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Abstract

Observations from the large galaxy surveys, especially the measurements of galaxy clustering and
weak gravitational lensing have emerged as a strong probes of cosmology in the last decade and a
half. Joint analysis of galaxy clustering and galaxy position-lensing (g-L) cross correlations provides
a direct measurement of the clustering of matter in the universe and thus a strong test of models of
cosmology, independent of the galaxy bias. Combined with measurements of galaxy velocities from
redshift space distortions, these measurements can also test the models of gravity.

In this work, we present new measurements and analysis of the galaxy clustering and g-L cross
correlations, using spectroscopic galaxies from the SDSS-III BOSS survey and galaxy shear maps from
the SDSS and CMB lensing maps from the Planck survey. Using these measurements, we constrain the
amplitude of matter correlations and EG at ∼ 10% level showing consistency with the Planck ΛCDM
model at . 1.5σ levels. We also study various sources of noise in the measurements using covariance
estimations from mocks and theory. We show that using mean subtracted galaxy overdensity field in
g-L cross correlations is necessary for the optimal covariance properties and that different methods of
covariance estimation in the literature give consistent results when using optimal estimators.

With the increasing precision of cosmological measurements, understanding the impact of sys-
tematic errors, both theoretical and observational, is becoming ever more important. Among the
theoretical systematics, incomplete modeling of non-linear physics is perhaps the most important. We
perform checks on models using mock datasets and apply corrections to control the modeling uncer-
tainties to below 2% levels. For observational systematics, we present the application of a powerful
test to constrain relative biases in galaxy and CMB lensing maps by directly comparing their cross
correlations with galaxy positions. Given the noise in g-L measurements using CMB lensing, we find
the galaxy lensing and CMB lensing to be consistent at ∼ 12% level. We perform additional tests for
systematics in galaxy lensing measurements most notably tests for biases due to photometric redshifts,
finding no significant source of systematics, though our tests are not exhaustive.

In the second part of this work, we present a detailed analysis of intrinsic alignments (IA) of
galaxies using BOSS LOWZ sample. Intrinsic alignments arise due to alignments of galaxy shapes
with their local environment. These alignments introduce additional coherent correlations in the
galaxy shapes and thus contaminate the weak lensing measurements. IA also probe galaxy physics as
they depend sensitively on the processes involved in galaxy formation and evolution. Understanding
and accurately modeling the IA is thus one of the major tasks for the weak lensing community.

We perform measurements over a large range of scales and study the properties of IA in both
1-halo and 2-halo regimes. Our measurements are well fit by the tidal alignment models which in-
clude non-linear alignment model (NLA) in the 2-halo regime and a halo model with radial alignments
of satellite galaxies. These models successfully explains the scaling as well as significant anisotropy
in the IA measurements introduced by projected shapes and redshift space distortions. We study
the dependence of IA amplitude on several galaxy properties, finding that brighter galaxies or galax-
ies in overdense regions show stronger alignments. We also study the dependence of IA on shape
measurement methods. Shape measurements that give higher weight to outer parts of galaxies show
stronger alignments, which suggests that galaxy shapes are twisted, with outer parts being more
strongly aligned with tidal fields. These measurements have improved our understanding of IA and
will provide sensitive tests of new models of IA being developed using analytical methods as well as
cosmological simulations.
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1 Introduction

The standard model of cosmology, ΛCDM model, underpins our understanding of the universe and
has been successful in explaining a wide array of observations, from the early universe to the geometry
and large scale structure in the universe at late times. Within ΛCDM model, the universe began in a
homogeneous hot and dense state and has been adiabatically expanding ever since, cooling down and
forming structure as we see today.

The expansion of the universe has been well accepted since Edwin Hubble’s discovery in 1929
that galaxies farther away from us are receding at higher velocities. In the universe with no special
observer, this discovery implies that space part of space-time metric is expanding homogeneously.
Discovery of Cosmic Microwave Background radiation (CMB) in 1960s further provided the evidence
that the universe was homogeneous (to one part in 10−5) and was dominated by radiation at early
times. Since 1970s (see also Zwicky, 1933), it has also been observed that matter inside galaxies and
clusters is moving faster than predicted by models using only observed matter (gas and stars) and
our understanding of gravity based on general theory of relativity (GR). Two classes of explanation
have been proposed to explain the discrepancy: 1) The cold Dark matter (CDM) explanation: there is
dark matter component in the universe than we cannot observe, except for its gravitational effects (see
Blumenthal et al., 1984, for an early review) and/or 2) Our understanding of gravity is incomplete
and GR needs to be modified (see Clifton et al., 2012, for a review). CDM has gained wider traction
for being able to explain a wide set of cosmological observations with a simpler theoretical model
though several modified gravity models have not been all ruled out yet.

In the recent decades the field of Cosmology has progressed rapidly with wealth of data provided by
several galaxy, supernova and CMB surveys, with bigger and more ambitious surveys being currently
carried out and being planned. The most startling discovery in the recent decades has been that the
expansion of universe is accelerating. This is contrary to the expectations as in the universe dominated
by matter, gravity pulls everything closer, slowing down the expansion. First discovered by Riess et al.
(1998); Perlmutter et al. (1999) through studies measuring distances to type Ia supernova, accelerating
expansion has been subsequently confirmed by studies of CMB (Jaffe et al., 2001; Spergel et al., 2003;
Hinshaw et al., 2013; Planck Collaboration et al., 2015a), Baryon Acoustic Oscillations (BAO) (Cole
et al., 2005; Eisenstein et al., 2005; Alam et al., 2016a), galaxy correlations (Efstathiou et al., 2002;
Alam et al., 2016a), galaxy velocities (Alam et al., 2016a) and weak gravitational lensing (Hoekstra
et al., 2002; Sheldon et al., 2004; Massey et al., 2007; Kilbinger et al., 2013; Mandelbaum et al., 2013;
Abbott et al., 2016; Hildebrandt et al., 2017). An excellent and detailed review of probes of cosmic
acceleration is provided by Weinberg et al. (2013). If gravity is the dominant force on cosmological
scales, the accelerating expansion again suggests that either our understanding of gravity is incomplete
or it indicates presence of another mysterious component in universe, the dark energy, with a negative
pressure that can cause the expansion. One model for such a component, the cosmological constant,
Λ, was introduced by Einstein to counter the gravitational effects of matter and explain the static
universe, before Hubble’s discovery of expanding universe. In the current ΛCDM model, we use the
cosmological constant as a model for dark energy to explain the accelerating expansion of the universe.
While ΛCDM model successfully explains a wide range of cosmological observations, understanding
the nature of dark matter and dark energy is currently a major challenge in cosmology and indeed
in entire field of physics. Within observational cosmology, current focus is to improve the precision
of measurements and gain better understanding of effects of dark matter and dark energy on the
geometry and large scale structure in the universe.

In this work, we will focus on cosmological observations using weak gravitational lensing (weak
lensing hereafter) which has emerged as an important probe of cosmology. In weak regime, gravita-
tional lensing, the bending of path of light rays by gravitational effects of matter, encodes information
about the large scale structure as well as geometry of the universe in the tiny but coherent distor-
tions of the shapes and size of galaxies as well as CMB anisotropies. Weak lensing measurements
have already been carried out by several current and past surveys, using galaxies: RCS (Hoekstra
et al., 2002), SDSS (Sheldon et al., 2004; Mandelbaum et al., 2005), COSMOS (Massey et al., 2007),
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CFHTLens (Kilbinger et al., 2013), HSC (Mandelbaum et al., 2017), KiDS (Hildebrandt et al., 2017),
DES (Abbott et al., 2016) and using CMB: Planck (Planck Collaboration et al., 2015b), ACT (Das
et al., 2011, 2014), SPT (van Engelen et al., 2012). There is now a major push by the community
to improve measurements with upcoming surveys, such as LSST (LSST Science Collaboration et al.,
2009), EUCLID (Laureijs et al., 2011), WFIRST (Spergel et al., 2013) and CMB-stage IV experiments
(Abazajian et al., 2016). Unfortunately weak lensing measurements are also susceptible to a number
of systematic errors (systematics hereafter) (Hirata et al., 2004; Mandelbaum et al., 2005; Massey
et al., 2013). Though current results are dominated by statistical uncertainties, the systematics will
become important in the future with increasing statistical precision of data. In this work we will focus
on improving our understanding of several systematic errors in the weak lensing maps using cross-
correlations between galaxies and weak lensing maps. Using these measurements, we also perform
tests on ΛCDM model and our understanding of gravity based on general theory of relativity. We will
also perform measurements of Intrinsic alignments of galaxies, which are a source of systematic error
in weak lensing measurements and also a useful probe of galaxy physics.

In the reminder of this chapter, we focus on reviewing the background in cosmology and motivate
our study of weak gravitational lensing. This discussion will follow the review by Weinberg et al.
(2013) and cosmology texts by Dodelson (2003); Mukhanov (2005); Mo et al. (2010).

1.1 Cosmology Background

1.1.1 Metric and Distances

The basic assumption underlying our models of cosmology is that the universe is homogeneous and
isotropic. Mathematically, we can write the FRW metric for expanding four dimensional space-time
that satisfies these assumptions

ds2 = dt2 − a(t)2

(
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

)
(1.1)

= dt2 − a(t)2
(
dχ2 + f2

K(χ)(dθ2 + sin2 θdφ2)
)

(1.2)

Where t is the proper time, a(t) is the time dependent scale factor, and r is the proper distance.
K is a constant (note that it has dimensions of [length]−2) representing the curvature of the space,
with K = 0 being flat Euclidean space, K = 1 represents spherical geometry with positive curvature
(sphere) and K = −1 is the hyperbolic surface with negative curvature. In the second equality, we
defined comoving distance χ as

dχ =
dr√

1−Kr2
= c

dt

a(t)
= c

da

H(a)a2
(1.3)

The second equality comes from defining comoving distance as the radial distance between two points
along the null geodesics (ds2 = 0). We define Hubble constant as (see section 1.1.3 for more discussion)

H(a) = ȧ/a (1.4)

The transverse comoving distance fK(χ)(= r) is the proper distance between two events separated by
angular distance dθ in the observer frame and can be written as

fK(χ) =





1√
K

sin(
√
Kχ) (K = +1)

χ (K = 0)
1√
|K|

sinh(
√
|K|χ) (K = −1)

(1.5)

In observations, we often measure the angular size of objects, which can then be converted to
physical size using the line of sight distance, DA (called angular diameter distance)

DA(a) = afK(χ) (1.6)

10



Chapter 1. Introduction 1.1. Cosmology Background

In geometric probes such as BAO and position of CMB anisotropy peaks, their size is known from
physical models and thus observed angular size can be used to determine the DA. We will discuss the
role of distance measures as probe of cosmology in section 1.2.1. A more detailed review of several
distance measures used in cosmology is provided by Hogg (1999).

1.1.2 Redshift

An important method to estimate the line of sight distance to cosmological objects is through the
red shifting of light from these objects. Light signals observed from these objects were emitted at a
different time and have travelled over cosmological distances. Since light travels along null geodesics
(ds2 = 0) and in comoving coordinates, the separation between two points does not change (or in
other words, the wavelength of light does not change in comoving space), we have dχo = dχe (where
o, e denote observation and emission frames), which implies

dto
dte

=
a(to)

a(te)
=
λo
λe

= 1 + z (1.7)

Thus, as the photons travel across the universe, their wavelength increases and they lose energy
(they are redshifted). Observationally, we measure the wavelengths of photons and by comparing
wavelengths of known spectral lines, estimate the redshift of objects. Then using the relations between
redshift and distances, we can determine the distances. In section 1.1.1, we defined distance measures
as function of scale factor a, which can be easily converted to functions of redshift using the fact that
a(z) = 1

1+z , where present day scale factor is set to 1, a(z = 0) = 1 .

1.1.3 Hubble Constant

Hubble constant, defined in eq. 1.4, describes the expansion of the universe. Using the Einstein field
equation along with stress energy tensor of an ideal fluid, we can relate the expansion of the universe
with the evolution of curvature and energy density of different constituents of the universe and derive
the Friedman equation (see chapter 3 of Mo et al., 2010)

H2(a) =
8πG

3
(ρm(a) + ρR(a) + ρΛ(a) + ρK(a)) (1.8)

where ρK = − 3Kc2

a28πG , ρΛ = Λc2

8πG , ρm and ρr are the matter and radiation density respectively.
To understand the evolution for various energy density components in an expanding universe, we

begin by defining the equation of state, w, relating the pressure and density of an ideal fluid

P

ρc2
= w(a) (1.9)

Assuming universe is expanding adiabatically and using the conservation of energy we can show

ρ ∝ exp

(∫
−3(1 + w(a))d ln a

)
∝ a−3(1+w) (1.10)

where second proportionality is for constant equation of state (w(a) =constant). For pressure less
dark matter, w = 0, which implies ρm ∝ a−3. This is a statement of conservation of mass that the
density of dark matter is inversely proportional to the volume. For Radiation, w = 1/3 and hence
ρr ∝ a−4, where 3 factors are contributed by change in number density of photons with volume
(ignoring absorption and emission at late times) and the additional factor comes from the redshift of
photons as they lose energy in the expanding universe. For Λ, w = −1 and ρλ =constant. Using these
relations, we can write Hubble constant from eq.1.8 as

H2 =
8πGρcrit

3

(
Ωma

−3 + ΩRa
−4 + ΩKa

−2 + ΩΛ

)
(1.11)
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Where critical energy density ρcrit = 3H2

8πG is the energy density required for a flat universe and
Ωi = ρi/ρcrit,

∑
Ωi = 1.

From Einstein’s equation, we also get a relation to describe the acceleration of the expansion

ä

a
= −4πG

3
ρ(1 + 3w) ≡

{
> 0; w < − 1

3

< 0; w > − 1
3

(1.12)

The expansion decelerates when the universe is dominated by matter or radiation components (weff >
−1/3) but the expansion is accelerated when the universe is dominated by Λ like component (or Dark
energy) with weff < −1/3.

1.1.4 Large scale structure

CMB observations have shown that the early universe was remarkably homogeneous, with the devi-
ations from homogeneity (perturbations) of order ∼ 10−5. These perturbations are believed to have
originated during the inflation, when the universe expanded exponentially (H ∼constant) driven by
a scalar field. Small quantum perturbations in the the energy density of the scalar field lead to the
metric perturbations after the inflation ends.

After inflation ends, universe enters the period of radiation domination following reheating and big
bang nucleosynthesis. The perturbation modes that enter the horizon during the radiation domination
grow slowly as the free streaming of photons decays potential. The evolution of matter perturbations
through the radiation dominated area is described in terms of transfer functions, T (k), where T (k) ∝
1/k2 (Hu & Sugiyama, 1996) for modes that enter horizon during the radiation dominated era and
T (k) = 9/10 for modes that enter horizon during matter dominated era (see chapter 7 of Dodelson
(2003) or chapter 4 of Mo et al. (2010) for more details).

After the matter-radiation equality, in the matter dominated epoch, gravity takes over, growing
these perturbations which leads to the large scale structure we observe at later times. In Fourier
space, the observed perturbation mode at time t can be written in terms of initial mode δi as

δ(k, t) = δi(k)T (k)D(t) (1.13)

D(t) is the growth function after the radiation epoch ends. CMB measurements constrain the power
spectrum during the epoch of recombination and the studies of large scale structure at late times,
including weak lensing, focus mostly on studying the growth function D(t).

In the matter dominated epoch, gravity acts as the dominant force and gravitational instability
leads to the growth of modes as they enter the horizon. Assuming dark matter as pressure-less fluid
and using Euler and continuity equations for fluids in expanding universe, the evolution of modes to
first (linear) order is described by

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
− 4πGρ̄δ = 0 (1.14)

Taking double derivative of Hubble constant from eq. 1.11, it can be shown that the decaying solution
of eq.1.14 is simply δ− ∝ H (decaying because Hubble constant decreases with time). The growing
solution, δ+(t) = δiD(t) can then be derived be derived in terms of H (see e.g. Lahav & Suto, 2004,
for more details)

D ∝H(t)

∫ t

0

dt′

a2(t′)H2(t′)
∝ H(z)

∫ ∞

z

(1 + z′)

E3(z′)
dz′ (1.15)

where E(z) = H(z)/H0.
Eq. 1.14 and hence growth function in eq. 1.15 is only a good approximation for modes that are

linear δ � 1. Higher order terms in gravitational evolution couple different (Fourier) modes and once
δ ∼ 1, evolution becomes non-linear and coupling between modes cannot be ignored. Quasi-linear
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evolution (upto few orders in δ) can be studied using higher order perturbation theory (see Bernardeau
et al., 2002, for a review), though extending higher order perturbation theory to small scales has
proven to be a difficult task. Understanding evolution of modes down to very small scales still requires
use of simulations of structure formation. A common strategy is to run few simulations with different
cosmological parameters and then construct emulators for the observables by interpolating over these
simulations (Smith et al., 2003; Takahashi et al., 2012; Lawrence et al., 2010). For modeling our
observations, we use halofit (Smith et al., 2003; Takahashi et al., 2012) to get matter power spectrum
beyond linear approximation.

1.2 Cosmology Probes

One of the primary goals of cosmological probes is to determine the geometry and energy density
constituents of the universe. The cosmology probes can be broadly classified into following categories:
1) Probes of initial conditions, primarily CMB, 2) Local universe measurements of Hubble constant
H0, 3) Probes of geometry (distance measurements), and 4) Probes of growth of structure. In this work
section we will focus on 3 and 4, and refer the reader to Hu & Dodelson (2002); Planck Collaboration
et al. (2015a) for a review and recent measurements of CMB (we will briefly discuss CMB as probe of
geometry) and Freedman & Madore (2010); Riess et al. (2016) for review and recent measurements
of H0.

Measurements of CMB provide a very sensitive test of the conditions at the time of matter-radiation
equality. CMB provides strong constraints on the matter power spectrum, matter and radiation energy
density as well as geometry of the universe. However, it is not a very sensitive probe of late time
evolution, which is dominated by matter and dark energy. Distance measurements and the late time
evolution of the universe depends on the parameter E(z) that determines the evolution of Hubble
constant and also the growth of structure

E(z) =

√
Ωm(1 + z)3 + ΩR(1 + z)4 + ΩK(1 + z)2 + ΩDE exp

(
3

∫ z

0

[1 + w(z′)]
dz′

1 + z′

)
(1.16)

In writing this equation, we did not assume that w = −1 for dark energy but instead let it be a
function of redshift (note that w(z) 6= −1 rules out Λ as model for dark energy). Measuring E(z) and
its evolution with redshift thus provides an important probe of nature and amount of dark energy
and dark matter in the universe. Most large scale structure probes aim to measure E(z) by either
probing the geometry, distance to a redshift depends on E(z) or by probing the growth of structure
which also depends on E(z) as shown in eq. 1.15.

1.2.1 Probes of geometry

The geometrical probes of cosmology usually provide an independent measure of distances to a given
redshift which can then be compared with the predictions from the model as presented in section 1.1.1.

Observations of acoustic peaks in the CMB power spectrum provide a distance measure to the
surface of last scattering (z ∼ 1100). Before recombination, the photons and baryons are coupled and
due to effects of perturbations in potential and the countering radiation pressure, the perturbations
in photon-baryon plasma oscillate while the perturbations in dark matter grow in situ though the
growth of these perturbations is also affected by radiation. At the time of recombination, photons
decouple from baryons and the phase of oscillations get imprinted on the CMB that we observe at
later times. The physical size of oscillations depend on the size of sound horizon, s∗ (determined by
matter density and baryon to photon ratio) at the time of recombination and the observed position
of peaks, which follow the harmonic relation `n = nDA(z∗)/s∗, provides a measure of distance to the
surface of last scattering (z∗ ∼ 1100). In addition, the relative heights of the peaks provide further
information on the dark matter, baryon and radiation densities. While measurements of CMB power
spectrum provide strong constraints on matter density, the constraints on dark energy are weaker,
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since dark energy was subdominant at time of recombination and CMB alone also can not break the
degeneracy between H0 and E(z) which goes into measurements of distances. Combination of CMB
with late time probe of H0 and E(z) provides much stronger constraints on dark energy (see for ex.
Planck Collaboration et al., 2015a, for CMB alone and CMB+other probes constraints).

Measuring distances to multiple redshifts helps in breaking degeneracy between different param-
eters as they evolve differently with redshift. One such probe is the Baryon Acoustic Oscillations
(BAO), the imprint of sound horizon at the surface of last scattering in the baryon density. After
recombination, the acoustic oscillations in baryon distributions are frozen, leading to slightly higher
correlations in matter distribution on the scales of sound horizon. Since the BAO scale is large
(∼ 110h−1Mpc comoving), the BAO peak is relatively less affected by the late time evolution in the
structure, though the baryons are pulled back by the dark matter leading to the broadening of the
peak. Broadening increases the uncertainty in the BAO measurements as it becomes harder to de-
termine the exact location of the peak. Also the large scale of BAO means means that it requires
large volume surveys to measure the peak with good accuracy. Current BAO measurements use large
scale galaxy surveys (e.g. BOSS Alam et al., 2016a), though with modest galaxy densities and some
form of reconstruction techniques which undo the effects of structure formation and sharpen the peak
(see for example Padmanabhan et al., 2009). An example of BAO ring in the recent measurement
correlation function of galaxies is shown in figure 1.1

Another probe of distances is to use standard candles, i.e. objects of known absolute luminosity
which can then be compared with observed luminosity to compute distances. In an expanding universe,
the luminosity distances computed from flux (energy per unit area per unit time) is (Hogg, 1999)

DL = (1 + z)fK(χz) (1.17)

It is difficult to find sources which are bright enough to be standard candles over cosmological scales.
Fortunately, one such source is type-Ia supernovae (SN), whose peak luminosity and luminosity curve
are tightly correlated and thus their light curves can be standardized. Using SN observations, Riess
et al. (1998); Perlmutter et al. (1999) first made the confirmed discovery of expanding universe.
Though SN are standard candles with low scatter, the diversity of light curves, extinction of light by
host galaxy of SN as well as intervening matter between supernova and the observer can complicate
the their analysis. Also, supernova observations only measure relative distance to different redshifts
(their fundamental calibration is not known independently of other probes) and thus they are not
sensitive to H0 values, unlike BAO.

Measurements of weak gravitational lensing also probe the geometry, as gravitational lensing de-
pends on the distances between lens, source and observer (see section 1.3). However, since it depends
on ratio of distances, lensing itself is not a very strong probe of geometry and large separations be-
tween observer, lens and lensing sources is needed to break degeneracy between different parameters
(see discussion in Weinberg et al., 2013). Hu et al. (2007b) proposed an idea to combine CMB lensing
measurements with galaxy lensing to maximize the redshift baselines for increased sensitivity. We will
present one such measurement of distance ratios by combining CMB lensing with galaxy lensing from
SDSS in chapter 2 (see also Miyatake et al. (2016)).

1.2.2 Probes of Structure Growth

As discussed in section 1.1.4, the initial perturbations in the matter density grow under the effects of
gravity in the epoch of matter dominations. Studying the large scale structure at late times provides
a measure of the growth of structure and hence constraints on the cosmological models. We will focus
on measuring the two point functions of the density field to study the growth of structure.

Correlation function and Power spectrum

CMB observations have shown that the initial density field can be treated as gaussian random field,
which is completely described by it’s first and second order moments (this can be shown using Wick’s
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or Isserlis’ theorem for gaussian field). The correlation function, ξ(r) and power spectrum, P (k) are
defined as

ξ(|x1 − x2|) = 〈δ(x1)δ(x2)〉 (1.18)

P (|k|) = 〈δ̃(k)δ̃(k2)〉δD(k + k2) (1.19)

Where isotropy ensures that correlation function and power spectrum only depend on absolute values
of k (also k + k2 = 0) and separation |x1 − x2|. It is also simple to show that power spectrum and
correlation function are Fourier transforms of each other.

From simple slow roll Inflation model with exponential expansion during the inflationary period
we get the metric perturbations with nearly scale invariant power spectrum

∆2
Φ(k) ∝ kn−1 (1.20)

where we defined ∆2
φ = k3Pφ(k) and n = 1 (Harrison-Zel’dovich spectrum). Using Poisson relation

(k2φk ∝ δk), we can relate the metric perturbations to perturbations in energy density and show that
initial matter power spectrum can be described by a power law

Pi(k) ∝ kn (1.21)

Under the assumption of linear evolution, using eq. 1.13 we can write late time power spectra as

P (k, t) = D(t)2T (k)2Pi(k) (1.22)

Due to differences in T (k) before and after epoch of matter-radiation equality, power spectrum turns
around keq, where keq is horizon size (in fourier space) at time of matter-radiation equality. For modes
that enter horizon after matter-radiation equality (k < keq ), P (k, t) ∝ k modulo some evolution due
to D(t) as different modes enter horizon at different times. For modes that enter horizon earlier,
k > keq, power is suppressed and using T (k) ∝ k−2 P (k) ∝ k−3, though this is also modified by late
time non-linear evolution. The linear growth assumption works well at large scales, k . 0.1h−1Mpc−1

at z ∼ 0, but at smaller scales (larger k) the higher order terms become important. Non-linear
perturbation theory can describe power spectra to somewhat higher k (Bernardeau et al., 2002), but
we need cosmological simulations to model the power spectra down to very small scales (large k).

Galaxy correlations

Galaxy surveys observe and map the positions of galaxies over the sky at different redshifts. Galaxies
form inside dark matter halos, which tend to form in the overdense regions (peaks in the matter
over-density field). Since overdense regions have preferentially more halos while underdense regions
have fewer halos, halo over-density field is generally a biased tracer of the matter field. To describe
galaxies, we also need to describe the relation between halos and galaxies. Detailed relation between
galaxies and dark matter halo can be described using halo-occupation-distribution (HOD) models (see
Cooray & Sheth, 2002, for review). We use samples with low satellite fractions and also restrict most
of our analysis to use large enough scales where HOD details are not important. The galaxy bias we
measure will be a weighted mean of halo bias (higher mass halos with more galaxies get higher weight).
When modeling small scales (1-halo regime), we will assume that correlation function is dominated by
central-satellite pairs and hence can be modeled with simple halo profiles such as NFW. For further
discussion in this section, we will assume that halo bias and galaxy bias describe the same concept
and write everything in terms of galaxies. A detailed review of galaxy biasing is given by Desjacques
et al. (2016).

In general, the observed galaxy field, δg can be described as a (local) non-linear transform of the
matter field, δm

δg = F(δm) = b1δm + b2δ
2
m + . . . bnδ

n
m (1.23)

15



1.2. Cosmology Probes Chapter 1. Introduction

Where in the second equality we taylor expanded the δg, assuming it only depends on the local matter
density. The correlation function of galaxy field can then be written in terms of matter correlation
function ξmm as

ξgg(r) = 〈δgδg〉 =
∑

i,j

bibj [ξmm(r)]
i+j
2 (1.24)

Note that the terms with i + j = odd number will be zero since we assumed that the over-density
field is gaussian with mean zero (and hence their odd moments will be mean zero). For large r, ξmm
is small (� 1) and only the first order term is important in which case we can assume bias is linear
and write

ξgg(r) = b21ξmm(r) (1.25)

Pgg(r) = b21Pmm(r) (1.26)

Linear scale independent bias is typically a good assumption on large scales where the density field is
linear, but it breaks down at small scales where density field has gone non-linear, r . 10h−1Mpc and
bias is a scale dependent non-linear function on these scales.

We will typically assume linear bias when modeling galaxy correlations which is a good assumption
on the scales we model given the uncertainty in the measurements. When necessary, we do apply
corrections for the non-linear bias effects by computing them from simulations (see chapter 4).

Redshift space distortions

So far we have assumed that the observed redshift of cosmological objects is entirely due to the
expansion of the universe. However, most objects are not at rest with their local cosmological rest
frame, but instead are moving, primarily under the effects of gravity from large scale structure. The
observed line of sight velocity of an object is given by

drz
dt

=
d

dt
aχ = ȧχ+ aχ̇ (1.27)

Where ȧχ is the velocity due to cosmological expansion and aχ̇ is the peculiar velocity of the object
due to its motion with respect to local rest frame. The observed redshift is then

1 + zo =
λo
λe

=
λo
λe,v

λe,v
λe

= (1 + zv)(1 + z) (1.28)

where λe,v is the doppler shifted wavelength due to peculiar motion and 1 + zv is the redshift due to
this motion. Since we convert the observed redshift into distances using distance-redshift relation, the
observed position of the object in redshift space, s, is shifted and is related to its real space position
r by

s = r + vH · ẑ (1.29)

ẑ is along the line of sight and factor of H(a) is included in vH (∆s = v/H(a),vH = v/H). Since
the observed positions of objects are shifted in the redshift space, the observed over-density field also
changes. Most notably, if the velocities are coherent, the over-density field is no longer isotropic in
the redshift space, but has different characteristics along and perpendicular to the line of sight.

Using conservation of mass and the relation between large scale velocity field and growth rate
(∇χr · v = −aHf), we can show that

δs ≈ δr + µ2fδr (1.30)

where µ = kz/k and growth rate f

f =
∂ logD(a)

∂ log a
(1.31)
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Figure 1.1: Measurement of galaxy correlation function by Samushia et al. (2013). The distortion or
anisotropy due to redshift space distortions is clearly visible as elliptical contours (in absence of RSD,
contours will be circular). The broadened BAO ring is also visible at scales around 100h−1Mpc. Plot
taken from http://www.sdss3.org/science/boss_publications.php

The additional term in eq. 1.30, µ2fδr always has matter density δm and for biased tracers we get
δsb ≈ δrb (1 + µ2β), where β = f/b. The redshift space correlation function of galaxies thus includes
contributions from matter correlations and galaxy-matter cross correlations and µ dependence of these
terms makes the contributions anisotropic. An effect of RSD on the correlation functions is shown
in figure 1.1. In the presence of RSD, the contours of correlation function are elliptical as opposed
to being circular for an isotropic universe. By studying the anisotropy of the correlation functions or
power spectra, we can measure the growth rate f . Most RSD studies achieve this by analyzing the
higher order moments of the two point function in the s, µ space (these measurements are sensitive
to f(z)D(z) or fσ8) (Alam et al., 2016a). Unfortunately, the non-linear velocity field at small scales,
especially the 1-halo term leading to finger-of-god effect, smears the small scale correlations to larger
s, which makes it challenging to model RSD measurements down to small scales (Carlson et al., 2013;
Alam et al., 2015b). In chapter 4, we will perform measurements of RSD using methodology developed
by Alam et al. (2015b) and use these measurements in combination with weak lensing measurements
to test theories of gravity and ΛCDM model.

1.3 Weak lensing

Weak gravitational lensing is a powerful probe of cosmology as as it is sensitive to both geometry
and growth of the structure in the universe (see Bartelmann & Schneider, 2001; Weinberg et al.,
2013; Kilbinger, 2015, for review). As the light travels across the universe from the source to
the observer, the gravitational effects of the intervening structure bends the path of photons. In
the weak regime, lensing introduces small but coherent distortions in the shapes (shear) and sizes
(convergence) of background sources. These distortions encode the information about the large scale
structure between the observer and the source. In case of galaxy observations, we typically measure
the correlations in the shapes of galaxies to estimate the lensing shear while in case of CMB, lensing
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Figure 1.2: An illustration of gravitational lensing by a single lens (the effects are highly exagger-
ated). As light rays travel from source to observer their paths are distorted, shifting the position
of the sources and its shape and size are also distorted. DL, DS , DLS are the physical distance be-
tween lens, source and the observer (we derived the formalism in corresponding comoving distances
fk(χl), fk(χs), fk(χl,s)).

is studied by measuring cross-correlations between different modes to estimate convergence.
Gravitational lensing measurements are sensitive directly to the structure in the matter and can be

used to measure matter correlations, unlike other large scale tracers such as galaxies which are biased.
Also, since lensing in sensitive to entire structure between source and observer (though this sensitivity
varies with distances), a deep lensing survey is capable of studying the growth of large scale structure
over a large redshift range. However, lensing measurements are also hard. Typical weak lensing shear
is of order 0.01 compared to intrinsic galaxy ellipticities of order 0.2. In a lensing survey we need to
accurately measure shapes of a large number of galaxies, while keeping any systematic errors to a level
lower than statistical errors. The inferences from lensing are susceptible to a number of systematics
originating from shape measurement errors, noisy estimations of redshifts of large number of galaxies,
modeling uncertainties and astrophysical sources of coherent shear. Thus a large portion of our work
will be focussed on estimating and studying some of the sources of systematics in lensing observables.

1.3.1 Gravitational lensing

In this section we develop the basic lensing formalism and derive some useful relations which can be
used to model the lensing measurements. To derive the lensing equation, consider the perturbed FRW
metric in the newtonian gauge (c = 1 units in this section)

ds2 = a(τ)2{−(1 + 2ψ)dτ2 + (1− 2φ)(dχ2 + f2
κ(χ)dΩ2)} (1.32)

Where ψ is the newtonian potential and φ is the curvature potential.
After some algebra, we can derive the acceleration equation for photons traveling along the null

geodesic (ds2 = 0)

−∇ (1 + 2ψ)

1− 2φ
= 2d2x/dτ2 (1.33)

Under the assumption of weak fields, (ψ, φ << 1), we can show that change in velocity vector in
the plane of sky (perpendicular to line of sight) is (see figure 1.2 for illustration)

δα =
δx⊥

fκ(χs − χl)
= dÛ/dχ = ∇⊥(ψ + φ) (1.34)

As shown in figure 1.2, δα is the change in angle with incident and refracted ray at the lens, δx⊥
is the physical separation between source and the image in the plane of sky. The shift in the image
in frame of observer, δθo, can be obtained from δx⊥

δθo =
δx⊥
fκ(χs)

=

∫ χs

0

fκ(χs − χl)
fκ(χs)

∇⊥(ψl + φl)dχl = ∇θΦL (1.35)
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Here we have integrated over the full lensing potential between source and observer. We also defined
lensing potential in terms of Weyl Potential, Ψ = ψ + φ

ΦL =

∫
dχl

fκ(χs − χl)
fκ(χs)fκ(χl)

Ψ(fκ(χl)θ, χl) (1.36)

The Jacobian of image to source transformation is

Aij =
∂(θio − δθio)

∂θjo
= δij −

∂2Φl

∂θio∂θ
j
o

(1.37)

A =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
= (1− κ)

[
1− g1 −g2

−g2 1 + g1

]

Where convergence κ and shear components γ1, γ2 are defined as

κ = 1/2∇2
θΦL (1.38)

γ1 = 1/2(ΦL,11 − ΦL,22) (1.39)

γ2 = ΦL,12 (1.40)

gi =
γi

1− κ ≈ γi (1.41)

Convergence leads to an isotropic change in the area of image while shear leads to a distortion in the
shape and contributes to change in total area as well. Typically for galaxy lensing case we do not
know the un-lensed size of galaxies and observe the reduced shear gi. In the weak lensing regime,
κ� 1, gi ≈ γi

Finally we can also write the convergence and shear expressions in Fourier space and using the
poisson relation between potential and density, express them in terms of matter density δ

κ(`) = 1/2`2Φl(`) =

∫
dzl

c

H(zl)

ρm
Σc(zl, zs)

δ

(
`

χ(zl)

)
(1.42)

γ1(`) = 1/2(`21 − `22)Φl(`) =

∫
dzl

c

H(zl)

ρm
Σc(zl, zs)

(`21 − `22)

`2
δ

(
`

χ(zl)

)
(1.43)

γ2(`) = `1`2Φ` =

∫
dzl

c

H(zl)

ρm
Σc(zl, zs)

`1`2
`2

δ

(
`

χ(zl)

)
(1.44)

(1.45)

Writing `1, `2 into cylindrical coordinates, `⊥, φ` we can also write shear as

γ1 + iγ2 = |γ|ei2φ` =

∫
dzl

c

H(zl)

ρm
Σc(zl, zs)

δ

(
`

χ(zl)

)
ei2φ` (1.46)

We also defined the geometric factor Σc as

Σc =
c2

4πG

fk(χs)

(1 + zl)fk(χl)fk(χs − χl)
(1.47)

1.3.2 Estimating shear from galaxy shapes

In galaxy lensing, we infer the lensing shear from the ensemble average of galaxy shapes. The observed
galaxies have some intrinsic shapes which are sheared by the lensing and also by local tidal fields
(intrinsic alignments). In this section we present a simplified discussion of how the galaxy shapes
respond to shear and can be used to estimate shear.
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For discussion in this section, we will assume that shear has only one component, g1 with g2 = 0.
This can be achieved by applying a rotation to the coordinate axis, such that φ = 0 in eq.1.46.
Following (Bernstein & Jarvis, 2002), we represent the shear tensor as

Sη =

[
eη/2 0

0 e−η/2

]
≡
[
a 0
0 b

]

where we parameterized the shearing of the shape with η. The axis ratio q is defined as

q =
b

a
= e−η (1.48)

The ellipticity, ε (and analogously the reduced shear g), is defined as

ε =
1− q
1 + q

≈ η

2
= g (1.49)

In weak lensing measurements, distortion e is also used to measure shear. Starting with the second
moments of the image

Qij =

∫
d2xI(x)W (x)xixj∫
d2xI(x)W (x)

(1.50)

Where W (x) is a weight function. W (x) is usually chosen to down weight and/or truncate the integral
beyond a certain range (W (x) = 1 will lead to divergent noise since the integral is over whole sky).
Alternative way is to fit a model for galaxies to image and then measure moments from the model.
Distortion is then defined as

e = e1 + ie2 =
Q11 −Q22 + i2Q12

Q11 +Q22
= |e| exp(iφ) (1.51)

|e| = 1− q2

1 + q2
= tanh η (1.52)

In the absence of lensing (or any other source of coherent shear), galaxies are randomly oriented
(random φ) and each shape component can take positive or negative values. Thus the ensemble
average of intrinsic ellipticity of galaxies is expected to be zero.

〈ei〉 = 0 (1.53)

The response of the ensemble average to a small coherent shear is given by the responsivity R

R =
∂〈ei〉
∂η

= 〈1− e2
i 〉 (1.54)

Such that the shear is

g =
〈e〉
2R (1.55)

The zero mean from ensemble average of ellipticities greatly simplifies the problem of estimating
shear. If ensemble average is not zero, then one needs to estimate the ensemble average accurately
and subtract it out of the measured shear.

1.3.3 Two point functions

For cosmological analysis from lensing, we can construct the two point functions out of shear or con-
vergence measurements. We can measure either the lensing-lensing correlations or cross correlations
of lensing with other tracers of large scale structure, e.g. galaxy positions.
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Lensing correlations

Auto correlations of the lensing estimators, convergence or shear, are sensitive to the integrated matter
power spectrum between the source and observer. While these correlations contain the integrated
information along the line of sight, we can obtain more information by cross correlating sources at
different redshift, in which case the information comes from the observer to the source at lower redshift.

In Fourier space, the power spectra for different combinations of shear and convergence are (note
that throughout we will work under Limber approximation and assume flat sky wherever necessary)

Cκκ` =

∫
dzs1p(zs1)

∫
dzs2p(zs2)

∫ zs

0

dzl
H(zl)

c

ρ2
m

Σc(zl, zs1)Σc(zl, zs2)
Pδδ

(
`

χ(zl)

)
(1.56)

where zs = min(zs1, zs2). The other correlations can be written in terms of Cκκ` as (this is strictly
valid only in flat-sky approximation (Kilbinger et al., 2017))

Cγγ∗` = Cκκ` (1.57)

Cγγ` = Cκκ` ei4φk (1.58)

Cκγ` = Cκκ` ei2φk (1.59)

Correlation functions under flat sky approximation can be written using Hankel transforms

〈κκ〉(θ) = 〈γγ∗〉(θ) =

∫
d``

2π
Cκκ` J0(`θ) (1.60)

〈γγ〉(θ) =

∫
d``

2π
Cκκ` J4(`θ) (1.61)

〈κγ〉(θ) =

∫
d``

2π
Cκκ` J2(`θ) (1.62)

Lensing auto correlations measurements have been performed now by several studies. Convergence
auto correlations from CMB lensing have been measured by Das et al. (2011, 2014); van Engelen et al.
(2012); Planck Collaboration et al. (2015b), with current state of the art measurements by Planck
Collaboration et al. (2015b) measuring convergence auto correlations at ∼ 40σ levels and constraining
the amplitude of matter fluctuations at ∼ 3% level (lensing alone).

Shear auto correlations, cosmic shear, have also been detected by a number of surveys, CFHTlens
(Heymans et al., 2013a; Joudaki et al., 2017), KiDS (Hildebrandt et al., 2016), DES (Abbott et al.,
2016). Some of these measurements are in mild tension with PlanckΛCDM model, with weak lensing
preferring lower amplitude (Heymans et al., 2013a; Hildebrandt et al., 2016). Recent re-analysis of
CFHTlens by (Joudaki et al., 2017) found that some of the tension can be elevated by marginalizing
over conservative models for systematics (see also Efstathiou & Lemos, 2017). With the increasing
precision of upcoming results from DES and HSC surveys and even higher precision from LSST,
WFIRST, Euclid in future, consistency tests between lensing and other cosmological probes will
become more stringent and modeling of systematics will also need to be better to distinguish between
effects of systematics and incomplete cosmological models.

A way of testing for systematics is to measure cross correlations between convergence from CMB
lensing and galaxy shear, which are independent of several additive systematics in both CMB lensing
and galaxy shear. These cross correlations have been detected by Hand et al. (2015); Kirk et al. (2016);
Liu & Hill (2015); Harnois-Déraps et al. (2016). Galaxy shear and CMB lensing have very different
lensing kernels with CMB lensing being most sensitive to z ∈ [1, 5] while galaxy shear from current
surveys being sensitive to z < 1. The cross correlations between the two probe intermediate regions
where auto correlations of either probe are not very sensitive. However, since one or both lensing
kernels are rather low in this regime, these cross correlation measurements are also noisy. Most
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of the current measurements are consistent with PlanckΛCDM model predictions though statistical
uncertainties are rather high. We will present our measurement of cross correlations between SDSS
shear and Planck CMB lensing maps in chapter 2. SDSS lensing kernel is sensitive to only z . 0.4
where CMB lensing kernel is quite low. This will increase the statistical noise in our measurements
compared to other similar studies, though SDSS and Planck overlap area is also larger than used in
other works which compensates for the lost precision from redshift kernel.

Galaxy lensing cross correlations

Cross correlations between galaxy positions and lensing maps provide a powerful probe to map the
dark matter distribution around galaxies and recover the information about matter correlations on
cosmological scales. These measurements are also independent of additive systematic biases in lensing
maps. Measurements of galaxy-lensing cross correlations and their applications are the main focus of
our work in chapters 2–4.

We measure the cross-correlations in real-comoving space as

〈Σcgκ〉(rp) = ρmbg

∫
dχ

∫
d3keik·rP (k) ≈ ρmbg

∫
dk⊥J0(k⊥rp)P (k⊥) = ρmwgm = Σ(rp) (1.63)

〈Σcgγ〉(rp) = ρmbg

∫
dχ

∫
d3keik·rP (k)ei2φk ≈ ρmbg

∫
dk⊥J2(k⊥rp)P (k⊥) = ρmwgm+ = ∆Σ(rp)

(1.64)

Where we converted shear to projected matter density using Σc factor, rp is the physical separation
between lens and source at lens redshift and to get the approximate expression, we used the fact that
lensing line of sight window is broad and we can use limber approximation to write P (k) ≈ P (k⊥).

An important application of galaxy-lensing cross correlations is to combine them with galaxy
clustering and obtain matter power spectrum independent of the galaxy bias. The matter correlation
function can be recovered using the relation (Seljak et al., 2005; Baldauf et al., 2010)

ξmm =
ξ2
gm

ξggrcc
(1.65)

Where rcc is the galaxy-matter cross-correlation coefficient and is ∼ 1 at large scales. At smaller scales
it can deviate significantly from 1 due to stochasticity in galaxy-matter correlations. Exact effect of
rcc also depends on the estimator used, with ∆Σ being more affected by rcc due to information from
small scales affecting larger scales (see Baldauf et al., 2010, for detailed discussion). Cosmological
analysis using galaxy-lensing cross correlations have been performed by Mandelbaum et al. (2013)
using estimator suggested by Baldauf et al. (2010) to remove small scale information. Other studies,
(e.g. More et al., 2015) have also used HOD modeling to use the clustering and lensing information
down to small scales.

Galaxy-lensing cross correlations can also be used to construct powerful tests for theories of gravity.
As shown in eq. 1.36, the lensing potential depends on the newtonian and curvature potentials. The
two potentials are equal in the General theory of relativity in the absence of anisotropic stresses, which
is true within ΛCDM model as long as effects of relativistic species , e.g. neutrinos, are subdominant.
The growth of structure depends only on the newtonian potential and thus the combination lensing
with the other probes of growth can be used to test the equality of two potentials. Zhang et al.
(2007) suggested one such test, the EG parameter, measuring ratio of galaxy-lensing cross correlations
and galaxy-velocity cross correlations (see also Leonard et al., 2015). EG measurements have been
performed by Reyes et al. (2010); Blake et al. (2016); Pullen et al. (2016); Alam et al. (2017), with
results being consistent with ΛCDM predictions, except for Pullen et al. (2016), who found a 2.6σ
discrepancy with the PlanckΛCDM model.

Since galaxy-lensing cross correlations map the matter distribution around galaxies, they are also
an important probe of relations between galaxies and their surrounding dark matter halos. Several
galaxy-galaxy lensing measurements have probed the connection between galaxies and their host dark
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matter halos (e.g. Mandelbaum et al., 2006; Sifón et al., 2015a; van Uitert et al., 2016; Mandelbaum
et al., 2016). Similarly, cross-correlations between weak lensing and clusters are also used to study
galaxy clusters, measure their masses and also calibrate other methods to obtain masses (e.g. Hoekstra
et al., 2015; Simet et al., 2017). Cluster masses can then be used to put constraints on cosmological
models as number of observed clusters in a given mass range depend on the growth of structure (see
Allen et al., 2011, for review).

Galaxy-lensing measurements also provide tests for several systematics in the lensing measure-
ments, since lens galaxy positions are not expected to correlated with many of the lensing systematics.
Most notably, galaxy-lensing cross correlations are independent of additive systematics in the esti-
mation of shear from galaxy shapes. Comparison of galaxy-lensing measurements using same galaxy
positions and different lensing maps, e.g. galaxy lensing and CMB lensing, can also help to estimate
the relative biases, including hard to estimate multiplicative biases between the two maps (Schaan
et al., 2016).

1.3.4 Systematics

As stated in section 1.3.3, some weak lensing measurements are in mild tension with results from
Planck CMB measurements, which can potentially be caused by some systematics in the lensing mea-
surements. Here we highlight few of these systematics, resulting from biases in shear estimation from
galaxy shapes and photometric redshifts. We will discuss intrinsic alignments of galaxies, which intro-
duces a non-lensing coherent shear, in section 1.3.5. Our discussion of systematics is not complete as
there are other systematics, such as non-linear physics and impact of baryons which impact inferences
from small scale correlations. We refer the reader to Joudaki et al. (2016) who tested the impact of
several of these systematics for more details.

Shape measurements

Estimating shear from galaxy shapes is a non-trivial problem as, 1) Galaxies have a wide range of
complicated morphologies (shape and structure), 2) the observed shapes from a telescope are convolved
with point spread function (PSF) due atmosphere (ground based observations only) and instrumental
effects, 3) Measurements are noisy.

The rich diversity in galaxy morphologies makes it harder to construct general models for galaxy
images. This can be challenging for methods that use simple morphological models to fit for the galaxy
shapes which may not capture all features in a given galaxy shape leading to wrong shear estimates.
Even for general moments based methods not using morphological models, accurate estimate of galaxy
morphologies is required to derive the shear responsivity factors (eq. 1.54) for the population.

The effects of PSF are two fold. It blurs the galaxies, making them rounder and in case of
anisotropic PSF, can also shear the galaxies in a preferential direction. While PSF can be estimated
from stars in the observational field, removing effects of PSF is a hard problem. If there are only few
stars in the observational field, the interpolation of PSF may not be able to capture spatial variation
of PSF across the whole field. Further, PSF can depend on the wavelength of light and since galaxies
and stars have different spectra, PSF for galaxies can be biased. Since PSF blurs the objects, getting
morphological information for galaxies smaller than the PSF size is hard, which introduces a limit
on the size of galaxies that can be used. Finally, since measurements of galaxies and PSF are noisy,
deconvolution is hard in the limit of low S/N galaxies and if noise is not accounted for correctly, noise
biases can be severe.

Current strategies (atleast for ground based surveys) to overcome these problems are to use deep
space based observations to learn galaxy morphologies and then construct larger simulations containing
realistic galaxies (see GREAT3 challenge handbook Mandelbaum et al. (2014)). The biases in shear
estimate are usually quantified as multiplicative bias, m (making galaxies appear rounder or more
elliptical) and additive bias, c, which shears galaxies in some preferred direction. The observed shear
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component are then related to true components as

γ̂i = (1 +m)γi + ci (1.66)

For our measurements, we use shape measurements that already exist from Reyes et al. (2012).
While these measurements are already well characterized and calibrated, we do perform several checks
for systematics which directly relate to shape measurements. These shape measurements are known to
have some additive systematics caused by PSF anisotropies. We estimate the impact of these additive
biases by measuring shear around random points on the sky (or using random realizations of galaxy
sample) and then remove them by subtracting the measurement around randoms from galaxy-lensing
cross correlation signal. Multiplicative biases in shear are harder to estimate as they only change
the amplitude of measurements and are de-generate with the cosmological parameters (especially
amplitude of correlations, σ8). In chapter 2, we use CMB lensing to search for relative multiplicative
biases between galaxy lensing and CMB lensing. In chapter 6, in context of intrinsic alignments, we
also perform several null tests on measured shapes, including two additional methods, de Vaucouleurs
and isophotal shapes, which have been used to measure intrinsic alignments in other works.

Photometric redshifts

Weak lensing measurements require shape measurements from a large number of source galaxies. In-
terpretation of shear measurements also require an estimate of line of sight distance to these galaxies.
Obtaining spectroscopy to get redshift estimates for all galaxies in a photometric lensing survey is
prohibitively expensive with the current technology. Instead we attempt to obtain noisy photometric
redshift estimates from the broadband measurements. Essentially, the photometric redshifts are esti-
mates from extremely low resolution spectra. In ground based surveys photometric observations are
done in ∼ 5 bands and differences of flux (or magnitudes) in these bands (colors hereafter) are mapped
to redshift. This mapping works best for galaxies with spectral features that lead to large differences
in flux across different bands (one such feature is 4000Å feature in red galaxies). There are several
algorithm based on machine learning or template fitting to estimate photometric redshifts, but they
require a representative calibration sample with spectroscopic redshifts for training (Feldmann et al.,
2006; Csabai et al., 2007; Nakajima et al., 2012; Hildebrandt et al., 2010), which can also be hard to
obtain for deep samples. These methods also suffer from degeneracies as different spectral features at
different redshifts can look the same to the algorithm.

Another method that attempts to overcome these limitations is to cross correlate the photometric
galaxies with a spectroscopic sample (Newman, 2008). Since the clustering of galaxies is a local
phenomenon, photometric galaxies will show clustering only with nearby galaxies and thus we can get
an estimate of redshift distribution of these galaxies. This method still requires a spectroscopic sample
that spans the entire redshift range of the photometric sample, though a sparse sample will work. A
major uncertainty in this method is the estimation of galaxy bias for photometric sample which
affects the clustering amplitude. In principle galaxy bias can be constrained by auto correlations
of photometric sample, but the complicated selection function of photometric galaxies across the
sky and along the line of sight can introduce modes in the auto correlations and severely bias the
clustering measurements. Another uncertainty in clustering measurements is that lensing effects can
also correlate the distribution of background photometric galaxies with the foreground spectroscopic
sample.

For many weak lensing applications, we do not require accurate per object photometric redshifts
but an accurate estimate of the redshift distribution of galaxies. For the case of tomographic mea-
surements and galaxy lensing measurements, it is useful to have good estimates of per object redshifts
to select galaxies in some redshift bins or galaxies behind a lens. While photo-z bias and scatter can
both affect the lensing measurements, it is possible to calibrate for them if bias and scatter can be
estimated. Calibrating photometric redshifts with any of the aforementioned methods though requires
hard to obtain deep spectroscopic samples.

We will use the photometric redshifts from Nakajima et al. (2012) obtained using template fitting
method (Feldmann et al., 2006) and calibrated using representative but smaller area spectroscopic
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samples (see Nakajima et al., 2012, for more details). In chapter 4, we test the calibrations obtained
by Nakajima et al. (2012) using the clustering photo-z method by cross correlating photometric sample
with spectroscopic samples (LOWZ+CMASS) from SDSS-BOSS survey.

1.3.5 Intrinsic Alignments

Intrinsic alignments (IA) of galaxy shapes are an important systematic in the weak lensing measure-
ments (Hirata & Seljak, 2004; Krause et al., 2016; Chisari et al., 2015a). These alignments lead to
violation of the assumption that mean ellipticity of galaxies is zero, 〈ei〉 = 0, in the absence of lensing
shear. In the presence of IA, we can write the observed shear as sum of lensing shear γG and an
intrinsic shear γI and the observed two-point functions get modified as

〈γγ〉 = 〈γGγG + γGγI + γIγI〉 = ξGG + ξGI + ξII (1.67)

〈gγ〉 = 〈gγG + gγI〉 = ξgG + ξgI (1.68)

Where G refers to lensing shear and g refers to galaxy positions. GG and gG are the terms of interest
for lensing measurements while the other terms are the contaminants. II term is the auto correlation
of intrinsic shear, affecting cosmic shear measurements when two physically nearby source galaxies
are correlated. This can be removed by removing source galaxy pairs that are close to each other,
though it is hard to do with photometric redshifts. GI term is caused by two source galaxies at
different redshifts that are correlated. In this case the foreground galaxy is intrinsically aligned with
the large scale structure that also lenses the background galaxies. gI is similarly caused in galaxy-
galaxy lensing when lens and source galaxies are nearby and source galaxy is intrinsically aligned
with the lens instead of being lensed. Most current lensing surveys account for IA contamination
by including the IA model at the time of inference, though there are other strategies such as nulling
(Joachimi & Schneider, 2008) which attempt to exploit different redshift kernel of IA and lensing and
remove IA at the time of measurement.

For the current generation of surveys, IA contamination has not been found to be a significant
source of systematic and attempts to detect IA using the full galaxy samples have resulted in null
detections (Blazek et al., 2012; Chisari & Dvorkin, 2013; Heymans et al., 2013a; Joudaki et al., 2016).
However, for next generation surveys such as LSST, Krause et al. (2016) have shown that IA can
significantly bias the inferences from lensing measurements if not accounted for.

The IA of galaxies depends intricately on the processes involved in the galaxy formation and
evolution, such as tidal forces from large scale structure, accretion of matter along filaments, merger
of galaxies. IA are also known to depend on the galaxy types, with several robust detections for
alignments of elliptical galaxies (Mandelbaum et al., 2006; Hirata et al., 2007; Okumura et al., 2009;
Joachimi et al., 2011; Blazek et al., 2012) while IA have not been detected yet for the case of spiral
galaxies (see Mandelbaum et al., 2011, for a case of null detection).

For the elliptical galaxies, the galaxy shapes are assumed to be preferentially aligned with the dark
matter halo shapes with some scatter (misalignment angle) and halo shapes are aligned with the local
large scale structure. The halo alignments are caused by the effects of tidal fields from large scale
structure, in which case we can write expression for intrinsic shear as (Catelan et al., 2001)

γI = (γI+, γ
I
×) = − C1

4πG
(∂2
x − ∂2

y , ∂x∂y)φp (1.69)

Note that expression for intrinsic shear in eq. 1.69 is very similar to the tangential lensing shear
though they have opposite signs (IA is radial while lensing is tangential).Hirata & Seljak (2004)
further developed the linear alignment model for IA and showed that the galaxy-intrinsic shear cross
correlation can be written in analogous expression to galaxy-galaxy lensing

wg+ = AIbC1ρcritΩm

∫
dk⊥k⊥

2π
P (k⊥)J2(k⊥rp) (1.70)
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Where we introduced AI as amplitude of IA, b is the galaxy bias and C1 is a constant conventionally
set such that C1ρcrit = 0.0134 (Joachimi et al., 2011). Similar expression can be written for IA-IA
and lensing-IA correlations. An important point to note is that IA is a local process and hence is
sensitive to the local potential around galaxies while lensing is sensitive to entire potential between
source and observer. Bridle & King (2007) showed that linear alignment model can be extended to
quasi-linear scales by using the non-linear matter power spectrum. Schneider & Bridle (2010) also
developed the halo model of IA assuming that central galaxies are aligned with the halo shapes while
satellite galaxies are radially aligned. Radial alignment of satellites can also be viewed in the context
of tidal alignments, as tidal fields within a halo are predominantly radial. Blazek et al. (2015) showed
that for sample with low satellite fraction, IA observations can be modeled by simple NFW profiles.
A full halo model for IA has not been developed at the time of writing.

There are several observations of galaxy alignments in the the literature using different statistics
and shape measurement methods (for example Mandelbaum et al., 2006; Hirata et al., 2007; Okumura
et al., 2009; Joachimi et al., 2011; Blazek et al., 2011; Hao et al., 2011; Hung & Ebeling, 2012; Li
et al., 2013; Chisari et al., 2014; Sifón et al., 2015b; Singh et al., 2015). Measurements of two point
functions of IA for elliptical galaxies show scaling consistent with the predictions from tidal alignment
models (Hirata et al., 2007; Joachimi et al., 2011; Blazek et al., 2012), while the amplitude evolves with
galaxy magnitude, with brighter galaxies showing stronger alignments (Hirata et al., 2007; Joachimi
et al., 2011). These observations are also consistent with other studies using different statistics, such
as measuring alignment angles, where brighter and redder galaxies have stronger alignments (see e.g.
Zhang et al., 2013). Since brighter and redder galaxies are also known to form in relatively overdense
regions (they have higher clustering bias also), the evolution of amplitude with luminosity is consistent
with the expectations from tidal alignment model since tidal fields are stronger in overdense regions.
Small scale processes such as galaxy mergers, accretion along preferred directions (e.g. from filaments),
also affect the IA. Thus IA observations can help in studying the importance of different processes,
making them an interesting probe of galaxy physics as well.

