bd) + j (ad+ bc) (4.5)

The real and imaginary components of the result depend on all the components of

the two inputs. The multiplication requires more operations than simply replacing

the scalar registers and instructions with the SIMD counterparts. SIMD shuffle

instructions and specialized instructions such as addsub must be added.

In the “Mixed Data Layout Kernels for Vectorized Complex Arithmetic” [2],

we show the differences between two variants of computing the complex multipli-

cation as seen in figure 4.10. The first variant assumes data is stored in complex

interleaved. Four complex numbers are loaded into two SIMD registers. In order

to compute the complex multiplication, the data stored in the registers needs to be

shuffled so that the real and imaginary components are correctly aligned. Three

shuffle instructions are needed to perform this alignment. Data then can be mul-

99

Figure 4.11: Hiding the data format change within the shuffle instructions for double
precision AVX instructions. Part of the computation is done using the complex
interleaved format, while part of it is done using the block complex interleaved.
Picture is reproduced from [2].

tiplied and finally an addsub instruction is need to compute the final results. The

main advantage is that data is kept in the original format. However, the three

shuffle operations become bottlenecks since most modern systems can only exe-

cute one shuffle instruction per cycle. Due to the one shuffle instruction per cycle

and due to the dependencies, multiply instructions cannot be issued in parallel even

though there are typically two pipelines that execute multiply instructions. Another

problem that appears is that there are architectures that do not have support for

addsub instructions. These instructions need to be emulated, thus higher latencies

are incurred.

The second variant assumes that the data format is changed from complex

interleaved to block complex interleaved. The block complex interleaved format

implies that ν real components are interleaved with ν imaginary components, where

ν represents the SIMD vector length. The complex multiplication is similar to the

100

scalar implementation, however instead of using scalar registers and operations,

everything is replaced with the SIMD counterparts. This removes the shuffle and

addsub instructions. The computation still requires shuffle instructions, since data

needs to be packed from complex interleaved to block complex interleaved. However,

the packing of the data can be done in advance and in the case of the DFT the format

change can be hidden within the permute stages as seen in figure 4.11. In addition,

for DFT-based operations the format change can be done once at the start of the

entire algorithm. It can be maintained across compute stages so that operations like

the point-wise multiplication can be done in block complex interleaved format. The

data format can be changed back once computation has finished.

4.3.3 Data Permutations using SIMD

The Cooley-Tukey algorithm requires a transposition stage as shown in equation 2.51,

since all inputs participate in the computation of each output. Since computation

is implemented using SIMD instructions, the L matrix must be blocked to the ap-

propriate vector length and merged with the computation. Recall that the 1D DFT

convolution requires the forward DFT and the conjugate transpose DFT. The for-

ward transform fuses the L matrix with the right DFT ⊗ I child, while the the

conjugate transposed version fuses the L matrix with the DFT ⊗ I left child as

shown in 3.27. In this section we present the step by step approach of fusing the

transposition with the DFT computation for both the forward and inverse DFT.

We add one more constraint, namely all implementations change the format

from complex interleaved to block complex interleaved. Hence, the computation and

the permutation must be blocked to a block greater than the SIMD vector length

ν. The change of format requires at least two vector registers, one to store the real

101

components and one to store the imaginary components. Blocking the computation

without the permutation is trivial. The SPL representation is as follows

(DFTm ⊗ In) =
(
Lmn/bm ⊗ Ib

)
·
(
Im/b ⊗ (DFTm⊗Ib)

)
·
(
L
mn/b
m/b ⊗ Ib

)
, (4.6)

where b represents the block size and b ≥ 2ν. The blocking operation says the

DFTm is applied on b columns at a time.

Blocking and fusing the permutation with the computation is more challeng-

ing. However, the process can be systematically derived. Using the properties of the

L matrix defined in Chapter 2, the transposition can be decomposed into a block

permutation and multiple permutations within the blocks such as

(
Im/b ⊗ Lnbb

)
·
(
L
mn/b
m/b ⊗ Ib

)
· (DFTn ⊗ Im) . (4.7)

The block permutation commutes some of the elements within theDFT⊗I construct

as follows

(
Im/b ⊗ Lnbb

)
·
(
Im/b ⊗ (DFTn ⊗ Ib)

)
·
(
L
mn/b
m/b ⊗ Ib

)
. (4.8)

Both the in-block permutation and the DFT computation have the same Im/b.

Therefore, the stages can be merged as follows

Im/b ⊗ (Lnbb · (DFTn ⊗ Ib))︸ ︷︷ ︸
further decomposes

 · (Lmn/bm/b ⊗ Ib
)
. (4.9)

This implies that the data is permuted immediately after the computation.

The inner child Lnbb · (DFTn ⊗ Ib) can further be decomposed if n > b. As-

102

suming that n > b and n = n0n1, the Cooley-Tukey can be recursively applied.

However, the blocking Ib construct must be moved close to the computation as

follows

Lnbb · (DFTn0 ⊗ In1b) ·
(
Tn0n1
n1

⊗ Ib
)
·
(
Ln0n1
n0
⊗ Ib

)
· (DFTn1 ⊗ In0b) . (4.10)

Distributing the Ib construct is equivalent to applying the unroll and jam optimiza-

tion [62, 63] on nested loops, where the outer loop is unrolled and then the inner

loops are merged together. Using the properties of the L matrix, the permutation

construct Lnbb can be decomposed as

(
Ln0b
b ⊗ In1

)
·
(
In0 ⊗ L

n1b
b

)
· (DFTn0 ⊗ In1b) · (4.11)(

Tn0n1
n1

⊗ Ib
)
·
(
Ln0n1
n0
⊗ Ib

)
· (DFTn1 ⊗ In0b) .

The terms can be re-arranged and grouped together to merge the compute stages

as follows

(
Ln0b
b ⊗ In1

)
· (DFTn0 ⊗ In1b)︸ ︷︷ ︸

stage 2

· (4.12)

(
In0 ⊗ L

n1b
b

)
·
(
Tn0n1
n0

⊗ Ib
)
· (In1 ⊗ (DFTn1 ⊗ Ib)) ·

(
Ln0n1
n0
⊗ Ib

)
︸ ︷︷ ︸

stage 1

.

The first stage applies the computation on blocks of size b, point-wise multiplies

the data with the twiddle factors and immediately after permutes the data within

the blocks. The second stage applies the same computation on blocks of size n1

and immediately after it permutes those blocks. The entire operation is shown in

Figure 4.12. Merging the stages, the decomposition process can repeat until the

103

Figure 4.12: The pictorial representation of the SPL notation from equation 4.12.

base case is met.

Let the base case be when n = b. For the moment we do not handle the case

where n < b. The base is represented as

Lb
2

b (DFTb ⊗ Ib) . (4.13)

It has been shown in [64] that this construct represents the base case for vectoriza-

tion when using SIMD SSE instructions (b = 2 and b = 4). The paper has shown

that the SPL construct can easily be mapped to SIMD instructions. Of interest

is the permutation Lb
2

b . In the paper it has been shown that the permutation re-

quires two or four in-register shuffle instructions depending on the data type (float

or double). However, SSE only stores 128 bits. AVX and more recently AVX512

can store more elements, which implies that the implementation of the transposi-

tion operation Lb
2

b requires more in-register shuffle instructions with the increase in

SIMD vector length. For example, the AVX512 implementation using single preci-

sion numbers requires 64 shuffle instructions. Similarly to the SIMD implementation

104

of the complex multiply using the interleaved format, the permute instructions are

on the critical path and create a serious bottleneck. We use some of the information

from [65, 66] and hand-implement the construct. We break the permutation into

smaller permutations and hand interleave the shuffle instructions with the compute

instructions. For the moment, we have implemented several computational kernels

by hand for various blocking parameters and SIMD ISAs, however we leave as fu-

ture work the mathematical representation to capture these optimizations and the

automation component.

The same steps can be repeated for the inverse DFT, or the conjugate trans-

posed version of the forward DFT. The conjugate transpose operation simply flips

the representation of the Lnb · (DFTn ⊗ Ib) construct to obtain the following SPL

representation

(
DFTHn ⊗ Ib

)
Lnbb . (4.14)

The steps for decomposing the construct are similar. If n > b then the DFT is

decomposed using, for example, the Cooley-Tukey algorithm. The Ib construct is

grouped closer to the computation. All the terms are re-arranged, merged and the

decomposition process is repeated. The main difference is the base case, when n = b.

The permutation preceds the computation as follows

(
DFTHb ⊗ Ib

)
Lb

2

b . (4.15)

Similarly to the previous case, as the blocking b increases, implementing the per-

mutation becomes more expensive. However, breaking the permutation into smaller

permutations and interleaving them with computation re-leaves the pressure on the

105

permute pipeline. We implement the Lb
2

b (DFTb ⊗ Ib) construct by hand. We leave

the automation part of expressing and decomposing the permutations as future

work.

4.3.4 Zero-padding for Non-Powers of Two

Not all scientific applications require problem sizes that are divisible by the SIMD

vector length. For example, ONETEP [67] is such an application that requires non-

power of two problem that are also odd. Hence, the DFT-based interpolation used

within ONETEP and presented in [3] has to deal with non-powers of two. Mapping

the application to SIMD instructions becomes non-trivial. Data must be padded

with 0s to the closest multiple of the SIMD vector length ν so that computation can

be done efficiently. In this section, we show that there is a systematic way of inserting

0s so that the memory footprint is not drastically increased. In addition, we show

that for DFT-based operations where we have the entire view of the application we

can reduce the number of padding and un-padding operations. Note, that similarly

to the permute instructions, padding and un-padding instructions are expensive.

To start with a simple example, we have shown in equation 4.6 that the

construct DFTm ⊗ In can be vectorized easily if n is divisible by the SIMD vector

length ν. However, if n is not divisible we need to use constructs like Im×n and

In×m for m > n, which were defined in Chapter 2, to perform data padding and un-

padding. Using the ideas presented in [68] data can zero-padded as it gets loaded.

Computation is applied in a SIMD fashion and the result is then stored, removing

the redundant zeros. Formally, this can be represented using the SPL notation as

follows

DFTm ⊗ In =
(
Im ⊗ In×νdn/νe

) (
DFTm ⊗ Iνdn/νe

) (
Im ⊗ Iνdn/νe×n

)
, (4.16)

106

𝐷𝐹𝑇3

𝐷𝐹𝑇3

𝐷𝐹𝑇3

𝐷𝐹𝑇5

𝐷𝐹𝑇5

 2 times

2 times

2 times

2 times

2 times

input x output y

zero padding
light boxes
are zeroes

unpadding

zero padding
light boxes
are zeroes

unpadding
transpose

vector of DFT3

light box operates
on zeroes vector of DFT5

Figure 4.13: DFT decomposition with zero-padding for size N = 15 and vector
length ν = 2. Light boxes represent inserted zero value cells, and staggered pairs
of cells represent SIMD vectors or SIMD vectorized DFT kernels. Data flows from
right to left. Picture is reproduced from [3].

where Iνdn/νe×n and In×νdn/νe are the operators that perform the data zero-padding

and un-padding. e represents the mathematical ceiling function. We make use of

this operator to construct the padded version of the Cooley-Tukey algorithm.

We derive the short vector Cooley Tukey algorithm starting from the equa-

tion

DFTmn =
(

DFTm⊗In
)
Tmnn Lmnm

(
DFTn⊗Im

)
. (4.17)

Next we carefully zero-pad to the minimum extent necessary. We define m′ =

ν dm/νe, n′ = ν dn/νe and we extend the Cooley-Tukey algorithm as

DFTmn = (Im ⊗ In×n′)
(

DFTm⊗In′
)

(4.18)

(Im ⊗ In′×n)Tmnn Lmnm (In ⊗ Im×m′)(
DFTn⊗Im′

)
(In ⊗ Im′×m).

107

The twiddle matrix Tmnn is merged with the right hand child, namely the DFTn⊗Im′

construct. The twiddle factors need to be first permuted because of the L matrix,

and then zeros need to be inserted because of the (In ⊗ Im×m′). Let Sm
′n

m′ be the

modified twiddle matrix. Replacing this construct in the above expression gives the

following

DFTmn = (Im ⊗ In×n′)
(

DFTm⊗In′
)

(4.19)

(Im ⊗ In′×n)Lmnm (In ⊗ Im×m′)

Sm
′n

m′
(

DFTn⊗Im′
)
(In ⊗ Im′×m).

