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ABSTRACT

In this thesis, we develop a passivity-based adaptive control framework for con-

trolling nonlinear processes with uncertainty. The development of the method is

motivated by the question whether we can control reaction systems without the

knowledge of reaction kinetics.

The proposed adaptive control framework incorporates the measurements’

derivative information in order to estimate the uncertainty involved in output dy-

namics. The output dynamics is assumed to take a special control-affine structure,

and by using the output’s derivative information we can avoid using internal state

dynamics, which is not usually available. Passivity theory is applied for control

and estimation designs and overall closed-loop stability is achieved. By extending

the passivity-based control to systems with relative degree higher than one through

backstepping, we can obtain cascade feedback schemes with PID controllers that

overall control convergence is guaranteed.

The proposed framework allows us to control reaction systems without know-

ing the reaction kinetics, and estimate unmeasured compositions by utilizing the

available partially linear structure of internal dynamics. A reactor temperature

control problem that usually has high relative degree is used to illustrate the ap-

plication of passivity-based backstepping control, and results from industrial trials

are presented.
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1. INTRODUCTION

Efficient on-line control of chemical reactions is crucial for the safe and cost-

competitive operation of chemical production processes. Advanced model-based

control is an effective means of achieving improved process performance. How-

ever, due to the complexity and nonlinear behavior of chemical reactions, it is dif-

ficult to derive accurate kinetic reactor models needed in many control systems.

Moreover, the iterative process of creating high-quality kinetic models through ex-

periments, model construction, and validation is time-consuming.

The main objective of this thesis is to develop a framework for adaptive control

of chemical reactors, that does not require accurate reaction kinetics data. In this

way, the method developed allows us to circumvent the above-mentioned model-

ing challenge.

In this work, we address the chemical reactor control problem from a feedback

control perspective by deriving estimation and control schemes for two general

classes of systems. We show that the proposed passivity-based adaptive control

approach can be used for the control of control-affine nonlinear systems with un-

certainty; and if the system’s internal dynamics can be written in a partially linear

form, state estimation is possible. Although our main application is the control of

reaction systems, by considering general model formulations, the proposed frame-

work is applicable in more general settings. We present computational results and

preliminary results from industrial experiments of chemical reactions controlled

with the proposed approach.

The rest of this chapter is structured as follows. Section 1.1 introduces two

classes of systems that we consider throughout the thesis, and discusses how they

1



1. INTRODUCTION

can be used to represent the reactor control problem and derive control that does

not use the knowledge of reaction kinetics. In Section 1.2, we review existing liter-

ature on relevant topics related to this work. Section 1.3 gives an overview of the

remaining chapters of the thesis.

1.1. Motivation and Thesis Objective

In this thesis, we investigate the usage of outputs measurements and their deriva-

tive information for estimating the time-varying uncertainty in nonlinear control

systems. Passivity provides the theoretical framework for developing the parame-

ter estimation and output tracking schemes.

We consider nonlinear systems described by the following set of differential

equations:

dx

dt
= f(x) + g(x,u) (1.1a)

y = h(x) (1.1b)

yd = ẏ (1.1c)

where x ∈ X ⊆ Rn represents the vector of states, u ∈ Rm represents the vector of

control inputs, and y ∈ Rm represents the vector of control outputs. Also, we can

measure the time derivative of y, denoted by yd ∈ Rm. The vector functions f, g, h

are continuously differentiable (C1) with proper dimensions.

System (1.1a) with output (1.1b) is passive, if there is a nonnegative storage

function W (x), s.t.

dW (x)
dt

≤ uT y

Clearly, passivity is a relationship of a system’s inputs and outputs. In our pro-

posed control and estimation methods, we design general passivation transforma-

tions on system (1.1), and the resulting passive transformed systems will facilitate

the control and estimation designs. The new idea we use is to include measured

2



1. INTRODUCTION

output derivatives (1.1c) in the passivity-based estimation scheme.

We assume the measurement vector y, so that the output differential equation

takes the following form:

dy

dt
= Lfh +Lgh = p̄(y) +D∆p(x) + φ(y)u. (1.1d)

Here, p̄ ∈ C1 represents the known part of the production rate term, ∆p ∈ C1 rep-

resents the uncertainty, and φ(y)u is the supply rate term. D is the known uncer-

tainty involvement matrix. p̄ and φ can also depend on other known disturbances,

parameters other than the measurements vector, and essentially, they can be deter-

mined accurately online. Under the circumstance that the production rate ∆p̂(x)

is unknown, we want to determine the control input u that drives the output y to

track its setpoint y∗.

Farschman et al. (1998) defines concept of inventory as additive nonnegative

extensive variables, such as energy and mass, so that the model used for inven-

tory controller design is inventory balance equations with rates of production and

supply (including both addition and depletion). Here, we apply the similar idea

to derive the uncertainty structure that we want to address. Here, the output y

is not limited to inventories, and can also be other measurable variables, such as

concentration or temperature, etc.

A special case of (1.1) is the following system with a partially linear structure:

dx

dt
= Ax +Bu +Dµ(x, t) (1.2a)

y = Cx (1.2b)

yd = Cẋ, (1.2c)

where the notation is the same as in the general nonlinear case. Here, µ ∈ Rq rep-

resents an unknown function of the unmeasured states x, which is the uncertainty

in the model. A,B,C,D are known linear matrices of proper dimensions. We want

to design a control law for u to track a time-varying setpoint profile y∗(t), in the

3



1. INTRODUCTION

presence of unknown µ. We use the same idea from the previous nonlinear system

by assuming with measurement y we can write output differential equations as:

dy

dt
= CAx +CDµ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆p(x)

+CB°
φ

u (1.2d)

where the uncertainty is again the unknown production rate term ∆p(x).

For both systems with similar output dynamics with uncertainty structure,

(1.1d) and (1.2d), if the bounds of uncertainty are known, we could use robust

control to ensure closed-loop stability (Wang & Ydstie, 2007). A less conservative

option is to implement adaptive control that estimates and uses the uncertainty to

determine the control input. In this thesis, the latter approach is examined.

The proposed adaptive control framework is developed to address the follow-

ing problems:

1. For both systems, (1.1) and (1.2), how to estimate the unknown part of pro-

duction rate ∆p(x)?

2. For the partially linear system (1.2), can we estimate the unmeasured state x

and µ in the higher order dynamics?

3. For both systems, how to control y to track y∗ with the estimates ∆p̂ ?

4. How to extend the passivity-based control framework for systems with rela-

tive degree greater than one?

To further motivate the formulation and problem statement in the context of

reactor control, we give a reactor temperature control example.

Motivating Example The model of a continuous stirred-tank reactor (CSTR) in-

volving nr reactions and nc species is:

dC

dt
= −Fin

Vr
C + Fin

Vr
Cin + νr(C,Tr) (1.3)

y = Tr(C) (1.4)
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1. INTRODUCTION

yd = Ṫr(C) (1.5)

whereC ∈ Rnc are the state variables, i.e. the concentrations of the involved species,

and measured output Tr is the reactor temperature, which is a function of the com-

position. Other known process variables and parameters are, Fin representing in-

let flow rate, Vr representing reactor volume, Cin representing inlet concentrations,

and ν being the stoichiometric matrix. Based on energy and mole balance, we can

write the temperature differential equation as:

dTr
dt

= Fin
VrρCp

(ρinCp,inTin − ρCpTr) −
Qj

VrρCp
− ∆Hrr

Cpρ
. (1.6)

The control problem we consider is to control reactor temperature, when the

concentration vector is not measured, and the reaction kinetics is not known. We

can put this temperature dynamics into developed formulation (1.1d) with uncer-

tainty, where

∆p(C,Tr) = −
∆Hrr(C)
Cpρ

, φT (Tr) =
⎡⎢⎢⎢⎢⎢⎣

Fin

VrρCp
(ρinCp,inTin − ρCpTr)

− 1
VrρCp

⎤⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎣

0

Qj

⎤⎥⎥⎥⎥⎥⎦
(1.7)

The control input is the heat transfer rate between reactor and the jacket, Qj . The

unknown production term ∆p is related to the reaction heat generation rate. It is

related to the unmeasured concentrations and unknown kinetics, which is essen-

tially the higher order dynamics (1.3). We proposed to compensate for them by

using temperature derivative measurements in the proposed estimation scheme.

1.2. Literature Review

In the following, we review existing contributions in the literature on related topics

corresponding to the questions being raised in last section.

Section 1.2.1 reviews works that consider the estimation of unknown inputs,

referring to the uncertainty in the output dynamics. Section 1.2.2 reviews the re-
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1. INTRODUCTION

construction methods of measurement derivatives, and its usage in uncertainty

estimation. The literature reviewed in these two sections provide background of

our estimation scheme to answer Question 1.

Section 1.2.3 provides the background of our approach in response to Question

2, state estimation for the partially linear system (1.2). We review the unknown

input observer (UIO) and a special case thereof, the asymptotic observer (AS) tai-

lored for estimating unmeasured reaction compositions. Section 1.2.4 provides a

review of the concepts and applications of reaction variants and invariants, which

are the transformed states used for constructing asymptotic observers.

To provide background on techniques answering the rest two control related

questions, Section 1.2.5 reviews the topic of passivity-based adaptive control, and

our adaptive control is presented in Chapter 5; Section 1.2.6 reviews the topic of

control systems with high relative degree, and our passivity-based solution is given

in Chapter 6.

1.2.1. Estimation of Unknown Inputs

A process model usually comes with uncertainties, which can be collectively mod-

eled as an unknown vector in the model, and determined through estimation al-

gorithms using measured outputs. The unknown vector is referred as unknown

inputs in the literature, which includes unknown nonlinearities, parameters, faults

and external disturbances (Mhamdi & Marquardt, 2004). Unknown inputs recon-

struction methods are usually used to improve tracking control and monitoring

for systems with uncertainty. The problem is relevant when we estimate some

unknown part of the inputs. Examples include the estimation of exerted force in

machine tool applications (Corless & Tu, 1998), the magnitude of unknown maneu-

vers in tracking problems (Lee & Tahk, 1999), fault detection (Chen et al., 1996), and

reaction heat estimation (Schuler & Schmidt, 1992). For reactor modeling, mecha-

nisms of reactions, heat and mass transfers are hard to model accurately or some-

times remain unknown, the relevant rates without good quality model can be con-

sidered as unknown inputs.

6
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Existing methods to design the estimation schemes fall into three categories.

The first type is state observer based method, where the unknown inputs are pro-

posed with a certain dynamic model, and estimates are obtained through using

state observer techniques derived from Luenberger or Kalman filter. Schuler &

Schmidt (1992) applied Kalman filter technique to estimate the reaction heat and

other observable heat flows based on a reactor calorimetric model. Aguilar-López

(2003) and Aguilar et al. (2002) used the high gain observer and the interval ob-

server respectively to estimate the reaction heat. The second type of method solves

an on-line optimization problem to minimize the residual errors of the measure-

ments, to which the moving horizon estimator belongs. The third type are dynam-

ics inversion based methods, of which underlying idea is analogy to synthesize

a model-based controller. The estimates are calculated using a process model in-

verse to force the estimated outputs converge to the measured values with a certain

stability (Tatiraju & Soroush, 1998). Tatiraju & Soroush (1998) designed an inver-

sion based estimator for reaction heat generation rate and heat transfer coefficient

and show that the proposed method can out perform state observer based method

when model mismatch and measurement noise exist through simulations. Mhamdi

& Marquardt (2004) and Zhao et al. (2016) used nonlinear system inversion method

and conditions to estimates reaction rates.

In Chapter 3, we propose the passivity-based input estimator that falls into the

third category. It is later applied for reaction rates and reaction rates using con-

servation balances, and the approach avoids the difficulty of modeling reaction

kinetics.

1.2.2. Approximated Measurement Derivatives for Parameter Estimation

Derivatives of process measurements provide useful information for process mon-

itoring and control (Preisig, 1988; Preisig & Rippin, 1993). Fundamentally, when

the analytical expression of the signal is not known, perfect estimation is not possi-

ble (Levant, 1998). Various of numerical differentiator are proposed to reconstruct

derivatives from noisy data.

7
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Levant (1998) developed the sliding mode differentiator using knowledge of

Lipschitz constant and maximum noise magnitude. Mboup et al. (2007) proposed

the algebraic time-derivative estimation method that calculates the derivative es-

timates as linear combinations of finite time-integrations of the signal. Reger &

Jouffroy (2009) derived the same result from the standard linear system recon-

structibility theory. The Savitzky-Golay filter (Baedecker, 1985) for time derivative

estimation assumes that the signal can be expressed as a polynomial. The deriva-

tives of the regressed polynomial are estimated derivatives. Co & Ydstie (1990)

applied modulating function and fast Fourier transformation method to estimate

derivatives. A well approximated derivatives will reduce transmitted noise to the

estimation without losing much on capturing the output true dynamics.

Including measurement derivatives in control and estimation algorithms is con-

troversial due to the existence of derivative reconstruction errors and exaggeration

of noise. However, as many numerical differentiator techniques have been devel-

oped, we propose to use derivative information in our method for both control and

estimation purpose.

1.2.3. Unknown Input Observer and Asymptotic Observer

Measuring the states of reactions, including compositions, temperature, pressure

etc., in a on-line fashion facilitates making timely control decisions and preventing

process disruptions, process shutdowns and even failures (Ali et al., 2015). How-

ever, since on-line measurement devises especially for measuring compositions are

expensive, the development of soft sensors and state observers for estimating un-

measured variables has been of major interest in the process industry. The classic

Luenberger observer (Luenberger, 1971) and Kalman filter (Welch & Bishop, 1995)

lay the conceptual and theoretical foundation for the later development of a variety

of state observers (Ali et al., 2015).

When the process model has uncertain or unknown dynamics, the extended

Kalman filter and Luenberger observer cannot be directly applied to estimate un-

measured states. To address this type of state estimation problem, the unknown

8
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input observers (UIO) were proposed (Wang et al., 1975; Hou & Muller, 1992; Park

& Stein, 1988a; Darouach et al., 1994).

The problem becomes relevant in the context of chemical reactor, when the reac-

tion kinetics for modeling reaction rates is an absent knowledge. For this situation,

Bastin & Dochain (1990) and Dochain et al. (1992, 2009) proposed the asymptotic

observer (OA) for unmeasured composition estimation, with the reaction rates con-

sidered as the unknown inputs. The developments of OA and UIO both involve

transforming the states of the system into two components, the invariants and vari-

ants. The invariants evolution is not affected by the unknown inputs, and the ef-

fects of the unknown inputs is only constrained in the variants subspace. Then, a

Luenburger observer is applied to invariants unknown-input-free dynamics, and

finally estimated invariants together with output measurements are used to com-

pute state estimates.

Though the most UIO considers only state estimation, unknown input recon-

struction are performed simultaneously in some UIO designs. Park & Stein (1988b)

inverted the state dynamics and use derivatives of output measurements to recon-

struct the unknown input vector. Corless & Tu (1998) put constraints on how fast

the varying inputs change to avoid using derivatives of output measurements.

1.2.4. Reaction Variants and Invariants

The first step in constructing a UIO or an AO is to express the reaction model with

transformed states, the variants and invariants. In the reaction context, concepts of

reaction variants and invariants were introduced by Asbjørnsen and co-workers in

the early 1970s (Asbjørnsen, 1972; Asbjørnsen & Fjeld, 1970; Fjeld et al., 1974), and

nonunique transformation is found through reaction stoichiometry. The reaction

variants define state variables that are affected by the reactions, and the reaction

invariants define state variables that are not influenced by the advancement of the

reactions. It was shown that the dynamics of a reaction system with nr independent

reactions and nc species can be decomposed into nr variants and nc−nr invariants.

The theory was proposed for the purpose of model reduction to ease the anal-
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ysis of nonlinear reaction system dynamics. Systematic studies on formulating lin-

ear and nonlinear mappings to obtain reaction variant and invariant form models

have been performed by Srinivasan et al. (1998) and Rodrigues et al. (2015).

The concept of reaction variants has been applied to control reaction systems.

It was shown that the unstable dynamics of the reaction system can be controlled

by controlling the dynamics of reaction variants (Hoang et al., 2014). Feedback

linearizability of the reduced reaction variants model was discussed in Srinivasan

et al. (1998), and the corresponding feedback linearization control approach was

proposed by Rodrigues et al. (2015) for reactor temperature control. Passivity-

based inventory control was applied by Hoang et al. (2014) for reduced reaction

variants control. However, previous control strategies are based on the assumption

that complete composition information is available through on-line measurements.

There are also works regarding the control of reaction systems with the inte-

gration of the estimates given by the AO. In Hoang et al. (2012) and Hoang et al.

(2013), the usage of observer estimates for feedback control is illustrated through

the passivity-based inventory control and nonlinear control, respectively; how-

ever, unlike the observer, the proposed control schemes in these papers require

the knowledge of reaction kinetics. In this thesis, we propose to integrate the AO

in control development that does not require the knowledge of reaction kinetics.

1.2.5. Passivity-based Adaptive Control

Passivity is an input-output property of process systems, and very useful in stabil-

ity analysis for interconnected systems (Bao & Lee, 2007). Farschman et al. (1998)

used macroscopic balance of inventories (for example total mass and energy) to

construct the passive input-output pairs, and proposed inventory control based

on the idea that passive system can be stabilized through a input strict passive

controller. To handle system uncertainties, sliding mode based robust inventory

control Wang & Ydstie (2007) was developed where high gain feedback was used

to achieved global stability. Li et al. (2010) proposed the adaptive inventory control

that was able to estimate constant uncertainty and achieved control stability at the
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same time. In this thesis, we propose the passivity-based adaptive control scheme

where time-varying uncertainty can be estimated as well.

1.2.6. Passivity-based Control of Systems with Relative Degree Higher Than One

Passivity-based control techniques are well developed for systems with relative

degree one. In practice, many control problems have high-relative degree, and it is

also worthwhile to generalize the theory to cover those types of systems.

The notion of relative degree will be given in Chapter 2, and here we give a

real example in chemical reactor control and current control practice. In most re-

actor temperature control configurations, the actual manipulated variable, such as

cooling water flow rate or steam flow rate, usually does not directly act on the re-

actor temperature. Its effect is transferred through intermediate cooling/heating

mechanisms. Proportional-integral-derivative (PID) controllers arranged in a cas-

cade fashion are usually adopted to control this type of systems, where the relative

degree is higher than one. The cascade control includes more state measurements

and captures disturbance upsets in the process more effectively (Seborg et al., 2010).

However, this traditional control method based on a linear control theory has no

guarantee of stability when nonlinear dynamics is involved and the process is not

operated at a steady state, as in the case of semi-batch or batch reactions.

The backstepping method is widely used to control nonlinear systems with

relative degree higher than one (Krstic et al., 1995). Application of backstepping

results in a control logic similar to a cascade structure, and it can be easily imple-

mented in standard process control systems, such as the Emerson DeltaV system

used in the industrial trials presented in the thesis. The method has been studied by

researchers in the chemical process control area to control continuous chemical re-

actors. Gopaluni et al. (2003) applied the backstepping method to control the com-

position of a CSTR. Nonlinear nonadaptive and adaptive backstepping controllers

were designed for cases with and without parameter uncertainty, respectively. A

robust adaptive backstepping controller was designed using Lyapunov stability

theory in this work. Similarly, Biswas & Samanta (2013) designed an adaptive back-

11



1. INTRODUCTION

stepping controller to control the monomer concentration and the temperature of

a polymerization CSTR. Both works show that the adaptive backstepping method

guarantees setpoint tracking in the presence of parameter uncertainty. Salehi &

Shahrokhi (2009) introduced the fuzzy estimator into the backstepping method

and used this approach for temperature control in a CSTR. Hua et al. (2009) dis-

cussed the development of backstepping for systems with time delay, and applied

the design to a two-stage reactor system.

The connection between passivity and backstepping control was first shown

in Kokotović et al. (1992), where the backstepping was used to remove the limita-

tion of passivity for systems of relative degree higher than one. In the thesis, we

propose a model-based cascade control scheme through backstepping method, and

used passivity-based control incorporating PID for control error feedback to design

control law at individual level.

1.3. Thesis Outline

The remainder of the thesis is organized as follows,and in according to the ques-

tions we posed in the in beginning of this chapter:

• In Chapter 2, we review stability, passivity and passivity-based control to

introduce the theoretical foundations for this work.

• In Chapter 3, we present our answer to Question 1. We address the estima-

tion of the uncertainty µ(x, t) in both the partially linear system case and the

unknown production term p(x) in the nonlinear system case, (1.1). In the

given reactor control problem, we estimate reaction rates and transport rates

if multi-phase reaction is involved and heat transfer is considered.

• In Chapter 4, we present our answer to Question 2. We address the estimation

of unmeasured states x without knowing µ(x, t) for the partially linear sys-

tem (1.2). In the given reactor system, the compositions are the unmeasured

states. We present the derivations of the UIO and AO, the existence condi-
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tions, discuss their connections and issues regarding estimation convergence,

and apply the AO to both homogeneous and heterogeneous reactions.

• In Chapter 5, we present our answer to Question 3. We integrate the ob-

servers and use estimates with feedback control to adaptively control y, for

the systems of interest, and to derive conditions under which zero dynamics

are stable. In the given reactor control problem, we use proposed adaptive

control to stabilize a semi-batch reactor.

• In Chapter 6, we present our answer to Question 4. We extend the passivity-

based control to control nonlinear systems with relative degree higher than

one. The proposed approach is applied to the on-line temperature control for

a jacked polymerization reactor, and industrial trial result is presented.