The IA observations for elliptical galaxies are qualitatively consistent with the results from simu-
lations (see e.g. Croft & Metzler, 2000; Heymans et al., 2006; Faltenbacher et al., 2008; Kang et al.,
2007; Kuhlen et al., 2007; Joachimi et al., 2013a). In dark matter only simulations, general consensus
has been that the halo shapes are aligned with the large scale structure, with more massive halos
showing stronger alignments. Alignments and ellipticities are also observed to evolve with the radii,
with outer regions of halos being strongly aligned Kuhlen et al. (2007). This again can be explained
by the tidal alignment model as the outer shapes of halos are more susceptible to the tidal fields and
hence are more strongly aligned (Kormendy, 1982). Subhalos are usually aligned radially, though near
pericenter alignments can be tangential where tidal torque is not able to align the rapidly accelerating
halo (Pereira et al., 2008).

To relate the galaxy alignments with halo alignments, we can use semi-analytic models to populate
the halos with galaxies and assume that the galaxy shapes are aligned with the halo shapes with some
random misalignment angles. Such approach has been used by (Faltenbacher et al., 2007; Okumura
et al., 2009; Joachimi et al., 2013a) to study alignments, finding that one needs misalignment angles
of order 35◦-40◦ to explain the observations.

Hydrodynamic simulations provide another way to study the alignments of galaxies and also test
the influence on alignments of various processes involved in galaxy physics (Tenneti et al., 2014b,a,
2015, 2016, 2017; Chisari et al., 2015b, 2016, 2017; Velliscig et al., 2015b). While Hydro simulations are
also qualitatively consistent with the picture of IA presented above, there are notable inconsistencies
in results from different simulations. Galaxy shapes are aligned with the shapes of host halos but the
distribution of misalignment angles has been found to depend on the details of physical mechanisms
put into the simulations (Tenneti et al., 2016, 2017; Velliscig et al., 2015b). The scaling of two
point functions is consistent with the predictions from tidal alignment models, though there appears
to be some discrepancy with the observations in terms of the amplitude. Tenneti et al. (2014a)
found alignments in simulations to be stronger than compared to observations while Chisari et al.
(2016) finding alignments to be weaker in simulations. There is also no consensus yet on redshift
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evolution of the alignments, with Tenneti et al. (2014a) finding no significant evolution of redshift
evolution while Chisari et al. (2016) observed redshift evolution though the results depend on shape
measurement method used. Another notable discrepancy between different hydro simulations has been
the differences in alignments of disk galaxies, with different simulations giving different amplitude and
different signs of alignments (Tenneti et al., 2016).

1.4 Thesis Structure

In chapter 2 and appendix 4.B we will present new measurements of galaxy-lensing cross-correlations
and galaxy clustering and their applications to test the cosmological models and sources of systematics
errors. These measurement use BOSS spectroscopic galaxy samples (Reid et al., 2016) and galaxy
shear measurements from SDSS Reyes et al. (2012) and CMB lensing maps from Planck Planck
Collaboration et al. (2015b). Using these measurements we will perform cosmological analysis similar
to Mandelbaum et al. (2013) (work in progress) and measure the halo mass of galaxies. The halo mass
measurements will also be used in chapter 5 to study the dependence of intrinsic alignments of galaxy
shapes with halo mass. Comparing the lensing correlations using galaxy shear and CMB lensing, we
measure distance ratios and test for relative calibration biases between CMB and galaxy lensing.

In chapter 3, we test different methods of estimating covariance for galaxy-lensing cross correlations
and perform a detailed study on sources of noise in galaxy-lensing cross correlations. We also derive
expressions for covariance for the popular estimators used for galaxy-lensing cross correlations.

In chapter 4, we present constraints on the EG parameter using the measurements from chap-
ter 2. We will also perform tests for several systematics in the measurements, including the modeling
uncertainties in rcc parameter.

Chapters 5 and 6 contain a detailed study of intrinsic alignments of galaxy shapes. In chapter 5, we
present our measurements of IA using BOSS LOWZ galaxies. The LOWZ sample allows us to extend
the IA measurements to lower luminosities compared to previous work. Using these measurements
we will test the non-linear alignment model and the evolution of IA amplitude with various galaxy
properties. We also extend to IA measurements to smaller scales and probe IA within 1-halo regime
using the halo model of Schneider & Bridle (2010). In chapter 6, we further extend this work, testing
the validity of linear alignment model in two dimensional space (separation perpendicular and parallel
to line of sight, rp and Π) when using projected galaxy shapes in redshift space. We also perform IA
measurements with different shape measurement methods and different estimators used in literature.

All the chapters from chapter 2–6 are published papers in MNRAS journal, with the exception
of chapter 4, which at the time of writing is ready for submission after a review by collaborators.
Chapter 2 is published as Singh et al. (2016a), chapter 3 published as Singh et al. (2016b), chapter 5
published as Singh et al. (2015) and chapter 6 published as Singh & Mandelbaum (2016). Since these
works are published, I will be including them in this thesis with minimal changes. Hence each chapter
will be a self contained work with its own introduction and conclusions which describe the problems
being addressed in that work in more detail than has been covered in this chapter. A brief summary
of our conclusions will be presented in chapter 7. I will also ignore the general convention of putting
appendices at the end of the thesis. Each chapter will have its own appendices, consistent with the
stated aim of keeping every chapter as a self contained work.
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Abstract

We present results from cross-correlating Planck CMB lensing maps with the Sloan Dig-
ital Sky Survey (SDSS) galaxy lensing shape catalog and BOSS galaxy catalogs. For
galaxy position vs. CMB lensing cross-correlations, we measure the convergence sig-
nal around the galaxies in configuration space, using the BOSS LOWZ (z ∼ 0.30) and
CMASS (z ∼ 0.57) samples. With fixed Planck 2015 cosmology, doing a joint fit with the
galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias
bg = 1.75±0.04 (1.95±0.02) and galaxy-matter cross-correlation coefficient rcc = 1.0±0.2
(0.8 ± 0.1) using 20 < rp < 70h−1Mpc, consistent with results from galaxy-galaxy lens-
ing. Using the same scales and including the galaxy-galaxy lensing measurements, we
constrain Ωm = 0.284±0.024 and relative calibration bias between the CMB lensing and
galaxy lensing to be bγ = 0.82+0.15

−0.14. The combination of galaxy lensing and CMB lens-
ing also allows us to measure the cosmological distance ratios (with zl ∼ 0.3, zs ∼ 0.5)

R =
DsDl,∗
D∗Dl,s

= 2.68 ± 0.29, consistent with predictions from the Planck 2015 cosmol-

ogy (R = 2.35). We detect the galaxy position-CMB convergence cross-correlation at
small scales, rp < 1h−1Mpc, and find consistency with lensing by NFW halos of mass
Mh ∼ 1013h−1M�. Finally, we measure the CMB lensing-galaxy shear cross-correlation,
finding an amplitude of A = 0.76 ± 0.23 (zeff = 0.35, θ < 2◦) with respect to Planck
2015 ΛCDM predictions (1σ-level consistency). We do not find evidence for relative
systematics between the CMB and SDSS galaxy lensing.

2.1 Introduction

As photons travel from the source towards the observer, their paths are distorted by the gravitational
potential of the intervening matter. This phenomenon, known as gravitational lensing, has become
an important tool in cosmology to study the growth of structure in the dark matter distribution
as well as cosmic acceleration (Weinberg et al., 2013). In the weak regime, the gravitational lensing
introduces small but coherent distortions in the shapes of background galaxies, which can be measured
through correlations of galaxy images. Weak gravitational lensing also remaps the CMB anisotropies,
blurring the acoustic peaks and correlating different modes, which can then be exploited to generate
mass maps from the CMB observations with good resolution and signal-to-noise ratio (Zaldarriaga &
Seljak, 1999; Hu & Okamoto, 2002; Lewis & Challinor, 2006).

CMB lensing is most sensitive to structure at high redshifts, z = 1−5, and thus provides a unique
probe to study the structure in the dark matter distribution at these high redshifts. The lensing
of CMB has been robustly detected by several CMB experiments including the Atacama Cosmology
Telescope (ACT; Das et al., 2011, 2014), the South Pole Telescope (SPT; van Engelen et al., 2012),
the Planck telescope (Planck Collaboration et al., 2014b, 2015b), The POLARBEAR experiment
(Ade et al., 2014) and the BICEP2/Keck array (Keck Array et al., 2016), with measurements being
consistent with the ΛCDM predictions. Cross-correlating CMB lensing maps with galaxy surveys
provides opportunities to probe the large-scale structure (LSS), calibrate different probes of large-
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scale structure (particularly galaxy lensing) and carry out consistency tests. Several studies cross-
correlating CMB lensing with galaxy position catalogs as well as galaxy lensing catalogs have already
been performed.

Given that CMB lensing and galaxy lensing have very different lensing kernels, cross-correlating
the two can help constrain the amplitude of matter fluctuations at low redshift (whereas CMB lensing
auto-correlations are not very sensitive to this). The past year has seen a number of detections of this
effect in several surveys (Hand et al., 2015; Kirk et al., 2016; Liu & Hill, 2015; Harnois-Déraps et al.,
2016), typically in Fourier space but in the last work, in configuration space as well. Assuming a fixed
cosmological model, these cross-correlations also provide a test for relative calibration biases between
the two lensing maps (Vallinotto, 2012; Das et al., 2013). The results of recent work has been largely
consistent with ΛCDM predictions, with at most slight tension (∼ 2σ) that has at times (e.g., Liu
et al., 2016) been interpreted as residual systematics in the galaxy lensing.

Cross-correlating CMB lensing with galaxy positions also provides a probe of structure growth and
of the matter distribution around galaxies. In addition, when compared with galaxy-galaxy lensing,
such correlations can also provide a handle on systematics such as biases in photometric redshift
distributions (de Putter et al., 2014). Many cross-correlations of galaxy positions with CMB lensing
exist in the literature (Smith et al., 2007; Hirata et al., 2008; Bleem et al., 2012; Sherwin et al., 2012;
Planck Collaboration et al., 2014b; Giannantonio & Percival, 2014; Bianchini et al., 2015; Pullen
et al., 2016; Giannantonio et al., 2016). As for the lensing-lensing cross-correlation, the results of
measurement of the galaxy position vs. CMB lensing cross-correlation are typically consistent with
ΛCDM predictions, at times with low-level (2σ) tension. For example, Pullen et al. (2015a) used
the cross correlations between BOSS CMASS galaxies and CMB lensing in combination with galaxy
clustering and velocity measurements to constrain the theory of gravity on large scales. They found
∼ 2σ deviations from ΛCDM predictions, with the discrepancy being primarily driven by the lower
amplitude of galaxy position vs. CMB lensing cross-correlations at rp & 80h−1Mpc. These cross-
correlation measurements provide a valuable consistency check when compared with results using
galaxy lensing.

Miyatake et al. (2016) measured the ratio of CMB lensing and galaxy lensing signal around the
BOSS CMASS galaxies (Alam et al., 2015a), using Planck 2015 CMB lensing maps (Planck Collab-
oration et al., 2015b) and galaxy lensing sources from CFHTLens (Erben et al., 2013). Such a ratio
depends on the geometric factors involving the distance between the observer, the lens galaxies, the
CMB last scattering surface and the source galaxies, providing a measurement of cosmic distance
ratios (Hu et al., 2007a) and hence a strong consistency check on the cosmological model.

Most of the CMB lensing vs. galaxy position cross-correlation measurements have been performed
at large scales. Current and next-generation CMB surveys will have sufficiently high resolution and
low noise levels to measure the lensing signals even on the scales of dark matter halos, and provide
mass constraints (Hu et al., 2007a). This has the potential to be particularly powerful at the high
redshifts that are beyond the reach of galaxy lensing surveys. The first such measurement has already
been performed by Madhavacheril et al. (2015) by cross-correlating CMB lensing maps from ACTPol
with CMASS sample galaxies from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS;
Alam et al., 2015a). Similar measurements using more massive SZ selected clusters have also been
performed by Baxter et al. (2015) and Planck Collaboration et al. (2015c).

In this work, we perform the galaxy-CMB lensing cross-correlations using SDSS-III BOSS galaxies
(Alam et al., 2015a). We compute the projected matter density Σ in real comoving space by stacking
the convergence obtained from Planck 2015 lensing maps around the positions of BOSS galaxies.
Using the low redshift sample, LOWZ, we also present a direct comparison between the results from
galaxy lensing and CMB lensing, and test for relative calibration biases between the two lensing
signals. Using the combination of CMB lensing and galaxy lensing, we also present a measurement
of the cosmic distance ratio at an effective lens redshift of 0.26. In addition, we also cross-correlate
the two lensing measurements in configuration space. The SDSS lensing source sample is at relatively
low redshift compared to other galaxy lensing surveys, where the rapid decrease of the CMB lensing
kernel reduces the amplitude of the cross-correlation signal. However, the large sky area of the SDSS
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(& 8000 square degrees) compared to other existing lensing surveys compensates for the relatively
lower expected signal, particularly in the case where noise in the CMB lensing maps dominates the
statistical error budget.

This paper is organized as follows: In Sec. 2.2, we discuss the theoretical background and the
estimators used in our measurements. In Sec. 2.3, we describe the datasets used in this work. Our
results are in Sec. 2.4, and we conclude in Sec. 2.5. Throughout, we use the Planck 2015 cosmology
(Planck Collaboration et al., 2015a), with Ωm = 0.309, ns = 0.967, As = 2.142× 10−9, σ8 = 0.82. To
compute theoretical predictions in this paper, we use the linear+halofit (Smith et al., 2003; Takahashi
et al., 2012) matter power spectrum generated using the CAMB software (Lewis & Bridle, 2002b).

2.2 Formalism and Methodology

In this section, we present the theoretical models and estimators used to carry out and interpret the
measurements.

2.2.1 Weak Lensing Introduction

Here we provide a very brief review of weak lensing, and refer the reader to Bartelmann & Schneider
(2001) for details. Gravitational lensing measurements are sensitive to the lensing potential, defined
as

ΦL =

∫
dχl

fk(χs − χl)
fk(χs)fk(χl)

Ψ(fk(χl)θ, χl) (2.1)

where the Weyl Potential Ψ = ψ + φ, φ and ψ are the Newtonian and curvature potentials, θ is the
angular coordinate on the sky, χs, χl are comoving radial distances to source and lens respectively
and fk are the generalized (not assuming flatness) transverse comoving distances (in the case of a flat
universe, fk(χ) = χ). Within ΛCDM, φ = ψ and ∇2φ = 4πGρm. When source size is smaller than
the angular scales over which lens properties change, the relation between source and image positions
can be linearized and the Jacobian of the image to source transformation is (Bartelmann & Schneider,
2001)

Aij =
∂(θio − δθio)

∂θjo
(2.2)

Aij = δij −
∂2Φl

∂θio∂θ
j
o

(2.3)

where the subscript o indicates that the derivative is carried out in observer (or image) coordinates.
The matrix A is

A =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
.

In the weak gravitational lensing regime, the primary observables are the convergence κ for CMB
lensing and the shear γ = γ1 + iγ2 = |γ|e2iθ for galaxy lensing. The measured γ can be rotated into
the lens-source frame, γ = γt + iγ×, where γt is the shear along the line joining the lens and source
galaxy while γ× is the shear with respect to the 45◦ lines. These observables relate to the underlying
gravitational potential as

κ =
1

2
∇2
⊥ΦL (2.4)

γt =
1

2
(∇2

x,x −∇2
y,y)ΦL (2.5)

γ× =
1

2
(∇2

x,y)ΦL (2.6)
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where the derivatives are with respect to the plane-of-sky coordinates (x is along the line joining the
lens and source positions, and y is orthogonal to x). Note that the lensing observables are sensitive
only to the matter density contrast (ρ̄mδ = ρm − ρ̄m) and not the mean matter density. The
equivalent expressions for convergence and shear in the Fourier space are

κ̃ =
1

2
k2
⊥Φ̃L (2.7)

γ̃t =≡ 1

2
(k2
⊥,x − k2

⊥,y)Φ̃L (2.8)

γ̃× =
1

2
(k⊥,xk⊥,y)Φ̃L, (2.9)

2.2.2 Lensing-lensing cross-correlation

When cross-correlating CMB lensing with galaxy shear, we will be measuring the tangential shear γt
in the galaxies around each pixel of the CMB map, and weight that shear with the CMB convergence
value κ within that pixel. Under the Limber approximation, using expressions for κ and γt from
Eqs. (2.5) and (2.6), we can write the cross-correlation function for shear and convergence as

〈κγ〉(θ) =

∫
dzκp(zκ)

∫
dzγp(zγ)

∫
dzl

H(zl)

c
WL(χκ, χl)WL(χγ , χl)

∫
dk

2π
kPδδ(k)J2 [kfk(χl)θ] , (2.10)

where p(zκ) and p(zγ) are the redshift distribution of the source samples used to measure the conver-
gence and shear respectively. In the case that κ is measured from CMB lensing, p(zκ) = δD(zκ−1100).
γt is the galaxy tangential shear defined with respect to the line joining the galaxy with the pixel
center of κ map. The lensing weight WL is defined as

WL(χs, χl) =
3

2

H2
0

c2
Ωm,0(1 + zl)

c

H(zl)

fk(χl)fk(χs − χl)
fk(χs)

(2.11)

when χs > χl and Wl = 0 for χs < χl.

The CMB lensing weight (or kernel) decreases sharply at low redshift, while the galaxy lensing
weights depends on the redshift distribution of source galaxies. In Fig. 2.1 we show the redshift-
dependent weights of both CMB lensing and galaxy lensing (calculated using the SDSS source sample
redshift distribution as described in Sec. 2.3.3) as a function of redshift, as well as the combined weight
given by

WL(z)Combined =
H(z)

c
D(z)2WL(z)CMBWL(z)galaxy shear. (2.12)

WL(z) for CMB and galaxy shear are defined in Eq. (2.11); D(z), the growth function normalized to
1 at z = 0, accounts for the growth of matter perturbations with redshifts. In this work, we will use
source galaxies with photometric redshift values satisfying zp > 0.1 (see section 2.3.3). The galaxy
lensing weight peaks around z ∼ 0.2 and the combined weight peaks around z ∼ 0.3, though it is
skewed towards higher redshift with 〈z〉 = 0.35.

2.2.3 Lensing signal around galaxies

When studying the lensing signal around galaxies, we are interested in measuring the projected average
surface mass density Σ around the lens galaxy sample. We start by writing the convergence and shear
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Figure 2.1: We show the weight functions that enter the lensing-lensing correlations as defined in
Eqs. (2.11) and (2.12). The vertical black line marks the effective redshift for the lensing-lensing
cross-correlation signal, measured using combined weights. For galaxy lensing we used the SDSS
source sample redshift distribution as defined in Sec. 2.3.3.

as

κ(rp) =
Σ(rp)

Σc
(2.13)

γt(rp) =
Σ̄(< rp)− Σ(rp)

Σc
(2.14)

Σ̄(< rp) is the mean projected surface mass density within the radius rp (transverse comoving), and
the critical surface density is defined in comoving coordinates as

Σc =
c2

4πG

fk(χs)

(1 + zl)fk(χl)fk(χs − χl)
. (2.15)

The (1 + zl) factor is required to convert the c2/G factor to comoving space since it has dimensions

of
[

Mass
length

]
. We can write Σ in terms of the projected surface mass density as

Σ(rp) = ρ̄m

∫
dΠ ξgm(rp,Π) = ρ̄mwgm(rp), (2.16)

where Π is the line of sight distance from the galaxy in redshift space, and ξgm is the three dimensional
galaxy-matter cross-correlation function. Here we use ξgm rather than 1 + ξgm since the shear is only
sensitive to the matter density contrast, i.e., Σlensing = Σ(rp)−Σ̄, where Σ̄ is the background projected
surface mass density. Throughout this paper when using Σ, we mean Σlensing. The projected matter-
galaxy correlation function can be derived from matter power spectrum as

wgm(rp) = bgrcc

∫
dzW (z)

∫
d2k⊥
(2π)2

Pδδ(k, z)e
i(rp.k⊥) (2.17)

where bg is the linear galaxy bias and rcc is the galaxy-matter cross-correlation coefficient, assumed
here to be independent of redshift. The linear bias assumption is only valid at linear scales rp &
10h−1Mpc, and at smaller scales there are substantial contributions from non-linear bias (Baldauf
et al., 2010; Mandelbaum et al., 2013). In this work we primarily use scales where the linear bias
model is valid, and analysis with a scale-dependent bias will be presented in future work. To first
order, lensing measurements are not affected by redshift space distortions and hence we do not include
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any corrections for that. The weight function W (z) depends on the redshift distribution of source
galaxies and on any redshift-dependent weights used when estimating the signal (see Sec. 2.2.5). We
explicitly calculate these weights and include them in the theory calculations, which integrates over
the whole redshift range while using the weights (but does assume redshift-independent b and rcc).
For a nearly volume-limited sample like LOWZ, this is a quite good assumption, but in general if the
bias and rcc do evolve with redshift, we will measure an effective value averaged over redshift.

1-halo term: Galaxy-galaxy lensing

To model the small-scale signal (rp . 1h−1Mpc), we use the NFW profile (Navarro et al., 1996), for
which the 3D density is

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
(2.18)

The NFW profile can be integrated over the line-of-sight to get the projected mass density, Σ and
then ∆Σ

Σ(rp) = 2

∫ rvir

0

ρ(r =
√
r2
p + χ2)dχ. (2.19)

∆Σ(rp) = Σ̄(< rp)− Σ(rp) (2.20)

For NFW profiles, we define the concentration, c200b = r200b/rs, and mass, M200b, using a spherical
overdensity of 200 times the mean density:

M200b =
4π

3
r3
200b(200ρ̄m) (2.21)

We use the colossus1 software (Diemer & Kravtsov, 2015) to compute the NFW profiles with the
mass-concentration relation from Bhattacharya et al. (2013). To avoid the contamination from the
host halo (for those galaxies that are satellites within some larger host halo) and halo-halo terms, we
fit the NFW profile only in the range 0.05 < rp < 0.3h−1Mpc in case of galaxy-galaxy lensing.

1-halo term: Galaxy-CMB lensing

In the case of CMB lensing, as described in Sec. 2.3.4, the Planck CMB lensing maps only go up to
lmax = 2048, which corresponds to a hard edge in ` that effectively smoothes out the configuration-
space maps at ∼ 6′ scales. To model the signal, we then have to smooth out the NFW profile by

convolving it with a sinc kernel (∝ J1(lmaxθ)
lmaxθ

) and with a tophat kernel with size set by the resolution of
the healpix map being used. However, 6′ is & the virial radius at all redshifts and expected halo masses
of our samples, and thus the measured profiles on all scales will have contributions from satellite and
halo-halo terms. Since the simple NFW profile does not contain these contributions, mass estimates
using only the NFW profiles will be biased high. To get more correct mass estimates, one should use
a halo model. However, since the signal-to-noise ratio of the CMB lensing at these scales is fairly low,
and there are additional uncertainties in the measurement from the Planck beam and possible leakage
of foregrounds and astrophysical systematics such the thermal SZ effect (van Engelen et al., 2014), we
do not attempt more complicated modeling in this work. Instead, for a qualitative comparison, we
will present convolved profiles by defining Σgg and Σapprox

gm as

Σgg(rp) =
ρ̄m
bg
wgg(rp) (2.22)

Σapprox
gm (rp) = ΣNFW(rp) + e−(0.5/rp)2Σgg(rp) (2.23)

where wgg is measured directly from the data as described in Sec. 2.2.4 and 2.2.5. At very small
scales, the wgg measurement is likely to be biased because of imperfect corrections for fiber collisions

1http://www.benediktdiemer.com/code/
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(see Sec. 2.3.2). Hence we down-weight wgg at these scales and use the NFW profile, which should
provide an adequate estimates for the small-scale profile. We fit this profile to the data with the NFW
halo mass as a free parameter. However, these mass constraints could be biased because of several
approximations being made in this model, so they too should be taken as a rough guide.

Finally, we will also present a comparison with Σgm measured from the ‘Med-Res’ N -body simu-
lations that were first presented in Reid et al. (2014), using the z = 0.25 and z = 0.6 snapshots for
LOWZ and CMASS galaxies, respectively. The sample of halos we use is generated using an HOD
model from Zheng et al. (2005) fit to the clustering of galaxies assuming fixed abundance of parent
halos of the galaxies, with priors on abundance being derived from range of redshift-dependent abun-
dance of galaxies (see Reid et al., 2014, for more details). To get Σgm, we cross-correlate the halos
with matter particles to obtain wgm, which is then multiplied with ρ̄m to get Σgm.

We note that the smoothing kernel is only applied to the theoretical predictions when fitting a
model to the small-scale signals below the resolution of the Planck convergence maps. When fitting
large scales (rp & 5h−1Mpc), we have confirmed that the effects of smoothing are negligible, and
hence we do not apply the smoothing kernel to the theoretical predictions in those cases.

2.2.4 Galaxy Clustering

We also measure the two-point correlation function of galaxies to constrain their large-scale (linear)
bias. In the linear bias regime, the two-point correlation function of galaxies is given by

ξgg(rp,Π) =b2g

∫
dzW (z)

∫
d2k⊥dkz

(2π)3
(2.24)

Pδδ(k, z)(1 + βµ2
k)2ei(rp.k⊥+Πkz). (2.25)

The Kaiser factor, (1 + βµ2
k), accounts for the redshift space distortions in the linear regime (Kaiser,

1987), where β = f(z)/bg, f(z) is the linear growth rate factor at redshift z and µk = kz/k. The
weight function W (z) is given by Mandelbaum et al. (2011) as

W (z) =
p(z)2

χ2(z)dχ/dz

[∫
p(z)2

χ2(z)dχ/dz
dz

]−1

. (2.26)

Here p(z) is the redshift probability distribution for the galaxy sample.

Finally we integrate ξgg over the line-of-sight separation to get the projected correlation function

wgg(rp) =

Πmax∫

−Πmax

dΠ ξgg(rp,Π) (2.27)

We use Πmax = 100h−1Mpc to reduce the effects of redshift space distortions (van den Bosch et al.,
2013).

2.2.5 Estimators

In this section we present the estimators used for measuring various signals. For all measurements, we
use 100 approximately equal-area (∼ 9◦ on a side) jackknife regions to obtain the jackknife mean and
errors for each bin, as described in Singh et al. (2015) in more detail. When fitting measurements to
theoretical predictions, we use a weighted least squares method to fit each jackknife region using just
the diagonal elements of jackknife covariance matrix, and then quote the jackknife mean and errors
on the best-fitting parameters. When doing MCMC fits (Sec. 2.4.3), we use the jackknife covariance
matrix.
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Galaxy-Galaxy Lensing

For galaxy-galaxy lensing we measure ∆Σ as

∆̂Σ(rp) =

∑
ls wlsγ

(ls)
t Σ

(ls)
c∑

rs wrs
−
∑
rs wrsγ

(rs)
t Σ

(rs)
c∑

rs wrs
(2.28)

The summation is over all lens-sources (ls) pairs, where the weight wls for each lens-source pair is
defined as (see e.g. Singh et al., 2015, for more detail)

wls =
Σ−2
c

σ2
γ + σ2

SN

. (2.29)

σSN is the shape noise and σγ is the measurement noise for the source galaxy. The Σ−2
c enters the

weight because we defined the ∆Σ in Eq. (2.28) as the maximum-likelihood estimator (Sheldon et al.,
2004). Note that the denominator in the first term in Eq. (2.28) has a weight wrs, measured by
using random lenses rather than real lenses. This accounts for the dilution of the shear by unsheared
“source” galaxies that are actually associated with the lens but are put behind the lens due to photo-
metric redshift scatter. The correction factor for this effect,

∑
wls/

∑
wrs, is usually called the boost

factor (Sheldon et al., 2004; Mandelbaum et al., 2005). Finally, the second term in Eq. (2.28) is the
subtraction of the ∆Σ measured around the random lenses, to remove the effect of spurious shear at
large scales (Mandelbaum et al., 2005).

To measure only the tangential shear around galaxies, we use the estimator

ĝγt(rp) =

∑
ls w

γ
lsγ

(ls)
t∑

rs w
γ
rs
−
∑
rs w

γ
rsγ

(rs)
t∑

rs w
γ
rs

(2.30)

where the weight wγls for galaxy-galaxy lensing (but not cosmography; see Sec. 2.2.7) is defined as

wγls =
1

σ2
γ + σ2

SN

. (2.31)

Cross-correlation between galaxy positions and CMB convergence

CMB lensing measurements provide convergence κ measurements on the sky, with the sky being
divided into equal area pixels using healpix2 (Górski et al., 2005). Using these measurements, we can
obtain the projected surface mass density around lens galaxies as

Σ̂(rp) =

∑
lp wlpκpΣc,∗∑

lp wlp
−
∑
Rp wRpκpΣc,∗∑

Rp wRp
(2.32)

where the summation is carried over all lens galaxy-CMB pixel pairs (lp) separated by comoving
projected distance rp ∈ [rp,min, rp,max] at the lens redshift, where rp,min and rp,max define the bin
edges. Σc,∗ is the geometric factor defined in Eq. (2.15) with CMB as the source. The weight factor
is defined as

wlp = Σ−2
c,∗. (2.33)

We do not include pixel noise in the weights since each pixel has the same statistical noise. Finally we
subtract out the signal measured around random galaxies (Rp pairs), to remove the spurious signal
from noise (more discussion in section 2.4.1).

To measure the convergence signal around galaxies, we use the estimator

ĝκ(rp) =

∑
lp w

κ
lpκp∑

lp w
κ
lp

−
∑
Rp w

κ
Rpκp∑

Rp w
κ
Rp

(2.34)

2http://healpix.sf.net/

https://github.com/healpy/healpy
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The rationale for and effect of subtracting the mean convergence around random points is discussed
in Sec. 2.4.1. Under the assumption that each pixel has the same statistical noise, we adopt uniform
weights: wκlp = 1.

Cross-correlation between galaxy shear and CMB convergence

For lensing-lensing cross-correlations, we measure the tangential shear around the pixels of the CMB
map and multiply it with the CMB convergence measured in that pixel.

ŵκγt(θ) =

∑θ
sp wspγ

(sp)
t κp

∑θ
sp wsp

(2.35)

The summation is over all pixel (p) and source galaxy (s) pairs with separation θ ∈ [θmin, θmax], where
θmin and θmax define the bin edges. The weights are inverse variance weights for source galaxies,
accounting for shape noise and measurement noise.

wsp =
1

σ2
γ + σ2

SN

(2.36)

Galaxy Clustering

We use the Landy-Szalay (Landy & Szalay, 1993) estimator to compute the two-point correlation
function:

ξ̂gg(rp,Π) =
DD − 2DR+RR

RR
(2.37)

DD is the count of galaxy-galaxy pairs, DR is count of galaxy-random pairs and RR are the random-
random pairs. The projected correlation function is obtained by integrating over the line-of-sight
separation (Π) bins

ŵgg(rp) =

Πmax∑

−Πmax

∆Π ξgg(rp,Π) (2.38)

We use Πmax = 100h−1Mpc, with 20 line-of-sight bins of size ∆Π = 10h−1Mpc. The choice of bin size
does not significantly impact our results since the redshift extent of our sample is � 10h−1Mpc. The
choice of Πmax also does not affect our measurements; measurements with Πmax = 50h−1Mpc are not
signifcantly different from Πmax = 100h−1Mpc. We do use the correct Πmax in our theory predictions
to account for redshift-space distortion effects.

2.2.6 Removing small-scale information

When measuring galaxy-galaxy lensing for which the observable is ∆Σ, information from the matter
distribution on small scales affects the signal measured at large scales as well. If we have a valid
model for correlation functions on all scales, this is not a problem. However, perturbation theory-
based methods cannot model signals within the virial radius of virialized halos, and even at somewhat
larger scales (rp . 10h−1Mpc), lowest order perturbation theory is not valid. To some extent this
problem can be alleviated by using non-linear prescriptions that describe quasi-linear scales with
some success. Baldauf et al. (2010) suggested an approach for removing the small-scale information
by defining a new estimator

Υgm(rp, r0) = ∆Σ(rp)−
(
r0

rp

)2

∆Σ(r0) (2.39)

Σ(rp) and wgg (Σgg = wgg) can also be converted to Υ using the relations between Σ and ∆Σ both
in the data and theory. Baldauf et al. (2010) showed that using Υ not only removes small-scale
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information that is difficult to robustly model, it also reduces the impact of cosmic variance and
redshift-space distortions in the projected correlation functions. The trade-off made when using Υ is
that we are removing signal when computing Υ, so the signal-to-noise ratio (S/N) in the measurements
decreases, especially at scales near r0. Thus we want to choose lower r0 to use more signal and have
higher S/N , and higher r0 to be able to remove non-linear galaxy bias more effectively. Baldauf et al.
(2010) suggests using r0 & 2rvir, where rvir is the virial radius of haloes in the sample. For BOSS
LOWZ galaxies, rvir . 1h−1Mpc and hence we will use r0 = 2h−1Mpc or greater in our analysis. As
stated, using Υ helps in reducing the impact of cosmic variance, which improves the S/N , particularly
on large scales and at least partially compensates for the lost S/N at small scales.

We will use Υ to derive most of the constraints on galaxy bias bg, galaxy lensing amplitude, and
the galaxy-matter cross-correlation coefficient rcc. In principle, for the combination of CMB lensing
and galaxy clustering, using Υ is unnecessary since the observables at a given rp are not contaminated
by information from smaller rp. However, use of a consistent estimator for all probes is valuable.
Moreover, while use of Υ reduces the S/N to some extent (this is dominated by reduced S/N at small
scales, as we will show explicitly in Fig. 2.9), the S/N is moderately improved on the large scales that
dominate our constraints.

2.2.7 Cosmography

Hu et al. (2007b) proposed the idea of using the ratio of CMB convergence and galaxy lensing con-
vergence as a way to measure the distance ratio (distance to surface of last scattering relative to the
distance to the source galaxy sample used to estimate the galaxy lensing) and hence constrain the
geometry, Ωk and the equation of state of dark energy. The ratio is defined as

R(zl) =
κ(zl, z∗)

κ(zl, zs)
=

Σc(zl, zs)

Σc(zl, z∗)
(2.40)

Similar distance ratio tests have also been proposed using galaxy or galaxy cluster lensing alone, in
both strong lensing (eg. Link & Pierce, 1998; Golse et al., 2002) and weak lensing regimes (eg.
Jain & Taylor, 2003; Bernstein & Jain, 2004). Several studies have already measured the distance
ratios (e.g. Taylor et al., 2012; Diego et al., 2015; Kitching et al., 2015; Caminha et al., 2016, and
references therein), though they are afflicted by several systematics such uncertainties in modeling
cluster profiles and cosmic variance in case of multiple strong lens systems, and photometric redshift
uncertainties as well as imaging systematics that cause a redshift-dependent shear calibration in the
case of weak lensing. The small redshift baseline also limits the cosmological applications of these
measurements using optical weak lensing alone (see discussion in Hu et al., 2007b; Weinberg et al.,
2013). Using CMB lensing in cosmographic measurements is advantageous in several ways. First, the
source redshift for the CMB (redshift of surface of last scattering) is well known, so one of the two
redshift slices being compared has no redshift uncertainty. The long redshift baseline between CMB
and galaxy lensing sources also improves the sensitivity of R to cosmological parameters (Hu et al.,
2007b). However, using CMB lensing with galaxy lensing makes R become more sensitive to some of
the systematics in galaxy lensing (for example, multiplicative bias) and R can also be used as test for
presence of such systematics.

To measure R, we work with galaxy lensing shear measured using estimator defined in eq. (2.30),
not convergence. Instead we convert the convergence measurement from CMB (measured using es-
timator defined in eq. (2.34)) to the shear. Motivated by the estimator in Sec. 2.2.6, we define the
estimator υt as

υt(rp, r0) = γt(rp)−
(
r0

rp

)2

γt(r0) (2.41)

Just as γt = ∆Σ/Σc, we can write υt = Υgm/Σc. In the limit that r0 = 0, υt is simply γt. The
CMB lensing convergence κ averaged around lens galaxy positions can be converted to υt using
γt(rp) = κ̄(< rp)− κ(rp) and then converting γt to υt.
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One of the primary motivations for defining Υgm was to remove information for small scales which
are more difficult to model. When measuring R, we do not need to model those small scales (any
nonlinear bias, etc. will cancel in the ratio) and hence using υt is not strictly necessary. However, when
computing the convergence signal from the CMB, the smallest scales are smoothed (see Sec. 2.3.4) and
it is desirable to completely remove information from those scales. Thus we will use υt to compute R
and our final definition of the estimator R̂ is

R̂(zl) =
υt(zl, z∗)

υt(zl, zs)
=

Σc(zl, zs)

Σc(zl, z∗)
(2.42)

Note that our estimator is different from the one used by Miyatake et al. (2016), who use γt to
compute R and exclude the scales which are affected by smoothing. We will show our measurement
using small value of r0 (� smoothing scale), in which case our estimator is equivalent to one using γt
and excluding scales smaller than smoothing scale. Also in the estimator of Miyatake et al. (2016),
the galaxy-galaxy lensing measurement is in the numerator, so their estimator is effectively 1/R. We
keep the CMB lensing measurement in the numerator since it is noisier. Later in this section we
describe how we account for the bias that comes from taking the expectation value of the ratio of
noisy quantities.

To model the measurement, we begin by computing the galaxy position-convergence and galaxy
position-shear cross-correlations

〈gκ〉(rp) =

∫
dzl p(zl)

Σ(zl)(rp)

Σc(zl, z∗)
(2.43)

〈gγt〉(rp) =

∫
dzl p(zl)

∫ ∞

zl

dzsp(zs|zph > zl)

∆Σ(zl)(rp)

Σc(zl, zs)

1

σ2
γ + σ2

SN

(2.44)

where source weights 1
σ2
γ+σ2

SN
are defined in Sec. 2.2.5 The theory computations can be converted to

υt using similar method as in the data. Note that due to variations in the number density of source
galaxies, galaxy-CMB and galaxy-source cross correlations measurement are at different effective lens
redshifts. In principle this can be modeled, but a desirable feature in R is to define it as a simple
ratio without requiring complicated modeling for small scale signals. To get both signals at the same
effective redshift, we explicitly compute the weights from galaxy-galaxy lensing as a function of lens
redshift, and use them as weights when computing the galaxy-CMB lensing cross-correlations. These
weights decrease strongly with redshift due to the decrease in the number of source galaxies behind
a lens for increasing lens redshift. Since CMB lensing kernel increases with redshift, these weights
are suboptimal for galaxy-CMB lensing cross correlations and increase the noise in gκ measurements.
Since the gκ measurement is noisier and dominates the noise in R, it is desirable to modify the weights
to give higher weight to higher redshift galaxies. Thus we add an additional factor of Σc(zl, z∗)

−2 to
weights. This increases the noise in the gγt measurement from galaxy-galaxy lensing, but this increase
is more than balanced by the reduced noise in gκ from galaxy-CMB lensing cross correlations. The
final lens weights are defined as

WR(zl) =

∫ ∞

zl

dzsp(zs|zph > zl)
1

σ2
γ + σ2

SN

Σc(zl, z∗)
−2 (2.45)

Finally R is given as

R =

∫
dzlD(zl)

2WR(zl)Σ
−1
c (zl, z∗)∫

dzlD(zl)2Σc(zl, z∗)−2
∫∞
zl

dzs
p(zs|zph>zl)
σ2
γ+σ2

SN
Σ−1
c (zl, zs)

(2.46)

D(zl)
2 is the matter growth function and enters because Σ scales as D(zl)

2 in linear theory. In
principle, due to non-linear effects in Σ, the weights in R can vary with the scale. Since non-linear

38



Chapter 2. Galaxy-lensing cross correlations 2.3. Data

effects also evolve with redshift, the measurement of R at different scales can be at somewhat different
effective lens redshifts, zl, and hence R can in principle be scale-dependent. However, this effect is
likely to be small given the narrow redshift range of LOWZ sample, and should be subdominant to the
noise in our measurements. When comparing with data, we show this effect by replacing D(zl) with
scale dependent growth function (D(zl, rp)) estimated from correlation function using linear theory
with halofit nonlinear evolution. We do note that halofit does not capture the full non-linear evolution
at small scales and thus our estimate will only be approximate.

To estimate the bias that comes from taking the ratio of noisy quantities before taking the expec-
tation value, we make mock realizations of the numerator and denominator in Eq. (2.46), using the
signal-to-noise ratio from CMB measurements for numerator and galaxy lensing measurements for the
denominator.

δX(rp) =

∣∣∣∣X
δυt(rp)

υt(rp)

∣∣∣∣ (2.47)

where X is either the numerator or denominator and υt is measured from CMB (galaxy) lensing for
numerator (denominator). Using δX(rp), we generate random realizations, X̃(rp) assuming gaussian

distribution with mean X and standard deviation δX. We then recompute the R̃ taking the ratio of
X̃ and then compute the mean, 〈R̃〉, using the same scales as R̂. We include the bias estimated from
this exercise in the theory prediction before comparing with the data.

2.3 Data

2.3.1 SDSS

The SDSS (York et al., 2000) imaged roughly π steradians of the sky, and the SDSS-I and II surveys
followed up approximately one million of the detected objects spectroscopically (Eisenstein et al.,
2001; Richards et al., 2002; Strauss et al., 2002). The imaging was carried out by drift-scanning the
sky in photometric conditions (Hogg et al., 2001; Ivezić et al., 2004), in five bands (ugriz) (Fukugita
et al., 1996; Smith et al., 2002) using a specially-designed wide-field camera (Gunn et al., 1998) on
the SDSS Telescope (Gunn et al., 2006). These imaging data were used to create the catalogues of
shear estimates that we use in this paper. All of the data were processed by completely automated
pipelines that detect and measure photometric properties of objects, and astrometrically calibrate the
data (Lupton et al., 2001a; Pier et al., 2003; Tucker et al., 2006). The SDSS-I/II imaging surveys were
completed with a seventh data release (Abazajian et al., 2009), though this work will rely as well on
an improved data reduction pipeline that was part of the eighth data release, from SDSS-III (Aihara
et al., 2011); and an improved photometric calibration (‘ubercalibration’, Padmanabhan et al., 2008).

2.3.2 SDSS-III BOSS

Based on the photometric catalog, galaxies were selected for spectroscopic observation (Dawson et al.,
2013), and the BOSS spectroscopic survey was performed (Ahn et al., 2012) using the BOSS spec-
trographs (Smee et al., 2013). Targets are assigned to tiles of diameter 3◦ using an adaptive tiling
algorithm (Blanton et al., 2003), and the data were processed by an automated spectral classification,
redshift determination, and parameter measurement pipeline (Bolton et al., 2012). In this paper we
use the BOSS data release 12 galaxies (Alam et al., 2015a).

The number densities of the BOSS samples and of various subsamples used in this work are shown
in Fig. 2.2.

LOWZ

The LOWZ sample consists of Luminous Red Galaxies (LRGs) at z < 0.4, selected from the SDSS
DR8 imaging data and observed spectroscopically in the BOSS survey (Reid et al., 2016). The sample
is approximately volume-limited in the redshift range 0.16 < z < 0.36, with a number density of
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Figure 2.2: Number density as a function of redshift for different samples. LOWZ and field sample are
defined in 0.16 < z < 0.36, while CMASS, CMASS-v1 and CMASS-v2 are defined in 0.45 < z < 0.7.
No weights were used in computing the number densities presented here.

n̄ ∼ 3 × 10−4 h3Mpc−3 (Manera et al., 2015; Reid et al., 2016). BOSS DR12 has 249 938 LOWZ
galaxies within the redshift range used in this work, 0.16 < z < 0.36. After combining with the
Planck lensing map mask and the SDSS shape catalog mask, which masks out certain regions that
have higher Galactic extinction or poor imaging quality (Reyes et al., 2012), we are left with 225 181
LOWZ galaxies, with redshift-dependent number density shown in Fig. 2.2.

We also define a sample of field galaxies using the Counts in Cylinders methods (Reid & Spergel,
2009), which was used in Singh et al. (2015) to define a sample of groups from LOWZ galaxies. Here
we apply the same technique to DR12, and select field galaxies by requiring that they are in groups
of one galaxy and that their fiber collision and redshift failure weights are equal to 1 (see Sec. 2.3.2).
These cuts ensure that there is no neighboring target LOWZ galaxy within rp < 0.8h−1Mpc and
|Π| < 20h−1Mpc for the field galaxies. Field galaxies by construction have no redshift failure weights
(see Sec. 2.3.2) and thus will provide a test on any possible systematics from these weights. They
also tend to reside in lower mass halos, and are less likely to be satellites (which have lensing profiles
that are more complex to interpret on small scales due to contamination from the host halo lensing
profile).

CMASS

The BOSS CMASS sample consists of higher redshift galaxies (0.4 < z < 0.7) targeted using color
and magnitude cuts intended to select a uniform sample of massive galaxies (Reid et al., 2016). The
DR12 CMASS sample has 849 637 galaxies, of which we use 682 298 after applying the masks and a
redshift cut z ∈ [0.45, 0.7]. The number density of the CMASS sample varies across the redshift range
(see Fig. 2.2), which can bias the inferences of its properties from stacked galaxy position-lensing cross
correlations. To overcome this problem, we also define two volume-limited samples: CMASS-v1, with
z ∈ [0.5, 0.6] and Mr ∈ [−23,−22], and CMASS-v2, with z ∈ [0.48, 0.55] and Mr ∈ [−21.5,−22.8],
where Mr is the absolute magnitude k + e corrected to z = 0 using method described in Wake et al.
(2006). CMASS-v1 has 188 586 galaxies with n̄ = (1.55 ± 0.10) × 10−4 h3Mpc−3, where ±0.10
denotes the maximum variation across the redshift range. CMASS-v2 has 236 676 galaxies with
n̄ = (3 ± 0.2) × 10−4h3Mpc−3. Since both volume-limited samples have a narrow redshift range, we
use Πmax = 60h−1Mpc when calculating the clustering signal for these samples.
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Weights

In their large scale structure (LSS) samples the BOSS collaboration provides several weights for each
galaxy to correct for systematics when estimating the galaxy clustering(Reid et al., 2016). The most
important of these are the fiber collision and incompleteness (redshift failure) weights. Due to the finite
size of the spectroscopic fibers, it is impossible to simultaneously take spectra of BOSS galaxies that
are separated by less than 62′′. Many of these cases are resolved by revisiting the field multiple times.
However, some target galaxies lack spectroscopic redshifts either due to fiber collisions and redshift
failures. This introduces a bias in the clustering measurements, since the fiber-collided galaxies are
preferentially located in overdense regions. An approach that has been shown to work on large scales
(θ & 2′) (Reid et al., 2014) is to upweight the nearest neighbor of the fiber-collided galaxies, based on
the assumption that they are likely to be in the same group due to their proximity on the sky.

In addition, we also use systematics weights, which correct for the effects of varying target density
as a function of stellar density for the CMASS sample (Ross et al., 2012) The final weights used for
CMASS are

w = wsys(wno-z + wcp − 1) (2.48)

where wcp corrects for fiber collisions, and wsys = 1 for LOWZ. While these weights have been shown
to correct for biases in clustering on large scales, it is not clear whether this approach works well for
lensing calculations (see More et al., 2015). wsys is not expected to change the lensing measurements
done by stacking procedure, as long as these weights do not alter the overall properties of the sample.
These systematic weights do depend on the apparent surface brightness of the galaxies, as those with
low surface brightness are more likely to be missed in regions of high stellar density (Ross et al.,
2012). However, the dependence on surface brightness is sufficiently mild that their inclusion does
not significantly alter the properties of the sample. We checked that using these weights changes the
absolute magnitude and redshift distribution of the sample by . 0.1% and thus we do not expect
any significant changes in the lensing measurement from wsys. Still, we do use these weights for all
samples and subsamples of CMASS. Redshift failure weights do change both the lensing and clustering
measurements by up-weighting the higher density regions. However, they do not mitigate the bias
below the fiber collision scale, and even at slightly larger scales, the measurements will be biased since
we are stacking on the wrong galaxy. Still, at scales rp & 2h−1Mpc, these weights should not lead to
any significant change other than changing the effective galaxy bias bg. In Appendix 2.A, we directly
show the effect of using these weights using the CMASS sample. For field galaxies, these weights
are all equal to one and for volume limited sub-samples of CMASS, it is not guaranteed whether the
galaxies missed from redshift failures will pass the magnitude cuts. Hence we omit the results using
redshift failure weights for these sub-samples.

2.3.3 SDSS shear catalog

For galaxy-galaxy lensing (shear measurements), we use the SDSS re-Gaussianization shape cata-
log that was introduced in Reyes et al. (2012). Briefly, these shapes are measured using the re-
Gaussianization algorithm (Hirata & Seljak, 2003). The algorithm is a modified version of early
ones that used “adaptive moments” (equivalent to fitting the light intensity profile to an elliptical
Gaussian), determining shapes of the PSF-convolved galaxy image based on adaptive moments and
then correcting the resulting shapes based on adaptive moments of the PSF. The re-Gaussianization
method involves additional steps to correct for non-Gaussianity of both the PSF and the galaxy sur-
face brightness profiles (Hirata & Seljak, 2003). The components of the PSF-corrected distortion are
defined as

(e+, e×) =
1− (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (2.49)

where b/a is the galaxy minor-to-major axis ratio and φ is the position angle of the major axis on the
sky with respect to the RA-Dec coordinate system. The ensemble average of the distortion is related
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to the shear as

γ̂+, γ̂× =
〈e+, e×〉

2R
(2.50)

R̂ = 1− 1

2
〈e2

+,i + e2
×,i − 2σ2

i 〉 (2.51)

where σi is the per-component measurement uncertainty of the galaxy distortion, and R̂ ≈ 0.87 is the
shear responsivity representing the response of an ensemble of galaxies with some intrinsic distribution
of distortion values to a small shear (Bernstein & Jarvis, 2002).

For this sample, we use photometric redshifts derived from the template fitting code ZEBRA
(Feldmann et al., 2006), as described and characterized in Nakajima et al. (2012). Using photometric
redshifts can also introduce bias in galaxy-galaxy lensing measurements. Nakajima et al. (2012)
showed that this bias can be large, but can be determined to 2 percent accuracy using representative
spectroscopic calibration samples. Using the calibration method described in Nakajima et al. (2012),
we estimate the calibration bias for the galaxy-galaxy lensing by the LOWZ sample to be ∼ −10%,
and thus multiply our lensing signal by a factor of 1.1 before plotting it or fitting models to it.

When estimating the galaxy lensing-CMB lensing cross-correlations, we do not need redshifts for
individual source galaxies. To derive the theoretical predictions for this quantity, we directly use the
dn/dz obtained from the representative spectroscopic redshift dataset from Nakajima et al. (2012)
after applying the same cuts that were applied to data during measurements.

2.3.4 Planck Lensing Maps

We use the Planck 2015 lensing map provided by the Planck collaboration (Planck Collaboration
et al., 2015b). We convert the provided κl,m values to a convergence map using healpy (Górski
et al., 2005), with nside= 1024 (pixel size of 3.43′), where nside determines the resolution of the
healpy map (higher nside means smaller pixels; npix = 12n2

side over the full sky). When constructing
the convergence map, we use κl,m in the range 8 < ` < 2048, which corresponds to modes from ∼ 25◦

to ∼ 6′. Planck Collaboration et al. (2015b) found some evidence of systematics in the high ` range,
and used 40 < ` < 400 (‘conservative’) for their main cosmological constraints, though using the
‘aggressive’ range that is adopted here gives a very similar amplitude of the lensing power spectrum
and constraints for cosmological parameters except for σ8Ω0.25

m , which shifts by ∼ 1σ between the two
` ranges.

While our primary results use nside= 1024, we test the effects of changing the pixel size (using
nside= 512 and 2048, with pixel sizes of 6.9 and 1.71′ respectively) and applying smoothing on the
convergence maps (Gaussian beams with σ = 1 and 10′). Since the pixel size with nside= 512 is
somewhat greater than the smoothing scale in the lensing map, we do expect to gain some information
by using smaller pixels with nside= 1024. Going to even higher resolution with nside= 2048 should not
make a very significant difference except at very small scales, in case there is some information left
in the lensing maps at those scales. Similarly, smoothing with a Gaussian beam with σ = 1′ should
not significantly affect our results given the resolution of the Planck maps and the scales used for
our measurements, though σ = 10′ should change the signal on scales up to the FWHM (≈ 25′) of
the smoothing kernel. Hence we will omit the measurements with σ = 1′ and will show results with
σ = 10′ smoothing for comparison with the main results, which have no additional smoothing applied
to maps.

When calculating the cross-correlations, we apply the common galaxy and Planck mask on both
the galaxy shear and Planck convergence maps. This reduces the area within the BOSS mask by
∼ 3%, primarily driven by the Planck point source mask which selectively masks the very massive
clusters. This can change the effective linear bias of the galaxy samples and hence we use the same
mask when computing galaxy clustering as well as galaxy-galaxy lensing.

To perform null tests, we generate a map by shuffling the pixels in the convergence map (with the
Planck mask applied) and then applying the galaxy mask. We also generate a realization of a noise
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map using the noise power spectrum provided with the lensing maps. Throughout this work, κsh and
κN will be used to represent the shuffled map and noise map convergences, respectively.

2.4 Results

2.4.1 Lensing of the CMB by galaxies

In this section we present the results from cross-correlating the Planck convergence maps with the
lens galaxy samples described in Sec. 2.3.2.

Figure 2.3 shows the cross-correlation signal for galaxy position vs. CMB lensing for both the
LOWZ and CMASS samples. We show the signal measured around the galaxies and around random
points. At small scales, there is significant signal around galaxies, and the the measurements in
different rp bins are uncorrelated. At large scales, the lower signal and the fact that the stack in each
bin includes almost all pixels in the map leads to the signal being dominated by the noise in the CMB
convergence, and hence the bins are very strongly correlated (we are effectively measuring the mean
and standard deviation of the map in every bin). This noise can be removed by subtracting out the
signal measured around random points from the signal measured around the galaxies, as shown in
Eq. (2.32). Another way to understand the effect of this random subtraction is that similar to the
Landy-Szalay estimator in clustering, we want to correlate the CMB map with a mean zero quantity
(〈D−R〉 = 0), so that any additive systematics are removed to first order (Mandelbaum et al., 2006).
After subtracting, the different rp bins exhibit less substantial but still noticeable correlations even at
large scales, as shown in Fig. 2.5.

The final measurements after subtracting the signal around random points are consistent with the
Planck 2015 ΛCDM model predictions. The solid lines in Fig. 2.3 show the linear theory + halofit
correlation functions with the best-fitting galaxy bias, bg; the parameters of these fits are presented
in Table 2.1. We only fit this model for scales rp > 10h−1Mpc, as at smaller scales, the effects of non-
linear bias and stochasticity in the galaxy-matter cross-correlation are expected to cause deviations
between the data and the model. However, as shown in Fig. 2.3, there is no evidence of tension between
the theory and the data even down to rp ∼ 5h−1Mpc. On the scales used for the fits, χ2

red ∼ 0.8 (0.6)
for LOWZ (CMASS). Given the large minimum radius for the fits, the constraints on galaxy bias
are independent of the pixel size and of the smoothing imposed by the cutoff in the CMB κ map at
lmax = 2048. We remind the reader that the minimum radius for the fits is larger than the resolution
of the convergence maps, and hence the results from fitting to theoretical models in this section do not
have any smoothing applied to the models. We will discuss the small scale signal, where smoothing is
necessary, in Sec. 2.4.2.

In Fig. 2.4 we show the comparison of Σ and Υgm with the predictions from Planck theory model
using the best fitting bias from Σ, Υgm, wggand Υgg. As shown in Fig. 2.4 and Table 2.1, there
is some discrepancy between the bg obtained from Σ and Υgm. These discrepancies are not very
significant (. 1.5σ after accounting for correlations). This is mostly caused by the noise in the
measurements, which leads to mild tension between theory and data as they have slightly different
scale dependences. Differences in the scale dependence of the theory and data can in general lead to
different bias measurements from Υ and Σ, since Υ at any scale rp depends on values at scales smaller
than rp (but greater than r0).

The right column of Fig. 2.3 also shows the null tests for these measurements. The signal around
random points is consistent with zero at all scales, though the noise at large scales is dominated by the
reconstruction noise in CMB lensing. When using the shuffled CMB lensing map, the signal around
random points, galaxies, and their difference is consistent with zero. Finally, the signal measured
using the noise map is also consistent with zero. The noise map also serves as a diagnostic for our
covariance estimates as shown in Fig. 2.5, since it has the same correlated noise properties. The
Jackknife covariance and correlation matrices obtained from measurements using the CMB map and
noise map are consistent. In Appendix 2.B we show the consistency between the jackknife covariance
matrix and the covariance matrix obtained using 100 independent realizations of the noise maps.
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Figure 2.3: rpΣ (in units of 106M�/pc) measurements for the LOWZ (top row) and CMASS (bottom
row) samples, using maps with nside= 1024. The left column shows the measurements around galaxies
(red points), random points (green points) and the final signal after taking the difference (blue),
along with the Planck ΛCDM model with best-fitting bias. Vertical yellow lines mark the scales
corresponding to 6′ at the maximum redshift of the sample while vertical cyan lines mark the fitting
range for the model. At rp & 30h−1Mpc (& 2◦), the noise from the convergence map starts dominating
the signal around galaxies, but is removed by subtracting out the signal around random points. The
right column shows the systematics tests, where the Planck convergence is replaced by the convergence
from the noise map κN and the shuffled map κsh. The errors in κn measurements are very similar
to the errors in κ measurements, though the errors in κsh show different behavior since the noise
correlations are broken by shuffling the measurements. The points at large radius are moderately
correlated; see Fig. 2.5.
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Figure 2.4: Comparison of Σ and Υgm obtained from CMB lensing with Planck theory predictions
using best fitting bias from Σ and Υgm as well as from galaxy clustering. Note that the bias from wgg
and Υgg is consistent with the bias from Υgm and hence the models overlap on the plot. The vertical
yellow line marks the smoothing scale 6′ at z = 0.36, and the vertical cyan lines show the range over
which models are fitted, 10 < rp < 70h−1Mpc.