The goal is to vectorize the entire DFT. Computation can be vectorized because of

the padding. The twiddle computation can also be vectorized, since the diagonal

has been extended to a multiple of the SIMD vector length. The permute matrix

though cannot. Neither n nor m are divisible by the SIMD vector length. However,

due the surrounding padding, the permute matrix can be replaced with a permute

matrix Lm
′n′

m′ so that it can be SIMD vectorized. More details, can be found in [3].

The final expression of the Cooley-Tukey implementation that can be implemented

using SIMD instructions is represented using SPL as follows

DFTmn = (Im ⊗ In×n′)
(

DFTm⊗In′
)

(4.20)

Imn′×m′n′L
m′n′
m′ Im′n′×m′n

Sm
′n

m′
(

DFTn⊗Im′
)
(In ⊗ Im′×m).

Pictorially the implementation is shwon in Figure 4.13. It can be seen, that the

transpose stage requires some extra zeros to perform the transposition. Some of the

zeros are dropped. The entire process is represented by the Imn′×m′n′L
m′n′
m′ Im′n′×m′n

108

construct. Similar steps can be applied to Rader, Bluestein and Good-Thomas. In

addition, the padding can be applied across the DFT and non-DFT stages of any

DFT-based operation. Knowing the decomposition and knowing where the zeros are

insert redundant padding can be removed. The padding is done at the beginning and

end of the DFT-based convolution. No padding is needed in between the stages.

4.4 Summary

In this chapter, we presented the implementation details concerning the entire frame-

work. First, we discussed the front end of the framework, namely the high level API.

The API offers the capabilities to express most common DFT-based operations like

convolution, correlations and Poisson solvers. We introduced the basic operations

that permit one to create 1D, 2D, 3D DFT-based operations with non-separable

point-wise computation. We then augmented the basic interface with the functions

that allow users to express DFT-based operations where the point-wise computation

can be separated on the different dimensions. The role of the API is to capture the

specification and pass it to the underlying code generator.

We then presented the back-end component of the framework, namely the

code generator. While we stated that merging the computed stages is important and

presented things in more details in Chapter 3, the code generator also targets other

low level optimizations. DFT and DFT-based computations are regular and must

be mapped on SIMD instructions. However, DFT computation requires complex

multiplication, data permutations and in some cases, depending on the problem

size, zero padding operations. We showed that there is a systematic way of applying

SIMD optimizations within the DFT and across the DFT and non-DFT stages. In

the next chapter, we show that all these optimizations produce competitive code.

109

Chapter 5

Results and Discussion

In this chapter, we provide a thorough analysis of the benefits of merging the DFT

and non-DFT stages for 1D and 3D DFT-based convolutions. For the 3D DFT-based

convolution we analyze the improvements for both the non-separable and separable

point-wise computation. In addition, we tackle both power of two and non-power of

two problem sizes. We compare the results of the code that is automatically fused

and vectorized against implementations that use MKL and FFTW for the DFT

computation and require hand-written code for the point-wise operation. For each

case, we also provide a breakdown of the performance and show the key factors that

help the overall execution time.

5.1 Methodology

For all DFT-based operations, we compare our approach against implementations

that use DFT library calls to MKL and FFTW. Our method merges the DFT

and non-DFT stages and generates the entire DFT-based convolution. However,

the applications that use MKL and FFTW as DFT library calls do not merge

110

Feature Intel Haswell 4770k Intel Kaby 7700k

Cores 4 4
Threads 8 8
Frequency 3.5 GHz 4.5 GHz
SIMD FMAs/cycle 2 2
SIMD Adds/cycle 1 2
SIMD Muls/cycle 2 2
L1 Data Cache 32 KB 32 KB
L2 Data Cache 256 KB 256 KB
L3 Data Cache 8 MB 8 MB
Memory 32 GB 64 GB

Table 5.1: The architectures used to obtain experimental results. The table outlines
some of the main CPU features.

the computation and require the point-wise computation to be implemented by

hand. Both the generated code and the point-wise computation are implemented

using SIMD instructions. We use two architectures to validate our assumptions,

namely the Intel Haswell 4770k and the Intel Kaby Lake 7700k. Table 5.1 shows

the characteristics of each architecture. We choose the two architectures because

of the number of pipelines that can execute SIMD floating point additions. We

use different compilers and packages, therefore we split the experiments into two.

The first category deals with problem sizes that are powers of two. In this case,

all the code for computing 1D and 3D DFT-based convolutions are compiled with

the Intel C++ Compiler 18.0.2. In addition, we compare the performance of our

implementation will MKL 2018 and FFTW 3.3.6. The second category deals with

problem sizes that are non-power of two problem sizes. The reason is that most of

the results are taken from our paper [3]. The code was compiled with the Intel C++

Compiler 14.0.1 and compared against the implementations that used Intel MKL

11.0.0 and FFTW 3.3.4.

For power of two problem sizes, we report performance numbers as float-

111

DFT Number of
Additions

Number of
Multiplications

5n log(n)

DFT16 160 64 320
DFT32 448 256 800
DFT64 1, 024 512 1, 920
DFT128 2, 560 1, 536 4, 480
DFT256 5, 632 3, 072 10, 240
DFT512 13, 312 8, 192 23, 040
DFT1024 28, 672 16, 384 51, 200
DFT2048 65, 536 40, 960 112, 640
DFT4096 139, 264 81, 920 245, 760
DFT8192 311, 296 196, 608 532, 480

Table 5.2: The DFT sizes and the corresponding number of additions and multipli-
cations.

ing point operations per cycle (FLOPS/cycle). For each DFT we count the exact

number of additions and multiplications as shown in table 5.2. We measure each ex-

ecution using the Intel’s performance counters and record the number of cycles. For

powers of two, the DFT computation is dominated by additions and subtractions.

The only multiplications appear when computing the point-wise multiplication with

the twiddle factors. Therefore, the performance of the DFT and any DFT-based

operations is determined by how efficient the addition pipeline is being used. We

state that on the Intel Haswell 4770K the peak performance for a DFT and DFT-

based operations is equal to 4 floating point operations per cycle using AVX double

precision floating point numbers. On the Intel Kaby Lake 7700K the peak perfor-

mance is equal to 8 floating point operations. Therefore, the top line in each plot

represents the peak performance that can be achieved on that given architecture.

For non-power of two problem sizes, we report pseudo-floating point opera-

tions per cycle. With non-power of two problem sizes, the main difficulty is determin-

ing the exact number of floating point operations, since most DFT decomposition

112

use algorithms like Good-Thomas, Rader or Bluestein. Good-Thomas trades off

the point-wise multiplication with more expensive permutations, while Rader and

Bluestein are basically convolution operations. We use the formula 5n log(n) for the

DFT problems of size n. However, this number does not reflect the actual number

of floating point operations, it is essentially used as normalization factor for showing

inverse run-time [34], which gives an indication of the performance one sees. We

only use this metric for the 3D interpolation operation used in the paper [3].

Since all DFT-based operations use a point-wise multiplication, we use the

formula 6n for the total number of floating point operations, where n represents

the size of the arrays that get point-wise multiplied. The point-wise operation is a

complex multiplication, therefore it requires four multiplications and two additions.

This allows us to split the total number of floating point operations into 4n floating

point multiplications and 2n floating point additions.

5.2 To Fuse or Not To Fuse the 1D DFT-based Convo-

lution

In this section, we analyze the benefits of fusing the compute stages for the 1D

DFT-based convolution. We assume all problem sizes are power of two. Hence we

use the Cooley-Tukey algorithm to decomposed the forward and inverse DFTs. In

Chapter 2, we discussed that the Cooley-Tuley algorithm decomposes the DFT into

four stages, namely two compute stages of smaller DFTs, a data permutation stage

and point-wise multiply stage with the twiddle factors. The permute stage and the

twiddle scaling stage are fused with the computation as shown in [31], giving two

compute stages that cannot be further merged. The last stage must wait until the

first stage fully computes its data points. If implemented withe MKL and FFTW, a

113

1D DFT-based convolution has five stages, two from the forward DFT, two from the

inverse DFT and one stage represented bt the point-wise computation. However,

using the steps described in Chapter 3, the 1D DFT-based convolution is reduced

to having three stages. The last stage of the forward DFT is merged with the point-

wise computation and the first stage of the inverse DFT. Mathematically, the stages

are represented using SPL as follows

ConvN = Ln1n2
n2
·

(
n1−1⊕
i=0

DFTH
n2

)
· (5.1)

Ln1n2
n1
·

(
n2−1⊕
i=0

T ′n1n2
∗(i)

n2
·DFTH

n1
·D′(i)N/n2

·DFTn1

)
· Ln1n2

n2(
n1−1⊕
i=0

T ′n1n2(i)
n2

·DFTn2

)
· Ln1n2

n1
,

Note that for both the 1D and 3D DFT-based convolution we use the property

iDFT = DFTH . We generate the code for the SPL expression 5.1 using AVX SIMD

instructions. We compare the generated implementation with variants of the 1D

DFT-based convolution where the DFT stages are library calls to MKL and FFTW.

Since, there is no way of expressing the point-wise multiplication, we implement it

by hand using SIMD instructions as seen in Figure 5.1. Note that we make the

assumption that the format for the complex layout is complex interleaved, therefore

we require shuffle instructions to perform the point-wise multiplication on complex

data points when using SIMD instructions.

Figure 5.2 shows the performance results of the three implementations. The

top lines represent the peak performance that can be achieved on the given archi-

tecture for the DFT algorithm. It can be seen that the fused convolution gets closer

to peak and in addition it outperforms the implementations that keep the compute

114

1 void po intw i se (m256d ∗ input , m256d ∗ s ca l e , i n t s i z e) {
2 m256d ∗ inputx = input ;
3 m256d ∗ s c a l e x = s c a l e ;
4

5 f o r (i n t i = 0 ; i != 0 ; ++i) {
6 m256d v0 = ∗(inputx) ;
7 m256d v1 = ∗(s c a l e x) ;
8

9 // s h u f f l e data be f o r e complex mu l t i p l i c a t i o n
10 m256d t0 = mm256 permute pd (v0 , 0) ;
11 m256d t1 = mm256 permute pd (v0 , 15) ;
12 m256d t2 = mm256 permute pd (v1 , 5) ;
13

14 m256d t3 = mm256 mul pd (t1 , t2) ;
15 // use the fused mult ip ly addsub i n s t r u c t i o n
16 t3 = mm256 fmaddsub pd (t0 , v1 , t3) ;
17

18 ∗(inputx) = t3 ;
19

20 inputx++;
21 s c a l e x++;
22 }
23 }

Figure 5.1: The hand-written code for computing the point-wise multiplication for
the 1D DFT-based convolution when using MKL and FFTW for the DFT calls.

stages separate and use MKL and FFTW for the DFT computation. where the com-

pute stages remain separate. The fused convolution generated using our approach

outperforms by almost 1.5x the other two implementations even for small sizes like

16, 32 and 64. The data-set for these problem sizes still fit within the L1 cache.

However the gain in performance comes from the fact that our approach does not

have overhead. It is well know that MKL and FFTW incur overhead when invoking

their functions. Recall that in our approach, the API translates the C/C++ de-

scription into SPL, which is then passed to the code generator that generates the C

code. The C code is then compiled into a shared library object (.so) and read back

into the main program.

115

24 25 26 27 28 29 210 211 212 213
0

1

2

3

4

Convk

F
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, single thread, AVX

Extended Spiral
MKL

FFTW

24 25 26 27 28 29 210 211 212 213
0

2

4

6

8

Convk

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single thread, AVX

Extended Spiral
MKL

FFTW

Figure 5.2: The performance for the 1D DFT-based convolution of our approach
and the implementations that use FFTW and MKL as library calls. The figure on
the left shows the performance on the Intel Haswell, while the figure on the right
shows the performance on the Intel Kaby Lake.

For the sizes 128, 256, 512, 1024 and 2048, all three implementations achieve similar

116

performance. Data fits into the L1 or L2 cache. Fusing the stages does not neces-

sarily mean performance gains, since accessing data from L1 or L2 does require long

latencies. Both Haswell and Kaby Lake require three and 12 cycles to read data

from L1 and L2, respectively. However, as the problem size increased beyond the

L2’s capacity, the performance difference between the implementation that fuses

the stages and the two other implementation can be seen once again. For a 1D

DFT-based convolution of size 4096 the performance of the implementations that

use MKL and FFTW drops abruptly. This is caused by the increased latency of

accessing the data from the last level cache. The code generated using our approach

does not see that rapid change since compute stages are merged and data locality

is improved.

