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Abstract 

Chip testing is an important step of integrated circuits (“chip”) manufacturing. It involves applying tests to 

each manufactured chip using expensive testers (automatic test equipment) to identify and reject bad 

(malfunctioning) chips. Various types of manufacturing defects (shorts, disconnects, missing vias, etc.) can 

occur during fabrication and cause a chip to malfunction. Testing not only needs to verify every gate, cell, 

interconnect, etc. are operational as expected, but also needs to help identify and analyze existing 

manufacturing defects so that improvements in fabrication, design and even test can be made in a timely 

manner.  

The cost of developing high-quality tests is being driven up by the increasing complexity of defect 

behaviors. New processing technologies introduce new types of defects, some of which only occur in certain 

circuit/layout configurations. It is no longer possible to detect all types of defects using only conventional 

stuck-at tests. More sophisticated fault models and test metrics have been developed to guide the test 

development toward better defect detection, but they also require a significantly larger volume of tests to 

achieve acceptable coverage. Test engineers need to reduce test volume in order to save test cost (i.e., 

achieving high test efficiency), and at the same time prevent most bad chips from escaping test (i.e., achieving 

high test effectiveness). The ability to diagnose a failing chip precisely and accurately (diagnosability) also 

depends on the tests applied. This important characteristic of test is often downplayed in production testing, 

but could be very important during yield ramp-up for quickly discovering major yield-loss contributors. In 

this dissertation, four new methods are developed to improve the state of the art for test development, either 

in terms of diagnosability, test effectiveness or test efficiency. These methods can be used in conjunction, or 

individually for achieving a specific prioritized, goal in test development.  

First, a test-reordering method is developed to improve the diagnosability of production tests. To 

our knowledge, this is the first-ever work that examine the impact of test order on logic diagnosis. Due to 
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constraints such as limited test time or tester memory, a commonly-used practice during production testing 

is to only record the first few failing tests or pins for a failing chip. This recording of an incomplete tester 

response adversely affects the outcome of diagnosis because less information is provided for diagnosis. The 

proposed test-reordering method tries to find an optimal test ordering that can better distinguish stuck-at 

faults when recorded tester response is incomplete. Since the set of candidate defect sites is typically obtained 

based on stuck-at faults, faults that are distinguished from each other are unlikely to become the candidate 

defect site at the same time, which leads to better outcome for diagnosis. 

Second, a fault-model evaluation method (DELAY-METER) is developed to improve test 

effectiveness.  Various delay fault models are proposed in previous work to capture defects that escape slow-

speed testing, but which models should be used to guide the generation of tests for at-speed testing remain 

an open question. The conventional method is to evaluate fault-model effectiveness using test experiments 

involving actual fabricated chips, in other words, tests are developed using various fault models and applied 

to a population of chips to determine which tests are best at detecting defects. Alternatively, DELAY-METER 

evaluates the effectiveness of delay fault models using readily-available fail data from production testing, so 

that an optimal mix of delay fault models can be chosen for at-speed testing. 

Third, a defect-level prediction model (the DDP model) is developed to balance test effectiveness 

and test efficiency. Defect level (DL) represents the fraction of defective chips among all chips that pass tests. 

However DL is difficult to measure directly and be able to predict during test development is of critical 

importance. Conventional DL prediction models become insufficient when tests are generated from multiple 

fault models. The DDP model learns the defect detection probability (DDP) of multiple fault models from 

diagnosis, and combines it with the coverages of multiple fault models to provide a more accurate prediction. 

The more accurate prediction of DL by the DDP model thus enables a better trade-off analysis between test 

effectiveness and test efficiency.  

Finally, a test-selection method is developed to improve test efficiency. Test time reduction (TTR) 

is a focus of research in test development to save test cost and improve test efficiency. One method for TTR 

involves identifying a subset of tests from a large baseline test set. Test selection can be performed based on 

actual tester data measured from tested chips, or data taken from the simulation of the circuit design that has 
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faults/defects injected. Previous work that uses simulation for test selection are only applied to archaic 

benchmark circuits that are too small to be meaningful. A one-pass test-selection method is developed in this 

dissertation that identifies a subset of tests that maximize fault-model coverage while requiring relatively 

limited CPU time and memory. 

To demonstrate the practical utility of the four methods developed in this dissertation, several real 

designs from industry are used in various experiment. Specifically, an ASIC and GPU designs and test data 

taken from a large population of actual fabricated chips are used to experiment the proposed test-reordering 

method and test-selection method. Experiments results demonstrate the improvement in diagnosability and 

test efficiency, respectively. The same ASIC design and test data is not only used by DELAY-METER to 

evaluate the effectiveness of different delay fault models, but also used by the DDP model as both a training 

data for building a DL-prediction model, and a verification data for verifying the prediction accuracy.   
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Chapter 1 Introduction 

With continued scaling propelled by process-technology advancements, integrated circuits (“chips”) can be 

manufactured with higher transistor density, which enables electronic devices to be made smaller, more 

capable, and require less power to operate. However, the increased complexity of a chip also drives up the 

cost of test development [1][2]. Chip testing is an important step of manufacturing especially when it involves 

applying tests to each fabricated chip using expensive testers (automatic test equipment) to identify and reject 

bad chips. Developing high-quality tests is crucial for chip manufacturers as it ensures the quality of shipped 

chips and prevents the additional cost of packaging, shipping and returning bad chips that escape. High-

quality tests should not only reduce test cost without compromising the quality of shipped chips [Die-level], 

but also provide essential feedback for understanding the characteristics of manufactured chips [2].  

The cost of developing high-quality tests is being driven up by the increasing complexity of defect 

behaviors. First, the uptick in design-process interaction leads to the prevalence of systematic defects, which 

occur due to certain circuit/layout configurations such as high pattern density, close pattern proximity, or 

particular layout geometries [2]. The complexity of systematic defects may lead to such a rarity of their 

occurrence that they may only be found after a sufficient number of chips are produced [3]. Second, increased 

process variability and circuit sensitivity cause defects that were once benign to become “killer defects” [2]. 

Experiment data shows that chips have become more and more sensitive to subtle defects, i.e., defects that 

only cause a small amount of additional delay compared to the clock-cycle time [4]. Finally, new processing 

technologies introduce new types of defects, such as various reliability issues related to TSVs (through-

silicon vias) in 3D-integrated chips [5-7].  

There is past work on generating high-quality tests that can be categorized into four major 

categories: diagnosability [21-25], test effectiveness [29-37], test efficiency [18-20] and test-yield loss [8-

10]. Test yield loss refers to the good chips (i.e., chips that satisfy all specifications) that should have therefore 
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passed the testing process but instead have failed and are discarded due to some non-idealities in testing. 

Minimizing test-yield loss can reduce the overall manufacturing cost, but is not the focus of this dissertation. 

This dissertation instead presents new methods for use in test development that either improves diagnosability, 

test effectiveness or test efficiency. The new methods can be used in conjunction, or individually for 

achieving a specific, prioritized goal for a certain phase of test development. 

Diagnosability reflects the capability to diagnose the exact point of failure within a chip that did not 

pass the testing process [11]. High diagnosability enables fast analysis of failing locations, behaviors and 

causes. Improvements in the manufacturing process, the design or even the testing process itself can then be 

made accordingly to improve the yield and/or the quality of the fabricated chips. Diagnosability is especially 

important for chips produced in state-of-the-art technologies, which can contain systematic and design 

dependent defects [12]. Production tests, those used during high-volume manufacturing, however are 

typically optimized for test efficiency (short test time) not for diagnosability [11]. Because the large number 

of chips that fail during high-volume production provide valuable information for yield learning and two new 

methods developed in this thesis work, the necessity of techniques that enhance the diagnosability of 

production tests becomes obvious. 

Test is effective if it detects defects affecting chips. Higher effectiveness means more defects are 

detected during testing, which in turn prevents bad chips from escaping to customers. Reduced test escape 

ensures the quality of shipped chips and minimizes the additional cost of handling custom returns. 

Conventional test-escape prediction models [13-15] state that the probability of defect detection increases as 

fault coverage increases, in other words, tests that detect more faults have higher test effectiveness. However, 

as today’s chip manufacturers typically employ many different types of tests (e.g., stuck-at tests, bridge tests, 

input-pattern tests, etc.), some defects are only detectable by certain test types while others are detectable 

with more than one test type [16]. For example, an open defect on an interconnect between library cells can 

be detected by stuck-at, bridge and input-pattern tests, while an open defect within a library cell may only be 

detectable by input-pattern tests. To find a combination of tests with the highest effectiveness, the test 

engineer has to determine (i) what type of test needs to employ, and (ii) what test coverage to achieve for 
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each type. These decisions are also subject to revision throughout the entire product cycle in response to 

changes in manufacturing processes, thus necessitating a model to provide guidelines. 

Test efficiency is inversely proportional to the cost associated with testing. Test cost is typically 

determined by the volume of test data, since higher test-data volume requires increased tester time and 

memory [17]. By reducing test-data volume, test efficiency is improved and test cost is saved. However, test-

data volume continues to grow as chip complexity increases, due to the fact that there are more defect 

mechanisms to consider and more devices to test [17]. Test efficiency can be improved by removing tests or 

selecting a subset of tests from the original test set. For example, a widely-used method for improving test 

efficiency is to fault-simulate tests in a reverse order and remove tests that do not detect any new faults. 

Silicon data also shows many tests do not uniquely detect defects, and thus can be discarded without any 

impact to test escape [18-20]. Therefore, there is potential for developing techniques that improve test 

efficiency without sacrificing test effectiveness. 

 

Figure 1: Test optimization methods developed in this thesis (shaded) used in a test development flow. 
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Figure 1 demonstrates how the four new methods developed in this thesis optimize test quality in a 

typical test development flow. The shaded bubbles represent steps where a newly-developed method is used. 

After a set of tests is generated using an ATPG (automatic test pattern generation) tool for a given circuit 

design based on some selected fault models, a test-selection work (Section 1.4 and Chapter 5) is developed 

to select a subset of tests with maximum test coverage to improve test efficiency. Then a defect level 

prediction work (Section 1.3 and Chapter 4) evaluates the test effectiveness of the selected tests by predicting 

defect level using test coverages from multiple models and diagnosis results of previously tested chips. Defect 

level prediction enables a trade-off analysis between test effectiveness and test efficiency. For example, test 

generation and selection may be retried multiple times with different settings until a test set with optimal 

effectiveness and efficiency is determined. Next a test reordering work (Section 1.1 and Chapter 2) finds an 

optimal test ordering that better distinguish fault behaviors in order to improve diagnosability. The reordered 

tests are applied to chips on a tester and the failing chips are sent to diagnosis. A fault model evaluation work 

(Section 1.2 and Chapter 3) is developed to find a mix of fault models with the highest test effectiveness 

using the diagnosis results for guiding test generation in the future. In the rest of this chapter, an overview is 

given for each of the four new methods developed in this thesis. 

1.1 Test Reordering for Improving Diagnosability 

Logic diagnosis is an important step for identifying the defect locations within failing chips. Precise 

identification of a defect location enables further analysis of the failure mechanisms using techniques like 

physical failure analysis (PFA), which provides important feedback for improving the fabrication process, 

the design and even test itself [21-22]. Compared with PFA, diagnosis is non-destructive and consumes less 

time and cost, thus can be performed on more failing chips. Diagnosis uses the tester response (fail logs 

collected from testers during the test of failing chips) as input data, and outputs one or more locations (wire, 

gate, etc.) typically called candidates, where defects are most likely located. Diagnostic resolution refers to 

the number of candidates associated with defect locations within a failing chip. Higher diagnostic resolution 

(few candidates) is desired because the success rate of PFA is inversely related to the number of possible 

defect locations. However, several issues make high-resolution diagnosis difficult to achieve. For one thing, 

the tests applied to each chip is just a fraction of all possible input combinations applicable to chip inputs, 
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thus inhibiting the full exploration of the behavior of a defect. In addition, not all failing tests and pins are 

recorded during production testing due to tester time or memory issues, both of which further reduces the 

amount of information provided for diagnosis. 

Previous work on diagnostic ATPG, whose goal is to improve the diagnosability of production tests 

through the addition of tests that aim to distinguish fault locations [12][23-25]. In other words, the goal is to 

ensure that each fault has a unique simulation response, where the simulation response of a fault are to the 

tests and pins that fail when the fault is injected into the design and simulated using the tests as inputs. 

Although the final goal of diagnosis is to determine the site and nature of each defect, the set of candidate is 

typically obtained based on faults [12]. During a typical diagnosis flow, the simulation response of each fault 

within suspect sub-circuits are compared with the tester response, and faults whose simulation response best 

matches the tester response are reported as candidates. If many faults share the same simulation response and 

all match the tester response, they are all typically reported as diagnosis candidates, and the resulting 

resolution could be poor. Such an outcome can possibly be mitigated by adding extra tests that make the 

simulation response of each fault unique, so that some faults whose simulation response no longer match the 

tester response can be excluded from the candidate list.   

Diagnosis using production tests is further complicated by the limited amount of response data 

collected by a tester. Due to limited test time or tester memory, a commonly-used practice during production 

testing is to only record the first few failing tests or pins of the tester response exhibited by a failing chip. 

When an incomplete tester response is used in diagnosis, the diagnosis tool can only use the tests up to and 

possibly including the last failing pattern. Diagnosis with an incomplete tester response intuitively degrades 

resolution, because fewer tests can be used distinguish faults.  

Instead of adding tests to make faults distinguishable (i.e., diagnostic ATPG), this thesis proposes a 

new method that improves resolution through test reordering. The objective of this new method is to find a 

test ordering that makes more faults (SSL faults in particular) distinguishable from each other, under the 

assumption that a tester only records the first N failing tests for a failing chip. The intuition used in this test 

reordering approach is simply based on the fact that, because only the first N failing tests are used in diagnosis, 

tests that are better at distinguishing faults should be at the beginning of the reordered test sequence. The 
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reordering is accomplished using a one-pass flow to save CPU time and memory. Each test from the original 

test set is fault-simulated and inserted to an optimal location in the reordered test sequence one by one in a 

streaming fashion.  

The diagnostic resolution improvement of the reordered test sequence is verified on two industrial 

designs, specifically, an IBM ASIC (10 million transistors) and an NVIDIA GPU (100 million transistors). 

Tester responses collected from the fault simulation results of 1,689 virtually injected defects and from the 

fail logs of 1,000 chips failed on testers are used as input data. For each failed chip, incomplete tester 

responses are generated for both the original test sequence and the reordered test sequence, by keeping only 

the tester responses of the first N tests while discarding the rest. Diagnosis is then performed using the 

incomplete tester responses to compare diagnostic resolution and accuracy between the original and the 

reordered test sequence. Experiment results show the number of failing chips with perfect diagnostic 

resolution is increased by 8.1% for IBM ASIC and 5.7% for NVIDIA GPU, while diagnosis accuracy is 

maintained.  

1.2 Delay Fault Model Evaluation for Improving Effectiveness 

As defect complexity increases, using only conventional stuck-at tests can lead to undesirable levels of escape 

[26]. To ensure test effectiveness, chip manufacturers typically employ many different types of tests. Each 

type of test is generated under the guidance of a fault model or a test metric, each of which is targeting the 

behavior of a certain type of defects. A fault model is simply an abstract of a defect type. Widely-used fault 

models include the single stuck-line (SSL) or stuck-at [1], bridge [27], transition-delay [28] and input-pattern 

[29] fault models. A test metric does not model a defect per se but instead specifies how tests should be 

generated for detecting defects. Examples of test metrics include N-detect [30], PAN-detect [31], KLPG [32] 

and TARO [33]. In this dissertation, test metric will not be distinguished from a fault model. 

Identifying an optimal test set that achieves high effectiveness first requires one to select which fault 

models to employ for guiding test generation. There is no straightforward approach however for making this 

decision. Different designs and different fabrication processes may cause the occurrence of different types of 

defects, so the effectiveness of a fault model may vary. Effectiveness of a fault model equates to how well 
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tests generated under the guidance of the model can detect real defects. Tests generated from a fault model 

with higher effectiveness detect more defects and contribute to lower test escape. Accurate effectiveness 

evaluation allows test engineers to choose the proper mix of fault models for achieving a required quality 

level, instead of arbitrarily using tests from all possible fault models in some ad hoc fashion. 

Conventionally, fault model effectiveness is measured through tester experiments involving real 

chips [4][34-36]. A tester experiment typically involves generating a separate set of tests for each fault model, 

followed by the application of each test set separately to a population of fabricated chips. The fault models 

are then typically evaluated and compared based on the number of failed chips detected by their 

corresponding tests sets. However tester experiments incur extra time and money and their results may not 

be accurate. The inaccuracy comes from the fact that most conventional tester experiments do not look into 

each failed chip and verify whether the defect behavior matches the faulty behavior predicted by the fault 

model. Some chips may be detected fortuitously but the fault model is still incorrectly credited with detection. 

MEasuring Test Effectiveness Regionally (METER) [37] is an alternate, inexpensive approach to 

evaluate fault model effectiveness. METER only uses the fail logs collected from chips failed during 

production testing as input and evaluates fault models through diagnosis and fault simulation, so it does not 

need to rely on expensive tester experiments. Each failed chip is diagnosed to identify it suspect regions, i.e., 

regions that are believed to cause chip failures. Faults within suspect regions are simulated. A fault model is 

credited with high effectiveness if fault detection within suspect regions are correlated with defect detection. 

Compared with conventional tester experiments, METER provides a more thorough evaluation through 

diagnosis of each failed chip. However, the evaluation accuracy may be affected if diagnostic resolution is 

poor, but the approach is significantly better than conventional tester experiments. 

This dissertation extends METER to the evaluation of several delay fault models (termed as 

DELAY-METER) used in at-speed testing, including TDF, N-detect TDF, TARO [33], KLPG [32] and 

KLPO (described in Chapter 3). Since certain types of defects (resistive open, resistive bridge, etc.) may 

escape tests that are applied at slow-speed (e.g., stuck-at tests), at-speed testing become mandatory in industry 

to maintain test quality [38]. DELAY-METER enables the evaluation of delay fault models even when the 

diagnostic resolution of delay defects is poor. DELAY-METER consists of four steps: (1) Tester response 
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data pre-processing; (2) Suspect-region identification; (3) Effective fault selection and (4) Fault model 

evaluation. The first step chooses the chips and tests that are suitable for evaluation. The second step identifies 

the suspect regions within each failed chip using a conservative diagnosis approach. The third step identifies 

effective faults within suspect regions whose detection is always accompanied with chip failure. The fourth 

and the final step evaluates the effectiveness of a fault model based on the simulation response of effective 

faults and the tester response of each failed chip. Experiment are performed using actual test data collected 

from an IBM ASIC. Effectiveness is measured and compared using all five delay fault models. 

1.3 Defect Level Prediction for Balancing Effectiveness and Efficiency 

One important goal of test development is to strike a balance between test effectiveness and test efficiency. 

More specifically, to find a test set of small volume that achieves low test escape. Test escape is usually 

measured as defect level (DL), which represents the proportion of defective chips among all chips that pass 

testing. DL is usually expressed in units of DPPM (defective parts per million). Different products have 

different DL requirements, but test development follows similar scenarios: either minimize DL for a given 

constraint on test cost, or alternatively ensure that DL does not exceed some pre-determined threshold [39]. 

In either scenario, DL enables test engineers to estimate the return on investment for test generation effort in 

order to perform trade-off analysis [16]. However, DL is often hard to measure directly, and its exact number 

cannot be determined until all defective parts are returned by customers.  One commonly-used solution is to 

build a model to predict DL based on the characteristics of the chip design and the tests applied that include, 

for example, yield and test coverage.  