• In Chapter 7, we provide a summary of the thesis and recommendations for

future work.
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2. STABILITY, PASSIVITY AND ZERO DYNAMICS

In this chapter, we review the fundamental concepts of stability and passivity, and

show how we can infer overall stability of interconnected systems from passivity of

individual systems. This idea is useful in controller design since a feedback control

loop can be viewed as a connected system of a process and a controller.

2.1. Stability

A well-controlled process should be stable in a sense that it can withstand small

perturbations and converge to the desired operating point. Achieving good stabil-

ity should also be kept in mind when we design and integrate estimation schemes

with controllers to design adaptive controllers.

In the following, we present the definitions of uniform stability, uniformly

asymptotic stability, and uniformly exponential stability.

Definition 2.1. Consider the following system:

dx

dt
= f(x), (2.1)

with its equilibrium point at the origin, i.e. f(0) = 0. The origin is said to be

• uniformly stable, if for any ε > 0, there is a δ(ε) > 0 such that ∣∣x(0)∣∣ <

δ(ε) implies ∣∣x(t)∣∣ < ε,∀t ≥ 0.

• uniformly asymptotically stable, if there is a positive constant δ, such that

∣∣x(0)∣∣ < δ implies ∣∣x(t)∣∣→ 0 as t→∞.
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• uniformly exponentially stable, if there are positive constants δ, k, λ, such that

∣∣x(t)∣∣ ≤ k∣∣x(0)∣∣e−λ(t),∀∣∣x(0)∣∣ < δ.

Such stabilities hold globally if the corresponding inequalities are satisfied for

any initial condition x(0) ∈ X.

The most obvious way to determine stability is from the analytical solution of

(2.1). However, it can can be a difficult task if the model is of high order, and can

even be impossible if there is uncertainty in the differential equations. Lyapunov

stability theory provides a tool to determine the stability without obtaining an an-

alytical solution.

A Lyapunov function V (x) is a continuously differentiable, positive definite

scalar function of the state vector x. One can think of it as a generalized energy

function, for which the energy is greater than zero anywhere in the X domain other

than at the equilibrium point, where the energy is zero. The stability, asymptotic

stability, and exponential stability conditions of the equilibrium point can be de-

rived based on V (x) and its time derivative, V̇ (x), using the following Lyapunov

theorem.

Theorem 2.2. Consider system (2.1), and let V (x) ∶ X → R+ be a continuously

differentiable, positive definite function.

• if V̇ (x) is negative semidefinite, the origin is stable.

• if V̇ (x) is negative definite, the origin is asymptotically stable..

• if V̇ (x) ≤ −kV (x), k > 0, the origin is exponentially stable.

To put stability in to the context of control, we consider the system:

dx

dt
= f(x) + g(x)u (2.2a)

y = h(x) (2.2b)

where x ∈ X ⊆ Rn is the state vector; u ∈ U ⊆ Rm is the control input vector; y ∈ Rm

is the output vector; and f and h are C1 vector functions.
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The objective of process control is to control and stabilize the process at a de-

sired operating state. This desired operating state can be denoted as the set point

of the output y∗. We design control input so that y∗ is a asymptotically or even ex-

ponentially stable equilibrium for the closed-loop system. For example, if we can

measure the state and design an appropriate state feedback control law to calculate

the control input u = α(x), then the closed-loop system:

dx

dt
= f(x) + g(x)α(x) (2.3)

y = h(x), (2.4)

should be asymptotically stable at y∗. With a change of coordinates, y∗ being a

stable equilibrium point indicates that the control error e = y∗ − y is stable at the

origin, e = 0.

2.2. Passivity and Passivity-based Control

Definition 2.3. A system is passive if there exists a continuously differentiable,

positive semi-definite function, W (x) (called storage function), such that

dW (x)
dt

≤ u(t)T y(t),∀t ≥ 0. (2.5)

Moreover, the system is said to be input strictly passive if

dW (x)
dt

≤ u(t)T y(t) − uTφ(u), uTφ(u) > 0, ∀u ≠ 0, (2.6)

where φ is a function of u, that ensures uTφ(u) positive definite.

Passivity is a little different from Lyapunov stability, since it is an input-output

property. Passive systems are very useful when we study the overall stability of in-

terconnected systems. In this work, we are interested in using passivity of systems

to help us approach closed-loop stability either from a parameter estimation or a

control point of view.

A control loop is essentially a negative feedback connection of a controller and
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a process or a transformation of the process if some model-based inversion is in-

volved. Passivity arises if we choose a right pair of input and output. Passivity

thereof depends on the choice of the input and output, and a system may be pas-

sive for some combinations of inputs and outputs and not passive for the other

choices.

For control purposes, in the following theorem, we define a pair of synthetic

inputs and outputs that can be generally applied to system (2.2), and transform the

system into a passive one.

Theorem 2.4. Consider system (2.2) with output equation:

y = h(x), (2.7)

and a control setpoint y∗. We define a pair of synthetic inputs uc and outputs e:

uc =
dy∗

dt
−Lfh(x) −Lgh(x)u, e = y∗ − y, (2.8)

where rank(Lgh(x)) = m, indicating that the system (2.2) has relative degree

one.Lfh(x) and Lgh(x) are Lie derivatives, defined as:

Lfh(x) =
∂h

∂x
f(x), Lgh(x) =

∂h

∂x
g(x) (2.9)

Then, transformed system,

de

dt
= uc, (2.10)

is passive with the storage function W = 1
2e
T e.

Proof. The passivity is shown by taking the time derivative of W . We find

dW

dt
= eTuc, (2.11)

and the passivity result follows according to Definition 2.3.
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Figure 2.1: Schematic of passive transformation

Figure 2.1 shows the passive transformation graphically. In order to utilize the

passivation transformation in Theorem 2.4 for controlling y to y∗, we need to be

able to determine u uniquely from uc, which can be ensured by the rank condition

rank(Lgh(x)) =m. It also means the original system with input u and output y has

relative degree one. The definition of relative degree is shown in the following.

Definition 2.5. (Relative degree) The relative degree r of a SISO system output y

to the manipulated input u is the smallest integer for which:

LgL
r−1
f h(x) ≠ 0. (2.12)

Therefore, the transformation in Theorem 2.4 is for controlling relative-degree-

one systems. The transformation and consequent passivity-based control for high-

relative-degree SISO systems will be addressed in Chapter 6 using backstepping

which is a generalization of cascade control.

With the transformation presented above, we can take a look at how we can

control a passive system.

Theorem 2.6. The passive system (2.10) can be asymptotically stabilized at origin

e = 0 with negative proportional feedback control action:

uc = −Kce, Kc > 0. (2.13)

Proof. Consider the Lyapunov function V = W = 1
2e
T e. For uc = −Kce, the time
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Figure 2.2: Feedback connection of the passive system and a controller

derivative of the Lyapunov function is:

dV

dt
= −Kce

T e. (2.14)

The Lyapunov function strictly decreases, until the control error reaches the origin,

and V̇ = 0. Therefore, the origin e = 0 is asymptotically stable.

Theorem 2.7. Consider the negative feedback connection of the passive system and

a controller C(⋅) shown in Figure 2.2.

• If the controller is input strictly passive, then the closed-loop is L2 stable;

• If the storage functions of the passive and the input strictly passive controller

are positive definite functions of error vector e, then the closed-loop is asymp-

totically stable.

Proof. First, we prove the first statement. Define W1 and W2 as the storage func-

tions of the input strictly passive controller and the passive system, respectively.

The time derivatives of the two subsystems’ storage functions satisfy:

Ẇ1 ≤ −eTuc − γeT e, Ẇ2 ≤ uTc e, (2.15)

where γ > 0. Then, the sum of two time derivatives is:

Ẇ1 + Ẇ2 ≤ −γeT e. (2.16)
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Define

W =W1 +W2, (2.17)

and we can write,

∫
t

t0
eT edτ ≤ 1

γ
(W (t0) −W (t)) ≤ 1

γ
W (t0). (2.18)

Hence, e ∈ L2, and the feedback connection is stable.

In the second statement, since W becomes positive definite function of e, and

˙W (e) ≤ −γeT e < 0, when e ≠ 0, and Ẇ (0) = 0, (2.19)

the closed-loop is asymptotically stable.

Theorem 2.8. The PID control

u = kc [e(t) +
1

τI
∫

t

0
e(τ)dτ + τD

de(t)
dt

] , (2.20)

where kc > 0, τI > 0 and τD ≥ 0, is input strictly passive with input e ∈ R and output

u ∈ R. The dissipation rate is given by βC = kc.

Proof. Define the variable s as : s = ∫ t0 e(τ)dτ , and the storage function WPID =
kc
2τI
s2 + kcτD

2 e2. Differentiate the storage function WPID to obtain:

ẆPID = kc
τI
sṡ + kcτDeė

= kc
τI
se + kcτDeė

= e[kce +
kc
τI
s + kcτDė] − kce2

= eu − kce2 (2.21)

Since −kce2 is negative definite, the PID controller is input strictly passive as de-

picted in Definition 2.3.
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In Chapter 3, similar transformations will be performed to derive a passivity-

based input observer to estimate unknown inputs to the system. From the param-

eter estimation perspective, we consider the difference between the estimated state

and the true state, or the estimated output and the measured output, as the syn-

thetic output. The estimated state or estimated output is obtained from integrating

system dynamics using the estimated parameter. The synthetic input is the deriva-

tive of this synthetic output.

2.3. Zero Dynamics Stability with Passivity-based Control

Passivity-based control addresses the control problem from an input and output

perspective. It can ensure the stabilization and tracking of the output, but not nec-

essary of the internal states. We illustrate this point through comparing the con-

trol of a single-input and single-output (SISO) linear system with a classic state-

feedback pole placement method and the passivity-based control method.

Consider the linear system example motivated (Hou & Muller, 1992):

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0

−1 0 0

0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
°
B

u (2.22)

y = Cx. (2.23)

The pair (A,B) is controllable, indicating that the control input vector u can control

the system from any initial state to any final state. We are interested in controlling

the output y at a reference value y∗. We will analyze three control cases with three

different output C matrices. By changing the output matrix, we have different zero

dynamics. We show that

• the zero dynamics stability cannot be ensured by the passivity-based control

if the system has nonnegative zeros; but with classic state-feedback control,

the zero dynamics can be guaranteed to be stable as long as the system is
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controllable;

• tracking a non-constant reference cannot be ensured by the classic state-

feedback control if the system has zeros at the origin; but tracking can be

achieved with passivity-based control, as long as rank(CB) = dim(y) =

dim(u).

For all three cases, with state-feedback control we place the state dynamics

closed-loop poles at [-1 -2 -0.5], and with passivity-based control the eigenvalue

of control error dynamics is placed at −1, with scalar gain Kc = 1.

• Case 1. The output is:

y = [1 1 1]x. (2.24)

The open-loop transfer function is:

G(s) = s2

s3 + 2s2 + 2s + 1
. (2.25)

The system is controllable and observable, but the zero dynamics has eigen-

values at the origin, reflected by the zeros of the system’s transfer function at

the origin.

The zero at origin leads to the failure of tracking non-zero reference using

state-feedback control. Standard state-feedback with pole placement gives

the control law: u = py∗ − kx, where k ∈ R3 is the feedback gain vector chosen

to place the closed-loop poles at [-1 -2 -0.5]; p is the feedforward gain to adjust

output steady state at the reference. But in this case, since there are two zeros

at the origin, the output steady state is fixed at zero. As shown in Figure 2.3a,

the output is stabilized at zero instead of the set point y∗ = 2.

With passivity-based proportional control, the set point y∗ = 2 is tracked, as

shown in Figure 2.3b. But the internal states grow unboundedly, and if we

were to simulate it longer, they will not stabilize at any values.
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(a) State-feedback Control (b) Passivity-based Control

Figure 2.3: Case 1 control results

• Case 2. The output is

y = [1 1 0]x (2.26)

The open-loop transfer function is:

G(s) = s2 − 1

s3 + 2s2 + 2s + 1
. (2.27)

The system is unobservable, due to common zero and pole at -1. Also, the

system has one unstable zero at 1.

The state-feedback control can ensure the stability of the zero dynamics and

the tracking as shown in Figure 2.4a, while the passivity-based control can

only ensure the tracking, and the zero dynamics again are not stabilized.

• Case 3. The output is

y = [1 0.5 2]x. (2.28)

The open-loop transfer function is:

G(s) = s2 + 0.5s + 1.5

s3 + 2s2 + 2s + 1
. (2.29)
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(a) State-feedback Control (b) Passivity-based Control

Figure 2.4: Case 2 control results

(a) State-feedback Control (b) Passivity-based Control

Figure 2.5: Case 3 control result

With this output, the system is observable and has stable zeros.

The state-feedback control and passivity-based control results are shown in

the Figures 2.5a and 2.5b, respectively. Both tracking and zero dynamics sta-

bilization are achieved for this case.

The zero dynamics stability analysis shows that passivity-based control focuses

on output stabilization and tracking instead of internal states’ stability. In the con-

text of controlling a reaction process, we will show later in Chapter 4 that if the

number of outputs is at least as large as the number of reactions, the zero dynamics

are stable.
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2.4. Summary

The fundamental tools of stability and passivity are reviewed. We have given a

flavor of passivity-based control through presenting a general transformation that

makes a system passive, and then arrived at closed-loop stability by stabilizing

it with a proportional and PID control action. We also show that passivity-based

control can ensure output tracking but not necessarily zero dynamics stability, de-

pending on whether the system has negative zeros. This idea will be used later

in designing the passivity-based input estimator and the adaptive control scheme

in Chapters 3 and 5, respectively. It will be further extended and combined with

backstepping to control systems with high relative degree in Chapter 6.
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In this chapter, we propose the passivity-based input estimator (PBIE) that uses

output measurements and time derivatives to estimate the uncertainty in the pro-

cess model. In Section 3.1, we introduce the problem in chemical reaction con-

trol that motivates the development of the method and the utilization of the time

derivatives of measurements. In Section 3.2, we develop the theory of the pro-

posed PBIE for partially linear systems, and show simulation results of numerical

examples; the extension of the estimation method to a class of nonlinear systems

is shown in Section 3.3, followed by an application to on-line estimation of the re-

action heat generation rate and heat transfer rate in a jacketed chemical reactor.

Section 3.5 completes the chapter with a summary and concluding remarks.

3.1. Problem Statement and Motivation

As been proposed in the beginning of the thesis, we generally consider the system

with chosen output y could be described as:

dx

dt
= f(x) + g(x,u) (3.1a)

y = h(x) (3.1b)

yd = ẏ (3.1c)

dy

dt
= Lfh +Lgh = p̄(y) +D∆p(x) + φ(y)u. (3.1d)

where y ∈ Rm refers to measured states and x ∈ Rn refers to unmeasured states. We

are interested in estimating ∆p(x) ∶ Rm+n → Rp, which is a vector of C1 functions.
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In a chemical reaction system context, φ(y)u represents the supply function,

assumed to be known or measured and does not have recursive dependency on

the higher order dynamics represented by (3.1a). p(y, x) represents the production

function that couples the dynamics of the measured states z with unmeasured x.

The knowledge of this time-varying term p(y, x) is useful to compensate in feed-

back control, indicate of reaction stage, and provide history of reaction evolution.

This term could be composed of a known part p̄(y) and an unknown partD×∆p(x)

that needs to be estimated on-line. To further explain the problem, we use the fol-

lowing chemical semi-batch reaction example.

Semi-batch reactor example Assume that we have a semi-batch reaction system

with only one reaction A + B → C. The dynamics of the reaction can be modeled

as:

dCA
dt

= Fin
V
CA,in − r, (3.2)

dCB
dt

= Fin
V
CB,in − r, (3.3)

dCC
dt

= r, (3.4)

r = k0e
−Ea
RTr CACB, (3.5)

dTr
dt

= Fin
V ρCp

(ρinCp,inTin − ρCpTr) −
∆Hrr

Cpρ
− UA(Tr − Tj)

V ρCp
, (3.6)

dV

dt
= Fin − Fout. (3.7)

We can measure the concentration of A, CA, i.e.

y = CA, (3.8)

and want to estimate the reaction rate r. Follow similar notation as for reaction

model in Section 1.1.

The conventional way of estimation solves the algebraic-differential equations,

(3.2) - (3.7), and uses a regression method, for example a Kalman filter, to match the
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model to the measurements. Another way is to just use the differential equation of

measured CA, (3.2). By comparing (3.2) and (3.1d), we assume to know the inlet

flow information φ = Fin

V CA,in. The task is to estimate the reaction production term

∆p(CA,CB, Tr, V ) = r.

Obviously, following the conventional approach increases the number of states

or requires more measurements. Thus, we ask the question: can we just use (3.2)

and measured CA to achieve the estimation of r(t)? If this were possible, we would

benefit in two respects:

1. it saves the work of modeling the rest of the system;

2. it frees the estimation task from knowing the reaction kinetics.

The solution seems obvious at the first glance. One might think that we could

compute or measure dCA

dt , and then calculate reaction rate r algebraically from (3.2).

The obstacles preventing us from doing so are the following:

1. without having the analytical expression ofCA, exact differentiation to obtain
dCA

dt is not possible;

2. if the measurement of CA is corrupted with noise, differentiation will further

exaggerate the noise in the derivatives.

The two obstacles lead us to ask for a better solution that can dampen the noise

translated into the estimates of r(t).

Above all, considering only (3.2), and assuming FinCA,in is known, we can mea-

sure:

y = CA, (3.9)

yd =
dCA
dt

, (3.10)

but the derivative measurement could be corrupted with some noise. Therefore,

the objective is to design an estimator for the time-varying production term p(x) =

r(t) with attenuation of noise in the derivative measurements.
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3.2. Passivity-based Input Estimator for Partially Linear Systems

3.2.1. Ideal Case

We start with a scalar first order nonlinear system:

ż(t) = az(t) + bµ(z, t), a < 0, (3.11a)

y1(t) = z(t), (3.11b)

y2(t) = ż(t). (3.11c)

The system has two outputs. i.e. the measured output and its time derivative. The

task is to estimate the time-varying parameter µ(z, t). Motivated by solving the es-

timation problem as a control problem, we manipulate the estimated input µ(z, t)

so that the estimation error of the state from the estimator model (3.12) asymptoti-

cally declines to zero. Using Lyapunov function, V (z̃) = 1
2(z− ẑ)

2, we use passivity

transformation and Theorem 2.6 from Chapter 2 to derive the following passivity-

based input estimator to solve the problem:

˙̂z(t) = aẑ(t) + bµ̂(t), (3.12)

µ̂(t) = 1

b
(k (y1(t) − ẑ(t)) + y2(t) − aẑ(t)) , k > 0, (3.13)

where k is the proportional gain. From here, we drop the dependence of time in

the notations for convenience.

Theorem 3.1. Given system (3.11a), with unknown time-varying parameter µ(t),

state and time derivative measurements (3.11b), (3.11c), the passivity-based esti-

mator, (3.12) and (3.13), provides asymptotic estimates of unknown parameter.

Proof. Express the true value of the parameter as:

µ = ż − az
b

, (3.14)
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and substract it from (3.13) to obatin:

µ − µ̂ = −a + k
b

(z − ẑ). (3.15)

The application of Lyapunov function V (z̃) = 1
2(z − ẑ)

2 = z̃2 guarantees z − ẑ con-

verges to zero since the closed-loop dyanmics of z̃ is:

dz̃

dt
= −kz̃. (3.16)

It is then obvious that µ − µ̂ converges to zero, too.

3.2.2. Nonideal Case

In practice, it may not be possible to obtain accurate measurements of the deriva-

tives. To study the effect of error in differentiation, we rewrite the model in the

following manner:

ż(t) = az + bµ(z, t), a < 0, (3.17a)

y1 = z(t), (3.17b)

y2 = ż(t) + δ(t). (3.17c)

In this case, we do not measure the exact derivative, thus the second output y2 is

composed of the true time derivative of the state plus a noise term, δ(t). The noise

term could result from the use of a numerical differentiator, such as the deadbeat

method of Reger & Jouffroy (2009). The following result derives the frequency

response of the estimated error with respect to the noise term.