The first question we tackle is how much the point-wise computation influ-

ences the overall performance. Our approach fuses the point-wise operation with

the computation. Therefore, the cost of loading in the data to perform the point-

wise computation is amortized by the DFT compute stages. Figure 5.3 shows this

aspect. The plot on the left presents the effects of removing the point-wise compu-

tation from the 1D DFT-based operation implemented with the help of FFTW. For

small sizes the effects are negligible. The performance of the variant that has the

point-wise computation and the one that does not are almost identical. However,

as the problem size increases and data needs to be read from the lower levels of the

memory hierarchy the effects can easily be spotted. The FFTW implementation

that does not have the point-wise computation sees a 10% performance improve-

ment compared to the case where the point-wise computation present. The same

though cannot be said about our implementation. Fusing the DFT and non-DFT

stages hides the effects of computing the point-wise multiplication.

117

24 25 26 27 28 29 210 211 212 213
0

2

4

6

8

Size k

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single thread, AVX

FFTW
FFTW No Point-wise

24 25 26 27 28 29 210 211 212 213
0

2

4

6

8

Size k

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single thread, AVX

Fused Convolution
Fused Convolution No Point-wise

Figure 5.3: The performance improvement when removing the point-wise multipli-
cation from the 1D DFT-based convolution. The left figure shows a performance
improvement of almost 10% when removing the point-wise multiplication. The right
figure emphasize the fact that the point-wise multiplication does not modify perfor-
mance if the forward and inverse DFT are merged.

It can be seen that the two implementations, one with the point-wise and one

118

without, achieve the same performance. Two conclusions can be drawn from this

experiment:

• Fusing the DFT and non-DFT stages amortizes the cost of loading data to

perform the point-wise computation. The effects of computing the point-wise

are negligible

• Part of the performance improvement comes from fusing the point-wise com-

putation. However, the main performance boost comes from fusing the stages

of the forward and inverse DFT.

Choosing the correct instructions to implement the complex multiplication

with SIMD instructions also makes a difference. We have shown in [2] that the block

complex interleaved format provides improvements over keeping data in the com-

plex interleaved layout. The block complex interleaved format removes the shuffle

instructions from the critical path, therefore operations like additions and multi-

plications can be issued in parallel whenever possible. Assuming data is stored

in interleaved format, the computation still requires shuffles, however the shuffle

instructions are hidden with the permute instructions as shown in Chapter 4. Fig-

ure 5.4 shows the performance difference when using complex interleaved and block

complex interleaved for computing just the forward and inverse DFT, without the

point-wise operation. The difference in performance is more prominent on the Kaby

Lake processor. The Intel Kaby Lake can issue two SIMD addition instructions per

cycle, the same rate at which the SIMD multiply and fused-multiply add instruc-

tions are issued. However, the number of pipelines that execute shuffle instructions

has not been changed. Therefore, removing the shuffle instructions from the critical

path gives the processor the possibility of issuing the SIMD additions in parallel.

119

24 25 26 27 28 29 210 211 212 213
0

1

2

3

4

Size k

F
L

O
P

s/
cy

cl
e

4770k Haswell, 4.5 GHz, single thread, AVX

Complex Interleaved
Block Complex Interleaved

24 25 26 27 28 29 210 211 212 213
0

2

4

6

8

Size k

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single thread, AVX

Complex Interleaved
Block Complex Interleaved

Figure 5.4: The performance results when using the complex interleaved versus
block complex interleaved data format. The results are for the fused version of the
forward and inverse DFT without the point-wise computation. The left image shows
the results on the Intel Haswell, while the right image shows the results on the Intel
Kaby Lake.

Haswell also sees a difference in performance between the two implementations.

120

Removing the shuffle instructions from the critical path also decreases the length

of dependent instructions. In addition, more instructions that can be executed in

parallel are exposed, namely add and multiply instructions.

Overall, there are performance gains that can be achieved when fusing the

stages within a 1D DFT-based convolution. For problem sizes that fit within the up-

per levels of the memory hierarchy, the performance improvements might be smaller.

However, as the problem size increases and data needs to be read from the lower

levels of the memory hierarchy, the performance difference can be more significant.

We discussed problems that go up to the L3 cache. In the next section, we focus

on 3D DFT-based operations that reside wither in the last level cache or in main

memory.

5.3 Fusing 3D DFT-based Operations

In this section, we focus on 3D DFT-based operations with non-separable and sep-

arable point-wise computation. We present results for three implementations:

• The first implementation deals with the basic 3D-DFT based convolution,

where the point-wise computation is non-separable. In addition, all the prob-

lem sizes are powers of two.

• The second implementation is that of a 3D DFT-based differentiation oper-

ation for which the point-wise computation is separable on the dimensions.

Similarly to the previous implementation, the problem sizes are powers of

two.

• The third implementation is that of a 3D DFT-based interpolation. The in-

terpolation is separable on the three dimensions, however the sizes are odd

121

numbers smaller than 128.

We compare the implementations generated using our approach and the im-

plementations that use MKL and FFTW. We emphasize the fact that the FFTW

and MKL implementations require the user to write code around the library calls.

In most cases in order to achieve good performance the user is forced to know the

underlying system when implementing the glue code around the DFT calls.

5.3.1 Non-Separable Point-wise Multiplication

Recall, that the 3D DFT-based convolution with a non-separable point-wise multi-

plication is expressed using SPL as

Convk×m×n =
(
Ikm ⊗DFTH

n

)
·
(
Ik ⊗DFTH

m ⊗ In
)︸ ︷︷ ︸

can be fused

· (5.2)

(
DFTH

k ⊗ Imn
)
·Dkmn · (DFTk ⊗ Imn)︸ ︷︷ ︸

can be fused

·

(Ik ⊗DFTm ⊗ In) · (Ikm ⊗DFTn)︸ ︷︷ ︸
can be fused

.

Note that, we use the property that the inverse DFT is the complex conjugate

transpose of the forward DFT. In Chapter 3, we have shown that this property

re-arranges the DFT stages within the inverse 3D DFT to better facilitate the

fusion process with the forward transform. It can be seen that there are two

groups of computation where fusion can be applied. First, the middle opera-

tions represented by
(
DFTH

k ⊗ Imn
)
, Dkmn and (DFTk ⊗ Imn) constructs can be

fused in one single compute stage, using the steps described in Chapter 3. Let

Pk,mn = Lkmnm ·
(⊕mn−1

i=0

(
DFTH

k ·D
′(i)
k ·DFTk

))
·Lkmnn be the fused stage. Replac-

122

ing the construct in the above expression gives

Convk×m×n =
(
Ikm ⊗DFTH

n

)
·
(
Ik ⊗DFTH

m ⊗ In
)
· Pk,mn· (5.3)

(Ik ⊗DFTm ⊗ In) · (Ikm ⊗DFTn) .

Second, the first two forward DFTs and the last two inverse DFTs can also be

merged. Instead of applying 1D DFTs one after the other first in the n dimension

and then in the m dimension, a 2D DFT of size DFTm×n can be applied k times.

Merging the DFT compute stages gives the following SPL representation

Convk×m×n =
(
Ik ⊗

(
DFTH

m×n
))
· Pk,mn · (Ik ⊗ (DFTm×n)) (5.4)

The assumption is that for the 3D DFT computation, MKL and FFTW

merge the DFT computations applied in the m and n dimensions. They resort to

a slab-pencil decomposition of the 3D DFT as described in Chapter 2. However,

the DFT-based convolution using MKL and FFTW does not fuse the forward DFT,

point-wise and inverse DFT. Figure 5.5 shows the performance results of the 3D

convolution with non-separable point-wise for the three implementations. The red

line represents the performance obtained by the fused code. The other two lines

(blue and orange lines) represent the 3D convolutions implemented using FFTW

and MKL. It can be seen that our approach achieves from 1.2 to 1.6x performance

improvements over the library based implementations. Compared to peak perfor-

mance, our implementation gets closer. For problem sizes that fit within the memory

hierarchy, our approach is within 75% of peak. However, as the problem size in-

creases and data needs to be read from the lower levels of the memory hierarchy the

performance of the generated code drops to almost 40% of peak.

123

24 25 26 27 28 29
0

1

2

3

4

Convk×k×k

F
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, single thread, AVX

Extended Spiral
MKL

FFTW

24 25 26 27 28 29
0

2

4

6

8

Convk×k×k

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single thread, AVX

Extended Spiral
MKL

FFTW

Figure 5.5: The performance results for the 3D DFT-based convolution. The red
line represents the performance results for the generated convolution using our ap-
proach, where some of the compute stages are fused. The other two lines represent
the 3D DFT-based convolutions where the 3D DFTs are computed using the imple-
mentations offered by MKL and FFTW.

Merging the stages improves performance, however the DFT memory accesses and

124

the long latencies to main memory influence the overall performance. Therefore, the

main questions that need to be answered are how much of the performance comes

from merging the middle stages and how much of the performance comes from the

DFT computation.

We first focus on answering how much the performance improvement comes

from simply merging the middle stages. Figure 5.6 shows the performance improve-

ments when merging the DFT and inverse DFT applied in the k dimensions and the

point-wise computation. It can be seen that fusing the stages improves performance

by up to 2x compared to the FFTW implementation. We do not compare against

the case where the DFT computation is implemented using the MKL library, since

MKL does not provide an interface similar to FFTW’s Guru Interface. Writing

the forward and inverse DFT using MKL, requires hand-written packing routines,

task that becomes cumbersome. Compared to the FFTW implementation, fusing

the stages improves data locality. Once data is brought into the upper levels of

the cache hierarchy, the forward DFT, part of the point-wise computation and the

inverse DFT are applied immediately before writing the data back to main memory.

Our implementation is cache aware, while FFTW’s DFT implementation is cache

oblivious [69]. The merged stages are tailored to the parameters of the cache hier-

archy. However, both implementations see a performance drop when the problem

sizes do not fit in the last level cache. The DFT and point-wise computation is

applied at large strides. Accessing data at large strides causes cache conflicts, since

most caches are set associative. In addition, due to the non-unit stride nature of

the DFT algorithm bandwidth is not efficiently utilized.

We focus next on the performance obtained by the batch 2D DFT applied at

the beginning and at the end of the 3D DFT-based convolution. Figure 5.7 shows

125

the performance results for only the forward batch transform.

24 25 26 27 28 29
0

1

2

3

4

Qk,kk

F
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, single thread, AVX

Fused Middle Stages
FFTW

24 25 26 27 28 29
0

2

4

6

8

Qk,kk

F
L

O
P

s/
cy

cl
e

7700k Kaby Lake, 4.5 GHz, single thread, AVX

Fused Middle Stages
FFTW

Figure 5.6: The advantages of fusing the compute stages for the construct Qk,mn =(
DFTH

k × Imn
)
Dkmn (DFTk ⊗ Imn) as seen in equation 5.3.

The performance of the inverse transform is similar. We compare our approach

126

(red line) against the FFTW and MKL implementations. Our implementation is

generated using AVX SIMD instructions and the change of format as described

in Chapter 4. For the FFTW implementation we use the Guru Interface. Since

MKL does not offer an interface for batch 2D DFTs, we simply loop around the

2D DFT library call. It can be seen, that the generated code using our method is

competitive on both the Intel Haswell and Intel Kaby Lake. All implementations

fall short to getting close to peak performance. However, we have to state that

the implementation we generate is not fully optimized. Optimizations like unrolling

and constant simplification are still left on the table. Putting everything together,

fusing just the middle stages one can achieve up to 1.6x performance improvements

compared to the implementations where the DFT and point-wise stages are left

un-fused. It is important to notice that, although the performance of merging the

middle stages is significant in isolation, the execution time of the batch 2D DFTs

overshadows these improvements.

The implementation of the 3D DFT-based convolution with non-separable

point-wise computation can also pe parallelized. Figure 5.8 shows the performance

improvements on the Intel Kaby Lake processor, when increasing the number of

threads from one to four. Notice that the peak performance is 32 floating point

operations per cycle. The processor has four cores, each core having a peak of

eight floating point operations per cycle. When increasing the number of threads

the performance of the 3D DFT-based convolution increases almost linearly. It is

also important to notice that for problem sizes that fit within the cache hierarchy

the overall performance is withn 40% from peak. However, the performance drops

significantly when the problem size resides in main memory. The performance is

expected to drop since the performance of the DFT drops when problem sizes do

127

not fit on on-chip cache.

