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Abstract

Climate change is expected to increase the intensity of rainfall events, posing

a major threat to stormwater infrastructure systems. To ensure that these sys-

tems continue to be resilient and reliable under changing conditions, traditional

engineering design methods must be updated to incorporate changing rainfall

patterns. Climate models can be used to gain insight into these changes; how-

ever, the path from climate projections to design decisions of future stormwater

structures is unclear. The objective of this research was to determine how to use

climate change projections during the stormwater design process to increase the

resilience of stormwater infrastructure under uncertain, future conditions.

To advance this objective, a general framework was developed for the use of

climate model data in engineering analyses. The framework consists of five main

steps: define historical data requirements, select the appropriate climate model

data source, bound uncertainty, convert model output to the format for the en-

gineering analysis, and interpret results for an engineering audience. The frame-

work was applied to updating intensity duration frequency (IDF) curves, an im-

portant aspect of the stormwater design process.

Findings from the updating of IDF curves suggest that the range of potential

increases in extreme precipitation are large and different modeling choices can

alter the size and level of protection of infrastructure designs. As a result, the sec-

ond recommended revision to the design process is to assess performance of in-

frastructure over time as the climate changes. Continuous simulation can be used

as a tool to test the performance of designs once they have been conceptualized

or built. Findings suggest that annual measures of rainfall could also be used to

anticipate performance degradation and necessary adaptation actions.
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CHAPTER 1 INTRODUCTION



Chapter 1- Introduction

1.1 Motivation

Urban water systems of the 21st century face many challenges, including aging infrastructure,

increased urbanization, and lack of support for long term investments (Larsen et al. 2016).

These issues are amplified by climate change, which has the potential to affect infrastructure

systems in multiple ways, including changes in extreme temperatures, sea levels, droughts,

streamflows, frequency and severity of rain storms, and flooding (Walsh, J.D., Wuebbles, K,

and Kossin, J 2014; IPCC 2014; Kilgore et al. 2016). Increases in the intensity of rainfall events

(amount of rain per hour) are a major threat to infrastructure systems, especially stormwater

infrastructure systems and the transportations systems they protect. Higher rainfall inten-

sities lead to more severe storms, with expected increases in damages and fatalities related

to residential, street, and flash flooding (Willems et al. 2013; Arnbjerg-Nielsen et al. 2013;

Mailhot and Duchesne 2009), as well as the potential for an increase in the volume of sewer

overflows (Goorè Bi et al. 2015; Semadeni-Davies et al. 2008).

Increases in the severity and frequency of extreme storms are already occurring through-

out the United States (U.S.) (Karl and Knight 1998; Groisman et al. 2005). Severity and fre-

quency of storms are described by precipitation measures, called indices, which represent

different quantity and frequency characteristics. Reviewing data for the contiguous United

States from 1948 to the present, Groisman et al (2012) calculated the number of “very heavy”

rainfall events (days with rain above 76.2 mm) and extreme precipitation events (storms with

more than 154.9 mm of rain); they detected a significant increase in these events over the

past 30-years, compared to the period from 1948 – 1978 (Groisman, Knight, and Karl 2012).

Kunkel et al. (2013) used a different measure to estimate changes in extreme rainfall, namely,

the 20-year daily rainfall event, which is the amount of daily rainfall that has a 1 in 20 chance

of being exceeded in any year. They found that from 1948 to 2010, about 75% of all weather

stations across the U.S. experienced increases in the daily, 20-year rainfall event (Kunkel et
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al. 2012). In comparison, Degaetano (2009) evaluated the parameters of the extreme value

distribution, which are used to calculate the probability of any extreme rainfall event (like the

20-year storm) (Coles 2001; Katz 2013; DeGaetano 2009; Arnbjerg-Nielsen et al. 2013; Wi et

al. 2015)). He found a significant upward trend in the distribution from 1950 to 2007 across

numerous rain gauges in the Northeastern, Midwestern and Northwestern U.S, confirming

that extreme rainfall in the U.S. has been changing significantly over time.

In addition to changes in extreme rainfall, flooding and damages are occurring more of-

ten, leading to an increase in the number of disasters declared by the Federal Emergency

Management Agency (FEMA). From 1960 to 2008, there were approximately 165 disaster dec-

larations per year related to severe storms. Over the past decade, this annual number has

nearly quadrupled. There have been approximately 620 severe storm declarations per year

since 2008. These numbers do not include disaster declarations relating to flooding and hur-

ricanes; however, those numbers have also increased considerably. Figure 1.1 presents the

number of disasters declared by FEMA since 1960 by type: flood (blue), hurricane (green),

and severe storms (red). It is clear from the figure that the total number of disaster declara-

tions is increasing over time, as well as the proportion of declarations related to severe storms.

Disasters declared in 2017 and 2018 are not shown in the figure due to lack of updated data.

However, the number of declarations related to Hurricane Harvey (in Texas, 2017), Hurricane

Irma (in Florida, 2017), Hurricane Maria (in Puerto Rico, 2017), and Tropical Storm Florence

(in North and South Carolina, 2018) are expected to be considerable.

Extreme rainfall storms are increasing because as global temperatures rise (as a result of

increases in greenhouse gas emissions to the atmosphere and other feedbacks), water vapor

also increases, which leads to more water available for precipitation (Soden et al. 2005; Al-

lan and Soden 2008; Allen and Ingram 2002; Karl and Trenberth 2003). This phenomenon

could lead to changes in the number of storms, the amount of rain per storm, and/or the total

rainfall in a given period (e.g., annual rainfall). In some regions, increases in heavy and very

heavy rainfall events have occurred along with a decrease in rain events (and an increase in
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Chapter 1- Introduction

Figure 1.1: Number of disasters declared by the U.S. Federal Emergency Management Agency
(FEMA) since 1960. Three types of disasters are shown: flood (blue), hurricanes (green) and
severe storms (red). Data was retrieved from fema.gov; however FEMA and the Federal Gov-
ernment cannot vouch for the data or analyses derived from these data after the data have
been retrieved from the Agency’s website.

the number of consecutive dry days). This can lead to increased extremes with no change, or

a decrease, in total annual rainfall (Groisman et al. 2005).

Downscaled climate models, which create simulations of the past and future climate on a

small spatial and temporal scale, predict disproportionate increases in days with heavy rain-

fall across North America; the number of days with rainfall greater than the 95th percentile

of all rain days is expected to increase by nearly 30% (Easterling et al. 2017). The daily, 20-

year return period storm (or the storm that occurs, on average, every 20-years) is expected to

increase by 13 to 22% under the high greenhouse gas emissions scenario by late century (East-

erling et al. 2017). The largest increases are expected in shorter duration events (less than a

day)(Westra et al. 2014; Kuo, Gan, and Gizaw 2015). Hourly extreme precipitation events are

expected to increase significantly – by as much as 400% in North America (Prein et al. 2016).
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1.2 Design and Function of Stormwater Sys-

tems

A major concern for civil and environmental engineers is how these changes in rainfall are

affecting the function of stormwater systems and will affect them in the future. Stormwater

systems are designed to carry or store a specific intensity of rainfall — the rate of precipitation

depth per unit time (e.g., mm/hr). Further, when these design conditions are exceeded, many

stormwater systems are designed to overflow into the environment, in a controlled failure that

can cause inundation (e.g., street flooding) and sewer discharges to waterways. The intensity

of rainfall used in design of these systems is called the “design storm;” it is a precipitation

“event” that is characterized by its probability of occurrence (return period) and its duration.

For example, a stormwater pipe could be designed to convey the “10 year-1 hour storm,” in-

dicating its capacity is selected to convey the amount of water that would reach it during one

hour from a storm with a volume of precipitation that is likely to occur only once in 10 years.

In general, stormwater structures are sized to convey rare rainfall events with a low probabil-

ity of occurrence (i.e., less than a 50% chance of occurring in any year). However, the specific

design return period is selected by stakeholders based on the acceptable risk level for a design

to fail (causing inundation or overflow), as well as the available investment funding.

Rainfall intensities and their associated probability of occurrence are standardized in prac-

tice in the form of intensity-duration-frequency (IDF) curves (CSA Standards 2012; Bonnin

et al. 2006; PennDOT 2011). These curves are typically created from statistical analysis of

long records of observed rainfall data. The use of IDF curves created in this way means that

current stormwater infrastructure has been designed using rainfall information that is based

on assumptions that future rainfall will be similar to past rainfall (i.e., the assumption of a

stationary climate). Changes in rainfall due to climate change are expected to decrease the

performance of existing stormwater infrastructure in regions where the structures will expe-
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rience extreme rainfall conditions that are outside the bounds of their historical design pa-

rameters. Furthermore, the performance of new stormwater installations will degrade over

time, as the climate continues to become more extreme. To improve future performance and

resilience of stormwater infrastructure, the design process must be updated to account for

these changes, and infrastructure may need to adapt over time (Milly et al. 2008; Barros 2006;

Karsten Arnbjerg-Nielsen 2011; K. Arnbjerg-Nielsen et al. 2013; Rootzèn and Katz 2013; In-

field, Abunnasr, and Ryan 2018).

Figure 1.2 presents the steps involved in the current stormwater design process that may

require modification. The first panel of the figure presents design inputs. In addition to stan-

dardized precipitation information in the form of IDF curves, the current stormwater design

process also requires watershed characteristics (e.g., land use and drainage area of the site

(McCuen 2005)). The combination of precipitation and watershed inputs are then used to

calculate the maximum flow rate that a particular site would receive without stormwater in-

frastructure in place (i.e., the peak runoff discharge), as well as the amount of time it would

take for this peak to occur (i.e., the time to peak). This is shown in the second panel. In highly

urbanized watersheds, the time to peak can occur very quickly since impervious surfaces do

not allow for infiltration or storage, and water moves quickly to the outlet (lowest point) of the

watershed.

Conventional stormwater infrastructure, sometimes called “grey” infrastructure to distin-

guish it from infrastructure containing plants (“green”) was built in urbanized watersheds to

convey runoff quickly off-site and reduce localized flooding. These structures (e.g. inlets and

storm sewers) are sized based on the rate of runoff discharge that needs to be conveyed off-

site (top image of panel 3 in Figure 1.2). To avoid back-ups and overflows of the collection

system, storage structures, like detention basins, or control structures, like weirs and orifices,

can be built on-site so runoff is gradually released into the sewer system. This process de-

creases the peak discharge rate, and the risk that sewers will back-up and flood roadways

and nearby buildings. Instead of temporary storage and release back to the sewer, stormwa-

6



Duration (hr)

D
ep

th
 o

f 
ra

in
fa

ll 
(in

)

Precipitation Frequency Curve

Watershed Characteristics

Fl
ow

 (c
fs

)
hours

Diameter 
(Dr)

Pre-design Peak Discharge (Qp)

Volume 
Storage 
(Vs)

Design Inputs Flow Calculation Dimension Estimation Performance 
Evaluation

Conveyance Infrastructure

Storage Infrastructure Performance over time

Time (years)Sy
st

em
 d

isc
ha

rg
e

Simulation Inputs

!" = $ %&'
0.31,-./0

1
2
3
 1 

!" = $ ∗ &' 1 

 2 

Peak Discharge to Abate 

Fl
ow

 (c
fs

)

2. Post-development 
without storage basin

3. Post-development with 
storage basin

1. Pre-development 
runoff

Figure 1.2: Overview of the suggested revised stormwater design process. Yellow, dashed
boxes represent places where climate model output can be used to update design

ter infrastructure can also be designed to allow water to infiltrate on-site. Green stormwater

infrastructure, which includes bio-retention basins (or rain gardens), bio-swales, permeable

pavers and green roofs, is intended to mimic or restore natural hydrologic processes within

the built environment (U.S. EPA 2016). The dimensions of infrastructure designed to store

or infiltrate water on-site are determined based on the total volume of runoff under the dis-

charge curve (see panel 2 in Figure 1.2). Thus the depth of a rain garden is determined by

the available surface area (S A) and the volume of discharge (Vs) that would need to enter the

basin during the design storm (bottom image of panel 3 in Figure 1.2).
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1.3 Adapting Stormwater Systems to Incorpo-

rate Climate Change Trends

Many communities are interested in increasing the resilience of infrastructure to a chang-

ing climate, which may require the use of robust and flexible designs that incorporate many

possible future states (Lempert 2010; Gregersen and Arnbjerg-Nielsen 2012; Lempert and

Schlesinger 2001; Lempert and Groves 2010). Designing for robustness means minimizing re-

gret against a range of possible futures, in order to ensure good performance throughout the

lifetime as conditions change (Lempert, Popper, and Bankes 2010). This could mean poten-

tially over-designing early on, which may be desirable for replacement of grey infrastructure

systems. These systems require substantial capital investments and are expected to last for

50-years or more. Alternately, designing for flexibility involves replacing, adapting, or adding

installations as time goes on (Adger, Arnell, and Tompkins 2005; Spiller et al. 2015). Green

infrastructure, which consists primarily of soil, rocks, and plants, could be more easily ex-

panded or added over time. In order for infrastructure systems to be resilient or adaptive as

climate changes, current hydrologic design methods must be revised to include robust and

adaptive design techniques.

Strategies that are informed by engineering and climate science are needed to ensure all

communities have the information they will need to make good choices in rehabilitation and

protection of their infrastructure. Tools like high resolution climate models can be used to

provide insight into potential future conditions (Musau, Sang, and Gathenya 2013; Fowler,

Blenkinsop, and Tebaldi 2007; Cooney 2012); however, different models rarely agree on the

amount of future change. Different models can even disagree on the direction (e.g. more or

less rainfall expected in a region, and not just the magnitude), a phenomenon classified as

“deep uncertainty” in model results (Allen et al. 2000; Walker, Lempert, and Kwakkel 2013;

Kirtman et al. 2013). Furthermore, climate model output is seldom in a format (e.g. at the
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appropriate spatial or temporal resolution) that is useful to engineers and planners (Goorè Bi

et al. 2017).

Translational work between the climate and engineering communities is needed in order

to adequately utilize climate model outputs and update stormwater decision making tech-

niques to incorporate uncertainty. In its absence, most engineering standards have not been

updated to account for uncertainty in long-term climate conditions. Government agencies

have differing ad hoc approaches and information availability; and there remains a large gap

in the fundamental research to inform the practitioners who are making decisions for long-

lived infrastructure (Olsen et al. 2015; Larkin et al. 2015; Lee and Ellingwood 2017; GAO

(General Accountability Office) 2015; Linkov et al. 2014; Viner and Howarth 2014; Bocchini

et al. 2014; Kennedy and Corfee-Morlot 2013; Francis and Bekera 2014; Wilbanks, Fernandez,

and Allen 2015; Lempert 2013; Groves and Lempert 2007).

Updating the standardized precipitation information used by stormwater engineers is one

way that the design process can incorporate expected increases in extreme rainfall events.

Intensity-duration-frequency curves can be updated using climate change projections; how-

ever, different climate models can lead to different prediction results (Sarr et al. 2015; Schmidli

et al. 2007; M’Po et al. 2016). Furthermore, there are many methods available for updating,

and a consensus has not yet been reached on the preferred method. Inconsistencies and un-

certainty in IDF curves could lead to variation in stormwater designs that may change the

level of protection afforded by the infrastructure. It is possible that safety-margins built into

the design process will outweigh these uncertainties, leading to no change in dimensions of

the design. However, it is also possible that increases to design storms informed by climate

models are so high that systems designed with these values are cost and space prohibitive.

These uncertainties need to be investigated before updated IDF curves can be used with con-

fidence to inform design.

In addition to updating design to consider possible future climate conditions, engineers

must also evaluate how climate change will alter as-built infrastructure performance. It may
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no longer be sufficient to assume that the point estimate used in design will result in infras-

tructure that performs well in an uncertain future, particularly if that future includes more

extreme events. Simulating rainfall/runoff interactions during the design process can help

to determine if the proposed structure will meet desired performance goals or metrics (see

Figure 1.2 panel 4). Hydrologic simulation models (e.g. EPA SWMM (USEPA 2015)) simulate

physical system response over time (Durrans et al. 1999) and can be used in conjunction with

observed rainfall data or simulated rainfall data produced with downscaled climate models.

After designs are built, it may also be possible to use simulation methods to determine how or

when systems are expected to fail and how adaptation planning should be undertaken. Per-

formance metrics and rainfall measures could be tracked over time, and adaptation triggered

when thresholds are surpassed.

1.4 Research Objectives

The goal of this dissertation is to demonstrate how to use available information about climate

change to increase the resilience and performance of urban drainage designs under uncer-

tain future conditions. The stormwater design process can be updated in two main ways to

improve the resilience of the designed infrastructure: first, at beginning of the design process,

by selecting an updated value of expected precipitation from an updated regional IDF curve,

and second, towards the end of the design process, by evaluating designs against a range of

futures using specific performance metrics. Output from climate models is recommended for

use in both of these strategies; however, this requires methods to present the climate data at

the right temporal and spatial resolution and in a format familiar to the design engineer. The

objectives of this thesis are to:

1. Develop a general framework for incorporating climate model output into engineering

analyses and apply this framework to the updating of precipitation frequency curves

10



(a) What process should be followed in order to choose and utilize climate data in

engineering applications?

(b) How can this process be applied to the updating of IDF curves?

2. Evaluate the effects of modeling choices on updated precipitation frequency curves and

grey stormwater infrastructure

(a) Is one spatial adjustment method preferred over another?

(b) How does the spatial resolution of the climate model affect design dimensions?

(c) Does uncertainty in IDF curves outweigh design safety factors or vice versa?

3. Assess how rainfall measures, also called indices, and performance metrics can be used

to evaluate performance and adaptation of green infrastructure systems under climate

change

(a) Can rainfall indices be used to track performance?

(b) If so, how can this process be used to predict when to adapt?

1.5 Structure of Dissertation

This dissertation is made up of five chapters, including an introduction, three research pa-

pers, and a conclusion. Chapter 1, the introduction (and current chapter) provides motiva-

tion for the research topic, and background information. Chapter 2, which has already been

published in 2017 in the Journal of Infrastructure Systems1, presents a framework for the use

of climate model output in engineering analyses and applies this framework to the updating

of precipitation frequency curves. Chapter 3 investigates how modeling choices made during

the updating of precipitation frequency curves can alter design storm values and the dimen-

1Cook, L., Anderson, C.J., and Samaras, C. (2017) A Framework for Incorporating Downscaled Climate Output
into Existing Engineering Methods: Application to Precipitation Frequency Curves. Journal of Infrastructure
Systems. 23 (4). doi:10.1061/(ASCE)IS.1943-555X.0000382
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sions of stormwater conveyance pipes. Chapter 4 presents a method that uses continuous

hydrologic simulation and rainfall indices to inform how and when adaptation should occur

in green infrastructure systems. Chapter 5 summarizes major findings of the dissertation and

suggests potential future work.
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Chapter 2- Framework for Incorporating Climate Model Output into Engineering Methods

Abstract

To improve the resiliency of designs, particularly for long-lived infrastructure, current engi-

neering practice must be updated to incorporate a range of future climate conditions that are

likely to be different from the past. However, a considerable mismatch exists between climate

model outputs and the data inputs needed for engineering designs. The present work pro-

vides a framework for incorporating climate trends into design standards and applications,

including selecting the appropriate climate model source based on the intended application,

understanding model performance and uncertainties, addressing differences in temporal and

spatial scales, and interpreting results for engineering design. The framework is illustrated

through an application to depth-duration-frequency curves, which are commonly used in

stormwater design. A change factor method is used to update the curves used in a case study

of Pittsburgh, PA. Extreme precipitation depth is expected to increase in the future for Pitts-

burgh for all return periods and durations examined, requiring revised standards and designs.

Doubling the return period and using historical, stationary values may enable adequate de-

sign for short duration storms; however, this method is shown to be insufficient to enable

protective designs for larger duration storms.

Keywords

downscaled climate models, uncertainty, intensity-duration-frequency, stormwater design
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2.1 Introduction

Record-breaking rainfall has triggered more than 20 severe flood events in parts of Texas, Ok-

lahoma, Louisiana, Arkansas, Missouri, Iowa, Florida, North Carolina, and South Carolina in

2015 and 2016. These events have led to the closure of two airports, flooding of more than 200

homes, numerous evacuations, cars stalled in high water requiring rescue, and deadly flash

flooding.High water also led to spillway activation to protect New Orleans, as well as struc-

tural failure of more than 100 roads and retaining walls (Erdman 2016). Existing infrastruc-

ture systems were inadequate to deal with these events, which occurred outside of historical

experience frequency. Design standards rely on historical observations and the assumption

that climate is stationary (i.e., climate will not change over time). However, recent events and

numerous simulations of future climate conditions indicate that the past is no longer a reli-

able indicator of the conditions under which infrastructure will have to perform in the future

(Walsh et al. 2014; Milly et al. 2008).

Climate change has the potential to affect infrastructure systems in multiple ways, includ-

ing: (i) changes in average and/or extreme temperatures; (ii) variations in frequencies, inten-

sities, and duration of precipitation causing extreme rainfall and flooding in some regions;

(iii) changes in storm tracks and severe weather; (iv) an increase in sea levels and the risk of

storm surge; and (v) a decrease of water availability in some areas (Walsh et al. 2014; IPCC

2014; Kilgore et al. 2016).

Recently, increased attention has been directed to infrastructure reliability (the ability of

systems to remain functional during a disaster) and resiliency (the ability to resist, absorb,

and adapt to disruptions) (Faturechi and Miller-Hooks 2014). To ensure reliable and resilient

infrastructure, engineering design standards must account for anticipated future conditions

(Milly et al. 2008; Olsen 2015; Mailhot and Duchesne 2009; Moss et al. 2013; A. Barros and

Evans 1997). These standards are set by organizations such as the American Society of Civil
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Engineers (ASCE and ASCE 2013), agencies such as the Federal Highway Administration (Kil-

gore et al. 2016) or the National Oceanic and Atmospheric Administration (NOAA) (Bonnin

et al. 2006), or by collaborations among organizations (e.g., 10 States Standards (Wastewater

Committee of the Great Lakes - Upper Mississippi River 2014)).

One of the most advanced tools available to decision makers seeking to increase reliability

and resilience of infrastructure is the use of high-resolution, or “downscaled,” climate models.

Compared to general circulation models (GCMs) that simulate global climate systems, these

downscaled models provide insight into localized conditions by generating finer-scale (4 –

50 km), future projections of air temperature, precipitation, evapotranspiration, wind speed,

and other factors that affect regional patterns (Musau et al. 2013). Most models agree on

the direction of temperature change; however, for precipitation there are variations in trend

and magnitude across models and geographic regions, leading to large uncertainty in results.

For precipitation data particularly there is often a mismatch in the spatial and temporal res-

olution of the downscaled climate model and the micro scale (e.g., < 1 km) of inputs needed

for engineering design standards and applications. Furthermore, the use of climate mod-

els introduces uncertainties and complicates data extraction and preparation requirements,

compared to the current use of recorded historical data. A clear path from climate model

predictions to development of updated design standards is needed.

Despite these challenges, by building on historical observations, scientists have success-

fully used global and downscaled climate models to inform higher spatial and temporal res-

olution precipitation trends for engineering applications. Weather generators, which can be

adapted to different anticipated changes in climate, have been used to simulate synthetic,

rainfall time series at the station (point) scale at monthly, daily and hourly time steps (Wilks

and Wilby 1999; Kilsby et al. 2007; Willems et al. 2013). Quantile mapping has been used

to apply expected changes to the empirical distribution of observed rainfall events at the

temporal and spatial resolution of the observations (Laflamme et al. 2016; Boé et al. 2007;

Gudmundsson et al. 2012; Wood et al. 2004). Numerous studies utilize a “delta” or “change
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factor” technique, which applies the expected absolute (delta) or relative (ratio) change be-

tween current and future gridded projections to historical rainfall data (Wilks and Wilby 1999;

Boé et al. 2007; Wood et al. 2004; K. Arnbjerg-Nielsen et al. 2013; Forsee and Ahmad 2011).

These climate-informed local-scale models have also been used to update intensity-duration-

frequency curves used in design of infrastructure affected by rainfall (Chandra et al. 2015;

Cheng and AghaKouchak 2014; Forsee and Ahmad 2011; Zhu 2012; Kuo et al. 2015; Hassan-

zadeh et al. 2013; Mirhosseini et al. 2013).

Applications of these climate-informed methods can provide important insights; however,

many reported studies provide insufficient detail regarding the importance and difficulty of

obtaining a reliable historical record; selecting and extracting the appropriate climate out-

put source; accounting for reliability and uncertainty in climate modeling; and incorporating

findings into infrastructure planning and design. In the absence of a consensus on meth-

ods to update design standards to account for climate change, many stakeholders avoid the

use of climate model output. Further, there is the potential for misuse through simplified

choices, such as using output from a single climate model instead of an ensemble (or group)

of models, or failing to account for model reliability and uncertainty in the interpretation of

results. Given the widespread use of infrastructure design standards and the potential conse-

quences to the public if they are improperly applied (including failure due to under-design or

misallocation of taxpayer dollars due to overdesign), it is critical that the most advanced and

appropriate methods are used to update standards and that the challenges and limitations

associated with this updating are well understood by those who will apply these techniques.