Theorem 3.2. Given system (3.17a), with time-varying parameter µ(t), we as-

sume that the state is perfectly measured, (3.17b), but derivative measurement

is corrupted with noise, (3.17c). Assume that we can model the noise as δ(t) =

δ0+Aδ sin(ωδt+φδ). The estimator (3.12) - (3.13) provides parameter estimates with
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bounded error µ̃(t) as t→ +∞:

µ̃(t→ +∞)

= a

bk
δ0 +

(
√

(a2 + ω2
δ)k2 + a2ω2

δ + ω4
δ sin(ωδt + φ′δ)

b(k2 + ω2
δ)

Aδ. (3.18)

Proof. First we differentiate µ̃ and z̃, combining the results with equations (3.12)

and (3.13), then we can obtain following relationships:

˙̃z = −kz̃ − δ, (3.19a)

˙̃µ = (a + k)k
b

z̃ + a + k
b

δ − 1

b
δ̇, (3.19b)

µ̃ = −a + k
b

z̃ − 1

b
δ. (3.19c)

The solution to (3.19a) and (3.19b) are:

z̃(t) = e−ktz̃0 − e−kt∫
t

0
ekτδ(τ)dτ, (3.20)

µ̃(t) = −a + k
b

e−ktz̃0 +
a + k
b

e−kt∫
t

0
ekτδ(t)dτ − 1

b
δ(t). (3.21)

The noise δ(t) in the derivative is modeled as:

δ(t) = δ0 +Aδ sin(ωδt + φδ), (3.22)

which can be plugged in the solutions, and for z̃(t) we have:

z̃(t) = e−ktz̃0 − e−kt∫
t

0
ekτδ(τ)dτ

= e−kt (z̃0 +
ωδ cos(φδ) − k sin(φδ)

k2 + ω2
− 1

k
)

+ Aδ (k sin(ωδt + φδ) − ωδ cos(ωδt + φδ))
k2 + ω2

δ

+ δ0

k

= e−kt (z̃0 +
ωδ cos(φδ) − k sin(φδ)

k2 + ω2
− 1

k
)
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+Aδ

√
k2 + ω2

δ sin(ωδt + φ′′δ )
k2 + ω2

δ

+ δ0

k
, (3.23)

where

φ′′δ = φδ + arctan(−ωδ
k

). (3.24)

In (3.23), except for the exponential decaying term, the magnitude of the periodic

signal amplitude and modeled average are both dampened by the estimator gain

k. For µ̃, we have:

µ̃(t) = a + k
b

e−kt (−z̃0 +
ωδ cos(φδ) − k sin(φδ)

k2 + ω2
δ

− 1

k
)

+ a + k
bk

δ0 −
1

b
(δ0 +Aδ sin(ωδt + φδ))

+ a + k
b

Aδ (k sin(ωδt + φδ) − ωδ cos(ωδt + φδ))
k2 + ω2

δ

= a + k
b

e−kt (−z̃0 +
ωδ cos(φδ) − k sin(φδ)

k2 + ω2
δ

− 1

k
)+

a

bk
δ0 +

√
(a2 + ω2

δ)k2 + a2ω2
δ + ω4 sin(ωδt + φ′δ)

b(k2 + ω2
δ)

Aδ, (3.25)

where

φ′δ = φδ + arctan(−(a + k)ωδ
ak − ω2

δ

) . (3.26)

Similar situation with (3.25), the not exponential decaying terms can be dampened

by large estimator gain.

Discussion Above derivation results show the tendency of magnitude ∣µ̃∞∣ to

change along the noise parameter, and it is summarized as follows:

∣µ̃∞∣ = ∣ a
bk
δ0∣, as Aδ = 0 or ωδ = 0;

∣µ̃∞∣→ ∣Aδ
b

∣, as ωδ →∞.
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The dampening effect of estimator in the estimates of the derivative noise can be

shown in a Bode diagram. We first derive the transfer function relations between

z̃(t) vs. δ(t) and µ̃(t) vs. δ(t). From (3.19a) and (3.19b), the transfer functions of

these two pairs of outputs and inputs are:

G1(s) =
z̃(s)
δ(s) = − 1

s + k (3.27)

G2(s) =
µ̃(s)
δ(s) = − s(s − a)

bs(s + k) (3.28)

Assume a = −1, b = 1. The Bode diagrams of G1(s) and G2(s) are shown in Figures

3.1 and 3.2, respectively. Responses of high gain estimator, k = 10, and low gain

estimator , k = 2, are compared. The error bound can be reduced by increasing the

estimator gain k while the noise frequency is small. As shown in both magnitude

diagrams of G1(s) and G2(s), the noise δ is much more dampened in z̃ and µ̃ by

the high gain estimator than low gain estimator while the noise frequency is small.

As the frequency increases, the differences between using high gain and low gain

grows smaller. However, from Figure 3.2, we can see the estimator is not able to

dampen the noise in µ̃ when noise frequency is very high.

3.2.3. Simulation Results

A simple scalar linear system with one varying parameter is used to test the devel-

oped passivity-based estimator:

ż(t) = −z(t) + µ(t), (3.29a)

µ(t) = 0.1 sin(0.5t), (3.29b)

y1(t) = z(t), (3.29c)

y2(t) = żd(t), (3.29d)

where żd is an estimate of the derivative of z.
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Figure 3.1: Bode diagram of G1(s) = z̃(s)
δ(s)

Figure 3.2: Bode diagram of G2(s) = µ̃(s)
δ(s)
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(a) Profiles of z and ẑ (k = 2) (b) Profiles of z̃ (k = 2)

Figure 3.3: Estimator performance in ideal case (z and z̃)

Ideal case (żd = ż) Both the state and derivative are measured continuously and

accurately, more specifically żd = ż. (3.12) and (3.13) are used to estimate the param-

eter µ(t). The results of the estimation are shown in Figures 3.3 and 3.4. We also

compare the passivity-based input estimator (PBIE) result with inversion-based es-

timator (IBE) (Tatiraju & Soroush, 1998) result. The IBE also treats the time-varying

parameter estimation problem, but does not use information of derivative of mea-

surement in the estimation equation (3.13). Figure (3.3a) shows that the estimator

starts with the same wrong initial condition, which also results in the deviation

of the estimated parameter, µ̂ from the true value, Figure (3.4a). Because of the

asymptotic stability of PBIE , the estimation errors converge asymptotically to zero

in Figures (3.3b) and (3.4b). In comparison, the IBE is shown to be marginal stable,

due to fail to capture the dynamic change of the measurement.

Nonideal case (żd = ż + δ): using a deadbeat differentiator together with passivi-

ty-based estimator Again, we consider the example system: (3.29a) - (3.29d). The

difference from the ideal case is that the second output y2(t) is calculated by using

deadbeat differentiator,

żd(t) = ż(t) + δ(t), (3.30)
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(a) Profiles of µ and µ̂ (k = 2) (b) Profiles of µ̃ (k = 2)

Figure 3.4: Estimator performance in ideal case(µ and µ̃)

where δ(t) is the differentiation error.

Any type of differentiator would produce error in the reconstructed deriva-

tives. Here, we choose the deadbeat differentiation technique proposed by Reger

& Jouffroy (2009) as an example. The work re-derives the derivative estimation

scheme in Mboup et al. (2007) based on the reconstructibility Gramian. Deadbeat

differentiation treats the signal as a polynomial signal of time within the differen-

tiation moving horizon T . Here we use T = 0.1, and assume that the signal z(t)

is a degree-one polynomial. First order derivative can be reconstructed using the

following formula from the paper:

żd(t) =
6

T 2 ∫
t

t−T
z(τ)dτ + 12

T 3 ∫
t

t−T
(τ − t)z(τ)dτ, (3.31)

The assumption of a degree of 1 polynomial signal is required to derive the weight-

ing factors of the integration terms. Other types of numerical differentiators are

reviewed in Appendix E.

The proposed passivity-based estimator (3.12) - (3.13) with proportional gain

k = 10 is used. The simulation results are shown in Figure 3.6. The estimator

starts with a wrong initial condition with an error of 0.1 as shown in Figure (3.5a),

then converge close to the true profile. The same performance can be found for
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(a) Profiles of z and ẑ (k = 10) (b) Profiles of µ and µ̂ (k = 10)

Figure 3.5: Estimator performance in nonideal case (z and µ)

the parameter estimate in Figure (3.5b). The estimation error of µ is very small,

but still exists in Figure (3.6b). However, we can see that the magnitude of the µ

error is very much dampened by the estimator, compared with the magnitude of

the differentiator estimated derivative error. Also, in this figure, we can observe

the magnitudes of noise reduction with different k. As shown in the theory, with

higher k, the bounds of estimation error are smaller.

3.3. Passivity-based Input Estimator for Nonlinear Systems

The estimator can be used for th following class of nonlinear system:

dz

dt
= p̄(z, γ1) +D∆p(x, γ) + φ(z, u, γ1), (3.32a)

dx

dt
= f(z, x) + g(x,u), (3.32b)

y1 = z, (3.32c)

y2 = ż, (3.32d)

when z ∈ Rp, are measured outputs or states, of which the dynamics can be written

as a sum of the unknown parts ∆p(x, γ) and the known parts: p̄(z, γ1)+φ(z, u, γ1).

The derivatives of z are also accurately measured. x ∈ Rm are unmeasured internal

37



3. PASSIVITY-BASED INPUT ESTIMATOR

(a) Profiles of ż and żd (k = 10) (b) Profiles of δ and µ̃

Figure 3.6: Estimator performance in nonideal case (ż and µ̃)

states. All the nonlinear functions involved are vectors of C1 functions with appro-

priate dimensions. γ represents the vector of parameters, and γ1 is the sub-vector

that includes all the known parameters. In this case, the passivity-based estimator

is:

dẑ

dt
= p̄(ẑ, γ1) +D∆p̂(t) + φ(ẑ, u), (3.33a)

∆p̂(t) =D−1 (y2 +K(y1 − ẑ) − φ(ẑ, u) − p̄(ẑ, γ1)) . (3.33b)

K ∈ diag(k1, k2, k3, ..., kp) is positive definite.

Theorem 3.3. Consider the class of nonlinear system (3.32), where we can both

measure outputs and their derivatives. The passivity-based input estimator shown

in (3.33) provides asymptotic estimates ∆p̂→∆p.

Proof. Express ∆p through inverting (3.32a), and then subtract it by the estimation

law (3.33b). After re-organizing, we can write the input estimation error as:

∆p −∆p̂ =D−1(p̄(ẑ) − p̄(z) + φ(ẑ, u) − φ(z, u) −KE(z − ẑ)). (3.34)

Same as in the linear case where z − ẑ converges to zero asymptotically, therefore

∆p −∆p̂ converges to zero asymptotically as well.
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3.4. Application to Estimation of Reaction Calorimetric Variables

The main application of the proposed passivity-based input estimator is the esti-

mation of reaction calorimetric variables, which are reaction heat generation rate

and reactor-jacket heat transfer rate. Only credible energy balance and easily avail-

able measurements, such as temperature, reaction weight, flows, are used, and ki-

netic information is not needed. On-line knowledge of these two thermal variables

can be utilized to monitor the evolution of production, residual level of reactants,

and control reactor temperature. Successful applications of calorimetric variable

estimation schemes for process control (Tatiraju & Soroush, 1998) and composition

monitoring and reaction runaway prevention (Schuler & Schmidt, 1992) have been

reported in the literature. In DOW Chemical, a dynamics-inversion based scheme

is implemented for estimating standing monomer level and temperature control

purposes, and in test trails, the composition evolution calculated based on calori-

metric estimation agrees with Raman spectrometer measurement. The derivatives

are calculated using Euler method based on filtered temperature measurements.

In this section, we show the application result of passivity-based input estima-

tor based on energy balances and temperature measurements; we also compare the

result with other similar estimation schemes that only use present data for estima-

tion.

The estimator is constructed based on the temperature differential equations of

the reactor and jacket:

dTr
dt

= Fin
V ρCp

(ρinCp,inTin − ρCpTr) −
∆Hrr

Cpρ
− UA(Tr − Tj)

V ρCp
, (3.35)

dTj

dt
= Fj
Vj

(Tj,in − Tj) +
UA(Tr − Tj)
VjρwCp,w

, (3.36)

where Qr = −∆Hrr and Qj = UA(Tr −Tj) are unknown inputs to be estimated. The

reactor temperature Tr and jacket temperature Tj are measured, and their deriva-
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tives are reconstructed. Define

∆p =
⎡⎢⎢⎢⎢⎢⎣

Qr

Qj

⎤⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎣

1
Cpρ

− 1
V ρCp

0 1
VjρwCp,w

⎤⎥⎥⎥⎥⎥⎦
, φ =

⎡⎢⎢⎢⎢⎢⎣

Fin

VrρCp
(ρinCp,inTin − ρCpTr)
Fj

Vj
(Tj,in − Tj)

⎤⎥⎥⎥⎥⎥⎦
,

(3.37)

we can put the model in the form of (3.32), and follow (3.33) to obtain the corre-

sponding PBIE.

A jacketed exothermic reaction 2A → B → C is modeled in Matlab. The tem-

peratures and numerical derivatives provided by the ODE solver are given to the

passivity-based estimator to obtain estimates, Q̂r and Q̂j . We also compare the re-

sults from PBIE and IBE, as the latter estimator does not use the derivatives. We

use the same, correct initialization for the estimator states T̂r and T̂j , and the same

gains KE = diag([0.5, 0.5]). Errors of temperatures estimates and Q̂r and Q̂j are

zeros form beginning as shown in Figures 3.7 and 3.8, and it is because that correct

initial values of the estimator states, T̂r and T̂j , are given. In comparison, the IBE

estimates error exists while temperatures are not at steady states, and gradually

converge towards zero while the the temperature profiles approach steady states.

3.5. Conclusions

In this chapter, we developed a passivity-based input estimator for estimating

time-varying uncertainties in partially linear system and nonlinear systems. The

estimator is derived from a Lyapunov stability perspective, and requires the use of

a measured or estimated output derivative. In the ideal case, the derivative is per-

fectly measured, and the estimator estimates have asymptotic convergence to the

true values. In the nonideal case, the derivative is not perfectly measured. Instead

it is obtained through a differentiation technique, such as a deadbeat differentia-

tor. We showed that the proposed estimator could dampen the magnitude of the

derivative error in the parameter estimates by using large estimator gains. Illus-

trative examples are simulated to show the proposed estimator performance for
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Figure 3.7: Estimated temperatures and errors from PBIE and IBE

Figure 3.8: Estimates and errors of Qr and Qj from PBE and IBE

41



3. PASSIVITY-BASED INPUT ESTIMATOR

ideal and nonideal cases. Potential applications include production estimation in

chemical reaction systems for process control and monitor, as shown in the reaction

calorimetric variables estimation example. Inclusion of the proposed estimator in

a model-based control scheme can reduce control model size and save modeling

cost.
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4. STATE ESTIMATION WITH PROCESS

UNCERTAINTY

In this chapter, we consider the state estimation of a special class of nonlinear sys-

tems with partially linear structures with respect to the states and uncertainty pa-

rameters. We first show how to construct the unknown input observer (UIO) in

Section 4.1. Section 4.2 presents the concepts of reaction variants and invariants

in reaction systems. In Section 4.3, we use them to construct the asymptotic ob-

server (AO) for estimating unmeasured compositions without the knowledge of

reaction kinetics. Section 4.4 compares the UIO and AO, and discusses some of the

observers’ convergence issues. We apply the proposed observers to numerical ex-

amples and two reaction examples for which the results are shown in Section 4.4.

Finally, we close this chapter with some concluding remarks in Section 4.6.

4.1. Unknown Input State Observer (UIO)

We consider a partially linear system of the following form:

dx

dt
= Ax +Bu +Dµ(x, t) (4.1a)

y = Cx, (4.1b)

where x ∈ Rn, u ∈ Rp, µ ∈ Rq, and y ∈ Rm. Here, µ is a unknown function vector,

referred to as unknown inputs. In this system, all the nonlinearity and uncertainty

are incorporated in the vector µ. We are interested in estimating the states from the

measurements y and the deterministic linear information, matrices A,B,C,D, and
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known inputs u. We also assume that rank(CD) = q, which indicates that we have

at least the same number of output measurements as the unknown inputs, m ≥ q.

The first step of constructing the state observer aims to decouple the unknown

inputs µ from part of the system dynamics.

First, find the nonsingular transformation matrix T ∈ Rn×n,

T = [N D] , with N ∈ null(D). (4.2)

Therefore,

T−1 =
⎛
⎜
⎝

D⊥

D+

⎞
⎟
⎠
, (4.3)

where

D⊥D = 0q×n, and D+D = I(n−q)×n. (4.4)

Pre-multiply (4.1a) by T−1, and define z = T−1x, then we obtain:

dz

dt
= T−1Ax + T−1Bu +

⎡⎢⎢⎢⎢⎢⎣

0

I

⎤⎥⎥⎥⎥⎥⎦
µ. (4.5)

Above equation is equivalent to

dz

dt
= Āz + B̄u +

⎡⎢⎢⎢⎢⎢⎣

0

I

⎤⎥⎥⎥⎥⎥⎦
µ, (4.6)

where Ā = T −1AT , B̄ = T−1B.

Then we can partition the new state vector z as

z =
⎡⎢⎢⎢⎢⎢⎣

zI

zV

⎤⎥⎥⎥⎥⎥⎦
, (4.7)

where zI ∈ Rn−q and zV ∈ Rq. zI is called the invariants, as it does not explicitly de-

44



4. STATE ESTIMATION WITH PROCESS UNCERTAINTY

pend on the unknown input vector µ. zV is called the variants, since each element

of zV varies only with one unknown input in the vector, µ.

The matrices Ā and B̄ are partitioned correspondingly:

Ā =
⎛
⎜
⎝

Ā11 Ā12

Ā21 Ā22

⎞
⎟
⎠
, B̄ =

⎡⎢⎢⎢⎢⎢⎣

B̄1

B̄2

⎤⎥⎥⎥⎥⎥⎦
. (4.8)

The dynamics of invariants and variants are now given by:

dzI
dt

= Ā11zI + Ā12zV + B̄1u, (4.9)

dzV
dt

= Ā21zI + Ā22zV + B̄2u + µ. (4.10)

To decouple zI from zV , we utilize the output equation (4.1b). With the state trans-

formation, the output equation is written as:

y = CTz. (4.11)

We now find a nonsingular matrix ,

U = [CD Q] , with Q ∈ null(CD) ⊆ Rm×(m−q), U ∈ Rm×m. (4.12)

The inverse can be partitioned as,

U−1 =
⎛
⎜
⎝

U1

U2

⎞
⎟
⎠
, where U1 ∈ Rq×m and U2 ∈ R(m−q)×m, (4.13)

and the submatrices satisfy the following conditions:

U1CD = Iq×q, U2CD = 0(m−q)×q. (4.14)

Pre-multiply the output equation with the matrix U to obtain:

U1y = U1CNzI + zV , (4.15a)
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U2y = U2CNzI . (4.15b)

Based on (4.15a), we can express zV in terms of measured outputs y and invari-

ants zI in (4.9) and obtain:

dzI
dt

= Ã1zI + B̄1u +E1y, (4.16a)

yI = C̃1zI , (4.16b)

where

Ã1 = Ā11 − Ā12U1CN, E1 = Ā12U1, yI = U2y, C̃1 = U2CN. (4.17)

Then, an exponential state observer like Luenburger observer can be designed for

(4.16a)-(4.16b) if the pair (Ã1, C̃1) is observable. The observer equation, referred as

the closed-loop UIO is:

dẑI
dt

= (Ã1 −LC̃1)ẑI + B̄1u + (LU2 +E1)y, (4.18a)

ẑV = U1y −U1CNẑI (4.18b)

x̂ = T
⎛
⎜
⎝

ẑI

ẑV

⎞
⎟
⎠

(4.18c)

where L is the observer gain matrix.

However, when the number of measurements equals the number of unknown

inputs, we lose the extra degree of freedom to assign the observer estimation con-

vergence rate through output yI feedback. When m = q, yI ∈ Rm−q is an empty

vector. Under this situation, we can still construct an open-loop UIO if eigenval-

ues of Ã1 only have negative real parts. We can formulate the open-loop unknown

input state observer as:

dẑI
dt

= Ã1ẑI + B̄1u +E1y, Re(eig(Ã1)) < 0 (4.19a)

ẑV = U1y −U1CNẑI (4.19b)
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x̂ = T
⎛
⎜
⎝

ẑI

ẑV

⎞
⎟
⎠

(4.19c)

The open-loop UIO is asymptotically stable, and the existence of asymptotic stabil-

ity entirely depends on the original system (4.1) matrices and cannot be imposed

or improved through output feedback.

The open-loop UIO applied to reaction systems with uncertain kinetics becomes

the so-called asymptotic observer. The stability of the asymptotic observer depends

on the hydrodynamics of the reactor, and exists in semi-batch reactors or CSTRs,

where persistent excitation conditions are fulfilled (Moreno & Dochain, 2008).

4.2. Reaction Variants, Invariants

We start from the dynamic model of a well-mixed homogeneous liquid phase

CSTR, with nr independent reactions and nc species. The state of the reactor can be

described using the state vector, x = (C1,C2, ...,Cnc , Ur, Vr). The dynamic model of

the CSTR can be written as follows:

dC

dt
= Fin
Vr

(Cin −C) + νr, (4.20)

dVr
dt

= Fin − Frout + φ, (4.21)

dUr
dt

=Hin −
Frout
Vr

Hr +Qj +Ws − Pr
dVr
dt

. (4.22)

We make the following assumptions, which are realistic for homogeneous liq-

uid phase reactors (Dochain et al., 2009): (1) the liquid mixture is ideal and incom-

pressible; (2) the CSTR is operated at constant pressure; (3) the volume change due

to mixing and reaction is negligible. As a result, the energy balance and volume

balance can be written as follows:

dHr

dt
=Hin −

Frout
Vr

Hr +Qj +Ws, (4.23)

dVr
dt

= Fin − Frout. (4.24)
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Asbjørnsen (1972) shows that there exists non-unique nonsingular linear trans-

formation matrices T−1 ∈ Rnc×nc to transform the composition statesC into reaction

variants zV ∈ Rnr and reaction invariants zI ∈ Rnc−nr :

T−1C =
⎛
⎜
⎝

zI

zV

⎞
⎟
⎠
. (4.25)

The matrix T−1 can be found as:

T−1 =
⎛
⎜
⎝

ν⊥
(nc−nr)×nc

ν+nr×nc

⎞
⎟
⎠
nc×nc

, (4.26)

s.t. ν+ν = Inr×nr , ν
⊥ν = 0(nc−nr)×nr

. (4.27)

Note that T −1 is not unique, so that the choice of invariants and variants may vary

with measurement availability and control strategies. Through the transformation,

the mole balance part of the reaction dynamics (4.20) is expressed in terms of zI

and zV :

dzI
dt

= Fin
Vr

(zI,in − zI), (4.28)

dzV
dt

= Fin
Vr

(zV,in − zV ) + r. (4.29)

One can make the following observations: (1) the effects of nr reactions are

decoupled such that one reaction variant zV,i, i = 1,2, ...nr, is only influenced by

the corresponding ith reaction; (2) the reaction invariants zI are not affected by the

reaction rates. The asymptotic stability of the reaction invariants follows from the

solution of (4.28) given by:

zI(t)=(zI(t0) − zI,in)e−
Fin
Vr

t + zI,in, (4.30)

where zI(t0) is the initial condition vector of the reaction invariants. The reaction
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invariants will converge to zI,in as long as Fin

Vr
> 0, which is fulfilled in CSTRs and

semi-batch reactors, but not in batch reactors. It can also be noticed that the implicit

reaction-dependent states, internal energy Ur and enthalpy Hr, can also be utilized

similarly as the invariants later in estimation.