24 25 26 27 28 29
0

1

2

3

4

Ik ⊗DFTk×k

F
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, AVX

Extended Spiral
MKL

FFTW

24 25 26 27 28 29
0

2

4

6

8

Ik ⊗DFTk×k

F
L

O
P

s/
cy

cl
e

7700k Intel Kaby Lake, 4.5 GHz, AVX

Extended Spiral
MKL

FFTW

Figure 5.7: Performance results for the batch 2D DFT. The red line represents the
performance of the generated code using our in-house code generator, while the
other two lines represent the performance of the 2D DFTs using MKL and FFTW.

The DFT is memory latency bound, computation cannot hide the latency of reading

128

24 25 26 27 28 29
0

10

20

30

Convk×k×k

F
L

O
P

s/
cy

cl
e

7700k Intel Kaby Lake, 4.5 GHz, multiple threads, AVX

4 threads
2 threads
1 thread

Figure 5.8: Performance results of the 3D DFT convolution when increasing the
number of threads from 1 to 4 on the Intel Kaby Lake.

data from main memory.

However, we have shown in [1] that the performance of the DFT can be im-

proved so that it runs at the speed of the bandwidth. In the paper, we show that

for large problem sizes that do not fit in the last level cache, one can apply a dou-

ble buffering technique, which technically is the Out-of-Core [70, 71, 72] execution

mapped to a cache syste, to improve the overall execution for multi-dimensional

DFTs. The approach is basically software pipelining [73] applied at the granularity

of a task, e.g compute and data movement tasks. The threads are split into compute

and data threads. The compute threads only apply 1D DFTs on cached data, while

data threads move data to and from main memory into a shared local buffer that

resides within the last level cache. In Figure 5.9, we show the performance results

when using double buffering on large 3D DFTs.

129

[2
9 , 2

9 ,2
9]

[2
9 , 2

9 ,2
10]

[2
9 , 2

10
,2
9]

[2
10 , 2

9 ,2
9]

[2
9 , 2

10
,2
10]

[2
10 , 2

9 ,2
10]

[2
10 , 2

10
,2
9]

0

20

40

60

80

100

DFTk×m×n

%
fr

om
A

ch
ie

va
b

le
P

ea
k

4770k Haswell, 3.5 GHz, AVX

Extended Spiral
MKL

FFTW

[2
9 , 2

9 ,2
9]

[2
9 , 2

9 ,2
10]

[2
9 , 2

10
,2
9]

[2
10 , 2

9 ,2
9]

[2
9 , 2

10
,2
10]

[2
10 , 2

9 ,2
10]

[2
10 , 2

10
,2
9]

[2
10 , 2

10
,2
10]

0

20

40

60

80

100

DFTk×m×n

%
fr

om
A

ch
ie

va
b

le
P

ea
k

7700k Intel Kaby Lake, 4.5 GHz, AVX

Extended Spiral
MKL

FFTW

Figure 5.9: The performance results for the optimized version of the 3D DFT using
the double buffering approach as suggested in [1]. We compare the performance
numbers against the achievable peak performance if bandwidth is efficiently utilized.

130

We compare the 3D DFT implementation using the double buffering technique

against FFTW and MKL and show a performance improvement of almost 3x. In

addition, we compare our implementation against the achievable peak when assum-

ing that data is stream at full bandwidth speed determined using the STREAM

benchmark [74]. The double buffering approach achieves within 10% of peak per-

formance. Hence, a similar performance boost is expected when implementing the

double buffering technique on DFT-based operations.

Overall, fusing can improve performance for 3D DFT-based convolution with

non-separable point-wise computation. Depending on the problem sizes, the per-

formance improvement can vary from 1.3 to 1.6x compared to the implementations

that do not fuse the middle compute stages. Although fusing the middle stages sees

significant performance improvements, the overall performance is overshadowed by

the 2D forward and inverse DFT computation that can not be fused. We state that

as the dimensions of the multi-dimensional DFT-based operation increases, the ef-

fects of merging the middle stages become less obvious. However, performance can

further be improved if optimizations such as thread level parallelism [33] or double

buffering [1] are used on the DFT computation.

5.3.2 Separable Point-wise Multiplication

In this section, we analyze the performance improvements for 3D DFT-based opera-

tions where the point-wise computation is separable on the dimensions. We present

two cases. First, we tackle the 3D DFT-based differentiation operation for power

of two problem sizes. Recall that the differentiation property requires a point-wise

computation that is separable on the dimensions. Since MKL does not offer inter-

faces to easily express this separable operation, we use the basic 3D DFT interface

131

24 25 26 27 28 29
0

1

2

3

4

Diffk×k×k

F
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, single thread, AVX

Extended Spiral
MKL

FFTW

Figure 5.10: Performance plot for the 3D DFT-based differentiation operation on
Intel Haswell 4770K. The first implementation (red line) represents the performance
achieved by our approach. The other two implementations use MKL and FFTW
forthe DFT stages and have hand-written code to compute the point-wise multipli-
cation.

and leave the point-wise computation as if it is non-separable. Second, we present

a 3D DFT-based interpolation algorithm based on the shifting in time property

(Chapter 2) for problem sizes that are non-power of two. The algorithm is based on

the work from [67, 75] and presented in more details in [3]. In the latter, we showed

that applying SIMD instructions requires zero-padding operations as described in

Chapter 4 and thus having a wider view of the entire algorithm allows one to remove

the redundant padding and un-padding operations.

3D DFT-based Differentiation. Recall that there are DFT-based oper-

ations like differentiation, where the point-wise computation is separable since it

exhibits symmetry properties. For example, computing the d3

dx dy dz operation in the

frequency domain does not require the point-wise multiplication to stall for the full

132

24 25 26 27 28 29
0

1

2

3

4

Rk,kk

F
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, AVX

Extended Spiral
FFTW

24 25 26 27 28 29
0

2

4

6

8

Rk,kk

F
L

O
P

s/
cy

cl
e

7700k Intel Kaby Lake, 4.5 GHz, AVX

Extended Spiral
FFTW

Figure 5.11: The advantages of fusing the compute stages for the construct Rk,mn =(
DFTH

k ·Dk ·DFTk

)
⊗ Imn as seen in equation 5.5.

3D DFT. The point-wise multiplication can be separated on all three dimensions.

This suggests that the 3D DFT-based operation can be expressed using SPL as

133

follows

Diffk×m×n =
((

DFTH
k ·Dk ·DFTk

)
⊗ Imn

)
(5.5)(

Ik ⊗
(
DFTH

m ·Dm ·DFTm

)
⊗ In

)
(
Ikm ⊗

(
DFTH

n ·Dn ·DFTn

))
,

where Dk, Dm and Dn represent the diagonal matrices that store the pre-computed

values of the differentiation operation applied in each dimension. It can be seen that

in each dimension, there is a local forward DFT, followed by the local point-wise

multiplication and finally a local inverse DFT. Moreover, the computation in each

dimension is actually a 1D DFT-based convolution, that can further be fused using

the steps described in Chapter 3.

Figure 1.1 showed the performance improvements when fusing the compute

stages for the 3D DFT-based differentiation on the Intel Kaby Lake processor. The

figure showed that having the view of the entire algorithm and optimizing across

the DFT and non-DFT stages improves performance by almost 2x compared to the

FFTW and MKL implementations. The same trend can be seen on the Intel Haswell

in Figure 5.10, where the generated code (red line) achieves the same 2x. For the

FFTW baseline, we use the FFTW Guru interface for the DFT computation and we

hand-write the loops around the DFT calls. In addition, we hand-write the point-

wise computation using SIMD instructions. The hand-written implementation can

be seen in Appendix A. For the MKL implementation, we resort to the 3D DFT

function call. MKL does not have an interface similar to the one provided by FFTW.

Hence, we keep the point-wise computation as being non-separable and apply the

full forward and inverse 3D DFT computation. An alternative solution for MKL

would be to hand-write the data movement to rotate the data so that the basic 1D

134

DFT can be applied. However, the amount of work is too great.

Fusing the compute stages reduces the number of passes through the data

and hence improves data locality and performance. However, fusion is not the only

optimization that improves the code. The way the code is generated has also an

effect on the performance. Figure 5.11 shows the performance improvements for

the 1D DFT convolution Rk,mn =
(
DFTH

k ·Dk ·DFTk

)
⊗ Imn, where we compare

the generated code using our approach against the implementation that uses the

FFTW Guru interface. Our implementation (red line) is cache-aware, while FFTW

is cache oblivious. Each read and write are done at the granularity of a cache line,

not the granularity of the SIMD vector length. All the temporary arrays required

by the forward and inverse DFT are tailored to the size of the L1 and L2 cache.

In addition, we force the temporary arrays to be re-used through-out the entire

computation. Using all these optimizations, the generated code outperforms the

FFTW implementation on both Intel Haswell and Kaby Lake.

Similarly to the non-separable operation, the 3D DFT-based differentiation

can also be parallelized. Figure 5.12 shows the performance for the 3D DFT-based

differentiation when increasing the number of threads. It can be seen that increasing

the number of threads from one to four, performance almost doubles each time.

However, this operations still suffers when the problem size increases beyond the

last level cache. The performance degrades since the DFT memory accesses are still

non-unit stride and computation is still not sufficient to hide the long latency, even

though computation is merged. Thus, it makes perfect sense to apply the double

buffering technique described in [1] similarly to the non-separable case. Data is

brought in the last level cache, and computation can hide the latency of reading

data from the last level cache a lot easier.

135

24 25 26 27 28 29
0

10

20

30

Diffk×k×k

F
L

O
P

s/
cy

cl
e

7700k Intel Kaby Lake, 4.5 GHz, multiple threads, AVX

4 threads
2 threads
1 thread

Figure 5.12: Performance results of the 3D DFT differentiation when increasing the
number of threads from 1 to 4 on the Intel Kaby Lake.

3D DFT-Based Interpolation. Some problems are not always divisible by

the SIMD vector length. Some applications require central frequencies, hence they

must deal with non power of two problem sizes that are not divisible by the SIMD

vector length. The ONETEP project [67] is such an application that requires an

interpolation operation to avoid aliasing while performing computation. Basically,

the DFT-based interpolation is trigonometric interpolation as the one presented

in [76]. For a 1D sequence, the interpolation requires a forward DFT, a point-wise

computation that performs a phase shift and an inverse DFT. Following the trend,

the operation can be expressed using SPL as

Zkn = iDFTn ·Dk
n ·DFTn, (5.6)

136

with

Dk
n = diag

(
1, ωkn, ω

k2

n . . . , ωk
n−1

n

)
and ωn = exp(−2πj/n).

The diagonal is the point-wise computation required when doing a time shift. Re-

call that for integer values of k the matrix Zkn simply performs a cyclic shift of the

samples. However, setting the value of k = 1/2 allows one to compute the sam-

ples located between the original samples. Therefore, the phase shift interpolation

defined as U2
n, can be expressed using SPL as

U2
n = L2n

n

[
In

Z
1/2
n

]
. (5.7)

It can be seen that the identity matrix copies the original sequence. The bottom

operation performs the time shift by half a sample and the L operator interleaves

the values to obtain the interpolated sequence. The algorithm can be extended to

three dimensions using the Kronecker product. In addition, the interpolation is a

separable operation, so each dimension can be gradually increased by a factor of

two. The SPL representation of the entire 3D DFT interpolation is as follows

U2×2×2
k×m×n =(U2

k ⊗ I4mn) · (Ik ⊗ U2
m ⊗ I2n) · (Ikm ⊗ U2

n). (5.8)

It can be seen that the 3D interpolation is very similar to any 3D DFT com-

putation, with the difference that after each compute stage the data-set is increased

by a factor of two in each dimension. Computation can be grouped using the prop-

erties of the Kronecker product. For example, the interpolation in the n and m

dimension can be fused. Hence, the interpolation can first focus on the mn-slab

and then the interpolation in the k dimension computes the final samples. SIMD

vectorization can also be applied. The problem is that the sizes are odd sizes that

137

7 25 43 61 79 97
0

2

4

6

U2×2×2
k×k×k

P
se

u
d

oF
L

O
P

s/
cy

cl
e

4770k Haswell, 3.5 GHz, AVX

Extended Spiral
MKL

FFTW

Figure 5.13: The performance results of the 3D DFT-based interpolation for non-
power of two problem sizes. The blue line represents the performance achieved by
our approach. While the red and brown lines represent the performance of the
implementations that use FFTw and MKL for the DFT computation. For this
experiment we use PseudoFLOPs/cycle.

are not divisible by the SIMD vector length. However, using the optimizations steps

from Chapter 4, the computation can be vectorized with padding and un-padding.

