
i

Indoor Location Prediction through
Modeling of Human Spatiotemporal

Behavior

Submitted in partial fulfillment of the requirements for the degree of

Doctor in Philosophy

in

Electrical and Computer Engineering

Christian Koehler

M.S., Computer Science, RWTH Aachen University

Carnegie Mellon University

Pittsburgh, PA

August, 2015

 ii

Copyright

Copyright © 2015 by Christian Koehler

All Rights Reserved

 iii

Acknowledgments

This dissertation would not have been possible with the help of colleagues, friends,

and family who supported me, endured the ups and downs of the process with me,

or offered me words of critique and encouragement. Somebody once told me a

PhD is not a race, but a marathon and you will stumble along the way. I was

fortunate enough to have many amazing people in my life who pushed me to see

the end of my journey.

First and foremost I want to thank Anind Dey who, so many years ago, took a

chance with a random foreign student and allowed me to work on my own projects

and experience so much. Over the years you were my mentor, friend, and

confidant. Your encouragement and critique pushed me to always try to do my best

so my work and my career move forward. This work is very much a collaboration

that would not have been possible without you.

Another big thanks is due to Jennifer Mankoff and Ian Oakley who guided me with

their insightful words and occasional prodding through the process of getting a

PhD. You picked me up when I stumbled and pushed me forward to the end. Your

friendship and counsel over the last six years allowed me to reach the finish line of

my journey.

I would also like to thank the rest of my committee, Dan Siewiorek and Oliver

Brdiczka for their valuable feedback and support. Your insights helped me to

shape my work.

One person I would especially like to thank is Queenie Kravitz. You were always

there to listen to me be it times I was exited about good things or down because of

something bad. Your wise counsel always gave me perspective and you allowed

me to reflect on myself without judgment. I always liked to say that you are my

unofficial counselor who helped me to navigate the more emotionally stressful

situations in my PhD career.

 iv

Many people allowed me to talk through ideas, but I would especially like to thank

Afsaneh Doryab and Nikola Banovic for their continued support. You allowed me to

work through algorithmic problems and put me on the right path for a elegant

solution. I would also like to thank Christine Bauer for allowing me to interrupt

every time I’m having a dissertation writing question.

My journey towards a PhD was also enriched by a number of friends who made my

time more enjoyable and allowed me to relax for a while. I would like to thank:

Pascal Meyer, Nitesh Goyal, Dominik Lenhard, Leanne Davis, Iryna Zhurak,

Michael Dagitses, Adrian Reyes, Kevin Huang, Rebecca Gulatta, Alyson

Youngblood, Tatiana Vlahovic, Dan Tasse, Afsaneh Doryab, Nikola Banovic, Chloe

Fan, Denzil Ferreira, Eija Haapalainen, Michelle Scott, and Lucas Pereira.

A special thanks also goes to Dan Siewiorek, Asim Smailagic, and Mahadev

Satyanarayanan for the opportunity to teach with you. Your example showed me

how to motivate and lead students and also taught me the virtue of patience.

I would also like to thank Samantha Goldstein, the former Electrical and Computer

Engineering Department’s PhD program coordinator, and Susan Farrington, the

former Electrical and Computer Engineering Department’s career consultant. Your

continued support over the years allowed me to navigate the difficult PhD process.

Many thanks also goes to Jeffrey Pierce and David Nguyen for giving me a better

insight into what it means to be a PhD-level researcher in industry. Your example

motivated me to search for opportunities in the private sector.

One person who made it possible for me to start my PhD was Walter Unger.

Thanks so much for recommending me to the Carnegie Mellon University’s PhD

program so many years ago.

A lot of this work would not have been possible without the support and help from

Carnegie Mellon University’s facility management team, so a special thanks also

goes to Marty Altschul and Jim Skees.

 v

Lastly I would also thank my family for their loving support over the years. Without

you this dissertation would not have been possible.

I would also like to thank the National Science Foundation and Portuguese

Foundation for Science and Technology for the financial support I received in

support of my studies under grants IIS- 1227495, IIS-1217929, and

SFRH/BD/70428/2010.

 vi

Abstract

The ability to capture people’s location within large indoor spaces (such as office

buildings, university campus buildings, or hospitals) and to use this information to

predict when and where they will go next is a potentially powerful computational

tool. Indoor location prediction algorithms could enable smarter automated

receptionists, support ad-hoc meetings whilst occupants are transitioning between

locations, or improve room temperature control. However, predicting occupant

indoor locations and when occupants will transition between these locations is

challenging. Existing systems that monolithically approach this task perform poorly,

which is likely because occupants’ spatiotemporal routines within the interior of a

building, such as a workspace, can be very complex.

To address this problem, this work explicitly models the behavior of occupants

using a range of spatiotemporal features such as time of day, previous locations,

or day of the month. We developed a pattern extraction algorithm, ABC-Pattern-

Extract, based on Conditional Frequent-Pattern Trees (FP-Trees) that describes a

person’s behavior as a collection of spatiotemporal FP-Trees varying depth. Using

53 occupancy traces from a four-month data collection our algorithm is able to

extract on average 1011.6 FP-Trees with an average depth of 5.3. Due to

computational restrictions put in place on the algorithm, ABC-Pattern-Extract was

able to create these trees in on average less than 25 minutes. To evaluate our

approach we show how an extracted set of patterns can be used to accurately

predict the future location of an occupant through a secondary predictive algorithm,

ABC-Pattern-Predict. To show the impact of the algorithm in a real world scenario

we chose efficient room temperature control and simulated the energy impact of

ABC-Pattern-Predict. Our evaluation shows that ABC-Pattern-Predict achieves a

very high accuracy of 92.56% and an increase in Recall by 10.93% over the

current state of the art, PreHeat. The high accuracy and recall improvement over

PreHeat leads to an estimated energy consumption reduction of 16.1%, while

maintaining the same level of comfort.

 vii

Table of Contents

Copyright .. ii

Acknowledgments ... iii

Abstract ... vi

Table of Contents ... vii

List of Tables .. x

List of Figures and Illustrations ... xi

1. Introduction .. 1

2. Measures Used in Document .. 11

2.1.1. Accuracy ... 11

2.1.2. Precision and Recall ... 11

2.1.3. Kappa Statistic.. 12

2.1.4. 0-R Accuracy .. 13

3. State of the Art in Indoor Location Prediction .. 15

3.1. Prediction Tasks .. 16

3.1.1. Next Location Prediction Irrespective of Time 17

3.1.2. Location and Transition Time Prediction .. 18

3.1.3. Occupancy of a Room .. 20

3.2. Algorithm Description .. 21

3.2.1. Adaptive Confidence Estimator (Next Location Prediction) 21

3.2.2. Prediction by Partial Match (Location Prediction for a given time) 25

3.2.3. PreHeat (Occupancy Prediction) .. 27

3.3. Evaluation of Prior Algorithms ... 29

3.4. Augsburg Indoor Location Tracking Benchmark 30

3.5. UCSD Wireless Topology Discovery Data Set ... 31

 viii

3.6. Office Occupancy Data Set ... 32

3.7. Evaluation Results .. 33

3.7.1. ACE Results ... 34

3.7.2. PPM Results ... 35

3.7.3. PreHeat Results ... 36

3.8. Presentation Of Better Practices ... 37

3.8.1. Baseline Accuracy .. 38

3.8.2. Precision & Recall .. 38

3.8.3. Kappa Statistic.. 40

3.8.4. Separate Analysis Into Day-Time and Night-Time 41

3.8.5. Conclusion .. 41

4. Modeling of Spatiotemporal Behavior .. 42

4.1. Algorithm Description .. 44

4.1.1. Feature Selection ... 45

4.1.2. Transition Time Prediction .. 47

4.1.3. Prediction of Next Location .. 47

4.1.4. Temporal-Spatial Prediction ... 48

4.2. Indoor-ALPS Evaluation .. 48

4.2.1. Using Prediction by Partial Match as a Benchmark 48

4.2.2. Evaluation Data Set .. 49

4.3. Results .. 49

4.3.1. Temporal Analysis .. 49

4.3.2. Spatial Analysis .. 53

4.3.3. Temporal-Spatial Analysis .. 55

4.4. Discussion ... 58

4.4.1. Temporal Prediction ... 58

4.4.2. Spatial Prediction ... 60

 ix

4.4.3. Temporal-Spatial Prediction ... 60

4.5. Conclusion .. 63

5. Exploring Spatiotemporal Structure for Indoor Location Prediction 64

5.1. Behavior-Pattern Extraction Algorithm .. 66

5.1.1. Event Extraction ... 67

5.1.2. Extraction of Singular Patterns ... 67

5.1.3. Building of Conditional Frequent-Pattern Trees 72

5.1.4. Pattern Extraction Results .. 77

5.2. Using Behavior Patterns For Indoor Location Prediction 80

5.2.1. Mode 1: Prediction Based on Singular Patterns 81

5.2.2. Mode 2: Prediction Based on FP-Trees ... 81

6. Evaluation .. 86

6.1. Office Temperature Control Through Indoor Location Prediction 92

6.1.1. Related Work .. 94

6.1.2. Simulation Framework .. 96

6.1.3. Variations Supported by the Framework .. 98

6.1.4. Supported Metrics .. 101

6.1.5. Framework Validation ... 103

6.1.6. Energy Impact .. 107

6.1.7. Discussion .. 110

6.2. Energy Consumption Evaluation of ABC-Pattern-Predict 115

7. Discussion ... 119

8. Conclusion & Future Work ... 126

9. References .. 130

10. Statement of Attribution ... 138

 x

List of Tables

Table 1: (Adapted from Congalton and Green 1999, p. 47) 12

Table 2. Interpretations of Kappa introduced by Landis and Koch [42]. 13

Table 3: Reviewed Indoor Location Prediction papers. A check mark indicated if a
particular measure was reported or not. ... 16

Table 4 ACE Metric Summary .. 21

Table 5 ACE History Look-up Table ... 22

Table 6 Prediction by Partial Match Example .. 24

Table 7 PPM Metric Summary ... 25

Table 8 PreHeat Metric Summary .. 27

Table 9 Dataset Characteristics ... 30

Table 10 ACE Results by Data Set .. 33

Table 11 PPM Results by Data Set .. 33

Table 12 PreHeat Result by Data Set .. 34

Table 13 Simulation Conditions ... 102

 xi

List of Figures and Illustrations

Figure 1 Representation of ACE State Machine (adopted from [56]) 22

Figure 2 Average Accuracy by Look-Ahead Window for Temporal Prediction.
Starred bars indicate statistically higher values (p<=.025). 52

Figure 3 Average Precision & Recall for Temporal Prediction 52

Figure 4 Average Kappa for Temporal Prediction .. 53

Figure 5 Accuracy by User ID for Spatial Prediction .. 54

Figure 6 Precision & Recall by User ID for Spatial Prediction 54

Figure 7 Kappa by User ID for Spatial Prediction .. 55

Figure 8 Average Accuracy by Look-Ahead for Temporal-Spatial Prediction. Star
indicates statistically significant difference (p<.05) 57

Figure 9 Average Precision & Recall by Look-Ahead Window for Temporal-Spatial
Prediction. ... 57

Figure 10 Average Kappa by Look-Ahead Window for Temporal-Spatial Prediction.
 .. 58

Figure 12 Algorithm Overview .. 66

Figure 14 ABC-Pattern-Extract Number of Patterns vs. Runtime 77

Figure 15 All-Day Accuracy .. 86

Figure 16 Accuracy Mon-Fri 8 AM to 6 PM .. 87

Figure 17 Recall All-Day .. 87

Figure 18 Precision All-Day .. 88

Figure 19 Kappa All-Day .. 88

Figure 20 Precision Work-Time 8AM - 6PM ... 89

Figure 21 Recall Work-Time 8AM - 6PM ... 89

Figure 22 Kappa Work-Time 8AM - 6PM ... 90

Figure 23. 3 Stages of our Simulation Framework ... 96

 xii

Figure 24 Overview showing energy consumption, in kWh, of the 27 EnergyPlus
predictive occupancy simulations run over six month. % for each data point is
average accuracy across all rooms. ... 105

Figure 25 Energy Savings Predictive Occupancy systems vs. Baseline Reactive
and Static Schedules .. 108

Figure 26 Average Daily Occupant Discomfort across predictive occupancy
conditions and baselines. .. 110

Figure 27 ABC-Pattern-Predict Energy Consumption for Pittsburgh and LA 115

Figure 28 Consumption Savings of ABC-Pattern-Predict over Static Schedule and
Reactive Schedule (Pittsburgh Weather) .. 116

 1

1. Introduction

The ability to capture people’s location within large and complex indoor spaces

(such as office buildings, university campus buildings, or hospitals) and to use this

information to predict when and where they will go next is a potentially powerful

computational tool. Indoor location prediction algorithms can improve services,

making them more adaptable to human needs, or even provide services that were

not possible earlier. To highlight this lets consider the scenario of Bob, a mid-level

executive in a large technology company. As a father of two young school kids,

Bob has a fairly stable work routine: he usually arrives in the office at 7:00AM after

dropping his kids off at school and stays till 5PM, in time to get back home for

dinner with his family.

On one of his usual workdays in the middle of January, Bob drives in to the office

and realizes he has to meet with Alice to talk about the latest developments in a

project they both work on. Alice works in a different building on the company’s

campus, so he is unsure when she will be available today and he emails her to

setup a meeting. Upon arriving in his office he notices that the temperature control

system did not heat his space since he is one of the few people in the office that

arrive this early. Even though his office has a room-level temperature control, the

static control schedules that facility management has set for the building assume

that the majority of the employees arrive around 8AM. Bob increases the set

temperature by 8° F and leaves his jacket on until his office is heated up. After

working till 10AM he leaves his office for several meetings and lunch with some

clients and returns to his office at 2PM. He is glad that at least now the

temperature is at the right setpoint, but he wonders how much the temperature

control impacts the environment since it had to keep his office heated for four

hours even though he was out of his office, attending meetings he has on a regular

basis. He makes a note to bring this up with the green building manager his

company hired.

 2

Not having heard back from Alice he decides to drop by her office since a project

deadline is coming up and he needs to make sure everyone is on the same page.

Unfortunately she is not in her office and nobody can tell him when she is due back.

Frustrated, he goes back to his office and makes a mental note to set up a meeting

earlier the next time. After some productive hours he wonders why the package he

expected did not arrive yet, so he calls the company’s mail desk. Trying to stay in

touch with the newest developments the company recently introduced MailBot, a

robotic mail delivery system that promised to be more reliable and faster than the

old mail guy. Unfortunately for many of his colleagues the opposite is true. The

mail desk lets him know that the robot was at his office, but he was not there so it

could not deliver his package. They promised to send someone out in person, but

it might take till the next day. Upset about the delay he decides to grab a coffee.

While in the kitchen he overhears some of his colleagues talking about a fire that

just broke out in the company’s experimental lab. It seems the first responders

have a tough time finding survivors since they are unsure where everyone is

supposed to be at the current time.

Drained from the news he decides to leave for the day at 5PM, but wished he had

stayed a bit longer, because he ended up being stuck in rush-hour traffic. Later

that evening he receives an email from Tom, an old college friend Bob has not

seen for years. Tom tells him that he was in town for a trade show and decided to

surprise Bob with a visit, but unfortunately the receptionist could not reach him and

was not sure when he was going to be back in his office so he did not meet him.

Disappointed that he missed Tom, he goes to bed and hopes for a better day

tomorrow.

This baseline scenario highlights a number of possible application areas for which

indoor location prediction can be used to improve existing or offer new services.

For example it could enhance existing calendar applications by showing at the

beginning of a day when an occupant is most likely in their office and have no

meetings scheduled [51]. By knowing if occupants are going to be in their office

within the next hour it can enable smarter building control systems capable of

optimizing energy consumption based on occupants’ movement patterns (e.g., by

 3

realizing zoned predictive temperature control) [62]. Such systems could minimize

operational costs while also limiting the impact on occupant comfort [53].

Furthermore an indoor prediction system could enable an application that would

allow us to more easily have ad-hoc meetings with co-workers [51] or enable smart

door plates that show when the person is most likely to be back in their office [51].

This will reduce the flood of emails people receive daily and in turn save time and

cost. Knowing when a person is in their office will also allow robotic assistants such

as an inner-office MailBot to plan their route more effectively and thus save their

limited power supply and be more accurate in its mail delivery. By combining the

robot with a system that asks for help [60], MailBot can also ask occupants in

nearby offices to receive the package in case the intended recipient is not in their

office as scheduled. First responders can benefit from a location prediction system

by knowing where missing persons are most likely located and focus their search

efforts on these regions of a building. Such a system can also tell them if a person

is even supposed to be in the building at the moment. Furthermore a prediction

that an office worker is leaving within 30 minutes can improve notification systems

such as Google Now or Siri by issuing a warning that traffic is bad and that they

should leave early to arrive at their destination on time. Finally it can enable

smarter automated receptionists [26] that helps visitors know when a building

occupant is likely to return to her office, or arrange ad-hoc meetings whilst

occupants are transitioning between locations [51].

Using indoor location prediction the visionary scenario would look much different.

Instead of relying on reaching Alice via email, Bob’s calendar application already

identified possible meeting times between them in the afternoon and allows him to

schedule a meeting using his voice assistant. Upon reaching his office the

temperature will be at his preferred temperature since the facility management’s

predictive temperature control system started to heat up his office before he

arrived. Coming back from his lunch meeting he noticed that the temperature is

slightly below his preferred temperature. He realizes that the prediction is not

perfect, but it is only a few degrees off and for the sake of the environment he is ok

with being not perfectly comfortable for a few minutes. Shortly after he is back in

 4

his office he hears a knock at the door and lets MailBot in with the package he was

waiting for. Since his office neighbor is not yet back from his lunch, even though he

is usually has a very routine schedule, MailBot asks Bob if it is ok to leave a letter

with him for his neighbor. He agrees and MailBot sends an email notifying his

neighbor about where to pickup his letter. When his colleagues letter tell him about

the fire he is glad to hear that the first responders were able to find everyone very

quickly, which in part is thanks to a predictive system that told them where to focus

their search. Before he leaves for the day, Tom, who tells him that he tried to reach

him in the morning, but he was in meetings, surprises him with a visit. The

receptionist was able to tell Tom when to come back since she had a predictive

schedule for Bob available. Bob decides that it would be great for Tom to see his

family and he is glad for his smart notification system that tells him to leave a bit

earlier than usual due to high traffic on his usual route back home. In the evening,

he happily falls asleep and cannot wait for what the next day brings.

Difficulty of Predicting Indoor Location

As we saw from the illustrative example, predicting occupant indoor locations and

the transition time between these locations promises to solve interesting problems,

however, it is also challenging. Existing systems that monolithically approach this

task, combining a prediction of where a user will go with one of when they will go

there, perform poorly with prediction results that are close to the performance of a

majority predictor (i.e., predicting that the occupant will always stay in his most

frequented location) [11,61]. This is likely because occupants’ spatiotemporal

routines within the interior of a building, such as a workspace, can be very complex.

They can change substantially from weekday to weekday, and encompass many

destinations and transitions in relatively short spans of time. One factor that makes

it difficult to accurately predict an occupant’s transition time into a space is the fact

that indoor spatiotemporal routes are typically short (meters to hundreds of meters)

and traversed rapidly (in seconds to minutes). This is in contrast to the problem of

outdoor location prediction (e.g., [39,76]), for which travel times and distances are

long enough that a useful prediction algorithm only needs to predict the next

significant location after the user has already departed. The longer transition time

 5

allows for the use of features such as currently traversed path to make predictions,

which are mostly not useful to applications of indoor prediction, due to the shorter

indoor transition times. For example, when Bob leaves work, it is possible to

predict where he is going next based on the partially traversed path. If he drives

south he might go to the gym for his weekly workout, while if he drives east he is

on his way home. An algorithm can make a decision based on this observation.

Since traversing outdoor spaces usually has longer commute times it is possible to

predict Bob’s arrival time sufficiently ahead of time. For an indoor case it is

possible to predict Bob’s next location based on the observed path. However,

because the traversal time is so short, by the time enough of a path is observed,

Bob would already be at his target location. This would preclude many, if not all, of

the applications mentioned earlier. In addition this also means that many of the

analytic techniques that perform well outdoors do not work well when applied to

indoor scenarios.

Given the complexity of human behavior and the difficulty of predicting a person’s

transition time, most prior work has focused on predicting an occupant’s next

location without taking into account when these transitions will take place

[44,52,55,71,72]. Solving this problem alone precludes many applications that rely

on knowledge about transition timings. For example, a system that proactively

heats a room in advance of an occupant’s arrival [38,62] would not know whether

the person was coming in five minutes or two hours, and could result in either

significant discomfort (if heated too late), or significant wasted energy (if heated too

early). Making exact predictions about when a person transitions and to where is a

very hard problem due to the variability in length of stay at the current location.

How long a person stays at a given location is dependent on their spatiotemporal

routine and can vary greatly from weekday to weekday and fluctuates depending

on prior events that occur during a day. Considering the difficulty of this problem,

even given its importance for different applications, we believe it is necessary to

model a person’s spatiotemporal routine and directly use it for predictions of where

a person will be and when. Evidence exists [37,62] that modeling a person’s

spatiotemporal structure will lead to better predictions. What adds to the complexity

 6

of modeling this structure is that it can occur over different temporal cycles. For

instance, a repeating daily cycle might involve arrival at a workplace at a certain

time in the morning, while a weekly or monthly cycle might involve a regular

meeting slot. Event reoccurrence with a high probability can be described through

features such as time of day or day of week and can be detected by most machine

learning techniques. Infrequent events on the other hand can be obscured by more

frequent events that usually happen at the same time and thus it is difficult to make

accurate predictions for those events. For example, if we observe that a person

arrives at their office at 9AM in the morning in 80% of the cases and at 10AM only

in 20% of cases, most machine learning algorithms will have difficulties predicting

the 10AM arrival since the 9AM arrival is much more likely. To model complex

human spatiotemporal structure, this dissertation explores the use of conditional

frequent-pattern trees (FP-Trees) as a representation of this structure, through an

algorithm called ABC-Pattern-Extract (Activity, Behavior and Context Sensitive

Pattern Tree Extraction). Furthermore it explores the use of FP-Trees for

predicting future spatiotemporal behavior, through an algorithm called ABC-

Pattern-Predict (Activity, Behavior and Context Sensitive Pattern Tree Prediction).

Efficient Room Temperature Control
Indoor location prediction allows us to realize a multitude of different applications,

some of which are highlighted in the introductory scenario. The focus of this

dissertation are the pattern extraction and prediction algorithms, ABC-Pattern-

Extract and ABC-Pattern-Predict. To evaluate the algorithms we chose one

application domain, efficient office temperature control, since the infrastructure that

allowed us to collect the necessary ground truth and training data also enables us

to run detailed experiments without the need for the creation of additional test

infrastructure. Evaluating other application domains would require us to develop

addition test infrastructure. In addition, efficient room temperature control allows us

to evaluate both False Positive and False Negative errors since the first impacts

energy consumption and the second comfort. This means we can see how the

algorithm reacts in a real-world scenario for different error cases. This exploration

of error conditions, different applications (energy consumption and comfort) within

our domain, and the generality of our approach lead us to believe that our

 7

approach can be applied to multiple domains. Our evaluation shows the impact of

our algorithms on the errors as well as the domain and we believe that given the

errors made by the prediction algorithm it is also possible to realize other

applications. As we will see later, our algorithm especially improves the impact on

the human user.

Analyses by the U.S. Department of Energy shows that buildings make up for

nearly 41% of primary energy usage in the U.S., with commercial buildings

contributing half of that. 40% of the energy use [70] in commercial buildings is due

to Heating, Ventilation, and Cooling (HVAC) systems. While modern HVAC

systems make use of Variable Air Volumes (VAV) units for independent control of

thermal zones [31], most modern buildings still use static schedules to run HVAC

systems, thereby wasting energy when spaces are unoccupied [8,19,20,24,74,75].

Thus, recent work has focused on actuating HVAC systems, based on near real-

time occupancy information [8,19], as well as predicted occupancy-based on

learned patterns [37,62], with estimated HVAC energy savings ranging from 30-

40% in the best case [19,62].

Given the high potential for positive environmental, economic, as well as human

impact, predictive occupancy-based office temperature control is an attractive

target to test the pattern extraction and prediction algorithms. A successful

predictive algorithm for this application domain is not only reducing the energy

consumption of temperature control systems, but also maintaining or even

improving human thermal comfort. To investigate the potential impact of predictive

temperature control we first present a simulation framework that quantifies the

energy consumption and comfort impact of predictive temperature control under

varying levels of false negative and false positive error. To evaluate the framework

we performed an EnergyPlus consumption analysis using 235 office occupancy

traces collected over a period of six months. The framework reveals that predictive

algorithms can save up to 16.88% over a reactive temperature control system even

for high error cases with a 25% False Negative and False Positive rate. Motivated

by the high potential for savings, ABC-Pattern-Predict is tested on a four month, 53

offices occupancy dataset. It achieves a very high accuracy of 92.56% and an

 8

increase in recall by 10.93% over the current state of the art, PreHeat. The high

accuracy and recall improvement over PreHeat leads to an estimated energy

consumption reduction of 16.1%, while maintaining the same level of human

thermal comfort.

Research Questions and Statement

Through this dissertation we aim to answer the following question: Given
complexity of modeling human spatiotemporal behavior and reoccurring
events how can we compute conditional frequent-pattern trees for both in a
space and time efficient manner (Q1). Human spatiotemporal behavior is

influenced not only by the current situation (such as current location and time of

day), but also larger contextual factors such as the temporal configuration (e.g.,

current day of the week, day of month, etc.) or previous locations and events.

Given this variability it is important to define a descriptive model that is flexible

enough to capture the complex structure found in human behavior and extensive

enough to adapt to new situations and data. The second central question for this

dissertation is, how well does the detected structure in a person’s
spatiotemporal behavior allow us to make predictions for future events (Q2).
Human behavior is governed by structure that is either imposed on us externally,

for example, through reoccurring meetings we have to attend or it happens

internally through our choices and subconsciously through habit formation.

Through knowledge of this structure, it is possible to make predictions about future

spatiotemporal events. Lastly we aim to answer the question how do the
characteristics of the prediction results impact our ability to realize the
above-mentioned applications (Q3). Many of these applications react differently

to prediction errors. By understanding the errors we will be able to evaluate the

feasibility of the pattern-based prediction system for different classes of

applications. This will also allow us to adapt the applications to the errors that our

prediction approach makes. For example if we consider predictive temperature

control and we know that the prediction mostly predicts that a person is not at a

location even if they are (i.e., a false negative), then this will have implications for

occupant comfort. One way to address this error is by limiting the deviation from

 9

the occupant’s preferred temperature and thereby change how fast the room

reaches this temperature.

All of these questions lead to the central statement for the dissertation:

Conditional frequent-pattern trees offer a flexible framework for modeling
and understanding of a person’s spatiotemporal behavior. Using these trees
to find reoccurring structure in that behavior, allows us to improve the
predictive performance of spatiotemporal events and support diverse
applications.

This dissertation makes the following contributions:

1. It presents an algorithm, ABC-Pattern-Extract, capable of explicitly modeling

the complex human indoor spatiotemporal structure in a time and space

efficient manner, so it can run on a standard laptop without high-level

parallelization (e.g., Hadoop) taking less than an hour per user. Doing so

will allow us to predict future spatiotemporal events and in turn enable the

realization of aforementioned applications.

2. Through ABC-Pattern-Predict it shows how the modeled structure can be

used to accurately predict future spatiotemporal events. The results show

that it is more accurate than current state of the art algorithms and also

greatly improves on the recall error metric.

3. To show the impact of the algorithm on an application domain this

dissertation uses office temperature control as an example. Compared to

previous state of the art algorithms, ABC-Pattern-Predict improves the

potential for energy savings by 16.1% over previous state of the art

techniques, while maintaining the overall human thermal comfort.

Dissertation Structure

In order to explore the central dissertation statement, this document, in Chapters 2

and 3, gives an overview of prior indoor location prediction algorithms and

additionally highlights the diverse evaluation measures needed to thoroughly

evaluate prediction algorithms. We introduce a number of prediction algorithms

 10

and re-implemented three of the most accurate, and test them on a variety of

datasets. The results show the importance of diverse evaluation measures.

Secondly, in Chapter 4, we show the usefulness of different spatiotemporal

features by introducing an indoor location prediction algorithm, Indoor-ALPS. Our

algorithm uses various spatiotemporal features to make two separate predictions:

when is a person transitioning and where are they transitioning to. Our results on a

publicly available dataset shows a very high predictive performance, which we

evaluated using the metrics introduced in Chapter 2.