Illustrative example Consider a CSTR reaction system characterized by the fol-

lowing reaction network with nr = 2 reactions and nc = 3 species: 2A→ B → C. The

stoichiometric matrix ν, the linear transformation T , and two variants, i.e. zV,1, zV,2,

and one invariant zI , are as follows:

ν =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0

1 −1

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T −1=
⎛
⎜
⎝

ν†
2×3

ν⊥1×3

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

−1
2 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
[1

2 1 1]

⎞
⎟⎟⎟⎟⎟
⎠

,

s.t.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

zV,1

zV,2

zI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2 0 0

0 0 1

1
2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CB

CC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.31)

The dynamics of the reaction variants and the invariants are described by (4.29)

and (4.28).

Reaction variants option for control Reaction variants fully characterize the re-

action contribution, and by controlling a set of linearly independent reaction vari-

ants, the remaining dynamics of reaction invariants are asymptotically stable zero

dynamics. The choice of the reaction variants is not unique, and can be instructed

by compositions that need to be controlled. For example, if we want to control

compositions CB and CC in a semi-batch reactor or CSTR of 2A → B → C, the def-

inition of variants given in (4.31) is not well-suited for the control of variants since

uncontrolled species A is involved. However, if we change the first row of T into
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[0 1 1], we can clearly define setpoints of variants as:

z∗V =
⎡⎢⎢⎢⎢⎢⎣

0 1 1

0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗

A

C∗

B

C∗

C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.32)

where C∗

A does not need to be specified.

4.3. Asymptotic Observer (AO)

We assume that the temperature measurements for the reactor and the jacket and

composition measurements for nr − 1 species are available on-line. The asymptotic

observer proposed in this section estimates the compositions for nc −nr +1 species,

without using the reaction kinetics. The estimated values of the reaction invari-

ants ẑI and total enthalpy Ĥ are obtained through solving the following kinetics-

independent observer model:

dẑI
dt

= Fin
V
zI,in −

Fin
V
ẑI (4.33a)

dĤ

dt
=Hin −

Fout
V

Ĥ +Qj +Ws (4.33b)

Then, the estimates of the unmeasured compositions ĈJ ∈ Rnc−nr+1 are calculated

as follows:

ĈJ = Γ−1
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

ẑI

Ĥ

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

ν⊥ICI

hTI CIVr

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
, (4.34)

where Γ =
⎡⎢⎢⎢⎢⎢⎣

ν⊥J

hTJ

⎤⎥⎥⎥⎥⎥⎦
∈ R(nc−nr+1)×(nc−nr+1). (4.35)

CI ∈ Rnr−1 is the vector of measured compositions; ν⊥I and ν⊥J are the submatrices of

the reaction invariants transformation matrix ν⊥ in (4.26), and they are constituted

by the corresponding columns of measured and unmeasured species, respectively;

h ∈ Rnc is the molar enthalpy vector, and hI ∈ Rnr−1, hJ ∈ Rnc−nr+1 are the vectors of
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the molar enthalpies of the measured and unmeasured species, respectively. The

molar enthalpy of each species is temperature dependent, and can be calculated as:

h(T )=href + cP (T − Tref), (4.36)

where h(T ) is the molar enthalpy at the temperature T; href is the molar enthalpy at

the reference temperature Tref , and cP ∈ Rnc is the heat capacity vector, assumed to

be constant within the considered temperature range. The asymptotic convergence

property of the observer estimates can be shown by analyzing the dynamics of the

estimation errors of the unmeasured compositions as follows.

The observer estimate errors are defined as:

ezI = zr,I − ẑr,I eH =H − Ĥ.

Based on (4.23), (4.28), and (4.33), the derivatives of ezI and eH can be easily ob-

tained as:

dezI
dt

= − Fin
V
ezI

deH
dt

= − Fout
V

eH . (4.37)

The estimation errors of the invariants exponentially converge to zero with conver-

gence rates of Fin

V , and Fout

V , respectively. It indicates that for semi-batch reactors,

where Fout = 0, the enthalpy cannot be used as an invariant for estimation, thus

another composition measurement is required. As eI and eH converge to zero, the

measured compositions converge to the true values as well.

4.3.1. Measurement Availability Condition

At least nr independent state variables including reactor temperature need to be

measured for the observer to give composition estimates for all the unmeasured

species. It can be explained as the evolution of the composition states C is con-

strained in nr independent directions caused by nr independent reactions. Addi-
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tionally, the matrix Γ should be full rank to obtain the unique solution for ĈJ ; this

full rank condition places a restriction on the choice of measured species.

4.4. Relation Between UIO and AO

The asymptotic observer, (4.33)-(4.34), designed for CSTRs and semi-batch reactors

is a special case of the open-loop UIO, (4.19), where asymptotic convergence of state

estimation is guaranteed but not assignable. The existence conditions of UIO with

assignable exponential convergence property and AO are summarized as follows.

Theorem 4.1. For a system given by (4.1a) - (4.1b) with uncertainty,

1. when m > q, the UIO observer (4.18a) - (4.18c) with assignable exponential

convergence can be designed based on its invariants subsystems iff (Ã1, C̃1)

is observable;

2. when m > q, the UIO observer (4.18a) - (4.18c) with fixed asymptotic con-

vergence can be designed based on its invariants subsystems iff (Ã1, C̃1) is

detectable;

3. whenm = q, the AO (alternatively open UIO) (4.19a) - (4.19c) exists iff Ã1 only

has eigenvalues with negative real parts.

Theorem 4.2. (Hou & Muller, 1992) Consider system (4.1a) - (4.1b) with uncer-

tainty, and measurement condition: m > q, then for its invariants model (4.16a) -

(4.16b), the following statements are equivalent:

1. (Ã1, C̃1) is detectable (observable);

2.

rank

⎡⎢⎢⎢⎢⎢⎣

sI − Ã1

C̃1

⎤⎥⎥⎥⎥⎥⎦
= n − q,∀s ∈ C,Re(s) ≥ 0 (∀s ∈ C); (4.38)
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3.

rank

⎡⎢⎢⎢⎢⎢⎣

sI −A D

C 0

⎤⎥⎥⎥⎥⎥⎦
= n + q,∀s ∈ C,Re(s) ≥ 0 (∀s ∈ C). (4.39)

Proof. The equivalence of statement 1 and 2 is given by the Popov-Belevitch-

Hautus test of observability (Ghosh & Rosenthal, 1995). The proof of equivalence

of statement 2 and 3 can be found in Hou & Muller (1992).

Remark Consider a single-tank, homogeneous CSTR or semi-batch reactor, its

model is (4.20). Put it into the general form, so that:

A = diag(−Fin
Vr

) ∈ Rnc×nc , D = v. (4.40)

Choose output matrix C ∈ Rm×nr , m > nr, and rank(CD) = nr. We can see that by

setting s = Fin

Vr
, rank

⎡⎢⎢⎢⎢⎢⎣

−sI −A D

C 0

⎤⎥⎥⎥⎥⎥⎦
=m + nr ≤ nc + nr.

It indicates that only when m = nc, observability condition is satisfied. Then, ac-

tually there is no necessity to use an observer, when all the compositions are mea-

sured.

4.5. Examples

In this section, we give two numerical examples and two reaction examples. The

first numerical example is eligible for using UIO with assignable estimation con-

vergence rate; the second numerical example is qualified for being applied with

open-loop UIO. The third example is a single-tank homogeneous reaction where

AO is applied to estimate unmeasured compositions without using the knowledge

of reaction kinetics, and the fourth example is a more complex heterogeneous reac-

tion example, for which open-loop UIO is applied.
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Example 1 from Hou & Muller (1992)

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0

−1 0 0

0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

µ (4.41a)

y =
⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
x (4.41b)

Choose

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q =
⎡⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎦
, (4.42)

to obtain transformation matrices:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U =
⎡⎢⎢⎢⎢⎢⎣

−1 1

0 1

⎤⎥⎥⎥⎥⎥⎦
. (4.43)

The invariants dynamics is:

żI =
⎡⎢⎢⎢⎢⎢⎣

−1 −1

0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ã1

+
⎡⎢⎢⎢⎢⎢⎣

0 0

−1 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E1

y (4.44)

yI = [1 0]
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
E1

zI (4.45)

Since the pair (Ã1, C̃1) is observable, we can use observer gain L to set the conver-

gence rate, i.e. the closed-loop poles. Figure 4.1 shows the observer results with
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Figure 4.1: Example 1 UIO estimation results with different closed-loop poles

different gain vectors:

L =
⎡⎢⎢⎢⎢⎢⎣

5

−9

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

2

−3

⎤⎥⎥⎥⎥⎥⎦
, (4.46)

setting the closed-loop poles at [−2, −1] and [−4, −2], respectively. The latter one

has faster convergence.

Example 2 from Hou & Muller (1992) System:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0

0 −1 1

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

µ (4.47)

y =
⎡⎢⎢⎢⎢⎢⎣

1 0 1

0 0 1

⎤⎥⎥⎥⎥⎥⎦
x (4.48)
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State transformation : z = T −1x, where

T−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, z =
⎡⎢⎢⎢⎢⎢⎣

zI

zV

⎤⎥⎥⎥⎥⎥⎦
, zI ∈ R2, zV ∈ R. (4.49)

Invariants dynamics are:

żI = Ã1zI , (4.50)

yI = C̃1ẑI (4.51)

where

Ã1 =
⎡⎢⎢⎢⎢⎢⎣

−1 0

1 −1

⎤⎥⎥⎥⎥⎥⎦
, C̃1 = [1 0] . (4.52)

The UIO is:

˙̂zI = (Ã1 −LC̃1)ẑI +L∗y (4.53)

where

L∗ =
⎡⎢⎢⎢⎢⎢⎣

0 l1

0 l2

⎤⎥⎥⎥⎥⎥⎦
(4.54)

L = [l1 l2]T is the observer gain vector. The pair (Ã1, C̃1) is only detectable, not

observable. Using Theorem 4.2 (3) and setting s = -1 to test the observability of the

original system, we reach the same conclusion. Therefore the convergence rate of

UIO Eq. (4.53) is not entirely assignable.

Example 3: single-tank homogeneous CSTR Reaction: A +B→C. The reactor

model is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

dCA

dt

dCB

dt

dCC

dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d 0 0

0 −d 0

0 0 −d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CB

CC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fin 0 0

0 Fin 0

0 0 Fin

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA,in

CB,in

CC,in

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ vr, (4.55)
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where v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and d = Fin
V
. (4.56)

We only have nr = 1 reaction, therefore we only need to measure reaction temper-

ature, for estimating ĈA, ĈB, ĈC . The states of the OA are the total enthalpy and

two reaction invariants:

zI = v⊥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CB

CC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where v⊥ =
⎡⎢⎢⎢⎢⎢⎣

1 0 1

0 1 1

⎤⎥⎥⎥⎥⎥⎦
. (4.57)

The composition estimations are shown and compared with true composition pro-

files in Figures 4.2 (a)-(c). The measured temperature is shown in Figure 4.2 (d). The

invariants estimated and true profiles are shown in Figure 4.3 (a)-(c). The observer

starts with wrong initial conditions of unmeasured compositions and converges to

the true value asymptotically. The shift of steady-states are caused by the change

of Fin and CA,in as shown in 4.3 (d).

Example 4: heterogeneous reaction system The asymptotic observer is applied

to a simulated heterogeneous reaction system. The heterogeneous reaction exam-

ple is from Bhatt et al. (2010), which is an isothermal, gas-liquid system involv-

ing the chlorination of butanoic acid. The mechanisms of mass transfer between

phases and two reactions are assumed to be unknown. The sketch of the reac-

tor is shown in Figure 4.4. In the liquid phase, one main reaction produces α-

monochlorobutanoic acid (MBA) and hydrochloric acid (HCl), and one side reac-

tion produces side product α-dichlorobutanoic acid (DBA) and HCl.

R1 ∶ BA +Cl2 →MBA +HCl (4.58)

R2 ∶ BA + 2Cl2 →DBA + 2HCl (4.59)
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4. STATE ESTIMATION WITH PROCESS UNCERTAINTY

Figure 4.2: (a)-(c) Comparison plots of estimated reaction compositions with true
values, and (d) plot of measured temperature

Figure 4.3: Estimated two invariants and enthalpy compared with true values, and
two disturbances: Fin and CA,in
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Cl2 and HCl can be found in both gas and liquid phases. The reactant Cl2 is fed

through an gas inlet, and the reactant BA is fed through the liquid phase. The reac-

tor starts with gas phase with air and liquid phase with ethanol. Mole balances of 9

components need to be modeled to fully describe the reactor. The following equa-

tions includes 7 of them, excluding the nonreactive components: air and ethanol.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṅCl2(g)

ṅHCl(g)

ṅCl2(l)

ṅBA

ṅMBA

ṅHCl

ṅDBA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Fout,g

mg

−Fout,g

mg

−Fout,l

ml

⋱

⋱

⋱
−Fout,l

ml

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nCl2(g)

nHCl(g)

nCl2(l)

nBA

nMBA

nHCl

nDBA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
MwCl2

0

0 0

0 0

0 0

0 1
MwBA

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

⎡⎢⎢⎢⎢⎢⎣

Fin,g

Fin,l

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 −1 0 0

1 0 −1 −2

0 0 −1 −2

0 0 1 0

0 1 1 2

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζCl2,gl

ζHCl,lg

r1Vl

r2Vl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.60)

n(g) represents the gas phase component’s mole numbers, and n(l) and n present

liquid phase component’s model numbers; Fout,g is the fixed gas phase outlet mass

flow rate. Fout,l represents liquid outlet mass flow rates used to control liquid

phased volume at 5.8230 m3. mg and ml are the total gas mass and liquid mass

in the reactor; Fin,g, Fin,l represent the inlet mass flow rates of Cl2 gas into the gas

phase and BA into the liquid phase, and Fin,g is the manipulated variables to con-

trol pressure at P = 10 bar; ζCl2,gl and ζHCl,lg represent the mass transfer rates of

Cl2 and HCl; r1 and r2 are the reaction rates; Vl is the liquid phase volume.
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Figure 4.4: Schematic of the example heterogeneous reactor

The unknown input vector is:

µ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζCl2,gl

ζHCl,lg

r1Vl

r2Vl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.61)

Its involvement matrix D is composed of first two columns describing whether

and which direction the components is transferred between two phases, and the

remaining columns represent the involvement of components in the reactions. To

estimate four unknown rates, we need at least four good measurements, in a sense

that the evolution of the four rates can be observed from the measurements, i.e.
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Figure 4.5: Measured compositions

rank(D) = rank(CD) = 4. Therefore, we choose the measurements as follows:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nCl2(g)

nHCl(g)

nCl2(l)

nBA

nMBA

nHCl

nDBA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.62)

Figure 4.5 shows the profiles of four measured compositions that are used in the

observer to estimate the unmeasured species. The observer starts with the right

initial condition in this example, thus it is able to estimate the true profile perfectly.

If there is an error in the initial condition, the convergence rate fixed by the dilution

rates, averagely Fgout

Vg
= 0.1573s−1 and Fl

Vl
= 0.0167s−1, would be very slow. The

control inputs were determined by a PID controller.

Dochain (2000) applied the AO to tubular reactors, and was able to improve it to

an closed-loop UIO, of which the convergence rate can be arbitrarily assigned. The

interconnected nature of each volume element in a tubular reactor, compared with

CSTR considered as an independent single volume element, renders the system

observable, and hence its states reconstructible through an exponential observer.
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Figure 4.6: Comparison between estimated and true profiles of the unmeasured
compositions

The interested readers are referred to that work.

4.6. Conclusions

In this chapter, we presented the unknown input observer in open-loop form and

closed-loop form, and the asymptotic observer designed for chemical reaction sys-

tems. The connection between OA and UIO is shown. We consider the OA as an

open-loop UIO, which is tailored to estimate unmeasured compositions without

the knowledge of reaction kinetics. The stoichiometry in mole balances is used for

constructing reaction variants and invariants, and the energy balance can be used

as an extra dynamic constraint in the OA. The estimation convergence type is based

on the observability of the invariants model and whether it is open-loop or closed-

loop. Two numerical examples and two reaction examples are shown to illustrate

the convergence issues of UIO and the application of AO.
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In this chapter, we integrate the parameter estimation, state estimation and

passivity-based control methods developed so far in the thesis, to construct the

overall adaptive control framework. The adaptive control schemes presented in

this chapter are constructed and adjusted with the objective of ensuring closed-

loop stability.

In Section 5.1, we give the motivation of different adaptive control designs from

the perspective of passivity. Passivity may not be conserved when uncertainty

estimation error exists, which puts closed-loop stability under overall passivity-

based adaptive control into question. To resolve this, we propose two types of

adaptive controllers.

The first type of adaptive controller presented in Section 5.2 draws informa-

tion from the passivity-based input estimator (PBIE) to restore the passivity of the

control subsystem. The exponential stability for the closed-loop is proved.

In Section 5.3, the second type of adaptive controller does not attempt to con-

serve the passivity of the control subsystem, but imposes a convergence property

on the uncertainty estimates. With this estimation quality assumption, we can

show that overall closed-loop is asymptotically stable. In Section 5.3.3, we consider

systems with partially linear structure in the internal dynamics, and show that we

can use state estimates from the unknown-input observer (UIO) in the adaptive

controller and achieve asymptotic stability. Section 5.3.5 gives the analysis on zero-

dynamics stability of the partially linear systems with uncertainty under output

feedback control.

In Section 5.4, the proposed adaptive control approach is applied to control
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simulated homogeneous and heterogeneous reaction systems. We complete this

chapter with conclusions in Section 5.5.

5.1. Motivation of Adaptive Controller Designs

The designs of passivity-based control scheme from Chapter 2 and estimation

from Chapter 3 are centered around passivity and related stability theorems. Dur-

ing both developments, we obtain passive systems through transformation using

derivatives and output dynamics information, and then stabilize the passive sys-

tems through proportional feedback. In this chapter, when we combine the two

and form one adaptive control scheme, we wonder that if the passivity of two sub-

systems, one for control and one for estimation, can be maintained. We also need

to investigate how the overall closed-loop stability can be shown with or without

the passivity property for the control subsystem, and in the later case, the loss of

passivity is caused by the uncertainty estimation error.

In Chapter 2, Theorem 2.4, we showed a general transformation to passivate

the output dynamics:

dy

dt
= p̄(y) +D∆p(x) + φ(y)u, (5.1)

for control purpose, the mapping from transformed input uc to output ey, shown

as follows:

uc =
dy∗

dt
−Lfh(x) −Lgh(x)u, e = y∗ − y, (5.2)

is passive. However, due to the existence of uncertainty ∆p, the passive relation-

ship is broken if we use an estimate ∆p̂ in the transformation, and ∆p̂ ≠ ∆p. Figure

5.1 illustrates the integration of PBC and PBIE, and shows that the calculation of

u in PBC uses the estimate from PBIE, and results in a non-passive control sys-

tem. The consequence for lack of passivity is that we may not be able to ensure

closed-loop stability through a proportional control feedback.
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Figure 5.1: Integration of nonpassive control subsystem and passive estimation
subsystem

In the rest of chapter, mainly two ways are proposed to resolve the stability

issue. The first one is to compensate the estimation error and recover the passive

property of the control subsystem in Figure 5.1. The second one is to impose an

assumption on the uncertainty estimation quality, i.e. the estimate converges expo-

nentially.

5.2. Design and Integration of Passive Systems

5.2.1. Adaptive Control Development

Let us revisit the nonlinear system introduced at the beginning of the thesis. The

internal state space model of the system is:

dx

dt
= f(x) + g(x,u) (5.3a)

y = h(x) (5.3b)

yd = ẏ (5.3c)
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Figure 5.2: Integration of passive control subsystem and passive estimation sub-
system

where x ∈ X ⊆ Rn, u ∈ Rm, and y ∈ Rm. f, g, h are all sufficiently vector functions

with appropriate dimensions. Assume that measurement vector y is chosen such

that the derivative of y with respect to time takes the following form:

dy

dt
= Lfh +Lgh = p̄(y) +D∆p(x) + φ(y)u, (5.4)

where the matrixD, and φ(y) are nonsingular. ∆p ∶ X→ Rp is a uncertain Lipschitz

continuous function vector.

