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Abstract

We study distributed inference, learning and optimization in scenarios which involve networked entities in

time-varying and random networks, which are ad-hoc in nature. In this thesis, we propose distributed re-

cursive algorithms where the networked entities simultaneously incorporate locally sensed information and

information obtained from the neighborhood. The class of distributed algorithms proposed in this thesis

encompasses distributed estimation, distributed composite hypothesis testing and distributed optimization.

The central theme of the scenarios considered involve systems constrained by limited on board batteries

and hence constrained by limited sensing, computation and extremely limited communication resources.

A typical example of such resource constrained scenarios being distributed data-parallel machine learning

systems, in which the individual entities are commodity devices such as cellphones.

Due to the inherent ad-hoc nature of the aforementioned setups, in conjunction with random environments

render these setups central coordinator-less. Keeping in mind the resource constrained nature of such se-

tups, we propose distributed inference and optimization algorithms which characterize the interplay between

communication, computation and optimality, while allowing for heterogeneity among clients in terms of ob-

jectives, data collection and statistical dependencies.

With massive data, models for learning and optimization have been getting more and more complex to the

extent of being almost analytically intractable. In such models, obtaining gradients for the associated loss

function is very expensive and potentially intractable due to the lack of a closed form for the loss function.

A major thrust of this thesis is gradient free zeroth order optimization which encompasses distributed se-

tups which exhibit data parallelism and also potentially analytically intractable loss functions. On top of

gradient free optimization, in this thesis we also study projection free zeroth order methods for constrained

optimization.

The techniques developed in this thesis are generic and are of independent interest in classical fields such as

stochastic approximation, statistical decision theory and optimization.
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Chapter 1

Introduction

1.1 Motivation

Distributed data processing techniques have been increasingly employed to solve problems pertaining to

optimization and statistical inference. With massive computing resources that are available at scale, and

ever growing sizes of data sets, it becomes highly desirable, if not necessary, to distribute the task among

multiple machines or multiple cores. The benefits of splitting the task into smaller subtasks are multi-

pronged, namely, it makes the problem at hand, scalable, parallelized and fast. In the context of distribution

stochastic optimization, several methods (see, for example Zhang et al. (2013b,a); Heinze et al. (2016); Ma

et al. (2015); Recht et al. (2011)) have been proposed which exhibit impressive performance in platforms

such as Mapreduce and Spark. The aforementioned methods, though highly scalable, are designed for

master-worker or similar types of architectures. That is, they require the presence of a master node, i.e., a

central coordinator which is tasked with splitting the dataset by data points (batches) or by features among

worker nodes and enabling the read/write operations of the iterates of the worker nodes so as to ensure

information fusion across the worker nodes. However, with several emerging applications, master-worker

type architectures may not be feasible or desirable due to physical constraints.

In this thesis, we are interested in systems and applications where the entire data is not available at

a central/master node, is sensed in a streaming fashion and is intrinsically distributed across the worker

nodes1. Such scenarios arise, e.g., in systems which involve Internet of Things (IoT). For example, a smart

campus with sensors of various kinds, a smart building or monitoring a large scale industrial plant. Therein,

a network of large number of heterogeneous entities (usually, geographically spread) connected in a arbitrary

network structure individually perform sensing for data arriving in a streaming fashion. The sensing devices

have limited communication capabilities owing to on board power constraints and harsh environments. A

typical IoT framework is characterized by a heterogeneous network of entities without a central coordinator,

where entities have localized knowledge and can exchange information among each other through an arbitrary

pre-specified communication graph. Furthermore, the data samples arrive in a streaming fashion. The ad-

hoc nature of the IoT framework necessitates the information exchange in a crafted manner.

The goal of the thesis is to study learning, inference and optimization in the context of aforementioned ad-

hoc networked systems deployed in random environments with the networked entities being heterogeneous

in nature and have limited resources in terms of communication, computation and sensing. We start by

highlighting the key aspects of the inference and optimization algorithms studied in this thesis.

1We use worker nodes, agents, entities and nodes interchangeably through out this thesis.

1
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Figure 1.1: A typical Internet of Things setup

Figure 1.2: Distributed Architecture without a central node

Distributed Information Processing A major focus of this thesis is to develop and characterize algo-

rithms for distributed information processing in architectures involving entities which are inter connected

without a central coordinator. Figure 1.2 illustrates the main characteristics of the distributed setup that

we consider in this thesis. In particular, our setup allows for both stored data and streaming data at the

networked entities. The information exchange in the distributed setup as depicted in figure 1.2 is restricted

to neighborhoods of the networked entities. In addition to the local neighborhood constrained information

exchange, the information exchanged is limited to a sufficient statistic of the data and raw data is never

exchanged.
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Heterogeneous Entities The algorithms that we develop and characterize in this thesis are built around

distributed information processing setups which involve entities that depict varying levels of heterogeneity.

A setup, i.e., Internet of Things where heterogeneity is exhibited in almost all instances of its deployment is

depicted in Figure 1.1. A common trait in terms of heterogeneity which ties all our algorithms is accounting

for different ways in which the entities collect their data, i.e., the sensing models and the associated statistical

characteristics. In addition to the heterogeneous sensing models, the distributed algorithms developed in

this thesis provide for heterogeneous objectives and therein, heterogeneous local communication schemes,

i.e., allowance for messages of different dimension exchanged among the entities.

Recursive Algorithms The ad-hoc nature of the distributed architecture in addition to the decentralized

data configuration considered in this thesis necessitates collaborations among the entities so as to accomplish

a task for the network as a whole. In light of the collaboration among the agents on top of the streaming

data setting, the algorithms developed in this thesis are recursive in nature. At the heart of the distributed

algorithms developed in this thesis, lies the interplay of the information obtained by each entity through its

local data collection and the information obtained from its neighborhood and a carefully tuned mixing of

the sensed information and the information obtained from the neighborhood. The global behavior emerging

from such mixing leads to non-trivial analytical characterization. The techniques developed in this thesis to

characterize the arising global behavior provides intuition and understanding towards tuning of local entity

level interactions to accomplish a global objective.

1.2 Contributions

In the following, we first highlight the key thematic contributions of this thesis.

• Ad-hoc Deployment and Communication In most applications of interest, the first challenge

comes from the ad-hoc nature of the networked entities. By ad-hoc in terms of deployment we mean,

the sudden inclusion of an entity into the network or the sudden shut down of an entity in the net-

work. By ad-hoc communication, we mean the uncertainty in the availability of communication links

in the network. Moreover, the quality of a communication link connecting two entities is contingent

on the available on board battery power of the sending entity. It is well known that the connectiv-

ity of a network is crucial to guarantee any reasonable performance of a distributed algorithm. In

order to encapsulate the ad-hoc nature of the networked setup and the successive degradation of un-

reliable communication links over epochs, the communication protocols around which our proposed

algorithms are built allow for non-identically distributed communication graphs. Technically speaking,

the communication protocols employed in this work goes beyond typical independent and identically

distributed (i.i.d.) construction of communication topologies. The protocols employed in this thesis

not only incorporate epoch wise degradation of communication links but also allow for the communi-

cation graphs to be disconnected at all times with the requirement that they are connected only on

average.

• Communication Efficiency Distributed algorithms for statistical inference and optimization in the

resource constrained networked frameworks are characterized by a central coordinator-less recursive

procedures, where each entity in the network maintains its own estimate or optimizer for the prob-

lem at hand. Resource constrained networked frameworks such as IoT, involve entities which sense

information, perform on board computation and send/receive information from neighboring entities.
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It is noteworthy that the battery power required for communication is a couple of orders higher than

the power required for computation and sensing. Over the course of a particular distributed task, the

quality of communication also degrades over iterations. Thus, so as to replicate real life systems, the

communication protocol employed in any distributed scheme should be able to reflect the degrading

quality of communication. Hence, it is of particular interest to construct distributed schemes which

are frugal in terms of communication without compromising on the performance of the associated

algorithm. However, distributed recursive algorithms are plagued by the need to communicate at each

time and requiring apriori knowledge of the dimensions of the parameter. In this thesis, we focus on

communication efficiency while keeping optimality in mind. In other words, we explore the paradigm

as to how much of redundancy can be removed as far as the messages exchanged are concerned without

losing in terms of the associated performance metrics.

• Black Box Optimization A distributed architecture when deployed out of a data center is character-

ized by entities which depict plug and play behavior. Technically speaking, entities join and leave the

networked setup at unaccounted times. With the aforementioned plug and play behavior of entities,

it is resource wise prohibitive to communicate global model information among the entities, which in

conjunction with cold starts for a new entity in the network makes model based optimization practi-

cally difficult to implement. Hence, schemes which require minimal knowledge of the model ,i.e., black

box schemes where only evaluations of the model are available are particularly attractive avenues in

such setting. In this thesis, we study and develop distributed zeroth order optimization schemes which

takes into account computation and communication efficiency. In particular, we establish convergence

rates of such stochastic optimization algorithms through non-asymptotic analysis and thus explicitly

characterizing the performance through the algorithm parameters.

The contributions of this thesis can be further categorized into three technical areas, namely, distributed

detection, distributed estimation distributed optimization. We now summarize contributions from the afore-

mentioned technical areas.

Sequential Testing In most applications built around networked setups involving resource constrained

entities, it is of particular interest to tune the algorithm so as to achieve reasonable performance using

minimal resources. Thus, it is of particular interest to develop algorithms which are sample efficient. For

example, classical fixed sample size simple hypothesis testing uses 50% more number of samples than a

testing scheme where the number of samples are not decided apriori. Hence, extending sequential testing

schemes to networked setups is of particular interest for sample efficiency. In this thesis, we developed and

analyzed distributed sequential detection algorithms for which we characterized the algorithm parameters

and the associated stopping time distribution. In that, we characterized the performance of the proposed

algorithm in terms of the connectivity of the graph induced by the inter-agent communication topology.

Recursive Composite Hypothesis Testing In the problem of testing a set of hypotheses involving

composite hypothesis in a networked setup the onus is on achieving reasonable detection performance by

utilizing as fewer resources as possible, which includes data samples, communication and sensing energy.

The major challenge in composite testing is to balance the search for the approximate parameterization of

the hypothesis which is in force, while at the same time deciding as to which hypothesis is true. Given

the resource constrained nature of setups considered in this thesis, classical composite hypothesis testing

procedures which first exploit the samples to find the approximate parameterization of the hypothesis in
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force followed by framing a detection procedure are prohibitive. The resource constraints pose a challenging

question in the lines of whether a detection procedure can be formulated which estimates the underlying

parameter while deciding as to which hypothesis is in force parallely. In this thesis, we answer this question

positively by developing an online recursive detection procedure for which we characterize the algorithm

parameters for which exponentially decaying probabilities of errors can be obtained in the large sample

limit.

Communication Efficient Inference and Optimization In resource constrained networked frame-

works characterized by a lack of central coordinator, distributed algorithms tend to be recursive. In such

recursive schemes typically each entity in the network maintains its own estimate, decision statistic or opti-

mizer depending on the problem at hand. Given the resource constraints in terms of sensing, computation

and communication, it is of particular interest to develop distributed schemes which are frugal in terms of

communication without suffering a loss in terms of performance. However, distributed recursive algorithms

are plagued by the need to communicate at each time and requiring apriori knowledge of the dimensions of

the parameter and thus trying to maintain an estimate of the size of a possibly high-dimensional parameter.

In one hand, we develop and analyze the performance of an algorithm which caters to the problem where

the entities have no knowledge about the dimension of the parameter and have heterogeneous objectives

in terms of reconstructing only a few entries of the parameter. We specifically design an algorithm, where

agents exchange lower dimensional messages and characterize the performance of the algorithm in terms of

the interest sets of the entities. On the other hand, we explore a paradigm for estimation and optimization

where we construct a communication scheme which continually sparsifies message exchanges between the

agents while still achieving the optimal error performance.

Finite Sample Characterization In resource constrained networked setups, the entities involved have

limited capacity so as to process sensed information. Moreover, the number of samples processed for ac-

complishing any distributed inference and optimization task is essentially finite. While asymptotic charac-

terization in terms of samples highlights the limits of performance of an algorithm, finite sample guarantees

takes into account the transient behavior of the evolution of the algorithm and hence providing for better

tuning for the algorithm parameters. Especially in the context of optimization, typical assumptions involve

knowledge of parameters characterizing smoothness and landscape of the loss function which is unfortu-

nately available when dealing with a real-life problem. Hence, asymptotic rates emanating from an analysis

involving aforementioned assumptions are potentially violated when employed for real data sets. Thus,

non-asymptotic finite sample characterization of such schemes in terms of convergence rates provides the

much needed understanding regarding the contribution of the different algorithm parameters which then

allows for simplistic debugging. In the context of distributed optimization, we study non-asymptotic rates

for optimization schemes which focus on communication efficiency and optimality. In particular, we provide

intuition as to how the averaged connectivity of the network and the nature of the stochastic oracle being

queried affects the convergence rate.

Gradient Free Optimization With the usage of machine learning algorithms in different research areas,

stochastic optimization has become ubiquitous. In settings based around datacenters, where the computa-

tion and communication resources are abundant, first order stochastic schemes (Stochastic Gradient Descent

type schemes), i.e., algorithms involving direct computation of gradients are ideal candidates. However, in

many engineering applications, where the closed form of loss functions are not available or not analytic, gra-
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dient computations are no longer feasible. On top of non-analytic loss functions, in the context of resource

constrained networked setups, complicated gradient computations are prohibitive. Hence, a potentially at-

tractive alternate is to employ gradient free optimization schemes, i.e., zeroth order optimization. Unlike

Bayesian optimization which is extremely sample efficient but are extremely expensive to implements for di-

mensions beyond 10, zeroth order optimization is applicable to high-dimensional optimization. In this thesis,

we study and develop distributed zeroth order optimization schemes which takes into account computation

and communication efficiency. In particular, we establish convergence rates of such stochastic optimization

algorithms through non-asymptotic analysis and thus explicitly characterizing the performance through the

algorithm parameters for general classes of convex functions.

We summarize by detailing the organization of the thesis and list the contributions of each chapter broadly.

Distributed Detection Technical contributions pertaining to distributed detection in this thesis can

be summarized in terms of development and analysis of detection schemes addressing sequential testing,

recursive composite hypothesis testing and communication efficient simple hypothesis testing. For detailed

exposition and concise statements, we refer the reader to the introductory sections of the chapters 2-4.

• Chapter 2: Under rather generic assumptions on the agent observation models, it is well-known that

in a (hypothetical) centralized scenario or one in which inter-agent communication is all-to-all corre-

sponding to a complete communication graph, the sequential probability ratio test (SPRT) (Wald et al.