Chapter 5 describes the central pattern extraction and prediction algorithm, ABC-

Pattern-Extract (Activity, Behavior and Context Sensitive Pattern Tree Extraction)

and ABC-Pattern-Predict (Activity, Behavior and Context Sensitive Pattern Tree
Prediction). Using lessons learned from Indoor-ALPS, we created an improved

algorithm that directly models frequent and infrequent spatiotemporal structure.

Our algorithm allows us to make predictions of future spatiotemporal events.

Chapter 6 shows the results of our algorithm using the measures introduced in

Chapter 2. In addition we highlight the usefulness for efficient office temperature

control, one of the applications described in our scenarios above. Over 40% of a

building’s energy consumption is due to temperature control, which makes this an

attractive target for optimization. As we can see in Chapter 6 there is great

potential for using predictive temperature control for energy consumption reduction.

Our results show a very high algorithmic performance with an accuracy of 92.56%

and recall of 79.77%. We were also able to show a 10.93% improvement in Recall

over PreHeat, the best state of the art algorithm. An energy simulation shows

potential energy savings of 16.1% over PreHeat, while maintaining the same level

of occupant comfort.

Chapters 7 and 8 discuss the results and show potential extensions and future

work.

 11

2. Measures Used in Document

In order to evaluate the performance of prediction algorithms a number of

statistical measures were used in the past. We believe that a comprehensive

reporting using multiple measures is necessary to evaluate the true performance of

an algorithm. In the following section introduces six different measures that we

believe are important for the evaluation of an algorithm and are used for the

remainder of this document.

2.1.1. Accuracy
The accuracy of a machine-learning algorithm is the most commonly reported

statistic and describes the proportion of correct predictions from the total number of

predictions made. Since datasets are rarely uniform (i.e., they vary in number of

data points and number of locations per user) the accuracy is best calculated over

the whole data set irrespective of individual users or locations. Calculating the

accuracy on a by user or location basis and reporting on mean and standard

deviation can prove difficult, because of differences in number of data points per

user in a dataset. For example a dataset might have users with as few as six data

points or others with over 1000 data points; comparing users with diverging

number of data points as the same would lead to a misleading result. Even though

accuracy is a standard metric it can deliver a misleading picture of the algorithm

performance, because it is highly influenced by the underlying location distribution.

For this reason additional metrics are required.

2.1.2. Precision and Recall
Precision and recall are information retrieval concepts that provide an

understanding and measure of relevance. For a given class (or result), precision

describes the proportion of data points that belong to class from the full set of

those that are predicted to do so. Recall, on the other hand, describes the ratio of

relevant instances that are actually retrieved. Both precision and recall are

calculated on a per class basis for each entity in the data set. The overall precision

 12

and recall for the algorithm on a specific data set is calculated using a weighted

average (on the occurrence frequency) of the class specific precision and recall.

Precision and recall are calculated in terms of true positive, false positive, and

false negative. For a given class, true positive (TP) is the number of data points

that are correctly predicted to belong to that class, false positive (FP) is the number

of data points that are wrongly predicted to belong to that class, and false negative

(FN) is the number of data points that belong to a class, but are not predicted to do

so. Based on these values precision and recall are mathematically defined as

follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Very often Precision and Recall are expressed through the F1-Score also called

the harmonic mean of precision and recall. It is mathematically defined as:

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2.1.3. Kappa Statistic
The Kappa statistic describes the class-wise agreement between actual data and

predicted data. It is determined by first calculating the number of data points

correctly predicted to be in each class and the number incorrectly predicted to be

in any other classes. This generates a confusion matrix of the form illustrated in

Table 2.

Table 1: (Adapted from Congalton and Green 1999, p. 47)

i =
 P

re
di

ct
ed

 C
la

ss
es

(c
la

ss
ifi

er
 o

ut
pu

ts
) j = Observed classes (labeled reference

data)

 j1 j2 jk ni*(row totals)

i1 n11 n12 n1k n1*

i2 n21 n22 n2k n2*

ik nk1 nk2 nkk nk*

 13

n*j n*1 n*2 n*k n**=n

 (column totals)

The elements on the top-left to bottom-right diagonal show the number of data

points in which the predicted data agrees with the observed data. Other cells show

misclassifications. For example the entry n12 depicts the number of data points that

belong to class j2, but which are classified as class i1. Column (𝑛!�) and row means

(𝑛�!) are then generated from this table. Finally, Kappa provides an aggregate

measure of agreement, ranging between -1 and 1, between the observed and

predicted values. It is calculated in the following way:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐾𝑎𝑝𝑝𝑎 =
𝑛 𝑛!! − 𝑛!∗!

!!! 𝑛∗!!
!!!

𝑛! − 𝑛!∗!
!!! 𝑛∗!

There are different schemes for interpreting Kappa values. We use the one

introduced by Landis and Koch [42] and described in Table 3.

Table 2. Interpretations of Kappa introduced by Landis and Koch [42].

Kappa < 0 0.01 –
0.20

0.21 –
0.40

0.41 –
0.60

0.61 –
0.80

0.81 –
0.99

Agreement Less
than

chance

Slight Fair Moderate Substantial Almost
perfect

2.1.4. 0-R Accuracy
The 0-R accuracy, or baseline predictor, always returns a prediction of most the

frequently occurring location in a dataset. The accuracy of the baseline predictor

shows if one location, or possible result, dominates other locations. For example, a

0-R accuracy of 87.5% would indicate that the data set features 87.5% of cases

that belong to a single location. The 0-R accuracy also serves as a useful way of

assessing performance improvements – an algorithm that leads to 90% accuracy

when the baseline is 87.5% offers only a modest level of predictive power, while

one that offers 80% when the baseline is 40% may be, practically, a much more

powerful and useful system. However if the baseline accuracy is already very high

 14

(> 90%) and an algorithm still offers consistent improvements using the same

algorithm we can expect similar if not greater improvements on datasets with lower

baseline accuracy.

 15

3. State of the Art in Indoor

Location Prediction

The motivating scenarios showed how indoor location prediction could be used for

various application areas. These applications do not only rely on where a person is

going, but also when they will arrive at a location. Even though predicting a

person’s transition is vital for a number of interesting applications most prior

literature focused on predicting a person’s next location. Investigating further, an

analysis of prior research showed that indoor location prediction algorithms can be

broadly classified into three categories: next location prediction irrespective of time

[44,52,55,71,73], next location and transition time prediction [11,37,61], and room-

level occupancy prediction [62].

Petzold et al. [55] presented an early and influential analysis of indoor location

prediction algorithms. They predominantly focus on the computational cost and

time/space complexity of the algorithms and assess performance simply in terms

of accuracy. They note this figure remained at approximately 80% across the set of

algorithms they surveyed. Voigtmann and David [72] (P10) present a more recent

survey of the field and they re-implemented and re-evaluated selected algorithms.

Again the analysis concentrated on conceptual aspects such as the nature of the

data set (real, simulated or self-collected, etc.) and whether a comparison to other

approaches was documented. Once again, they reported the mean accuracy for

each selected algorithm on each data set, but provide no further characterization of

performance.

Given the seminal nature of Petzold et al. [55] in the field, we choose to select

algorithms for our research by tracking and examining all papers that cite it.

Articles from this set were retained for analysis and discussion only in cases where

they introduce a new indoor location prediction algorithm, tested existing

algorithms on new data sets, or modified and improved on existing algorithms. This

 16

led to a final set of nine articles, which are summarized in Table 1. Since it is

necessary to evaluate algorithms using a wide range of measures (see Chapter 2),

we also highlight the limited way in which performance of these algorithms has

been evaluated: seven out of nine were tested on a single dataset and eight out of

ten report performance only in terms of accuracy.

Table 3: Reviewed Indoor Location Prediction papers. A check mark indicated if a particular

measure was reported or not.

Pa
pe

r

Ti
tle

A
cc

ur
ac

y

B
as

el
in

e
Pr

ec
is

io
n

+
R

ec
al

l
F1

-S
co

re

K
ap

pa

D
at

as
et

D

es
cr

ip
tio

n
N

um
be

r o
f

D
at

as
et

s
In

cl
ud

ed
:

D
/N

/W

Ta
sk

P01
Comparison of Different

Methods for Next Location
[55]

✓ ✗ ✗ ✗ ✗ (✓) 1

Next-Location
Irrespective of

Time

P02

A Dynamic Bayesian Network
Approach to Location

Prediction in Ubiquitous
Computing Environments [44]

✓ ✗ ✗ ✗ ✗ ✓ 1

Next-Location
Irrespective of

Time

P03
Using an Adaptive Search

Tree to Predict User Location
[52]

✓ ✗ ✗ ✗ ✗ ✓ 1

Next-Location
Irrespective of

Time

P04
A predictive location-aware
algorithm for dementia care

[73]

✓ ✗ ✗ ✗ ✗ ✓ 1

Next-Location
Irrespective of

Time

P05 Person movement prediction
using neural networks [71]

✓ ✗ ✗ ✗ ✗ ✓ 1

Next-Location
Irrespective of

Time

P06
Occupant Location Prediction

Using Association Rule
Mining [61]

✓ ✗ ✗ ✗ ✗ ✓ 2 Day-
time
analy

sis

Next-Location
Given Time

P07
Predicting Future Locations

and Arrival Times of
Individuals [11]

✓ ✗ ✗ ✗ ✗ ✓ 1

Next-Location
Given Time

P08
PreHeat: Controlling Home
Heating Using Occupancy

Prediction [10]

✓ ✓ (✓) ✗ ✗ ✓ 1

Occupancy
Prediction

P09 A Survey To Location-Based
Context Prediction [72]

✓ ✗ ✗ ✗ ✗ ✓ 4 Survey

3.1. Prediction Tasks
Indoor location prediction is not a homogenous task and research has tended to

focus on three specific problems: Next Location Prediction Irrespective of Time;

Location and Transition Time Prediction and; Room Occupancy Prediction. The

following sections describe research on each of these problems in more detail.

 17

3.1.1. Next Location Prediction Irrespective of Time
Perhaps the most common indoor location prediction task is to determine the next

location that an individual will visit independent of the time this movement will take

place. Such systems attempt to answer the question “where are you going next?”

and typically rely on a user’s current location and location history in order to

answer it. One of the most popular data sets used in attempts to solve this problem

is the Augsburg Indoor Location Tracking Benchmark. This dataset contains the

location transition traces for four office workers as they move around one floor of a

large university office building over a seven-week period. A more detailed

description of the dataset can be found in Chapter 4. In early work using this

benchmark, Petzold et al. [55] (P01) implemented and analyzed seven different

algorithms for next place prediction: Bayesian networks, multi-layer perceptron,

Elman Net, Markov predictor, state predictor, Markov predictor with confidence

counter, and state predictor with confidence counter. Their results showed that an

accuracy of up to 79.68% could be achieved using the Elman Net. They also

compared the algorithms on criteria such as accuracy, quantity (the fraction of

requested and returned predictions), learning and relearning speed, and

computational and modeling costs, concluding that the Markov and State

Predictors have the lowest modeling and computational costs.

Vuong et al. [73] (P04) introduced the Adaptive Confidence Estimator for next

location prediction a technique that improved upon Petzold’s state predictor [14].

They tested their algorithm on the Augsburg Indoor Location Benchmark and

reported an average accuracy of 88.57% and quantity of 76.03%, improvements of

6.69% in accuracy and 1.65% in quantity over Petzold’s original implementation.

Also using the same dataset, Vintan et al. [71] describe a neural network based

prediction approach that led to a relatively overall low prediction accuracy of 76.4%

and improved performance (up to 92.3%) on specialized tasks such as determining

if an individual’s next destination was their office. Similarly, Oh [52] used an

adaptive search tree and showed an 80.67% accuracy that was consistent across

all four users in the Augsburg dataset. Compared to other papers we reviewed

Oh’s work provide a more comprehensive algorithm validation as it reports

additional details on the dataset and analysis such as the number of data points

 18

per user, the number of weeks for each user in each season (summer or fall), or

the time complexity of the algorithm.

Other authors who have examined next location prediction have done so using

custom datasets. For example Lee et al. [44] (P02) explored the use of Bayesian

networks for next location prediction based on a dataset derived from a diary study

of 366 undergrad students over a period of two days. In this study, participants

noted down the start and end time of “actions” or activities, the location at which

these were performed, and the route they had taken to arrive at the location. From

the 672 days of data they collected, 266 days were retained for analysis (days with

very short times and impossible routes were excluded) and the performance of four

predictive algorithms assessed. They report that a Dynamic Bayesian Network led

to the highest accuracy (72.67%), but as the data set is not publicly available and

there is only a limited description and discussion of algorithm performance it is

hard to draw further concrete conclusions.

As many of the algorithms tackling the next location prediction problem use the

Augsburg data set, it is trivial to compare amongst these based on accuracy, the

most commonly reported metric, and conclude that the Adaptive Confidence

Estimator [73] offers currently optimal performance. However, many aspects of the

algorithms and Augsburg data set remain currently unexplored. For example, the

current literature does not report precision, recall, 0-R accuracy or Kappa and, as

such, we do not know how well different algorithms perform on different classes or

locations. Furthermore, there is little explicit discussion regarding the distribution of

classes within the dataset as a whole. Indeed, given the dominance of this dataset

in the literature, we highlight the current lack of critical evaluation of its suitability as

a basis for developing predictive algorithms as a particular area of concern.

3.1.2. Location and Transition Time Prediction
This task involves predicting a user’s location at a specific time in the future given

a time-stamped movement history. By executing a series of these predictions with

increasingly long durations, this method can also predict a transition time between

locations. In other words, not just where an individual will be going next, but the

time at which they will do this. Compared to next location prediction, there are

 19

relatively few systems that attempt this task, possible because it is more

challenging – it involves predicting spatiotemporal patterns, rather than simply

spatial patterns. .

Work on this problem has also used the Augsburg data set. For example, Ryan

and Brown [61] (P07) developed an Association Rule Mining approach. To test

their system they used self-recorded location traces from five office workers,

generated a synthetic data set, and used the Augsburg Indoor Location Tracking

Benchmark as an external evaluation. They report an accuracy of up to 79% when

predicting a user’s location after one hour on the data set they collected

themselves. However, on the Augsburg data they achieved an accuracy of up to

56%, a drop they explained due to the greater variability of movements and

routines in the Augsburg data. Ryan and Brown did not report measures such as 0-

R accuracy or Kappa, but did analyze the performance of their algorithm for each

hour of the day. Their by-hour analysis showed that the accuracy is higher in the

beginning and end of the day and drops notably during the middle of the day.

Furthermore, by testing the algorithm on three different datasets the authors

provide a more comprehensive characterization of performance, highlighting

situations in which it is more or less successful. However, as the authors focus

solely on accuracy this picture remains incomplete and it is impossible to

determine the specific situations or ways in which the algorithm fails. For example,

it is unclear if the algorithm is consistently predicting that the user arrives at a

location earlier than in reality. Association rule mining additionally has the

drawback of not being able to consider the order of events. For many time series

problems the order is an important source for structure and predictability, which

makes it vital that such algorithms

Burbey developed Prediction by Partial Match (PPM) to solve the problem of

predicting a location given a time [11]. This system was tested on the publicly

available UCSD Wireless Topology Discovery dataset, which contains WiFi-based

indoor location tracking traces for 275 freshmen students over a period of 11

weeks. PPM relies on the majority location for a given timeslot an achieved an

impressive mean accuracy of 87%. However, once again, measures such as 0-R

 20

accuracy or Kappa were not presented. Based on the Burbey’s explanation, we

infer PPM relies on users exhibiting a highly regular spatiotemporal routine in order

to achieve a high accuracy but that this is unlikely to be maintained in cases where

users behave more erratically. However, based on the current literature, PPM

represents a best of class approach to the problem of predicting an individual’s

location at a specific time.

3.1.3. Occupancy of a Room
The final task involves predicting whether or not a given location (typically a room)

will be occupied or not at a specific time. The movements of individuals are not

explicit considered in this task and predictions are made based on occupancy logs

for locations. As it focuses on places rather than users, algorithms that solve this

type of prediction problem are particularly relevant for infrastructure and building

operations systems.

In some of the earliest work on this topic, Scott et al. [62] (P09) developed PreHeat,

an occupancy prediction algorithm for homes. They collected data from five

households and used their algorithm to make predictions about when the entire

home and the individual rooms would be occupied. Their results show a median

prediction accuracy of above 80% and they also present an ROC curve

highlighting the tradeoff between misses (failing to detect occupancy) and false

alarms (incorrectly detecting occupancy). They do not discuss class-wise

performance measures such as Kappa or the 0-R baseline. The algorithm relies on

a binary majority vote (occupied or not occupied) of data from the five previous

days that most closely resemble occupancy patterns of the current day. By basing

the prediction on a spread of similar days the algorithm implicitly models the

spatiotemporal routine of a person and achieves a relatively high level of

performance. However, its weakness are that it does not attempt to model more

complex spatiotemporal structure based on contextual factors such as the length of

previous occupancy or the specific day of the week. The next subsection will give a

detailed description of the algorithm.

 21

3.2. Algorithm Description
In order to get a better understanding of the current state of the art, we chose one

algorithm for each prediction task that showed the highest reported accuracy and

was also tested on a real world and not simulated data set for reimplementation.

For next location prediction, we chose the Adaptive Confidence Estimator [73]. For

predicting the location at a given time, we chose Prediction by Partial Match

algorithm [11]. For occupancy prediction, we chose PreHeat [62].

For the remainder of this section we give a detailed description of each selected

algorithm, explain what kind of data set structure is exploited by the algorithm, and

what limitations we found on each data set.

3.2.1. Adaptive Confidence Estimator (Next Location
Prediction)

Vuong et al. [73] introduced the Adaptive Confidence Estimator (ACE) as an

extension to the state predictor with confidence counter technique used by

Petzhold et al. [56]. The algorithm makes its predictions based on the last n visited

locations and uses a state machine to predict the location following this sequence

of visited locations. The author’s argue that for some applications it is beneficial to

withhold predictions that have a high probability of being incorrect, which is why

the algorithm also includes a measure of how confident it is with the predicted

location. Low-confidence predictions are not returned by the algorithm, which leads

to the situation that only a subset of the prediction requests are satisfied.

Accuracy Baseline
Prec. +

Recall
F1-Score Kappa

Real-World

Dataset

Used

Number of Datasets

✓ ✗ ✗ ✗ ✗ ✓ 1

Table 4 ACE Metric Summary

 22

Pattern 2-state
Confidence

Counter
… … …

p1 … pn L1 s
… … …

Table 5 ACE History Look-up Table

The algorithm is implemented through a history look-up table (see Table 2). Each

entry in the table consists of a pattern, which is a collection of the last n

consecutively visited locations, an associated state (L0 or L1) for the state machine,

and the current confidence counter that determines if the confidence in the result is

high or low. The order of a state predictor describes the length of a pattern and

thus a state predictor of length n uses the last n locations. The current state of the

state machine determines the next location following a pattern p. After each

prediction query this state is being updated using the underlying state machine for

the corresponding pattern. An example of such a state machine for a pattern p of

visited locations is shown in Figure 1.

Figure 1 Representation of ACE State Machine (adopted from [56])

Corresponding to this state machine, three possible next locations (i.e., B, E, and

S) following the pattern p can be observed. Each location has two possible states 0

and 1 and we can see that the state machine only transitions to a new location if

the current state level is 0. The transition within the machine is initiated by correct

or incorrect predictions. For example if the state machine is in state B1 and B is the

 23

correctly predicted next location the state would not change, if on the other hand B

would be the wrong prediction the state machine will transition into B0. The next

time the pattern p occurs the algorithm still predicts B as the next location. If this

prediction is correct the state machine will transition back into B1. If the prediction

is incorrect and the actual next location is E the state machine will transition into

E0. This example shows that the state machine approach needs two examples of a

new next location to change its prediction outcome. We can understand the state

level of the state machine as the retraining rate for the algorithm, i.e., the rate of

how many examples of a new routine need to be observed before this new routine

becomes the predicted outcome of a pattern.

The confidence counter is handled independent from the state machine. The

confidence counter cc is increased for each correct prediction and decreased for

each wrong one. If the confidence counter for a pattern/current-state pair falls

below a chosen threshold t the algorithm will withhold the next result of a location

prediction for that pair. The confidence counter and the state machine will be

updated even if the current prediction result is being withheld. The confidence

counter can never fall below 0. The counter cc is increased or decreased by the

frequency of the next location. This change is a deviation to the original technique

described in [56] and was introduced by Vuong et al. [73] to make the predictor

more robust against unexpected events. Their rational is that an unexpected

deviation from a frequent event should not be penalized as strongly as a deviation

from a sporadic event.

For each prediction query, a location pattern, the state predictor first checks if the

pattern was encountered before. In case it was not encountered, the pattern, the

next location following the pattern (as soon as it is available), an initial confidence

counter of s, and the confidence threshold t will be added to the look-up table. No

prediction is returned in that case. If the pattern was encountered before, the

predictor checks the confidence counter: if it is above the confidence threshold t it

will return the next location (the current state of the state machine) and if it is below

the threshold the next location prediction will be withheld. The rationale behind the

latter decision is that it is better to omit a potentially wrong result with low

 24

confidence than return a wrong result. As soon as the next location is available the

confidence counter cc will be updated as described in the previous paragraph.

Because some of the prediction queries have potentially no result (in cases of new

patterns or patterns with low confidence) only a percentage of the queries will be

processed and thus an additional variable is needed for ACE: quantity. The

quantity of a prediction represents the percentage of answered prediction queries

vs. total prediction queries.

The Adaptive Confidence Estimator is based on the assumption that people follow

a predictable routine of visited places. For example if we know that a user visited

place A and place B we expect to see place C in most cases. The ACE algorithm is

very accurate with low errors if and only if a person is following the same routine

independent of time or day of week/month. It does not take any temporal

information into account. As Table 4 highlights again, the results reported by

Vuong et al. [73] also do not highlight what kinds of errors the algorithm makes or

how well the algorithm predicts non-frequent locations. For the former it is

necessary to report on precision and recall and for the latter the Kappa statistic is

needed.

Table 6 Prediction by Partial Match Example

Order k =2 Order k = 1 Order k = 0 Order k = -1

Predictions c p Predictions c p Predictions c p
Prediction

s
c p

ab è r 2 ⅔ a è b 2 2/7 è a 5 5/16 è A 1 1/|A|

 è Esc 1 ⅓ è c 1 1/7 è b 2 2/16

 è d 1 1/7 è c 1 1/16

ac è a 1 ½ è Esc 3 3/7 è d 1 1/16

 è Esc 1 ½ è r 2 2/16

 b è r 2 ⅔ è Esc 5 5/16

ad
1.1.1.1.1.1.1.1 è

a 1 ½
1.1.1.1.1.1.1.2 è
Esc 1 ⅓

 Esc 1 ½

 c
1.1.1.1.1.1.1.3 è

a 1 ½

br
1.1.1.1.1.1.1.4 è

a 2 ⅔
1.1.1.1.1.1.1.5 è
Esc 1 ½

 25

1.1.1.1.1.1.1.6 è
Esc 1 ⅓

 d
1.1.1.1.1.1.1.7 è

a 1 ½

ca
1.1.1.1.1.1.1.8 è

d 1 ½
1.1.1.1.1.1.1.9 è
Esc 1 ½

1.1.1.1.1.1.1.10 è
Esc 1 ½

 r
1.1.1.1.1.1.1.11 è

a 2 ⅔

da è b 1 ½
1.1.1.1.1.1.1.12 è
Esc 1 ⅓

1.1.1.1.1.1.1.13 è
Esc 1 ½

ra
1.1.1.1.1.1.1.14 è

c 1 ½

1.1.1.1.1.1.1.15 è
Esc 1 ½

3.2.2. Prediction by Partial Match (Location Prediction for
a given time)

Ingrid Burbey [11] introduced Prediction by Partial Match (PPM) as a method for

indoor location prediction. The original technique was developed by Cleary and

Witten [13] as a text compression tool.

The PPM algorithm uses an r-order Markov Model to predict the symbol that

follows a sequence of symbols. For a given input training string of length l it breaks

up the string into substrings of length t (1 ≤ t ≤ r and r < l). The order of symbols in

the substring is preserved from the original string. For example the substring of

length 2 for the string abra are ab, br, and ra, but not rb. For each possible

substring the model records all possible symbols that follow that substring.

Attached to each entry in the model is a count that records the frequency of

occurrence of that substring/next-symbol combination. Each substring/next-symbol

entry has an associated probability that is calculated as the entry’s frequency count

over the total number of instances of the entry’s substring. An example for the 2nd

order model for the string abracadabra is given in Figure x.

Accuracy Baseline
Prec. +

Recall
F1-Score Kappa

Real-World

Dataset

Used

Number of Datasets

✓ ✗ ✗ ✗ ✗ ✓ 1

Table 7 PPM Metric Summary

 26

To use the above-described model for location prediction the input data is

formatted into a daily, ordered sequence of time/location pairs. Several weeks of

training data is then used to build a trained model for prediction. Throughout the

algorithm a 1st order Markov model was used with the rationale that knowing where

someone was shortly before the current location is not giving any additional useful

information. The time component in the time/location pairs is slotted into 10-minute

chunks and only significant locations are combined with these chunks. The

definition by Ashbrook and Starner [4] for significant location was used to

determine if a given location is significant or not.

During the validation phase the location for each time/location pair in the test data

set was predicted by checking the trained model for that particular time slot. If the

time slot was encountered before and subsequently appears in the model the

location with the highest probability was returned. By comparison to the actual

encountered location a decision was made if the prediction was correct or not. If no

prior data is available for that particular time slot the most frequent location was

returned.

Prediction by Partial Match relies on a person always visiting a place at exactly the

same time. If that holds true the algorithm will be very accurate. Unfortunately

humans are rarely that predictable and the arrival at a place depends on the time

of day, day of week, or previously visited places. For example people might follow

a set routine and even though the routine starts later and every part of the routine

is shifted in time it is still predictable. PPM would not be able to account for this

since it is expecting a routine to always happen during the same time frame. As we

can see in Table 7 the original work also did not report on additional measures

such as precision/recall, Kappa statistic, or baseline accuracy.

 27

3.2.3. PreHeat (Occupancy Prediction)

Scott et al. [10] introduced the PreHeat algorithm as part of their effort to predict

occupancy for residential spaces. We believe that this algorithm is also highly

applicable to an office scenario even though the usage patterns of offices differ

from homes.

The PreHeat algorithm is based on the intuition that people follow the same

patterns in their life and thus by observing a partial pattern it is possible to predict

the remainder of a pattern. For this algorithm the data sets are formatted into

room-specific 5-minute time slots and for each timeslot a binary indicator

represents if the associated room is occupied during that time slot or not.

Essentially for each day a binary, ordered vector of length 288 is created and each

entry in the vector represents the occupancy of the room during that 5-minute time

slot that day. For each day in the test data set the algorithm tries to find the 5

closest matches to the current day by calculating the Hamming distance between

the currently observed partial day vector and the day vectors that came before the

current one. For example if the day up until 9:45 am is observed the algorithm

calculates the Hamming distance for the partial vector of length 120 (position 0 to

119) for each day that came before the query day. The 5 days that have the

smallest distance to the query day are chosen.

To calculate the probability that a room is occupied at a certain time slot in the

future (I chose 1 hour into the future from the currently observed time slot) the

algorithm adds up the binary occupancy for this time slot over all 5 representative

days. This sum divided by 5 results in the probability of occupancy. If the

probability is above 0.5 (the room was primarily occupied over the 5 days) 1 or

occupied will be chosen as prediction result otherwise 0 or unoccupied will be

chosen as prediction result.

Accuracy Baseline
Prec. +

Recall
F1-Score Kappa

Real-World

Dataset

Used

Number of Datasets

✓ ✓ (✓) ✗ ✗ ✓ 1

Table 8 PreHeat Metric Summary

 28

The Augsburg and UCSD data set needed to be specially prepared for the PreHeat

algorithm, because each of the data sets was movement-based by user and not

occupancy-based by room. To get the data into the right format a new data set was

extracted from the original data by calculating the occupancy for each room and

day. We wrote an algorithm that checked for each possible room and each

possible day if any of the users occupied that particular room during a given

timeslot. If even one user occupied the room the algorithm marked the room as

occupied during that time slot and day. Many of the rooms were not occupied for

most of the time, which influenced the prediction results. The effects of this are

discussed in the Prediction Results section.