Lens sample κ Pixel bg(Υ) bg(Σ) Mh [1012M�/h]
size Σapprox

gm

LOWZ κ 6.9′ 1.80±0.30 2.20±0.50 13.5±6.5
LOWZ κ 3.4′ 1.80±0.28 2.12±0.46 13.9±3.9
LOWZ κ

σ=10
′ 3.4′ 1.87±0.27 2.20±0.40 17.1±7.4

LOWZ κ 1.7′ 1.75±0.28 2.21±0.46 11.8±3.6
LOWZ γ 10.1± 0.6(∆Σ)
Field κ 3.4′ 1.61±0.26 1.90±0.40 13.5±3.9
Field γ 8.6± 0.6(∆Σ)

CMASS κ 6.9′ 1.50±0.20 1.46±0.28 24.9±5.7
CMASS κ

σ=10
′ 3.4′ 1.75±0.15 1.60±0.20 34.3±6.4

CMASS κ 1.7′ 1.56±0.19 1.51±0.27 6.9±2.3
CMASS-v1 κ 3.4′ 1.64±0.29 1.80±0.40 4±5
CMASS-v2 κ 3.4′ 1.53±0.29 1.31±0.39 16.3±4.5

Table 2.1: Measurement of halo mass (in units of 1012h−1M�) and linear galaxy bias bg from lensing
alone (rcc = 1 fixed), using different estimators. When measuring bg, the signals are fit using rp >
10h−1Mpc, with r0 = 4h−1Mpc for Υgm. We show results for different choice of pixel size and
smoothing applied to maps and the rows called “γ” use the optical galaxy lensing shear instead of
CMB lensing convergence maps. Our linear galaxy bias constraints are not significantly impacted by
the choice of pixel size or smoothing scale. When measuring halo masses, the NFW profiles are fit
between rp < 0.3h−1Mpc (in case of ∆Σ) while Σapprox

gm are fit for rp < 5h−1Mpc. When fitting a
smoothed NFW profile, we apply σ = 10′ smoothing in cases where convergence map has also been
smoothed by 10′ (κσ=10′).
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Figure 2.5: Correlation matrix for the galaxy position vs. CMB lensing cross-correlation measurement
for the LOWZ sample, with nside= 1024. We show correlation matrices for the signal measured around
galaxies (gκ, left column), around random points (Rκ, middle column), and the difference between
the two (gκ − Rκ, right column) using both CMB (κ, top row) and noise convergence (κN , bottom
row) maps. The correlation and covariance matrices obtained using both maps are consistent. The
correlations in gκ and Rκ at large scales are caused by the CMB lensing reconstruction noise, which
can be removed by subtracting the signal around random points.
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Figure 2.6: Comparison of error bars (square root of the diagonal part of the covariance matrix) in
Σ measurement for LOWZ. The color indicates the pixel size as indicated on the plot. Solid, dashed,
and dotted lines for each nside show errors in gκ−Rκ, gκ, and Rκ respectively. We use NR = 10Ng,
hence errors are smaller for Rκ, and as shown before, taking the difference between gκ and Rκ reduces
the errors at large scales. The errors obtained using κN from noise maps (not shown) are very similar
to those using κ.
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Figure 2.7: Comparison of the surface density Σ obtained from CMB lensing (solid markers) with
the clustering measurement, wgg, converted into Σgg = ρ̄wgg/bg (open markers). Note that some
samples are shifted vertically for easier viewing, with shift factor mentioned in the legend. The solid
red lines for LOWZ and CMASS show Σgm measured from simulations (no smoothing applied). The
dashed yellow lines mark the 6′ scale (corresponding to `max cutoff) at zmax = 0.36 (0.7) for LOWZ
(CMASS). The dashed cyan lines show the size of the jackknife regions at zmin (rp ∼ 70h−1Mpc) for
LOWZ, off the right side of the plot for CMASS). The dotted cyan lines show the fiber collision scale
at zmin = 0.16 (0.45) for LOWZ (CMASS).

Fig. 2.6 shows the scaling of the errors with rp, and a comparison of errors using different pixel sizes
for LOWZ; CMASS results, which are not shown, are similar. Going to smaller pixel size improves
the signal-to-noise ratio at small scales, which suggests that there is some information available at
these scales In Fig. 2.6, we show results for nside= 512, 1024 and 2048. Using nside= 2048 results in
some improvement at small scales, but the results are comparable to those with nside= 1024 at scales
rp & 1h−1Mpc, motivating our choice of nside= 1024 for our primary results. However, our galaxy
bias constraints that are based on large scales are not significantly affected by the choice of nside.

Also in Fig. 2.6, statistical uncertainties on the signals around galaxies and random points saturate
for scales rp & 10h−1Mpc (θ & 1◦). This saturation results from the fact that once we have stacked
many pixels, we are limited by the reconstruction noise of the CMB lensing maps. This noise is also
the reason for the strong bin-to-bin correlations in the first two columns in Fig. 2.5. After subtracting
the signal around random points, the final signal is still dominated by noise in the CMB convergence
measurements, but there is no evidence of residual systematics from our null tests. Moreover, Fig. 2.5
shows that there are only mild to moderate correlations between the bins.

In Figure 2.7, we show the Σ measured using CMB lensing from Fig. 2.3 with the Σ measured from
simulations and the clustering measurement by converting the clustering into Σgg using Eq. (2.22),
where we use the best fit bg to the clustering signal. The signals are consistent at most scales, though
the comparison with clustering is only qualitatively valid. At small scales, the effects of non-linear
galaxy bias and the stochasticity in the galaxy-matter cross-correlation can lead to differences between
the two. Also, in the BOSS data, the clustering below . 1′ is affected by the incompleteness due
to fiber collisions, which biases the signal for rp . 0.3(0.5)h−1Mpc in the case of LOWZ (CMASS)
sample, even when weights are used (even with weights, clustering is not unbiased for rp . 2h−1Mpc).
The lensing signal is also affected since fiber collisions preferentially affect the higher density regions
which lead them to be under-weighted in the lensing measurements as well. While fiber collision
weights do attempt to correct the bias, the signal is still biased at small scales since we are stacking
on the wrong galaxies. The CMB lensing measurement at these scales is also affected by the pixel size
and smoothing of the Planck maps. At large scales, the clustering is affected by the residual RSD,
while the lensing signal is not to first order. This effect is & 10% above rp & 70h−1Mpc. Between
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Figure 2.8: rpΥgg (top; units of (Mpc/h)2) and rpΥgm (bottom; units of 106M�/pc) measurements
using CMB lensing, using r0 = 4h−1Mpc. The dashed lines are the Planck ΛCDM model with the
best-fitting bias and rcc from our fits.

10 < rp < 50h−1Mpc, we do expect to find a good agreement (. 10%) between the CMB lensing and
clustering measurements, as demonstrated in Fig. 2.7.

In Fig. 2.7, we also show the signals measured for various LOWZ and CMASS subsamples defined
in Sec. 2.3.2. The primary motivation for defining these samples was to test for the effects of redshift
failure weights (using field galaxies, which should be less affected by fiber collisions) and variations
in number densities with redshift (using volume-limited samples CMASS-v1 and CMASS-v2). We do
not find any significant tension in results using the subsamples, with the lensing results being largely
consistent with the predictions from theory combined with the bias measurements from clustering.

Fig. 2.8 shows the Υ measurements from the BOSS LOWZ and CMASS samples obtained by
converting wgg and Σ measurements into Υ using methods described in Section 2.2.6 This figure also
shows the results from jointly fitting both clustering and lensing measurements with fixed Planck
2015 cosmology to get the galaxy bias bg and the relative lensing amplitude rcc. Due to the use
of weighting in lensing measurements, the clustering and lensing measurements are not at the same
effective redshift. As stated in Sec. 2.2.3, we integrate the theoretical predictions over redshift using
the weights, assuming redshift-independent linear bias and rcc. The theory fits the data well within
the noise, with bg = 1.95 ± 0.02 and rcc = 0.79 ± 0.13 for the CMASS sample and bg = 1.75 ± 0.03
and rcc = 1.0± 0.2 for the LOWZ sample (see also Table 2.2). Our rcc measurements are consistent
with the theoretical expectation of rcc = 1 at linear scales. The galaxy bias measurements for CMASS
are consistent with those from Rodŕıguez-Torres et al. (2016), who measured a scale-dependent bias
of bg = 1.9–2, using scales 10–60h−1Mpc. For LOWZ, our bias is consistent with that measured by
Singh et al. (2015) using the DR11 sample (bg = 1.77± 0.04).

In Fig. 2.9, we compare the signal-to-noise ratio (S/N) for the clustering and CMB lensing mea-
surements using different estimators. Υ has lower signal-to-noise for rp . 3r0 since by definition it
has the signal from scales below r0 removed. However, Υ also reduces the impact of cosmic variance
and additive systematics in the measurement, and hence improves the S/N at large scales.

2.4.2 The small-scale signal

In Figure 2.7, we show the CMB lensing signal at small separations. As discussed in Sec. 2.2.3 the
` cutoff effectively smoothens the configuration space convergence map with a two-dimensional sinc
kernel. In Fig. 2.10 we show the measurements only at rp < 5h−1Mpc along with the smoothed
Σgm profile measured from the simulations (blue lines), described in Sec. 2.2.3. We also show the
best-fitting smoothed Σapprox

gm profile, where the NFW halo mass was set as a free parameter in the
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Figure 2.9: Comparison of the signal-to-noise ratio (S/N) in the clustering and CMB lensing measure-
ments using different estimators for both LOWZ and CMASS samples. For Υ, r0 = 4h−1Mpc. Using
Υ decreases the S/N for rp . 3r0 since we are removing some of the signal, while at large scales, the
S/N improves as Υ reduces the impact of cosmic variance.

Sample-Planck κ Pix Area bg rcc

LOWZ κ 3.4′ 1.75±0.04 1.0±0.2
LOWZ κσ=10′ 3.4′ 1.75±0.04 1.1±0.2
CMASS κ 3.4′ 1.95±0.02 0.78±0.13
CMASS κσ=10′ 3.4′ 1.95±0.02 0.8±0.1

Field κ 3.4′ 1.47±0.03 1.15±0.24
CMASS-v1 κ 3.4′ 2.0±0.03 0.9±0.2
CMASS-v2 κ 3.4′ 1.9±0.03 0.7±0.2

Table 2.2: Results from joint fitting of Υgg and Υgm, with r0 = 10h−1Mpc and rp > 20h−1Mpc.
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Figure 2.10: Σ measurement for the LOWZ (top) and CMASS (bottom) samples with different levels of
smoothing applied to the convergence map. The solid red lines show the best-fitting smoothed Σapprox

gm

profile, while dashed lines show the unsmoothed NFW model as a reference (incorrect model given
the way the lensing map was produced). The dotted green line shows the Σapprox

gm profile smoothed
with a σ = 10′ gaussian kernel. The blue lines show the smoothed Σ profile measured from N -body
simulations with an HOD tuned to match the galaxy clustering. The vertical yellow line marks the
6′ scale (corresponding to ` cutoff in Planck convergence map) at z = 0.7 (z = 0.36) for CMASS
(LOWZ) sample.

fitting procedure. The halo masses are presented in Table 2.1; these are consistent with the halo mass
measured from galaxy-galaxy lensing in the case of the LOWZ and LOWZ-Field subsamples. The
halo mass measurement using galaxy-galaxy lensing in this work, Mh = (1.01 ± 0.06) × 1013M�/h,
is different from that of Singh et al. (2015), Mh = (1.5 ± 0.2) × 1013M�/h, using BOSS DR11
sample. The difference is primarily driven by the different adopted mass-concentration relations, to
which the mass estimates are sensitive when fitting scales rp < 0.3h−1Mpc as described in Sec. 2.2.3.
Using the same mass-concentration relation as Singh et al. (2015), we get consistent results (Mh =
(1.68± 0.15)× 1013M�/h).

In the case of the LOWZ sample, Σgm from simulations over-predicts the signal. This is because
the mean halo mass from the simulations is Mh ∼ 5×1013M�/h (median mass Mh ∼ 2.5×1013M�/h),
which is higher than the mass preferred by data, Mh ∼ 1013M�/h, in the case of both the CMB and
galaxy lensing measurements.

The halo mass obtained using the Σapprox
gm fits for the CMASS sample, Mh ∼ 1013M�/h, is low

compared to the values of Mh ∼ 2×1013M�/h measured by Miyatake et al. (2015) and Madhavacheril
et al. (2015) using galaxy-galaxy and galaxy-CMB lensing respectively. This discrepancy is in the
expected direction since Σgg tends to over-predict the Σ profile due to the effects of non-linear galaxy
bias and hence the NFW mass will be suppressed. Ultimately, the proper interpretation of the lensing
signal at small scales requires proper halo modeling, which we do not do given the noise and resolution
of Planck CMB lensing maps. Instead we have presented a simple model to enable easy comparisons,
but possible biases in this model should be kept in mind. We note that the profile from simulations
(after smoothing) is a reasonable description of the data; in the simulated CMASS sample, the mean
Mh ∼ 3.3× 1013M�/h and median Mh ∼ 1.7× 1013M�/h (Reid et al., 2014).

2.4.3 Lensing calibration: CMB vs. galaxy lensing

Figure 2.11 shows the comparison of Υgm obtained from galaxy lensing and CMB lensing using LOWZ
galaxies as lenses. Note that due to the different weighting used in galaxy lensing and CMB lensing,
the two measurements are not at the same effective lens redshift, with zeff = 0.24 (0.3) for galaxy
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Figure 2.11: Comparison of rpΥgm (in units of 106M�/pc) and errors in Υgm, obtained from galaxy-
CMB lensing and galaxy-galaxy lensing. The dashed red line shows the prediction using Planck 2015
cosmology along with best fitting bias to galaxy-CMB lensing measurement.

(CMB) lensing. In Fig. 2.11, we also compare the measurement uncertainties, with galaxy lensing
having a higher signal-to-noise ratio by a factor of 2–5.

In Fig. 2.12, we show the results from jointly fitting the galaxy clustering, CMB lensing and galaxy
lensing signals for the LOWZ sample using the MCMC fitting method. We fit for linear galaxy bias
bg, Ωm and bγ , where bγ is the relative calibration bias between CMB lensing and galaxy lensing
(CMB lensing amplitude ∝ bg, and galaxy lensing amplitude ∝ bgbγ). Our result of bγ = 0.824± 0.15
is consistent with 1, which would imply no difference in calibration between the two lensing methods,
at ∼ 1σ level. Note that the bg value from MCMC fits, bg = 1.80± 0.06 differs from the jackknife fits,
bg = 1.73±0.04, shown earlier for two main reasons: the lower value of Ωm (fixed to 0.309) in jackknife
fits; and we do not use the RSD corrections in the MCMC fits to speed up computation time, moving
bg higher by . 1σ (bg = 1.74±0.04 for jackknife fitting without RSD correction). The RSD correction
is . 5% at the scales we use (Baldauf et al., 2010), which is much less than the statistical uncertainties
in both Ωm and bγ . A more detailed cosmological analysis using these measurements with improved
modeling on small scales will be presented in a forthcoming paper (Singh et al. in prep).

2.4.4 Cosmography

In Fig. 2.13, we present the measurement of the distance ratio R as defined in Eq. (2.42). We present
the measurement using two different values of r0: 0.2 and 2h−1Mpc. As was discussed in Sec. 2.2.7, it
is desirable to use υt in estimating R, to avoid the information from scales rp < 2h−1Mpc where the
smoothing of the CMB lensing map is important. Using r0 = 2h−1Mpc accomplishes this goal, while
the r0 = 0.2h−1Mpc case is equivalent to taking ratios using γt when using scales rp > 2� 0.2h−1Mpc.
The sudden drop in measured R below rp < 2h−1Mpc when using r0 = 0.2h−1Mpc is consistent
with expectations from the effects of smoothing. As discussed in Sec. 2.2.7, the effects of non-linear
growth also lead to lower R on small scale by giving higher weights to lower redshifts (where R is
lower), though this is effect is estimated to be much smaller than the statistical uncertainties in our
measurements (∼ 1 − 2% at rp < 2h−1Mpc). Using the “aggressive” range, 2 < rp < 70h−1Mpc
with r0 = 0.2h−1Mpc, the mean value of R is 2.68 ± 0.29, consistent with the predicted value of
R = 2.31 from the Planck 2015 cosmology. Including the effects of noise in our theory prediction as
described in Sec. 2.2.7, the prediction becomes 〈R̃〉 = 2.35 using > 1000 realizations with noise and
scales from r0 = 0.2h−1Mpc and 2 < rp < 70h−1Mpc. Using a more conservative range of scales,

5 < rp < 70h−1Mpc with r0 = 2h−1Mpc, we get R = 2.74 ± 0.44, with the prediction 〈R̃〉 = 2.37.
However, given the strong agreement between our results with conservative and aggressive choices
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Figure 2.12: Results from MCMC fits to Υgg,Υgγ ,Υgκ for the LOWZ sample, using r0 = 10h−1Mpc
and 20 < rp < 70h−1Mpc. bg is the linear galaxy bias and bγ is the relative calibration bias between
galaxy lensing and CMB lensing. We use broad uniform priors: bg > 0, bγ > 0, and Ωm > 0. Solid
(dashed) contours show 1σ (2σ) limits. Cyan lines show the fiducial values: bγ = 1, Ωm = 0.309 and
bg = 1.74 (bg value is obtained with fixed cosmology jackknife best fit and no RSD correction applied).
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Figure 2.13: Distance ratio R (see Eq. (2.42)), measured using LOWZ galaxies. Dashed red line
marks the mean R between 2 < rp < 70h−1Mpc, while dotted red lines mark the 1σ limits on the
mean. Bottom panel shows the zoomed in comparison of different theory curves. Solid black line is
the predicted R using linear theory with Planck 2015 cosmology while solid cyan line is the prediction
using linear linear with the effects of observed measurement noise also included (using r0 = 0.2h−1Mpc
measurement). The green line is the predicted R using linear theory with halofit using Planck 2015
cosmology, accounting for the fact that redshift weighting will emphasize lower redshifts and hence
suppress the predicted R on small scales.
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of r0 and scales for the measurement, we quote 2.68 ± 0.29 as our primary result. We do not use
rp > 70h−1Mpc as these scales are larger than the size of jackknife regions and hence the covariance
matrix is not very reliable at these scales.

We do not derive any cosmological constraints using R since it is not very sensitive to cosmological
parameters given the redshift distribution of our lens and source redshifts (Hu et al., 2007b).

2.4.5 Lensing-lensing correlations

In this section we present the results of cross-correlating the Planck lensing map with the galaxy shear
from the SDSS shape sample (Reyes et al., 2012; Nakajima et al., 2012), using the estimator presented
in Sec. 2.2.2.

In Fig. 2.14, we present the lensing-lensing cross-correlations with two different choices of pixel
sizes. We fit the signal to a constant A times the predictions for the Planck 2015 cosmology, for
θ < 2◦ (to avoid scales where noise starts dominating). The best-fitting amplitudes, A = 0.78± 0.24
(nside=512) and A = 0.76±0.23 (nside=1024), which are consistent with the Planck 2015 cosmological
parameters (A = 1) at 1σ level, for both pixel sizes. If we relax the fit limits to θ < 5◦, the amplitude
decreases to 0.63 ± 0.18, which is in tension but still consistent with the Planck 2015 cosmological
parameters at 2σ level. The shift between the fits using the more conservative and aggressive ranges
of θ is less than 1σ after accounting for the correlations between the A values for these two cases, and
may be an effect of large-scale systematics at large scales. In the lensing-lensing cross-correlations,
γt is (in principle) also a quantity with zero mean and hence the estimator is less prone to the
effects of correlated noise. However, γt also has some residual additive systematics at large scales
(Mandelbaum et al., 2013), making it a quantity with non-zero mean on large scales; it can therefore
combine with the correlated noise Two(or systematics) in the CMB convergence maps to give some
residual systematics in the cross-correlations. 3 As discussed later in this section, we do not find any
evidence of systematics in our null tests, though the uncertainties in our measurements are large. In
this work we do not attempt to construct a better estimator given the noise in our measurements. In
future works, with better signal-to-noise, it will be worth exploring a better estimator that removes
the effects of residual additive systematics.

Fig. 2.15 shows several null tests used to uncover the effects of systematic errors. The first is the
‘B-mode’ signal 〈κγ×〉, which is expected to be zero from parity conservation. As a test, we fit 〈κγ×〉
to a model consisting of a constant A times the prediction for 〈κγt〉 from the Planck 2015 cosmology;
this gives A = 0.01 ± 0.21, consistent with 0 as expected. Similarly, we repeat the measurement by
replacing the Planck convergence with the noise map to compute 〈κγt〉 and 〈κγ×〉, and using the
shuffled convergence map (not shown, A = 0.3 ± 0.4). All of these measurements give A consistent
with zero.

While the deviations from the ΛCDM predictions using the Planck 2015 cosmology are not sta-
tistically significant, it is worth noting that there are several possible systematics that could bias the
amplitude of this cross-correlation, for example, intrinsic alignments (IA) and biases in the redshift
distributions. Chisari et al. (2015a) estimated the contribution from IA contamination in the CMB
vs. galaxy lensing cross-correlations to be around ∼ 10% for the CFHT stripe 82 survey. Since the
SDSS source sample is shallower than the stripe 82 sample and hence at lower effective redshift, the
fractional IA contamination can be higher. This statement assumes the validity of the linear alignment
model (Hirata & Seljak, 2003), which has been shown to describe the IA of red galaxies, and which
predicts that the IA signal is approximately constant with redshift while the lensing cross-correlation
signal with the CMB decreases at lower redshift. The IA contamination also depends on the galaxy

3TwoIt is known that shear has systematics, so that measured shear, γ̂ = γ + γnoise + γsys. The measured cross-
correlation with galaxies is then 〈gγ̂t〉 = 〈(1 + δg)γ̂t〉 ≈ 〈δgγt〉 + 〈γsys〉, where 〈γsys〉 is the systematics term in
galaxy-galaxy lensing and is removed by subtracting measurement around randoms. Now, lets consider simple case in
which CMB convergence also has some additive systematic, so that κ̂ = κ + κnoise + κsys, where we assume κsys is
constant and same in all pixels. In galaxy-CMB lensing, this systematic also gets removed when measurement around
randoms is subtracted. The correlation with shear is then, 〈κ̂γ̂t〉 = 〈κγt〉 + κsys〈γsys〉. The κsys〈γsys〉 can bias the
shear-convergence cross correlation measurements.
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Figure 2.14: The cross-correlation between the Planck CMB lensing convergence (κ) map and the
SDSS shears. The solid lines show the Planck ΛCDM model obtained using the dn/dz from Nakajima
et al. (2012), with best fit amplitude and fitting scale θ < 2◦ (marked by a vertical line). The dashed
black line shows the model with amplitude A = 1.

100 101

θ (degrees)

−2

−1

0

1

2

3

4

θ〈
κγ
〉s

ys
te

m
at

ic
s

(d
eg

re
es

)

×10−6

κγ×, A =0.01±0.21
κNγt, A =-0.09±0.24

κNγ×, A =0.09±0.22

Figure 2.15: Null tests for the lensing-lensing cross-correlations. Points show the measurements
(expected to be consistent with zero) while solid lines show the 〈κγt〉 model fit to these with a free
overall amplitude A, for which the best-fitting value is given in the legend. The vertical cyan line
marks θ = 2◦, the largest scale use in fitting the data. All the null tests we perform are consistent
with zero at the 1σ level.
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luminosity (fainter galaxies have lower IA) and on the fraction of red galaxies in the sample (here we
ignore alignments for spiral galaxies since all current measurements of IA for spirals are consistent
with zero). Assuming a sample with ∼ 20% galaxies to be LOWZ-like LRGs (effective IA amplitude
AI = 1), we predict a contamination of ∼ −30%. This is a conservative upper limit considering that
our source sample is much fainter than the LOWZ sample and is dominated by blue galaxies. See also
Blazek et al. (2012) who constrained IA contamination in galaxy-galaxy lensing measurements to be
less than 5% using the same source sample as this work.

Regarding photo-z systematics and redshift uncertainties, their impact on galaxy-galaxy lensing
for this shear catalogue was quantified using a complete and representative spectroscopic sample in
Nakajima et al. (2012), who found ∼ 2 per cent uncertainties in the mean Σc and therefore lensing
amplitude. To check whether the difference may be more significant here, we considered the difference
in the best-fitting amplitude A when we make the theoretical predictions using the redshifts from the
calibration sample from Nakajima et al. (2012), vs. when we make them from a smooth parametric fit
to the histogram, and find ∼ 1 per cent uncertainties. We therefore conclude that redshift uncertainty
is a subdominant contributor to the error budget for the lensing-lensing correlations. The same may
not be true in future datasets for which a representative spectroscopic sample is not available.

2.5 Conclusions

In this paper we have presented results from cross-correlating Planck CMB lensing maps with shear
from SDSS galaxy lensing and galaxy positions from the SDSS-III BOSS survey using both the LOWZ
and higher redshift CMASS sample.

Cross-correlating galaxy positions with the convergence maps, we detect the CMB lensing signal
around galaxies out to ∼ 100h−1Mpc. The measured signals are consistent with ΛCDM predictions
using the Planck 2015 cosmology with bias measurements from clustering. Our null tests do not reveal
any significant evidence for systematics in our measurements. The mild tensions between data and
theory, e.g., rcc = 0.78 ± 0.13 for CMASS sample, are likely due to noise fluctuations, particularly
given that there is no tension observed for the LOWZ sample.

We also detected the CMB lensing signal around galaxies at very small separations, well below the
effective smoothing scale of 6′ in the convergence maps. Combining the clustering measurements with
NFW profiles and then applying the smoothing kernel, we are able to constrain halo mass at the 3–4σ
level for different samples, though the halo masses could be biased given the simple adopted model.

We directly compared the lensing signal around LOWZ galaxies obtained from galaxy-lensing and
CMB-lensing. We find that the galaxy lensing has a better signal-to-noise ratio by a factor of 2–5,
depending on the scale. Combining these measurements with the galaxy clustering signal, we also
performed a basic cosmological analysis jointly fitting for Ωm, galaxy bias, and the relative calibration
bias between galaxy and CMB lensing. We find Ωm = 0.286± 0.024, consistent with the Planck 2015
cosmology at the 1σ level. We find the relative calibration bias between galaxy lensing and CMB
lensing to be 0.82±0.15, consistent with 1 at just over 1σ. In addition, we also measured the distance
ratio between the lens and source galaxies and the CMB last scattering surface to within ∼ 10%.
The ratio is consistent with the ΛCDM prediction using Planck 2015 cosmology; unfortunately, this
ratio is not strongly sensitive to cosmology given the low lens redshift, and hence does not provide
competitive cosmological constraints.

For lensing-lensing cross-correlations, we detected the signal at > 3σ significance at an effective
redshift of 0.35. The amplitude of the signal is consistent with ΛCDM model predictions using Planck
2015 cosmology. Given the noise in this measurement, we expect systematic errors such as intrinsic
alignments and uncertainties in the source galaxy redshift distribution to be subdominant components
of the error budget. We also performed null tests, which did not show any evidence for systematics
within the errorbars.

To conclude, our results demonstrate how CMB lensing data can be incorporated into and com-
bined with the galaxy lensing analysis using existing lensing surveys. Even though the CMB lensing
measurements are noisier than galaxy lensing and will perhaps remain so for the near future, existing
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CMB lensing measurements are already good enough to provide strong consistency checks on galaxy
lensing measurements. This analysis is an important proof of concept for future surveys that plan to
use CMB lensing in conjunction with galaxy lensing, as an additional high-redshift lens plane with
completely independent systematics. With better resolution in the upcoming lensing results from
current generation and Stage IV CMB surveys, CMB lensing can also develop into a unique tool to
study dark matter at higher redshifts, to which it is most sensitive, and which will remain beyond the
reach of currently planned galaxy lensing surveys.

Acknowledgments

We thank François Lanusse, Anthony Pullen, Alex Geringer-Sameth, Sébastien Fromenteau and
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2.A Effect of weights in the CMASS sample

In this section we briefly discuss the effect of using weights in measurements involving the CMASS
sample. Fig. 2.16 shows the difference in clustering measurements done with and without using
weights. The effect of the systematics weights is to shift wgg lower by an additive factor that has
only a weak scale dependence; this effect is the dominant impact of the weights on large scales. Since
clustering varies very strongly with scale, the fractional change in clustering increases very strongly
with scale. The weights for redshift failure up-weight the higher density regions and hence change the
clustering strongly at small scales, while the change in the large-scale bias is small (. 1σ).

Υgg by definition will not be very strongly affected by additive changes in wgg. Fig. 2.16 demon-
strates the fact that the fractional change in Υgg from systematics weights is < 5%, even on scales
where the fractional change in wgg is ≥ 20%. At the scales that dominate our constraints in bg
(rp . 50h−1Mpc), the fractional change in Υgg without vs. with systematics weights is < 1%, below
the statistical errors. As a result, our bg constraints from Υgg do not depend on the choice of whether
or not to use systematics weights. The redshift failure weights change the clustering by a strongly
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Figure 2.16: Effect of using weights in CMASS clustering measurement. In the top panel we show
the difference between using all weights vs. using some or no weights. The bottom panel shows the
fractional difference; the y-axis is Yall-wt−Yw

〈Yall-wt〉 , where Yw refers to calculations with no weights or with

only incompleteness weights (wcp and wno−z). The systematic weights lower the clustering by an
approximately scale independent additive factor, while the redshift incompleteness weights primarily
change the clustering at small scales by up-weighting the higher density regions.

scale-dependent factor, so Υgg is affected in nearly the same way as wgg. However, the effect on scales
we use for the fits for large-scale bias is small, so the change in linear galaxy bias is again . 1σ.

In Fig. 2.17 we show the effect of using weights on the lensing measurements with Planck con-
vergence maps. Given the noise in the lensing measurements, the systematics weights do not affect
the measurements very significantly and the fractional change in lensing is < 10% at all scales, less
than the statistical errors in the measurements. The redshift incompleteness weights change the small
scale signal in a similar way as in the clustering measurement, by up-weighting the higher density
regions, though the shift at large scales is small and negligible given the larger noise in the lensing
measurements.

2.B Comparison of different error estimates

Here we present a brief comparison of errors in the CMB lensing measurements obtained using the
jackknife method with the errors obtained using the scatter between 100 random realizations of the
noise map κN .

In Fig. 2.18, we show the comparison of the error bars (square root of diagonal elements of co-
variance matrix, δΣ) in Σ from these two methods. The errors obtained using the two methods are
consistent to within 20% (< 10% on most scales), with the jackknife errors being larger on most scales.
The relative uncertainty in the errors, δ(δΣ)/δΣ ∼

√
2/99 ∼ 0.14 (Taylor et al., 2013), which predicts

∼ 20% scatter (assuming two estimates are independent) when taking the ratio of errors obtained
using the two methods. Thus we can conclude that the errors obtained using the two methods are
consistent. In Fig. 2.19, we show the correlation matrix obtained from the two estimation methods;
they are consistent within the noise.

We also tested the covariance matrices by varying the number of random points. We find correlation
matrices that are consistent when using a number of random points NR = n×NG, with n = 5, 10, 20;
the variation in the error on Σ (square root of diagonal of covariance) is . 5% between these cases.
We use NR = 10Ng for our main results.
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Figure 2.17: Effect of using systematic weights in CMASS lensing measurement using Planck CMB
lensing map. y- axis definition is same as in fig. 2.16. The systematics weights do not cause any
significant change in lensing measurement, while redshift failure weights change signal primarily at
small scales by up-weighting higher density regions.
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Abstract

We study the covariance properties of real space correlation function estimators – pri-
marily galaxy-shear correlations, or galaxy-galaxy lensing – using SDSS data for both
shear catalogs and lenses (specifically the BOSS LOWZ sample). Using mock catalogs of
lenses and sources, we disentangle the various contributions to the covariance matrix and
compare them with a simple analytical model. We show that not subtracting the lensing
measurement around random points from the measurement around the lens sample is
equivalent to performing the measurement using the lens density field instead of the lens
over-density field. While the measurement using the lens density field is unbiased (in
the absence of systematics), its error is significantly larger due to an additional term
in the covariance. Therefore, this subtraction should be performed regardless of its
beneficial effects on systematics. Comparing the error estimates from data and mocks
for estimators that involve the over-density, we find that the errors are dominated by
the shape noise and lens clustering, that empirically estimated covariances (jackknife
and standard deviation across mocks) are consistent with theoretical estimates, and that
both the connected parts of the 4-point function and the super-sample covariance can
be neglected for the current levels of noise. While the trade-off between different terms
in the covariance depends on the survey configuration (area, source number density),
the diagnostics that we use in this work should be useful for future works to test their
empirically-determined covariances.

3.1 Introduction

Galaxy-galaxy lensing, the measurement of the tangential shape distortion (“shear”) due to gravita-
tional lensing by galaxies, has emerged as an important cosmological probe to study the dark matter
distribution around galaxies and the growth of large scale structure (Bartelmann & Schneider, 2001;
Weinberg et al., 2013). Since lensing is sensitive to all matter, galaxy-galaxy lensing provides a unique
way to map the matter distribution around galaxies (or galaxy clusters) and has been measured to
good precision by many surveys (e.g., Fischer et al., 2000; Hoekstra et al., 2004; Sheldon et al., 2004;
Mandelbaum et al., 2006; Heymans et al., 2006; van Uitert et al., 2012; Leauthaud et al., 2012; Ve-
lander et al., 2014; Viola et al., 2015; Hudson et al., 2015; Clampitt et al., 2016; Buddendiek et al.,
2016). Several studies have used galaxy-galaxy lensing to study the halo mass of galaxies and under-
stand the galaxy-halo connection (e.g., Hoekstra et al., 2004; Mandelbaum et al., 2006; Heymans et al.,
2006; Tinker et al., 2012; Leauthaud et al., 2012; van Uitert et al., 2012; Gillis et al., 2013; Velander
et al., 2014; Sifón et al., 2015a; Hudson et al., 2015; van Uitert et al., 2016). In combination with
galaxy clustering, galaxy-galaxy lensing can also be used to recover the underlying matter correlation
function, which can then be used to constrain cosmology (Seljak et al., 2005; Baldauf et al., 2010;
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Mandelbaum et al., 2013; More et al., 2015; Kwan et al., 2016; Buddendiek et al., 2016) and to test
the theory of gravity (Zhang et al., 2007; Reyes et al., 2010; Blake et al., 2016).

With the increasing precision of cosmological surveys, there has been an increasing focus on es-
timating the covariances of the measurements more accurately as well, since the uncertainties in
covariance matrices can lead to incorrect estimation of uncertainties in cosmological parameters (e.g.,
Hartlap et al., 2007; Dodelson & Schneider, 2013; Taylor et al., 2013; Mohammed et al., 2016). Es-
timating the non-Gaussian or connected part of the covariance matrix, which has two contributions,
is especially challenging. The first contribution is due to mode couplings between small-scale (or
in-survey) modes from the non-linear evolution of structure (Scoccimarro et al., 1999; Hu & White,
2001; Cooray & Hu, 2001; Mohammed et al., 2016). The second term is the super-sample variance
contribution from the couplings of modes within the survey to the modes corresponding to length
scales that are larger than the survey size (eg. Hu & Kravtsov, 2003; Hamilton et al., 2006; Takada
& Hu, 2013; Takada & Spergel, 2014; Schaan et al., 2014; Li et al., 2014). Current prescriptions for
estimating covariances include using numerical simulations (e.g., Dodelson & Schneider, 2013; Man-
era et al., 2013; Li et al., 2014), using a physically-motivated halo model (e.g., Takada & Hu, 2013;
Schaan et al., 2014) and using analytical estimates based on perturbation theory (e.g., Mohammed
et al., 2016).

While many studies have explored this issue of covariance matrices for two-point functions in
general, galaxy-galaxy lensing covariances have been relatively less well-studied. When addressing this
question, one must also address the question of which estimator is used for the measurement. Several
estimators for the galaxy-galaxy lensing signal can be found in the literature. One estimator uses the
average tangential shear of background galaxies with respect to the lens galaxies. Another estimator
also includes the subtraction of tangential shear around random points, which has an expectation
value of zero in the absence of systematics and which can be used to remove the impact of coherent
additive shear systematics. Subtraction of the lensing shear around random points is often argued to
be beneficial primarily due to the way it removes these additive systematic errors (e.g., Mandelbaum
et al., 2005, 2013). However, another motivation for the latter estimator can be found in the work
on optimal estimators of galaxy clustering: Landy & Szalay (1993) illustrated that the estimators
that are constructed using mean-zero quantities (over-density), while having an expectation value
that is the same as the simple estimator, have better covariance properties1. For example, in the
case of galaxy surveys, random points (R) that follow the area coverage of the lenses are typically
used to estimate the mean of the galaxy field (D) in the presence of complicated survey masks. They
are then used to convert the galaxy field into the normalized over-density (mean-zero) field (D −
R)/R, the auto-correlation of which is the standard Landy-Szalay estimator for galaxy clustering with
improved covariance properties. Likewise, for galaxy-galaxy lensing, estimating the mean tangential
shear around lens galaxies corresponds to correlating the galaxy density field (nonzero mean) with the
shear field, while subtraction of the mean tangential shear around random points results in correlating
the mean-zero galaxy over-density with the shear.

In general, most galaxy-galaxy lensing studies either compute the covariance matrices analytically
assuming shape noise and measurement noise only (see for example, Viola et al., 2015), or use the
jackknife method, which has the advantage that it includes all observational effects, though it is noisier
and also limits the scales which can be used in the analysis (e.g., see Hildebrandt et al., 2016; Blake
et al., 2016, for comparison of theoretical and jackknife covariance). It is also not clear how well
the jackknife method can capture the super-sample covariance, though since galaxy-galaxy lensing is
dominated by shape noise in current generation surveys, super-sample covariance is expected to be
subdominant. Recently Shirasaki et al. (2016) (see also Blake et al., 2016) did a detailed study of the
galaxy-galaxy lensing covariance matrix using realistic N -body and ray tracing simulations. In version
1 of their paper, they found that once the scales are of similar order as the jackknife division size, the

1Sometimes the reverse claim is made in the literature – i.e., that the estimator with the signal around random points
subtracted has increased variance. This claim is typically made in cases where not enough random points are used,
in which case there is indeed some added variance. Our argument that the covariance properties of this estimator are
superior is true in the limit of infinite random points: they are nothing other than a Monte Carlo method to determine
the survey volume and hence the mean density. We explore this issue in more realistic cases in this work.
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jackknife method overestimates the errors compared to errors obtained from the standard deviation
across different simulation realizations, even in the presence of shape noise. This overestimation in
jackknife errors was interpreted as increased contribution from super-sample covariance, since the
jackknife method has effectively divided the survey into several small survey realizations, and the
super-sample covariance grows with the square of the mass variance within the survey volume (Takada
& Hu, 2013), which can scale differently from the usual inverse-volume scaling of the covariance
terms. The analysis by Shirasaki et al. (2016) applies to the galaxy-galaxy lensing estimators without
subtracting the measurement around the randoms lens sample, as in e.g. Leauthaud et al. (2012);
Viola et al. (2015); Hudson et al. (2015); van Uitert et al. (2016); Blake et al. (2016) (Blake et al.
(2016) subtracted the measurement around random points from the signal, but this was not done for
the covariance estimation). Other galaxy-galaxy lensing studies subtract out the signal around the
randoms (e.g., Sheldon et al., 2004; Mandelbaum et al., 2005, 2006; Clampitt et al., 2016; Kwan et al.,
2016). In an updated version of their paper, Shirasaki et al. (2016) show that after subtracting out
the measurement around randoms, the covariance decreases and the covariance from the jackknife
method is consistent with the covariance obtained using different mock realizations (for scales smaller
than the size of the jackknife regions).

In this work, we explore the covariance properties of these two galaxy-galaxy lensing estimators
both in the presence and the absence of systematic errors. We show that there is a theoretical rea-
son to believe that the estimator with the mean shear around random points subtracted should have
more optimal covariance properties, and we explore the impact of this difference in practice for one
particular survey. Aside from the issue of removing systematics, we demonstrate the correlated noise
term between measurements around galaxies and randoms, which results in more optimal variance
properties after subtracting the shear around random points. We also study the differences in the
covariance matrices obtained from the jackknife method and standard deviations across several mock
realizations, similar to Shirasaki et al. (2016). We demonstrate several methods of empirically esti-
mating specific covariance contributions, and interpret the results of those methods in terms of which
galaxy-galaxy lensing covariance terms they include.

This work is organized as follows. In Sec. 3.2 we briefly review the theoretical formalism and
estimators, and in Sec. 3.3 we present the data used. Results are presented in Sec. 3.4, and we
conclude in 3.5. In appendix 3.A we derive the expressions for covariance when cross-correlating non-
zero mean quantities and in appendix 3.B we present comparisons of different estimators in the case
of galaxy clustering measurements.

Throughout this work we use the Planck 2015 cosmological parameters (Planck Collaboration
et al., 2015a) with Ωm = 0.309, ns = 0.967, As = 2.142 × 10−9, σ8 = 0.82. Theory predictions are
computed using the linear theory + halofit (Smith et al., 2003; Takahashi et al., 2012) power spectrum
generated with the CAMB (Lewis & Bridle, 2002b) software. We use h = 1 when computing distances
and hence our ∆Σ measurements are in units of hM�/pc2.

3.2 Formalism and Methodology

3.2.1 Galaxy lensing

Here we briefly review the formalism of galaxy-galaxy lensing. For a general review of gravitational
lensing we refer the reader to Bartelmann & Schneider (2001); Weinberg et al. (2013); Kilbinger (2015).

In galaxy-galaxy lensing, we measure the projected surface mass density Σ around the lens galaxies.
In the case of a spherically symmetric lens, we can write the convergence and shear as

κ(rp) =
Σ(rp)

Σc
(3.1)

γt(rp) =
Σ̄(< rp)− Σ(rp)

Σc
. (3.2)
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Σ̄(< rp) is the mean surface mass density within the transverse separation rp, and the critical surface
density is defined as

Σc =
c2

4πG

fk(χs)

(1 + zl)fk(χl)fk(χs − χl)
, (3.3)

where fk(χ) is the transverse comoving distance (fk(χ) = χ in a flat universe). 1 + zl converts the
c2/G factor to comoving space.

We can write Σ in terms of the projected galaxy-matter correlation function as

Σ(rp) = ρ̄m

∫
dΠ ξgm(rp,Π) = ρ̄mwgm(rp), (3.4)

where Π denotes the line-of-sight separation from the halo center, and we have ignored the effects
of lensing window function, which depends on Π. Nominally the definition for Σ should include a
factor of 1+ ξgm within the integral (rather than just ξgm), but the constant term does not contribute
to γt because it gets removed by subtraction of the Σ̄(< rp) term. In the linear bias regime, the
galaxy-matter projected correlation function can be derived from the matter power spectrum as

wgm(rp) = bgrcc

∫
dzW (z)

∫
d2k

(2π)2
Pδδ(k, z)e

i(rp·k), (3.5)

where bg is the galaxy bias and rcc is the galaxy-matter cross correlation coefficient, both of which
are assumed to be independent of redshift in this equation. Pδδ(k, z) is the matter power spectrum
(linear+halofit) at redshift z. To lowest order, lensing measurements are not affected by redshift
space distortions, and hence we do not include any corrections for them. The weight function W (z)
depends on the redshift distribution of the source galaxies and on the weights used in the estimators
when measuring the signal (see Sec. 3.2.2). We explicitly include these weights when computing the
effective redshift zeff for the theory calculations.

3.2.2 Estimator

Our observable quantity for the galaxy-galaxy lensing measurement is ∆Σ, which is estimated in bins
of rp as

∆̂ΣgR(rp) =

∑
ls wlsγ

(ls)
t Σ

(ls)
c∑

Rs wRs
−
∑
Rs wRsγ

(Rs)
t Σ

(Rs)
c∑

Rs wRs
. (3.6)

The summation is over all lens-sources (“ls”) pairs. γt is the tangential shear measured in the
lens-source frame. Σc is the geometric factor defined in Eq. (3.3), and the optimal weight wls for each
lens-source pair (wRs is defined analogously for random-source pairs) is defined as (see Mandelbaum
et al., 2005)

wls =
Σ−2
c

σ2
γ + σ2

SN

. (3.7)

The Σ−2
c enters the inverse variance weight because we defined the ∆Σ in Eq. (3.6) as the maximum

likelihood estimator (Sheldon et al., 2004). Note that the denominator in Eq. (3.6) has a sum over
weights wRs, measured by using random lenses rather than lens galaxies. Division by

∑
Rs wRs

rather than
∑
ls wls corrects for the dilution of the shear signal by source galaxies that are physically

associated with the lens but appear to be behind the lens due to photo-z scatter. These galaxies do
not contribute any shear but are counted in the total weights (sum over wls). The correction factor
for this effect

∑
ls wls/

∑
Rs wRs (properly normalized to account for different number of random and

real lenses) is usually called the boost factor (Sheldon et al., 2004; Mandelbaum et al., 2005) and is
∼ 1 for the scales we use in this work rp & 1h−1Mpc. Finally, we subtract the shear signal measured
around the random points to remove any systematics that may contribute a spurious shear signal at
large scales, and to construct a more optimal estimator. Throughout this paper, the subscript ‘gR’
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is used to indicate that the measurement around random points is subtracted from the measurement
around the lenses:

∆̂ΣgR(rp) = ∆̂Σg(rp)− ∆̂ΣR(rp) (3.8)

One of the main goals of this paper is to test how the subtraction of the signal measured around
random points impacts the covariance matrix of the final measurement. Hence, we will study the
signals measured around galaxies and randoms separately as well. We will refer to the signal measured
around galaxies by ∆̂Σg and around random points by ∆̂ΣR. The ratio of the number of random
points used to the number of lens galaxies is NR:

NR =
Number of random lenses

Number of lens galaxies
(3.9)

In case of NR = 0, ∆̂ΣgR ≡ ∆̂Σg.

To estimate jackknife errors, we use 100 approximately-equal area (∼10 degrees on a side) jackknife
regions to obtain the jackknife mean and errors for each rp bin.

3.2.3 Covariance: theoretical expectations

As is derived in appendix 3.A, the covariance for ∆Σg is given by

Cov(∆Σg)(|rp,i|, |rp,j |) =

[ AW (rp,i − rp,j)

AW (rp,i)AW (rp,j)

1

LW

∫
dk k

2π
J2(krp,i)J2(krp,j)

(
Σ2
c (Pgg(k) +Ng) (Pκκ(k) +Nγ) + ∆Π2ρP

2
gδ + Tgγgγ

)]

+

{
1

AW (rp,i)AW (rp,j)LW

∫
dk k

2π
J2(krp,i)J2(krp,j)W̃ (k)2Σ2

c (Pκκ(k) +Nγ)

}
. (3.10)

Here the lens galaxy power spectrum can be written as Pgg = b2gPδδ(k) in the linear bias regime, the

lens galaxy shot noise power spectrum is Ng = 1
ng

, the shape noise term is Nγ =
σ2
γ

ns
, the galaxy-shear

cross-power spectrum is Pgγ = ρbgrccPδδ(k), and the convergence power spectrum Pκκ is given in

Eq. (3.51). We compute the 〈Σc〉 when performing the measurements, and use 〈Σc〉 ∼ 4.7× 103 hM�
pc2 ,

ns ∼ 8h2Mpc−2 (after accounting for weights) in theoretical covariance calculations. J2 is the second
order spherical Bessel function, σγ ∼ 0.36/2R is the shape noise, ∆Π2 ≈ 700h−1Mpc is the line-of-
sight integration length using the lensing window function, W (k) is the projected lens window function
in Fourier space (see appendix 3.A for the expressions for the window function) and LW is the line-of-
sight length of the lens window function. Tgγgγ is the connected part of the covariance, which we will
ignore in numerical calculations. AW (defined in Eq. 3.53) is the window function-dependent effective
area covered by each bin, and accounts for the edge effects due to the survey window. For scales much
smaller than the survey window, AW ≈ AW , where AW is the survey area. In the ∆Σ measurements
in this work, we only divide the lens sample into jackknife regions, but the source sample stays the
same and hence the edge effects are small. When calculating numerical predictions for the jackknife
errors, we set the window function AW ≈ AW (ideally we should set AW for jackknife to be same
as that of full sample, but in the case of an idealized LOWZ-sized window, AW ≈ AW for the scales
of interest). In appendix 3.B, we show the effects of AW on the jackknife covariance in the case of
clustering measurements.

The covariance for ∆ΣgR is similar to what is shown in Eq. (3.10), except that it does not contain
the last term in curly brackets, {}. This term arises because of the non-zero mean value of the
lens density (here the lens sample is assumed to be normalized and hence its mean is 1). This
term is independent of the lens over-density and only depends on the window function of the lens
sample. Hence it get removed when the measurement around random points is subtracted from the
measurement around galaxies.
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3.2.4 Covariance matrix estimation methods

To estimate the covariance matrix, we use two different methods. The first is the jackknife method,
in which we divide the whole survey into NJk = 100 approximately equal-area regions (∼ 90 degrees2

≡ 762, 1252, 1632 [Mpc/h]2 at z = 0.16, 0.27, and 0.36 respectively). We then make NJk measurements
by dropping one region at a time, so that each measurement contains NJk − 1 regions. The jackknife
variance estimate (diagonals of the covariance matrix) is then

VarJk(∆̂Σ) =
NJk − 1

NJk

NJk∑

i=1

(∆Σi −∆Σ)2 (3.11)

Our second method is to measure ∆Σ using NM mock realizations of the lens sample and then
compute the standard deviation (“Std”) of the measurement across all realizations:

VarStd(∆̂Σ) =
1

NM − 1

NM∑

i=1

(∆Σi −∆Σ)2 (3.12)

Finally, for comparison, we also show error estimates using subsamples of the survey. We use the
same subsampling as in the jackknife method, but in this case we perform the measurements using
one subsample at a time. The variance in this case (error on the mean) is

Varsubsample(∆̂Σ) =
1

NJk(NJk − 1)

NJk∑

i=1

(∆Σi −∆Σ)2 (3.13)

3.3 Data

3.3.1 SDSS

The SDSS (York et al., 2000) imaged roughly π steradians of the sky, and the SDSS-I and II surveys
followed up approximately one million of the detected objects spectroscopically (Eisenstein et al.,
2001; Richards et al., 2002; Strauss et al., 2002). The imaging was carried out by drift-scanning the
sky in photometric conditions (Hogg et al., 2001; Ivezić et al., 2004), in five bands (ugriz) (Fukugita
et al., 1996; Smith et al., 2002) using a specially-designed wide-field camera (Gunn et al., 1998) on
the SDSS Telescope (Gunn et al., 2006). These imaging data were used to create the catalogues of
shear estimates that we use in this paper. All of the data were processed by completely automated
pipelines that detect and measure photometric properties of objects, and astrometrically calibrate the
data (Lupton et al., 2001a; Pier et al., 2003; Tucker et al., 2006). The SDSS-I/II imaging surveys were
completed with a seventh data release (Abazajian et al., 2009), though this work will rely as well on
an improved data reduction pipeline that was part of the eighth data release, from SDSS-III (Aihara
et al., 2011); and an improved photometric calibration (‘ubercalibration’, Padmanabhan et al., 2008).

3.3.2 SDSS-III BOSS

Based on the SDSS photometric catalog, galaxies were selected for spectroscopic observation (Dawson
et al., 2013), and the BOSS spectroscopic survey was performed (Ahn et al., 2012) using the BOSS
spectrographs (Smee et al., 2013). Targets were assigned to tiles of diameter 3◦ using an adaptive tiling
algorithm (Blanton et al., 2003), and the data were processed by an automated spectral classification,
redshift determination, and parameter measurement pipeline (Bolton et al., 2012).

We use SDSS-III BOSS data release 12 (DR12; Alam et al., 2015a; Reid et al., 2016) LOWZ
galaxies in the redshift range 0.16 < z < 0.36. The LOWZ sample consists of Luminous Red Galaxies
(LRGs) at z < 0.4, selected from the SDSS DR8 imaging data and observed spectroscopically in the
BOSS survey. The sample is approximately volume-limited in the redshift range 0.16 < z < 0.36,
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with a number density of n̄ ∼ 3× 10−4 h3Mpc−3 (Manera et al., 2015; Reid et al., 2016). We use the
same sample as used by Singh et al. (2016a), who mask out certain regions on the sky which have
higher galactic extinction or poor imaging quality (Reyes et al., 2012), which leaves 225,181 galaxies
in the sample.

3.3.3 Re-Gaussianization Shapes and Photometric redshifts

The shape measurements for the source sample used in this work are described in more detail in Reyes
et al. (2012). Briefly, these shapes are measured using the re-Gaussianization technique developed by
Hirata & Seljak (2003). The algorithm is a modified version of ones that use “adaptive moments”
(equivalent to fitting the light intensity profile to an elliptical Gaussian), determining shapes of the
PSF-convolved galaxy image based on adaptive moments and then correcting the resulting shapes
based on adaptive moments of the PSF. The re-Gaussianization method involves additional steps to
correct for non-Gaussianity of both the PSF and the galaxy surface brightness profiles (Hirata &
Seljak, 2003). The components of the distortion are defined as

(e+, e×) =
1− (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (3.14)

where b/a is the minor-to-major axis ratio and φ is the position angle of the major axis on the sky
with respect to the RA-Dec coordinate system. The ensemble average of the distortion is related to
the shear as

γ+, γ× =
〈e+, e×〉

2R (3.15)

R = 1− 1

2
〈e2

+,i + e2
×,i − 2σ2

i 〉 (3.16)

where σi is the per-component measurement uncertainty of the galaxy distortion, and R ≈ 0.87 is the
shear responsivity representing the response of an ensemble of galaxies with some intrinsic distribution
of distortion values to a small shear (Kaiser et al., 1995; Bernstein & Jarvis, 2002). A discussion of
corrections for shear-related systematic biases and the residual systematic uncertainties can be found
in Mandelbaum et al. (2013). These estimates are based on a combination of null tests using the shear
catalog and external image simulations.

The photometric redshifts for the catalog were estimated using the template-fitting code ZEBRA
(Feldmann et al., 2006). Using photometric redshifts for the source sample introduces a bias in galaxy-
galaxy lensing through misestimation of the Σc factor (with the most severe misestimation arising
due to the inclusion of some lens-foreground “source” pairs due to scatter in photometric redshifts).
Nakajima et al. (2012) showed that this bias can be large, but can be estimated to within 2% using
a representative calibration sample with spectroscopic redshifts. We compute these correction factors
using the method of Nakajima et al. (2012) with the LOWZ lens redshift distributions to be ∼ 10%
and then multiply our measurements with a calibration factor of 1.1.

3.3.4 Mock source catalog

We generate 100 mock catalogs of the shape sample by randomly rotating the shapes of galaxies in
the real source sample, while keeping their positions (RA, Dec, z) fixed. Random rotations remove
any coherent shear (cosmological or due to systematics) in the sample while maintaining the shape
noise and measurement noise in each realization. As a result, ∆Σ measurements using rotated (mock)
sources will not have any coherent signal and their covariance matrix will only have contributions
from shape noise and measurement noise. The comparison of the covariance matrix of mocks with the
covariance from real sources will allow us to study the contribution of shape noise and measurement
noise to the covariance in the real data.
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Figure 3.1: ∆Σ measured for the LOWZ sample, with different numbers of random catalogs used.
The errors shown are from the jackknife method. The signal without subtraction of the lensing
signal around random points (NR = 0, cyan points) shows the presence of additive systematics in
the SDSS source sample. These systematics are removed with the subtraction of the signal measured
around random points. Theory predictions use the linear theory+halofit power spectrum with fixed
cosmology along with the best-fitting linear bias and rcc = 1, and fitting was done for 10h−1Mpc <
rp < 65h−1Mpc.

3.3.5 QPM mocks

To estimate the galaxy-galaxy lensing covariance matrix using a mock lens sample, we use the QPM
mocks (White, 2014) which have been used in several BOSS analyses (e.g., Cuesta et al., 2016; Grieb
et al., 2016; Gil-Maŕın et al., 2016a). QPM mocks are constructed using the quick particle mesh
method (White, 2014) to mimic the large-scale clustering properties of BOSS galaxies. In this work,
we use 100 QPM mocks with the same sky coverage, mask and jackknife splitting as in the LOWZ
sample.

3.4 Results

In this section we present our results from measuring galaxy-galaxy lensing using different estimators
and different combinations of lens and source galaxies. We perform several tests to study the effects on
the estimated covariance by using different covariance estimation methods, varying NR, varying the
clustering properties of lens sample, and varying the source sample (without and with systematics).
A summary of the various terms in the covariance that contribute for different combinations of lens
and source samples is presented in Table 3.1, and a summary of the results is in Figure 3.7.

3.4.1 LOWZ lensing results

We begin by showing the galaxy-galaxy lensing measurements using the LOWZ lens sample. Fig. 3.1
shows ∆Σ measured using LOWZ lens galaxies and different numbers of random points. When using
no randoms (the NR = 0 case), there is evidence for a spurious systematic signal at large scales. This
spurious signal arises because the PSF correction method used to measure the galaxy shapes is unable
to fully remove all of the PSF anisotropy. The SDSS survey strategy results in large-scale coherent
PSF anisotropy which, when improperly removed, causes a large-scale coherent galaxy shape alignment
(see Mandelbaum et al., 2005, 2013, for a detailed discussion). The fact that this spurious signal gets
removed when the measurement around randoms is subtracted has been the primary motivation for
the subtraction of the signal around random points in SDSS galaxy-galaxy lensing measurements.
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Figure 3.2: Jackknife errors in the LOWZ ∆Σ measurement (square root of diagonal elements of the
covariance matrix), for different numbers of random catalogs. The errors generally follow the ∝ 1/rp
scaling expected from shape noise and logarithmic binning in rp, though there is some saturation at
large scales due to the correlated shape noise and systematics. Also shown are the theory predictions,
which are consistent with data at small scales, though there are differences at large scales due to
systematics that are not included in the theory.

However, the subtraction of the signal around random points also reduces the errors in the mea-
surements, especially at large scales (the noise in the ∆Σg term has contributions from systematics as
well as shape noise, as we will show in later sections.). In Fig. 3.2, we show the variations in the error
estimates (square root of the diagonal covariance matrix elements) with different numbers of random
catalogs NR. At small scales, where the errors follow the expected scaling for shape noise (∝ 1/rp
in logarithmic rp bins), subtracting the signal around random points increases the error estimates,
though with NR & 10, the errors converge to NR = 0 case. The errors in this regime should scale
with NR as (

δ∆Σ(NR)

δ∆Σ(NR = 0)

)2

= 1 +
1

NR
. (3.17)

Given that the jackknife error estimates using 100 regions have uncertainty of order ∼ 15% (
√

2/99;
Taylor et al., 2013), using NR = 10 is sufficient and henceforth our results will use NR = 10 unless
a different value is explicitly given. However, note that when using large numbers of mocks for error
estimates, more randoms might be required.