The most widely known DL-prediction models include the Williams & Brown [13] model and the 

Seth & Agrawal [14] model. Both models predict DL as a function of yield and fault coverage from a single 

fault model (in most cases, the SSL fault model). But both models become inadequent when tests are 

generated and combined from multiple fault models. For example, both models predict DL=0 when SSL fault 

coverage is 100%, which is not the case especially for modern fabrication technologies and chip designs. In 

other words, escape still occurs with 100% SSL fault coverage [26]. There is several recent work [15-16] 

however that take into account fault coverage from multiple models. But these approaches are either derived 

empirically, or weight each fault model equally.  
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In this work, we propose a new method (called the DDP model) that learns the defect detection 

probability (DDP) of fault models from the diagnostic results of failed chips, and predicts DL using both 

DDP and the coverage from multiple fault models. DDP is defined as the probability a defect is detected 

when all faults from a fault model are detected. Tester responses from failed chips are used as input data for 

the DDP model, and several widely-used fault models are chosen to predict DL. DDP is estimated for each 

chosen fault model and each failed chip in the input data through diagnosis and fault simulation. A probability 

density function (PDF) of DDP is then calculated using the estimated DDP of the chosen fault models and 

all failed chips. The learned PDF of DDP combined with yield can be used to predict DL of any given test 

set.  

Virtual and actual chip experiments are conducted on an IBM ASIC design to verify the DL 

prediction accuracy of the DDP model. In each experiment, chips that fail before a “cutoff” test are used as 

training data to train a DL-prediction model. The trained model then predicts how many defective chips will 

be detected after the “cutoff” test. The prediction result is compared with the actual number of detected 

defective chips, and the prediction result of other DL-prediction models. Experiment results show the DDP 

model provides a more reliable prediction than conventional models. 

1.4 Test Selection for Improving Efficiency 

As chip manufacturers begin to use various sophisticated fault models to generate tests, the associated test 

cost also increases significantly. Many new fault models require a significantly larger number of tests to 

achieve acceptable coverage [36][40]. For example, a 6-detect SSL test set is more than three times larger 

than a conventional SSL test set [40]. Moreover, tests generated from multiple fault models are typically 

combined together, thus further exacerbating the issue with test-set size, since a larger test-set size leads to 

higher test cost. However it is observed that most defective chips can be made to fail with significantly fewer 

tests than the number typically applied [18][20]. If a subset of tests can be selected from a larger pool of tests 

while ensuring most defective chips are detected, test efficiency is improved without sacrificing test 

effectiveness. Solving this test-selection problem is the key objective of many published papers on test time 

reduction (TTR) [17][41-43] and adaptive testing [18-19][44].  
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Previous work on test-selection can be categorized into either silicon-based or simulation-based. 

Silicon-based test selection work [18][44] equates the number of failed chips detected by each test as 

effectiveness. Tests with low effectiveness are either eliminated or applied on a sample basis. Silicon-based 

test selection requires a large sample of tested chips as input data, which may not be available during the 

early stage of manufacturing. Simulation-based test selection work [41-43][45] calculates the effectiveness 

of each test from fault simulation, such as calculating N-detect coverage [45], or the defect-level contribution 

based on fault detection [43]. An optimal test set that achieves maximum effectiveness with a limited number 

of tests is selected using mathematical tools that solve linear programming (LP) or integer linear 

programming (ILP) formulations. However, previous simulation-based approaches are only applied to small 

benchmark circuits. Alternatively, when applied to large industrial circuits with larger test sets and fault sets, 

both the time and memory cost may increase significantly, which is demonstrated in the experiment results 

in Chapter 5. 

Since many DL-prediction models [13-16] predict DL to decrease as fault coverage increases, this 

dissertation aims at selecting a subset of tests that achieve the highest fault coverage. The test-selection 

problem is NP-complete but can be modeled as a maximum-K coverage problem [46]. Motivated by online 

maximum-K coverage algorithms [47-48], a one-pass test-selection method is developed to provide a time-

and-memory-efficient approach for selecting tests from a large pool of tests. The one-pass method processes 

one test at a time in a streaming fashion. After each test is fault-simulated, the one-pass method compares the 

simulated test with other selected tests, and decides whether the test should be kept or discarded.  Unlike 

previous methods, the one-pass method does not need to keep fault simulation results of all tests in memory, 

and only needs to processes each test once, resulting in low computation and memory complexity. 

Experiments are performed to select tests for two large industrial circuits and two benchmark circuits. The 

selected tests are compared in terms of fault coverage with tests selected using the greedy algorithm, an LP-

based approach, and tests selected based on the original ordering Experiment results demonstrate that the 

one-pass method selects tests with coverage that virtually matches a greedy algorithm (less than 0.01% 

coverage difference), but uses less time (reduced by 2X) and memory (reduced by 20X to 200X). 
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1.5 Dissertation Organization 

The rest of the dissertation is organized as follows: Chapter 2 describes a one-pass test-reordering method 

developed to improve diagnosability of production tests. Chapter 3 describes DELAY-METER, a method 

used to evaluate the effectiveness of delay fault models based on diagnosis. Chapter 4 describes the DDP 

model, a model that predicts DL from diagnosis data and fault coverages of multiple fault models. Chapter 5 

describes a one-pass test-selection method developed to select a subset of tests for achieving maximum fault 

coverage. Chapter 6 concludes the contribution of this thesis and provides topics for future work. 
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Chapter 2 Test Reordering for Improving 

Diagnosability 

Improving diagnosability using production tests is very important because: (i)  High diagnosability enables 

fast analysis of failing locations, behaviors that leads to valuable feedback for achieving fast yield ramp-up. 

(ii) The large number of chips that fail during high-volume production enable the extraction of information 

that is statistically-significant for yield learning. (iii) Production tests are typically optimized for defect 

detection, not for diagnosis. For example, not all failing tests and pins are recorded in the tester response of 

a failing chip, which makes diagnosis more difficult. In this chapter, a test-reordering method is developed 

to improve the diagnosability of production tests when the recorded tester response is, by design, incomplete. 

To our knowledge, this is the first-ever work that examines the impact of test order on logic diagnosis. The 

experiments uses test data taken from both virtual and real failing chips of two industrial designs to verify 

the improvement of diagnosability stemming from a production test set that has been reordered using the 

method developed in this work. Experiment results show that the number of failing chips with perfect 

diagnostic resolution is increased by 8.3% and 5.1%, respectively, for two industrial designs after tests are 

reordered. The number of failing chips with diagnostic resolution ≤ 5 is increases by 1.9% and 1.5%, 

respectively, for the two designs. In all cases, diagnosis accuracy is also maintained. 

2.1 Background 

Logic diagnosis is an important first step for identifying the defect locations within a failing chips. Diagnosis 

uses a tester response (i.e., a fail log collected from a tester during the test of a failing chip) as input data, and 

produces one or more circuit locations (wire, gate, etc.) typically called candidates, where defects are believed 

to be most likely located. Diagnosis methods can be categorized into either cause-effect or effect-cause 
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methods [49]. Cause-effect diagnosis assumes a defect behaves like a fault from a given fault model. By 

comparing the simulated behavior of each fault (simulation response) with the measured tester response, 

faults whose simulation responses best match the tester response are reported as candidates. Effect-cause 

diagnosis, on the other hand, starts from failing outputs and reasons back through the chip design to identify 

lines that (if faulty) could have caused the failing outputs [49]. Most state-of-the-art diagnosis tools (including 

the commercial diagnosis tools used in this dissertation) use a combination of cause-effect and effect-cause 

approach to perform diagnosis. More specifically, regions where defects are possibly located are first 

identified using an effect-cause approach, then faults (typically SSL faults) within the identified regions are 

simulated and compared with the tester response to find and report candidates in a cause-effect manner.  

Precise and accurate diagnosis enables further analysis of the failure mechanisms using techniques 

like physical failure analysis (PFA), which provides important feedback for improving the fabrication process, 

the design and even test itself. The precision of diagnosis is typically measured by diagnostic resolution. 

Diagnostic resolution refers to the number of candidates associated with defect locations within a failing chip. 

Higher diagnostic resolution (few candidates) is desired because the success rate of PFA is inversely related 

to the number of possible defect locations. The accuracy of diagnosis is also very important. Accuracy can 

be calculated in many ways, for example, as the fraction of failing chips whose candidates include the real 

defect locations. Inaccurate diagnosis leads to wasted efforts in PFA and may provide wrong feedback to 

manufacturing and testing. In this chapter, although not directly mentioned everywhere, improving diagnostic 

resolution is accompanied by a secondary goal of maintaining diagnosis accuracy. 

There are many previous publications focused on improving diagnostic resolution. One approach is 

to improve the fault model or the algorithm used in diagnosis to deal with defects with complicated behaviors. 

For example, multiple-fault diagnosis [50][51] assumes the defects affecting a failing chip can cause multiple 

signal lines to be simultaneously faulty [49], and tries to identify diagnosis candidates by analyzing each 

failing test individually [50] or by simulating an unknown value (X) on each suspected location [51].  

Physical-aware diagnosis [52] analyzes the logical values on signal lines in the physical or logical proximity 

to a faulty line to remove candidates that have inconsistent behaviors. Machine learning can also be used in 
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diagnosis [21] to predict whether a diagnosis candidate is true or false, with predicted false candidates 

discarded to improve diagnostic resolution.  

An alternative approach to improve diagnostic resolution is to provide diagnosis with a better input 

data, for example, by applying extra tests or recording more tester response. Diagnostic ATPG [12][24] 

generates and applies extra tests to make faults distinguishable, in other words, the objective is to make the 

simulation response of each fault unique. Faults that are distinguished from each other are unlikely to become 

diagnosis candidates at the same time, which leads to higher diagnostic resolution. Due to limited tester time 

or memory, typically not all tester response is recorded when a chip failed, diagnostic resolution can be 

improved by collecting tester response in an “intelligent” way [53][54]. The work in [53] uses diagnosis 

results from previously tested chips to predict the amount of tester response that needs to be recorded. 

Alternatively, the work in [54] allows testers dynamically determine a subset of tests whose tester responses 

are recorded. Diagnostic resolution can also be improved through test reordering [55], by placing the tests 

with high scan-chain diagnosability at the beginning of a new ordering of tests to improve scan-chain 

diagnosis. 

The test-reordering method developed in this chapter optimizes the recorded tester data for 

achieving a better diagnostic resolution. By reordering the tests to enable faults to have different simulation 

responses, diagnostic resolution can be improved when a limited tester response is recorded for each failing 

chip. The rest of the chapter is organized as follows: Section 2.2 introduces the test-reordering method. 

Section 2.3 provides experiment results verifying diagnostic resolution improvement for two industrial 

designs (an IBM ASIC and an NVIDIA GPU). Section 2.4 summarizes the chapter by reiterating the 

contributions of this work.  

2.2 Methodology 

This section introduces the test-reordering method and is organized as follows: Section 2.2.1 reviews the 

practice of collecting incomplete tester response in production testing, and how diagnostic resolution could 

be adversely affected. Section 2.2.2 provides an example how diagnostic resolution can be improved through 

test reordering. Finally, Section 2.2.3 describes the detailed one-pass flow for test reordering. 
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2.2.1 Incomplete Tester Response 

The chips that fail during high-volume production can provide valuable information for yield learning. 

However, the limited amount of information recorded for each failing chip makes diagnosis difficult. For 

better diagnostic resolution, it is desired that all tests are applied and the full tester response (all failing tests 

and output pins information) is recorded. However due to limited tester time and/or memory, typically only 

the tester response from a subset of tests (i.e., incomplete tester response) is recorded. Common practice is 

to record tester response for a failing chip on a first-come basis until the tester memory is full, from which 

point no more tester responses are recorded. This practice adversely affects diagnostic resolution since less 

information is provided to diagnosis [53]. As an alternative solution for improving diagnostic resolution, 

recent work has proposed “intelligent” ways for collecting a tester response, such as allowing testers to 

dynamically determine when to stop recording [53], or to select which test responses should be recorded [54]. 

However, these proposed approaches for tester-response collection require real-time computation on testers 

which are not yet commonplace. In this work, the tester response is assumed to be collected normally, that 

is, on a first-come basis.  

 

Table 1: The average, median and maximum number of failing tests per chip recorded in the tester response 

from six industrial designs aimed at various technology nodes. 

In order to find an optimal ordering for improving diagnostic resolution when an incomplete tester 

response is collected, certain assumptions need to be made concerning when a tester stops collecting data. 

This work assumes only the tester response from the first N failing tests is recorded. This assumption is a 

simplification of the common practice in tester response collection. In reality, the number of failing tests 

recorded for each failing chip may vary based on the size of tester memory and the number of failing output 

pins associated with each failing tests. Table 1 shows the average, median and maximum number of failing 

Average Median Max

NVIDIA GPU 90 nm 117 93 655 

IBM 130 nm 8.09 6 20 

Freescale 55 nm 32.3 10 255 

LSI 110 nm 64.2 61 200 

NVIDIA test chip 28 nm 47.9 9 402 

GLOBAL FOUNDRIES 28 nm 165 159 276 

No. of recorded failing tests
Design Technology



16 

 

tests per chip recorded in the tester response from six different industrial chip designs (tester responses are 

all collected on a first-come basis). An empirical value of N can be derived from the statistics of previously-

tested chips based on the median values listed in Table 1. This simplified assumption, although not ideal, 

makes the test-reordering problem solvable in a reasonable amount of time using only the set of faults 

detected by each test, which can easily be acquired from fault simulation or a pass-and-fail fault dictionary. 

2.2.2 Intuition of Test Reordering 

The goal of the test reordering work is to find an optimal ordering that make faults distinguishable when only 

the first N failing tests are recorded in the tester response. Making faults distinguishable is a goal pursued by 

previous work on diagnostic ATPG [12][24]. Diagnostic ATPG improves the diagnosability of production 

tests by adding extra tests that cause each fault to have a different, unique simulation response. Because the 

set of diagnosis candidates is typically obtained based on faults (in particular, SSL faults) [12], when the 

simulation responses of faults are different from each other, they are unlikely to become candidates for a 

given chip. Therefore the number of reported diagnosis candidates is effectively reduced and diagnostic 

resolution is improved. The proposed test-reordering work however does not use extra tests, it instead 

attempts to improve diagnostic resolution when fewer tests are provided for diagnosis due to an incomplete 

recording of a tester response.  Using fewer tests in diagnosis may lead to poor diagnostic resolution, as 

illustrated in an example shown in Table 2. Assume six tests (t1, t2, …, t6) are applied to a chip on a tester, 

and the chip fails t2, t3 and t5. The three failing tests are recorded as the tester response shown in the row 

“Tester” in Table 2(a). Three faults fX, fY and fZ are simulated and compared with the tester response in cause-

effect diagnosis (assuming only failing tests not failing pins are used in diagnosis).  fY is identified as the sole 

diagnosis candidate because the simulation responses of fX and fZ do not match the tester response. Therefore, 

perfect diagnostic resolution is achieved in the example shown in Table 2(a). However, when N=2, which 

means the tester only records the first two failing tests t2 and t3, the pass-and-fail information for tests after 

t3 is not recorded and cannot be used in diagnosis as shown in Table 2(b). As a result, all three faults fX, fY 

and fZ become diagnosis candidates because their simulation responses now match the tester response for t1, 

t2 and t3. In other words, fX, fY and fZ cannot be distinguished using only t1, t2 and t3, so the resulting diagnostic 

resolution in Table 2(b) is three, worse than the perfect resolution achieved in Table 2(a). 
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                                             (a)                                                                     (b) 

Table 2: A diagnosis example where fY is the sole diagnosis candidate in (a) when full tester response is 

provided, but in (b) incomplete tester response causes all three faults fX, fY and fZ to become diagnosis 

candidates. 

               

                                             (a)                                                                     (b) 

Table 3: A diagnosis example where fY is the sole diagnosis candidate when either (a) full tester response or 

(b) incomplete tester response is provided, diagnostic resolution is no longer affected in this ordering. 

However, if tests are reordered to (t1, t4, t5, t2, t3, t6), as shown in Table 3, then perfect resolution (fY 

is the sole diagnosis candidate) is achieved using either the full tester response in Table 3(a), or the incomplete 

tester response (N=2) in Table 3(b). Both t4 and t5 provide vital information for distinguishing fX, fY and fZ 

because they exhibit the difference in the simulation response of the three faults. By reordering t4 and t5 to 

the beginning of the reordered test sequence, the diagnostic resolution using incomplete tester response (N=2) 

is greatly improved from three in Table 2(b) to one in Table 3(b). This example demonstrates the intuition of 

the test-reordering method developed in this chapter. 

2.2.3 One-Pass Test-Reordering Flow 

To save time and memory, tests are reordered in a one-pass approach as illustrated in the flow diagram in 

Figure 2. The input data of the test-reordering method is a test sequence consisting of T tests (t1, t2, …, tT) 

called here the original sequence, which could be a sequence of production tests generated from ATPG. Tests 

from the original sequence are fault simulated and processed by the test-reordering method one by one in a 

t 1 t 2 t 3 t 4 t 5 t 6

Tester P F F P F P

f X P F F F P P

f Y P F F P F P

f Z P F F P P P

t 1 t 2 t 3 t 4 t 5 t 6

Tester P F F

f X P F F

f Y P F F

f Z P F F

t 1 t 4 t 5 t 2 t 3 t 6

Tester P P F F F P

f X P F P F F P

f Y P P F F F P

f Z P P P F F P

t 1 t 4 t 5 t 2 t 3 t 6

Tester P P F F

f X P F P F

f Y P P F F

f Z P P P F
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streaming fashion. Assume t1, t2, …, ti-1 have already been processed by the test-reordering method, and the 

|i-1| processed tests are reordered and placed in a new test sequence, called the reordered sequence. When 

the test-reordering method begins to process ti, the first step is to fault simulate ti and identify all faults 

detected by ti. Then based on faults detected by previous tests t1, t2, …, ti-1 and  ti, an optimal insertion point 

is found for ti in the reordered sequence to minimize average diagnostic resolution (ADR, formally defined 

in the subsequent paragraph). After the insertion of ti into the reordered sequence, the next test ti+1 is fault-

simulated and inserted in the same way. After all T tests are inserted into the reordered sequence, test 

reordering is complete and the reordered sequence becomes the final test-reordering output. The benefit of 

this one-pass approach is that reordering can be performed simultaneously with fault simulation to save 

overall computation time cost. Moreover, after ti is inserted into the reordered sequence, the fault simulation 

result of ti can be deleted from memory. So throughout the test reordering process the memory requirement 

is low.  

The process of finding an insertion point for ti into the reordered sequence is to list all possible 

insertion points (i points), and find a point where if ti is inserted, average diagnostic resolution (ADR) would 

be minimized, as illustrated in the center part of Figure 2. Under the assumption that only N tests are recorded 

in the tester response, and the defect behaves as an arbitrarily-selected fault from a fault set F, the value of 

ADR for a given test sequence s, ADR(s,N) is calculated as follows: 

𝐴𝐷𝑅(𝑠, 𝑁) =  
∑ |∀𝑓𝑘:   𝑓𝑘 ∈  𝐹 𝑎𝑛𝑑 𝑆𝑅(𝑓𝑘, 𝑠, 𝑁) = 𝑆𝑅(𝑓𝑗, 𝑠, 𝑁)|𝑓𝑗 ∈ 𝐹

|𝐹|
 (1) 

where SR(f, s, N) represents the first N failing tests in the simulation response of fault f in test 

sequence s, ADR(s, N) is the expected diagnostic resolution if the defect behaves like an arbitrarily-selected 

fault fj in F, and only the first N tests are recorded in the tester response. Because in diagnosis, all faults (fk 

in Equation 1) that have the same failing tests as fj will be reported as candidates (assuming failing-pins 

information is not used in diagnosis). Consider an example shown in the left part of Table 4(a), s = (t1, t4, t3, 

t2), N = 2, and F = {f1, f2, f3, f4}. For f1, there is only one fault k=1 that satisfies both fk ∈F and SR(fk, s, N=2) 

= SR(f1, s, N=2), because faults other than f1 have simulation responses different from f1. However for f3, 

there are two faults k=3 and k=4 which satisfy fk ∈F and SR(fk, s, N=2) = SR(f3, s, N=2), because f3 and f4 

have the same simulation responses. So ADR(s, N=2) = (1+1+2+2)/4 = 1.5.  
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Figure 2: The flow diagram of the one-pass test-reordering method. 