PreHeat exploits the spatiotemporal routine of occupants to make predictions

about the future. It is build on the assumption that human behavior is to a degree

predictable, i.e., if the beginning of a day is similar to a previously encountered day

than it is also likely that the remainder of the day is similar to that day. It follows

that PreHeat will be very accurate if a person’s spatiotemporal routine can be

expressed by only the visited location and time of day. If on the other the

spatiotemporal structure is more complex (e.g., it depends on day of the week,

events the previous day, other contextual events such as outside weather, etc.)

PreHeat will have a hard time making predictions. Besides reporting accuracy the

authors also reported on the baseline, as well as Precision and Recall (alas is a

slightly modified form to make it more applicable to their application domain). We

can see in Table 8 though that they did not report on additional metrics such as F1-

Score or Kappa statistic.

 29

3.3. Evaluation of Prior Algorithms
To comprehensively evaluate different prediction algorithms we believe it is

necessary to apply them to different data sets and compare the results using

standardized measures. Throughout this section we describe the data sets used

for our analysis. For each data set we report: the number of users, the

extensiveness of the data set meaning how many data points were recorded per

user and day and over how many days was the data collected, how was the data

collected, what was the collection frequency, and how variable was the data from

user to user.

For our analysis we considered four different data sets: two publicly available data

sets that were used for most of the current literature on indoor location prediction

and a self-collected data set for the occupancy prediction task since the baseline

accuracy on the other two data sets for that task was too high. High baseline

accuracy is problematic for the evaluation of an algorithm since even the most

basic algorithm already achieves a very high performance and thus making it

difficult to evaluate the strength and weaknesses of an algorithm. The two publicly

available data sets are the Augsburg Indoor Location Tracking Benchmark and the

UCSD Wireless Topology Discovery data set. Additionally we collected a data set

within a big university campus office building that captured the occupancy of each

room within the building.

The datasets fall into three categories: transitional datasets, only a person’s

transition from one space to the next is recorded, tracking datasets, a person’s

movements through a space are tracked, and room occupancy data sets, not a

person, but individual rooms are monitored. To fully understand the results of an

algorithm we believe it is also important to explore the structure of a dataset that

aided or hindered the algorithm. For example, including evening and night in the

analysis may bias the results, as many office buildings are unoccupied during

these periods. To that end we also report additional analysis for the transitional

and tracking data set that shows how much of each data set consists out of the two

most frequent locations and for the occupancy data set we report the average

 30

occupancy of the rooms during the whole day Monday through Sunday and 8am-

6pm Monday through Friday.

The high-level details for each data set are shown in Table 9.

Table 9 Dataset Characteristics

3.4. Augsburg Indoor Location Tracking Benchmark
The University of Augsburg through summer and fall 2003 as a benchmark

collected the Augsburg data set for their Context Prediction Project [66]. The data

was collected using a smart doorplate concept: each user was tracked through an

RFID card upon entering of a space (office, corridor, kitchen, etc.). The authors

tracked four individuals who worked on the same floor for an average of 6.75

 Augsburg Data
Set

UCSD Data
Set

Office
Occupancy Data

Set
Tracked Entity Person Person Room
No. of entities 4 275 265

Total no. of
locations 15 200 265

Avg. no. of days 23.25 (SD 3.42) 25.56 (SD
20.81) 188.65 (SD 4.3)

Avg. no. of data
points per
entity/day

316.60 (SD 8.55) 508.46 (SD
739.1) 292.57 (SD 0.84)

Avg. no. of
locations per

entity/day
6.70 (SD 0.70) 3.45 (SD

2.68) 1 (SD 0)

Collection
Method Smart Door Plate

PDA-based
WiFi

triangulation
BACNet Sensor

Queries

Collection
Frequency

Every Room
Change Every 20 sec Every 10 minutes

Flaws
Summer and Fall

data sets 4
month apart

Room vs. Floor
vs. Campus

Covers 1 floor in
an office building

Covers
several
campus
buildings

Covers every floor
in one university
office building

Type Transitional Tracking Occupancy

 31

weeks (SD=1.71). Due to the smart doorplate only transitional data from one space

to another is available.

Note that the summer and fall data sets are nearly four month apart. Since the data

was collected from university office workers that rarely have a consistent routine

over such a long time we concentrated our analysis on the fall portion of the data

set. The fall data set consists on average out of 5 weeks (SD=1.41) of data. In

addition several papers that used this data set for testing reported the highest

accuracy on user A of the data set (some methods differ by up to 15% between

user A and the other 3 user) even though the least amount of data is available for

this particular user, with only 1 week of data during summer and 4 weeks of data

during fall.

Figure 1 shows an analysis of how much data is covered by the two most frequent

locations (Top 1 and Top 2). We calculated the values individually for each user

and report on the mean and standard deviation across all users. The data is split

into all-day and 8am to 6pm, because we believe it is important to analyze the

working hours separately since most offices are empty during the night. We can

see that the top two most frequent locations on average over all users cover

71.62% (SD=1.65%) of the data all day and 77.74% (SD=4.81%) of the data during

daytime. It is important to note that the most frequent location (Top 1) is on

average only under 50% present in the data set. This means that a 0-R prediction

algorithm that always predicts the most frequent location cannot achieve accuracy

higher than 50%.

3.5. UCSD Wireless Topology Discovery Data Set
The University of California, San Diego, collected this data set as part of their

Wireless Topology Discovery project throughout 2002. McNett et al. [49] provided

275 UCSD freshmen with instrumented PDA’s running Windows Pocket PC. They

recorded more than 13 Million data points over a period of 11 weeks. The PDA’s

collected data every 20 seconds and recorded the 3 primary access points in the

vicinity together with an indicator to which access point the PDA is connected at a

given time and the signal strength for each of them. Each access point was

 32

identified with an x-y-z coordinate and thus the access point id served as the

location of the user. The number of data points were not equally distributed over all

user, some left their device on all the time, but others only collected one day worth

of data. No cleaning of the data was necessary as it was publicly released in a

cleaned format. Since some of the users only collected a small amount of data we

limited our analysis to 86 out of 275 users. We used the mean number of data

points per user as the selection criteria; every user with more data points than the

mean is considered in the analysis. It is also to note that 7 out of the 275 users

combined 21.4% of the whole data set. We did not consider these 7 users when

calculating the mean so as to not exclude more average users. In the end, every

user with more than 638.67 data points was considered for analysis. These 86

users combine 85.8% of the whole data set.

Figure 1 shows the analysis of the two most frequent locations averaged over all

users. We see that for this data set the two most frequent locations cover 90% of

the whole data set. This means that on average the 86 users spend 90% of their

time in only 2 locations. This has direct implications on the performance of

algorithms, as even the most basic predictor that always predicts the most frequent

location for each step would achieve a very high accuracy on this data set.

3.6. Office Occupancy Data Set
This data set was collected as part of a larger sustainability project. We chose a

modern, fully instrumented, office building that allows us to remotely retrieve status

information. Each room is instrumented with occupancy, temperature, and various

heating/cooling related sensors that all communicate through a building automation

platform that follows the BACNet industry standard. The information is provided

through an Active-X webpage, but also presented in raw html, when accessed

using any browser except Internet Explorer. We parsed the webpage through a

Python script and extracted the information provided about each room.

For each room we recorded the status of the occupancy sensor in 10-minute

intervals over a 4-month period in 2011. A collection of the data at a higher

frequency was not possible due to limitations of the BACNet server. We formatted

 33

the data into a data set that records the binary occupancy for each room and 5-

minute timeslot by assuming that the occupancy for any two 5-minute timeslots is

the same as the corresponding 10-minute timeslot. Our data shows that on

average the building was occupied 24.77% of the whole day and 50.98% during

business days from 8am to 6pm.

3.7. Evaluation Results
We report on the results for each algorithm individually. The following tables

summarize the results by measure, data set, and algorithm. We also report on the

algorithm performance if we limit our analysis to weekdays between 8am to 6pm.

Deviating from the original work by Burbey [11], an additional movement label was

introduced in our reimplementation of PPM. In Burbey’s work non-significant

locations were omitted and no data was recorded for that 10-minute time chunk.

We believe that introducing this additional label does not change the overall validity

of the method, but it gives us the added benefit to predict if a person is moving

between two significant locations.

 Accuracy Quantity Precision Recall Kappa Baseline
Augsburg –
All Day 85.55% 75.86% 0.8150 0.8555 0.7334 49.30%

Augsburg –
8am-6pm 89.36% 82.30% 0.8536 0.8936 0.8119 48.20%

UCSD – All
Day 97.24% 96.35% 0.9670 0.9724 0.5867 89.70%

UCSD – 8am-
6pm 95.71% 93.81% 0.9455 0.9571 0.5312 83.10%
Table 10 ACE Results by Data Set

 Accuracy Precision Recall Kappa Baseline
Augsburg – All
Day 77.36% 0.7792 0.7736 0.4086 77.40%

Augsburg – 8am-
6pm 49.00% 0.5029 0.4941 0.1856 49.06%

UCSD – All Day 87.32% 0.8335 0.8732 0.0345 88.52%
UCSD – 8am-6pm 82.08% 0.7701 0.8208 0.0350 83.77%

Table 11 PPM Results by Data Set

 34

 Accuracy Precision Recall Kappa Baseline
Augsburg – All
Day 98.05% 0.4007 0.3473 0.3622 98.30%

Augsburg – 8am-
6pm 94.03% 0.4052 0.3595 0.3497 94.80%

Occupancy – All
Day 88.50% 0.7975 0.7179 0.6806 78.40%

Occupancy – 8am-
6pm 80.08% 0.7970 0.8176 0.6013 52.80%

UCSD – All Day 97.92% 0.7911 0.7694 0.7692 95.20%
UCSD – 8am-6pm 97.32% 0.7958 0.6735 0.7156 94.63%

Table 12 PreHeat Result by Data Set

3.7.1. ACE Results
The results for the Adaptive Confidence Estimator (Table 1) are calculated on the

returned prediction requests, which is why we also report the quantity for this

algorithm. It shows a generally high accuracy of between 85.55% and 97.24%

across the data sets, high figures that are partly achieved by withholding prediction

requests in cases of uncertainty. We can also observe substantial improvements to

prediction accuracy over the baseline, especially for the Augsburg data set for

which the difference is greater than 40%. If we further investigate the different error

cases of false positive and false negative, expressed through precision, recall, and

F1-score, we again observe a strong performance of up to 0.9697. This indicates

that the ACE algorithm performs well on the portion of the data set for which

results are not withheld and is also stable across different data sets. This is also

reflected by the Kappa statistic, showing moderate to substantial agreement

between the observed and predicted data. Especially Kappa is important for this

analysis since it measures the performance of the algorithm on the data set and

particularly shows well the algorithm is capable of predicting individual locations

independent of the underlying location distribution in the data set. It is to note that

the results for the Augsburg dataset show an anomaly for the All-Day results. Our

expectation was that predictions during 8AM to 6PM are more difficult since the

spatiotemporal structure of the behavior should be more variable and thus harder

to predict. The ACE algorithm on the Augsburg dataset made more mistakes

outside that time range though which leads to the higher 8AM to 6PM performance.

The reason for this can be found in the amount of available data for the prediction:

 35

only 4% of the dataset falls into the nighttime period thus making it more difficult to

make accurate predictions.

A caveat to these very promising results is that the algorithm is designed to only

returning predictions that it is confident are correct. This is why it is also important

to examine the quantity in conjunction with accuracy to gain a full picture of all

requests that are not correctly satisfied. For example, if we take the Augsburg

dataset and calculate the percentage of data points that lead to either no result or

an incorrect result we see that only 64.94% of the All-Day cases return a correct

result. As such, a key strength of this algorithm lies in its ability to identify

prediction results that have a higher probability of being wrong, which allows it to

be effectively used as part of an Active Learning system.

3.7.2. PPM Results
Applying Prediction by Partial Match (PPM) to the different data sets leads to

substantial variations in performance – as great as between 49% (Augsburg) and

82.08% (UCSD) in the daytime only data. In addition the difference between the

baseline accuracy and the algorithm accuracy is negligible in all cases.

Furthermore, even though we observe a fairly high F1-Scores the Kappa values

remain low. This is especially apparent for the UCSD data where agreement

between the observed and predicted data that is barely above chance. If we

compare the results of the All-Day and 8am to 6pm analysis we can see that

excluding the nighttime from the prediction analysis substantially lowers the results.

For example, for the Augsburg data, the prediction accuracy drops by 28.36%.

This accuracy change supports our intuition that including nighttime in the analysis

of indoor location prediction algorithms can artificially inflate their performance by

considering a non-representative (and non-interesting) scenario involving making

predictions about predominantly empty spaces.

We examined the data more closely to account for this performance. The reason

for the small difference between baseline and algorithm accuracy is partly

attributable to the underlying class distribution. Figure 1 shows the distribution for

the two most frequent locations for each data set. In each, the location distribution

is skewed towards the two most frequent locations. This is particularly acute in the

 36

UCSD data set as the single most frequent location accounts for over 84% of all

entries. This distribution explains the high baseline accuracy in the UCSD data set.

The low Kappa value, on the other hand, is due to several qualities of the PPM

algorithm. Firstly, the algorithm makes the assumption that an occupant always

follows a fixed spatiotemporal routine. More complex routines such as meetings

that happen bi-weekly cannot be captured with this approach. Secondly, as PPM’s

feature space consists only out of time of day (no other temporal, spatial, or

spatiotemporal features) or most frequent location in cases of a time of day that is

not contained in the training set, it makes numerous wrong predictions for a large

number of prediction requests. The prediction performance can be improved by

including additional temporal, spatial, and spatiotemporal features.

The performance of PPM on the UCSD dataset also shows us how important it is

to include Kappa in the analysis. It is possible to have an algorithm that achieves a

high accuracy performance and also high precision and recall values, which would

indicate that an algorithm is a good solution for a particular problem. In such a

case Kappa can make a difference: is the high accuracy and precision/recall

performance achieved by only predicting the majority class or are the class

predictions more balanced. A low or high Kappa value is able to express this

independent of the underlying class distribution. Measures such as precision and

recall are weighted by the class distribution, thus possibly giving a false picture of

the algorithm performance. It is also important to not solely rely on the baseline

accuracy as a quality measure. An algorithm that achieves close to baseline

accuracy, but is capable of predicting minority classes (even in face of a skewed

class distribution) might be very valuable depending on the contextual situation.

3.7.3. PreHeat Results
The PreHeat algorithm achieves a very high level of performance on multiple

measures on all three data sets. The prediction accuracy is very high and, in most

cases, improves over the baseline. However, both the Augsburg and UCSD data

sets have an already very high baseline, leaving little space for improvement.

Nevertheless the Kappa values indicate PreHeat attains a fair to substantial

agreement between the observed and predicted data. Since the Augsburg and

 37

UCSD data set are not ideal for an occupancy based prediction approach due to

the high baseline accuracy we collected a novel occupancy based data set from a

large university office building. This data set is room-centric and thus independent

on the number of current occupants. As we can see PreHeat achieves substantial

improvements, of up to 22.72%, over baseline accuracy. Furthermore it yields very

high F1-scores and Kappa values, which indicates that the algorithm is not only

making a large number of correct predictions, but also producing a very small

number of false positives and negatives.

PreHeat’s performance was also affected by including nighttime and weekends –

non-work hours - in its predictions. If we limit the analysis to weekdays between

8:00 am to 6:00 pm, accuracy drops by up to 8.42%. Figure 2 highlights this point

by showing the aggregate accuracy of PreHeat predictions against the time of the

day. It shows a clear trend for high accuracy during nighttime with a steep decline

during common working hours - the 8:00 am to 6:00 pm time frame.

3.8. Presentation Of Better Practices
As we were able to see in the discussion of the algorithm results each of the

different measures highlighted a different aspect of the algorithms performance.

Out of this analysis we suggest to use the above measures as a set of better

practices for reporting of indoor location prediction results. Many of the points

raised also generalize to reporting on performance in other context prediction tasks.

As the analysis of the different algorithms and data sets made clear, a single

accuracy figure is insufficiently to represent the true worth of a prediction

algorithm’s outcomes. In fact, the true performance of an algorithm is highly

dependent on factors as varied as: the structure the algorithm exploits, the

structure that exists within a data set (and the match between these two things),

the class distribution within the data set, the types of errors (or non-reports) made

by the algorithm, and the performance of the baseline approach to the problem.

We believe that key measures that capture these difference aspects can be

reported by describing an algorithm’s accuracy, the accuracy of the associated

baseline prediction, the algorithm’s precision, recall and Kappa values. As reported

earlier in this paper, most research publications in this area only report the

 38

algorithm’s accuracy, which we argue gives a highly incomplete and often

optimistic picture of an algorithm’s performance. In the following paragraphs we

elaborate why we believe that reporting of each of these metrics is important.

3.8.1. Baseline Accuracy
The baseline accuracy provides a lower bar for algorithm performance and enables

researchers to evaluate the practical performance improvements an algorithm

provides. For example, an algorithm that is improving the accuracy by only one or

two percent over the baseline leaves open questions why a more complicated

algorithm is needed. On the other hand, situations in which the performance of an

algorithm is relatively low, but significantly over the baseline, suggest that the

underlying data set offers very little regular structure and prediction systems may

struggle to offer reliable results. A discussion of baseline accuracy should also be

complemented with analysis about different error cases. For example even an

algorithm that does not perform better than the overall baseline can still offer value

if it reliably predicts particular critical cases. This also holds true if the baseline

accuracy were already very high (greater than 90%), which would indicate a highly

structured and predictable dataset. An algorithm that is capable of consistently

improving over that high accuracy even by one or two percent can be considered

very powerful.

3.8.2. Precision & Recall
Precision and recall represent wide accepted metrics for evaluating the errors an

algorithm is making in relation to its correct predictions. Precision expresses the

false positive errors, cases for which the algorithm incorrectly predicts a certain

class. Recall, on the other hand, captures the false negative errors, cases when

the algorithm fails to predict a certain class. Both metrics should be calculated

individually for each class and means calculated to provide a global measure of

precision and recall for a given prediction task. It is important to note that they are

calculated dependent on the underlying class distribution. This means that a

skewed dataset (a dataset that has one very dominant class) also will have high

precision and recall if they are high for the dominant class. Even given this

restriction both metrics allow evaluation of the errors an algorithm is making. This

 39

is particularly important if the errors are not uniformly important in the algorithm

use scenario. The application space of an algorithm defines the importance of

each error class.

Lets assume for example an indoor location prediction algorithm is used for

predictive automatic room temperature control in a large office building. Recent

years have shown that companies heavily focus on employee satisfaction,

emphasized by employee perks such as free food or fitness and leisure facilities

that are situated in corporate campus buildings. The thermal comfort of an

individual is a large impact factor on an employee’s happiness and satisfaction as

the success of products such as Comfy1 has shown us. An algorithm that predicts

when a person returns to their office and that enacts changes based on this

prediction can make to possible errors: it predicts that the occupant returns to their

office even though they are not (False Positive) or it predicts that the occupant

does not return to their office even though they are (False Negative). Each of these

two errors has a different impact on the overall system. The former results in larger

energy expenditure, because the office temperature is being adjusted without

having a person present. The latter might save energy, but has potential negative

impact on a person’s thermal comfort and satisfaction. Under the scenario of

increased user satisfaction a system developer would choose an algorithm that

has a very low False Positive rate (and subsequently high precision) even if it

means this performance is achieved with a higher False Negative rate (meaning

lower recall). As long as the resulting control decisions still have a positive impact

on the building’s energy consumption, compared to a schedule-based control, the

system will be a success, because it maintains the occupant’s thermal comfort and

saves energy.

As we can see with the above example, using precision and recall to characterize

errors in this way allows for a more fine-grained algorithm performance analysis.

This will allow researchers to identify gaps in the current state-of-the-art as well as

practitioners to choose the right algorithm for the right situation. Reporting on

1 https://gocomfy.com

 40

accuracy alone as we observed in previous literature has a negative impact on

pushing the state of the art and forces system developers to test a wide range of

algorithms for their suitability for a particular problem.

3.8.3. Kappa Statistic
While the precision and recall evaluate algorithm performance in general

dependent on the class distribution, the Kappa statistic allows evaluation of the

performance of an algorithm on a specific data set (i.e., class distribution

independent). Basically, Kappa expresses how an algorithm performs independent

of the underlying class distribution in the data set the algorithm is tested on. This is

especially important if the underlying distribution is biased towards one class and

the algorithm is not able to predict any of the minority classes. For situations like

this we will need a metric to express how much the observed data agrees with the

predicted data. In other words, Kappa measures how well the algorithm predicts

not only the majority class, but also the minority classes. The results of our

analysis of the PPM algorithm on the UCSD dataset highlighted the importance of

calculating this metric. Even though the algorithm has a high accuracy as well as

high precision and recall, the low Kappa indicates that agreement between the

observed and predicted data is close to chance. The reason for this is that the

algorithm performs poorly on the relatively infrequent minority classes. In such

situations, the relative importance of predicting the majority and minority cases

need be weighed qualitatively before determining the suitability of the algorithm.

A high Kappa value on the other hand signifies a high agreement between the

observed and predicted data and can be used as an indicator for a high performing

algorithm. An algorithm that has an observed Kappa value in the mid ranges (0.4

to 0.7) would require us to look at the additional metrics mentioned above. But

again the evaluation has to be conceptualized by the underlying problem space.

For example if Kappa is very low, but we observe high baseline accuracy,

accuracy, and precision and recall, we can surmise that the algorithm is primarily

predicting the majority class and that the underlying dataset is skewed towards that

class. If the majority class is the most relevant class the algorithm might be enough

for the problem space.

 41

3.8.4. Separate Analysis Into Day-Time and Night-Time
As we could see in both in our analysis and the analysis performed by Oh et al.

[52] the performance of an indoor location algorithm changes depending on the

time of day. The location of a person during nighttime is much more predictable

since there is a lower probability for the user to be in their office at night. This

results in a higher accuracy for these times, which potentially biases the overall

performance if it is not factored out during the analysis stage. The effect of this is

especially observable for the PreHeat results on the occupancy dataset. The

accuracy drops off by over 15% between nighttime and daytime. If the results are

limited to daytime hours the accuracy is over 8% lower during daytime hours

compared to the whole day performance. These examples show that it is important

to limit the analysis to the appropriate analysis frame. If the dataset describes an

office environment, which follows certain occupancy patterns, it is important to

restrict the analysis to these hours or present a comparison between all-day vs.

daytime results.

3.8.5. Conclusion
Prior state of the art indoor location prediction algorithms achieve relatively high

performance across multiple metrics. Nevertheless the results highlight the

importance of diverse metrics since a one-dimensional analysis can hide potential

algorithmic short-coming or overreliance on an existing structure in the datasets.

From all the algorithms that include both location and time in their prediction,

PreHeat exhibits the highest performance, which is why we also use that algorithm

as our point of comparison later on. As stated before PreHeat exploits the

underlying spatiotemporal structure of human behavior to make predictions about

future events. To further investigate this approach the next chapter presents an

indoor location prediction algorithm, Indoor-ALPS, that utilizes various

spatiotemporal features for its predictions.

 42

4. Modeling of Spatiotemporal

Behavior

The Importance of Spatiotemporal Features: Indoor-ALPS

Predicting occupant indoor locations and when occupants will transition between

these locations is challenging. Existing systems (see Chapter 3) that monolithically

approach this task, combining a prediction of where a user will go with one of when

they will go there, perform poorly with prediction results that are close to the

performance of a majority predictor (i.e., predicting that the occupant will always

stay in his most frequented location). This is likely because occupants’ routines

within the interior of a building, such as a workspace, can be very complex. They

can change substantially from weekday to weekday, and encompass numerous

destinations and transitions in relatively short spans of time.

To simplify this problem, most prior work has focused on predicting an occupant’s

next location without taking into account when these transitions will take place

[44,52,57,71,73]. Unfortunately solving this problem alone precludes many

applications that rely on knowledge about transition timings. For example, a

system that proactively heats a room in advance of an occupant’s arrival [20]

would not know whether the person was coming in five minutes or two hours, and

could result in either significant discomfort (if heated too late), or significant wasted

energy (if heated too early).

As mentioned before one factor that makes it difficult to accurately predict an

occupant’s transition time into a space is the fact that indoor routes are typically

short (meters to hundreds of meters) and traversed rapidly (in seconds to minutes).

This is in contrast to the problem of outdoor location prediction (e.g., [9,24]), for

which travel times and distances are long enough that a useful prediction algorithm

only needs to predict the next significant location after the user has already

departed. This allows the use of features such as the currently traversed path to

 43

make predictions, which are mostly not useful to applications of indoor prediction,

due to the shorter indoor transition times. This also means that many of the

analytic techniques that perform well outdoors are inappropriate, or simply do not

work well, when applied to indoor scenarios. Making exact predictions about when

a person transitions is a hard problem due to the variability in length of stay at a

location. How long a person stays at a given location is dependent on their

spatiotemporal routine and can vary greatly from weekday to weekday and

fluctuates depending on prior events that occur during a day. For that reason it is

important to consider a wide range of spatiotemporal features and not only the

current location and time.

To explore the theory that the use of a range of spatiotemporal features improves

the performance of indoor location prediction algorithms, we created a novel

spatiotemporal indoor location prediction algorithm called Indoor Adaptive Location

Prediction System (Indoor-ALPS) [37]. Indoor-ALPS tackles the challenge of

accurate temporal and spatial prediction by splitting the problem into two separate

steps: 1) For a given time interval, Indoor-ALPS predicts whether an occupant will

stay in her space for at least that long and 2) for a given location, Indoor-ALPS

predicts the next location she will transition to. The algorithm then combines these

two independent predictions. It first predicts whether or not an occupant will stay at

a location for at least a given time window and then predicts her destination. Unlike

previous approaches that perform these two steps simultaneously, Indoor-ALPS’s

decomposition of the problem allows it to learn which contextual features are the

best predictors for the individual temporal and spatial problems. We argue that

dividing the problem in this way will lead to improved prediction performance.

To verify this claim, we compared Indoor-ALPS to Prediction by Partial Match

(PPM), a state of the art indoor location prediction algorithm [11]. We evaluated my

approach using a range of time windows from 10 to 90 minutes, in an effort to

show its applicability for different applications. My analysis showed that Indoor-

ALPS improved the overall prediction accuracy by 6.2% over PPM. Indoor-ALPS

was particularly strong when considering temporal look-aheads of 10 to 30 minutes,

when it led to a significant mean accuracy improvement of 10.7% with a maximum

 44

improvement of 12.9%. In the following subsections we will describe the algorithm

and present the results of the comparative analysis between Indoor-ALPS and

PPM.

4.1. Algorithm Description
As mentioned in the introduction, Indoor-ALPS splits the prediction problem into

two independent steps, which it later combines. First, for a given time interval,

Indoor-ALPS predicts whether the user will stay for at least that long in the current

location. Second, for a given location, it predicts where the user will go next. Finally,

Indoor-ALPS combines these predictions.

More specifically, to make both the spatial and temporal predictions for each day,

we use the same algorithm (independently for each type of prediction). It uses a

combination of two approaches that can help improve classification accuracy:

ensemble prediction (training and combining results from several classifiers); and

incremental learning [27] (using each newly recorded data point as part of the

training dataset after the prediction for that data point is completed). The basic

algorithm is as follows:

1. Take all the data in the dataset up until the current day (for which prediction

is being performed), and split it into two non-overlapping data sets:

optimization and training.

2. Using this data, identify the best feature-subset for each classifier used in

the ensemble algorithm: Decision Tree, 3-Nearest Neighbor, Support Vector

Machine, and Gradient Boost.

3. Train each of the four classifiers, using their feature set tailored to them in

Step 2.

4. Using each classifier, make predictions for the current day.

5. Calculate the ensemble prediction [43] using the results of each individual

classifier.

6. Repeat from step 1 until all days in validation set are predicted.

 45

We use a portion of the data for each user to create initial models and validate on

the remaining data for that user. Initially 10 days of data are used and equally split

into the optimization and training data set. After feature selection using the

optimization data set, the models for each algorithm are created using the training

set and predictions are performed on the validation day. After the predictions are

complete for that day, that day’s data is added to either the optimization or training

data sets. These days of data are added in an alternating fashion, first day to the

training set, next day to the optimization set, and so on, to maintain an almost-even

split of the data between optimization and training.

4.1.1. Feature Selection
Predicting if a person stays at a location for a given amount of time and where they

transition to if they do not stay is highly dependent on their temporal-spatial routine.