To estimate the uncertainty, PBIE is used, and the estimation error is compen-

sated in the control passivation transformation for preserving the passivity. As

shown in Figure 5.2, the block calculating the true control input u now is adjusted

to takes compensation term into account, represented by ∆p̃. Further details of

adaptive control laws and derivations are shown in the following theorem and

proof.

Theorem 5.1. Consider system (5.3) and its output dynamics (5.4) with Lipschitz

continuous uncertainty ∆p(x). The closed-loop dynamics under the following
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adaptive controller , for y at setpoint y∗, is globally exponentially stable.

dŷ

dt
= p̄(ŷ) +D∆p̂ + φ(ŷ)u, (5.5a)

∆p̂ =D−1 (ẏ +Keỹ − p̄(ŷ) − φ(ŷ)u) , (5.5b)

u∗ = φ(ŷ)−1(ẏ∗ +Kcey +Keỹ − p̄(ŷ) −D∆p̂), (5.5c)

ū = B−1
f (u̇∗ +Kcfeu + φ(ŷ)T ey −Afu), (5.5d)

du

dt
= Afu +Bf ū, (5.5e)

where eig(Af )> 0, and Af and Bf are nonsingular; the gain matrices Ke,Kc and

Kcf are diagonal positive definite matrices. The error vectors are:

ỹ = y − ŷ, eu = u∗ − u, ey = y∗ − y. (5.6)

The exponential stability is defined in a sense that ŷ → y, and y → y∗ exponentially.

Proof. We prove the theorem using control Lyapunov function: V = 1
2e
T
y ey+ 1

2e
T
u eu+

1
2 ỹ

T ỹ. Its time derivative is:

V̇ = eTy ėy + eTu ėu + ỹT ˙̃y. (5.7)

The last quadratic term is the Lyapunov function of PBIE, and through update law

(5.5b) for estimate ∆p̂, we have:

V̇ = eTy ėy + eTu ėu −Keỹ
T ỹ, (5.8)

The next step is to show that control equations (5.5c) and (5.5d) will render

V̇ ≤ −α∣∣e∣∣2, where, α > 0, e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ey

eu

ỹ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)

For convenience, we will use the following simplified notations:
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p̄ = p̄(y), ˆ̄p = p̄(ŷ), ˜̄p = p̄ − ˆ̄p

φ = φ(y), φ̂ = φ(ŷ), φ̃ = φ − φ̂

and for the uncertainty to be estimated: ∆p = ∆p̂ +∆p̃.

We first rewrite down the time derivative of control error of output:

ėy = ẏ∗ − p̄ −D∆p − φu (5.10)

= ẏ∗ − p̄ −D (∆p̂ +∆p̃) − φu. (5.11)

According to (3.34), the estimation error ∆p̃ through PBIE is:

∆p̃ =D−1(− ˜̄p − φ̃u −Keỹ). (5.12)

Therefore,

ėy = ẏ∗ − p̄ −D∆p̂ + ˜̄p + φ̃u +Keỹ − φu = ẏ∗ − ˆ̄p −D∆p̂ − φ̂u +Keỹ (5.13)

To make the first term in (5.8) negative definite, we set ėy = −Kcey, and we could

solve for u. While this value is actually used as a setpoint for u, i.e. u∗, as we

augmented the original system with (5.5e), and u does not reach the computed

value instantaneously. Therefore, u∗ = u − eu, where eu is the error between u∗ and

u.

u∗ = φ̂−1(ẏ∗ +Kcey +Keỹ − ˆ̄p −D∆p̂), (5.14)

with which ėy = −Kcey + φ̂eu. Then, the time derivative of V is:

V̇ = −Kce
T
y ey + eTu (φ̂T ey + ėu) −Keỹ

T ỹ (5.15)

Set

φ̂T ey + ėu = −Kcfeu (5.16)
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and plug in

ėu = u̇∗ −Afu −Bf ū, (5.17)

then solve for ū to get:

ū = B−1
f (u̇∗ +Kcfeu + φ̂T ey −Afu) (5.18)

Above all with the control equations, the time derivative of the Lyapunov function

is:

V̇ = −Kce
T
y ey −Kcfe

T
u eu −Keỹ

T ỹ (5.19)

= −∣∣K
1
2 e∣∣2 ≤ −Kmin∣∣e∣∣2, (5.20)

where Kmin is the smallest gain parameter of controller and estimator. It shows the

errors will exponentially decay to zero.

The adaptive controller includes a pseudo first order dynamics for u, (5.5e).

This augmented dynamics is to ensure the solution existence of ∆p̂ and u. Since we

derive the control and estimation both in dynamics-inversion fashion, then without

the augmentation, the system of equations:

D∆p̂ + φ(ŷ)u = ẏ +Keỹ − p̄(ŷ) (5.21)

D∆p̂ + φ(ŷ)u = ẏ∗ +Kcey +Keỹ − p̄(ŷ), (5.22)

were to be solved for ∆p̂ and u. The solution either does not exist or is not unique.

The right hand sides of the above equations are in general feedback and feedfoward

terms for estimation and control, respectively.

While, after the augmentation, we actually solve (5.22) for a pseudo setpoint u∗.

Then the true u is calculated through integrating (5.5e), with input ū determined

by (5.5d), which allows u to converge to u∗.

To address this type of cascaded tracking problem, we use backstepping. This
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technique is useful when the output and input cannot be related through first order

differential equations. As in this case, the input ū and the output y are related

through second order differential equations. The backstepping control will be the

topic of Chapter 6, where a passivity-based design is proposed and examined. A

fuller derivation and detailed explanation of backstepping controller is deferred till

then.

For the partially linear case, we can apply Theorem 5.1 straightforwardly. Con-

sider the following scalar system:

dx

dt
= ax(t) + bu(t) + dµ(x, t), b ≠ 0, (5.23a)

y = x, (5.23b)

yd = ẋ, (5.23c)

where the state x and its time derivative ẋ are measured; a, b, and d are constants.

We want to control x at a constant or time-varying set point x∗, by manipulating

u(t) under the existence of uncertainty µ(x, t), which is Lipschitz continuous.

Theorem 5.2. Consider the scalar system (5.23) with Lipschitz continuous un-

known time-varying input µ(t), measured state x(t), and measured time derivative

ẋ(t). The adaptive controller:

dx̂

dt
= ax̂(t) + bu(t) + dµ̂(t), (5.24a)

µ̂(t) = 1

d
(ẋ + kex̃ − ax̂ − bu) (5.24b)

du

dt
= afu + bf ū, af < 0, bf ≠ 0, (5.24c)

u∗ = 1

b
(ẋ∗ + kc,1ex − ax − dµ̂ + (a + ke)x̃) , (5.24d)

ū = 1

bf
(u̇∗ + kc,2eu + bex − afu) , (5.24e)

where x̃ = x − x̂, eu = u∗ − u, ex = x∗ − x, can exponentially stabilize x at the desired
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setpoint x∗, if the following conditions of gains are satisfied:

ke > 0, kc,1 > 0, kc,2 > 0. (5.25)

Proof. The exponential stability can be shown by the composite Lyapunov function

is V = 1
2e

2
y + 1

2e
2
u + 1

2 x̃
2. With the adaptive controller, the time derivative of the

Lyapunov function is dV
dt = −kc,1e2

1 − kc,2e2
2 − kex̃2. The derivation of the controller

and proof is the same as the nonlinear case after replacing the nonlinear dynamics

to the linear ones.

5.2.2. Numerical Example

In this section, we test the designed adaptive controller (5.5) with a nonlinear con-

trol example adapted from Wang & Ydstie (2007). The example is a scalar system:

dx

dt
= −x + 2x2 + (x2 + 1)u +∆p, where ∆p = sin(5t), x(t0) = 0.5, (5.26)

y = x, (5.27)

yd = ẋ. (5.28)

We want to control state x to track a sinusoidal setpoint profile: x∗ = sin(0.5t) with-

out knowing ∆p. The adaptive controller parameters are: Ke = 10, Kc = 1,Kcf = 5.

The augmented filter for u is:

du

dt
= −u + ū. (5.29)

We simulated the system with the specified controller in Matlab. In terms of the es-

timator performance, the PBIE starts with a wrong initial condition x̂(t0) = 0.7, but

converges quickly to the true profile shown in Figure 5.3 (a), so does the estimated

uncertainty in Figure 5.3 (b). Figure 5.3 (a) also shows that the true state under

control tracks the time-varying setpoint profile after initial convergence. The con-

trol Lyapunov function exponentially decays towards zero during the simulation

as shown in Figure 5.4.
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Figure 5.3: Control and estimation results of nonlinear example.

Figure 5.4: Control Lyapunov function profile.
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Figure 5.5: Integration of non-passive control subsystem and an exponential con-
verging estimator

5.3. Adaptive Control via Estimators

5.3.1. Adaptive Control Development

In this section, we examine the output tracking problem again for nonlinear system

(5.3) with uncertain output dynamics (5.4). We use an estimate of the uncertainty,

∆p̂, in the control calculation, and don’t compensate for the lack of passivity re-

sulted from estimation error.

The estimate can be from an arbitrary estimator, but we assume it to exponen-

tially converge to the true value. With this assumption, we are able to show the

closed-loop dynamics being asymptotically stable, and imply that the passivity-

based controller can be used together with other qualified estimators. We give this

result in the following theorem, and the schematic is shown in Figure 5.5.

Theorem 5.3. Consider single-input-single-output nonlinear system (5.3) with un-

certain output dynamics (5.4). ∆p̂ ∈ R is the estimate given by an estimation

scheme, and the error ∆p̃ = ∆p −∆p̂ satisfies:

∆p̃(t) = λ∆p̃(t0)e−ke(t−t0), where ke > 0. (5.30)
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The adaptive controller for y at y∗ is designed as:

u∗ = 1

φ(y)(ẏ
∗ + kc,1ey − p̄(y) −D∆p̂), (5.31a)

ū = 1

bf
(u̇∗ + kc,2eu + φ(y)ey − afu) , (5.31b)

du

dt
= afu + bf ū, (5.31c)

where af < 0 and bf ≠ 0; the error vectors are:

eu = u∗ − u, ey = y∗ − y. (5.32)

The closed-loop dynamics is asymptotically stable if the following conditions of

gains are satisfied:

k1 > 0, k2 > 0 and ke ≠ min{kc,1, kc,2}. (5.33)

Proposition 5.4. Choice of estimator gain ke and controller gains kc,1, kc,2 can be

advised by the following inequality relation:

k
1
2
c,max(dλ)2

2k
5
2
c,min − 2kek

3
2
c,min

< 1. (5.34)

This inequality ensures the attenuation of the upset from initial state estimation

error ỹ(t0).

Compare control laws, (5.5c), (5.31a), the former exactly accounts for the es-

timation error through the terms based on ỹ, which comes from using PBIE. In

the following we show the proof of Theorem 5.3 and Proposition 5.4, where the

estimation mismatch is not compensated in the control laws but assumed to be

exponentially convergent .

Proof. Plug in the assumed estimation error:

∆p̃(t) = λ∆p̃(t0)e−ke(t−t0), where ke > 0. (5.35)
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and the control laws (5.31a), (5.31b) into (5.4), (5.31c) to obtain the closed-loop con-

trol control error dynamics as:

ėy = −kc,1ey − d∆p̂ + φ(y)e2 (5.36)

= −kc,1ey + φ(y)eu − (dλ)∆p̃(t0)e−ket (5.37)

ėu = −kc,2eu − φ(y)ey. (5.38)

d is the scalar version of D. We define the following new notation for the later use

in the proof, Kc is the positive control gain matrix:

Kc =
⎡⎢⎢⎢⎢⎢⎣

kc,1 0

0 kc,2

⎤⎥⎥⎥⎥⎥⎦
, kc,min = min{kc,1, kc,2}, kc,max = max{kc,1, kc,2}. (5.39)

The control-Lyapunov function is Vc = 1
2e

2
y + 1

2e
2
u, and its time derivative is:

V̇c = ey ėy + euėu

= −kc,1e2
y − kc,2e2

u − (dλ)∆p̃(t0)e−ketey

= −∣∣K
1
2
c e∣∣2 − (dλ)∆p̃(t0)e−ketey

≤ −∣∣K
1
2
c e∣∣2 + ∣dλ∣∣∆p̃(t0)∣e−ket × ∣∣K−

1
2

c ∣∣ × ∣∣K
1
2
c e∣∣

= −∣∣K
1
2
c e∣∣ (∣∣K

1
2
c e∣∣ − ∣dλ∣e−ket∣∆p̃(t0)∣ × ∣∣K−

1
2

c ∣∣)

≤ −∣∣K
1
2
c e∣∣ (

√
kc,min∣∣e∣∣ − ∣dλ∣e−ket∣∆p̃(t0)∣ × ∣∣K−

1
2

c ∣∣)

Therefore, when

∣∣e(t)∣∣ > ∣dλ∣√
kc,min

e−ket∣∆p̃(t0)∣ × ∣∣K−
1
2

c ∣∣ = α(t), (5.40)

we have

V̇c < 0, when e =
⎡⎢⎢⎢⎢⎢⎣

ey

eu

⎤⎥⎥⎥⎥⎥⎦
≠ 0. (5.41)
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Figure 5.6: Representation of Bα(t0) and Bα(t1)
.

It indicates that if we choose Kc large enough so that the error trajectory starts

outside the ball Bα(t0), i.e. (5.40) holds at t = t0, ∣∣e∣∣ will decrease until

∣∣e(t)∣∣ = α(t), t = t1. (5.42)

Next step is to examine what happens if the error trajectory enters the ball

Bα(t1).

First, we show that Bα(t1) is a positive invariant set, indicated by α(t1) > α(t2),

if t2 > t1, since α(t) is an exponentially decreasing function of t. It ensures that at

the boundary of Bα(t1),
∂Vc(∣∣e(t1)∣∣,t)

∂t < 0,∀t > t1. So, once the trajectory enters the

ball of Bα(t1), it will not exit in any future time.

Then, we examine that if the error trajectory moves towards the origin after

entering the ball Bα(t1). ∃ t > t1, s.t. ∣∣e(t)∣∣ ≤ α(t), then V̇c becomes:

V̇c ≤ −2kc,minVc + ∣∣K
1
2
c e∣∣ × ∣dλ∣e−ket∣∆p̃(t0)∣ × ∣∣K−

1
2

c ∣∣ (5.43)

≤ −2kc,minVc + ∣∣K
1
2
c ∣∣ × ∣∣e∣∣ × ∣dλ∣e−ket∣∆p̃(t0)∣ × ∣∣K−

1
2

c ∣∣ (5.44)

≤ −2kc,minVc + ∣∣K
1
2
c ∣∣ × ∣dλ∣2√

kc,min
e−2ket∣∆p̃(t0)∣2 × ∣∣K−

1
2

c ∣∣2 (5.45)

76



5. ADAPTIVE CONTROL

Integrate both sides of (5.45) and obtain:

Vc ≤ Vc(t0)e−2kc,min(t−t0) + ∣∣K
1
2
c ∣∣ × ∣dλ∣2√

kc,min
∣∆p̃(t0)∣2 × ∣∣K−

1
2

c ∣∣2∫
t

t0
e−2kc,min(t−τ)e−2keτdτ

(5.46)

By setting constant γ = ∣∣K
1
2
c ∣∣ × ∣dλ∣2

√

kc,min
× ∣∣K−

1
2

c ∣∣2, we arrive at:

Vc ≤ Vc(t0)e−2kc,min(t−t0) + γ∣∆p̃(t0)∣2∫
t

t0
e−2kc,min(t−τ)e−2keτdτ (5.47)

≤ Vc(t0)e−2kc,min(t−t0) + γ

2kc,min − 2ke
∣∆p̃(t0)∣2 (e−2ket − e−2kc,min(t−t0)−2ket0)

(5.48)

Substitute Vc(t) = 1
2 ∣∣e(t)∣∣

2 into the above inequality, and solve for ∣∣e(t)∣∣:

∣∣e(t)∣∣2 ≤ ∣∣e(t0)∣∣2e−2kc,min(t−t0) + γ

kc,min − ke
∣∆p̃(t0)∣2 (e−2ket − e−2kc,min(t−t0)−2ket0)

(5.49)

If kc,min > ke, we have

∣∣e(t)∣∣2 ≤ ∣∣e(t0)∣∣2e−2kc,min(t−t0) + γ

kc,min − ke
∣∆p̃(t0)∣2e−2ket (5.50)

If kc,min < ke, we have

∣∣e(t)∣∣2 ≤ ∣∣e(t0)∣∣2e−2kc,min(t−t0) + γ

ke − kc,min
∣∆p̃(t0)∣2e−2kc,mint+2(kc,min−ke)t0

(5.51)

In both cases, ∣∣e(t)∣∣2, and therefore ∣∣e(t)∣∣, is exponentially stable.

Furthermore, we can analyze the impact of kc,min on the control error conver-

gence rate to origin. From first terms in both (5.50) and (5.51), we can see that the

convergence of the initial control error is faster with larger gain kc,min. To analyze

the influence of kc,min on the estimation error, we first reorganize term γ
kc,min−ke

by

plugging in the expression of γ, and using ∣∣K−
1
2

c ∣∣2 = 1
kc,min

, ∣∣K
1
2
c ∣∣ =

√
kc,max. Then,
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we have

γ

kc,min − ke
∆p̃(t0)2 = k

1
2
c,max(dλ)2

2k
5
2
c,min − 2kek

3
2
c,min

∆p̃(t0)2. (5.52)

When choosing estimator and controller gains, the inequality relation

k
1
2
c,max(dλ)2

2k
5
2
c,min − 2kek

3
2
c,min

< 1, (5.53)

should be kept in order to reduce the upset from the estimation error. But it is not

necessary to ensure the closed-loop stability.

5.3.2. Numerical Example

Numerical simulation of the proposed adaptive control on an example scalar sys-

tem is performed in Matlab. The actual system is:

dx

dt
= 10x + u + 5 sin(10t) sin(t), x(t0) = 0, (5.54)

where the last term is the uncertain parameter to be estimated. Here we still use

PBIE as an example of exponential converging estimator. The adaptive control

(5.31c), (5.31a), (5.31b) is used to control the system sequentially at constant set-

points x∗ = 5, and x∗ = 2. We choose the estimator gain as ke = 5, and control gains

as kc,1 = 10 and kc,2 = 20, respectively. The estimator starts with a wrong initial

condition of x̂(t0) = 1. To deal with the noncontinuous step change of the setpoint,

we use a first order filter:

x∗f =
1

τs + 1
x∗, τ = 0.1, x∗f(t = 0) = 5, x∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

5, for t ∈ [0,2)

2, for t ∈ [2,5).
(5.55)

Figure 5.7 shows the results of state tracking and estimations of parameter. The

estimate of µ exponentially converges to its true value, and tracks the dynamics of
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the parameter. There is a slight control overshoot before the state is stabilized at

the first setpoint, since the estimated parameter has relatively large difference from

the true value as shown in Figure 5.8. The overshoot is not observed when the state

settles at the second setpoint, since the difference at this point of time is very small.

The profiles of MV and pseudo-MV ū are also shown in Figure 5.7. To further in-

vestigate the effect of the estimator gain on the control performance, another simu-

lation is performed with a larger estimator gain ke = 8 and the same set of controller

gains. Control results are compared in terms of control errors and Lyapunov func-

tion Vc evolution in Figure 5.8. We achieve faster parameter convergence through

higher estimator gain, and reduced overshoot as shown in Figure 5.8 (a). Figure

5.9 shows the convergence of the ∣∣e∣∣, the bump around t = 0.5 corresponds to the

bump of the Lyapunov profile. The first intersection point of ∣∣e(t1)∣∣ and α(t1) de-

termines the positive invariant set, ball Bα(t1), after which ∣∣e(t)∣∣ < α(t) before the

second intersection. But, once ∣∣e(t)∣∣ > α(t), ∣∣e(t)∣∣ starts to decrease again. The

upper bound profile is only active when UB < α(t) and ∣∣e(t)∣∣ < α(t).

5.3.3. Adaptive Control for Partially Linear Systems with State Estimation

Consider the partially linear state space model:

dx

dt
= Ax(t) +Bu(t) +Dµ(x, t), (5.56a)

y = Cx, (5.56b)

yd = ẏ, (5.56c)

where x ∈ Rn, u ∈ Rp, µ ∈ Rq, and y ∈ Rm. µ(t) is a vector of unknown continuous

functions. The output vector y can be partitioned as:

y =
⎡⎢⎢⎢⎢⎢⎣

yc

yo

⎤⎥⎥⎥⎥⎥⎦
, dim(yc) = p,dim(yo) =m − p. (5.57)

yc represents the control output, and yo represents the remaining measured out-

puts. The control problem is to achieve output tracking for yc. Recall from the
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Figure 5.7: Adaptive control result for scalar system.

Figure 5.8: Adaptive control comparison with different estimator gains.
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Figure 5.9: Control error norm profile and comparison with other relevant bounds.

beginning of the thesis where we proposed to write the time derivative of yc as :

dyc
dt

= CcAx +CcDµ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆p(x)

+ CcB±
φ

u, (5.58)

where Cc is the corresponding submatrix of C. We can treat the sum of first two

terms as one uncertainty vector to be estimated, and used in adaptive control for

yc. The solution following that line of thinking is very similar to the one shown in

Theorem 5.3

Sometimes, it is of interest to know the unknown inputs µ and unmeasured

states x separately. The UIO and PBIE can be used for those two purposes, respec-

tively. Again, the following measurement conditions need to be met for state and

parameter estimation.