(1945)) turns out to be the optimal procedure for sequential testing of binary hypotheses; specifically,

the SPRT minimizes the expected detection time (and hence the number of agent observation samples

that need to be processed) while achieving requisite error performance in terms of specified probability

of false alarm (α) and probability of miss (β) tolerances. The SPRT and its variants have been applied

in various contexts, see, for example, spectrum sensing in cognitive radio networks (Choi et al. (2009);

Jayaprakasam and Sharma (2009); Chaudhari et al. (2009)), target tracking Blostein and Richardson

(1994), to name a few. However, the key ingredient of the SPRT algorithm, the thresholds of the

algorithm do not extend to the ad-hoc networked setups. In this thesis, we developed and analyzed a

distributed sequential detection algorithms for which we characterized the algorithm parameters and

the associated stopping time distribution. In that, we characterized the performance of the proposed

algorithm in terms of the connectivity of the graph induced by the inter-agent communication topology.

• Chapter 3: The problem of composite hypothesis testing is relevant to many practical applications,

including cooperative spectrum sensing Zarrin and Lim (2009); Font-Segura and Wang (2010); Zou et al.

(2010) and MIMO radars Tajer et al. (2010), where the onus is also on achieving reasonable detection

performance by utilizing as fewer resources as possible, which includes data samples, communication

and sensing energy. In classical composite hypothesis testing procedures such as the Generalized

Likelihood Ratio Test (GLRT) Zeitouni et al. (1992), the detection procedure which uses the underlying

parameter estimate based on all the collected samples as a plug-in estimate may not be initiated

until a reasonably accurate parameter estimate, typically the maximum likelihood estimate of the

underlying parameter (state) is obtained. Usually in setups which employ the classical (centralized)

generalized likelihood ratio tests, the data collection phase precedes the parameter estimation and

detection statistic update phase which makes the procedure essentially an offline batch procedure. In

contrast to the fully centralized setup, we focus on a fully distributed setup where the communication

between the agents is restricted to a pre-assigned possibly sparse communication graph and propose two

algorithms namely, consensus + innovations GLRT Non-Linear (CIGLRT −NL) and consensus +
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innovations GLRT Linear (CIGLRT − L), which are of the consensus + innovations form and are

based on fully distributed setups. in spite of being a recursive algorithm and hence suboptimal, the

proposed algorithms guarantee asymptotically decaying probabilities of false alarm and miss under

minimal conditions of global observability and connectivity of the inter-agent communication graph.

• Chapter 4: In this chapter, we derive the large deviation rate for convergence in probability of

products of independent but not identically distributed stochastic matrices arising in time-varying

distributed consensus-type networks. More precisely, we consider the model in which there exists a

baseline topology that describes all possible communications and nodes are activated sparsely. At any

given time, a node is active with a certain time-dependent probability, and any two nodes communicate

if they are both active at that time. Under this model, we compute the exact rate for exponential

decay of probabilities that the matrix products stay bounded away from their limiting matrix. We

show that the rate is given by the minimal vertex cut of the baseline topology, where the node costs are

defined by their limiting activation probabilities. The computed rate has many potential applications

in distributed inference with intermittent communications. We provide an application in the context of

consensus+innovations distributed detection. Therein, we show that optimal error exponent is achiev-

able under a very general model of sparsified activations, thus effectively constructing asymptotically

optimal detectors with significant communications savings.

Distributed Estimation Technical contributions pertaining to distributed estimation in this thesis can be

summarized in terms of development and analysis of communication efficient distributed estimation in terms

of frugal communication cost. The frugality in terms of the communication cost is explored both in terms

of low-dimensional messages and low communication cost for general heterogeneous sensing models. For

detailed exposition and concise statements, we refer the reader to the introductory sections of the chapters

5-7.

• Chapter 5: In this chapter, we explore a paradigm where we construct a communication scheme

which continually sparsifies message exchanges between the agents while still achieving the optimal

error performance. We propose Communication efficient REcursive Distributed estimatiOn algorithm,

CREDO for networked multi-worker setups without a central master node. CREDO is designed for

scenarios in which the worker nodes aim to collaboratively estimate a vector parameter of interest using

distributed online sampled data at the individual worker nodes. The individual worker nodes at each

iteration, update their estimate of the parameter by assimilating their latest sensed information and

estimates from their time-varying neighborhood worker nodes over a (possibly sparse) communication

graph. The underlying inter-worker communication protocol is randomized and makes communications

be increasingly (probabilistically) sparse. Under minimal conditions on the inter-worker information

exchange network and the sensing models, almost sure convergence of the estimate sequence to the true

parameter is established. Further, we characterize the performance of CREDO in terms of asymptotic

covariance of the estimate sequences and specifically establishes the achievability of optimal asymptotic

covariance. The analysis reveals an interesting interplay between the algorithm’s communication cost Ct
and the asymptotic covariance. Most notably, it is shown that CREDO may be designed to achieve

a Θ
(
C−2+ζ
t

)
decay of the mean square error (ζ > 0, arbitrarily small) at each worker node, which

significantly improves over the existing Θ
(
C−1
t

)
rates. On real datasets CREDO requires on an average

up to 3× less communications to obtain reasonable mean square error as compared to benchmark

schemes.
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• Chapter 6: In this chapter we address the design and analysis of communication efficient distributed

algorithms for solving weighted non-linear least squares problems in multi-agent networks. Commu-

nication efficiency is highly relevant in modern applications like cyber-physical systems and internet

of things, where a significant portion of the involved devices have energy constraints in terms of

limited battery power. Furthermore, non-linear models arise frequently in such systems, like, e.g.,

with power grid state estimation. We first propose a distributed recursive estimator of the consen-

sus+innovations type, namely CIWNLS, in which the agents update their parameter estimates at

each observation sampling epoch in a collaborative way by simultaneously processing the latest lo-

cally sensed information (innovations) and the parameter estimates from other agents (consensus)

in the local neighborhood conforming to a pre-specified inter-agent communication topology. Under

rather weak conditions on the connectivity of the inter-agent communication and a global observ-

ability criterion, it is shown that, at every network agent, CIWNLS leads to consistent parameter

estimates. Furthermore, we develop and analyze a non-linear communication efficient distributed algo-

rithm dubbed CREDO −NL (non-linear CREDO). CREDO −NL generalizes the recently proposed

linear method CREDO to non-linear models. We establish for a broad class of non-linear least squares

problems and generic underlying multi-agent network topologies CREDO −NL’s strong consistency.

Furthermore, we demonstrate communication efficiency of the method, both theoretically and by sim-

ulation examples. For the former, we rigorously prove that CREDO −NL achieves significantly faster

mean squared error rates in terms of the elapsed communication cost over existing alternatives. For

the latter, the considered simulation experiments show communication savings by at least an order of

magnitude.

• Chapter 7: In this chapter, we present a communication efficient distributed algorithm, CIRFE of

the consensus+innovations type, to estimate a high-dimensional parameter in a multi-agent network,

in which each agent is interested in reconstructing only a few components of the parameter. This

problem arises for example when monitoring the high-dimensional distributed state of a large-scale

infrastructure with a network of limited capability sensors and where each sensor is tasked with es-

timating some local components of the state. This chapter explores the paradigm of communication

efficiency which involves reduction in the dimension of messages exchanged among agents. Under

minimal conditions on the inter-agent communication network and the sensing models, almost sure

convergence of the estimate sequence at each agent to the components of the true parameter in its

interest set is established. Furthermore, the chapter establishes the performance of CIRFE in terms

of asymptotic covariance of the estimate sequences and specifically characterizes the dependencies of

the component wise asymptotic covariance in terms of the number of agents tasked with estimating it.

Finally, simulation experiments demonstrate the efficacy of CIRFE .

Distributed Optimization Technical contributions pertaining to distributed optimization in this thesis

can be summarized in terms of development and analysis of communication efficient distributed optimization

in terms of frugal communication cost. The frugality in terms of the communication cost is studied in

conjunction with exploration of stochastic oracles for optimization, while keeping the resource constrained

setups in mind. Furthermore, a gradient free and projection free approach for stochastic optimization is also

explored. For detailed exposition and concise statements, we refer the reader to the introductory sections of

the chapters 8-10.

• Chapter 8: In this chapter, we establish the O( 1
t ) convergence rate for distributed stochastic gradient
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methods that operate over strongly convex costs and random networks. The considered class of methods

is standard each node performs a weighted average of its own and its neighbors solution estimates

(consensus), and takes a negative step with respect to a noisy version of its local functions gradient

(innovation). The underlying communication network is modeled through a sequence of temporally

independent identically distributed (i.i.d.) Laplacian matrices connected on average, while the local

gradient noises are also i.i.d. in time, have finite second moment, and possibly unbounded support. We

show that, after a careful setting of the consensus and innovations potentials (weights), the distributed

stochastic gradient method achieves a (order-optimal) O( 1
t ) convergence rate in the mean square

distance from the solution. This is the first order-optimal convergence rate result on distributed

strongly convex stochastic optimization when the network is random and/or the gradient noises have

unbounded support. Furthermore, we examine fundamental tradeoffs in distributed SGD in multi-

agent networks in terms of communication cost (number of per-node transmissions) and computational

cost, measured by the number of per-node noisy function evaluations with zeroth order methods. Under

standard assumptions on the cost functions and the noise statistics, we establish with the proposed

method the O(1/(Ccomm)4/3−ζ) mean square error convergence rate, for distributed SGD, where Ccomm

is the expected number of network communications and ζ > 0 is arbitrarily small. The method is shown

to achieve order-optimal convergence rates in terms of computational cost Ccomp, O(1/(Ccomp)) while

achieving the order-optimal convergence rates in terms of iterations. Experiments on real-life datasets

illustrate the efficacy of the proposed algorithms.

• Chapter 9: In the context of distributed optimization in resource constrained networked setups, due

to computational bottlenecks the networked entities in harsher environments, the access is limited

to stochastic zeroth order oracles. In conjunction with the inherent randomness in the network, it

makes the optimization problem at hand challenging and poses the question as to how close is the

performance of the distributed algorithm with respect to its centralized counterpart. For the described

random networks based optimization setting with access to a stochastic zeroth order oracle, we develop

a distributed stochastic approximation method of the Kiefer-Wolfowitz type. Furthermore, under stan-

dard smoothness and strong convexity assumptions on the local costs, we establish the O(1/t1/2) (in

terms of iteration t) mean square convergence rate for the method – the rate that matches that of the

method’s centralized counterpart under equivalent conditions. Furthermore, we examine fundamental

tradeoffs in iterative distributed zeroth order stochastic optimization in multi-agent networks in terms

of communication cost (number of per-node transmissions) and computational cost, measured by the

number of per-node noisy function evaluations with zeroth order methods. Specifically, we develop

novel distributed stochastic optimization methods for zeroth order strongly convex optimization by

utilizing a probabilistic inter-agent communication protocol that increasingly sparsifies communica-

tions among agents as time progresses. Under standard assumptions on the cost functions and the

noise statistics, we establish with the proposed method the O(1/(Ccomm)8/9−ζ) mean square error

convergence rate, for zeroth order optimization, where Ccomm is the expected number of network com-

munications and ζ > 0 is arbitrarily small. The method is shown to achieve order-optimal convergence

rates in terms of computational cost Ccomp, O(1/(Ccomp)2/3) while achieving the order-optimal con-

vergence rates in terms of iterations. Experiments on real-life datasets illustrate the efficacy of the

proposed algorithms.

• Chapter 10: In this chapter, we focus on the problem of constrained stochastic optimization. A

zeroth order Frank-Wolfe algorithm is proposed, which in addition to the projection-free nature of the
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vanilla Frank-Wolfe algorithm makes it gradient free. Under convexity and smoothness assumption,

we show that the proposed algorithm converges to the optimal objective function at a rate O
(
1/T 1/3

)
,

where T denotes the iteration count. In particular, the primal sub-optimality gap is shown to have a

dimension dependence of O
(
d1/3

)
, which is the best known dimension dependence among all zeroth

order optimization algorithms with one directional derivative per iteration. For non-convex functions,

we obtain the Frank-Wolfe gap to be O
(
d1/3T−1/4

)
. The proposed algorithm does not depend on hard

to estimates like Lipschitz constants and thus is easy to deploy in practice. Experiments on black-box

optimization setups demonstrate the efficacy of the proposed algorithm.
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Chapter 2

Distributed Sequential Detection

2.1 Introduction

The motivation behind studying sequential as opposed to fixed sample size testing is that in most practical

agent networking scenarios, especially in applications that are time-sensitive and/or resource constrained,

the priority is to achieve inference as quickly as possible by expending the minimal amount of resources

(data samples, sensing energy and communication). By sequential we mean, instead of considering fixed

sample size hypothesis tests in which the objective is to minimize the probabilities of decision error (the

false alarm and the miss) based on a given deterministic number of samples or observation data collected by

the network agents, we are interested in the design of testing procedures that in the quickest time or using

the minimal amount of sensed data samples at the agents can distinguish between the two hypotheses with

guaranteed accuracy given in terms of pre-specified tolerances on false alarm and miss probabilities. We

focus on distributed application environments which are devoid of fusion centers and in which inter-agent

collaboration or information exchange is limited to a pre-assigned, possibly sparse, communication structure.

The focus of this chapter is on sequential simple hypothesis testing in multi-agent networks in which the

goal is to detect the (binary) state of the environment based on observations at the agents. By sequential

we mean, instead of considering fixed sample size hypothesis tests in which the objective is to minimize

the probabilities of decision error (the false alarm and the miss) based on a given deterministic number

of samples or observation data collected by the network agents, we are interested in the design of testing

procedures that in the quickest time or using the minimal amount of sensed data samples at the agents can

distinguish between the two hypotheses with guaranteed accuracy given in terms of pre-specified tolerances

on false alarm and miss probabilities. The motivation behind studying sequential as opposed to fixed sample

size testing is that in most practical agent networking scenarios, especially in applications that are time-

sensitive and/or resource constrained, the priority is to achieve inference as quickly as possible by expending

the minimal amount of resources (data samples, sensing energy and communication). Furthermore, we fo-

cus on distributed application environments which are devoid of fusion centers1 and in which inter-agent

collaboration or information exchange is limited to a pre-assigned, possibly sparse, communication structure.

Under rather generic assumptions on the agent observation models, it is well-known that in a (hypothetical)

centralized scenario or one in which inter-agent communication is all-to-all corresponding to a complete

1By fusion center or center, we mean a hypothetical decision-making architecture in which a (central) entity has access to
all agent observations at all times and/or is responsible for decision-making on behalf of the agents.

12
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communication graph, the sequential probability ratio test (SPRT) (Wald et al. (1945)) turns out to be the

optimal procedure for sequential testing of binary hypotheses; specifically, the SPRT minimizes the expected

detection time (and hence the number of agent observation samples that need to be processed) while achiev-

ing requisite error performance in terms of specified probability of false alarm (α) and probability of miss

(β) tolerances. The SPRT and its variants have been applied in various contexts, see, for example, spectrum

sensing in cognitive radio networks (Choi et al. (2009); Jayaprakasam and Sharma (2009); Chaudhari et al.