                         

                                             (a)                                                                     (b) 

Table 4: An example showing the change of fault simulation responses (a) before and (b) after a new test t5 

is inserted into a test sequence (t1, t4, t3, t2), when N = 2. 

After a new test is inserted into a reordered sequence s, the new reordered sequence is named as s′. 

The test-reordering method attempts to find an insertion point where ADR(s′, N) can be minimized. As shown 

 

t 1 t 4 t 3 t 2 t 5

f 1 F P P P F

f 2 F F F

f 3 F P F F

f 4 F P F P

t 1 t 5 t 4 t 3 t 2

f 1 F F

f 2 F F

f 3 F F

f 4 F P F
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in the right part of Table 4(a), a new test t5 detects three faults f1, f2 and f3 and has to be inserted into s. Table 

4(b) shows SR(f, s′, N=2) when t5 is inserted before t4 and after t1, s′ = (t1, t5, t4, t3, t2). After the insertion of 

t5, ADR(s′, N=2) becomes larger than ADR(s, N=2), because f1, f2 and f3 now have the same SR(f, s′, N=2) and 

are no longer distinguished from each other, which implies this insertion point might not be optimal. The 

calculation of ADR(s′, N=2) for all possible insertion points where t5 can be inserted is shown in Table 5. 

SR(f, s′, N=2) is listed for each fault and each possible s′ after t5 is inserted.  The insertion example shown in 

Table 4(b) corresponds to the second column in Table 5. Equivalent values for SR(f, s′, N=2) are marked in 

the same color in Table 5. As can be seen, the last two insertion points “after t3, before t2” and “after t2” cause 

the four faults to have three different values for SR(f, s′, N=2) compared to other insertion points that only 

have ≤2 different values for SR(f, s′, N=2). In other words, these two insertion points make faults more 

distinguishable and become the ideal insertion points for t5. The last row in Table 5 shows the calculation of 

ADR(s′, N=2) for each insertion point. The last two insertion points have the lowest values for ADR(s′, N=2), 

and the test-reordering method can choose either of them as an insertion point for t5. 

 

Table 5: Calculation of ADR for all possible points for t5 (N=2). The first two tests that detect each fault 

after t5 is inserted at each insertion point are listed. The last two insertion points have the lowest ADR and 

become the ideal insertion points. 

 

2.3 Experiments 

This section presents the experiment results verifying the diagnostic resolution improvement of the test-

reordering method on an IBM ASIC and an NVIDIA GPU. Section 2.3.1 describes the flow of both IBM 

ASIC and NVIDIA GPU experiments. Sections 2.3.2 and 2.3.3 present the IBM ASIC experiment results 

Before t 1

After t 1, 

before t 4

After t 4, 

before t 3

After t 3, 

before t 2 After t 2

f 1 {t 1,t 5} {t 1,t 5} {t 1,t 5} {t 1,t 5} {t 1,t 5}

f 2 {t 1,t 5} {t 1,t 5} {t 1,t 4} {t 1,t 4} {t 1,t 4}

f 3 {t 1,t 5} {t 1,t 5} {t 1,t 5} {t 1,t 3} {t 1,t 3}

f 4 {t 1,t 4} {t 1,t 4} {t 1,t 4} {t 1,t 4} {t 1,t 4}

ADR

(3×3+1)/4

=2.5

(3×3+1)/4

=2.5

(2×2+2×2)

/4=2

(2×2+1+1)

/4=1.5

(2×2+1+1)

/4=1.5
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and NVIDIA GPU experiment results, respectively. Section 2.3.4 provides further discussion about the 

experiments. 

2.3.1 Setup 

Two experiments are conducted to verify the diagnostic resolution improvement of the test-reordering 

method for two industrial designs, an IBM ASIC and an NVIDIA GPU. The setup of both experiments can 

be described using the flow diagram illustrated in Figure 3. The original sequence of tests for both 

experiments use the production tests generated from ATPG. The reordered sequence of tests are generated 

from the original sequence using the test-reordering method to optimize ADR for all collapsed SSL faults. 

Before test reordering, the value of N (the number of failing tests recorded by a tester) needs to be specified, 

because the calculation of ADR and the resulting reordered sequence are dependent on the choice of N. A 

number of different N values are investigated to verify the robustness of the test-reordering method. The 

major input data for diagnosis is the original full tester response, which is either collected from testing of 

actual chips or from the simulation of chips injected with virtual defects.  Based on the reordered sequence, 

the original full tester response can be transformed into the reordered full tester response by changing the test 

indices. The original and reordered versions of incomplete tester responses can then be generated from the 

two versions of full tester responses, respectively, by emulating a tester that only records the first N failing 

tests of each failing chip. A commercial diagnosis tool is then used to diagnose the original and reordered 

incomplete tester response. Diagnostic resolution and accuracy are measured from diagnosis logs and 

compared.  
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Figure 3: Experiment flow diagram comparing the diagnostic resolution achieved using the original 

sequence and the reordered sequence of tests. 

2.3.2 IBM ASIC Experiment Result 

The IBM ASIC used in this experiment is manufactured in 130nm technology and contains about 10 million 

transistors. The total number of uncollapsed SSL faults is 4.4 million. The original sequence of tests includes 

3,321 stuck-at tests generated by the ATPG tool Cadence® Encounter Test® that achieve more than 99% 

SSL fault coverage. The order of tests in the original sequence is the same as the order of tests applied during 

production testing. The original full tester response is generated from the fault simulation results of a 

population of 1,689 virtual failing chips. The virtual failing chip population is created by injecting various 

types of defects, including SSL, dominant bridge, AND/OR bridge, input-pattern and MSL (multiple stuck 

line), into each virtual failing chip, in order to ensure the virtual failing chip population resembles a realistic 

failing chip population.  
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Table 6: Comparison of diagnostic resolution and diagnosis accuracy achieved from the original sequence 

and the reordered sequence for the IBM virtual failing chip population. 

The top part of Table 6 compares the diagnostic resolution achieved from the original sequence and 

the reordered sequence for the IBM virtual failing chip population. Five separate experiments are conducted 

with different N values ranging from 1 to 10. The number of failing chips that have ≤5 diagnosis candidates 

are listed, because failing chips with fewer diagnosis candidates have higher success rate for PFA and thus 

are more important for yield learning. As can be seen, the number of failing chips that have perfect diagnostic 

resolution (K=1) is increased (by 8.3% on average) in all five experiments after tests are reordered. The 

number of failing chips with diagnostic resolution ≤ 5 is increased by 1.9% on average after tests are 

reordered. The bottom part of Table 6 shows the comparison of diagnosis accuracy. A diagnosis candidate is 

identified as a “true candidate”, if it is located on the same signal line where the virtual defect is injected. 

Diagnosis is considered accurate if a true candidate is included in the set of diagnosis candidates. As can be 

seen in the bottom part of Table 6, the number of failing chips that have both perfect diagnostic resolution 

(K=1) and accurate diagnosis is increased (by 10.6% on average) in all five experiments after tests are 

reordered. The number of failing chips with perfect diagnostic resolution (marked as “all”) and with both 

perfect resolution and accurate diagnosis (marked as “accurate”) are plotted in Figure 4. The number of 

failing chips with good diagnostic resolution (resolution ≤ 5) and with both good resolution and accurate 

diagnosis are plotted in Figure 5. From Table 6, Figure 4 and Figure 5, it can be seen that the test-reordering 

method not only improves diagnostic resolution, but also maintains high diagnosis accuracy.  

Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered

1 397 511 811 812 870 889 867 960 850 946

2 247 262 295 340 289 273 305 259 318 271

3 160 195 149 123 151 132 158 126 147 122

4 123 130 96 78 97 68 87 70 95 79

5 100 84 45 57 48 61 48 43 57 47

SUM 1027 1182 1396 1410 1455 1423 1465 1458 1467 1465

Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered

1 315 412 683 685 739 762 744 809 736 812

2 202 220 251 290 252 230 263 217 269 224

3 134 170 131 115 129 116 130 118 125 111

4 99 110 88 66 87 63 80 68 87 76

5 92 76 43 51 45 57 44 41 54 45

SUM 842 988 1196 1207 1252 1228 1261 1253 1271 1268

The number of failing chips that have K  diagnosis candidates and at least one candidate is true candidate

K

The number of failing chips that have K  diagnosis candidates

K
N  = 1 N  = 3 N  = 5 N  = 8 N  = 10

N  = 1 N  = 3 N  = 5 N  = 8 N  = 10
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Figure 4: Comparison of the number of failing chips with perfect resolution (all) and also with accurate 

diagnosis (accurate) between the original sequence and the reordered sequence for the IBM virtual failing 

chip population. 

 

Figure 5: Comparison of the number of failing chips with diagnostic resolution ≤ 5 (all) and also with 

accurate diagnosis (accurate) between the original sequence and the reordered sequence for the IBM virtual 

failing chip population. 

Figure 6 shows a scatter plot comparing the diagnostic resolution of the original sequence with the 

reordered sequence for each virtual failing chip when N = 10. Only chips with both original and reordered 

resolution ≤ 20 are shown in the scatter plot. The size of the circle at a particular X-Y location represents the 

number of failing chips with original diagnostic resolution = X and reordered diagnostic resolution = Y. 

Among all failing chips, 404 chips have the number of diagnosis candidates decreased after reordering (chips 

below the 45 degree line in Figure 6), while 284 chips have the number of diagnosis candidates increased 

(chips above the 45 degree line in Figure 6). The diagnostic resolution of the rest 1001 chips remain 

unchanged after test reordering (chips on the 45 degree line in Figure 6). From Figure 6, it can be seen after 
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tests are reordered, the number of chips with improved diagnostic resolution (404 chips) exceeds the number 

of chips with deteriorated diagnostic resolution (284 chips).  

 

Figure 6: Scatter plot comparing the diagnostic resolution of the original sequence (X axis) and the 

reordered sequence (Y axis) for each IBM virtual failing chip when N = 10. The size of a circle represents 

the number of failing chips with a specific pair of X-Y values for original-reordered diagnostic resolutions. 

Tables 7 and 8 show how diagnostic resolution and diagnosis accuracy change after tests are 

reordered for chips injected with a specific type of defect (either SSL, MSL, bridge or input-pattern). 

Specifically, Table 7 compares the number of chips with perfect diagnostic resolution while Table 7 compares 

the number of chips with diagnostic resolution ≤ 5. As can be seen from Table 7, after tests are reordered, 

the number of chips with perfect diagnostic resolution increase significantly for chips injected with SSL and 

MSL defects. This is probably due to the fact that tests are reordered by minimizing ADR for SSL faults. 

However, it can be seen from Table 7 and Table 8 that diagnostic resolution is improved for chips injected 

with other types of defects as well.  
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Table 7: Comparison of the number of chips with perfect diagnostic resolution and with accurate diagnosis 

before and after reordering for IBM chips injected with a specific type of virtual defect (SSL, MSL, bridge 

or input-pattern). 

 

Table 8: Comparison of the number of chips with diagnostic resolution ≤ 5 and with accurate diagnosis 

before and after reordering for IBM chips injected with a specific type of virtual defect (SSL, MSL, bridge 

or input-pattern). 

Original Reordered Original Reordered Original Reordered Original Reordered

1 81 106 69 112 116 168 131 125

3 219 217 106 119 230 229 256 247

5 246 264 106 112 237 235 281 278

8 255 293 91 111 233 238 288 318

10 252 293 87 102 224 238 287 313

Average 210.6 234.6 91.8 111.2 208 221.6 248.6 256.2

Increase 11.4% 21.1% 6.5% 3.1%

Original Reordered Original Reordered Original Reordered Original Reordered

1 81 102 60 103 80 123 94 84

3 212 215 97 108 175 166 199 196

5 240 257 96 101 182 171 221 233

8 248 276 80 97 181 181 235 255

10 245 279 79 92 177 185 235 256

Average 205.2 225.8 82.4 100.2 159 165.2 196.8 204.8

Increase 10.0% 21.6% 3.9% 4.1%

No. of chips with perfect diagnostic resolution and accurate diagnosis

N

SSL MSL Bridge Input-pattern

SSL MSL Bridge Input-pattern

No. of chips with perfect diagnostic resolution

N

Original Reordered Original Reordered Original Reordered Original Reordered

1 234 260 214 266 290 334 289 322

3 335 335 284 289 395 400 382 386

5 344 345 308 288 412 397 391 393

8 346 352 313 298 412 408 394 400

10 347 349 312 298 414 419 394 399

Average 321.2 328.2 286.2 287.8 384.6 391.6 370 380

Increase 2.2% 0.6% 1.8% 2.7%

Original Reordered Original Reordered Original Reordered Original Reordered

1 229 251 192 248 204 239 217 250

3 327 327 264 272 303 303 302 305

5 336 336 287 273 323 307 306 312

8 338 334 288 282 328 329 307 308

10 339 334 293 284 331 338 308 312

Average 313.8 316.4 264.8 271.8 297.8 303.2 288 297.4

Increase 0.8% 2.6% 1.8% 3.3%

No. of chips with diagnostic resolution ≤ 5 and accurate diagnosis

N

SSL MSL Bridge Input-pattern

No. of chips with diagnostic resolution ≤ 5

N

SSL MSL Bridge Input-pattern



27 

 

2.3.2 NVIDIA GPU Experiment Result 

The chip design used in the second experiment is an NVIDIA GPU manufactured in 90nm technology and 

contains about 100 million transistors. The total number of uncollapsed SSL faults is 45 million. The 

original sequence of tests includes 1,000 stuck-at tests generated by the ATPG tool Synopsys® TetraMax® 

that achieve 98.2% SSL fault coverage. The original full tester response is collected on testers from 1,000 

actual chips that failed during production testing.  

The top part of Table 9 compares the diagnostic resolution achieved from the original sequence and 

the reordered sequence for the NVIDIA failing chip population. Seven separate experiments are conducted 

with different N values ranging from 1 to 20. As can be seen, the number of failing chips that have perfect 

diagnostic resolution (K=1) is increased in five out of seven experiments after tests are reordered. On average, 

test reordering increases the number of failing chips with perfect diagnostic resolution by 5.1%, and increases 

the number of failing chips with diagnostic resolution ≤ 5 by 1.5%. The bottom part of Table 9 compares the 

number of failing chips that have K diagnosis candidates and are also accurately diagnosed (the true candidate 

is included in the set of diagnosis candidates). Because the real defect locations are unknown for the 1,000 

NVIDIA chips used in this experiment, diagnosis is run using the original full tester response, and diagnosis 

candidates with the highest score are treated as the true candidates. The true candidates found in this way, 

however, may not be accurate because diagnosis may not be perfect even when full tester response is provided. 

So the numbers shown in the bottom part of Table 9 are an estimation of the actual number of chips that are 

accurately diagnosed. As can be seen, the number of failing chips that have both perfect diagnostic resolution 

(K=1) and accurate diagnosis also increases by 2.7% on average after tests are reordered. The number of 

failing chips with perfect diagnostic resolution (marked as “all”) and with both perfect diagnostic resolution 

and accuracy (marked as “accurate”) are plotted in Figure 7. The number of failing chips with good diagnostic 

resolution (resolution ≤ 5) and with both good resolution and accurate diagnosis are plotted in Figure 8. As 

can be seen from Table 9, Figures 7 and 8, diagnostic resolution is also improved after tests are reordered for 

this NVIDIA failing chip population, although to a lesser extent than the IBM virtual failing chip population. 

One possible explanation is that a larger number of SSL faults and a smaller number of tests in the NVIDIA 

experiment make faults harder to distinguish even after reordering.  
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Table 9: Comparison of diagnostic resolution and diagnosis accuracy achieved from the original sequence 

and the reordered sequence of tests for the NVIDIA failing chip population. 

 

Figure 7: Comparison of the number of failing chips with perfect resolution (all) and also with accurate 

diagnosis (accurate) between the original sequence and the reordered sequence of tests for the NVIDIA 

failing chip population. 

 

Figure 8: Comparison of the number of failing chips with diagnostic resolution ≤ 5 (all) and also with 

accurate diagnosis (accurate) between the original sequence and the reordered sequence for the NVIDIA 

failing chip population. 

Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered

1 75 83 154 145 154 160 161 178 165 187 177 182 174 174

2 107 97 151 143 167 169 167 173 167 183 164 172 170 165

3 53 53 96 112 102 100 100 103 104 95 110 106 109 116

4 75 86 108 98 110 94 116 107 111 108 107 109 99 114

5 50 42 59 72 66 61 61 59 56 61 54 59 64 58

SUM 360 361 568 570 599 584 605 620 603 634 612 628 616 627

Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered Original Reordered

1 57 66 128 125 143 141 151 158 157 161 169 170 163 161

2 84 84 141 126 156 149 160 156 161 167 162 162 168 159

3 46 47 82 94 92 90 95 92 97 90 105 102 102 108

4 72 74 102 96 103 87 112 101 108 99 105 104 97 108

5 43 38 52 66 61 55 56 57 48 58 51 57 62 56

SUM 302 309 505 507 555 522 574 564 571 575 592 595 592 592

N  = 15 N  = 20

K
N  = 1 N  = 3 N  = 5 N  = 8 N  = 10 N  = 15 N  = 20

The number of failing chips that have K  diagnosis candidates

The number of failing chips that have K  diagnosis candidates & at least one candidate is true candidate

K
N  = 1 N  = 3 N  = 5 N  = 8 N  = 10
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Figure 9 shows a scatter plot comparing the diagnostic resolution of the original sequence with the 

reordered sequence for each NVIDIA failing chip for N = 10. Only chips with both original and reordered 

resolution ≤ 20 are shown in the scatter plot. 230 chips have the number of diagnosis candidates decreased 

after reordering (chips below the 45 degree line in Figure 9), while 184 chips have the number of diagnosis 

candidates increased (chips above the 45 degree line in Figure 9). The diagnostic resolution of 538 chips 

remain unchanged after test reordering (chips on the 45 degree line in Figure 9). From Figure 9, it can be 

seen after test reordering the number of chips with improved diagnostic resolution (230 chips) exceeds the 

number of chips with deteriorated diagnostic resolution (184 chips).  

 

Figure 9: Scatter plot comparing the diagnostic resolution of the original sequence (X axis) and the 

reordered sequence (Y axis) for each NVIDIA failing chip with both resolution ≤ 20, when N = 10. The 

size of a circle represents the number of failing chips with a specific pair of X-Y values for two diagnostic 

resolutions. 