With this problem in mind, a five-step framework is proposed that can guide the revision

of design standards, as well as engineering practice, through the use of publicly available,

downscaled climate model outputs of future precipitation. By applying the framework, en-

gineers will be able to define relevant aspects of the historical method that need to be up-

dated; select the relevant climate data sources and extract output; manage model reliability

and bound uncertainty; adjust for spatial and temporal resolution, and apply results to engi-
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neering design under climate non-stationarity. In the present work, as a demonstration, the

framework is applied to a common input to stormwater design: depth-duration-frequency

(DDF) curves.

2.2 Framework Steps

The steps of the framework for updating engineering design standards are: (0) Define the

existing design standard (or application) that is based on or incorporates precipitation data;

(1) Understand the historical basis and data requirements used to develop the existing stan-

dard (or application) and retrieve data; (2) Access appropriate climate model output based on

requirements for the existing standard (or application); (3) Account for climate model uncer-

tainty and reliability; (4) Adjust existing method to incorporate expected future trends; and

(5) Interpret results and incorporate changes into design practice. A flow chart of these steps

is presented in Figure 2.1. Solid arrows display the suggested sequence of the steps from 0 to

5; dashed arrows represent the flow of information or data from step 1 to step 4.

2.2.1 Step 0. Define the existing design standard (or

application) that is based on or incorporates pre-

cipitation data

Standards for engineering design have been developed for a variety of engineering appli-

cations that are expected to be affected by a non-stationary climate, including: water sup-

ply management, water quality regulations, flood forecasting, stormwater management, and

wastewater collection and treatment. These and many other applications rely on different

types of estimates of expected precipitation for a region. For example, floodplain delineation

and stormwater management rely on duration-specific estimates of rainfall depth from intensity-
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Figure 2.1: Flowchart of the framework for incorporating downscaled climate data into exist-
ing engineering applications.

duration-frequency (IDF) curves; whereas wastewater collection and treatment system de-

sign requires a peaking factor, usually relating to maximum daily or monthly rainfall. Some

applications may require a time series for precipitation (a sequence of data points collected

over a time period, usually provided at evenly spaced time intervals). These different specific

precipitation data determine the type of modifications that will be needed, and thus, defining

the ways that rainfall data are used in the current standard is the initial step to updating.
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2.2.2 Step 1. Understand historical basis and data re-

quirements used for existing standard (or appli-

cation) and retrieve data

In this step, the engineer defines the nature of the data on which the design standard was

based and obtains the historical data to enable re-creation of the supporting calculations un-

derlying the current standard. Definition of the data includes the length of record, as well as

the temporal and spatial resolution of the data required as input to re-create the components

of the method. These specifications are important as they dictate the source of climate output

that will be needed. Downscaled climate model outputs are only publically available at spe-

cific spatial and temporal resolutions (refer to step 2), which may not be consistent with the

resolution of the inputs required for the engineering application or standard. Model outputs

are also only provided for specific historical and future dates, and the length of this simula-

tion period may not be equivalent to the length of rainfall record (e.g., 50 - 100 years) utilized

in some methods to inform standards. Table 2.1 provides information on spatial and tempo-

ral resolutions required for analysis of several types of engineering applications and design

standards. Large-scale optimization models used for reservoir or drought management use

monthly or seasonal data, while stream flow and water quality simulations require daily or

hourly data. Continuous hydrologic simulation models (e.g., EPA SWMM (USEPA 2015)) use

data at a sub-hourly time step and 1 km spatial resolution (Wood et al. 2000; Wilks and Wilby

1999), while IDF curves use multi-decadal time series of observed rainfall at individual ge-

ographic locations (point measurements) for durations ranging from 5 minutes to 72 hours

(CSA 2012; Bonnin et al. 2006).

In support of these different data needs, historical precipitation data, collected through

rain gauges, can be obtained at the point or grid scale. Many regional airports and local

stormwater agencies collect rain gauge data at specific locations (points), at hourly intervals
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Table 2.1: Select design standard applications and the requirements of precipitation data in-
puts (format, temporal and spatial)

Engineering
application

Example
Analysis Format

Data Requirements
Spatial Temporal

Water supply
management

Reservoir routing,
simulation

and optimization
(e.g. STELLA)

Timeseries

Basin scale
(e.g. 1000 km2)
to point scale

(<1km2)

Seasonal
to daily

Water quality
monitoring

Water Quality
Analysis Simulation

(e.g. streamflow
simulation)

Timeseries
Riverine scale
(e.g. 10 km2)

Seasonal
to hourly

Flood forecasting
Continuous
hydrologic
simulation

Timeseries
City scale

(e.g. 1 km2

or less)
Sub-hourly

Flood plain
delineation

Event based
simulation

(e.g., HECRAS)
IDF Curve

City scale
(e.g. 1 km2

or less)

Hourly to
sub-hourly

Stormwater
management

planning

Peak discharge
estimation

(e.g. Rational
method, TR-55)

IDF Curve
City scale

(e.g. 1 km2

or less)

Daily to
sub-hourly

Wastewater collection
and treatment

planning
Wet weather

flow estimation
(e.g. Peaking factor)

Monthly
maximum

Basin scale
(e.g. 1000 km2)
to point scale

(<1km2)

Monthly
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or less. Airport records tend to be longest (50 to 100 years); however, local agency data may be

available at higher resolution (sub-hourly, multiple gauge sites) for a shorter time period. Bar-

ros (2006) suggested that the usefulness of a rain gauge network is dependent on the density

of gauges, the number of years of data, the type of rain gauge, and frequency of data collection

(Barros 2006). NOAA National Centers for Environmental Information (NOAA 2016) provides

rainfall data at the point scale, often at hourly intervals.

Gridded rainfall data are also available using two methods. The first approach, which pro-

duces rainfall grids through interpolation of point measurements, is based entirely on the as-

sumption of spatial correlation of rainfall point measurements. Thus, the accuracy is depen-

dent on the spatial density of rain gauges and how terrain influences the correlation of pre-

cipitation measurements. The second method, called data assimilation, uses weather models

to infer spatial correlation and temporal evolution of rainfall, and then when combined with

point measurements, adjusts model-predicted rainfall toward observed values. By system-

atically merging numerous observations (available at different resolutions from rain gauges,

satellites, or radar) with weather model output, data assimilation creates gridded precipita-

tion data that is uniform and consistent with simulated weather conditions. These assimi-

lation data sets are called “re-analysis” data. The quality of gridded data, especially relating

to precipitation and extremes, is variable by location and time period, due to the changing

combination of observation density and quality as well as model bias (Dee et al. 2011; Dee et

al. 2016; Bosilovich et al. 2008; Sun and Barros 2014). Reanalysis data are publicly available

for multiple temporal and spatial resolutions for the North American domain (see Table 2.2 ).

Additional information can be found at the University Corporation for Atmospheric Research

(UCAR) Climate Data Guide website (Dee et al. 2016) or at the reanalysis site maintained by

the University of Colorado at Boulder (Reanalysis.org 2016).
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Table 2.2: Temporal and spatial characteristics of select sources of re-analyzed observations
for North American domains

Data Source Origin
Spatial

scale Time-step
Period

of record Website

NCEP North
American Regional
Reanalysis (NARR)

NOAA Earth
System Research

Laboratory
32-km

3-hour,
daily,

monthly

1979 to
2015

https://www.
ncdc.noaa.gov
/data-access

Observation-
reanalysis

hybrid dataset
Princeton
University

1, 1/2, &
1/4 degree
( 110, 55,

25 km)

3-hour,
daily,

monthly

1949 to
2010

http://
hydrology.

princeton.edu
/data.pgf.php

ERA-Interim
Global Atmospheric

Reanalysis ECMWF 80-km
daily,

monthly
1979 to
present

http://
apps.ecmwf.
int/datasets

Parameter-elevation
Regressions on

Independent Slopes
Model (PRISM)

Oregon State
University

(USDA, NOAA)
4-km daily

1895 to
present

http://www.
prism.

oregonstate.edu

Variable Infiltration
Capacity (VIC)

Hydrologic Model
University

of Washington
1/8 degree

( 12 km)
daily

1950 to
2000

http://www.
esrl.noaa.gov
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2.2.3 Step 2. Access appropriate climate model output

based on requirements for the existing standard

(or application)

Open source downscaled model output is becoming increasingly prevalent and diverse as

data sources continue to emerge and climate models continue to evolve. These outputs are

created using “downscaling models” that reduce the coarse, spatial-resolution of the global

atmospheric general circulation models (GCMs) that are used as input (Cooney 2012; Di Luca

et al. 2015; McGuffie and Henderson-Sellers 2001). Sources of downscaled output provide

higher spatial-resolution (4–50 km) outputs than GCMs (75–250 km); however, characteris-

tics of the output differ as a result of three main factors: (1) choices made by climate scientists

in the downscaling process, including the downscaling method and the number of general

circulation models (GCMs) and emissions scenarios used; (2) consequences of the compu-

tational power and data storage that were available to the climate modelers, affecting length

of simulation, and temporal and spatial resolution, which are aspects most relevant to engi-

neers; and (3) decisions made by the climate modelers to store and allow access to the data.

The next step in the framework provides context and information to allow an engineer to

select and extract downscaled data, most suitable to the engineering application, from the

myriad of available sources.

Figure 2.2 presents a comparison of characteristics of six publicly available sources of

downscaled climate model output for North America, which include:

1. the North American Regional Climate Change Assessment Program (NARCCAP) [narc-

cap.ucar.edu] (Mearns et al. 2008);

2. the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX)
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[na-cordex.org] (Mearns, et al. 2013);

3. the USGS regional climate model (RegCM3) [regclim.coas.oregonstate.edu] (Hostetler

et al. 2011);

4. Eighth degree-CONUS Statistical Asynchronous Regional Regression Daily Downscaled

Climate Projections (ARRM) [cida.usgs.gov] (Stoner et al. 2013);

5. The “Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections” from the Bu-

reau of Reclamation (and other collaborators) [gdo-dcp.ucllnl.org] (Brekke et al. 2013);

and (vi) Multivariate Adapted Constructed Analogs (MACA) [maca.northwestknowledge.net]

(Abatzoglou and Brown 2012).

As discussed above, there are three categories of differences in model output provided

from these sources, shown in Figure 2.2, as the first group (model simulation choices), the

second group (model output attributes), and the third group (extraction and access features).

The figure may be approached from top to bottom, to select a downscaled model source based

on desired characteristics of the output; or from left to right, in order to understand the avail-

able data characteristics for a particular source. A climate modeler begins the downscaling

process from far left column (selection of the global climate model group) then advances to

the far right (providing access to output). An engineer often begins the process of using cli-

mate model output at the far right (attempting to access the output) and subsequently makes

choices from right to left.

The process of selecting an appropriate model source should begin with the character-

istics of the model output that are most relevant to the engineering application (referred to

above as the second group of characteristics in Figure 2.2), such as the time step, or size of the

grid cell. For many water resources applications, the most limiting of these characteristics is

the temporal resolution. Daily data is available from all sources; however, there are only two

sources of sub-daily data (3-hour increment) available: NARCCAP and NA-CORDEX. These

sources are able to provide a finer temporal resolution because they use a technique called
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Figure 2.2: Comparison of characteristics of six publicly available sources of downscaled cli-
mate model output for North America. Headings in orange are choices made by climate sci-
entists in the downscaling process; headings in yellow are characteristics of the simulations
most relevant to engineering applications; and headings in green relate to manipulation of
model output. A climate scientist approaches the figure from left to right; whereas an engi-
neer reads from right to left.
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"dynamical downscaling," which uses Regional Climate Models (RCMs) to provide physical

characterization of weather processes occurring on small scale and contributing to precipita-

tion (Anderson et al. 2003; Xu 1999; Musau et al. 2013). These models require large amounts

of computational power and thus only limited scenarios (e.g., emissions) can be computed.

For example, a 30 year, 50 km resolution simulation of the WRF regional model on a super-

computer (with 240 processors) lasts for over 2 days; and a 150 year, 25 km simulation lasts for

90 days (Mearns et al. 2013). Prior to the release of NA-CORDEX in 2017, the requirement for

a sub-daily time step restricted the user to NARCCAP data, a pioneering project in 2006 that

compiled consistent output from numerous regional climate modelers across the globe.

Modeling scenarios were limited to a single emission scenario (SRES A2), a relatively low

resolution (50 km), and short simulation periods (30 years); meaning the end-user did not

have flexibility to select different characteristics. NA-CORDEX will provide longer simulation

periods (1950 - 2100), a higher spatial resolution (25-km) and two emissions scenarios (RCP

4.5 and 8.5), providing more flexibility. When the engineering application is not limited to a

sub-daily time step, additional resources are available at the daily level through sources that

utilize “empirical downscaling” techniques, which rely on existing statistical relationships be-

tween large-scale climate systems and local weather patterns (Abatzoglou and Brown 2012;

Khan et al. 2006; Murphy 1999; Chen et al. 2013). These techniques are less computationally

intense than RCMs, and can provide higher resolution output (4 - 12 km) for long simulation

periods (1950 - 2100), and multiple emissions scenarios and global climate models (Cooney

2012).

At the daily level, the user now has more flexibility to select a downscaled data source

based on several data characteristics, including others that are relevant to engineering appli-

cations, like spatial resolution; as well as those in the first group in Figure 2.2, which are a

result of choices made by climate scientists in the downscaling process, like sources of global

models, emissions scenarios, or downscaling technique. The Coupled Model Intercompari-

son Project (CMIP) was established in 1995 as a standard experimental protocol to compare
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outputs from general circulation models (Maurer et al. 2007). The sixth phase of the project

(CMIP6) is currently in progress (Eyring et al. 2016); however, the downscaled output dis-

cussed in this manuscript originated from GCMs from the third (CMIP3) and/or fifth (CMIP5)

phases of the project (Taylor et al. 2011). The GCMs used in CMIP3 are early generation

models and many evaluations have been completed; whereas the GCMs used in CMIP5 are

more experimental, and have a shorter record of development and evaluation. Comparison

between CMIP3 and CMIP5 indicates minor differences in future, projection results (Reichler

and Kim 2008), and a large majority of comparisons do not address engineering-specific met-

rics (Wuebbles et al. 2014). The Bureau of Reclamation dataset is the only source to provide

output from both CMIP3 and CMIP5 models. A compelling reason to prefer one over the other

for precipitation analysis has not been presented, which means engineers have flexibility in

choosing from either data set or a combination thereof, depending on which is best suited for

their application. One may wish to select a downscaled data source based on the downscaling

technique (dynamical or empirical); however, there is no consensus relating to which tech-

nique is superior, since both have advantages and disadvantages (Prudhomme and Davies

2009; Fowler et al. 2007). Similar to the decision to choose between CMIP3 and 5, a single

reason to prefer one downscaling technique to the other does not exist, and engineers should

select a source suitable for the engineering problem rather than accessibility of a particular

data archive.

Emission scenarios estimate the potential concentration of greenhouse gases (GHG) in

the atmosphere, based on pathways of socio-economic, technological, and political factors.

CMIP3 global models use emissions scenarios from the Special Report on Emissions Scenar-

ios (SRES) (Nakicenvoic et al. 2000) created for the IPCC 3rd Assessment report (Houghton

et al. 2001); whereas, CMIP5 global models use emissions in the form of Representative Con-

centration Pathways (RCPs) (van Vuuren et al. 2011) created for IPCC AR5 (IPCC 2012). When

it is available to choose between multiple emissions trajectories, the authors recommend an-

alyzing at least two scenarios when possible: (a) an upper bound that will provide the most
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conservative estimate of future conditions for use in engineering practice, such as SRES A2

(projecting 2.0 - 5.1 ±C of warming by 2100) or RCP 8.5 (5-6 ±C by 2100), and (b) a lower bound

that is aligned to targets of the Paris agreements (Framework Convention on Climate Change

2015), similar to SRES A1B and RCP 4.5. Choosing between emissions scenarios is most rele-

vant for infrastructure of long lifetimes (40 years or more), since many impacts across emis-

sions scenarios generally diverge after the middle of the century (Collins et al. 2013). Irre-

spective of the scenarios and model sources that are ultimately chosen by the engineer, it is

important to document assumptions and make them available to those interpreting the find-

ings.

Once a downscaled data source has been selected based on the desired characteristics

(from Figure 2.2), the user should extract the output at the spatial grid closest to the geo-

graphical location of interest, for a historical simulation period (usually one for which the

user has historical data from framework step 1) and a future simulation period (for dates and

length required for the engineering application). The user should obtain output from sev-

eral different climate-modeling organizations in order to create an “ensemble” of downscaled

model output. The initial ensemble should include all model simulations available for the

selected emissions scenario(s), in order to accurately assess model performance and uncer-

tainty, which is discussed in step 3 of the framework.

To access the output, some sources provide a user interface, including the USGS, Bureau

of Reclamation, and MACA. The USGS (RegCM3) and Bureau of Reclamation websites allow

for selection of multiple grid cells and provide spatially averaged time series at different time

steps. NARCCAP, NA-CORDEX, and the ARRM sources do not have the guidance of a user

interface and data must be extracted as individual files from a server. These files are usually

available in netCDF (network Common DataForm) format, and require software packages

(available in Excel, MATLAB, R, python) and the x-y coordinates for the geographical loca-

tion (from the netCDF data matrix) to obtain the time series of data. Precipitation stored in

netCDF files is often provided as instantaneous flux values (in units of kg/m2s), which is con-

29



Chapter 2- Framework for Incorporating Climate Model Output into Engineering Methods

verted to precipitation depth over a time period by dividing by the density of water (1,000

kg/m2) and multiplying by the number of seconds in the time step.

2.2.4 Step 3. Account for climate model uncertainty

and reliability

Step 3 of the framework relates to analyzing performance and uncertainty of the ensemble

of models extracted from the downscaled data source (selected in step 2). Simulations from

downscaled climate models are susceptible to large uncertainties, meaning models may not

agree on the magnitude or direction of future change in rainfall. Uncertainty can be intro-

duced in the downscaling process, as well as through the three sources of uncertainty inher-

ited from the global climate models: (1) scenario uncertainty of future GHG emissions, (2)

natural (internal) climate variability (initial conditions), and (3) inter-model discrepancies

(modeling assumptions) (Kirtman et al. 2013).

The relative contributions to uncertainty from each source vary depending on the region

and simulation year. For precipitation, internal variability contributes the most uncertainty in

early years of the 21st century, whereas inter-model uncertainty makes up the largest majority

after 2040 (Kirtman et al. 2013; Hawkins and Sutton 2011). Scenario uncertainty is managed

through the use of multiple emissions scenarios, described in step 2. Internal conditions un-

certainty is bounded by producing several simulations using different initial criteria (Knutti

et al. 2009; Musau et al. 2013). Most sources of climate output, however, only provide output

from a single simulation (or an average of multiple simulations) for each climate model, with

the exception being the Bureau of Reclamation dataset. Finally, scientists recommend the use

of multiple models, or a “model ensemble,” in order to avoid misleading conclusions from

inter-model uncertainty (Barsugli et al. 2013). Uncertainty introduced through the downscal-

ing methods can be similar in magnitude to inter-model uncertainty (Chen et al. 2011), and
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managed in the same way (using multiple models).

The number of models to include in the final ensemble will depend on the approach used

to manage uncertainty. The various techniques include: the extremes approach, the ensem-

ble approach, and the validation approach (Musau et al. 2013). The “extremes approach” ex-

amines the full range of future scenarios by using the full ensemble extracted in step 2. There

are several drawbacks to using the extremes approach, including the time and effort expended

to consider each model individually; and the stronger argument, which contends that some

models may be less reliable than others at simulating the climate, and that considering the full

range of models may produce an unrealistic representation of the future (Fowler et al. 2007).

Those in favor of this argument suggest accounting for the reliability of the climate models

when considering the ensemble.

Climate models considered by scientists to be “more reliable” include those that are well

documented, are well established (with many years to make improvements), and that pro-

duce stable results. Models may be considered less reliable if they produce output that is “bi-

ased” with respect to the observed metric(s). Bias (also referred to as model systematic error)

is defined, in this context, as the average deviation between the observed value (or empirical

statistic) and the values or statistics obtained from the historical climate model simulations.

The deviation may be larger than zero for numerous reasons, including the assumptions and

simplifications made in the modeling equations (of the global, regional, and/or statistical

models).

Bias can be overcome by changing internal modeling assumptions (although this often

shifts bias in another direction) or through bias correction techniques applied to the simu-

lated rainfall output. Bias is assessed through the comparison of observations to “hind-cast”

model simulations (i.e., simulation of historical conditions) at the spatial and temporal res-

olution of the climate model (Gleckler et al. 2008). Poor performance with respect to histor-

ical conditions can be used to identify unrealistic models; however, adequate performance

in hind-casting does not guarantee the accuracy or reliability of future predictions, . For re-
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gional climate models, these hind-cast runs are driven by historical reanalysis data, which is

different from simulating the past using simulated atmospheric conditions from GCM out-

puts. Hind-cast runs must be obtained separately from the simulations of the past that use

GCMs.

Nearly all models exhibit some instances of bias; however, the magnitude varies depend-

ing on the metric, season, and models examined (Hall 2014). For example, NARCCAP re-

gional climate models, which have not been bias-corrected, were able to estimate mean an-

nual precipitation with relative precision (exhibiting low bias); however, extreme precipita-

tion statistics (e.g., annual maxima, 20-year return period) were often overestimated. The

Weather Research Forecasting Model (WRFP), from NARCCAP, exhibited especially high bias

for extremes, as the percentage error of the average maxima precipitation and the 20-year

return value was greater than 90% for nearly all seasons and US regions (Wehner 2013). A

study that examined the 3-hour precipitation totals of five regional climate model predeces-

sors to the NARCCAP models (excluding WRFP) found that the Iowa State model (MM5) and

the Scripps model (ECP) outperformed the Hadley model (HIRHAM), the Regional Climate

Model (RegCM2), and the Canadian model (CRCM) (Anderson et al. 2003).

Statistical downscaling techniques usually account and correct for bias in the downscaling

process, thus it is more important to assess reliability of regional models. Outputs from the

ARRM statistical downscaling method, which have been bias-corrected and cross-validated,

were found to show improved accuracy at generating extremes and to be efficient and gen-

eralizable across regions (Stoner et al. 2013). For precipitation (and other variables), the

Multivariate Constructed Analogs (MACA) method has been found to outperform the Bias-

Corrected Spatial Disaggregation method (BCSD), used to create the Bureau of Reclamation

dataset, due to the ability to jointly downscale certain variables (Abatzoglou and Brown 2012).

The remaining approaches to uncertainty can account for the relative reliability of climate

model output. The “ensemble approach” uses a weighted average of the model results to

develop a probability distribution of the range. There is no consensus on the minimum and
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maximum number of models to consider in the distribution and more research is needed in

this area (Mote et al. 2011). Yet, one study found that the relative skill of the ensemble average

to reproduce historical conditions converged after 6 or more models were included (Pierce et

al. 2009). Models in the ensemble can be weighted equally or based on criteria of reliability

(of the regional model or global model). Nonetheless, Wehner (2013) found that averaging the

ensemble using complicated weighting schemes was not more effective than simply removing

the unreliable or poorly performing models.

Removing unrealistic models from the ensemble refers to the final approach to manag-

ing uncertainty, known as “the validation approach” or “culling the ensemble” (Charles et

al. 1999; Flato et al. 2013; Mote et al. 2011). The ensemble statistics are calculated solely

from models that are considered to be more reliable, based on performance criteria. Some

studies have demonstrated that ranking the models based on performance leads to a differ-

ence in predictions (Gleckler et al., while others have shown that the differences due to model

culling is slight (Mote et al. 2011). One study found that results for a precipitation metric were

nearly indistinguishable between the average of the 11 best performing GCMs and 11 ran-

domly selected GCMs, from the CMIP3 ensemble (Knutti et al. 2009). For engineers, however,

culling may be an appropriate avenue in order to reduce ensemble size. While all uncertainty

approaches provide utility, it must be highlighted that any estimation of uncertainty from a

range of climate models will never provide perfect insight into the full spectrum of possible

futures (Mote et al. 2011). The engineer should decide which approach is best suited to their

application then clearly state all assumptions.
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2.2.5 Step 4. Adjust existing method to incorporate ex-

pected future trends

After the ensemble of desired climate models has been selected, the precipitation data fore-

casted by these models for the relevant future time frame must be incorporated into the exist-

ing method for developing the design standard (or application). Since climate model output

is provided at a “gridded” resolution (4 km or higher), this step will often require adjustment

of the model output to an even finer spatial resolution (e.g., < 1 km2). Model output may also

need adjustment temporally, to obtain a smaller time step. These adjustments are accom-

plished using additional downscaling or disaggregation techniques (Durrans et al. 1999) that

depend upon the required format of the precipitation data needed to update the specific de-

sign standard. In order to adequately account for the range of uncertainty from the selected

climate models, these further downscaling techniques should be applied individually to each

model output before averaging and should not be applied to the average of the outputs, since

this method filters data variation (Wehner 2013).

As discussed in step 1, sometimes the engineering application explicitly requires high-

resolution time series (e.g., at the station scale, or at intervals smaller than 3 hourly), for anal-

yses like streamflow simulation or flood forecasting. In this case, further statistical downscal-

ing techniques must be applied at this point to the already downscaled model output that was

selected in steps 2 and 3. Statistical downscaling methods include applying transfer functions,

weather generators, weather typing, or quantile-mapping to the gridded, downscaled model

output (Wood et al. 2004). Weather generators use empirical relationships calculated from

observations to simulate synthetic time series for rainfall data (Andréasson et al. 2004; Chen

et al. 2015). Weather typing, or resampling, involves relating the weather patterns of the larger

scale climate model to observed patterns in the local area (Prudhomme et al. 2002; Onof and

Arnbjerg-Nielsen 2009). Quantile mapping, also used for bias-correction, matches the empir-
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ical quantiles of re-gridded historical data to those of the historical climate simulation, then

adjusts the future climate simulation based on the difference between the historical data and

simulation (Boé et al. 2007; Laflamme et al. 2016; Gudmundsson et al. 2012).