Making a temporal or spatial prediction depends on factors such as day of week,

current location, or even the arrival time at the office in the morning. Indoor-ALPS

uses ten temporal-spatial features that capture these influences:

• Current location (L)

• Time of arrival at L

• Minutes passed since arriving at L

• Current time

• Current day of the week

• Arrival time in the building for the current day

• The number of significant locations the occupant visited previously for the
current day

• Previous two significant locations

• Stay duration at the previous significant location

• Length of the transition time to the current location

 46

All times are expressed as discrete ten-minute timeslots starting from midnight and

significant locations are defined as locations in which the occupant frequently stays

for at least ten minutes [4].

Since we do not know if all features are equally important for each user and

situation, our algorithm uses Sequential Floating Forward Selection (SFFS) [58] to

find the most relevant features from the set of ten features. SFFS is a greedy

algorithm that adds one feature per iteration to the already selected feature subset.

After each new feature has been selected SFFS checks whether a subset of

already selected features can be removed without decreasing the performance.

We used an objective function that maximizes accuracy. We allowed SFFS to

create a feature set consisting of between one and ten features based on this

objective function. Our algorithm applied SFFS independently for four different

machine-learning algorithms: Decision Tree, 3-Nearest Neighbor, Support Vector

Machine, and Gradient Boost.

Our algorithm re-evaluates, after each predicted day what is the best feature

subset for each algorithm. By applying this incremental learning approach, the

algorithm has the opportunity to react to changes in users’ temporal-spatial

routines.

The location data used for the prediction is formatted into discrete 10-minute time

slots, both to make it easier to compare our algorithm against previous techniques

[11] and to keep in line with the definition for a significant location [4]. For each

stay at a location we interpolated data points that represent the current stay

duration at a location. For example, let us assume that the user arrived at Location

A at 12:50pm and transitioned to Location B at 04:10pm. From this recorded data

we interpolate the data as follows:

• 12:50pm Location A; Duration 0 minutes

• 01:00pm Location A; Duration 10 minutes

• …

• 04:00pm Location A; Duration 190 minutes

 47

• 04:10pm Location B; Duration 0 minutes

4.1.2. Transition Time Prediction
In order to predict when a person will transition from one location to the next, our

algorithm answers the question “Will the occupant stay at the current location for

the next n minutes?” This is realized as a binary prediction with 1 representing yes

and 0 representing no. Recall that the algorithm uses an ensemble method. For

this prediction, this consists of a simple mean of the predictions of the four

classifiers. If the mean prediction returned by the ensemble method >= 0.5, Indoor-

ALPS assigns 1 as a prediction result, and it assigns 0 otherwise.

However, as different applications are likely to require predictions about different

stay durations, we trained algorithms and performed predictions for nine specific

time windows: n = 10, 20, 30, …, 90. This approach can be used to predict the

time for transitioning from the current location. We predict stay duration for

successively larger times, and for the time t when the ensemble classifier returns a

0, we infer that the user will leave only after that time.

4.1.3. Prediction of Next Location
The prediction of the next significant location works similarly to the prediction of the

transition time. Again using the algorithm described above we ask the question

“What is the next significant location the user will transition to?”. Unlike the binary

prediction of staying in the current location for a particular time window, here we

are solving a multiclass problem, where the classes are the set of significant

locations. We use the same interpolated data we created for the temporal

prediction and record the next location for each data point. For example in the data

snippet above, each interpolated data point has Location A as the next location.

For this prediction, our ensemble classifier uses a majority voting approach. Each

algorithm makes a prediction and the most common prediction is used, rather than

the average as was used with the transition time prediction. If there is no clear

majority, we choose the location at random from among the predicted locations.

 48

4.1.4. Temporal-Spatial Prediction
To use the two independent predictions for temporal and spatial prediction we

chain them together as follows: first we run the temporal prediction to determine if

the occupant will stay at the current location or not, and secondly, if the occupant is

predicted to leave, we run the spatial prediction to determine where she will

transition to. We now describe the results from applying our algorithm to a real-

world dataset.

4.2. Indoor-ALPS Evaluation
In order to evaluate and better understand the performance of Indoor-ALPS, we

compared it to Prediction by Partial Match (PPM) [11], a state of the art algorithm

for predicting occupancy and location transition. We selected a publicly available

data set, the Augsburg Indoor Location Tracking Benchmark [57] to compare the

algorithms.

4.2.1. Using Prediction by Partial Match as a Benchmark
Prediction by Partial Match (PPM) [11], to our knowledge, has the highest reported

accuracy for the task of predicting when an occupant transitions from one location

to the next and where the occupant transitions to. PPM is based on a 1st order

Markov Model. The input data for this algorithm is formatted into 10-minute time

slots and for each time slot PPM calculates the frequency that each location was

recorded for that time slot. In order to make a prediction, the algorithm takes a time

slot as an input and returns the location with the highest frequency.

We used PPM to make both temporal and spatial predictions. As we explained

previously, PPM takes a discrete timestamp and predicts the most frequent

location for that timestamp. To make temporal predictions, given a current time

index t and look-ahead window n (to answer the question: “Are you staying at this

location for the next n minutes?”), we query PPM to predict the location for the next

t+i (i=1,..,n) time slots. If the resulting location for any of these n predictions is

different from the current one, we assign 0 as the result (person is not staying for

the next n minutes) or 1 otherwise. In order to make spatial predictions given a

current time index t, we query PPM to predict the location for the next t+i

 49

(i=1,..,143, corresponding to a one-day look-ahead) time slots. The first predicted

location that is different from the current one is returned as the next location.

4.2.2. Evaluation Data Set
The Augsburg data set has been used extensively in previous attempts to predict

location [52,55,61,73]. We chose it for our analysis as it enables easier comparison

of our algorithm to past and future efforts to address indoor location prediction. The

data set was collected using a smart doorplate concept: each user was tracked

using an RFID card upon entering a space (e.g., office, corridor, kitchen). Four

university office workers who worked on the same floor were tracked for an

average of 6.75 weeks (SD=1.71). Due to the nature of the data collection, this

data set already contains distinct locations, thus preprocessing is not needed to

extract them. However, as we care about significant locations [4], we performed a

preprocessing step to filter out data where the occupant left a room for less then 10

minutes and returned to the same room.

4.3. Results
We split the analysis of our proposed approach into three parts: temporal, spatial,

and combined temporal-spatial. We performed a statistical analysis on the

accuracy of each algorithm. We then report other measures to support the

discussion about the advantages and limitations of each individual algorithm.

In all of our statistical analysis we used One-way and Two-way Repeated

Measures ANOVAs, as appropriate. We used Repeated Measures ANOVAs

because algorithms were trained on data for each individual user, and the training

and testing data split for both algorithms was the same. We ensured the normality

of data using the Shapiro-Wilk test. We ran Mauchley’s test for sphericity and

performed Greenhouse-Geisser correction when the sphericity assumption was

violated. All post-hoc pair-wise comparisons were done using paired t-tests with

Bonfferoni correction. We report only main effects and p-values in the text for

succinctness.

4.3.1. Temporal Analysis
Different applications require different temporal look-ahead windows. For example,

the look-ahead window for indoor temperature control is based on the average

 50

time it takes to raise or lower the temperature in a room to a comfortable

temperature, and this can vary based on the current time of day, outside

temperature, and position of the room in the building (is the room inside of the

building, does it have windows, etc.). To show how Indoor-ALPS performs under

different temporal thresholds we report the results for nine different look-ahead

windows, from a 10-minute to a 90-minute look-ahead. We compare our results

against PPM and a 0-R predictor (majority class predictor).

The ground truth for the temporal prediction is tied to the look-ahead window and

consists of a series of 0’s and 1’s. Given a look-ahead window n and a data point,

the ground truth for that data point is 1 if the person stays at the current location for

the next n minutes. If, on the other hand, the remaining stay-duration is smaller

than n, we assign 0 for the ground truth.

We expect that the 0-R predictor has very high accuracy for lower look-ahead

windows, since the only instances when an occupant is predicted to leave a

location is shortly before the transition time. This makes the prediction task

especially difficult for lower thresholds, because there is little data available for the

leave-class.

Figure 2 shows the average accuracy across all four users for all 9 look-ahead

windows by algorithm. Our tests found a main effect of the Algorithm on the

Accuracy (F(1,3.01)=11.56, p=.0422, ηp
2=.79); Indoor-ALPS overall mean accuracy

of 88.2% was significantly higher than PPM (mean=83.6%, p<.0001) and 0-R

(mean=83.3%, p<.0001). Our tests did not find a significant difference between

PPM and 0-R (p>.9999).

Our tests also found a main effect of Look-Ahead on Accuracy (F(1.13,3.39)=144.07,

p=.0006, ηp
2=.97). As the look-ahead increased, the accuracy of all three

algorithms decreased. This makes sense, as it is harder to predict mobility further

into the future. Our tests also found simple effects of Algorithm on Accuracy for all

individual Look-Aheads. In particular, Indoor-ALPS was significantly more accurate

than 0-R and PPM at the 10 minute, 20 minute, 30 minute and 70 minute look-

aheads (See Figure 2, p<=0025 in all cases).

 51

Thus, Indoor-ALPS performs better overall than PPM and 0-R, and is especially

better for small look-ahead windows of 10 to 30 minutes. The average accuracy

difference between Indoor-ALPS and PPM for the first 3 look-ahead windows is

9.2% (SD=2.3%) and 3.9% (SD=0.2%) for the higher look-ahead windows.

Figure 3 shows Precision and Recall for all look-ahead windows for Indoor-ALPS

as well as PPM. Note by definition, 0-R will always have a Recall of 0. We see a

slight improvement for the Precision of Indoor-ALPS over PPM for the first five

look-ahead windows after which PPM has a slightly higher Precision. For the

smaller look-aheads, PPM makes more false positive errors, i.e., predicting that an

occupant is staying when they are not. For the larger look-aheads, Indoor-ALPS

makes more false positive errors. However, Indoor-ALPS has a consistently higher

Recall than PPM with an average Recall across all look-aheads of 96.6%

(SD=2.1%) for Indoor-ALPS and 83.6% (SD=2.9%) for PPM. PPM’s lower Recall

means that it makes more false negative errors, predicting that an occupant is

leaving a location a lot earlier than they actually do.

Figure 4 shows the Kappa results by look-ahead window and algorithm. As

expected from the previous Accuracy, Precision and Recall results, Indoor-ALPS

has higher Kappa values for the lower look-ahead windows and slightly worse

Kappa values for the higher look-ahead windows. The Kappa values for PPM

increase as the look-ahead gets larger. It is also of note that the standard deviation

for the Kappa values is fairly uniform for PPM (avg.=0.075, SD=0.013), while the

standard deviation increases for higher look-ahead windows for Indoor-ALPS

(avg.=0.087, SD=0.052). In the discussion section, we will provide a rationale for

why this occurred.

 52

Figure 2 Average Accuracy by Look-Ahead Window for Temporal
Prediction. Starred bars indicate statistically higher values (p<=.025).

Figure 3 Average Precision & Recall for Temporal Prediction

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*Window*

Temporal*Predic;on:*Average*Accuracy*

Indoor2ALPS" PPM" 02R"

*" *" *"
*"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*Window*

Temporal*Predic;on:**Average*Precision*&*Recall*

Precision"Indoor7ALPS" Precision"PPM" Recall"Indoor7ALPS" Recall"PPM"

 53

Figure 4 Average Kappa for Temporal Prediction

4.3.2. Spatial Analysis
In order to evaluate the performance of the spatial or next significant location

prediction, we again report on the Accuracy, Precision, Recall, and Kappa statistic.

The ground truth for this analysis is the next significant location that follows the

current location. Figure 5 shows the accuracy by user for each algorithm. As we

can see, both Indoor-ALPS as well as PPM outperform 0-R. The accuracies for

Indoor-ALPS and PPM are quite similar, with PPM outperforming Indoor-ALPS for

User 3. Note that we cannot run statistical tests on accuracy across our users for

our spatial analysis as we only have 4 users and thus only 4 values per algorithm.

We also analyzed Precision and Recall (see Figure 6) and found a similar picture

as with the accuracy. Looking at Kappa (see Figure 7) the algorithms again have

similar performance. We can see that both Indoor-ALPS and PPM have a

substantial agreement between the observed and predicted data for users 1 and 2,

a moderate agreement for user 3, and Indoor-ALPS has a slight agreement and

PPM has a fair agreement for user 4. Overall, we can draw the conclusion that

PPM offers modest improvements over Indoor-ALPS for users 3 and 4, and

performs similarly for users 1 and 2.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*

Temporal*Predic9on:*Average*Kappa*

Indoor2ALPS" PPM"

 54

Figure 5 Accuracy by User ID for Spatial Prediction

Figure 6 Precision & Recall by User ID for Spatial Prediction

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4"
User%ID%

Spa+al%Predic+on:%Average%Accuracy%

Indoor2ALPS"Accuracy" PPM"Accuracy" 02R"Accuracy"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4"
User%ID%

Spa+al%Predic+on:%Precision%&%Recall%

Precision"Indoor7ALPS" Precision"PPM" Recall"Indoor7ALPS" Recall"PPM"

 55

Figure 7 Kappa by User ID for Spatial Prediction

4.3.3. Temporal-Spatial Analysis
Our algorithm combines the results of the temporal and spatial prediction to predict

if an occupant will stay at a location for a given time duration, and if the occupant is

predicted to leave, to which location the occupant is transitioning. To evaluate the

algorithms, we first calculated how often they correctly predict that an occupant is

staying, and when they correctly predict that the occupant is leaving, how often

they correctly predict the next location. Figure 8 shows the average prediction

accuracy by look-ahead window. Note we did not include 0-R in this analysis as

the results are identical to the temporal 0-R, since 0-R predicts that the user is

always staying and thus no location prediction is performed.

Our tests found a main effect of Algorithm on Accuracy (F(1,3)=65.65, p=.0038,

ηp
2=.96), indicating that Indoor-ALPS (mean=85.3%) overall performs better than

PPM (mean=79.1%). Our tests also found a main effect of Look-Ahead on the

Accuracy (F(8,24)=66.75, p<.0001, ηp
2=.96), but the post-hoc pairwise comparison

did not find any significant difference between Look-Aheads.

The analysis of the algorithms and look-ahead windows also showed a significant

interaction between Algorithm and Look-Ahead (F(1.75,5.26)=15.58, p=.0067, ηp
2=.84).

Again, we only further compare algorithms across different look-ahead windows.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4"
User%ID%

Spa+al%Predic+on:%Kappa%

Indoor2ALPS"Kappa" PPM"Kappa"

 56

Indoor-ALPS was significantly more accurate than PPM for look-ahead windows of

10 to 80 minutes (all p<.05) (Figure 7). Our tests only failed to find a significant

difference for the look-ahead window of 90 minutes (p=.63). The greatest

difference can be observed over the first three windows with an average difference

of 10.7% (SD=2.2%), with a maximum improvement of 12.9%. For the first five

windows, it is 9.1% (SD=2.7%). This means that combining temporal and spatial

prediction in Indoor-ALPS is more accurate than PPM overall, and although the

performance difference gets smaller as the look-ahead grows, Indoor-ALPS

performs better than PPM in almost all look-ahead windows.

Figure 9 shows the Precision and Recall results for each algorithm. We can see

that Indoor-ALPS is slightly worse on Precision with an average of 0.852

(SD=0.051) compared to 0.864 (SD=0.049) for PPM, but it is much better for

Recall with an average of 0.915 (SD=0.039) for Indoor-ALPS and 0.794

(SD=0.010) for PPM. Indoor-ALPS’ Recall is on average 0.121 (SD=0.032) greater

than PPM’s Recall, which only slightly changes from one look-ahead window to the

next. The lower Recall indicates that PPM leads to more false negatives.

Compared to PPM, Indoor-ALPS has a higher Kappa (see Figure 10) for the lower

look-ahead windows and a slightly lower Kappa for the higher look-ahead windows.

Similar to the temporal prediction, the standard deviation for Indoor-ALPS’ Kappa

increases as the look-ahead grows, while the standard deviation for PPM’s Kappa

is fairly stable with an average of 0.051 (SD=0.006).

 57

Figure 8 Average Accuracy by Look-Ahead for Temporal-Spatial
Prediction. Star indicates statistically significant difference (p<.05) .

Figure 9 Average Precision & Recall by Look-Ahead Window for Temporal-
Spatial Prediction.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*

Temporal#Spa8al*Predic8on:*Average*Accuracy*

Indoor2ALPS" PPM"

*" *" *" *" *" *" *" *"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*Window*

Temporal*Predic;on:**Average*Precision*&*Recall*

Precision"Indoor7ALPS" Precision"PPM" Recall"Indoor7ALPS" Recall"PPM"

 58

Figure 10 Average Kappa by Look-Ahead Window for Temporal-Spatial
Prediction.

4.4. Discussion
Our performance analysis of Indoor-ALPS compared to PPM shows that Indoor-

ALPS achieves higher overall temporal and temporal-spatial prediction

performance. Furthermore, Indoor-ALPS performs particularly well for the look-

ahead time windows of 10 to 30 minutes. Especially for our main prediction goal,

temporal-spatial, it outperforms PPM for all window sizes up to 80 minutes in terms

of accuracy. This discussion will highlight the advantages and disadvantages of

Indoor-ALPS and explain why PPM performs better in some cases. We also

illustrate how Indoor-ALPS can be used in practice in an application.

4.4.1. Temporal Prediction
As we described in the results section, Indoor-ALPS achieves a very high

performance increase over PPM on multiple measures for the temporal prediction.

This is especially true for lower look-ahead windows for which Indoor-ALPS had a

mean accuracy gain of 7.3% (SD=3.1%) over PPM. Furthermore our algorithm

also improves over 0-R even for lower look-ahead windows for which the 0-R

accuracy is already very high.

However, the Kappa results for higher look-ahead windows were worse than PPM.

As highlighted earlier, we observed a higher standard deviation for the higher look-

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 3" 4" 5" 6" 7" 8" 9"
10#Minute*Look#Ahead*Window*

Temporal#Spa:al*Predic:on:*Average*Kappa*

Indoor2ALPS" PPM"

 59

aheads for Indoor-ALPS. This indicates that there were significant differences in

the performance of our algorithm for one or more users. Careful analysis of the

results shows that user 3 was responsible for these deviations. In fact, if we

remove this user from the analysis and recalculate the average Kappa for both

Indoor-ALPS and PPM for look-ahead windows of 50 to 90 minutes, we see that

Kappa increases by 0.057 for Indoor-ALPS while it only increases by 0.015 for

PPM when compared to the results for all four users. An analysis of user 3’s data

revealed that in the validation data, the user frequently went to two additional new

locations, which were not present in the initial training data. If we analyze the

selected features of Indoor-ALPS for each validation day and look-ahead window

we notice that the current location is one of the most frequent features picked by

the feature selection algorithm. Since the data for these new locations is relatively

sparse in the training data, our algorithm frequently predicts that the occupant

stays. Even with incremental learning, it takes a while to collect enough data about

the new location to make accurate predictions. This is also reflected in the

Precision, which is lower than the average precision of users 1, 2, and 4 by 0.055.

PPM on the other hand is agnostic to the current location when it makes a

prediction for a given time slot. It only uses discrete time to make a prediction. As

long as the predicted location differs from the current one it will predict that the

occupant leaves within a given look-ahead window. This is why PPM is more

robust to changes in a person’s routine. For our future work, we plan to extend

Indoor-ALPS and allow it to react to changes in the user’s routine by falling back to

a frequency-based model.

Even without including user 3 in the results we still see that Kappa is slightly higher

for PPM on look-aheads of 40 to 70 minutes (average difference of 0.042). This

behavior can be explained by looking at the Recall for PPM. We see that PPM has

a much lower Recall, indicating that the algorithm very frequently predicts that the

user will leave her location even if she actually stays (False Negative errors). By

doing so, it correctly predicts more of the Leave-class, which is the minority class

in the data set, but at the expense of the Stay-class, resulting in a slightly higher

Kappa. The slightly lower Precision shows that Indoor-ALPS makes the opposite

 60

errors; when the data shows that the occupant leaves within the next n minutes,

our algorithm sometimes incorrectly predicts that the occupant will stay.

4.4.2. Spatial Prediction
The evaluation of the spatial prediction showed that Indoor-ALPS and PPM

outperform 0-R and both achieve comparable performance. Only for user 3 we see

that PPM achieves a higher accuracy than Indoor-ALPS, with a difference of 5.9%

between the two. The cause for this is the same as was described for the temporal

prediction for user 3. Since the prediction algorithm uses the current location as a

feature, it has difficulties with two new locations. The locations that are transitioned

to when leaving these two new locations are very frequented (or majority) locations

for this user, which is why PPM is better able to handle the new situation since it

predicts the majority location. One potential way to improve the next location

prediction is by leveraging the temporal prediction along with Active Learning. In

situations when the temporal prediction predicts that the occupant is leaving the

current location and the prediction is uncertain about the most likely next location,

it can ask the user for input to improve its ability to learn.

4.4.3. Temporal-Spatial Prediction
Analyzing the overall performance of the temporal-spatial prediction, the task we

set out to solve with Indoor-ALPS, we can see that our algorithm is significantly

more accurate than PPM, where it performs much better particularly on the lower

look-ahead windows. Our proposed algorithm addresses the following problem:

predicting if an occupant will stay at their current location for a specified time frame

and, if they are predicted to leave, predicting also the indoor location they will

transition to within that time frame. Our algorithm with its high prediction

performance can support a large class of compelling applications, including

proactive traffic notifications, proactive heating, automated receptionists, and ad-

hoc meeting support. We now look in detail at how Indoor-ALPS supports proactive

heating.

Using Indoor-ALPS for Proactive Heating
The importance of the different look-ahead windows is dependent on the

application context. For example, efficient temperature control in domestic

 61

environments requires a look-ahead of, on average, 60 minutes [38] to change

temperature by 10°F. In office environments with zoned temperature control, the

heat-up time is usually smaller due to the smaller volume of the space that is

heated and secondary heating effects from adjacent rooms. A look-ahead window

of 30 minutes is already enough to positively affect a building’s overall energy

consumption while minimizing the impact on the occupant’s thermal comfort. Our

algorithm is particularly suited to solve this problem.

Let us assume the HVAC system in a building needs 30 minutes to change the

temperature by 10°F, which requires a 30 minute look-ahead window for knowing if

a person will transition to a new space. Given a particular location, our algorithm

would make temporal predictions every 10 minutes in order to determine if the

person is staying at their current location for at least 30 minutes. As soon as the

prediction result changes from yes to no in consecutive queries, Indoor-ALPS

makes a spatial prediction to identify which location to heat up. In this case, the

HVAC system can be controlled to start increasing the temperature to the person’s

preferred temperature in advance of his arrival.

As we saw in the temporal-spatial results, we are not 100% accurate in our

prediction, which is to be expected. There are two possible errors that can occur,

which would affect the temperature control for the person’s next location: 1) the

spatial prediction was incorrect and the person is heading to a different office or 2)

the spatial prediction was correct, but the temporal prediction was not. In case of a

wrong spatial prediction the system would waste energy heating the wrong room.

In case of a correct temporal prediction, heating will start on time or a little bit late,

since we expect they may leave anytime in the next 30 minutes.

In the 11.5% of cases where an error occurs, two types are possible: predictions

that the person will leave when they actually do not leave the current location in the

next 30 minutes or the prediction that the person will stay when they actually will

leave in the next 30 minutes. The Precision and Recall results for Indoor-ALPS and

PPM have shown that Indoor-ALPS is more likely to make the latter error, while

 62

PPM is more likely to make the former error. Thus the primary impact of temporal

errors with Indoor-ALPS will be a delay in heating.

We believe that even though our algorithm sometimes starts heating too late, it will

proactively reduce the energy consumption of a building. The errors Indoor-ALPS

makes might affect the thermal comfort of the occupant, because the temperature

did not reach the preferred temperature on time or in the correct room. The

difference from the preferred temperature due to slight prediction inaccuracies

might not even affect the thermal comfort much since the system only takes 10 to

15 minutes to recover and someone who was just walking is less likely to be cold.

Looking at the large Recall difference between Indoor-ALPS and PPM we can

expect that PPM would waste more energy than our algorithm and thus Indoor-

ALPS would be better suited to reducing a building’s energy footprint.

Following the same prediction model as described above another application our

algorithm can support is an automated receptionist [26]. By predicting that an office

occupant will remain in her office for a certain amount of time or longer, a

colleague or visitor can be assured that she will be there when they arrive. Here

the look-aheads are likely to be short, where Indoor-ALPS excels. By predicting if

the building occupant will arrive at a new location in a specified amount of time (or

less), we can assure the visitor he will meet the occupant if he arrives around that

time.

Combining Temporal and Spatial Predictions with Oracles
Even though Indoor-ALPS already achieved a very high performance, we were

interested to see whether we could further improve its performance by combining

the temporal and spatial prediction (i.e., allow the output of one prediction become

the input for the other). To test this approach, we created two Oracle predictors.

The Temporal-Oracle predictor has perfect knowledge about the next location of

an occupant and uses that knowledge as an input feature in the prediction. The

Spatial-Oracle, on the other hand, has perfect knowledge about if an occupant

stays for the next n (n=10,…,90) minutes. If either Oracle with perfect knowledge

(either spatially or temporally) results in a significantly improved performance, then

we can try combining our imperfect predictors. However, when we evaluated the

 63

use of these Oracles, we found that neither one provided an improvement over our

original approach. Note that this result is true for the Augsburg dataset, and may

still be worth investigating with a different dataset containing different types of

mobility patterns.

4.5. Conclusion
The high performance of Indoor-ALPS highlights the importance of diverse

spatiotemporal features for the prediction of future events. Although an important

step, it still lacks the modeling power to represent complex spatiotemporal human

behavior. Chapter 5 presents an algorithm that is built as a continuation of Indoor-

ALPS and is capable of extracting this structure.

 64

5. Exploring Spatiotemporal
Structure for Indoor Location
Prediction

The previous section showed us the importance of using diverse spatiotemporal

features to model the complexities of a person’s daily, weekly, or monthly routine.

Even though Indoor-ALPS was an important step towards a viable indoor location

prediction algorithm it still lacks the descriptive power to model complex

spatiotemporal structure. For example, let us consider the situation of an office

worker with a schedule like the hypothetical days shown in Figure 11 and Figure

12.

The occupant arrives in their office at 9:00AM in the morning and goes through a

succession of locations before leaving their office at 9:00PM on Thursday and

4:00PM in the afternoon on Friday. Let us assume at 3:15PM on Friday we task an

algorithm to make a prediction of the person’s location one hour later, at 4:15PM.

Indoor-ALPS would base its decision on features such as the current location, the

arrival time in the morning, the current day of the week, or the previous two

locations. This approach works well if a person’s routine can be described through

these features, but it is not capable of modeling more complex structure. For

Office

12:00PM 09:00AM

Lunch

01:30PM

Office

03:00PM 09:00PM 10:30AM

Co-Workers
Office

Figure 11 Hypothetical Thursday

Office

12:00PM 09:00AM

Lunch

01:30PM

Conference
Room Office

03:00PM 04:00PM

Co-Workers
Office

10:30AM
Figure 12 Hypothetical Friday

 65

example what if the person’s departure time from work is not only dependent on

what happened immediately before the current location, but also on events from

the previous day. The fact that the occupant stayed late until 9:00PM on Thursday

could be an indicator when the person will leave in the afternoon. Another

complicating factor for a person’s routine could be the temporal distance between

two events. An event that happened the previous day might very well affect events

that happen during the current day.

A person’s daily behavior is partially defined by an underlying structure that

consists of patterns of events. These patterns, which are formed consciously and

subconsciously, allow us to navigate our busy life. They help families to coordinate

their joint schedules [16], define how we navigate known and unknown streets [76],

or determine when we heat or cool our homes [38,62]. Patterns that reoccur

consistently form our routines. Routines, especially spatiotemporal ones, were

studied previously to analyze human behavior such as application usage on

desktop computers [10] or also in natural domains such as nature [50], geoscience

[41], geophysics [63], meteorology [32], or embryology [64]. Understanding of

human behavior based spatiotemporal routines can be used to study criminal

behavior [14] or support family coordination [16]. A thorough description of a

person’s spatiotemporal structure can also allow us to explain the outcome of a

predictive approach to the user and increase the intelligibility of a predictive

algorithm. Studies have shown that this will impact user trust of the system [45]. In

order to be able to model a person’s complex spatiotemporal structure, this

dissertation explores the use of frequent-pattern trees [29]. We use the resulting

trees for prediction of future spatiotemporal events by extending the definition of

frequent-patterns trees to include the temporal nature of spatiotemporal patterns

by describing how events in a tree occur over time. The remainder of this section

describes the behavior-pattern extraction algorithm, the complexity involved in

extracting frequent-pattern trees from spatiotemporal data, and lastly an algorithm

to use the extracted conditional frequent-pattern trees for prediction of

spatiotemporal events.