2.3.3 Discussion 

Because the diagnosis tools used in the experiments identify diagnosis candidates using collapsed SSL faults, 

ADR is only calculated and minimized during test reordering for all collapsed SSL faults only. If diagnostic 

resolution is defined as the number of uncollapsed SSL faults, then tests should be reordered by minimizing 

ADR calculated for uncollapsed SSL faults. If another fault model, e.g., the bridge fault model is also used 

in diagnosis, tests can then be reordered to minimize ADR for a fault set which includes both SSL and bridge 
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faults. If some areas of the circuit are not tested by the original test set, then the faults in these areas can be 

excluded from the calculation of ADR. In a more complicated scenario, if defects are more likely to occur in 

certain areas of a chip than other areas, then ADR, the average diagnostic resolution, should be replaced by 

a weighted average calculation of diagnostic resolution, where the weight represents the relative likelihood 

a defect occurs at the location of each fault. 

2.4 Summary 

A one-pass test-reordering method is developed to improve diagnostic resolution for production tests, which 

to our knowledge, is the first-ever work that examine the impact of test order on logic diagnosis. Due to 

constraints such as limited tester time or memory, a commonly-used practice during production testing is to 

only record the first few failing tests or pins for a failing chip. This recording of an incomplete tester response 

could lead to poor diagnostic resolution because less information is provided for diagnosis. The test-

reordering method attempts to find an optimal test ordering that can better distinguish stuck-at faults when 

an incomplete tester response is used in diagnosis. The reordering is performed in a one-pass approach, tests 

from the original sequence of tests are fault-simulated and inserted into a new reordered sequence one by one 

in a streaming fashion, in order to save time and memory. 

Experiments comparing the diagnostic resolution and accuracy of tests before and after reordering 

are conducted for two industrial designs (an IBM ASIC and an NVIDIA GPU). Tests and tester response 

collected from a population of virtual failing IBM ASIC chips and a population of real failing NVIDIA GPU 

chips are used as experiment input data. Experiment results demonstrate that the number of failing chips with 

perfect diagnostic resolution is increased by 8.3% for virtual IBM ASIC failing chips, and 5.1% for NVIDIA 

GPU failing chips. In both experiments diagnosis accuracy is maintained. Future work includes improving 

test-reordering speed and application to other chip designs.  
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Chapter 3 Delay Fault Model Evaluation 

for Improving Effectiveness 

Most chip producers perform delay testing to detect chips that are affected by defects that adversely affect 

timing. Several delay fault models have been introduced to guide delay test generation. But similar to static 

(i.e., slow speed) testing, there is always the question of which fault models are best for ensuring quality. 

MEasuring Test Effectiveness Regionally (METER) is an approach for evaluating fault model effectiveness. 

Compared to the conventional test experiment, METER is extremely inexpensive and provides a more 

thorough evaluation of the quality achievable by a particular fault model. In this work, we describe an 

extension to METER (called DELAY-METER) that allows the effectiveness of delay fault models to be 

precisely evaluated. Application of DELAY-METER to the production fail data from an IBM ASIC 

demonstrates that new and existing delay fault models can be evaluated using conventional tester response 

data, i.e., data logs collected from production fails through the application of tests generated using 

conventional fault models. 

3.1 Background 

Delay testing refers to the process of generating and applying tests for detecting “delay defects”. A delay 

defect alters the delay of a circuit element (wire, gate, etc.), possibly preventing all logic elements from 

attaining steady state for one or more specific clock periods. Various delay fault models have been developed 

to guide the generation of delay-based test vectors. The most widely-used models include the transition delay 

fault (TDF) model, and the path delay fault (PDF) model. The TDF model targets each gate output for a slow-

to-rise and slow-to-fall delay fault while the PDF model targets the cumulative delay along one or more paths 
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[1]. Testing based on the TDF model is affordable and simple. However, it does not guarantee the detection 

of small delay defects [56]. A small delay defect increases delay slightly and therefore may be only detectable 

by sensitizing certain timing-critical paths, which can change from chip instance to chip instance due to 

fabrication variations. Research has shown that tests generated through the use of the PDF model have the 

potential to capture defective chips that escape tests generated using the TDF model [56]. But testing every 

path is quite impractical since the number of paths increases exponentially with circuit size. Thus use of the 

PDF model is typically limited to the critical paths or some subset thereof [57]. Focusing only on critical 

paths is also not easy, since the increase in delay variation coupled with decreased tolerance to manufacturing 

variations makes identification of critical paths extremely difficult [58]. 

To address these challenges, various test metrics have been developed based on the aforementioned 

fault models. A test metric is not necessarily meant to model a defect but instead specifies how tests should 

be generated for detecting defects. For example, the N-detect TDF metric requires each TDF to be detected 

N times by the generated test set. TARO [33], which is an acronym for Transition fault propagated to All the 

Reachable Outputs, is another test metric based on the TDF model. TARO requires the propagation of slow-

to-rise and slow-to-fall transitions through each gate i to every output that can be reached by gate i. K longest 

paths per gate (KLPG) [32] is a test metric based on the PDF model. For each gate i, the objective of KLPG 

is to propagate a slow-to-rise and a slow-to-fall transition through the K longest paths that contain gate i . 

Different from KLPG, the output-deviation metric [41] calculates the output deviations for each test pattern 

generated by the PDF model, and selects the tests with the highest deviation values.  

To ensure quality, chip manufacturers typically combine tests resulting from a variety of models. 

Understanding the relative effectiveness of each model is key therefore for optimally selecting the best mix. 

Effectiveness of a model equates to how well tests generated under the guidance of the model can actually 

detect real defects. Conventionally, model effectiveness is measured in an ad hoc fashion, occasionally 

investigated through tester experiments involving real chips. A tester experiment typically involves 

generating a separate set of tests for each model, followed by the application of each test set separately to a 

population of fabricated chips. The models are then typically evaluated and compared based on the number 

of failed chips detected by their corresponding tests sets. One example is the small-delay-defect testing 
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experiment described in [34]. Conducting test experiments of this nature incurs extra expense and time since 

they require new test programs, test generation, and actual test execution. Most importantly, the failed chips 

detected by the test sets corresponding to a given model may be serendipitous in nature, that is, the actual 

behavior of the defect may not match the behavior predicted by the model. For example, a test set generated 

using the TDF model may fortuitously propagate a slowed transition along a critical path, which detects 

defective chips that better match the PDF model. Such a result incorrectly credits the TDF model with defect 

detection, especially if the same TDF is detected without failure. 

MEasuring Test Effectiveness Regionally (METER) [37] is an approach to evaluate model 

effectiveness that solely relies on conventional tester response data collected from failed chips, and thus is 

extremely inexpensive. METER analyzes tester response data to locate possible suspect defect regions within 

failed chips. Models are then evaluated within these suspect regions by correlating changes in model coverage 

with defect detection [37]. DELAY-METER, introduced in this work, is an extension of METER that is 

applicable to several delay models that includes, for example, TDF, N-detect TDF, TARO [33], KLPG [32] 

and KLPO. (KLPO, K Longest Paths per Output, is a new metric inspired by the output-deviation metric [41] 

that requires the K longest paths per each output to be tested.) The effectiveness of these models is evaluated 

using DELAY-METER based on the already-available tester response data collected from an IBM 130nm 

ASIC. It should be noted however that DELAY-METER is not limited to the models examined here. 

The rest of this chapter is organized as follows: Section 3.2 introduces the four steps of DELAY-

METER. Section 3.3 describes how each step is applied in the data-analysis experiment and the 

corresponding results. Section 3.4 describes extensions to DELAY-METER, while Section 3.5 summarizes 

the overall contributions of this work. 

3.2 DELAY-METER 

This section introduces the four steps of DELAY-METER and is organized as follows: Section 3.2.1 

describes the first step tester response data pre-processing, which selects chips and test patterns from the data 

logs that are appropriate for model evaluation. Section 3.2.2 describes the second step suspect-region 

identification, which identifies possible suspect regions within each failed chip. Section 3.2.3 describes the 
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third step effective fault selection. Faults inside suspect regions are simulated using the selected test patterns 

and are classified as either effective or ineffective. Section 3.2.4 describes the last step fault model evaluation. 

The effectiveness of a model is evaluated by correlating tester response data with effective faults.  

3.2.1 Tester Response Data Pre-processing 

The primary objective of DELAY-METER is to evaluate the effectiveness of delay models based on whether 

tests generated by a particular delay model can effectively detect chip failures. DELAY-METER uses 

conventional tester-response data to evaluate new and existing models. Conventional tester response data 

includes the data logs collected from production fails through the application of tests generated using 

conventional fault models. The data logs are assumed to contain failed output-pin information, but simple 

pass/fail data can also be used. The test environment (i.e., temperature, supply voltage, test-application speed, 

etc.) assumed for the models evaluated must be compatible with the one used in production test. For example, 

the data logs from a slow, one-capture test, typically used for stuck-at fault test, cannot be used to evaluate a 

two-cycle delay fault model.  

Tester response data pre-processing includes failed chip and test pattern selection. The main purpose 

of this step is to select chips and test patterns suitable for evaluation. Not all test patterns are necessarily used 

in later steps. For example, if the tester stops collecting data when the limit on output mismatches has been 

reached or other termination criteria are met, then only the test patterns up to the last failing pattern of each 

chip should be used for suspect-region identification (step 2), fault selection (step 3), and model evaluation 

(step 4). To ensure the evaluation is accurate, all tester passing patterns and tester failing patterns (test patterns 

which a chip passes or fails on the tester, respectively) should be selected, but this greatly increases the time 

needed for fault selection. For lower accuracy and faster speed, selecting only a subset of the tester passing 

patterns, and all tester failing patterns is an attractive choice. Depending on the methods used in suspect-

region identification and model evaluation, all chips or only a subset can be selected for evaluation. For 

example, if diagnosis is used in suspect-region identification, then only chips that are “diagnosable” are used. 
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3.2.2 Suspect Region Identification 

A suspect region is (ideally) a small portion of the failed chip that is believed to contain a defect. It can be a 

gate, a wire, a layout polygon, several gates along a path, all gates in a particular layout region, etc. Several 

different approaches can be used to identify suspect regions, ranging from all sensitized regions, all regions 

reported by diagnosis, to regions identified via PFA (physical failure analysis) of a failed chip. A region is 

“sensitized” if one or more errors created by an activated defect in the region propagate to one or more outputs. 

PFA of a chip provides the greatest level of precision, but incurs significant cost. The number of chips that 

undergoes PFA is therefore typically small, and thus cannot lead to a statistically-significant sample. 

Diagnosis is time efficient and less expensive since it mainly involves gate-level circuit simulation, but the 

suspect regions reported by diagnosis may not include the failure since diagnosis is not perfect. Using all 

sensitized regions is much more likely to include the failure but the number of suspect regions can increase 

significantly, thus reducing evaluation precision accordingly. 

Diagnosis is used in this work to identify suspect regions, and the tester response data is assumed to 

contain failed output-pin information. Failed output-pin information is not necessary since diagnosis can also 

be used to identify suspect regions, with less fidelity however, in situations where only limited fail 

information is available (e.g., the first-failing pattern is only known). In diagnosis, signal lines in the transitive 

fan-in of the failed outputs are typically fault-simulated and compared with the tester response data. The 

output generated by diagnosis is a limited set of suspect regions believed to be possible locations of failure. 

In the experiment described in Section 3, we do the following: For the TDF model and TARO, suspect regions 

include all the sensitized gates which are in the transitive fan-in of failing outputs. For the PDF models, all 

non-robustly testable paths that terminate at a failed output are identified as suspect regions. Different path-

selection methods are then utilized according to the particulars of the test metrics. For KLPG, paths that pass 

through suspect regions identified using the TDF model are selected. For KLPO, a new test metric inspired 

by the output-deviation metric [41], paths are selected based on each output. 

3.2.3 Effective Fault Selection 

For each failed chip, all the faults within the suspect regions are simulated using the selected test patterns to 

identify those faults that are detected by the tester failing patterns. Through comparison of the fault simulation 
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result and tester response data, these faults are classified as either “effective faults” or “ineffective faults”. 

Only effective faults (if any) are selected for gauging the effectiveness (the defect-detection capacity) of the 

corresponding model. 

An effective fault is only detected by tester failing patterns and never by a tester passing pattern. For 

every tester failing pattern, faults from various fault models are detected, but many of these faults are also 

detected by tester passing patterns. For example, either the output stuck-at-0 or stuck-at-1 faults is always 

detected at mismatched outputs, but that does not necessarily mean the stuck-at fault model is very effective 

in detecting defects, since these stuck-at faults are very likely detected by tester passing patterns as well. A 

fault detected by one or more tester passing patterns implies the detection of this fault does not guarantee 

defect detection. By our definition, such a fault does not contribute to the effectiveness of a fault model. 

However, for special test metrics that requires multiple detection of the same fault by different test 

patterns, like N-detect and TARO, a fault is deemed effective if, for any subset of tests that satisfy the metric, 

there includes at least one tester failing pattern. For an N-detect metric, if one fault is detected by N-1 tester 

passing patterns, and the Nth time it is detected by a tester failing pattern, it can still be deemed as an effective 

fault. However if one fault is detected by more than N tester passing patterns, then there exists a subset of 

test patterns which detect this fault N times, but does not include one tester failing pattern. Such a fault is 

deemed as ineffective. Similarly, TARO requires a slowed transition caused by a TDF to be propagated to 

every reachable output. If a fault has four reachable outputs, and a subset of tester passing patterns propagates 

the slowed transition of this fault to all four outputs, it is not an effective fault. It is worth mentioning that 

the definition of an effective fault for an N-detect metric and TARO is consistent with conventional fault 

models. For a conventional fault model, a fault is deemed effective if, for any test pattern that detects this 

fault, it must be a tester failing pattern. 

Table 10 illustrates effective fault selection. The example chip has three tester failing patterns 

(patterns 1, 3 and 5) that cause errors at either output A or B. Fault simulation reveals that Fault 1 is only 

detected by pattern 3. Since Fault 1 is never detected by any tester passing patterns, it is deemed as an 

effective fault. On the other hand, Fault 2 is detected by pattern 2, a tester passing pattern. So for a 

conventional fault model like the PDF model, Fault 2 is not effective. But for an N-detect metric (N≥2), since 



37 

 

Fault 2 is only detected by one tester passing pattern (pattern 2), any subset of tests that detects Fault 2 N≥2 

times has to include at least one tester failing pattern. For TARO, Fault 2 has two reachable outputs (output 

A and B), any subset of tests that propagates the slowed transition of Fault 2 to output A and B has to include 

pattern 5, which is a tester failing pattern. So Fault 2 is deemed effective for an N-detect metric (N≥2) and 

TARO. 

Test pattern Tester Fault 1 Fault 2 

1 Fail at A Pass Pass 

2 Pass Pass Fail at A 

3 Fail at A Fail at A Fail at A 

4 Pass Pass Pass 

5 Fail at B Pass Fail at B 

 

Table 10: Comparing the fault simulation and tester responses for classifying effective and ineffective 

faults. 

3.2.4 Fault Model Evaluation 

In a conventional test experiment, the effectiveness of a model equates to the number of chips detected by its 

corresponding test set. In this work, we define effectiveness of a model with respect to a failed chip. 

Specifically, effectiveness is equated to the percentage of tester failing patterns of the particular chip that 

detect one or more effective faults from the model. Tester failing patterns that detect effective faults imply 

the model guarantees defect detection, while tester failing patterns that do not detect effective faults suggest 

some defect mechanism cannot be captured by the fault model. The higher the effectiveness, the more failures 

caused by the defect are consistent with the model. Higher effectiveness also suggests applying extra test 

patterns using the corresponding model may reduce the escape rate. Conventional effectiveness can still be 

calculated by counting how many chips have effectiveness greater than zero. 

Shown in Figure 10(a) is a graphical representation of a simulation result of a fault and a tester 

response. The horizontal rectangle represents test patterns that detect the fault (labeled “simulation fail”). 

The vertical rectangle represents the tester failing patterns (labeled “tester fail”). Test patterns that both detect 

the fault and fail the chip are classified as “Tester Fail Simulation Fail” (TFSF). The remaining patterns are 
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categorized into “Tester Pass Simulation Fail” (TPSF), “Tester Fail Simulation Pass” (TFSP), and “Tester 

Pass Simulation Pass” (TPSP). 

 

Figure 10: Comparison between the tester response and the simulation result for (a) one fault and (b) three 

effective faults. 

In the ideal case, TFSP=0 and TPSF=0, which would imply the two rectangles of Figure 10(a) would 

completely coincide with each other. When TPSF≠0, there is at least one test pattern that detects the fault, 

but does not fail the chip. By definition, such a fault is not effective, but may be if the model used is N-detect 

or TARO. When TFSP≠0, there is at least one test pattern that fails the chip, but does not detect the fault. 

Such a test pattern may detect other effective faults for this failed chip however. For example, if a failed chip 

has three tester failing patterns, where patterns 1 and 3 detect one effective PDF A, pattern 2 detects another 

effective PDF B, and both PDFs A and B have TPSF=0, TFSP≠0. It is possible the actual defect affecting 

this chip can cause a mismatch when either PDF A or B is sensitized, but the PDF model is very effective in 

detecting this defect. Although effective PDFs A and B have TFSP≠0, they can be used in model evaluation. 

As shown in Figure 10(b), rectangles labeled 1, 2 and 3 represent three different effective faults 

(their TPSF all equal to zero), each of which covers a different but not a mutually exclusive set of tester 

failing patterns. Together the shaded area represents the tester failing patterns that detect at least one of the 

effective faults. We define effectiveness of a model for some failed chip A as the number of tester failing 

patterns that detect at least one effective fault divided by the total number of tester failing patterns: 

EffMULTIPLE(𝐴) =
| ⋃ TFSF(𝐹𝑖)|𝐹𝑖|TPSF(𝐹𝑖)=0

|TF|
 (2) 

 

(a) (b) 
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Effective faults 1, 2 & 3 
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Tester fail 

Simulation fail (for one fault) 
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where Fi is an effective fault within one of the suspect regions of chip A. EffMULTIPLE is equated to the size of 

the shaded area divided by the size of the “tester fail” rectangle in Figure 10(b). 

Other evaluation metrics can also be employed. For example, instead of using multiple faults to 

evaluate a fault model, the effectiveness can also be calculated using a single fault. Each effective fault Fi is 

assigned an effectiveness value from |TFSF|/|TF|. The effectiveness for a chip is equal to the highest 

effectiveness value among all effective faults of that chip: 

EffSINGLE(𝐴) =
MAX𝐹𝑖|TPSF(𝐹𝑖)=0{|TFSF(𝐹𝑖)|}

|TF|
 (3) 

3.3 Experiment 

Table 11 summarizes how the four steps of DELAY-METER are applied to the five delay models 

investigated. The tester response data used in this work stems from the failure logs of an IBM 130nm ASIC 

design. The delay test applied to these chips is generated using the TDF model. But these tests are sufficient 

for gauging the effectiveness of other delay models since it was observed in [37] that tests generated from 

one fault model can also achieve high coverage for other fault models. The delay test set contains 11,896 

delay test patterns and achieves 67.5% TDF coverage. Tester response data includes tester failing patterns 

and the corresponding failing outputs from 1,837 failing chips. Among the 1,837 chips, 482 chips are not 

diagnosable, that is, a commercial diagnosis tools fails to report any candidates. 652 chips are diagnosable 

and have a perfect TDF candidate, i.e., TPSF=TFSP=0 and TF=SF. 703 chips are diagnosable but do not 

have a perfect TDF candidate. These 703 failing chips likely contain defects whose behaviors are better 

captured by other models, but are serendipitously detected by the tests generated using the TDF model. These 

chips are ideal for evaluating what models should be used in “top-off” test generation if transition delay test 

is assumed as a baseline. So in the tester response data pre-processing step, the 703 chips and all passing and 

failing patterns are selected for this experiment. 