(2009)), target tracking Blostein and Richardson (1994), to name a few. However, the SPRT, in the current

multi-agent context, would require computing a (centralized) decision statistic at all times, which, in turn,

would either require all-to-all communication among the agents or access to the entire network data at all

times at a fusion center. In contrast, restricted by a pre-assigned possibly sparse collaboration structure

among the agents, in this paper we present and characterize a distributed sequential detection algorithm,

the CISPRT , based on the consensus+innovations approach (see, for example Kar and Moura (2008b); Kar

et al. (2012)). Specifically, focusing on a setting in which the agent observations over time are conditionally

Gaussian and independent and identically distributed (i.i.d.), we study the CISPRT sequential detection

procedure in which each network agent maintains a local (scalar) test statistic which is updated over time by

simultaneously assimilating the test statistics of neighboring agents at the previous time instant (a consensus

potential) and the most recent observations (innovations) obtained by the agent and its neighbors. Also, sim-

ilar in spirit to the (centralized) SPRT, each agent chooses two (local) threshold parameters (design choices)

and the test termination at an agent (and subsequent agent decision on the hypotheses) is determined by

whether the local test statistic at the agent lies in the interval defined by the thresholds or not. This justifies

the nomenclature that the CISPRT is a distributed SPRT type algorithm of the consensus+innovations

form.

2.2 Related Work

Detection schemes in multi-agent networks which involve fusion centers, where all agents in the network

transmit their local measurements, local decisions or local likelihood ratios to a fusion agent which sub-

sequently makes the final decision (see, for example, Chamberland and Veeravalli (2003); Tsitsiklis et al.

(1993); Blum et al. (1997); Veeravalli et al. (1993)) have been well studied. Consensus-based approaches for

fully distributed but single snapshot processing, i.e., in which the agents first collect their observations possi-

bly over a long time horizon and then deploy a consensus-type protocol Jadbabaie et al. (2003); Olfati-Saber

et al. (2007); Dimakis et al. (2010) to obtain distributed information fusion and decision-making have also

been explored, see, for instance, Kar et al. (2008); Kar and Moura (2007). Generalizations and variants of

this framework have been developed, see for instance Zhang and Blum (2014) which proposes truncated ver-

sions of optimal testing procedures to facilitate efficient distributed computation using consensus; scenarios

involving distributed information processing where some of the agents might be faulty or there is imperfect

model information (see, for example, Zhou et al. (2011, 2012)) have also been studied. More relevant to the

current context are distributed detection techniques that like the CISPRT procedure perform simultane-

ous assimilation of neighborhood decision-statistics and local agent observations in the same time step, see,

in particular, the running consensus approach Braca et al. (2008, 2010), the diffusion approach Cattivelli

and Sayed (2009a,b, 2011b) and the consensus+innovations approach Bajovic et al. (2011); Jakovetic et al.

(2012); Kar et al. (2011). These works address important questions in fixed (but possibly large) sample size

distributed hypothesis testing, including asymptotic characterization of detection errors Braca et al. (2010);

Cattivelli and Sayed (2011b), fundamental performance limits as characterized by large deviations decay of
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detection error probabilities in generic nonlinear observation models and random networks Bajovic et al.

(2011); Jakovetic et al. (2012), and detection with noisy communication links Kar et al. (2011).

2.3 Problem Formulation

2.3.1 System Model

The N agents deployed in the network decide on either of the two hypothesis H0 and H1. Each agent i at

(discrete) time t makes a scalar observation yi(t) of the form

Under Hθ : yi(t) = µθ + ni(t), θ = 0, 1. (2.1)

For the rest of the chapter we consider µ1 = µ and µ0 = −µ, and assume that, the agent observation noise

processes are independent and identically distributed (i.i.d.) Gaussian processes under both hypotheses

formalized as follows:

Assumption 2.3.1. For each agent i the noise sequence {ni(t)} is i.i.d. Gaussian with mean zero and

variance σ2 under both H0 and H1. The noise sequences are also spatially uncorrelated, i.e., Eθ[ni(t)nj(t)] =

0 for all i 6= j and θ ∈ {0, 1}.

Collect the yi(t)’s, i = 1, 2, · · ·N into the N × 1 vector y(t) = (y1(t), · · · , yN (t))> and the ni(t)’s, i =

1, 2, · · ·N into the N × 1 vector n(t) = (n1(t), · · · , nN (t))>.

The log-likelihood ratio at the i-th sensor at time index t is calculated as follows:-

ηi(t) =
f1(yi(t))

f0(yi(t))
=

2µyi(t)

σ2
, (2.2)

where f0(·) and f1(·) denote the probability distribution functions (p.d.f.s) of yi(t) under H0 and H1 respec-

tively.

We note that,

ηi(t) ∼

N (m, 2m), H = H1

N (−m, 2m), H = H0,
(2.3)

where N (·) denotes the Gaussian p.d.f. and m = 2µ2

σ2 . The Kullback-Leibler divergence at each agent is

given by

KL = m. (2.4)

2.3.2 Sequential Hypothesis Testing – Centralized or All-To-All Communication

Scenario

In a fully connected network scenario, each agent behaves like a (hypothetical) center and the information

available at any agent n at time t is the sum-total of network observations till t, formalized by the σ-

algebra Jacod and Shiryaev (1987)

Gc(t) = σ {yi(s), ∀i = 1, 2, · · ·N and ∀1 ≤ s ≤ t} . (2.5)
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An admissible test Dc consists of a stopping criteria, where at each time t the decision to stop or continue

taking observations is adapted to Gc(t). Denote by TDc the termination time of Dc, a random time taking

values in Z+∪{∞}. Let PDcFA and PDcM denote the associated probabilities of false alarm and miss respectively,

i.e.,

PDcFA = P0

(
ĤDc = 1

)
and PDcM = P1

(
ĤDc = 0

)
. (2.6)

Now, denoting by Dc the class of all such (centralized) admissible tests, the goal in sequential hypothesis

testing is to obtain a test in Dc that minimizes the expected stopping time subject to attaining specified

error constraints. It turns out that Wald’s SPRT Wald et al. (1948) can be designed to minimize each of

the above criteria. Hence, without loss of generality, we adopt E1[TDc ] as our test design objective.

min
Dc∈Dc

E1[TDc ],

s.t. PDcFA ≤ α,P
Dc
M ≤ β, (2.7)

for specified α and β. Before proceeding further, we make the following assumption:

Assumption 2.3.2. The pre-specified error metrics, i.e., α and β, satisfy α, β ∈ (0, 1/2).

Noting that the (centralized) Kullback-Leibler divergence, i.e., the divergence between the probability dis-

tributions induced on the joint observation space y(t) by the hypotheses H1 and H0, is Nm where m is

defined in (2.3), we obtain (see Wald et al. (1948)) for each Dc ∈ Dc that attains PDcFA ≤ α and PDcM ≤ β,

E1[TDc ] ≥M(α, β), (2.8)

where the universal lower bound M(α, β) is given by

M(α, β) =
(1− β) log(1−β

α ) + β log( β
1−α )

Nm
. (2.9)

Formally, the stopping time of the SPRT is defined as follows: Denote by Sc(t) (the centralized) test statistic

Sc(t) =

t∑
s=1

1>

N
η(s), (2.10)

where η(s) denotes the vector of log-likelihood ratios ηi(s)’s at the agents and the stopping time is given by,

Tc = inf{t | Sc(t) /∈ [γlc, γ
h
c ]}. (2.11)

At Tc the following decision rule is followed:

H =

H0, Sc(Tc) ≤ γlc
H1, Sc(Tc) ≥ γhc .

(2.12)

The optimality of the SPRT w.r.t. the formulation (2.7) is well-studied; in particular, in Wald et al.

(1948) it was shown that, for any specified α and β, there exist choices of thresholds (γlc, γ
h
c ) such that the

SPRT (2.11)-(2.12) achieves the minimum in (2.7) among all possible admissible tests Dc in Dc. For given

α and β, exact analytical expressions of the optimal thresholds are intractable in general. A commonly used
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choice of thresholds, see Wald et al. (1945), is given by

γhc = log
(1− β

α

)
γlc = log

( β

1− α
)
, (2.13)

which, although not strictly optimal in general, ensures that PcFA ≤ α and PcM ≤ β. The SPRT with

thresholds given by (2.13) guarantees that (see Chernoff (1972))

lim
ε→0

E1[Tc]

M(ε, ε)
= 1, (2.14)

where M(·) is defined in (2.9). In the sequel, given a testing procedure Dc ∈ Dc and assuming α = β = ε,

we will study the quantity lim supε→0 (E1[TDc ]/M(ε, ε)) as a measure of its efficiency.

2.3.3 Subclass of Distributed Tests

The SPRT (2.11)-(2.12) requires computation of the statistic Sc(t) (see (2.10)) at all times, which, in turn,

requires access to all agent observations at all times. Given a graph G = (V,E), possibly sparse, modeling

inter-agent communication, we consider scenarios in which inter-agent cooperation is limited to a single

round of message exchanges among neighboring agents per observation sampling epoch. The information set

Gd,i(t) includes the observations sampled by agent i and the messages received from its neighbors till time

t, and is formally given by the σ-algebra

Gd,i(t) = σ {yi(s),mi,j(s), ∀1 ≤ s ≤ t, ∀j ∈ Ωi} . (2.15)

The quantity mi,j(s) denotes the message received by i from its neighbor j ∈ Ωi at time s. Based on the

information content Gd,i(t) at time t, an agent decides on whether to continue taking observations or to stop

in the case of which, it decides on one of the hypothesis H0 or H1. Intuitively, and formally by (2.15), we

have

Gd,i(t) ⊂ Gc(t) ∀i, t. (2.16)

Formally, this implies that the class of distributed tests Dd is a subset of the class of centralized or all-possible

tests Dc. We are interested in characterizing the distributed test that conforms to the communication

restrictions above and is optimal in the following sense:

min
Dd∈Dd

max
i=1,2,··· ,N

E1[TDd,i],

s.t. PDd,iFA ≤ α,P
Dd,i
M ≤ β,∀i = 1, 2, · · · , N. (2.17)

In the above, TDd,i denotes the termination (stopping) time at an agent i and PDd,iFA , PDd,iM , the respective

false alarm and miss probabilities at i. Rather than solving (2.17), we propose a distributed testing procedure

of the consensus+innovations type which is efficiently implementable and analyze its performance w.r.t. the

optimal centralized testing procedure. Our results clearly demonstrate the benefits of collaboration (even

over a sparse communication network) as, in contrast, in the non-collaboration case (i.e., each agent relies

on its own observations only) each agent would require N times the expected number of observations to

achieve prescribed α and β as compared to the optimal centralized scenario.
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2.4 CISPRT : A Distributed Sequential Detector

We propose a distributed sequential detection scheme where network communication is restricted to a more

localized agent-to-agent interaction scenario. Before discussing the details of our algorithm, we state an

assumption on the inter-agent communication graph.

Assumption 2.4.1. The inter-agent communication graph is connected, i.e. λ2(L) > 0, where L denotes

the associated graph Laplacian matrix.

Decision Statistic Update. In the proposed distributed algorithm, each agent i maintains a test statistic

Pd,i(t), which is updated recursively in a distributed fashion as follows :

Pd,i(t+ 1) =
t

t+ 1

wiiPd,i(t) +
∑
j∈Ωi

wijPd,j(t)


+

1

t+ 1

wiiηi(t+ 1) +
∑
j∈Ωi

wijηj(t+ 1)

 , (2.18)

where Ωi denotes the communication neighborhood of agent i and the wij ’s denote appropriately chosen

combination weights (to be specified later).

Now we state some design assumptions on the weight matrix W.

Assumption 2.4.2. We design the weights wij’s in (2.18) such that the matrix W is non-negative, sym-

metric, irreducible and stochastic, i.e., each row of W sums to one.

Note that, by the stochasticity of W, the quantity r satisfies

r = ||W − J||. (2.19)

For connected graphs, a simple way to design W is to assign equal combination weights, in which case we

have,

W = I− δL, (2.20)

where δ is a suitably chosen constant. The smallest value of r is obtained by setting δ to be equal to

2/(λ2(L) + λN (L)).

Stopping Criterion for the Decision Update. Let Sd,i(t) denote the quantity tPd,i(t), and let γhd,i and

γld,i be thresholds at an agent i (to be determined later) such that agent i stops and makes a decision only

when,

Sd,i(t) /∈ [γld,i, γ
h
d,i] (2.21)

for the first time. The stopping time for reaching a decision at an agent i is then defined as,

Td,i = inf{t |Sd,i(t) /∈ [γld,i, γ
h
d,i]}, (2.22)
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and the following decision rule is adopted at Td,i :

H =

H0 Sd,i(Td,i) ≤ γld,i
H1 Sd,i(Td,i) ≥ γhd,i.

(2.23)

We refer to this distributed scheme (2.18), (2.22) and (2.23) as the consensus+innovations SPRT (CISPRT )

hence forth.

Remark 2.4.1. It is to be noted that the decision statistic update rule is distributed and recursive, in that, to

realize (2.18) each agent needs to communicate its current statistic and a scalar function of its latest sensed

observation to its neighbors only; furthermore, the local update rule (2.18) is a combination of a consensus

term reflecting the weighted combination of neighbors’ statistics and a local innovation term reflecting the new

sensed information of itself and its neighbors. Note that the stopping times Td,i’s are random and generally

take different values for different agents. It is to be noted that the Td,i’s are in fact stopping times with

respect to the respective agent information filtrations Gd,i(t)’s as defined in (2.15). For subsequent analysis

we refer to the stopping time of an agent as the stopping time for reaching a decision at an agent.

We end this section by providing some elementary properties of the distributed test statistics.

Proposition 2.4.2. Let the Assumptions 2.3.1, 2.4.1 and 2.4.2 hold. For each t and i, the statistic Sd,i(t),

defined in (C.53)-(C.44), is Gaussian under both H0 and H1. In particular, we have

E0[Sd,i(t)] = −mt and E1[Sd,i(t)] = mt, (2.24)

and

E0

[
(Sd,i(t) +mt)2

]
= E1

[
(Sd,i(t)−mt)2

]
≤ 2mt

N
+

2mr2(1− r2t)

1− r2
. (2.25)

2.5 Main Results

We formally state the main results in this section. Most of the proofs pertaining to the main results are

relegated to Appendix B.

2.5.1 Thresholds for the CISPRT

In this section we derive thresholds for the CISPRT , see (C.53)-(C.44), in order to ensure that the procedure

terminates in finite time a.s. at each agent and the agents achieve specified error probability requirements.

For the proposed CISPRT , we intend to derive thresholds which guarantee the error performance in terms

of the error probability requirements α and β, i.e., such that Pd,iFA ≤ α and Pd,iM ≤ β, ∀i = 1, 2, . . . , N , where

Pd,iFA and Pd,iM represent the probability of false alarm and the probability of miss for the ith agent defined as

Pd,iFA = P0(Sd,i(Td,i) ≥ γhd,i)

Pd,iM = P1(Sd,i(Td,i) ≤ γld,i), (2.26)

with Td,i as defined in (C.43).
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Theorem 2.5.1. Let the Assumptions 2.3.1-2.4.2 hold.