If the engineering design application does not require a high-resolution time series and is

instead based on a statistical analysis of the observed data (which is the case for IDF curves),

then it may not be necessary to modify the underlying time series using complex downscal-

ing techniques. As an alternative, it is possible to incorporate the future trends from the grid-

ded, climate model output, directly into the statistical methods used historically. Two meth-

ods have been employed to adjust statistical metrics: the change factor approach and the

bias-correction approach. In the former, an observed statistic (usually at the point scale) is

adjusted to a future date using a change factor that is calculated from the original, down-

scaled model output. Change factors are typically calculated as the percentage difference

between historical and future model output, or as a ratio between the two values (Forsee and

Ahmad 2011; Zhu 2012). In the bias-correction technique, the future, gridded value from the

downscaled climate model output is modified based on the difference between the observed

statistics (point scale) and past model simulation statistics (grid scale) or hind-cast simulation

statistics (grid-scale) (Arnbjerg-Nielsen et al. 2013; Boé et al. 2007; Chen et al. 2015; Wilks and

Wilby 1999; Wood et al. 2000). Quantile mapping may be employed as a bias-correction tech-

nique (Boé et al. 2007). Detailed methods to accomplish this are described in the example

section for depth-duration-frequency curves.

2.2.6 Step 5. Interpret results and incorporate changes

into design practice

At this point in the framework, the user should have been able to incorporate trends from

an ensemble of downscaled climate model outputs into an existing design standard or engi-
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neering application, producing a range of resulting scenarios. To make use of the range of

results that incorporate future climate scenarios, current engineering practice must evolve to

incorporate principles relating to uncertainty and risk. Uncertainty may be addressed using

exhaustive or simplified approaches that build on the climate-model results. Robust Deci-

sion Making (RDM) is a technique based on principles of minimizing regret and achieving

acceptable thresholds. RDM involves testing future designs against the full plausible range of

futures obtained from step 4 (Lempert et al. 2006; Hallegatte 2009; Lempert 2013; Espinet et

al. 2015). Though RDM is growing in popularity to address the challenge of uncertainty asso-

ciated with climate change; these methods can be computationally intensive and may not be

appropriate for all applications. Other approaches to addressing uncertainty include defining

an acceptable risk level in order to select a design value or strategy from a range of possibili-

ties (Karsten Arnbjerg-Nielsen 2011; Hallegatte 2009; Hallegatte 2014). When applying either

method, decision-makers should favor strategies that are adaptable, have low regret, or are

reversible (Hallegatte 2009; Olsen 2015).

In addition to uncertainty, engineering designs will also need to better incorporate prin-

ciples of non-stationarity. This means addressing the fact that the infrastructure system is

subject to one or more shifts in exogenous factors (climate, land-use, demand patterns) over

the course of the operating lifetime (Kilgore et al. 2016). Best practices may include: (i) testing

for non-stationary trends (before assuming them), (ii) explicitly defining the final year in the

future that the structure is designed to operate to, with adequate performance, and (iii) defin-

ing what adequate performance means for each structure. The Mann-Kendal (MK) test can be

used to detect a non-stationary trend in an underlying distribution (Cheng and AghaKouchak

2014; Katz 2013; DeGaetano 2009; Kilgore et al. 2016). If detected, non-stationarity can be ad-

dressed by expressing one or more parameters or variables as a function of time (Katz 2013);

however, such factors must be calibrated and verified.
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2.3 Application of Framework: Depth-Duration-

Frequency Curves

The next section illustrates the framework as applied to rainfall duration frequency curves,

using Pittsburgh, PA as a case study. The application focuses on updating the depth-duration-

frequency (DDF) curves, which are a form of IDF curves that present rainfall as a depth (inches

or mm), rather than an intensity (inches or mm per unit time). Each step describes the deci-

sions made in order to update the curves to reflect future trends and uncertainties, following

the framework.

2.3.1 Step 0. Define the existing design standard that is

based on or incorporates precipitation data

Depth-duration-frequency curves provide estimates the depth of rainfall that characterizes

the potential for extreme storms to occur in a particular region. Storms are differentiated

based on their duration and frequency, or probability, of occurrence. Duration refers to the

length of time that precipitation occurs, and is selected by the engineer based on the length of

the design storm (or time of concentration) used to calculate stormwater runoff for a specific

method (e.g. the rational method, TR-55). Frequency of occurrence is described as either:

(i) an exceedance probability, which is the probability that an event of specific duration and

depth will be exceeded in one time period (often 1 year), or (ii) a return period, or recurrence

interval, which is the inverse of the exceedance probability, defined as the average length of

time between events of the same depth and duration (McCuen 2005).

When the time period is equal to one year, the rainfall depth expected for a storm of 24-

hour duration and 25-year return period is equivalent to the depth of precipitation over 24

hours that has a 4% chance of being exceeded in any year. The return period is selected by
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stakeholders based on the acceptable risk level for a design to fail or be inundated. Frequency

curves for use in design standards are created regionally in the U.S. by NOAA, available from

the NOAA Atlas 14, which consists of a compilation of precipitation frequency estimates for

all U.S. states and political entities (Bonnin et al. 2006; PennDOT 2011). The north and south-

east regions of the continental US have been recently updated (2015 and 2013, respectively);

however, many western regions (e.g., Montana, Washington, Oregon) have not been updated

since 1973 (Hydrometeorological Design Studies Center and NOAA’s National Weather Ser-

vice 2016). It is important to recognize, however, that significant challenges exist with these

curves due in large part to the spatially sparse observed data used to cluster regions with sim-

ilar characteristics of extreme rainfall (Barros 2006).

2.3.2 Step 1. Understand historical basis and data re-

quirements used to develop the existing standard

and retrieve data

IDF curves have historically been created based on the underlying distribution of extreme

events that occur in long time series (50 to 100 years) of observed rainfall. This process is

applied at different durations of rainfall (5 minutes to 72 hours) by aggregating the data to

the appropriate interval before analysis. Two methods are used to extract the extreme events,

also known as block maxima or tails, including: Annual Maximum Series (AMS), where the

maximum event for each duration storm is extracted for each year of record, or Partial Dura-

tion Series (PDS), where all values are taken above a threshold (Kilgore et al. 2016; Bonnin et

al. 2006; CSA 2012). The PDS method, also known as Peaks Over Threshold (POT) is able to

account for multiple extremes that may occur in a single year and is useful for short periods

of record; however, thresholds may be difficult to select, and events within a year may not be

hydro-meteorologically independent (Beguería 2005).
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AMS data points are often fit to a Generalized Extreme Value (GEV) distribution, described

by location, µ, scale, µ, and shape, ª, parameters (Visser and Petersen 2012; Bonnin et al.

2006; Coles 2001; CSA 2012). The shape parameter (which can be greater than, less than, or

equal to zero) determines the form of the distribution (e.g., Gumbel (Type I), Frechet (Type

II) or Weibull (Type III)) (Coles 2001). GEV parameters may be estimated using maximum

likelihood techniques (Katz 2013; CSA 2012). When using the AMS method, the rainfall depth

for a given duration and return period, i.e., the recurrence interval depth (zp ), is found by

relating the GEV parameters to the probability, as presented in Equation 2.1 and 2.2.

zp =µ° µ

ª

£
1° y°ª

p
§
, for ª 6= 0 (2.1)

µ°æl og (yp ), for ª= 0 (2.2)

where yp = ° log(1°p), p is the probability of exceedence in any year, and µ,µ, and ª are

the location, scale, and shape parameters of the GEV distribution, respectively (Coles 2001).

2.3.3 Step 2. Access appropriate climate model output

based on requirements for the existing standard

IDF curves are calculated for short duration (5 minutes to 12 hours) as well as long duration

(24 to 72 hours) events. The statistically downscaled datasets (e.g., Bureau of Reclamation,

ARRM, MACA) are suitable for long durations at the daily level or higher. However, the dy-

namically downscaled datasets (e.g. NARCCAP and NA-CORDEX) are more appropriate for

this analysis, as they allow calculation of curves at shorter durations (e.g., the 3-hourly in-

terval and greater). Sub-hourly durations would require additional temporal disaggregation

techniques not undertaken in this demonstration.

NA-CORDEX output is recommended for use over NARCCAP, if available, since some mod-
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els are available at finer temporal and spatial resolution (e.g., hourly, 25 km) and a longer sim-

ulation period is available (1950 – 2100). However, at the time of this study, CORDEX outputs

were not yet available; thus, NARCCAP outputs were used. NARCCAP precipitation projec-

tions are produced using a single emissions scenario (SRES A2) at a 3-hour time step and

spatial resolution of 50 km. Since only a single emissions scenario is available, this analy-

sis does not account for scenario uncertainty; however, the A2 scenario is at the upper end

of SRES scenarios and represents a conservative estimate of the future. Precipitation output

were extracted for the single grid cell with the centroid nearest to the Pittsburgh International

Airport (40.49± N, 80.24± W). Grid point maps are available to relate the geographical loca-

tion of the grid cell to the associated (x,y) coordinates in the NetCDF data matrix. NARCCAP

data were extracted for all 6 NCEP driven runs and 11 available RCM-GCM combinations for

historical (1970 – 2000) and future (2040 – 2070) simulation periods (see Tabel 2.3). Output

were constructed as a complete time series for a single grid cell after individual 5-yr netCDF

files over the entire North American domain were downloaded then concatenated using nco

toolkit (Zender et al. 2016).

2.3.4 Step 3. Account for climate model uncertainty

and reliability

The reliability of an ensemble of regional climate models can be assessed by comparing “hind

casts” of the regional models to historical observations. The hind casts are output from the

RCMs after they have been driven by historical reanalysis data (instead of a GCM). For NAR-

CCAP, the re-analysis data are from NCEP NARR (see Table 2.2) and reanalysis driven outputs

are available on a 50-km resolution, 3-hour time step, for the time period from 1979 – 2006.

In this study, the reliability of the NARCCAP RCMs was assessed by comparing the empirical

distributions of the reanalysis outputs of the six regional climate models to those of obser-

40



vations obtained from the local stormwater authority in Pittsburgh (3 Rivers Wet Weather,

2015). Before comparison, the observed data, recorded on a 15-minute interval at 33 rain

gauges throughout Allegheny County (area of 1,930 km2), was first scaled to the resolution

of the reanalysis output (3-hour, 50-km). To do so, the observations were aggregated to a 3-

hour interval, and then gauges that are geographically located within the 50-km grid cell of

the re-analyses were averaged. The 3-hour exceedence probability, which represents the like-

lihood that a rainfall event of a specific volume will occur in a 3-hour period, was selected as

the metric of comparison to represent the empirical distribution of both precipitation time

series. The exceedence probability for each rainfall depth above zero (in the reanalysis and

adjusted-observed time series) was calculated using a Weibull distribution, commonly used

in precipitation analyses. Exceedence probabilities from the scaled-observations were plot-

ted against those from the reanalyses.

Uncertainty was bounded using the validation approach, which uses a performance or re-

liability analysis to select (or “cull”) models to include in the final ensemble. Three NARCCAP

RCMs were selected, or culled, based on the visual proximity of the reanalysis exceedence

curve to the adjusted-observed curve (see Figure 2.3). The five RCM-GCM simulations avail-

able from the three validated RCMs were used in the subsequent analyses (see Table 2.3).

2.3.5 Step 4. Adjust existing method to incorporate ex-

pected future trends

After the performance assessment, data from downscaled models may be integrated into fu-

ture IDF curves. Future trends may be incorporated in one of several steps taken to obtain

the IDF values, including to: the underlying time series of the data record, the extreme value

series (AMS or PDS), the GEV distribution, or directly to the return level intensities calculated

from the distribution. The first approach involves complex statistical downscaling techniques
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Figure 2.3: Comparison of 3-hr exceedance probabilities from 6 NCEP driven RCM runs in the
NARCCAP ensemble (solid line) to observations re-gridded to 3-hr, 50km resolution (dashed
line) for a grid cell in the Pittsburgh region (1979 – 2014)

42



Table 2.3: Regional Climate Models and Associated GCM Drivers Composing the NARCCAP
Source of Downscaled Model Output; ECPC, HRM3 and MM5I were Selected After Reliability
Analysis (Step 3))

Model Full Name Modeling Group GCM Driver

CRCM
Canadian Regional

Climate Model
OURANOS

/ UQAM
CGCM3 (Third Generation

Coupled Global Climate Model)

ECPC
(ECP2)

Experimental Climate
Prediction Center

Regional Spectral Model

University of
California-San Diego

& Scripps Institute
of Oceanography

GFDL
(Geophysical Fluid

Dynamics Laboratory GCM)

HRM3
Hadley Regional Model 3 /

Providing Regional Climates
for Impact Studies

Hadley Centre

HADCM3 (Hadley Centre
Coupled Model, version 3)
GFDL (Geophysical Fluid

Dynamics Laboratory GCM)

MM5I
MM5 – PSU/NCAR
mesoscale model

Iowa State University

CCSM (Community
Climate System Model)

HADCM3 (Hadley Centre
Coupled Model, version 3)

RCM3
Regional Climate
Model version 3

UC Santa Cruz

GFDL (Geophysical Fluid
Dynamics Laboratory GCM)

CGCM3 (Third Generation Coupled
Global Climate Model)

WRFP
(WRFG)

Weather Research
& Forecasting Model

Pacific Northwest
National Lab

CCSM (Community Climate
System Model)

CGCM3 (Third Generation
Coupled Global Climate Model)
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to obtain the appropriate temporal and spatial resolution of the time series. However, it has

been hypothesized that if the engineer is only concerned with designing for extremes, it may

be more manageable to avoid downscaling to a continuous time series, and instead adjust

empirical quantiles through mapping functions (Hassanzadeh et al. 2013). A simple method

that has been introduced in the engineering literature involves directly adjusting historical

rainfall depths at the point scale, for a given return period and duration, based on the ex-

pected change from historical to future conditions at the grid scale (Zhu et al. 2012; Forsee

and Ahmad 2011). Areal reduction factors have been employed to adjust the station scale

rainfall, as reported by Zhu et al (2012), and summarized here in Equation 2.3:

I (s)
F (T,d) = I (s)

H (T,d)
I (g )

F (T,d)

I (g )
H (T,d)

(2.3)

where I denotes the intensity for a given return period (T) and duration (d), at the station

scale (s) or grid scale (g), for future (F) or historical (H) time periods.

In this analysis, climate signals are incorporated into regional IDF curves using areal re-

duction factors applied to historical depths at the station scale. This process has three stages:

(1) historical DDF curves were recreated for the historical period available from the climate

models (1970 – 2000) using airport station data (obtained from NOAA National Centers for En-

vironmental Information); (2) change factors, or areal reduction factors, were calculated from

IDF curves estimated from historical and future RCM gridded outputs; and (3) the change

factors were applied to update historical curves. Steps (1) and (2) utilize the same method for

creating DDF curves, but on the native resolution of each data set. For the historical (1970 –

2000) and future (2040 – 2070) periods, return period depths values are calculated for the 3-,

6-, 12-, 24-, 48-, and 72-hour durations and the 2-, 5-, 10-, 25-, 50-, and 100-year return period.

The moving window approach is applied to sum the underlying time series to the appropriate

duration to obtain the annual maximum series. The AMS of each duration are fit to a GEV dis-

tribution using the method of moments and recurrence interval depths were calculated using
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Equation 1 for each 30 year period (1970 – 2000) and (2040 – 2070). GEV distributions are

fit independently for the airport station data and each RCM. Change factors were calculated

separately for each model as the ratio between the future and historical gridded recurrence

interval depths, and are applied to historical depths using Equation 2.

This simplified method is used solely for demonstration purposes of this framework. The

method may be appropriate for understanding potential future trends in IDF relationships;

however, it is not a reliable alternative to more rigorous methods that alter the extreme value

series or the GEV distribution parameters (Mailhot and Duchesne 2009; DeGaetano 2009;

Cheng and AghaKouchak 2014; Shahabul Alam and Elshorbagy 2015). In the near future, NA-

CORDEX will be available for a continuous time period (1950 – 2100) and could be used to

inform a general trend in the future GEV distribution, notably the location parameter.

2.3.6 Step 5. Interpret results and incorporate changes

into design practice

Non-stationary conditions imply that the return period of an event will change with time.

Mailhot and Duchesne (2009) state that design criteria under non-stationary conditions should

explicitly consider (1) the expected lifetime of the structure, (2) that the probability of exceed-

ing the design capacity and risk threshold will change over time, and (3) a statistical model

that describes the expected evolution of intense rainfall over time 11/4/16 10:43 PM. The lat-

ter comes from the previous steps outlined in this framework and will include bounds of un-

certainty represented as a range of plausible values for a given return period and duration. It is

the responsibility of regulating agencies to provide guidance on which design value to choose

within the range. Traditionally, design criteria have focused on selecting values as close to the

expected value as possible, i.e., the mean of the range, assuming a normal distribution. One

study suggested that design levels should be selected as the higher-than-median-percentile of
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the design criteria in question (Karsten Arnbjerg-Nielsen 2011). Some argue that it is not pos-

sible to characterize the distribution and confidence intervals of the uncertainty, and an ap-

propriate value cannot be selected independent of the decision being made (Hallegatte 2014).

The authors of this study propose that in addition to presenting uncertainty bounds, agencies

could provide two suggested values (possibly the mean and 75th quantile of the range) that

could be used in low and high-risk situations.

To address considerations (1) and (2) regarding infrastructure lifetime and changing risk

level, Mailhot and Duchesne (2009) propose that the design engineer will need to establish

two criteria: (1) the critical return period, which is the return period for which the structure

is made to withstand, and (2) the reference year, which is the year in the future to which the

critical return period is associated. If the reference year is equal to the design life of the in-

frastructure, exceeding design capacity would not be accepted and the structure would be

overdesigned for the full lifetime. If the reference year is equal to the year of conception, the

structure would be under designed for the full lifetime.

Mailhot and Duchesne also suggest that more severe guidelines are needed for infrastruc-

ture with long expected lifetimes (e.g., higher critical return periods and longer reference

years), since these structures could experience extreme shifts in climate towards the end of

life, at which they are most vulnerable to failure do to age and degradation of materials. Fur-

thermore, where uncertainty in projections is especially high, designers may choose to select

a shorter reference year to allow for adaptations to be implemented once conditions become

more apparent. The 2009 study and the present authors stress the importance of implement-

ing recurring performance evaluations of the drainage system in order to expose evolving sys-

tem vulnerabilities. Adaptation strategies over time will be required to maintain an acceptable

service level.
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2.4 Results and Discussion of Framework Ap-

plication

As framework steps 0 through 2 were detailed previously, this section focuses on results from

framework steps 3 through 5. Figure 2.3 presents results from step 3, the performance analysis

of NARCCAP ensemble, which compared the exceedance probabilities of the six NCEP-driven

RCMs (1979 – 2006) to those of the re-gridded observations for the Pittsburgh region (2004-

2014). The black, dashed line represents the 3-hour exceedance probability for the aggregated

observations and the solid line represents the 3-hour exceedance of the NCEP driven RCM.

Proximity of the solid curve to the dashed curve represents similarity in the underlying em-

pirical distributions and thus a higher skill of the RCM to represent historical statistics. These

results show that for southwestern Pennsylvania, the HRM3, MM5I, and ECP2 models per-

form best in comparison to the other models, since these curves more closely agree with the

dashed line. The Canadian model (CRCM) underestimates precipitation volume after the 1%

exceedance probability, whereas the RCM3 and WRFG models overestimate the 3-hour pre-

cipitation depth after the 0.5% probability. The HRM3, MM5I, and ECP2 RCMs were selected

for use in the subsequent analyses. Future research should examine quantitative metrics for

objective selection of climate models based on reliability.

Figure 2.4 presents results for the second stage of step 4 of the applied framework, which

involves developing the change factors from the gridded climate data in order to adjust exist-

ing IDF curves to incorporate future trends. Change factors (CFs), i.e., the ratio of the future

rainfall depth to the historical depth, are presented for return periods of 2-, 5-, 10-, 25-, 50-,

and 100-years as separate sub-plots, and durations of 3-, 6-, 12-, 24-, 48-, and 72-hours within

each return period plot. For each duration, the change factor range represents the spectrum

of CFs from each of the five selected RCM-GCM models. Change factors greater than 1.0 rep-

resent an increase in the rainfall depth in the future; less than 1.0 denotes a decrease. The
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range of 5 models is presented as a box plot, where the bar in the box represents the median

of the models, the top and bottom of the box plot represent the 25th and 75th quartiles, and

the whiskers extend to the 90th quantiles. Values outside these ranges are represented as plus

signs.

Figure 2.4: Range of change factors relating future (2040 – 2070) and historical (1970 – 2000)
gridded rainfall depths calculated for each duration and return period for each model in the
culled NARCCAP ensemble (n = 5) and a single grid cell in Pittsburgh. Change factors greater
than 1 represent an increase in rainfall depth in the future for a given duration and return pe-
riod. The range is presented as a box plot, where the red bar in the box represents the median
of the models, the top and bottom of the box plot represent the 25th and 75th quartiles, and
the whiskers extend to the 90th quantiles. Values outside these ranges are represented as plus
signs.

The median change factor for each duration and return period is larger than 1.0, which

suggests that the depth of extreme precipitation is expected to increase in the future for Pitts-

burgh. With the exception of the 3- and 72-hour durations, the median change factor tends

to increase as the return period increases. This is also the case for the 75th and 90th quantile
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change factor for all durations. This finding implies that the larger recurrence interval storms

(e.g., 25-, 50-, 100-year), for the same duration, may increase in severity at a sharper rate than

the more frequently occurring storms (e.g. 2-year). It is also interesting to note that for the

2-, 5-, and 10-year return periods, the median change factor of the 3-hour duration storm

is the largest of all durations. This is in line with other studies that found only short dura-

tion storms are shown to have consistently higher intensities in the future (Kuo et al. 2015;

Cheng and AghaKouchak 2014); however, it also suggests further analysis of relative change

is needed to produce understanding of whether the result has a clear physical interpretation

and is expected to be reliably predicted across downscaling procedures and regions.

It may be possible to interpret change factors as a potential “climate safety factor” that

could be applied to existing, stationary, depth-duration-frequency values. Based on these

findings, a safety factor of 1.3 would encompass the majority of model uncertainty for depths

of smaller return periods (e.g. 2 to 10 years); however, a factor of 1.3 is no longer valid when

uncertainty magnifies as the return period increases to 25 years and larger. Change factors

for extreme precipitation will vary depending on the duration and return period of the event,

as well as the climate model, region, and future year analyzed; thus, additional studies are

needed to determine appropriate climate safety factors by region, duration, and return pe-

riod. As an alternative to applying a safety factor to existing curves, the authors recommend

using values from updated, non-stationary, depth- or intensity-duration-frequency curves.

Figure 2.5 presents the range of rainfall depths expected for the future period (2040 – 2070)

based on the change factor method, for the previously listed durations and return periods.

Change factors (reported in Figure 2.4) as less than 1.0 were converted to 1.0 for this anal-

ysis based on recommendations from the Canadian Standards Association, which state that

beneficial aspects of climate change that allow for a reduction in design capacity should be

neglected due to the inherent risks and costs that could arise from under-design (CSA 2012).

When all models agree on findings suggesting change factors less than 1.0, this assumption

should be reconsidered. To exemplify how rainfall depth changes with respect to the proba-
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bility of occurrence, results are portrayed for a specific duration, as a function of the return

period. Uncertainty among the five models is represented as the grey region on the plot. The

median of these models is shown as the thin, solid line, and the 75th quantile is the thin,

dashed line. The historical curve (1970 – 2000) is shown as the thick, dark line.
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Figure 2.5: Updated IDF curves in Pittsburgh for the future period (2040 – 2070) using change
factor method based on the culled NARCCAP ensemble (n = 6). The bolded, black line rep-
resents the historical period (1970 – 2000). The uncertainty range of the truncated values is
represented as the shaded grey area; the median of the range is shown as the solid, red line;
the 75th quantile shown as the thin, grey, dashed line. The historical values (1970 – 2000),
calculated using airport data, are shown as the thick, black, dashed line. Future depths for the
25-year return period are highlighted for the mean and 75th quantile of the range.

Uncertainty of future projections tends to increase as return period increases. This phe-

nomenon may be due to model variability of very extreme events; however, it is likely also a

result of extrapolation of the GEV distribution to recurrence intervals larger than the under-

lying 30-year time series. One possible approach to overcome this limitation is to generate
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multiple simulations with the same model. Looking specifically at the 25-year return period,

increases with respect to the historical depth are inconsistent across durations and do not in-

crease monotonically as duration lengthens. The median, future, depth is equivalent to a 6%,

21%, and 10% increase for the 3-, 6-, and 12-hour durations, respectively, and an 18%, 21%,

and a 10% increase for the 24-, 48-, and 72-hour durations, respectively. The 75th quantile

depth ranges from a 21% to 41% increase from the historical depth, bounded by the 6-hour

and 48-hour durations, respectively.