Table 12 summarizes the evaluation for the five models for the 703 chips selected. The first row, 

labeled “Avg. EffSINGLE,” gives the average effectiveness of each model for all chips using Equation 3. The 

second row, labeled “Avg. EffMULTIPLE,” gives the average effectiveness of each model for all chips using 
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Equation 2. Higher (average) effectiveness means the corresponding model has a greater ability to detect 

defects using the corresponding model. 

Model 
Test & chip 

selection 

Suspect-region 

identification 

Effective fault 

selection 

Fault model 

evaluation 

TDF 

703 diagnosable 

chips without a 

perfect TDF 

candidate 

& 

All test patterns up 

to the last failing 

pattern 

Diagnosed TDF sites 

TPSF=0 

Single-fault 

evaluation (Eq. 3) 

& 

Multiple-faults 

evaluation (Eq. 2) 

TARO 
Fail at a new 

output on TFSF 

N-detect 

TDF 

TPSF<N 

KLPG 

K longest TF-sensitized 

paths through each 

diagnosed TDF  

TPSF=0 

KLPO 

K longest TF-sensitized 

paths reaching each 

output 

TPSF=0 

 

Table 11: A summary of DELAY-METER application to several delay-fault models. 

 

Effectiveness TDF TARO 

3-detect 

TDF 

KLPG 

(K=1) 

KLPO 

(K=1) 

Avg. 

EffSINGLE 
37.6% 41.5% 53.1% 23.8% 24.7% 

Avg. 

EffMULTIPLE 
51.7% 55.7% 68.4% 33.6% 32.5% 

 

Table 12: Average effectiveness for the models investigated. 

 

Figure 11: Average EffMULTIPLE for KLPG and KLPO as a function of number of paths selected. 
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Figure 11 shows how average effectiveness (Eq. 2) changes with the number of paths using a very 

liberal interpretation of KLPO and KLPG. The y-axis is the average effectiveness, and the x-axis is the 

number of paths. For KLPO, the longest paths that are sensitized by the tester-failing patterns that reach each 

failing output are selected in the suspect-region identification step, and the effectiveness is calculated using 

the effective PDFs formed from these paths. The same procedure is used for KLPG, except paths that pass 

through sensitized gates are selected instead. The effectiveness and the number of paths are measured per 

chip and the value is averaged for all 703 chips. The plots in Figure 11 reveal that KLPO and KLPG 

effectiveness gradually increases as other (shorter) paths are added to the suspect regions. It also shows that 

defects are more likely located on the paths selected using KLPO than KLPG.  

 

Figure 12: Percentage of the 703 chips that have effectiveness > 0 for the N-detect TDF metric. 

Figure 12 shows the percentage of chips that have effectiveness greater than zero as a function of N 

for the N-detect TDF metric (the result is the same for both “SINGLE” (Eq. 3) and “MULTIPLE” (Eq. 2) 

effectiveness since the value of effectiveness is not relevant). An effectiveness greater than zero indicates the 

N-detect TDF metric is guaranteed to detect the failed chip (not fortuitously). The results of Figure 12 help 

test engineers select an optimal value of N by weighing the effectiveness against number of tests required to 

achieve the corresponding value of N-detect. 

Figure 13(a) shows that the 3-detect TDF metric better detects defects than TARO for this fabricated 

ASIC. Figure 13(b) shows that PDF-model-based metrics like KLPG and KLPO detects many chips that the 
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TDF model may not detect. These results are similar to the one obtained from the conventional tester 

experiment reported in [34]. But unlike conventional tester experiments, the category “OTHER” shown in 

Figure 13 cannot be reported by a tester experiment. Specifically, there are 75 and 98 chips classified into 

“OTHER” for Figures 13(a) and 13(b), respectively, which means none of the models examined here can 

guarantee their detection. In a conventional tester experiment, the serendipitous detection of these chips 

would be wrongly credited to the models under investigation. 

 

                                         (a)                                                                       (b) 

Figure 13: Venn diagrams showing the number of chips with effectiveness greater than zero for (a) TDF, 3-

detect TDF and TARO, and (b) TDF, KLPG and KLPO. 

3.4 Discussion 

In the experiment of Section 3.3, we used DELAY-METER to evaluate several delay models using 

conventional tester response data. DELAY-METER is not limited however to the models examined here, and 

is not limited to conventional tester response data. For example, a new ATPG tool that targets small-delay 

defects was developed in [34]. The objective of the tests generated by this tool are to detect each TDF along 

paths with minimum slack, or paths with slack smaller than a pre-set limit. In the conventional tester 

experiment, 12.6% of the failed chips are only detected by the small-delay test generated by this new ATPG 

tool. DELAY-METER can analyze the small-delay tester response data to check whether the failures of these 

chips are associated with the detection of a TDF along small-slack paths, or can analyze a conventional tester 

response data to help decide the slack limit parameter for the new ATPG tool. Another metric, output-

deviation [41], calculates the deviation of each node and targets paths whose output has maximum deviation. 

DELAY-METER can evaluate this metric by calculating the deviation of outputs on tester failing patterns 
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and tester passing patterns, and checking whether tester failing patterns have a larger deviation on the failed 

outputs. 

The sample size (number of chips, number of fails per chip, etc.) required for DELAY-METER to 

produce reliable results is an interesting topic and therefore is the focus of on-going research. It is important 

to point out that the number of chips used in a conventional tester experiment also varies from experiment to 

experiment, and none of them discuss the impact on the confidence of the result. Since the tester response 

data used by DELAY-METER can be collected from production test, it is easier to obtain more failure data 

for increasing confidence. Although the confidence of the evaluation result is a function of the number of 

fails collected per chip, DELAY-METER can use various suspect-region identification methods and does not 

require a specific lower limit on number of fails per chip. 

3.5 Summary 

This work introduces DELAY-METER, and demonstrates its ability to evaluate several delay models using 

conventional production test data from an IBM ASIC. Experiment results show that the 3-detect TDF metric 

is more effective in detecting defects than TARO for this fabricated chip. For the test metrics based on the 

PDF model, KLPO uses fewer paths to achieve higher effectiveness than KLPG. Compared to conventional 

test experiments, DELAY-METER does not require extra expense and time in developing new test programs, 

generating new tests, extra test execution, etc. Finally, DELAY-METER extends METER [37] by enabling 

the evaluation of delay fault models, and by introducing the notions of effective-fault selection and a new 

multiple-fault evaluation equation. Future work includes conducting a virtual experiment to verify whether 

one of the effective faults found using DELAY-METER matches the true defect location. Such an experiment 

can justify using effective faults to evaluate fault-model effectiveness. 
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Chapter 4 Defect Level Prediction for 

Balancing Effectiveness and Efficiency 

Predicting defect level (DL) using fault coverage is an extremely difficult task but if can be accomplished 

ensures high quality while controlling test cost. Because IC testing now involves generating and combining 

tests from multiple fault models, it is important to understand how the coverage from each fault model relates 

to the overall DL. In this work, a new model is proposed which learns the defect detection probability (DDP) 

of fault models from the diagnostic results of defective chips, and predicts defect level using the derived DDP 

and fault coverages of multiple fault models. The model is verified using fail data from an IBM ASIC and 

virtual fail data created through simulation. Experiment results demonstrate that this new model can predict 

DL more reliably than conventional approaches. 

4.1 Background 

As defect behavior continues to change and become more complicated due to scaling, manufacturers typically 

utilize scan-based tests generated from multiple fault models in order to keep defect level (DL) in check. DL 

for scan-based logic testing is defined as the proportion of defective chips among all chips that pass all scan-

based tests. Low DL can be achieved by increasing fault coverage. However, high fault coverage usually 

requires more tests to be applied, thus increasing test cost. Accurately predicting DL is therefore crucial for 

estimating the optimal fault coverage and the associated test cost, especially given that some chip producers 

are willing to trade-off DL for reduced test cost. 

In the past several models have been proposed to predict DL. The most widely known models 

include Williams & Brown (W&B) [13] and Seth & Agrawal (S&A) [14]. Both models calculate DL as a 

function of yield and fault coverage. However, the fault coverage used typically stems from the single stuck-
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line (SSL) fault model. Both the W&B model and the S&A model predict DL=0 when SSL fault coverage is 

100% which is not usually true especially for modern fabrication technologies and IC designs, that is, escape 

still occurs with 100% fault coverage [26]. Work in [26][59] address this problem and attempt to predict the 

part of DL that is related to the SSL fault model only. Most prior work was developed when SSL-based tests 

were sufficient to achieve acceptable test quality. As defect behavior becomes more complicated, multiple 

fault models and/or test metrics are being deployed to achieve the desired quality, including bridge [27], 

input-pattern [29], N-detect [30], and PAN-detect [31]. Conventional DL-prediction models [13][14] that 

rely on the SSL fault model cannot predict how DL relates to the change in coverage of other fault models. 

The MPG-D model is a DL-prediction model introduced in [60]. It assumes various types of defects 

can affect manufactured chips, and that defect detection is a function of SSL N-detect [30] coverage. Thus, 

like previous approaches, the MPG-D model primarily uses the SSL fault model to predict DL and does not 

take other fault models into consideration. 

There are prior work [15-16]][61] that use coverages from multiple fault models to predict DL. The 

work in [15] replaces the fault coverage used in the W&B model with the combined coverage of multiple 

fault models. However in their calculation, all fault models are weighted equally, which may not be prudent 

since fault-model effectiveness1 changes with technology and design [62]. Work in [16][61] uses tested chips 

as training data, and finds a multivariate DL-prediction model that best fits the number of defective chips 

detected to the coverages of multiple fault models. However, the DL-prediction model is empirically selected 

from 100 mathematical models, meaning the prediction result is highly dependent on the training data used 

for fitting. There is also risk of over-fitting. 

DL-prediction models can also be categorized into pre-silicon models or post-silicon models based 

on the input data used. Pre-silicon models predict DL from the simulation result of any given test set and 

some empirically chosen parameters. Examples of pre-silicon models include [13-15] [60]. Post-silicon 

models use tested chips as training data to predict DL as function of the test set. Examples of post-silicon 

models include [16][44][61]. The work in [44], for example, partitions defective chips into various defect 

categories using physical-aware diagnosis [53]. DL is predicted based on the learned defect-type distribution 
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[63] and the analysis of a test set to detect each type of defect. The approach provides an alternate approach 

to predict DL without using existing fault models or fault coverage. 

In this chapter, a new post-silicon DL-prediction model (named as the DDP model) is proposed that 

measures the defect detection probability (DDP) of multiple fault models from the diagnosis of defective 

chips, which is then combined with fault coverage to predict DL. The measurement of fault-model 

effectiveness is based on the work in [37]. Specifically, simulation responses produced by faults found in 

circuit regions reported by diagnosis are compared with tester response. The comparison result is used to 

determine how effective a fault model can predict test-pattern failure. High effectiveness indicates the defect 

behavior well matches the faulty behavior described by the model. Increasing the coverage of fault model 

with higher effectiveness is more likely to reduce DL. Motivated by this, DL can be predicted to as a 

multivariate function of multiple fault coverages, whose partial derivative with respect to each fault coverage 

is related to fault-model effectiveness. Compared with conventional DL-prediction models, this model can 

provide a more reliable prediction when fault-model effectiveness is unknown. 

4.2 The DDP model 

This section explains how DDP is estimated and used in DL prediction. Specifically, Section 4.2.1 defines 

Defect Detection Probability (DDP). Section 4.2.2 demonstrates how DDP for a given defective chip and a 

given fault model is estimated from diagnosis. Section 4.2.3 demonstrates how the distribution of DDP for a 

given group or set of chips and a given fault model is calculated. Sections 4.2.4 and 4.2.5 describe how DL 

is predicted using the distribution of DDP from a single fault model and multiple fault models, respectively. 

4.2.1 Defect Detection Probability (DDP) 

A conventional DL-prediction model like W&B or S&A model assumes that defects that cause a chip to fail 

testing are equivalent to one or more SSL faults [13-14]. In other words, these models assume that chip failure 

precisely correlates with SSL fault detection. This assumption is not typically true however, since a 100% 

SSL test cannot guarantee zero DL [26]. To overcome this challenge, the MPG-D model [60] assumes a 

defect is more likely to be detected when an SSL fault at the defect location is detected multiple times.  
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Extrapolating from the notion that detecting a defect may or may not correlate to detecting a fault, a new 

concept called Defect Detection Probability (DDP) is introduced that can be applied to any fault model. Let 

chip i be a defective chip that fails testing due to one or more defects. 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) is defined as the probability 

that a defect affecting chip i is detected when fault instance j of fault model k is detected.  

𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) =
𝑛𝑜. 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡 𝑗 𝑎𝑛𝑑 𝑎 𝑑𝑒𝑓𝑒𝑐𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑛𝑔 𝑐ℎ𝑖𝑝 𝑖

𝑛𝑜. 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡 𝑗
 (4) 

𝐷𝐷𝑃(𝑖, 𝑘), the probability a defect affecting defective chip i can be detected when all faults of fault 

model k are detected, is approximated using the maximum value of 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) among all fault instances j 

of fault model k. 

𝐷𝐷𝑃(𝑖, 𝑘) ≈ max
𝑗∈𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑙 𝑘

𝐷𝐷𝑃(𝑖, 𝑗, 𝑘)    (5) 

Equation (5) is a pessimistic approximation (lower bound) of 𝐷𝐷𝑃(𝑖, 𝑘). Because a test set that 

detects all faults subsumes a test set that detects the fault with the maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘), and the probability 

a defect is detected either increases or maintains the same when more tests are applied. The actual value of 

𝐷𝐷𝑃(𝑖, 𝑘) is close to its lower bound when defects only affect small areas and most faults have a 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) 

value that is near zero. When 𝐷𝐷𝑃(𝑖, 𝑘) is high, it indicates that tests generated using fault model k have a 

high likelihood to detect a defect affecting defective chip i.  

4.2.2 Approximating Chip DDP 

When defective chip i is tested, the fail log from the tester records the pass and fail information. The fail log 

is combined with fault simulation results of each test to approximate 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘).  

𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) ≈
𝑛𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡 𝑗 𝑎𝑛𝑑 𝑓𝑎𝑖𝑙 𝑜𝑛 𝑡𝑒𝑠𝑡𝑒𝑟

𝑛𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡 𝑗
 (6) 

Because only a limited number of tests are applied on tester, the approximation of 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) 

contains error. If 𝐷𝐷𝑃(𝑖, 𝑘) is calculated using the maximum of approximated 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) among all faults, 

the result will be sensitive to the approximation error of every 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘). To overcome this, A feasible 

approximation of 𝐷𝐷𝑃(𝑖, 𝑘) is by taking the average of 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) based on faults from the diagnosis 

candidates of defective chip i: 
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𝐷𝐷𝑃(𝑖, 𝑘) ≈
1

|𝐷|
∑

𝑛𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡 𝑗 𝑎𝑛𝑑 𝑓𝑎𝑖𝑙 𝑜𝑛 𝑡𝑒𝑠𝑡𝑒𝑟

𝑛𝑜. 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑒𝑠𝑡𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑐𝑡 𝑓𝑎𝑢𝑙𝑡 𝑗
𝑗∈𝐷

 (7) 

where D is the set of (highly-ranked) diagnosis candidates of chip i. Equation (7) is based on the 

assumption that candidates reported by diagnosis are physically or logically close to defects, provided that 

the diagnosis resolution is good. The detection of a defect correlates to the detection of (highly-ranked) 

diagnosis candidates, so 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) of candidates are assumed to be close to the maximum of 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) 

and can be used to approximate 𝐷𝐷𝑃(𝑖, 𝑘). If diagnosis is difficult for a non-conventional fault model, the 

diagnosis approach of [37] can be utilized.  

4.2.3 Approximating Chip-population DDP 

A post-silicon DL-prediction model uses tested chips as training data to predict DL for chips manufactured 

using the same technology in roughly the same period. In this work a probability density function (PDF) of 

𝐷𝐷𝑃(𝑖, 𝑘) is learned from tested chips and used to predict DL.  

Assume chip population A is a group of defective chips tested previously and used as training data.  

𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) can be approximated for each chip i from chip population A using (4). Because several types 

of defects can affect chips from population A, each chip i may have different values for 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘). 

𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) can be viewed as a random variable following a certain probability distribution that is unique 

to chip population A. The probability that 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) takes on a given value z can be described using a 

PDF 𝑓(𝑧, 𝐴, 𝑘), where z is a real number ranging from 0 to 1.   

    𝑃𝑟(𝑎 ≤ 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) ≤ 𝑏) = ∫ 𝑓(𝑧, 𝐴, 𝑘)𝑑𝑧
𝑏

𝑎

   (0 ≤ 𝑎 ≤ 𝑏 ≤ 1)    (8) 

𝑃𝑟(𝑎 ≤ 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) ≤ 𝑏) represents the probability that 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) is between two given 

real values a and b. This probability can be approximated using the proportion of chips from A that have 𝑎 ≤

𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) ≤ 𝑏. It can then be used to calculate 𝑓(𝑧, 𝐴, 𝑘) using (9): 
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    𝑓(𝑧, 𝐴, 𝑘) ∙ ∆𝑧 ≈ 𝑃𝑟 (𝑧 −
∆𝑧

2
≤ 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) ≤ 𝑧 +

∆𝑧

2
) 

   ≈  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑖𝑝𝑠 𝑤𝑖𝑡ℎ 𝑧 −

∆𝑧
2

≤ 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) ≤ 𝑧 +
∆𝑧
2

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑖𝑝𝑠 𝑖𝑛 𝑐ℎ𝑖𝑝 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴
 

(9) 

where Δz is an infinitesimally small number. For example, assume population A has 1000 defective 

chips. Among them 500 chips have 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) = 1; 250 chips have 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) =
1

2
 ; The remaining 

250 chips have 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) = 0. 𝑓(𝑧, 𝐴, 𝑘) =
1

2
∙ 𝛿(𝑧 − 1) +

1

4
∙ 𝛿 (𝑧 −

1

2
) +

1

4
∙ 𝛿(𝑧). 

4.2.4 DL Prediction using a Single Fault Model 

Defect level (DL) for scan-based logic testing is the proportion of defective chips among all chips that pass 

all scan-based tests. When the true yield Y for scan-testing is known or assumed to be close to the observed 

yield, the number of defective chips is simply V•(1-Y), where V is the total number of chips manufactured. 