In addition, having the entire view of the algorithm reduces the number of padding

operations.

Figure 5.13 shows the performance results on the Intel Haswell processor

for the 3D DFT-based interpolation implemented using our approach, MKL and

FFTW. Since both MKL and FFTW do not allow for the point-wise computation

to be merged with the DFT stages, the two implementations required hand-written

point-wise computations. In addition, MKL requires extra rotations since the library

does not offer an interface like FFTW. Overall, our approach outperformed the

138

two other implementations by almost three times. Details about the performance

breakdown can be found in the paper [3]. It is important to state that the problem

sizes were non-powers of two. The DFT computation required algorithms like Good-

Thomas, Rader or Bluestein. And second, implementing the algorithms using SIMD

instructions required zero-padding and un-padding, which are expensive on most

Intel systems. Similarly to the permute instructions, execution stalls waiting for

data to be padded and un-padded. However, having the wide view of the entire

algorithm and optimizing across the DFT and non-DFT stages allows for stages to

be fused and also allows for redundant data padding to be discarded. The data

is zero-padded efficiently at the beginning of the entire operation. The zeros are

smartly inserted and using the information from Chapter 4, they are kept for the

entire computation until data needs to be written out.

Overall, separable DFT-based operations see better performance improve-

ments since the number of passes through the data is drastically decreased. Data

locality is improved because the forward DFT, point-wise computation and inverse

DFT are all applied before writing the data back to memory. Whether the prob-

lem size is a power of two or not, our generated codes see almost 3x performance

improvements compared to implementations that require glue code around DFT

library calls to FFTW and MKL.

5.4 Summary

In this chapter we focused on providing a detailed analysis of the benefits of merg-

ing and applying other low level optimizations across the DFT and non DFT-stages.

First, we discussed the benefits of fusing the stages for 1D DFT-based convolutions.

We showed that for problem sizes that fit in the L1 and L2 caches the performance

139

difference is not that significant, however as the problem size increases the generated

code achieves almost 1.3x performance improvements compared to the implementa-

tions that use FFTW and MKL for the DFT computation. Second, we focused on

3D DFT-based convolution operations for problem sizes that require data to reside

in last level cache or main memory. We focused on both separable and non-separable

point-wise operations. In both cases, the generated code achieves performance im-

provements against the competitors. However, non-separable operations see less

significant performance improvements compared to the separable ones, since the

effects of fusing only the middle stages are overshadowed by the surrounding DFT

computation that cannot be merged. Irrespective of the separability property, the

performance of any DFT-based operations decreases when data cannot fit in the last

cache level. There are other methods like double buffering, but those are orthogonal

to optimizations applied to DFT-based operations.

140

Chapter 6

Concluding Remarks

To re-iterate, the thesis of this dissertation is that for most Fourier-based algorithms

there is a systematic way of achieving efficient code through cross-stage optimiza-

tions. Most Fourier-based algorithms like convolutions, correlations, interpolations

or partial differential equation (PDE) solvers typically follow the same pattern, where

discrete Fourier transform (DFT) stages are interleaved with other compute stages.

This insight suggests that the focus of optimizations should be on the DFT-based

algorithms rather than the DFT itself. Performance gains can be achieved by having

a wider view of the entire algorithm, since high level loop transformations and low

level optimizations can be applied across compute stages.

Up to now, there has not been any attempt to expose the implementation of

the DFT and merge it with the surrounding computation, although though it is well

known that the DFT computation is memory bound. Because of the complexity of

writing efficient DFT code, most developers avoid the decomposition of the DFT and

thus do not integrate it with the surrounding computation. In most cases, developers

resort to writing glue code around highly optimized DFT implementations offered

141

by libraries like MKL and FFTW. Even frameworks like AccFFT or Indigo resort to

the library call implementation even though they recognize the fact that the DFT

is just part of the entire application.

Therefore, this work makes two contributions. The first contribution is that

we identified that most DFT-based operations like convolutions, correlations, in-

terpolations and PDE solvers follow a pattern, where DFT stages are interleaved

with other compute stages. Hence, we make the statement that the focus should

be on the DFT-based algorithms rather the DFT itself. Libraries should provide

support for describing and optimizing entire DFT-based operations. We tackle this

aspect first by showing that one can easily develop a simple API to capture most

DFT-based operations. The second contribution is that we state that there is a

systematic way of applying high level optimizations like loop merging and low level

optimizations like SIMD vectorization and zero-padding across the DFT and non-

DFT stages, optimizations that are otherwise not possible if the implementation is

done using black box library calls to MKL and FFTW. We use the SPL notation

to express entire DFT-based algorithms and extend SPIRAL’s capabilities to apply

all the optimizations automatically.

In this work, we tackled 1D, 2D and 3D DFT-based operations with separable

and non-separable point-wise operations. However, we showed results only for 1D

and 3D DFT operations. For each case we provided a detailed analysis of the

benefits of fusing the computation and we outlined what the main contributors to

the improved performance are. In particular, we focused on the following aspects:

• We have showed that for 1D DFT-based convolutions merging the forward and

inverse DFT with the point-wise multiplication gives almost 1.3x performance

improvements compared to the implementations that use MKL and FFTW for

142

the DFT computation and leave the point-wise operation separated. Although

the problem sizes we tackled still fit in the last level cache, we highlighted the

fact that merging the point-wise operation with the computation is important.

Loading the data to perform the point-wise multiplication is fully amortized

by the DFT computation. In addition, data locality is improved and the cache

hierarchy is more efficiently utilized.

• Performance improvements can be seen for large 3D DFT-based convolutions

with non-separable point-wise, where the problem size require data to be

loaded directly from either the last level cache or main memory. The gener-

ated code optimized using the steps outlined in Chapter 3 and 4 outperforms

by almost 1.6x the implementations that use FFTW and MKL for computing

the DFT stages. Performance improvement is achieved even if only some of

the stages are merged. The point-wise multiplication does not have any sym-

metry properties and as such requires the entire data to be fully converted

to the frequency domain before applying it. Even so, data locality and thus

overall performance is improved.

• The 3D DFT-based convolutions with separable point-wise multiplication see

the most benefits when efficiently merging the stages. The point-wise multipli-

cation is separated on the dimensions and thus it can be grouped with the local

1D DFTs. Grouping the forward DFT, point-wise computation and inverse

DFT drastically reduces the passes through the data, improving data locality

and cache utilization. Hence, we showed that the generated code achieves up

to 2.2x performance gains compared to hand-written implementations that

use either the FFTW advanced interface or write data packing code around

MKL’s basic 1D DFT interface. Once again, merging the stages and making

143

the computation cache aware helps achieve performance.

Overall, we showed that focusing on the entire DFT-based algorithms per-

formance can be improved. We have showed that DFT-based operations see perfor-

mance improvements when applying optimizations like loop fusion across the DFT

and non-DFT stages. It is well know that both the DFT computation and the

point-wise operation are memory latency bound problems that do not efficiently use

the underlying memory hierarchy. Hence, merging the stages improves data locality

and cache utilization, thus improves overall performance. As such, we believe that

most memory bound applications should be integrated with the surrounding compu-

tation. Achieving performance requires one to express the before and after stages

to any memory bound operation and to systematically apply high level optimizations

like fusion and other low level optimizations across the entire compute stages.

6.1 Limitations

While we tackle a wide variety of DFT-based operations and show performance

improvements, the work has limitations. Some of the limitations are left to be

tackled as future work.

• The current state of the API only allows the description of 1D, 2D and 3D

DFT-based operations with or without separable point-wise operations. The

framework does not allow users to declare more complicated computations that

can be done in the frequency domain like matrix-vector multiplications [11] or

tensor contractions [47, 77, 78].

• We only focused on complex data sets. However, there are applications that

compute the DFT on real data sets. Addressing this problem requires modi-

144

fications to the code generator so that it can generate real DFTs using SIMD

instructions.

• We have only covered DFT-based operations that were computed using the

double precision data type. However, there are applications that require dif-

ferent precisions like floats or double double. While the code generator does

not need to know the underlying SIMD architecture, the codelets need to be

re-implemented taking into account the new data-types.

• We create small codelets for the DFTs of size two and four, where we use SIMD

AVX instructions, targetting double precision floating point. In addition, we

schedule the code using the information from [79]. Each codelet has different

features such as point-wise computations and/or in-register permutations. The

permutation may be on the right or left hand side of the DFT computation.

While for AVX, double precision there are almost 30 codelets, the number of

kernels/codelets changes as the SIMD vector length increases or the data type

changes.

• The framework generates code for the memory hierarchy based on empirical

results. However, there are works in the linear algebra domain [80, 81, 82, 83]

or in the regular mesh methods [84, 85, 86, 87] where it has been shown that

key parameters may be chosen based on mathematical models.

• The framework focuses on single and multi-threaded DFT-based operations.

However, the parallelism is done in the traditional sense, where each thread

receives the same task. While the 3D DFT computation using double buffering

is implemented for both single and multisocket systems capable of NUMA

domains [88], we have not extended it to any DFT-based operations.

145

6.2 Future work

In this section we discuss the possible directions for future work.

• Make the high level API more flexible to allow users to define different op-

erations more easily and also to allow for more complicated access patterns.

This extension may require though a restructuring of the entire API or even

a re-definition of the entire front-end.

• Develop a systematic way of generating and optimizing DFT computations

given the underlying architecture, namely the capabilities of the computa-

tional units and the structure of the memory system. It has been shown that

modeling works for other domains, it should also work for generating efficient

implementations for both the DFT and DFT-based computations.

• Fully automate the process of applying optimizations like loop fission, loop

interchange, loop unrolling in a systematic way. While loop fusion is done

automatically, the other optimizations are still done by hand.

• Automate the process of generating the codelets for any SIMD vector length

and even GPUs. It has been shown in [89] that based on the execution

pipeline, efficient micro-kernels can be automatically generated for comput-

ing the matrix-matrix multiplication. Thus, generating DFT kernels can be

done in a similar fashion.

• Automatically parallelize the code and automatically apply the double buffer-

ing technique when problem sizes require data to be read from main memory.

• Use the framework in actual applications. The framework is a proof of concept

to show that having a representation to capture both the DFT and non-DFT

146

stages is helpful. Optimizations like fusion and data packing can be done

across the compute stages and thus improve overall execution time. We tackled

a multitude of DFT properties, however the framework should be used within

real applications.

147

Appendix A

Using the FFTW Interface To

Create and Execute 3D

DFT-based Convolutions

1 #inc lude <s t d i o . h>

2 #inc lude <s t d l i b . h>

3 #inc lude <malloc . h>

4 #inc lude < l im i t s . h>

5 #inc lude <f f tw3 . h>

6 #inc lude <math . h>

7 #inc lude <immintrin . h>

8 #inc lude ” rd t s c . h”

9

10 #de f i n e SIZE 512

11

12 void compute pointwise (double ∗pointwise , double ∗temp) {

13 m256d ∗pp = (m256d ∗) po intw i s e ;

148

14 m256d ∗ t t = (m256d ∗) temp ;

15 f o r (s i z e t x = 0 ; x != (SIZE / 2) ; ++x) {

16 m256d v0 = ∗(pp) ;

17 m256d v1 = ∗(t t) ;

18

19 m256d t0 = mm256 permute pd (v0 , 0 | (0 << 1) | (0 << 2) | (0 <<

3)) ;

20 m256d t1 = mm256 permute pd (v0 , 1 | (1 << 1) | (1 << 2) | (1 <<

3)) ;

21 m256d t2 = mm256 permute pd (v1 , 1 | (0 << 1) | (1 << 2) | (0 <<

3)) ;

22

23 m256d t3 = mm256 mul pd (t1 , t2) ;

24 t3 = mm256 fmaddsub pd (t0 , v1 , t3) ;

25

26 ∗(t t) = t3 ;

27

28 pp++;

29 t t++;

30 }

31 }

32

33 i n t main (i n t argc , char ∗∗ argv) {

34 i n t runs = a t o i (argv [1]) ;

35

36 s i z e t t o t a l s i z e = 2 ∗ SIZE ∗ SIZE ∗ SIZE ∗ s i z e o f (double) ;

37 s i z e t b u f f s i z e = 2 ∗ SIZE ∗ s i z e o f (double) ;

38

39 double ∗ input = (double ∗) memalign (64 , t o t a l s i z e) ;

40 double ∗output1 = (double ∗) memalign (64 , t o t a l s i z e) ;