1. rank(CD) = q, which indicates that at least more than the number of un-

known inputs of measurements are available, and the rank condition makes

sure that the uncertainties can be observed by the outputs;

2. the existence conditions of the asymptotically stable UIO need to be met, and

they are defined in Theorems 4.1 and 4.2.

Theorem 5.5. Consider system (5.56), (5.57), satisfying above measurements con-

ditions. The adaptive controller for controlling yc to y∗c is composed of three parts:
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a UIO, a PBIE and a cascaded PBC:

UIO

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dẑI
dt = (Ã1 −LC̃1)ẑI + B̄1u + (LU2 +E1)y,

ẑV,1 = U1y −U1CNẑI

x̂ = T
⎛
⎜⎜
⎝

ẑI

ẑV,1

⎞
⎟⎟
⎠

(5.59)

PBIE

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dẑV,2

dt = Ā21ẑI + Ā22ẑV,2 + B̄2u + µ̂

µ̂ = ˙̂zV,1 +Ke(ẑV,1 − ẑV,2) − Ā21ẑI − Ā22ẑV,2 − B̄2u

(5.60)

PBC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗ = (CcB)−1(ẏ∗c +Kc(y∗c − yc) −CcAx̂ −CcDµ̂)

du
dt = Afu +Bf ū

ū = B−1
f (u̇∗ +Kcf(u∗ − u) +CcB(y∗c − yc) −Afu),

(5.61)

where eig(Af) < 0, and both Af and Bf are nonsingular. ẑV,1 represents the esti-

mated variants from the UIO, and ẑV,2 represent the estimated variants from PBIE.

The difference between these two estimates are used for feedback in the PBIE. The

partially linear system under the above controller is exponentially stable.

Proof. The proof is straightforward using Theorem 5.3, since the estimates of states

from UIO and µ from PBIE converge exponentially.

5.3.4. Numerical Example

In this section, we apply the adaptive controller to an SISO example:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0

−1 0 0

0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−0.5

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

µ (5.62)

y =
⎡⎢⎢⎢⎢⎢⎣

yo

yc

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
x. (5.63)
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Figure 5.10: Control and estimation result

Measurement conditions are met for the existence of UIO and PBIE. With the ex-

tra measured output yo, we can design closed-loop UIO with assignable conver-

gence rate. The relevant design parameters chosen are: Ke = 1 for the PBIE,

L = [1.5000,−1.0000] for the UIO, and Kc = 1, Kcf = 1 for the PBC. The proposed

adaptive controller with above specifications stabilizes yc at the set point y∗c = 2 as

shown in Figure 5.10 (c). The estimation errors of x̂2 and µ̂ monotonically decrease

as shown in Figures 5.10 (b) and (d). Before the estimates converge, the control

output slowly oscillates around the set point.

5.3.5. Stability of Zero Dynamics

In this section, we present our stability analysis of zero dynamics obtained us-

ing passivity-based control. In Chapter 2, we conducted the analysis for a time-

invariant deterministic SISO linear system. Now we are interested in exploring the
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same issue when a time-varying parameter µ ∈ R is involved. In this case, there are

two input-output relationships that are relevant to the stability of zero dynamics.

One is from the output y to the control input u, represented by the transfer function

Gu, and the other one is from the output y to µ, represented by the transfer func-

tion Gµ. Through simulation analysis, we make the observation that the locations

of zeros of Gu and the boundedness of µ determines the stability of zero dynamics.

• If Gu has nonnegative zero, the zero dynamics is unstable.

• If Gu only has negative zero, the zero dynamics is bounded-input bounded-

output stable with respect of µ.

We use the following example to illustrate the above conclusions.

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0

−1 0 0

0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−0.5

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

B

u +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
²
D

µ, µ = sin(t) (5.64)

y = Cx. (5.65)

The C matrix is varied, so that zeros ofGu andGµ have different types of locations.

The time-varying parameter is a bounded signal: µ = sin(t). The control objective

is to regulate y at y∗ = 2. The passivity-based control law is:

u = (CB)−1[ẏ∗ + k(y∗ − y) −CAx −CDµ], k = 1. (5.66)

• Case 1: C = [1,1,1]. Gµ has zeros: [0,0], andGu has zeros: [−0.2−0.75i, −0.2+

0.75i]. The control input has cyclic profile to compensate for the sinusoidal

parameter in control law (5.66). The states profiles also have trends similar to

µ as shown in Figure 5.11, but it does not go unbounded.

• Case 2: C = [1.1,0.8]. Gµ has zeros: [0.447−0.447], one of which is not stable.

Gu has stable zeros: [−0.119 − 0.65i − 0.119 + 0.65i]. The internal states are

BIBO as shown in Figure 5.12.
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Figure 5.11: Case 1, C = [1,1,1]. Gµ has zeros: [0 0], and Gu has zeros: [−0.2 −
0.75i − 0.2 + 0.75i]
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Figure 5.12: Case 2,Gµ has zeros: [0.447−0.447], andGu has zeros: [−0.119−0.65i −
0.119 + 0.65i]

86



5. ADAPTIVE CONTROL

Figure 5.13: Case 3, Gµ has zeros: [−1 − 1], and Gu has zeros: [−1 − 0.6667]

• Case 3: C = [1,−1,0]. Gµ has stable zeros: [−1 − 1], and Gu has stable zeros

[−1 − 0.6667]. The internal states are BIBO as shown in Figure 5.13

• Case 4: C = [1,0,0]. Gµ has zeros: [0 − 1], and Gu has one stable and one

unstable zeros: [−1, 0.5]. The zero dynamics are no longer stable as shown

in Figure 5.14.

5.4. Adaptive Control of Reaction Systems

In this section, we applied the proposed control method to one homogeneous and

one heterogeneous reaction example. We show that, the relevant unknown inputs,

i.e. the reaction rates and transfer rates. Asymptotic control convergence are ob-

tained in both examples.
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Figure 5.14: Case 4, Gµ has zeros: [0 − 1], and Gu has zeros: [−1 0.5]
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5.4.1. Homogeneous Reaction Example

We illustrate the performance of the proposed control using the reaction example:

2A→ B → C. The reaction rates in the simulation follow the mass-action principle:

r1 = k1 (
NA

V
)

2

(5.67)

r2 = k2
NB

V
, (5.68)

with the Arrhenius law:

k1 = k0,1e
−

Ea,1
RT (5.69)

k2 = k0,2e
−

Ea,2
RT . (5.70)

Concentrations of A and B are measured, and need to be controlled through the

respective inlet concentrations.

y =
⎡⎢⎢⎢⎢⎢⎣

CA

CB

⎤⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎣

CA,in

CB,in

⎤⎥⎥⎥⎥⎥⎦
(5.71)

The chosen output dynamics is:

dy

dt
= −F

V
y + F

V
u +

⎡⎢⎢⎢⎢⎢⎣

−2 1 0

0 −1 1

⎤⎥⎥⎥⎥⎥⎦
r, where, r =

⎡⎢⎢⎢⎢⎢⎣

r1

r2

⎤⎥⎥⎥⎥⎥⎦
(5.72)

We can find a construction of reaction variants that only involves these two species’

concentrations:

zV =
⎡⎢⎢⎢⎢⎢⎣

−0.5 0

−0.5 −1

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

CA

CB

⎤⎥⎥⎥⎥⎥⎦
, z∗V =

⎡⎢⎢⎢⎢⎢⎣

−0.5 0

−0.5 −1

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

C∗

A

C∗

B

⎤⎥⎥⎥⎥⎥⎦
. (5.73)

We can equally control CA and CB through controlling zV at z∗V , through the syn-

thetic MV, i.e. zV,in. Then zV,in is recovered to the true MVs by inversing the trans-
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formation:

u =
⎡⎢⎢⎢⎢⎢⎣

−0.5 0

−0.5 −1

⎤⎥⎥⎥⎥⎥⎦

−1

× zV,in. (5.74)

The adaptive controller for reaction variants is:

dẑV
dt

= −F
V

(zV,in − ẑV ) + r̂ (5.75a)

r̂ = dzV
dt

+Ke(zV − ẑV ) − F
V

(zV,in − ẑV ) (5.75b)

z∗V,in = (ż∗V +Kc(z∗V − zV ) − r̂ + F
V
zV ) V

F
(5.75c)

dzV,in

dt
= AfzV,in +Bf ū (5.75d)

ū = B−1
f [ż∗V,in +Kcf(z∗V,in − zV,in) +

F

V
(z∗V − zV ) −AfzV,in] (5.75e)

The passivity-based input estimator gain matrix isKe =
⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
, and the cascade

controller gains are: Kc =
⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
, and Kcf =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
. The augmented second order

filter has linear dynamics with matrices: Af =
⎡⎢⎢⎢⎢⎢⎣

−1 0

0 −1

⎤⎥⎥⎥⎥⎥⎦
, and Bf =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
. The

control result is shown in Figures and 5.15 and 5.16.

In this reaction control example, the variants and their setpoints can be con-

structed fully from measured species, so the state estimation step can be avoided.

By controlling two reaction variants, therefore two reactions, we can ensure the

stability of the zero dynamics. It is because of the asymptotic stability of the reac-

tion invariants, indicating concentration CC will be asymptotically stable as well.

Above stability can be shown through the profiles of the invariant and its conver-

gence to zI,in in Figure 5.17.
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(a) CA concentration (b) CB concentration

(c) MV: CA,in and CB,in

Figure 5.15: Control performance of species and profiles their compositions in in-
lets
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(a) zV

(b) zV,in

Figure 5.16: Control performance of reaction variants zV and profiles of the syn-
thetic MV, zV,in
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Figure 5.17: Profiles of CC , zI and zI,in

5.4.2. Heterogeneous Reaction Example

In this section, we give a heterogeneous reaction control example, which was first

introduced in Chapter 4. Based on the full state space model of the reactor (4.60),

and ouptut matrix C:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cc =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎦
, (5.76)

we can derive the output dynamics as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṅCl2(g)

ṅBA

ṅMBA

ṅHCl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Fout,g

mg

−Fout,l

ml

−Fout,l

ml

−Fout,l

ml

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nCl2(g)

nBA

nMBA

nHCl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 5.18: Profiles of rates in the heterogeneous reactor

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
MwCl2

0

0 1
MwBA

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CB

⎡⎢⎢⎢⎢⎢⎣

Fin,g

Fin,l

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

0 0 −1 −2

0 0 1 0

0 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CD

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζCl2,gl

ζHCl,lg

r1Vl

r2Vl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.77)

Same as the homogeneous case, the output dynamics does not involve other un-

measured compositions, therefore estimating unmeasured compositions are not re-

quired to estimate the rates vector is not necessary. This results from matrixA being

diagonal matrix in the reaction cases. Figure 5.18 shows the profiles of the rates and

the estimates from PBIE, and the profiles of control inputs and outputs are shown

in Figure 5.18.

5.5. Conclusions

In this chapter, we present the overall passivity-based control framework for non-

linear systems with uncertainty. The idea is based on transforming the state space

model description of a process into its output dynamics including an uncertainty,

and we use passivity-based techniques introduced in previous chapters to achieve
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Figure 5.19: Profiles of control outputs (a, b) and control inputs (c, d)

output tracking and relevant uncertainty estimation. The transformation could be

applied to reactor systems, and a range of process models derived from balance

equations with appropriate measurements.

Two types of adaptive controllers are presented in this chapter from the per-

spective of passivity. The problem is that the passivity of a subsystem obtained

through passivation transformation doesn’t hold when uncertainty estimation er-

ror exists. Theorem 5.1 presents the first type of adaptive controller design that

compensates for the estimation error and therefore the lack of passivity based on

PBIE output feedback. The passivity of the control subsystem is restored, and the

exponential stability of overall closed-loop is shown. Another type of adaptive

controller presented in Theorem 5.3 shows that with exponentially converging es-

timates given by an arbitrary estimation method, asymptotic control convergence

is obtained without extra passivity compensation. This results also implies that

we are able to asymptotically control systems with special partially linear structure

using state estimates from UIO, as concluded in Theorem 5.5. Also, the analysis of

zero dynamics stability under output feedback control is performed, and it shows
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that it is determined by the zeros of transfer functions relating the control input

and control output.

From the application perspective, we apply the adaptive control with PBIE

and UIO on two reaction examples, without using reaction or inter-phase trans-

fer mechanisms.
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In this chapter, we develop passivity-based control for systems with relative de-

gree higher than one through backsteeping. Section 6.1 motivates the theory with

a practical reactor temperature control problem. In Section 6.2, we present the pro-

posed control scheme and relevant passivity and stability theorems. Application

of the method on temperature control of a simulated semi-batch reactor is pre-

sented in Section 6.3. Section 6.4 shows two applications to control polymerization

reactions; in the first one, passivity-based control is used to operate a simulated

recipe-based polymerization reactor with several phases where each phase has dif-

ferent control objective and input; in the second application, we show the result

of an industrial trial using the proposed control scheme. We complete the chapter

with conclusions in Section 6.5.

6.1. Problem Statement

Figure 6.1 shows the schematic of a chemical reactor with a typical jacket cooling

scheme for temperature regulation of three types of reactors: batch reactors, semi-

batch reactors and CSTRs. The batch reactors are fed initially and emptied when

reactions are complete. In semi-batch reactors, some reactants are fed while reac-

tions proceed. In CSTRs, the reactants are added and products exit continuously

so that reactions can reach a steady state. The methodology of the temperature

control design developed in this chapter can be applied to all three types of reac-

tors, while here, we use semi-batch reactor for illustration to show the strength of

model-based feedback control for systems at transient state.

We model the semi-batch energy balances in the form of differential equations
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of temperatures as follows:

dTr
dt

= Fin
V ρCp

(ρinCp,inTin − ρCpTr) −
∆Hrr

Cpρ
− UA(Tr − Tj)

V ρCp
, (6.1a)

dTj

dt
= Fj
Vj

(Tj,in − Tj) +
UA(Tr − Tj)
VjρwCp,w

, (6.1b)

dTj,in

dt
= Fcw
Vcv

(Tcw − Tj,in) +
Frcy

Vcv
(Trcy − Tj,in) , (6.1c)

where Tr represents Reactor temperature; Tcw represents the cooling water temper-

ature; Tin represents the reactor inlet temperature; Tj represents the jacket temper-

ature; Tj,in represents the jacket inlet temperature; Trcy represents the jacket recycle

stream temperature; Fin represents reactor inlet flow rate; Fj represents the jacket

flow rate; Fcw represents the cooling water flow rate; Frcy represents the jacket re-

cycle flow rate; ρ represents average density of the reaction content; ρw represents

density of the water; ρin represents the density of the reactor inlet; Cp,w represents

the heat capacity of water; Cp represents the average heat capacity of the reactor

content; Cp,in represents heat content of the reactor inlet; V represents reactor con-

tent volume; ∆Hr represents the molar reaction heat; r represents the reaction rate;

U represents jacket-reactor heat transfer coefficient; Vcv represents the control vol-

ume.

The assumptions are: (1) the liquid phase is homogeneous and well mixed; (2)

the liquid mixture is ideal, incompressible; (3) the reactor is operated at constant

pressure; (4) the average density and heat capacity are constant; (5) the reaction is

assumed to be exothermic (∆Hr < 0) and the reactor is equipped with only cooling

capability; (6) the reaction rate is known or estimated using estimators, e.g. the

PBIE.

The last differential equation models the energy balance of the mixing process

of the cooling water and the jacket recycle flow. It is assumed that there is a fixed

control volume, Vcv, after the jacket recycle stream and cold water stream meet, and

that they are well mixed.

The control objective is to control the reactor temperature to a constant setpoint
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Figure 6.1: Schematic of a jacketed chemical reactor

or track a step change of the setpoint. The manipulated variable is the cooling

water flow rate Fcw. This makes the relative degree of the system (6.1a) – (6.1c)

equal to three.

6.2. Control Method Development

6.2.1. Passivity-based Backstepping Control

In Chapter 2, we introduced the passivity-based control theorems 2.4 and 2.6 to de-

sign controllers for control-affine relative-degree-one nonlinear systems. We briefly

review the control development here as the foundation of the solution to high-

relative degree systems.

Use following scalar system for illustration:

ẋ = f(x) + g(x)m, y = x. (6.2)

We want to control y to its setpoint y∗. The passive system is obtained by trans-

forming the original dynamic equation of x into its control error form:

ė = ẏ∗ − [f(x) + g(x)m]. (6.3)

The synthetic input is chosen to be u = ẏ∗ − [f(x) + g(x)m] and control error e

is the synthetic output. The mapping from u to e is passive. Then, the passive
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Figure 6.2: Feedback connection of a passive integrator system and an ISP con-
troller

system is stabilized by an input strictly passive (ISP) controller. The block diagram

in Figure 6.2 is an illustration of this idea.

Then, if we have the following high order system, how should we adapt the

above control scheme? Here we have a third-order system with relative degree

three, in the special strict-feedback form:

ẋ1 = f1(x1) + g1(x1)x2 (6.4a)

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 (6.4b)

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)m, (6.4c)

y = x1 (6.4d)

Strict-feedback form means that the nonlinearities fi and gi in the corresponding

ẋi depend only on x1,...,xi (i = 1,2,3) (Khalil, 1996). Also, we assume that

gi(x1, ..., xi) ≠ 0, i = 1,2,3, (6.5)

over the domain of interest. We can measure all the states, and want to stabilize

x1 at setpoint x∗1 through control input m. For the temperature control problem

(6.1a) – (6.1c), y is the output to be controlled, and it represents Tr in our case. x2

and x3 are the intermediate states that directly or indirectly affect the dynamics of

y. They represent Tj and Tj,in. We assume that all the three states are measured.

This assumption is reasonable in industrial practice. m is the manipulated variable,

and here it represents the cooling water flow rate Fcw. The system has a relative

degree of three. The control scheme is developed in the characteristic steps of back-
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stepping for the general state space model, (6.4a)–(6.4d), with relative degree three.

The derivation of control is provided in Section 6.2.2.

The passivity-based backstepping control laws are:

x∗2 =
C1(e1) + ẋ∗1 − f1

g1
, (6.6a)

x∗3 =
C2(e2) + e1g1 + ẋ∗2 − f2

g2
, (6.6b)

m = C3(e3) + e2g2 + ẋ∗3 − f3

g3
, (6.6c)

and the closed-loop error dynamics are given by the following equations:

ė1 = −C1(e1) + g1e2, (6.7a)

ė2 = −C2(e2) − g1e1 + g2e3, (6.7b)

ė3 = −C3(e3) − g2e2. (6.7c)

C1(e1), C2(e2) and C3(e3) are the ISP controllers used for the feedback control

of x1, x2 and x3, respectively. The stability and passivity properties for general

systems of relative degree of n are stated in the following theorems.

Theorem 6.1. Consider the strict-feedback, cascaded system,

ẋ1 = f1(x1) + g1(x1)x2, (6.8a)

⋮

ẋi = fi(x1, ..., xi−1, xi) + gi(x1, ..., xi−1, xi)xi+1, (6.8b)

⋮

ẋn = fn(x1, ..., xn−1, xn) + gn(x1, ..., xn−1, xn)m, (6.8c)

y = x1. (6.8d)

fi ∶ X→ R, and gi ∶ X→ R are sufficiently smooth functions. gi(x1, ..., xi) ≠ 0, i =
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1, .., n. If we choose a synthetic pair of input u and output control error vector e as:

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

⋮

ui

⋮

un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ė1 − g1e2

⋮

ėi − giei+1 + gi−1ei−1

⋮

ėn + gn−1en−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

⋮

ei

⋮

en

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.9)

The mapping u→ e is passive.

Proof. The passivity between the input and output pair can be shown using the

storage function W = 1
2eTe. Here we give the proof of the third order system case.

Differentiating the storage function W ,

Ẇ = e1ė1 + e2ė2 + e3ė3, (6.10)

and replacing the derivatives of errors with the function of defined inputs, we ob-

tain:

Ẇ=e1ė1 + e2ė2 + e3ė3

=e1(u1 + g1e2) + e2(u2 + g2e3 − g1e1) + e3(u3 − g2e2)

=u1e1 + u2e2 + u3e3

=uTe (6.11)

The output e is passive w.r.t. the input u.

Theorem 6.2. Consider the system described by (6.8a)–(6.8d) and the controller

described by

x∗2 =
C1(e1) + ẋ1 − f1

g1
(6.12a)

⋮

x∗i =
Ci−1(ei−1) + ei−2gi−2 + ẋ∗i−1 − fi−1

gi−1
(6.12b)
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Figure 6.3: Feedback connection of a passive system of backstepping control error
and an ISP controller

⋮

m = Cn(en) + en−1gn−1 + ẋ∗n − fn
gn

(6.12c)

If the feedback controls C(e) are ISP controllers, then the interconnected feedback

system is globally, asymptotically stable.

Proof. The proof of relative degree three case is given along with the control

derivation in Section 6.2.2 by showing that the control Lyapunov function V3 =
1
2e

2
1 + 1

2e
2
2 + 1

2e
2
3 + Vc,1 + Vc,2 + Vc,3 is positive definite and the time derivative V̇3 is

negative definite. It can be easily generalized for general case.

The passive input-output mapping in Farschman et al. (1998) is actually linear,

however in the case of relative degree greater than 2, the mapping is not linear

anymore.
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6.2.2. Passivity-based Backstepping Control for a System with Relative Degree

Three

Here we give the derivation of the passivity-based backstepping control method

with ISP controllers for a system described by (6.4a)–(6.4c).