1) Then, for each α and β there exist γhd,i and γld,i, ∀i = 1, 2, · · · , N , such that Pd,iFA ≤ α and Pd,iM ≤ β and

the test concludes in finite time a.s. i.e.

P1(Td,i <∞) = 1,∀i = 1, 2, · · · , N, (2.27)

where Td,i is the stopping time for reaching a decision at agent i.

2) In particular, for given α and β, any choice of thresholds γhd,i and γld,i satisfying

γhd,i ≥
8(k + 1)

7N

(
log

(
2

α

)
− log(1− e

−Nm
4(k+1) )

)
= γh,0d (2.28)

γld,i ≤
8(k + 1)

7N

(
log

(
β

2

)
+ log(1− e

−Nm
4(k+1) )

)
= γl,0d , (2.29)

where m is defined in (2.4) and k is defined by

Nr2 = k, (2.30)

with r as in (2.19), achieves a.s. finite stopping at an agent i while ensuring that Pd,iFA ≤ α and Pd,iM ≤ β.

Proof. Let Â = eγ
l
d,i and B̂ = eγ

h
d,i where γhd,i and γld,i ∈ R are thresholds (to be designed) for the CISPRT .

In the following derivation, for a given random variable z and an event A, we use the notation E[z;A] to

denote the expectation E[zIA]. Let T denote the random time which can take values in Z+ given by

T = inf
{
t|Sd,i(t) /∈

[
γld,i, γ

h
d,i

]}
. (2.31)

First, we show that for any γhd,i and γld,i ∈ R,

P0 (T <∞) = P1 (T <∞) = 1, (2.32)

i.e., the random time T defined in (2.31) is a.s. finite under both the hypotheses. Indeed, we have,

P1 (T > t) ≤ Q

 −γhd,i +mt√
2mt
N + 2mr2(1−r2t)

1−r2


⇒ lim

t→∞
P1 (T > t) = 0

⇒ P1 (T <∞) = 1. (2.33)

The proof for H0 follows in a similar way.

Now, since (2.32) holds, the quantity Sd,i(T ) is well-defined a.s. under H0. Now, noting that, under H0, for

any t, the quantity Sd,i(t) is Gaussian with mean −mt and variance upper bounded by 2mt
N + 2mr2(1−r2t)

1−r2
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(see Proposition 2.4.2), we have,

Pd,iFA = P0(Sd,i(T ) ≥ log B̂) =

∞∑
t=1

P0(T = t, Sd,i(t) ≥ log B̂)

≤
∞∑
t=1

P0(Sd,i(t) ≥ log B̂)

≤
∞∑
t=1

Q
( log B̂ +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
. (2.34)

To obtain a condition for γhd,i in the CISPRT such that Pd,iFA ≤ α, let’s define k > 0 such that k = Nr2.

Now, note that k thus defined satisfies

2mr2(1− r2t)

1− r2
≤ 2mkt

N
, ∀t. (2.35)

Then we have, by (2.34)-(2.35),

Pd,iFA ≤
∞∑
t=1

Q
( log B̂ +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
≤
∞∑
t=1

Q
( log B̂ +mt√

2mt(k+1)
N

)
≤ 1

2

∞∑
t=1

e

−(γhd,i)
2−m2t2−2γhd,imt

4mt(k+1)
N

=
e−

Nγhd,i
2(k+1)

2

( b γhd,i2m c∑
t=1

e
−N(γhd,i)

2−Nm2t2

4mt(k+1) +

b
γhd,i
m c∑

t=b
γh
d,i

2m c+1

e
−N(γhd,i)

2−Nm2t2

4mt(k+1)

+

b
2γhd,i
m c∑

t=b
γh
d,i
m c+1

e
−N(γhd,i)

2−Nm2t2

4mt(k+1) +

∞∑
t=b

2γh
d,i
m c+1

e
−N(γhd,i)

2−Nm2t2

4mt(k+1)

)

≤ e−
Nγhd,i
2(k+1)

2

(
e−

Nγhd,i
2(k+1)

b
γhd,i
2m c∑
t=1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(1)

+e−
Nγhd,i
4(k+1)

b
γhd,i
m c∑

t=b
γh
d,i

2m c+1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(2)

+ e−
Nγhd,i
8(k+1)

b
2γhd,i
m c∑

t=b
γh
d,i
m c+1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(3)

+

∞∑
t=b

2γh
d,i
m c+1

e
−Nmt
4(k+1)

︸ ︷︷ ︸
(4)

)

≤ e−
Nγhd,i
2(k+1)

2(1− e−
Nm

4(k+1) )

(
e−

Nγhd,i
2(k+1) + e−

Nγhd,i
4(k+1) e−

Nγhd,i
8(k+1) + e−

Nγhd,i
8(k+1) e−

Nγhd,i
4(k+1) + e−

Nγhd,i
2(k+1)

)

≤ 2e−
7Nγhd,i
8(k+1)

1− e−
Nm

4(k+1)

. (2.36)

In the above set of equations we use the fact that Q(x) is a non-increasing function, the inequality Q(x) ≤
1
2e
−x2

2 , and we upper bound (1)− (4) by their infinite geometric sums.
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We now note that, a sufficient condition for Pd,iFA ≤ α to hold is the following:

2e−
7Nγhd,i
8(k+1)

1− e−
Nm

4(k+1)

≤ α. (2.37)

Solving (2.37), we have that, any γhd,i that satisfies

γhd,i ≥ γ
h,0
d =

8(k + 1)

7N

(
log

(
2

α

)
− log(1− e−

Nm
4(k+1) )

)
, (2.38)

achieves Pd,iFA ≤ α in the CISPRT . Proceeding as in (2.34) and (2.36) we have that, any γld,i that satisfies

γld,i ≤ γ
l,0
d

.
=

8(k + 1)

7N

(
log

(
β

2

)
+ log(1− e−

Nm
4(k+1) )

)
, (2.39)

achieves Pd,iM ≤ β in the CISPRT .

Clearly, by the above, any pair (γhd,i, γ
l
d,i) satisfying γhd,i ∈ [γh,0d ,∞) and γld,i ∈ (−∞, γl,0d ] (see (2.38)

and (2.39)) ensures that Pd,iFA ≤ α and Pd,iM ≤ β. The a.s. finiteness of the corresponding stopping time Td,i

(see (C.43)) under both H0 and H1 follows readily by arguments as in (2.32).

Remark 2.5.2. It is to be noted that the derived thresholds are sufficient conditions only. The approxima-

tions (see (1) − (4) in (2.36)) made in the steps of deriving the expressions of the thresholds were done so

as to get a tractable expression of the range. By solving the following set of equations

1

2

∞∑
t=1

e
−N(γld,i)

2−Nm2t2+2Nγld,imt

4mt(k+1) ≤ β

1

2

∞∑
t=1

e
−N(γhd,i)

2−Nm2t2−2Nγhd,imt

4mt(k+1) ≤ α (2.40)

numerically, tighter thresholds can be obtained.

The first assertion ensures that for any set of pre-specified error metrics α and β (satisfying Assumption

2.3.2), the CISPRT can be designed to achieve the error requirements while ensuring finite stopping a.s.

The factor k in the closed form expressions of the thresholds in (C.36) and (C.40) relates the value of the

thresholds to the rate of flow of information r and, hence, in turn, can be related to the degree of connectivity

of the inter-agent communication graph under consideration, see (2.19)-(2.20) and the accompanying discus-

sion. From Assumption 2.4.2, we have that r < 1. As r goes smaller, which intuitively means increased rate

of flow of information in the inter-agent network, the value of thresholds needed to achieve the pre-specified

error metrics become smaller i.e. the interval [γld,i, γ
h
d,i] shrinks for all i = 1, 2, · · · , N .

Remark 2.5.3. We remark the following: 1) We have shown that the CISPRT algorithm can be designed

so as to achieve the pre-specified error metrics at every agent i. This, in turn, implies that the probability

of not reaching decision consensus among the agents can be upper bounded by Nβ when conditioned on H1

and Nα when conditioned on H0. It is to be noted that with α → 0 and β → 0, the probability of not

reaching decision consensus conditioned on either of the hypothesis goes to 0 as well; 2) The factor k in

the closed form expressions of the thresholds in (C.36) and (C.40) relates the value of the thresholds to the

rate of flow of information r and, hence, in turn, can be related to the degree of connectivity of the inter-
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agent communication graph under consideration, see (2.19)-(2.20) and the accompanying discussion. From

Assumption 2.4.2, we have that r < 1. As r goes smaller, which intuitively means increased rate of flow

of information in the inter-agent network, the value of thresholds needed to achieve the pre-specified error

metrics become smaller i.e. the interval [γld,i, γ
h
d,i] shrinks for all i = 1, 2, . . . , N .

2.5.2 Probability Distribution of Td,i and Tc

We first characterize the stopping time distributions for the centralized SPRT detector (see Section 2.3.2)

and those of the distributed CISPRT . Subsequently, we compare the centralized and distributed stopping

times by studying their respective large deviation tail probability decay rates.

Theorem 2.5.4. (Darling and Siegert (1953); Hieber and Scherer (2012)) Let the Assumptions 2.3.1 and

2.3.2 hold and given the SPRT for the centralized setup in (2.10)-(2.12), we have

P1(Tc > t) ≥ exp

(
Nµγlc
σ2

)
K∞t

(
γhc
)
− exp

(
Nµγhc
σ2

)
K∞t

(
γlc
)
, (2.41)

where

KS
t (a) =

σ2π

N(γhc − γlc)2

S∑
s=1

l(−1)l+1

Nm
4 + σ2s2π2

2N(γhc−γlc)2

exp

(
−
(
Nm

4
+

σ2s2π2

2N(γhc − γlc)2

)
t

)
sin

(
sπa

γhc − γlc

)
, (2.42)

whereas, Tc is defined in (2.11) and γhc and γlc are the associated SPRT thresholds chosen to achieve specified

error requirements α and β.

The above characterization of the stopping distribution of Wald’s SPRT was obtained in Darling and Siegert

(1953); Hieber and Scherer (2012). In particular, this was derived by studying the first passage time dis-

tribution of an associated continuous time Wiener process with a constant drift; intuitively, the continuous

time approximation of the discrete time SPRT consists of replacing the discrete time likelihood increments

by a Wiener process accompanied by a constant drift that reflects the mean of the hypothesis in place. This

way, the sequence obtained by sampling the continuous time process at integer time instants is equivalent

in distribution to the (discrete time) Wald’s SPRT. The term on the R.H.S. of (2.41) is exactly equal to the

probability that the first passage time of the continuous time Wiener process with left and right boundaries

γlc and γhc respectively is greater than t, whereas, is, in general, a lower bound for the discrete time SPRT

(as given in Theorem 2.5.4) as increments in the latter happen at discrete (integer) time instants only.

We now provide a characterization of the stopping time distributions of the CISPRT algorithm.

Lemma 2.5.5. Let the assumptions 2.3.1-2.4.2 hold. Consider the CISPRT algorithm given in (2.18),

(C.43) and (C.44) and suppose that, for specified α and β, the thresholds γhd,i and γld,i, i = 1, · · · , N , are

chosen to satisfy the condtions derived in (C.36) and (C.40). We then have,

P1(Td,i > t) ≤ Q

 −γhd,i +mt√
2mt
N + 2mr2(1−r2t)

1−r2

 , ∀i = 1, 2, . . . , N, (2.43)

where Td,i is the stopping time of the i-th agent to reach a decision as defined in (C.43).
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2.5.3 Comparison of stopping times of the distributed and centralized detectors

In this section we compare the stopping times Tc and Td,i by studying their respective large deviation tail

probability decay rates. We utilize the bounds derived in Theorem 2.5.4 and Lemma 2.5.5 to this end.

Corollary 2.5.6. Let the hypotheses of Lemma 2.5.4 hold. Then we have the following large deviation

characterization for the tail probabilities of Tc:

lim inf
t→∞

1

t
log(P1(Tc > t)) ≥ −Nm

4
− σ2π2

2N(γhc − γl)2
. (2.44)

It is to be noted that the exponent is a function of the thresholds γhc and γlc and with the decrease in the

error constraints α and β, Nm
4 + σ2π2

2N(γhc−γl)2 ≈ Nm
4 .

Theorem 2.5.7. Let the hypotheses of Lemma 2.5.5 hold. Then we have the following large deviation

characterization for the tail probabilities of the Td,i’s:

lim sup
t→∞

1

t
log(P1(Td,i > t)) ≤ −Nm

4
,∀i = 1, 2, . . . , N. (2.45)

Importantly, the upper bound for the large deviation exponent of the CISPRT in Theorem 2.5.7 is in-

dependent of the inter-agent communication topology as long as the connectivity conditions Assumptions

2.4.1-2.4.2 hold. Finally, in the asymptotic regime, i.e., as N goes to∞, since σ2π2

2N(γhc−γl)2 = o(Nm), we have

that the performance of the distributed CISPRT approaches that of the centralized SPRT, in the sense of

stopping time tail exponents, as N tends to ∞.

2.5.4 Comparison of the expected stopping times of the centralized and distributed

detectors

In this section we compare the expected stopping times of the centralized SPRT detector and the proposed

CISPRT detector. Recall that Ej [Td,i] and Ej [Tc] represent the expected stopping times for reaching a

decision for the CISPRT (at an agent i) and its centralized counterpart respectively, where j ∈ {0, 1}
denotes the hypothesis on which the expectations are conditioned on. Without loss of generality we compare

the expectations conditioned on Hypothesis H1, similar conclusions (with obvious modifications) hold when

the expectations are conditioned on H0 (see also Section 2.3.2).

Also, for the sake of mathematical brevity and clarity, we approximate α = β = ε in this subsection.

Recall from Section 2.3.2 and note that, at any instant of time t, the information σ-algebra Gd,i(t) at any

agent i is a subset of Gc(t), the information σ-algebra of a (hypothetical) center, which has access to the

data of all agents at all times. This implies that any distributed procedure (in particular the CISPRT )

can be implemented in the centralized setting, and, since M(ε) (see (2.9)) constitutes a lower bound on the

expected stopping time of any sequential test achieving error probabilities α = β = ε, we have that

E1[Td,i]

M(ε)
≥ 1, ∀ i = 1, 2, . . . , N, (2.46)

for all ε ∈ (0, 1/2). In order to provide an upper bound on the ratio E1[Td,i]/M(ε) and, hence, compare

the performance of the proposed CISPRT detector with the optimal centralized detector, we first obtain a

characterization of E1[Td,i] in terms of the algorithm thresholds as follows.
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Theorem 2.5.8. Let the assumptions 2.3.1-2.4.2 hold and let α = β = ε. Suppose that the thresholds of the

CISPRT be chosen as γhd,i = γh,0d and γld,i = γl,0d for all i = 1, · · · , N , where γh,0d and γl,0d are defined in

(C.36)-(C.40). Then, the stopping time Td,i of the CISPRT at an agent i satisfies

(1− 2ε)γhd,i
m

− c

m
≤ E1[Td,i] ≤

5γhd,i
4m

+
1

1− e
−Nm
4(k+1)

, (2.47)

where k = Nr2, r is as defined in (2.19), and c > 0 is a constant that may be chosen to be independent of

the thresholds and the ε.