The future, median, 25-year depth can be extended horizontally right until it intersects

with the historical curve. This reflects the historical return period that would have been

needed to ensure the 25-year return period performance in the future. For the 3-hour and

6-hour durations, this reflects the 35-year and 60-year return period, respectively; for 12-

hour and 24-hour, it is about the 50-year and 85-year depths, and equal to or greater than the

100-year return period for durations 48 hours and larger. This finding indicates that merely

doubling the return period (e.g. 25 year to 50 year) and using historical values may be ap-

propriate for shorter duration storms (12-hours and less); however, this simplified method

becomes inapplicable for larger duration storms. The historical 25-year depth (bottom, hori-

zontal, dotted line) can also be extended left until it intersects the future, median curve (thin,

solid curve). The intersection suggests that designing for depths with respect to a stationary

25-year storm would only provide protection from 7-to 12-year return period storms by 2070,

for all durations.

These findings may be applied to the selection of the 25-year, 24-hour duration storm

for use as input to the TR-55 method, commonly used in storm water design for calculation

of peak discharge. To do so, the authors assume the following: (i) that the updated curves

represent the state of the art, (ii) the design structure is located on an arterial road of low

traffic volume, and (iii) the reference year, the year after which infrastructure performance

is not guaranteed, is 50 years. Assuming that the current year (2016) is equal to the year of

conception of the project, the associated calendar year needed to describe the expected rain-
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fall depth in the reference year is 2066, which falls within the future period evaluated in this

analysis. The storm water structure represents a situation of low risk (due to placement on a

low-volume arterial); thus, the authors recommend selection of the median depth of 106 mm

for use as input to the TR-55 method.

2.5 Conclusions

Despite the availability of downscaled projections of precipitation, there are considerable lim-

itations to using these as inputs for engineering design applications. These include complex

data extraction requirements, uncertain and biased model output, mismatch in temporal and

spatial resolution of the gridded climate models and the desired engineering information, as

well as the lack of a path to inform future design. This study presented a framework to over-

come these limitations that may be used as a guide for agencies and engineers that wish to

update current design standards to incorporate future, non-stationary trends.

After defining the design standard to update and how this standard uses precipitation

data, the framework begins by understanding the existing methods and precipitation data re-

quirements that have been used to create the current standard. This includes understanding

the length of record, and the temporal and spatial resolution of the data required as input to

re-create the components of the method. The second step involves selecting and extracting

the most appropriate downscaled climate model data source, based on the findings in step

1. A data source may be preferred over another due to available temporal resolution closest

to that of the historical data, a higher spatial resolution, the length of the simulation period,

and finally the ease of extraction. The third step involves managing the performance and un-

certainty of the downscaled climate models. For regional climate models, bias correction and

performance evaluation is the responsibility of the user; whereas statistically downscaled data

sets are usually corrected for bias and error during the downscaling process. Uncertainty is

managed using one of three techniques: the extremes (max/min), ensemble, or validation ap-
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proach. The fourth step relates to adjusting model output to the temporal or spatial resolution

required for the engineering application, which can be completed using statistical downscal-

ing techniques, bias-correction, or the change factor method. The final step discusses how to

incorporate results into engineering practice by accounting for uncertainty ranges, risk levels,

and non-stationarity.

The general framework was applied to the updating of depth-duration-frequency curves,

a common input to stormwater design, that provides the expected depth of rainfall for given

storm duration and recurrence interval. Historical curves were recreated by fitting a GEV dis-

tribution to the AMS series of 30 years of historical rainfall data obtained from the gauge

station at the Pittsburgh International Airport. Since precipitation inputs are required on a

sub-daily time-step for IDF curves, climate output was obtained from NARCCAP, the only

source currently available that provides output at a less than daily time step. These dynami-

cally downscaled regional climate models were assessed for performance by comparing NCEP

driven runs to re-gridded observations, and 5 RCM-GCM combinations were selected to com-

plete the remaining analyses. Future curves were estimated by applying change factors from

the gridded climate model output to the historical curves. A value may be selected from the

updated curve based on the lifetime of the structure, critical return period, and risk level.

The median change factor for each duration and return period is larger than 1.0, which

suggests that the depth of extreme precipitation is expected to increase in the future for Pitts-

burgh. Results imply that designing for a rainfall depth equivalent to the future (2040-2070),

median 25-year depth is comparable to designing for the stationary (1970 – 2000) 50 to 100+

year depths, depending on the storm duration. If instead the designer selected a 25-year

depth from the stationary curve, this would be equivalent to the 7-to 10-year return period

storm depths of the future, median value for various durations.
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2.6 Recommendations and Future Work

Based on these results and the suggestions of the framework presented, and the ASCE ini-

tial guidance for adapting infrastructure and practice to a changing climate (Olsen 2015), the

following information should be considered by engineers working with climate output for re-

siliency applications:

• Match intended engineering application with the appropriate climate model source,

• Different climate model sources require various amounts of effort for data extraction

and preparation,

• Climate models have various levels of skill at representing historical mean and extreme

statistical metrics and engineers need to understand the major issues and uncertainties

involved,

• Create an ensemble and be transparent about assumptions,

• Test robustness of designs to extremes and alternative scenarios,

• Discuss tradeoffs and uncertainties in risk, resiliency, performance, and costs with stake-

holders,

• Design for low-regret, adaptability, and robustness, and revisit designs when new infor-

mation is available.

Because of climate change and stakeholder desires for enhanced resiliency, engineers will

need to be familiar with choosing and incorporating climate change projections into planning

and design. However, for engineering practitioners constrained by time and resources, it may

not be feasible to expend the effort required for the detailed analyses described here. There

is a need for collaboration across agencies and the research communities to serve as ad-hoc

or standing boundary organizations to translate climate projections into relevant engineering

information. Duties of these translational organizations may include providing rigorous stan-
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dards for interpretation of climate data, understanding the utility of increasing the number of

models considered in an ensemble, development of a single, simplified user interface that ac-

cesses all downscaled data sources, and tools that automatically post-process data based on

rigorous standards.
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Abstract

Precipitation-frequency curves are commonly used in the design of stormwater systems to

represent values of extreme rainfall. Many studies and regions have updated these curves to

reflect trends in future rainfall from climate model projections. Less often explored in these

studies are the model uncertainties such as those related to the spatial resolution of the cli-

mate model and the spatial adjustment (downscaling) method. This study investigates these

uncertainties by considering climate-corrected depth-duration-frequency curves using sub-

hourly regional climate model projections from NA-CORDEX. Results are calculated for 6 U.S.

cities (Birmingham, AL; Boston, MA; Boulder, CO; Pittsburgh, PA; Phoenix, AZ; and Seattle,

WA) for the period from 2040 to 2099. Shorter duration storms (less than 6 hours) show a

larger percent change in the future than longer duration storms for all cities. Out of three cor-

rection methods evaluated, the change factor method is preferred due to its consistent results

and simple interpretation. The lower spatial resolution (50-km) climate model ensemble gen-

erally provides a more extreme estimate of precipitation in the future and wider uncertainty

range than the 25-km ensemble. These uncertainties can lead to different choices in pipe size

for stormwater designs.

Keywords: Depth-duration-frequency curves; stormwater design; regional climate mod-

els; extreme value distribution; climate change
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3.1 Introduction

Hydrologic analyses for the design of green and grey stormwater infrastructure require local-

ized precipitation information. This typically takes the form of an “event," which is defined

as a certain amount of rain (called a depth or intensity) that takes place over the duration of a

storm (Durrans et al. 1999). These values are obtained from regional precipitation-frequency

curves, which can be in the form of intensity-duration-frequency (IDF) or depth-duration-

frequency (DDF) curves (Bonnin et al. 2006; PennDOT 2011; CSA Standards 2012). IDF curves

express the rainfall intensity as a function of storm duration and probability of occurrence,

whereas DDF curves express the rainfall depth with respect to duration and probability. The

probability is often expressed as a return period, or the inverse probability that rainfall of a

specific return level will be exceeded in a year (McCuen 2005). Precipitation frequency curves

have been traditionally created based on the statistical distribution of extreme events that

occur in the historical rainfall record at a specific weather station (Hershfield 1961).

The use of historical data in hydrologic design is a widely accepted approach; however,

as atmospheric water vapor rises along with global temperatures (Allen and Ingram 2002; So-

den et al. 2005; Allan and Soden 2008), increases in extreme rainfall are expected (Karl and

Trenberth 2003). There is a growing consensus that new approaches to infrastructure design,

especially infrastructure with intended long-term use, are required to incorporate projected

future changes (Barros and Evans 1997; Milly et al. 2008; Mailhot and Duchesne 2009; Rosen-

berg et al. 2010; Arnbjerg-Nielsen et al. 2013; Lopez-Cantu and Samaras 2018). In response,

several studies and regions have begun to update precipitation frequency curves using trends

from climate models in order to capture expected changes and improve resiliency of designed

infrastructure, e.g., (Zhu et al. 2012b; Mirhosseini et al. 2013; Hassanzadeh et al. 2013; Kuo

et al. 2015; Simonovic et al. 2016; DeGaetano and Castellano 2017; Cook et al. 2017). These

studies have analyzed precipitation patterns in the Northeastern U.S. (DeGaetano and Castel-
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lano 2017; Cook et al. 2017), Southeast Canada (Srivastav et al. 2014; Kuo et al. 2015; Ahmed

and Tsanis 2016), and Northern England (Fadhel et al. 2017). For these regions, the 50-year,

24-hour storm is projected to increase by approximately 25% (for the average of the climate

model ensemble). This means that the amount of rainfall during a 24 hour period in an ex-

treme storm (one expected to occur only once in 50 years) is expected to increase by 25%. Few

studies expect extreme precipitation to decrease in the future, and then by no more than 10%

(DeGaetano and Castellano 2017; Fadhel et al. 2017).

Predictions of future extreme precipitation are subject to large uncertainties, meaning that

the results could change depending on the methods and climate simulations used in model-

ing. Uncertainty is introduced when the system is modeled due to: (1) characteristics of the

climate model (Allen et al. 2000; Deser et al. 2012); (2) the greenhouse gas emissions scenario

selected; and (3) the downscaling, or spatial correction method. A recent study suggested

that global climate models (GCMs) contribute the largest uncertainty in IDF curves, followed

by the representative concentration pathway (RCP) emissions scenarios, and then the down-

scaling method (Shahabul Alam and Elshorbagy 2015). However, a different study (Sarr et al.

2015) found that the choice of downscaling method had a larger effect than the selection of

the climate model for storms of 10-year return periods or larger. Additional uncertainty can

also be introduced from the spatial resolution of the climate model. Mendoza et al (2016)

found that variation introduced due to different spatial resolutions of the climate model sur-

passes variation from the choice of climate model alone (Mendoza et al. 2016). In addition to

differences resulting from the spatial correction technique, DeGaetano and Castellano (2017)

compared three downscaling techniques and found that a change factor technique employed

with GCMs produced the largest percent change, while the use of regional climate models

led to the largest station to station variability (DeGaetano and Castellano 2017). Their com-

parison also demonstrated that differences in the direction of change could result from using

different spatial correction techniques, even when the same climate model was used.

While the prior work has identified the importance of evaluating uncertainties other than
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those introduced by the climate model ensemble, most studies have not considered how to

address multiple combinations of uncertain factors, nor have they put the introduced uncer-

tainty into context for stormwater infrastructure design. This paper investigates how different

choices in climate-corrected DDF curve creation, including the choice of climate model spa-

tial resolution and the method used for spatial adjustment, alter projections of 1-hour to 24-

hour rainfall depth and the uncertainty associated with these projections. We then demon-

strate how the selection of design storm from this uncertain range affects stormwater infras-

tructure design dimensions in 6 U.S. cities.

3.2 Data and Approach

This study assesses the uncertainty introduced by the choices made when developing up-

dated, or climate corrected, depth-duration-frequency (DDF) curves using sub-daily climate

model output, and how these choices and their related uncertainty can affect stormwater in-

frastructure designs. In this study, DDF curves are estimated using the annual maximum

series (AMS) from observed rainfall and regional climate model simulations, for six locations

in the United States (U.S.). The DDF curves in this analysis are created for five durations (1-,

3-, 6-, 12-, and 24-hour) and six return periods (2-, 5-, 10-, 25-, 50-, and 100-years).

Section 3.2.1 presents the data used to create the climate-corrected DDF curves, includ-

ing observed weather station data and the climate model simulations. Section 3.2.2 describes

general methods used in this study to create historically-informed DDF curves. Section 3.2.3

describes the methods used to develop updated DDF curves in the present work, including

the three correction techniques and the selection of a future time period for simulation. Sec-

tion 3.2.4 explains the analyses used to assess and bound the uncertainty relating to the spatial

resolution, the statistical distribution, and the correction methods. The final section (3.2.5)

presents an illustrative design example used to assess implications of the uncertainty related

to modeling choices on stormwater infrastructure design.
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3.2.1 Data

Observed data

The DDF curves are created using hourly observed precipitation data from the NOAA National

Center for Environmental Information (NOAA 2016) for six cities: Birmingham, AL; Boston,

MA; Boulder, CO; Pittsburgh, PA; Phoenix, AZ; and Seattle, WA. These cities were selected as a

representative sample of various climate regions throughout the U.S. Each of these cities also

had a weather station near it with a long data record that was selected for use. If small gaps

existed in the station records, they were supplemented with data from nearby stations. His-

torical curves were recreated for the period from 1950 to 2013 for all cities except Pittsburgh,

where only data from 1953 to 2013 were available. Table 3.1 presents the latitude and longi-

tude coordinates, the elevation, and the historical 24-hour, 50-year event, for each weather

station. The range reported for the 50-year storm represents the 10% and 90% confidence in-

terval. The historical 24-hour, 50-year event was estimated by fitting a GEV distribution with

maximum likelihood estimation (see Section 3.2.2).

Regional climate model simulations

This analysis uses simulated rainfall time series from regional climate models (RCM) from

the North American Coordinated Regional Downscaling Experiment (NA-CORDEX) project

(Mearns et al. 2017). NA-CORDEX is a compilation of standardized regional climate model

simulations that provides simulations at an hourly time step, for two different spatial reso-

lutions (50-km and 25-km), over the continuous period from 1950–2100. The NA-CORDEX

project uses Earth System Models (ESMs)2 (Heavens et al. 2013) to provide input conditions

for the Regional Climate Models (RCMs). A single RCM “forced” by a single ESM is called an

2ESMs use more complex relationships than those in older Atmosphere-Ocean Global Circulation Models
(AOGCMs). In additional to simulating atmospheric and ocean components, they include interactions between
the global carbon cycle, vegetation, atmospheric and ocean chemistry, and ice sheets (Heavens et al. 2013)
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Table 3.1: Characteristics of each city in this study. The range for the 50-year storm represents
the 10% and 90% confidence interval.

City Latitude Longitude
Elevation

(m)
24-hour 50-year

(in)
rainfall depth

(cm)

Birmingham
AL 33.56 86.74 187.5

9.7
(6.15 - 17.8)

24.6
(15.6 - 45.2)

Boston
MA 42.36 -71.00 3.7

7.0
(4.8 - 11.3)

17.8
(12.2 - 28.7))

Boulder
CO 40.03 -105.3 1654

5.9
(3.7 - 10.5)

15.0
(9.4 - 26.7)

Phoenix
AZ 33.42 -112.0 337

2.9
(2.0 - 4.7)

7.4
(5.1 - 11.9)

Pittsburgh
PA 40.44 -80.02 367

4.3
(3.3 - 5.9)

10.9
(8.4 - 15.0)

Seattle
WA 47.44 -122.3 113

4.5
(3.4 - 6.6)

11.4
(8.6 - 16.8)
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RCM-ESM combination.

Since one of the goals of this analysis is to understand how the choice of spatial resolution

of the regional climate model affects sub-daily climate-corrected DDF curves, it is necessary

to use RCM-ESM combinations available at a sub-daily time step for both spatial resolutions.

At the time of this analysis, three RCM-ESM combinations were available with these charac-

teristics:

1. The RegCM4 RCM3 driven by the Max Planck Institute Earth System Model at base res-

olution (MPI-ESM-LR)

2. The WRF RCM4 driven by MPI-ESM-LR, and

3. The WRF RCM driven by the Geophysical Fluid Dynamics Laboratory Earth System

Model, Modular Ocean Version (GFDL-ESM2M)

All three models considered here were run for the same emissions scenario (called RCP

8.5 (Riahi et al. 2011)); however, two are based on climate models that predict a 3.6 ±C rise

for a doubling of atmospheric CO2, while the other one predicts a 2.4±C increase for the same

condition. Each of these three RCM-ESM combinations was simulated at the 25-km and 50-

km spatial resolution; thus a total of 6 climate model simulations were used for this analysis

(3 RCM-ESM combinations and 2 spatial resolutions). Each climate model simulation (for

the entire North American domain) was downloaded from the NCAR server for a historical

simulation period (1950–2005) and a future simulation period (2006–2100). For each city, a

time series of rainfall was extracted from the single grid cell in each climate model simulation

whose centroid was closest to the latitude and longitude coordinates the city.

3The RegCM4 model was originally developed at the International Centre for Theoretical Physics (ICTP) and
simulated for NA-CORDEX at the National Center for Atmospheric Research (NCAR)

4The WRF model (used for 2 and 3) was developed and simulated at NCAR
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3.2.2 Development of updated, sub-daily DDF curves

In this study, DDF curves were created using the annual block maxima, or annual maximum

series (AMS), of rainfall for each city and duration. For the 1-hour duration, the AMS were

the series of maximum 1-hour rainfall depths for each year. For durations longer than 1-hour,

the 1-hour time series was first aggregated to the desired duration using a moving window

approach through convolution. Each AMS was then fit to a generalized extreme value (GEV)

distribution using maximum likelihood estimation (MLE) fitting techniques (Scholz 1980).

The GEV distribution was selected over the two parameter Gumbel distribution due to the

ability to better describe the behavior of the upper tails (Overeem et al. 2008; Shahabul Alam

and Elshorbagy 2015). More details about the GEV distribution can be found in Section 2.3

and in (Coles 2001).

The MLE method returns the GEV parameters that are most likely, depending on the data

sample. The ML estimation error defines the confidence intervals of the fit. Return levels for a

specific probability of occurrence (return period) and confidence interval are extracted using

the parameters from the GEV distribution, as follows:

zp (d ,C I ) =µC I °
µC I

ªC I

£
1° y°ªC I

p
§
, for ª 6= 0 (3.1)

µC I °æC I log (yp ), for ª= 0 (3.2)

where yp = ° log(1° p), p is the probability of exceedence in any year, and zp (d ,C I ) is

the depth of rainfall for a specific duration, confidence interval, and probability. µ,µ, and

ª are the location, scale, and shape parameters of the GEV distribution, respectively, for a

specific confidence interval (Coles 2001). The best-fit return level is calculated using the best-

fit MLE-estimate of all three parameters; the 90% confidence interval return level is calculated

using the 90% CI estimate for all three parameters. The 10% CI value is estimated in the same
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manner.

Apart from this general approach to creating DDF curves, several additional modeling

choices were made in order to develop the future, updated DDF curves for this research.

These choices include: (i) the length of the future time period that the updated curves will

present, (ii) the method for bounding the future uncertainty range, (iii) the choice of climate

model spatial resolution, and (iv) the method used for spatial adjustment of the climate mod-

els to the station scale. All of these choices were tested for sensitivity; however, preliminary

analysis of the future time period length and the uncertainty bounding technique indicated

that findings are not significant enough to warrant additional discussion in the results section.

The following subsections describe these choices in more detail.

Choice of spatial adjustment technique

Spatial downscaling, or spatial correction techniques, used to update DDF curves using cli-

mate model output, can be grouped into three main categories. The first is to create synthetic

rainfall timeseries that reflect future trends, e.g., using weather generators or bias-correction

(Kuo et al. 2015; Kueh and Kuok 2016), and then estimate the extreme value distribution. The

second way is to alter the observed extreme events (annual maximum or partial duration se-

ries) to reflect future change, e.g., through quantile-mapping (Solaiman and Simonovic 2011),

genetic programming (Hassanzadeh et al. 2013), or historical analogs (Castellano and DeGae-

tano 2016) and then estimating the extreme value distribution. The final and most straight-

forward method is to directly adjust the historical intensity or depth using a change factor.

This change factor is the change between depths estimated from historical and future climate

models (Forsee and Ahmad 2011; Zhu et al. 2012a, b; Cook et al. 2017). In this analysis, one

type of method from each of these categories is tested: (1) a non-parametric bias correction

of the time-series, Kernel Density Distribution Mapping (KDDM); (2) a parametric transfer

function fit to the annual maximum series, AMS Transfer Function (ATF); and (3) applying
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a Simple Change Factor (CF) to observed DDF values, as discussed in Chapter 2 (Equation

2.3). The first two methods are both considered as forms of bias-correction, meaning the cli-

mate model data series is adjusted depending on differences with observed data; while the

last method is considered to be a delta change method, where the observed value is adjusted

up or down depending on the change between the historical and future climate model simu-

lations.

Figure 3.1 presents an overview of the sequence of steps required for each method. Sim-

ulated regional climate model output is combined with observed data at the station scale

to create updated DDF curves. This combination can occur when both are in the form of a

continuous time series (Method 1), either before the time series is aggregated to the desired

duration (Method 1A) or after the time series is aggregated (Method 1B). Only Method 1B is

used in subsequent analyses due to large mean absolute error with respect to observed AMS

(results shown in Appendix 5.2.6). The combination can also occur when both data inputs are

represented as annual maximum series (Method 2), or when both are in the form of a depth of

rainfall, after the GEV distribution has been fit to the annual maximum series. A more detailed

description of the equations and processes used for each method are provided in Appendix

5.2.6.

Choice of climate model spatial resolution

This analysis evaluates the uncertainty related to the spatial resolution of the regional climate

model simulations, exploring which spatial resolution leads to a larger (or smaller) prediction

of extreme rainfall, or a higher (or lower) uncertainty range surrounding the prediction. The

50-year storm is used as the basis for evaluation of the two different climate model ensembles

(25-km and 50-km). The climate model ensembles are compared based on the percent change

from the observed (1950–2013), 50-year, best-fit storm.
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Figure 3.1: Sequence of steps carried out in each of the DDF adjustment techniques used in
this study. Method 1 is Kernel Density Distribution Mapping (KDDM). Method 2 is the Annual
Maximum Series (AMS) Transfer Function and Method 3 is the Simple Change Factor Method.
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Selection of future time period

The models require selection of a future time period. In the present work, we selected the 80-

year period from 2020 – 2099 because it represents the full range of expected precipitation in

the future. Furthermore, the 80-year period had the lowest uncertainty range when compared

to shorter time period lengths, but not a considerably different mid-point (results not shown).

Bounding the future range

Several types of uncertainty are introduced when multiple climate models fit to different GEV

distributions are used to calculate a range of future DDF predictions. Fitting a GEV distribu-

tion to a data sample introduces parameter uncertainty, or uncertainty in the value of the dis-

tribution parameters, while climate models introduce model and scenario uncertainty. NOAA

Atlas 14 represents parameter uncertainty in historical DDF curves as the 10% and 90% con-

fidence intervals (CIs) of the GEV fit (Bonnin et al. 2006). In the future, each climate model

simulation has a different GEV fit, and thus different 10 and 90% CIs. It would be highly de-

sirable to distill this into a single range of uncertainty, which would be easier to interpret, es-

pecially for engineering stakeholders. Unfortunately, the complexity of representing the joint

uncertainty of the model ensemble and the GEV distribution makes this a difficult prospect.

This analysis uses a basic approach to combine the GEV parameter and climate model

uncertainties into a single range. The lower bound of the future range is calculated as the av-

erage of the 10% CIs from each model simulation, while the upper bound is the average of the

90% CI from each model simulation. The median value is the average of the "best fit" values

from all climate model simulations. Other bounding techniques were examined, including

taking the minimum of the 10% CIs of all climate simulations and the maximum of the 90%

CIs. However, this technique was not selected because when all points were considered in

a single distribution, this method led to many extreme outliers. The chosen technique was

selected because it incorporates parameter uncertainty from the GEV distribution, but avoids
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presentation of extreme outlier values that would likely not be considered for stormwater de-

sign (results not shown).

3.2.3 Illustrative stormwater infrastructure design ex-

ample

A small design example for pipe sizing is used to evaluate how these different sources of un-

certainty may affect stormwater design. The goal in the example is to design a storm sewer

pipe that contains the 50-year storm for a small and large watershed. The peak discharge is

calculated using the rational method: Qp = ci A, where Qp is the peak flow for the watershed,

c is the runoff coefficient, i is the rainfall intensity, and A is the watershed area. The runoff

coefficient is assumed to be 0.5 for a moderately urbanized watershed.

With the rational method, the duration of storm to select from the DDF curve is assumed

to be equal to the time of concentration of the watershed, or the time it takes water to travel

from the most distant part of the watershed to the outlet point (McCuen 2005). Two water-

shed areas are examined: 10 acres and 100 acres. The small, 10-acre watershed has an as-

sumed time of concentration of 1-hour, and thus uses the 1-hour design storm. The larger

100-acre watershed has an assumed time of concentration of 24-hours, and thus uses the 24-

hour design storm. Using the peak discharge, the pipe diameter is calculated with Manning0s

equation.