41

149

42 double ∗temp = (double ∗) memalign (64 , 4 ∗ b u f f s i z e) ;

43 double ∗pointwiseX = (double ∗) memalign (64 , b u f f s i z e) ;

44 double ∗pointwiseY = (double ∗) memalign (64 , b u f f s i z e) ;

45 double ∗pointwiseZ = (double ∗) memalign (64 , b u f f s i z e) ;

46

47 f f tw iod im many2 dfts in , s i n g l e 2 d f t i n , many2 dfts out ,

s i n g l e 2 d f t o u t , many3 dfts in , s i n g l e 3 d f t i n , many3 dfts out ,

s i n g l e 3 d f t o u t ;

48 s i n g l e 2 d f t i n . n = SIZE ;

49 s i n g l e 2 d f t i n . i s = SIZE ;

50 s i n g l e 2 d f t i n . os = 1 ;

51

52 s i n g l e 2 d f t o u t . n = SIZE ;

53 s i n g l e 2 d f t o u t . i s = 1 ;

54 s i n g l e 2 d f t o u t . os = SIZE ;

55

56 many2 dft s in . n = 4 ;

57 many2 dft s in . i s = 1 ;

58 many2 dft s in . os = SIZE ;

59

60 many2 dfts out . n = 4 ;

61 many2 dfts out . i s = SIZE ;

62 many2 dfts out . os = 1 ;

63

64 s i n g l e 3 d f t i n . n = SIZE ;

65 s i n g l e 3 d f t i n . i s = SIZE ∗ SIZE ;

66 s i n g l e 3 d f t i n . os = 1 ;

67

68 s i n g l e 3 d f t o u t . n = SIZE ;

69 s i n g l e 3 d f t o u t . i s = 1 ;

70 s i n g l e 3 d f t o u t . os = SIZE ∗ SIZE ;

150

71

72 many3 dft s in . n = 4 ;

73 many3 dft s in . i s = 1 ;

74 many3 dft s in . os = SIZE ;

75

76 many3 dfts out . n = 4 ;

77 many3 dfts out . i s = SIZE ;

78 many3 dfts out . os = 1 ;

79

80 #i f d e f FFTFORWARD

81 f f tw p l an plan forward1 = f f tw p l a n d f t 1 d (SIZE , (f f tw complex ∗)

input , (f f tw complex ∗) temp , FFTWFORWARD, FFTWMEASURE) ;

82 f f tw p l an plan backward1 = f f tw p l a n d f t 1 d (SIZE , (f f tw complex ∗)

temp , (f f tw complex ∗) output1 , FFTWBACKWARD, FFTWMEASURE) ;

83 f f tw p l an plan forward2 = f f tw p l an gu ru d f t (1 , &s i n g l e 2 d f t i n , 1 , &

many2 dfts in , (f f tw complex ∗) input , (f f tw complex ∗) temp ,

FFTWFORWARD, FFTWMEASURE) ;

84 f f tw p l an plan backward2 = f f tw p l an gu ru d f t (1 , &s i n g l e 2 d f t o u t , 1 ,

&many2 dfts out , (f f tw complex ∗) temp , (f f tw complex ∗) output1 ,

FFTWBACKWARD, FFTWMEASURE) ;

85 f f tw p l an plan forward3 = f f tw p l an gu ru d f t (1 , &s i n g l e 3 d f t i n , 1 , &

many3 dfts in , (f f tw complex ∗) input , (f f tw complex ∗) temp ,

FFTWFORWARD, FFTWMEASURE) ;

86 f f tw p l an plan backward3 = f f tw p l an gu ru d f t (1 , &s i n g l e 3 d f t o u t , 1 ,

&many3 dfts out , (f f tw complex ∗) temp , (f f tw complex ∗) output1 ,

FFTWBACKWARD, FFTWMEASURE) ;

87 #e l s e

88 f f tw p l an plan forward1 = f f tw p l a n d f t 1 d (SIZE , (f f tw complex ∗)

input , (f f tw complex ∗) temp , FFTWBACKWARD, FFTWMEASURE) ;

89 f f tw p l an plan backward1 = f f tw p l a n d f t 1 d (SIZE , (f f tw complex ∗)

temp , (f f tw complex ∗) output1 , FFTWFORWARD, FFTWMEASURE) ;

151

90 f f tw p l an plan forward2 = f f tw p l an gu ru d f t (1 , &s i n g l e 2 d f t i n , 1 , &

many2 dfts in , (f f tw complex ∗) input , (f f tw complex ∗) temp ,

FFTWBACKWARD, FFTWMEASURE) ;

91 f f tw p l an plan backward2 = f f tw p l an gu ru d f t (1 , &s i n g l e 2 d f t o u t , 1 ,

&many2 dfts out , (f f tw complex ∗) temp , (f f tw complex ∗) output1 ,

FFTWFORWARD, FFTWMEASURE) ;

92 f f tw p l an plan forward3 = f f tw p l an gu ru d f t (1 , &s i n g l e 3 d f t i n , 1 , &

many3 dfts in , (f f tw complex ∗) input , (f f tw complex ∗) temp ,

FFTWBACKWARD, FFTWMEASURE) ;

93 f f tw p l an plan backward3 = f f tw p l an gu ru d f t (1 , &s i n g l e 3 d f t o u t , 1 ,

&many3 dfts out , (f f tw complex ∗) temp , (f f tw complex ∗) output1 ,

FFTWFORWARD, FFTWMEASURE) ;

94 #end i f

95

96 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ∗ SIZE ∗ SIZE ; ++i) {

97 input [i] = (double) (rand () / ((double) INT MAX)) ;

98 output1 [i] = 0 . 0 ;

99 }

100

101 double value ;

102 FILE ∗ f po inw i s e = fopen (” po intw i s e . bin ” , ” rb”) ;

103

104 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ; ++i) {

105 f r ead (&value , s i z e o f (double) , 1 , f p o i n tw i s e) ;

106 pointwiseX [i] = value ;

107 }

108

109 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ; ++i) {

110 f r ead (&value , s i z e o f (double) , 1 , f p o i n tw i s e) ;

111 pointwiseY [i] = value ;

112 }

152

113

114 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ; ++i) {

115 f r ead (&value , s i z e o f (double) , 1 , f p o i n tw i s e) ;

116 pointwiseZ [i] = value ;

117 }

118

119 f c l o s e (f po i n tw i s e) ;

120

121 long long sum0 = 0 , sum1 = 0 ;

122 t s c c oun t e r t0 , t1 ;

123

124 f o r (i n t i = 0 ; i != runs ; ++i) {

125 RDTSC(t0) ;

126 f o r (s i z e t j = 0 ; j != SIZE ; ++j) {

127 double ∗ inputx = (input + j ∗ 2 ∗ SIZE ∗ SIZE) ;

128 double ∗outputx = (output1 + j ∗ 2 ∗ SIZE ∗ SIZE) ;

129

130 f o r (s i z e t k = 0 ; k != SIZE ; ++k) {

131 f f tw e x e c u t e d f t (p lan forward1 , (f f tw complex ∗) (inputx + k ∗ 2 ∗

SIZE) , (f f tw complex ∗) temp) ;

132 compute pointwise (pointwiseX , temp) ;

133 f f tw e x e c u t e d f t (plan backward1 , (f f tw complex ∗) temp , (f f tw complex

∗) (outputx + k ∗ 2 ∗ SIZE)) ;

134 }

135 f o r (s i z e t k = 0 ; k != (SIZE / 4) ; ++k) {

136 f f tw e x e c u t e d f t (p lan forward2 , (f f tw complex ∗) (outputx + 8 ∗ k) , (

f f tw complex ∗) temp) ;

137 f o r (s i z e t r = 0 ; r != 4 ; ++r) {

138 compute pointwise (pointwiseX , (temp + 2 ∗ SIZE ∗ r)) ;

139 }

140 f f tw e x e c u t e d f t (plan backward2 , (f f tw complex ∗) temp , (f f tw complex

153

∗) (outputx + 8 ∗ k)) ;

141 }

142 }

143 f o r (s i z e t k = 0 ; k != (SIZE ∗ SIZE / 4) ; ++k) {

144 f f tw e x e c u t e d f t (p lan forward3 , (f f tw complex ∗) (output1 + 8 ∗ k)

, (f f tw complex ∗) temp) ;

145 f o r (s i z e t r = 0 ; r != 4 ; ++r) {

146 compute pointwise (pointwiseX , (temp + 2 ∗ SIZE ∗ r)) ;

147 }

148 f f tw e x e c u t e d f t (plan backward3 , (f f tw complex ∗) temp , (

f f tw complex ∗) (output1 + 8 ∗ k)) ;

149 }

150 RDTSC(t1) ;

151

152 sum0 += COUNTER DIFF(t1 , t0 , CYCLES) ;

153 }

154

155 p r i n t f (” Correc tnes s :\ t%l f \tFFTW:\ t%l f \n” , output1 [0] , (double) (sum0

/ (runs ∗ 1 . 0))) ;

156

157 f f tw de s t r o y p l an (p lan forward1) ;

158 f f tw de s t r o y p l an (plan backward1) ;

159 f f tw de s t r o y p l an (p lan forward2) ;

160 f f tw de s t r o y p l an (plan backward2) ;

161 f f tw de s t r o y p l an (p lan forward3) ;

162 f f tw de s t r o y p l an (plan backward3) ;

163 f r e e (input) ;

164 f r e e (temp) ;

165 f r e e (pointwiseX) ;

166 f r e e (pointwiseY) ;

167 f r e e (pointwiseZ) ;

154

168 f r e e (output1) ;

169

170 re turn 0 ;

171 }

155

Appendix B

Using the API To Create and

Execute 3D DFT-based

Convolutions

1 #inc lude <s t d i o . h>

2 #inc lude <s t d l i b . h>

3 #inc lude <malloc . h>

4 #inc lude < l im i t s . h>

5 #inc lude <math . h>

6 #inc lude ” rd t s c . h”

7 #inc lude ” inc lude / s p i r a l h e ad e r . h”

8

9 #de f i n e SIZE 512

10

11 i n t main (i n t argc , char ∗∗ argv) {

12 i n t runs = a t o i (argv [1]) ;

13

156

14 s i z e t t o t a l s i z e = 2 ∗ SIZE ∗ SIZE ∗ SIZE ∗ s i z e o f (double) ;

15 s i z e t b u f f s i z e = 2 ∗ SIZE ∗ s i z e o f (double) ;

16

17 double ∗ input = (double ∗) memalign (64 , t o t a l s i z e) ;

18 double ∗output1 = (double ∗) memalign (64 , t o t a l s i z e) ;

19

20 double ∗pointwiseX = (double ∗) memalign (64 , b u f f s i z e) ;

21 double ∗pointwiseY = (double ∗) memalign (64 , b u f f s i z e) ;

22 double ∗pointwiseZ = (double ∗) memalign (64 , b u f f s i z e) ;

23

24 s p i r a l d f t d f t rows [1] , d f t c o l s [1] , d f t depth [1] ;

25 s p i r a l d f t o p op [3] ;

26

27 d f t rows [0] . s i z e = SIZE ;

28 d f t rows [0] . i s t r = 1 ;

29 d f t rows [0] . o s t r = 1 ;

30

31 d f t c o l s [0] . s i z e = SIZE ;

32 d f t c o l s [0] . i s t r = SIZE ;

33 d f t c o l s [0] . o s t r = SIZE ;

34

35 df t depth [0] . s i z e = SIZE ;

36 df t depth [0] . i s t r = SIZE ∗ SIZE ;

37 df t depth [0] . o s t r = SIZE ∗ SIZE ;

38

39 s p i r a l p o i n tw i s e sr , sc , sd ;

40 s r . da ta po in t e r pointwiseX ;

41 sc . da ta po in t e r pointwiseY ;

42 sd . da ta po in t e r po intwiseZ ;

43

44 op [0] . dims = 1 ;

157

45 op [0] . forward op = df t rows ;

46 op [0] . backward op = df t rows ;

47 op [0] . po in t e r = &sr ;

48

49 op [1] . dims = 1 ;

50 op [1] . forward op = d f t c o l s ;

51 op [1] . backward op = d f t c o l s ;

52 op [1] . po in t e r = &sc ;

53

54 op [2] . dims = 1 ;

55 op [2] . forward op = df t depth ;

56 op [2] . backward op = df t depth ;

57 op [2] . po in t e r = &sd ;

58

59 #i f d e f FFTFORWARD

60 s p i r a l p l a n ∗plan = sp i r a l c r e a t e advan c e op (op , 3 , SPIRAL FORWARD |