It is to be noted that, when α = β = ε, then γhd,i = −γld,i from (C.36) and (C.40). The upper bound

derived in the above assertion might be loose, owing to the approximations related to the non-elementary

Q-function. We use the derived upper bound for comparing the performance of the CISPRT algorithm with

that of its centralized counterpart. The constant c > 0 in the lower bound is independent of the thresholds

γld,i and γhd,i (and hence, also independent of the error tolerance ε) and is a function of the network topology

and the Gaussian model statistics only. Explicit expressions and bounds on c may be obtained by refining

the various estimates in the proofs of Theorem 2.5.8, see Section 2.5. However, for the current purposes, it

is important to note that c = o(γh,0d ), i.e., as ε goes to zero or equivalently in the limit of large thresholds

c/γh,0d → 0. Hence, as ε→ 0, the more readily computable quantity
(1−2ε)γhd,i

m may be viewed as a reasonably

good approximation to the lower bound in Theorem 2.5.8.

Theorem 2.5.9. Let the hypotheses of Theorem 2.5.1 hold. Then, we have the following characterization

of the ratio of the expected stopping times of the CISPRT and the centralized detector in asymptotics of the

ε,

1 ≤ lim sup
ε→0

E1[Td,i]

M(ε)
≤ 10(k + 1)

7
, ∀i = 1, 2, · · · , N, (2.48)

where k = Nr2 and r is as defined in (2.19).

In Liu and Mei (2017), the constants 10/7 and 8/7 have been improved to 1 and 1 respectively.

Theorem 2.5.9 shows that the CISPRT algorithm can be designed in such a way that with pre-specified

error metrics α and β going to 0 , the ratio of the expected stopping time for the CISPRT algorithm and its

centralized counterpart are bounded above by 10(k+1)
7 where the quantity k depends on r which essentially

quantifies the dependence of the CISPRT algorithm on the network connectivity.

Remark 2.5.10. It is to be noted that the derived upper bound for the ratio of the expected stopping times

of the CISPRT algorithm and its centralized counterpart may not be a tight upper bound. The looseness in

the upper bound is due to the fact that the set of thresholds chosen are oriented to be sufficient conditions

and not necessary. As pointed out in Remark 2.5.3 there might exist possibly better choice of thresholds for

which the pre-specified error metrics are satisfied. Hence, given a set of pre-specified error metrics and a

network topology the upper bound of the derived assertion above can be minimized by choosing the optimal

weights for W as shown in Xiao and Boyd (2004). It can be seen that the ratio of expected stopping times

of the isolated SPRT based detector case, i.e., the non-collaboration case, and the centralized SPRT based

detector is N (see Section 2.3.2). So, for the CISPRT case in order to make savings as far as the stopping

time is concerned with respect to the isolated SPRT based detector, 10(k+1)
7 ≤ N should be satisfied. Hence,

we have that r ≤
√

7N−10
10N is a sufficient condition for the same.
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2.6 Dependence of the CISPRT on Network Connectivity: Illustration

In this section, we illustrate the dependence of the CISPRT algorithm on the network connectivity, by con-

sidering a class of graphs. Recall from section 2.4 that the quantity r quantifies the rate of information flow

in the network, and in general, the smaller the r the faster is the convergence of information dissemination

algorithms (such as the consensus or gossip protocol (Dimakis et al. (2010); Kar and Moura (2008c, 2009))

on the graph and the optimal design of symmetric weight matrices W for a given network topology that

minimizes the value r can be cast as a semi-definite optimization problem Xiao and Boyd (2004).

To quantify the dependence of the CISPRT algorithm on the graph topology, we note that the limit derived

in (2.48) is a function of W and can be re-written as follows :

lim sup
ε→0

E1[Td,i]

M(ε)
≤ 10(Nr2 + 1)

7

.
= R(W), (2.49)

i.e., the derived upper bound R(W) is a function of the chosen weight matrix W . Based on (2.49), naturally,

a weight design guideline would be to design W (under the network topological constraints) so as to minimize

R(W), which, by (2.49) and as discussed earlier corresponds to minimizing r = ‖W− J‖. This leads to the

following upper bound on the achievable performance of the CISPRT :

lim sup
ε→0

E1[Td,i]

M(ε)
≤ min

W
R(W). (2.50)

By restricting attention to constant link weights, i.e., W’s of the form (I− δL) and noting that

min
δ
‖I− δL− J‖ =

(λN (L)− λ2(L))

(λ2(L) + λN (L))
, (2.51)

we further obtain

lim sup
ε→0

E1[Td,i]

M(ε)
≤ min

W
R(W) ≤ min

δ
R(I− δL) =

10

7
+

10N(λN (L)− λ2(L))2

7(λ2(L) + λN (L))2
. (2.52)

The final bound obtained in (2.52) might not be tight, being an upper bound (there may exist W matrices

not of the form I− δL with smaller r) to a possibly loose upper bound derived in (2.48), but, nonetheless,

directly relates the performance of the CISPRT to the spectra of the graph Laplacian and hence the graph

topology. From (2.52) we may further conclude that networks with smaller value of the ratio λ2(L)/λN (L)

tend to achieve better performance. This leads to an interesting graph design question: given resource

constraints, specifically, say a restriction on the number of edges of the graph, how to design inter-agent

communication networks that tend to minimize the eigen-ratio λ2(L)/λN (L) so as to achieve improved

CISPRT performance. To an extent, such graph design questions have been studied in prior work, see Kar

et al. (2008), which, for instance, shows that expander graphs tend to achieve smaller λ2(L)/λN (L) ratios

given a constraint on the total number of network edges.

2.7 Probability Distribution of Tc

Though the tails of the stopping time distributions for two sided random walks, i.e., the stopping time

distribution of the centralized SPRT have been studied, as highlighted in Wald et al. (1945), the exact

distribution is not well known. We provide a numerical way so as to calculate the stopping time distribution
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of the centralized SPRT procedure. Define the event Ci as −γc ≤ Sc(i) ≤ γc.
Define the probability P(Tc > t) as follows:

P(Tc > t) = P (−γc ≤ Sc(i) ≤ γc, i = 1, 2, . . . , t) . (2.53)

We note that P(Ci) = Q
(
−γc−mi√

2mi/N

)
−Q

(
γc−mi√
2mi/N

)
decreases with increasing i.

Observing that Sc(i) form a Markov chain, (2.53) can be rewritten as follows:

P(Tc > t) = P(C1)

t∏
i=2

P(Ci|Ci−1)

=

∏t
i=2 P(Ci ∩ Ci−1)∏t−1

i=2 P(Ci)
(2.54)

Denote G′(x) = 1√
2π
e−x

2/2 and G(x) =
∫ x
−∞ e−t

2/2dt. Let xi = 1T /N = Sc(i)− Sc(i− 1).

Then, we have,

P(Ci ∩ Ci−1) =

∫ γc

−γc

1√
4πm(i− 1)/N

e−N
(y−m(i−1))2

4m(i−1)

∫ γc−y

−γc−y

1√
4πm/N

e−N
(xi−m)2

4m dxidy

=

∫ γc

−γc

1√
4πm(i− 1)/N

e−N
(y−m(i−1))2

4m(i−1)

(
G

(
γc − y −m√

2m/N

)
−G

(
−γc − y −m√

2m/N

))
dy

=

∫ −γc−m(i−1)√
2m(i−1)/N

γc−m(i−1)√
2m(i−1)/N

1√
2π
e−t

2/2

G
γc − t

√
2m(i−1)

N −mi√
2m/N

−G
−γc − t

√
2m(i−1)

N −mi√
2m/N

 dt

=

∫ γhc,i

γlc,i

G′(t)(G(t
√
i− 1 + thi )−G(t

√
i− 1 + tli))dt (2.55)

where γlc,i = m(i−1)+γc√
2m(i−1)/N

, γhc,i = m(i−1)−γc√
2m(i−1)/N

, thi = γc−mi√
2m/N

and tli = −γc−mi√
2m/N

.

We use the following identity from Owen (1956)

∫
G′(x)G(a+ bx)dt = T (x, a

x
√

1+b2
) + T ( a√

1+b2
, x
√

1+b2

a )− T (x, a+bx
x )

−T ( a√
1+b2

, ab+x(1+b2)
a ) +G(x)G( a√

1+b2
) (2.56)

where T (h, a) is the Owen’s T function which gives the probability of the event {X > h} ∩ {0 < Y < aX}
where X and Y are independent random variables.

Using the identity in equation (2.56), (2.55) can be rewritten as follows:

P(Ci ∩ Ci−1) =

∫ γhc,i

γlc,i

G′(t)(G(t
√
i− 1 + thi )−G(t

√
i− 1 + tli))dt

= T

(
γhc,i,

thi
γhc,i
√
i

)
+ T

(
thi√
i
,
γhc,i
√
i

thi

)
− T

(
γhc,i,

thi +
√
i− 1γhc,i
γhc,i

)

− T

(
thi√
i
,
thi
√
i− 1 + γhc,ii

thi

)
+G

(
γhc,i
)
G

(
thi√
i

)
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− T

(
γlc,i,

thi
γlc,i
√
i

)
− T

(
thi√
i
,
γlc,i
√
i

thi

)
+ T

(
γlc,i,

thi +
√
i− 1γlc,i
γlc,i

)

+ T

(
tli√
i
,
tli
√
i− 1 + γlc,ii

thi

)
−G

(
γlc,i
)
G

(
thi√
i

)

− T

(
γhc,i,

tli
γhc,i
√
i

)
− T

(
tli√
i
,
γhc,i
√
i

tli

)
+ T

(
γhc,i,

tli +
√
i− 1γhc,i
γhc,i

)

+ T

(
tli√
i
,
tli
√
i− 1 + γhc,ii

tli

)
−G

(
γhc,i
)
G

(
tli√
i

)

+ T

(
γlc,i,

tli
γlc,i
√
i

)
+ T

(
tli√
i
,
γlc,i
√
i

tli

)
− T

(
γlc,i,

tli +
√
i− 1γlc,i
γlc,i

)

− T

(
tli√
i
,
tli
√
i− 1 + γlc,ii

tli

)
+G

(
γlc,i
)
G

(
tli√
i

)
. (2.57)

Though the stopping time distribution obtained above is rendered analytically intractable, various algorithms

exist so as to evaluate Owen’s T Function numerically.

2.8 Simulations

We generate planar random geometric networks of 30, 300 and 1000 agents. The x coordinates and the y

coordinates of the agents are sampled from an uniform distribution on the open interval (0, 1). We link two

vertices by an edge if the distance between them is less than or equal to g. We go on re-iterating this procedure

until we get a connected graph. We construct the geometric network for each of N = 30, 300 and 1000 cases

with three different values of g i.e. g = 0.3, 0.6 and 0.9. The values of r obtained in each case is specified in

Table 2.1. We consider two cases, the CISPRT case and the non-collaborative case. We consider α = β = ε

r g=0.3 g=0.6 g=0.9
N=30 0.8241 0.5580 0.2891
N=300 0.7989 0.6014 0.2166
N=1000 0.7689 0.5940 0.2297

Table 2.1: SPRT Comparison: Values of r

and ranging from 10−8 to 10−4 in steps of 10−6. For each such ε, we conduct 2000 simulation runs to

empirically estimate the stopping time distribution P1(T > t) of a randomly chosen agent (with uniform

selection probability) for each of the cases. From these empirical probability distributions of the stopping

times, we estimate the corresponding expected stopping times. Figure 2.4 shows the instantaneous behavior

of the test statistics in the case of N = 300 with ε = 10−10. In Figures 2.1, 2.2 and 2.3 it is demonstrated

that the ratio of the expected stopping time of the CISPRT algorithm and the universal lower boundM(ε)

is less than that of the ratio of the expected stopping times of the isolated (non-collaborative) case and

M(ε). The ratio of the theoretical lower bound of the expected stopping time of the CISPRT derived

in Theorem 2.5.8 and M(ε) was also studied. More precisely, we compared the experimental ratio of the

expected stopping times of the CISPRT and M(ε) with the ratio of the quantity
(1−2ε)γhd,i

m (the small ε

approximation of the theoretical lower bound given in Theorem 2.5.8, see also the discussion provided in

Section 2.5 after the statement of Theorem 2.5.8) and M(ε). It can be seen that the experimental ratio
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Figure 2.4: Instantaneous behavior of Sd,i(t)

of the expected stopping times of the CISPRT and M(ε) is very close to the ratio of the (approximate)

theoretical lower bound of expected stopping time of the CISPRT and M(ε), which shows that the lower

bound derived in Theorem 2.5.8 is reasonable. Figure 2.4 is an example of a single run of the algorithm

which shows the instantaneous behavior of the distributed test statistic Sd,i(t) for N = 300, where we have

plotted three randomly chosen agents i.e. i = 1, i = 10 and i = 50.

2.9 Summary of Contributions

• Finite Stopping Property: We show that, given any value of probability of false alarm α and prob-

ability of miss β, the CISPRT algorithm can be designed such that each agent achieves the specified

error performance metrics and the test procedure terminates in finite time almost surely (a.s.) at each

agent. We derive closed form expressions for the local threshold parameters at the agents as functions

of α and β which ensures that the CISPRT achieves the above property.

• Asymptotic Characterization: In the asymptotics of vanishing error metrics (i.e., as α, β → 0),

we quantify the ratio of the expected stopping time Td,i(α, β) for reaching a decision at an agent i

through the CISPRT algorithm and the expected stopping time Tc(α, β) for reaching a decision by

the optimal centralized (SPRT) procedure, i.e., the quantity
E[Td,i(α,β)]
E[Tc(α,β)] , which in turn is a metric of

efficiency of the proposed algorithm as a function of the network connectivity.

2.10 Conclusion and Future Directions

In this chapter we have considered sequential detection of Gaussian binary hypothesis observed by a sparsely

interconnected network of agents. The CISPRT algorithm we proposed combines two terms : a consensus

term that updates at each sensor its test statistic with the test statistics provided by agents in its one-

hop neighborhood and an innovation term that updates the current agent test statistic with the new local

sensed information. We have shown that the CISPRT can be designed to achieve a.s. finite stopping at

each network agent with guaranteed error performance. We have provided explicit characterization of its

expected stopping time as a function of the network connectivity. The performance of the CISPRT was

further benchmarked w.r.t. the optimal centralized sequential detector, the SPRT. An interesting future

direction would be to consider networks with random time-varying topology. We also intend to develop

extensions of the CISPRT for setups with correlated and non-linear non-Gaussian observation models.