Dr =
° nQp

0.31kn
p

S0

¢ 3
8 (3.3)

Where Dr is the pipe diameter, n is the roughness coefficient, S0 is the channel slope,

and kn is a coefficient of the velocity versus slope relationship. The roughness coefficient is

assumed to be 0.013 for ordinary concrete lining, kn equal to 1, and S0 equal to 0.005 (or 0.5%).
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The resulting diameters from Manning’s equation are rounded up to the nearest standard

U.S. pipe size to determine the diameter of the pipe that would be installed. The minimum

diameter of storm sewer pipe recommended by the Pennsylvania Department of Transporta-

tion is 18 inches (450 mm) (PennDOT 2015). Pipes are available in increments of 3 inches (75

mm) until the 36-inch (900 mm) pipe, after which they are available in increments of 6 inches

(150 mm). The pipe sizes used in this analysis are: 18, 21, 24, 27, 30, 33, 36, and 42 inches

(equivalent to 450, 525, 600, 675, 750, 825, 900, and 1050 mm).

3.3 Results and Discussion

3.3.1 Change in precipitation in all cities

This section presents how the depth of rain is expected to change in the future across different

durations and cities using the change factor method. Figure 3.2 shows the percent change of

future (2040–2099) rainfall depth relative to the observed (1950–2013) depth for the 25-year

(left) and 100-year returns periods (right). For each city, four durations (from left to right: 1,

3, 12, and 24 hours) are presented as different colored bars (light to dark). The top of the bar

represents the mean of the percent change across all six climate model simulations. The range

shown represents the maximum and minimum percent change across all six climate model

simulations.

These results suggest that over the coming century the intensity of shorter storms (< 3

hours) is expected to increase more than the intensity of longer storms (> 12 hours). This im-

plies that stormwater infrastructure, which is sized for a specific intensity of rainfall, should

be equipped to store or convey a higher intensity of water in a short amount of time, rather

than a lower intensity over a longer period. Designing for the higher intensity rainfall over a

short duration leads to a design for a larger total volume of rainfall, in some cases, when de-

signing for the same return period storm in the longer durations. The increase in the amount
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of water expected during these short time intervals will, however, vary by city and return pe-

riod. It is, however, expected that increases in storm depth get larger as the return period gets

larger (comparing results between the two panels in Figure 3.2 for each city).

For the six cities examined, the ensemble average predicts that 1-hour precipitation is

expected to increase by at least 30% for the 25-year storm, and 40% for the 100-year storm,

except in Boulder, where the values are 20% and 25%, respectively. Increases are largest in

Birmingham (75%, 110%), followed by Pittsburgh (50%, 75%). For longer storms, the ensem-

ble average suggests that precipitation is expected to increase in four out of six cities, but

not by as much as the shorter storms. According to the ensemble average, the 25-year 24-

hour storm is expected to increase by about 25% in Birmingham, Pittsburgh, and Phoenix. In

Boston, the ensemble mean suggests an increase in the 25-year storm of about 10%. Boulder

and Seattle show virtually no change in the 24-hour storm according to the ensemble mean,

and the predicted ranges include the potential for a negative change (i.e., smaller rainfall in a

24 hour period).

3.3.2 Influence of correction method on future rainfall

predictions

The results in Figure 3.2 did not incorporate any form of bias-correction. This section evalu-

ates how these results would change if bias-correction was considered (using KDDM or using

an AMS transfer function). Figure 3.3 presents the results for the future 50-year rainfall depth

using the change factor, KDDM, and transfer function methods. The left and right columns

show the 1-hour and 24-hour depth, respectively, for all cities as different side-by-side pairs

of panels. The observed period is shown as a black dashed line and the future period is shown

as different colored lines for each method. The sloped line passes through the average of the

best-fit values of the climate model ensemble (all resolutions), while the range shows the up-
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Chapter 3- Effect of modeling choices on DDF curves and stormwater infrastructure

per and lower bounds defined in Section 3.2.2. The observed range shows the 10% and 90%

CI for the historic station data. The upper bound on the y-axis (highlighted in red) varies in

each subplot.

For the smaller return periods, the median of the ensemble for each method is relatively

consistent for most cities; however, as the return period increases, the median of each method

begins to diverge. In addition to differences in the median values, the uncertainty range be-

tween the three methods diverges as the return period increases. These findings are consis-

tent with results from Sarr et al. 2015, who found that the choice of downscaling technique

matters more for return periods of 10 years or longer. In the current analysis, the mean and

bounds of the three methods can vary by several orders of magnitude for the larger return

periods.

In these cases, it is the transfer function and KDDM methods that lead to unrealistic val-

ues. For instance, in Birmingham, the transfer function predicts the mean ensemble value

for the 24-hour 100-year storm to be about 50 inches (120 cm) of rain. The historical value

is around 11 inches (30 cm) - a value that is five times lower than the future prediction. This

unrealistic future value is the result of the prediction of several large rainstorms in the 25-km

WRF-GFDL model run that predict unrealistically large values of rainfall when aggregated to

the 24-hour duration. After the transfer function is applied to the raw model output to adjust

it to the station scale, these large rainstorms are amplified, and the future rainfall is predicted

to be even higher. These rainfall values are considered unrealistic because the evolution of the

storm within the climate model is not realistic. The storm exists for several days and moves

very little during that time. In reality, storms would end and then reform, usually diurnally like

the other precipitation in the region, and be a bit more widespread. The reason for this un-

realistic storm could be a result of an unstable atmosphere, and the inability of the model to

process this instability, given the parameterization of convection and other processes. Thus

the odd behavior of the model is possibly the result of a more unstable future climate that the

model cannot account for, and thus allows the storm to persist and barely move for almost a
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Figure 3.3: Effect of different correction methods on future rainfall depth for two durations:
1-hour (left) and 24-hour (right). Observed depth is in black; Change factor in yellow (square
markers); KDDM method in purple (circle markers); and transfer function method in green
(triangle markers). The sloped line passes through the average of the climate model ensemble
(all resolutions); error bars represent the upper and lower bounds of this ensemble.
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Chapter 3- Effect of modeling choices on DDF curves and stormwater infrastructure

week.

The KDDM method also has the potential to produce erroneous results in the same fash-

ion. Applying the KDDM method to the entire time series when extreme values exists in the

raw data could distort the annual maximum series in ways that are not consistent with reality.

Thus, in order to produce realistic results, these large storms outliers must be removed from

the raw climate model data before using the KDDM method or the transfer function method

for bias-correction, or otherwise build into the method a step that reduces the effect of ex-

treme values on the estimation of the CDFs used in bias-correction.

The change factor method, on the other hand, does not produce as unrealistic results as

the other two methods. It is relatively insensitive to the effects of unrealistic storms in the

raw climate model output because it uses a multiplicative factor that is calculated after the

rainfall depth has been extracted from the GEV fit of each climate model. If both the future

and historical climate model simulations have unrealistic values, only the change between the

two models is portrayed by the change factor method. Since the ratio of raw climate model

output is used for the change, one concern of using this method may be that it underestimates

future extreme rainfall at the station scale, since raw climate model output (an areal average

over the grid cell) typically underestimates historical rainfall at the station scale. Results from

the change factor are not, however, consistently lower than the other two methods. They

are sometimes higher, sometimes lower, and sometimes in between results from the other

methods.

Since there is not a single method that produces consistently higher or lower values, and

median values are similar among methods, any one of these methods could be used with rela-

tive confidence (assuming extreme outliers are accounted for in the KDDM and TF methods).

However, for the remaining analyses in this study, only the change factor method is used be-

cause it produces more consistent results in these six cities. While it provides more consistent

results, this does not necessarily mean the results are more accurate of future conditions, just

less variable with respect to the other methods. More research is needed to determine metrics
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for reliability and consistency of methods.

3.3.3 Influence of climate model resolution on expected

change in future

This section evaluates how the two different climate model resolutions alter the predicted 50-

year design storm depth, and whether any differences subsequently alter the size of the pipe

designed using this storm. This design example is oversimplified and likely would not be used

in practice. However, the simplicity of this design process is desired because the example is

only intended to test sensitivity of the design storm, keeping all other variables constant. The

simplicity aids in evaluating the direct impact of changes to the design storm.

Figure 3.4(a) presents changes to the 50-year design storm for two durations (1-hour and

24-hour) in the future (2020–2099). The percent change is presented relative to the observed

50-year, best-fit depth (1950–2013) for each city. Colors represent the two climate model res-

olutions and markers show different climate model (ESM-RCM) simulations. The mean of

the ensemble is shown as a black star and the grey band represents a change of +/- 25% of

the mean. Figure 3.4(b) presents the change in pipe diameter if the depths of rain from the

25-km or the 50-km ensemble were used to size the pipe, instead of the observed 50-year

best-fit storm. Each marker represents the design value selected from the future range for the

50-year storm: the ensemble median (star), the ensemble upper bound (upward triangle), or

the ensemble lower bound (downward triangle). The two climate model resolutions are again

represented by different colors.

The first trend that emerges is that the future, 50-year storm calculated with the two spatial

resolutions are different from each other. In 5 out of 6 cities, the change is larger for the 50-

km resolution. Only in Birmingham does the 25-km ensemble lead to a larger average percent

change and a larger uncertainty range than the 50-km ensemble. Differences between the two
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resolutions are large enough to lead to an increase of one pipe size in 7 out of 12 cases (using

the ensemble mean for design). The majority of these cases occurred in the pipes sized for the

smaller watershed, because the magnitude and range of change is larger for shorter duration

storms (the 1-hour design storm was used for the smaller watershed). For the larger water-

shed, only Phoenix and Boston would go up by one size using the 50-km ensemble (mean)

instead of the 25-km ensemble (mean).

In most design scenarios, going up or down one pipe size is not a large change and could

happen easily due to expected changes in land use conditions. However, a change of one

pipe size could matter more in cities where the different resolutions would lead to a decision

between keeping the pipe size the same, or increasing it. Using the 24-hour design storm, this

would occur in the case of Phoenix, Boston, and Seattle because in these cities, not only is the

magnitude of change uncertain, but also the direction of change.

With only 6 locations examined, it is not possible to provide a general recommendation on

which spatial resolution should be used to create DDF curves. However, for these 6 cities only,

the 50-km models should be used if the engineer wants to be conservative when designing for

extreme events. On the other hand, the 25-km models should be used if the engineer prefers

the smaller uncertainty range produced by the 25-km models.

Overall, however, the differences between the resolutions remain small when the ensem-

ble mean is used as the design storm. When the upper bound is used instead of the mean, the

differences in storm depth and pipe size are larger. Designing for the upper bound increases

the pipe size by at least one interval when compared to designing for the ensemble mean. In

some cities, the pipe size increases by two or three step changes. The following section ex-

plores how these changes in pipe size compare to historical design values, like designing for

the historical 50-year 90% CI, or the historical 100-year storm.
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Chapter 3- Effect of modeling choices on DDF curves and stormwater infrastructure

3.3.4 Comparison of all design storm choices on stormwa-

ter infrastructure sizing

The previous sections identified how differences in the climate model resolution influenced

the range of future rainfall depths and pipe sizes. This section identifies how these changes

in pipe size compare to the pipe dimensions if the design engineer were to use values from

the historical DDF curve. When selecting a historical design storm, the designers have several

choices. They could assume no change will take place in the future and use the historical

50-year best-fit depth. If they wanted to assume some change in the future, but still rely on

historical values, they could choose the historical 50-year upper bound, or the historical 100-

year best-fit value. The resulting pipe sizes using these historical design storms are presented

in Appendix A.

If the designers were to use climate projections to update the precipitation-frequency

curves, they would again have several choices for a design storm: selecting the mean of the

model ensemble or the upper bound. The lower bound is not recommended as a design storm

choice since it could lead to an underestimation of future rainfall even if the historical rainfall

conditions are maintained into the future. Figure 3.5 presents the resulting pipe diameters

using various historical or future design storms for the 10-acre watershed. Each circle plot

shows the results for a different city. The left side of each circle shows pipe sizes using his-

torical (1950–2013) design values, while the right side shows future (2020–2099) design values

that were calculated using the change factor technique. For the historical values, the different

colors represent different return periods. For the future values, the different colors represent

a different spatial resolution selected for the climate model ensemble. Solid lines represent

the best-fit value, while the dotted lines show the upper bound.

These results show that increasing the design storm from the historical, 50-year (mid)

storm to the historical 100-year (mid) storm does not always increase the pipe size. As a
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Chapter 3- Effect of modeling choices on DDF curves and stormwater infrastructure

result, using the 100-year storm instead of the 50-year does not provide additional protec-

tion against future extreme events. Designing for the historical, 50-year upper bound does

however increase the pipe dimensions by at least one size for all cities, and thus will provide

additional protection in the future.

The level of protection that using updated DDF curves will provide, relative to historical

DDF curves, varies by city, climate model resolution, and by the point selected from the up-

dated curve. For instance, in Boulder, Seattle, and Phoenix, the three cities that had small

changes in extremes, the pipe dimensions do not change when the 50-year historical (mid)

and 25-km based future ensemble (mid) are used for design. This means that using a design

storm from the updated DDF curve does not always add additional protection in the future

relative to designing for the historical, 50-year (mid) storm.

In addition, some of the historical design values are similar to those created from the cli-

mate models. In Seattle, designing with the 50-year historical, 100-year historical, and 25-km

based future ensemble all lead to the same pipe dimensions; however, in Boulder, the 50-

year historical storm leads to the same dimensions as the 25-km based future ensemble and

the 100-year design value is consistent with the 50-km resolution ensemble. This means that

without looking at results from the climate models specific to each city, it is impossible to

know if the upper bound of the historical design values will provide sufficient protection in

the future. In some cases, the upper bound of the historical 50-year storm will provide an

equivalent level of protection as designing for the mean of the 25-km climate model ensem-

ble, and in other cases, it will provide additional protection. For this design example and

these six cities, the upper bound of the historical 100-year storm always leads to a lower level

of protection than the upper bound of the 50-km climate model ensemble, and sometimes an

equivalent level as the upper bound of the 25-km climate model ensemble.
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3.4 Conclusions

This study investigates how different modeling choices used in the creation of climate-corrected

depth-duration-frequency curves could alter design storms values and the dimensions of

stormwater infrastructure that use these values. Changes were evaluated depending on (1)

the choice of climate model spatial resolution, and (2) the choice of spatial adjustment tech-

nique used to apply trends from these models, in six U.S. cities: Birmingham, AL, Boston, MA,

Boulder, CO, Pittsburgh, PA, Phoenix, AZ, and Seattle, WA.

Findings in the six cities demonstrate that shorter-duration storms (less than 6 hours)

show a larger relative increase in intensity (and larger uncertainty range) in the future than

longer duration storms (greater than 12 hours). These findings, which are consistent with pre-

vious results (Hassanzadeh et al. 2013; Kuo et al. 2015; Chandra et al. 2015; Shahabul Alam

and Elshorbagy 2015), imply that stormwater infrastructure should be equipped to store or

convey a higher intensity in a short amount of time rather than a lower intensity over a long

period. The three correction methods evaluated (change factor, transfer function of the an-

nual maximum series, and bias-correction of entire time series) led to nearly consistent me-

dian values in most cities and for most durations; however, differences that do occur get larger

as the return period increases. A single method does not consistently over or under estimate

extreme values, which suggests that any one of these methods could be used with relative

confidence.

For these 6 cities, the lower spatial resolution (50-km) climate model ensemble generally

provides a higher estimate of precipitation in the future than the 25-km ensemble. The differ-

ences between the 50-km and 25-km models are large enough to lead to different stormwater

pipe dimensions.Thus the 50-km models should be used if the engineer wants to be conser-

vative when designing for extreme events. On the other hand, the 25-km models should be

used if the engineer prefers a smaller uncertainty range, which is what was produced by this
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Chapter 3- Effect of modeling choices on DDF curves and stormwater infrastructure

ensemble.

Overall, results from this study suggest that using the historical DDF curves for stormwater

design will not be protective against future extreme events. However, if historical curves were

to be used, adopting the upper bound of the historical storm depth provides more protection

than doubling the return period. Nonetheless, this approach is not recommended because

the additional protection provided from using the historical upper bound is independent of

how much change is expected in the future. For this reason, updating DDF curves using cli-

mate model output is the recommended strategy for informing future design storms because

these models are representative of expected future conditions. The resulting DDF curves and

stormwater infrastructure designed from these curves are, however, sensitive to the choices

made when creating these updated curves. This means that the design storm selected from

an updated DDF curve is not guaranteed to provide the same level of protection in the fu-

ture that a design storm from a historical curve provided under historical climate conditions.

Engineers using updated DDF curves should consider these sensitivities during design and

inform clients that performance of the infrastructure over its lifetime may vary as a result.
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Chapter 4- Analyzing rainfall measures and performance of green infrastructure

Abstract

Climate change is expected to change the timing and magnitude of precipitation patterns

in many areas, and little is known about how the performance of bio-retention basins will

respond to these changing conditions. We simulate the hydrologic performance of a bio-

retention system and evaluate which rainfall characteristics are most closely correlated with

several performance metrics over a historical period. Metrics include percent of runoff cap-

tured, frequency and volume of discharge to the sewer, and drainage time of the surface layer.

Using hourly, bias-corrected, regional climate model output from the NA-CORDEX project,

we then project how performance would degrade in the future (2020–2059) and how perfor-

mance correlations could change. In Pittsburgh, the system would have infiltrated 90 to 100%

of runoff entering the system historically. In the future, the basin is expected to capture 5%

less runoff that enters the basin (median value) because storms are expected to increase in in-

tensity and duration. Historical performance is highly correlated with rainfall indices linked

to mean rainfall intensity, and the magnitude, frequency, and total volume of extreme rainfall

received by the basin. Future correlations between rainfall indices and performance metrics

strengthen in most cases due to increases in extreme rainfall and variability; however, cor-

relations weaken in some model simulations because most storms lead to consistently poor

bio-retention basin performance.

Keywords: bio-retention basins, hydrologic performance, regional climate models, corre-

lations
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4.1 Introduction

Green stormwater infrastructure (GSI) is urban drainage infrastructure designed to increase

infiltration and evapotranspiration of runoff, reducing inflow to sewer systems (U.S. EPA 2016).

GSI is an alternative to conventional concrete or cast iron stormwater infrastructure, or grey

infrastructure, which was designed to convey water quickly away from urban environments

to storage, treatment, or discharge to a water body. GSI has been suggested as part of the solu-

tion to combined sewer overflows in a number of cities (Casal-Campos et al. 2015; Fischbach

et al. 2017; Kloss, Calarusse, and Stoner 2006) and to help mediate the effects of increasing

urban runoff expected as climatic conditions shift (Thakali et al. 2018; Demuzere et al. 2014;

Foster, Lowe, and Winkelman 2011).

Bioretention basins, or “rain gardens," are one of the most widely implemented GSI, and

have been identified by Leadership in Energy and Environmental Design (LEED) green build-

ing rating systems as a preferred practice for sustainable design (Davis et al. 2009). These

basins can be used to abate runoff from impervious areas to comply with stormwater manage-

ment targets (PWSA 2012) and/or to avoid stormwater fees put in place by local authorities,

e.g., in Pennsylvania (CH2MHILL 2014; Gateway Engineers 2011), North Carolina (Environ-

mental Finance Center at the UNC School of Government 2017), Maryland (Baltimore City

Department Public Works 2017), and Ohio (Chagrin Watershed Partners 2017).

Research into the performance of bio-retention systems has shown promising results. Us-

ing on-site monitoring data, Dietz and Clausen (2005) report rain gardens in Connecticut cap-

tured 99.2% of input runoff over a period of 1-year. Davis (2008) assessed two bioretention

cells near Washington DC by monitoring volume, peak flow and peak delay of runoff over 2.5

years. The timing of peak flow was delayed by a factor of 2 or more, and volume reduced by

44 to 63%. Further research by Davis et al (2012) showed that three systems in Pennsylvania,

Maryland, and North Carolina completely contained small rainfall events and that discharge
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from larger events was linear with respect to input volume (Davis et al. 2012). Chapman and

Horner (2010) report slightly lower performance of a monitored bio-retention basin — 48 to

74% of incoming runoff was captured over a 2.5-year period (Chapman and Horner 2010).

In addition to performance observation, bio-retention basin simulation results suggest

expected hydraulic behavior (Jennings, Berger, and Hale 2015). Using meteorological con-

ditions at 35 different U.S. locations from 2012 to 2014, Jennings (2016) simulated the per-

formance of a hypothetical bio-retention basin, considering different surface depths, storage

volumes, and infiltration rates. Expected total runoff reduction ranged from 51.3 to 99.8%,

with the least effectiveness along the East and Gulf Coast and most effectiveness in the Mid-

Western regions. Poor performance was attributed to high rainfall totals and high intensity

events; adjusting rain garden characteristics also altered performance (Jennings 2016).

While bio-retention systems show promising results in mediating effects of stormwater on

urban areas, the prior research has focused on short term performance and assumed stable

climatic conditions. Climate change is expected to increase the intensity of rainfall events

(Brommer, Cerveny, and Balling Jr 2007; Groisman and Knight 2008; Groisman, Knight, and

Karl 2012) with the largest increases expected in short duration events (less than a day)(Westra

et al. 2014; Kuo, Gan, and Gizaw 2015). Predictions of future change are highly uncertain and

bio-retention systems may require the use of robust or adaptable designs that allow for many

possible future states to occur (Lempert 2010; Gregersen and Arnbjerg-Nielsen 2012; Lempert

and Schlesinger 2001; Lempert and Groves 2010; De Neufville and Scholtes 2011). Monitoring

data could be used to track performance over time; however, in the absence of monitoring

data, it is possible that publicly available rainfall observations could be used as a proxy. A

better understanding of the critical features of rainfall patterns (i.e., duration, intensity, inter-

storm timing) that affect performance of GSI is needed in order to assess how future rainfall

conditions may alter expected performance of long-lived infrastructure. In the present work,

we develop a procedure to track performance of bio-retention basins over time using mea-

sures of annual rainfall. We then evaluate how these measures are expected to change in the
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future and if the basin would perform as expected based on these changes.

4.2 Approach and Data

The goal of this analysis is to assess if annual measures of rainfall can be a useful indicator

for tracking hydrologic performance of green infrastructure systems over time. Using rainfall

measures as a way to track performance is of interest because rainfall data is usually more

readily available than performance data from on-site monitoring stations. Bio-retention sys-

tems, or rain gardens, are used as an example system to test this process because they are

one of the most widely implemented types of green infrastructure (Davis et al. 2009). The

design characteristics of an existing rain garden system in Pittsburgh, PA are used in order to

illustrate the procedure.

The first step of the analysis defines the performance metrics of interest that could be

tracked over time. The second step uses observed rainfall data and continuous hydrologic

simulation to estimate the historical hydrologic performance of the site over a 29-year period

(1990 to 2018). The third step defines and calculates annual rainfall measures (indices) and

establishes which of these indices is most indicative of annual performance. In step 4, we

determine how these indices are expected to change in the future using output from climate

models. The indices that are expected to change the most will be most important to track over

time. Given these expected changes in rainfall, the final step evaluates if the basin would have

performed as predicted based on the rainfall indices. Output from climate models is used for

simulation of the bio-retention basin under future conditions (2020 to 2050). The following

sections present more details about each of these steps.
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Chapter 4- Analyzing rainfall measures and performance of green infrastructure

4.2.1 Hydrologic performance metrics

Hydrologic performance of the rain garden was assessed using several metrics. The first met-

ric, Runoff Capture Efficiency, depicts the fraction of water that does not reach the sewer

system. This is calculated as the amount of water that infiltrates through the basin into the

ground below, as a percentage of total stormwater that enters the site. This metric normalizes

results compared to the amount of rainfall that was received in that year. It is calculated as

the ratio of runoff infiltrating to the amount entering the basin.

The second metric is the Surface Detention Time, which calculates the length of time that

water is stored on the surface of the bio-retention basin. Stormwater regulations in Pennsyl-

vania and elsewhere state that basins must fully drain in less than 48 hours (PA DEP 2006),

so this metric is used to assess how well these basins are meeting this requirement. Surface

Detention Time is calculated as the continuous length of time that the depth of water on the

surface is greater than 0. The basin is considered “drained” if water is not present on the sur-

face for 30-minutes or longer. One may also be interested in the number of times per year

that water ponds on the surface for longer than 48-hours, or some other threshold of interest.

When the surface always drains in less time than the threshold, the maximum and average

detention time for each year can be evaluated to understand how close the threshold is to

being surpassed.

The third metric, Volume of Discharge, represents the total amount of stormwater that

was discharged to the sewer system each year, either due to underdrain discharge or from

excess surface runoff that was not captured by the garden. The final metric, Frequency of

Discharge, represents the number of times per year that stormwater was discharged to the

sewer system. This metric is calculated by counting the number of times that there was flow

present in the outfall pipe from the system to the sewer. Both of these metrics may be of

interest to stakeholders within combined sewer service areas since reducing on-site discharge

could decrease the amount of total overflows to the river.
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4.2.2 Simulation of historical performance

Example Site

The example site used for the simulation is located in Pittsburgh, Pennsylvania (40.46, -79.92)

within the Allegheny River Basin. The site was selected because it has characteristics typical of

bioretention basins, including a vegetated surface layer that allows for ponding, a subsurface

soil layer that promotes infiltration, a gravel layer that provides additional subsurface storage

and encourages infiltration, and an under drain to control releases to the sewer system (PA

DEP 2006; Davis et al. 2009; Jennings 2016).