 66

5.1. Behavior-Pattern Extraction Algorithm
In order to create an algorithm that describes a person’s spatiotemporal structure

and predicts future spatiotemporal events we make the following assumptions: (1)

a person’s daily spatiotemporal structure consists of frequent and infrequent

regular events and pattern of events, (2) spatiotemporal events are dependent on

a wide-range of contextual features (e.g., day of the week, time of day, previous

visited locations, etc.), and (3) the occurrence of a future spatiotemporal event is

dependent on the current event as well as events that previously occurred (e.g.,

during the same or previous day/week). These assumptions are empirically derived

from our own human experience. A person’s schedule is not static, but a

combination of numerous events. These events can occur with high (e.g., a person

arriving in their office at 8:30AM every workday) or low frequency (e.g., a weekly

meeting that only happens on Friday’s), experience changes over time, and even

be subject to seasonal shifts. Furthermore events can influence each other over

longer temporal windows, for example, a person leaving their office at 10:00PM the

previous day can influence their arrival in the office the next day.

Figure 13 Algorithm Overview

(3) Building of Conditional Frequent-Pattern Tree

Generation of Frequent-Pattern Trees based on decision stumps

(2) Extraction of Singular Patterns

Modeling of probabilisticly reoccuring nature of events by clustering
similar events and combining them with spatiotemporal features.

(1) Event Extraction

Extraction of base events without considering reoccuring nature of
events

 67

To capture all of these varying assumptions we introduce ABC-Pattern-Extract

(Activity, Behavior and Context Sensitive Pattern Tree Extraction), a pattern

extraction algorithm based on Frequent-Pattern Trees [29]. Han et al. introduced

Frequent-Pattern Trees as a compact data structure to capture ordered, frequent

sets of items. The associated mining algorithm iteratively grows frequent

conditional trees starting with a tree depth of one. Their results show that the

resulting tree representations of a dataset are compact and computationally faster

to generate than the popular Apriori approach. In addition to these attributes

Frequent-Pattern Trees also allow us to consider diverse contextual features,

which makes the algorithm flexible enough to explore not only patterns of individual

behavior, but also relationships between contextual features such as people or

spaces. Using Frequent-Pattern Trees as a basis, ABC-Pattern-Extract works in

several stages as shown in Figure 13.

5.1.1. Event Extraction
ABC-Pattern-Extract models spatiotemporal events E as triples of location, time of

day, and action. Throughout the algorithm we consider the following actions:

transitioning to a location, transitioning from a location, staying at a location, first

arrival of the day at a location, and last departure from a location for a day. It

should be noted that this event description can be modified to model different

behavior, which will allow the algorithm to be applied in different situations. For

example it would be possible to also include a user field in this event description in

order to model behavior that is affected by more than one user. The events

extracted in this first step do not capture any notion of reoccurrence. Every event is

treated as unique in the dataset. The extraction algorithm traverses the provided

dataset and labels every data point with a unique event ID. Each event ID

corresponds to an event in the format given above.

5.1.2. Extraction of Singular Patterns
As mentioned above, events do not capture the probabilistically reoccurring nature

of a person’s spatiotemporal structure. Thus, they only describe discrete moments

in time. For that reason, ABC-Pattern-Extract models the reoccurring nature of

events in the form of Singular Patterns (i.e., patterns of length 1). Each Singular

 68

Pattern models one class of events under varying spatiotemporal features. This

subsection explains how ABC-Pattern-Extract creates Singular Patterns from the

list of discrete events.

Event Clustering
To derive the aforementioned classes of events from the totality of events

extracted in Step 1, we apply nearest neighbor clustering using the time

component in each event as the cluster representative. Clustering is a necessary

step due to the variability in human behavior. For example, let us assume a pattern

that describes the event “Person arrives in office at 8:30AM every day”. To

calculate the occurrence probability of this pattern, we need to determine which

events are instances of such a pattern. But since human behavior is not static,

multiple events can be instances of this pattern. For example a person arriving at

8:20, 8:25, 8:35, or 8:40 might all be instances of the pattern mentioned before.

Clustering of the events based on the temporal component allows us to determine

which event is an instance of a particular pattern. For the purpose of this clustering

we define the following term:

Definition: Instance of Singular Pattern

An event E is a new instance of a Singular Pattern P if and only if it

describes the same location and action and if the Time of Day (ToD) is not

more than m minutes different from the mean ToD of all current instances of

P.

Following this definition, the membership of an event E to a pattern P depends on

a parameter m. This m is variable by user and even time of day. Intuitively the

variance of the latter can be split up into two categories: the departure and arrival

from the office building, for which we expect a higher degree of variance, and the

transition time between locations during the day, for which we expect a lower

degree of variance due to interactions between individuals. To account for these

two cases we define two thresholds for the cluster mean, an outer threshold for

patterns that are defined before 10:00AM and after 04:00PM and an inner

threshold for patterns defined between 10:00AM and 04:00PM. In order to

 69

determine the correct value for m, we need to evaluate the quality of the clustering.

In our case a criterion of a good clustering is the reduction of the number of short

clusters (clusters with less than five instances), since they also result in a low

probability for the corresponding pattern. A very fine-grained clustering of events is

counterproductive for the probabilistic modeling of spatiotemporal structure. Since

this is an unsupervised clustering problem (there is no prior knowledge about the

number of clusters), we employ the Dunn Index as an evaluation scheme. The

evaluation of an unsupervised clustering is a challenging problem since by the

nature of the problem no ground truth exist. We picked the Dunn-Index for our

approach since the only real drawback is the computational complexity and we do

not expect to have enough clusters for this to become a problem. The Dunn-Index

tries to minimize the within cluster distance and maximize the between cluster

distance, which means that for a given set of clusterings a high Dunn-Index

indicates a better clustering. The Dunn Index (DI) is defined as:

𝐷𝐼! =
min

!!!!!!!
𝛿(𝐶! ,𝐶!)

max
!!!!!

△!

• δ(Ci,Cj) is the distance between cluster Ci and Cj

• Δk is the diameter of cluster Ck calculated as the distance from all points to

the mean

We create a new clustering of events for a particular set of outer and inner

thresholds (with threshold values between five minutes and 35 minutes in 5-minute

steps we get 128 sets of outer and inner thresholds and subsequently 128 different

clusterings). For each clustering the Dunn Index is calculated. The goal of these

individual clusterings is to determine the “best” set of outer and inner thresholds,

i.e., the number of minutes m a new instance can be different from the mean of a

temporal cluster. For example if the mean of a cluster is 8:30AM and a new

instance is described for 8:45AM than the instance belongs to the cluster if m is

greater or equal than 15 minutes. After a clustering is calculated for each pair of

thresholds the algorithm orders the cluster results by their Dunn Index and picks

the clusterings with the five highest index values. In some cases the Dunn Indices

 70

for the five best clusterings are very similar. To still decide on a set of outer-inner

thresholds (keeping in mind that the criterion for a good clustering is a reduction in

the number of short clusters), we also calculate the ratio of short clusters to the

overall number of clusters as a cluster coefficient and pick the outer and inner

threshold set out of the five Dunn Index results that has the lowest cluster

coefficient. We do not use the number of short clusters as a decision criteria

directly to prevent clusterings from being picked that create a low number of short

clusters by assigning the majority of data points into a small number of large

clusters (which have a very large diameter because of it) and the rest into only a

few short clusters.

Singular Pattern Definition
After each event is assigned to one cluster (i.e., one cluster holds multiple events)

ABC-Pattern-Extract creates patterns of length one by combining a number of

contextual features with each event cluster. For example let us assume an event

cluster that contains events of the following nature: “Staying at office at 9AM” and

furthermore a contextual feature: every Friday. By combining these two pieces we

derive a pattern that describes the following situation: “Every Friday a person stays

at their office at 9AM”. We refer to these patterns of length one as Singular
Patterns, and they form the building blocks for our Frequent Pattern Trees. To

formalize this as a definition:

Definition: Singular Patterns

A Singular Pattern is a combination of an event cluster with one contextual

feature.

The contextual features that can be determined and derived from spatiotemporal

data fall into three categories: temporal, spatial, and location and time dependent

features. In addition we can also consider location- and time-independent features

(e.g., current weather, road closures due to constructions) or even spatiotemporal

features from a second person. Our current implementation of ABC-Pattern-Extract

considers the following features, which are ranked by their specificity from least to

most specific:

 71

1. Daily

2. Week vs. Weekend indicator

3. Season

4. Day of week

5. n-th weekday of the month

6. Day of month

7. Day of year

We strived to make this list as exhaustive as possible so we can capture as many

different situations as we might encounter in a person’s spatiotemporal behavior,

but this is by no means a complete list. Especially with the location- and time-

independent data, which we did not model in the current implementation, we can

imagine other contextual factors that might affect a person’s spatiotemporal

behavior. By describing the behavior through events with contextual conditions,

this definition allows for extensions and adaptation to a specific problem domain.

We expect the current definition to be good enough to support multiple different

application domains, but with access to additional datasets it is possible to easily

extend the current set of features.

Singular Pattern Frequency
Each Singular Pattern has an attached frequency of occurrence (i.e., the number

of instances in the current history that belong to that Singular Pattern given the

contextual features) and probability. The probability is calculated by dividing the

frequency of occurrence by the theoretical maximum frequency of occurrence. This

leads us to the following definitions:

𝐹𝑟 𝑆𝑃 = # 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑆𝑃

Pr 𝑆𝑃 =
𝐹𝑟(𝑆𝑃)

𝐹𝑟!"#(𝑆𝑃)

(SP = Singular Pattern; Frmax(SP) = maximum theoretical frequency given contextual features of SP)

For example, let us assume a Singular Pattern P describes the following event:

“Person stays at office at 10:30AM every day”. If we encounter 31 days in our

 72

dataset and P on 23 of these 31 days, we would assign a probability of occurrence

of 23/31 or 74.2%. Each Singular Pattern gets assigned a unique identifier.

5.1.3. Building of Conditional Frequent-Pattern Trees
As we will see later in the result section, Singular Patterns alone are not enough to

capture the spatiotemporal structure of human behavior. Spatiotemporal behavior

is not only influenced by the current context (e.g., time of day or day of the week),

but also by events that happen earlier in the day or even the previous day or week.

Modeling larger spatiotemporal structures that describe these more complex

routines requires the extraction of longer patterns of events. Researchers have

investigated the use of various algorithms to capture the structure found in event-

based datasets. For example, Ryan et al. [61] explored the use of Association Rule

Mining for prediction of indoor location events. Even though they reported some

success on a self-collected dataset with an accuracy of 79%, the performance

dropped to 56% when applied to the Augsburg Location Tracking dataset. They

explained this drop as a result of the increased variability in the dataset. One

important drawback of association rules is their inability to model the temporal

structure found in spatiotemporal datasets. The members of a rule can appear in

any order and over any time frame, which results in an inability to model the

structure we see in such datasets.

Another class of algorithms is Markov Decision Processes (MDP), which were

successfully used in the past to model a wide range of spatiotemporal problems.

One very successful recent approach is PROCAB by Ziebart et al. [76]. Their

algorithm used an MDP combined with inverse reinforcement learning and the

principle of maximum entropy to model the behavior of drivers. The approach

achieved a very high performance in trip endpoint prediction (~ 3km error) and turn

prediction (93.2% accuracy). Even though the performance is very promising,

PROCAB and MDP’s in general are not useful for the modeling of indoor

spatiotemporal behavior. PROCAB does not model the temporal context of indoor

behavior and in fact including the temporal structure (an indicator how events

happen in time: on the same day, over two previous days, during the same week,

etc.) would increase the computational complexity by a large degree. Modeling the

 73

temporal structure of events would require either to create a new MDP for each

temporal condition (e.g., same day, adjacent day, same week, etc.) or an

extension of the current MDP to allow it to learn individual feature weights for each

temporal condition. Both solutions would result in an increased computational

complexity. In addition, MDPs make the Markov assumption that future states are

only dependent on the current state and as highlighted earlier one of the core

assumptions we make is that future states are highly dependent on previous

events and that in fact a chain or pattern of events will allow us to predict the future.

One approach that will allow us to model both the sequential structure found in

spatiotemporal behavior as well as the temporal nature are Frequent-Pattern Trees,

which were introduced by Han et al. [29]. Frequent patterns play a vital role in

many sequence mining problems and Frequent-Pattern Trees (FP-Trees) offer the

promise of providing a compact representation of these patterns. ABC-Pattern-

Extract is based on the FP-Tree growth algorithm and works in several stages by

iteratively growing the depth of each tree starting from each Singular Pattern.

Singular Pattern List Filtering
The first step of ABC-Pattern-Extract is to create a reduced list of Singular Patterns

by filtering out patterns that have a frequency lower than a frequency threshold.

We did not use the Singular Pattern probability, since,

depending on the contextual features, a probability can be very

high even though the pattern is very infrequent. This especially

happens with very specific features such as the indicator if a

Friday is the fifth Friday of the month. The intuition behind a

frequency threshold is that the frequency of longer patterns is

limited by the smallest frequency of its sub-patterns. For

example lets consider a pattern [A B] (a path in an FP-Tree) of

length two that consists out of the Singular Patterns A and B.

This pattern indicates that after A pattern B follows. The

frequency of [A B] is bounded by the lowest frequency of the

individual Singular Patterns.

Figure 14 FP-
Tree Example

 74

𝐹𝑟 𝐴 𝐵 ≤ min{𝐹𝑟 𝐴 ,𝐹𝑟 𝐵 }

This threshold allows us to adjust ABC-Pattern-Extract’s sensitivity to irregular

events. The higher this threshold the more Singular Patterns will be excluded,

which has two effects: 1) the computational complexity goes down since less FP-

Trees will be created and 2) the resulting behavior description becomes potentially

less expressive. An ideal threshold would minimize the computational complexity

(i.e., create less FP-Trees) and maximize the expressiveness. For our experiments

we picked four as the threshold. A deeper analysis of the effects of different

thresholds on the extracted FP-Trees and their effects on the prediction of

spatiotemporal events is out of scope of this dissertation and will be tackled in the

future work.

The chosen frequency threshold results in a reduced list of Singular Patterns,

which ABC-Pattern-Extract uses in order to create the FP-Trees (a directed,

acyclic graph) of depth two by extracting all possible combinations of two unique

Singular Patterns (e.g., [A B], [A C], [B C], [C A], etc.). That way each Singular

Pattern in the reduced list becomes the root for its own FP-Tree. The nodes of this

tree are Singular Patterns and a path in the tree from the root to a node is called a

pattern. This means a pattern consists of two or more Singular Patterns and the

length of a pattern is determined by the number of Singular Patterns (i.e., number

of nodes in the tree) along the corresponding path in the tree. Furthermore, each

Singular Pattern in a pattern has to be unique (meaning [A A] is not possible) and a

pattern imposes a temporal order. Each node in a FP-Tree has two associated

values: the frequency of the pattern that ends in that node and the conditional

probability for the node given the sub-pattern without that node (for example the

conditional probability for a pattern [A B] would be Pr(B|A)). To exemplify this

process, let us consider the following Singular Patterns: A (“Person stays in office

at 9AM on Fridays”) and B (“Person leaves office at 5PM on Fridays”) with Fr(A) =

7 and Fr(B) = 8. Let us further assume that the training dataset contains 10 Fridays,

which would lead to Pr(A) = 0.7 and Pr(B) = 0.8. Taking A as the root, ABC-

Pattern-Extract would create the tree shown in Figure 14.

 75

As we see in the example, the frequency of [A B] is 6, meaning for the seven

instances of A we observe B for six of them. This also leads directly to the

conditional probability of B occurring after observing A, which is 6/7 or 85.7%. To

model human spatiotemporal routine we also need to make an extension to the

FP-Tree definition by including a temporal condition under which events in a

pattern occur. Our daily life shows us that events can occur over large or small

temporal frames, for example two events can occur on the same day or also

across two adjacent days.

Definition: Temporal Condition

For patterns of length two or greater, the associated temporal condition

describes how instances of the Singular Patterns, which constitute that

pattern, occur over time. One pattern can be defined for multiple different

temporal conditions with its own frequency and conditional probability.

In order to capture how events occur over time the following temporal conditions

are defined: same day/week/month/year, next adjacent day/week, and next two

adjacent week/month. We decided to model the temporal condition in this

predefined way because learning the mean temporal distance over which a

sequence of events can occur is computationally prohibitively expensive. Given

these temporal conditions we can see that we would need to learn the frequency

and probability for [A B] for several temporal conditions (same day, week, month,

and year). But we also see that it is impossible to learn these values for all

conditions since both A and B are defined for Fridays and thus it is impossible to

define the frequency or probability for any of the adjacent temporal conditions. Our

definition allows the algorithm to mix Singular Patterns with different temporal

features (e.g., one is defined for every day and the other only for Fridays). Another

important aspect is that a pattern also implies a temporal order. For example, a

pattern [A B] implies that instances belonging to A have to occur before instances

that belong to B. It is to note that a temporal condition is assigned to a pattern of

length two or greater and is not to be confused with temporal features, which are

 76

assigned to Singular Patterns. The purpose of the temporal condition is to describe

how two or more events occur in time.

After ABC-Pattern-Extract created all possible trees with a maximum depth of two

(i.e., pattern length of two), it will iteratively grow these trees. In order to do this

ABC-Pattern-Extract extends a path in a FP-Tree by adding every possible

Singular Pattern in the reduced list to the path. Since this potentially has

exponential growth, we also limit the expansion by limiting it to paths in the tree

that have a frequency of greater than four using the same reasoning as before.

The expansion is stopped if the information content (as defined by the self-

information of a pattern) of the collection of patterns over the last three pattern

lengths is monotonously decreasing. The self-information of a pattern P is

commonly defined as:

𝐼𝐶 𝑃 = − logPr (𝑃)

Since this is an additive measure we can calculate the information content of a

collection of patterns as the sum of the self-information for each pattern. The

intuition behind the this criterion is that if there are not enough new patterns being

created, it is not worthwhile to extend the pattern length since it is computationally

expensive.

 77

5.1.4. Pattern Extraction Results
In order to evaluate ABC-Pattern-Extract we extracted the FP-Trees from the

Gates-Hillman-Center dataset for Sept. ‘11 and Oct. ’11 and afterwards tested the

prediction algorithm we describe in the next section on Nov. ’11 and Dec. ’11. We

decided to limit the analysis on these four months for two reasons: one they

overlap with the Fall semester at Carnegie Mellon University and thus have less

seasonal changes, which allows us to scope the pattern extraction by preventing

the algorithm from using all spatiotemporal feature and temporal conditions (the

final list is shown below). In a university setting, the spatiotemporal routine of

building occupants is highly dependent on the academic semester: changes in

class schedules impacts all primary groups of occupants (faculty, student, staff).

For example while a faculty might be in their office most of the day during the

summer semester, this will change during the fall and spring semester due to

classes a faculty offers. Secondly, extending the analysis length over a longer time

frame would require the implementation of an update algorithm that creates new

FP-Trees and updates current ones. Deciding when to update a spatiotemporal

Figure 15 ABC-Pattern-Extract Number of Patterns vs. Runtime

0

100

200

300

400

500

600

700

0

1000

2000

3000

4000

5000

6000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

T
im

e
 in

 M
in

u
te

s

T
h

o
u

sa
n

d
s

User ID

Pattern Number Runtime

 78

behavior model is out of scope for this dissertation and will be tackled as part of

the future work. The final set of spatiotemporal features that were used for this

analysis was:

• location,

• time of day,

• day of week,

• week vs. weekend indicator,

• n-th weekday of the month,

• day of month.

We omitted the use of the day of year and season feature since the length of the

training set would result in not enough variance in the feature values. Similarly we

only extracted frequency and probability values for the same day/week, adjacent

day/week, and two adjacent day/week temporal conditions. In addition we stopped

the extraction process when the number of calculations exceeded 100,000,000 (a

computational stop criterion that can be relaxed or even removed by running the

code on a cluster). Due to the complexity of the computation and the availability of

computational resources, we limited our analysis to 1/5 of the rooms in the dataset

by randomly selecting 53 offices (a large enough sample to draw statistical

comparisons). Before the selection process we made sure that all the offices have

roughly the same number of data points and excluded extreme offices (rooms with

either below 5% or over 95% average occupancy). We summarize the following

statistics about ABC-Pattern-Extract: number of Singular Patterns, number of

patterns in the resulting FP-Trees, average number of FP-Trees, average FP-Tree

depth, and runtime in minutes. The limitation we put in place allow ABC-Pattern-

Extract to be run on a machine with a 2.6GHz Intel i7 processor, 16GB of DDR3

RAM, and a 500GB Solid State Drive. In addition, since all the code was

implemented in Python, we used Python’s process pool to parallelize the code

execution.

On average ABC-Pattern-Extract extracted 2,242,892 patterns (SD=799,869.9)

per user and ran for 52.5 minutes. Three users took significantly longer to run,

 79

which we believe to be outliers, since the number of patterns for these three users

fall within one standard deviation above and below the mean. Removing these

outliers gives us a runtime of approximately 24 minutes. As mentioned before, the

extraction was performed on a single standard laptop, which means that this time

estimate can be even further improved by utilizing a distributed system. Adding

additional contextual features will increase the extraction time, but given the short

extraction time for our evaluation, we believe that this estimate will not significantly

increase. Since the extraction time on a standard laptop is so short it will also be

possible to train the initial model on a modern smartphone, which removes the

need for a dedicated server architecture. As a point of comparison, the latest

Samsung smart phone, Galaxy S6, is equipped with a 2.1 GHz ARM Cortex Quad-

core, 4GB RAM, and an extensible 64GB storage. As the approach should be

capable of being executed on a smart phone, we feel comfortable in claiming that

our approach is time-efficient. The pattern extraction was based on an average of

7194 Singular Patterns (SD=802.7). Overall ABC-Pattern-Extract created on

average 1011.6 FP-Trees (SD=154.9), which had an average depth of 5.3

(SD=1.14). The latter means that the average pattern length is also 5.3.

To understand whether our algorithm is efficient in terms of disk space required to

store the results, we analyze the space requirements. The space complexity of our

approach depends on the number of extracted patterns and the space complexity

of storing a single pattern. All patterns were stored in MySQL with a mixture of

integer, double, and text fields (each with their own space constraints). In total our

algorithm saves four integer values (each 4 Bytes), two double values (each 8

Bytes), and three text values (length dependent on the length of the string). The

space complexity for the double and integer values is easily computed as 32

Bytes. The length of the text values depends on the pattern that is being saved:

one field saves the pattern members, one the pattern condition, and one the

temporal condition. The temporal condition has at most 22 Bytes and the two other

fields are bounded by the maximum tree depth (pattern length). Taking the

average values above it takes on average 105.7 Bytes to store one pattern. Given

this, it would take on average 226 MByte to store the average number of patterns

 80

mentioned above. This would make storing of these patterns on a mobile device

feasible and could allow the prediction algorithm to run independently of a server.

One of the biggest challenges of mobile computing (computing using devices such

as smart phones) is the resource constraint in terms of storage and computing

power. Our algorithm is efficient enough to run the extraction and storage of

patterns on such a device. This analysis answer the first question we proposed in

the introduction: Given complexity of modeling human spatiotemporal
behavior and reoccurring events how can we compute conditional frequent-
pattern trees for both in a space and time efficient manner (Q1).

5.2. Using Behavior Patterns For Indoor Location Prediction
As mentioned earlier the extracted FP-Trees can be used to either explain

behavior to users in an effort to allow them to discover interesting insights about

their data or we can predict future spatiotemporal events. We developed ABC-

Pattern-Predict (Activity, Behavior and Context Sensitive Pattern Tree Prediction),

an indoor location prediction algorithm on the basis of FP-Trees extracted by ABC-

Pattern-Extract. Our algorithm has two modes of operation: predictions based on

Singular Patterns and predictions based on the full FP-Trees. Each mode has its

own set of advantages and disadvantages: making predictions based Singular

Patterns (patterns that describe single reoccurring events given contextual

features) alone is fast and independent of a temporal look-ahead window, but it

impacts the prediction performance since it makes in the moment decisions without

knowledge about events that happened earlier. The independence from a look-

ahead window also means that the algorithm can make predictions for any time of

the day, essentially allowing it to create a daily or weekly schedule ahead of time.

The second mode for ABC-Pattern-Predict allows the algorithm to make very

precise predictions by using the full range of prior events, but it comes with the

added cost of increased runtime and a dependence on a look-ahead window.

Depending on the situation, a user of ABC-Pattern-Predict has to decide which

mode to choose.

It is to note that we performed all the initial experiments (that is trying different

approaches to use the extracted FP-Trees) on a separately collected 18 user and

 81

three month long dataset. The data was collected using the same occupancy

sensor infrastructure over a period of three month on March 2015 through May

2015. As indicated above the final validation was performed on a completely

separate dataset collected earlier.

5.2.1. Mode 1: Prediction Based on Singular Patterns
Making predictions based on Singular Patterns is a very straightforward process.

For a time step t (given as a discrete 5-minute time chunk), ABC-Pattern-Predict

picks Singular Patterns that match the current time of day and temporal features

and orders by their probability. This list of potential Singular Patterns contains

patterns for all possible locations that were encountered during time step before.

From the list of potential patterns it chooses all patterns that are less than 5%

away from the pattern with the highest probability. For some patterns the

probability is either very close to each other or even the same. Since this increases

the uncertainty, we consider all patterns that are very close to each other as

possible candidates and choose the pattern out of that list with the most specific

feature value. As mentioned earlier the feature values are ranked by their

specificity (e.g., daily patterns happen every day, but day of week patterns only

happen on a very specific day), which allows us to also rank the patterns in the

result set. To give an example of this process, let us assume the situation shown in

the beginning of this chapter (see Figure 12). We want to make a prediction for

2PM and determine that the following Singular Patterns are applicable for this

situation: A (“Person stays in office at 2PM on weekdays” – P(A) = 90%), B

(“Person stays in conference room at 2PM on Fridays” – P(B) = 88%), and C

(“Person stays in office at 2PM daily” – P(C) = 75%). As we can see the two most

likely patterns are A and B, but since B describes the more specific temporal

feature it would be picked even though the probability is slightly lower.

5.2.2. Mode 2: Prediction Based on FP-Trees
The prediction of future spatiotemporal events based on all FP-Trees depends on

events that occur prior to the current situation. Intuitively the spatiotemporal

structure of a person consists out of three base-type of events: irregular events

(events that can be either highly infrequent events or anomalies), infrequent

 82

regular events, or frequent regular events. Since it is hard to make predictions

based on irregular events, due to its non-deterministic nature, our algorithm, at its

core, models two types of events: frequent regular events (events that have a high

probability of occurring even using Mode 1 as predictor) and infrequent regular

events (events that are regular, but only appear in conjunction with other events).

We use two different algorithmic approaches for these events, a Maximum

Likelihood Estimator models infrequent regular events, while a weighted Maximum

Likelihood Estimator models frequent regular events by multiplying (i.e., weighing)

the conditional probability of a pattern with the probability of the target Singular

Pattern. For a time step t, ABC-Pattern-Predict uses the look-ahead window length

ε (a parameter that needs to be provided by the application domain developer) to

make a prediction for time step t + ε. For each time step, our algorithm makes two

independent decisions using the MLE and wMLE and decides which result to

choose based on the frequency of the Singular Patterns that describe the events

that occur at time step t + ε. In the beginning, the algorithm extracts all possible

patterns that are defined for time step t + ε as a list of potential patterns. A pattern

is defined for a time step t + ε if and only if the Singular Pattern at the end of the

pattern is defined for time step t + ε. For example if B describes events happening

at 12PM and C describes events happening at 4PM and we want to make a

prediction for 12PM, then patterns that end on C are not defined for the current

situation and are subsequently not picked. In order to decide which pattern to pick,

it performs several steps, which are summarized in the following list and explained

below:

1. Multiply the probability of each pattern with a temporal interval (same day,

previous day, etc.) dependent weight

2. For each temporal interval, determine the pattern with the highest probability

(Maximum Likelihood Estimate - MLE) across all possible locations and the

pattern with the highest weighted probability (weighted Maximum Likelihood

Estimate - wMLE) across all locations; essentially creating two temporal

interval lists, one for the MLE and one for wMLE case; the number of entries

 83

in each list depends on the number of temporal intervals that were

considered

3. For both lists, independently pick the pattern with the highest probability

4. Determining the frequency of the Singular Patterns SPMLE and SPwMLE at the

end of each pattern (this SP describes events for time step t + ε) and decide

which pattern to pick based on:

𝑅𝑃 t + ε =
𝑆𝑃!"# ,

𝐹𝑟 𝑆𝑃!"#
𝐹𝑟 𝑆𝑃!"#$

< 0.5

𝑆𝑃!"#$,
𝐹𝑟 𝑆𝑃!"#

𝐹𝑟 𝑆𝑃!"#$
≥ 0.5

(RP(t + ε) = Result pattern at time step t + ε ; SPMLE and SPwMLE = Singular

Pattern for MLE and wMLE result; Fr(SPMLE) = Frequency of SPMLE)

Explanation of Steps
As we can see, ABC-Pattern-Predict works in several interlocking steps. Since it is

unknown how important each temporal interval is for the prediction, we allow ABC-

Pattern-Predict to weigh each temporal interval in Step 1. The intuition is that our

algorithm learns over time how important each temporal condition is given the

spatiotemporal structure of the user. For example if most of the spatiotemporal

structure is contained in same-day patterns, our algorithm will learn a higher weight

for that condition. To that end, the algorithm incrementally learns [27] weights for

each temporal condition (independently for the MLE and wMLE prediction) starting

with a weight vector that is initialized with 1’s at the beginning of the validation

dataset. This process happens during the prediction and not the training step. The

weights are updated after each prediction. ABC-Pattern-Predict adds and subtracts

a value epsilon (in our experiments set to 0.01) to the individual weights if a

prediction was correct or incorrect, respectively. These weights are multiplied with

the conditional probability for each pattern in Step 1.