Chapter 3

Distributed Composite Hypothesis Testing

3.1 Introduction

The focus of this chapter is on distributed composite hypothesis testing in multi-agent networks in which the

goal is not only to estimate the state (possibly high dimensional) of the environment but also detect as to

which hypothesis is in force based on the sensed information across all the agents at all times. To be specific,

we are interested in the design of recursive detection algorithms to decide between a simple null hypothesis

and a composite alternative parameterized by a continuous vector parameter, which exploit available sensing

resources to the maximum and obtain reasonable detection performance, i.e., have asymptotically (in the

large sample limit) decaying probabilities of errors. Technically speaking, we are interested in the study

of algorithms which can process sensed information as and when they are sensed and not wait till the end

until all the sensed data has been collected. To be specific, the sensed data refers to the observations made

across all the agents at all times. The problem of composite hypothesis testing is relevant to many practical

applications, including cooperative spectrum sensing Zarrin and Lim (2009); Font-Segura and Wang (2010);

Zou et al. (2010) and MIMO radars Tajer et al. (2010), where the onus is also on achieving reasonable de-

tection performance by utilizing as fewer resources as possible, which includes data samples, communication

and sensing energy. In classical composite hypothesis testing procedures such as the Generalized Likelihood

Ratio Test (GLRT) Zeitouni et al. (1992), the detection procedure which uses the underlying parameter

estimate based on all the collected samples as a plug-in estimate may not be initiated until a reasonably

accurate parameter estimate, typically the maximum likelihood estimate of the underlying parameter (state)

is obtained. Usually in setups which employ the classical (centralized) generalized likelihood ratio tests, the

data collection phase precedes the parameter estimation and detection statistic update phase which makes

the procedure essentially an offline batch procedure. By offline batch procedures, we mean algorithms where

the sensing phase precedes any kind of information processing and the entire data is processed in batches.1

The motivation behind studying recursive online detection algorithms in contrast to offline batch processing

based detection algorithms is that in most multi-agent networked scenarios, which are typically energy con-

strained, the priority is to obtain reasonable inference performance by expending fewer amount of resources.

Moreover, in centralized scenarios, where the communication graph is all-to-all, the implementation suffers

from high communication overheads, synchronization issues and high energy requirements. Motivated by

1We emphasize that, by offline, we strictly refer to the classical implementation of the GLRT. Recursive variants of GLRT
type approaches have been developed for a variety of testing problems including sequential composite hypothesis testing and
change detection (see, for example, Siegmund and Venkatraman (1995); Willsky and Jones (1976); Chang and Dunn (1979)),
although in centralized processing scenarios.

30
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requirements such as the latter, we propose distributed recursive composite hypothesis testing algorithms,

where the inter-agent collaboration is restricted to a pre-assigned, possibly sparse communication graph and

the detection and estimation schemes run in a parallel fashion with a view to reduce energy and resource

consumption while achieving reasonable detection performance.

In the domain of hypothesis testing, when one of the hypotheses is composite, i.e., the hypothesis is pa-

rameterized by a continuous vector parameter and the underlying parameter is unknown apriori, one of

the most well-known algorithms is the Generalized Likelihood Ratio Testing (GLRT). The GLRT has an

estimation procedure built into it, where the underlying parameter estimate is used as a plug-in estimate for

the decision statistic. In a centralized setting or in a scenario where the inter-agent communication graph is

all-to-all, the fusion center has access to all the sensed information and the parameter estimates across all the

agents at all times. The procedure of obtaining the underlying parameter estimate, which in turn employs

a maximization, achieves reasonable performance in general, but has a huge communication overhead which

makes it infeasible to be implemented in practice, especially in networked environments. In contrast to the

fully centralized setup, we focus on a fully distributed setup where the communication between the agents is

restricted to a pre-assigned possibly sparse communication graph. In this chapter, we propose two algorithms

namely, consensus + innovations GLRT Non-Linear (CIGLRT −NL) and consensus + innovations GLRT

Linear (CIGLRT − L), which are of the consensus + innovations form and are based on fully distributed

setups. We specifically focus on a setting in which the agents obtain conditionally Gaussian and independent

and identically distributed observations and update their parameter estimates and decision statistics by si-

multaneous assimilation of the information obtained from the neighboring agents (consensus) and the latest

locally sensed information (innovation). Also similar, to the classical GLRT, both of our algorithms in-

volve a parameter estimation scheme and a detection algorithm. This justifies the names CIGLRT − L and

CIGLRT −NL which are distributed GLRT type algorithms of the consensus + innovations form. In this

chapter, so as to replicate typical practical sensing environments accurately, we model the underlying vector

parameter as a static parameter, whose dimension is M (possibly large) and every agent’s observations, say

for agent n, is Mn dimensional, where Mn << M , thus rendering the parameter locally unobservable at each

agent. We show that, under a minimal global observability condition imposed on the collective observation

model and connectedness of the communication graph, the parameter estimate sequences are consistent and

the detection schemes achieve asymptotically decaying probabilities of errors in the large sample limit.

3.2 Related Work

Existing work in the literature on distributed detectors can be broadly classified into three classes. The first

class includes architectures which are characterized by presence of a fusion center and all the agents transmit

their decision or local measurements or test statistics or its quantized version to the fusion center (see, for

example Blum et al. (1997); Tsitsiklis et al. (1993)) and subsequently the estimation and detection schemes

are conducted by the fusion center. The second class consists of consensus schemes (see, for example

Kar and Moura (2007); Olfati-Saber et al. (2006)) with no fusion center and in which in the first phase

the agents collect information over a long period of time from the environment followed by the second

phase, in which agents exchange information (through consensus or gossip type procedures Kar and Moura

(2007); Olfati-Saber et al. (2007); Jadbabaie et al. (2003)) in their respective neighborhoods which are

in turn specified by a pre-assigned communication graph or a sequence of possibly sparse time-varying

communication graphs satisfying appropriate connectivity conditions. The third class consists of schemes

which perform simultaneous assimilation of information obtained from sensing and communication (see,
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for example Bajovic et al. (2011); Kar et al. (2011); Cattivelli and Sayed (2011b)). Distributed detection

algorithms from the third class of detectors described above, can be further sub-categorized to three classes,

namely the running consensus approach Braca et al. (2008, 2010), the diffusion approach Cattivelli and Sayed

(2009a,b, 2011b); Zou et al. (2010) and the consensus+innovations approach Bajovic et al. (2011); Jakovetic

et al. (2012); Kar et al. (2011). These works address important questions pertaining to binary simple

hypothesis and also characterize the fundamental limits of the detection scheme through large deviations

analysis. Other relevant recent work include Lalitha et al. (2014, 2015); Nedić et al. (2014). However, as

compared to the aforementioned works, the objective of the detection scheme in this chapter is to decide

between a simple null hypothesis and a composite alternative which is parameterized by a vector parameter

which can take values in a continuous space. In the context of distributed composite hypothesis testing, the

proposed algorithm involves a recursive parameter estimation update and a decision statistic update running

in parallel. The proposed algorithms, CIGLRT −NL and CIGLRT − L involve parameter estimate updates

in a non-linear observation model and a linear observation model setting respectively. It is to be noted that

in the context of centralized detection literature, the weak convergence of the decision statistics under the

null and the alternate hypothesis (see, Wilks (1938) for example) is usually not enough to establish the decay

rates of the probability of errors. To be specific, in this chapter we extend Wilks’ theorem to the distributed

recursive setup and characterize the asymptotic normality of the decision statistic sequence. However, the

statistical dependencies exhibited in the decision static update due to the parameter estimation scheme and

the decision statistic update running in a parallel fashion warrants the development of technical machinery so

as to address concentration of measure for sums of non i.i.d random variables which in turn helps characterize

the decay exponent of the probability of errors which we develop in this chapter.

3.3 Problem Formulation

3.3.1 System Model and Preliminaries

There are N agents deployed in the network. Every agent n at time index t makes a noisy observation

yn(t). The observation yn(t) is a Mn-dimensional vector, a noisy nonlinear function of θ∗ which is a M -

dimensional parameter, i.e., θ∗ ∈ RM . The observation yn(t) comes from a probability distribution P0

under the hypothesis H0, whereas, under the composite alternative H1, the observation is sampled from

a probability distribution which is a member of a parametric family {Pθ∗}. We emphasize here that the

parameter θ∗ is deterministic but unknown. Formally,

H1 : yn(t) = hn(θ∗) + γn(t)

H0 : yn(t) = γn(t), (3.1)

where hn(.) is, in general, non-linear function, {yn(t)} is a RMn-valued observation sequence for the n-th

agent, where typically Mn << M and {γn(t)} is a zero-mean temporally i.i.d Gaussian noise sequence at the

n-th agent with nonsingular covariance matrix Σn, where Σn ∈ RMn×Mn . Moreover, the noise sequences at

two agents n, l with n 6= l are independent.

By taking hn(0) = 0, ∀n and certain other identifiability and regularity conditions outlined below, in the

above formulation the null hypothesis corresponds to θ∗ = 0 and the composite alternative to the case

θ∗ 6= 0.

Since, the sources of randomness in our formulation are the observations yn(t)’s made by the agents in the
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network, we define the natural filtration {Ft} generated by the random observations, i.e.,

Ft = σ
(
{{yn(s)}Nn=1}t−1

s=0

)
, (3.2)

which is the sequence of σ-algebras induced by the observation processes, in order to model the overall

available network information at all times. Finally, a stochastic process {x(t)} is said to be {Ft}-adapted if

the σ-algebra σ (x(t)) is a subset of Ft at each t.

3.3.2 Preliminaries : Generalized Likelihood Ratio Tests

Consider, for instance, a generalized target detection problem in which the absence of target is modeled by a

simple hypothesis H0, whereas, its presence corresponds to a composite alternative H1, as it is parametrized

by a continuous vector parameter (perhaps modeling its location and other attributes) which is unknown

apriori. Let y(t) denote the collection of the data from the agents, i.e., y(t) =
[
y>1 (t) · · ·y>N (t)

]>
, at time

t, which is
∑N
n=1Mn dimensional. Specifically, the GLRT decision procedure decides on the hypothesis2 as

follows:

H =

H1, if maxθ
∑T
t=0 log fθ(y(t))

f0(y(t)) > η,

H0, otherwise,
(3.3)

where η is a predefined threshold, T denotes the number of sensed observations and assuming that the

data from the agents are conditionally independent fθ(y(t)) = f1
θ (y1(t)) · · · fNθ (yN (t)) denotes the like-

lihood of observing y(t) under H1 and realization θ of the parameter and fnθ (yn(t)) denotes the like-

lihood of observing yn(t) at the n-th agent under H1 and realization θ of the parameter ; similarly,

f0(y(t)) = f1
0 (y1(t)) · · · fN0 (yN (t)) denotes the likelihood of observing y(t) under H0 and fN0 (yN (t)) denotes

the likelihood of observing yn(t) at the n-th agent under H0. The key bottleneck in the implementation of

the classical GLRT as formulated in (3.3) is the maximization

max
θ

T∑
t=0

log
fθ(y(t))

f0(y(t))
= max

θ

T∑
t=0

N∑
n=1

log
fnθ (yn(t))

fn0 (yn(t))
(3.4)

which involves the computation of the generalized log-likelihood ratio, i.e., the decision statistic. In general,

a maximizer of (3.4) is not known beforehand as it depends on the entire sensed data collected across all the

agents at all times, and hence as far as communication complexity in the GLRT implementation is concerned,

the maximization step incurs the major overhead – in fact, a direct implementation of the maximization

(3.4) requires access to the entire raw data y(t) at all times t at the fusion center.

3.4 Distributed Generalized Likelihood Ratio Testing

To mitigate the communication overhead, we present distributed message passing schemes in which agents,

instead of forwarding raw data to a fusion center, participate in a collaborative iterative process to obtain a

maximizing θ. The agents also maintain a copy of their local decision statistic, where the decision statistic is

updated by assimilating local decision statistics from the neighborhood and the latest sensed information. In

order to obtain reasonable decision performance with such localized communication, we propose a distributed

2It is important to note that the considered setup does not admit uniquely most powerful tests Scharf (1991).
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detector of the consensus + innovations type. To this end, we propose two algorithms, namely

1) CIGLRT −NL, which is a general algorithm based on a non-linear observation model with additive

Gaussian noise. We specifically show that the decision errors go to zero asymptotically as time t → ∞ or

equivalently, in the large sample limit, if the thresholds are chosen appropriately, and

2) CIGLRT − L, where we specifically consider a linear observation model. In the case of CIGLRT − L,

we not only show that the probabilities of errors go to zero asymptotically, but also, we characterize the

large deviations exponent upper bounds for the probabilities of errors arising from the decision scheme under

minimal assumptions of global observability and connectedness of the communication graph.

The algorithms CIGLRT −NL and CIGLRT − L are motivated from the bottlenecks that one would

encounter from centralized batch processing. To be specific, if a hypothetical fusion center which had access

to all the agents’ observations at all times were to conduct the parameter estimation in a recursive way, it

would do so in the following way:

θc(t+ 1) = θc(t)

+ αt

N∑
n=1

∇hn (θc(t)) Σ−1
n (yn(t)− hn (θc(t)))︸ ︷︷ ︸

Global Innovation

,

where {θc(t)} represents the centralized estimate sequence. Similarly, the centralized decision statistic update

can be represented as follows:

zc(t+ 1) =
t

t+ 1
zc(t) +

1

t+ 1

N∑
n=1

log
fθc(t)(yn(t))

f0(yn(t))︸ ︷︷ ︸
Global Innovation

,

where {zc(t)} represents the centralized decision statistic sequence. It is to be noted that the centralized

scheme may not be implementable in our distributed multi-agent setting with sparse inter-agent interaction

primarily due to the fact that the desired global innovation computation requires instantaneous access to the

entire set of network sensed data at all times at a central computing resource. If in the case of a distributed

setup, an agent n in the network were to replicate the centralized update by replacing the global innovation

in accordance with its local innovation, the updates for the parameter estimate and the decision statistic

would be as follows:

θ̂n(t+ 1) = θ̂n(t) + αt∇hn

(
θ̂n(t)

)
Σ−1
n

(
yn(t)− hn

(
θ̂n(t)

))
︸ ︷︷ ︸

Local Innovation

,

where
{
θ̂n(t)

}
represents the estimate sequence at agent n. Similarly, the decision statistic update at agent

n would have been:

ẑn(t+ 1) =
t

t+ 1
ẑn(t) +

1

t+ 1
log

fθ̂n(t)(yn(t))

f0(yn(t))︸ ︷︷ ︸
Local Innovation

,

where {ẑn(t)} represents the decision statistic sequence at agent n. The above correspond to purely de-

centralized local processing with no inter-agent collaboration whatsoever. However, note that in absence of
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local observability both the parameter estimates and decision statistics would be erroneous and sub-optimal.

Hence, as a surrogate to the global innovation in the centralized recursions, the local estimators compute a

local innovation based on the locally sensed data as an agent has access to the information in its neighbor-

hood. However, they intend to compensate for the resulting information loss by incorporating an agreement

or consensus potential into their updates in which the individual estimators.

We, first present the algorithm CIGLRT −NL.

3.5 Non-linear Observation Models : Algorithm CIGLRT −NL

We start by making some identifiability assumptions on our sensing model before stating the algorithm.