At large scales, contributions to the noise from systematics and the correlated shape noise (Pgg(Pγγ+
Nγγ) term) start dominating and hence the error estimates diverge from the 1/rp scaling. The errors
are mostly consistent with the theoretical predictions calculated using Eq. (3.10). At large scales there
is a contribution from the systematics that is not included in the theory predictions, hence the errors
diverge from those predictions especially for the NR = 0 case where systematics are most important.
We distinguish between the different terms in the variance in the following sections.

Fig. 3.3 shows the correlation and cross-correlation matrices for ∆Σg, ∆ΣR and ∆ΣgR, both from
theory and data and their difference. The measurements of ∆Σ around galaxies (∆Σg) and randoms
(∆ΣR) are highly correlated for rp & 10h−1Mpc. When we subtract the measurement around randoms,
this correlated noise gets removed and hence the noise in ∆ΣgR decreases compared to that in ∆Σg at
large scales. The bin-to-bin correlations also decrease, though there are still some residual correlations
due to the clustering of the lens sample and the effects of systematics. Since the theory prediction
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does not include systematics, the residuals after subtracting the theory correlation matrix from the
jackknife are not consistent with zero. A cleaner test of the theoretical expressions will use randomly
rotated sources, which do not have any systematic shear correlations, in the next subsection.

3.4.2 Mock Sources

In this section we quantify the effects of additive shear systematics on the covariance estimation,
especially on the differences in the errors with and without ∆ΣR subtracted. We create 100 mock re-
alizations of the source sample by randomly rotating the source galaxies. The resulting source catalogs
should exhibit no coherent signals of cosmological origin or due to systematics. When measuring ∆Σ
around the LOWZ galaxies with these randomly rotated source catalogs, we should observe realistic
levels of correlated shape noise, but no systematics, cosmic variance, or super-sample covariance. All
terms involving shear correlations – Pγγ , Pgγ , and Tgγgγ – are zero and hence do not contribute to
the covariance.

Fig. 3.4 shows the jackknife and standard deviation errors obtained with and without subtracting
∆ΣR. Subtracting ∆ΣR reduces the errors, and the results are consistent with the theory predictions.
However, the magnitude of the difference in errorbars for ∆ΣgR vs. ∆Σg shown here (factor of ∼ 2 at
the largest scale) is lower compared to what was seen with real SDSS sources (factor of ∼ 5), which
suggests that a bit more than half the contribution to the errorbars for ∆Σg with real sources came
from shear correlations, mostly caused by the systematics rather than cosmic shear given the low
redshift of this sample. In the case of ∆ΣgR, the errors computed using the standard deviation (Std)
across the realizations are consistent with the jackknife errors with ∆ΣR subtraction. In the case of
∆Σg, the Std errors are lower than the jackknife errors because of the much larger effective window
for Std (full survey window) compared to the jackknife (1/Njk of the survey window).

As shown in Figs. 3.3 and 3.4, in the case of the jackknife window, the predictions from theory are
consistent with the data at the ∼ 10% level for both ∆Σg and ∆ΣgR, which is within the noise in the
jackknife errors. In the case of ∆Σg with the full survey window, the theory predictions for the errors
are lower than the jackknife errors. This is likely because when computing the theory predictions, we
assume an idealized geometry (see Appendix 3.A), which underestimates the window function effects
from the realistically complicated window in the data.

Fig. 3.4 and the theoretical predictions demonstrate that even in a survey with no known additive
systematic errors, measurements of ∆Σ in the rp range where correlated shape noise is important will
have substantially better S/N when using the more optimal ∆ΣgR estimator.

3.4.3 Lens Mocks

In this section, we vary the lens properties to examine how the covariance depends on the lens sample
properties.

QPM mocks

In this section we measure ∆Σ around the galaxies in the QPM mocks using the real and mock source
sample. In both cases shear-galaxy correlations will be absent, i.e., Pgγ = Tgγgγ = 0, while the former
will include Pγγ terms and the latter will not. Even though the QPM mocks have somewhat different
clustering at small scales than the real LOWZ sample (see Fig. 3.10), the typical separation between
galaxies (∼ 1–2 h−1Mpc) is very similar between the mocks and the LOWZ sample and hence the
QPM mocks are adequate to test the effects of lens clustering, Pgg, on the galaxy-galaxy lensing
covariance. The signal around the QPM mocks should include large-scale systematics and realistic
levels of shape noise.

The left panel of Fig. 3.5 shows the error estimates in the ∆Σ measurements with the ∆ΣgR
estimator using NR = 10, and with the ∆Σg estimator (without the measurement around random
points subtracted). The jackknife errors with the ∆ΣR subtraction are consistent with the error
estimates using the standard deviation across 200 QPM mocks. Also the jackknife errors for the
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Figure 3.3: Upper row : Correlation and cross-correlation matrices for ∆Σ measured around galaxies
(∆Σg), randoms (∆ΣR) and the difference of the two (∆ΣgR), both from theory and data (jackknife).
Due to the shape noise, there are strong auto- and cross-correlations at large scales in both ∆Σg
and ∆ΣR. Subtracting the measurement around the random points removes most of the correlated
noise (from systematics and correlated shape noise), though there are still some residual bin-to-bin
correlations in ∆ΣgR, primarily due to the clustering of lens galaxies. Bottom row : The difference
between the correlation matrices (note we do not take the difference of the covariances here) from
the jackknife and the theoretical predictions (left) and from the mocks and the theoretical predictions
(right). In the case of the jackknife matrices, there are systematics that are not included in the theory
predictions, so the latter are under-predicated. In the case of the mock sources (or rotated sources,
RoS), shear systematics are removed and the theory predictions are consistent with the data within
the noise in the jackknife covariances.
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Figure 3.4: ∆Σ errors using different estimators with LOWZ galaxies as lenses and 100 mock realiza-
tions of the source sample obtained by randomly rotating the SDSS source galaxies. Open black and
blue markers show the mean and standard deviation of the jackknife errors. Solid red and magenta
lines show the errors from the standard deviation (“StD”) across different realizations of ∆Σg and
∆ΣgR. Dashed lines are the theory predictions for the curves with corresponding colors. In the bot-
tom panel we plot the ratio of the different errors with respect to the StD errors of ∆ΣgR. Jackknife
errors for the real LOWZ sample are also plotted for comparison (NR = 10 for LOWZ). Note that in
the ∆Σg case, the correlated noise in these mocks is lower than when using real sources due to the
removal of the contribution from systematics.
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Figure 3.5: Same as Fig. 3.4, using the QPM mocks as the lens sample with real sources (left panel)
and rotated (mock) sources (right panel). As in Fig. 3.4, the errors with real sources are higher due
to contributions from systematics. The theoretical predictions are consistent except at large scales
due to systematics and the effects of the LOWZ window function, which are not well captured by the
idealized window function assumed in the theoretical calculations. Also in the case of the real sources,
the LOWZ jackknife errors are consistent with those for the QPM mocks, suggesting that errors from
the connected part of the covariance are subdominant.

LOWZ sample are consistent with the jackknife and standard deviation errors computed from the
QPM mocks. This consistency confirms that the errors are dominated by the shape noise, Nγ(Pgg+Ng)
with some contributions from systematics, while contributions from cosmic variance and super-sample
covariance (not included in the signal with the QPM mocks) are subdominant.

As in the case of the LOWZ lens sample, the theoretical predictions for the errors in the left
panel of Fig. 3.5 are lower than the actual errors. This is due to the effect of systematics (there
are no connected terms in this case). In the right panel, we show the errors estimated by using the
rotated (or mock) sources. In this case there are no shear correlations (either cosmological or due to
systematics) and the theoretical predictions for the errors are consistent with the measured errors in
the case of ∆ΣgR. The discrepancies in the case of ∆Σg are due to the idealized window function
used for the extra term in the theory calculations.

Randoms

In this section, we measure ∆Σ by replacing the LOWZ galaxies with random lens catalogs. In this
case, the covariance only has contributions from terms with lens shot noise, Ng(Pγγ +Nγ), as there is
no lens clustering, Pgg = 0. We use 75 random samples that are the same size as the LOWZ sample,
along with 10 additional random samples, which are used to compute ∆ΣR. In this section we only
show results using the mock source sample, so Pγγ = 0.

Fig. 3.6 shows the errors in the ∆Σ measurements using randoms lenses, with and without ∆ΣR
subtracted out. Also shown are the error estimates using the standard deviation of the signal measured
across all 75 independent realizations.

In the case of ∆ΣgR errors from jackknife, the errors from the standard deviation and theory are
consistent. The errors also follow the expected 1/rp scaling (no lens clustering in this case), except at
the largest scales where there are some deviations, possibly due to small amounts of large-scale power
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Figure 3.6: Same as Fig. 3.4, now using 75 random realizations of the LOWZ lens catalog (no cluster-
ing) with rotated (mock) sources. Since the lens sample has no clustering and sources have no shear
correlations, the errors only include shot noise terms and hence scale as 1/rp, except at the largest
scales where the random points have some clustering as they match the selection function in LOWZ.

in the distribution of the random catalogs that enables them to match the selection function of the
LOWZ sample. Also, the errors in the case of the random lenses are in general lower than those for
the LOWZ sample or the QPM mocks at large scales due to the effects of lens clustering. Finally, for
∆Σg the errors do not follow the typical 1/rp scaling because of the additional W 2Nγ term.

3.4.4 Putting it all together

Using the results of the previous subsections, we can now understand the contributions of various terms
in the covariance, using both theoretical predictions and errors estimated using data and mocks.

In Fig. 3.7 we show the error estimates from various combinations of data and mocks (left panel)
and theory calculations using various terms in Eq. (3.10) (right panel). In Table 3.1 we also show
various terms that contribute to various combinations of data and mocks.

As shown in table 3.1, we can use the random lenses with the rotated (mock) sources to compute
the contributions of lens shot noise and source shape noise to the covariance. Including the lens
samples with clustering (LOWZ or QPM) then provides the contribution from the clustering of the
lenses. Substituting the real sources with mock lenses (QPM) provides the contributions from shear
correlations (systematics or cosmological). Thus we can study all terms except for those arising from
lens-source correlations (Pgγ and Tgγgγ) using the mocks we have used in this paper. Using more
realistic simulations as in Shirasaki et al. (2016) will further allow a study of these lens-source corre-
lations terms, though as shown in previous sections, contributions from these terms are subdominant
when using the SDSS shape sample.

As demonstrated in Fig. 3.7, at small scales the errors are dominated by the shot noise terms
NgNγ , where Ng is the galaxy shot noise power spectrum and Nγ is the shape noise power spectrum.
At larger scales (rp & 20h−1Mpc), the term involving the lens clustering, PggNγ , starts dominating
(in the literature this term is commonly referred to as “correlated shape noise”). The contributions
from the shear power spectrum terms are in general small, with Pγγ and Pgγ terms only contributing
∼ 10% of the error even at rp ∼ 100h−1Mpc for this particular survey. In this work we did not
compute the trispectrum terms (Tgγgγ), but based on the comparison between the LOWZ and QPM
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Figure 3.7: Figure summarizing the main error estimates discussed in this paper. Note that unlike
in other plots, the y-axis here is the error on ∆Σ error without a factor of rp. In the left panel, we
show the errors estimated using different combinations of the data and mock catalogs (RoS stands for
“Rotated sources” (or mock sources); but unless explicitly mentioned, the curves use the real sources).
In the right panel, we show the error estimates from different terms that contribute to the theoretical
covariance using the notation of Eq. (3.10). In the bottom panels, the curves are divided by the
jackknife errors on the real LOWZ ∆ΣgR, which contains contributions from systematics that are
not included in the theoretical expressions, hence the ratios are systematically below 1. For different
curves, the power spectra terms not mentioned in the legend are set to zero, e.g. for the cyan curves
(NgNγ) all auto-power spectra are zero. There is still an {Nγ} term in this case in ∆ΣgR.
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Lens-Shape Error Term
Sample

LOWZ-SDSS (Pgg +Ng)(Pγγ +Nγ) + P 2
gγ + Tgγgγ

+{W 2(Pγγ +Nγ)}
QPM-SDSS (Pgg +Ng)(Pγγ +Nγ) + {W 2(Pγγ +Nγ)}

LOWZ-Mock (Pgg +Ng)Nγ + {W 2Nγ}
QPM-Mock (Pgg +Ng)Nγ + {W 2Nγ}

Randoms-Mock NgNγ + {W 2Nγ}

Table 3.1: Table showing the main sources of statistical uncertainty for different combinations of lens,
source and estimators in this work. We use the notation from Eq. (3.10), with Pgg = bgPδδ, Ng is the
galaxy shot noise term, Nγ is the shape noise and the terms in curly brackets {} involving W 2 are
the window function-dependent covariance contributions to ∆Σg.

lens samples (see Fig. 3.5), we find no evidence that such terms are important at any scale considered
in this work for SDSS.

We also show the contributions of the window function-dependent terms in ∆Σg. As the size of
the window function increases, W (k) approaches a delta function, δD(k). As a result, the contribution
of these terms to the covariance decreases with increasing window size, which is the reason why the
jackknife errors have higher contributions than the standard deviation from the mocks using full
survey window. Once these terms are removed, the errors in ∆ΣgR are consistent from both the
jackknife and the full window. Normally we do expect ∆ΣgR to be different between the jackknife
and the full window due to the edge effects (see results for clustering in appendix 3.B). However, in
this work we only apply the jackknife to the lens sample while using the full source sample at all
times. Hence the edge effects in the jackknife and full window cases are the same, though our theory
curves under-predict these edge effects since we assumed an idealized window function with circular
symmetry and no holes (see Appendix 3.A).

3.4.5 Comparison of different error estimates

In this section we compare the error estimates from the jackknife method with 100 regions against those
from taking the mean and error on the mean from 100 subsamples. The primary motivation for this
comparison is to test for edge effects and to check whether the jackknife method underestimates the
errors once the scales are close to the size of the subsamples. The subsamples were defined in the same
way for both methods and the division was only done on the lens sample. Each subsample/jackknife
region is cross- correlated with the entire shape sample. Subsampling on the lens sample alone is
sufficient in the shape noise-dominated regime, since the shape noise for different subsamples will be
uncorrelated. In the case of other measurements, e.g. clustering, the measurement across different
subsamples will get correlated once the length scale approaches the size of the subsample, and the
errors will be underestimated in both cases.

Fig. 3.8 shows the comparison of three different error estimates: jackknife, subsampling and stan-
dard deviation for the QPM mocks. All error estimates are consistent with each other (within the
uncertainties), though the scatter in the subsampling errors is somewhat higher than the jackknife
errors. In Fig. 3.9 we also show the correlation matrix for the three different error estimates; they are
all consistent with each other.

3.5 Conclusions

In this work we have studied the behavior of covariances in galaxy-galaxy lensing measurements using
mock catalogs and theoretical predictions, including a comparison of two different galaxy-galaxy lens-
ing estimators with different covariance properties. The mock catalogs include randomly distributed
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Figure 3.8: Comparison of the error estimates obtained using the jackknife method and the standard
deviation across 100 subsamples of the lens samples (QPM except for the two lines labelled “LOWZ”).
The same subsamples were used for both methods. All calculations use ∆Σg −∆ΣR with NR = 10.
“Jk, Std” refer to the errors from the jackknife and from the standard deviation of the mock samples
as defined in Sec. 3.2.4 for ∆ΣgR (signal, not the noise), while “Subsample, Std” refers to errors from
the standard deviations of ∆ΣgR measured as the mean of subsamples in each realization. 〈Jk error〉
(〈Subsample error〉) is the mean of the jackknife (subsample) error across the realizations. Dashed
lines are the corresponding theory predictions.
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Figure 3.9: Comparison of the correlation matrices for the QPM mocks from the jackknife, subsampling
and standard deviation methods across 200 realizations. All calculations use ∆Σg −∆ΣR with NR =
10.
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lenses, QPM mocks that have similar clustering as LOWZ galaxies, and mock source catalogs obtained
by randomly rotating the real SDSS source galaxies. Our main results are summarized in Fig. 3.7 and
Table 3.1.

For the SDSS, at small scales the covariance is dominated by the pure uncorrelated shape noise,
which is white, but at larger scales, contributions from lens and shear correlations also matter. Using
mock source catalogs obtained by randomly rotating the sources, we show that the errors are domi-
nated by the terms involving the shape noise, Nγ(Pgg +Ng). When using the real sources from SDSS,
we also found evidence of contributions to the covariance from the systematics to the covariance,
even when subtracting random signal (i.e. using lens over-density). While our theory calculations
did not include the contributions from systematics or the connected term (including the super-sample
variance), the consistency of the covariances when using LOWZ and QPM mocks as lenses demon-
strates that contributions from the connected terms are subdominant and the differences between
the theoretical predictions and the measurements in Fig. 3.2 arise primarily from the systematics.
This conclusion in general depends on the survey configuration, and for different surveys the tradeoffs
between shape noise and other covariance contributions must be re-evaluated.

We also demonstrated that the additional variance seen on large scales when not subtracting the
shear around random points is only partially contributed by systematics. Even without systematics,
on scales where correlated shape noise is important, using the sub-optimal estimator (lens density
instead of over-density) for galaxy-galaxy lensing can reduce the per-bin S/N by a substantial factor
(up to a factor of 2 on the largest scales considered, which are ∼ 10 times the correlation length of
the lens galaxies). Our covariance calculations suggest that this reduction in the covariance primarily
arises from the removal of shear correlations (including shape noise), which only depends on the
window function of the lens sample. Covariance estimation methods using subsamples (including the
jackknife) have a smaller survey window and hence have a higher contribution from this term compared
to the full survey window. The tests using mock lens and mock source catalogs are consistent with
this explanation. Our results suggest that the discrepancy between the jackknife error estimates and
standard deviation across different realizations observed by Shirasaki et al. (2016) (version 1) can be
explained by the fact that they used the lens density instead of the lens over-density in the galaxy-
galaxy lensing measurements, given that the contributions from the additional covariance terms due
to use of density depend on the survey window. This assertion has been confirmed in the updated
work (version 2) of Shirasaki et al. (2016).

In our calculations of covariances, we also identified the effects of the window function, which can
be important when comparing the covariance estimations from empirical methods such as jackknife
or subsampling, which divide the survey window into smaller parts. Since in our jackknife estimates
we only split the lens sample, these effects are not important in our lensing measurements. In ap-
pendix 3.B, using clustering measurements, we show that the window function effects can alter the
covariance by up to 40-50% on scales approaching the size of the subsamples. Finally, for both cluster-
ing (appendix 3.B) and lensing (section 3.4.5), we also demonstrated using mocks that the jackknife
errors are consistent with the errors from the subsampling methods for the scales that are smaller
than the subsample size at the effective redshift of the sample.

Our results emphasize the importance of using the optimal galaxy-galaxy lensing estimator ∆Σg−
∆ΣR even in the absence of systematics, for g-g lensing estimates that extend to scales above a few
Mpc, to obtain better covariance properties and to enable use of internal error estimates like the
jackknife. Our conclusions are also applicable to galaxy-CMB lensing cross correlations, as were done
by Singh et al. (2016a). Finally we recommend the use of the tests of covariances demonstrated in
this work and those in Shirasaki et al. (2016) for ongoing and future surveys, to better understand
which terms are dominating the covariances.
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3.A Covariance

3.A.1 General case

Here we derive the expression for the covariance of the cross-correlation function of two fields with
non-zero mean. The results depend on the estimator used for that cross-correlation function, as we will
show explicitly below (see also Landy & Szalay 1993), and directly motivate the use of estimators that
involve subtraction of the mean density for both fields. While we will use the example of clustering in
this section, the results are in general true for any tracer of large-scale structure. In Section 3.A.3 we
will use the results from this section to compute the covariance for the galaxy-shear cross-correlation
function.

We are interested in the cross-correlation function of two (biased) tracer fields, gX , gY , of the
matter density field (ρm, not just δρm)

gi = (1 + δi + ni)Mi (3.18)

where i = X or Y , Mi is the mean value of the field (mean number density in the case of galaxies) and
ni is the noise in the tracer field (shot noise in the case of galaxies, shape noise in the case of shear).
Hereafter, in this section we will assume that the field is normalized so that Mi = 1. For notational
compactness, we also define

δ̂i = δi + ni (3.19)

gi = 1 + δ̂i (3.20)

In Fourier space

g̃i(k) = δD(k) + δ̃i(k) + ñi(k) = δD(k) +
˜̂
δi(k), (3.21)

where δD is the Dirac delta function.
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We can write the cross-correlation function of two fields as (analogous to normalized DD
RR − 1)

ξ̂XY (r) = ξ̂g1g2(r) =
1

VW (r)

∫
d3r′W (r′ + r)W (r′) [g1(r′)g2(r′ + r)− 1] (3.22)

=
1

VW (r)

∫
d3r′W (r′ + r)W (r′)

[
δ̂1(r′)δ̂2(r′ + r) + δ̂1(r′) + δ̂2(r′ + r) + 1

]
− 1

(3.23)

=
1

VW (r)

∫
d3r′W (r′ + r)W (r′)δ̂1(r′)δ̂2(r′ + r) (3.24)

=
1

VW (r)

∫
d3r′W (r′ + r)W (r′) [δ1(r′)δ2(r′ + r) + n1(r′)n2(r′ + r)] (3.25)

ξ̂XY (r) = ξ̂g1g2(r) =ξXY (r) + ξnXnY (r) (3.26)

where g1 belongs to field X and g2 to field Y . W (r) is the survey window function. We have assumed
that the noise and δi have zero mean and are also uncorrelated with each other on all scales. The
normalization factor is the integral over window functions

VW (r) =

∫
d3r′W (r′ + r)W (r′) =

∫
d3k

(2π)3
e−ik·rW̃ (k)W̃ (−k) (3.27)

The covariance of the correlation function is given as

Cov(ξ̂g1g2(ri)ξ̂g3g4(rj)) =
〈
ξ̂g1g2(ri)ξ̂g3g4(rj)

〉
−
〈
ξ̂g1g2(ri)

〉〈
ξ̂g3g4(rj)

〉
, (3.28)

where g1, g3 belong to field X and g2, g4 belong to Y . Using Eq. (3.22)

Cov(ξ̂g1g2(ri)ξ̂g3g4(rj)) =

〈
1

VW (ri)VW (rj)

∫
d3r

∫
d3r′W (r)W (r′)W (r + ri)W (r′ + rj)

[g1(r)g2(r + ri)g3(r′)g4(r′ + rj)− g1(r)g2(r + ri)− g3(r′)g4(r′ + rj) + 1]

〉

−
〈
ξ̂g1g2(ri)

〉〈
ξ̂g3g4(rj)

〉
(3.29)

Cov(ξ̂g1g2(ri)ξ̂g3g4(rj)) =

〈
1

VW (ri)VW (rj)

∫
d3r

∫
d3r′W (r)W (r′)W (r + ri)W (r′ + rj)

g1(r)g2(r + ri)g3(r′)g4(r′ + rj)〉 −

〈
ξ̂g1g2(ri)

〉

VW (ri)
−

〈
ξ̂g3g4(rj)

〉

VW (rj)
− 1

−
〈
ξ̂g1g2(ri)

〉〈
ξ̂g3g4(rj)

〉
(3.30)

We use 〈g1g2g3g4〉ij as short-hand for the first term in Eq. (3.30), which we would like to simplify.

〈g1g2g3g4〉ij =

〈
1

VW (ri)VW (rj)

∫
d3r

∫
d3r′g1(r)g2(r + ri)g3(r′)g4(r′ + rj)W (r)W (r′)W (r + ri)W (r′ + rj)

〉

(3.31)

78



Chapter 3. Galaxy-galaxy lensing covariance 3.A. Covariance

Writing the gi in terms of its Fourier space counterpart g̃i, we get

〈g1g2g3g4〉ij =
1

VW (ri)VW (rj)

∫
d3r

∫
d3r′

∫∫∫∫ 4∏

n=1

[
d3kn
(2π)3

] ∫∫∫∫ 4∏

m=1

[
d3qm
(2π)3

W̃ (qm)

]

× ei(k1−q1)·rei(k2−q2)·(r+ri)ei(k3−q3)·r′ei(k4−q4)·(r′+rj) 〈g̃1(k1)g̃2(k2)g̃3(k3)g̃4(k4)〉
(3.32)

〈g1g2g3g4〉ij =
1

VW (ri)VW (rj)

∫∫
d3k1

(2π)3

d3k3

(2π)3

∫∫∫∫ 4∏

m=1

[
d3qm
(2π)3

W̃ (qm)

]
e−i(k1−q1)·rie−i(k3−q3)·rj

× 〈g̃1(k1)g̃2(−k1 + q1 + q2)g̃3(k3)g̃4(−k3 + q3 + q4)〉 . (3.33)

We have integrated over d3r and d3r′ and then over d3k2 and d3k4, to obtain the last expression.

We now expand the four-point function into two separable parts: the connected or non-Gaussian

component
〈
δ̃1δ̃2δ̃3δ̃4

〉′
and the Gaussian component, which using Wick’s theorem can be expanded

as the sum of the product of two-point functions.

〈g1g2g3g4〉ij =
1

VW (ri)VW (rj)

∫∫
d3k1

(2π)3

d3k3

(2π)3

∫∫∫∫ 4∏

m=1

[
d3qm
(2π)3

W̃ (qm)

]
e−i(k1−q1)·rie−i(k3−q3)·rj

[〈
δ̃1δ̃2δ̃3δ̃4

〉′
+

〈
δ̃1δ̃2

〉〈
δ̃3δ̃4

〉
+ [〈δD,1δD,2〉+ 〈ñ1ñ2〉]

〈
δ̃3δ̃4

〉
+
〈
δ̃1δ̃2

〉
[〈δD,3δD,4〉+ 〈ñ3ñ4〉] +

〈
δ̃1δ̃3

〉〈
δ̃2δ̃4

〉
+ [〈δD,1δD,3〉+ 〈ñ1ñ3〉]

〈
δ̃2δ̃4

〉
+
〈
δ̃1δ̃3

〉
[〈δD,2δD,4〉+ 〈ñ2ñ4〉] +

〈
δ̃1δ̃4

〉〈
δ̃2δ̃3

〉
+ [〈δD,1δD,4〉+ 〈ñ1ñ4〉]

〈
δ̃2δ̃3

〉
+
〈
δ̃1δ̃4

〉
[〈δD,2δD,3〉+ 〈ñ2ñ3〉] +

〈δD,1δD,2ñ3ñ4〉+ all perms+

〈ñ1ñ2ñ3ñ4〉+ 〈δD,1δD,2δD,3δD,4〉
]

(3.34)

We have omitted the positional arguments for δ̃i and ñi, which are the same as for gi in Eq. (3.33).

We defined δD,i = δD(ki) and
〈
δ̃iδ̃j

〉
= Pij(ki)δD(ki + kj), where Pij(k) is the power spectrum.

Simplifying, the terms involving 〈ξ12(ri)〉 〈ξ34(rj)〉 cancel out, and using the fact that g1 and g3

belonged to field X and g2 and g4 belonged to field Y , we can write the covariance as

Cov =

[ VW (ri − rj)

VW (ri)VW (rj)

∫
d3k

(2π)3
e−ik·rieik·rj P̂XX(k)P̂Y Y (k) +

VW (ri + rj)

VW (ri)VW (rj)

∫
d3k

(2π)3
e−ik·rie−ik·rj

P̂XY (k)P̂XY (k) + TXYXY

]

+

{
1

VW (ri)VW (rj)

∫
d3k

(2π)3
e−ik·rieik·rjW̃ (k)W̃ (−k)

(
P̂Y Y (k) + P̂XX(k)

)}

+

{
1

VW (ri)VW (rj)

∫
d3k

(2π)3
e−ik·rie−ik·rjW̃ (k)W̃ (k)

(
P̂XY (k) + P̂XY (k)

)}
(3.35)

Here P̂ij = Pij + Pij,N , where Pij,N is the noise power spectrum. TXYXY is the connected term.
To simplify expressions, we have assumed that the power spectrum is a slowly varying function of k
and that we are working with modes much smaller than the survey size, so that P (k − q) ≈ P (k)
and then P (k) can be moved out of the window function integrals. For scales much smaller than the
survey size, VW (r)→ VW , where VW is the physical volume of the survey, the expression simplifies to
the more familiar form
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Cov =

[
1

VW

(∫
d3k

(2π)3
e−ik·rieik·rj P̂XX(k)P̂Y Y (k) +

∫
d3k

(2π)3
e−ik·rie−ik·rj P̂XY (k)P̂XY (k)

)
+ TXYXY

]

+

{
1

V 2
W

∫
d3k

(2π)3
e−ik·rieik·rjW̃ (k)W̃ (−k)

(
P̂Y Y (k) + P̂XX(k)

)}

+

{
1

V 2
W

∫
d3k

(2π)3
e−ik·rie−ik·rjW̃ (k)W̃ (k)

(
P̂XY (k) + P̂XY (k)

)}

(3.36)

The terms in square brackets ([ ]) are the usual covariance terms while the terms in braces ({}) arise
when the means of the fields are not subtracted. These additional contributions depend on the survey
window function and become less important as the survey size increases. In the case of a large uniform
survey, limVW→∞ W̃ (k) = δD(k). As a result, the terms in braces ({}) approach zero faster (under

the assumption P̂ (k = 0) = 0) and the two estimators (correlating mean zero field or correlating

mean non-zero fields) are equivalent. However, in case P̂ (k = 0) 6= 0, e.g., due to shot noise in case
of galaxies, the ({}) terms approach the value of P (k = 0). We also emphasize that this additional
contribution to the covariance will be present in the analysis in Fourier space as well.

3.A.2 Projected Case

The projected correlation function is defined as the integral of the 3-d correlation function over the
line of sight separation, Π.

ŵ(rp) =

∫ Πmax

Πmin

dΠW (Π)ξ̂(rp,Π) (3.37)

where W (Π) is the line-of-sight weight function (not necessarily the same as the window function).
To compute the covariance, we start with Eq. (3.34), carry out the line-of-sight integrals assuming

the integration length is long (getting delta functions of the form δD(k‖,i − q‖,i)). Then carrying
out integrals involving the line-of-sight window functions, we assume that the relevant line-of-sight
modes are small, such that power spectrum is only dependent on the projected modes (k‖ � k⊥,
P (k) ≈ P (k⊥))

Cov =

∫
dΠWY (Π)WY (Π)

[ VW (ri − rj)

VW (ri)VW (rj)

∫
d2k⊥
(2π)2

e−ik⊥·rp,ieik⊥·rp,j P̂XX(k⊥)P̂Y Y (k⊥)

+
VW (ri + rj)

VW (ri)VW (rj)

∫
d2k⊥
(2π)2

e−ik⊥·rp,ie−ik⊥·rp,j P̂XY (k⊥)P̂XY (k⊥) + TXYXY

]

+

∫
dΠWY (Π)WY (Π)

{
LW

VW (ri)VW (rj)

∫
d2k⊥
(2π)2

e−ik⊥·rp,ieik⊥·rp,jW̃X(k⊥)W̃X(−k⊥)

(
P̂Y Y (k⊥) + P̂XX(k⊥)

)

+
LW

VW (ri)VW (rj)

∫
d2k⊥
(2π)2

e−ik⊥·rp,ie−ik⊥·rp,jW̃X(k⊥)W̃X(k⊥)
(
P̂XY (k⊥) + P̂XY (k⊥)

)}

(3.38)

Here we distinguished between the window functions of tracers X and Y, LW is the line-of-sight length
of the window function (of X) and we ignore the edge effects along the line-of-sight. Thus the volume
element can be written as

VW (rp) = AW (rp)LW (3.39)

AW is the physical survey area at the lens redshift.
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Note that P̂Y Y can in principle be evaluated at a different epoch as Y1 and Y2 are at separation
Πi and Πj , i.e., PY Y (k⊥) ∼ PY Y (k⊥

χz
χz+Π ) where χz is the line-of-sight distance to the mean redshift

where we are evaluating the covariance. Under the assumption that the power spectrum evolution
within the Πmax limits is small, we keep PY Y (k⊥) (ignoring its Π dependence), and simplify the
expression as

Cov =

[ AW (rp,i − rp,j)

AW (rp,i)AW (rp,j)

∆Π2

LW

∫
d2k⊥
(2π)2

e−ik⊥·rp,ieik⊥·rp,j P̂XX(k⊥)P̂Y Y (k⊥)

+
AW (ri + rj)

AW (ri)AW (rj)

∆Π2

LW

∫
d2k⊥
(2π)2

e−ik⊥·rp,ie−ik⊥·rp,j P̂XY (k⊥)P̂XY (k⊥) + TXYXY

]

+
∆Π2L

2
W

VW (rp,i)VW (rp,j)

{∫
d2k⊥
(2π)3

e−ik⊥·rp,ieik⊥·rp,jW̃ (k⊥)W̃ (−k⊥)
(
P̂Y Y (k⊥) + P̂XX(k⊥)

)

+

∫
d2k⊥
(2π)3

e−ik⊥·rp,ie−ik⊥·rp,jW̃ (k⊥)W̃ (k⊥)
(
P̂XY (k⊥) + P̂XY (k⊥)

)}
(3.40)

where we defined

∆Π2 =

∫
dΠW (Π)W (Π) (3.41)

∆Π1 =

∫
dΠW (Π) (3.42)

For the case of galaxy clustering, we assume W (Π) is a top-hat function for Π ∈ [−100, 100], which
leads to ∆Π2 = ∆Π1 = 200h−1Mpc.

3.A.3 Galaxy lensing case

We now use the formalism of Appendix 3.A.1 and 3.A to derive the covariance for the galaxy-galaxy
lensing case. We will assume the same sky coverage for the lens and shape samples. Note that the
shear is a mean-zero field since lensing is only sensitive to the matter density contrast, and hence
some of the terms in Eq. (3.35) will drop out.

We begin by defining the observed shear as the sum of the true shear and noise.

γ̂ = γ + γN (3.43)

We also assume that the mean shear around random points is not subtracted. In that case, the
galaxy-shear (projected) cross-correlation can be written as

∆Σ(rp) =
1

VW (r)

∫
d3rΣc(zl, zs)g(r)γ̂(r + rp)Wγ(r + rp)Wg(r) (3.44)

=
1

VW (r)

∫
d3rΣc(zl, zs)(1 + δ̂)(r)γ̂(r + rp)Wγ(r + rp)Wg(r) (3.45)

∆Σ(rp) =
1

VW (r)

∫
d3rΣc(zl, zs)δ̂(r)γ̂(r + rp)Wγ(r + rp)Wg(r) (3.46)

The covariance of two ∆Σ is

Cov(∆Σg1γ2(rp,i)∆Σg3γ4(rp,j)) = 〈∆Σg1γ2(rp,i)∆Σg3γ4(rp,j)〉 − 〈∆Σg1γ2(rp,i)〉 〈∆Σg3γ4(rp,j)〉 (3.47)

Following the derivation in appendix 3.A.1 and 3.A and noting that the shear has a mean of zero, and
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∆Σ is a projected galaxy-matter correlation function, the full covariance analogous to Eq. (3.38) is

Cov =

[∫
dΠW (Π)W (Π)

VW (ri − rj)

VW (ri)VW (rj)

∫
d2k⊥
(2π)2

e−ik⊥·rieik⊥·rj P̂gg(k⊥)P̂δδ(k⊥)

]

+

[∫
dΠW (Π)W (Π)

VW (ri + rj)

VW (ri)VW (rj)

∫
d2k⊥
(2π)2

e−ik⊥·rp,ie−ik⊥·rp,j P̂gδ(k⊥)P̂gδ(k⊥) + Tgγgγ

]

+

∫
dΠW (Π)W (Π)

{
L2
W

VW (ri)VW (rj)

∫
d2k⊥
(2π)3

e−ik⊥·rieik⊥·rjW̃ (k⊥)W̃ (−k⊥)P̂δδ(k⊥)

}

(3.48)

where the lensing window function is

W (Π) = ρ
Σc(χs, χl)

Σc(χs, χl + Π)
(3.49)

The line-of-sight integral in the terms involving Pδδ leads to the shear auto-correlation function, and
the final expression is

Cov =

[
VW (rp,i − rp,j)

VW (rp,i)VW (rp,j)

∫
d2k⊥
(2π)2

e−ik⊥·rieik⊥·rp,j cos 2φk,i cos 2φk,jP̂gg(k⊥)Σ2
c

(
σ2
γ

ns
+ Pκκ

)]

+

[VW (rp,i + rp,j)∆Π2

VW (rp,i)VW (rp,j)

∫
d2k⊥
(2π)2

e−ik⊥·rp,ie−ik⊥·rp,j cos 2φk,i cos 2φk,jρ
2P̂gδ(k⊥)P̂gδ(k⊥) + Tgγgγ

]

+

{
L2
W

VW (rp,i)VW (rp,j)

∫
d2k⊥
(2π)3

e−ik⊥·rp,ieik⊥·rp,j cos 2φk,i cos 2φk,jW̃ (k⊥)W̃ (−k⊥)Σ2
c

(
σ2
γ

ns
+ Pκκ

)}

(3.50)

where the convergence power spectrum is

Pκκ(k) =

∫ χs

0

dχ
ρ

Σc(χ, χs)

ρ

Σc(χ, χs)
Pδδ

(
k
χl
χ

)
(3.51)

For lensing, using the full lens and source redshift distribution, we compute ∆Π1 ≈ 900h−1Mpc
and ∆Π2 ≈ 700h−1Mpc. Again as in appendix 3.A.1, the terms in square brackets ([ ]) are the
usual covariance terms for the mean zero fields and the terms in curly brackets ({ }) are additional
contribution from terms involving δD,i, arising from the sub-optimal estimator without the mean
subtracted.

Note that this additional contribution only depends on the window function of the lens sample
and is independent of the clustering or number density of the lens sample. Hence, this noise term is
consistent across the real lens galaxy sample and uniformly-distributed random points, which is why
the subtraction of the shear around random points removes this contribution to the covariance. Also
the window function-dependence of this term is the reason why the jackknife/subsample methods of
estimating errors shows increased contribution from this term compared to the standard deviation
across independent mock catalogs, since the effective window function for the subsamples is smaller.

3.A.4 Numerical estimates

Clustering

To compute numerical estimates, we assume angular symmetry for both the power spectra and the
window function. Further, in the case of galaxy clustering, X ≡ Y and PXX = b2gPδδ. After carrying
out the angular and line-of-sight integrals (for the projected correlation function) in Eq. (3.40), we
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get

Cov(wgg) =

[
2
AW (|rp,i − rp,j |)
AW (rp,i)AW (rp,j)

∆Π2

LW

∫
dkk

2π
J0(krp,i)J0(krp,j)

(
b2gPδδ(k) +

1

ng

)2

+ Tgggg

]

+ 4

{
2∆Π2

AW (rp,i)AW (rp,j)

∫
dkk

2π
J0(krp,i)J0(krp,j)W̃ (k)W̃ (k)

(
b2gPδδ(k) +

1

ng

)}
(3.52)

where Jn is the bessel function of order n, Πmax is the line-of-sight integration length and

AW (r) =

∫
dk k

2π
J0(kr) (W (k))

2
(3.53)

AW (|ri − rj |) =

∫
dk k

2π
J0(kri)J0(krj) (W (k))

2
. (3.54)

For the window function, we assume a circular geometry with a survey area of 9000 degree2, with a
mean redshift of z = 0.27. W (k) is defined as

W (k) = 2πR2 J1(kR)

kR
(3.55)

where R ≈ 1275h−1Mpc is the physical scale corresponding to 95 degrees at z = 0.27.
Finally, to get the covariance for bins in rp, COVbin, we integrate the covariance in Eq. (3.52) as

COVbin =

∫ rp,i,h
rp,i,l

dr′p,ir
′
p,i

∫ rp,j,h
rp,j,l

dr′p,jr
′
p,jCOV(r′p,i, r

′
p,j)∫ rp,i,h

rp,i,l
dr′p,ir

′
p,i

∫ rp,j,h
rp,j,l

dr′p,jr
′
p,j

(3.56)

where rp,i,l, rp,i,h are the lower and upper limits of the bins, respectively.

Galaxy Lensing

We carry out the angular integrals in Eq. (3.50), to get

Cov(∆Σ) =

[
AW (rp,i − rp,j)

AW (rp,i)AW (rp,j)

1

LW

∫
dkk

2π
J2(krp,i)J2(krp,j)Σ

2
c

(
b2gPδδ(k) +

1

ng

)(
Pκκ(k) +

σ2
γ

ns

)]

+

[ AW (rp,i − rp,J)

AW (rp,i)AW (rp,J)

∆Π2

LW

∫
dkk

2π
J2(krp,i)J2(krp,j) (bgrccρPδδ(k))

2
+ Tgγgγ

]

+

{
1

AW (rp,i)AW (rp,j)

∫
dkk

2π
J2(krp,i)J2(krp,j)W̃ (k)W̃ (k)Σ2

c

(
Pκκ(k) +

σ2
γ

ns

)}
(3.57)

Cov(∆Σ) is then integrated to get the covariance in bins as described in Eq. (3.56).

3.B Clustering results

In this appendix we present the comparison of different estimators and error estimation methods for
the galaxy clustering measurements.

We begin by defining the standard Landy-Szalay (LS) estimator for clustering (Landy & Szalay,
1993)

ξ̂LS(rp,Π) =
(D −R)2

RR
=
DD − 2DR+RR

RR
, (3.58)

where ξ is the three dimensional correlation function, rp is the projected separation on the sky, and
Π is the line-of-sight separation between the pair of galaxies. The use of D−R indicates that we are
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Figure 3.10: a) Comparison of the projected clustering for the LOWZ sample and the QPM mocks.
The LOWZ errors are from the jackknife method, while the QPM values are the mean and standard
deviation across 150 realizations. The red line is the Planck 2015 ΛCDM prediction along with
the best-fitting bias from Singh et al. (2016a); note that the points on large scales have correlated
errors. b) Comparison of clustering measurements using different estimators (note different rp range).
〈Subsample〉 refers to the mean signal across the subsamples, in each realization. We then take the
mean and standard deviation of 〈Subsample〉 across realizations.

correlating over-density fields. The estimator can then be expanded into its standard pair counting
form. DD denotes summation over all galaxy-galaxy pairs within the bin, DR are the cross pairs
between galaxies and randoms, and RR are the random-random pairs.

In addition, we define the basic estimator from pair counting

ξ̂s2(rp,Π) =
DD

RR
− 1 (3.59)

Motivated by the galaxy-galaxy lensing estimator without subtraction of the mean galaxy density,
we also define the estimator correlating an over-density field (D −R) with a density field (D)

ξ̂s1(rp,Π) =
D(D −R)

RR
=
DD −DR

RR
(3.60)

We want to work with projected correlation functions, analogous to galaxy-galaxy lensing. Thus
we integrate ξgg over the line-of-sight to obtain the projected correlation function wgg.

ŵgg(rp) =

∫ Πmax

−Πmax

ξ̂(rp,Π)dΠ. (3.61)

The choice of Πmax depends on two considerations: we want to choose large Πmax to capture the full
correlation function and to mitigate the effect of redshift space distortions (Kaiser, 1987). However,
in a survey of finite redshift window, the bins at large Π are also noisier which increases the noise in
the projected correlation function as well. In this work we use Πmax = 100h−1Mpc with linear bins
of size dΠ = 10h−1Mpc.

In Fig. 3.10 we show the clustering measurement for the LOWZ sample as well as for one realization
of the QPM mocks, with jackknife errors for both. At small scales, the clustering between the mocks
and data does not agree very well, with a maximum difference of order ∼ 30%. This is expected, since
the QPM mocks are generated using low-resolution simulations, which only resolve the large-scale

84



Chapter 3. Galaxy-galaxy lensing covariance 3.B. Clustering results

101

102

r p
w

gg
er

ro
r

Dashed line: AW
(r p)

=
AW

QPM-Jk, DD
RR −1

QPM-StD, (D−R)2

RR

QPM-Jk, D(D−R)
RR

Lowz-Jk, (D−R)2

RR QPM-Jk, (D−R)2

RR

Shot noise

Theory-Jk, D(D−R)
RR

Theory-Jk, DD
RR −1

Theory, (D−R)2

RR

100 101 102

rp

0.8
1.0
1.2
1.4
1.6
1.8

R
at

io
(/

Q
PM

-S
td

,L
S)

101

102

w
gg

er
ro

r

QPM

Red: 〈Jk〉

Green: 〈Subsample-2〉
Blue: 〈Subsample〉

(D−R)2

RR , Std (D−R)2

RR , 〈Subsample〉, Std

DD
RR −1 DD

RR − DR
RR

(D−R)2

RR

100 101 102

rp

0.8
1.0
1.2
1.4
1.6
1.8

R
at

io
,(

/L
S,

St
d)

Figure 3.11: Left panel : Comparison of errors for different clustering estimators defined in Eqs. (3.58)–

(3.60). The Landy-Szalay ( (D−R)2

RR ) estimator, Eq. (3.58), gives the lowest error followed by the
estimator in Eq. (3.60) and then the estimator in Eq. (3.59). Also shown are the jackknife errors
for the LS estimator, with the jackknife overestimating the errors by ∼ 10 − 20% at all scales. We
additionally show the estimated errors from the theory predictions. Note that the theory estimates use
the linear theory+halofit matter power spectrum, and do not include contributions from non-linear
galaxy bias and connected parts of the covariance, hence the theory errors are underestimated at
small scales. The difference between the solid and dashed theory lines are due to the edge effects as
estimated by AW . Right panel : Comparison between the different error estimation methods in mocks.
〈Subsample〉 refers to the mean and standard deviation across subsamples. 〈Subsample-2〉 is similar
to 〈Subsample〉, except for each subsample we also count the cross terms with other subsamples. This
reduces edge effects but also leads to correlations between different subsamples at large scales.

density field (White, 2014). Here we compare the estimators and error estimations self-consistently
from the QPM mocks, and thus the failure to exactly match the LOWZ sample clustering is not
important.

In Fig. 3.11 we compare the clustering error estimates using different estimators. The LS estimator
yields the lowest errors followed by the estimator in Eq. (3.60). The relative trends between the
estimators are consistent with the theory estimates from expressions in Eq. (3.35) and Eq. (3.52) and,
more generally, with the idea that each time you substitute a zero-mean field with a field that has
a non-zero mean, the variance increases. We caution that for the clustering measurements, we have
not completely explored the consistency between theory and empirical error estimates. Our theory
estimates do not capture the full contributions from non-linear bias, redshift space distortions, and the
connected part of the covariance. Also in Eq. (3.35) P̂ij(k) = P̂ (k) and some terms from Eq. (3.35)
will be removed in the case of the estimator in Eq. (3.60); see Eq. (3.40).

In Fig. 3.11 we also compare the error estimates from jackknife and standard deviation across
different mock realizations, using different estimators. Our results suggest that the jackknife overes-
timates the errors at all scales, even when the scales are larger than the jackknife region size. This
is contrary to the expectations, since at scales larger than the jackknife region size, the assumption
that the regions are independent is violated and thus the errors are expected to be underestimated.
However, since the jackknife regions are much smaller than the survey size, the contribution from
super-sample variance and other window function-dependent terms is expected to be larger in the
jackknife. In the case of the LS estimator, our theory estimates (the difference between solid and
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dashed green lines) suggest that the increase in error from edge effects is also important at large scale
and can lead to the jackknife errors being over-estimated by 10 − 20%. For the non-optimal estima-
tors, the increased contribution from the additional terms identified in Appendix 3.A dominates and
hence the increase in jackknife errors compared to the standard deviation is substantially more, when
compared to the LS estimator.
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Abstract

We present measurements of EG, a probe of gravity from large-scale structure, using
BOSS LOWZ and CMASS spectroscopic samples, with lensing measurements from SDSS
(galaxy lensing) and Planck (CMB lensing). Using SDSS lensing and the BOSS LOWZ
sample, we measure 〈EG〉 = 0.405 ± 0.047 (stat), consistent with the predicted value,
EG = 0.47, from the Planck ΛCDM model at ∼ 1.5σ level. While statistically not signifi-
cant, the discrepancy in measurement is largely driven by the relatively low amplitude of
lensing measurement compared to clustering, which can potentially be due to systematics
in the lensing map or systematics arising from the selection function of LOWZ galax-
ies. Using CMB lensing, we measure 〈EG〉 = 0.45 ± 0.07 (stat) for LOWZ (statistically
consistent with galaxy lensing and Planck predictions) and 〈EG〉 = 0.39± 0.04 (stat) for
the CMASS sample, consistent with predictions (predicted EG = 0.40). We also study
the redshift evolution of EG by splitting the LOWZ sample into two samples based on
redshift, with results being consistent with model predictions at 2σ or better. We cor-
rect for the effects of non-linear physics and different window functions for clustering and
lensing using analytical model or simulations, and demonstrate that these corrections are
effective to ∼ 1–2%, well within our statistical uncertainties.

4.1 Introduction

The standard ΛCDM model of cosmology has been successful in explaining a wide array of cosmological
measurements (see Weinberg et al., 2013, for a review), from the early Universe (e.g., Steigman, 2010;
Komatsu et al., 2011; Planck Collaboration et al., 2015a) down to z . 1 (e.g., Riess et al., 1998;
Perlmutter et al., 1999; Kilbinger et al., 2013; Mandelbaum et al., 2013; Betoule et al., 2014; Alam
et al., 2016a), though there are some mild tensions between different probes (see for example Planck
Collaboration et al., 2015a; Riess et al., 2016). General relativity (GR) lies at the core of this model
but it requires additional matter and energy components (dark matter and dark energy) to explain
the structure formation and cosmic acceleration. The nature of these components, especially dark
energy, is not very well understood and this leaves open the possibility that the laws of gravity may
require modifications as well (e.g., Jain & Khoury, 2010).

The theory of general relativity has been remarkably successful in explaining results over a wide
range of scales (see Will, 2014, for a review of experimental tests of GR). On cosmological scales,
it is possible to test the nature of gravity through several observables since gravity determines the
dynamics and the growth of structure.

One important probe is the large scale velocity field, particularly the redshift space distortions
(see Hamilton, 1997, for review). Observationally, local motion (or peculiar velocities) of galaxies
introduces errors in the distances inferred using the cosmological redshift-distance relation. Due to
the coherent nature of the velocities, these errors then lead to detectable distortions in the otherwise
isotropic correlation function (or power spectrum in Fourier space) of galaxies. These distortions
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in the redshift space correlation function depend on the strength of gravitational attraction and are
parameterized through the redshift (or time) dependent growth rate factor, f(z). Several surveys have
detected RSD and constrained f(z) at different redshifts (e.g., Beutler et al., 2012; de la Torre et al.,
2013; Alam et al., 2015b, 2016a) and used it to constrain gravity (Jennings et al., 2011; Alam et al.,
2016b).

Gravitational lensing is another probe of the large scale structure. Gravitational lensing results
from deflections in the path of photons by the gravitational potential of intervening matter, as they
travel from the source to the observer (Bartelmann & Schneider, 2001; Kilbinger, 2015). In the weak
regime, lensing introduces small but coherent distortions in the shapes of galaxies. Correlations be-
tween the shapes of background galaxies can thus be used to study the gravitational potential of
foreground matter. Similarly, in the case of the CMB, lensing remaps the background anisotropies,
leading to cross-correlations between different modes that can be exploited to recover the matter po-
tential (Zaldarriaga & Seljak, 1999; Hu & White, 2001; Lewis & Challinor, 2006). Cross-correlations
between galaxies and the lensing maps from CMB (galaxy-CMB lensing) or background galaxies
(galaxy-galaxy lensing) can be used to study the galaxy-matter cross-correlations as well as the evo-
lution of the structure over cosmic time scales (e.g., Massey et al., 2007; Mandelbaum et al., 2013;
Kilbinger et al., 2013; Heymans et al., 2013a). These measurements can then also be used to test the
laws of gravity as well, since growth of structure and the lensing effect itself depends on the nature of
gravity (e.g., Simpson et al., 2013).

Zhang et al. (2007) suggested the probe, EG, as a consistency check on the theory of gravity
by combining RSD measurements with the galaxy-lensing cross correlations (see also Leonard et al.,
2015). EG is sensitive to the “gravitational slip” or the ratio of Newtonian potential and curvature
potential, which are equal within GR in the absence of any anisotropic stress. EG has been measured
by Reyes et al. (2010), Blake et al. (2016) and Alam et al. (2017) using galaxy-galaxy lensing and by
Pullen et al. (2016) using galaxy-CMB lensing. Measurements are largely consistent with the ΛCDM
predictions, though Pullen et al. (2016) measured EG to be ∼ 2.6σ lower than predictions, with most
of the discrepancy coming from the low lensing amplitude at large scales.

In this work, we measure EG using the BOSS galaxy samples and SDSS galaxy lensing as well
as Planck CMB lensing maps. In the case of galaxy lensing, due to limitations of the SDSS sample
we only use the BOSS low redshift sample (LOWZ) while for CMB lensing we use both LOWZ and
CMASS samples.

Throughout, we use the Planck 2015 cosmology (Planck Collaboration et al., 2015a), with Ωm =
0.309, ns = 0.967, As = 2.142 × 10−9, σ8 = 0.82. To get predictions for matter correlation function,
we use the linear power spectrum with halofit (Smith et al., 2003; Takahashi et al., 2012), generated
using the CAMB software (Lewis & Bridle, 2002b).

4.2 Formalism and Estimators

In this section we provide a brief review of the theoretical formalism and the estimators used in this
work.

4.2.1 Weak Lensing

As photons travel from source to observer, their paths are deflected by the structure in the intervening
matter distribution (see Bartelmann & Schneider, 2001; Kilbinger, 2015, for review). The lensing
potential of a given lensing mass depends on the lens potential and the geometric factors involving
distances between the lens, source and observer, and is given by

ΦL =

∫
dχl

fk(χs − χl)
fk(χs)fk(χl)

Ψ(fk(χl)θ, χl) (4.1)

χl and χs are line-of-sight distances to lens and source respectively (χs > χl), θ is the angular
separation between the lens and source on the sky and fk(χ) is the transverse comoving distance
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(fk(χ) = χ in a flat universe). The Weyl potential Ψ is given by

Ψ = ψ + φ (4.2)

ψ and φ are the Newtonian and curvature potentials. Within ΛCDM, ψ = φ in the absence of any
anisotropic stress. The main focus of this paper is to test this equality of the two potentials through
the measurement of the EG parameter as defined in Section 4.2.5.

In the case where the angular extent of source is much smaller than angular scales over which lens
potential varies, the distortion matrix is given by

A =

[
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

]
.

where γ = γ1 + iγ2 = |γ|ei2φ is the shear in the observer frame and can be rotated to the lens-source
frame to give γ = γt + iγ×. For circularly symmetric lens, the convergence κ and the tangential shear
γt are given by ( γ× = 0 from symmetry)

κ(rp) =
Σ(rp)

Σc
(4.3)

γt(rp) =
∆Σ

Σc
=

Σ̄(< rp)− Σ(rp)

Σc
. (4.4)

Σ is the projected surface mass density and Σ̄(< rp) is the mean Σ within radius rp from lens center.
For non-circularly symmetric lens distributions, the equation is true when averaging within annuli at
fixed rp. The geometric factor Σc is given by

Σc =
c2

4πG

fk(χs)

(1 + zl)fk(χl)fk(χs − χl)
. (4.5)

1+zl converts the c2/G factor to comoving space. The projected surface mass density can be written in
terms of the 2-point galaxy-matter cross correlation function (lensing is sensitive to density fluctuations
not the mean density)

Σ(rp) = ρ̄m

∫
dΠ ξgm(rp,Π) = ρ̄mwgm(rp), (4.6)

ρ̄m is the mean matter density in comoving coordinates. Under the assumption of large projection
length Π, the projected galaxy-matter cross correlation function wgm can be derived from matter
power spectrum as

wgm(rp) = bgAlrcc

∫
dzW (z)

∫
d2k

(2π)2
Pδδ(k, z)e

i(rp·k) (4.7)

W (z) is the lens weight function, that we compute using the weights defined in Sections 4.2.1 and 4.2.1.
bg is the galaxy bias, rcc is the galaxy-matter cross correlation coefficient and Al is the scale indepen-
dent lensing amplitude. Since rcc ∼ 1 at the scales we use to fit lensing measurements, we fix rcc = 1
when computing the model and encapsulate the deviations from the model in a scale-independent
lensing amplitude, Al. When fitting the correlation function, we also assume a scale independent bias,
bg. We do apply correction for scale dependent bias and rcc when computing EG(see section 4.2.6).

Estimator: Galaxy-galaxy lensing

We measure the ∆Σ using tangential shear as

∆̂Σ(rp) =

∑
ls wlsγ

(ls)
t Σ

(ls)
c∑

rs wrs
−
∑
rs wrsγ

(rs)
t Σ

(rs)
c∑

rs wrs
(4.8)
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where the summations are over all the lens-source (ls) or random lens-source (rs) pairs. The signal
measured around randoms is subtracted to remove the spurious signal from additive systematics (Man-
delbaum et al., 2005) and also to reduce the noise (Singh et al., 2016b). Note that the normalization
factor uses weights computed using randoms. This is to account for the source galaxies which are
associated with the lens and are not lensed, but enter the estimator due to the scatter in photometric
redshifts. The lens-source pair weights are given by

wls =
Σ−2
c

σ2
γ + σ2

SN

. (4.9)

Σ−2
c enters because we have defined ∆̂Σ as the maximum likelihood estimator (Sheldon et al., 2004);

σSN is the shape noise and σγ is the measurement noise.

Estimator: Galaxy-CMB lensing

Using CMB lensing, we measure the projected surface mass density as (Singh et al., 2016a)

Σ̂(rp) =

∑
lp wlpκpΣc,∗∑

lp wlp
−
∑
Rp wRpκpΣc,∗∑

Rp wRp
(4.10)

where the summation is over all the lens-pixel (pixels of CMB convergence map) pairs at separations
rp ∈ [rp,min, rp,max] at the lens redshift and the signal around randoms is subtracted to remove the
effects of the correlated convergence, in the measurement (Singh et al., 2016a). As demonstrated in
Singh et al. (2016b) using non-zero mean field (normalized galaxy field, (1+δg)) contributes additional
mean and window function dependent terms (mean multiplied with 2-point convergence correlation)
to the covariance. Randoms subtraction removes the mean and hence leads to better covariance
properties.