In Step 2 we split our prediction into two independent predictions using an MLE

and weighted MLE to allow ABC-Pattern-Predict to react to the two types of events

mentioned previously. In this process the MLE always picks the pattern with the

highest conditional probability. Depending on the pattern, this probability can be

very high even if the individual events described by the pattern are very infrequent.

 84

For example let us consider a pattern [A B], where A occurred before and B is a

potential target pattern for time step t + ε. A and B can be very infrequent, with low

individual probabilities, but in 90% of the times if we observe A we also observe B.

This means the conditional probability is very high and the MLE would pick up on

this and chose [A B]. In this way the MLE allows us to pick infrequent regular

events. The weighted MLE on the other hand would multiply the conditional

probability with the probability of B occurring. Since we said before that B has a

low probability we would also observe a low probability by weighing Pr(B|A) with

P(B). The weighted MLE would most likely not pick [A B] as a potential result

pattern and instead pick a result pattern with a higher wMLE value. Using all

potential patterns to make a decision about the location at a given timestamp

proved to be unsuccessful. Using the experimental dataset mentioned in the

beginning of this section, we explored the use of calculating the mean and median

probability across all patterns belonging to a particular location and deciding on the

target location based on the highest mean/median probability. Unfortunately the

results were significantly lower than our approach.

Since we use a Maximum Likelihood Estimator (with or without weight), we choose

the pattern with the highest probability in Step 3. To make the final decision in

Step 4 between the MLE and wMLE result, we use the equation shown above to

calculate the relative frequency of the target Singular Patterns described by the

MLE and wMLE result patterns. This equations is calculating the result pattern,

RP(t + ε), at time step t + ε by calculating the relative frequency

Fr(SPMLE)/FR(SPwMLE) for the target Singular Pattern, SPMLE, in the MLE result and

the target Singular Pattern, SPwMLE, in the wMLE result. If this relative frequency is

greater or equal to 0.5 SPwMLE will be picked otherwise SPMLE will be picked. We

chose not to use a fixed frequency threshold since it is unclear what constitutes a

frequent event for a given user and situation. Exploring this question is out of

scope for this document and will be tackled in future work. Instead we defined the

relative frequency between the MLE and wMLE result. The MLE result will be

picked if the frequency of the target MLE Singular Pattern is less than half of the

frequency of the target wMLE Singular Pattern. For example let us assume we

 85

have the following two patterns after Step 3: [A B] (MLE result pattern) and [A C]

(wMLE result pattern). To make a decision between these two patterns we

calculate the relative frequency of B and C, which are both potential patterns that

describe events at time step t + ε. If the relative frequency is above 0.5, ABC-

Pattern-Predict picks C as result pattern or B otherwise. Meaning if the frequency

of B is 20 and the frequency of C is 21 than the relative frequency is 0.48 and thus

B will be picked. If C has a frequency of 20 or below C would be picked. The

intuition behind this process, is that the MLE has a higher chance of producing the

correct result for low frequency patterns (an intuition that held true as our initial

experiments and the results showed) and the wMLE produces a better result for

high frequency patterns.

Since it takes several steps to determine the final result pattern (including update

steps for weights), it takes several seconds to make a prediction for each time step.

In a real world scenario, this characteristic is perfectly acceptable since a

prediction is not made in real time every second, but instead every five minutes.

The complexity of the algorithm depends on the length n of the validation set.

Extracting the possible Singular Patterns that apply to a current situation requires

the traversal of all data points that were encountered so far, which means for an

input size of n the algorithm makes n-1 comparisons. This means the algorithm

makes a total of n*(n-1) comparisons. In addition to the pattern extraction step, the

algorithms also needs to process all m potential patterns, which happens three

times congruent with Steps 1 through 3. This results in an overall time complexity

of O(n2 – n + 3*m). Since the number of target patterns m is much smaller than n2

we can estimate a worst case complexity of O(n2). Given this time complexity ABC-

Pattern-Predict has enough time to make predictions for multiple users every

minute, even using off-the-shelf hardware.

 86

6. Evaluation

In order to evaluate ABC-Pattern-Predict we compared the performance of our

algorithm (using Mode 2) against two prior algorithms (PPM and PreHeat) as well

as a ZeroR baseline predictor. We report the results for the following measures:

accuracy, precision, recall, and kappa. In addition we report on two different time

frames: all-day results and work-time (Mon-Fri 8AM to 6PM) results. Since the

results of PPM and the ZeroR predictor are significantly weaker than the ABC-

Pattern-Predict and PreHeat results we decided to limit the deeper investigation of

precision, recall, and kappa to latter two algorithms. Figure 16 through 23 shows

these results.

Figure 16 All-Day Accuracy

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

A
c

c
u

ra
cy

User ID

ZeroR PPM PreHeat ABC-Pattern-Predict

 87

Figure 17 Accuracy Mon-Fri 8 AM to 6 PM

Figure 18 Recall All-Day

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

A
c

c
u

ra
cy

User ID

ZeroR PPM PreHeat ABC-Pattern-Predict

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

R
e

c
a

ll

User ID

PreHeat Recall ABC-Pattern-Predict Recall

 88

Figure 19 Precision All-Day

Figure 20 Kappa All-Day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

P
re

c
is

io
n

User ID

PreHeat Precision ABC-Pattern-Predict Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

K
a

p
p

a

User ID

PreHeat Kappa ABC-Pattern-Predict Kappa

 89

Figure 21 Precision Work-Time 8AM - 6PM

Figure 22 Recall Work-Time 8AM - 6PM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

P
re

c
is

o
n

User ID

PreHeat Precision ABC-Pattern-Predict Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

R
e

c
a

ll

User ID

PreHeat Recall ABC-Pattern-Predict Recall

 90

Figure 16 shows that the All-Day accuracy of ABC-Pattern-Predict is slightly better

than PreHeat with an average difference across all users of 1.12% (SD=1.64%).

This difference becomes more pronounced for the Work-Time accuracy (see

Figure 17) for which ABC-Pattern-Predict is on average 2.93% (SD=4.91%) more

accurate than PreHeat. Both ABC-Pattern-Predict and PreHeat outperform both

PPM and the ZeroR baseline. Since the difference to PPM and ZeroR is so great

we chose to investigate the deeper measures of Precision, Recall, and Kappa only

for ABC-Pattern-Predict and PreHeat. As we can see in Figure 19 and Figure 21,

both the All-Day and Work-Time precision of ABC-Pattern-Predict and PreHeat is

nearly identical with an average difference of 0.04% (All-Day) and 0.72% (Work-

Time). Most of the differences between the algorithms come from Recall (see

Figure 18 and Figure 22), which shows an average difference of 10.93% (All-Day)

and 10.11% (Work-Time) in favor of ABC-Pattern-Predict. This is also reflected in

the Kappa metric (see Figure 20 and Figure 23), which shows an average

difference of 7.28% (All-Day) and 7.65% (Work-Time) in favor of ABC-Pattern-

Predict. Both algorithms show a substantial agreement between the predicted and

Figure 23 Kappa Work-Time 8AM - 6PM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

K
a

p
p

a

User ID

PreHeat Kappa ABC-Pattern-Predict Kappa

 91

ground truth data. Comparing these results to the location prediction using only

Singular Patterns (Mode 1 of ABC-Pattern-Predict) we see an average All-Day

accuracy of 86.8% (SD=5.6%) and Work-Time accuracy of 72.7% (SD=9.2%).

A statistical analysis, using a Wilcox test, of the All-Day accuracy results shows a

significant difference between ABC-Pattern-Predict and PPM (p < 0.05) as well as

ZeroR (p < 0.05), but no statistically significant difference between ABC-Pattern-

Predict and PreHeat (p = 0.31). This changes for the Work-Time results for which

we see a statistically significant difference between PPM (p < 0.05), ZeroR (p

<0.05), and PreHeat (p < 0.05). Analyzing the precision, recall, and kappa results

we see a statistically significant difference between ABC-Pattern-Predict and

PreHeat for the All-Day Recall (p < 0.05) and Work-Time Recall (p < 0.05) results.

In addition we can observe a statistically significant difference between ABC-

Pattern-Predict and PreHeat for the Kappa All-Day (p < 0.05) and Work-Time (p <

0.05) results. As expected we cannot observe a statistically significant difference

for the Precision All-Day (p = 0.65) or Work-Time (p = 0.65) results.

The rest of this chapter is dedicated to evaluate the performance of ABC-Pattern-

Predict in a select application domain, efficient office temperature control. First we

present a simulation framework that highlights why the usage of predictive

algorithms for efficient temperature control is worthwhile. In the last part of this

chapter we simulate the temperature control using the occupancy traces provided

by the analysis we performed. In order to show the impact of ABC-Pattern-Predict

we simulated the control through building simulation software, EnergyPlus, using

varying degrees of setback.

 92

6.1. Office Temperature Control Through Indoor Location Prediction
According to the U.S. Department of Energy, buildings constitute about 41% of

primary energy usage in the U.S., with commercial buildings contributing half of

that. Heating, Ventilation, and Cooling (HVAC) systems in commercial buildings

account for about 40% of this energy use [70]. While modern HVAC systems make

use of Variable Air Volumes (VAV) units for independent control of thermal zones

[31], most modern buildings still use static schedules to run HVAC systems,

thereby wasting energy when spaces are unoccupied [8,19,20,24,74,75]. Thus,

recent work has focused on actuating HVAC systems, based on near real-time

occupancy information [8,19], as well as predicted occupancy-based on learned

patterns [37,62], with estimated HVAC energy savings ranging from 30-40% in the

best case [19,62].

There is no question that occupancy-based HVAC actuation systems are effective

for substantially reducing the energy use in commercial buildings. However, there

are significant costs involved in the design, installation, and maintenance of the

occupancy data collection network. For example, Erickson et al. [19] report an

expense of $140,000 just for the hardware of a three-floor building, and even

simple wireless detection sensors can cost well into the hundreds of thousands of

dollars for entire buildings. While wireless sensors can be incrementally deployed,

thereby reducing installation costs, in practice it is very difficult to maintain a large-

scale wireless sensor network [33]. Building managers could make better choices

about such systems and their upkeep if they could systematically explore the

design space of cost, complexity and energy usage tradeoffs between candidate

occupancy detection/prediction systems for HVAC control.

To address this challenge we created a simulation framework [In submission: 25]

that allows building managers to explore the effect of varying different parameters

of occupancy prediction algorithms on energy consumption and occupant comfort.

Our framework’s inputs are: reference occupancy patterns, false positive and false

negative rates of the prediction algorithm, prediction look ahead length, prediction

error length, temperature setback settings, and building characteristics. Prediction

look ahead length is defined as how far in advance occupancy predictions occur,

 93

prediction error length is the temporal clustering of consecutive predictions, and

temperature setback settings represent the minimum and maximum temperatures

that the indoor temperature can reach before the HVAC system engages.

We validate the utility of our framework for assessing energy consumption and

occupant comfort using a 196-day longitudinal occupancy-temperature dataset that

we have collected for 235 offices. We analyze the effects of varying three

parameters in a simulated prediction and control system: false positive rate (false

positives/(false positives + true negatives)), false negative rate (false

negatives/(false negatives + true positives)), and temperature setbacks. We use a

Revit building model [6] of a large university office building on our campus and

Energy Plus [15] to simulate building HVAC control in response to predicted

occupancy and weather data. We compare the relative benefits of different levels

of false positive and false negative rates, and temperature setbacks based on

energy consumption, as measured by Energy Plus, and occupant comfort, based

on a MissTime [46], the average daily number of minutes a room was not at a

chosen comfort temperature. This metric indicates on average how many minutes

per day an occupant had to endure temperatures that were not their preferred

temperatures.

Our results demonstrate three key factors: first, that predictive occupancy systems

with wider temperature bounds can measurably outperform reactive control

systems; second, that predictive occupancy systems with smaller temperature

bounds can outperform static schedules in energy reduction, with comparable or

better occupant comfort; third, that the differences between occupancy prediction

algorithms that have near state-of-the-art performance, have fairly large effects on

energy consumption and occupant comfort, demonstrating that even moderate

gains in performance can be meaningful in a cost-benefit analysis. These results

validate the value of our framework, in a number of ways, as it demonstrates the

potential utility for building managers in 1) deciding whether to switch from reactive

occupancy to predictive occupancy, 2) deciding whether to install occupancy

detection technology and choosing between multiple alternatives, 3) deciding

whether to upgrade the prediction occupancy system and algorithms currently in

 94

use for the building. In any of these cases, our framework would allow a building

manager to make a more informed, and likely better, decision.

6.1.1. Related Work
The significant energy consumption of HVAC systems, coupled with a growing

worldwide awareness of sustainability, has led to significant research work on

methods to reduce their energy usage. Prior work has shown that HVAC control

systems can use occupancy data to optimize HVAC scheduling [8,19,24,47,62].

For example, Erickson et al. created an occupancy-based HVAC control system

that has the potential to reduce energy consumption by 30% compared to an

occupancy oblivious system, while maintaining thermal comfort [19]. Numerous

other predictive techniques achieve similar performance [8,24,62].

As mentioned previously, one of the key facets of occupancy-based HVAC

scheduling is balancing energy consumption/cost with occupant “thermal comfort”

[12,18,19,20,74]. Keeping an HVAC system fully on always would ensure thermal

comfort at all times, but significantly increase energy consumption. Similarly,

turning off the HVAC system, or running it at minimal levels to keep the building

infrastructure intact (i.e., prevent freezing pipes or overheating of equipment)

would achieve a much lower energy usage, but lead to significant occupant

discomfort. Neither of these extremes, perfect comfort nor perfect energy usage, is

desirable, which has led to a number of approaches for balancing these factors

[8,18,19,20,24,48,62,74].

One of the most promising approaches, reactive control in which a room is

adjusted to its preferred temperature only when an occupant is detected, often

relies on costly, per-office sensors to track occupancy. However, Balaji et al. were

able to reduce costs by using existing WiFi infrastructure to track participants’

smartphones, yielding a 17.8% reduction in HVAC electrical energy consumption

[8]. This approach required users to have a smartphone, be willing to install their

app, and did not work in public spaces (individuals’ phones were associated with

their offices). This system moderately reduced thermal comfort during the time

taken by the HVAC system to reach the desired temperature of the occupant.

 95

In contrast to reactive occupancy systems, there is potential for modeling

occupancy to create a ‘predictive occupancy’ system [19,36,62]. Scott et al.’s work,

on the Preheat system for residential homes, utilized predictive occupancy to

reduce the amount of ‘missed time’, time when the house was occupied but not

warm, by 6-12 times compared to a static schedule while using an equivalent

amount of energy [62]. Current research has focused on achieving or determining

the highest possible detection and prediction accuracy. This is an important goal to

strive for; however, it is also important to remember that achieving this goal has

costs. Occupancy detection infrastructure, its installation, and its maintenance can

be very expensive, particularly when renovating older buildings, rather than new

construction [5]. Worse yet, the better the sensors and smarter the HVAC control

systems, the higher the cost generally becomes [74]. Building managers need

better information to tradeoff the gains in energy efficiency due to increased

accuracy against costly infrastructure.

To this end, Kleiminger compares the results of multiple existing occupancy

prediction algorithms with differing levels of accuracy, evaluating them both on

energy consumption and missed time [36]. However, comparing multiple accuracy

levels was a by-product of their exploration of algorithms, not its focus. Balaji et

al.’s work on the Sentinel system was partially motivated to utilize existing WiFi

infrastructure for occupancy detection, and to reduce installation and running costs

[8]. Erickson et al.’s work on the POEM system includes a return on investment

analysis to show its cost-effectiveness [19]. However, neither paper attempts to

study the inherent tradeoff between occupancy detection and prediction cost and

the benefits of smart HVAC control in a systematic way.

In contrast to prior work, we present a comprehensive framework that supports the

systematic comparison of occupancy prediction algorithmic performance using

several parameters such as accuracy level, error distribution, and building

characteristics. Using our framework, building owners and managers can more

accurately evaluate the benefits of installing various occupancy sensing

technologies. This allows them to make better decisions with regards to the

aforementioned tradeoff between these benefits and the cost of

 96

installation/renovation. To our knowledge no framework exists to allow building

managers to explore the tradeoff for differing levels of predictive algorithmic

performance.

6.1.2. Simulation Framework
Our primary contribution is a general framework that can be used to systematically

evaluate the impact of different predictive algorithm parameters on energy

consumption and occupant comfort. As shown in Figure 1, our framework uses a

multi-step process to simulate the impact of occupancy prediction errors. The

framework performs three steps: (1) prediction of room occupancy, (2) building

simulation based on predicted occupancy, and (3) error and impact calculations.

Figure 24. 3 Stages of our Simulation Framework

(Dotted boxes: Inputs; Solid boxes: parameters;)

At each time step, for each room, the framework determines from the data whether

that room will be occupied at a look-ahead time specified as part of the simulation

(the look-ahead length). Having determined what an Oracle (perfect predictive

system), would do, we then determine the likelihood that a correct prediction will be

returned given the provided false positive and false negative rates (see Prediction

Step in Figure 1). Importantly, while we ensure that the simulation of occupancy

prediction for a given room has the overall provided false positive and false

 97

negative rates; we vary these rates throughout the day. It is a well-known fact in

building management that occupancy prediction is easier during certain times of

day than others. To simulate this effect, we use a weighting function based on the

maximum likelihood estimate for a room being occupied or unoccupied at each

time of day over the length of our dataset. For example, we use the likelihood of a

room being occupied at 3pm each day over the course of the dataset as the weight

for the 3pm timeslot. (Note, we calculate weights for each time slot on weekdays

and weekends separately, as times that are likely to be occupied during the week

are not necessarily likely to be occupied over the weekend).

We redistribute errors such that times during which predictions would be more

difficult will have higher error rates. In other words, times of the day that are

unlikely to be occupied during our data set will be more likely to have prediction

errors occur when they are occupied, as opposed to times of day which are

generally occupied, which will be less likely to have errors. Based on this

calculated probability that a correct prediction will be returned at a given time, we

randomly determine whether an error would occur, and then return either the

correct prediction, or an error.

Importantly, errors only affect predictive occupancy. Once the room is actually

occupied, we assume that the control system falls back to reactive occupancy,

regardless of what the predictive system indicates, and is assumed to correctly

monitor the occupant until the occupant leaves the room.

We then use a Revit model of a typical university office building, and create a

mapping from our predicted occupancy traces to the rooms in the Revit model.

This model is for a real building on our campus and was provided to us by the

building managers themselves. Then, we run Energy Plus simulations based on

the occupancy predictions, building model, input parameters, and weather data

from the target city during the period of analysis. However, any building modeling

technique that relies upon occupancy traces could be used.

In the final step, we analyze the results. Our results are split into two categories:

energy impact, and occupant comfort. Energy impact is based on energy used by

 98

the HVAC system over the course of our Energy Plus simulation. We measure

occupant discomfort with MissTime (see Supported Metrics).

We implemented our simulation framework in Python, with an SQL back end to

store data related to the simulations, such as predicted occupancy traces at each

time step, as well as the differing parameters used for the simulation. As stated

above, we use Revit building models and Energy Plus software for modeling HVAC

control and energy usage of the building. The simulation framework’s capabilities

are described in the next section.

6.1.3. Variations Supported by the Framework
Our simulation framework is designed to support specification and variation along

multiple dimensions:

Accuracy; False Positive and Negative Rate
The framework can vary accuracy at any level; however, accuracies below 50%

are unimportant for analysis, given that the least accurate algorithms in the current

literature give significantly higher accuracies [8,20,19,36]. We define accuracy as

the chance that if the model were to make a prediction, it will correctly predict

occupancy at that level of accuracy. For example, if the correct prediction is a room

being ‘unoccupied’, a model with 70% accuracy would have a 70% chance of

predicting ‘unoccupied’, and a 30% chance of predicting ‘occupied’.

Although varying accuracy systematically is valuable, it lacks nuance. It is quite

common for machine learning models generally, and predictive occupancy models

specifically; to have differing false positive and false negative rates. Additionally,

algorithms can often be tweaked to decrease only one of these error rates, while

potentially increasing the other. In light of this, a building manager may wish to

examine the effects of differing false positive and false negative error rates. This

affords a building manager a greater degree of control of the tradeoff analysis by

examining the effects of both forms of error rate independently. Importantly, rooms

with differing levels of occupancy will have different overall accuracies at false

positive and false negative error rates. A room that is rarely occupied will have

fewer total numbers of errors with a low false positive rate and high false negative

 99

rate, than a room that is commonly occupied. To account for this, our framework

returns the overall accuracy for the inputted rooms to the building manager. This

allows the building manager to examine his results either at the false positive/false

negative level, or at an overall accuracy level, which can be particularly important

for predictive occupancy solutions that only report overall accuracies.

Look Ahead
A key factor for predictive occupancy control of HVAC systems is how far in

advance predictions about occupancy occur. The length of the look-ahead

depends both on the temperature change rate of a room as well as the intended

deviation from the room’s preferred temperature. Too short of a look-ahead may

mean not being able to bring the room up to optimal temperatures prior to

predicted occupancy, leading to occupant discomfort. Look-aheads that are too

long may mean bringing the room up to optimal temperatures somewhat earlier

than necessary, leading to HVAC inefficiency. The framework supports a range of

potential look-ahead values starting with ten minutes and increasing at five-minute

intervals to any value desired. The five-minute interval increase is based on our

five-minute data granularity. Changing the interval increase to accommodate more

or less fine-grained data is a trivial extension.

Prediction Error Length
Prediction models that use temporal features, which almost all do in the field of

HVAC control, will generally have ‘clustered’ predictions. In other words, a model

that will predict ‘unoccupied’ at time t, is more likely to also predict ‘unoccupied’ at

time t+1 and time t+2. This is important, because a model that predicts occupied

five times and then unoccupied five times, versus one that alternates between

predicting occupied and unoccupied, will have differing performance characteristics.

To account for this phenomenon, the simulated model includes a clustering factor

when making predictions. This can take one of two forms in our framework. First,

there can be a fixed prediction error length, which simply means that instead of

determining whether an error will occur at each time step, the decision is made for

the fixed length of time input, which can constitute multiple time steps. Second

there can be a variable prediction error length. In this case the framework will

 100

randomly choose whether the simulation will continue making that prediction for a

time period ranging from one time step to however many time-steps the user

wishes to input. While this clustering is an approximation, it is designed to better

simulate the patterns of an actual predictive occupancy model using temporal

features.

It is important to note that if the model predicts unoccupied for a time length t and

the room becomes occupied within this length t, our framework will shorten t to

account for it. For example, if t is 20 minutes and the room becomes occupied

within 15 minutes, then t will be shortened to 15. This is in keeping with the earlier

stipulation that the system will fall back to reactive occupancy once the room is

occupied.

Temperature Bounds
Modern HVAC systems, at a minimum, are designed to maintain the temperature

in a building to levels that prevent damage to the building infrastructure. For

example, the temperature in a building is kept well above freezing to prevent water

pipes from bursting. Most buildings further restrict this range, in part to ensure

occupant comfort. However, restricting the range of acceptable temperatures for

an unoccupied room results in wasted costs by making the HVAC system run

unnecessarily to keep the room within those temperature bounds. Thus, when

using our framework, it is important to specify a minimum and maximum allowable

temperature. These minimum and maximum temperatures can vary depending on

the room, to take into account differing heating and cooling preferences for

different spaces. It should be noted that while room specific temperature bounds

may increase accuracy, they also increase the complexity and difficulty of using

the framework, and so our framework provides a uniform set of temperature

bounds across all rooms, by default.

Building Model
The characteristics of the building and its HVAC system influence the HVAC

system’s heating and cooling rate, and the rate at which indoor temperature

normalizes (based on building insulation) with the outdoor temperature when the

HVAC system is not running. This modeling requires information about the outdoor

 101

temperature and cloud cover, since the effect of solar energy on a building’s

internal temperature can be significant.

Perfectly modeling HVAC heating and cooling rates, as well as temperature

normalization or decay rate, is a difficult problem. As a gold standard, we use Revit

buildings models with Energy Plus simulations to model energy consumption [6,15].

Importantly, for those who choose not to use a Revit building model, there are

other potential options. Temperature change rates could be empirically

approximated based on temperature data for each room from the existing building

management system. Another option is empirically model the buildings based on

collected sensor and actuator data. While these techniques would yield only rough

approximations for temperature, they could be reasonable to use for within-building

comparisons of the effects of varying other variables. The potential effects on the

quality of the output are discussed in the next section.

A salient point to keep in mind regarding building modeling is that the base

occupancy traces provided, and therefore the simulated occupancy predictions

from the prediction step, need not come from the building being modeled. Indeed,

this is quite likely to be impossible in the case of new building construction or

renovation of buildings without occupancy detection infrastructure. However, in

these cases it is possible to use representative occupancy traces, at least on an

aggregate level. This would involve taking occupancy traces from a building with

similar usage (commercial office building, university building, campus office

building) and size which already has occupancy detection infrastructure, and

applying them to the new building. Since the generation of the simulated

occupancy traces and the control of the building are entirely separate stages, the

fact that the base occupancy traces came from a separate building would have no

major effect on the results, assuming that the occupancy traces in question are at

least reasonably representative of the target building’s usage modalities.

6.1.4. Supported Metrics
We evaluate the results of our simulations in two ways: Energy Impact and

Occupant Discomfort.

 102

Energy Impact
As mentioned previously, we use a Revit model and Energy Plus to simulate a

building’s HVAC control in response to our simulated occupancy predictions.

Energy Plus calculates HVAC energy usage on a monthly basis at a room-by-room

level, and we use this calculation as our Energy Impact metric. We aggregate the

room-by-room and monthly data to analyze at the building level over the entire

simulation period for each simulation.

 Predictive
Occupancy

Reactive
Baseline

Static
Baseline

Temperature deviation bounded by
2°C (~4°F) setback Run Run

Temperature deviation bounded by
6°C (~11°F) setback Run

Temperature Deviation bounded by
10°C (~20°F) setback Run Run

Table 13 Simulation Conditions

As stated above, building managers can choose a custom energy calculation that

does not depend on a building model-based technique. In this case, we

recommend an equation provided by the U.S. Department of Energy (DoE) [68],

which has been used in the research literature [7]. This idealized equation takes as

input the difference between room and outdoor temperature, as well as locale

specific constants, and returns estimated energy consumption in kWh. While

inherently less accurate than a building model simulation, this equation is generally

applicable and available to all building managers.

Occupant Discomfort
Our framework supports an estimate of occupant discomfort by analyzing

MissTime [46], the average daily number of minutes a room was not at the correct

comfort temperature. This metric indicates on average how many minutes per day

an occupant had to endure temperatures different from her preferred temperature.

We differ from Preheat, an accurate occupancy prediction algorithm that used

MissTime as a measure of occupant discomfort [46] insofar as we assume a fixed

preferred comfort temperature and not a comfort temperature range. This limitation

 103

is necessary since Energy Plus does not give us the ability to export the daily room

temperature distribution in a 5-minute interval and thus we cannot calculate when a

room reaches the comfort temperature range. This will overestimate the comfort

impact, but we believe it will still provide a valuable validation point for our

framework.