𝑃𝑐ℎ𝑖𝑝 is defined as the expected probability a defective chip can be detected by the tests applied. The number 

of defective chips that escape test is the total number of defective chips multiplied by (1 − 𝑃𝑐ℎ𝑖𝑝). DL can 

be calculated as: 

    𝐷𝐿 =  
𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐ℎ𝑖𝑝𝑠 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑠 𝑔𝑜𝑜𝑑

𝑔𝑜𝑜𝑑 𝑐ℎ𝑖𝑝𝑠 + 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐ℎ𝑖𝑝𝑠 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑠 𝑔𝑜𝑜𝑑
 =

(1 − 𝑌)(1 − 𝑃𝑐ℎ𝑖𝑝)

𝑌 + (1 − 𝑌)(1 − 𝑃𝑐ℎ𝑖𝑝)
 (10) 

Population A is a group of defective chips that can be used to train a post-silicon DL-prediction 

model. The DL of a given test set T predicted using defective chip population A as training data and a single 

fault model k can be calculated as: 

    𝐷𝐿(𝑇, 𝐴, 𝑘)  =

(1 − 𝑌) (1 − 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘))

𝑌 + (1 − 𝑌) (1 − 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘))
 (11) 

where 𝐷𝐿(𝑇, 𝐴, 𝑘)  and 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘) indicate both DL and 𝑃𝑐ℎ𝑖𝑝 are predicted as functions of test 

set T, defective chip population A and fault model k. 𝐶𝑜𝑣(𝑇, 𝑘)  is defined as the fault coverage of fault model 

k by test set T. In Section II-A, 𝐷𝐷𝑃(𝑖, 𝑘) is defined as the probability a defect affecting defective chip i can 
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be detected when all faults of fault model k are detected (𝐶𝑜𝑣(𝑇, 𝑘) = 100%). So when 𝐶𝑜𝑣(𝑇, 𝑘) = 100%, 

𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘)  is equal to the expectation of 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘), which can be calculated from 𝑓(𝑧, 𝐴, 𝑘): 

    𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘) = 𝐸(𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘)) = ∫ 𝑓(𝑧, 𝐴, 𝑘) ∙ 𝑧 ∙ 𝑑𝑧

1

0

       𝑤ℎ𝑒𝑛 𝐶𝑜𝑣(𝑇, 𝑘) = 100%  (12) 

But when 𝐶𝑜𝑣(𝑇, 𝑘) is not 100%, there is some non-zero probability that faults with the maximum 

𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) may not be detected by test set T. Defective chip i will most likely escape test if such faults are 

not detected. This is based on our assumption that only a few faults have the maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘), while 

the remaining faults have 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) close to zero. So when 𝐶𝑜𝑣(𝑇, 𝑘) ≤ 100%: 

     𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘) = ∫ 𝑓(𝑧, 𝐴, 𝑘) ∙ 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) ∙ 𝑧 ∙ 𝑑𝑧

1

0

 (13) 

where 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) is the probability that any fault with the maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) is detected by 

test set T. It is a function of 𝐶𝑜𝑣(𝑇, 𝑘)  and the number of faults that have the maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘). There 

are multiple ways to calculate 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) , depending on the assumption made about the relationship 

between defects and faults. Fortunately, a similar problem has been studied in conventional DL-prediction 

models. In this work, an assumption is made similar to the one used in the W&B model. On a defective chip 

i, 𝑀𝑖,𝑘 is the number of faults from fault model k that have the maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘). The other faults have 

𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) close to zero. 𝑀𝑖,𝑘 is assumed to follow a binomial distribution: P(𝑀𝑖,𝑘)~𝐵 (𝑁𝑘 , 1 − √𝑌
𝑁𝑘

) /

(1 − 𝑌), where 𝑁𝑘 is the total number of faults from fault model k, Y is the yield and 𝑀𝑖,𝑘 is an integer greater 

or equal to one. Based on this assumption, 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) can be calculated following the same steps in the 

work introducing the W&B model [13]: 

 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) = 1 −
𝑌𝐶𝑜𝑣(𝑇,𝑘) − 𝑌

1 − 𝑌
 

(14) 

When all chips in population A have 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) = 1. 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘) in (10) becomes equal to 

𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘). 𝐷𝐿(𝑇, 𝐴, 𝑘) in (8) becomes equal to 1 − 𝑌1−𝐶𝑜𝑣(𝑇,𝑘), which is the DL predicted by the W&B 

model. This indicates DL prediction using the W&B model is a special case of (8), when every defect 
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affecting chips in population A is guaranteed to be detected by detecting all faults from fault model k. Note 

if statistics shows 𝑀𝑖,𝑘 does not follow a binomial distribution, then other assumptions can also be used to 

calculate 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) as well, like the assumption used in the S&A model. No matter which assumption is 

used, 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘) is still calculated using (13) and  𝐷𝐿(𝑇, 𝐴, 𝑘) is calculated using (11) in the same way.  

For example, if 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) =
4

5
, Y = 

9

10
, 𝑓(𝑧, 𝐴, 𝑘) =

1

2
∙ 𝛿(𝑧 − 1) +

1

4
∙ 𝛿 (𝑧 −

1

2
) +

1

4
∙ 𝛿(𝑧): 

𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘) = ∫  𝑓(𝑧, 𝐴, 𝑘) ∙ 0.8 ∙ 𝑧 ∙ 𝑑𝑧
1

0
= (

1

2
∙ 1 +

1

4
∙

1

2
+

1

4
∙ 0) ∙

4

5
=

1

2
. 

𝐷𝐿(𝑇, 𝐴, 𝑘) =  
(1−

9

10
)(1−

1

2
)

9

10
+(1−

9

10
)(1−

1

2
)
 ≈ 0.053. 

4.2.5 DL Prediction using Multiple Fault Model 

The previous section explains how to calculate DL using a single fault model. However the overall DL is not 

only determined by the fault coverage of a single fault model. When defect behaviors become complicated 

and can no longer be modeled by a single fault model, predicting DL as a multivariate function of multiple 

fault coverages becomes a necessity. But using multiple fault models to predict DL also has several 

challenges. If one fault model is not very effective for a particular chip population, increasing the fault 

coverage of that model may not reduce DL. If one fault model has a huge fault space, such as the path delay 

fault model, no practical test set can achieve high fault coverage. When a low fault coverage is directly used 

instead of SSL coverage in a conventional DL-prediction model, an unrealistically high DL will be predicted. 

In our work, these challenges are tackled by representing the effectiveness of multiple fault models 

using a joint probability density function (PDF) of DDPs of multiple fault models. The flow diagram of DL 

prediction using M fault models {𝑘1 … 𝑘𝑀} is shown in Figure 14. 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘1)…𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘𝑀) are 

estimated using diagnosis candidates of each chip i from chip population A. A joint PDF of multiple DDPs 

𝑓(𝑧1, … , 𝑧𝑀, 𝐴, 𝑘1, … , 𝑘𝑀) is then estimated. For example, assume M=2, population A has 1000 defective 

chips. 600 chips have 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘1) = 1 and 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘2) =
1

2
; 400 chips have 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘1) =

1

4
 

and 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘2) = 1. Then 𝑓(𝑧1, 𝑧2, 𝐴, 𝑘1, 𝑘2) = 
3

5
𝛿 (𝑧1 − 1, 𝑧2 −

1

2
) +

2

5
𝛿 (𝑧1 −

1

4
, 𝑧2 − 1).  
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Figure 14: The flow diagram for predicting DL for test set T, using chip population A and M fault models 

{k1,…,kM}. 

The joint PDF is then used to calculate 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘1 … 𝑘𝑀) and 𝐷𝐿(𝑇, 𝐴, 𝑘1 … 𝑘𝑀), which means 

both 𝑃𝑐ℎ𝑖𝑝 and DL are predicted as functions of test set T, defective chip population A and M fault models. 

𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘1 … 𝑘𝑀) becomes the integral over the multi-dimensional space formed by 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘) of 

multiple fault models from k1 to kM. For example, when M=2, 𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘1, 𝑘2) can be calculated from a 

double integral: 

𝑃𝑐ℎ𝑖𝑝(𝑇, 𝐴, 𝑘1, 𝑘2) = ∫ ∫ 𝑓(𝑧1, 𝑧2, 𝐴, 𝑘1, 𝑘2) ∙ 𝑀𝐴𝑋{
1

0

1

0

𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘1) ∙ 𝑧1

𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘2) ∙ 𝑧2
} ∙ 𝑑𝑧1 ∙ 𝑑𝑧2 (15) 

As shown in (15), the maximum of 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘𝑗) ∙ 𝑧𝑗  (𝑗 = 1,2, … , 𝑀)is used in the integral to replace 

𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) ∙ 𝑧 in (13) so that DL predicted is determined by the best fault model for each defective chip i 

automatically. The best fault model for defective chip i predicts the maximum probability any defect affecting 

chip i is detected by test set T. This probability is equal to 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) (the probability any fault with the 

maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘)  is detected by T) multiplied by 𝑧 = 𝐷𝐷𝑃(𝑖 ∈ 𝐴, 𝑘)  (the probability any defect 

affecting chip i is detected when one fault with the maximum 𝐷𝐷𝑃(𝑖, 𝑗, 𝑘) is detected). 
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4.3 Experiment 

This section compares the DL-prediction model introduced in this work with other models. Section 4.3.1 and 

Section 4.3.2 compare the DL-prediction accuracy with conventional models using virtual fail data and 

silicon data, respectively. Section 4.3.3 compares the DL-prediction accuracy with a model motivated from 

the work in [16]. Section 4.3.4 provides some discussions. 

4.3.1 Virtual Experiment 

In this section the DDP model (the DL-prediction model described in Section II) is verified using virtual fail 

data generated from injected bridge faults. The chip used in this experiment is an IBM ASIC manufactured 

in 130 nm technology which contains about one million gates. The original tests applied to this chip are 36 

scan-chain tests followed by 3,403 logic tests generated using the SSL fault model. Together they achieve 

99.5% SSL fault coverage. 2,000 virtual defective chips are generated by injecting a random bridge (4-way) 

fault into each chip. Due to the long simulation time necessary for each bridge fault, only the fail data (failed 

pins and corresponding test patterns) of the first 869 tests are collected. From the 2,000 chips, 1,712 fail at 

least one time in the first 869 tests and are used as the virtual fail data in this experiment. Among the 1,712 

chips, 462 chips only fail at scan-chain tests and are not diagnosable. 

The 1,712 virtual defective chips are divided into two groups. The first group is used as the training 

data that contains all virtual defective chips (1,684 chips, 1,222 chips diagnosable) that first fail before the 

600th test. The second group is used as the validation data which contains all the remaining chips (28 chips, 

all diagnosable) that first fail after the 600th test (including the 600th test). The chips in the training data is 

used to train a DDP model to predict DL.  

The DDP model learns a joint PDF of DDPs from the 1,222 diagnosable defective chips in the 

training data. 𝐷𝐷𝑃(𝑖, 𝑘) is defined for three widely-used fault models, SSL, bridge (4-way) and input-pattern. 

Although the original tests applied to the IBM chip are generated from the SSL fault model. Fault simulation 

reveals the same tests also achieves 95.0% bridge fault coverage and 86.4% input-pattern fault coverage. 

𝐷𝐷𝑃(𝑖, 𝑘) is approximated using highly-ranked diagnosis candidates of fault model k, 𝑘 ∈ {SSL, bridge, 
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input-pattern}. For the SSL fault model highly-ranked diagnosis candidates are reported by a commercial 

diagnosis tool. For the bridge and input-pattern fault models, the diagnosis approach of [37] is used.  

After DL is predicted for each test based on the fault coverage of the three fault models, the predicted 

number of detected defective chips can also be calculated from the total number of chips tested (including 

both good and defective chips). The total number of chips is associated with yield. In this virtual experiment, 

30 experiments are performed by assuming yield is equal to a value that varies between 0.7 and 0.99. The 

cumulative numbers of detected defective chips predicted by the DDP model of these 30 experiments are 

drawn in Figure 15. For comparison, this prediction is compared with the prediction made by the W&B model 

and the S&A model in Figure 15(a) and Figure 15(b), respectively. The W&B model is often used with SSL 

fault coverage. However as mentioned in [26], the DL predicted by the W&B model is accurate when used 

with the actual “defect coverage”. So the fault coverage from any fault model can be used by the W&B model 

as long as it is assumed to be close to “defect coverage”. As can be seen from Figure 15(a) the predictions 

made by the W&B model using different fault coverages are not as accurate as the DDP model. Figure 15(b) 

shows the prediction results of the S&A model when n0=1, 2 or 3. n0 is a parameter used in the S&A model 

to represent the average number of faults on a defective chip, which is often chosen empirically. It can be 

seen that the DDP model provides a better and more reliable prediction than the S&A model. 

 

                                               (a)                                                                       (b) 

Figure 15: The cumulative number of detected defective chips at each test predicted by (a) the DDP model 

and the W&B model, (b) the DDP model and the S&A model. The actual number of detected defective 

chips counted from the virtual fail data is also plotted. The spread for prediction results from an assumed 

yield that range from 0.7 to 0.99. 
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4.3.2 Silicon Experiment 

In this section, the fail data of the same IBM chip collected from the tester is used to verify the accuracy of 

the prediction by the DDP model. The IBM fail data contains the failed pin and test information from 606 

defective chips. Among these chips, 278 chips that failed the scan-chain tests are not diagnosable. The 

remaining 328 chips that failed the logic tests are used in approximating the joint PDF of DDPs for the DDP 

model. 𝐷𝐷𝑃(𝑖, 𝑘) is approximated using highly-ranked diagnosis candidates of  328 chips for the SSL, bridge 

and input-pattern fault models.  

The validation experiment is similar to the one described in the virtual experiment. 606 chips are 

divided into two groups. The chips (591 chips in total, 313 chips diagnosable) that first fail before the 600th 

test are used as the training data to train a joint PDF of DDPs. The chips (15 chips) that first fail after (and 

including) the 600th test and before the 3403th test (the last test) are used as the validation data to verify the 

accuracy of the DL prediction. 

Figure 16(a) and Figure 16(b) compare the number of detected defective chips predicted by the DDP 

model with the W&B model and the S&A model, respectively. As can be seen from Figure 16(a), the 

predicted number of detected defective chips using the DDP model is slightly higher than the actual number. 

One major cause for the prediction error is that the tester stops testing after a chip fails, so not all tests have 

been characterized as pass or fail, which makes both diagnosis and DDP estimation more difficult. However, 

when no prior knowledge is given about which fault model is best for a particular chip population, the DDP 

model provides a more accurate prediction than the conventional way of predicting DL using the W&B model 

based on SSL fault coverage. From Figure 16(b), it can be seen the prediction accuracy of the S&A model is 

dependent on n0. Using the DDP model to predict DL is more reliable than the S&A model if n0 is unknown. 

If n0 is known for a particular fault model k, it can be used in calculating 𝑃𝑓𝑎𝑢𝑙𝑡(𝑇, 𝑘) to improve the accuracy 

of the DDP model however. 
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                                              (a)                                                                          (b) 

Figure 16: The cumulative number of detected defective chips at each test predicted by (a) the DDP model 

and the W&B model, (b) the DDP model and the S&A model. The actual number of detected defective 

chips counted from the IBM fail data is also plotted. The spread for prediction results from an assumed 

yield that range from 0.7 to 0.99. 

4.3.3 Comparison with Quadratic Programming 

The DDP model is also compared with a DL-prediction model motivated from the work in [16]. The work in 

[16] finds a mathematical model that bests fits the number of defective chips detected to the fault coverages 

of multiple models using tested chips as training data. Then the best fit model can be used as a prediction 

function to predict the number of detected defective chips from any combination of fault coverages. 

It is discovered in this work that a function that best fits the training data (i.e., minimizes the mean 

squared prediction error when the model is applied to the training data) and is subject to linear constraints 

(i.e., partial derivatives of every fault coverage must be greater or equal to zero) has less risk of over-fitting. 

Such a function can be found by solving a quadratic programming formulation. A best-fit 2nd-degree 

polynomial is found using the training data used in the virtual experiment (Section 4.3.1) and the silicon 

experiment (Section 4.3.2). This polynomial is then used to predict the number of defective chips, and the 

result is plotted in Figure 17 to compare with result of the DDP model. As can be seen, the prediction accuracy 

of the best-fit polynomial is quite close to the DDP model, but both models have some prediction error. 

However, the best-fit polynomial is learned from a combination of fault coverages without considering the 

effectiveness of different fault models. It may still have an over-fitting problem when some fault models are 
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not effective. The DDP model solves this problem by automatically filtering out ineffective fault models in 

(12). 

 

                                             (a)                                                                       (b) 

Figure 17: The cumulative number of detected defective chips predicted by a best-fit 2nd-degree 

polynomial and the DDP model for the data of the virtual experiment (a) and the silicon experiment (b). 

The polynomial is learned from the training data by solving a quadratic-programming formulation. The 

spread for prediction of the DDP model results from an assumed yield that range from 0.7 to 0.99. 

4.3.4 Discussion 

It may be believed that fail data can be used to train a W&B model or a S&A model that would also provide 

accurate DL prediction. However, both models predict DL using the fault coverage of a single fault model. 

When the fault coverage reaches 100%, both models predict zero DL and cannot predict how DL would be 

reduced if extra tests are generated by other fault models. The DDP model is developed to overcome these 

drawbacks by using both fault coverage and effectiveness of multiple fault models.  

The prediction accuracy of the DDP model is improved when more fault models are used, as it 

allows more defects to be modeled by fault model. Through fault simulation, the detection probability can be 

calculated for these modeled defects and to predict DL. If a proportion of defects cannot be modeled using 

any known fault model, the DDP model can still predict DL by estimating the probability that these elusive 

defects are detected by the tests generated by a known fault model.    
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The CPU time required for DL prediction using the DDP model is dominated by the time used in 

diagnosis. For the IBM chip used in this work, the average diagnosis time is 5 minutes per chip per fault 

model. The time can be easily reduced however by running multiple diagnosis jobs in parallel. 

4.4 Summary 

In this work, a new post-silicon DL-prediction model is developed. This model uses both the effectiveness 

(learned from diagnosis) and fault coverage of multiple fault models to predict DL. The prediction is verified 

using both virtual fail data and tester fail data from an IBM 130nm ASIC. The experiment results reveal that 

the new model can provide more reliable prediction compared to conventional DL-prediction models when 

fault-model effectiveness is unknown. The prediction accuracy of the DDP model is expected to improve 

when the amount and quality of training data is increased. Validation experiments are continuing using fail 

data collected from designs fabricated in more modern technologies. 
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Chapter 5 Test Selection for Improving 

Efficiency 

Test selection aims at achieving high test quality with low test cost. By selecting only a subset of tests that 

most effectively detect defects, test time can be reduced while ensuring test escape is minimized. In this work, 

a new one-pass test-selection method is described that efficiently identifies tests that maximize either fault-

model coverage or an N-detect test metric. The proposed method analyzes and selects each test one at a time 

in a streaming fashion to save both time and memory. The method is applied to two industrial designs, namely 

an IBM ASIC and an NVIDIA GPU. Experiment results demonstrate that the new method selects tests with 

coverage that virtually matches a greedy algorithm (less than 0.01% coverage difference), but uses less time 

(reduced by 2X) and memory (reduced by 20X to 200X).  Additional experiments performed on two ISCAS 

circuits also demonstrates the new method typically achieves higher coverage but uses less time (reduced by 

7X to 30X) and memory (reduced by 140X) as compared to selecting tests using a linear programming based 

approach. 

5.1 Background 

The cost of scan-based testing depends on the number of tests. A larger number of tests requires a longer test 

time and more tester memory. However, the number of tests required to ensure low test escape has been 

increasing and becomes a challenge for test development. Conventionally, tests are generated by targeting a 

conventional fault model (e.g., single stuck-at fault model). But as defects continue to exhibit more 

complicated behaviors, it is no longer possible to detect all types of defects using a single fault model [42]. 

More sophisticated fault models (e.g., bridge, input-pattern [29]) and test metrics (e.g., N-detect [30], PAN-

detect [31]) have been developed to guide the test generation toward better defect detection. But these more 
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sophisticated models/metrics require a significantly larger number of tests to achieve acceptable coverage 

[45][64]. Moreover, tests from multiple models/metrics are typically combined together, thus further 

exacerbating the issue with test-set size. 

When it is not possible to apply all the (supposedly required) tests due to test time or tester memory 

constraints, selecting a subset of tests from a large baseline test set becomes necessary. The goal of test 

selection is to minimize test escape or maximize the number of detected defective chips using a limited 

number of selected tests (i.e., a constraint on test time or tester memory). Tests that can effectively reduce 

test escape are credited with high effectiveness and are selected, while the tests with low effectiveness may 

not be selected. Test effectiveness can be measured directly from silicon data such as the fail logs or diagnosis 

reports of previously tested chips. Alternatively, test effectiveness can also be estimated from simulation 

results, a viable choice when silicon data is lacking. For example, higher fault coverage, as measured by fault 

simulation of the tests, leads to lower test escape according to many test-escape-prediction models [13-15]. 