The weight for lens-pixel pair is given by

wlp = Σ−2
c,∗. (4.11)

We have defined Σ̂ as the maximum likelihood estimator, similar to galaxy-galaxy lensing and Σc,∗ is
the Σc with CMB as the source.

4.2.2 Projected galaxy clustering

The two point galaxy correlation function in redshift space can be written as

ξgg(rp,Π, z) =b2g

∫
d2k⊥dkz

(2π)3
Pδδ(k, z)

(
1 + βµ2

)2
ei(k⊥·rp+kzΠ) (4.12)

where Pδδ is the matter power spectrum. bg is the linear galaxy bias and the (1+βµ2) factor accounts
for the linear redshift space distortions (Kaiser, 1987, see also Section 4.2.3), where β = f(z)/bg and
f(z) ≈ Ωm(z)0.55 is the linear growth rate. The projected correlation function is then

wgg(rp) =

∫
dzW (z)

∫ Πmax

−Πmax

dΠ ξgg(rp,Π, z) (4.13)

Πmax is the maximum line-of-sight separation for which the correlation function is computed. The
weight function accounts for the differential contribution from different redshifts to the correlation
function. It depends on total volume as well as redshift distribution of the galaxies, p(z) and is given
by (Mandelbaum et al., 2011)

W (z) =
p(z)2

χ2(z)dχ/dz

[∫
p(z)2

χ2(z)dχ/dz
dz

]−1

(4.14)
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Finally the projected correlation function can be written as

wgg(rp) =
b2

π2

∫
dzW (z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k⊥
kz
P (k, z)

sin(kzΠmax)J0(k⊥rp)
(
1 + βµ2

)2
(4.15)

Estimators

To measure the galaxy clustering, we use the generalized Landy-Szalay estimator (Landy & Szalay,
1993)

ξgg =
(D −R)(D −R)

RR
=
DD − 2DR+RR

RR
, (4.16)

where D is the galaxy sample and R is for randoms sample.
The projected correlation function can then be obtained by integrating the correlation function

along the line-of-sight

wgg =

∫ Πmax

−Πmax

ξgg(rp,Π) dΠ. (4.17)

Πmax denotes the size of top hat window function along the line-of-sight. It is desirable to use
larger Πmax to mitigate the effects of redshift space distortions in the projected correlation function,
though very large line-of-sight (Π) values add little signal and mostly contribute noise (for a survey
of finite window size in redshift). We use Πmax = 100h−1Mpc, though we also test our results using
Πmax = 50h−1Mpc and Πmax = 200h−1Mpc, finding consistent results.

To get the errors and covariance matrix, we split the sample into 100 jackknife regions with
approximately equal area on the sky (Singh et al. (2016b) show that the jackknife errors are consistent
with theoretical expectations when using mean zero quantities, i.e., galaxy field with mean subtracted
using randoms). Throughout, the quoted errors and uncertainties will be jackknife errors. Whenever
fitting models (or computing derived quantities such as a mean), we do so for each jackknife region
separately and then quote the jackknife mean and errors of model parameters.

4.2.3 Redshift space distortions

The measured redshift (z) of the galaxy is a combination of Hubble recession and the peculiar velocity1.
The peculiar velocity component of the redshift affects the line-of-sight distance to a galaxy determined
using the cosmological distance-redshift relation, introducing an anisotropy in the two point correlation
function. Within linear theory, the real space power spectra can be converted to redshift space power
spectra as (Kaiser, 1987)

P sgg(k) = P rgg(k)(1 + µ2
kβ)2. (4.18)

where P rgg is the real space galaxy power spectrum, P sgg is the redshift space galaxy power spectrum, µ
is the cosine of the angle made by the wave-vector k from the line of sight and β is the RSD parameter.
Hamilton (1992) extended this approach to the two-point correlation function and showed that the
two-point correlation in redshift space up to linear theory is given by

ξgg(s) =
[
1 + f(∂/∂z)2(∇2)−1

]2
ξgg(r) (4.19)

where ξgg(r) and ξgg(s) are the galaxy correlation function in real and redshift space. The development
in Lagrangian perturbation theory has produced better models of redshift space correlation which work
even in the quasi-linear scale. They enable interpretation of RSD measurements to smaller separations,
and hence result in more precise measurements of RSD (Samushia et al., 2014). We use Convolution
Lagrangian Perturbation Theory (CLPT) to predict the real space correlation function and velocity

1There is also a small contribution from gravitational redshift (Cappi, 1995) , which we will ignore.
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moments, which are then combined with the Gaussian Streaming Model (GSM) to predict the redshift-
space correlation function (Carlson et al., 2013; Wang et al., 2014). We used tools developed in (Alam
et al., 2015b) which have been tested on several mocks and N-body simulations including the completed
cosmological analysis of DR12 from BOSS (Satpathy et al., 2016; Alam et al., 2016a).

Measuring the growth rate

We estimate β using the monopole and quadruple moments of the galaxy auto-correlation function,
obtained by projecting the correlation function onto the Legendre basis.

ξgg,l(s) =

∫ 1

−1

dµPl(µ)ξgg(s, µ) (4.20)

where s is the distance in redshift space, µ is the angle between s and the plane of the sky and Pl is
the legendre polynomial of order l (l = 0 for monopole and l = 2 for quadrupole)

We use COSMOMC (Lewis & Bridle, 2002a) to run a Markov Chain Monte Carlo (MCMC) fit for
the multipole moments of the correlation function. The correlation function is fit for 3 parameters
(f, σFOG, ν), where f is the growth rate, σFOG is an additional velocity dispersion to model the Finger
of God effect (Alam et al., 2015b) and ν is the overdensity which determines the first and second order
bias through the peak-background split (White, 2014):

F ′ =
1

δc

[
aν2 − 1 +

2p

1 + (aν2)p

]
(4.21)

F ′′ =
1

δ2
c

[
a2ν4 − 3aν2 +

2p(2aν2 + 2p− 1)

1 + (aν2)p

]
(4.22)

where a = 0.707, p = 0.3 gives the Sheth-Tormen mass function (Sheth & Tormen, 1999), and
δc = 1.686 is the critical density for collapse. F ′ and F ′′ are the first and second order Lagrangian
bias. The linear galaxy bias is given by bg = 1 + F ′. The scale used in the RSD fits cover 28 to
70 h−1Mpc. The smaller scale is chosen to only use the scales where model is shown to be consistent
with survey mocks and N-body simulations (Alam et al., 2015b) whereas the large scale is determined
by the size of the jackknife regions.

4.2.4 Υ Estimator

In galaxy-galaxy lensing, we measure ∆Σ = Σ̄(< rp) − Σ(rp). Σ̄(< rp) and hence ∆Σ is affected by
all scales < rp. This induces considerable theoretical uncertainty in modeling the ∆Σ observable due
to the lack of a good model for the small scales, for example, non-linear clustering and galaxy-dark
matter cross-correlations (usually quantified through rcc parameter) at scales comparable to or within
the virial radii of dark matter halos. To mitigate the impact of small-scale theoretical uncertainty on
large-scale structure measurements, Baldauf et al. (2010) suggested a new estimator

Υgm(rp, r0) = ∆Σgm(rp)−
r2
0

r2
p

∆Σ(r0) (4.23)

Expanding ∆Σ in terms of the correlation function, it can be shown that Υ is independent of infor-
mation from small scales, r < r0:

Υgm(rp, r0) = ρ̄M

[
2

r2
p

∫ rp

r0

dr′ wgm(r′)− wgm(rp) +
r2
0

r2
p

wgm(r0)

]
. (4.24)

Analogous to this lensing observable, we can define Υgg, starting by defining

Σgg(rp) = ρcrit

∫
dΠ ξgg(rp,Π), (4.25)
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where we have ignored the effects of the mean density and ρcrit is used to get Σgg in units of density.
The choice of ρcrit is also useful for the definition of the EG parameter in Section 4.2.5. The definition
of Υgg follows from definition of ∆Σ and eq. (4.23).

4.2.5 EG Statistic

The perturbed metric in the conformal Newtonian gauge is written as

ds2 = a(τ)2{(1− 2ψ)dτ2 + (1− 2φ)(dr2 + r2dΩ2)} (4.26)

As stated in section 4.2.1, ψ = φ in ΛCDM, in the absence of anisotropic stresses. However, several
modified gravity theories lead to modifications in either or both the potentials and in general violate
the equality of two potentials (Jain & Khoury, 2010).

Zhang et al. (2007) proposed an estimator, EG, to test the equality of two metric potentials

EG(k, z) =
Pgκ(k, z)

Pgθ(k, z)
(4.27)

The real-space analog of EG was defined by Reyes et al. (2010) (see also Leonard et al. 2015) as

EG(rp) =
Υgm(rp)

βΥgg(rp)
(4.28)

Equivalently, we can define EG in terms of projected surface mass density

EG(rp) =
Σgm(rp)

βΣgg(rp)
(4.29)

In the case of galaxy-galaxy lensing, we will measure EG using Υ estimators, while for CMB lensing
we will present results using both Υ and Σ. Σ provides better measurement at small scales as there
is no mixing of scales or removal of information as in ∆Σ or Υ. However, Σ has lower signal to noise
(S/N) at large scales due to the low amplitude and higher contributions from cosmic variance, which
introduces noise bias in EG, in addition to the measurement being noisy. Υ on the other hand has
lower S/N at small scales but is better at large scales due to higher S/N.

EG is sensitive to the difference between ψ, φ as Pgκ or Υgm, measured from lensing, are sensitive
to the Weyl potential (Ψ = ψ + φ), while the linear growth rate of matter perturbations depends on
the Newtonian potential ψ. In ΛCDM, with ψ = φ

〈EG(rp, z)〉 =
Ωm(z = 0)

f(z)
(4.30)

In this paper we focus on measurements of EG and their implications for the ΛCDM model. We do
not test for any specific models of modified gravity, and refer the reader to Pullen et al. (2015b) for
expectation values of EG in some alternate theories of gravity.

4.2.6 Possible Systematics

Theoretically, in the linear regime, EG is a clean null test for the equality of the two metric potentials
and hence a test of GR. However, it can be subject to several observational and theoretical systematics
that we discuss here.

Non-linear clustering at small scales can lead to significant deviations from the expected value of
EG, especially since it affects lensing and clustering measurements differently. The clustering (Υgg)
amplitude goes as b2g, which includes difficult-to-model non-linear galaxy bias. Lensing (Υgm) is
sensitive to bgrcc, where bg includes non-linear bias while rcc is the galaxy-matter cross correlation
coefficient. rcc ∼ 1 at large scales but deviates strongly at small scales and depends on details of how
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galaxies populate halos (see e.g. Baldauf et al., 2010, for more detailed discussion on rcc). As discussed
in Baldauf et al. (2010), use of Υ rather than ∆Σ partially mitigates the effects of non-linear clustering
by removing small-scale information, though the efficiency of this small-scale removal depends on the
choice of r0. The choice of r0 depends on the balance between theoretical uncertainties, which are
large at small scales, and statistical errors, which increase with r0 as more signal is removed. For
our main analysis, we choose r0 = 2h−1Mpc & 2rvir, as suggested by Baldauf et al. (2010). This
still leaves some residual effects from non-linear scales and we attempt to mitigate these effects by
estimating them using simulations. For this we compute the correction factor Cnl to correct for the
effects of scale dependent bias and rcc.

Cnl(rp) =
Υsim
gg (rp)

blinearΥsim
gm (rp)

(4.31)

blinear is the linear galaxy bias.
The finite size of the top-hat window function in clustering measurement leaves some residual

effects of linear redshift space distortions in the projected correlation function (see also Section 4.2.2)
and hence in the EG measurement. The lensing measurement is not affected by RSD to first order
and also the line-of-sight integration in lensing is much longer (Πlens

max � 100h−1Mpc). We mitigate
the effect of the limited window in projected clustering using the corrections computed with the linear
theory and Kaiser formula (Kaiser, 1987).

Crsd+win(rp) =
wgg(rp|Πmax = 100h−1Mpc)

wgg(rp|Πmax =∞)
(4.32)

where wgg is defined in Eq. (4.15).
In addition to the above, the window function for lensing (depends on the broad lensing kernel

and systematics weights) also varies, due to which effective weights to different Π bins are different
for lensing and clustering. We correct for this effect using simulations by computing Υgm with top
hat and lensing weights which also includes the systematics weights defined in Section 4.2.1.

Clens win(rp) =

∫
dΠ ξgm(rp,Π)∫

dΠWgm(Π) ξgm(rp,Π)
(4.33)

Here Wgm is the lensing window function derived in Appendix 4.A.
Due to different redshift weights for lensing and clustering, the two measurements are also at

different effective redshifts. Since the lensing amplitude scales as bgD(z)2 (D(z) is the linear growth
function) and clustering amplitude scales as b2gD(z)2, we correct for the different effective redshifts as

Cz(rp) =
D(z = zggeff)

D(z = zgmeff )

√ ∫
dzWgg(z)wgg(z)∫
dzWgm(z)wgg(z)

. (4.34)

The ratio is directly computed from the data by measuring clustering with lensing weights (Wgm)
assigned to the galaxies.

There are also additional number density fluctuations due to the lensing effects of the intervening
large scale structure between the observer and galaxies (Moradinezhad Dizgah & Durrer, 2016). We
estimate the impact of these effects in appendix 4.C and apply correction for them Clens.

The final correction applied to the measured EG signal is the product of all corrections defined
above.

Ctot(rp) = Clens win(rp)× Cnl(rp)× Crsd+win(rp)× Cz(rp)× Clens (4.35)

4.3 Data

We use the same datasets as used in Singh et al. (2016a). In this section, we briefly describe these
datasets for completeness.
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4.3.1 SDSS

The SDSS (York et al., 2000) imaged roughly π steradians of the sky, and the SDSS-I and II surveys
followed up approximately one million of the detected objects spectroscopically (Eisenstein et al.,
2001; Richards et al., 2002; Strauss et al., 2002). The imaging was carried out by drift-scanning the
sky in photometric conditions (Hogg et al., 2001; Ivezić et al., 2004), in five bands (ugriz) (Fukugita
et al., 1996; Smith et al., 2002) using a specially-designed wide-field camera (Gunn et al., 1998) on
the SDSS Telescope (Gunn et al., 2006). These imaging data were used to create the catalogues of
shear estimates that we use in this paper. All of the data were processed by completely automated
pipelines that detect and measure photometric properties of objects, and astrometrically calibrate the
data (Lupton et al., 2001a; Pier et al., 2003; Tucker et al., 2006). The SDSS-I/II imaging surveys were
completed with a seventh data release (Abazajian et al., 2009), though this work will rely as well on
an improved data reduction pipeline that was part of the eighth data release, from SDSS-III (Aihara
et al., 2011); and an improved photometric calibration (‘ubercalibration’, Padmanabhan et al., 2008).

4.3.2 SDSS-III BOSS

Based on the photometric catalog, galaxies are selected for spectroscopic observation (Dawson et al.,
2013), and the BOSS spectroscopic survey was performed (Ahn et al., 2012) using the BOSS spec-
trographs (Smee et al., 2013). Targets are assigned to tiles of diameter 3◦ using an adaptive tiling
algorithm (Blanton et al., 2003), and the data were processed by an automated spectral classification,
redshift determination, and parameter measurement pipeline (Bolton et al., 2012). We use SDSS-III
BOSS data release 12 (Alam et al., 2015a; Reid et al., 2016) LOWZ galaxies, in the redshift range
0.16 < z < 0.36 and CMASS galaxies in range 0.45 < z < 0.7.

The LOWZ sample consists of Luminous Red Galaxies (LRGs) at z < 0.4, selected from the SDSS
DR8 imaging data and observed spectroscopically in the BOSS survey. The sample is approximately
volume-limited in the redshift range 0.16 < z < 0.36, with a number density of n̄ ∼ 3×10−4 h3Mpc−3

(Manera et al., 2015). To test for the redshift evolution of EG, we also split the sample into two
redshift bins, Z1: 0.16 < z < 0.26 and Z2: 0.26 < z < 0.36. Further, we also use a sample of field
galaxies (Singh et al., 2016a) defined using counts-in-cylinders (CiC) technique (Reid & Spergel, 2009).
Field galaxies are mainly central galaxies and have somewhat lower bias and hence are relatively less
affected by non-linear effects.

The BOSS CMASS sample consists of higher redshift galaxies (0.45 < z < 0.7) targeted using
color and magnitude cuts intended to select a uniform sample of massive galaxies (Reid et al., 2016).

We also use the weights defined by BOSS collaboration (Ross et al., 2012) for systematics (wsys),
redshift failures (wno-z) and fiber collisions (wcp). The effects of these weights for both clustering
and lensing measurements were studied in detail in Singh et al. (2016a) (see also Ross et al., 2012;
Anderson et al., 2014). The final weights are defined as

w = wsys(wno-z + wcp − 1) (4.36)

4.3.3 Shape sample

The catalogue of galaxies with measured shapes used in this paper (described in Reyes et al. 2012 and
further characterized in Mandelbaum et al. 2013) was generated using the re-Gaussianization method
(Hirata & Seljak, 2003) of correcting for the effects of the point-spread function (PSF) on the observed
galaxy shapes. The catalogue production procedure was described in detail in previous work, so we
describe it only briefly here. Galaxies were selected in a 9243 deg2 region, with an average number
density of 1.2 arcmin−2. The selection was based on cuts on the imaging quality, data reduction
quality, galactic extinction Ar < 0.2 defined using the dust maps from Schlegel et al. (1998) and the
extinction-to-reddening ratios from Stoughton et al. (2002), apparent magnitude (extinction-corrected
r < 21.8), and galaxy size compared to the PSF. The apparent magnitude cut used model magnitudes2.

2http://www.sdss3.org/dr8/algorithms/

magnitudes.php#mag model
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For comparing the galaxy size to that of the PSF, we use the resolution factor R2 which is defined
using the trace of the moment matrix of the PSF TP and of the observed (PSF-convolved) galaxy
image TI as

R2 = 1− TP

TI
. (4.37)

We require R2 > 1/3 in both r and i bands.
The software pipeline used to create this catalogue obtains galaxy images in the r and i filters

from the SDSS ‘atlas images’ (Stoughton et al., 2002). The basic principle of shear measurement
using these images is to fit a Gaussian profile with elliptical isophotes to the image, and define the
components of the ellipticity

(e+, e×) =
1− (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (4.38)

where b/a is the axis ratio and φ is the position angle of the major axis. The ellipticity is then an
estimator for the shear,

(γ+, γ×) =
1

2R〈(e+, e×)〉, (4.39)

where R ≈ 0.87 is called the ‘shear responsivity’ and represents the response of the distortion to
a small shear (Kaiser et al., 1995; Bernstein & Jarvis, 2002); R ≈ 1 − e2

rms. In the course of the
re-Gaussianization PSF-correction method, corrections are applied to account for non-Gaussianity of
both the PSF and the galaxy surface brightness profiles (Hirata & Seljak, 2003).

For this work, we do not use the entire source catalogue, only the portion overlapping the LOWZ
sample.

When computing the weak lensing signals around the LOWZ galaxies, we need estimates of the
redshifts for the fainter source galaxies. For this purpose, we use the maximum-likelihood estimates
of photometric redshifts (photo-z) based on the five-band photometry from the Zurich Extragalactic
Bayesian Redshift Analyzer (ZEBRA, Feldmann et al., 2006), which were characterized by Nakajima
et al. (2012) and Reyes et al. (2012). In this work, we used a fair calibration sample of source galaxies
with spectroscopic redshifts as defined in Nakajima et al. (2012) to calculate biases in weak lensing
signals due to bias and scatter in the photo-z, and applied corrections that were of order 10 per cent
(±2 per cent) to the weak lensing signals. We will further test the accuracy of these corrections using
the clustering-z method (e.g. Ménard et al., 2013) in appendix 4.E.

4.3.4 Planck CMB lensing maps

For CMB lensing, we use the publicly available lensing maps from Planck collaboration (Planck
Collaboration et al., 2015b). We convert the provided convergence values in Fourier space κ`,m into
real space κθ,φ using healpy (Górski et al., 2005) with nside = 1024. We use the full ` range
(8 < ` < 2048) when constructing the map. Planck Collaboration et al. (2015b) found some evidence
of systematics in lensing maps and use 40 < ` < 400 for the main cosmological analysis. However, in
Singh et al. (2016a) no evidence of systematics was found when cross-correlating the full convergence
map with the BOSS galaxies and hence we will use the full ` range in this work as well. We refer
the reader to Singh et al. (2016a) for more details about choice of pixel size in the maps and various
systematic tests that were carried out.

4.3.5 Simulations

To test our EG pipeline and compute the corrections described in section 4.2.6, we use the ‘Med-Res’
simulations described in Reid et al. (2014), with snapshots at z = 0.25 and z = 0.40 for the LOWZ
sample and z = 0.60 for the CMASS sample. The sample of galaxies is generated using the HOD
model from Zheng et al. (2005) to fit the clustering of galaxies for full LOWZ or CMASS samples,
assuming a fixed abundance of halos (see Reid et al., 2014, for more details). We will use same
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Sample Lensing map f σ8

σ8,fid
bg

σ8

σ8,fid
Al

σ8

σ8,fid
EG

Z1 SDSS 0.74± 0.11 [0.64] 1.73± 0.03 0.87± 0.07 0.38± 0.06 [0.49]
Z1 Planck 0.74± 0.11 [0.64] 1.74± 0.03 1.4± 0.23 0.61± 0.13 [0.49]

LOWZ SDSS 0.63± 0.06 [0.67] 1.85± 0.02 0.76± 0.05 0.405± 0.047 [0.47]
LOWZ Planck 0.63± 0.06 [0.67] 1.86± 0.02 0.92± 0.14 0.46± 0.07 [0.47]
Field SDSS - 1.52± 0.02 0.76± 0.05 0.40± 0.04 [0.47]
Field Planck - 1.52± 0.02 0.98± 0.15 0.48± 0.08 [0.47]
Z2 SDSS 0.54± 0.07 [0.69] 1.96± 0.04 0.69± 0.08 0.44± 0.07 [0.45]
Z2 Planck 0.54± 0.07 [0.69] 1.96± 0.03 0.64± 0.16 0.36± 0.1 [0.45]

CMASS Planck 0.7± 0.04 [0.78] 2.05± 0.01 0.87± 0.08 0.39± 0.04 [0.4]

Table 4.1: Values of the growth function, f , linear galaxy bias, bg (from fits to projected correlation
function wgg), lensing amplitude, Al and EG for different samples and using SDSS and Planck CMB
lensing maps. The values in square brackets, [], are the predicted values from the Planck ΛCDM
model. The errorbars in this table are statistical only. There is additional systematic uncertainty in
EG of order 2% from the applied corrections. Note that for the Field sample, we use f measured from
the full Lowz sample. Due to the selection effects from CiC method, f from field sample is somewhat
biased (f = 0.74± 0.06).

simulation catalogs to compute corrections for the subsamples as well. To compute the galaxy-matter
cross-correlations, we cross-correlate the galaxies with the randomly subsampled matter particles.
Comparison of galaxy-galaxy and galaxy-matter correlations are shown in appendix 4.B.

4.4 Results

In this section we presents the results, starting with growth rate measurements in data, then EG
measurements in simulations and tests for systematics. Finally we present the EG measurements in
data. The clustering and lensing measurements in data (from Singh et al., 2016a) are presented in
appendix 4.B.

4.4.1 Growth rate measurement

We performed the RSD analysis as described in Section 4.2.3. For each of the subsamples used in this
paper, we divide the survey area into 100 jackknife regions. We then obtain galaxy clustering monopole
and quadruple moments for each of the jackknife realizations for each sample. These monopole and
quadruple moments are fit independently using our perturbation theory model. Our measurements
and model fits are shown in figure 4.1 and the values of parameters are presented in table 4.1. Note
that we only fit monopole and quadrupole in the range 28 < rp < 70h−1Mpc, though we also show
the hexadecapole measurements in figure 4.1, which are not very constraining and were ignored in
the analysis. The growth rate measurements are consistent with ΛCDM within 2σ. Also, our RSD
analysis is performed with a fixed cosmology because the constraints on cosmological parameters
from Planck are so tight that using Planck priors is equivalent to fixing the cosmology. We do not
marginalize over the Alcock-Paczynski parameter and hence obtain smaller error than when doing
the full shape RSD analysis (see for example Alam et al. 2015b). Sánchez et al. (2014) reported
fσ8(z = 0.32) = 0.48± 0.10 and fσ8(z = 0.57) = 0.42± 0.045 using the SDSS DR11 sample, which is
consistent with our LOWZ (fσ8(z = 0.32) = 0.44)) and CMASS (fσ8(z = 0.57) = 0.43). Gil-Maŕın
et al. (2016b) also measured fσ8 consistent with ours for both LOWZ and CMASS sample. Our
LOWZ measurement of fσ8 is 0.5σ lower than Gil-Maŕın et al. (2016b) with fixed Alcock-Paczynski
parameter but higher than what they measured after marginalizing over Alcock-Paczynski parameters.
The lower fσ8 after AP marginalization is dominated by the information in the position of BAO peak.
Since we do not use BAO scale in our RSD analysis and hence we do not allow extra freedom on top
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Figure 4.1: For different subsamples of the LOWZ sample in the two panels, we show the multipole
moments – the monopole (l = 0), quadrupole (l = 2) and hexadecapole (l = 4) – of the galaxy
correlation function, along with the best-fitting model.

of ΛCDM background we are doing a fair and consistent treatment of fσ8. Our measurements of the
growth rate are consistent with previous measurements using the SDSS sample (Alam et al., 2015b;
Sánchez et al., 2014; Samushia et al., 2014; Satpathy et al., 2016; Beutler et al., 2016; Grieb et al.,
2017; Sanchez et al., 2016; Alam et al., 2016a).

We note that the measurement of β is obtained using scales above 25 h−1Mpc whereas our final EG
measurements extends to scales below 25 h−1Mpc. Ideally one would want to perform measurement
of β using the same scales. Unfortunately the modeling technique used in the current measurement
of β is not accurate enough to extend it to smaller scales. The β consists of two quantities growth
rate and bias. We do account for the fact that bias will be scale dependent and different at smaller
scales compared to the large scale measurement through a correction factor Cnl (see Section 4.2.6
for details). But we have an inherent assumption that the growth rate measured using larger scales
is constant and applicable for smaller scales. This makes the current measurements of EG slightly
weaker than its full potential which should be improved upon in the future measurements with better
RSD modeling to smaller scales.

4.4.2 EG in simulations and corrections

In Fig. 4.2 we show the EG measurements in the simulation box with snapshots at z = 0.25 and
z = 0.4, in both real space and redshift space. Without applying any corrections, EG is biased low
with considerable scale dependence. The average EG over all scales is low by ∼ 5% compared to the
ΛCDM predictions both in real space and redshift space. RSD effects are important at large scales,
but due to relatively lower S/N at those scales these do not contribute much when computing the
mean EGStill we do correct for these effects as described in Section 4.2.6. The biggest contribution
to the bias in EG is from the combined effects of non-linear galaxy bias and the galaxy matter cross-
correlation coefficient. We compute this bias directly from simulations and then correct for it.

The corrections computed using different simulations give consistent (to within 1%) mean EG
measurements. Thus for our main results in the data, we will use the corrections from z = 0.25
snapshot for both full LOWZ and LOWZ-Z1 sample and z = 0.40 snapshot for LOWZ-Z2 sample.
The mean EG, computed after applying the corrections is within ∼ 1% of the predicted value from
the ΛCDM model (compared to 5% bias in the uncorrected 〈EG〉). In appendix 4.D, we provide more
tests using another set of mocks with varying HODs and show that the corrections used for our main
results (z = 0.25 snapshot) recover 〈EG〉 to within . 2%. Thus we will add 2% systematic uncertainty
in our error budget to account for the variations in corrections computed, especially for non-linear
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Figure 4.2: EG measurements using simulations. Points with errorbars show the measurements, while
dashed black lines show ΛCDM predictions at two redshifts. Vertical cyan lines mark the scales
5 < rp < 70h−1Mpc within which we measure the 〈EG〉. Results for z = 0.4 have been shifted below
by 0.05. Blue points show the measurements done using real space positions for galaxies while red
points show measurements done in redshift space. Open markers show measurements without any
corrections applied while closed markers show results obtained after applying all corrections (but note
that the RSD correction is applied in all cases.). We find that the most important correction is for the

combined effects of non-linear bias and rcc (
Υgg

bling Υgm
). Various corrections terms for LOWZ are shown

in Fig. 4.5.

scales.

4.4.3 EG measurement

In Fig. 4.3, we show the EG measurement using the BOSS LOWZ sample along with both SDSS and
CMB lensing maps. In the case of EG measured using galaxy-galaxy lensing, the errors are dominated
by uncertainties in the RSD measurements (∼ 10%), with lensing uncertainties being subdominant.
EG is ∼ 2σ low compared to Planck ΛCDM predictions, which is primarily driven by the low amplitude
of lensing measurements as discussed in Section 4.B. In case of CMB lensing, the error contributions
from lensing are greater and thus lensing dominates the uncertainties in EGThe mean EG from CMB
lensing is also consistent with Planck ΛCDM predictions, though the measurement is noisier when
compared to galaxy lensing and is consistent with the galaxy lensing measurement.

EG measured from field sample is consistent with the results from full LOWZ sample (using same
corrections for both). Since field sample does not contain groups, the effects of non-linear bias and
satellite contamination are expected to be smaller. However, with CiC cylinder size, rp . 0.8h−1Mpc
we do not observe any significant effects of removing groups at scales rp > 5h−1Mpc, other than
reduced effective bias of the sample. CiC selection effects still bias the RSD measurements and hence
we do not use the f = 0.74± 0.06 measured from field sample.

In fig. 4.4, we show the EG measurement for the CMASS sample using CMB lensing measurement
and two estimators, Σ and Υ, for clustering and lensing measurements. Both measurements are
consistent with Planck ΛCDM predictions, though the mean EG measured from Σ is noisier compared
to Υ due to different signal to noise with scales. At small scales, Σ gives better signal-to-noise ratio
(S/N) while at larger scales the Σ measurement gets noisier. Υ on the other hand has lower S/N at
small scales since we are subtracting out some signal while at large scales it has better S/N because of
a reduced contribution from cosmic variance. Note that corrections for CMASS sample are computed
using the z = 0.6 snapshot.

In Figure 4.5, we show the magnitude of several corrections applied to the LOWZ EG mea-
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Figure 4.3: EG as a function of scale for LOWZ galaxies. The solid black line shows the ΛCDM
prediction at the effective redshift of z = 0.27, while the solid red and blue lines show measured 〈EG〉
over scales 5 < rp < 65h−1Mpc. The bands show the 1σ errors on 〈EG〉.
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Figure 4.4: EG measurement for the CMASS sample with CMB lensing. We show the measurement
using the Υ (r0 = 2h−1Mpc) estimator as well as using Σ, for both CMB lensing and clustering. Σ
provides a better S/N at small scales, while Υ has better S/N at large scales due to reduced cosmic
variance (Baldauf et al., 2010).
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Figure 4.5: Various correction terms applied to the EG measurements in Fig. 4.3 (LOWZ sample).
The dashed black line also shows the relative uncertainty in EG as a function of scale.

surements along with the relative (statistical) errors in the EG measurement for comparison. The
Crsd+win correction is computed from a theoretical model (linear theory+Kaiser correction). We also
computed this correction using simulations (computing correlations with and without RSD) and find
good agreement between theoretical estimates and simulations. Simulations are noisier, hence we use
the theoretical estimates in the final results.

All the scale-dependent corrections we applied are subdominant when compared to the statistical
uncertainties in the EG at that rp, and the combined effect of corrections is to change EG by ∼ 1−2%
(. 0.2σ) for different samples. While this is not a significant change in our results, this suggests that
future work with much better measurements will have to model these corrections to higher precisions.

We also note that lensing measurement from galaxies is susceptible to systematics from uncer-
tainties in shear estimation and photometric redshifts. As mentioned in section 4.3.3, Reyes et al.
(2012); Nakajima et al. (2012); Mandelbaum et al. (2013) did extensive testing of the shape sample
for these systematics and we use the calibration factors derived for the shape sample derived in those
papers. We further test the accuracy of the calibration factors for photo-z in appendix 4.E using a
method with independent assumptions from the method used in Nakajima et al. (2012). There, the
existence of a representative spectroscopic sample was assumed; here, we use the clustering redshift
method, which assumes the existence of a non-representative spectroscopic sample that can be used
to derive the ensemble redshift distribution by modeling the clustering signals. In appendix 4.E we
show that while the calibration factors from the clustering redshift method depend on the priors on
the galaxy bias, they agree with the factors derived by Nakajima et al. (2012) to within ∼ 5%. Using
physically-motivated priors on the galaxy bias further improves the agreement.

There is also a possibility of contamination from intrinsic alignments (IA) of source galaxies.
Blazek et al. (2012) did estimations for the IA contamination in the source sample used in this work
and found no evidence for contamination with the conservative upper limit of contamination being
5%. We thus ignore the possible contamination from IA in this work.

Finally, in Fig. 4.6, we show the redshift dependence of EG along with ΛCDM predictions using
different values of Ωm. In general our measurements for various samples are consistent with the Planck
ΛCDM prediction at 2σ level or less, though measurements are not constraining enough right now to
rule lower values of Ωm, especially with galaxy-galaxy lensing measurements preferring somewhat lower
values. For the full Lowz sample and CMASS sample, our measurements are consistent with those of
Blake et al. (2016), who measured EG = 0.48± 0.10 for Lowz (0.15 < z < 0.43) and EG = 0.30± 0.07
for the CMASS sample and also with measurement of (Alam et al., 2017), EG = 0.420 ± 0.056, for
CMASS sample.
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Figure 4.6: EG measurement between scales 5 < rp < 70 h−1Mpc for different samples, along with
ΛCDM predictions with different Ωm values. Measurements are consistent with the Planck ΛCDM
model (Ωm = 0.31), though given the size of the statistical uncertainties, it is not possible to rule out
other models. The blue band around the red points is drawn to indicate that the LOWZ measurement
is correlated with the measurements from the Z1 and Z2 samples. Solid yellow points show the
uncorrected value of 〈EG〉.

The measured amplitude of EG is primarily affected by the (relative) lensing amplitude Al and the
growth rate, f , measurement from RSD. In the case of galaxy-galaxy lensing, the lensing amplitude
for Z1 is lower than 1 (∼ 2σ) and f is higher than the Planck ΛCDM predictions (though consistent
at the 1σ level), both of which lower the EG value. In the case of the Z2 sample, the lensing amplitude
is significantly lower than 1 but f is also lower, which partially cancels the effects of the lower Al.
The final EG, is below but consistent with Planck predictions at the 1σ level. For the full LOWZ
sample, f is close to the ΛCDM prediction, but the lensing amplitude is much lower, and the latter
effect dominates the final EG measurement. We again note that the lensing amplitude is degenerate
with galaxy bias, and lower lensing amplitude does not necessarily mean systematics in lensing alone.

In the case of CMB lensing, the EG measurements are largely consistent with the predictions from
the Planck ΛCDM model. One notable discrepancy is between our measurement for CMASS sample
and that of Pullen et al. (2016). A significant part of the discrepancy in measurement of Pullen et al.
(2016) is from large scales (rp & 80h−1Mpc), where the galaxy-CMB lensing amplitude was observed
to be low in their measurements. Our results on the other hand are dominated by the measurements at
small scales, with larger scales being noisier and not contributing much to the mean EG measurement.
Even when considering the full scale-dependent EG measurement, we do not observe any significant
deviations at large scales, though the uncertainties in measurement at those scales are rather large.
Given that the two studies use very different estimators (Pullen et al. 2016 measurements are in
Fourier space), it is hard to reconcile the measurements in the two works without doing additional
tests that are outside the scope of this work.

4.5 Conclusions

We have presented the measurements of EG and its redshift dependence using BOSS galaxies and
lensing measurements from SDSS galaxy lensing and Planck CMB lensing maps. Measurements from
CMB lensing and galaxy lensing are consistent within noise for the LOWZ sample. With the higher
redshift CMASS sample, the EG measurement is of comparable significance to the galaxy lensing
measurements. This highlights the potential of CMB lensing to provide complimentary observations
and strong consistency checks when combined with the galaxy lensing measurements(see also Singh
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et al., 2016a; Schaan et al., 2016).

We also highlighted several theoretical uncertainties in computing EG and computed corrections
for them. Our results showed that after applying corrections in simulations we can recover EG to
about 2% accuracy. With & 10% error in our measurement, these correction are good enough for this
work. However, in future several surveys will be able to measure EG (or perform similar tests on GR)
to sub-percent accuracy (Leonard et al., 2015; Pourtsidou, 2016). In case of these surveys, it will be
important to compute the corrections for systematics to even higher accuracy, using better theoretical
modeling with analytical models and/or simulations.

While our EG measurements are largely consistent with the predictions from Planck ΛCDM pre-
dictions, there are some deviations at . 2σ level, especially when using galaxy lensing measurements.
Though statistically not very significant in EG, these deviations are primarily driven by the low am-
plitude of lensing measurements, which can possibly be due to systematics in either clustering and/or
lensing measurements, since clustering bias and lensing amplitude are degenerate. Lensing amplitude

is also degenerate with the ∼ σ8Ω
1/2
m value and low amplitude could also mean that data prefers

lower Ωm or σ8 (or both) values compared to the Planck ΛCDM model assumed. We also see sim-
ilar redshift-dependent deviations in the growth rate measurements (and measurements with CMB
lensing), though uncertainties are too large to make a definitive statement. Since growth rate is also
degenerate with galaxy bias, this redshift dependent deviation does suggest that it is possible that
problem is from the some residual sample selection effects which affect the bias measurements.

Low amplitude lensing measurements (compared to predictions from Planck ΛCDM model) has
also been observed by other lensing studies (see for ex. Hildebrandt et al., 2016; Leauthaud et al., 2017;
Joudaki et al., 2017) (see also van Uitert et al., 2017, for results consistent with Planck cosmology).
Leauthaud et al. (2017) performed tests for several systematics in galaxy-galaxy lensing (e.g. effects
of Baryons, neutrinos, modified gravity, assembly bias, sample selection) and showed that effects of
systematics can be significant, especially with several systematics being combined together. Joudaki
et al. (2017) performed similar analysis for cosmic shear measurements and also showed that marginal-
izing over some models for systematics can relieve some of the tensions between Planck ΛCDM model
and lensing measurements. These studies, along with our tests suggest that more work is required to
study and model the impact of systematics in both lensing and clustering measurements.

In the near future, data from the eBOSS, DES, KiDS and HSC surveys will help to extend the
growth rate and EG measurements to higher redshifts with measurement uncertainties likely to be
around & 5% level within those bins. With the advent of LSST, DESI, WFIRST, SKA and CMB
Stage-IV surveys, the statistical uncertainties on EG will decrease considerably, providing percent level
or better measurements. However, to make EG a strong test of gravity and ΛCDM it is imperative
to improve the modeling to mitigate observational systematics as well as theoretical uncertainties to
much higher precisions than done in this work.

Acknowledgements

We thank Martin White and Beth Reid for providing us halo catalog from simulations. We also thank
the SDSS-I/II/III and Planck collaboration for their efforts in providing the datasets used in this
work.

RM acknowledges the support of the Department of Energy Early Career Award program. SS
acknowledges support from John Peoples Jr. Presidential Fellowship from Carnegie Mellon Univer-
sity. SA is supported by the European Research Council through the COSFORM Research Grant
(#670193)

Some of the results in this paper have been derived using the HEALPix package (Górski et al.,
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4.A Lensing window function

We define window function as the relative weight assigned at a given line-of-sight distance from lens
galaxy. For a given lens-source pair, with lens at zl and source at zs with photometric redshift zp, the
(unnormalized) window function is given by

w(Π) = Σ−2
crit(zp, zl)

∫ zs

0

dzΣ−1
crit(zs, z)Σcrit(zp, zl)δD

(
z − zl −

cH(zl)

Π

)
(4.40)

where Π is the line-of-sight separation from the lens. δD is the dirac delta function and ensures that
we only integrate at right distance from the lens. Σ−2

crit(zp, zl) factor arises from the weights we used
in ∆Σ estimator. Σ−1

crit(zs, z) is the true critical density for the at z, while Σcrit(zp, zl) is the critical
density that we use to convert shear to matter density when measuring the signal.

Integrating over the lens and source samples we get

w(Π) =
1

N

∫
dzlP (zl)

∫ ∞

zl

dzpP (zp)Σ
−2
crit(zp, zl)

∫ 2

0

dzsP (zs|zp)
∫ zs

0

dzΣ−1
crit(zs, z)Σcrit(zp, zl)

×δD
(
z − zl −

cH(zl)

Π

)
(4.41)

where the normalization factor N is defined such that w(Π = 0) = 1. Also note that the effects of
bias and scatter in photometric redshifts are included in the calibration biases derived in Nakajima
et al. (2012) and hence we do not include them in our calculation. We set P (zs|zp) = δD(zs − zp).

4.B Galaxy Clustering and Lensing

In this section we present the results from galaxy clustering and galaxy-lensing cross correlations with
galaxy lensing and CMB lensing. These measurements were first presented in Singh et al. (2016a)
and we refer the reader to that paper for more details and several systematic tests, especially for the
CMB lensing measurements.

Fig. 4.7 shows the clustering and lensing measurements, wgg and ∆Σ, as well as Υgg and Υgm for
various samples along with the Planck ΛCDM model with best fit values for bias and lensing amplitude,
Al. To get the values of linear bias and Al, we jointly fit the clustering and lensing measurements
with fixed cosmology, where due to very different S/N in two measurements, the bias is determined by
clustering and Al is determined by the lensing. The values of bias and lensing amplitude are presented
in Table 4.1. We fit the model only in the range 10 < rp < 65h−1Mpc. Below 10h−1Mpc, non-linear
effects not included in the model become important, while 65h−1Mpc is approximately the size of
jackknife regions at the minimum redshift of the LOWZ sample, z = 0.16. For the CMASS sample,
we extend the upper limit in rp to 100h−1Mpc.

The values of galaxy bias that we obtain are consistent with other works (Singh et al., 2015;
Rodŕıguez-Torres et al., 2016) and follow the expected trends, with higher redshift subsamples having
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Figure 4.7: Left Column: Galaxy-galaxy correlation functions, wgg and Υgg, for the LOWZ sample
and various sub-samples. Right Column: The galaxy-matter cross-correlation functions from weak
lensing, ∆Σ and Υgm, for the LOWZ sample and various sub-samples. The solid (dashed) lines are
the best fit models (Planck ΛCDM model with best fit bias) to ∆Σ and wgg (or Υgm and Υgg). In
all cases we fit the model jointly to lensing and clustering (wgg and ∆Σ or Υgg and Υgm) in the
range 10 < rp < 65h−1Mpc, marked by vertical dashed lines. In the top row, we also show the
measurements from the simulations. The galaxy clustering measurements match well by construction
(HOD in simulations match the clustering with data), while the lensing measurements from data have
lower amplitude compared to simulations, consistent with lower than 1 lensing amplitude measured
from model fits.
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higher bias (expected for galaxies with similar halo mass as they tend to form in more biased regions at
higher redshifts and also from selection effects as mean luminosity and halo mass also tend to increase
with redshift). However, the values of lensing amplitude, Al, are smaller than the expected value
of 1, especially in the case of galaxy-galaxy lensing; this discrepancy increases with redshift. This
suggests there is a possibility of systematics in the lensing source sample, especially in photometric
redshifts, though Nakajima et al. (2012) did not find any evidence of systematics (over and above
the systematics corrections we have applied) in the extensive analysis of the source sample we use.
Other possible explanations come from the fact that the Al value is degenerate with the galaxy bias
and the Ωm value assumed in the model. The clustering measurement is relatively more sensitive to
the (mis-estimation of) sample selection effects; since the lensing amplitude is degenerate with the
galaxy bias, mis-estimation of the latter can also introduce some redshift dependent bias in the lensing
amplitude.

Another possibility is that there is some discrepancy in the fiducial cosmological model we use,
with the lensing data preferring lower Ωm (compared to Planck ΛCDM), consistent with some other
lensing measurements (Massey et al., 2007; Mandelbaum et al., 2013; Kilbinger et al., 2013; Heymans
et al., 2013a). The lensing amplitude is degenerate with Ωm, and a lower Ωm value will push the
Al higher. In the case of CMB lensing (not shown, see Singh et al. (2016a) for details), the lensing
amplitude is consistent with the expectation of 1, though redshift trends are similar to galaxy lensing.
CMB lensing measurements are noisier at low redshifts due to the rapid drop in the CMB lensing
kernel and are consistent with the galaxy-galaxy lensing measurements within the errors. It is also
worth noting from Table 4.1 that growth rate measurements (described in Section 4.4.1), though
consistent with ΛCDM predictions within the noise (∼ 2σ deviation for the Z2 sample), also follow
trends similar to lensing, with values being lower at higher redshifts. Since the f measurement is also
degenerate with the bias, this suggests the presence of some low level systematics in the clustering
measurement and/or that data prefers lower Ωm value.

4.C Estimating lensing magnification bias to EG

4.C.1 Bias in Clustering

Due to the effect of lensing by the foreground structure, the apparent galaxy over density is modified
from the true over density. This modification arises from two effects, the volume perturbations due
to magnification, and the modification to galaxy selection function in a flux limited sample.

To estimate the impact of lensing contaminations, we begin by assuming that the true number
density of galaxies, n0, for a given flux limit, f , follows a simple powerlaw relation

n0(> f) = Af−α (4.42)

Where slope α is measured as

α = −d log (n0(> f))

d log (f)
= 2.5

d log (n0(< m))

dm
(4.43)

The observed number density of galaxies, n, changes due to the magnification µ as

n(> f) =
1

µ
n0(>

f

µ
) (4.44)

=
1

µ
µαn0(> f) (4.45)

≈(1 + 2(α− 1)κ)n0(> f) (4.46)

Where we used the relation between magnification and convergence, κ, µ ≈ 1/(1− κ)2.
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The observed galaxy overdensity, δ̂g, is then related to the true overdensity , δg, upto first order
as

δ̂g ≈
(1 + κ′)ng

ng
− 1 ≈ δg + κ′ (4.47)

Where κ′ = 2(α− 1)κ.
The measured correlation function is then

ξ̂gg(rp,Π) = ξgg(rp,Π) +

∫
dzpg(z)pg(z + ∆zΠ)κ′(z)κ′(z + ∆zΠ)

(
θ =

rp
fk(χz)

)

+

∫
dzpg(z)pg(z + ∆zΠ)δg(z)κ

′(z + ∆zΠ)(rp) (4.48)

ŵgg(rp) = wgg(rp) +

∫ Πmax

−Πmax

dΠ

∫
dzpg(z)pg(z + ∆zΠ)κ′(z)κ′(z + ∆zΠ)

(
θ =

rp
fk(χz)

)

+

∫ Πmax

−Πmax

dΠ

∫
dzpg(z)pg(z + ∆zΠ)δg(z)κ

′(z + ∆zΠ)(rp) (4.49)

= wgg(rp) + [2(α− 1)]2
∫ Πmax

−Πmax

dΠ

∫
dzW (z)

∫ z+∆z

0

dχm
ρ2
mwmm

(
r′p =

rpfk(χzm )
fk(χz) , zm

)

Σc(zm, z)Σc(zm, z + ∆z)

+ 2(α− 1)

∫ Πmax

−Πmax

dΠ

∫
dzW (z)

ρmwgm(rp, z)

Σc(z, z + ∆z)
Θ(z, z + ∆z) (4.50)

where ∆zΠ = ΠH(z)
c . The last term can be approximated as

∫ Πmax

−Πmax

dΠ

∫
dzW (z)

ρmwgm(rp, z)

Σc(z, z + ∆z)
Θ(z, z + ∆z) =

∫
dzW (z)ρmwgm(rp, z)

× 4πG(1 + z)

c2

∫ Πmax

0

dΠ
Π

1 + Π/fk(χl)
(4.51)

≈ 3H2
0 Ωm

2c2
Π2
max

2

∫
dzW (z)(1 + z)wgm(rp, z)

(4.52)

≈ 2.5× 10−4

∫
dzW (z)(1 + z)wgm(rp, z) (4.53)

≈ 2.5× 10−4(1 + z)wgm(rp) (4.54)

In fig. 4.8a we show the estimated contamination from lensing to the clustering measurement for
the case of both LOWZ and CMASS samples. With estimated α = 0.4 for LOWZ and α = 0.5 for
CMASS, the dominant contribution is from wgκ′ , which biases the clustering low by factor of ∼ 10−4,
much less than the signal to noise in the measurements.

4.C.2 Bias in lensing

For the case of lensing, we do the stacking analysis where magnification bias is not expected to

contaminate the measurement. However, we do apply the boost factor, bF =
∑
ls wls∑
Rs wRs

, to correct for

the effect of sources associated with the lens sample. The boost factor also includes the effects from
lensing magnification, bF ∼ 1/µ, and thus biases the lensing measurement.

We can model the magnification bias in a similar way to clustering, as the magnification bias is
changing the observed density contrast of the lens sample. For the case of galaxy-galaxy lensing

∆̂Σ = 〈Σcδ̂gγt〉 = ∆Σ + 〈Σcγtκ′〉 (4.55)
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Figure 4.8: a) Lensing contamination to the clustering measurements. Upper panel show the correla-
tion function, wgg and the correlations due to lensing wgκ′ and wκ′κ′ . Lower panel shows the ratio of
predicted contamination with the best fit model. Also, the dotted red line shows the signal to noise
ratio in the measurements. Note that in the upper panel (but not in lower panel, unless stated in
lower panel legend), we multiplied lensing predictions with a constant factor to make them same order
of magnitude as the clustering signal. b) Same as a), but showing the lensing contamination to Σ and
∆Σ measurement.

And for the case of galaxy-cmb lensing

Σ̂ = 〈Σcδ̂gκcmb〉 = Σ + 〈Σcκcmbκ
′〉 (4.56)

In fig. 4.8b, we show the estimated contamination in lensing measurements, which introduces a
bias of order ∼ 1%, lower than the measurement noise levels of ∼ 10%.

4.C.3 Bias in EG

Ignoring the bias to the growth rate measurement from lensing (note that lensing bias varies with the
line of sight separation and hence will bias the quadrupole in clustering as well), the bias in EG can
be estimated as

∆EG
EG

=
∆Σ′

∆Σ

wgg
w′gg
− 1 ≈ 〈Σcγtκ

′〉
∆Σ

+
wgκ′

wgg
− wκ′κ′

wgg
≈ 10−2 (4.57)

Final corrections applied to EG measurement are shown in fig.4.5, for the case of Lowz sample.

4.D Testing the EG corrections using different mocks

In this section we test the corrections, especially Cnl, on mocks with different HOD models. For
this purpose, we construct light-cones from the BigMultiDark Planck simulation (BigMDPL Klypin
et al., 2016) using all the available snapshots in the range 0.16 < z < 0.36. This is a simulation
of a flat ΛCDM model, with Planck1 cosmological parameters (Planck Collaboration et al., 2014a),
Ωm = 0.307, ΩΛ = 0.693, h = 0.678 and σ8 = 0.829. The BigMDPL has 38403 particles with a mass
resolution of 2.4×1010 h−1M� and a box size of 2.5 h−1Mpc. These features allow to produce light-
cones with a volume comparable to BOSS and resolve dark matter halos in the mass range predicted
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Figure 4.9: a) EG measured using mocks with different HODs (variable satellite fraction) and different
sets of corrections applied. b) Cnl correction computed from different mocks.

for the LOWZ and CMASS galaxies. Dark matter halos are defined using the Robust Overdensity
Calculation using K-Space Topologically Adaptive Refinement halo finder (rockstar Tinker et al.,
2013).

The resulting galaxy mocks will reproduce the clustering at different redshift and the radial selec-
tion function of the observed sample. In order to populate the dark matter halos of the simulation
we implement the halo abundance matching used by Rodŕıguez-Torres et al. (2016). The scatter is
included using the maximum circular velocity over the whole history of the halo, Vpeak, using the
relation

V scatpeak = (1 + G(0, σham))Vpeak, (4.58)

where G is a random gaussian number from a distribution with mean 0 and standard deviation σham.
We sort all halos using V scatpeak and then, select objects from the largest velocity and continuing down
until reaching the number density of the observed sample. The scatter between halos and galaxies is
fixed using the projected correlation function of the LOWZ data between 2 < rp < 30 h−1 Mpc for 3
different redshift bins in the range 0.16 < z < 0.36.

We do not distinguish between host halos and subhalos in the first light-cone. This produces a
LOWZ mock with a fraction of satellites equal to 12.5%. In order to produce different HOD, we
include an additional parameter which models the fraction of satellites, fsat. It will force the light-
cone to have a desired fraction of subhalos. Including the new parameter, we produce 4 different
light-cones, first, increasing the fraction of satellites by 10 and 15 percent and then decreasing by the
same factors. In all cases, we fix the scatter to reproduce the observed clustering.

In addition to Cnl measured using simulations presented in section 4.3.5, we also compute Cnl
from one of BigMDPL mocks. We then apply the three sets of Cnl to mocks with different HODs to
check if we recover EG accurately. In fig.4.9a, we show the relative bias in the corrected 〈EG〉 relative
to the theoretical prediction. Applying no corrections, 〈EG〉 is biased low by ∼ 3%. Applying the
correction from same MDPL mocks, we recover the 〈EG〉 at level . 0.5% independent of the HOD.
However, applying correction from different sims over correct and 〈EG〉 is biased high. As we show
in fig. 4.9b, this is primarily driven by differences in the non-linear physics, which leads to different
Cnl, across different sims. Corrections used for our main results, z = 0.25 snapshot, recovers 〈EG〉 to
∼ 2% for all HODs.
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4.E Photo-z bias estimates using clustering redshifts

In this section, we present the estimates of the true redshift distribution N(z) for our photometric
redshifts, closely following the formalism developed by Ménard et al. (2013); van Daalen & White
(2017). We use a random subsample of our source sample containing ∼ 2 × 106 galaxies and split
it into 40 photo-z bins containing approximately equal numbers of galaxies. These samples are then
cross-correlated with the BOSS spectroscopic sample (LOWZ+CMASS), which is split into bins of size
δz = 0.05 in the range z ∈ [0.1, 0.7] and two additional bins in the ranges z ∈ [0, 0.1] and z ∈ [0.7, 1].

To compute auto- and cross-correlations between the spectroscopic samples, we use the the stan-
dard Landy-Szalay estimator, but for cross-correlations involving the source sample we use the sub-
optimal estimator as we do not have a good estimate for the on-sky selection function of the source
catalog and hence we lack random catalogs for that sample:

wsi−sj (θ) =

∑
θ(Dsi −Rsi)(Dsj −Rsj )∑

θ RsiRsj
=

∑
θ(DsiDsj −RsiDsj −DsiRsj +RsiRsj )∑

θ RsiRsj
(4.59)

wpi−sj (θ) =

∑
θDpi(Dsj −Rsj )∑

θDpiRsj
=

∑
θ(DpiDsj −DpiRsj )∑

θDpiRsj
(4.60)

Here the subscript pi refers to the ith photometric samples, si refers to the ith spectroscopic sample
and

∑
θ indicates that summation is carried over pairs with separation within the given bin’s limits.

Then we integrate the correlation functions to obtain

Wa−b =

∫ θmax

θmin

wa−b(θ)W(θ)θdθ (4.61)

The weight function W(θ) = 1/θ, as suggested from Ménard et al. (2013). We use θmin = 0.03 degree
and θmax = 0.5 degree. These choices are primarily dictated by the noise and systematic bias in the
measured cross-correlation functions, primarily dictated by the SDSS number density at small θ and
our use of the sub-optimal estimator at large θ, which increases the variance (Singh et al., 2016b,
there is also some evidence of biases due to selection function effects in some bins).

The cross correlation between a photometric sample, p, and spectroscopic sample si can be modeled
as

Wp−si =

Ns∑

j=1

bR,p−sjfp,sjWsi−sj . (4.62)

Ns is the number of spectroscopic subsamples, fp,sj ≈ p(zs)∆zs is the fraction of the photometric
sample within the redshift range of spectroscopic bin j and the bias ratio bR,p−sj is defined as

bR,p−sj =

{ bp,sj
bsj

zsj ≤ zsi
1 otherwise.

bp,sj is the (integrated) bias of photometric galaxies that lie in redshift bin zsj and bsj is the bias of
spectroscopic galaxies (measured by fitting the linear+halofit matter correlation function to wsj−sj )
in the same bin. If zsj ≤ zsi , galaxies at zsj are either correlated with galaxies at zsi (zsj = zsi) or
they are at lower redshift and are lensing the galaxies at higher redshift zs,i. When zsj > zsi , galaxies
at zsi act as lens and hence the correlations depend only on the bias of the spectroscopic galaxies in
zsi and the ratio is 1.

In our fitting procedure, we leave bp,sj as a free parameter, though we do put hard lower and
upper limits on the values it can take and also assume that it follows some simple redshift evolution.
For hard limits, we use bl < bp,sj < 3 ∀ p, sj , where the upper limit is fixed to 3 and for the lower
limit we try 3 different values bl = [0, 0.4, 0.7]. bl ≈ 0.7 is motivated by the lower limit of halo bias
in simulations (e.g., Tinker et al., 2010). However, to accommodate any effects of non-linear physics
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(non-linear bias and non-unity cross-correlation coefficient between galaxy sample), we also do the
analysis with different lower limits of galaxy bias. To fit for the redshift evolution, we try two different
functions, linear and power-law, with two free parameters, b0 and b1, to be fitted,

bp(z) =b0

(
1 + z

1 + zp

)b1
(4.63)

bp(z) =b0 [1 + b1(z − zp)] (4.64)

where zp is the mean photometric redshift of the given photometric subsample.
For each photometric redshift bin, we adopt a Gaussian likelihood as

LW =
1√
|Σ|

exp

(
−1

2
(Ŵp−si −Wp−si)

TΣ−1(Ŵp−si −Wp−si)

)
(4.65)

We fit for fp,sj , b0, and b1. To fit for the fractional distribution of galaxies, fp,sj , we use two separate
methods. In the first method, we assume the p(zs) is Gaussian and integrate the p(zs) within a bin
to obtain fp. In this case, the fitting parameters are the mean and variance of the Gaussian p(zs).
However, using a Gaussian function for the p(zs) is a simplification that may not be justified in reality.
So we also use a non-parametric fitting procedure where each of the fp,sj are free parameters. In this
case, we require that −fl < fp,sj < 1 + fl. We test the values fl = [0, 0.05, 0.1], where values > 0
are necessary to accommodate shot noise. While the second method is in principle the most general
form for fp, the results have a higher variance and can be more susceptible to the effects of bias-fp
degeneracy. When computing the photo-z bias in lensing, any bins j with best-fitting fp,sj < 0 are
set to zero (since bins with no galaxies due to shot noise will not contribute anything to lensing).