SPIRAL DATAPOINTER) ;

61 #e l s e

62 s p i r a l p l a n ∗plan = sp i r a l c r e a t e advan c e op (op , 3 , SPIRALBACKWARDD

| SPIRAL DATAPOINTER) ;

63 #end i f

64

65 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ∗ SIZE ∗ SIZE ; ++i) {

66 input [i] = (double) (rand () / ((double) INT MAX)) ;

67 output1 [i] = 0 . 0 ;

68 }

69

70 double value ;

71 FILE ∗ f po inw i s e = fopen (” po intw i s e . bin ” , ” rb”) ;

72

73 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ; ++i) {

158

74 f r ead (&value , s i z e o f (double) , 1 , f p o i n tw i s e) ;

75 pointwiseX [i] = value ;

76 }

77

78 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ; ++i) {

79 f r ead (&value , s i z e o f (double) , 1 , f p o i n tw i s e) ;

80 pointwiseY [i] = value ;

81 }

82

83 f o r (s i z e t i = 0 ; i < 2 ∗ SIZE ; ++i) {

84 f r ead (&value , s i z e o f (double) , 1 , f p o i n tw i s e) ;

85 pointwiseZ [i] = value ;

86 }

87

88 f c l o s e (f po i n tw i s e) ;

89

90 long long sum0 = 0 , sum1 = 0 ;

91 t s c c oun t e r t0 , t1 ;

92

93 f o r (i n t i = 0 ; i != runs ; ++i) {

94 RDTSC(t0) ;

95 s p i r a l e x e c u t e (plan , output1 , input) ;

96 RDTSC(t1) ;

97

98 sum0 += COUNTER DIFF(t1 , t0 , CYCLES) ;

99 }

100

101 p r i n t f (” Correc tnes s :\ t%l f \tSPIRAL :\ t%l f \n” , output1 [0] , (double) (

sum0 / (runs ∗ 1 . 0))) ;

102

103 s p i r a l d e s t r o y (&plan) ;

159

104 f r e e (input) ;

105 f r e e (output1) ;

106 f r e e (pointwiseX) ;

107 f r e e (pointwiseY) ;

108 f r e e (pointwiseZ) ;

109

110 re turn 0 ;

111 }

160

Bibliography

[1] T. Popovici, T.-M. Low, and F. Franchetti, “Large bandwidth-efficient FFTs

on multicore and multi-socket systems,” in IEEE International Parallel and

Distributed Processing Symposium (IPDPS), IEEE, 2018. (document), 2.7, 2.8,

5.3.1, 5.9, 5.3.1, 5.3.2

[2] D. Popovici, F. Franchetti, and T. M. Low, “Mixed data layout kernels for vec-

torized complex arithmetic,” in 2017 IEEE High Performance Extreme Com-

puting Conference, HPEC 2017, Waltham, MA, USA, September 12-14, 2017,

pp. 1–7, 2017. (document), 4.10, 4.3.2, 4.11, 5.2

[3] T. Popovici, F. Russell, K. Wilkinson, C.-K. Skylaris, P. H. J. Kelly, and

F. Franchetti, “Generating optimized Fourier interpolation routines for den-

sity functional theory using SPIRAL,” in Workshop on Compilers for Parallel

Computing (CPC), 2015. (document), 2.3.3, 4.3.4, 4.13, 4.3.4, 5.1, 5.1, 5.3.2,

5.3.2

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al., “The land-

scape of parallel computing research: A view from berkeley,” tech. rep., Techni-

161

cal Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, 2006. 1.1, 2.1

[5] S. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh ewald and rrespa for

parallel molecular dynamics simulations,” in In Proceedings of the Eighth SIAM

Conference on Parallel Processing for Scientific Computing, 1997. 1.1

[6] T. W. Sirk, S. Moore, and E. F. Brown, “Characteristics of thermal conductivity

in classical water models,” The Journal of chemical physics, vol. 138, no. 6,

p. 064505, 2013. 1.1

[7] S. J. Plimpton and A. P. Thompson, “Computational aspects of many-body

potentials,” MRS bulletin, vol. 37, no. 5, pp. 513–521, 2012. 1.1

[8] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann,

“Hacc: Extreme scaling and performance across diverse architectures,” in Pro-

ceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’13, (New York, NY, USA), pp. 6:1–6:10,

ACM, 2013. 1.1

[9] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel,

V. Morozov, G. Zagaris, T. Peterka, et al., “Hacc: Simulating sky surveys

on state-of-the-art supercomputing architectures,” New Astronomy, vol. 42,

pp. 49–65, 2016. 1.1, 2.2.6

[10] C.-S. Chang, S. Ku, and H. Weitzner, “Numerical study of neoclassical plasma

pedestal in a tokamak geometry,” Physics of Plasmas, vol. 11, no. 5, pp. 2649–

2667, 2004. 1.1

[11] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote, M. Hogan, O. Kononenko,

162

R. Lehe, A. Myers, C. Ng, et al., “Warp-X: A new exascale computing platform

for beam–plasma simulations,” Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 2018. 1.1, 6.1

[12] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann,

R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, et al., “High performance

computational chemistry: An overview of NWChem a distributed parallel ap-

plication,” Computer Physics Communications, vol. 128, no. 1-2, pp. 260–283,

2000. 1.1

[13] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J.

Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, et al., “NWChem:

a comprehensive and scalable open-source solution for large scale molecular

simulations,” Computer Physics Communications, vol. 181, no. 9, pp. 1477–

1489, 2010. 1.1

[14] T. Straatsma, E. Bylaska, H. van Dam, N. Govind, W. de Jong, K. Kowalski,

and M. Valiev, “Advances in scalable computational chemistry: NWChem,”

in Annual Reports in Computational Chemistry, vol. 7, pp. 151–177, Elsevier,

2011. 1.1

[15] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel, “Nyx: A

massively parallel amr code for computational cosmology,” The Astrophysical

Journal, vol. 765, no. 1, p. 39, 2013. 1.1

[16] Intel, “Math Kernel Library.” http://developer.intel.com/software/

products/mkl/, 2018. 1.1, 1.2.1

163

http://developer.intel.com/software/products/mkl/
http://developer.intel.com/software/products/mkl/

[17] M. Frigo and S. G. Johnson, “Fftw: Fastest fourier transform in the west,”

Astrophysics Source Code Library, 2012. 1.1

[18] Nvidia, “Nvidia cuda based fft library.” https://developer.nvidia.com/

cufft, 2018. 1.1

[19] arm, “Arm performance library.” https://developer.arm.com/products/

software-development-tools/hpc/arm-performance-libraries/

getting-started, 2018. 1.1

[20] J. Ullman, A. V. Aho, and R. Sethi, “Compilers: Principles, techniques and

tools,” 2018. 1.1, 1.2.1, 3.1.1

[21] A. Gholami, J. Hill, D. Malhotra, and G. Biros, “Accfft: A library

for distributed-memory fft on cpu and gpu architectures,” arXiv preprint

arXiv:1506.07933, 2015. 1.2, 1.2.2

[22] A. Gholami, A. Mang, K. Scheufele, C. Davatzikos, M. Mehl, and G. Biros,

“A framework for scalable biophysics-based image analysis,” in Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis, p. 19, ACM, 2017. 1.2, 1.2.2

[23] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Du-

rand, “Decoupling algorithms from schedules for easy optimization of image

processing pipelines,” 2012. 1.2, 1.2.2

[24] M. Driscoll, B. Brock, F. Ong, J. Tamir, H.-Y. Liu, M. Lustig, A. Fox, and

K. Yelick, “Indigo: A domain-specific language for fast, portable image recon-

struction,” 1.2, 1.2.2

164

https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries/getting-started
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries/getting-started
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries/getting-started

[25] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and

N. Rizzolo, “SPIRAL: Code generation for DSP transforms,” Proceedings of the

IEEE, special issue on “Program Generation, Optimization, and Adaptation”,

vol. 93, no. 2, pp. 232– 275, 2005. 1.2.1, 3.1.2

[26] C. Van Loan, Computational Frameworks for the Fast Fourier Transform.

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1992.

1.2.1, 2.3, 2.3.4

[27] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language and com-

piler for DSP algorithms,” in Proc. Programming Language Design and Imple-

mentation (PLDI), pp. 298–308, 2001. 1.2.1, 2.3

[28] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura,

“Discrete Fourier transform on multicores: Algorithms and automatic imple-

mentation,” IEEE Signal Processing Magazine, special issue on “Signal Pro-

cessing on Platforms with Multiple Cores”, vol. 26, no. 6, pp. 90–102, 2009.

1.2.1

[29] M. Püschel and J. M. F. Moura, “The algebraic approach to the discrete cosine

and sine transforms and their fast algorithms,” SIAM Journal of Computing,

vol. 32, no. 5, pp. 1280–1316, 2003. 1.2.1

[30] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of

complex Fourier series,” Math. of Computation, vol. 19, pp. 297–301, 1965.

1.2.1

[31] F. Franchetti, Y. Voronenko, and M. Püschel, “Formal loop merging for signal

165

transforms,” in Programming Languages Design and Implementation (PLDI),

pp. 315–326, 2005. 1.2.1, 3.1.2, 3.2.1, 3.2.1, 5.2

[32] F. Franchetti, M. Püschel, J. M. F. Moura, and C. W. Ueberhuber, “Short vec-

tor SIMD code generation for DSP algorithms,” in High Performance Extreme

Computing (HPEC), 2002. 1.2.1

[33] F. Franchetti, Y. Voronenko, and M. Püschel, “FFT program generation for

shared memory: SMP and multicore,” in Supercomputing (SC), 2006. 1.2.1,

2.3.1, 5.3.1

[34] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”

Proc. of the IEEE, special issue on ”Program Generation, Optimization, and

Adaptation”, vol. 93, no. 2, pp. 216–231, 2005. 1.2.1, 4.2.1, 4.2.4, 5.1

[35] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer arithmetic

operations,” IEEE Trans. Signal Processing, vol. 55, no. 1, pp. 111–119, 2007.

1.2.1

[36] F. F. T. in The East, “Ffte.” http://www.ffte.jp/, 2018. 1.2.1

[37] D. Takahashi and Y. Kanada, “High-performance radix-2, 3 and 5 parallel

1-d complex fft algorithms for distributed-memory parallel computers,” The

Journal of Supercomputing, vol. 15, pp. 207–228, Feb 2000. 1.2.1

[38] D. Takahashi, “A parallel 1-d fft algorithm for the hitachi sr8000,” Parallel

Computing, vol. 29, no. 6, pp. 679–690, 2003. 1.2.1

[39] D. Takahashi, “An implementation of parallel 3-d fft with 2-d decomposition on

a massively parallel cluster of multi-core processors,” in International Confer-

166

http://www.ffte.jp/

ence on Parallel Processing and Applied Mathematics, pp. 606–614, Springer,

2009. 1.2.1

[40] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amaras-

inghe, “Halide: a language and compiler for optimizing parallelism, locality,

and recomputation in image processing pipelines,” ACM SIGPLAN Notices,

vol. 48, no. 6, pp. 519–530, 2013. 1.2.2

[41] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian,

“Automatically scheduling halide image processing pipelines,” ACM Transac-

tions on Graphics (TOG), vol. 35, no. 4, p. 83, 2016. 1.2.2

[42] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic lin-

ear algebra subprograms for Fortran usage,” ACM Trans. Math. Soft., vol. 5,

pp. 308–323, Sept. 1979. 1.2.2

[43] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An extended

set of FORTRAN basic linear algebra subprograms,” ACM Trans. Math. Soft.,

vol. 14, pp. 1–17, March 1988. 1.2.2

[44] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A set of level 3 basic

linear algebra subprograms,” ACM Trans. Math. Soft., vol. 16, pp. 1–17, March

1990. 1.2.2

[45] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient al-

gorithms for all-to-all communications in multiport message-passing systems,”

IEEE Transactions on parallel and distributed systems, vol. 8, no. 11, pp. 1143–

1156, 1997. 1.2.2

167

[46] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, “Signals and systems, vol.