Silicon-based test selection is often used in adaptive testing for test-cost reduction. The work in [18] 

collects the fail logs of tested chips and measures the number of failed chips detected by each test as 

effectiveness. Tests with high effectiveness are always applied while tests with low effectiveness are only 

applied on a sample basis. The work in [44] first derives the defect behaviors from diagnosis of tested chips, 

and then selects tests that detect the more frequently-occurring defects. However, silicon-based test selection 

requires a large sample of tested chips, which may not be available during the early stage of IC manufacturing. 

Simulation-based test selection can be used when the silicon data is not available. The work in [45] 

derives an N-detect test set of minimal size by solving an integer linear programming (ILP) problem. But an 

integer linear programming problem is not always solvable in polynomial time. The work in [11] uses linear 

programming (LP) to select tests based on a model that predicts test escape based on the number of times 

each stuck-at fault is detected. But the LP problem is a relaxation of an ILP, so the solution may not be 

optimal or even feasible. The work in [42] ranks tests based on their output-deviation values and selects tests 

with the highest output deviation. The output deviation represents the likelihood a given output deviates from 

its correct value for a given test. However, signal correlations due to recovergent fanouts are not considered 

in [42] so that computation time is reduced. Moreover, the aforementioned previous approaches are only 
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applied to small academic circuits. For large industrial circuits, both the time and memory cost are likely to 

increase significantly. 

In this work, a one-pass simulation-based test-selection method is developed to select a limited 

number of tests from a large baseline test set for a large industrial circuits. The one-pass method processes 

each test one at a time in a streaming fashion to reduce both time and memory, and is able to achieve high 

coverage close to the coverage obtained by a greedy algorithm, which is the best-possible polynomial-time 

algorithm. Moreover, the one-pass method orders the tests such that the initial tests maximize fault coverage. 

Such an ordering identifies defective chips earlier, which may also help reduce test cost in high-volume 

production [65].  

The rest of this chapter is organized as follows: Section 5.2 introduces the one-pass test-selection 

method. Section 5.3 presents experiment results for two industrial designs (an IBM ASIC and an NVIDIA 

GPU) and two benchmark circuits [66]. Section 5.4 gives a summary. 

5.2 Methodology 

This section discusses the test-selection problem and describes the one-pass test-selection method. 

Specifically, Section 5.2.1 relates a test-selection problem to a maximum-K coverage problem [46], while 

Section 5.2.2 discusses various methods for solving a maximum-K coverage problem. Section 5.2.3 

demonstrates the detailed flow of the one-pass test-selection method motivated by a one-pass algorithm that 

solves the maximum-K coverage problem. 

5.2.1 Test Selection for Maximizing Coverage 

As many test-escape models [13-15] predict, higher fault coverage of a single or multiple fault models leads 

to lower test escape. Therefore, selecting a limited number of tests that maximizes fault coverage satisfies 

the goal of achieving low test escape with low test cost. If no more than K tests are to be selected from a large 

baseline test set T with |T| tests in total (K<|T|), the goal of test selection is to find a subset of no more than K 

tests that detect the maximum number of faults. This problem is equivalent to the well-known maximum-K 

coverage problem. The maximum-K coverage problem is defined in [46] as follows: 
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Given a collection of sets T={t1,t2,…,t|T|} defined over a domain of elements F={f1,f2,…f|F|}, the goal is to 

find a subset S ⊆ T, such that |S|≤K and the number of elements |E| (E⊆F) covered by S is maximized. 

For the test-selection problem, each ti ∈T represents the ith test from the baseline test set T. Each 

element fj ∈F represents the jth fault of the set F, where F represents the set of all faults. The faults detected 

by ti is represented by the elements included in set ti, which can be obtained from fault simulating ti. The goal 

is to find a limited number (≤K) of tests (sets) that detect the most number of faults (cover the most number 

of elements).  

Besides conventional fault models, the N-detect test metric [30] is a widely-used guideline for test 

generation. The N-detect test metric requires each fault from a conventional fault model (usually the stuck-

at fault model) to be detected at least N times. The size of a test set generated using the N-detect test metric 

is often quite large and grows linearly with N [30]. Selecting N-detect tests is not a maximum-K coverage 

problem. But if the N-detect coverage is defined as an objective function that gradually increases with the 

number of detections for each fault, then a maximum-K selection algorithm can be modified to select tests 

for maximizing N-detect coverage as well. In this work, N-detect coverage is defined similarly to the N-

profile coverage in [40]: 

𝑁-𝑑𝑒𝑡𝑒𝑐𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ ℎ (
𝑁𝑜.  𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑓𝑗 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁
)

𝑓𝑗∈𝐹

 

𝑤ℎ𝑒𝑟𝑒 ℎ(𝑥) = {
𝑥
1

   
0 ≤ 𝑥 ≤ 1

𝑥 > 1
 

(16) 

 

5.2.2 Maximum-K Coverage Problem 

The maximum-K coverage problem is well-known to be NP-hard. The best polynomial time approximation 

algorithm is the greedy algorithm [67]; it repeatedly selects a set that covers the most number of uncovered 

elements among the unselected sets until either all elements are covered, a set limit is reached, or all sets are 

selected. However, both the time and the memory cost of the greedy algorithm are significant, thus making 

it extremely costly to select tests for modern industrial circuits, because both the number of elements (faults) 

and the number of sets (tests) are large.  
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To overcome these drawbacks of the greedy algorithm, several one-pass maximum-K coverage 

algorithms have been developed [47-48]. A one-pass algorithm processes one set (i.e., a test) at time in a 

streaming fashion. After a set is processed, it is either selected into a selected set of sets S′ or discarded. A 

one-pass algorithm returns S′ after all sets are processed as the final selection result S.  Although an S 

produced by a one-pass algorithm typically covers fewer elements when compared with the greedy algorithm, 

the difference is inconsequential in practice as demonstrated in [47-48]. Using a one-pass algorithm in test 

selection means it is no longer necessary to store all the previous fault simulation results which significantly 

reduces the memory required for test selection. More importantly, test selection can now be accomplished 

simultaneously with fault simulation, which reduces the overall time needed for simulation-based test 

selection.  

5.2.3 One-pass Test Selection 

The one-pass test-selection method in this work is motivated by the one-pass maximum-K selection algorithm 

in [48]. The one-pass method not only selects tests that maximize the coverage for conventional fault models 

or an N-detect test metric, but also sorts the selected tests such that the increase of coverage rate is maximized. 

Figure 18 demonstrates how the one-pass method selects a limited number (≤K) of tests from a baseline test 

set T at the same time as tests are fault simulated. On the left side of Figure 18, each ti ∈T is fault simulated 

(without fault dropping), and the list of faults detected by ti is stored in Dictionary, which is a temporary fault 

dictionary on disk. On the right side of Figure 18, the one-pass method checks Dictionary to identify any 

new entries. A new test is compared with tests in the SelectedTest list, i.e., a sorted list of tests that have been 

selected thus far, to find an insertion point where the new test can be inserted. If the new test detects more 

faults than the tests in the SelectedTest list at the insertion point, it is inserted into the SelectedTest list, 

possibly replacing another test. If not, the one-pass method proceeds to find another available insertion point. 

If no more insertion points can be found, the new test is simply discarded. The tests that have been read and 

processed by the one-pass method can be deleted from Dictionary since each test only needs to be processed 

once. After all tests from test set T are fault simulated and processed by the one-pass method, the one-pass 

method returns no more than K tests from the SelectedTest list as the final selection result.  
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Figure 18: Flow describing how a limited number (≤K) of tests are selected from the baseline test set T 

using the one-pass method. 

In a one-pass environment, the fault simulation results of tests processed earlier are deleted from 

Dictionary and no longer available. So fault detection information of tests in the SelectedTest list needs to be 

stored in memory, which is important for determining whether and where a new test is inserted, and for 

resorting the SelectedTest list after each insertion. The tests in the SelectedTest list are sorted in an order that 

imitates the greedy algorithm.  The first test tfirst in the SelectedTest list is the test that detects the most number 

of faults. For each fault fj detected by tfirst, Detection[j]=tfirst, where Detection is an array used to store the first 

test that detects each fault. The number of faults detected by tfirst is stored in NumFaults{tfirst}, where 

NumFaults is a hash table storing the number of faults first detected by each test. The second test tsecond in the 

SelectedTest list is the test that detects the most number of faults undetected by tfirst. For each fault fj detected 

by tsecond but not detected by tfirst, Detection[j]=tsecond, and the number of faults first detected by tsecond is stored 

in NumFaults {tsecond}. Information for the remaining tests in the SelectedTest list is stored in the Detection 

array and the NumFaults hash table in the same manner. When a new test is processed by the one-pass method, 

the number of additional faults detected at a given insertion point (NumFaults) can be computed using the 
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fault detection information stored in the Detection array, and can be used to compare with existing tests to 

determine whether the new test is inserted or not. If inserted, the Detection array and the NumFaults hash 

table are then updated as some faults first detected by tests after the insertion point are now first detected by 

the new test. After the insertion and update, tests in the SelectedTest list are resorted based on the values 

stored in the NumFaults hash table in descending order. 

 

Figure 19: The Detection array, the NumFaults hash table and the SelectedTest list when three tests t1, t2 

and t3 are currently selected. 

For N-detect test selection, The Detection array is changed to a two-dimensional array which stores 

the first N tests that detect each fault. Detection[j][l] stores the lth test that detects fault fj. NumFaults{ti}, 

where ti is a test in the SelectedTest list, is equal to the number of faults detected by ti in the Detection array. 

An example of using the Detection array and the NumFaults hash table for N-detect test selection is illustrated 

in Figure 19. Assume N=2, F={f1, f2, f3, f4, f5, f6}, SelectedTest= t1, t2, t3. t1={f1, f2, f4, f5, f6}, t2={f1, f3, f5} and 

t3={f2, f5, f6}. The Detection array shown on the left side of Figure 19 indicates that f5 is detected by two tests 

t1 and t2. Although f5 is detected by t3 as well, only the first two detections are recorded when N=2. The table 

on the right side of Figure 19 shows the NumFaults hash table, which is determined by the number of faults 

detected by each test in the Detection array.  
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(a) 

 

(b) 

 

(c) 

Figure 20: The one-pass method evaluates whether a new test t4 should be inserted (a) after t1, and (b) after 

t2. (c) Insertion after t2 results in the updated Detection array, NumFaults hash table and the SelectedTest 

list. 

Assume a new test t4={f2, f3, f4} is fault simulated. The one-pass method needs to determine whether 

t4 is better than a test in the SelectedTest list. The one-pass method evaluates insertion points for t4 by greedily 

comparing it to the existing tests as illustrated in Figure 20.  First, t4 is compared with t1 to determine if it can 
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be inserted before t1. But t1 detects more faults than t4 (|t1|=5, |t4|=3), so it is concluded that t4 should be placed 

after t1. Then t4 is compared with t2 to determine if it can be inserted before t2. Insertion of t4 before t2 leads 

to three additional fault detections which happens to be the same as t2 in that position, so t4 is not inserted as 

illustrated in Figure 20(a). Next t4 is compared with t3 to determine if it can be inserted before t3. Insertion 

before t3 results in t4 detecting more faults than t3, so t4 should be inserted at this position as illustrated in 

Figure 20(b). Figure 20(c) shows the updated Detection array and NumFaults hash table after t4 is inserted. 

The updated SelectedTest list is t1, t2, t4, t3. If K=3, the test size limit is reached and the last test t3 is deleted 

from the SelectedTest list. If the one-pass method cannot find a place to insert t4 into the SelectedTest list, 

then t4 would be discarded. 

It is too expensive however to compare a new test with each of the K selected tests, especially when 

K is large. The cost is significant because to compute the additional fault detection (NumFaults) at each 

insertion point, each fault detected by a new test has to be checked for its existence in the Detection array to 

determine whether it is already detected by prior tests before the current insertion point. In the work of [48], 

a constant β is used to speed the process of finding the insertion point for a new test. We define 

NumFaults{tNEW} @prev and NumFaults{tNEW} @curr to be the number of additional faults detected by a 

new test tNEW at the previous and the current insertion point, respectively. Using the one-pass method with 

constant β to insert tNEW is described as follows: 

The current insertion point is after all tests with NumFaults ≥ NumFaults{tNEW}@prev / β. tNEW is 

inserted at the current insertion point if NumFaults{tNEW}@curr ≥ NumFaults{tNEW} @prev / β, otherwise 

the next available insertion point is found. 

An example of using the one-pass method to insert tNEW when β=1.1 is illustrated in Figure 21. 

Shown on the left side of Figure 21 are tests already selected into the SelectedTest list and their corresponding 

NumFaults values. The right side of Figure 21 demonstrates the procedure of finding insertion points for tNEW. 

The initial value of NumFaults{tNEW} equals 110, which is the total number of faults detected by tNEW. So the 

first insertion point is after all tests with NumFaults ≥ 110/1.1=100. tNEW is not inserted at the first insertion 

point because it detects 95 additional faults which is less than 100. The one-pass method finds the second 

insertion point after all tests with NumFaults ≥ 95/1.1≈86.4. Again tNEW is not inserted because it detects 70 
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additional faults which is less than 86.4. tNEW is finally inserted at the third insertion point after all tests with 

NumFaults ≥ 70/1.1≈63.6. Using this approach, the time needed for inserting a new test is no longer a function 

of K, which will be demonstrated at the end of this section. Note in this example tNEW detects more additional 

faults than t8 but is placed after t8, this reveals the insertion point found using β is not always optimal. Using 

a smaller value for β enables a more accurate search since more insertion points are evaluated, but also 

increases CPU time. In this work, β is set to 1.1 following the same setting as in [48]. 

 

Figure 21: The one-pass method finds the insertion points for a new test tNEW when β=1.1. tNEW is inserted to 

the SelectedTest list at the third insertion point. 

The pseudocode for the one-pass method is shown in Procedure 1. The one-pass method has four 

inputs: the baseline test set T, the maximum number of selected tests K, N from N-detect test metric (N equals 

to 1 for conventional, one-detect fault models) and β. For each ti ∈T, the CurrFaults array initially represents 

the set of faults that are detected by ti. Lines 5 to 8 determine an insertion point (InsertPoint), while lines 9 

to 16 calculate the number of additional faults detected by ti (|NewFaults|) if it is inserted. Line 17 determines 

whether ti needs to be inserted. If yes, lines 18 to 24 insert ti and update the NumFaults hash table and the 

Detected array. If ti is not inserted, line 25 to 26 reduces the number of faults that need to be checked for 

computing additional fault detection in subsequent iterations, and loops back to line 4 to search for the next 

insertion point. The procedure InsertionBeneficial on line 18 tries to predict whether inserting a new test will 

improve the overall coverage or not, when the size of the SelectedTest list has reached the limit K. It compares 

ti with the last test in the SelectedTest list (which will be deleted if ti is inserted) in terms of the additional 

faults detected when both are placed at the end of the test list. 
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Procedure 1 One-pass test selection method (T, K, N, β) 

1: for each ti ∈T do 

2:   CurrFaults = [Faults detected by ti]; 

3:   InsertPoint = 0; SelectedTest = []; 

4:   While CurrFaults≠empty and InsertPoint<K-1 do 

5:     for j = InsertPoint to |SelectedTest|-1 do 

6:       if NumFaults{SelectedTest[j]}<|CurrFaults|/β then break; 

7:     end for 

8:     InsertPoint = j; NewFaults = []; 

9:     for j = 0 to |CurrFaults|-1 do 

10:      for l = 1 to N do 

11:       OneTest = Detection[CurrFaults[j]][l]; 

12:        if (NumFaults{OneTest}<|CurrFaults|/β then 

13:          push CurrFaults[j] to NewFaults; break; 

14:        end if 

15:      end for 

16:    end for 

17:    if (|NewFaults|>=|CurrFaults|/β then 

18:      if |SelectedTest|==K and InsertionBeneficial==No then break; 

19:      NumFaults{ti} = |NewFaults|; 

20:      Update NumFaults and Detection; 

21:      Sort tests in SelectedTest based on NumFaults (descending); 

22:      if |SelectedTest|>K then delete the last test in SelectedTest; 

23:      break; 

24:    end if 

25:    CurrFaults = NewFaults; 

26:  end while 

27:end for 

 

The memory space complexity of the one-pass method is O(|F|×N), which is determined by the size 

of the Detection array, while the memory space complexity of the greedy algorithm is 𝑂(∑ |𝐹𝑖| × 𝑇)𝑡𝑖∈𝑇 , 

where Fi is the set of faults detected by ti ∈T. Typically ∑ |𝐹𝑖|𝑡𝑖∈𝑇 ≫ |𝐹| and 𝑇 ≫ 𝑁. The time complexity of 

the one-pass method is 𝑂(∑ |𝐹𝑖| × 𝑁)𝑡𝑖∈𝑇 . For comparison, the time complexity of the greedy algorithm is 

𝑂(∑ |𝐹𝑖| × 𝐾)𝑡𝑖∈𝑇 , and 𝐾 ≫ 𝑁 in a typical case. The time complexity of the one-pass method results from 

the fact that for ti, the time cost in the first iteration is |Fi|×N. If ti is not inserted, the time cost in the next 

iteration is at most |Fi|×N/β, because the size of the CurrFaults array is reduced by at least β. In the worst 

situation where the searching for insertion point is continued until the end, the overall time cost for searching 
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and comparing is |𝐹𝑖| × 𝑁 × (1 +
1

𝛽
+

1

𝛽2 + ⋯ ) = |𝐹𝑖| × 𝑁 × (1 +
1

𝛽−1
) . Updating the NumFaults hash 

table and the Detected array costs at most |Fi|×N. So the overall time cost for processing ti is O(|Fi|×N) 

5.3 Experiment 

This section describes experiments that compare the tests selected by the one-pass method with the greedy 

algorithm, LP, ILP and the original test sets generated by ATPG. The comparison includes fault coverage, 

test escape, compute time and compute memory. Specifically in Section 5.3.1, experiment results comparing 

the one-pass method with the greedy algorithm using data from an IBM ASIC are presented, while in Section 

5.3.2 a similar comparison using data from an NVIDIA GPU is provided. In Section 5.3.3, the comparison 

of the one-pass method with LP and ILP is provided using two representative benchmark circuits. Section 

5.3.4 provides additional discussions.  

5.3.1 IBM ASIC Experiment 

The IBM ASIC used in this experiment is manufactured in 130nm technology and contains about 10 million 

transistors. The total number of uncollapsed stuck-at faults is 4.4 million. The original test set applied to this 

chip contains 36 scan-chain tests and 3,321 stuck-at tests generated by Cadence® Encounter Test® that 

achieve more than 99% stuck-at fault coverage.  

An N-detect test-selection experiment is designed as follows: the original test set is concatenated 

with tests generated from 10 ATPG runs to form a baseline test set. In each ATPG run, Encounter Test® is 

used to generate about 3,000 tests that achieve more than 99% stuck-at fault coverage. Although each ATPG 

run uses the same command, the cumulative stuck-at fault coverage curve of each run is different, indicating 

each ATPG run includes different tests due to the randomness inherent within ATPG. In total there are 32,402 

tests in the baseline test set. Both the one-pass method and the greedy algorithm are used to select 6,642 tests 

(which is the twice the size of the original test set) that maximize 3-detect stuck-at coverage.   