6.1.5. Framework Validation
The goal of our validation is to show specific differences in the performance of

simulations varying algorithm parameters that building mangers could use to make

better decisions as to what type of occupancy prediction hardware and software

that will be most appropriate for their needs.

Unfortunately, the Revit model for the building that we used to collect occupancy

traces was not available to us. Instead, for validation we used the Revit building

model for another representative building and created a mapping between the two

buildings. While not ideal, this does not significantly reduce the validity of our

results. As mentioned previously, the simulation of occupancy prediction and the

control of the building are entirely separate stages of our framework. Furthermore

both buildings are large university buildings, suggesting that the occupancy traces

for one building should be reasonably representative of the other. Additionally, as

stated above, the purpose of this validation is to show that varying the factors we

have chosen to analyze has a measurable effect on a building’s energy

consumption and occupant comfort. We do not seek to show that this is true for a

specific building, rather to provide a proof of concept that this framework yields

results that can be useful for real buildings generally. Since our Revit model

accurately depicts an existing building, its results will serve just as well to validate

our framework.

Our data set includes 196 days of occupancy data collected at five-minute intervals,

from June 2011 to December 2011 for the GHC building. This data included the

room ID, a timestamp for when the data was collected, an outdoor temperature, an

indoor temperature, and a binary occupancy status. Occupancy was measured

using dual-technology (Passive Infrared and Ultrasonic) sensors deployed across

 104

all rooms in our testbed building, networked to the existing Building Management

System.

Currently, the building uses a reactive occupancy system. We use this control

system as a baseline to compare our simulations against. Additionally, we

simulated a static 6am-9pm schedule system, as another baseline to compare

against.

Simulation Parameters
Our simulation framework has a wide range of inputs and parameters. While

varying all of these parameters to their fullest extent would be ideal, due to space

constraints we focus on parameter values that are the most realistic, and will have

the greatest effect on our metrics. In particular, we vary the false positive and false

negative error rates, and the temperature bounds in our validation, for a total of 27

simulations. Additionally, we simulate a reactive system and a static schedule

system as baselines to compare our results against.

False Positives/Negatives: Many variations
The main goal of our validation was to demonstrate the benefits of simulating

different levels of false positive and false negative rates, and compare their impact

given other parameterizations of the framework. We chose to focus our analysis on

false positive and false negative rates as most designs of predictive occupancy

algorithms and control system report their performance either in terms of overall

accuracy or false positive and false negative rates. Therefore, we argue that

understanding the gains from differing levels of false positive and false negative

rates will provide building managers with a greater degree of insight into the value

of differing systems. Our experiments were conducted at 25%, 15%, and 5% false

positive rates crossed with 25%, 15%, and 5% false negative rates (9 total error

rate variances). We chose these values as representative of the range of

performance for ‘state of the art’ prediction algorithms.

Look Ahead: Fixed Value
As stated earlier, look ahead should be defined based on the time necessary to

bring a room to a comfortable temperature. Due to space constraints, we only

report results for one Look-Ahead value. We choose 60 minutes, both as a

 105

reasonable time frame to perform predictions over, as well as matching with our

longest possible prediction error length (see blow).

Prediction Error Length: One Value
We configured the prediction step of the framework to use Random-Prediction

errors length, last randomly from five minutes (the shortest time-step in our

dataset) to one hour. These random prediction errors had a mean length of 32.5

minutes (SD=13.8 minutes).

Temperature Bounds: Three Variations
Setting temperature bounds relies on two variables: the heating and cooling

setpoints when a room is occupied, and the length of the bounds between

occupied and unoccupied setpoints. We chose 20°C (68° F) as our occupied

heating setpoint, and 24°C (75°F) as our occupied cooling setpoint. We chose

these setpoints based on the ISO 7730 standards of comfort [34]. We also

simulated three different temperature bounds, as described in Table 1: The first

Figure 25 Overview showing energy consumption, in kWh, of the 27 EnergyPlus
predictive occupancy simulations run over six month. % for each data point is average
accuracy across all rooms.

75.80%' 76.04%' 76.32%' 83.90%' 84.16%' 84.42%' 92.28%' 92.53%' 92.79%'

0

50

100

150

200

250

FP 25 - FN 25 FP 25 - FN 15 FP 25 - FN 5 FP 15 - FN 25 FP 15 - FN 15 FP 15 - FN 5 FP 5 - FN 25 FP 5 - FN 15 FP 5 - FN 5

Th
ou

sa
nd

s i
n

kW
h

Heating and Cooling Consumption in kWh

Heating [in kWh] Large Temp Bound Heating [in kWh] Medium Temp Bound Heating [in kWh] Small Temp Bound

Cooling [in kWh] Large Temp Bound Cooling [in kWh] Medium Temp Bound Cooling [in kWh] Small Temp Bound

 106

bounds (Small-Bound in Table 1) are 2°C from the setpoint temperatures. We

chose these as the most rigid realistic bounds, similar to those used in reactive

control systems. The second set of bounds (Medium-Bound in Table 1) are 6°C

from the setpoint temperatures. We chose these as they were well within safe

operating parameters for the building, but would provide some notable energy

savings, without jeopardizing occupant comfort in most cases. Finally, the last set

of bounds (Large-Bounds in Table 1) is 12°C from the setpoint temperatures.

These represent the most extreme temperature bounds that a building manager

could use, as allowing the temperature to float further could have negative effects

on building operation. While unlikely to be put into practice, this final condition is

used to show the upper bound on energy gains that a building manager could

achieve. Additionally, we run the reactive system with small-bounds, and the static

schedule with the large-bounds case as comparisons.

Building Modeling:
As stated earlier, we made use of a Revit model of a large university building on

our campus, and used Energy Plus to simulate the effects of HVAC control and

weather for the 6-month period between June and December in response to our

simulated predicted occupancy traces. We choose a multi-seasonal time period to

validate our framework over a range of weather periods as well as increase the

sample size of our occupancy traces.

It is important to note that we did not simulate every HVAC zone in our Revit model,

only those for which we had simulated occupancy traces to map to. This has little

bearing on comparisons between conditions; however, overall aggregate energy

usage as well as monetary savings, are only for the 235 offices we simulate, not

the entire building.

Evaluation Metrics
To quantify the energy impact of different options we use the output of our Energy

Plus simulations. For occupant comfort, we use the aforementioned variant of

MissTime. We compare in terms of both absolute, and percentage reductions.

Evaluation Results

 107

For each simulation scenario we generated, we calculated two metrics (totaled

over the 6 month period of our occupancy traces) – Energy Impact and Occupant

Comfort. We compare the predictive occupancy simulations to themselves, to the

reactive baseline, and to the static schedule baseline.

6.1.6. Energy Impact
Figure 2 shows the heating and cooling HVAC energy usage for the offices we

simulate in our test building under each of the predictive occupancy simulation

conditions in kWh.

As expected, wider temperature bounds reduced energy impact in each case.

While unsurprising on a theoretical level, it is important to note that rather than

having a theoretical understanding that wider temperature bounds reduce energy

usage, these results let our building manager know specifically that widening from

the small to medium bounds led to an average overall savings of 148,602.46 (kWh),

or 24%, and between the medium temperature bounds and large temperature

bounds and average overall savings of 124,379.84 (kWh) or 28%. This is

particularly important as the relationship between widening temperature bound (by

number of degrees) and energy reduction is obviously non-linear, and thus not

easily calculated without testing specific temperature bounds.

The second important result in Figure 2 is also one that is theoretically expected.

Decreasing the simulated false positive rate led to declines in energy usage under

all temperature bounds. However, once again the value of our framework comes

not from answering the theoretical question, but from quantifying it in terms that a

building manager can use. A building manager using our framework would know

that a decrease from 25% to 15% false positive rate showed an average 18,272

kWh reduction in energy impact, or 7.27% total power usage, and similarly that a

decrease from 15% to 5% false positive rate showed an average 21,824 kWh

reduction in energy impact, or 9.30% total power usage. This is particularly useful

piece of information because the relationship between false positive rate and

energy impact is non-linear, making the increased number of datapoints our

framework provides even more valuable.

 108

Percent Savings Compared to Baselines
Figure 3 shows the relationship between overall energy consumed by each of the 9

simulated occupancies, and the reactive and static baselines established. As

expected, the reactive system outperforms all levels of predictive occupancy using

the same small temperature bound. However, it is important to note that the

medium and large bound cases both outperform the reactive system. More

importantly, our framework quantifies how much these larger bound cases

outperformed the reactive system. Depending on false positive and false negative

rate, our building manager could expect to see a 10.68% to a 26.62% reduction in

energy usage by changing from a reactive system with small temperature bounds

to a predictive occupancy system with medium temperature bounds. Similarly, the

conversion to a large temperature bound system would yield a 16.44% to 40.73%

reduction in energy usage.

Figure 26 Energy Savings Predictive Occupancy systems vs. Baseline Reactive and
Static Schedules

-10%

0%

10%

20%

30%

40%

50%

FP25/FN25 FP25/FN15 FP25/FN5 FP15/FN25 FP15/FN15 FP15/FN5 FP5/FN25 FP5/FN15 FP5/FN5

Predic've)Occupancy)Energy)Savings)vs.)
Baseline)Reac've)and)Sta'c)Schedules)

Sta$c&Comapred&to&Large&Temp&Bound& Sta$c&Comapred&to&Medium&Temp&Bound&
Sta$c&Comapred&to&Small&Temp&Bound& Reac$ve&&Comapred&to&Large&Temp&Bound&
Reac$ve&&Comapred&to&Medium&Temp&Bound& Reac$ve&&Comapred&to&Small&Temp&Bound&

 109

The static 6am-9pm schedule with large temperature bound outperformed all

predictive occupancy cases with small temperature bounds. However, the

occupancy cases with large and medium temperature bounds both uniformly

outperformed the static system. This is somewhat unsurprising in the case of the

large temperature bounds, since most occupancy occurs during the day and

therefore the static system will be ‘on’ more often than the predictive system.

However, it is important to note that our framework provides building managers

with quantified values for these gains, from 14.7% to 39.5%. The fact that the

predictive occupancy cases with medium temperature bounds also outperform the

static schedule is more surprising, since the effect of temperature bounds is

generally quite large, and would therefore not necessarily be intuitive to a building

manger. In addition, our framework quantifies the amount that the predictive

occupancy algorithms with medium setbacks outperform the static system by,

showing an energy impact decrease from 8.8% to 25%.

Occupant Discomfort
We also report the results of our occupant discomfort metric, as can be seen in

Figure 4. As expected, the lower false negative rates had significant impacts on the

average daily MissTime. However, once again our framework allows us to quantify

this effect for our building manager: the average difference between the 25% false

negative rate and 15% false negative rate was 5.3 minutes a day, or 13.5%, and

the average difference between the 15% false negative rate and 5% false negative

rate was 5.1 minutes a day, or 15.6%. While comfort does not lend itself as well to

a direct price comparison with cost, the quantified difference in occupant comfort

that different predictive algorithms would achieve has obvious utility for building

managers choosing between algorithms.

Additionally, unsurprisingly the predictive occupancy systems outperformed the

reactive system in terms average daily MissTime. The reactive system in fact had

one of the worst MissTime at 213 average daily minutes; however, this may be due

to the strict standard of comfort that we describe above. Nevertheless, our

validation provides our building manager with quantified values of this reduction:

170-185 average MissTime minutes a day less in predictive occupancy cases.

 110

Finally, the predictive occupancy systems also outperform the static schedule in

terms of occupant comfort. This result is somewhat surprising, since the static

schedule has perfect occupant comfort from 6am-9pm. Nevertheless, as a result of

it has 124 average missed time minutes, suggesting that on average there is about

2 hours of occupancy a day outside of this time band. This is between 80-95

average more MissTime minutes than the predictive occupancy systems.

It is important to note that these results may be specific to university occupancy

patterns, with students and faculty working odd hours. While they are important for

our building manager, a building manager for an industry office building would

need to use occupancy traces either from their building, or from a similar industry

office building, to achieve accurate results.

6.1.7. Discussion
The results from the validation of our framework are interesting; however, it is

important to put them in context. The results presented above are not universal to

Figure 27 Average Daily Occupant Discomfort across predictive occupancy conditions
and baselines.

0

50

100

150

200

250

300

FP25/FN25 FP25/FN15 FP25/FN5 FP15/FN25 FP15/FN15 FP15/FN5 FP5/FN25 FP5/FN15 FP5/FN5 Static
Schedule

Reactive

M
iss

Ti
m

e
in

 M
in

ut
es

Daily Average MissTime

 111

all occupancy prediction algorithms with the parameters we chose. Rather, our

results are specific to the occupancy traces, building model, and weather data we

used in the validation of our framework. In addition, while Revit models and Energy

Plus simulations represent the gold standard for building modeling, any model has

limitations. In particular, determining the errors bounds of Energy Plus simulations,

to provide building managers with a quantified value of the potential inaccuracies

of our results, remains a matter for future work. While the effect of such error

bounds will be mitigated by the fact that we perform within-building comparisons,

they may have some impact on the results.

This does not limit the importance of our validation. Rather than demonstrating that

certain algorithm parameters are better for all buildings, climates, and occupancy

traces, the importance of our framework is in demonstrating the types and scope of

information that would be available to a building manager using our framework,

and how this information would allow a building manager to make more cost-

efficient decisions and tradeoffs. We couch this discussion in terms of the results

from our validation to provide real-world cases of information that would be

beneficial for building managers in their decision making process.

Reactive vs. Predictive Occupancy
As a point of common knowledge supported by our validation, a reactive

occupancy control system outperforms predictive occupancy control systems with

regards to energy consumption when the same bounds are used. However, as

stated at the beginning of the paper, to ensure occupant comfort, reactive systems

only use small bounds, whereas predictive control systems can use much larger

bounds. Of particular importance to our validation was that the medium

temperature bound predictive occupancy systems outperformed the reactive

system in terms of energy consumption, while maintaining occupant comfort.

These predictive occupancy cases consumed approximately 20.8% less energy

than the reactive case. From the perspective of a building manager using our

framework, if they were currently using a reactive occupancy system, then they

could expect to achieve a 20.8% energy savings, depending on the predictive

occupancy algorithms they deploy. Depending on the costs of electricity in the area,

 112

as well as the costs of differing predictive occupancy software or hardware, in the

case of algorithms requiring more complex sensing technology and feature sets 19

the building manager could confidently choose a software package or hardware

upgrade that maximizes his savings, and maintains occupant comfort, with the

added benefit of reducing overall energy usage for sustainability purposes.

Static vs. Predictive Occupancy
The discussion above focuses on a building manager who already has occupancy

detection technology installed, and is considering the best way to employ or

upgrade it. Of equal or possibly greater importance is the case of building

managers or owners who do not have occupancy detection technology installed,

and have too little information to make informed decisions as to whether to install

occupancy detection technology, as well as how to use it.

From our validation, we ran a single simulation with a static control schedule,

which kept the temperature to the setpoints between 6am and 9pm, and allowed

the temperature to float to the large bounds at all other times. While this schedule

performed relatively well on our occupant comfort metric (since very little

occupancy occurs outside of these timeframes), it also consumed significantly

more energy. Once again, comparing to the medium temperature bounds

predictive occupancy simulations, these predictive simulations performed

significantly better than the static schedule in terms of energy consumption.

Additionally, the results for occupant comfort show that the predictive occupancy

systems significantly outperform even a 15-hour static schedule. For a building

without occupancy detection technology already installed (new buildings or

renovations), this information, coupled with electricity pricing in the area, as well as

the cost of installation of a specific system, would give the building manager

sufficient information to perform a cost-benefit analysis, and determine whether to

install occupancy detection, and to use algorithms that achieve the specified

accuracy.

Comparing Predictive Occupancies
• Another important case is considering whether to upgrade a pre-existing

predictive occupancy system in a building. As has been mentioned many

 113

times in this paper, the field of predictive occupancy is a vibrant one, and

new predictive solutions and systems come out every year. Therefore, it

is quite possible that a building manager using one predictive occupancy

control system might want to consider a new predictive software solution.

• Our validation shows the potential benefits in such a setting by

demonstrating the reduction in energy usage that differing levels of

predictive accuracy achieve. A building manager with a control system

with a 15% false positive rate could determine, based on the cost of the

software and estimated cost of transitioning to a new software package

or upgrading their occupancy detection hardware as in 6.1, whether a

new algorithm with only a 5% false positive rate was worthwhile to install.

Generalizability
The results from the validation of our framework are based on the occupancy

traces and building model we used. However, the analytic framework we

developed has significant broader applicability. An analysis of the occupancy for

our validation shows a mean occupancy of 20.2% (SD=11.02%). The high

standard deviation demonstrates that rooms had varying occupancy rates, and

showcases both that current building-wide static schedules are not efficient in such

a modern office building, and that the data upon which we base our validation

represented a range of occupancy patterns, suggesting that our results can be

generally applicable to a range of occupancy patterns. Additionally, we perform our

analysis over a 196-day long data set for 235 rooms. While our validation is

specific to the buildings we modeled, factors such as weather, building model, and

occupancy patterns, are largely representative of other buildings. Further, the

framework can be applied to other settings by providing new occupancy traces,

building models, weather data and details of the predictive system being

considered.

Utility
By providing the design parameters of the building, either through a building model

or through approximations of the proposed HVAC system and insulation type, and

acquiring a representative sample of occupancy behavior (such as using

 114

occupancy data from a similar building as an approximation), any building manager

can determine the levels of predictive accuracy that will provide them with the best

cost/benefit tradeoff. Additionally, with these design characteristics in hand, a

building manger could also compare the effects of multiple other factors, including

those related to the prediction algorithm, such as prediction error length and look-

ahead length, and those related to building management, such as the temperature

bounds to set, all at once. Also, for building managers who already have detection

and predictive technology in place, they may choose to seek out and make use of

more or less complex and or expensive control algorithms (i.e., software), based

on the benefits that our framework estimates such algorithms would achieve.

Additionally, while we focus our validation on varying control system factors, such

as false positive and false negative rates, and temperature bounds, building

managers could also use our framework to make decisions for potential design

elements for future buildings or renovations. Specifically, they could use the

framework to experiment with the effects of installing certain HVAC systems or

levels of insulation.

 115

6.2. Energy Consumption Evaluation of ABC-Pattern-Predict
As we were able to see in the results of the simulation framework presented in

section 6.1 there is great value in controlling HVAC systems through predictive

algorithms. In order to see the impact of ABC-Pattern-Predict on a real-world

temperature control system we utilized the same EnergyPlus simulation strategy

and evaluated the algorithm under the following conditions: variable setback from

2°C to 14°C in 2°C increments and two different temperature conditions, Pittsburgh

and Los Angles. We chose Pittsburgh as a reference as it has variable

temperature conditions during winter times (it ranges from relatively mild to very

cold conditions), while Los Angles was chosen due to its extremely mild winter. We

chose 22°C (24°C Cooling) as the preferred room temperature. We used the same

dataset as for the predictive analysis: 53 rooms during Nov. ’11 and Dec. ’11.

Figure 28 shows the cumulative energy consumption by temperature condition and

setback across all rooms. As we expected from our previous simulation the

setback has a great impact on the general energy consumption. We can observe

Figure 28 ABC-Pattern-Predict Energy Consumption for Pittsburgh and LA

0

10

20

30

40

50

60

70

80

2° C 4° C 6° C 8° C 10° C 12° C 14° C

M
ill

io
n

s

Pittsburgh Weather Heating BTU Pittsburgh Weather Cooling BTU

LA Heating BTU LA Cooling BTU

 116

that the behavior for Pittsburgh and LA are opposite to each other: Pittsburgh has

the greatest consumption for heating, but constant cooling and LA shows the

opposite behavior. Another difference between these two locations is the relative

impact of the setback. The heating consumption shows a much steeper decline for

the Pittsburgh condition as the cooling consumption for LA. This shows that during

winter month a larger setback might not have a significant impact on the

consumption for LA. This situation is most likely reversed during summer month

since Pittsburgh shows similar summer temperature as LA winters, but the summer

temperatures in LA are much higher. November and December (our evaluation

months) is the start of winter in Pittsburgh with average low temperatures of 34.7°F

and 25.3°F respectively. Given these low temperature it is not surprising that

increasing the setback from 2°C to 4°C is already saving us 23.8% in heating. In

Los Angeles, the average high during these two months is only 72.8°F and 67.7°F.

This is close to the chosen preferred temperature of 75°F, which means that a

higher setback has less of an impact on the overall savings. This is reflected in the

more linear and less steep cooling consumption reduction we observe in Figure 28.

Figure 29 Consumption Savings of ABC-Pattern-Predict over Static Schedule and
Reactive Schedule (Pittsburgh Weather)

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

2° C 4° C 6° C 8° C 10° C 12° C 14° C
Static Schedule Heating Savings Static Schedule Cooling Savings
Reactive Schedule Heating Savings Reactive Schedule Cooling Savings

 117

In order to see how this consumption compares to a reactive and static schedule

system, we also computed the consumption savings for the Pittsburgh weather

condition by computing the change in consumption from ABC-Pattern-Predict to a

static schedule (comfort temperature of 22°C work-time 6AM to 9PM, 12°C

otherwise) and a reactive schedule (22°C while room occupied, 20°C otherwise).

The results of this analysis can be seen in Figure 29. As we can observe for a 4°C

setback (64°C setback temperature) the savings are nearly 0%. A setback

temperature of 6°C (61°F setback temperature) or higher will result in savings of

ABC-Pattern-Extract. A moderate setback of 8°C already results in nearly 40%

savings. It is to note that the heating consumption between the static and reactive

schedule is nearly identical, which can be seen in the consumption comparison.

Since our comparative analysis between ABC-Pattern-Predict and PreHeat

showed that the main difference between the algorithms comes from an increase

in Recall, we also calculated the MissTime results (shown in Figure 30). As we can

see the increase in Recall has a profound impact on the average daily MissTime

minutes. The average over all user is 19.7 minutes (SD=11.5 minutes) for ABC-

Figure 30 Average Daily MissTime in Minutes

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Av
er

ag
e

D
ai

ly
 M

is
sT

im
e

User ID

PreHeat ABC-Pattern-Predict

 118

Pattern-Predict and 51.4 minutes (SD=19.5 minutes) for PreHeat, which is an

average reduction of 31.7 minutes. A statistical analysis of the results using a

Wilcoxon test reveals that there is a significant effect between the groups (p <

0.05).

 119

7. Discussion

This chapter conceptualizes the performance of ABC-Pattern-Predict along the

metrics of accuracy, precision, recall, kappa, and energy consumption. In addition

it highlights areas for improvements and shows how the prediction based on

Singular Patterns differs from the full FP-Tree prediction.

Accuracy Performance
The analysis results of ABC-Pattern-Predict show that the algorithm is capable of

reaching a very high performance. As we mentioned in the introduction it is very

difficult to accurately predict a person’s spatiotemporal routine due to the

complexity and variations in their daily spatiotemporal structure. The Work-Time

ZeroR baseline accuracy shows us how difficult it is to make a decision if a person

is at a location or not. On average the ZeroR predictor was only correct in 78.13%

(SD=8.67%) of the All-Day cases and 48.19% (SD=18.57%) of the Work-Time

cases. Given these low baseline results an accuracy of over 90% indicates a very

strong result. A comparison of the algorithm against Prediction-by-Partial-Match

(PPM), an algorithm that makes decisions solely based on the time of day, also

shows that a person’s spatiotemporal structure cannot be captured by only

considering one feature. In fact the PPM result is very similar to the baseline

accuracy.

Chapter 3 showed that PreHeat is one the best algorithms to predict whether

individual offices are occupied or not. Even though simple in its design, the ability

of PreHeat to model the spatiotemporal structure allows it to make very accurate

predictions about future spatiotemporal events. Even though PreHeat is already

showing a very high performance, our algorithm, ABC-Pattern-Predict, can even

further improve on the PreHeat results. Even though the differences on an All-Day

basis are not statistically significant, a fact that is not surprising given the high All-

Day performances, we saw how ABC-Pattern-Predict still achieves large

improvements over PreHeat as soon as we limit our analysis to the interesting

timeframe of 8AM to 6PM on workdays. As we mentioned in Chapter 3 and 4 it is

 120

necessary to do a more detailed performance analysis in order to understand how

the two algorithms differ.

Precision, Recall, and Kappa Performance
Our analysis of ABC-Pattern-Predict and PreHeat showed that the biggest

difference comes from an improvement in Recall. This means ABC-Pattern-Predict

is making fewer mistakes in predicting that a person is not at a location even

though they are (False Negative). Depending on the application domain, this can

have a huge impact. In our domain example it will result in less impact on a

person’s comfort, which will increase the acceptance of the system. On the other

hand we saw though that ABC-Pattern-Predict and PreHeat are very similar in

precision, which in our domain example results in a higher level of False Positives

and unnecessary heating and cooling. As mentioned in Chapter 6, the Kappa

results show a substantial agreement between the predicted and ground truth data.

Algorithm Thresholds
Throughout the description of ABC-Pattern-Extract and ABC-Pattern-Predict we

used a number of thresholds that were initialized for our experiments, but open up

avenues for further research. We used the following thresholds for the extraction

algorithm: a pattern frequency threshold that determines when a pattern is

extended by another Singular Pattern and the self information threshold that

determines when the overall pattern expansion is stopped. The prediction

algorithm has two thresholds: for the prediction using only singular patterns we

used a 5% probability threshold to retrieve a list of the most likeliest Singular

Patterns and for predictions using FP-Trees we used a relative frequency threshold

of 0.5 to decide between the results of the MLE and wMLE. Each of these

thresholds have implications for the performance of both the extraction and

prediction algorithm.

Pattern Frequency Threshold

This threshold has two potential implications: 1) A low threshold will allow ABC-

Pattern-Extract to capture more of the found structure, but will increase the

computational as well as space complexity, since more pattern are extracted and

more probabilities must be calculated; 2) A high threshold will limit the number of

 121

extracted patterns and thus reduce the number of calculated probabilities, but it

potentially makes the model less expressive. This threshold can either be

determined based on the application domain or empirically from the data, by

performing a parameter training using the performance of the prediction algorithm

as the objective function. For the latter option enough data needs to be provided.

Self-Information Threshold

The overall pattern extraction is stopped if the self-information of the collection of

patterns in one step is monotonically falling over the last three steps. This is

primarily a computational complexity criterion that was put in place to limit the

overall complexity. It can be either replaced with a more fine grained criterion that

makes decision for expansion of individual groups of patterns instead of the whole

pattern collection or removed altogether if enough computational resources are

available. This criterion is important mainly in the initial training phase, when a new

pattern base is created, but it is not used later on in the incremental retraining

during prediction run time.

Probability Threshold

This parameter has two possible implications: if it is defined too narrowly it gives

too much weight to the absolute pattern probability and might pick a pattern that is

not appropriate given the current contextual situation; if the threshold is chosen too

broadly it might pick a pattern that seemingly fits the current contextual situation,

but does not have enough probability. We picked 5% for our experiments, but it

can also be learned from the data by using gradient ascend with the accuracy or

precision/recall as objective function. Creating a threshold for individual times of

day might also further improve the performance. For example during the night it

might be better to pick a more narrow threshold and a more broad threshold during

the day. The implications of either should be investigated in future work.

Relative Frequency Threshold

Determining if an event is frequent or not depends highly on an individual and the

contextual situation and is an area of active research. For simplification we chose

the relative frequency between the MLE and wMLE target to decide between the

 122

two results. Decreasing this threshold means that the MLE result will only be

picked if the frequency of the target MLE Singular Pattern is much lower compared

to the frequency of the wMLE Singular Pattern. Increasing the threshold would

result in the opposite situation. The relative frequency allows us to give more or

less weight to the individual results. For example a threshold of 0.5 means that the

wMLE target needs to be twice as frequent as the MLE result. Again as before this

parameter can be learned from the data. We believe 0.5 is a reasonable threshold,

but performance improvements can be gained by adjusting this threshold to

individual users and situations.

Potential For Improvement
Even though it has high performance, the results also show that ABC-Pattern-

Predict has room for improvement: a few users show better performance using

PreHeat. An analysis of the results shows that errors occurred in cases of

infrequent, irregular events. PreHeat is capable of reacting to these since it is does

not model how likely it is that an event occurs. For example if a person arrives in

their office at 6AM in the morning three times in the training dataset, then PreHeat

will be able to react to this event if it occurs in the validation dataset. It makes no

judgment about how likely it is that this event occurs. We designed ABC-Pattern-

Predict to react to two types of events: frequent and infrequent regular events. We

defined regular events as events that occur at least four times in the training

dataset. This was done both to focus the algorithm on the abovementioned events

as well as to reduce the computational modeling complexity. In future work we plan

to overcome this shortcoming by allowing our algorithm to also react to irregular

events. It should be noted that even though our sample only had 10 student offices

(each of them has more than two occupants), PreHeat performed more accurately

for seven out of the ten offices. Student offices are the most difficult to predict

offices since their schedule is a combination of multiple schedules. Modeling the

schedules of each individual will most likely alleviate the situation and allow us to

increase the performance for these offices.