2,” Prentice-Hall Englewood Cliffs, NJ, vol. 6, no. 7, p. 10, 1983. 2.1.1, 2.2.6

[47] R. A. Lebensohn, A. K. Kanjarla, and P. Eisenlohr, “An elasto-viscoplastic for-

mulation based on fast fourier transforms for the prediction of micromechanical

fields in polycrystalline materials,” International Journal of Plasticity, vol. 32,

pp. 59–69, 2012. 2.2.1, 6.1

[48] S. G. Johnson, “Notes on FFT-based differentiation,” MIT Applied Mathemat-

ics, no. April, 2011. 2.2.6, 2.2.6

[49] J. Starn, “A simple fluid solver based on the FFT,” Journal of graphics tools,

vol. 6, no. 2, pp. 43–52, 2001. 2.2.6

[50] C. F. Van Loan, “The ubiquitous Kronecker product,” Journal of computational

and applied mathematics, vol. 123, no. 1-2, pp. 85–100, 2000. 2.3

[51] F. Franchetti and M. Püschel, “Short vector code generation for the discrete

Fourier transform,” in IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2003. 2.3.1

[52] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,

J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and

N. Rizzolo, “SPIRAL: Code generation for DSP transforms,” Proceedings of the

IEEE, vol. 93, no. 2, 2005. special issue on ”Program Generation, Optimization,

and Adaptation”. 2.3.1

[53] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of

complex fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–

301, 1965. 2.3.4

168

[54] P. N. Swarztrauber, “FFT algorithms for vector computers,” Parallel Comput-

ing, vol. 1, no. 1, pp. 45–63, 1984. 2.3.4

[55] C. M. Rader, “Discrete fourier transforms when the number of data samples is

prime,” Proceedings of the IEEE, vol. 56, no. 6, pp. 1107–1108, 1968. 2.3.4

[56] L. Rabiner, R. Schafer, and C. Rader, “The chirp z-transform algorithm,” IEEE

Transactions on Audio and Electroacoustics, vol. 17, pp. 86–92, June 1969. 2.3.4

[57] P. N. Swarztrauber, R. A. Sweet, W. L. Briggs, J. Otto, et al., “Bluestein’s fft

for arbitrary n on the hypercube,” Parallel computing, vol. 17, no. 6-7, pp. 607–

617, 1991. 2.3.4

[58] K. Kennedy and K. S. McKinley, “Maximizing loop parallelism and improving

data locality via loop fusion and distribution,” in Languages and Compilers

for Parallel Computing (U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua,

eds.), (Berlin, Heidelberg), pp. 301–320, Springer Berlin Heidelberg, 1994. 3,

3.1.1

[59] T. M. Low, “A calculus of loop invariants for dense linear algebra optimization,”

2013. 3.1.1

[60] C. Lomont, “Introduction to intel advanced vector extensions,” Intel White

Paper, pp. 1–21, 2011. 4.3.1

[61] V. G. Reddy, “Neon technology introduction,” ARM Corporation, 2008. 4.3.1

[62] S. Carr and K. Kennedy, “Compiler blockability of numerical algorithms,” in

Proceedings of the 1992 ACM/IEEE conference on Supercomputing, pp. 114–

124, IEEE Computer Society Press, 1992. 4.3.3

169

[63] D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited for short SIMD

architectures,” in Proceedings of the 17th International Conference on Parallel

Architectures and Compilation Techniques, pp. 2–11, ACM, 2008. 4.3.3

[64] F. Franchetti, Y. Voronenko, and M. Püschel, “A rewriting system for the

vectorization of signal transforms,” in High Performance Computing for Com-

putational Science (VECPAR), vol. 4395 of Lecture Notes in Computer Science,

pp. 363–377, Springer, 2006. 4.3.3

[65] F. Franchetti and M. Püschel, “Generating SIMD vectorized permutations,” in

International Conference on Compiler Construction (CC), vol. 4959 of Lecture

Notes in Computer Science, pp. 116–131, Springer, 2008. 4.3.3

[66] D. S. McFarlin, V. Arbatov, F. Franchetti, and M. Püschel, “Automatic simd

vectorization of fast fourier transforms for the larrabee and avx instruction

sets,” in Proceedings of the International Conference on Supercomputing, ICS

’11, (New York, NY, USA), pp. 265–274, ACM, 2011. 4.3.3

[67] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, “Introducing

ONETEP: Linear-scaling density functional simulations on parallel computers,”

The Journal of Chemical Physics, vol. 122, no. 8, p. 084119, 2005. 4.3.4, 5.3.2,

5.3.2

[68] F. Franchetti and M. Püschel, “SIMD vectorization of non-two-power sized

FFTs,” in International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), vol. 2, pp. II–17, 2007. 4.3.4

[69] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious

algorithms,” in Proc. 40th Ann. Symp. on Foundations of Comp. Sci. (FOCS),

pp. 285–297, IEEE Comput. Soc., 1999. 5.3.1

170

[70] D. H. Bailey, “FFTs in external of hierarchical memory,” in Proceedings of

the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing ’89,

pp. 234–242, ACM, 1989. 5.3.1

[71] W. M. Gentleman and G. Sande, “Fast Fourier Transforms: For fun and Profit,”

in Proceedings of the November 7-10, 1966, Fall Joint Computer Conference,

AFIPS ’66 (Fall), pp. 563–578, ACM, 1966. 5.3.1

[72] T. H. Cormen, J. Wegmann, and D. M. Nicol, “Multiprocessor out-of-core ffts

with distributed memory and parallel disks (extended abstract),” in Proceedings

of the Fifth Workshop on I/O in Parallel and Distributed Systems, IOPADS ’97,

(New York, NY, USA), pp. 68–78, ACM, 1997. 5.3.1

[73] M. Lam, “Software pipelining: an effective scheduling technique for vliw ma-

chines,” in Proceedings of the ACM SIGPLAN 1988 conference on Program-

ming Language design and Implementation, PLDI ’88, (New York, NY, USA),

pp. 318–328, ACM, 1988. 5.3.1

[74] J. D. McCalpin, “Memory bandwidth and machine balance in current high per-

formance computers,” IEEE Computer Society Technical Committee on Com-

puter Architecture (TCCA) Newsletter, pp. 19–25, 1995. 5.3.1

[75] F. Russell, K. A. Wilkinson, P. Kelly, and C.-K. Skylaris, “Optimised three-

dimensional fourier interpolation: An analysis of techniques and application to

a linear-scaling density functional theory code,” vol. 187, 10 2014. 5.3.2

[76] L. Yaroslavsky, “Efficient algorithm for discrete sinc interpolation,” Applied

Optics, vol. 36, no. 2, pp. 460–463, 1997. 5.3.2

171

[77] R. A. Lebensohn, “N-site modeling of a 3d viscoplastic polycrystal using fast

fourier transform,” Acta materialia, vol. 49, no. 14, pp. 2723–2737, 2001. 6.1

[78] A. Kanjarla, R. Lebensohn, L. Balogh, and C. Tomé, “Study of internal lattice

strain distributions in stainless steel using a full-field elasto-viscoplastic for-

mulation based on fast fourier transforms,” Acta Materialia, vol. 60, no. 6-7,

pp. 3094–3106, 2012. 6.1

[79] R. Veras, D. T. Popovici, T. M. Low, and F. Franchetti, “Compilers, hands-

off my hands-on optimizations,” in Proceedings of the 3rd Workshop on Pro-

gramming Models for SIMD/Vector Processing, WPMVP ’16, (New York, NY,

USA), pp. 4:1–4:8, ACM, 2016. 6.1

[80] K. Goto and R. van de Geijn, “Anatomy of high-performance matrix multipli-

cation,” ACM Trans. Math. Soft., vol. 34, pp. 12:1–12:25, May 2008. 6.1

[81] K. Yotov, X. Li, M. J. Garzarán, D. Padua, K. Pingali, and P. Stodghill, “Is

search really necessary to generate high-performance BLAS?,” Proceedings of

the IEEE, special issue on “Program Generation, Optimization, and Adapta-

tion”, vol. 93, no. 2, 2005. 6.1

[82] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti, “Analytical

modeling is enough for high-performance BLIS,” ACM Trans. Math. Softw.,

vol. 43, pp. 12:1–12:18, August 2016. 6.1

[83] T. M. Smith, R. van de Geijn, M. Smelyanskiy, J. R. Hammond, and F. G. V.

Zee, “Anatomy of high-performance many-threaded matrix multiplication,” in

IPDPS ’14: Proceedings of the International Parallel and Distributed Processing

Symposium, 2014. To appear. 6.1

172

[84] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache, “Iterative optimiza-

tion in the polyhedral model: Part i, one-dimensional time,” in Proceedings of

the International Symposium on Code Generation and Optimization, CGO ’07,

(Washington, DC, USA), pp. 144–156, IEEE Computer Society, 2007. 6.1

[85] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sa-

dayappan, “A stencil compiler for short-vector simd architectures,” in Proceed-

ings of the 27th international ACM conference on International conference on

supercomputing, pp. 13–24, ACM, 2013. 6.1

[86] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanujam,

and P. Sadayappan, “A framework for enhancing data reuse via associative

reordering,” in ACM SIGPLAN Notices, vol. 49, pp. 65–76, ACM, 2014. 6.1

[87] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Ver-

doolaege, A. Betts, A. F. Donaldson, J. Ketema, et al., “Pencil: A platform-

neutral compute intermediate language for accelerator programming,” in Par-

allel Architecture and Compilation (PACT), 2015 International Conference on,

pp. 138–149, IEEE, 2015. 6.1

[88] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A nonuni-

form memory access programming model for high-performance computers,”

The Journal of Supercomputing, vol. 10, no. 2, pp. 169–189, 1996. 6.1

[89] R. M. Veras, T. M. Low, T. M. Smith, R. A. van de Geijn, and F. Franchetti,

“Automating the last-mile for high performance dense linear algebra,” CoRR,

vol. abs/1611.08035, 2016. 6.2

173

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 State-of-the-Art Approaches
	1.2.1 Frameworks for the DFT
	1.2.2 Frameworks for DFT-based Algorithms

	1.3 The Approach in this Dissertation
	1.4 Contributions
	1.5 Outline

	Chapter 2 Notation and Language to Describe the DFT
	2.1 What is a Fourier Transform?
	2.1.1 Definition
	2.1.2 Extending the DFT to Higher Dimensions

	2.2 Why Use the Fourier Transform?
	2.2.1 Linearity
	2.2.2 Time and Frequency Shift
	2.2.3 Convolution and Modulation
	2.2.4 Correlation
	2.2.5 Time Difference
	2.2.6 Trigonometric Interpolation and Differentiation

	2.3 SPL, the Language to Represent DFTs
	2.3.1 Kronecker Product
	2.3.2 Specialized Matrices
	2.3.3 SPL Constructs and Extensions
	2.3.4 The Decomposition of the 1D DFT
	2.3.5 Extending to Higher Dimensions

	2.4 Summary

	Chapter 3 Fusing the DFT with the Surrounding Computation
	3.1 From SPL to Loop Fusion
	3.1.1 Loop Fusion
	3.1.2 Fusion in the Context of SPL

	3.2 Systematic Way of Merging the DFT and non-DFT Stages
	3.2.1 Merging the Compute Stages for 1D DFT-based Convolutions for Power of Two Problem Sizes
	3.2.2 Merging the Compute Stages for 1D DFT-based Convolutions for Prime Number Problem Sizes
	3.2.3 Merging the Compute Stages for Multi-Dimensional DFT-based Convolutions

	3.3 Summary

	Chapter 4 From High Level Representation to Optimized Implementation
	4.1 The Structure of the Framework
	4.2 High Level Interface for DFT-based Operations
	4.2.1 Basic Interface for DFT-based Operations
	4.2.2 Passing the Point-wise Computation as a Pointer to a Data Structure
	4.2.3 Passing the Point-wise Computation as a Pointer to a Function
	4.2.4 Advanced Interface for DFT-based Operations

	4.3 Low Level Optimizations
	4.3.1 Single Instruction Multiple Data (SIMD)
	4.3.2 Arithmetic Operations on Complex Data Points
	4.3.3 Data Permutations using SIMD
	4.3.4 Zero-padding for Non-Powers of Two

	4.4 Summary

	Chapter 5 Results and Discussion
	5.1 Methodology
	5.2 To Fuse or Not To Fuse the 1D DFT-based Convolution
	5.3 Fusing 3D DFT-based Operations
	5.3.1 Non-Separable Point-wise Multiplication
	5.3.2 Separable Point-wise Multiplication

	5.4 Summary

	Chapter 6 Concluding Remarks
	6.1 Limitations
	6.2 Future work

	Appendix A Using the FFTW Interface To Create and Execute 3D DFT-based Convolutions
	Appendix B Using the API To Create and Execute 3D DFT-based Convolutions
	Bibliography