In addition, we also require that the sum of fp,sj (
∑
j fp,sj ) should be close to 1. For this we add

an additional term in the likelihood as

L =LW
1√
Np,f

exp

(
−1

2

N2
p,f (
∑
j fp,sj − 1)2

Np,f

)
(4.66)

Np,f =
500

zp
(4.67)

Where Np,f should ideally be the number of galaxies in the given photometric sample. However, since
the redshift extent of the spectroscopic sample is less than that of the photometric sample, we loosen
the likelihood for samples at higher photometric redshift, hence the dependence on zp. 500 was chosen
so that 500/min(zp) is of order 50,000, which is the number of galaxies in each photometric bin.

Once we have the spectroscopic redshift distribution for given photometric samples, we can estimate
the bias, BL in measured ∆̂Σ as (Nakajima et al., 2012)

BL =
∆̂Σ

∆Σ
=

∫
dzlp(zl)D(zl)

2
∫
dzpp(zp)wls(zl, zp)

∫
dzsp(zs|zp)Σc(zl,zp)

Σc(zl,zs)∫
dzlp(zl)D(zl)2

∫
dzpp(zp)wls(zl, zp)

∫
dzsp(zs|zp)

(4.68)

zl is the lens redshift, zp is the photometric redshift and zs is the true source redshift. D(zl) is the
growth function at lens redshift, wls is the weight as described in eq. (4.9).

In Fig. 4.10, we show the fractional distribution obtained assuming a Gaussian model for p(zs)
(blue points) and when using the non-parametric fp model. We also show the fp obtained using a
representative calibration sample with spectroscopic redshifts. fp obtained using the Gaussian model
is less noisy, but for any given photometric sample, the bins in true redshift are strongly correlated.
In the case where the fp are treated as independent parameters, the correlations across bins are not
significant and the distributions appear to capture more features, though to some extent this can be
caused by noise in clustering measurements and the degeneracies with the galaxy bias.

In Fig. 4.11 we show the bias in lensing due to the impact of photometric redshift bias and scatter,
calculated using the true redshift distributions estimated from the clustering analysis. We show the
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estimates using different bias and fp models along with different priors on the galaxy bias and fp. Our
results are not very sensitive to the bias evolution models, likely due to the relatively narrow redshift
bins. However, in the case where the fp values are treated as free parameters, are results are sensitive
to the priors on fp and the bias, especially the lower limit on bias. This is primarily caused by the
degeneracy between the bias and fp, along with the noise in the correlation function measurements
that makes it difficult to infer so many free parameters. We attempt to overcome this difficulty using
the gaussian p(zs). The results in this case are less sensitive to priors on galaxy bias. However, the
signal to noise in the lensing bias is not improved by much, which suggests we are not gaining much
more information by constraining p(zs) (the f(zs) obtained in this case are correlated across bins).
As a result we do not attempt to use more complicated functions than gaussian which may capture
more features of p(zs).

For the physically-motivated choice of priors, bl ∈ [0.4, 0.7] and fl ∈ [0.05, 0.1], our results are
consistent (within . 5%) with the bias in the lensing signal estimated using the calibration sample.
This value has been used in this and previous works to correct the lensing measurements.

Our results suggest that more work is required to carefully choose the priors and functional forms
for fp to further develop the clustering redshift method (as used in this work) for lensing calibration.
However, our results demonstrate that the bias in our galaxy-galaxy lensing signals due to photometric
redshift bias and scatter is well constrained at the . 5% level and hence cannot explain the ∼ 20%
discrepancy observed between the EG measurements and the prediction from the Planck ΛCDM
model.
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Figure 4.10: Redshift distribution estimates f(z) for different photometric redshift bins, where each
panel represents a given photo-z selected sample. Red and blue points are for the fits with f(z) in
each bin as a free parameter and assuming a Gaussian redshift distribution, respectively. For both
red and blue curves in this plot we use bl = 0.7; for the red points, fl = 0.05. The green curves show
the f(z) obtained using spectroscopic redshifts from the representative calibration sample.
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Figure 4.11: a) Probability distribution of bias in the lensing signal, BL, due to photometric redshifts,
for different choices of lower limit on bias and redshift fraction. The vertical dashed black lines show
the estimate using spectroscopic redshifts in the representative calibration sample. The solid red and
dotted blue lines use the power-law and linear models for the bias-redshift relation in the photometric
sample, respectively. There is strong dependence of the inferred bias on the lensing signal on the
priors chosen, though the choice of model for the bias-redshift relation does not affect it too strongly.
In all cases, the difference between the lensing bias from the clustering redshift method and that
derived using spectroscopic redshifts (∼ 0.91) is . 10%. b) Same as a), using gaussian model for p(z).
Green curves show the estimate when we assume galaxy bias to be constant with redshift (b1 = 0 in
eq.(4.63)).
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Abstract

Intrinsic alignments (IA) of galaxies, i.e. correlations of galaxy shapes with each other (II)
or with the density field (gI), are a major astrophysical source of contamination for weak
lensing surveys. We present the results of IA measurements of galaxies on 0.1–200h−1Mpc
scales using the SDSS-III BOSS LOWZ sample, in the redshift range 0.16 < z < 0.36. We
extend the existing intrinsic alignments measurements for spectroscopic LRGs to lower
luminosities, and show that the luminosity dependence of large-scale intrinsic alignments
can be well-described by a power law. Within the limited redshift and color range of our
sample, we observe no significant redshift or color dependence of intrinsic alignments.
We measure the halo mass of LOWZ galaxies using galaxy-galaxy lensing, and show that
the mass dependence of large-scale intrinsic alignments is also well described by a power
law. We detect variation in the scale dependence of intrinsic alignments with mass and
luminosity, which underscores the need to use flexible templates in order to remove the
IA signal. We also study the environment dependence of intrinsic alignments by splitting
the sample into field and group galaxies, which are further split into satellite and central
galaxies. We show that group central galaxies are aligned with their halos at small scales
and also are aligned with the tidal fields out to large scales. We also detect the radial
alignments of satellite galaxies within groups, which results in a null detection of large-
scale intrinsic alignments for satellites. These results can be used to construct better
intrinsic alignment models for removal of this contaminant to the weak lensing signal.

5.1 Introduction

The deflection of light rays due to the gravitational effects of matter, gravitational lensing, changes
both the observed shape and size of distant galaxies. Weak lensing, the statistical study of such tiny
shape distortions, has emerged as an important tool in cosmology to study and map the distribution
of dark matter as well as to study the effects of dark energy. Due to its sensitivity to the total
matter content, weak lensing is theoretically a clean probe for dark matter and dark energy, but it is
affected by a number of potential systematic sources (see, e.g., Weinberg et al., 2013). Much effort
has been put into controlling the observational systematics arising from the effect of the point-spread
function (PSF) on the estimated galaxy shape distortions. Future surveys like LSST1 (LSST Science
Collaboration et al., 2009), Euclid2 (Laureijs et al., 2011) and WFIRST-AFTA 3 (Spergel et al., 2013)
aim to bring these systematics below the percent level, with comparable improvement being needed
on astrophysical sources of contamination to the weak lensing measurements.

Intrinsic alignments of galaxies is perhaps the most important astrophysical systematic for weak
lensing. It is the coherent alignments of the shapes of physically nearby galaxies which can mimic the

1http://www.lsst.org/
2http://sci.esa.int/euclid/, http://www.euclid-ec.org
3http://wfirst.gsfc.nasa.gov/
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weak lensing signal. One likely explanation for intrinsic alignments is that they are an environmental
effect, whereby the local or large-scale tidal fields can shear and align the galaxy shapes, producing
shape correlations. These correlations violate the assumption in weak lensing studies that observed
correlations in galaxy shapes are only caused by gravitational lensing. Hirata & Seljak (2004) de-
veloped the linear alignment model for the intrinsic alignments, assuming that intrinsic alignments
are set by tidal fields at the time of galaxy formation (Catelan et al., 2001). This model was later
extended by Bridle & King (2007) to non-linear scales using the full non-linear matter power spec-
trum. To extend this model inside of dark matter halos, Schneider & Bridle (2010) developed the halo
model of intrinsic alignments, which assumes that satellites are aligned radially within the halo, with
central galaxies (BCGs or BGGs) being preferentially aligned with the shape of the halo. Constrain-
ing these models observationally is important for all techniques for mitigating intrinsic alignments in
future weak lensing surveys that involve marginalizing over models with some free parameters (e.g.,
Joachimi & Bridle, 2010); these techniques require valid models, and priors on the model parameters.

Intrinsic alignments are also interesting from the galaxy formation perspective, as the alignments
of galaxies with their dark matter halos and the alignments of dark matter halos themselves are
intricately related to the processes involved in galaxy formation and evolution. Several studies have
concentrated on studying intrinsic alignments of dark matter halos in cosmological simulations (for
example, Croft & Metzler, 2000; Heymans et al., 2006; Faltenbacher et al., 2008; Kang et al., 2007;
Kuhlen et al., 2007). These studies have found that dark matter halo shapes tend to align with
each other, while subhalos tend to align radially within their host halos. Joachimi et al. (2013a,b)
studied shapes and intrinsic alignments of COSMOS galaxies by populating dark matter halos in the
Millennium simulation (Springel et al., 2005) with galaxies using semi-analytical methods, finding a
strong dependence of intrinsic alignments on scale, redshift and galaxy type. Tenneti et al. (2014b) also
studied the orientations of stellar components of galaxies within their halos using the MassiveBlack-
II (MB-II) hydrodynamical simulation (Khandai et al., 2014), and found that galaxy shapes are
preferentially aligned with their dark matter halos with average misalignments angle of ∼ 10 − 30
degrees, with the degree of misalignment being a strong function of mass.

Observationally, several studies have detected the intrinsic alignments for Luminous Red Galaxies
(LRGs) to tens of Mpc scales (Mandelbaum et al., 2006; Hirata et al., 2007; Okumura et al., 2009;
Joachimi et al., 2011), finding the radial dependence of the signal to be consistent with the linear
alignment model. Hirata et al. (2007) and Joachimi et al. (2011) also observed luminosity dependence
of intrinsic alignments, with more luminous objects having stronger alignments. Many studies have
also tried to measure intrinsic alignments within halos using large cluster samples (Sifón et al., 2014;
Schneider et al., 2013; Hung & Ebeling, 2012; Hao et al., 2011), but so far, satellite alignments within
groups and clusters have not been conclusively detected. Zhang et al. (2013) used the Sloan Digital
Sky Survey (SDSS) DR7 data to reconstruct the cosmic tidal field, and observed that the major
axis of galaxies tends to be aligned with the direction of the filament or the plane of the sheet in
which they live. They also observed color, environment and luminosity dependence of this alignment,
with central, red and brighter galaxies showing stronger alignments. Blazek et al. (2012) and Chisari
et al. (2014) also developed methods to measure intrinsic alignments using more general photometric
samples from SDSS. When using photometric redshifts, intrinsic alignments measurements suffer from
contamination from weak lensing. After accounting for possible weak lensing contamination, Blazek
et al. (2012) and Chisari et al. (2014) found the intrinsic alignments signals for typical galaxies to be
consistent with null detection.

In this work, we will extend the study of intrinsic alignments in LRGs to more faint objects using
the low redshift (LOWZ) spectroscopic sample of LRGs from the SDSS-III BOSS survey. The LOWZ
sample covers the same redshift range as the LRG sample used by Hirata et al. (2007), but it extends
to lower luminosities, with comoving number density ∼ 3× 10−4h−3Mpc3, an increase by a factor of
3. We test the validity of the non-linear alignment model in both the linear and quasi-linear regimes
using shape-density cross correlations for various samples defined using different galaxy properties.
We study the environmental dependence of intrinsic alignments by identifying galaxies in groups and
study the intrinsic alignments for satellites, BGGs (brightest group galaxies), and field galaxies. We
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also model the small-scale signal using a halo model fitting function from Schneider & Bridle (2010),
and study the variations in small-scale intrinsic alignment amplitude with different galaxy properties.

This paper is organized as follows: in section 5.2, we describe the linear alignment model of
intrinsic alignments along with the halo model and the two point correlation functions we use to
measure intrinsic alignments. Section 5.3 describes the SDSS-III BOSS LOWZ sample and selection
criteria for the different sub-samples that we use. We present our results in section 5.4 and conclude
in section 5.5.

Throughout we use standard cosmology with h = 0.7, Ωb = 0.046, ΩDM = 0.236, ΩΛ = 0.718,
ns = 0.9646, σ8 = 0.817 (WMAP9, Hinshaw et al., 2013). All the distances are in comoving h−1Mpc,
though h = 0.7 as mentioned above was used to calculate absolute magnitudes and to generate
predictions for the matter power spectrum.

5.2 Formalism and Methodology

We model galaxy shapes as some purely random shape, plus two small but coherent shape distortions
(“shears”), one due to intrinsic alignments (e.g., from some large-scale tidal field) and the other due
to gravitational lensing. The coherent part of the shears can be written as γ = γG + γI , where γG is
the lensing shear and γI is the intrinsic shear. The two point correlation function for shear thus has
the following contributions:

〈γγ〉 = 〈γGγG + γGγI + γIγI〉 = ξGG + ξGI + ξII (5.1)

ξGG is the desired lensing signal, while the ξII contribution comes from two nearby galaxies that are
affected by the same tidal field and ξGI contribution comes from the pair where one galaxy shape is
affected by the tidal field of the gravitational potential it lives in while a background galaxy is lensed
by the same potential, see Hirata & Seljak (2004). In Sec. 5.2.1 we describe the linear alignment
model used to model intrinsic alignments at large scales, followed by the halo model prescription in
Sec. 5.2.2, which describes the intrinsic alignments at small scales.

5.2.1 Linear alignment model

One popular formalism to study intrinsic alignments at large scales is the linear alignment model
(Catelan et al., 2001; Hirata & Seljak, 2004; Chisari & Dvorkin, 2013). In this section, we briefly
describe the main features of the model.

The linear alignment model is based on the assumption that the intrinsic shear of galaxies is
determined by the tidal field at the time of formation of the galaxy (assumed to be during matter
domination; Catelan et al., 2001). Thus, we can write the intrinsic shear in terms of the primordial
potential as

γI = (γI+, γ
I
×) = − C1

4πG
(∂2
x − ∂2

y , ∂x∂y)φp (5.2)

Using the form of γI described in Eq. (5.2), Hirata & Seljak (2004) derived the power spectrum for the
two-point matter-intrinsic alignments correlation functions, relating them to the linear matter power
spectrum, P lin

δ .

Pg+(k, z) = AIb
C1ρcritΩm
D(z)

k2
x − k2

y

k2
P lin
δ (k, z) (5.3)

P++(k, z) =

(
AI

C1ρcritΩm
D(z)

k2
x − k2

y

k2

)2

P lin
δ (k, z) (5.4)

Pg×(k, z) = AIb
C1ρcritΩm
D(z)

kxky
k2

P lin
δ (k, z) (5.5)
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Here, Pg+ (Pg×) is the cross-power spectrum between the galaxy density field and the galaxy intrinsic
shear along (at 45◦ from) the line connecting a pair of galaxies; P++ is the shape- shape power
spectrum for alignment along the line joining each pair of galaxies in the two-point correlations; and
b is the linear galaxy bias. Following Joachimi et al. (2011), we fix C1ρcrit = 0.0134, and use an
arbitrary constant AI to measure the amplitude of intrinsic alignments for different samples. D(z) is
the linear growth factor, normalized to unity at z = 0.

To measure the two-point correlation functions, we cross-correlate two samples of galaxies, with
one sample used as a biased tracer of the matter density (“density sample”, denoted D) and the other
sample with shapes to trace the intrinsic shear (“shape sample”, denoted S). See Sec. 5.2.3 for more
details. The galaxy bias entering Eq. (5.3) is the bias of the density sample, while AI is measured for
shape sample.

Bridle & King (2007) suggested using the full non-linear matter power spectrum, P nl
δ , in Eqs. (5.3)–

(5.5) to extend the linear alignment model to quasi-linear scales. This model is called the non-linear
linear alignment (NLA) model. While there are a number of reasons why this substitution of the
non-linear matter power spectrum is unlikely to be valid to very small scales (see discussion in Bridle
& King, 2007), it should allow at least some extension to smaller scales, and use of this model will
permit us to compare our results more easily with many other works that have also adopted this
model. In this work, we will use the non-linear matter power spectrum based on halofit model (Smith
et al., 2003), generated with software CAMB (Lewis & Bridle, 2002b), with fixed WMAP9 cosmology
from Hinshaw et al. (2013). The expressions in Eqs. (5.3)–(5.5) can be Fourier transformed to get the
3d correlation functions:

ξAB(rp,Π, z) =

∫
d2k⊥dkz

(2π)3
PAB(k, z)

(
1 + βAµ

2
)

(
1 + βBµ

2
)
ei(rp.k⊥+Πkz) (5.6)

Here µ = kz/k, and β is the linear redshift distortion parameter4 with (1 + βµ2)2 accounting for the
effects of redshift-space distortions (RSD, see Appendix 5.A). For quantities that include a galaxy
overdensity, the relevant β is defined as β(z) = f(z)/b, where f(z) is the logarithmic growth rate at
redshift z and b is the galaxy bias of the sample. For the case of the shear, there is no RSD effect at
leading order (β+ = 0, see Appendix 5.A). In ΛCDM, for a wide range of redshifts, f(z) ∼ Ωm(z)0.55.
From data, we most easily measure w(rp), the 2d (projected) correlation function, which can be
obtained by integrating the 3d correlation function over the line of sight separation Π

wAB(rp) =

∫
dzW (z)

∫
dΠ ξAB(rp,Π, z) (5.7)

Here rp is the 2d projected separation and W (z) is the redshift window function (Mandelbaum et al.,
2006).

W (z) =
pA(z)pB(z)

χ2(z)dχ/dz

[∫
pA(z)pB(z)

χ2(z)dχ/dz
dz

]−1

(5.8)

pA(z) and pB(z) are the redshift probability distributions for shape and density sample respectively
and χ(z) is the comoving distance to redshift z.

Doing the integral in Eq. (5.7), we get the 2d correlation functions:

wg+(rp) =
AIbDC1ρcritΩm

π2

∫
dz
W (z)

D(z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥

k3
⊥

(k2
⊥ + k2

z)kz
P (k, z) sin(kzΠmax)J2(k⊥rp)

(
1 + βDµ

2
)

(5.9)

4 We do not explicitly account for the Fingers of God effect due to the virial motions of galaxies within halos.
However, these are expected to be negligible in the projected correlations which are obtained by integrating along the
line-of-sight between ±100h−1Mpc.
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where bD is the galaxy bias for density sample, while βD = f/bD. wg× is expected to be zero by
symmetry. The projected intrinsic alignments auto- correlation function is defined as

w++(rp) =
(AIC1ρcritΩm)

2

2π2

∫
dz
W (z)

D(z)2

∫ ∞

0

dkz

∫ ∞

0

dk⊥

k5
⊥

(k2
⊥ + k2

z)2kz
P (k, z) sin(kzΠmax)×

[J0(k⊥rp) + J4(k⊥rp)] (5.10)

As discussed earlier, there is no RSD correction in γI at leading order. Thus, the RSD correction5 in
wg+ is only (1 + βDµ

2) (from the galaxy overdensity δD) and there is no RSD correction in w++ at
leading order (see Appendix 5.A for derivation).

To measure the bias of the density sample and of the shape sample, bS , we measure the two-point
galaxy-galaxy cross correlation function

wgg(rp) =
bSbD
π2

∫
dz
W (z)

D(z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k⊥
kz
P (k, z)

sin(kzΠmax)J0(k⊥rp)
(
1 + βSµ

2
) (

1 + βDµ
2
)

(5.11)

Intrinsic alignments measurements that do not use spectroscopic redshifts suffer from gravitational
lensing as a potential contaminant (Joachimi et al., 2011; Blazek et al., 2012; Chisari et al., 2014).
Since we use spectroscopic redshifts to select galaxy pairs, we expect negligible lensing contamination
in our measurements from galaxy-galaxy lensing. Hence we do not include any contamination signals
in our model.

5.2.2 Halo model

To extend this model of intrinsic alignments into scales comparable to or smaller than the sizes of dark
matter halos, Schneider & Bridle (2010) proposed the halo model for intrinsic alignments. The halo
model assumes that BCGs or BGGs are at the center of dark matter halos, with their shapes aligned
with the host halos. Satellite galaxies tend to align radially with the major axis pointing towards
the center of the halo. In practice there can be substantial contamination in small scale intrinsic
alignments signal due to off-centering of BCGs, as well as misalignments between dark matter and
baryons.

Schneider & Bridle (2010) calculated the 1-halo intrinsic alignments power spectrum using Monte
Carlo simulations with the aforementioned complications, and they provide a fitting function for the
halo model, given by

P 1h
δ,γI = ah

(k/p1)2

1 + (k/p2)p3
(5.12)

The parameters pi are given by

pi = qi1 exp (qi2z
qi3) (5.13)

z is the redshift and qij are the parameters that we keep fixed to values described in Table 5.1. Our
choice of qi2 and qi3 values are the same as in Schneider & Bridle (2010), while the qi1 are different,
chosen to fit the shape of wg+ for LOWZ sample. As in Sec. 5.2.1, we do the Fourier transform and
line-of-sight integration to get

w1h
g+ =

∫
dzW (z)

∫
dΠ

∫
d2k⊥dkz

(2π)3
P 1h
δ,γI (k, z)e

i(rp.k⊥+Πkz) (5.14)

5This is different from equation C.1 in Blazek et al. (2011) and equation 12 in Chisari & Dvorkin (2013), which have
an incorrect RSD factor in wg+.
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Parameter Index qi1 qi2 qi3
1 0.005 5.909 0.3798
2 0.6 1.087 0.6655
3 3.1 0.1912 0.4368

Table 5.1: Halo model parameters used in Eq. (5.12).

When computing the correlation functions from data, we use Π ∈ [−100, 100]h−1Mpc, which is much
larger than a typical halo size. The dΠ integral can then be approximated as a delta function, and
Eq. (5.14) can be written as

w1h
g+ =

∫
dzW (z)

∫
d2k⊥
(2π)2

P 1h
δ,γI (k⊥, z)e

i(rp.k⊥) (5.15)

We emphasize that in order to fully explain and interpret the small-scale intrinsic alignments, a full
halo model description would require us to describe the halo occupation statistics of each sample
including the Fingers of God effect, along with a model for radial dependence of intrinsic shear and
misalignment angles. Some of the assumptions made by Schneider & Bridle (2010) when computing
the power spectrum might not be valid in the context of some (or all) of our measurements. However,
here we have a much simpler goal: we want to provide a simple fitting formula that approximately
describes the observed intrinsic alignments of LOWZ galaxies on small scales. For this reason, we
use the above formulae and fit for the amplitude parameter ah as a simple way to encapsulate the
2-point correlation functions below ∼ 1.5h−1Mpc in terms of one number. Thus, ah cannot be simply
interpreted as a single quantity such as the amplitude of a satellite galaxy radial shear.

5.2.3 Correlation function estimators

In order to compute the intrinsic alignments signals, we cross-correlate the shapes of galaxies in
the shape sample (S) with the positions of galaxies in the density sample (D). We use a generalized
Landy-Szalay correlation function estimator (Landy & Szalay, 1993) to calculate the cross-correlations

ξgg =
(S −RS)(D −RD)

RSRD
=
SD −RSD − SRD +RSRD

RSRD
, (5.16)

ξg+ =
S+D − S+RD

RSRD
, (5.17)

ξ++ =
S+S+

RSRS
. (5.18)

RS and RD are sets of random points corresponding to the shape sample and the density sample,
respectively. Here the terms involving shears for the galaxies are

S+X =
∑

i∈S,j∈X
γ

(i)
+ 〈j|i〉 (5.19)

and
S+S+ =

∑

i∈S,j∈S
γ

(i)
+ γ

(j)
+ 〈j|i〉. (5.20)

γ+,× measure the components of the shear along the line joining the pair of galaxies and at 45 degrees
from that line, respectively. In our sign convention, positive γ+ implies radial alignments, while
negative γ+ implies tangential alignments.

Finally, the projection uses summation over bins in Π,

wab =

∫ Πmax

−Πmax

ξab(rp,Π)dΠ. (5.21)
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We use Πmax = 100h−1Mpc, with dΠ = 10h−1Mpc. Our choice is different from that used in Mandel-
baum et al. (2006), but our results and conclusions are not significantly affected by this difference, and
when modeling the results we self-consistently include this choice in the model predictions. wg×, w××,
and w+× are defined in a similar fashion. Note that our correlation function estimator is different
from those used by Joachimi et al. (2011). Compared to the estimator DD/DR, the Landy-Szalay es-
timator is less affected by geometrical effects from survey boundaries and holes, and it also minimizes
the covariance matrix.

To get the error bars, we divide the sample (described in Sec. 5.3) into 100 jackknife regions of
approximately equal area on the sky, and compute the cross-correlation functions by excluding 1
jackknife region at a time.

When the shape and density sample are the same, we fix the cosmology and then simultaneously
fit wgg and wg+ for the galaxy bias, b, and intrinsic alignments amplitude, AI , for each jackknife
sample. The final values for both parameters are the jackknife mean, with errors calculated from the
jackknife variance. If the shape and density sample are different, the bias for the density sample (bD)
is measured separately from its auto-correlation function, and then is held fixed during the fitting
procedure that uses the cross-correlation functions wgg and wg+ to get the bias of the shape sample
bS and its intrinsic alignments amplitude AI . This procedure leads to slightly underestimated errors
on our bias (bS) measurements, but has a negligible effect on the intrinsic alignments amplitude, since
the errors on the intrinsic alignments amplitude are dominated by shape noise. We also note that the
size of our jackknife regions on the sky is approximately 8 degrees on a side, which corresponds to
∼ 65h−1Mpc at redshift of 0.16. We measure (and show) the correlation function out ∼ 200h−1Mpc,
but we fit the models only for rp < 65h−1Mpc to avoid any issues resulting from the size of jackknife
regions (most notably the error bars for rp > 65h−1Mpc will be underestimated). We test the effect of
limiting our model to rp < 65h−1Mpc, by fitting out to rp ∼ 200h−1Mpc and found that our results
and conclusions remain unchanged.

5.2.4 Weak lensing

To study the possible halo mass dependence of intrinsic alignments, we estimate the halo mass of
galaxies in our sample using galaxy-galaxy weak lensing, with our LOWZ galaxies as the lens sample.
As described earlier, the observed shear of a galaxy has two contributions, γ = γG + γI , where
γG is the tangential shear from lensing and γI is the intrinsic shear of the galaxy. Blazek et al.
(2012) used the same SDSS source sample as used in this work to estimate the intrinsic alignments
contamination in galaxy-galaxy lensing (with SDSS LRG sample as lenses) and found that the intrinsic
alignments contamination is well below the statistical error for this source sample. Thus, for our
lensing measurements we will assume that the contribution of the γI term is well below the shape
noise limit, and will ignore its contribution when modeling the lensing signal. In the weak lensing
regime, the observable is then tangential shear γt = γGt , which relates to the surface density contrast
∆Σ(rp) = Σ̄(< rp)− Σ(rp) as

γt(rp) =
∆Σ(rp)

Σc
(5.22)

Σc is the critical surface density, given in comoving coordinates as

Σc =
c2

4πG

Ds

(1 + zl)2DlDls
(5.23)

zl is the lens redshift; Ds and Dl are the angular diameter distances to the source galaxy and lens
respectively while Dls is the angular diameter distance between the lens and source.

To measure the lensing signal, we compute the surface density contrast around a lens galaxy using
the statistic

∆Σ(rp) =

∑
ls wlsγ

(ls)
t Σ

(ls)
c∑

rs wrs
(5.24)
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Here wls is the weight for the lens-source pair,

wls =
Σ−2
c

σ2
γ + σ2

SN

(5.25)

where the denominator includes the shape noise and measurement error for the galaxy shear estimates
added in quadrature. wrs is similar to wls, but with random points acting as the lens sample.
Thus dividing by wrs accounts for any galaxies that are physically-associated with the lens but are
accidentally included in the source sample, which would lower the lensing signal if left uncorrected
(Sheldon et al., 2004; Mandelbaum et al., 2005).

Since we are primarily interested in measuring the average mass of galaxies within our sample, we
only model the lensing using an NFW profile (Navarro et al., 1996), for rp < 1h−1Mpc. The NFW
profile is given by

ρ =
ρs

(r/rs)(1 + r/rs)2
(5.26)

with projected surface density given by

Σ(rp) =

∫ rvir

0

ρ(r =
√
r2
p + χ2)dχ. (5.27)

For NFW profile, α = −1 and β = 3 are fixed. We define the concentration, c180b = r180b/rs, and
mass, M180b, using a spherical overdensity of 180 times the mean density:

M180b =
4π

3
r3
180b(180ρ̄m) (5.28)

Using the mass-concentration relation from Mandelbaum et al. (2008) in Eq. (5.29), we fit the
signal for each jackknife sample in the range 0.05h−1Mpc < rp < 0.3h−1Mpc. We limit the model
to rp < 0.3h−1Mpc to avoid contamination from the 1-halo satellite term and the halo-halo terms,
which are important at larger rp values for galaxies in this mass range (see, e.g., figure 3 of Velander
et al. 2014, which shows the contributions of these terms for a lower mass sample; all contributions
tend to shift to the right for higher mass). The final quoted values for the mass are jackknife mean
and standard error. When presenting mass results we will discuss sensitivity to this choice of mass-
concentration relation:

c = 5

(
M180b

1014h−1M�

)−0.1

(5.29)

5.3 Data

The SDSS (York et al., 2000) imaged roughly π steradians of the sky, and followed up approximately
one million of the detected objects spectroscopically (Eisenstein et al., 2001; Richards et al., 2002;
Strauss et al., 2002). The imaging was carried out by drift-scanning the sky in photometric conditions
(Hogg et al., 2001; Ivezić et al., 2004), in five bands (ugriz) (Fukugita et al., 1996; Smith et al., 2002)
using a specially-designed wide-field camera (Gunn et al., 1998) on the SDSS Telescope (Gunn et al.,
2006). These imaging data were used to create the catalogues of shear estimates that we use in this
paper. All of the data were processed by completely automated pipelines that detect and measure
photometric properties of objects, and astrometrically calibrate the data (Lupton et al., 2001b; Pier
et al., 2003; Tucker et al., 2006). The SDSS-I/II imaging surveys were completed with a seventh
data release (Abazajian et al., 2009), though this work will rely as well on an improved data reduction
pipeline that was part of the eighth data release, from SDSS-III (Aihara et al., 2011); and an improved
photometric calibration (‘ubercalibration’, Padmanabhan et al., 2008).
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Figure 5.1: Redshift distribution of LOWZ galaxies and our group sub-sample. Vertical lines mark
the boundary of the redshift range that we use in this paper, z = [0.16, 0.36].

5.3.1 Redshifts

Based on the photometric catalog, galaxies are selected for spectroscopic observation (Dawson et al.,
2013), and the BOSS spectroscopic survey was performed (Ahn et al., 2012) using the BOSS spec-
trographs (Smee et al., 2013). Targets are assigned to tiles of diameter 3◦ using an adaptive tiling
algorithm (Blanton et al., 2003), and the data was processed by an automated spectral classification,
redshift determination, and parameter measurement pipeline (Bolton et al., 2012).

We use SDSS-III BOSS DR11 LOWZ galaxies, in the redshift range 0.16 < z < 0.36. The
LOWZ sample consists of Luminous Red Galaxies (LRGs) at z < 0.4, selected from the SDSS DR8
imaging data and observed spectroscopically in BOSS survey. Fig. 5.1 shows the normalized redshift
distribution of the LOWZ galaxies. The sample is approximately volume limited in the redshift range
0.16 < z < 0.36, with a number density of n̄ ∼ 3× 10−4h3Mpc−3 (Manera et al., 2014). We combine
the spectroscopic redshifts from BOSS with galaxy shape measurements from Reyes et al. (2012).
BOSS DR11 has 225334 LOWZ galaxies within our redshift range. However, due to higher Galactic
extinction in some regions of the sky, Reyes et al. (2012) did not have shape measurements in those
regions. After cutting out those regions, we are left with 173855 galaxies for our LOWZ density sample,
of which there are good shape measurements for 159621 galaxies, which constitutes our LOWZ shape
sample.

To compute absolute magnitudes, we use distances in the units of h−1Mpc for distance modulus
computation and then apply k + e corrections (to z = 0) as described in Wake et al. (2006). Fig. 5.2
shows the average k + e corrected magnitudes as function of redshift. Throughout, we will use the
k + e corrected magnitudes.

To study the evolution of intrinsic alignments with redshift and different galaxy properties, we cut
the LOWZ sample into different sub-samples. Table 5.2 describes the selection criteria and various
properties of different sub-samples. Since our k+e corrections are not perfect, we observe some redshift
evolution in luminosity and color. To ensure that we select a fair samples based on luminosity and color
cuts, those cuts are applied within redshift bins where each bin has 10 per cent of the sample (equal
sized bins in redshift percentile space). We also observe evolution of color with luminosity but we
avoid selecting color samples from luminosity bins, as that changes the redshift distribution (dn/dz)
for different color samples, which complicates our correlation function calculations. For simplicity,
we stick to redshift-based selection and keep the luminosity evolution in mind when interpreting the
results for different color samples. Color and luminosity cuts are also based on percentile values. For
example, the L1 sample contains the galaxies in the 0 − 20th percentile in luminosity within each z
bin. L1 − L4 samples go from brightest to faintest, with L1–L3 each containing 20% of the galaxies,
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Figure 5.2: Average k + e corrected r-band absolute magnitude, 〈Mr〉, for the LOWZ sample as
function of redshift.

and L4 having the faintest 40 per cent of the galaxies (L4 has more galaxies to get sufficient S/N).
Similarly each color sample has 20 per cent of the galaxies and go from blue to red end, with C1 being
the bluest and C5 being the reddest.

Due to the finite size of the optical fibers required to target galaxies for spectroscopy, the SDSS is
not able to simultaneously take spectra for galaxy pairs separated by θ < 62′′ on the sky. In regions
of the sky which are observed multiple times (due to overlapping tiles), a number of such cases can
be resolved. Nevertheless a significant fraction of targets remain unassigned. This effect is known
as fiber collisions. Since fiber collisions occur preferentially in denser environments, the resulting
incompleteness introduces a bias in correlation functions at all scales, with small scales being more
strongly affected. One way to correct for this, is to upweight the nearest neighbour of a fiber collided
galaxy. This is based on the assumption that two very nearby red sequence galaxies are likely to
be within the same group or cluster. The nearest neighbour upweighting scheme has been shown to
correct the bias in galaxy-galaxy correlation function on large scales (& fiber collision scale), but can
introduce some bias at small scales since the redshift separation between the collided pair of galaxies
has been artificially set to zero, which is not always correct (Reid et al., 2014). Also while measuring
the clustering of galaxies in subsamples, the assumption that the fiber collided galaxy would also have
been part of the same subsample as its nearest neighbour would be incorrect (see e.g., More et al., 2014,
in the context of SDSS-III CMASS galaxies). Therefore, instead of upweighting the neighbours, we
include the fiber collided galaxies in our sample, but assign them redshifts of their nearest neighbours.
Nevertheless, bearing in mind sample incompleteness and fiber collision correction as possible source
of systematics at small scales, we do not use the points below the fiber collision scale when fitting
our models. Throughout, the fiber collision scale will be marked with solid black lines at rp ∼ 300
kpc/h (fiber collision scale at z = 0.36). In addition to the fiber collided galaxies, we also assign the
nearest neighbour redshifts to galaxies for which the spectroscopic pipeline failed to obtain a redshift
estimate. We calculate the absolute magnitudes along with k + e corrections for these galaxies based
on the nearest neighbour redshift estimates.

We use the sets of random points provided by the BOSS collaboration. However, some of our
subsamples have different redshift distributions from the full LOWZ sample, in which case we generate
new redshifts for the randoms from the subsample redshift distribution using the acceptance-rejection
method. The acceptance-rejection method generates a set of random variates by uniformly sampling
the area of the probability distribution of the random variable.
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Table 5.2: Table describing various sub-samples in our analysis. ‘Cuts’ describes the cuts implemented
in our pipeline to select the sample, where Ng is the group multiplicity. ND is the total number of
galaxies in the sample and NS is the number of galaxies in that sample with good shape measurements.
〈z〉 and 〈Lr/Lpr〉 are the average redshift and r-band absolute luminosity for the sample, with Lpr being
the pivot luminosity corresponding to r-band absolute magnitude Mp

r = −22.0. M180b is the average
halo mass for the sample, measured from weak lensing. % denotes the percentile values for the sample.
bS is the linear galaxy bias, and AI and ah are the intrinsic alignments model amplitude for the sample,
calculated by cross-correlating the given shape sample with the full LOWZ sample as density sample,
with its bias bD = 1.77 measured from LOWZ-LOWZ correlations and then held fixed. For joint
fitting wgg and wg+, we get reduced χ2 ∈ [0.8, 2] for all samples presented here with a probability to
exceed this χ2 by chance of (0.77, 0.06) for the edges of this range.
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5.3.2 Shapes

The catalogue of galaxies with measured shapes used in this paper (described in Reyes et al. 2012 and
further characterized in Mandelbaum et al. 2013) was generated using the re-Gaussianization method
(Hirata & Seljak, 2003) of correcting for the effects of the point-spread function (PSF) on the observed
galaxy shapes. The catalogue production procedure was described in detail in previous work, so we
describe it only briefly here. Galaxies were selected in a 9243 deg2 region, with an average number
density of 1.2 arcmin−2. The selection was based on cuts on the imaging quality, data reduction
quality, galactic extinction Ar < 0.2 defined using the dust maps from Schlegel et al. (1998) and the
extinction-to-reddening ratios from Stoughton et al. (2002), apparent magnitude (extinction-corrected
r < 21.8), and galaxy size compared to the PSF. The apparent magnitude cut used model magnitudes6.
For comparing the galaxy size to that of the PSF, we use the resolution factor R2 which is defined
using the trace of the moment matrix of the PSF TP and of the observed (PSF-convolved) galaxy
image TI as

R2 = 1− TP

TI
. (5.30)

We require R2 > 1/3 in both r and i bands.
The software pipeline used to create this catalogue obtains galaxy images in the r and i filters

from the SDSS ‘atlas images’ (Stoughton et al., 2002). The basic principle of shear measurement
using these images is to fit a Gaussian profile with elliptical isophotes to the image, and define the
components of the ellipticity

(e+, e×) =
1− (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (5.31)

where b/a is the axis ratio and φ is the position angle of the major axis. The ellipticity is then an
estimator for the shear,

(γ+, γ×) =
1

2R〈(e+, e×)〉, (5.32)

where R ≈ 0.87 is called the ‘shear responsivity’ and represents the response of the distortion to
a small shear (Kaiser et al., 1995; Bernstein & Jarvis, 2002); R ≈ 1 − e2

rms. In the course of the
re-Gaussianization PSF-correction method, corrections are applied to account for non-Gaussianity of
both the PSF and the galaxy surface brightness profiles (Hirata & Seljak, 2003).

For this work, we do not use the entire source catalogue, only the portion overlapping the LOWZ
sample.

When computing the intrinsic alignment correlation functions, we use the shear estimates from this
catalog together with the redshifts from BOSS. However, when computing the weak lensing signals
around the LOWZ galaxies, we need estimates of the redshifts for the fainter source galaxies. For this
purpose, we use the maximum-likelihood estimates of photometric redshifts (photo-z) based on the
five-band photometry from the Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA, Feldmann
et al., 2006), which were characterised by Nakajima et al. (2012) and Reyes et al. (2012). In this work,
we used a fair calibration sample of source galaxies with spectroscopic redshifts as defined in Nakajima
et al. (2012) to calculate biases in weak lensing signals due to bias and scatter in the photo-z, and
applied corrections that were of order 10 per cent (±2 per cent) to the weak lensing signals.

5.3.3 Groups

We use the counts in cylinder (CiC) technique (Reid & Spergel, 2009) to find the galaxies in groups.
The CiC technique assumes that for galaxies in the same halos, the dominant source of redshift
separation between satellite and central galaxies are the line of sight relative velocities. Under such an
assumption, a cylinder with size determined by the size and velocity dispersion of the halo should be

6http://www.sdss3.org/dr8/algorithms/

magnitudes.php#mag model
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Ng NG f
1 130414 0.75
2 14944 0.17
3 2784 0.048
4 780 0.018
5 215 0.0062

Ng NG f
6 84 0.0029
7 33 0.0013
8 17 0.00078
9 7 0.00036
10 2 0.00012

Ng NG f
11 1 6.3×10−5

12 1 6.9×10−5

13 0 0
14 1 8.1×10−5

15 1 8.6×10−5

Table 5.3: Group multiplicity function for the group sample in redshift range, 0.16 < z < 0.36. Ng is
the number of galaxies within a group, NG is the total number of groups with Ng galaxies, and f is
the fraction of the sample at a given group multiplicity Ng.

able to identify galaxy pairs within a single halo. Reid & Spergel (2009) calibrated the CiC technique
for halos hosting LRGs using mock LRG catalogs and we use their dimensions for the cylinders, given
by R⊥ < 0.8h−1Mpc and |Π‖| < 20h−1Mpc in comoving coordinates. Once within-halo pairs are
identified, we can use the friends-of-friends algorithm to find all the galaxies belonging to the same
group.

We note that the CiC parameters were optimized by Reid & Spergel (2009) for the SDSS LRG
sample, and the LOWZ sample has a number density that is three times higher, extending to lower
mass halos. Thus, using the CiC parameters optimized for LRG sample can potentially lead to spurious
group identification in our LOWZ group sample. To roughly quantify the level of contamination, we
use the halo mass function of Tinker et al. (2008) and find that the lower limit of halo mass for a
sample of halos with the LOWZ sample abundance is a factor of ∼ 2.5 less than a sample with the
abundance of the LRG sample. Since the cylinder parameters should scale roughly like M1/3, this
will give R⊥ . 0.6h−1Mpc and |Π‖| . 15h−1Mpc for the LOWZ sample. Using these parameters,
we find that the satellite fraction in LOWZ reduces to 11.7 per cent, versus 14.6 per cent using the
CiC parameters from Reid & Spergel (2009). Most of this difference is coming from the reduction in
the R⊥ size, since most of the satellites are within |Π‖| . 10h−1Mpc as shown in Fig. 5.3. However,
our calculation of CiC parameters for LOWZ is only approximate, as the CiC technique needs to be
calibrated using mock catalogs, which is beyond the scope of this work. Hence for our analysis we will
use the group catalog obtained using CiC parameters of Reid & Spergel (2009).

Table 5.3 shows the multiplicity function of our group sample and Fig. 5.3 shows the stacked
distribution of satellites with respect to BGGs, which we assume as the centre of groups. BGGs are
selected as the brightest galaxy (in r band) within the group. The assumption that the brightest
galaxy truly resides at the center of the halo fails for about 25%-40% of the groups within our mass
range (Skibba et al., 2011; Hikage et al., 2013), in which case the brightest galaxy is in fact a satellite
galaxy. This is a potential source of contamination that should be kept in mind when interpreting
our results on the environmental dependence of intrinsic alignments.

5.4 Results

In this sections we present the results, beginning with correlation functions for full LOWZ sample
and some tests for systematics. After that we primarily focus on evolution of intrinsic alignments
amplitudes with different galaxy properties and end the section with some comparisons with other
studies of intrinsic alignments, using different intrinsic alignments estimators where necessary. A
summary of most of the results discussed in this section is presented in table 5.2 and Fig. 5.8.

5.4.1 LOWZ sample

We begin by showing our measurements for the full LOWZ sample. Fig. 5.4 shows our results for the
galaxy-galaxy correlation function wgg and the density-shape correlation function, wg+. Throughout,
when referring to two point correlation measurements, our naming convention for different results
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Figure 5.3: The stacked distribution of satellite galaxies in our group sample, with respect to BGGs in
the groups. The apparent sharp boundary at rp = 0.8h−1Mpc is due to the size of our CiC cylinders
and the fact that our sample is dominated by two-galaxy (single satellite) groups. The strong peak
at Π = 0 and rp < 0.3h−1Mpc arises primarily from the fiber collision corrected pairs.

will be in the form of “Shape sample-Density sample”. We fit these data to the following models:
the galaxy-galaxy correlation function calculated using non-linear matter power spectrum and linear
galaxy bias, and the NLA model at rp > 6h−1Mpc. For the full LOWZ sample, we find a bias
b = 1.77± 0.04 and intrinsic alignment amplitude AI = 4.6± 0.5. The NLA model is a good fit to the
wg+ measurement for rp > 6h−1Mpc, and can be extended to rp ∼ 4h−1Mpc, but there are significant
deviations below that scale, due to differing scale dependence.

Our bias measurement appears to be in tension with results from Parejko et al. (2013), who
measured b ∼ 2 for the BOSS DR9 LOWZ sample. However, there are a number of differences
betweeen our study and theirs: Parejko et al. (2013) (i) use a different redshift range, z ∈ [0.2, 0.4],
(ii) use a smaller area DR9 sample, (iii) neglect redshift space distortions which can affect the large
scale bias (see e.g., van den Bosch et al., 2013), and (iv) use a FKP weighting scheme which favourably
weights the large bias high redshift galaxies. Using the same redshift range as theirs, we also get a
higher value of bias b = 1.85± 0.04. When RSD corrections in our model are neglected, we obtain an
even higher value of b = 1.90±0.04. We expect the remaining discrepancy to be a result of the further
differences in the weighting scheme and/or the sample size. Our values are closer to the b = 1.85 used
by Tojeiro et al. (2014) in the reconstruction scheme for the BAO measurement (Tojeiro et al. 2014
use σ8 = 0.8 and ns = 0.95).

On non-linear scales, we use the halo model fitting formula for intrinsic alignments defined in
Sec. 5.2.2, fitting to the data with 0.3 < rp < 1.5h−1Mpc. We find a good agreement with the
data using the halo model parameters as described in Table 5.1, with halo model amplitude ah =
0.084±0.010. Keeping ah fixed, but using fitting formula parameters from Schneider & Bridle (2010),
the model does not fit data well. This is not surprising as the halo model fitting function does not
explicitly model effects such as scale dependence of non-linear bias and intrinsic alignments themselves,
which can change both the amplitude and scale dependence of the signal. For this reason and those
described in Sec. 5.2.2, we caution against interpreting our ah values directly as an average intrinsic
alignments shear.

The halo model fitting formula combined with the LA model (linear alignment model with linear
matter power spectrum) does not fit the data well in the intermediate regime 2 < rp < 10h−1Mpc.
The NLA model combined with the halo model fitting function can fit the data well at all scales,
but the interpretation of such a model is not clear, since both the NLA model and the halo model
fitting function assume different things in modeling the 1-halo term. For this reason, we do not show
the combined fits for the NLA and halo models, but simply use the halo model fitting function as a
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Figure 5.4: The galaxy-galaxy correlation, wgg (top, multiplied by rp), and the density-shape cor-
relation function, wg+ (bottom), for the full LOWZ sample in the redshift range 0.16 < z < 0.36.
The red points are the measurements from the data, the dashed green lines are the linear model with
the non-linear matter power spectrum, and the dashed blue lines are the linear model with the linear
matter power spectrum. The NLA model is fitted only in the range 6h−1Mpc < rp < 65h−1Mpc
(shown by a dashed vertical line), while the LA model is shown with the same parameters as the NLA
model. The dotted red line in the bottom plot is the halo model fit to wg+ at small scales. The black
solid line shows the SDSS fiber collision scale at z = 0.36.

convenient way to encapsulate the amplitude of the small-scale signal in a single number.

Fig. 5.5 shows our results for the w++ measurement. The NLA model with the best-fitting pa-
rameters from wg+ predicts a small but non-zero w++. Our signal is dominated by shape noise, and
our results (at 6h−1Mpc < rp < 65h−1Mpc) marginally prefer the null model (best fit AI = 2 ± 96,
χ2 = 7.21 with 8 bins, χ2

0 = 7.22,) over the NLA prediction using the amplitude from the fits to
the wg+ signal (χ2 = 8.0) with a ∆χ2 = 0.8, which is not a statistically significant difference. The-
oretically, from the NLA model with the best-fitting value of C1 from the fits to wg+, we expect
w++/wg+ ∼ 0.01 (the ratio is scale dependent with a peak value of ∼ 0.01 for rp > 6h−1Mpc). In
the shape noise-dominated limit, in the case that the shape and density sample are the same, the
standard deviations of wg+ and w++ are proportional to σγ and σ2

γ (see, e.g., Schneider et al., 2002),
respectively, where σγ is the shape noise per component for our sample. For this sample, σγ ∼ 0.2.
Given a detection signal-to-noise ratio (SN) for wg+ on large scales of 9.2 (= AI/σAI ), the expected
SN for w++ on large scales is then SN(w++) ∼ 0.01 SN(wg+)/0.2 ∼ 0.5. Thus at rp > 6h−1Mpc
we expect to have a null detection of w++, consistent with our observations. If we use scales below
6h−1Mpc, the χ2 = 16.7 for a null signal7, with 9 bins, giving a p-value= 0.1 (< 2σ).

Our w++ results are inconsistent with those for SDSS-I/II LRGs from Blazek et al. (2011) (∆χ2 ∼
11, p-value= 0.004), as shown in Fig. 5.5. While calculating the projected correlation function from
the 3d correlation functions in Okumura et al. (2009), Blazek et al. (2011) assumed isotropic ξ++

along with Gaussian and independent errors. These assumptions are likely to break down at some
level, and can cause a potential discrepancy with our results.

Other possible sources of the discrepancy are as follows. First, the LOWZ sample is fainter than
the LRG sample in Blazek et al. (2011). Since the w++ signal goes as A2

I , our expected signal is lower
by a factor of ∼ 4 (ALRG

I = 9.3, ALOWZ
I = 4.6). Our L1 sub-sample is closer to the LRG sample in

term of luminosity and the number of galaxies. However, as shown in Fig. 5.5, the large scale w++

signal for the L1 sample is also consistent with a null signal (for 6h−1Mpc < rp < 65h−1Mpc, the
best fit AI = 0± 44 with χ2 = 6.3 for 8 bins). The ∆χ2 when we compare this with the χ2 value for

7All p-values in this paper calculated from either χ2 or ∆χ2 use the simulation method described in Hirata et al.
(2004) to account for the fact that the jackknife covariances are noisy, which modifies the expected χ2 distribution.
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Figure 5.5: w++ measurements for the full LOWZ sample (blue) and the L1 sample (red). The green
points show the w++ measurement from Blazek et al. (2011). Our results are dominated by shape
noise, and both the LOWZ and L1 sample are consistent with a null detection at large scales. The
dotted lines show NLA model predictions (using the best fit model to wg+). We note that NLA fitting
to wg+ is only done for 6h−1Mpc < rp < 65h−1Mpc.

the value AI = 9.22 from Blazek et al. (2011) is only ∼ 0.5. Hence our L1 sample results do not rule
out the Blazek et al. (2011) results; however, what is interesting is the very large discrepancy in the
significance of detection between the two studies (with Blazek et al. 2011 ruling out the null model at
high significance).

A possible explanation for this discrepancy in detection significance comes from the use of different
per-galaxy shear estimates. The results in Okumura et al. (2009) that were used to present w++ in
Blazek et al. (2011) used isophotal shape measurements from the SDSS pipeline which are defined at
a low surface brightness level and are not corrected for the effects of the PSF. PSF contamination and
other systematics can introduce spurious shape correlations which can mimic a w++ signal. However,
it is still possible that we are seeing a real physical effect. The SDSS isophotal shape measurements
emphasize the outer parts of galaxies, while re-Gaussianization puts more weight on the inner regions
of galaxies. If the outer regions of galaxy shapes are more responsive to tidal fields, this could result in
legitimately different w++ signals when using the two different shear estimates. Using the MB-II SPH
simulation, Tenneti et al. (2014a) found that differences in shape measurement methods, weighted
towards outer or inner regions, leads to a difference of about 10% in the wg+ measurement8, which
would translate to a ∼ 20% difference in w++ (with the right sign to explain what is seen here: wg+
is larger when weighting the outer regions more heavily). However, shape measurement methods in
simulations may not correspond directly to shape measurement methods in observations and hence
there may not be a direct correspondence between results from Tenneti et al. (2014a) and discrepancies
observed between our results and that of Blazek et al. (2011). We also note that Blazek et al. (2011)
detected w×× signal as well, but our w×× signal (not shown), like our w++ signal, is consistent with
zero. A definitive answer to this puzzle requires deeper analysis of shape measurement methods and
their impact on IA measurement, which we defer to future work. Due to the null detection of w++ in
the LOWZ sample, we will not discuss w++ hereafter.

8The trend is mass-dependent, and the difference is larger for lower mass. The number we quote here is for halo
masses M > 1013h−1M�, which are the most appropriate ones for a comparison with massive galaxies like those in the
LOWZ sample.
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Figure 5.6: wg× and wg+ (at large |Π|) measurements for the full LOWZ sample. Both signal are
consistent with zero. Note that both quantities are multiplied by rp in this plot. The increase in
the statistical errors on large scales is driven by large-scale shear systematics; see Mandelbaum et al.
(2013) for details.

5.4.2 Systematics tests

In this section, we present a wg× measurement for the full LOWZ sample, and a wg+ measurement
when integrating only over large Π ∈ [200, 1000]h−1Mpc values. Both these measurements are a good
test for systematics in our shape measurements and correlation function calculations. From symmetry,
wg× is expected to be zero, while wg+ is also expected to have null signal when only large Π values
are considered since the galaxy pairs are too far apart along the line-of-sight. As shown in Fig. 5.6,
the wg× signal is consistent with zero, with χ2

red = 1.48 for 25 bins (across all scales shown on the
plot) and p-value= 0.34. wg+ at large |Π| values is also consistent with zero, with χ2

red = 1.41 and
p-value= 0.40. We therefore conclude that these signals, which could reveal possible systematic errors,
are fully consistent with zero. There are also no patterns evident in the residuals from zero, just a
slight hint that errorbars might be underestimated.

5.4.3 Luminosity Dependence

Previous studies using LRGs have observed luminosity dependence of intrinsic alignments (Hirata
et al., 2007; Joachimi et al., 2011), where brighter galaxies tend to have higher intrinsic alignments
amplitude. LOWZ sample allows us to study luminosity dependence by going to fainter luminosities,
with spectroscopic redshifts for all galaxies. To study luminosity dependence, we divide the LOWZ
sample into four sub-samples, based on r-band absolute magnitude Mr. The sample are defined
according Mr percentiles within z bins (each z bin has 10% of the sample). L1 has the brightest 20%
of the galaxies, followed by L2 and L3 samples which have next 20% galaxies each based on Mr. L4

has the faints 40% of the galaxies. Due to the decrease in signal to noise at fainter end, we do not
cut L4 sample into more sub-samples. Our density-shape correlation function measurements for the
luminosity samples are shown in Fig. 5.7. All four samples are cross correlated with LOWZ as the
density sample, and the LOWZ bias is fixed to bD = 1.77 (Sec. 5.4.1) when modeling the results.
Fits to wgg (not shown) reveal that the L1 sample has the highest bias, followed by the L2, L3 and
L4 samples though differences in last three samples are statistically not very significant(see Table 5.2
for values of fit parameters like the bias). However, the overall trend in the evolution of bias with
luminosity is consistent with the fact that brighter galaxies live in more massive and hence more
biased halos.

We also see luminosity variation of the intrinsic alignments amplitude and therefore of the NLA
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Figure 5.7: Density-shape correlation functions for samples defined using luminosity cuts, L1, L3, L4

samples, as specified in Table 5.2. L1−L4 are arranged in order of luminosity, with L1 being brightest
and L4 being faintest. The L2 sample is not shown in the figure for clarity. Brighter galaxies have
higher intrinsic alignments amplitude, with luminosity trend of AI being well described by a power
law (Eq. 5.33).

model best-fitting amplitude AI , with brighter galaxies having higher amplitude. Since the density
sample is the same in each case, the increasing wg+ amplitude reflects the different intrinsic alignments
for the different luminosity samples. Following Joachimi et al. (2011), we use a power law function to
study the variation of AI with luminosity.

AI(Lr) = α

(
Lr
Lpr

)β
(5.33)

Lr and Mr are the r-band luminosity and absolute magnitude, respectively, and Lpr(M
p
r ) is a pivot

luminosity (magnitude), chosen to be Mp
r = −22.0. Fitting to the samples defined by our luminosity

cuts, we find α = 4.9 ± 0.6 and slope β = 1.30 ± 0.27 (where these errors come from the jackknife).
Our results are quite consistent with those of Joachimi et al. (2011), who found α = 5.76+0.60

−0.62 and

β = 1.13+0.25
−0.20 (using MegaZ-LRG + SDSS LRG + L4 + L3), with the same k-corrections and choice

of Mp
r .

On small scales, we also see luminosity evolution of the halo model fitting function amplitude ah,
with brighter galaxies having higher amplitude. Fitting a power law similar to Eq. (5.33), we find
a power-law amplitude αh = 0.081 ± 0.012, and a power-law index βh = 2.1 ± 0.4 (subscript “h”
denotes fits to halo model fitting function parameters). We note that scaling of ah with luminosity
is somewhat steeper than that of AI . This difference is likely due to that fact that more luminous
galaxies live in denser regions, where tidal fields are stronger and hence leads to stronger intrinsic
alignments. This will increase wg+ at all scales, but the impact will be much stronger at smaller
scales, leading to stronger scaling of ah. This effect also contributes to the change in shape of wg+ for
0.3 < rp < 10h−1Mpc as the luminosity varies.

5.4.4 Redshift Dependence

To study the redshift dependence of intrinsic alignments, we divide our sample into two redshift bins,
Z1: 0.16 < z < 0.26, Z2: 0.26 < z < 0.36. Due to the small redshift range of the LOWZ sample, we
cannot cut our samples further, as the edge effects from the redshift boundaries can then introduce
significant bias in the correlation functions.