The site contains two rain gardens that collect water from adjacent roof and pavement

areas. The first rain garden (RG1) collects runoff from an impervious area of 400 m2. The

second (RG2), which has the potential to overflow to the combined sewer system, collects

water routed from RG1 as well as runoff from an additional impervious area of 377 m2. Runoff

that enters either rain garden is infiltrated and stored in a 61 cm engineered soil layer where

it is available for uptake by the plants. Water that infiltrates through the soil layer enters a

30.5 cm gravel layer, which contains a 150 mm perforated underdrain. When inflow exceeds

infiltration, water ponds on the RGs to a depth of 76 mm (3 in), enabled by the elevation

difference between the top of the RG and the street. Ponded water can flow into a vertical

surface drain that connects to the underdrain. The underdrain flow is controlled with a weir

and an orifice before it can exit the basin. Figure 4.1 presents a profile view of the storage

layers of the bio-retention basin.

The site is equipped with several gauges and sensors that measure rainfall, soil moisture,

water level, and soil temperature data. Rain Garden 2 contains a Conductivity, Temperature,

Depth (CTD) sensor, placed within a cylindrical screen at a 40-inch (1016-mm) depth, as well

as two soil moisture sensors at 6-inch (152.4-mm) and 18-inch (457.2 mm) depths. Data have

been collected on a 5-minute interval since July 2015.
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Figure 4.1: Profile view of the bio-retention layers, including surface and under drain

Observed Precipitation Data

Observed rainfall data from the period 1990 to 2018 were used to evaluate the hypothetical

historical performance of the rain garden system. Hourly observed precipitation data for the

period from 1990 to 2014 were obtained from the NOAA National Center for Environmental

Information (NOAA 2016) for the station located at Pittsburgh International Airport. More

recent data from 2014 to 2018 was obtained from a local rain gauge network maintained by 3

Rivers Wet Weather, Inc.; a station in close proximity to the airport was selected (3 Rivers Wet

Weather 2018).
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Continuous hydrologic simulation

The PC Stormwater Management Model (PCSWMM) Version 7.1 (Computational Hydraulics

Int. 2018) is used to model the site using continuous hydrologic simulation, which is able to

characterize system response over time and account for antecedent soil moisture conditions

of consecutive storm events. PCSWMM was also selected for its ability to model multi-layer

bioretention systems. Evapotranspiration is not considered in the model because prior stud-

ies have found that runoff reductions from evapotranspiration (ET) are negligible (Jennings,

Berger, and Hale 2015; Jennings 2016). Jennings (2016) found that across 35 locations in the

U.S. evapotranspiration from bio-retention basins only contributed to 0.16 to 1.06% of runoff

reduction. The contribution is small because the process is only possible during daytime dry

weather. The very small contribution from ET is within the bounds of uncertainty of the per-

formance of the RG, and by excluding ET this analysis is slightly more conservative.

Eight sub-areas are modeled to represent four roof areas, two pavement areas, and two

rain gardens (see Figure 4.2). The two rain gardens are modeled as bio-retention cells with an

underdrain. Table B.2 in Appendix B presents the sub-basin characteristics and flow patterns.

Although the project site contains two bio-retention basins, and both were modeled, in order

to limit the scope and ease comprehension of results, only the basin that has the potential

to drain to the sewer (RG2) will be evaluated for performance. Each performance metric is

calculated annually from the simulation results for each year.

At the site, the outlet of the under drain of rain garden 1 flows into a solid HDPE pipe and

then into a perforated pipe below rain garden 2. In the model, the perforated pipe is modeled

as an underdrain (available with the bio-retention feature). Underdrain and surface flow of

RG1 is routed to RG2. Underdrain and surface flow from RG2 is routed to a solid PVC pipe that

discharges to the combined sewer system. The orifices and weirs controlling the underdrain

flow are accounted for in the model using storage, orifice, and weir nodes.

Parameter values were estimated using a combination of pre-existing field sampling, as-
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Figure 4.2: Overview of model configuration. The impervious areas drain to the surface of
each garden. Rain garden 1 can drain to rain garden 2 through surface runoff or under drain
flow.

built drawings, literature sources, and model default values. Post-construction soil samples

of rain garden 1 report the soil as sand, with 86 – 88% sand, 10% silt, and 2 – 4% clay; whereas,

samples from rain garden 2 classify the soil as loamy sand, with 86% sand, 8% silt, and 6%

clay (A&L Great Lakes Laboratories, Inc 2015). The bio-retention basin of interest (RG2) has

an assumed surface slope of 0.1% and a vegetative cover of 85%; the soil layer has an assumed

conductivity of 2.5 in/hr; the gravel layer has an assumed seepage rate of 1.25 in/hr; and the

under drain has an assumed discharge capacity of 0.5 in/hr. Additional parameter values re-

lated to the sub-catchments, bio-retention cell layers, and conduits are reported in Appendix

B.
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4.2.3 Rainfall indices most indicative of annual perfor-

mance

Definition of Rainfall indices

To determine which rainfall indices could most affect rain garden performance, an exhaus-

tive list of annual precipitation indices is defined and then calculated using the same ob-

served rainfall data that was used in the historical simulation. Indices were calculated based

on hourly and daily rainfall amounts. The list of indices was developed during exploration of

the literature e.g., (Chen et al. 2015; Karl and Knight 1998) and recommendations from the

Expert Team on Climate Change Detection Monitoring and Indices (Peterson et al. 2001; Karl,

Nicholls, and Ghazi 1999). The initial set of indices examined for each year is listed in Table

4.1. Indices are grouped by what aspect of precipitation they would indicate, including: the

central tendency of rainfall, magnitude, proportion, or frequency of extremes, or frequency of

wet and dry days. The “set” column represents the different variations of each index that were

tested. Each index is calculated for each year of historical rainfall data establishing a total of

28 data points for each index.

Correlation of indices and metrics

The correlation of the rainfall indices to the annual performance metrics is used to deter-

mine which indices are most indicative of annual performance. Correlation was tested using

the Pearson correlation coefficient, which measures the linear relationship between two data

sets that are normally distributed. The rainfall indices and performance metrics were veri-

fied to be normally distributed using the t-test (the null hypothesis could not be rejected with

a p-value of 0.001). The p-value of the correlation was also calculated. This value, which is

somewhat unreliable for small data sets (fewer than 500 values), represents the probability
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Table 4.1: Rainfall indices considered in performance evaluation. Indices are classified as an
indicator of the central tendency, magnitude of extremes, proportion of extremes, frequency
of extremes, and frequency of wet and dry days

Index Set Description Implication Indicator

total n/a Total annual precipitation (mm) Wet or dry year
Central

tendency

nintd n 2 (µ, q50)
Mean or median daily

intensity of rain days (mm)
Intensity of

rain days
Central

tendency

ninthr n 2 (µ, q50)
Mean or median hourly

intensity of rain hours (mm)
Intensity of
rain hours

Central
tendency

maxnd n 2 (1,2,3) days
Greatest n-day

total precipitation (mm)

Measure of extremes
with duration less
than or equal to

drainage requirement

Extreme
magnitude

qpd
p 2 (90,95,99)

quantile
pth percentile of rain

day amounts (mm/day)
Intermediate to

rare daily extremes
Extreme

magnitude

qph
p 2 (90)
quantile

pth percentile of rain
hour amounts (mm/hr)

Intermediate
hourly extremes

Extreme
magnitude

totqp
p 2 (90,95,99)

quantile

Total rain from
daily qth percentile

or greater (mm)

Total from
intermediate to rare

daily extremes

Extreme
total

propqp
p 2 (90,95,99)

quantile

Proportion of total
annual rainfall above

qth percentile

Measure of intermediate
to rare extremes relative
to total annual rainfall

Extreme
proportion

excdn
n 2 (10,25,50)

mm

Number of rain days
with precipitation
∏ n mm (days)

Intermediate
to rare daily

extreme events

Extreme
frequency

raind n/a
Days per year

where precipitation
∏ 0.1 mm (days)

Daily precipitation
occurrence

Frequency
wet & dry

ncwd n 2 (µ,max)
Mean or max no. of

consecutive wet days where
precipitation > 0.1 mm (days)

Measure of average to
long-duration storms

Frequency
wet & dry

ncwh n 2 (µ,max)
Mean or max no. of

consecutive wet hours where
precipitation > 0.01 mm (days)

Measure of average to
long-duration storms

Frequency
wet & dry

ncdd n 2 (µ,max)
Mean or max no. of

consecutive dry days where
precipitation < 0.1 mm (days)

Measure of risk of
dryness and antecedent

soil conditions

Frequency
wet & dry
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that an uncorrelated system would produce the same or larger correlation coefficient than

was produced from these two datasets.

Correlations are quantified as negative (representing an inverse relationship) or positive,

ranging from low (0 to 0.3), moderate (0.4 to 0.6), high (0.7 or above), and very high (0.9 or

above). Indices that have high or very high correlations to the performance metrics were se-

lected as the indices most indicative of performance. If several rainfall indices were highly

correlated with the same performance metric, it is possible that these indices are correlated

with each other. Correlations amongst indices were also tested at this point. If they were

correlated, only one of these indices will be considered as a useful index to track.

Sensitivity analysis

Since simulation was used to calculate the performance metrics, correlations could be sen-

sitive to the model parameters and the assumed characteristics of the installation. Most no-

tably, the infiltration capacity of the rain garden affects how quickly rain can enter, and may

affect correlations. Infiltration could decline over time due to clogging or poor maintenance

and thus sensitivity was tested by decreasing the rate of infiltration into the basin. Soil con-

ductivity was decreased to 1 in/hr, from 2.5 in/hr, and the gravel seepage rate was decreased

to 0.5 in/hr from 1.25 in/hr. After simulating historical performance under these conditions,

correlations of indices and performance metrics were reevaluated. Indices that had high cor-

relations in both analyses are considered more indicative of performance than indices that

were very sensitive to changes in infiltration rate. The sensitivity analysis was taken into ac-

count before the final list of indices recommended to use as indicators of performance was

compiled.

4.2.4 Expected Changes in Future Rainfall
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Source of Climate Model Output

This study uses output from regional climate models (RCM) from the NA-CORDEX project

(Mearns et al. 2017) to evaluate anticipated future changes in rainfall. NA-CORDEX is a com-

pilation of standardized regional climate model simulations available at an hourly time step,

for two different spatial resolutions (50-km and 25-km), over the continuous time period from

1950–2100. These models were chosen over other types of downscaled climate models be-

cause of their availability at a 1-hour time step (Cook, Anderson, and Samaras 2017). A sub-

daily time step is crucial for continuous hydrologic simulation models that capture highly

variable, localized, and short temporal scales of rainfall-runoff interactions (Durrans et al.

1999).

The RCMs in the NA-CORDEX project use Earth System Models (ESMs) as inputs. ESMs

use more complex relationships than those in older Atmosphere-Ocean Global Circulation

Models (AOGCMs) (Heavens, Ward, and Natalie 2013). At the time of the present analysis,

four RCM-ESM combinations were available at the 1-hour timestep (presented in Table B.5 of

Appendix A.3). This study uses all four of these combinations simulated at the 50-km resolu-

tion using the RCP 8.5 emissions pathway, which is the scenario with the highest greenhouse

gas emissions (Riahi et al. 2011). The 50-km resolution was chosen over the 25-km resolu-

tion as a more conservative analysis resolution since the 50-km-based simulations predicted

higher rainfall intensities for the maximum annual hourly and 1-day precipitations (Cook,

McGinnis, and Samaras 2018).

Bias-Correction of Climate Model Output

The raw RCM/ESM simulations are an areal average of precipitation across a grid cell (50 km

x 50 km). These data are not representative of rainfall values at the station (or city) scale,

and thus must be adjusted to match the scale of the observed values. The method used in

this analysis to adjust the RCM-ESM simulations to the station scale is called Kernel Density
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Distribution Mapping (KDDM) (McGinnis, Nychka, and Mearns 2015). Hourly data from the

period 1950 to 2010 were used for this bias-correction. Data were obtained from the NOAA

National Center for Environmental Information (NOAA 2016) for the station located at Pitts-

burgh International Airport.

This method is a type of non-parametric bias-correction that uses a relationship between

the observed rainfall time series (1950–2013) and the gridded climate model time series for

the historical time period (1950–2013) to adjust the entire gridded climate model time series

(1950–2099) to the station scale. The relationship between the observed rainfall time series

and the gridded climate model time series is defined by fitting a transfer function between

their empirical cumulative probability distribution functions (CDFs). First, empirical prob-

ability density functions (PDFs) are computed using kernel density estimation; these PDFs

are then integrated using the trapezoid rule to calculate CDFs. Equal points of probability

from the CDFs are mapped against each other and the resultant mapping is then fitted with a

spline. The equation of this spline is the transfer function between the observed data and the

historical climate model simulation output. The function is then applied to the 150-year time

series of the climate model simulations to obtain bias-corrected values at the station scale.

After this correction, the statistical distribution of the observations should be more con-

sistent with the statistical distribution of the historical period of the bias-corrected data. The

major benefit of using the KDDM method to convert an RCM timeseries to a station scale is

that the timing of rainfall events simulated from the regional climate models at the sub-daily

level are maintained in the bias-corrected data. This allows for analysis of future rain garden

performance not only based on increases in volume or intensity, but also due to changes in

the frequency of storm arrival that are portrayed in the climate models.
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Estimating future changes

To estimate changes in the future, rainfall indices were calculated for each year of the future,

bias-corrected climate data. The percent change was calculated for each index and each year

with respect to the median of the historical rainfall indices over the 29-year period (1990 –

2018). Indices that are both indicative over time and expected to change substantially in the

future are considered as most important to track and predict performance over time.

4.2.5 Simulating future performance

Each bias-corrected climate model simulation was used in the hydrologic simulation model

to test performance in the future. Performance metrics are again calculated for each simula-

tion. If performance changes as expected based on the changes in the rainfall indices, then it

is possible to use this index to track performance over time.

4.2.6 Model calibration and time periods

Several simulations were conducted using the hydrologic simulation model, including: one

validation simulation, one historical simulation, and four simulations for the future period

(one for each climate model simulation). Table 4.2 presents the time periods, dates, and data

sources for each analysis.

The calibration simulation uses the 5-minute rain gauge data collected on-site to simulate

performance over the recent 3-year period compares. Simulated performance is compared to

observed performance over the same time period, which is calculated from the water level

sensors on-site. PCSWMM model parameters for the bio-retention basins were adjusted until

an accuracy of +/-15% was achieved. Over the 3-year period, observed performance was es-

timated to be 97 – 99 percent captured and simulated performance was simulated as 84 – 94

percent captured.
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Table 4.2: Time periods evaluated in analysis

Time period Dates Time step Data source

Calibration
July 2015 to

September 2018
5-minute On-site rain gauge

Historical
January 1990 to
September 2018

1-hour
NOAA;

3-Rivers Wet Weather

Future
January 2020 to
December 2069

1-hour
4 NA-CORDEX

RCM/ESM simulations

4.3 Results and Discussion

4.3.1 Simulated historical rain garden performance

The following section presents simulated performance results for a bio-retention basin with a

surface layer of 3 inches, a conductivity of 2.5 in/hr in the soil layer, a seepage rate of 1.25 in/hr

of gravel layer, and an under drain rate of 0.5 in/hr. Figure 4.3 presents the simulated perfor-

mance of the rain garden over the historical period, 1990 to 2018. The top panel (a) shows the

percent of runoff captured per year as a time-series. The color represents the proportion of

total rainfall ∏ 95th quantile in each year. Panel (b) shows the maximum number of hours to

drain the surface (time series) and the daily 99th quantile as the color. Panel (c) presents the

frequency of overflows discharged to the sewer and the number of rain days above 10 mm as

the color. For reference, the marker represents the volume of rainfall that was greater than

or equal to the 95th quantile, and is the same in each subplot. The box and whisker plot at

the right of the graphic summarizes the statistics of each performance metric over the 28-year

period. The red line (in the box and in the plot) represents the median, the box outline shows

the 25th and 75th quantiles, and the whiskers show the 5th and 95th quantiles. Black dots

represent outliers beyond the 5th and 95th quantiles.

As simulated, the rain garden would have been expected to perform well, capturing a me-
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Figure 4.3: Time series of performance for historical period 1990–2018 of (a) percent of runoff
captured over time, (b) maximum number of hours to drain the surface, and (c) the frequency
of overflows discharged to the sewer.
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dian of 97% of runoff each year, and a range of 90% to 100%. The surface of the basin was

simulated to drain in less than 48-hours under all conditions, and thus would not have ex-

ceeded any regulatory thresholds for Pennsylvania. In the majority of years simulated, the

surface always drained in fewer than 2-hours, and drainage time never exceeded 8-hours.

Simulation results estimate that there would have been zero to nine discharges to the sewer

each year (median of 3), with a median discharge volume of 13 m3 per year. These historical

simulation values can be used to set thresholds for performance degradation over time. For

example, stakeholders may want to trigger adaptation when percent capture falls below 70%

per year, or some other threshold that is considered not satisfactory.

Historical simulation results can also be used to determine how performance differs be-

tween metrics. For instance, the highest annual discharge volume of 67 m3 did not occur in

the year with the lowest capture rate (90%), even though capture rate in that year was one of

the lowest (92%). This means that a rain garden might capture more rainfall overall if there is

more rainfall to capture, but will still discharge a large amount to the sewer. Since capture ef-

ficiency is calculated relative to rainfall received, it may be the preferred metric for evaluation

because it can be used for comparison to installations at other locations. However, maintain-

ing a high percent capture does not mean that performance will remain high for the other

metrics. The metrics that are most important to track will depend on stakeholder objectives

and preferences.

4.3.2 Selection of rainfall indices most indicative of his-

torical performance

In order for rainfall indices to be used as a proxy for tracking performance, they must be se-

lected based on the individual performance metric of interest to the stakeholder. The rainfall

indices that are most indicative of performance are determined by evaluating their correla-
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tion to the individual performance metrics under historical conditions, taking into account

sensitivity of these results to the simulation model parameters. If multiple performance met-

rics are of interest to the stakeholder, then multiple rainfall indices may need to be tracked.

One option is to use the rainfall indices selected for each performance metric. Another option

is to use a few rainfall indices that are most indicative of multiple performance metrics.

This section identifies the rainfall indices that are most indicative of individual perfor-

mance metrics as well as all performance metrics as a whole. Figure 4.4 presents a heat map

of the correlations between each performance metric and each rainfall index. Orange colors

represent a negative correlation and greys represent a positive one.

Rain garden capture efficiency is highly, negatively correlated to many rainfall indices

linked to extreme rainfall: maximum 1-day, 2-day, and 5-day rainfall, the total rainfall from

∏ 99th quantile, and the proportion of the total from ∏ the 95th and 99th quantile. This

means that percent capture will decrease as the magnitude or proportion of extreme rain-

fall increases. All of these indices are highly correlated with each other (refer to Appendix B

Figure B.4); thus they will not all be useful.

Volume of overflows to the sewer system is highly, positively correlated to the total ∏ the

95th and 99th quantile. Both of these indices are, however, correlated to each other and only

one will be selected for further analysis. Overflow frequency is highly correlated to the hourly

mean rainfall, as well as several indices relating to the magnitude, total, proportion and fre-

quency of extremes. These results suggests that the more rain and more extreme rain that the

basin receives, the more overflows that will occur, which is expected.

Maximum surface drainage time (indicating the longest time that the bio-retention basin

took to drain) has the highest correlation out of all 5 metrics. It is most strongly correlated

to very rare extreme storm metrics, like max 1-, 2-, and 5-day, 99th quantile, and the number

of days with rainfall greater than 50 mm. This is expected since it is the very large (but rare)

events that will lead to the longest surface detention time as rainfall enters faster than it can

drain. Mean surface drainage time is only moderately correlated to many of the rainfall in-
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Figure 4.4: Correlations between rainfall indices and all performance metrics. Grey colors
represent positive correlations, while reds represent negative correlations.
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dices. The highest correlations (of 0.6) are to the maximum 2-day rainfall and the total rainfall

from ∏ the 95th and 99th quantile.

The three indices with the highest, average correlation to all metrics were mean hourly,

mean daily, and the daily 99th quantile of rainfall, which was very highly correlated to the total

rainfall from ∏ 99th quantile and the number of rain days ∏ 40 mm. Total rainfall from ∏ 99th

quantile has the largest number of very high correlations (to max 1- and 2-day, 99th quantile,

and no. days ∏ 40 mm). High, positive correlations are present between the maximum 1,

2, and 5-day rainfall values, and between mean hourly and daily rainfall (as expected). Very

high correlations exist between the total annual precipitation and the total rainfall from ∏

99th quantile, the hourly mean and the hourly 90th quantile. Since the proportion of the

total rainfall greater than the 90th quantile is weakly correlated to the total annual and the

90th quantile magnitude, all three of these indices will be used in the performance analysis to

better understand how each one relates to performance.

Many of the indices that are highly correlated with each other are from the same group of

indicators, or measures, of rainfall (presented in Table 4.1). These measures include the cen-

tral tendency of rainfall, magnitude, proportion, or frequency of extremes, and frequency of

wet and dry days. Only one index from each group will be recommended for use as a measure

to track. Furthermore, if indices from unrelated groups are also correlated, only one or two of

these may be of interest to track.

Sensitivity of historical results

Sensitivity of the results for the historical period was tested by decreasing the rate of infiltra-

tion into the basin (see Section 4.2.3). In this simulation, performance declines considerably.

Capture efficiency drops from a median of 97% to a range from 65 to 91%. Volume of over-

flows increased from a median of 13 to a median of 120 m3 per year. Frequency of overflows

increased from a median of 3 to up to 30 events per year. The maximum drainage time dou-
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bles, but still never exceeds 16-hours. As a result of these changes, many correlations between

performance metrics and rainfall indices also change. Figure 4.5 presents how the correla-

tions change. Thick outlines surround the combinations that were most highly correlated in

the original simulation. Green colors represent correlations that increase while reds represent

correlations that decrease. In general, correlations increase for capture efficiency and volume

of overflows. Correlations for frequency of overflows mainly decrease. Correlations for mean

drainage time also decrease. For maximum drainage time, correlations both increase and de-

crease. The following section selects the rainfall indices most related to performance during

historical simulation based on these changes.

Rainfall indices most related to performance during historical simu-

lation

Out of the five rainfall indices that were highly correlated to capture efficiency, the proportion

of total from ∏ 95th quantile and the total from ∏ the 99th quantile have the highest average

correlations between the two analyses. Both indices may not need to be tracked, however,

since they are highly correlated to each other (0.8). The proportion of total from ∏ 95th quan-

tile is recommended in this case since it has slightly higher average correlations.

Both of the rainfall indices that were highly correlated to volume of overflows are very

highly correlated. However, the total from ∏ the 95th quantile has the highest average corre-

lation between the two analyses. It is thus recommended for use as the index most indicative

of volume of overflows.

Out of the nine rainfall indices that were highly correlated to overflow frequency, only one

has a stronger correlation in the second analysis (with lower infiltration capacity). This index,

which also has the highest mean correlation, is the number of days with rainfall greater than

25 mm. This index is thus the most indicative of frequency of overflows.

Out of the seven rainfall indices that were highly correlated to maximum surface drainage

107



Chapter 4- Analyzing rainfall measures and performance of green infrastructure

Figure 4.5: Changes in correlations between rainfall indices and all performance metrics
when the infiltration rate is decreased during simulation. Thick box outlines represent the
combinations that were most highly correlation in the original simulation. Green colors rep-
resent correlations that increase while reds represent correlations that decrease.
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time, there are two indices that have comparable average correlations: the maximum 5-day

rainfall and the total from ∏ 95th quantile. These two indices are only moderately correlated

to each other (0.6) and could both be used. However, maximum 5-day rainfall is selected here

because the average correlation between both analyses is slightly higher.

Out of the three rainfall indices that were highly correlated to mean surface drainage time,

all three have weaker correlations when the infiltration rate is decreased. However, the total

from ∏ 99th quantile has the smallest decrease and highest average correlation. This index is

thus the most indicative of mean surface drainage time.

Overall, the four indices that have the highest average correlations between all perfor-

mance metrics are: the total from ∏ 95th quantile, the total from ∏ 99th quantile, the 99th

quantile, and the maximum 2-day rainfall. All of these indices are highly correlated to each

other. For this analysis, the total from ∏ 99th quantile is selected as the most indicative of

all performance metrics because its correlations are slightly higher than the others. However,

selection of any one of these indices would be a decent indicator of performance. The results

for all metrics are summarized in Table 4.3. The index in bold represents the index that is most

indicative of the performance metric in this analysis.

4.3.3 Expected changes in future rainfall

This section summarizes expected changes in precipitation in the future. Results from all four

climate model simulations suggest that total precipitation in Pittsburgh will increase, despite

an expected decline in the number of rain days, and an increase in the average length of dry

periods. This means that each rain storm will produce more rainfall, which is demonstrated

by the increase in the maximum 1-, 2-, and 5-day storm magnitudes, as well as the magnitude

of the 90th quantile. The proportion of total rainfall from extreme events (greater than the

90th quantile) is expected to increase by about 8% (median value). The annual frequency of

rare and very rare events is also expected to increase.
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Table 4.3: Rainfall indices most indicative of performance for historical period. The index in
bold represents the index that is most indicative of the performance metric in this analysis.