Assumption 3.5.1. The sensing model is globally observable, i.e., any two distinct values of θ and θ∗ in

the parameter space RM satisfy

N∑
n=1

‖hn(θ)− hn(θ∗)‖2 = 0 (3.5)

if and only if θ = θ∗.

We propose a distributed detector of the consensus+innovations form for the scenario outlined in (3.1).

Before discussing the details of our algorithm, we state an assumption on the inter-agent communication

graph.

Assumption 3.5.2. The inter-agent communication graph is connected, i.e., λ2(L) > 0, where L denotes

the associated graph Laplacian matrix.

We now present the distributed CIGLRT −NL algorithm. The sequential decision procedure consists of

three interacting recursive processes operating in parallel, namely, a parameter estimate update process, a

decision statistic update process, and a detection decision formation rule, as described below. We state an

assumption on the sensing functions before stating the algorithm.

Assumption 3.5.3. For each agent n, ∀θ 6= θ1, the sensing functions hn are continuously differentiable on

RM and Lipschitz continuous with constants kn > 0, i.e.,

‖hn (θ)− hn (θ1)‖ ≤ kn ‖θ − θ1‖ . (3.6)

Parameter Estimate Update. The algorithm CIGLRT −NL generates a sequence {θn(t)} ∈ RM of

estimates of the parameter θ∗ at the n-th agent according to the distributed recursive scheme

θn(t+ 1) = θn(t)− βt
∑
l∈Ωn

(θn(t)− θl(t))︸ ︷︷ ︸
neighborhood consensus

+ αt∇hn (θn(t)) Σ−1
n (yn(t)− hn (θn(t)))︸ ︷︷ ︸

local innovation

, (3.7)

where Ωn denotes the communication neighborhood of agent n and ∇hn (.) denotes the gradient of hn,

which is a matrix of dimension M×Mn, with the (i, j)-th entry given by
∂[hn(θn(t))]j
∂[θn(t)]i

.
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The update in (3.7) can be written in a compact manner as follows:

θ(t+ 1) = θ(t)− βt (L⊗ IM ) θ(t)

+ αtG(θ(t))Σ−1 (y(t)− h (θ(t))) , (3.8)

where θ(t) =
[
θ>1 (t) · · · θ>N (t)

]>
, h(θ(t)) =

[
h>1 (θ1(t)) · · ·h>N (θN (t))

]>
, Σ−1 = diag

[
Σ−1

1 , · · · ,Σ−1
N

]
and

G (θ(t)) = diag [∇h1 (θ1(t)) , · · · ,∇hN (θN (t))].

Assumption 3.5.4. There exists a constant c1 > 0 for each pair of θ and θ́ with θ 6= θ́ such that the

following aggregate strict monotonicity condition holds

N∑
n=1

(
θ − θ́

)>
(∇hn (θ)) Σ−1

n

(
hn (θ)− hn

(
θ́
))
≥ c1

∥∥∥θ − θ́∥∥∥2

. (3.9)

For example, in assumption 3.5.4, if hn(.)’s are linear, i.e., hn(θ∗) = Hnθ
∗, where Hn ∈ RMn×M the

monotonicity condition is trivially satisfied by the positive definiteness of the matrix
∑N
n=1 H>nΣ−1

n Hn.

We make the following assumption on the weight sequences {αt} and {βt}:

Assumption 3.5.5. The weight sequences {αt}t≥0 and {βt}t≥0 are given by

αt =
a

(t+ 1)
βt =

b

(t+ 1)
τ2 , (3.10)

where ac1 ≥ 1 with c1 is as defined in Assumption 3.5.4.

where 0 < τ2 < 1/2, b > 0.

Decision Statistic Update. The algorithm CIGLRT − L generates a scalar-valued decision statistic

sequence {zn(t)} at the n-th agent according to the distributed recursive scheme

zn(t+ 1) =
t

t+ 1

zn(t)− δ
∑
l∈Ωn

(zn(t)− zl(t))︸ ︷︷ ︸
neighborhood consensus


+

1

t+ 1
log

fθn(t)(yn(t))

f0(yn(t))︸ ︷︷ ︸
local innovation

, (3.11)

where fθ(.) and f0(.) represent the likelihoods under H1 and H0 respectively,

δ ∈
(

0,
2

λN (L)

)
. (3.12)

However, we specifically choose δ = 2
λ2(L)+λN (L) for subsequent analysis.

Decision Rule. The following decision rule is adopted at all times t at all agents n :

Hn(t) =

H0 zn(t) ≤ η

H1 zn(t) > η,
(3.13)
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where Hn(t) denotes the local selection (decision) at agent n at time t. Under the aegis of such a decision

rule, the associated probability of errors are as follows:

PM,θ∗(t) = P1,θ∗ (zn(t) ≤ η)

PFA(t) = P0 (zn(t) > η) , (3.14)

where PM,θ∗ and PFA refer to probability of miss and probability of false alarm respectively. We refer to

the parameter estimate update, the decision statistic update and the decision rule in (3.8), (3.11) and (3.13)

respectively, as the CIGLRT −NL algorithm.

3.6 Linear Observation Models : Algorithm CIGLRT − L

In this section, we develop the algorithm CIGLRT − L for linear observation models which lets us specifically

characterize the large deviations exponent upper bounds for probability of miss and probability of false alarm.

There are N agents deployed in the network. Every agent n at time index t makes a noisy observation yn(t),

a noisy function of θ∗ which is a M -dimensional parameter. Formally the observation model for the n-th

agent is given by,

yn(t) = Hnθ
∗ + γn(t), (3.15)

where {yn(t)} ∈ RMn is the observation sequence for the n-th agent and {γn(t)} is a zero mean temporally

i.i.d Gaussian noise sequence at the n-th agent with nonsingular covariance Σn, where Σn ∈ RMn×Mn . The

noise processes are independent across different agents. If M is large, in practical applications each agent’s

observations may only correspond to a subset of the components of θ∗, with Mn << M , which basically

renders the parameter of interest θ∗ locally unobservable at each agent. Under local unobservability, in iso-

lation, an agent cannot estimate the entire parameter. However under appropriate observability conditions,

it may be possible for each agent to get a consistent estimate of θ∗. Moreover, depending on as to which

hypothesis is in force, the observation model is formalized as follows:

H1 : yn(t) = Hnθ
∗ + γn(t)

H0 : yn(t) = γn(t). (3.16)

We formalize the assumptions on the inter-agent communication graph and global observability.

Assumption 3.6.1. We require the following global observability condition. The matrix G

G =

N∑
n=1

H>nΣ−1
n Hn (3.17)

is full rank.

Remark 3.6.1. It is to be noted that Assumption 3.5.1 reduces to Assumption 3.6.1 for linear models, i.e.,

by taking hn (θ∗) = Hnθ
∗.

Algorithm CIGLRT − L
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The algorithm CIGLRT − L consists of three parts, namely, parameter estimate update, decision statistic

update and the decision rule.

Parameter Estimate Update. The algorithm CIGLRT − L generates a sequence {θn(t)} ∈ RM which

are estimates of θ∗ at the n-th agent according to the following recursive scheme

θn(t+ 1) = θn(t)− βt
∑
l∈Ωn

(θn(t)− θl(t))︸ ︷︷ ︸
neighborhood consensus

+ αt∇θ log
fθn(t)(yn(t))

f0(yn(t))︸ ︷︷ ︸
local innovation

, (3.18)

where Ωn denotes the communication neighborhood of agent n, ∇ (.) denotes the gradient and {βt} and

{αt} are consensus and innovation weight sequences respectively (to be specified shortly) and

log
fθn(t)(yn(t))

f0(yn(t))
= θn(t)>H>nΣ−1

n yn(t)

− θn(t)>H>nΣ−1
n Hnθn(t)

2
. (3.19)

It is to be noted that the parameter estimation update of the CIGLRT − L algorithm is a special case of

the CIGLRT −NL algorithm with hn(θ∗) = Hnθ
∗.

The update in (3.18) can be written in a compact manner as follows:

θ(t+ 1) = θ(t)− βt(L⊗ IM )θ(t)

+ αtGHΣ−1
(
y(t)−G>Hθ(t)

)
, (3.20)

where θ(t) = [θ>1 (t) θ>2 (t) · · · θ>N (t)]>, GH = diag[H>1 ,H
>
2 , · · · ,H>N ], y(t) = [y>1 (t) y>2 (t) · · ·y>N (t)]> and

Σ = diag [Σ1, · · · ,ΣN ].

We make the following assumptions on the weight sequences {αt} and {βt}.

Assumption 3.6.2. The weight sequences {αt} and {βt} are of the form

αt =
a

(t+ 1)
βt =

a

(t+ 1)δ2
, (3.21)

where a ≥ 1 and 0 < δ2 ≤ 1.

Decision Statistic Update. The algorithm CIGLRT − L generates a decision statistic sequence {zn(t)}
at the n-th agent according to the distributed recursive scheme

ẑn(kt− k + 1) = θn(k(t− 1))>H>nΣ−1
n(

sn(k(t− 1))− Hnθn(k(t− 1))

2

)
, (3.22)

where sn(k(t− 1)) =
∑k(t−1)
i=0

yn(i)
k(t−1)+1 , i.e., the time averaged sum of local observations at agent n, and the

underlying parameter estimate used in the test statistic is the estimate at time k(t− 1). In other words, at

every time instant k(t−1)+1 (times which are one modulo k), where k is a pre-determined positive integer (k
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to be specified shortly), an agent n, incorporates its local observations made in the past k time instants, in

the above mentioned manner in (3.22). It is to be noted that, independent of the decision statistic update,

sn(k(t − 1)) is updated as and when a new observation is made at agent n. After incorporating the local

observations, every agent n undergoes k− 1 rounds of consensus, which can be expressed in a compact form

as follows:

ẑ(kt) = Wk−1Gθ(k(t− 1))Σ−1

×
(

s(k(t− 1))− G>Hθ(k(t− 1))

2

)
, (3.23)

where z(t) = [z1(t) · · · zN (t)], Gθ(t) = diag
[
θ>1 (t)H>1 , θ

>
2 (t)H>2 , · · · , θ>N (t)H>N

]
and s(t) =

[
s>1 (t) s>2 (t) · · · s>n (t)

]>
,

where W is a N × N weight matrix, where we assign wij = 0, if (i, j) /∈ E. The sequence {ẑn(t)} is an

auxiliary sequence and the decision statistic sequence {zn(t)} is generated from the auxiliary sequence in

the following way:

zn(kt) = ẑn(kt),∀t, (3.24)

where as in the interval [k(t− 1), kt− 1], the value of the decision statistic stays constant corresponding to

its value at zn(kt− k), ∀t.

Remark 3.6.2. The CIGLRT −NL algorithm is for general non-linear observations with a very intuitive

decision statistic update which seeks to track the time average of the log-likelihood ratios over time. The

CIGLRT −NL algorithm can be extended to general linear models but the linear model version of the

CIGLRT −NL algorithm is different from the CIGLRT − L. In particular, the results of this chapter

are inconclusive as to whether the linear model version of CIGLRT −NL algorithm is able to achieve

exponential decay in terms of the probability of miss or not. This is why we introduce the CIGLRT − L
algorithm for the specific linear case for which we are able to establish exponential decays for both the

probabilities of miss and false alarm. The algorithms are different. Intuitively speaking, the performance

of the CIGLRT −NL algorithm in terms of decay of the probability of miss is affected as there is no

mechanism in the decision statistic update so as to get rid of the initial bad parameter estimates, which

are weighed equally as the later more accurate parameter estimates. The decision statistics update for the

CIGLRT − L algorithm however ensures that at any time after kt, the previous parameter estimates i.e.,

θ(ks), s = 1, · · · , t− 1 do not contribute to the decision statistic. Due to the nature of the decision statistic

update, for the CIGLRT − L it can be shown that t ‖θ(t)− θ∗N‖
2

= tPt
2 γG,tγ

>
G,t, where

γG,t = [γ>G(0) γ>G(1) · · · γ>G(t− 1)]>,

where γG(t) = GHΣ−1γ(t) and Pt is a block matrix of dimension NMt × NMt, whose (i, j)-th block

i, j = 0, · · · , t− 1 is given as follows:

[Pt]ij = αiαj

t−2−i∏
u=0

A(t− 1− u)

t−1∏
v=j+1

A(v),

where A(t) = INM − βt (L⊗ IM )− αtGHΣ−1G>H . The matrix t ‖Pt‖ can be shown to be bounded. For the

CIGLRT −NL though, instead of t ‖θ(t)− θ∗N‖
2
, we have to deal with

∑t
s=1 ‖θ(s)− θ∗N‖

2
which in turn does
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not stay bounded as t→∞. To sum it up, CIGLRT − L is indeed a different algorithm from CIGLRT −NL
with a carefully designed decision statistic update so as to be able to characterize the exponential decay of

both the probabilities of error.

Now we state some design assumptions on the weight matrix W.

Assumption 3.6.3. The entries in the weight matrix W are designed in such a way that W is non-negative,

symmetric, irreducible and stochastic, i.e., each row of W sums to one.

We remark that, if Assumption 3.6.3 is satisfied, then the second largest eigenvalue in magnitude of W,

denoted by r, turns out to be strictly less than one, see for example Dimakis et al. (2010). Note that, by

the stochasticity of W, the quantity r satisfies

r = ||W − J||, (3.25)

where J = 1
N 1N1>N .

A intuitive way to design W is to assign equal combination weights, in which case we have,

W = IN − δL, (3.26)

where δ ∈
(

0, 2
λN (L)

)
. For subsequent analysis, we specifically choose δ = 2

λ2(L)+λN (L) .

Decision Rule. The following decision rule is adopted at all times t :

Hn(t) =

H0 zn(t) ≤ η

H1 zn(t) > η,
(3.27)

where Hn(t) is the local decision at time t at agent n.

Remark 3.6.3. For both the proposed algorithms the agents reach asymptotic agreement or consensus in

terms of the parameter estimate and the decision statistic. The decisions in the initial few time steps might

be different. But, with subsequent cooperation among the agents, each agent gets to the same local decision

eventually with probability one. Hence, the overall decision then is the decision of any local agent. It is to

be noted that, to reach decision consensus the agents need to reach consensus on the indicator function with

respect to the threshold. However, the indicator function I{zn(t)>η} is discontinuous at the threshold. But,

from Theorems 4.2 and 4.3, we have that the decision statistics not only reach consensus but converge to
h>(θ∗N )Σ−1h(θ∗N )

2N in expectation under H1 and 0 under H0 and hence the threshold is chosen in such a way

that the decision statistics of different agents reach consensus to a value strictly different from the threshold

so that the indicator function I{zn(t)>η} is continuous at the limiting consensus value. This ensures in turn

that the binary decisions at the agents also reach consensus.