Fig. 5.9 shows the density-shape correlation measurements for both of the redshift samples. From
wgg measurement (not shown), we find higher galaxy bias for Z2 sample (b = 1.88±0.05) compared to
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Figure 5.8: Intrinsic alignments amplitudes and bias for various shape samples, as a function of
different galaxy properties of the shape sample. Note that the density sample is fixed to full LOWZ
sample for all points, except for Z1 and Z2, for which density sample are Z1 and Z2 themselves,
respectively. The top row shows AI as a function of different properties of shape sample. AI shows
clear evolution with luminosity (Mr) as well as galaxy mass and bias, with negligible evolution in
redshift. The black dotted line in AI vs. Mr shows a power law fit to the luminosity samples (green
points). Similarly in AI vs log(M180b/h

−1M�) (M180b is the halo mass from weak lensing), the black
dotted line is the power law fit, using all the points. The middle row shows the halo model amplitude,
ah, as a function of different galaxy properties. For cases where the density sample is fixed to LOWZ,
the effects of the non-linear bias of the density sample is the same. Therefore, the observed dependence
of ah is likely due to the dependence of intrinsic alignments on the properties of the shape sample.
We find tight correlation between large scale bias of shape sample and ah, which could partially arise
from the dependence of the halo model amplitude on the non-linear bias of the shape sample (see
Sec. 5.4.7 for more detailed discussion). The black dotted line in ah vs Mr is the power law fit to
luminosity samples (green points), and the dotted line in ah vs bS is the powerlaw fit using all the
points. Please see Sec. 5.4.6 for possible systematics in the ah vs. mass relationship. We emphasize
that galaxy properties shown on the x-axis are correlated, for example, more luminous galaxies also
have higher bias and live in more massive halos. Due to this correlation, we do not attempt to model
intrinsic alignments amplitudes by simultaneously using more than one such property.
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Figure 5.9: Density-shape correlation functions for samples defined with redshift cuts, Z1 (0.16 < z <
0.26) and Z2 (0.26 < z < 0.36). We do not find any statistically significant redshift evolution for
intrinsic alignments.

Z1 sample (b = 1.66± 0.07), which is consistent with the fact that among halos of similar mass, ones
at higher redshift are more biased. We do not find any redshift evolution for AI , which is consistent
with the NLA paradigm, where galaxy alignments are set at the time of galaxy formation and hence
we do not expect any significant redshift evolution for intrinsic alignments beyond what is implicitly
included due to use of a redshift-dependent nonlinear matter power spectrum that determines the
gravitational tidal field. However, given the short redshift baseline, our power to constrain evolution
of intrinsic alignments with redshift is limited.

On the small scales where we fit the halo model fitting function, there are significant differences
between the two redshift ranges. The Z2 sample has a higher halo model amplitude. However, the Z2
sample is also expected to have a higher non-linear bias which will contribute to the increase in ah.
Processes within groups and clusters, such as galactic mergers, stripping, peculiar motion and tidal
torquing will also play an important role in determining the small scale signal and can contribute
to the redshift evolution of ah. Due to a degeneracy between intrinsic alignments amplitude and
non-linear bias within the halo model, we cannot separate out the effects of these processes.

5.4.5 Color Dependence

Our sample consists of only luminous red galaxies, so we cannot divide it into subsamples to study
difference in intrinsic alignments for red and blue galaxies. However, we do split our sample based on
Mg −Mi color to study intrinsic alignments dependence on color within the LRG sample. We divide
our sample into five sub-samples based on color, with each sample having 20 per cent of the LOWZ
galaxies. Color cuts were applied in z bins to take out the z evolution of color and make sure we
select a fair sample. The five samples, C1 − C5 are arranged from the bluest to reddest. We observe
significant luminosity evolution across the five samples, with redder samples getting progressively
fainter. We do observe some intrinsic alignments evolution across the different samples, but find that
the evolution can be well explained by the luminosity variations alone (see Fig. 5.10). We note that
the C1 sample is expected to have some contamination from late-type galaxies (Masters et al., 2011),
but we do not observe a very significant deviation in intrinsic alignments signal from the expectation
based on luminosity or mass scalings.

Our results suggests that luminosity and mass are more important properties in determining
intrinsic alignments signal for red sequence galaxies, with color variations being absent or at least sub-
dominant. This is an important test of the models that are commonly used to predict the intrinsic
alignments contamination of future weak lensing surveys (e.g., Joachimi et al., 2011), which split
galaxies into a red and a blue sample without permitting any variation in intrinsic alignments with
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Figure 5.10: Density-shape correlation functions for samples defined with color cuts, with C1 − C5

arranged from bluest to reddest sample. We observe some intrinsic alignments variations between
different samples, but these variations are explained by the luminosity difference between the different
samples (see Fig. 5.8).

color within those two samples. Our results validate this choice for the red galaxies, which are currently
more important since they are the ones for which there is a robust intrinsic alignments detection.

5.4.6 Weak Lensing

To study the halo mass dependence of intrinsic alignments, we compute the average halo mass of
galaxies within different samples using galaxy-galaxy lensing. Figure 5.11 shows the weak lensing
signal for LOWZ, BGG and field galaxies, with points being measurements from data and dashed
lines are the NFW profile fits, with concentration fixed using concentration-mass relation defined in
Eq. (5.29). The signal for BGGs deviates from an NFW profile for rp & 0.5h−1Mpc. These deviations
could be due to some satellite contamination in our BGG sample, which is expected at the level of
tens of per cent. At small scales, BGG mis-centering effects (which we have not accounted for in our
fits) can also lead to deviations from the NFW profile resulting in underestimated halo mass.

To check for the effect of using fixed concentration-mass relation defined in Eq. (5.29), we vary
the amplitude in Eq. (5.29) by 20% and re-fit the signal from field sample, using 0.05h−1Mpc < rp <
1.0h−1Mpc (different from range used for main results). We find that the final mass measured changes
by ∼ −12%.

Mass measurements for different sample are given in table. 5.2. For full LOWZ sample, we get
log(M/h−1M�) = 13.18±0.05 and for our brightest sample, L1, we get log(M/h−1M�) = 13.49±0.07.
Using the clustering analysis, Parejko et al. (2013) found log(M/h−1M�) ∼ 13.72 for the DR9 LOWZ
sample. Their masses correspond to FOF halos with a linking length of 0.2 which are expected to
have a higher overdensity (see More et al., 2011), worsening the discrepancy we see here. However,
clustering mass estimates are obtained in a less direct way that can have some bias due to modeling
assumptions. Clustering and galaxy-galaxy lensing also have different redshift window functions and
Parejko et al. (2013) used a different redshift range, z ∈ [0.2, 0.4], due to which it is hard to do a fair
comparison between the two studies.

The third column in Fig. 5.8 shows the variations in intrinsic alignments amplitudes and galaxy bias
as function of mass. As expected, more massive galaxies have higher bias, with the mass dependence of
the bias being well-described by a power law, b ∝M0.30±0.05

180b . Intrinsic alignments amplitudes are also
strongly correlated with the mass, with more massive galaxies showing stronger intrinsic alignments.
The relation between AI and mass can be well defined by a power law:

AI = C

(
M180b

1013h−1M�

)D
(5.34)
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Figure 5.11: Weak lensing measurement for three different samples: LOWZ, BGGs, and field galaxies
as indicated in the legend. The dashed lines are the NFW profile fits to the signals. Deviations from
the NFW in case of BGGs and LOWZ are due to the presence of satellites in these samples (even the
BGG sample, due to the fact that selecting a BGG purely based on luminosity is imperfect). The field
galaxy sample is the least likely to suffer from satellite contamination, so its signal is well described
by the NFW profile.

We find an amplitude C = 3.3±0.6 and index D = 0.8±0.2. Similarly for the small scale amplitude
ah, we get Ch = 0.035±0.016 and index Dh = 1.9±0.5. However, this fit is significantly effected by the
BGG-LOWZ correlation point, where BGG mass measurement are affected by satellite contamination
and BGG mis-centering effects. Excluding the BGG-LOWZ point, we find Ch = 0.047 ± 0.012 and
index Dh = 1.2 ± 0.3. We also note that we can only test a small range in mass using our LOWZ
sample, and this result is unlikely to be valid when extrapolated significantly outside this mass range.

5.4.7 Environment Dependence

One of the main goals of this work is to address the environmental dependence of intrinsic alignments.
The halo model of intrinsic alignments (Schneider & Bridle, 2010) predicts that satellite galaxies tend
to align radially within their host halos, while the BGGs tend to align with the halo shape, which
itself tends to align with the large scale tidal gravitational field according to the linear alignment
model. As described in Sec. 5.3.3, we identify galaxies in groups using the CiC technique and then
separate them into satellites and BGGs. It is important to bear in mind that all results shown in this
section for BGGs vs. satellites may be affected by the imperfect BGG selection, which will tend to
dilute differences between the samples.

Figures 5.12 and 5.13 show our measurements for different combinations of galaxies within the
groups and the field galaxies. In the plots, the density sample for both signals shown is the same, so
the interpretation of large-scale amplitudes includes the same factor of density sample bias. At linear
scales, we find that BGGs do tend to align with the tidal field and that BGG alignments are also
stronger than that of field galaxies. This effect is consistent with the halo mass dependence of intrinsic
alignments seen in Sec. 5.4.6, with BGGs living in more massive halos and thus showing stronger
alignments. Satellite galaxies on the other hand, do not show any alignments at large scales, with
AI = 0±1. This is discrepant with the luminosity and mass relations of intrinsic alignments observed
earlier, but consistent with the expectations from the halo model, where satellites are expected to be
radially aligned within the halos and hence will have much weaker signal on large scales. Satellites
are also the reason that the large-scale intrinsic alignments amplitude for group galaxies is lower than
that of BGGs or even field galaxies.

At small scales, we detect a significant density-shape alignment signal for both satellite galaxies
and BGGs. We note that in the BGG-LOWZ correlation, the small scale signal is dominated by BGG-
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Group correlations (see also Fig. 5.16). In both cases what we are seeing is the fact that BGGs tend
to point preferentially towards their own satellites or, equivalently, that the luminous red satellites
of luminous red central galaxies are preferentially located along the major axes of their hosts. Also,
in the satellite-LOWZ correlations, the primary contribution to the small scale signal is from within
the groups as well, with satellite-BGG correlations (satellites pointing radially towards their hosts)
being the dominant signal (see also Fig. 5.15). This confirms two of the assumptions made in the
halo model: satellites do preferentially align radially within the halos, and BGGs preferentially align
with the shape of their host halo. The results shown in Figures 5.12 and 5.13 are likely to be affected
by the contamination in our group sample due to our choice of CiC parameters (see discussion in
Sec. 5.3.3), but the results in Figures 5.15 and 5.16 are more robust since most of the satellites are
within |Π| . 10h−1Mpc of the BGG (see Fig. 5.3) and the signal for rp . 0.6h−1Mpc is not likely to
be affected by the contamination in the group sample. We also note that even though our results do
not agree with the null detection of satellite radial alignments in studies using cluster galaxies (e.g.,
Sifón et al., 2014; Schneider et al., 2013; Hao et al., 2011), our sample of LRGs is inherently different.
The samples used in the group and cluster studies are dominated by fainter galaxies, which as shown
in Sec. 5.4.3 have lower intrinsic alignments and hence lower the expected signal. Also, those samples
are expected to have a small but non-negligible number of late type (blue/disk) galaxies for which
intrinsic alignments may arise from angular momentum alignment, which is a second order effect
(Hirata & Seljak, 2004). This will further weaken the likelihood of a detection of intrinsic alignments
in the cluster studies. Hence, our detection of satellite radial alignments is not necessarily inconsistent
with studies using cluster galaxies. Also see Sec. 5.4.10 for more discussion.

In Fig. 5.8, we also observe strong environmental dependence of the halo model fitting function
amplitude ah. This result could potentially be contaminated by the effects of non-linear bias of
density sample which the halo model does not account for. We factor out this dependence by looking
for variations in ah when the density sample of galaxies is fixed to LOWZ. As shown in Fig. 5.8, we
fit a powerlaw relation between halo model amplitude ah and linear galaxy bias, bS ,

ah = Ph(bS)Qh (5.35)

We find amplitude Ph = 0.007± 0.002 and slope Qh = 4.43± 0.35, in the bias range 1.5 < bS < 2.6.
dependence of small scale IA amplitude (ah) on the large-scale linear bias (bS) is not intuitively
obvious. This relation implies that galaxies in more biased and hence more dense regions show higher
intrinsic alignments at small scales, even though they are more likely to be effected by processes
such galactic mergers and peculiar velocities which can potentially suppress the intrinsic alignments
signal. This suggests that effects such as tidal torquing (which counteract mergers, boosting intrinsic
alignments) do play an important role in determining intrinsic alignments at small scales.

Also, as described in Appendix 5.A, what we measure is the density-weighted intrinsic shear
γ̃I = γI(1 + δS). On small scales where the δS term cannot be neglected, the non-linear bias of
shape sample (which is correlated with the large-scale linear bias bS) will also contribute to produce
correlations between ah and bS . These correlations will likely go as ah ∝ bS which is weaker than what
we observe (ah ∝ b4.4S ). Thus, the intrinsic alignments at small scales are still driving the correlations
between ah and bS . Given the small scatter in this relationship between ah and bS shown in Fig. 5.8,
it is apparent that for a given sample of density tracers, the large-scale bias of the shape sample is the
single best predictor of the small-scale intrinsic alignments amplitude considered in this work, better
than luminosity or host halo mass. We note that the ah vs. halo mass relation shown in Fig. 5.8
is driven by the BGG-LOWZ data, where the BGG mass can be affected by satellite contamination
and mis-centering effects as discussed in Sec. 5.4.6. However, that does not affect our conclusion that
the large-scale bias bS is a more robust predictor of the small-scale amplitude ah than the galaxy
luminosity. These results were all derived with a fixed density tracer sample; we relax this restriction
in the following subsection.
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Figure 5.12: Density-shape correlation functions for BGGs and field galaxies. BGGs have a much
higher intrinsic alignment amplitude (particularly on small scales), which is consistent with BGGs
having their shape aligned with their halos and more massive halos having stronger shape alignments.
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Figure 5.13: Density-shape correlation measurements for group galaxies and satellite galaxies corre-
lated with the full LOWZ sample. On large scales, satellite galaxies show no statistically significant
shape alignments. On small scales, satellites show some intrinsic alignments signal, which is primarily
coming from radial satellite alignments (see also Fig. 5.15). Group galaxies (satellites + BGGs) ex-
hibit shape alignments with the density field at both small and large scales, with the large scale signal
coming primarily from BGGs, and satellites and BGGs both contributing to the small scale signal.
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5.4.8 Variation of intrinsic alignments with density sample

In this section, we address the question of whether alignments of galaxy shapes also depend on the
density sample, i.e., do galaxy shapes tend to be more aligned with more massive or biased objects
beyond the simple linear dependence on the bias of the density tracer sample. At linear scales, galaxies
are biased tracers of large scale tidal fields and thus within the NLA regime we expect this effect to
be negligible. Any changes in wg+ for the same shape sample and different density samples should
be explained by variations in the bias of the density samples, and not by any changes in intrinsic
alignments amplitude, AI . It is unlikely that the same should be true on small scales, where different
density samples could have quite different nonlinear bias and environmental effects that will modify
the intrinsic alignments beyond what is expected from the large-scale linear bias of the density tracer.

The top panel in Fig. 5.14 shows the variations in AI when a shape sample is correlated with
different density samples. For a given shape sample, we do not find any significant changes in AI
with different density samples. The largest change observed is for the field shape sample, where the
difference in AI for field-LOWZ and field-group is . 2σ, after accounting for the correlated errors
(but see Fig. 5.19 for variations observed using a different estimator).

As described in Sec. 5.4.7, on small scales and especially within halos, more complex effects can
be important in determining the intrinsic alignments signal for a given shape sample with different
density samples. This effect is much harder to interpret using the 1-parameter halo model fitting
function that we use in this work. As can be seen in Figs. 5.15 and 5.16, our fitting function does not
fully capture the scale dependence of the small-scale signal once the density sample is different from
the full LOWZ sample. This is not surprising, since we calibrated the shape of the fitting function to
fit signals with LOWZ as the density sample. The scale dependence in the wgg signal suggests that
non-linear bias should have significant contributions to the scale dependence of intrinsic alignments
signal. This effect, along with some possible variation of intrinsic alignments itself, can be captured
if we let more free parameters in the fitting function, but the physical interpretation in that case is
not very clear and we defer the study of such effects to future work. The bottom panel in Fig. 5.14
also shows the variations in the halo model fit to wg+ on small scales. There are significant deviations
in ah observed with variations in the density sample, but as described earlier, it is hard to interpret
these in terms of one parameter fitting function; a more detailed physical model is needed.

5.4.9 Putting it all together

In this section we briefly discuss and compare the scaling relations of intrinsic alignments amplitudes
described earlier and shown in Fig. 5.8. For NLA amplitude, AI , we find that AI scalings with halo
mass and luminosity are well described by a power law and scaling with bias bS is also well described
by a linear fit though with larger scatter. All of these scaling are consistent with the observation that
more luminous galaxies, living in more massive halos have stronger alignments. It is interesting to
note that scaling with luminosity is stronger than scaling with mass, though we caution that mass and
luminosity are correlated. To check if this difference in scaling index has any physical meaning, we fit
a power law of of the form M ∼ Lν to mass and luminosity of different samples. We get ν = 1.4±0.2,
which compares well with the expectation from simply comparing AI scalings, ν ∼ 1.6 ± 0.3. From
this we can conclude that these scaling represent same underlying physical effect and one can use
either mass or luminosity to predict intrinsic alignments amplitude at large scale. We also note that
when fitting for AI vs Lr/L

p
r scaling, including all the points shown in Fig. 5.8, the parameters donot

change significantly (α = 5.0 ± 0.5 and β = 1.33 ± 0.25), which further strengthens our conclusion
that either mass or luminosity of sample can be used to predict intrinsic alignments amplitude.

We also find similar mass and luminosity scaling for the halo model amplitude ah and we can
also draw similar conclusions that both mass and luminosity scaling present same underlying physical
effect. It is also interesting to note that mass and luminosity scaling indices for ah are higher than
that for AI , though scatter is also higher. The correlation with linear galaxy bias for ah is also much
stronger, with linear galaxy bias being much better predictor of ah than mass or luminosity, within
the narrow range of our sample. Since the scaling relations with mass/luminosity are steeper for ah
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Figure 5.14: Variations of intrinsic alignments amplitude with the density samples. Points are color
coded according to the shape samples. Consistent with expectations from the NLA model, we do not
observe any significant changes in AI by varying density samples.
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Figure 5.15: Variations in the density-shape correlation functions for satellite galaxies correlated with
different density samples.
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Figure 5.16: Variations in the density-shape correlation functions for BGGs correlated with different
density samples. For BGG-Group (blue) and BGG-Satellite (green) correlations, halo model does not
fit the shape of the correlation function well (blue and green points are horizontally shifted. We donot
fit first four bins since they are affected by fiber collisions). Also BGG-Group are lower than BGG-Sat
at small scales (they both effectively measure BGG-Sat at small scales) due to higher RR term in the
correlation function, since our randoms (NR) are correlated with the density sample (ND) which is
higher for group sample due to presence of BGGs which are absent in satellite sample.

than for AI , this implies that the radial (rp) dependence of the intrinsic alignments on ∼ 300h−1kpc
to tens of h−1Mpc scales must be changing as the mass/luminosity change. Thus, a single template
for intrinsic alignment radial dependence will be insufficient to model intrinsic alignments for future
surveys.

As discussed in Sec. 5.4.5 and Sec. 5.4.4, we do not detect any significant redshift or color evolution
of intrinsic alignments amplitudes within the limited range of values probed by our sample (red
sequence galaxies in the range 0.16 < z < 0.36). However, we note that galaxy properties like mass,
luminosity and bias also may depend slightly on the redshift and color. Any such evolution of these
properties and intrinsic alignments amplitudes is self-consistently explained by the scaling relations
discussed above and we do not detect any additional redshift or color dependence.

To summarize, we find that the best (lowest scatter) predictor of the large-scale intrinsic alignments
signal for a given shape sample is the galaxy luminosity or mass (not its linear bias), whereas the
lowest- scatter predictor of the small-scale intrinsic alignments signal for a given shape sample is the
linear bias (not its luminosity or mass). However, the shape and amplitude of the small-scale intrinsic
alignments signal also depends on the choice of density-tracer sample in a non-trivial way, whereas
the large-scale signal only depends in a simple (linear) way on the linear bias of the density sample.

5.4.10 Comparison with other works

Different studies have used a variety of estimators to measure the intrinsic alignments of galaxies. To
compare with their results and also to test for compatibility of different estimators, we present our
results using two more estimators, 〈θ〉 and 〈γ〉.

〈γ〉 =
S+D

SD
(5.36)

〈θ〉 =
θSD
SD

(5.37)

S+D is as defined in Sec. 5.2.3. θSD is the angle between the projected major axis of the shape galaxy
and the line joining the pair of galaxies. 〈γ〉 measures the average intrinsic shear of the galaxies, while
〈θ〉 measures the tendency of galaxies to align in the direction of other galaxies. In the absence of
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Figure 5.17: Comparison of three different estimators for density-shape intrinsic alignments. We note
that the similar amplitude of 45◦−〈θ〉 and wg+ has no physical meaning, since they are very different
measurements.

intrinsic alignments, 〈γ〉 will be consistent with zero while 〈θ〉 will tend to a value of 45◦. In case of
radial alignments, 〈θ〉 will be less than 45◦ and 〈γ〉 will be positive.

Both 〈θ〉 and 〈γ〉 are measured with a single Π bin in the range [−Πmax,Πmax]. Unless stated
otherwise, we take Πmax = 100h−1Mpc.

Figure 5.17 shows our measurement of both 〈θ〉 and 〈γ〉 for the full LOWZ sample. There is good
agreement with the three estimators in terms of scale dependence, with 1-halo to 2-halo transitions
around rp ∼ 1−2h−1Mpc clearly observable in all three estimators. The flattening of 45◦−〈θ〉 and 〈γ〉
at small scales is due to the fact that in taking average, normalization is done by SD while in wg+ it
is done by RR. Since at small scales there are more galaxy pairs than would be expected for a random
galaxy distribution, the small scale slope for wg+ is steeper than for 45◦−〈θ〉 and 〈γ〉. The flattening
of the signal at rp < 0.3h−1Mpc could also partly be due to contamination from fiber collision galaxies
that we have included in our sample, which can potentially bring the signal down if the fiber collision
correction is wrong. We note that similar values of wg+ and 45◦−〈θ〉 is a coincidence. They represent
very different measurements, and similarities in their magnitudes does not have any physical meaning.

Fig. 5.18 shows the satellite-BGG and BGG-satellite correlations. In this case, we fix Πmax =
20h−1Mpc, so that the signal at small scales, rp . 1h−1Mpc is only for galaxies within the groups. Our
choice of Π range here is the same as in Sec. 5.3.3, to select the galaxy pairs within the groups (given
that the apparent size of groups along the line of sight is determined by the Fingers of God effect).
Sifón et al. (2014) measured the satellite-BGG correlations using spectroscopically selected member
for clusters and found a null signal, with 〈ε+〉 = −0.0016 ± 0.0020. For our sample, we find satellite
radial shear 〈γ+〉 = 0.005 ± 0.001, for scales rp < 1h−1Mpc. To provide a plausible explanation for
this discrepancy, we assume that the power-law relation between halo model amplitude ah and r-band
magnitude Mr in Fig. 5.8 can be extrapolated outside of the luminosity range of the LOWZ sample
and can also be extended to 〈γ+〉 measurement for Sat-BCG type correlations. This assumption,
coupled with the fact that galaxies used by Sifón et al. (2014) are on average ∼ 1.5 magnitude fainter
than LOWZ galaxies, implies that the expected signal for Sifón et al. (2014) is lower than our γ+ by
a factor of ∼ 10−50 (allowing for some possible variations in luminosity scaling), which is well within
the size of their errors. We note that disturbed and late type (blue) galaxies in Sifón et al. (2014)
sample will further bring down the expected signal, but their galaxies reside in more massive halos,
which could push the signal up again. We speculate that, with these two effects acting in opposite
direction, the expected signal in Sifón et al. (2014) sample will still be lower than observed in our
sample.

For 〈θ〉, averaging over rp < 1h−1Mpc, we find 45◦−〈θ〉 = 1.5± 0.2 for satellite-BGG correlations
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Figure 5.18: 45◦ − 〈θ〉 and 〈γ〉 for satellite-BGG (red) and BGG-satellite (blue) correlations. Πmax is
fixed to 20h−1Mpc so that the small-scale signal comes only from within the same group.
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Figure 5.19: 45◦−〈θ〉 for field galaxies with respect to other field galaxies (blue) and BGGs (red). At
scales rp ∼ 10h−1Mpc, field galaxies tend to point more towards BGGs than to other field galaxies,
which suggests there is some mass dependent sphere of influence.

and 45◦ − 〈θ〉 = 3.0± 0.2 for BGG-satellite correlations with Πmax = 20h−1Mpc While satellites and
BGGs tend to point towards each other, the effect is stronger for BGGs pointing towards satellites
rather than the reverse. Though these results suffer from contamination in our group sample due to
our choice of CiC parameters (see discussion in Sec. 5.3.3), the results in Fig. 5.18 as function of rp
are robust since most satellites are within |Π| . 10h−1Mpc of the BGGs (see Fig. 5.3).

Fig. 5.19 shows a measurement of 45◦ − 〈θ〉 for field galaxies, correlated with other field galaxies
(blue) and BGGs (red). 45◦ − 〈θ〉 is higher for field-BGG than field-field, which suggests that field
galaxies have higher tendency to point towards groups than towards other field galaxies. Averaging
over 2h−1Mpc < rp < 20h−1Mpc, we get 45◦−〈θ〉 = 0.38±0.06 for field-BGG and 45◦−〈θ〉 = 0.25±
0.02 for field-field correlations (errors are correlated since the shape sample is the same in both cases.).
The deviation from a strict amplitude rescaling, manifested as a change in shape around 10h−1Mpc,
is likely from filamentary structures, with field galaxies residing in filaments around the groups and
hence having higher tendency to align with the groups. This result is qualitatively consistent with the
findings of Zhang et al. (2013), who used SDSS DR7 data to reconstruct tidal fields and found that
galaxies within filaments tend to have their major axis preferentially aligned with the direction of the
filament. More generally, this observation implies that there is a mass dependent sphere of influence
within which gravity can align the shapes of galaxies, with BGGs having a larger sphere of influence
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Figure 5.20: wg+ and wδ+ measurements from the MB-II hydrodynamical simulation (Tenneti et al.,
2014a), at redshift z = 0.3 for a halo mass threshold (M > 1013h−1M�) sample (blue) and a sample
defined by a luminosity threshold to have a fixed comoving number density of n̄ = 3×10−4 (h−1Mpc)3.
The dashed green lines show our halo model, while the red and blue dashed lines show the best-fit
NLA model.

due to the fact that they reside in higher-mass halos.

Fig. 5.20 shows results from Tenneti et al. (2014a) for wg+ and wδ+ measurements from the MB-II
hydrodynamical simulation, at redshift z = 0.3. We show results from two different samples, the first
of which is defined by a halo mass threshold M > 1013h−1M� (blue) and the second by a luminosity
threshold giving a fixed comoving number density of n̄ = 3× 10−4 (h−1Mpc)3. wg+ in Tenneti et al.
(2014a) is measured using the shapes of galaxies as defined using the star particles (for those galaxies
with > 1000 star particles), with dark matter subhalos as density tracers (bD = 0.8), while for wδ+,
dark matter particles are the density tracers (bD = 1). Both wg+ and wδ+ are fit simultaneously at
linear scales, assuming they have the same AI but different bD. On non-linear scales, Tenneti et al.
(2014a) fit a simple power law. The NLA model intrinsic alignments amplitudes are higher for these
simulated samples than for LOWZ. The mass threshold sample is comparable to our L1 and BGG
samples in terms of average halo mass, but its intrinsic alignments are higher than what we observe
for these samples by a factor of two. The luminosity threshold sample has a comoving number density
similar to the full LOWZ sample, but LOWZ has AI lower by a factor of ∼ 4.

There are several possibilities that could explain the discrepancy between simulations and obser-
vations. The first possibility is some unrealistic aspect of the simulations, including an atypical galaxy
shape distribution or a higher degree of alignment between dark matter halo and galaxy shapes than in
reality. The second possibility is that this comparison is not completely fair due to the way the galaxy
samples were selected in MB-II. For example, the LOWZ sample has a color cut but the simulated
samples do not; in real data we are rejecting some massive galaxies that are even slightly blue and
including some lower mass red galaxies, but this effect is not included in the simulated samples. Also,
a mass-selected sample is unrealistic because our mass tracer (luminosity) is known to have a quite
high scatter with mass. Moreover, if this scatter is not present at the same level in the simulated
luminosities, that will drastically change the nature of the simulated samples in the direction of having
too high average mass and intrinsic alignments. We therefore cannot draw any conclusions from the
disagreement in amplitude. However, it is encouraging that despite the difference in selection, the
scaling of wg+ with rp in simulations and the LOWZ observations are comparable. This suggests that
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the simulations are likely successful in modeling the basic physical processes that cause the intrinsic
alignments, even if the magnitude is not quite correct.

5.5 Conclusion

We have studied intrinsic alignments in SDSS-III BOSS low redshift (LOWZ) galaxies by combining
spectroscopic redshifts from BOSS with shape measurements from Reyes et al. (2012). Using this
sample, we have made a robust detection of intrinsic alignments from 0.3 to 200h−1Mpc scales. We
find that the NLA model (linear alignment model with non-linear power spectrum) fits the data well
for rp > 6h−1Mpc, though there are significant deviations at smaller scales. At small scales, we
also fitted the data with a halo model-based fitting formula, and find that as long as the density
tracer sample is fixed, the intrinsic alignments for different shape samples can be described by simply
varying the halo model amplitude, i.e. different shape samples do not introduce any significant scale
dependence of their own. However, variations in density samples changes the scale dependence on
. 3h−1Mpc scales due to changes in the non-linear bias for different samples.

We also studied the luminosity dependence of intrinsic alignments, finding significant evolution
of intrinsic alignments with luminosity, with brighter galaxies having stronger intrinsic alignments.
For the density sample comprising of LOWZ galaxies, the luminosity dependence of the intrinsic
alignments can be well described by a power law fit in luminosity, with power law slope of β =
1.30 ± 0.27 for AI (NLA model amplitude) and βh = 2.1 ± 0.4 for the small-scale halo model fitting
function amplitude. While extrapolation beyond the range of luminosities explored here must be
done cautiously, this luminosity dependence likely has important implications for future surveys like
LSST and Euclid, which will go to much fainter magnitudes than SDSS, and hence overall intrinsic
alignments contamination for shear studies in such surveys should go down. This however does not
mean that intrinsic alignments contamination will not be important as the statistical error budget for
these surveys is also far smaller than for SDSS.

We calculated average halo mass of galaxies in various samples using weak lensing and then studied
the mass dependence of intrinsic alignments. We find that the intrinsic alignments amplitude (on
both small and large scales) increases with halo mass, and the mass-intrinsic alignments amplitude
relations are well described by a power law in mass. This result is consistent with luminosity evolution
as well and taken together, both luminosity and mass evolutions imply that brighter and more massive
galaxies show stronger intrinsic alignments.

We do not find any significant redshift dependence of intrinsic alignments within the limited range
of 0.16 < z < 0.36. This is consistent with the linear alignment model, which assumes that intrinsic
alignments are imprinted at earlier times during the formation of galaxy. Other effects at later times
can in principle introduce some redshift dependence, but the effect seems to be too small to be detected
in our narrow redshift range.

We also do not find any significant evolution of intrinsic alignments with color, within the red
sequence. We split the sample into 5 color bins with each bin containing 20 per cent of the LOWZ
sample. There is some luminosity evolution within our color samples, and any intrinsic alignments
variation that we see within these samples can be explained by the luminosity scalings.

We identified the galaxies in groups using the CiC technique as described in Sec. 5.3.3 and studied
the environment dependence of intrinsic alignments. We find large scale alignments for BGGs in our
sample as well as strong alignments of BGGs shapes with satellites. Our results are consistent with the
halo model as well as observations from simulations where BGGs are found to be aligned with their
host dark matter halos (as traced by satellites), which in turn have large scale alignments as described
by linear alignment model. We also detect small scale alignments of satellite shapes, consistent with
radial alignments assumed in halo model and observed in simulations. We reiterate that the CiC
parameters used in this work were optimized for the higher mass SDSS LRG sample, not the LOWZ
sample. This could potentially lead to some contamination in our group sample. However, based on
our estimates of the importance of this effect, we expect this to give only minor changes in our overall
conclusions about the environment.
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Finally, comparison with previous studies using a variety of estimators suggests that our results
are either in good agreement or the differences can be explained by differences in the sample selection,
most notably the average luminosity of the galaxies.

To summarize, our results suggest that mass and luminosity are the most important factors in
determining the intrinsic alignments of red galaxies, with color (within the red sequence) and redshift
effects being subdominant. The best predictor (least scatter) for intrinsic alignments at large scales is
the halo mass/luminosity of the galaxies, while at small scales, the (large-scale) linear bias is the best
predictor. Comparing our halo fitting function and NLA amplitudes to those observed in simulations
should help in better understanding of processes involved in galaxy formation and how baryonic matter
and dark matter influence each other within the halos. Moreover, our results and constraints on the
NLA model and the small-scale fitting function should also be useful in putting priors on models of
intrinsic alignments used in mitigation schemes (see for example, King, 2005; Bridle & King, 2007;
Joachimi & Bridle, 2010) for upcoming large surveys that aim to use weak lensing to measure the
equation of state of dark energy to extremely high precision.
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5.A Effect of Redshift space distortions on intrinsic align-
ments

In this appendix we show the effect of redshift space distortions on the intrinsic alignment correlation
functions. For simplicity, we will consider configuration space, assume that the plane parallel approx-
imation holds, and that the z direction corresponds to the line-of-sight. The following coordinate
transformation maps real space to redshift space,

x′ = x; y′ = y; z′ = z + vµ; , (5.38)

where the primed quantities correspond to redshift space, we have assumed units with H0 = 1, v is
the magnitude of the velocity at the real space position (positive value corresponds to motion away
from the observer) and µ is the cosine of the angle between the velocity and the line-of-sight.

Let us begin by considering the quantity γreal
I which is the intrinsic alignment of a shape sample

of galaxies with respect to matter in real space. Since the intrinsic shear is measured at the position
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of the shape sample of galaxies, in practice, we measure the density-weighted intrinsic shear, γ̃real
I ,

where

γ̃real
I = γreal

I (1 + δreal
S ) (5.39)

= γreal
I (1 + bSδ

lin) (5.40)

= γreal
I +O(δlinδlin) , (5.41)

where δreal
S is the overdensity of the shape sample of galaxies and bS its bias with respect to the

matter density fluctuation δlin. The last equality follows from the proportionality γreal
I ∝ φp (see

Equation 5.2), and φp ∝ δlin from the Poisson equation. Here δlin is the matter density fluctuation.
Thus if we restrict to linear order (as we will throughout this appendix), there is no correction to the
intrinsic shear due to the density weighted measurement. Therefore, we will not make a distinction
between the intrinsic shear and its density weighted counterpart, hereafter.

In this appendix we will work out the relation between γreal
I and the corresponding redshift space

quantity, γred
I . Since the shear distortion comes from the tidal field at the true position of the galaxy,

and is unchanged by redshift-space distortions, the only effect of RSD is to change the apparent
position of the galaxy. This will result in its contributing to the 3D correlation function ξg+ or ξ++ at
a different value of Π, but without changing the intrinsic shear value itself. γred

I and γreal
I are therefore

related by

γred
I (x′, y′, z′) = γreal

I (x, y, z) . (5.42)

The Fourier transform of the left hand side gives

γred
I (k′x, k

′
y, k
′
z) =

∫
dx′dy′dz′γred

I (x′, y′, z′)ei(k
′
xx
′+k′yy

′+k′zz
′) , (5.43)

=

∫
dx′ dy′ dz′ γreal

I (x′, y′, z′ − vµ)ei(k
′
xx
′+k′yy

′+k′zz
′) (5.44)

=

∫
dx dy dz γreal

I (x, y, z)ei(k
′
xx+k′yy+k′z [z+µv]) dz

′

dz
(5.45)

where dz′/dz = 1 + µ∂zv. We can combine this term and expand the exponential as a Taylor series
to obtain

dz′

dz
eik
′
zµv = (1 + µ∂zv)

∞∑

n=0

in(k′zµv)n

n!
(5.46)

= 1 + µ∂zv + ik′zµv +O(δlinδlin) (5.47)

= 1− 2µ2fδlin +O(δlinδlin) (5.48)

Here we have used µ∂zv = ik′zµv = −µ2δ̇lin = −µ2fδlin, where the last two equalities are valid at
linear order. Therefore,

γred
I (k′x, k

′
y, k
′
z) =

∫
dx dy dzγreal

I (x, y, z)ei(k
′
xx
′+k′yy+k′zz)[1 +O(δlin)] (5.49)

= γreal
I (k′x, k

′
y, k
′
z) +O(δlinδlin) (5.50)

This implies that there is no linear order correction to the intrinsic shear field while going from real
to redshift space.

Now consider a density sample characterized by its overdensity δD. Number density conservation
relates the redshift space overdensity to the real space overdensity such that

(1 + δred
D )dx′dy′dz′ = (1 + δreal

D )dx dy dz , (5.51)
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Therefore,

δred
D = (1 + δreal

D )

[
dz′

dz

]−1

− 1 (5.52)

= (1 + δreal
D ) [1− µ∂zv]− 1 +O(δδ) (5.53)

= δreal
D − µ∂zv +O(δδ) (5.54)

= δreal
D + fµ2δlin +O(δδ) (5.55)

= δreal
D

(
1 +

f

bD
µ2

)
+O(δδ) (5.56)

The linear order correction of (1 + f/bDµ
2) when going from real coordinates to redshift coordinates

is valid both in configuration and Fourier space.
The auto-power spectrum of the intrinsic shear and its cross power spectrum with the galaxy

overdensity field in redshift space and real space are therefore related by

P red
++(k) = 〈γ̃red

I (k)γ̃red
I (k)〉 (5.57)

= 〈γreal
I (k)γreal

I (k)〉+O(δ3) (5.58)

= P real
++ (k) +O(δ3) (5.59)

P red
g+ (k) = 〈δred

D (k)γ̃red
I (k)〉 (5.60)

=

(
1 +

f

bD
µ2

)
〈δreal

D (k)γreal
I (k)〉+O(δ3) (5.61)

=

(
1 +

f

bD
µ2

)
P real
g+ (k) +O(δ3) , (5.62)

while the galaxy-galaxy power spectrum in real and redshift space are related by

P red
gg (k) = 〈δred

D (k)δred
S (k)〉 (5.63)

=

(
1 +

f

bD
µ2

)(
1 +

f

bS
µ2

)
〈δreal

D (k)δreal
S (k)〉+O(δ3) (5.64)

=

(
1 +

f

bD
µ2

)(
1 +

f

bS
µ2

)
P real
gg (k) +O(δ3) . (5.65)
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Abstract

Measurements of intrinsic alignments of galaxy shapes with the large-scale density field,
and the inferred intrinsic alignments model parameters, are sensitive to the shape mea-
surement methods used. In this paper we measure the intrinsic alignments of the
Sloan Digital Sky Survey-III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS)
LOWZ galaxies using three different shape measurement methods (re-Gaussianization,
isophotal, and de Vaucouleurs), identifying a variation in the inferred intrinsic alignments
amplitude at the 40% level between these methods, independent of the galaxy luminosity
or other properties. We also carry out a suite of systematics tests on the shapes and
their two-point correlation functions, identifying a pronounced contribution from addi-
tive PSF systematics in the de Vaucouleurs shapes. Since different methods measure
galaxy shapes at different effective radii, the trends we identify in the intrinsic align-
ments amplitude are consistent with the interpretation that the outer regions of galaxy
shapes are more responsive to tidal fields, resulting in isophote twisting and stronger
alignments for isophotal shapes. We observe environment dependence of ellipticity, with
brightest galaxies in groups being rounder on average compared to satellite and field
galaxies. We also study the anisotropy in intrinsic alignments measurements introduced
by projected shapes, finding effects consistent with predictions of the nonlinear alignment
model and hydrodynamic simulations. The large variations seen using the different shape
measurement methods have important implications for intrinsic alignments forecasting
and mitigation with future surveys.

6.1 Introduction

Weak gravitational lensing (for a review, see Massey et al., 2010; Weinberg et al., 2013), the deflection
of light from distant objects by mass in more nearby foregrounds, results in coherent distortions of
galaxy shapes that are measured statistically, by averaging over large ensembles of galaxies. It has
the power to reveal the dark matter halos in which galaxies and galaxy clusters reside (e.g., Velander
et al., 2014; Coupon et al., 2015; Han et al., 2015; Hudson et al., 2015; Zu & Mandelbaum, 2015), to
constrain the growth of cosmic structure and thus the nature of dark energy (e.g., Heymans et al.,
2013b; Jee et al., 2013; Mandelbaum et al., 2013), and even to constrain the theory of gravity on
cosmological scales (e.g., Reyes et al., 2010; Simpson et al., 2013; Pullen et al., 2015b). Intrinsic
alignments of galaxies (IA; for a review, see Joachimi et al. 2015; Troxel & Ishak 2015; Kirk et al.
2015; Kiessling et al. 2015), the coherent alignment of galaxy shapes with each other (II) or with the
local density field (GI), result in a violation of the assumption that galaxy shapes are not intrinsically
correlated and that any observed shape correlations are from gravitational lensing. Thus, intrinsic
alignments are an important astrophysical systematic for weak lensing surveys.

Singh et al. (2015) (hereafter Paper I) studied the IA of galaxies in one of the Sloan Digital
Sky Survey-III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) galaxy samples, called
LOWZ. This sample consists of Luminous Red Galaxies (LRGs) with a comoving number density
of ∼ 3 × 10−4(h/Mpc)3 from 0.16 < z < 0.36. The large sample size and high signal-to-noise ratio
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enabled not only a detection of IA, but a study of its dependence on galaxy properties such as mass,
luminosity and environment, finding strong correlations of IA with the host halo mass and galaxy
luminosity (see also Joachimi et al., 2011). A commonly-adopted theoretical model called the linear
alignment model (Catelan et al., 2001; Hirata & Seljak, 2003), which relates the galaxy alignments to
the tidal field from large-scale structure at the time of galaxy formation, was found to provide a good
description of the data for projected separation rp > 6 h−1Mpc, provided that the non-linear matter
power spectrum was used (NLA model; Bridle & King, 2007).

A natural goal of such studies is to predict the intrinsic alignment contamination in weak lensing
surveys, and to provide templates that can be used to marginalize over this effect. However, different
IA studies in the literature (e.g., Mandelbaum et al., 2006; Hirata et al., 2007; Okumura et al., 2009;
Joachimi et al., 2011; Blazek et al., 2011; Hao et al., 2011; Hung & Ebeling, 2012; Li et al., 2013;
Chisari et al., 2014; Sifón et al., 2015b; Singh et al., 2015) use different galaxy shape measurement
methods and ensemble IA estimators, which makes it difficult to compare them or to combine their
results into a single comprehensive view of the subject. For example, Okumura et al. (2009) used
isophotal shape measurements from SDSS data release 7 (DR7) to measure shape-shape correlations
for the SDSS LRG sample at high significance which were then interpreted by Blazek et al. (2011)
in the context of the NLA model. However, in Paper I using re-Gaussianization shapes and a larger
BOSS low redshift sample (LOWZ-DR11) from SDSS-III, we measured the shape-shape correlation
function to be consistent with zero. Though the two measurements were shown to be statistically
consistent in Paper I, the reason for the varying detection significance in the two studies is not well
understood, and worth investigation.

IA measurements with different shape measurements may be particularly difficult to compare due
to different systematic errors and ranges of galaxy radius probed by different methods. First, galaxy
shape measurements are affected by observational systematics such as the point-spread function (PSF),
pixel noise, errors in estimation and subtraction of sky level, and blending with the light profiles of
nearby galaxies. Different shape measurement methods treat these systematics differently or in some
cases ignore them. Improper treatment of systematic effects in galaxy shapes can propagate into IA
measurements. For example, Hao et al. (2011) found that using isophotal shapes from the SDSS
to measure the alignments of satellite shapes around brightest cluster galaxies (BCGs) that these
alignments correlated with the apparent magnitude of the BCG. This result was interpreted as a
systematic error in isophotal shapes of satellite galaxies from BCG light leaking into the satellite
shapes, an effect that is more complicated than a multiplicative bias.

Also, different shape measurement methods use different radial weight functions and thus probe
galaxy shapes at different effective radii. Intrinsic variation in the galaxy shapes with radius can
thus affect the IA measurements. These could be gradients in the ellipticity with radius (with galaxies
being intrinsically more or less round in the outer regions), or isophotal twisting due to the outer parts
of galaxies being more aligned with external tidal field than the inner parts. For example, Tenneti
et al. (2015) found in hydrodynamic simulations that galaxies become rounder in their outer regions.
Velliscig et al. (2015b), on the other hand, found that the projected RMS ellipticity, erms, is lower
when measured using star particles within the half-light radius compared to using all star particles
(see also Chisari et al., 2015a). In observations, the magnitude and sign of ellipticity gradients have
been found to be correlated with the galaxy environment (di Tullio, 1978, 1979; Pasquali et al., 2006).
Ellipticity variations using different shape measurements will affect inferences made using ensemble
IA estimators that include the ellipticity rather than just the position angle (e.g., Mandelbaum et al.,
2006; Hirata et al., 2007; Joachimi et al., 2011; Blazek et al., 2011; Singh et al., 2015).

Several studies have also detected isophote twists in small samples of elliptical galaxies, whereby
the position angle in the measured galaxy shape changes with radius (Wyatt, 1953; Abramenko, 1978;
Kormendy, 1982; Fasano & Bonoli, 1989; Nieto et al., 1992; Lauer et al., 2005). The isophote twisting
may originate from varying triaxiality of galaxies with radii (see, e.g., Romanowsky & Kochanek,
1998) though Kormendy (1982) pointed out that the outer regions of galaxies are more susceptible to
tidal fields, which can result in isophote twisting. In simulations, Kuhlen et al. (2007) observed the
effects of shape twisting from tidal interaction when measuring the radial alignments of dark matter
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subhalos. The radial alignment signal of subhaloes increased monotonically with the radius at which
the subhalo shape was measured. If such results also apply to galaxies, then a stronger IA signal
from shape measurements that probe the outer regions of galaxies would be expected. In support of
this inference, Velliscig et al. (2015a) found using hydrodynamic simulations that using star particles
within the half-light radius to define the galaxy shapes results in lower IA signal compared to using
all the star particles (see also Chisari et al., 2015a, but note that that work attributes the differences
to ellipticity variations rather than to isophote twists).

Finally, we measure only the projected shapes of galaxies, which are insensitive to line-of-sight
galaxy alignments. This effect introduces anisotropy in the redshift-space structure of IA1, and dif-
ferent estimators of IA vary in their sensitivity to this anisotropy. For example, the redshift-space
structure of the 3D shape-density cross-correlation function, ξg+, includes the redshift-space structure
of the 3D galaxy-galaxy auto-correlation function, ξgg; however, the mean IA shear, 〈γ〉, is indepen-
dent of ξgg (ξg+ = 〈γ〉(1+ξgg), Blazek et al. 2015). Depending on the relative importance of variations
in IA and galaxy clustering, ξg+ and 〈γ〉 may have different redshift-space structure. The variations in
the sensitivity to redshift-space structure between different IA estimators can complicate a quantitive
comparisons between studies using different estimators.

In this paper, we repeat the analysis of Paper I using three different shape measurement methods,
and carry out numerous systematics tests, to study the radial and environment dependence of galaxy
shapes and of the IA signal. We also use the methodology of Blazek et al. (2011) to understand
the origin of differences in their shape-shape correlations (w++) measurement and the one in Paper
I. Finally, to understand the redshift-space structure of intrinsic alignments, we investigate the IA
signals as a function of projected and line of sight separations and compare the results with NLA
model predictions.

Throughout we use a standard flat ΛCDM cosmology with h = 0.7, Ωb = 0.046, ΩDM = 0.236,
ΩΛ = 0.718, ns = 0.9646, σ8 = 0.817 (WMAP9, Hinshaw et al., 2013). All distances are in comoving
h−1Mpc, though h = 0.7 was used to calculate absolute magnitudes and to generate predictions for
the matter power spectrum.

6.2 Formalism and Methodology

Details of intrinsic alignments models and correlation estimators are given in Paper I. In this section,
we briefly summarize the important points.

6.2.1 The nonlinear alignment (NLA) model

The linear alignment (LA) model predicts that IA are set at the time of galaxy formation (Catelan
et al., 2001), with galaxy shapes being aligned with the tidal fields present during galaxy formation.
This assumption allows us to write intrinsic shear in terms of primordial potential φp

γI = (γI+, γ
I
×) = − C1

4πG
(∂2
x − ∂2

y , ∂x∂y)φp, (6.1)

with alignment strength defined by an amplitude parameter C1. In our sign convention, positive
(negative) γI+ indicates alignments along (perpendicular to) the direction of the tidal field while
positive (negative) γI× indicates alignments along the direction at 45 (135) degrees from the direction
of the tidal field. Assuming a linear galaxy bias relating matter overdensities δm and galaxy densities
δg = b δm, the power spectrum of galaxy-shape and shape-shape correlations can be written as (Hirata

1This anisotropy due to projected shapes is also present in real space, but we will use the term redshift-space
throughout this paper since measurements are made in redshift-space.
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& Seljak, 2003)

Pg+(k, z) = AIb
C1ρcritΩm
D(z)

k2
x − k2

y

k2
P lin
δ (k, z) (6.2)

P++(k, z) = fII

(
AI

C1ρcritΩm
D(z)

k2
x − k2

y

k2

)2

P lin
δ (k, z) (6.3)

Pg×(k, z) = AIb
C1ρcritΩm
D(z)

kxky
k2

P lin
δ (k, z) (6.4)

P lin
δ is the linear matter power spectrum. Pg+ (Pg×) is the cross-power spectrum between the galaxy

density field and the shear component along (at 45◦ from) the line joining the galaxy pair. P++ is
the shape-shape correlation with shear component along the line joining the galaxy pair. Following
Joachimi et al. (2011), we fix C1ρcrit = 0.0134 and use a dimensionless constant AI to measure
the IA amplitude, which is primarily constrained from density-shape cross-correlations. To allow for
departure from the LA model, we have introduced an additional free parameter fII , which would be 1
in the case that the LA model is correct. In the NLA model, to extend the linear alignment model to
the non-linear regime, the linear matter power spectrum is replaced with the non-linear matter power
spectrum (Bridle & King, 2007) using an updated halo-fit model (Smith et al., 2003; Takahashi et al.,
2012). As shown by Blazek et al. (2015), the NLA model neglects other terms that are important at
the same order; however, in Paper I we found it provided an adequate fit to our intrinsic alignments
measurements down to ∼ 6 h−1Mpc.

The power spectra in Eqs. (6.2)–(6.4) can be Fourier transformed to obtain the 3D correlation
functions as a function of comoving projected separation rp and line-of-sight separation Π,

ξAB(rp,Π, z) =

∫
d2k⊥dkz

(2π)3
PAB(k, z)

(
1 + βAµ

2
)

(
1 + βBµ

2
)
ei(rp.k⊥+Πkz). (6.5)

The Kaiser factor (1 + βµ2) accounts for the effect of linear redshift-space distortions (RSD; Kaiser
1987). As shown in Paper I, for power spectra that include intrinsic shapes, β+,× = 0 (the shear field
is not affected by RSD to first order). For galaxies, β(z) = f(z)/b, where the linear growth factor
f(z) ∼ Ωm(z)0.55 in the ΛCDM model.

In the data, we measure the projected correlation function, wAB(rp), which can be obtained by
projecting the 3D correlation function in Eq. (6.5) along the line-of-sight separation:

wAB(rp) =

∫
dzW (z)

∫
dΠ ξAB(rp,Π, z). (6.6)

W (z) is the redshift window function (Mandelbaum et al., 2011)

W (z) =
pA(z)pB(z)

χ2(z)dχ/dz

[∫
pA(z)pB(z)

χ2(z)dχ/dz
dz

]−1

(6.7)

Assuming cross-correlation between samples of galaxies with shapes S and others that trace the
density field D with in principle different biases bS and bD, the different projected correlation functions
are

wgg(rp) =
bSbD
π2

∫
dzW (z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k⊥
kz
P (k, z) sin(kzΠmax)J0(k⊥rp)

(
1 + βSµ

2
) (

1 + βDµ
2
)

wg+(rp) =
AIbDC1ρcritΩm

π2

∫
dz
W (z)

D(z)

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k3
⊥

(k2
⊥ + k2

z)kz
P (k, z) sin(kzΠmax)J2(k⊥rp)

(
1 + βDµ

2
)

(6.8)
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w++(rp) = fII
(AIC1ρcritΩm)

2

2π2

∫
dz
W (z)

D(z)2

∫ ∞

0

dkz

∫ ∞

0

dk⊥
k5
⊥

(k2
⊥ + k2

z)2kz
P (k, z) sin(kzΠmax)

×[J0(k⊥rp) + J4(k⊥rp)] (6.9)

Whether we fit the three correlation functions (wgg, wg+, and w++) jointly or independently to this
model, the galaxy bias, intrinsic alignment amplitude AI , and fII are primarily constrained by wgg,
wg+, and w++, respectively. This is due to the different sensitivities of these signals to the three
parameters, along with the different signal-to-noise ratio (S/N) in the measurements. The S/N
degrades with increasing factors of galaxy shape due to the shape noise they add to the correlation
function.

6.2.2 Correlation function estimators

We calculate cross-correlation functions between sets of galaxies for which we wish to estimate the
intrinsic alignments (the “shape sample”) and those used to trace the density field (the “density
sample”). We use a generalized Landy-Szalay estimator (Landy & Szalay, 1993) to compute the
correlation functions:

ξgg =
(S −RS)(D −RD)

RSRD
=
SD −RSD − SRD

RSRD
+ 1

ξg+ =
S+D − S+RD

RSRD

ξ++ =
S+S+

RSRS
,

where S and D represent the galaxy counts in the shape and density samples, and RS and RD are
sets of random points corresponding to these samples. The terms involving shears for the galaxies are

S+X =
∑

i∈S,j∈X
γ

(i)
+ (j|i),

S+S+ =
∑

i∈S,j∈S
γ

(i)
+ (i|j)γ(j)

+ (j|i).

Here γ
(i)
+ (j|i) represents the component of the shear for galaxy i along the line joining it to galaxy j.

Positive (negative) γ+ implies radial (tangential) alignments.
Measuring projected correlations involves summation over bins in Π,

wAB =

∫ Πmax

−Πmax

ξAB(rp,Π) dΠ. (6.10)

We use Πmax = 100h−1Mpc and dΠ = 10h−1Mpc.
To calculate the covariance matrices of the wAB , we divide the sample into 100 equal-area regions,

compute the signal by excluding one region at a time and then compute the jackknife variance from
the 100 jackknife samples. See Paper I for more details.

6.2.3 Anisotropy

It is well known that redshift-space distortions (RSD) introduce anisotropy in the observed galaxy
clustering in redshift space (e.g., Kaiser, 1987; Beutler et al., 2014). In Paper I, it was shown that the
IA measurements are not affect by RSD to first order. However, IA are affected by another source
of anisotropy, the projected shapes of galaxies, due to which we cannot measure the line-of-sight IA

153



6.2. Formalism and Methodology Chapter 6. IA of LOWZ galaxies-II

signal. Hence, the IA signal is expected to fall faster with increasing line-of-sight separation, Π, than
with rp.

To understand this anisotropy, we study the IA signal in (rp,Π) space and compare it with the
NLA model prediction. To compute the model predictions, we compute the real part of ξAB as follows:

ξgg(rp,Π) =
bSbD
2π2

∫
dzW (z)

∫ ∞

0

dkz cos(kzΠ)

∫ ∞

0

dk⊥
k⊥
kz
P (k, z)J0(k⊥rp)

(
1 + βSµ

2
)

(
1 + βDµ

2
)

(6.11)

ξg+(rp,Π) =
AIbDC1ρcritΩm

2π2

∫
dz
W (z)

D(z)

∫ ∞

0

dkz cos(kzΠ)

∫ ∞

0

dk⊥
k3
⊥

(k2
⊥ + k2

z)kz
P (k, z)J2(k⊥rp)

(
1 + βDµ

2
)

(6.12)

ξ++(rp,Π) =fII
(AIC1ρcritΩm)

2

4π2

∫
dz
W (z)

D(z)2

∫ ∞

0

dkz

cos(kzΠ)

∫ ∞

0

dk⊥
k5
⊥

(k2
⊥ + k2

z)2kz
P (k, z)×

[J0(k⊥rp) + J4(k⊥rp)] (6.13)

The k2
⊥/k

2 terms in Eqs. (6.12) and (6.13) are equivalent to the Kaiser factor with β = −1:

k2
⊥
k2

= 1− k2
z

k2
= 1− µ2 (6.14)

Mathematically, the projection effects in ξg+ and ξ++ introduce similar factors in the power spectrum
as the Kaiser effect. The Kaiser factor with positive β leads to compression along the line of sight
direction, while a negative prefactor for µ2 leads to compression along rp. The final shape of the cor-
relation function is also determined by the Bessel functions which are different for different correlation
functions. In the absence of RSD and shape projection factors, J0 leads to an isotropic correlation
function, while J2 and J4 lead to a peanut-shaped function in (rp,Π) space (J2, J4 → 0 for rp → 0).
Following the methodology used to study RSD (see, e.g., Beutler et al., 2014), we also compute the
monopole and quadrupole terms for the ξAB using an expansion in Legendre polynomials.

ξl(r) =
2l + 1

2

∫
dµr L

l(µr)ξ(r, µr) (6.15)

r =
√
r2
p + Π2 = s (in redshift space) is the 3D separation of the galaxy pair, while µr = Π/r is the

cosine of the angle between Π and r.