Performance Metric Rainfall Indices

Runoff Capture
Efficiency

Proportion from ∏ 95th quantile
Total from ∏ the 99th quantile

Volume
Overflows

Total from ∏ the 95th quantile
Total from ∏ the 99th quantile

Frequency
overflows No. days where rainfall ∏ 25 mm

Max surface
drainage time

Maximum 2-day rainfall
Total from ∏ the 95th quantile
Total from ∏ the 99th quantile

Mean surface
drainage time

Maximum 5-day rainfall
Total from ∏ the 95th quantile

Subsequent analyses will more closely examine performance of only two climate model

simulations: CanRCM4/ CanESM2 (CANCAN) and RegCM4/MPI-ESM-LR (MPIREG). The CAN-

CAN model predicts large increases in both magnitude and variability of rainfall conditions,

while the MPIREG model predicts increases in magnitude of extreme precipitation, but with

less variability when compared to the other model simulation. The CANCAN model, referred

to now as the variable simulation, has the largest annual variability in changes to total annual

rainfall and proportion of total from ∏ 95 quantile, and has the largest increase in maximum

1-day rainfall. The MPIREG model, which will now be referred to as the consistent simulation,

has the smallest range of change in total annual rainfall and proportion of total from ∏ 95

quantile, and the lowest increase in the median of the maximum 1-day rainfall.

These differences are apparent in Figure 4.6, which presents the predicted percent change

of each rainfall index for the two selected climate model simulations. A comparison of the

four model simulations is presented in Appendix B. The percent change was calculated for
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each future year with respect to the median over the 28-year historical period. The box and

whisker plots represent the range of the percent change for each year and each climate model

for the future period, 2020 to 2059. The red line of the box plot represents the median over the

40-year future period; the box outline shows the 25th and 75th quantiles, and the whiskers

show the 5th and 95th quantiles. Outliers are shown as orange dots (for MPIREG) and green

stars (for CANCAN) The grey box represents the historical range (in terms of percent change

from the median). The black dashed line at zero represents no future change, yellow bands

represents a change of +/- 50%, and blue bands a change of +/- 25%. The historical median

values for each index are shown at the bottom of the figure in bold for reference.

In general, the variable scenario (CANCAN) predicts higher increases in the maximum

rainfall amounts, while the consistent scenario (REGMPI) predicts higher increases in 90th

and 99th daily quantiles. Proportions and total volume from extremes are higher in the vari-

able scenario. Both scenarios show similar increases in the rain days above 25 mm and 50

mm, yet the consistent scenario has smaller changes in total annual rainfall. In both scenar-

ios, rain days above 10 mm decrease, despite an increase in days above 25 mm and 50 mm.

The variable scenario loses more rain days > 10 mm than the consistent scenario. With fewer

rain days > 10 mm and more rain days > 25 mm, the distribution rare event frequency in the

variable scenario is shifting to the right. This shift is less pronounced in the consistent sim-

ulation. Rare and very rare rainfall is predicted to occur so much more often in the variable

simulation that total annual rainfall still increases, despite a decline in the days with lower

amounts of rainfall (10 – 25 mm). Overall, the consistent scenario predicts longer, intense

rain bursts that are separated by longer dry periods. The variable scenario has a wider range

of precipitation magnitudes, frequencies, and duration of storm events.

All of the rainfall indices most indicative of performance, including proportion from ∏

95th quantile, total from ∏ the 95th quantile, no. days where rainfall ∏ 25 mm, and maximum

5-day rainfall, are expected to increase in both model simulations. As a result, performance

would be expected to degrade. Percent capture would be expected to decline in the future
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Figure 4.6: Percent change in rainfall indices for two climate model simulations, consistent
(orange) and variable (green). The box and whisker plots represent the range of the percent
change for each year and each climate model for the future period, 2020 to 2059. The red line
of the box plot represents the median over the 40-year future period; the box outline shows the
25th and 75th quantiles, and the whiskers show the 5th and 95th quantiles. Outliers are shown
as orange dots (for the consistent simulation) and green stars (for the variable simulation) The
grey box represents the historical range (in terms of percent change from the median). The
black dashed line at zero represents no future change, yellow bands represents a change of
+/- 50%, and blue bands a change of +/- 25%. The historical median values for each index are
shown at the bottom of the figure in bold for reference.
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because these indices are increasing. Volume and frequency of overflows would be expected

to increase, and as well drainage time.

4.3.4 Simulated future rain garden performance

This section presents the change in performance metrics for the two selected climate simu-

lations: (1) variable increases in precipitation and (2) consistent increases in precipitation.

Simulated performance of the bio-retention using these scenarios is compared to simulated

historical performance. Figure 4.7 presents results for five performance metrics, including:

percent of runoff captured, average and maximum hours to drain the surface, and the fre-

quency and volume of overflows for each different simulation (historical, consistent, and

variable scenarios). The y-axis shows the cumulative probability (%) and the x-axis shows

the magnitude of each performance metric in percent, hours, number, and volume (m3), re-

spectively for the four metrics. Subplot (b) contains the average and maximum hours to drain

the surface as dotted and solid lines, respectively.

Overall, the performance degrades in the future, as would have been expected based on

the rainfall indices. However, despite the degradation, the basin still performs fairly well in

terms of capture efficiency. Median capture efficiency decreases from 97% to 91 - 93%, de-

pending on the simulation. In some years, performance is still high; however, in some years

performance declines to less than 85% capture, but never drops below 70% in either simula-

tion. Although the performance is fairly high, the difference between performance in the past

and both future simulations is statistically significantly different (p = 0.001).

The two future simulations differ in how the percent of runoff captured is distributed

annually. The consistent changes scenario, with less variability in precipitation, predicts a

tighter range in percent of runoff captured than the variable scenario, which has more cases

of both higher and lower performance years. These results suggest that the basin will capture

less runoff overall, relative to the amount received; however, annual fluctuations in perfor-
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Figure 4.7: CDFs of five performance metrics: percent of runoff captured, the frequency and
volume of overflows, maximum hours to drain the surface (solid lines) and mean hours to
drain surface (dashed lines) for all simulations: historical (black), modest future change (yel-
low), and volatile future (green). The red dotted lines cross the median and the 90th quantile.
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mance will depend on the variability of future rainfall.

Volume of overflows in both future simulations is also statistically significantly different

from the past and each other (p = 0.001). Median overflows increase from 13 m3 per year

to about 35 m3 per year; however, the range widens considerably more. The consistent sce-

nario predicts as much as 150 m3 per year and the variable scenario about 210 m3 per year.

Frequency of overflows increases slightly, from a median of 3 to 4 per year.

Under both future scenarios, the average and maximum surface drainage time is expected

to increase. Median values of average annual surface drainage times double (from 1 hour to 2

hours) in the consistent future simulation, and triple (2 hours to 3 hours) in the variable sim-

ulation. The surface takes longer to drain because future storms are predicted to get longer,

on average, and more intense. In both future simulations, the increases are statistically sig-

nificantly different from the historical value and from each other (p = 0.001). However, these

increases are not large enough to be of concern from a regulatory standpoint. The maximum

surface drainage time is still far below the threshold of 48-hours; the longest time to drain

across all future simulations and years is approximately 10 hours.

The increases in the rainfall indices do alter performance as expected, which suggests the

rainfall indices may provide insight regarding future performance without design simulation

or real time sensors for performance. This means that tracking rainfall indices over time could

be an alternative to tracking on-site monitors, which may not be available. However, future

research is still needed to determine exactly how much performance degrades as rainfall in-

dices change.
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4.3.5 Correlation of future rain garden performance with

rainfall indices

In addition to using historical simulation results and sensitivity analysis to select indices most

indicative of performance, results from hydrologic simulations using future climate model

output could also be considered for index selection. Correlations between rainfall indices

calculated from the future climate model output and performance metrics estimated through

simulation with future climate model rainfall results as the input will show whether historical

correlations in these measures are expected to remain stable as climate changes. This section

presents correlations between the future simulated performance metrics and the rainfall in-

dices calculated from the future climate model output and determines if the same indices that

were selected using historical simulations would have been selected after examining future

simulations. If examination of correlations between future performance metrics and future

rainfall indices would not change the indices selected using only historical simulation and

sensitivity analysis, then it may be acceptable to ignore looking at future simulations when

evaluating indices of interest. Climate model simulations may not always be easily accessi-

ble; thus it may be preferred to rely on historical data and sensitivity analysis only.

Figure 4.8 presents the correlations between simulated performance and the rainfall in-

dices specific to each simulation. The five performance metrics, including: percent of runoff

captured, mean and maximum hours to drain the surface, and the frequency and volume of

overflows, are shown as large columns. Each different simulation (historical, consistent fu-

ture, and variable future) is shown within each large column.

Many of the same rainfall indices are correlated to the performance metrics in a similar

manner as the historical simulation; however, some are quite different, especially for capture

efficiency.

The frequency and volume of overflows in the simulated future shows the most similar
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Figure 4.8: Correlation of selected rainfall indices to performance metrics for historical pe-
riod and two climate model simulations in the future period. Grey colors represent positive
correlations, while reds represent negative correlations. Labels on the left show the category
of the rainfall indices.
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correlation structure to the historical period. The volume of overflows is most strongly corre-

lated to the daily and hourly mean rainfall, total rainfall ∏ 95th quantile, and 99th quantile,

which are the same indices that were most strongly correlated in the past. Correlations to

these indices are slightly higher in the simulated future than in the simulated past. This could

signify that as rainfall becomes more extreme, correlations will get stronger, since more vol-

ume is being discharged.

Correlations for maximum surface drainage time in the future are weaker than they were

in the historical simulations, while correlations for average surface drainage are stronger in

the future. Correlations to maximum drainage time are likely weaker because the time to

drain is more consistently higher in all years, meaning less variation across years. Since max

time to drain is consistently high, it is more weakly correlated to the rainfall indices; changes

in rainfall do not change the maximum time to drain. On the other hand, the average time to

drain is more strongly correlated in the future because there is more variation, on average, in

the drainage time each year.

Percent capture performance is the only metric where the models disagree on perfor-

mance correlations for the future period. The consistent climate simulation is very weakly

correlated with performance, whereas the variable climate simulation shows a similar corre-

lation structure to that of the past — highly negatively correlated with extreme magnitude and

frequency. Correlations are low in the consistent climate simulation because when rainfall

does occur, it is in large quantities — so large, that the garden cannot infiltrate it fast enough,

and water nearly always runs off. The percent capture is not correlated to the rain metrics be-

cause the garden performs consistently poorly, because the storms are all very similar. They

are all short, intense events that appear after long dry spells. The variable climate simula-

tion has the largest variety of rainfall events — from large to small. Correlations are strongest

because the performance is more dependent on rainfall; it varies among rainfall events. The

historical rainfall shows a similar variety of events, and thus correlations are also strong, since

a variety of rainfall events leads to variability in performance. The disparities and similarities
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in future performance over time for these two simulations is presented in Appendix B, Figure

B.5.

Overall, examining the future correlations does not change the selection of the indices

most indicative of performance in this analysis. Thus it may be possible to base decisions on

the list of indices to track over time on the historical data without use of future simulations.

However, for other locations and basins, this result could change. If bias-corrected climate

simulation are readily available at a sub-daily timestep, then it is recommended to consider

these results as part of the future performance modeling to inform selection of rainfall indices

for regular evaluation in the future.

4.4 Summary and Conclusions

This study assessed whether annual measures, or indices, of rainfall can be a useful indicator

for tracking hydrologic performance of green infrastructure systems over time. Several annual

rainfall indices were established as most indicative of specific performance metrics for an

example bio-retention system. The proportion of rainfall extremes from ∏ the 95th quantile

was most highly correlated to the runoff capture efficiency, while the total volume of rainfall

extremes from ∏ the 95th quantile was most indicative of the volume of overflows and the

maximum surface drainage time. The number of days with rainfall greater than 25 mm was

most highly correlated to the frequency of overflows.

Climate model simulations predicted increases in each of these rainfall indices in the fu-

ture (2020 - 2059). As a result of these increases, performance degrades as expected, which

suggests that rainfall indices could be used as an indicator of future performance without

using real time simulation or monitoring, which may not be readily available. Although gen-

eral performance degrades, capture efficiency remains high. The median remains above 90%,

and the worst performance years never drop below 70% capture in either future simulation.

Overflow volume increases significantly, from 13 m3 per year to about 35 m3 per year. The
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consistent future scenario predicts as much as 150 m3 per year of discharge to the sewer and

the variable scenario about 210 m3 per year. Frequency of overflows increases slightly, from

a median of 3 to 4 per year, which is statistically significant. The surface takes longer to drain

because future storms are predicted to get longer and more intense; however, these increases

are not large enough to be of concern for permitting the infrastructure stand point since the

surface always drains in less than 48-hours.

Although downscaled climate models were useful in this study to estimate predicted in-

creases in specific rainfall indices, it may not always be necessary for engineers or site man-

agers to make use of model output directly. When climate model output was used to de-

termine which rainfall indices were most indicative of performance in future simulations,

the results did not change relative to only examining historical correlations with a sensitiv-

ity analysis. Trends from climate models are still needed to understand if stakeholders should

be concerned about changes in specific rainfall measures affecting future performance; how-

ever, existing analyses from the literature, the National Climate Assessment, or from NOAA’s

regional climate data center could be used instead of raw model output, which can be chal-

lenging to use. However, for other locations and basins, future results may be more sensitive.

If bias-corrected climate simulations are readily available at a sub-daily time step, then it is

always recommended to consider these results as part of the sensitivity analysis.

This study suggests that both performance metrics and rainfall indices could be used to

track the need for adaptation over time. If the metric or index falls below a pre-determined

threshold, then an adaptation study should be triggered. The performance metric of inter-

est and the pre-determined threshold will depend on stakeholder preferences; however, the

rainfall index should be selected based on the selected performance metric representing the

objective. If multiple performance metrics align with objectives, then multiple rainfall indices

could be tracked. Alternatively, the rainfall index that is most indicative of multiple perfor-

mance metrics could be used. While this study shows promise for the use of rainfall indices

in place of on-site sensors to track performance over time, to determine exactly how much
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performance would degrade as rainfall indices change over time, more advanced statistical

or machine learning models would need to be developed. These advances methods could

be used to link a rate of increase in one or more rainfall indices to an quantitative decline in

individual performance metrics.
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Chapter 5- Summary and Conclusions

5.1 Conclusions

Climate change is expected to increase the intensity of rainfall across the U.S. and world-

wide. These changes are a major concern for stormwater infrastructure engineers, as these

systems are at risk of flooding, failure, and decreased performance. Traditional engineering

design methods rely on assumptions of a stationary future based on past statistics; however,

these design processes must be updated to incorporate expected future changes in rainfall

patterns. Climate models can be used to understand how rainfall will change in the future;

yet predictions are uncertain and not easily converted to a format useful to engineers. It is

unclear how these predictions should be incorporated into the stormwater design process in

order to improve infrastructure performance and resilience. The objective of this research

was to determine how to use climate change projections during the stormwater design and

assessment process to increase the resilience of urban drainage infrastructure under uncer-

tain, future conditions.

To advance this objective, the second chapter developed a procedural framework for the

use of climate model data in engineering analyses. The framework consists of five main steps

that are necessary when using climate data for engineering applications. After defining the

design decision, the first component is to understand the current methods and data require-

ments that have been used to create the current design process. The second step uses this in-

formation to select and extract the most appropriate downscaled climate model data source.

A data source may be preferred over another due to the characteristics of the climate model

output that are closest to that required in the engineering analysis. The third step involves

managing the performance and uncertainty of the downscaled climate models. Uncertainty

is managed by using multiple climate models (an ensemble), and one of three techniques

to bound uncertainty: taking the maximum and minimum of all models, using all ensemble

values, or by “culling” the ensemble through model validation with respect to historical con-
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ditions. The fourth step relates to adjusting model output to the temporal or spatial resolution

required for the engineering application, which can be completed using statistical downscal-

ing techniques, bias-correction, or the change factor method. The final step discusses how to

incorporate results into engineering practice by accounting for uncertainty ranges, risk levels,

and changes over time.

The framework was applied to the updating of an important input parameter to stormwa-

ter design: intensity duration frequency (IDF) curves. Historical precipitation inputs for these

curves are required on a sub-daily time-step, thus for this type of analysis, it is recommended

to use climate model output that is available at the sub-daily level. Only regional climate

models (which use dynamical downscaling) are available at this temporal resolution. Find-

ings for updated curves in Pittsburgh suggest that depth of extreme precipitation for all du-

rations and return periods is expected to increase in the future for Pittsburgh on the order of

10% for smaller return periods, and 25% and up for larger return periods. Results from this

study suggest that it may be possible to interpret change factors as a potential climate factors

of safety that could be applied to existing, stationary, depth-duration-frequency values. Based

on these findings for Pittsburgh, a safety factor of 1.3 would encompass the majority of model

uncertainty for depths of smaller return periods (e.g. 2 to 10 years); however, a factor of 1.3

is no longer valid when uncertainty magnifies as the return period increases to 25 years and

larger.

While Chapter 2 detailed procedures and recommendations for using climate change pro-

jections to update precipitation frequency curves, many questions remained unanswered,

including how different modeling choices would alter the uncertainty ranges of precipita-

tion frequency curves, and consequently, the dimensions of stormwater infrastructure de-

signs. Chapter 3 investigated different choices for updating depth-duration-frequency (DDF)

curves and applied these to data for six U.S. cities: Birmingham, AL, Boston, MA, Boulder,

CO, Pittsburgh, PA, Phoenix, AZ, and Seattle, WA. DDF curves provides the depth of rain-

fall expected for a given probability of occurrence and duration. Across a range of different
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modeling choices, the depth of rainfall during shorter-duration storms (less than 6 hours) is

expected to increase more, and predictions have a larger uncertainty range in the future than

the depth of rainfall from longer duration storms (greater than 12 hours). These findings,

which are consistent with previous results (Hassanzadeh et al. 2013; Kuo et al. 2015; Chandra

et al. 2015; Shahabul Alam and Elshorbagy 2015), imply that stormwater infrastructure for

the future should be equipped to store or convey more water in a short amount of time rather

than more water over a longer period. Three adjustment techniques and two spatial resolu-

tions of the climate models were also tested for these 6 cities. The three correction methods

evaluated led to nearly consistent median values in most cities and for most durations and

a single method does not consistently over or under estimate precipitation depths relative to

the other methods. For the 6 cities examined, the lower spatial resolution (50-km) climate

model ensemble generally provides a higher estimate of precipitation in the future than the

25-km ensemble and these differences are large enough to lead to different stormwater pipe

dimensions.

Results from this study suggest that using the historical DDF curves for stormwater design

in the cities analyzed will not be protective against future extreme events. However, if histor-

ical curves were to be used, adopting the upper bound of the historical storm depth provides

more protection than doubling the return period. Nonetheless, this approach is not recom-

mended because the additional protection provided from using the historical upper bound is

independent of how much change is expected in the future. For this reason, updating DDF

curves using climate model output is the recommended strategy for informing future design

storms because these models are representative of expected future conditions. The resulting

DDF curves and stormwater infrastructure designed from these curves are, however, sensitive

to the choices made when creating these updated curves. This means that the design storm

selected from an updated DDF curve is not guaranteed provide the same level of protection

in the future that a design storm from a historical curve provided under historical climate

conditions. Engineers using updated DDF curves should consider these sensitivities during
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design and inform clients that performance of the infrastructure may vary over its lifetime.

If the DDF updating process was completed by a single regulatory agency, ad hoc updating

methods could be avoided, and the level of protection expected in the future would be more

standardized.

A standardized process for creating updated DDF curves would not, however, eliminate

uncertainty. Other tools and information may be needed to make a final decision on the ca-

pacity and size of the infrastructure. Chapter 4 examines how engineers can test whether

stormwater infrastructure designs are robust, meaning they would perform against numerous

rainfall scenarios for a range of performance metrics, using simulation. This process could be

used during the planning process to iterate and improve upon designs so they account for

more than a single design storm. For instance, simulation models can predict the frequency

of flooding, or the volume of runoff that is discharged to the sewer system over time. Both of

these metrics may be of interest to designers and local stakeholders, and specific thresholds

for these and other metrics could be used as a design target.

As more rainfall observations become available over time, simulation can also be used

to track progress of performance, and to determine if adaptation actions should be triggered

after thresholds are exceeded. However, if the simulation model was developed during design,

stakeholders in charge of assessing performance may not have access to this model or may

have limited time to to rerun it each year to estimate performance. Findings from Chapter

4 suggest that in place of performance-based simulation, annual rainfall indices could also

be used to predict performance degradation. Calculating changes in annual rainfall indices

from observed rainfall data is a more straightforward process than calibrating and simulating

hydrologic performance. To use this technique, the rainfall indices that are most indicative

of each performance metric must first be established, and then changes in these indices can

be tracked over time. Establishing the relationship between rainfall indices and performance

metrics requires simulation and sensitivity analysis; however, this process would only need

to be conducted once. It could occur during the design process, when simulation is used to
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test design robustness, or as an independent study that examines index/performance metric

relationships for several infrastructure installations across a region.

Downscaled climate models can be used to estimate expected increases in specific rainfall

indices. If the indices expected to have large changes coincide with the same indices that

are most indicative of performance, then it is particularly important to track performance

of the stormwater infrastructure early on. If the largest changes do not coincide with the

same indices that are most indicative of performance, then performance tracking could be

postponed until there is enough data to re-evaluate changes in rainfall in 5 to 10 years. When

it is important to understand exactly how performance degrades as rainfall changes, the most

reliable way to do so is to install on-site sensors to collect data about performance directly.

However, if monitoring equipment cannot be installed due to limited expertise or resources,

then performance can be simulated using observed rainfall data, or by developing a statistical

or machine-learning model that links annual rainfall indices to performance degradation.

Overall, this research contributes to the growing evidence that using existing standards of

rainfall information is no longer adequate for the design of stormwater systems. Trends from

climate models should be used to inform new design practices. Engineers are responsible for

adopting these practices, and for communicating to clients that these changes are necessary

in order to promote resilience of infrastructure systems.

5.2 Future Research Directions

5.2.1 IDF curve development and uncertainty bounding

One of the benefits of using regional IDF curves from NOAA Atlas 14 is that methods and un-

certainty bounding are standardized for all regions across the U.S. Future work is still needed

before IDF curves updated with climate model output can be developed in a similarly stan-

dardized fashion. Future work should explore other methods for representing and bounding
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the range, including using bootstrapping or Monte-Carlo Markov Chains (MCMC) to produce

full CDFs of each return level for a specific duration and return period. Bootstrapping uses

random sampling to estimate the full distribution (Varian 2005), while the MCMC approach

utilizes an algorithm to optimize over the parameter space that was generated using the joint

posterior distribution from a Markov-Chain (Cheng et al. 2014). A joint distribution can then

be estimated by combining the CDFs from all climate model simulations. The 10 and 90% CIs

can be obtained by sampling this joint distribution.

Another area of future work could explore the fitting of the GEV distribution for extreme

rainfall. It is possible that two different distributions could be fit - one to represent the more

likely extreme storms (1 to 100 year return periods) - and another that represents super storms,

like Sandy, that do not fit well with the first distribution. Fitting two distributions would allow

for better incorporation of very large and low probability storms; however, more complexity

adds to uncertainty. Trade-offs and options regarding the GEV fit still need to be explored in

the future.

Further, a recommendation is still needed on which spatial resolution of climate model

should be used in precipitation frequency analyses. This analysis will first need to confirm

the findings (described in Chapter 3) for the entire U.S. that the 50-km resolution models

generally lead to more extreme rainfall value predictions and higher uncertainty than the 25-

km models. Then, a hypothesis for the cause of this difference will need to be evaluated,

namely, that the lower, 50-km resolution leads to more extreme rainfall because of additional

aggregation as storms move across the grid cell. For instance, in a 2-hour period, the same

storm could be counted twice as it passes over a large grid cell, but only once at it passes over

a station. If this is true, then a higher spatial resolution may actually be more realistic. Future

work is needed to confirm this hypothesis and provide a recommendation to regulators if they

are preparing to systematically update these curves.

129



Chapter 5- Summary and Conclusions

5.2.2 Sensitivity analysis of rain garden performance

In addition to the updating of IDF curves, this dissertation also evaluated the future perfor-

mance of rain gardens. However, only a single rain garden at a single location was evaluated as

a demonstration of the approach. Future work is needed to test the sensitivity and robustness

of the results. The first analysis should test how the results change as additional rain garden

parameters change, including the volume of storage. This would inform how sensitive cor-

relations and performance are to the initial design. A result of this analysis could be a curve

of expected performance based on initial dimensions and characteristics. In addition, multi-

ple locations should be evaluated so that curves could be developed for every state or city in

the U.S. Designers could then use these curves as a guide for how much more performance

they would gain under future conditions by increasing the infiltration rate or volume. To in-

crease the efficiency of this analysis, which involves running hundreds of scenarios within

the SWMM model, software engineers should develop an easy to use scenario interface for

SWMM. This external interface would allow multiple scenarios to be run seamlessly without

connecting through the user-interface to launch each scenario.

5.2.3 Eliciting community engagement and preferences

Several aspects of the design and adaption process will require dialogue with communities or

clients. The first type of discussion is how much risk the community or client is willing to take

regarding failure of infrastructure, and how much money they are willing to spend to avoid

risk. This will influence how much rainfall the structure is designed to capture over its lifetime.