Figure 22 shows the distribution of the 6,642 selected tests resulting from the one-pass method and 

the greedy algorithm based on the 11 test sets (original and the 10 ATPG runs). The distribution reveals that 

tests with high 3-detect coverage exist in different test sets, and can be identified and selected by both the 
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greedy algorithm and the one-pass method. Compared to the greedy algorithm, the one-pass method selects 

more tests from test sets that are processed earlier. For example, when test sets are processed in an order from 

left to right in Figure 2, most tests are selected from the three leftmost test sets (i.e., original, ATPG 1 and 

ATPG2), and similarly when processing begins instead with the test set ATPG 10.  The one-pass method 

exhibits this behavior because it requires a test that is encountered later in the execution to detect more faults 

than some previously-selected test (albeit for a limited number of insertion points) in order for the test to be 

selected and inserted. However, despite this challenging criteria, at least 39 tests from the last test set are 

selected and inserted (when test sets are processed from left to right). This outcome demonstrates that the 

one-pass method can improve 3-detect stuck-at coverage when provided with a larger baseline test set, which 

in this case includes the 11 test sets of Figure 22.  

 

Figure 22: The distribution of tests selected by the greedy algorithm and the one-pass method. Test sets are 

processed by the one-pass method in an order that is either from left to right, or from right to left. 

Figure 23 compares the cumulative 3-detect stuck-at coverage of the 6,642 tests selected by the one-

pass method1 and the greedy algorithm. The coverage in Figure 23 results from processing the test sets in 

Figure 22 from left to right. The resulting coverage from processing in the reverse order has slightly lower 

coverage, specifically a change of 0.01%. The cumulative 3-detect coverage of the baseline test set is also 

plotted. As can be seen, very little difference exists between the cumulative 3-detect stuck-at coverage of the 

tests selected by the one-pass method and the greedy algorithm (less than 0.01% overall). The 3-detect stuck-

at coverage of all 32,402 tests in the baseline test set is 99.17%. The 6,642 tests selected by the greedy 
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algorithm and the one-pass method both achieve 99.14% coverage, while the first 6,642 tests selected from 

the baseline test set according to the original ordering achieves 98.57% coverage. 

 

Figure 23: The cumulative 3-detect stuck-at coverage achieved by the tests selected by the greedy 

algorithm, by the one-pass method and the baseline test set (i.e., the original test set and the additional 10 

ATPG runs). 

 

Figure 24: The cumulative 3-detect stuck-at coverage of the tests selected by the greedy algorithm and the 

one-pass method as a function of the overall time. 

Figure 24 shows the cumulative 3-detect coverage of the tests selected as a function of the overall 

time. The overall time includes both the fault simulation time and the test selection time. The greedy 
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algorithm start test selection after fault simulation is finished, while the one-pass method selects tests 

simultaneously as tests are fault simulated as illustrated in Figure 18. (It should be noted that the 3-detect 

coverage of 16% at time zero is due to the scan-chain tests.) The average fault simulation time for one test is 

approximately 57.3 seconds, and includes the time to write the simulation results to disk. In this experiment, 

eight tests are fault simulated in parallel, so the overall fault simulation time for 32,402 tests is ~230,000 

second (63 hours). Both the greedy algorithm and the one-pass method takes ~310,000 seconds (86 hours) to 

complete. Because the one-pass method selects tests simultaneously with fault simulation, the overall time is 

86 hours for the one-pass method, compared to 151 hours for the greedy algorithm. 

The memory space used by the one-pass method is 1.9GB, compared with 370GB used by the 

greedy algorithm. The one-pass method achieves a 200X reduction in memory usage. The difference in 

memory requirements is due to the fact that the one-pass method only needs to store the Detection array, the 

NumFaults hash table, and the fault simulation result of a single test, while the greedy algorithm requires 

fault simulation results of all tests. 

5.3.2 NVIDIA GPU Experiment 

 

Figure 25: The number of failed chips detected by each test. 

The chip used in this experiment is an NVIDIA GPU G72 manufactured in 90nm technology and 

contains about 100 million transistors. The total number of testable uncollapsed stuck-at faults is 45 million. 

The original test set applied to this chip contains 1,000 logic tests, and achieves 98.2% stuck-at fault coverage. 

For this NVIDIA GPU, we have logs collected from 12,127 chips that failed on the tester. Each failed chips 
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is tested with all 1,000 tests, so each fail log contains all the failing-test information. Figure 25 shows the 

number of failed chips detected by each of the 1,000 tests (one failed chip can be detected by multiple tests). 

As can be seen, the number of failed chips detected by each test varies significantly, implying some tests that 

detect few failed chips may not need to be applied in order to save test cost. For example, 8 tests can be 

eliminated from the set of 1,000 without any of the 12,127 failures escaping detection. 

 

Figure 26: The cumulative stuck-at fault coverage of tests selected by the one-pass method, by the greedy 

algorithm and the original test ordering. 

An experiment is conducted to select K tests that maximize the stuck-at fault coverage from the 

original test set. After experimenting several other K values (K=X, X<1,000) using both the greedy algorithm 

and the one-pass method, it is discovered the stuck-at fault coverage achieved by the X selected tests is almost 

identical to the coverage achieved by the first X tests from the selected test list of K=1,000. So only the result 

from K=1,000 is plotted. Figure 26 shows the cumulative stuck-at fault coverage from the 200th selected test 

to the last test (Figure 26 starts from the 200th test to focus on the results from test sets with high fault 

coverage, and to make the fault-coverage difference more visible). As can be seen, the cumulative stuck-at 

fault coverage of the tests selected by the one-pass method closely matches the greedy algorithm. Compared 

to the original ordering, the greedy algorithm and the one-pass method improve the average cumulative fault 

coverage across 1000 tests by 0.54% and 0.53%, respectively.  
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Figure 27: The number of test escapes among the 12,127 failed chips when only a subset of selected tests is 

applied on the tester. 

 

Figure 28: The cumulative stuck-at coverage of the tests selected by the greedy algorithm and the one-pass 

method as a function of the overall time. 

Figure 27 shows the number of test escapes determined from the fail logs assuming only a subset of 

tests is utilized for testing each GPU (from the 200th test to the last test). The subset of tests is selected either 

by the one-pass method, by the greedy algorithm or based on the original ordering. As can be seen, although 

the one-pass method and the greedy algorithm both select tests to maximize the stuck-at fault coverage, the 

selected tests effectively reduce the number of test escapes, compared with tests applied based on the original 

ordering. The one-pass method achieves similar or sometimes even lower test escapes as the greedy algorithm. 
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For example, the first 900 tests selected by the one-pass method, by the greedy algorithm, and the original 

test ordering result in 13, 15 and 30 test escapes, respectively.  

Figure 28 reports the cumulative stuck-at fault coverage of the tests selected as a function of the 

overall time. The overall time includes both fault simulation and test selection similar to Figure 24 for the 

IBM ASIC. The average fault simulation time for one test is 670 seconds using Synopsys® TetraMAX®, 

which includes the time to write the simulation results to disk. Eight tests are simulated in parallel to speed 

up the fault simulation, so the overall fault simulation time for 1,000 tests is ~84,000 second (23 hours). The 

greedy algorithm takes ~114,000 seconds (32 hours) to complete while the one-pass method takes 137,000 

seconds (38 hours). Since the one-pass method selects tests simultaneously with fault simulation, the overall 

elapsed time is 38 hours for the one-pass method, and 55 hours for the greedy algorithm. 

The memory space used by the one-pass method is 17GB, compared to 380GB used by the greedy 

algorithm. The one-pass method achieves a 20X reduction in memory usage. 

5.3.3 Comparison with LP and ILP 

Besides the one-pass method and the greedy algorithm, previous work in [43][45] solves the test-selection 

problem using ILP or LP. The test-selection problem for maximizing fault coverage can be formulated as an 

ILP optimization as follows: |T| binary variables Bti (i=1,2,…,|T|) are used to represent whether ti is selected 

into test set S (Bti =1 for selected and Bti =0 for not selected). |F| binary variables Bfj (j=1,2,…,|F|) are used 

to represent whether fj is detected by the tests in S (Bfj =1 for detected and Bfj =0 for not detected). The 

objective is to find a solution that maximizes the total number of faults detected by S while |S|≤K. However, 

as noted in [11], an ILP optimization is NP-complete without any efficient solution. Thus a relaxation and 

rounding method can be used to transform the ILP formulation to an easier LP formulation that is solvable 

in polynomial time.  

The scanned versions of two ISCAS’89 circuits s38584 and s38417 [66] are used to compare the 

one-pass method with ILP and LP. A commercial ATPG tool is used to generate tests for each circuit and 

fault-simulate the generated tests. Based on the fault-simulation results, a selected test set S of no more than 

K tests can be selected either by using the one-pass method or by using LP or ILP. The LP/ILP solver used 
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in this experiment is BARON [68]. For each method, the number of stuck-at faults detected by S, the CPU 

time and the memory required to compute S are listed in Table 13. Because the rounding step of LP involves 

randomization, Table 13 shows the average and the maximum number of faults detected by S from five 

independent experiments. As can be seen, in all but one case (s38417, K=100), the test set S selected using 

LP detects fewer faults than the one-pass method. The CPU time for the one-pass method is 7X to 30X 

smaller than LP. The test set S selected by ILP detects a few more faults (<0.2% coverage difference) than 

the one-pass method, but the CPU time required by ILP is significantly larger (at least 200 times more than 

the one-pass method). In three cases, the ILP solver reaches a pre-defined time limit of one day (86,400s) 

and is terminated to give the best solution it has found thus far (listed as N/A if no solution has yet to be 

found). The one-pass method also reduces the memory usage by 140X compared with the IP or ILP. 

 

Table 13: Comparison of the one-pass method with LP and ILP in terms of the number of detected stuck-at 

faults, the CPU time and memory usage. 

A similar comparison of the one-pass method with LP is performed using the data of NVIDIA GPU 

G72. The size of the input file to the LP/ILP solver, which is created based on the fault dictionary, reaches 

370GB. For LP, the memory required by the solver exceeds the 1TB of available memory (compared with 

the 17GB required by the one-pass method), meaning the comparison experiment cannot be completed. 

Comparing the one-pass method with ILP also cannot be completed due to lack of memory resources. 

Method
Faults 

detected

CPU   

time (s)

Faults 

detected

CPU   

time (s)

Faults 

detected

CPU   

time (s)

One-pass 34,664 12 34,224 13 33,458 13 5.7

LP (avg) 34,600 83 34,009 181 33,075 388

LP (max) 34,629 83 34,180 181 33,160 388

ILP 34,678 5,081 34,251 >86,400 N/A >86,400 831

Method
Faults 

detected

CPU   

time (s)

Faults 

detected

CPU   

time (s)

Faults 

detected

CPU   

time (s)

One-pass 32,662 15 32,287 14 31,700 14 5.4

LP (avg) 32,631 100 32,176 183 31,490 319

LP (max) 32,666 100 32,251 183 31,577 319

ILP 32,684 3,249 32,333 42,480 N/A >86,400 850

K  = 100 

Memory 

(MB)

K  = 100 

Memory 

(MB)

826

840

s38584 (176 tests, 35,182 faults)

s38417 (192 tests, 33,199 faults)

K = 100 K = 80 K = 60

K = 100 K = 80 K = 60
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5.3.4 Discussion 

The time cost of the one-pass method in both experiments can be reduced in many ways. First, in both 

experiments a commercial tool is used to fault simulate each test. In order to get the fault simulation results 

(detected fault lists) for the one-pass method, the commercial tool needs to first write the results to the hard 

disk, where the one-pass method can then retrieve the results and delete them. Writing, reading and deleting 

the fault simulation results in the hard disk take a huge amount of time (e.g., the detected fault list for a single 

test used by the NVIDIA GPU can exceed 700MB in size). If the one-pass method can directly access the 

part of the memory where the fault simulation results reside in, the time needed by the one-pass method can 

be greatly reduced. 

Second, the one-pass method is written in Perl for both experiments and is not optimized for parallel 

computing (for a fair comparison with the greedy algorithm, which is not optimized as well). For example, 

the for loop from line 9 to line 12 in Procedure 1 is used to find the number of faults detected at a specific 

insertion point. Parallel computing can speed up this process because each fault is checked independently. 

Later on line 20, the update of NumFaults and Detection is another for loop which can be speed up by parallel 

computing as well. 

5.4 Summary 

In this work, a one-pass test-selection method is developed, which can be used to select tests to maximize 

coverage for a conventional fault model or N-detect test metric. The one-pass method analyzes and selects 

each test one at a time in a streaming fashion, so test selection can be done with fault simulation 

simultaneously to save execution time. The memory cost of the one-pass method is also significantly lower 

than other test-selection methods. The one-pass method is applied to an IBM ASIC and an NVIDIA GPU. 

Experiment results demonstrate that the one-pass method achieves similar coverage (less than 0.01% 

coverage difference) as the greedy algorithm while using less time (reduced by 2X) and memory (reduced 

by 20X to 200X). The experiments on two ISCAS circuits further demonstrate the one-pass method typically 

achieves coverage higher than LP and close to ILP (less than 0.2% coverage difference) but uses much less 

time (reduced by 7X to 30X for LP, and more than 200X for ILP) and memory (reduced by 140X). Our work 
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involves further improving the speed of the one-pass method and selecting tests to maximize fault coverage 

for multiple fault models. 
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Chapter 6 Conclusion and Future Work 

Developing high-quality tests is becoming increasingly important in chip manufacturing. Because of 

increasing transistor density and more complex defect behaviors, defects become more difficult to detect and 

may escape testing if only the conventional stuck-at tests are used. More sophisticated fault models have 

been developed to guide test development toward better defect detection, but they also require a significantly 

larger volume of tests to achieve acceptable coverage. Test engineers need to not only reduce test volume 

(improve test efficiency) in order to save test cost, but also maintain low test escape by using tests that can 

effectively detect defects (improve test effectiveness). During yield ramp-up, high-quality tests should also 

help identify existing manufacturing defects (improve diagnosability), so that the characteristics of defects 

can be analyzed and improvements in fabrication, design and even test can be made in a timely manner. 

Developing methods that improves diagnosability, test effectiveness or test efficiency for test development 

is the focus of this thesis work.  

6.1 Dissertation Contribution 

Four new methods are developed in this dissertation to improve the state of the art for test development, 

either in terms of diagnosability, test effectiveness or test efficiency. These methods can be used in 

conjunction, or individually for achieving a specific prioritized, goal in test development. The main 

contribution of each method is summarized as follows: 

Test reordering for improving diagnosability 

 To our knowledge, it is the first-ever work that examine the impact of test order on logic diagnosis. 

Because during production testing tester response is typically collected on a first-come basis and 

not all tester response is collected due to limited tester time or memory, the collected tester response 
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is often incomplete. Diagnostic resolution is adversely affected by incomplete tester response, but 

it can be improved by reordering tests to optimize the data recorded on tester. 

 Test reordering is based on faults detected by each test, which can easily be extracted from the fault 

simulation results using a commercial ATPG tool. The test-reordering method tries to find an 

optimal ordering to make faults distinguishable, in other words, make each fault have different, 

unique simulation response. Distinguished faults are unlikely to become diagnosis candidates at the 

same time, so diagnostic resolution can be improved. 

 Tests are reordered using a one-pass approach to save time and memory. The one-pass approach 

avoids loading a huge fault dictionary into memory. After a test is simulated, it is inserted into an 

ideal location in a reordered test sequence based on the faults detected by the simulated test. The 

fault simulation result of the inserted test can then be discarded to save memory. Moreover, test-

reordering can be performed in parallel with fault simulation using the one-pass approach to save 

overall computation time. 

Delay fault model evaluation for improving effectiveness (DELAY-METER) 

 DELAY-METER provides an inexpensive approach to evaluate the effectiveness of fault models. 

Similar to METER, it measures fault-model effectiveness without conducting expensive tester 

experiments involving real chips. Instead, DELAY-METER uses the readily-available fail logs 

collected from chips failed during production testing. The conventional tester experiments do not 

look into each failing chip and may give credit to a fault model which detects a failing chip 

fortuitously. DELAY-METER overcomes this drawback by diagnosing each failing chip and 

evaluating fault models through fault-simulation and comparison with tester response. 

 DELAY-METER extends METER to evaluating several delay fault models and metrics used in at-

speed testing. Diagnosis for chips that fail at-speed testing is more difficult than slow-speed testing, 

because a delayed signal caused a delay defect may not propagate to all reachable outputs. To 

overcome the poor delay diagnostic resolution and accuracy, DELAY-METER uses a conservative 

diagnosis approach to identify all possible suspect regions, and then finds effective faults within 

suspect regions for evaluating fault models.  
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Defect level (DL) prediction for balancing effectiveness and efficiency (the DDP model) 

 The DDP model uses fault coverage from multiple fault models to provide a more accurate DL 

prediction. Conventional DL-prediction models predict DL using the fault coverage from a single 

fault model, which becomes insufficient when tests are generated and combined from multiple fault 

models. Conventional models also predict DL=0 when fault coverage is 100%, however this is not 

true because test escape still exists with 100% fault coverage. 

 The DDP model learns the defect detection probability (DDP) of multiple fault models from 

diagnosis or each failing chip, and incorporate it into DL prediction. Previous work in DL-prediction 

using multiple fault coverages either treats each fault model equally, or derives a purely empirical 

model. The DDP model provides a more reliable prediction by combining the DDP distribution 

learned from diagnosis with fault coverages from multiple fault models to make prediction. 

Test selection for improving test efficiency 

 Tests are selected using a one-pass approach to reduce memory and time cost. Previous simulation-

based test-selection work requires a huge fault dictionary to be built and loaded into memory before 

test selection can begin. The large size of fault dictionary makes test selection difficult and increases 

the required CPU time. The one-pass test-selection method simulates and selects test one by one in 

a streaming fashion. The memory cost is greatly reduced and test selection can be performed 

simultaneously with fault simulation to save the overall CPU time. 

 The fault coverage achieved by the tests selected using the one-pass test-selection method closely 

matches tests selected using the greedy algorithm, which is the best algorithm that can solve such a 

problem in polynomial time. The one-pass method also performs better than the approach used in 

previous work that select tests by solving a LP/ILP problem, in terms of fault coverage, time and 

memory. 

6.2 Future Work 

While this dissertation develops several methods for use in test development, it also opens some interesting 

topics for research in the future. Some topics are listed below: 
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 Test selection for minimizing DL. The one-pass test-selection work developed in this dissertation 

selects tests to maximize fault coverage, because higher fault coverage leads to lower DL. An 

extension work can focus on selecting tests that minimize DL directly. The DDP model or other 

DL-prediction models can be used to calculate DL from fault coverage achieved by a set tests, and 

the goal of test selection is to find a set of ≤K tests with minimal DL.  

 Test reordering for improving diagnostic resolution for compressed tests. Test compression is 

widely used in production testing to reduce the amount of test data that needs to be transferred to 

testers. Because of the limited tester bandwidth, less test data reduces tester time and memory cost. 

However, tests compressed by MISR may lose the information of which tests actually failed on a 

tester. By reordering tests so that only one test fails in an interval of tests (tests compressed by MISR 

are divided into multiple intervals and MISR signature is only checked at the end of each interval), 

the failing test can be identified using cycling registers. The lost information is then retrieved and 

can lead to a better diagnosis outcome.  

 Improve speed of the one-pass test-selection or the test-reordering method through parallel 

computing. Both methods involves fault-simulating a test and looping through each detected fault. 

If the detected faults are processed by multiple child process instead of a single process, the overall 

computation time can be greatly reduced. The low memory cost of the one-pass methods also 

enables computation with multiple processes without worrying for memory overflow. 
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