Step 1: Define the control error states as

e1 = x∗1 − x1, e2 = x∗2 − x2, e3 = x∗3 − x3, (6.13)

where x∗1 is the setpoint, and x∗2 , x∗3 are the virtual controls. The derivative of first

control error can be written as:

ė1 = ẋ∗1 − (f1 + g1x2) . (6.14)

Substitute x2 = x∗2 − e2 into the above equation and rearrange it to get:

ė1 = ẋ∗1 − (f1 + g1x
∗

2) + g1e2. (6.15)

The first control law for x∗2 is derived using the Lyapunov function V1 = 1
2e

2
1 + Vc,1,

where Vc,1 ≥ 0 is the storage function of the first ISP controller. The derivative of

Vc,1 fulfills the ISP condition:

V̇c,1 ≤ e1C1(e1) − γ1e
2
1, γ1 > 0, (6.16)

where γ1 is the dissipation rate for the ISP controller.

Set

ẋ∗1 − (f1 + g1x
∗

2) = −C1(e1) (6.17)

to obtain the following control law:

x∗2 =
C1(e1) + ẋ∗1 − f1

g1
, (6.18)
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where C1(e1) is an ISP feedback controller. With the control law (6.18), the deriva-

tive of V1 becomes:

V̇1 = −C1(e1)e1 + g1e1e2 + V̇c,1 ≤ g1e1e2 − γ1e
2
1; (6.19)

and the closed-loop dynamics becomes:

ė1 = −C1(e1) + g1e2. (6.20)

Choose the l.h.s. of (6.17) as first synthetic input u1, and combine with (6.15) to

rewrite it as

u1 = ė1 − g1e2. (6.21)

Choose the first synthetic output as y1 = e1.

If this were a first order system, e2 = 0, the input and output pair:

u1 = ė1, y1 = e1, (6.22)

is passive. Also the closed-loop system is globally asymptotically stable, since V̇1 ≤

−γ1e
2
1 is negative definite.

Step 2: The derivative of the second error variable is:

ė2 = ẋ∗2 − ẋ2

= ẋ∗2 − (f2 + g2x
∗

3) + g2e3 (6.23)

The augmented Lyapunov function is chosen as

V2 = V1 +
1

2
e2

2 + Vc,2, (6.24)

105



6. PASSIVITY-BASED BACKSTEPPING CONTROL

where Vc,2 is the storage function of the second feedback ISP controller. Taking the

derivative of V2, we have

V̇2 ≤ g1e1e2 − γ1e
2
1 + e2 [ẋ∗2 − (f2 + g2x

∗

3) + g2e3]

+ e2C2(e2) − γ2e
2
2

= e2[g1e1 + ẋ∗2 − (f2 + g2x
∗

3) + g2e3] + e2C2(e2)

− γ1e
2
1 − γ2e

2
2. (6.25)

Set

e1g1 + ẋ∗2 − (f2 + g2x
∗

3) = −C2(e2) (6.26)

to obtain the second control law for the second virtual control variable x∗3 :

x∗3 =
C2(e2) + e1g1 + ẋ∗2 − f2

g2
. (6.27)

Thus the derivative of V2 becomes:

V̇2 ≤ g2e2e3 − γ1e
2
1 − γ2e

2
2. (6.28)

The second pair of synthetic input and output are chosen similarly to the first pair.

Set the l.h.s. of (6.26) as the second input u2, and combine (6.23) to rewrite it as:

u2 = ė2 − g2e3 + g1e1. (6.29)

The second output is y2 = e2.

Step 3: The derivative of the third control error is:

ė3 = ẋ∗3 − ẋ3

= ẋ∗3 − (f3 + g3m). (6.30)
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To design the control law, choose the augmented control Lyapunov function V3 =

V2 + 1
2e

2
3 + Vc,3, and similar to the previous two steps, Vc,3 is the storage function of

the third ISP controller. Differentiate V3 and combine (6.28) to get:

V̇3 ≤ g2e2e3 − γ1e
2
1 − γ2e

2
2 + e3ė3 + V̇c,3. (6.31)

Replace ė3 with (6.30), and apply the input strictly passive inequality condition on

V̇c,3. We then obtain:

V̇3 ≤ g2e2e3 − γ1e
2
1 − γ2e

2
2 + e3[ẋ∗3 − (f3 + g3m)] + e3C3(e3) − γ3e

2
3

= e3[g2e2 + ẋ∗3 − (f3 + g3m)] + e3C3(e3) − γ1e
2
1 − γ2e

2
2 − γ3e

2
3. (6.32)

Set g2e2 + ẋ∗3 − (f3 + g3m) = −C3(e3) to solve for the third control law:

m = C3(e3) + e2g2 + ẋ∗3 − f3

g3
. (6.33)

Finally, we have V̇3 ≤ −γ1e
2
1 − γ2e

2
2 − γ3e

2
3 being negative definite, and the origin of

the following closed-loop system of control errors,

ė1 = −C1(e1) + g1e2 (6.34a)

ė2 = −C2(e2) − g1e1 + g2e3 (6.34b)

ė3 = −C3(e3) − g2e2, (6.34c)

is globally asymptotically stable.

6.3. Passivity-based Backstepping Control of Reactor Temperature

In this section, we demonstrate the effectiveness of the backstepping control

method for temperature control in a semi-batch reactor case. First we write the
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temperature differential equations in the general model form, (6.4a)–(6.4c), with

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(Tr)

f2(Tr, Tj)

f3(Tr, Tj , Tjin)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Fin

V ρCp
(ρinCp,inTin − ρCpTr) − ∆Hrr

Cpρ
− UATr
V ρCp

−Fj

Vj
Tj − UA

VjρwCpw
Tj + UA

VjρwCpw
Tr

Frcy

Vcv
(Trcy − Tj,in)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(Tr)

g2(Tr, Tj)

g3(Tr, Tj , Tjin)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

UA
V ρCp

Fj

Vj
Tcw−Tjin

Vcv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Insert the corresponding terms into the control equations, (6.6a)–(6.6c), to ob-

tain the following control laws:

T ∗j = Tr + [C1(e1) + Ṫr
∗]V ρCp

UA
− FinρinCp,in

UA
(Tin − Tr) −

Qr
UA

, (6.35a)

T ∗j,in = [C2(e2) + Ṫj
∗]Vj
Fj

− UA(Tr − Tj)
ρwCp,w

1

Fj
+ Tj +

e1UA

V ρCp

Vj

Fj
(6.35b)

Fcw = Vcv
Tcw − Tj

[C3(e3) + Ṫ ∗jin] −
Fj(Tj − Tj,in)
Tcw − Tj

+ Fj
Vj

e2

Tcw − Tj
Vcv (6.35c)

where Qr is the rate of heat generated from reactions. Here, T ∗j and T ∗j,in are the

first and second virtual control variables, serving as the setpoints of Tj and Tj,in.

Control laws (6.35a)–(6.35c) show that backstepping is similar to cascade with addi-

tional elements introduced to compensate for nonlinearities. The parameters used

in the simulation are shown in Table 6.1. The model of the semi-batch reactor can

be found in Appendix D.

In the following, we show results from two case studies. (1) Control with per-

fect information of parameters and proportional control. (2) Control with param-

eter mismatch, where the heat generation from the reaction (Qr = ∆HrrV ) is not

known accurately. We compare the control performances of using proportional

backstepping control and proportional-integral backstepping control in the second

case.
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Table 6.1: Parameters of the semi-batch simulation

Average heat capacity of the reaction content (Cp) 0.239 J/(g ⋅K)
Heat capacity of water (Cp,cw) 4.184 J/(g ⋅K)
Average density of the reaction content (ρ) 1000 g/L
Density of reactor inlet stream (ρw) 1000 g/L
Density of water (ρin) 1000 g/L
Heat transfer coefficient× area (UA) 5 × 104 J/s ⋅K
Reactor volume at t = 0 10 L
Reactor cooling jacket volume (Vj) 45 L
Control volume (Vcv) 40 L
Flow rate through cooling jacket (Fj) 300 L/min
Temperature of cooling water (Tcw) 320 K

A saturation condition is placed on the manipulated variable such that 0 ≤ Fcw ≤

300(L/min). The upper limit is the fixed flow rate of the jacket inlet, Fj . The sim-

ulated time is 100 min, and there is an increase of the inlet flow Fin at t = 50 min,

as shown in Figure 6.4. The increase of inlet flow rate causes the increase in the

amount of the heat generated from the reaction, Qr.

Case study without parameter uncertainty

The control performance of the first case is shown in Figure 6.5. The primary con-

trol objective Tr is well controlled at the setpoint 370 K without oscillation. Two

slave control objectives Tj and Tj,in also track the calculated setpoints very well.

For Tj,in, the calculated setpoint is high when the reactor temperature is below

the setpoint. An exothermic reaction is simulated and the reactor jacket is only

equipped with cooling ability. Thus, when the reactor temperature is below the

setpoint, the cooling water flow is saturated at zero. The proportional gains used

in the simulation are: kc,1 = 1, kc,2 = 2, kc,3 = 5.

Case study with parameter uncertainty

The heat generated by the reaction is the unknown parameter. It is assumed to be a

constant in the controllers for the simulations in this section. Because of the param-

eter mismatch, we use proportional-integral (PI) feedback in the backstepping, and
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Figure 6.4: Profile of reactor inlet

Figure 6.5: Profiles of Tr, Tj , Tj,in and MV Fcw when Qr is perfectly known
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compare the result obtained using proportional-only backstepping control. The

control parameters are as follows:

P only feedback: kc,1 = 1, kc,2 = 2, kc,3 = 5;

PI feedback: kc,1 = 1, τI,1 = 1, kc,2 = 2, kc,3 = 5.

The integral action is only used for the control of Tr, not for the slave control ob-

jectives, Tj , Tj,in. It is because the uncertain parameter Qr only exists in the dy-

namics of Tr. Figure 6.6 compares the control performances from two different

feedback schemes. Comparisons of relevant metrics regarding the top level control

are shown in the Table 6.2. With P feedback, the temperature is controlled with an

offset due to the uncertainty mismatch, causing a very long settling time of more

than 100. With PI feedback, the reactor temperature is stabilized at the setpoint

without an offset, and its settling time is 34.6. PI feedback causes integral wind-up

at the initial stage, which is reflected by the overshoot of Tr, with a peak value of

404.2 K, the incompetent tracking of the slave control objectives, and initial Fcw

saturation shown in Figure 6.7.P feedback allows slave control objectives Tj , Tj,in

have better tracking w.r.t. their setpoints, but the slave setpoints are not sufficient

to drive Tr to the required setpoint. Figure 6.7 also shows the true evolution of

Qr from implementing two feedback schemes and the mismatched Qr estimation

used in the control calculations.

Table 6.2: Control performance comparison when parameter uncertainty exists

Metrics P-only passivity-based backstepping PI passivity-based backstepping
Rise time 4.8 4.1
Settling time > 100 34.6
Peak time 20.5 17.2
Peak 388 K 404.2 K
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Figure 6.6: Profiles of temperatures and their setpoints with P only or PI feedback
backstepping control, when Qr is inaccurately known.

Figure 6.7: Profiles of Fcw and Qr with with P only or PI feedback backstepping
control, when Qr is inaccurately known.
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Table 6.3: CV and MV for 5 process phases

Phase CV MV
Filling V Fin

Heating up Tr Fcw and Fhw
Monomer feeding and reaction Tr Fcw and Fhw

Cooling down Tr Fcw and Fhw
Draining V Fout

6.4. Recipe-based Control of Semi-batch Polymerization

In this section, we illustrate the application of the proposed scheme to a semi-batch

polymerization reactor. The kinetic information is not used in the control design.

The polymerization process response on the MV is simulated using the reaction

model developed by Crowley & Choi (1997), and detailed in Appendix D of this

paper. The semi-batch polymerization process recipe is composed of five phases:

1. fill reactor with monomer solution and initiator;

2. heat the reactor up to the desired operation temperature;

3. finish feeding the rest of the monomer, and wait until polymerization com-

pletes;

4. cool the reactor;

5. drain the reactor.

For different phases, the control objectives are different. The pair of the control

variable and manipulate variable is summarized in Table 6.3.

For the heating, reaction and cooling phases, the polymerization reactor tem-

perature regulation mechanism is shown in Figure 6.8, where the jacket inlet flow

becomes a tempered water flow by mixing hot and cold water streams.

6.4.1. Simulation Example and Result

The semi-batch methyl methacrylate (MMA) polymerization process proceeding

with the above recipe and control is simulated. Process variables profiles are shown
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Figure 6.8: Polymerization semi-batch reactor and control setup

in Figure 6.9. Since the reaction phase takes much longer than the other phases, the

profiles of the third phase are plotted with time scale in minutes, while the rest of

the variables are plotted with time scale in seconds.

Figure 6.9((a)) shows the reactor holdup profile, which is the CV during the

filling and draining phases. The holdup control problem has only relative degree

of one, and the controller is a simple proportional feedback controller:

F = k(V ∗ − V ), k > 0.

The profiles of the MV, inlet or outlet flow rates of the reactor are shown in Fig-

ure 6.9((d)), along with constant profiles for the other three phases. Figure 6.9((b))

shows the profile of reactor temperature, which is the CV of the heating, reaction

and cooling phases. The temperature for those phases are well controlled, with-

out using any modeling information of the complex polymerization in the control

laws. They are coupled in one term, heat generation rate by the reaction, Qr. Fig-

ure 6.9((c)) shows the monomer number of moles profile, and it can be observed in

the reaction phase plot that after stopping the monomer solution feed, the process

waits until the monomer are mostly consumed before transiting to the next cooling

phase. It indicates that some on-line monitoring of residue monomer is required to
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determine the timing of the transition.

6.4.2. Industrial Application Example and Implementation Result

Some industrial trials have been carried out to test the proposed control logic. The

implemented control has two backstepping controllers cascaded at the top two lev-

els. The primary controller equation remains the same as (6.35a). The secondary

controller for T ∗j,in is implemented with a simplified version of (6.35b):

T ∗j,in= [C2(e2) + Ṫj
∗]Vj
Fj

− UA(Tr − Tj)
ρwCp,w

1

Fj
+ Tj (6.36)

It omits term e1UA
V ρCp

Vj
Fj

, designed to compensate for the tracking error of Tj . How-

ever, with a fair assumption of the boundedness property of the process dynamics,

asymptotic stability can still be maintained for the closed-loop by using high gains.

The tertiary controller is a PID controller manipulating the flows of cold and hot

supplies, and it is sufficient since flow control loop is much faster than previous

two temperature control loops.

Figure 6.10 shows the profiles of CV, reactor temperature, MV, jacket inlet tem-

perature, and disturbance variable (DV), monomer feed pump speed. We consider

Tj,in as MV here, since its setpoint is determined by the secondary passivity-based

controller and is executed through the bottom PID controller. The setpoint of the

reactor temperature is 8○C. During the period of 1500s–2200s, the process data was

lost, which is represented by the flat line of temperature at the setpoint. With the

available data, we can see that after the initial transition stabilizing period, the reac-

tor temperatures is controlled quite close to the setpoint. The benefit of including

the feedforward terms in the control logic can be clearly observed from the MV

profile, as it responds quickly to several step changes of monomer flow rate, the

disturbance here.

The values of reactor-jacket heat transfer coefficient, reaction system heat capac-

ity and reaction heat used in control calculations are shown in Table 6.4. During the

trial, Cp and U values ramp over the feed. Reaction heat is estimated by inverting
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Figure 6.10: Profiles of industrial trial process variables

Parameters Minimum Maximum Description
Cp (BTU/lb-degF) 0.5 1 heta capacity

Mr (lb) 5 44 mass of reaction system
U (BTU/ft2-min-degF ) 0.1 30 heat transfer coefficient

A (ft2) 0.1 5 heat transfer area
Mj (lb) 20 20 mass of jacket content

ρr (lb/gal) 8.1 8.5 reaction systems density

Table 6.4: Process parameter ranges

the reactor energy balance with online temperature measurements. Related discus-

sion of this estimation has been provided in Chapter 3. As we show in simulation

results, integral action should help reducing control errors caused by estimation

inaccuracy in those situations. Bounds of process parameters are listed in Table

6.4.

6.5. Conclusions

In this chapter, we proposed to use of the classic backstepping method for the semi-

batch reactor energy control problem, while introducing ISP feedback controller in

the control design. The passivity-based control idea, being widely used for relative

degree one system, is extended to higher relative degree systems through backstep-

ping. The stability of the closed-loop system and the passivity of the synthetic input
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and output are shown. The proposed control method can be easily implemented

in practice since it maintains PID as the feedback component and systematically

provides explicit formula for including model-based feedfoward terms. The in-

clusion of PID, as the ISP component, is a practical way to ease requirement of

accurate kinetic knowledge for computing reaction heat generation. The proposed

control scheme also has the potential to outperform the traditional PID-only cas-

cade control in disturbance rejection and maintaining stability. It also provides

improvement for base level control by considering process models, and can be im-

plemented in distributed control systems. Industrial trials are conducted and show

satisfactory control performance.
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7.1. Conclusions

In this thesis, we developed an adaptive control framework for controlling non-

linear processes with uncertainty, and applied it to control reaction systems with-

out the knowledge of reaction kinetics. The framework incorporates the measure-

ments’ derivative information in order to estimate the uncertainty involved in out-

put dynamics. By using the derivative information, the control and estimation

schemes do not require the modeling of the internal dynamics and states. The

proposed framework allows us to control reaction systems without knowing the

reaction kinetics, and estimate unmeasured compositions by utilizing the available

partially linear structure of internal dynamics.

We started by defining the output dynamics involving uncertainty in the fol-

lowing form:

dy

dt
= p̄(y) +D∆p(x) + φ(y)u. (7.1)

The uncertainties, usually related to production, are all lumped into one term,

∆p(x). The structure applies to reaction systems and many other processes that

can be modeled based on balance equations.

We designed the passivity-based input estimator (PBIE) that produces stable

estimates of the uncertainty ∆p(x) and attenuates the noise from the derivatives

of the measurements. The estimation scheme can, for example, be used to esti-

mate the reaction rate and rates of heat transfer and generation in a reactor without

using the reaction kinetics or transfer mechanism information. We show the neces-
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sity of including the derivatives through stability analysis and simulation compar-

ison between PBIE and other inversion-based estimation schemes that do not use

derivative information.

We integrated the estimator with passivity-based inventory control and showed

that output tracking with asymptotic stability can be achieved. The integration of

the estimation scheme enables output tracking without modeling the internal dy-

namics, thereby saving computational and modeling cost. Moreover, we showed

that if we explore the known linear structure in a reactor model, we are able to

estimate the unmeasured compositions by using the asymptotic observer. We gen-

eralized this idea and developed an adaptive control approach with state estima-

tion for nonlinear systems with a similar structure. The adaptive control scheme

is tested on an example reaction system with composition control and several nu-

merical nonlinear systems.

Another contribution from the thesis is to extend passivity-based control to

high-relative degree nonlinear systems. We use backstepping to define transfor-

mations that render a high-relative degree system passive, and stabilize with input

strictly passive controllers. Systems with uncertainty can be controlled by using a

PI controller as the ISP component. Finally, the resulting scheme was successfully

tested in an industrial example to control the temperature of a semi-batch polymer-

ization reaction.

The thesis work has led to the following peer-reviewed publications:

1. Zhao, Z. and Ydstie, B.E. (2018). Passivity-based backstepping control of a

semi-batch reactor. Submitted for publication.

2. Zhao, Z. and Ydtsie, B.E. (2018). Passivity-based input observer. Accepted

for the 10th IFAC Symposium on Advanced Control of Chemical Processes.

3. Zhao, Z., Capparella, T., Ferrio, J., Wassick, J. M., and Ydstie, B. E.

(2017). Passivity-based back-stepping control of a semi-batch reactor. IFAC-

PapersOnLine, 50 (1), pp. 13741-13746.

4. Zhao, Z., Wassick, J.M., Ferrio, J., and Ydstie, B.E. (2016). Reaction vari-
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ants and invariants based observer and controller design for CSTRs. IFAC-

PapersOnLine, 49(7), pp.1091-1096.

Two additional publications are under preparation:

1. Passivity-based unknown input observer

This publication will present a method that integrates the UIO from Chapter 3

and the PBIE from Chapter 4 to propose an observer that estimates the states

and unknown inputs simultaneously. Unlike with other input observers, we

propose to use the derivative information resulted from the passivity theo-

rem.

2. Adaptive inventory control for nonlinear systems with uncertainty

The content of this publication will be mainly Chapter 5.

7.2. Future work

In practice, measurements are always corrupted with noise, which can be ampli-

fied if the numerical differentiator is not chosen carefully. Therefore, numerical

derivatives are frequently avoided in parameter/input estimators. During the de-

velopment of the PBIE, we showed that derivative noise was effectively attenuated.