The second type of discussion with stakeholders relates to trade-offs between different types

of performance metrics, and which performance metric should be prioritized. For instance,

as discussed in Chapter 4, designing for a high capture efficiency of green infrastructure may

not prevent stormwater from being discharged to the sewer, or prevent standing water on the
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surface. Once preferences are known, the final discussion to have with stakeholders is their

threshold for performance degradation that will determine adaptation is triggered. Collabo-

rative research between engineering and social sciences is needed to determine appropriate

ways to elicit these preferences and how to incorporate this elicitation into the engineering

planning process.

5.2.4 Thresholds for triggering adaptation

While it is important to discuss performance thresholds with stakeholders, further research is

needed in this area to provide recommendations on what these thresholds could be. If rain-

fall indices are used to track performance over time, it is still unclear what type of changes in

rainfall would trigger adaptation. It is still unclear if changes in the mean should trigger adap-

tation, or if these decisions should be made if a single year passes a predetermined value. Due

to the variability of rainfall patterns, any one year surpassing a threshold may not be indica-

tive of what is to come. However, how many years need to surpass the threshold in order to

trigger adaption or redesign of the systems? Answers to this question are likely site specific,

but they could be answered by calculating the average performance of the infrastructure over

a period of time when all of these approaches are used to trigger adaptation. Furthermore, it

is still unclear what should happen once adaption is triggered, and how much time is needed

between adaptation triggering and infrastructure updating. More research is needed to eval-

uate these questions.

5.2.5 Lifecycle cost analysis of stormwater infrastruc-

ture

Another future area of research is related to the lifecycle cost of stormwater infrastructure.

The performance curves discussed above could be linked with cost information, which would
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present designers with estimates of how much additional gains in performance would cost to

implement. For instance, increases in the storage volume is associated with additional soil

or rocks needed to fill the volume, as well as additional excavation. Due to fixed costs (like

renting excavation equipment or paying construction crews), adding storage volume could

be only marginally more expensive. However, this will depend upon site-specific conditions.

Furthermore, once capital expenditure is estimated, these values could be compared to the

additional benefits that improving performance would bring. Quantifying these benefits is

also an area of open research (e.g., Clark, Adriaens, and Talbot 2008; Mittman and Kloss 2015;

Pruss-Ustun et al. 2008). The ultimate cost/benefit analysis would help designers to choose

design parameters based on performance and cost requirements.

Cost analysis could also be used to determine benefits or consequences of over investment

today in order to avoid damages in the future. This is particularly relevant for the sizing of grey

infrastructure systems. Cost analysis could determine by how much the pipe diameter should

be increased, and by how much the diameter could be increased before it is cost prohibitive,

or before it does not make up for preventing damages in the future. This will help designers

to understand the limits to increases in pipe sizes, and could also be used to convince clients

that going one pipe size up would reduce damages and thus costs in the future.

5.2.6 Accounting for low flow conditions in design

While cost is one reason to not increase a pipe size, there are also additional reasons why in-

creasing the size of the infrastructure may not alway be the solution. A pipe that is oversized

can be detrimental during periods of low flow. In pipe networks, low flow conditions can

cause the velocity to fall below the self-cleansing velocity (DeZellar and Maier 1980), which

can lead to settling of particles, odors, corrosion and pipe deterioration (Marleni and Nyoman

2016). This is relevant for stormwater and wastewater networks. The use of continuous hydro-

logic simulation also has the potential to provide insights about infrastructure performance
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during periods of low flow or drought conditions. These models could be used to simulate

whether a selected pipe size could cause problems under periods of low rainfall in the future.

This type of simulation addition to pipe networks, periods of low rainfall can dry soils, which

can lead to mortality of plant species in green infrastructure systems (Jennings 2016). Future

work is needed to incorporate low flow challenges into the hydrologic design process and into

hydrologic simulation models.
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A.1 Overview

This Appendix presents additional methods and results related to the development of up-

dated depth-duration-frequency (DDF) curves (Chapter 3 of the dissertation). The first sec-

tion presents a detailed overview of adjustment methods used for updating DDF curves, in-

cluding a performance comparison between methods. The second section presents results of

how the choice of historical design storm value could alter the pipe diameter size.

A.2 Detailed overview of adjustment methods

used for updating DDF curves

The three methods used for updating are: (1) Kernel Density Distribution Mapping (KDDM),

which uses non-parametric bias-correction to adjust the underlying time series from the cli-

mate model, (2) AMS Transfer Function, which adjusts the annual maximum series of the

climate model using parametric transfer functions, and (3) Simple Change Factor, which uses

areal reduction factors to adjust the observed depth of rain based on the ratio of change be-

tween the historical and future climate models.

A.2.1 Kernel Density Distribution Mapping

The first method uses a type of non-parametric bias-correction, called Kernel Density Dis-

tribution Mapping (KDDM) (McGinnis et al. 2015). KDDM is used to define a relationship

between the observed rainfall time series and the gridded climate model time series for the

historical time period (1950–2013). Using this relationship, the entire gridded climate model

time series, including zero values, is bias-corrected to the station scale for the period 1950–

2099 by adjusting the model values so that their statistical distribution in the historical time
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period matches that of the observations. Once the time series is bias-corrected, the AMS are

extracted, and the return levels are subsequently obtained using the general techniques in

Section 3.2.2 for each duration, climate model, and city.

The relationship between the observed rainfall time series and the gridded climate model

time series is defined by fitting a transfer function between their empirical CDFs. First, empir-

ical PDFs are computed using kernel density estimation; these PDFs are then integrated using

the trapezoid rule to calculate CDFs. Equal points of probability from the CDFs are mapped

against each other and the resultant mapping is then fitted with a spline. The equation of this

spline is the transfer function between the observed data and the historical climate model

simulation output, which is then applied to the 150-year time series of the climate model

simulations to obtain bias-corrected values at the station scale.

The time series can be bias-corrected with KDDM before or after it is aggregated to the

desired duration (e.g., 24-hour). The former, referred to as method (1a), bias-corrects the

1-hour time series and then aggregates using convolution after bias-correction. The latter, re-

ferred to as method (1b), aggregates using convolution and then bias-corrects the convolved

time series. Although the convolved time series contains many values that are not indepen-

dent of one another, this does not present a problem for the KDDM technique, which makes

no attempt to fit a parametric distribution. As long as the two datasets have similar depen-

dency structures, the method remains applicable. Figure presents a detailed overview of the

sequence of steps required for both KDDM methods (1a) and (1b). The figure also presents

steps for methods 2 and 3, the AMS Transfer Function and Simple Change Factor methods,

respectively.

To evaluate method (1a) and (1b), the annual maximum series of the observed data (1950–2013)

was compared to the AMS of the bias-corrected climate model for the same time period. This

comparison involved comparing each duration using two metrics: (i) the mean absolute er-

ror (MAE), and (ii) a Kolmogorov–Smirnov (K-S) test. The MAE (see Equation A.1) analyzes

the magnitude of difference between the empirical distributions, while the KS-test checks to
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Figure A.1: Sequence of steps carried out in each of the DDF adjustment techniques used in
this study.164



see if the two AMS series are from different continuous probability distributions.

M AEd =
P

q=1 |yq °xq |
n

(A.1)

The results, which are presented in Figure A.2 for Pittsburgh, show that aggregating the

time series before bias-correction produces a much smaller error. This is true for all loca-

tions and durations (not shown). Method (1a) considerably overestimates the AMS compared

to method (1b), and has a larger number of bias-corrected AMS that are not from the same

continuous distribution as the observed AMS. Thus, only method (1b), aggregation then bias-

correction, is used for subsequent analyses.

A.2.2 AMS Transfer Function

The transfer function method, or method (2), is also a bias-correction method like the KDDM

method. However, instead of bias-correcting the entire time series, only the AMS is bias-

corrected. This is shown in Figure 1. This method is similar to the Equidistance Quantile

Matching Method developed by Solaiman and Simonovic (2011) as part of an effort to update

Canadian IDF curves to reflect future extremes (Solaiman and Simonovic 2011; Simonovic et

al. 2016). That method, which makes use of daily output from GCMs, uses two transfer func-

tions: one that spatially downscales from the grid scale to the station scale, and another that

temporally downscales from the daily GCM to the sub-daily level. For the present work, the

temporal downscaling step was not performed. Rather, RCM output from NA-CORDEX that

is already available at the sub-daily level is used, and separate transfer functions are applied

for each duration. To get future DDF curves, the adjusted AMS (XFd) for each duration, cli-

mate model, and city, are fit to a stationary GEV distribution for a single, future time period

(see Section 2.3.4). Return levels are extracted for this time period using Equation 1. Confi-

dence intervals for each climate model are determined based on the MLE and bootstrapping

discussed in Section 3.2.2.
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Figure A.2: Mean absolute error (MAE) of the AMS from the bias-corrected CORDEX ensemble
compared to observed AMS for the historical time period (1950–2013). The different colored
error bars represent the different bias correction methods: method (1a), KDDM then aggre-
gation (light blue), and method (1b), aggregation then KDDM (dark blue), and (2) aggregation
then transfer function. The median MAE from the 25-km climate model ensemble is repre-
sented by a solid, square marker, while the median of the 50-km ensemble is an open square.
The maximum of the MAEs from the climate model ensemble is the upper bound of the error
bar and the minimum of the MAEs is the lower bound of the error bar. The number of stars
above the error bar shows the number of climate models that are not from the same contin-
uous distribution as the observed AMS (h0 = 1 from K-S test). The horizontal, dashed line
represents a MAE of 10%.
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Before the AMS transfer function method is applied, the AMS are first extracted from the

observed data and from the climate model output for each duration. For each location, there

are a total of 35 AMS (for 5 durations, 6 climate model simulations, and 1 weather station).

The steps for developing the bias-corrected AMS are as follows:

1. Fit a GEV distribution, GEVXd , to the observed AMS, Xd

2. Fit a GEV distribution, GEVXd GEVYhd, to the AMS of the climate model, Yd , for the

historical period, Yhd . The number of years does not have to equal the number of years

in the observed time period, but they should be similar time periods

3. Calculate FGEVYhd
(Yd ), the CDF of GEVYhd at the values of Yhd , in order to get the prob-

ability for each value of Yhd

4. Evaluate F°1GEVXd [FGEVYhd
(Yd )], the inverse CDF of GEVX d at FGEV ,Yhd (Yd ). The re-

sult is the spatially adjusted AMS, X f d

5. Repeat step 1 for each duration and city, and steps 2-4 for each climate model, duration,

and city

To understand performance of this method relative to the KDDM method (1b), the AMS

series of the historical climate simulation was also compared to the observed AMS time se-

ries, for all aggregated durations (3, 6, 12, 24, 48 hours), using the mean absolute error (MAE)

and the K-S test. Results are shown in Figure A.2. Overall, the transfer function method has a

smaller MAE than the KDDM method (1b), and never results in a rejection of the K-S test. De-

spite the better performance of the transfer function method, the KDDM method (1b) will still

be used in subsequent analyses since the difference in error is relatively small. By continuing

the analysis with both methods, the effect of this choice on performance can be evaluated.

Conceptually, methods (1) and (2) are entirely analogous: in both cases, model values are

transformed into probabilities according to CDF of the model data, then transformed back

into values using the CDF of the observations. The difference is in where that transformation

is applied. Since the distribution of block maxima such as the AMS is known to converge to the
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GEV distribution, it is not surprising that applying the transformation to the extreme values

directly using the correct parametric distribution exhibits better performance than applying

it implicitly using a non-parametric estimate.

A.2.3 Simple Change Factor Method

Method 3, the simple change factor method, adjusts the observed depth of rainfall for a spe-

cific duration and return period based on the change in the depth of rainfall for the same

duration and return period from the historical and future climate model simulations. This

method is also referred to as the areal reduction factor method (Allen and DeGaetano 2005;

Zhu et al. 2012b; Cook et al. 2017). Future depths at the station scale are obtained with Equa-

tion A.2:

D (s)
F (p,d) = D (s)

H (p,d)
D (g )

F (p,d)

D (g )
H (p,d)

(A.2)

where D denotes the depth of rainfall, or return level, for a given probability of occurrence

(p), duration (d), and CI. This depth is either at the station scale (s) or grid scale (g), for fu-

ture (F) or historical (H) time periods. Historical depths at the station scale refer to depths

obtained using historical observations with methods in 3.2.2.

Depths at the grid scale for the historical or future period refer to return level depths ob-

tained directly from the gridded regional climate model simulations. These depths are ob-

tained by following the steps in 3.2.2 for each of the six climate model simulations for histor-

ical and future periods. For this analysis, the change factor is applied to observations of the

time period 1950–2013. The historical climate model baseline is also from 1950–2013. The

future time period is 2020 - 2080. Selection of the future period is discussed in Section 3.2.2).

The median future depth is estimated using the median observed return level, the median

historical climate return level, and the median future return level. Confidence intervals for

the future depth are obtained in the same manner, e.g., the 90% CI uses the 90% CI from the
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Area
(acres)

Design
choice

Birmingham
AL

Boston
MA

Boulder
CO

Phoenix
AZ

Pittsburgh
PA

Seattle
WA

10
50-year

mid
24 (600) 24 (600) 21 (525) 18 (450) 21 (525) 21 (525)

10
50-year
upper

27 (675) 30 (750) 24 (600) 21 (525) 24 (600) 24 (600)

10
100-year

mid
24 (600) 27 (675) 21 (525) 18 (450) 21 (525) 21 (525)

100
50-year

mid
27 (675) 24 (600) 18 (450) 21 (525) 24 (600) 21 (525)

100
50-year
upper

33 (825) 30 (750) 21 (525) 24 (600) 30 (750) 24 (600)

100
100-year

mid
30 (750) 24 (600) 18 (450) 21 (525) 27 (675) 21 (525)

Table A.1: Diameter of stormwater pipe (in inches and mm) using historical design values for
two watershed areas (10 acres and 100 acres) and all cities

observed data, historical climate model, and future climate model.

A.3 Comparison of all historical design storm

choices on stormwater infrastructure siz-

ing

This section presents the resulting pipe diameters if the design engineer were to use different

values from the historical DDF curve range. The historical design value choices include se-

lecting the 50-year, best-fit depth, the 50-year, 90% CI, and the 100-year best-fit depth. Table

A.1 presents the diameter of the stormwater pipe in inches (and mm) using historical design

values for both watershed areas (10 and 100 acres) and all 6 cities.

These results show that designing for the 100-year storm does not always increase the pipe

169



Chapter B- Appendix A

size, whereas designing for the 50-year 90% CI does. In general, for the smaller watershed, de-

signing for the 100-year storm does would not change the pipe size, and therefore not provide

additional protection against future extreme events. For the larger watershed, however, de-

signing for the 100-year storm can provide some additional protection, but it is inconsistent

across cities. Designing for the historical, 50-year 90% CI always leads to an increase of one

or two pipe sizes.
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Table B.2: Drainage area characteristics of SWMM model

Drainage
Area Sq. Ft Acres Slope % Impervious % Zero-Impervious Drains to

Roof 1 1440 0.03305 33% 100 100 RG 1
Roof 2 1360 0.03122 33% 100 100 RG 1

Pavement 1 1500 0.034435 2% 100 25 RG 1
Roof 3 700 0.01607 2% 100 100 RG 2
Roof 4 2500 0.05739 2% 100 100 RG 2

Pavement 2 860 0.01974 2% 100 25 RG 2
Rain Garden 1 1262 0.03 0.1% 0 25 RG 2
Rain Garden 2 907 0.02082 0.1% 0 25 Outfall

B.1 Overview

This Appendix presents additional methods and results related to Evaluation rainfall mea-

sures and performance of bio-retention systems under climate change (Chapter 4 of the dis-

sertation). The first section presents additional methods and parameters for the SWMM model

related to the sub-catchments, bio-retention cell layers, and conduits. The subsequent sec-

tions present additional results, including: pair-wise rainfall correlations, pair-wise perfor-

mance metrics correlations, and

B.2 Methods and Data

B.2.1 SWMM model parameters

Eight sub-basins are modeled to represent four roof areas, two pavement areas, and two rain

gardens. Table B.2 presents the sub-basin characteristics and flow patterns.

Additional parameter values related to the impervious sub-catchments are presented in

Table B.3, whereas bio-retention cell layers, and conduits for Rain Garden 1 (RG1) and Rain
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Table B.3: Parameters of impervious subcatchments is PCSWMM model

Parameters (units) Value Data Source

N-Imperv/N-Perv 0.01/0.1 SWMM default
DStore-Imperv/Perv (in) 0 /0.05 SWMM default

Percent Routed 100 Site configuration
Suction head (in) Green Ampt 2

Conductivity (in/h) 1 SWMM default

Initial soil moisture
deficit (fraction)

0

Garden 2 (RG2) are reported in Table B.4. RG is the rain garden that has the potential to over-

flow to the collection system.

B.2.2 Regional Climate Model Output

Table B.5 presents the regional climate model simulations from the NA-CORDEX (Mearns et

al. 2017) dataset that were used in this study.

RegCM4 was originally developed at the International Centre for Theoretical Physics (ICTP)

and simulated for NA-CORDEX at the National Center for Atmospheric Research (NCAR).

WRF was developed and simulated at NCAR. CanRCM4 was developed and simulated at the

Canadian Centre for Climate Modeling and Analysis.

B.3 Results

B.3.1 Historical precipitation characteristics

Rainfall characteristics in the Pittsburgh region are rainy and wet. Pittsburgh is in the top 10

rainiest cities in the U.S. On average, it rains about 146 days per year (mean value), or about

every 1.6 days. With a mean total of 974 mm of rainfall per year, Pittsburgh does not make the

top 10 cities with the most total rainfall (Osborn 2018). The maximum 1-day rainfall ranged
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Table B.4: Parameters of the bio-retention basin layers and associated conduits for the PC-
SWMM model

Parameters (units) RG1 RG2 Data Source

Bio-retention cell – surface

Berm height (in) 3 3 As-built drawings

Vegetation volume (fraction) 0.8 0.8
As-built drawings/

Google Earth

Roughness
(Manning’s n)

0.65 0.65
(McCuen 2005;

Mustaffa, Ahmad, and Razi 2016)

Slope (%) 0.01 0.01 As-built drawings

Bio-retention cell – soil

Thickness (in) 24 24 As-built drawings
Porosity (volume fraction) 0.3 0.28 Calibration

Field capacity (volume fraction) 0.15 0.15
Wilting point (volume fraction) 0.125 0.125

Conductivity (in/hr) 3 2.5 (Rawls, Brakensiek, and Miller 1983)
Conductivity slope 8 8 SWMM User Manual
Suction head (in) 2.04 2.4 (Rawls, Brakensiek, and Miller 1983)

Bio-retention cell – storage

Thickness (in) 12 12 As-built drawings
Void ratio (voids/solids) 0.48 0.48 (Das 2008)

Seepage rate (in/hr) 1.25 1.25 Based on seepage rates for HDPE pipe
Clogging factor 0 0 Default

Bio-retention cell – underdrain

Drain coefficient (in/hr) 0.5 0.5 Calibration
Drain exponent 0.5 0.5 Default

Drain offset height (in) 2 2 As-built drawings

Conduits

Roughness (Manning’s n) 0.012 0.009 (Bishop and Jeppson 1978)
Invert elevation (ft) 904.25 902.25 As-built drawings

Diameter (in) 8 6 As-built drawings
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Table B.5: Regional climate model simulations from NA-CORDEX used in this study

RCM/ESM
Combination

Regional Climate
Model (RCM)

Earth System Model
(ESM)

RegCM4/MPI–ESM–LR RegCM4 RCM

“Max Planck Institute
Earth System Model
at base resolution”

(MPI–ESM–LR)

WRF/MPI-ESM-LR WRF RCM MPI-ESM-LR

WRF/GFDL–ESM2M WRF RCM

“Geophysical Fluid Dynamics
Laboratory Earth System Model,

Modular Ocean Version”
(GFDL–ESM2M)

CanRCM4/CanESM2 CanRCM4 RCM
Second generation

Canadian Earth System Model
(CanESM2)

from 35.3 to 151.1 mm from 1990 through 2018. Out of the top 100 most populated cities in

the U.S., Pittsburgh ranks around 80th in terms of daily maximum precipitation for this time

period.

Figure B.3 presents two visualizations of the annual rainfall indices for the historical pe-

riod (1990 – 2018) in Pittsburgh. Figure B.3(a) presents volumetric indices, including: the total

annual rainfall, presented as a time series along the x-axis; the maximum 1-day precipitation,

represented by the color of the marker; and the number of days with at least 25 mm of rain,

shown as the size of the marker. Figure B.3(b) presents frequency indices, including: the num-

ber of rain days per year, presented as a time series along the x-axis; the average duration of

wet days, represented by the color of the marker; and the maximum duration of wet days (the

longest period of consecutive rainfall), shown as the size of the marker. The dashed, black line

represents the arithmetic mean of the time series in each plot.

The total annual precipitation since 1990 ranged from 734 mm in 1995 to 1380 mm in

2004. Several factors contributed to 2004 having the highest total annual precipitation. Hurri-

175



Chapter B- Appendix B

Figure B.3: Annual precipitation indices for the historical period (1990 – 2018) relating to vol-
ume (a), including: total rainfall, maximum 1-day rainfall, and no. days with ∏25 mm of rain;
and relating to frequency (b), including: no. rain days per year, average and maximum dura-
tion of wet periods. Marker size represents no. days with ∏25 mm of rain (a) and maximum
duration of wet days (b). Dashed line shows the time series mean.
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cane Ivan hit the city in 2004, leading to the largest maximum 1-day precipitation of 151 mm,

along with the largest number of days with at least 25 mm of rain (12 days). However, 1999

also had a large maximum 1-day precipitation (112 mm) during a year when the total annual

precipitation was below the mean. The smallest, maximum 1-day rainfall of 35 mm occurred

in 2011 and not in 1995, when total annual rainfall was lowest.

Similarly, looking at panel b, the longest maximum period of consecutive rainfall, 9 days,

occurred in 2000 and 2011, not in the wettest overall year (2004). The number of rain days per

year corresponds somewhat to total annual rainfall, however, there are some years, like 2003

and 2011, that had a lot of rainy days, but did not have higher total annual rainfall.

B.3.2 Historical correlations between rainfall indices

Pair-wise correlations were evaluated for all rainfall indices to determine quantitative rela-

tionships. Figure B.4 presents correlations between rainfall indices for the historical period

(1990 - 2018). Results are shown as a heat map matrix. Orange colors represent a negative

correlation and greys represent a positive correlation. The left and top represent the same

metrics in the same order; however, the top rows use abbreviated names (see definitions in

Table 4.1 in the main text).

The strongest positive correlations are between the maximum 1, 2, and 5-day rainfall val-

ues (as expected). Additional positive correlations exist between the total annual precipita-

tion and the 90th quantile (0.7), the 90th quantile and the number of rain days above 25mm

(0.7), and the number of rain days above 50 mm and the maximum 2-day rainfall (0.7). The

number of days with rainfall above 25 mm has the highest number of strong correlations

(apart from maximum-1, 2-, and 5-day rainfall). It is strongly correlated (0.7) to total annual

rainfall, maximum 5-day rainfall, and the 90th quantile of daily rainfall.
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Figure B.4: Heat map of correlations among all rainfall indices for historical data. Darker
colors represent a stronger correlation.
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Runoff Capture
Efficiency

Volume
overflows

Frequency
Overflows

Max surface
drainage time

Mean surface
drainage time

Runoff Capture
Efficiency 1 -0.83 -0.26 -0.70 -0.69

Volume
Overflows 1 0.34 0.60 0.62

Frequency
overflows 1 0.18 -0.10

Max surface
drainage time 1 0.55

Mean surface
drainage time 1

Table B.6: Correlations of performance metrics to each other

B.3.3 Historical correlations amongst performance met-

rics

Table presents pair-wise correlations of the performance metrics.

B.3.4 Disparities and similarities in future performance

over time

Figure B.5 presents future performance over time for the two selected model simulations:

consistent (left) and variable (right), and three performance metrics: percent captured (top),

volume of overflows (middle), and frequency of overflows (bottom). The box plot to the left of

each figure summarizes the historical range, whereas the pox plot to the right shows the range

for the future simulation. The color of the markers represents the magnitude of the rainfall

index with the strongest correlation to the performance metric. The size of the markers rep-

resents the total rainfall from greater than or equal to the 95th quantile of daily rainfall.
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Figure B.5: Future performance over time for two selected model simulations: consistent (left)
and variable (right), and three performance metrics: percent captured (top), volume of over-
flows (middle), and frequency of overflows (bottom). The box plot to the left of each figure
summarizes the historical range, whereas the pox plot to the right shows the range for the fu-
ture simulation. The color of the markers represents the magnitude of the rainfall index with
the strongest correlation to the performance metric. The size of the markers represents the
total rainfall from ∏ the 95th quantile.
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The variation in the percent capture is clearly larger for the variable climate simulation

than for consistent climate simulation. In the consistent simulation, the percent capture hov-

ers around 92%, and is not affected by the changes in the proportion of total rainfall from the

95th quantile or above (lighter colors, meaning a lower proportion, are not related to higher

capture efficiency, like they are in the variable simulation). For the other two metrics, the

variability across years is large in both model simulations, which explains why correlations to

these metrics are stronger and similar than for capture efficiency.
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