If we compare the accuracy differences between ABC-Pattern-Predict and PreHeat

(limited to Work-Time) by occupation, we see that we have 23 staff offices in the

 123

sample with an average accuracy difference of 3.22% (SD=4.66%), 14 faculty

offices with an average accuracy difference of 5.18% (SD=5.67%), 10 student

offices with an average accuracy difference of -0.77% (SD=3.57%), and six offices

with unknown occupation with an average accuracy difference of 2.75%

(SD=2.51%).

Singular Pattern Based Performance
In addition to the results of ABC-Pattern-Predict Mode 2 (predictions made based

on the full FP-Trees), we were also interested to see how successful the prediction

is for Mode 1 (predictions based on Singular Patterns alone). Since Mode 1 is

much easier to train and test it might be worthwhile in certain situations to use that

variation over the whole FP-Tree approach. This is especially true for users for

which the majority of the spatiotemporal structure is encapsulated in Singular

Patterns. Our analysis shows an average All-Day accuracy of 86.8% (SD=5.6%)

and average Work-Time accuracy of 72.1% (SD=9.2%). These results show that

Mode 1 does an adequate job at predicting future spatiotemporal events, but the

performance decreases greatly during Work-Time. Depending on the application

domain this might be good enough, but one has to weigh the increased

computational complexity with the performance gain. One advantage that Mode 1

has over Mode 2 and PreHeat is its independence from prior daily spatiotemporal

events. Mode 1 makes predictions solely based on the current state and not based

on any previous states. That gives the algorithm flexibility in cases for which a

spatiotemporal event history is not available (e.g., equipment failure).

ABC-Pattern-Predict Energy Simulation Performance
As we were able to see in the discussion of the algorithmic results, ABC-Pattern-

Predict has a very high performance. One aspect of this dissertation is also to

highlight how our algorithm impacts application domains. For our analysis we

chose efficient room-level temperature control in large office buildings. In order to

be able to analyze this domain from different perspectives we chose to use

commercially available energy modeling software. Our results were drawn from

two different temperature situations (Pittsburgh and Los Angles) and seven

different temperature setbacks (2°C to 14°C). As we were able to see in the results

 124

that the energy consumption of the building decreased with increasing setbacks.

This was a behavior we were expecting to see. Due to the temperature conditions,

we observed that Pittsburgh primarily sees a decrease in heating consumption,

while the Los Angles results show a decrease in cooling consumption. It is

interesting to note that the LA results show a linear relationship between setback

and consumption.

Since we were also interested to see how our approach compares to a reactive

and static schedule based system we calculated the consumption savings by

temperature setback. As we can see, we need an setback of at least 6°C (a

heating setpoint of 61°F) to see a consumption reduction over the two more

simpler control strategies. Since our algorithm’s performance is very high we

expect that an even higher setback is achievable. One interesting aspect is the

near identical performance of the reactive and static schedule based system. The

results of our algorithm simulation show that this is not an expected situation, but

rather an anomaly. The simulated energy consumption of a building (or a set of

rooms) depends on several factors: the physical layout of the building, the

occupancy traces provided to EnergyPlus, the set temperature during occupied

and unoccupied times, the outside conditions, and the HVAC equipment used to

maintain a certain temperature (e.g., floor heating, forced air, etc.). In our

experiments we varied two conditions: occupancy traces and temperature

distribution. Between the static and reactive schedule there are indeed observable

differences for the cooling consumption, but by chance the heating consumption is

nearly identical. It is possible that the combination of occupancy traces,

temperature distribution, outside temperature conditions and HVAC heating

equipment created a situation that is so similar between the two conditions that the

results are virtually identical. It is hard to further quantify this since EnergyPlus

does not provide detailed estimated temperature traces.

The biggest advantage of using ABC-Pattern-Predict for efficient temperature

control is its high Recall performance. As mentioned earlier high Recall results in a

lower number of False Negatives, which impacts occupant comfort. As we were

able to see in Figure 30, ABC-Pattern-Predict only has 19.7 minutes of average

 125

daily MissTime. This is an improvement of 31.7 minutes over PreHeat. This

reduction will allow us to deviate greatly from the preferred temperature and will

also result in less energy consumption compared to PreHeat. For example let us

assume a simple temperature change model that is able to change the room

temperature by 2°C over a 30-minute period. Since the average difference

between the algorithms is 31.7 minutes we can use a 2°C higher setback, while

maintaining the same comfort level as PreHeat. As we are able to see in Figure 29,

if we move from 6°C to 8°C we realize a 16.1% in average savings. This means

that while the comfort impact of the two algorithms is the same, our algorithm can

save 16.1% more in energy. This is a huge environmental and economic impact.

As mentioned, we used the metric of MissTime before [136]. However, since

EnergyPlus does not provide precise simulated room-level temperature traces as

an output we needed to use a more narrow definition of MissTime, by assuming

that an exact temperature needs to be achieved. Normally a comfort temperature

bound of ±2°C is assumed, which means our analysis slightly overestimates the

comfort impact. This means our algorithm has an even lower impact on human

comfort. The differences we see between ABC-Pattern-Predict and PreHeat are

also to be expected for a more loose definition of MissTime. It is a minor limitation

of this analysis, but we believe acceptable given the flexibility EnergyPlus allows

us.

This discussion together with Chapter 6 answers the following research questions:

how well does the detected structure in a person’s spatiotemporal behavior
allow us to make predictions for future events (Q2) and how do the
characteristics of the prediction results impact our ability to realize the
above-mentioned applications (Q3).

 126

8. Conclusion & Future Work

This dissertation explored the use of Conditional Frequent-Pattern Trees for the

modeling, understanding, and prediction of human spatiotemporal events and

structure. We presented ABC-Pattern-Extract, a FP-Tree based extraction

algorithm for spatiotemporal structure, and ABC-Pattern-Predict, a prediction

algorithm based on FP-Trees. Frequent-Pattern Trees allow us to consider diverse

contextual features, which makes the algorithm flexible enough to explore not only

patterns of individual behavior, but also relationships between contextual features

such as people or spaces. Our algorithm showed that we can extract FP-Trees

with an average depth of 5.3 in a reasonable amount of time on a standard laptop

without any high-level parallelization concepts such as Hadoop. ABC-Pattern-

Predict uses these trees to predict future spatiotemporal events and we

demonstrated that it does so with a very high performance. Compared to the

previous state of the art algorithm, PreHeat, ABC-Pattern-Predict improves the

average accuracy by 2.93%, while also improving the recall by 10.11%. The

improvements in accuracy and recall have huge implications for our chosen

application domain, efficient room-level temperature control. We demonstrated that

it is possible to save up to 16.1% in energy over PreHeat while maintaining

occupant comfort. The improvements in Recall translated into a reduction in

MissTime (the time a space was not at the preferred temperature) by on average

31.7 minutes.

This dissertation made the following contributions:

1. It presents an algorithm, ABC-Pattern-Extract, capable of explicitly modeling

the complex human indoor spatiotemporal structure in a time and space

efficient manner, so it can run on a standard laptop without high-level

parallelization (e.g., Hadoop) taking less than an hour per user. Doing so

will allow us to predict future spatiotemporal events and in turn enable the

realization of aforementioned applications.

 127

2. Through ABC-Pattern-Predict it shows how the modeled structure can be

used to accurately predict future spatiotemporal events. The results show

that it is more accurate than current state of the art algorithms and also

greatly improves on the recall error metric.

3. To show the impact of the algorithm on an application domain this

dissertation uses office temperature control as an example. Compared to

previous state of the art algorithms, ABC-Pattern-Predict improves the

potential for energy savings by 16.1% over previous state of the art

techniques, while maintaining the overall human thermal comfort.

Future Work
Even though we did not explore the use of ABC-Pattern-Predict for other

application domains, we believe it is widely applicable. We designed the algorithm

to use different types of context, which will allow it to model structured temporal

behavior in many different domains. For example, we can use ABC-Pattern-Extract

to model a person’s comfort and comfort ratings. We believe that our algorithm is

flexible enough to adjust to different application domains. One avenue of extending

our approach is to test it on other domains to see how the improvements in recall

and accuracy impact the results. This will be especially interesting for applications

such as ad-hoc meetings. Conceptualizing the errors made by our algorithm will

allow us to determine if a reduction in false negatives has the same impact on

other domains as it had on efficient temperature control.

Even though we modeled occupancy behavior with our algorithm we can also

model more precise location information, for example indoor location data provided

by an indoor location tracking system. Further improvements of ABC-Pattern-

Predict can be made by using a more fine-grained indoor location dataset and

exploring the differences in performance when using that dataset instead of an

occupancy tracking dataset. We believe that the performance will be similar to the

occupancy case. Additionally, modeling the spatiotemporal structure of all

occupants of a space allows to create compound schedules for multi-occupant

offices, which is another interesting area of future improvements for our algorithm.

 128

The simulation of energy consumption and comfort offers us a test bed to evaluate

the performance of our prediction algorithm, but it also limits us since human

thermal comfort is highly individual. Running a longitudinal study that explores how

the algorithm reacts under real-world conditions, would allow an evaluation how

our algorithm reacts under real world conditions. It would be especially interesting

to see the interaction between various different temperature setbacks and human

thermal comfort. For our experiments we assumed a very tight comfort bound,

which overestimates the comfort impact. We believe that in a real world situation it

is possible to even further deviate from a person’s preferred temperature.

ABC-Pattern-Extract was used to predict spatiotemporal events, but we designed

the algorithm on purpose as a standalone. There are two possible applications we

can realize with this: 1) explain a person’s behavior to themselves and 2) explain

the outcome of a prediction to the user. Because the algorithm directly models the

spatiotemporal structure it is possible to transcribe the individual patterns in plain

language. This will allow users to reason over these pattern and support

applications such as intelligibility [45]. Additionally the extraction algorithm allows

researchers to explore the structure found in a person’s behavior, which makes it

possible to not only explain the results of prediction algorithms, but also improve or

offer new services.

Besides exploring different application domains, extending the algorithm to more

fine-grained spatiotemporal datasets, running field studies with our algorithm, or

intelligibility support, we can also improve the algorithm itself.

First and foremost, to be useful in a real-world scenario it is necessary to create a

method to update the FP-Trees as soon as new knowledge comes in. Using the

same extracted behavior model for several month or even years will inevitably lead

to a degradation of the algorithm’s performance. A person’s schedules is subject to

changes over time, which is also why we included a season and day of year

contextual feature in the original description. The decision when to update the FP-

Tree base is complex and requires additional research. For example the deviation

from an expected result might be either a unplanned infrequent exception or the

 129

start of a completely new routine that overrides an older established one. Finding a

metric (e.g., frequency of occurrence of new routine or fixed temporal length) that

makes a decision to update the FP-Tree base is part of the future work.

Another area of future work is to choose the right value for the frequency threshold

in step 2 of ABC-Pattern-Extract. The frequency threshold has consequences on

the computational complexity of the algorithm as well as the expressiveness of the

model. By choosing a lower threshold the model becomes more expressive and

can potentially react to more situation (esp. for the MLE prediction), but it increases

the computational complexity. On the other hand choosing a higher threshold

makes the model less expressive, but lowers the computational complexity.

Finding the right balance between these two competing goals can further improve

the algorithm’s performance.

Determining if an event is frequent or infrequent given the user and the current

situation is a challenging problem. ABC-Pattern-Predict makes a decision based

on the frequency of Singular Patterns using the relative frequency between the two

primary predictors. We believe it is possible to further improve the predictive

performance by defining a more precise way of determining when an event is

frequent or infrequent and subsequently when to use one predictor over the other.

Another way of improving the prediction performance is to consider not just the

absolute probability of patterns, but weighing them given other contextual factors

(e.g., behavior of another person). This will allow for a more fine-grained decision

between several competing patterns.

Lastly to further improve ABC-Pattern-Predict it would be interesting to create a

hybrid out of PreHeat and our algorithm. We noted before that PreHeat is capable

of reacting to infrequent situations since it is not checking the probability of an

event. By also allowing ABC-Pattern-Predict to react to unusual situations we

believe that it is possible to further improve the algorithmic performance.

 130

9. References

1. Agarwal, Y., Balaji, B., Dutta, S., Gupta, R.K. and Weng, T. "Duty-cycling

buildings aggressively: The next frontier in HVAC control." In Information

Processing in Sensor Networks (IPSN), 2011 10th International Conference

on, pp. 246-257. IEEE, 2011.

2. Agarwal, Y., Balaji, B., Gupta, R., Lyles, J., Wei, M., & Weng, T. (2010,

November). Occupancy-driven energy management for smart building

automation. In Proceedings of the 2nd ACM Workshop on Embedded

Sensing Systems for Energy-Efficiency in Building (pp. 1-6). ACM.

3. Anhalt, J., Smailagic, A., Siewiorek, D.P., et al. Toward context-aware

computing: experiences and lessons. IEEE Intelligent Systems 16, 3

(2001), 38–46.

4. Ashbrook, D. and Starner, T. Using GPS to learn significant locations and

predict movement across multiple users. Personal and Ubiquitous

Computing 7, 5 (2003), 275–286.

5. Aswani, A., Master, N., Taneja, J., Culler, D., & Tomlin, C. (2012). Reducing

transient and steady state electricity consumption in HVAC using learning-

based model-predictive control. Proceedings of the IEEE, 100(1), 240-253.

6. Autodesk Revit: http://www.autodesk.com/products/revit-family/overview

7. Balaji, B., Teraoka, H., Gupta, R., and Agarwal, Y. "Zonepac: Zonal power

estimation and control via hvac metering and occupant feedback." In

Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-

Efficient Buildings, pp. 1-8. ACM, 2013.

8. Balaji, B., Xu, J., Nwokafor, A., Gupta, R., and Agarwal, Y. Sentinel:

Occupancy Based HVAC Actuation Using Existing WiFi Infrastructure

Within Commercial Buildings. Proceedings of the 11th ACM Conference on

Embedded Networked Sensor Systems, ACM (2013), 17:1–17:14.

 131

9. Biswas, J. and Veloso, M. WiFi localization and navigation for autonomous

indoor mobile robots. 2010 IEEE International Conference on Robotics and

Automation (ICRA), (2010), 4379–4384.

10. Brdiczka, O., Su, N. M., & Begole, B. (2009, April). Using temporal patterns

(t-patterns) to derive stress factors of routine tasks. In CHI'09 Extended

Abstracts on Human Factors in Computing Systems (pp. 4081-4086). ACM.

11. Burbey, I. E. (2011). Predicting future locations and arrival times of

individuals (Doctoral dissertation, Virginia Polytechnic Institute and State

University).

12. Clear, A. K., Morley, J., Hazas, M., Friday, A., & Bates, O. (2013,

September). Understanding adaptive thermal comfort: new directions for

UbiComp. In Proceedings of the 2013 ACM international joint conference on

Pervasive and ubiquitous computing (pp. 113-122). ACM.

13. Cleary, J.G. and Witten, I. Data compression using adaptive coding and

partial string matching. Communications, IEEE Transactions on 32, 4

(1984), 396–402.

14. Craglia, M., Haining, R., & Wiles, P. (2000). A comparative evaluation of

approaches to urban crime pattern analysis. Urban Studies, 37(4), 711-729.

15. Crawley, D. B., Lawrie, L. K., Pedersen, C. O., & Winkelmann, F. C. (2000).

Energy plus: energy simulation program. ASHRAE journal, 42(4), 49-56.

16. Davidoff, S. Routine as resource for the design of learning systems. In

Proceedings of the 12th ACM international conference adjunct papers on

Ubiquitous computing-Adjunct (pp. 457-460). ACM.

17. Davidoff, S., Ziebart, B. D., Zimmerman, J., & Dey, A. K. (2011, May).

Learning patterns of pick-ups and drop-offs to support busy family

coordination. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (pp. 1175-1184). ACM.

18. Dounis, A. I., & Caraiscos, C. (2009). Advanced control systems

engineering for energy and comfort management in a building

environment—A review. Renewable and Sustainable Energy Reviews,

13(6), 1246-1261.

 132

19. Erickson, V. L., Achleitner, S., & Cerpa, A. E. (2013, April). POEM: Power-

efficient occupancy-based energy management system. In Information

Processing in Sensor Networks (IPSN), 2013 ACM/IEEE International

Conference on (pp. 203-216). IEEE.

20. Erickson, V. L., Carreira-Perpiñán, M. Á., & Cerpa, A. E. (2011, April).

OBSERVE: Occupancy-based system for efficient reduction of HVAC

energy. In Information Processing in Sensor Networks (IPSN), 2011 10th

International Conference on (pp. 258-269). IEEE.

21. Erwig, M. (2004). Toward Spatio-Temporal Patterns. In Spatio-Temporal

Databases (pp. 29-53). Springer Berlin Heidelberg.

22. Fischer C. Feedback on household electricity consumption: a tool for saving

energy? Energy Efficiency 1, 2008

23. Fischer, C. and Gellersen, H. Location and navigation support for

emergency responders: A survey. IEEE Pervasive Computing 9, 1 (2010),

38–47.

24. Fisk, W. J. (2008). A pilot study of the accuracy of CO2 sensors in

commercial buildings. Lawrence Berkeley National Laboratory.

25. Gluck, J., Koehler, C., Mankoff, J., Dey, A., Agarwal, Y. A Systematic

Approach for Exploring Tradeoffs in Predictive HVAC Control Systems for

Buildings. 2nd ACM International Conference on Embedded Systems For

Energy-Efficient Built Environments [In Submission]

26. Gockley, R., Bruce, A., Forlizzi, J., et al. Designing robots for long-term

social interaction. Intelligent Robots and Systems, 2005.(IROS 2005). 2005

IEEE/RSJ International Conference on, IEEE (2005), 1338–1343.

27. Gomes, R., Welling, M., & Perona, P. (2008). Incremental learning of

nonparametric Bayesian mixture models. In Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on (pp. 1-8). IEEE.

28. Gupta, M., Intille, S. S., & Larson, K. (2009). Adding gps-control to

traditional thermostats: An exploration of potential energy savings and

design challenges. In Pervasive Computing (pp. 95-114). Springer Berlin

Heidelberg.

 133

29. Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data mining and

knowledge discovery, 8(1), 53-87.

30. Hilsenbeck, S., Bobkov, D., Schroth, G., Huitl, R., and Steinbach, E.

Graph-based data fusion of pedometer and WiFi measurements for mobile

indoor positioning. Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, ACM (2014), 147–

158.

31. Hnat, T. W., Srinivasan, V., Lu, J., Sookoor, T. I., Dawson, R., Stankovic, J.,

& Whitehouse, K. (2011, November). The hitchhiker's guide to successful

residential sensing deployments. In Proceedings of the 9th ACM

Conference on Embedded Networked Sensor Systems (pp. 232-245). ACM.

32. Hoerling, M. P., & Kumar, A. (2002). Atmospheric response patterns

associated with tropical forcing. Journal of Climate, 15(16).

33. Hydeman, M., California Energy Commission, and others. Advanced

Variable Air Volume: System Design Guide: Design Guidelines. California

Energy Commission, 2003. Print.

34. Iso, E. (2005). 7730: 2005:“Ergonomics of the thermal environment–

Analytical determination and interpretation of thermal comfort using

calculation of the PMV and PPD indices and local thermal comfort

criteria”. International Organization for Standardisation, Geneva.

35. Karjalainen S. and Vastamäki R. Occupants have a false idea of

comfortable summer season temperatures. In: Seppänen O , Säteri

J eds. Proc. of Climate 2007 WellBeing Indoors. Helsinki: FINVAC - The

Finnish Association of HVAC Societies, 2007

36. Kleiminger, W., Mattern, F., & Santini, S. (2014). Predicting household

occupancy for smart heating control: A comparative performance analysis of

state-of-the-art approaches. Energy and Buildings, 85, 493-505.

37. Koehler, C., Banovic, N., Oakley, I., Mankoff, J., Dey, A., "Indoor-ALPS: An

Adaptive Indoor Location Prediction System", In Proceedings of the 2014

ACM international joint conference on Pervasive and ubiquitous computing.

ACM

 134

38. Koehler, C., Ziebart, B.D., Mankoff, J., and Dey, A.K. TherML: occupancy

prediction for thermostat control. Proceedings of the 2013 ACM

international joint conference on Pervasive and ubiquitous computing, ACM

(2013), 103–112.

39. Krumm, J. and Horvitz, E. Predestination: Inferring destinations from partial

trajectories. In UbiComp 2006: Ubiquitous Computing. Springer, 2006, 243–

260.

40. Kuncheva, L. I., Bezdek, J. C., & Duin, R. P., Decision templates for multiple

classifier fusion: an experimental comparison. Pattern Recognition, 34(2),

299-314.

41. L. Knopoff, A. Gabrielov, and M. Ghil, editors. IMA Workshop on Spatio-

Temporal Patterns in the Geosciences, University of Minnesota,

Minneapolis, MN, USA, September 2001.

42. Landis, J.R. and Koch, G.G. The measurement of observer agreement for

categorical data. biometrics, (1977), 159–174.

43. Lee, K. C., & Cho, H. (2010). Performance of Ensemble Classifier for

Location Prediction Task: Emphasis on Markov Blanket Perspective.

International Journal of U-& E-Service, Science & Technology, 3(3).

44. Lee, S., Lee, K.C., and Cho, H. A Dynamic Bayesian Network Approach to

Location Prediction in Ubiquitous Computing Environments. In Advances in

Information Technology. Springer, 2010, 73–82.

45. Lim, B. Y., & Dey, A. K. (2011, September). Investigating intelligibility for

uncertain context-aware applications. In Proceedings of the 13th

international conference on Ubiquitous computing (pp. 415-424). ACM.

46. Lu J., Sookoor T., Srinivasan V., Ge G., Holben B., Stankovic J., Field E.,

Whitehouse K. The Smart Thermostat: Using Occupancy Sensors to Save

Energy in Homes. Proc. Of the 8th ACM Conference on Embedded

Networked Sensing Systems (SenSys), 211-224, 2010

47. Masoso, O. T., & Grobler, L. J. (2010). The dark side of occupants’

behaviour on building energy use. Energy and Buildings, 42(2), 173-177.

 135

48. Mathews, E. H., Botha, C. P., Arndt, D. C., & Malan, A. (2001). HVAC

control strategies to enhance comfort and minimise energy usage. Energy

and Buildings, 33(8), 853-863.

49. McNett, M. and Voelker, G.M. Access and mobility of wireless PDA users.

ACM SIGMOBILE Mobile Computing and Communications Review 9, 2

(2005), 40–55.

50. Mielke, H. W. (1989). Patterns of life: biogeography of a changing world.

Boston: Unwin Hyman.

51. Mynatt, E. and Tullio, J. Inferring calendar event attendance. Proceedings of

the 6th international conference on Intelligent user interfaces, ACM (2001),

121–128.

52. Oh, S. Using an Adaptive Search Tree to Predict User Location. JIPS 8, 3

(2012), 437–444.

53. Peffer T., Pritoni M., Meier A., Aragon C., Perry D., How people use

thermostats in homes: A review. Building and Environment 46, 2529-2541,

2011

54. Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings

energy consumption information. Energy and buildings, 40(3), 394-398.

55. Petzold, J., Bagci, F., Trumler, W., and Ungerer, T. Comparison of different

methods for next location prediction. In Euro-Par 2006 Parallel Processing.

Springer, 2006, 909–918.

56. Petzold, J., Bagci, F., Trumler, W., and Ungerer, T. Global and local state

context prediction. Artificial Intelligence in Mobile Systems, (2003).

57. Petzold, J., Pietzowski, A., Bagci, F., Trumler, W., and Ungerer, T.

Prediction of indoor movements using bayesian networks. In Location-and

Context-Awareness. Springer, 2005, 211–222.

58. Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in

feature selection. Pattern recognition letters, 15(11), 1119-1125.

59. Raudys, Š., & Roli, F. (2003). The behavior knowledge space fusion

method: Analysis of generalization error and strategies for performance

improvement. In Multiple Classifier Systems (pp. 55-64). Springer Berlin

Heidelberg.

 136

60. Rosenthal, S., Biswas, J., & Veloso, M. (2010, May). An effective personal

mobile robot agent through symbiotic human-robot interaction. In

Proceedings of the 9th International Conference on Autonomous Agents

and Multiagent Systems: volume 1-Volume 1 (pp. 915-922). International

Foundation for Autonomous Agents and Multiagent Systems.

61. Ryan, C. and Brown, K.N. Occupant Location Prediction Using Association

Rule Mining. Workshop on AI Problems and Approaches for Intelligent

Environments, (2012), 27.

62. Scott, J., Bernheim Brush, A.J., Krumm, J., et al. PreHeat: controlling home

heating using occupancy prediction. Proceedings of the 13th international

conference on Ubiquitous computing, ACM (2011), 281–290.

63. Segev, A., Shoshani, A., Logical modeling of temporal data. In ACM Sigmod

Record (Vol. 16, No. 3, pp. 454-466). ACM.

64. Suzue, T., Shinoda, Y., Highly reproducible spatiotemporal patterns of

mammalian embryonic movements at the developmental stage of the

earliest spontaneous motility. European Journal of Neuroscience, 11(8),

2697-2710.

65. Teevan, J., Karlson, A., Amini, S., Brush, A.J., and Krumm, J.

Understanding the importance of location, time, and people in mobile local

search behavior. Proceedings of the 13th International Conference on

Human Computer Interaction with Mobile Devices and Services, ACM

(2011), 77–80.

66. Trumler, W., Bagci, F., Petzold, J., and Ungerer, T. Smart doorplate.

Personal and Ubiquitous Computing 7, 3-4 (2003), 221–226.

67. U.S. Census Bureau Commuting in the United States

(http://www.census.gov/prod/2011pubs/acs-15.pdf), 2009

68. U.S. Department of Energy Central Air Conditioning Life Cycle Cost

Calculator,

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Cal

c_CAC.xls

 137

69. U.S. Energy Information Administration (eia): Residential Energy

Consumption Survey (RECS): End-Use Consumption

(http://www.eia.gov/consumption/residential/data/2009), 2013

70. US Department of Energy. Buildings Energy Data Book.

http://buildingsdatabook.eren.doe.gov/, Aug. 2012.

71. Vintan, L., Gellert, A., Petzold, J., and Ungerer, T. Person movement

prediction using neural networks. First Workshop on Modeling and Retrieval

of Context, (2004).

72. Voigtmann, C. and David, K. A Survey To Location-Based Context

Prediction. First Workshop on recent advances in behavior prediction and

pro-active pervasive computing, (2012).

73. Vuong, N.K., Chan, S., Lau, C.T., and Lau, K.M. A predictive location-aware

algorithm for dementia care. Consumer Electronics (ISCE), 2011 IEEE 15th

International Symposium on, IEEE (2011), 339–342.

74. Weng, T., & Agarwal, Y. (2012). From buildings to smart buildings—sensing

and actuation to improve energy efficiency. IEEE Design & Test of

Computers, 29(4), 36-44.

75. Wong, J. K. W., Li, H., & Wang, S. W. (2005). Intelligent building research: a

review. Automation in construction, 14(1), 143-159

76. Ziebart, B.D., Maas, A.L., Dey, A.K., and Bagnell, J.A. Navigate like a

cabbie: Probabilistic reasoning from observed context-aware behavior.

Proceedings of the 10th international conference on Ubiquitous computing,

ACM (2008), 322–331.

 138

10. Statement of Attribution
The content of this dissertation document is based on published and unpublished

material that was created by the author and his collaborators. Chapter 2 and 3 are

based on a journal paper currently in submission at Transactions on Intelligent

Interactive Systems and is solely written by the author. Chapter 4 was previously

published in UbiComp 2014 [37] and is largely based on work by the author. The

statistical analysis in 4.3 was performed and written up by the author’s collaborator

Nikola Banovic. Chapter 5 is the original work of the author (except were explicitly

referenced). The simulation framework described in 6.1 was created in

collaboration with Joshua Gluck. The author was responsible for the analysis of the

results (including the creation of the appropriate Revit and EnergyPlus models)

and part of the write-up. The occupancy simulation framework and most of the

writing was being done by Joshua Gluck. The analysis of the results of ABC-

Pattern-Predict was done by the author.