In the data, we compute ξAB as a function of s and µ, and apply the transform defined in Eq. (6.15).
For theory calculations, we first compute ξAB in the (rp,Π) plane on a grid, then transform it to the
(r, µ) plane and apply the transform defined in Eq. (6.15). Since the theory prediction is calculated
on a grid, there is some noise due to the finite grid size and Fourier ringing. Even though we smooth
out the noise, we do not attempt to fit the theory to the observed multipoles. Instead, we use the
best-fitting parameters from fits to wAB , and simply compare the theory predictions with the data
to confirm whether the observed trends in (rp,Π) are consistent with the above model on scales large
enough that effects from non-linear clustering and non-linear RSD are not important.
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6.3 Data

The SDSS (York et al., 2000) imaged roughly π steradians of the sky, and the SDSS-I and II surveys
followed up approximately one million of the detected objects spectroscopically (Eisenstein et al.,
2001; Richards et al., 2002; Strauss et al., 2002). The imaging was carried out by drift-scanning the
sky in photometric conditions (Hogg et al., 2001; Ivezić et al., 2004), in five bands (ugriz) (Fukugita
et al., 1996; Smith et al., 2002) using a specially-designed wide-field camera (Gunn et al., 1998) on
the SDSS Telescope (Gunn et al., 2006). These imaging data were used to create the catalogues of
shear estimates that we use in this paper. All of the data were processed by completely automated
pipelines that detect and measure photometric properties of objects, and astrometrically calibrate the
data (Lupton et al., 2001a; Pier et al., 2003; Tucker et al., 2006). The SDSS-I/II imaging surveys were
completed with a seventh data release (Abazajian et al., 2009), though this work will rely as well on
an improved data reduction pipeline that was part of the eighth data release, from SDSS-III (Aihara
et al., 2011); and an improved photometric calibration (‘ubercalibration’, Padmanabhan et al., 2008).

6.3.1 Redshifts

Based on the photometric catalog, galaxies are selected for spectroscopic observation (Dawson et al.,
2013), and the BOSS spectroscopic survey was performed (Ahn et al., 2012) using the BOSS spec-
trographs (Smee et al., 2013). Targets are assigned to tiles of diameter 3◦ using an adaptive tiling
algorithm (Blanton et al., 2003), and the data were processed by an automated spectral classification,
redshift determination, and parameter measurement pipeline (Bolton et al., 2012).

We use SDSS-III BOSS data release 11 (DR11; Alam et al., 2015a) LOWZ galaxies, in the redshift
range 0.16 < z < 0.36. The LOWZ sample consists of Luminous Red Galaxies (LRGs) at z < 0.4,
selected from the SDSS DR8 imaging data and observed spectroscopically in the BOSS survey. The
sample is approximately volume-limited in the redshift range 0.16 < z < 0.36, with a number density
of n̄ ∼ 3× 10−4 h3Mpc−3 (Manera et al., 2015). We combine the spectroscopic redshifts from BOSS
with galaxy shape measurements from Reyes et al. (2012). BOSS DR11 has 225334 LOWZ galaxies
within our redshift range. However, Reyes et al. (2012) masks out certain regions that have higher
Galactic extinction, leaving us with 173855 galaxies for our LOWZ density sample.

6.3.2 Subsamples

To test for the dependence of our results on galaxy properties such as luminosity, color, and redshift,
we split the LOWZ sample into subsamples based on these properties following the methodology
detailed in Paper I. To summarize, we define four subsamples based on luminosity, L1–L4, with L1

(L4) being the brightest (faintest) subsample. Luminosity cuts are applied in 10 redshift bins, with
L1–L3 each containing 20% of the galaxies and L4 containing 40% to improve the S/N for the fainter
galaxies. Similarly, we define color subsamples C1–C5, each containing 20% of the galaxies, with
C1 being the reddest subsample. For redshift, we define two subsamples, Z1 (z ∈ [0.16, 0.26]) and
Z2 (z ∈ [0.26, 0.36]).

We also identify the galaxies in groups using the counts-in-cylinders (CiC) method (Reid & Spergel,
2009) and split the sample into field galaxies (group of one), BGG (brightest group galaxy) and
satellites (all non-field and non-BGGs). See Paper I for more details and caveats related to the CiC
group identification.

6.3.3 Shapes

To measure the intrinsic alignments, we need to measure the shapes of the galaxies to be used in
estimates of the ensemble intrinsic shear. One of the main goals of this work is to compare different
shape measurement methods and their impact on the measured IA signal. Here we briefly describe the
three different shape measurements used in this paper. Though there are many shape measurement
methods that are used for weak lensing in the literature (see for example Mandelbaum et al., 2015),
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our choice in this work is limited to the methods that (a) are available for SDSS data and (b) have
been previously used in intrinsic alignment studies in the SDSS. However, we attempt to derive more
general conclusions that could be applicable to other shape measurement methods by considering the
essential properties of these methods (e.g., the choice of radii that they are sensitive to within the
galaxy light profiles).

Note that we do not have usable shape estimates from all methods for all the galaxies. In order to
do a fair comparison between different methods, the final shape sample in this work only contains the
galaxies for which shapes are available from all three methods. Due to differences in the sky coverage
of different shapes (see Sec. 6.3.3) we mask out some additional area on the sky, also reducing the
size of our density sample. The final shape (density) sample has 122513 (131227) galaxies, making it
smaller and somewhat intrinsically brighter on average than the shape (density) sample used in Paper
I.

Re-Gaussianization Shapes

Re-Gaussianization shapes were used in the IA study done in Paper I. These shape measurements
are described in more detail in Reyes et al. (2012). Briefly, these shapes are measured using the re-
Gaussianization technique developed by Hirata & Seljak (2003). The algorithm is a modified version
of ones that use “adaptive moments” (equivalent to fitting the light intensity profile to an elliptical
Gaussian), determining shapes of the PSF-convolved galaxy image based on adaptive moments and
then correcting the resulting shapes based on adaptive moments of the PSF. The re-Gaussianization
method involves additional steps to correct for non-Gaussianity of both the PSF and the galaxy surface
brightness profiles (Hirata & Seljak, 2003). The components of the distortion are defined as

(e+, e×) =
1− (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (6.16)

where b/a is the minor-to-major axis ratio and φ is the position angle of the major axis on the sky
with respect to the RA-Dec coordinate system. The ensemble average of the distortion is related to
the shear as

γ+, γ× =
〈e+, e×〉

2R (6.17)

R = 1− 1

2
〈e2

+,i + e2
×,i − 2σ2

i 〉 (6.18)

where σi is the per-component measurement uncertainty of the galaxy distortion, and R is the shear
responsivity representing the response of an ensemble of galaxies with some intrinsic distribution of
distortion values to a small shear (Kaiser et al., 1995; Bernstein & Jarvis, 2002). In Paper I we used an
R value for the entire SDSS shape sample from Reyes et al. (2012), R ∼ 0.87, whereas using Eq. (6.18)
we find R ∼ 0.925 for the LOWZ sample, which we use in this paper. In order to compare with Paper
I, the results in that paper should be rescaled by 0.87/0.925 ≈ 0.94. For different subsamples, we
calculate R values separately using Eq. (6.18), though the variations between our subsamples are
. 1%, well below the statistical errors.

Isophotal Shapes

Isophotal shapes are measured in general by fitting an ellipse to an outer isophote of the observed
galaxy light profiles. SDSS DR7 provides isophotal shapes2 of galaxies using the isophote correspond-
ing to a surface brightness of 25 mag/arcsec2. These have been used for several measurements of
intrinsic alignments in the SDSS (Okumura et al., 2009; Hao et al., 2011; Zhang et al., 2013). The
LRG intrinsic alignments measurements by Okumura et al. (2009) were later interpreted by Blazek
et al. (2011) in the context of the NLA model. Hao et al. (2011) measured satellite alignments in

2http://classic.sdss.org/dr7/ algorithms/classify.html
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a sample of galaxy clusters. They found that the satellite alignment signal depended on the BCG
apparent magnitude, which they attributed to contamination from BCG light leaking into satellite
isophotal shapes. In addition, isophotal shapes are not corrected for the PSF. Due to the unreliability
of these isophotal measurements, they were not included in the SDSS data release 8 (DR8) or sub-
sequent data releases. Thus, the isophotal shapes we use for this study do not cover the part of the
LOWZ area coverage for which photometric measurements were made during DR8.

We use the isophotal shape parameters isoA (semi-major axis, a), isoB (semi-minor axis, b) and
isoPhi (major axis position angle, φ) from the SDSS DR7 sky server. We get good isophotal shape
measurements for ∼ 297, 000 galaxies (∼ 71%) in the full LOWZ sample, of which 122513 are in the
redshift range (0.16 < z < 0.36) that we use for final analysis. The ellipticity is defined as

(ε+, ε×) =
1− b/a
1 + b/a

(cos 2φ, sin 2φ). (6.19)

The ensemble average of the ellipticity is an estimator for the shear:

γ+, γ× = 〈ε+, ε×〉. (6.20)

de Vaucouleurs Shapes

The de Vaucouleurs shapes are defined by fitting galaxy images to a de Vaucouleurs profile3 (Stoughton
et al., 2002),

I(r) = I0 exp{−7.67[r/reff]1/4} (6.21)

with half-light radius reff. The profile is allowed to have arbitrary axis ratio and position angle, and
is truncated beyond 7reff to go smoothly to zero beyond 8reff. It is convolved with a double Gaussian
approximation to the PSF model (for more details, see Stoughton et al., 2002). To reduce computation
time, the fitting uses pre-computed tables of models (Lupton et al., 2001a), resulting in discretization
in the resulting model parameters (Stoughton et al., 2002). The fit yields axis ratios and position
angles that can be used to define ellipticities as in Eq. (6.19).

Several systematics in shape measurements depend on the apparent size of the galaxies. The
apparent size can quantified using the circularized radius of the galaxy, Rcirc, defined as

Rcirc = RdeVauc,r ×
√
b

a
(6.22)

We use the de Vaucouleurs profile fits in the r band to get the circularized radius. RdeVauc,r is the
de Vaucouleurs semi-major axis of the galaxy, and b/a is the minor to major axis ratio for the de
Vaucouleurs fit (already used to calculate the ellipticity).

Li et al. (2013) used de Vaucouleurs shapes to measure the intrinsic alignment signal for the higher-
redshift BOSS CMASS sample. One of their systematics tests consisted of randomly permuting the
position angle measurements, yet after this permutation, they found that large scale correlations of
galaxy position angles persist. They attributed these correlations to the effects of cosmic variance
and survey geometry, though these systematics can also arise from the incorrect PSF correction which
can introduce such large scale correlations assuming that the PSF is roughly coherent across much
of the survey. The SDSS PSF has a preferred direction determined by the scan direction, and thus
it is possible for coherent systematics to be present at some level even after randomly permuting the
galaxies. We will explore systematic effects in the de Vaucouleurs shapes in detail in Sec. 6.4.

PSF shapes

PSF models are defined at the position of stars (Lupton et al., 2001a; Stoughton et al., 2002), then
interpolated to arbitrary positions. For each frame, the PSF is expanded into Karhunen-Loéve (K-
L) basis using stars in the frame and its surrounding neighbours. The K-L models can then be

3https:// www.sdss3.org/dr10/algorithms/magnitudes.php
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interpolated to the positions of galaxies to provide an image of the PSF at those locations. We use
mE1psf r and mE2psf r (defined using adaptive moments) from the SDSS sky server, and rotate them
to the coordinate system defined by right ascension and declination. Since these quantities are defined
as in Eq. (6.19), we correct them as in Eq. (6.17) using R = 1 to get the PSF shear, γPSF.

Shape measurement systematics

As described earlier, isophotal shapes are not corrected for PSF effects, de Vaucouleurs shapes are
approximately corrected using a double Gaussian PSF model, while re-Gaussianization uses the full
PSF model. The PSF causes an overall rounding of galaxy shapes, which if left uncorrected can
introduce a multiplicative bias m. However, if the (coherent) PSF anisotropies leak into the galaxy
shapes, they produce an additive term aγPSF that contributes spurious shape correlations. Thus,
individual galaxy shear estimates γobs include a purely random component (shape noise) along with
contributions from intrinsic shear γI and systematics:

γobs = (1 +m)γI + aγPSF.

These enter the ensemble intrinsic alignments observables as

〈gγobs〉 = (1 +m)〈gγI〉+ a〈gγPSF〉 = (1 +m)〈gγI〉 (6.23)

〈γobsγobs〉 = (1 +m)2〈γIγI〉+ a2〈γPSFγPSF〉. (6.24)

Eqns. (6.23) and (6.24) correspond to ξg+ and ξ++, respectively, and we have assumed that 〈γIγPSF〉 =
〈gγPSF〉 = 0. That is, the intrinsic shear and PSF anisotropies are uncorrelated (since they arise
due to completely different physics), and likewise the PSF anisotropies are uncorrelated with galaxy
overdensities. Incorrect PSF correction can clearly bias the IA measurements, with multiplicative bias
mimicking the behavior of IA amplitude AI and additive bias adding in a spurious term to shape-shape
correlations such as in ξ++. A simple way to detect the effect of additive bias is to compute cross-
correlations between the PSF and galaxy shapes and normalize by the PSF shape auto-correlation
function, which gives an approximately scale-independent ratio. To summarize this in one number,
we define

APSF =

∫
drp〈γobsγPSF〉/〈γPSFγPSF〉∫

drp
∼ a (6.25)

Multiplicative bias, on the other hand, is more difficult to detect using the data alone, and requires
detailed characterization for each shape measurement method using simulations, which is beyond the
scope of this work.

Besides PSF-related systematics, several other effects such as incorrect sky subtraction and de-
blending can also lead to spurious alignment signals. Some of these systematics lead to biases similar
to those already discussed, while many others could be revealed by systematic tests that we present
in Sec. 6.4.2.

Physical effects

Aside from systematics, there are physical reasons why different shape measurements can give different
results. Several studies of bright elliptical galaxies have found evidence for ellipticity gradients and
isophote twisting with radius (see, e.g., Wyatt, 1953; di Tullio, 1978, 1979; Kormendy, 1982; Fasano
& Bonoli, 1989; Nieto et al., 1992; Romanowsky & Kochanek, 1998; Lauer et al., 2005; Pasquali et al.,
2006). di Tullio (1978, 1979) first found environment-dependence of ellipticity gradients. Galaxies
for which the ellipticity increases (decreases) with radius are found preferentially in dense (isolated)
environments. Pasquali et al. (2006) confirmed these trends in a sample of 18 elliptical galaxies from
the Hubble Space Telescope (HST) Ultra-deep Field (UDF). Wyatt (1953) also found evidence of
isophote twisting in elliptical galaxies (see also Fasano & Bonoli, 1989; Nieto et al., 1992; Lauer et al.,
2005). These observations are consistent with bright ellipticals being triaxial systems with varying
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triaxiality as a function of radius, which in projection appears as isophote twisting (e.g., Romanowsky
& Kochanek, 1998). However, external tidal fields can also influence the galaxy shapes leading to
isophote twisting (Kormendy, 1982), which could mean that the measured intrinsic alignments depend
on the effective radius within the galaxy used for measuring the shape. IA measured with shapes that
are weighted towards the galaxy centers (outer regions) will be weaker (stronger).

Several studies have also looked at variations in galaxy/halo ellipticity and IA response with the
radius using simulations (Schneider et al., 2013; Tenneti et al., 2014b; Velliscig et al., 2015b,a). The
consensus has been that halo or galaxy shapes get rounder with increasing radius (for a contradictory
result, see Velliscig et al., 2015b) but the outer regions also show stronger IA, primarily because of
isophotal twisting.

Different radial weighting in the various shape measurements can in principle allow us to test these
variations from data, although interpretation of our results will be complicated by the possibility of
systematics such as PSF contamination as discussed earlier. The re-Gaussianization shapes assign
higher weights to inner regions of galaxy profiles, while de Vaucouleurs profiles have a comparatively
somewhat broader coverage in radius, and isophotal shapes only measure the outer regions of the
galaxy light profiles. If tidal fields lead to isophote twisting, making outer regions of the galaxy more
intrinsically aligned, we should expect higher IA signal for isophotal shapes followed by de Vaucouleurs
and re-Gaussianization shapes.

6.4 Results

To begin, we explore the features of the galaxy shape distributions (Sec. 6.4.1) and carry out basic
systematics tests of intrinsic alignments two-point correlation functions (Sec. 6.4.2) using the different
shape measurements. The results in these subsections provide some basic context that will be useful
when interpreting the intrinsic alignments results in later subsections. Then we confirm the equiva-
lence of intrinsic alignment two-point statistics using distortions (Eq. 6.16) vs. ellipticities (Eq. 6.19)
in Sec. 6.4.3, and compare intrinsic alignments for different shape measurement methods and IA esti-
mators (Sec. 6.4.4). Our tests of the redshift-space (rp,Π) structure of the IA two-point correlations
are in Sec. 6.4.5. Finally, we compare with other studies in Sec. 6.4.6.

6.4.1 Ellipticity from different shape measurement methods

In this section we study the distortion, e, as defined in Eq. (6.16), using re-Gaussianization, isophotal,
and de Vaucouleurs shapes. Fig. 6.1a shows the probability distribution p(e), and Fig. 6.1b shows
the per-component RMS distortion, erms, as a function of circularized apparent radius Rcirc for each
method. The p(e) for the de Vaucouleurs shapes in Fig. 6.1a has periodic spikes that are likely
caused by discretization of the model parameters during the fitting procedure (Lupton et al., 2001a;
Stoughton et al., 2002). Similar quantization features are seen in the position angle distribution
(not shown). The de Vaucouleurs shapes have the highest RMS distortion (erms = 0.261), followed
closely by re-Gaussianization (erms = 0.256), with isophotal shapes (erms = 0.241) giving a noticeably
lower RMS distortion. Since the three methods measure galaxy shapes at different effective radii,
the straightforward interpretation of this trend is that the galaxy ellipticity first increases and then
decreases with radius. However, the quantization in the de Vaucouleurs shapes combined with the
fact that (as shown in Sec. 6.4.2) the de Vaucouleurs shapes have significant additive PSF bias casts
doubt on this interpretation. It may, however, be a valid interpretation of the differences between
re-Gaussianization and isophotal shapes.

The trend for re-Gaussianization vs. isophotal shapes is qualitatively in agreement with hydrody-
namic simulations (Tenneti et al., 2015), where the axis ratio increases with radius.

The lower values of erms in isophotal shapes is primarily driven by the deficit of galaxies with
e > 0.7, as shown in Fig. 6.1a. This could also be due to some systematic effect such as multiplicative
bias from the PSF, which tends to make galaxy shapes rounder and will be more important for
more elongated galaxies. The trends in erms in Fig. 6.1b are consistent with the presence of some
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Figure 6.1: (a) Probability distribution of e for different shape measurement methods. The periodic
spikes in the de Vaucouleurs p(e) are discussed in the text of Sec. 6.4.1. (b) The RMS ellipticity
per shape component, erms, for different shape measurement methods as a function of circularized
apparent radius Rcirc (Eq. 6.22).

systematic bias. The PSF effects become more important for smaller galaxies (smaller Rcirc), thus
making them appear rounder and thereby reducing the incidence of high-ellipticity objects. The
fact that the isophotal shapes, which have no PSF correction at all, have a lower erms and that this
difference between isophotal and other shapes gets progressively more pronounced for galaxies with a
small apparent size is a clear signature of PSF dilution systematics. Note that (for a fixed total flux),
the effect of pixel noise increases measurement errors preferentially for the smaller sizes, leading to
an increase in the erms for smaller galaxies for all measurement methods. While we have attempted
to subtract the measurement errors, these are known to be underestimated (Reyes et al., 2012) and
thus incompletely removed. Fully disentangling true physical effects like ellipticity gradients from
systematic effects requires detailed analysis of different shape measurements using simulations, which
is beyond the scope of this work. Our statements about radial evolution in ellipticity using isophotal
shapes are only valid under the assumption that they are not significantly biased by the PSF or other
systematics. In the context of the discussion so far, this is a reasonable assumption since ∼ 90% of
galaxies in our sample have Rcirc > 1′′.

As described in Sec. 6.3.3, few studies have observed the ellipticity trends in small samples of
elliptical galaxies (see for eg. di Tullio, 1978, 1979; Pasquali et al., 2006). di Tullio (1978, 1979) first
identified environment dependence of ellipticity gradients. Galaxies that have increasing ellipticity
with radius are found preferentially in dense environments like clusters and groups, while those that
have decreasing ellipticity with radius were generally isolated though they were also found in groups.
We study these trends in the much larger LOWZ sample by identifying BGGs, satellites and field
galaxies. Fig. 6.2a shows the erms for these different environment subsamples for all three shape
measurements, and Fig. 6.2b shows the ratio of erms from re-Gaussianization shapes to isophotal and
de Vaucouleurs shapes as a function of redshift. For both re-Gaussianization and de Vaucouleurs
shapes, BGGs are rounder than field and satellites galaxies, while the trend is less clear for isophotal
shapes. Doing the comparison between different shapes as shown in Fig. 6.2b, BGGs get more elliptical
with increasing radius while satellites and field galaxies get rounder, consistent with the observations
of di Tullio (1979).

6.4.2 Systematics in two-point functions

In this section we show some systematics tests in the intrinsic alignment two-point correlation func-
tions. Fig. 6.3 shows the density-shape (wg+) and shape-shape (w++) correlations using large Π
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Figure 6.2: (a) The erms as a function of redshift for galaxies in different environments using differ-
ent shape measurement methods. BGGs are rounder than satellite and field galaxies using all three
methods, though the differences are much less significant using isophotal shapes. (b) Ratio of erms

using re-Gaussianization shape to isophotal or de Vaucouleurs shapes for galaxies in different envi-
ronments. BGGs are relatively more elliptical in isophotal shapes while satellites and field galaxies
are more round using isophotal shapes. The differences are dominated by ellipticity differences using
re-Gaussianization shapes as shown in (a). The variations in ellipticity between re- Gaussianization
and de Vaucouleurs shapes are nearly identical across all galaxy environments (open markers in (b)).

Correlation Shape χ2 p−value
wg+ re-Gaussianization 17.9 0.29
wg+ Isophotal 17.4 0.31
wg+ de Vaucouleurs 20.4 0.19
w++ re-Gaussianization 9.8 0.79
w++ Isophotal 15.2 0.43
w++ de Vaucouleurs 31.6 0.02

Table 6.1: χ2 and p−values for wg+ and w++ calculated using large Π separations (|Π| ∈ [200, 500]
h−1Mpc) and different shape measurements. All signal are consistent with a null detection except for
w++ with de Vaucouleurs shapes.

separations (|Π| ∈ [200, 500] h−1Mpc). For such large separations, we do not expect any contribu-
tion from intrinsic alignments, so a deviation of the signals from zero is more likely from additive
systematics due to the PSF (in the case of w++) or, on small scales, incorrect sky subtraction. These
signals are mostly consistent with zero (see Table 6.1 for χ2 and p values) and thus do not indicate
the presence of systematics, except for w++ with de Vaucouleurs shapes on large scales. The slight
negative signals in wg+ are consistent in magnitude and rp-scaling with the presence of a small lensing
signal (tangential shape alignments) given the redshift separations between the galaxy pairs and the
known lensing signals from Paper I.

As discussed in Sec. 6.3.3, additive PSF contamination in galaxy shape measurements can affect
IA results, particularly w++, if not corrected properly. To better understand this contamination, we
directly calculate 〈γobsγPSF〉 cross-correlations using PSF shapes at the positions of galaxies. Fig. 6.4
shows the cross-correlations of different shape measurements with the PSF shape, wsys

++, with de
Vaucouleurs shapes showing strong correlations. These are likely the cause of the non-zero w++ for
large Π in Fig. 6.3. Isophotal and re-Gaussianization shapes, on the other hand, show much lower
levels of contamination, which suggests that these two are not strongly affected by additive PSF errors.
Fig. 6.5 shows APSF defined in Eq. (6.25) for different galaxy subsamples and shape measurement
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Figure 6.3: Intrinsic alignment correlation functions using integration only over large line-of-sight
separations (|Π| ∈ [200, 500]h−1Mpc) for the full LOWZ sample, with different shape measurement
methods. The top and bottom show rpwg+ and rpw++, respectively.

methods. This figure confirms our conclusion that de Vaucouleurs shapes have stronger additive PSF
bias while isophotal and re-Gaussianization shapes have much smaller levels of contamination. Using
the full LOWZ sample, we find APSF = −0.019 ± 0.015, −0.049 ± 0.017, and −0.29 ± 0.02 for re-
Gaussianization, isophotal, and de Vaucouleurs shapes. Our value of |APSF| for re-Gaussianization is
smaller than that in Mandelbaum et al. (2015), who found APSF ∼ −0.1; however, those results were
for a simulated galaxy sample extending to much lower S/N and resolution, which is expected to have
relatively stronger additive systematics compared to LOWZ.

It is quite interesting and somewhat counter-intuitive that the de Vaucouleurs shapes, which
include PSF correction with an approximate PSF model, have a much larger APSF than the isophotal
shapes, which do not. We propose that the reason for this is that the de Vaucouleurs shapes are
weighted towards the central part of the galaxy light profile and thus rely on small scales (which are
highly sensitive to the PSF). Thus, a small error in the PSF model can be very important. In contrast,
the isophotal shapes use such a low surface-brightness isophote that they correspond to much larger
scales, where the impact of the PSF is much smaller, and even without correction, APSF can be quite
small.

There is no strong dependence of the additive PSF contamination on galaxy properties such as
luminosity and color. The contamination in de Vaucouleurs shapes does show significant redshift
dependence, with the higher redshift sample, Z2, showing stronger contamination; a similar but much
less significant effect is present in isophotal and re-Gaussianization shapes. This is likely due the
fact that higher redshift galaxies have a smaller apparent size, making the contamination from PSF
anisotropy more important for such galaxies. There are hints of luminosity dependence to the additive
PSF contamination for both de Vaucouleurs and isophotal shapes, though these trends are not very
significant. |APSF| is expected to be larger for lower luminosity samples since those galaxies generally
have smaller apparent size, making PSF contamination more important.

We caution that the tests in this section do not rule out multiplicative bias, which could change
the IA two-point correlation functions in a way that is degenerate with the IA amplitude AI .

6.4.3 Ellipticity definition

To confirm the consistency of intrinsic alignments results using the two different ellipticity definitions
in Eq. (6.16) and (6.19), we calculate the density-shape correlation function wg+ with isophotal and
de Vaucouleurs shapes using both definitions, modifying the wg+ estimator appropriately. Fig. 6.6
shows the ratio of the inferred AI for different subsamples from the NLA model fits to wg+ using
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Figure 6.6: Ratio of IA amplitude, AI , obtained via NLA model fits to wg+ calculated using shears
from two different ellipticity definitions, e (Eq. 6.16) and ε (Eq. 6.19), for isophotal (solid lines) and
de Vaucouleurs (dashed lines) shapes. Both definitions give consistent results across all luminosities,
redshifts, and environments.

the two shear estimators. AI measured using both definitions are consistent within 1σ for isophotal
shapes, and there are no strong dependences on galaxy properties such as color or luminosity. In
principle, this is precisely as expected; however, differences could arise due to systematic errors in the
RMS ellipticity calculation if the error estimates are incorrect. For the rest of the paper, we use ε
(Eq. 6.19) as our galaxy shape estimator for isophotal and de Vaucouleurs shapes.

6.4.4 IA with different shape measurements

In this section we present the IA measurements using the different shape measurement methods
discussed in Sec. 6.3.3.

Fig. 6.7a shows the wg+ measurement for the full LOWZ sample using all three shape measure-
ment methods. Isophotal shapes give the highest IA amplitude, followed by de Vaucouleurs and
re-Gaussianization shapes. Fig. 6.8 shows the amplitude trends more clearly, where we have plotted
the ratio of AI for isophotal and de Vaucouleurs shapes with respect to re-Gaussianization shapes, for
various subsamples defined by different galaxy properties. Isophotal (de Vaucouleurs) shapes give a
higher AI by ∼ 40% (20%) compared to re-Gaussianization shapes, with no clear trends with galaxy
properties like luminosity, color, and redshift.

To further understand the effects of different shape measurement methods, we measure two more
IA estimators, 〈γ〉 and 〈θ〉, defined as

〈γ〉 =
S+D

SD
(6.26)

〈θ〉 =
θSD
SD

(6.27)

Both 〈γ〉 and 〈θ〉 are calculated in a single Π bin with Π ∈ [−100, 100]h−1Mpc. In the absence of
intrinsic alignments, 〈γ〉 = 0 and 〈θ〉 = 45◦, while in presence of IA, 〈γ〉 > 0 and 〈θ〉 < 45◦ Fig. 6.9
shows the ratio of 〈γ〉 and 45◦−〈θ〉 measured using isophotal and de Vaucouleurs shapes with respect
to re-Gaussianization shapes. 〈γ〉 is higher for isophotal shapes followed by de Vaucouleurs shapes,
as expected from wg+ results. 45◦ − 〈θ〉 is also higher.

There are a few possible explanations for these differences in IA amplitudes with different shape
measurement methods. The first possibility, as discussed in Sec. 6.3.3 and observed in Sec. 6.4.2, is a
systematic error from incorrect PSF removal. Isophotal shapes are not corrected for the PSF, while de
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Figure 6.7: (a) The projected galaxy density-shape correlation function wg+ (Eq. 6.8) using the full
LOWZ sample and different shape measurement methods, isophotal (blue), re-Gaussianization (red)
and de Vaucouleurs shapes (green), along with the best-fitting NLA models. For comparison, the
best-fitting NLA models for all three shape measurement methods are plotted on all panels. Isophotal
shapes show the highest IA signal, followed by de Vaucouleurs and re-Gaussianization shapes (note
that error bars are correlated between the different shape measurement methods). The solid black line
shows the SDSS fiber collision limit, and the dashed cyan lines show the range of rp used for the NLA
model fitting. (b) Same as (a), but for the projected shape-shape correlation function w++ (Eq. 6.9).
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Vaucouleurs shapes are only approximately corrected. As shown in Sec. 6.4.2, we have a clear detection
of additive PSF bias in de Vaucouleurs shapes, though isophotal and re-Gaussianization shapes have
much lower levels of contamination. The additive bias should drop out of wg+ calculations, under the
assumption that it is not correlated with the positions of other galaxies (〈gγPSF〉 ∼ 0 in Eq. 6.23).
We have not ruled out the presence of multiplicative bias, which could cause an apparent change
in AI , but is extremely difficult to rule out using the data alone. However, the simplest possible
interpretation of how multiplicative bias should affect these results is not valid: if multiplicative bias
is responsible for the lower RMS ellipticities using isophotal shapes compared to other methods in
Fig. 6.1b, then AI should be the lowest using isophotal shapes, not the highest.

Another possibility as discussed in Sec. 6.3.3 is the presence of some physical effect such as isophote
twisting and/or ellipticity gradients. Since wg+ is an ellipticity-weighted measure of IA, gradients in
the ellipticity can also lead to higher wg+. However, as discussed in Sec. 6.4.1, isophotal shapes
have lower erms than re-gaussianization and de Vaucouleurs shapes. This suggests that if the galaxies
have the same large-scale alignments with the tidal field at all radii, but an ellipticity gradient that
modifies erms, then isophotal shapes should have lowest wg+ amplitude, not the highest. Moreover,
ellipticity gradients alone cannot explain a stronger alignment angle 〈θ〉 for isophotal shapes, as shown
in Fig. 6.9.

The other physical effect, isophote twisting, is related to the fact that outer regions of galaxies
may be more susceptible to the local and large-scale tidal fields and thus show stronger alignments.
If this effect is important, isophotal shapes should have the highest IA amplitude, followed by de
Vaucouleurs and finally re-Gaussianization shapes, consistent with our results. The results in Fig. 6.9
are also consistent with this physical effect. Given that PSF-related systematics should cancel out of
〈θ〉 (since the alignment is being calculated with respect to galaxy positions that are not aligned with
respect to the PSF), and multiplicative biases also cannot modify the alignment angle, it is difficult
to interpret that finding as anything other than isophote twisting.

Finally, Fig. 6.7b shows the shape-shape (w++) correlation functions. The w++ detection using
isophotal and re- Gaussianization shapes is not very significant, and most of the signal using de
Vaucouleurs shapes can be attributed to additive PSF bias as shown in Sec. 6.4.2. The detection
significance of our isophotal measurements is not consistent with that of Blazek et al. (2011), who
reported a high-significance detection of w++ using measurements of Okumura et al. (2009) with
isophotal shapes. While this could also be due to the differences in sample definition, our results in
Paper I suggest that even with an appropriately bright subset of LOWZ, our results may not agree.
Thus, we will address this discrepancy in greater detail in Sec. 6.4.6 after we have discussed the
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anisotropy of IA signals, which turns out to be an important factor in this difference.

6.4.5 Anisotropy of IA

As discussed in Sec. 6.2.3, IA measurements suffer from anisotropy in (rp,Π) introduced by the
projected shapes, which do not allow measurement of the IA signal along the line of sight. To enable
a study of this effect, Fig. 6.10 shows ξgg, ξg+, and ξ++ as a function of rp and Π, as well as the
corresponding monopole and quadrupole measurements defined in Sec. 6.2.3. The top row shows the
galaxy clustering measurements as well as the model predictions. Non-linear theory predictions with
the Kaiser formula for RSD match the data for rp & 5h−1Mpc and s & 20h−1Mpc, though there are
deviations below these scales due to nonlinear RSD and the Finger-of-God effect.

The middle row in Fig. 6.10 shows ξg+ measurements using isophotal shapes. Again, the NLA
model fits the data well for rp & 5h−1Mpc and s & 20h−1Mpc with deviations at small scales due to
nonlinear RSD and clustering. The strong anisotropy introduced by the projected shapes is clearly
visible in the shape of the peanut-shaped contours, where the signal drops off quickly with Π. The
NLA model incorporates this anisotropy and is consistent with the data. The redshift-space structure
of 〈γ〉 and 〈θ〉 (shown in Fig. 6.11) is very similar to that of ξg+.

The bottom row in Fig. 6.10 shows ξ++ measurements using isophotal shapes. To display NLA
model predictions, we use the best-fitting parameters from fitting wg+, with fII = 1 (solid lines) and
fII = 2 (dashed lines). The two-dimensional contours in Fig. 6.10e suggest that the data prefer the
model with fII = 2. However, these contours are quite noisy, so Fig. 6.10e is not a reliable test of
the validity of the model. In Fig. 6.10f, we show a clear detection of the monopole for ξ++, with the
data again preferring a higher amplitude than predicted by NLA model (fII > 1). This discrepancy
could either be from the effects of non-linear physics that is not included in the NLA model (Blazek
et al., 2015), or from additive PSF contamination. Even though additive PSF contamination was
shown to be low for isophotal shapes (|APSF | ∼ 0.05), the contamination in ξ++ could still be strong
enough to increase the observed ξ++ amplitude. In Fig. 6.12, we show the ξ++ monopole for the full
LOWZ sample and the brightest subsample, L1, along with the predicted PSF contamination. For
large scales, s > 30h−1Mpc, the PSF contamination alone can account for the observed ξ++ signal for
the full LOWZ sample. At smaller scales, the PSF effects are subdominant, which make it unlikely
to be responsible for the higher than predicted amplitude. Both LOWZ and L1 samples prefer a
higher amplitude; based on ∆χ2, the p−value= 0.01 (0.15) for LOWZ (L1). However, the fII = 1
model is not ruled out by either sample, with a p-value of 0.07 (0.44) for LOWZ (L1). With PSF
effects being subdominant, we conclude that the discrepancy between NLA and data is primarily due
to non-linear physics (e.g. non-linear clustering, non-linear RSD), which become important for scales
s < 30h−1Mpc and generally increase the amplitude (Blazek et al., 2015).

The ξ++ quadrupole moment in both the data and the NLA model prediction is close to zero.
ξ++ is relatively more isotropic (Croft & Metzler, 2000) than ξg+ as some large-scale modes along the
line-of-sight can introduce similar IA in projected galaxy shapes with larger separation along Π. These
correlations show up in the shape-shape correlation function but not in the density-shape correlations.
Mathematically, these terms are sourced by the J0 term combined with (1−µ2)2 (see Eq. 6.13) which
is more extended along Π, while the J2 and J4 terms are more extended along rp. The combination
of J0 and J4 terms makes ξ++ relatively more isotropic than ξg+.

As a final exploration of the anisotropy of intrinsic alignments, Fig. 6.13 shows ξgg and ξg+ mea-
sured using the MassiveBlack-II (MB-II) cosmological hydrodynamic simulation (Khandai et al., 2015)
at z = 0.3, along with NLA model predictions. The top row shows the signal without RSD, along
with model predictions with β = 0. Bottom row shows both signal and model with RSD effects
included. The effects of RSD are clearly visible in ξgg. On the other hand, the variations in ξg+
from top to bottom row are far less pronounced, consistent with our findings that ξg+ is not affect
by RSD to first order, βγ = 0 (see Paper I for derivation). Qualitatively, the simulation results pro-
duce the features seen in the data and show good agreement with the model within the limitations
of validity of the model (which does not include nonlinear RSD or nonlinear galaxy bias, resulting in
small-scale discrepancies). At large scales (r & 20h−1Mpc) cosmic variance plays an important role
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due to the limited size of the simulation box (100h−1Mpc), making it difficult to compare the model
and simulation data at these scales.

6.4.6 Comparison with other studies

As discussed in Paper I and Sec. 6.4.4, there is an apparent discrepancy in detection significance of
our w++ measurements with those of Blazek et al. (2011). Blazek et al. (2011) used a projection of 3D
results from Okumura et al. (2009), who measured ξ++ (C11 in their notation) as function of redshift-
space separation s using isophotal shapes. We hereafter use C11 to refer to ξ++(s), to distinguish it
from our measurement of ξ++(rp,Π). Assuming isotropy of ξ++(s), Blazek et al. (2011) projected
the C11 measurement onto (rp,Π) space in order to calculate w++. Their error estimates were based
on generating 1000 random realizations of C11, assuming Gaussian and independent errors. To test
whether any parts of this procedure (either the signal or error estimation) could lead to differences in
the estimated S/N compared to our procedure, we repeat their analysis for our LOWZ sample, using
isophotal shapes.

Fig. 6.14 shows our measurement of C11(s). With isophotal shapes, we have a significant detection
of shape-shape correlations (as do Okumura et al. 2009 for LRGs), whereas the detection is not
significant using re-Gaussianization shapes. We do not attempt a quantitative comparison with their
results, since differences in sample selection complicate the comparison.

Using this C11(s) measurement with isophotal shapes, we repeat the procedure of Blazek et al.
(2011) to get w++(rp). We project the C11 measurement onto the (rp,Π) plane, using 200 Π bins
with Π ∈ [−100, 100]h−1Mpc and dΠ = 1h−1Mpc. Fig. 6.15 compares the w++ obtained using
different methods. The w++ for the LOWZ sample calculated using the Blazek et al. (2011) method of
projecting C11(s) does have a higher detection significance compared to the w++ using our ξ++(rp,Π)
projection. This result is most likely due to the fact that C11 is effectively the monopole term, which
we detect with high significance (Fig. 6.10f). C11 and the monopole have different amplitudes due to an
additional (2l+ 1)/2 factor in the multipole moments (see Eq. 6.15). The differences in S/N between
C11 and w++ primarily come from the different sensitivity of the two estimators to the large Π regions
that contribute little signal but significant noise. In accordance with this explanation, we find that
using Πmax ∼ 30h−1Mpc when computing w++ does give a statistically significant measurement (not
shown). To compare error estimates, we repeat the Blazek et al. (2011) analysis but obtain errors
using 100 jackknife regions instead of using 1000 random realizations of C11(s). The errors obtained
using both methods are consistent. Note that since the LRG sample used by Okumura et al. (2009)
is brighter than the LOWZ sample, the amplitude for the Blazek et al. (2011) w++ measurement is
expected to be higher than for LOWZ. Also, the choice of dΠ = 1 h−1Mpc leads to an approximately
constant w++ for rp < 1h−1Mpc since all bins are dominated by C11 values from s ∼ 1h−1Mpc, given
that the signal drops exponentially with increasing s and bins with large Π do not contribute much.
Hence, the apparently constant w++ at rp < 1h−1Mpc in Fig. 6.15 is not physical.

In Fig. 6.15 we also show the theory prediction from the best-fitting NLA model to wg+. As in
Fig. 6.12, the data prefer a higher amplitude than predicted by the NLA model, likely due to the
effects of non-linear physics beyond the NLA model. This result is inconsistent with the findings of
Blazek et al. (2011), who found consistent IA amplitudes from both wg+ and w++. Their sample,
however, is similar to our L1 sample, which as shown in Fig. 6.12 is consistent with fII = 1.

To summarize, we have investigated three possible reasons for the apparent difference in w++

detection significance in Blazek et al. (2011) compared to Paper I. We find that the primary causes
are (a) use of isophotal rather than re-Gaussianization shapes (increased signal), and (b) the projection
of C11(s) rather than ξ++(rp,Π) (which ignores noisy higher multipoles), but conclude that their error
estimate procedure is in agreement with the jackknife procedure. Hence the different S/N in w++

arises from differences in signal estimation (the first of which increases the signal, the second of which
lowers the noise).

Several other studies have used de Vaucouleurs and isophotal shapes to measure IA using the
bright, nearby SDSS Main sample and the fainter, more distant BOSS CMASS samples (Hao et al.,
2011; Li et al., 2013; Zhang et al., 2013). These samples have different redshifts and galaxy properties
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Figure 6.10: The 3D galaxy-galaxy correlation function ξgg (top row, Eq. 6.11), galaxy density-shape
correlation function ξg+ (middle row, Eq. 6.12) and shape-shape correlation function ξ++ (bottom
row, Eq. 6.13) as a function of rp,Π (left column, reflected about rp = 0) and their multipole moments
(right column). All plots use isophotal shapes. In the left column, the filled contours are showing
the data, while solid lines are the theory predictions corresponding to the outer edge of the filled
contours. The right column shows monopole and quadrupole measurements as a function of three

dimensional redshift space separation (s =
√
r2
p + Π2 [Mpc/h]). The points are measurements from

the data, while dashed lines are NLA model predictions. Theory predictions in both columns are
from the best-fitting models to wgg and wg+, with fII = 1 in ξ++. The dashed lines in (e) show
predictions with fII = 2. The linear models with non-linear power spectrum are consistent with data
for s & 30 h−1Mpc, below which significant deviations are expected due to non-linear RSD and, on
even smaller scales, non-linear galaxy bias. 169
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Figure 6.11: Similar to the left column of Fig. 6.10. (a) 〈γ〉 (Eq. 6.26) as a function of rp,Π. (b)
45◦−〈θ〉 (Eq. 6.27) as a function of rp,Π. Both (a) and (b) use isophotal shapes and the same binning
as in Fig. 6.10, but there are no theory curves on these plots.
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Figure 6.12: The 3D shape-shape correlation function ξ++ (Eq. 6.13) monopole moment using isopho-
tal shapes for LOWZ (blue) and the L1 (red) subsample, along with theory predictions from the
best-fitting NLA model to wg+ with fII = 1 (dashed lines) and fII = 2 (dotted lines). Green points
also show the monopole of the expected additive PSF contamination based on the analysis in Sec. 6.4.2,
ξsys
++ ≈ A2

PSF,isoph × ξPSF-PSF
++ . Vertical lines at s = 6 and 30h−1Mpc show the limits used to calculate

χ2 values to assess the goodness of the model.
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(a) (b)

(c) (d)

Figure 6.13: The 3D galaxy-galaxy correlation function ξgg (Eq. 6.11) and galaxy density-shape
correlation function ξg+ (Eq. 6.12) contour plots from the MB-II simulation, similar to Fig. 6.10a and
Fig. 6.10c. The top row shows the signal and model without RSD, while the bottom row includes
RSD. We used linear bias b = 0.8 and AI = 6 for the theory predictions. Note that the small scale
behavior in (a,b) is an artifact from binning, with logarithmic bins in rp and linear bins in Π with
dΠ = 5h−1Mpc.
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Figure 6.14: The 3D shape-shape correlation function as a function of redshift-space separation s,
C11(s) (or ξ++(s)), for the entire LOWZ sample, using re-Gaussianization and isophotal shapes.
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Figure 6.15: Comparison of w++ measured in different ways. The green points show the signal after
measuring ξ++ in (rp,Π) space and projecting along Π using our standard methodology, while the red
points show the signal obtained by projecting C11(s) following the approach of Blazek et al. (2011).
The flatness of w++ using the second approach at rp . 1h−1Mpc is due to the choice of bin sizes
(dΠ = 1h−1Mpc); see text for details. The signal for brighter LRGs from Blazek et al. (2011) signal is
plotted in green for reference, but should not be compared in detail with our results due to differences
in sample definition.

compared to LOWZ. As a result, the galaxy detection have different S/N and resolution compared
to the PSF, which should modify the observational systematics in galaxy shapes. Thus, our results
about differences in systematics and in the IA amplitude using these different shape measurement
methods cannot be used to make definitive statements about systematic effects in those studies.

6.5 Conclusions

In this work, we have studied SDSS-III BOSS LOWZ galaxy shapes and intrinsic alignments using
three different shape measurement methods: re-Gaussianization (PSF-corrected, weighted towards
inner regions of galaxies), isophotal (based on the shape of a low surface brightness isophote at
large radius, not PSF-corrected), and de Vaucouleurs shapes (from fitting a de Vaucouleurs model
to the light profile using an approximate PSF model, using a grid-based procedure that results in
some quantization of model parameters). Different shape measurement methods give a different
ellipticity for galaxies, which in the absence of systematic error implies a radial gradient in the galaxy
shapes, with the shapes becoming rounder on average at large radius. These variations in ellipticity
seem to depend on the galaxy environment, with brightest group galaxies (BGGs) actually becoming
more elliptical with radius but satellites and field galaxies becoming rounder. The overall sign of
the ellipticity gradients is consistent with hydrodynamic simulations (Tenneti et al., 2015) and the
environment trends are consistent with those seen using a small sample of elliptical galaxies (di Tullio,
1978, 1979). We caution, however, that the isophotal shapes on which these conclusions rest are not
corrected for the PSF. Biases from the PSF (of which we see hints in Fig. 6.1b and 6.12) and other
observational systematics (e.g., contamination from light in nearby galaxies around BGGs) can alter
these conclusions.

Tests for systematics do not reveal a level of multiplicative or additive bias in either re-Gaussianization
or isophotal shapes that could significantly change the measured intrinsic alignment statistics for
LOWZ galaxies on scales up to a few tens of Mpc. In contrast, tests for additive systematic errors in
the shape-shape correlation functions reveal that the de Vaucouleurs shapes are significantly affected
by additive PSF bias. The magnitude of the systematic in the de Vaucouleurs shapes is consistent
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with ∼ 30% of the PSF anisotropy leaking into the galaxy shapes as an additive term.

A comparison of the density-shape correlations (wg+) using the different shape measurement meth-
ods revealed that isophotal (de Vaucouleurs) shapes give ∼ 40 (20)% higher NLA model amplitude,
AI , compared to re-Gaussianization shapes. Since isophotal shapes are slightly rounder on average,
this finding cannot be easily explained in terms of multiplicative bias. These differences in the IA
results may imply isophote twisting of galaxy shapes to make the outer regions more aligned with
the tidal field, consistent with theoretical predictions (Kormendy, 1982; Kuhlen et al., 2007). We
emphasize that our conclusions may not carry over to studies that use significantly fainter or less
well-resolved galaxy samples (e.g., the BOSS CMASS sample), where systematic errors are likely to
be more important. Use of a suite of systematics tests as shown in this paper can be helpful to reveal
problems; however, the issue of multiplicative bias will be difficult to completely resolve from the data
alone.

We also studied the anisotropy of IA signal as a function of rp and Π, finding that NLA model
predictions and those from hydrodynamic simulations are consistent with the observations. The
projection factor from 3D to 2D shapes is the dominant source of anisotropy in the 3D density-shape
correlations ξg+, resulting in peanut-shaped contours in the (rp,Π) plane.

Finally, we investigated the difference in shape-shape intrinsic alignments (w++) detections in
Blazek et al. (2011) vs. Paper I, and identified two significant sources of differences: use of isophotal
rather than re-Gaussianization shapes, and estimation of the signal via projection of C11(s) under the
assumption of isotropy in the (rp,Π) plane rather than via direct projection of ξ++(rp,Π).

Our results have implications for intrinsic alignments forecasting, i.e., the prediction of IA con-
tamination in weak lensing measurements, and for intrinsic alignments mitigation with future surveys.
First, in the case of forecasting, the relevant point is the large variation (up to 40%) in the NLA model
amplitude that is inferred from wg+ measurements using different shape measurement methods. What
is the appropriate amplitude to use for forecasts? We argue that the relevant one to use depends on
the shape measurement method used for estimation of shear in the weak lensing survey for which
forecasts are being done. If using a more centrally-weighted method, our results suggest that a lower
IA amplitude is more appropriate and will give more accurate forecasts.

Second, mitigation of IA may involve joint modeling of IA and lensing in measurements of shape-
shape, galaxy-shape, and galaxy-galaxy correlation functions (e.g., Joachimi & Bridle, 2010). Joint
modeling efforts require a model for intrinsic alignments as a function of separation, redshift and
galaxy properties such as luminosity, with priors on these model parameters. Our results suggest that
the model parameters should have broad enough priors chosen within a range selected specifically
taking into account the radial weighting of the shape measurement method used for shear estimation.
In fact, in the limit that the weak lensing analysis is carried out using two shear estimation methods
for a consistency check, it is plausible that the best-fitting IA parameters inferred using methods that
are more or less centrally-weighted may differ.

Finally, the estimators for measuring IA should also be chosen carefully. For shape-shape corre-
lations, C11 is probably a better estimator than w++. In general, future studies should look at the
full structure of IA in the (rp,Π) or (r, µ) plane and tailor the estimator accordingly. Though outside
the scope of our work in SDSS, it might also be useful for future studies to use shape measurements
that probe different effective radii in a controlled manner, to better quantify the effects of isophotal
twisting and ellipticity gradients in the measured galaxy alignments.

While further investigation into multiplicative biases and ellipticity gradients is beyond the scope
of this work, we have provided a first attempt at reconciling studies about intrinsic alignments in SDSS
that use different shape measurement methods. The large differences that we uncovered suggest that
this issue is one that future weak lensing surveys cannot afford to ignore when forecasting intrinsic
alignment contamination of weak lensing signals.
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7 Conclusions

In chapters 2–4 we presented galaxy-lensing cross correlations, their implications for cosmological
models, theory of gravity and also performed several tests for systematics errors. In chapters 5–
6, we also presented the measurements of intrinsic alignments, their dependence on various galaxy
properties and measurement systematics. In this chapter we present our final conclusions and discuss
some possible directions for future work.

7.1 Weak lensing

In chapter 2 and appendix 4.B, we presented measurements of cross-correlating spectroscopic galaxy
samples from SDSS-BOSS survey with the lensing maps from SDSS and Planck (CMB) surveys.
Using these measurements we constrained the matter density in the universe to ∼ 10% level while
marginalizing over galaxy bias and relative bias in the CMB and galaxy lensing measurements. In the
near future a direct application of these measurements will be to perform a more detailed cosmological
analysis (work in progress at the time of writing) and constrain the growth of structure at the redshift
of lens samples (z ∼ 0.27, 0.6). Using the measurements at small scales, we also measured the mean
halo mass of the lens galaxies but with CMB lensing these constraints are limited due to resolution of
Planck CMB lensing maps. Halo mass constraints from galaxy-galaxy lensing are used in chapter 5 to
understand the evolution of intrinsic alignments with the halo mass. These measurements highlight
the value of galaxy-lensing cross-correlations to study galaxy physics and our results highlighted the
potential power to CMB lensing for such applications with some improvement in resolution from the
upcoming surveys. We also constrained the cosmic distance ratio, R, to about 10% level though this
measurement is not competitive with other cosmological probes due to low redshift of galaxy samples
used. However, a powerful application of R is to test and constrain relative biases in different lensing
maps as it is not very sensitive to cosmology. In addition to many useful applications of galaxy-
lensing cross correlations, results in chapter 2 highlight the power of doing joint analysis of different
probes which allows many internal consistency tests to be performed and help isolate the impact of
systematics.

In chapter 3, we did a detailed study of covariance of galaxy-lensing cross correlations and the
impact of different estimators on the covariance matrices. Using mock samples and theoretical argu-
ments, we accentuated the importance of subtracting measurement around random points from the
signal to improve the covariance. Our results provided justification (similar to Landy & Szalay (1993))
to use mean zero quantities in general when computing n-point functions of cosmological tracers. We
also studied the impact of various sources of covariance (shot noise, cosmic variance, systematics) and
showed that the shot noise and cosmic variance dominate with some contribution from systematics.
Contributions from other sources, especially the super sample covariance and non-gaussian covariance,
are subdominant (though it is important for clustering at small scales, rp . 5h−1Mpc). We showed
that different methods of estimating covariance, jackknife and sub-sampling using data or covariance
from several mock survey realizations, give consistent results as long as mean zero quantities are used.
These results also validated our use of jackknife method to estimate covariances in other chapters.
While our results in this chapter are applicable to lensing measurements from SDSS, the methodology
we developed will also be useful for future lensing studies to carefully analyze and characterize the
behavior of covariance in the measurements.

In chapter 4, we used the measurements from chapter 2 to test the equality of newtonian and
curvature potential by measuring the EG parameter. Our results are consistent with predictions
from ΛCDM model at . 1.5σ levels. However, we did find some tensions in the results with galaxy-
lensing amplitude being lower than the predictions using PlanckΛCDM model (hints of this were
also observed in chapter 2) and galaxy bias from clustering measurements. We performed several
checks for systematic errors, most notably testing the impact of photometric redshifts in appendix 4.E
and testing for the impact of non-linear physics. Our results suggest that no single systematic can

175



7.2. Intrinsic Alignments Chapter 7. Conclusions

explain the entire discrepancy, though a combination of systematics can still lead to observed level of
discrepancies in lensing and CMB measurements.

With the increasing precision of data from ongoing and upcoming weak lensing surveys, the
methodology we have developed for analyzing the weak lensing measurements with a particular fo-
cus on tests for systematics will have broad applications. For example, Schaan et al. (2016) showed
that joint analysis of LSST with CMB stage IV experiments will enable percent level constraints
on cosmology while also providing internal checks to control systematics in shear estimation (they
assumed no systematics in CMB lensing for their analysis). Cross correlations of CMB lensing with
large scale structures at high redshifts (beyond reach of galaxy lensing surveys), using data from deep
surveys such as WFIRST, provides another avenue to study the growth of structure at high red-
shifts, important for dark matter and dark energy constraints. Extending EG to higher redshifts with
increasing precision also enables strong tests of gravity (Pullen et al., 2015b). We also highlighted
several calibration issues in these measurements which will have to be calibrated out with even higher
precisions.

Our results also suggest several avenues for future research, with focus on controlling the impact
of systematics. We need to develop better models for photometric redshifts, especially using the
clustering method. As shown in appendix 4.E, clustering photo-z are sensitive to the priors on galaxy
bias, especially redshift evolution of bias of photometric galaxies which can be hard to constrain given
complicated selection functions. With the help of simulations we can attempt to construct the realistic
survey mocks and get more realistic priors on bias. There is also a pressing requirement to construct
better models for non-linear physics given increasing precision of upcoming surveys. In the context of
EG measurements, we showed that the biases due to non-linear physics can be modeled at precision of
about ∼ 2%, which may not be enough for the upcoming surveys such as LSST and EUCLID, which
aim for percent level measurements. We require better models for non-linear matter clustering and a
better understanding of galaxy formation and evolution to understand galaxy bias and links between
galaxies and matter. We also need better understanding of the covariance in the measurements. While
we did a detailed analysis for several terms in the covariance matrix, our analysis was essentially
limited to gaussian fields. With the reduced contribution from shot noise terms in future datasets, the
contribution from the connected (non-gaussian) terms in the cosmic variance will become important.
While these can be estimated using a large suite of mock samples, improving theoretical models is
necessary for better understanding and also faster generation of covariance matrices.

7.2 Intrinsic Alignments

In chapter 5 we presented a detailed study of Intrinsic alignments (IA) of galaxies for LOWZ sample.
We detected IA over a large range of scales, 0.1 < rp < 200h−1Mpc, tested the validity of linear
alignment model, 5 < rp < 70h−1Mpc (for rp > 70h−1Mpc we are limited by size of jackknife regions
to estimate the covariance). At small scales, rp < 5h−1Mpc non-linear physics is not captured by
the model and we modeled these scales using the halo model from Schneider & Bridle (2010). These
measurements are also modeled by Blazek et al. (2015) using the NFW profile (NFW is not full model
but works because sample has low satellite fractions and measurement is dominated by central-satellite
pairs). We also studied the dependence of IA on various galaxy properties. General conclusions is
that brighter galaxies which are preferentially in more massive and higher bias halos, show stronger
alignments. We did not find any redshift evolution of IA, though the redshift baseline of our sample
is quite small.

In chapter 6, we also tested the IA model in two dimensional space, studying the anisotropy
introduced by projected shapes and redshift space distortions. Linear alignment model successfully
predicts the anisotropies and we also showed that different treatment of anisotropies can explain the
discrepancies in measurements of shape-shape correlations with other studies. We compared different
methods of shape measurements and their impact on IA measurements. IA amplitude was highest
for isophotal shapes followed by de Vaucouleurs and re-gaussianization shapes. We did find some
additive systematics in de Vaucouleurs shapes but tests did not suggest presence of any residual
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systematics in isophotal and re-gaussianization shapes, though our tests are not exhaustive. Since
different measurements weigh galaxy profiles differently, our measurements suggest twisting of galaxy
shapes with outer regions (favored by isophotal shapes) being more strongly aligned with the tidal
fields.

Our observations leave several open questions which are important for IA modeling and mitigation
for weak lensing analysis and also for understanding galaxy physics. While the environment depen-
dence (or the dependence on halo mass/galaxy brightness) are well established now from simulations
and observations, exact physical mechanisms causing these dependences are not well understood yet
and require more detailed studies of IA, especially from simulations. Another open question is study-
ing the redshift dependence of IA. Current studies of redshift dependence use narrow redshift baselines
or by the quality of data. We are currently extending the redshift baseline of our measurement using
the BOSS CMASS sample though our results are limited by the quality of imaging from SDSS. Using
deeper imaging from ongoing surveys, e.g. HSC and DES, will improve the quality of these tests. The
dependence of IA on galaxy radii (with outer regions being more aligned) also requires further inspec-
tion. We stress that our current observations are not guaranteed to be independent of systematics,
since isophotal shapes from SDSS are not very well characterized and are known to have systematics
problems. Also, since central galaxies (which dominate LOWZ sample) reside well inside the halos,
the processes that can lead to shape twisting need to be understood better.
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