However, we also found that the attenuation is counteracted when noise is present

in primary measurements. It is because the noise involved in primary measure-

ments is amplified by the proportional feedback correction mechanism. To ensure

that both noises are dampened in the estimates, integral action based on sliding

mode (Levant, 1998; Wang & Ydstie, 2007) could be used. It is also possible to con-

sider other feedback actions as long as passivity and stability are maintained. As

discussed in Chapter 3, under the situation of no noise in the primary measure-

ments, the estimation performance and also convergence analysis favor the usage

of derivatives. It is also of interest to derive and compare the conditions of sta-

bilities for methods with and without using derivatives when the assumption of

absent noise is relaxed. Comparisons of implementation feasibility and estimator

parameter tuning difficulty are also worthwhile.
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Control and estimation with constraints is another aspect to consider for future

improvement. Inclusion of physical constraints on the estimates may help to reject

unmodeled disturbance and avoid aggressive estimation during the transition pe-

riod. From the control perspective, control input constraint is inevitable in reality,

but it may cause the breakdown of closed-loop stability. Farschman et al. (1998)

give the sufficient condition of adaptive inventory control stability with control

input constraints. It is of interest to look at how the proposed adaptive inven-

tory control with PBIE fits into that result. The result could also be extended to

draw conditions to ensure passivity-based backstepping control stability for high-

relative degree control problems when input constraints exist. Model predictive

control is also one way to deal with control constraints, and it could resolve the

cumbersome cascaded structure in the case of high-relative degree problems.

One advantage of the passivity-based adaptive inventory control is its high im-

plementability in current DCS platforms. It can be programmed in form of PID

controllers for linear processes and PID with feedforward terms in the nonlinear

case. It also provides insights into controller parameter tuning based on process

dynamics. The feedforward term estimation scheme could also be programmed us-

ing common blocks like PID and filters. It has been proved through the successful

implementation at Dow for polymerization reactor control and estimation. There-

fore, we look forward to future opportunities to test the proposed control scheme

in more real-world processes and use the practical insights to further improve the

method.
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A. PASSIVITY-BASED INPUT ESTIMATOR EVALUA-

TION FOR THE CASE WITH NOISES IN BOTH PRI-

MARY MEASUREMENTS AND DERIVATIVES

This section presents the analysis of using PBIE on primary measurements with

noise. The system is:

dz

dt
= az + bµ (A.1a)

y1 = z + δ1 (A.1b)

y2 = ż + δ2 (A.1c)

The input observer is composed of differential equations that imitate the system

using incomplete information, and the parameter update law:

˙̂z = aẑ + bµ̂ (A.2a)

µ̂ = 1

b
(y2 + k(y1 − ẑ) − aẑ), k > 0 (A.2b)

First we derive the differential equations for estimation errors, z̃ and µ̃. Substi-

tute µ̂ in (A.2a) with (A.2b) and get:

˙̂z = ż + δ2 + k(z − ẑ) + kδ1 (A.3)
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NOISES IN BOTH PRIMARY MEASUREMENTS AND DERIVATIVES

Subtract above equation from system state equation (A.1a) to get:

˙̃z = −kz̃ − kδ1 − δ2 (A.4)

Follow similar steps for µ̃ and obtain:

˙̃µ = −a + k
b

z̃ − k
b
δ̇1 −

1

b
δ̇2 (A.5)

The relationship between estimation erros and the measurement noises are:

⎡⎢⎢⎢⎢⎢⎣

z̃(s)

µ̃(s)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

− k
s+k − 1

s+k

−k(s−a)b(s+k) − s−a
b(s+k)

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

δ1(s)

δ2(s)

⎤⎥⎥⎥⎥⎥⎦
(A.6)

The amplitude ratio matrix from the frequency response of this 2 by 2, error to

noise system is as follows.

AR =

⎡⎢⎢⎢⎢⎢⎢⎣

k
√

k2+ω2
1

1
√

k2+ω2
2

k
b

√
a2+ω2

1

k2+ω2
1

1
b

√
a2+ω2

2

k2+ω2
2

⎤⎥⎥⎥⎥⎥⎥⎦

. (A.7)

From the elements in the first row of AR matrix, the attenuation of both noises,

δ1 and δ2, in state estimate is achieved if k2 > 1 − ω2
2 . However, the attention of

both noises in parameter estimate cannot be achieved simutaneously. It can be

shown by the exclusive ranges of k: k2 < a2 and k2 > a2, which are the solutions of

attentuation conditions AR(2,1) < ∣ab ∣ and AR(2,2) < ∣1b ∣, respectively.

Then, we want to investigate if we can make a trade-off between attenuation

two noises through choosing k. With the chosen k, the observer can overall dampen

the effect of two noises in parameter estimate. Again, model the noises as sinu-

soidal waves:

δ1 = δ1 +A1 sin(ω1t + φ1),

δ2 = δ2 +A2 sin(ω2t + φ2).
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Solve different equation (A.5) for µ̃ and get:

µ̃ = −(k + a
b

δ1 +
k + a
bk

δ2 − α1,1, − α1,2)e−kt +
a

b
δ1 +

a

bk
δ2 +

¿
ÁÁÀA2

1k
2(a2 + ω2

1)
b2(k2 + ω2

1)
sin(ω1t + θ1)

+
¿
ÁÁÀA2

2(a2 + ω2
2)

b2(k2 + ω2
2)

sin(ω2t + θ2). (A.8)

The coefficients are:

α1,1 =
A1k(a + k)
b(k2 + ω1)

(ω1 cosφ1 − k sinφ1) (A.9)

α1,2 =
A2(a + k)
b(k2 + ω2)

(ω2 cosφ2 − k sinφ2) (A.10)

The phase shifts are:

tan θ1 =
(ak − ω2

1) sinφ1 − (a + k)ω1 cosφ1

(a + k)ω1 sinφ1 − (ω2
1 − ak) cosφ1

(A.11)

tan θ2 =
(ak − ω2

2) sinφ2 − (a + k)ω2 cosφ2

(a + k)ω2 sinφ2 − (ω2
2 − ak) cosφ2

(A.12)

If we relate the two noises through a differentiator, i.e.:

δ1 = δ1 +A1 sin(ω1t + φ1),

δ2 =
dδ1

dt
= ω1A1 cos(ω1t + φ1) = ω1A1 sin(ω1t + φ1 + π/2) (A.13)

Then for δ2, we can write:

ω2 = ω1 A2 = ω1A1 φ2 = φ1 + π/2 (A.14)

With above relations, sustained oscillatory terms in (A.8) become:

µ̃t→+∞ =
¿
ÁÁÀA2

1k
2(a2 + ω2

1)
b2(k2 + ω2

1)
sin(ω1t + θ1) +

¿
ÁÁÀA2

1ω
2
1(a2 + ω2

1)
b2(k2 + ω2

1)
sin(ω1t + θ2)

= β1 sin(ω1t + θ1) + β2 sin(ω1t + θ2)

= (β1 cos θ1 + β2 cos θ2) sin(ω1t) + (β1 sin θ1 + β2 sin θ2) cos(ω1t)
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NOISES IN BOTH PRIMARY MEASUREMENTS AND DERIVATIVES

=
√

(β2
1 + β2

2) + 2β1β2(sin θ1 sin θ2 + cos θ1 cos θ2) sin(ω1t + θ3). (A.15)

Reorganize the trigonometric functions in the second parenthesis:

sin θ1 sin θ2 + cos θ1 cos θ2 =
¿
ÁÁÀ tan θ2

1 tan θ2
2

(1 + tan θ2
1)(1 + tan θ2

2)
+ 1√

1 + tan2 θ1

× 1√
1 + tan2 θ2

(A.16)

= tan θ1 tan θ2 + 1√
(1 + tan θ2

1)(1 + tan θ2
2)

(A.17)

The phase shifts become:

tan θ1 remains the same as (A.11),

tan θ2 =
(ak − ω2

1) cosφ1 + (a + k)ω1 sinφ1

(a + k)ω1 cosφ1 − (ω2
1 − ak) sinφ1

. (A.18)

The numerator in (A.17), tan θ1 tan θ2 + 1 = 0 Thus, the sustained error in µ is:

µ̃t→+∞ =
√
β2

1 + β2
2 sin(ω1t + θ3) (A.19)

=
√

A2
1(a + ω2

1)
b2

sin(ω1t + θ3) (A.20)

From this analysis, we found that the observer gain actually doesn’t have any im-

pact on the sustained error magnitude. It is the same as using direct inversion.
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NOISES IN BOTH PRIMARY MEASUREMENTS AND DERIVATIVES

Figure A.1: a = −1, b = 2, ω1 = 5,A1 = 3, k = 5

Figure A.2: a = −1, b = 2, ω1 = 5,A1 = 3, k = 0.5
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B. DERIVATION OF PID CONTROLLER FROM THE

PERSPECTIVE OF PASSIVITY-BASED ADAPTIVE

CONTROL

In this section, we derive the PID formulation using measured deriavtive and dyan-

mics inversion. We consider the system:

dx

dt
= ax + bu (B.1)

y1 = xf (B.2)

y2 = ẋf (B.3)

xf is filtered measurement of x, and ẋf is the filtered derivative. Set ẋ∗−ẋ = −k(x∗−

xf), and substitute ẋ with ẋ ≈ axf + bu, to get

u = 1

b
(ẋ∗ + kef − axf), where ef = x∗ − xf . (B.4)

Substitute axf = ẋf − buf into above equation to get:

u = 1

b
(ẋ∗ + kef − ẋf + buf), (B.5)

where uf is the filtered input, and can be expressed as uf = 1
τs+1 . Then above

control law becomes further as:

bu − buf = ẋ∗ − ẋf + kef (B.6)
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PASSIVITY-BASED ADAPTIVE CONTROL

b(1 − 1

τs + 1
)u = ėf + kef (B.7)

Solve for u and get:

u = 1

b
(ėf + kef)(1 +

1

τs
) (B.8)

= 1

b
ėf +

k

b
ef +

1

b

1

τs
ėf +

k

b

1

τs
ef (B.9)

Organize above control law and it becomes:

u = (k
b
+ 1

bτ
)ef +

k

b

1

τs
ef +

1

b
ėf (B.10)

The closed-loop function function from ef to x is:

ef(s)
x(s) = τs(s − a)

s2 + (τk + 1)s + 1
(B.11)

Tuning parameters τ and k are chosen so that the closed-loop transfer function is

stable, and there is no unstable zero-pole cancellation.

If the process that we are interested in controlling has uncertainty µ(t) as:

dx

dt
= ax + bu + dµ(t). (B.12)

With the same PID controller, we have two transfer functions constituting the

closed-loop dynamics:

ef(s)
x(s) = τs(s − a)

s2 + (τk + 1)s + 1
,

ef

µ(s) = −dτs
s2 + (τk + 1)s + 1

. (B.13)

The PID controller devised above is simulated to control the scalar example from

Chapter 5:

dx

dt
= 10x + u + dµ, where µ = 5 sin(10t) sin(t), x(t0) = 2. (B.14)

Set k = 10, τ = 1
20 , and plug in b = 1 in adaptive PID controller (B.10). Set the setpoint
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B. DERIVATION OF PID CONTROLLER FROM THE PERSPECTIVE OF

PASSIVITY-BASED ADAPTIVE CONTROL

Figure B.1: Control results using adaptive control and adaptive PID

x∗ = 5, and implement the control in Matlab simulation. Figure B.1 compares the

simulated control results from the adaptive PID control and the adaptive controller

designed in Section 5.3.2. The adaptive controller gives the exponentially stable

control convergence. The adaptive PID is able to attenuate the influence of the

cyclic unknown input µ, of which profile is shown in Figure B.1 (c).
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C. BUMPLESS TRANSFER FROM PID CONTROL TO

PASSIVITY-BASED ADVANCED CONTROL

C.1. Process Description and PID Control

In this section, we discuss the design of bumpless transfer for switching from basic

PID control to passivity-based advanced control scheme. Numerical example and

simulation result is given for illustration. The process is G(s) composed of a first

order linear part with a time delay, and a nonlinear part:

y(t) = 1

5s + 1
e−sf(u) + d, (C.1a)

where y is the measured output, u is the control input and d is the disturbance. The

nonlinear term f(u) is a function of constrained input u,

f(u) = u(t)2,0.01 < u(t) < 2. (C.1b)

A constant disturbance of 1 is added on the output. The block diagram from input

u to measured output y is shown in the Fig. C.1.

The PI controller is conservatively tuned assuming u = umax = 2 using

Internal Modeling Control (IMC) method. The PI controller is PI (e(t)) =
5
12

(e(t) + 12
25 ∫

t
0 e(τ)dτ) to reach a closed-loop with a time constant, τc = 2. The

closed-loop block diagram is in Fig. C.2, and the control result is shown in Fig. C.3.

A setpoint change is made at t = 80, and output is controlled to the new setpoint

also.
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C. BUMPLESS TRANSFER FROM PID CONTROL TO PASSIVITY-BASED ADVANCED

CONTROL

Figure C.1: Block diagram from input u to measured output y

Figure C.2: Block diagram of PID control

Figure C.3: Control result using PI control
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CONTROL

Figure C.4: Block diagram of closed-loop system with advanced control

C.2. Advanced Control and Bumpless Transfer

C.2.1. Control and Transfer Algorithms

Advanced control To form advanced control, the nonlinear part f(⋅) needs to be

linearized using function g(⋅), which is defined through the condition:

g(⋅) ○ f(⋅) = 1. (C.2)

For the example process Eqs. (C.1a, C.1b), we have:

g(z) = f−1(z) = z1/2 = PID(e)1/2. (C.3)

The block diagram of the closed-loop system with advanced control is shown in

Fig. C.4.

Bumpless transfer from PI control mode to advanced control mode In real im-

plementation, transfer from PID control mode to advanced control mode may have

an undesired effect on the control performance, due to sudden change of the con-

troller output. In the following part, we show how the bumpless transfer is de-

signed. A filter function T (⋅) is incorporated into the closed-loop for gain adjust-

ment. The condition of the filter is that:

1. at the time of switch t = t0, we still want to maintain u(t0) = PID(e(t0)),

i.e. g (T (z(t0))) = z(t0); together with Eq. (C.2), we have the definition of

function T (⋅) at the time of switch:

t = t0, T (⋅) = g−1(⋅) = f(⋅) (C.4)
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CONTROL

Figure C.5: Block diagram of closed-loop system with bumpless transfer from PID
to advanced control

2. after the switch, the filter maintains as a constant gain adjustment:

t > t0, T (⋅) = T (z(t0)) (C.5)

The block diagram of the closed-loop with the bumpless transfer scheme is shown

in Fig .C.5.

C.2.2. Simulation Results

The simulation is performed in Simulink as shown in Fig. C.6. During the simula-

tion, following changes are made to show the performance of transferring between

control schemes, and setpoint tracking:

1. control scheme is changed from PID control to adavanced control at time

t0 = 40;

2. setpoint of y is 3 when t < 80, and is changed to 2 when t > 80.

Simulations with or without bumpless transfer are performed:

1. Without bumpless transfer

In this simulation the input u(t) = z(t)1/2. At time of the switch t0 = 40,

the control input changes from PID(e(t → t0)) to PID(e(t0))1/2, as can be

observed in Fig. C.7. The sudden change of the input degrades the track-

ing performance of the measured output, which deviates from the stabilized

value at the set point y∗ = 2. y came back around t = 60 with a overshot, and

finally stabilize again at the set point around t = 76.
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CONTROL

Figure C.6: Simulink Model

Figure C.7: Results of simulation without bumpless transfer (output profile on the
left, input profile on the right)

2. With bumpless transfer

In this simulation the input u(t) = z(t0)1/2 × z(t)1/2. With the adjustment, the

control input still remains PID(e(t0)) when the switch happens.So it doesn’t

degrade control performance as shown in Fig. C.8.

C.3. Another Design of Compensation Block for Bumpless Transfer

The MV determined by advanced control is:

u(t) = 1

u(t)PID(e), (C.6a)

= 1

m(t)2
PID(e) (C.6b)
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CONTROL

Figure C.8: Results of simulation with bumpless transfer (output profile on the
left,input profile on the right)

= PID(e)1/3 (C.6c)

where 1
u(t) in Eq. C.6a is the nonlinear gain. The simulation is performed in

Simulink as shown in Fig. C.9. During the simulation, following changes are made

to show the performance of transferring between control schemes, and setpoint

tracking:

1. control scheme is changed from PID control to adavanced control at time

t0 = 40;

2. setpoint of y is 3 when t < 80, and is changed to 2 when t > 80.

Simulations with two transfer strategies are performed:

1. Without bumpless transfer

In this simulation the nonlinear control gain is just 1
u(t) . As shown in Fig.

C.10, the stabilized output y dropped from the set point after the control

switch. Eventually, the output converges back to the setpoint, and the set-

point change is tracked. A similar profile of the input is shown in Fig. C.10.

2. With bumpless transfer

In this simulation is nonlinear control gain is normalized w.r.t. 1
u(t0)

, i.e.
1/u(t)
1/u(t0)

. With the adjusted nonlinear gain, the switch doesn’t degrade control

performace as shown in Fig. C.11.
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CONTROL

Figure C.9: Simulink Model

Figure C.10: Results of simulation without bumpless transfer (output profile on
the left, input profile on the right)

Figure C.11: Results of simulation with bumpless transfer (output profile on the
left, input profile on the right)
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D. REACTION MODELS USED FOR SIMULATIONS

D.1. Semi-batch Reaction Model

We simulate an A→ B reaction, and model the species’ concentrations and volume

as follows:

dCA
dt

= FinCA,in − k0e
−Ea
RTr CA (D.1a)

dCB
dt

= k0e
−Ea
RTr CA (D.1b)

dV

dt
= Fin, (D.1c)

where CA represents concentration of reactant A, CB represents concentration of

product B, k0 pre-exponential factor, Ea represents activation energy, R gas con-

stant.

Together with the differential equations of the temperatures, (6.1a) – (6.1c), they

constitute the model of the semi-batch reactor. The reaction kinetic parameters are

listed in Table D.1.

Parameters Values
k0 (min−1) 7.2 × 1010

∆Hr (J/mol) −5 × 104

Ea

R (K) 8750

Table D.1: Simulated reaction kinetic parameters
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D.2. MMA Polymerization Model

The MMA free-radical polymerization mechanism is as follows:

Initiation:

I2
kdÐ→ 2I∗

I∗ +M fÐ→ P ∗

1

Propagation

P ∗

i +M
kpÐ→ P ∗

i+1

Chain transfer

Pi ∗ +M
kfmÐÐ→Di + P ∗

i

P ∗

i + S
kfsÐÐ→Di + S∗

Termination

P ∗

i + P ∗

j
ktÐ→Di +Dj

I2 represents initiator; I∗ represents the free radical; M represents the

monomer; P ∗

i represents the living polymer chain with length i; Di represents the

dead polymer chain with length i.

The kinetic model is composed of balance equations of initiator, monomer, and

solvent:

dCI2
dt

= −kdCI2 (D.2)

dCM
dt

= −2fkdCI2 − (kp + kfm)CM
i=nmax

∑
i=1

CP ∗i (D.3)
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Parameters Relation equations
Initiation rate constant (s−1) kd = 1.90 × 1017exp(−34277

RT )
Propagation rate constant (s−1) kp = 7.00 × 106exp(−6300

RT )
Transfer to monomer rate constant ( L

s×mol ) kfm = 2.90 × 1011exp(−17957
RT )

Transfer to solvent rate constant ( L
s×mol ) kfs = 1.02 × 109exp(−15702

RT )
Disproportionation rate constant (s−1) kt = gt × 1.77 × 109exp(−−2800

RT )

Table D.2: MMA polymerization kinetic parameter calculation equations

dCS
dt

= −kfsCS
i=nmax

∑
i=1

CP ∗i (D.4)

The sum concentration of living monomer is modeled using relation: ∑i=nmax
i=1 CP ∗i =

(fkdCI2

kt
)2. The reaction kinetic constants relations with reaction condition are tab-

ulated in Table D.2. Gel effect is also considered, which is reflected in the dispro-

portionation rate constant calculation equation. More details regarding the MMA

polymerization model can be found in Crowley & Choi (1997).
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E. NUMERICAL DIFFERENTIATION

This section gives a review of several numerical differentiators, that uses different

approaches to estimate derivatives of signals measured with or without noise. The

Savitzky-Golay filter and deadbeat differentiator assume the signal as a polynomial

of time; the sliding mode differentiator assumes the measured signal as a control

setpoint, and the derivatives are the control input that drives the estimated state to

the setpoint. The formula of the methods are listed below.

• Savitzky-Golay filter (Baedecker, 1985) calculation of jth order time deriva-

tive is usually in a discrete convolution form. For a case, that the original

signal is assumed to be a n-th degree polynomial, and we have 2m evenly

spaced measurements, then the derivatives of a middle point indexed 0 is

estimated through:

ŷ(j)n (0) =
m

∑
i=−m

hjiyi. (E.1)

hi are convolution weightings derived from solving a least squares polyno-

mial regression problem, and usually can be found in a lookup table.

• Assume the signal is a N-th degree polynomial function of time:

y(t) =
N

∑
i=0

ai
i!
ti (E.2)

Deadbeat differentiator (Reger & Jouffroy, 2009) for the jth order time deriva-
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tive is:

ŷ(j) = ∫
T

0
Gj(T, δ)y(t − δ)dδ, j = 0,1, ...,N, (E.3)

where the convolution kernel:

Gj(T, δ) =
(N + j + 1)!
T j+1j!(N − j)!

N

∑
k=0

(−1)k(N + k + 1)!
(j + k + 1)(N − k)!(k!)2

( δ
T
)k, (E.4)

T is the length of an arbitrary constant time window.

• Sliding mode differentiator (Levant, 1998) formulation is:

˙̂y = u (E.5)

u = u1 − γ∣ŷ − y∣
1
2 sign(ŷ − y) (E.6)

u̇1 = −αsign(ŷ − y), (E.7)

where u is the estimated first order derivative, ŷ is the estimated signal, y is

the measured signal. α,λ > 0 are design parameters.
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