Under the aegis of such a decision rule, the associated probability of errors are as follows:

PM,θ∗(t) = P1,θ∗ (zn(t) ≤ η)

PFA(t) = P0 (zn(t) > η) , (3.28)

where PM,θ∗ and PFA refer to probability of miss and probability of false alarm respectively.
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Remark 3.6.4. Note that, the decision statistic update requires the agents to store a copy of the running

time-average of their observations. The additional memory requirement to store the running average stays

constant, as the average sn(t), say for agent n, can be updated recursively. It is to be noted that the decision

statistic update in (3.23) has time-delayed parameter estimates and observations, i.e., delayed in the sense,

in the ideal case the decision statistic update at a particular time instant, say t, would be using the parameter

estimate at time t, but owing to the k rounds of consensus, the algorithm uses parameter estimates which

are delayed by k time steps. Whenever, the k rounds of consensus are done with, the algorithm incorporates

its latest estimates and observations into decision statistics at respective agents. After the k rounds of

consensus, it is ensured that with inter-agent collaboration, the decision statistic at each agent attains more

accuracy. Hence, there is an inherent trade-off between the performance (number of rounds of consensus)

and the time delay. If the number of rounds of consensus is increased, the algorithm attains better detection

performance asymptotically (the error probabilities have larger exponents), but at the same time the time lag

in incorporating the latest sensed information into the decision statistic increases affecting possibly transient

characteristics and vice-versa.

We make an assumption on k which concerns with the number of rounds of consensus in the decision statistic

update of CIGLRT − L.

Assumption 3.6.4. Recall r as defined in (3.25). The number of rounds k of consensus between two updates

of agent decision statistics satisfies

k ≥ 1 +

⌊
−3 logN

2 log r

⌋
. (3.29)

We make an assumption on a, which is in turn defined in (3.21).

Assumption 3.6.5. Recall a as defined in Assumption 3.6.2. We assume that a satisfies

a ≥ 1

2c1
+ 2, (3.30)

where c1
3 is defined as

c1 = min
‖x‖=1

x>
(
L⊗ IM + GHΣ−1G>H

)
x

= λmin

(
L⊗ IM + GHΣ−1G>H

)
. (3.31)

3.7 Consistency and Exponential Decay of Errors

In this section, we provide the main results concerning the algorithms CIGLRT −NL and CIGLRT − L.

The proofs are relegated to Appendix C.

Theorem 3.7.1. Consider the CIGLRT −NL algorithm under Assumptions 3.5.1-3.5.5 with the additional

that ac1 ≥ 1 with c1 as defined in Assumption 3.5.4, and the sequence {θ(t)}t≥0 generated according to (3.8).

We then have

Pθ∗
(

lim
t→∞

(t+ 1)τ ‖θn(t)− θ∗‖ = 0,∀1 ≤ n ≤ N
)

= 1, (3.32)

3We will later show that c1 is strictly greater than zero.
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for all τ ∈ [0, 1/2).

To be specific, the estimate sequence {θn(t)}t≥0 at agent n is strongly consistent. The next result concerns

with the characterization of thresholds which ensures the probability of miss and probability of false alarm

as defined in (3.14) go to zero asymptotically.

Theorem 3.7.2. Let the hypotheses of Theorem 3.7.1 hold. Consider the decision rule defined in (3.13).

For all θ∗ which satisfy

h> (θ∗N ) Σ−1h (θ∗N )

2N
>

(
1
N +

√
Nr
)∑N

n=1Mn

2
, (3.33)

we have the following choice of the thresholds(
1
N +

√
Nr
)∑N

n=1Mn

2
< η <

h> (θ∗N ) Σ−1h (θ∗N )

2N
, (3.34)

for which we have that PM,θ∗(t) → 0 and PFA(t) → 0 as t → ∞. Specifically, PFA(t) decays to zero

exponentially with the following large deviations exponent upper bound

lim sup
t→∞

1

t
log (P0 (zn(t) > η)) ≤ −LE (min{λ∗, 1}) , (3.35)

where θ∗N = 1N ⊗ θ∗, LE(.) and λ∗ are given by

LE(λ) =
ηλ

1
N +

√
N

+

(∑N
n=1Mn

2

)
log

1−
λ
(

1
N +

√
Nr
)

1
N +

√
N

 ,

λ∗ =
1
N +

√
N

1
N +

√
Nr
−

(
1
N +

√
N
)∑N

n=1Mn

2η
. (3.36)

It is to be noted that as the observation parameters, i.e., Mn, N and the connectivity of the communication

graph, i.e., r are known apriori, the threshold can be chosen to be
( 1
N +
√
Nrk−1)

∑N
n=1 Mn

2 + ε, where ε can be

chosen to be arbitrarily small. The next theorem characterizes the large deviations exponent upper bound

for the probability of miss and probability of false alarm related to the decision statistic sequence {zn(t)}
generated at agent n, by the decision statistic update part of the CIGLRT − L algorithm. We define the

following quantities which will play a crucial role in stating the next theorem: let c4 and c∗4 be given by

c4 =
1∥∥GHΣ−1G>H

∥∥(∑t1−1
v=0 α2

v

∏t1−1
u=v+1

∥∥INM − βu (L⊗ IM )− αuGHΣ−1G>H
∥∥ (t1+1)2c1α0

kt
2c1α0−1
1

+
α2

0
kt1

+
α2

0
2c1α0−1

) ,
(3.37)

and

c∗4 =
2c1α0 − 1

α2
0

∥∥GHΣ−1G>H
∥∥ − NM

2η2
(3.38)
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respectively, where η2 is given by

η2 =
−2Nη + (θ∗)

>
Gθ∗

(
1−N

√
Nrk−1

)
4
∥∥GHΣ−1G>H

∥∥(1 +N
√
Nrk−1

) , (3.39)

and t1 defined as

t1 = max{t2, t3}, (3.40)

where t3 is such that, ∀t ≥ t3,

λmin

(
L⊗ IM + GHΣ−1G>H

)
αt < 1, (3.41)

and t2 is such that4, ∀t ≥ t2,

βtλN (L) + αtλmax

(
GHΣ−1G>H

)
< 1. (3.42)

Theorem 3.7.3. Let the hypotheses of theorem 3.7.1 hold. Consider, the decision statistic update of the

CIGLRT − L algorithm in (3.22). For all θ∗, which satisfy the following condition

(θ∗)
>

Gθ∗
(

1−N
√
Nrk−1

)
2N

>

(
1
N +

√
Nrk−1

)∑N
n=1Mn

2

+
Mα2

0

∥∥GHΣ−1G>H
∥∥2
(

1 +N
√
Nrk−1

)
2c1α0 − 1

, (3.43)

we have the following range of feasible thresholds,(
1
N +

√
Nrk−1

)∑N
n=1Mn

2
< η <

(θ∗)
>

Gθ∗
(

1−N
√
Nrk−1

)
2N

−
Mα2

0

∥∥GHΣ−1G>H
∥∥2
(

1 +N
√
Nrk−1

)
2c1α0 − 1

, (3.44)

for which we have the following large deviations upper bound characterization for the probability of false

alarm PFA:

lim sup
t→∞

1

t
log (P0 (zn(t) > η)) ≤ − η

1
N +

√
Nrk−1

−
∑N
n=1Mn

2

1 + log
2η(

1
N +

√
Nrk−1

)∑N
n=1Mn


= LD0(η), (3.45)

and the following large deviations upper bound characterization for the probability of miss PM :

lim sup
t→∞

1

t
log (P1,θ∗ (zn(t) < η))

4It is to be noted that such t2 and t3 exist as αt, βt → 0 as t→∞.
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≤ max

−
(
−η4 +

(θ∗)>Gθ∗( 1
N−
√
Nrk−1)

8

)2

2
∑N
j=1 (θ∗)

>
H>j Σ−1

j Hjθ∗
(

1
N +

√
Nrk−1

)2 ,

−LD (min {c4, c∗4})} = LD1 (η) , (3.46)

where,

LD(λ) = λη2 +
NM

2
log

(
1−

λα2
0

∥∥GHΣ−1G>H
∥∥

2c1α0 − 1

)
, (3.47)

and c4, c∗4, η2, t1, t2 and t3 are parameters which are functions of N , r and the sensing model.

The bounds derived for the range of parameter θ∗ for which exponential decay of error probabilities can

be ensured, for both the distributed CIGLRT − L detector and the centralized detector are conservative

and hence might not be tight. With better network connectivity, the upper bounds of the large deviations

exponent of the distributed detector approach the upper bounds of the large deviations exponents of that of

the centralized detector. The range of θ∗’s for which the distributed detector ensures exponential decay of

error probabilities becomes bigger with better network connectivity5, i.e., with smaller r. For our analysis

of probability of errors and their respective decay rate characterizations, we considered a uniform (i.e.,

agent and time independent) choice of thresholds. As far as the agent dependent thresholds are concerned,

the thresholds for each agent could be functions of an individual agent’s connectivity, thus allowing for

more degrees of freedom in the design. Intuitively, an agent with better connectivity would have a wider

range of thresholds to choose from so as to do a more flexible trade-off between the probability of false

alarm and the probability of miss. Though an individual agent dependent bounding would be ideal, but it

makes the analysis seemingly intractable. For example, while bounding
∑N
j=1 φn,j(k − 1)

(θ∗)>H>j Σ−1
j Hjθ

∗

2 ,

where φn,j(k − 1) =
[
Wk−1

]
n,j

, we use the same bound for each of φn,j(k − 1) which is in turn given by

φn,j(k − 1) ≥ 1
N −

√
Nrk−1. In such a setting, tracking the row corresponding to a particular agent in

the weight matrix is seemingly intractable. Having said that, if individual agent dependent thresholds could

have been used, the extent to which an agent can distinguish between different hypotheses would be different

owing to different range of thresholds available to an agent to choose from.

The use of time dependent thresholds however does not seem to affect the zone of indifference. It is to be

noted that the zone of the indifference is characterized in terms of the range of θ∗’s under the alternate

hypothesis for which exponential decay of both the probability of errors can be ensured. To be specific, in

the analysis of the probability of the miss the crucial part of the analysis is the bound for the term t ‖Pt‖
which is given by

t ‖Pt‖ ≤ c3
(t1 + 1)

2c1α0

t2c1α0−1
+
α2

0

t
+

α2
0

2c1α0 − 1
, ∀t ≥ t1.

If the thresholds are adjusted, so as to take into account the time-decaying terms c3
(t1+1)2c1α0

t2c1α0−1 and
α2

0

t , both

the terms decay to zero as t → ∞ thereby ensuring that the large deviations exponent upper bound stays

the same. However, it is to be noted that at any finite time, time dependent thresholds would give tighter

5Intuitively, r indicates how well a network is connected. For e.g. if a network is fully connected, i.e., has an all-to-all
connected communication graph and hence W = J, r = 0. In the absence of communication, W = I and r = 1. Hence, a lower
value of r indicates better connectivity of the graph.
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probability of error bounds, thus improving transients of the approach.

The assumption regarding the inter-agent communication network which is instrumental in obtaining the

results of this chapter is the connectivity of the graph i.e., there exists a path between every two nodes. As

long as the graph is connected, the results continue to hold. For example, for a network with N agents,

there needs to be at least N − 1 links for the graph to be connected, which is very sparsely connected as

out of the possible N(N − 1)/2 possible links only N − 1 links are present. Hence, the algorithms apply

to very sparse (but connected) networks. However, it is important to note that the large deviations upper

bounds might get worse with increasing sparsity of the inter-agent communication graph. The sparsity of

the inter-agent communication graph is in turn reflected by the quantity6 r = ‖W − J‖, where W and J

represent the weight matrices associated with the inter-agent communication graph under consideration and

a completely connected graph respectively. When r = 0 it basically points to the case that W = J, i.e.,

the network under consideration is completely connected. The other extreme case r = 1 is the case when

W = I, i.e., when there are no links in the network. To sum it up, small values of 1−r reflect the sparseness

of the network under consideration.

Furthermore, note that with increasing k, i.e., the time lag or equivalently the number of rounds of consensus

between incorporating latest estimates (see (3.23)), the range of parameter θ∗ for which exponential decay of

error probabilities can be ensured increases, the large deviations upper bounds for the probabilities of miss

and false alarm also increase. However, k cannot be made arbitrarily large just based on improvement of

the large deviations upper bounds, as large deviations analysis is essentially an asymptotic characterization

and at the same time with increase in k the inherent time delay in incorporating new estimates into the

decision statistic also increases, and hence affecting the transient performance of the procedure. Recall from

the decision statistic update in (3.23), that the decision statistic update takes the value zn(kt − k) at all

times t ∈ [kt− k, kt− 1]. Thus, only at time instants which are of the form kt, the decision statistic has

the minimum time-lag k with respect to the latest information available in the multi-agent network which

also makes the analysis more tractable. Moreover, from the perspective of a faulty agent, low k would result

in particularly bad detection performance as the dynamics of an accurate detection procedure at a faulty

agent depends on the information it receives from its neighbors, which shows the necessity of inter-agent

collaboration. In absence of a distributed mechanism characterized by a communication graph, a defective

agent would fail to come up with a reasonable decision at all times, as the local sensed data at a defective

agent is completely non-informative. Finally, no inference procedure is free of the curse of dimensionality.

It is to be noted that with increasing M , i.e., dimension of the underlying parameter θ∗, the range of θ∗ for

which exponential decay of probabilities of errors can be ensured shrinks, the feasible range of thresholds

also shrinks and finally the large deviations exponent upper bound for the probability of miss also decreases.

3.8 CIGLRT : Imperfect Communication

In this section, in addition to the setup for CIGLRT −NL, we consider noisy communication. In particular,

we assume that the inter-agent communication is imperfect, i.e., noisy. To be specific, we assume that an

agent pair (i, j) exchange information over a vector additive zero-mean noise channel. Formally speaking, if

agent i transmits a data vector z ∈ Rk to agent j, the information received at agent j is given by

z̃ = z + ψi,j , (3.48)

6It is to be noted that as long as the graph is connected, r < 1.
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where the noise vector ψi,j is Gaussian with zero mean and has finite variance Σij . Furthermore, we assume

the transmission channel noises are independent over transmissions and across the graph links.

Parameter Estimate Update. The algorithm generates the sequence {θn(t)} ∈ RM at the n-th agent

according to the following recursive scheme

θn(t+ 1) = θn(t)− bαt
∑
l∈Ωn

(θn(t)− θl(t)− ψn,l(t))︸ ︷︷ ︸
neighborhood consensus

+ αt∇hn (θn(t)) Σ−1
n (yn(t)− hn (θn(t)))︸ ︷︷ ︸

local innovation

= θn(t)− bαt
∑
l∈Ωn

(θn(t)− θl(t))

+ αt∇hn (θn(t)) Σ−1
n (yn(t)− hn (θn(t))) + bαt

∑
l∈Ωn

ψn,l(t), (3.49)

where Ωn denotes the communication neighborhood of agent n, b is a positive constant, ψn,l(t) is the

communication noise in the link between n and l, ∇hn (.) denotes the gradient of hn, which is a matrix of

dimension M×Mn, with the (i, j)-th entry given by
∂[hn(θn(t))]j
∂[θn(t)]i

and {αt} is the innovation weight sequence

(to be specified shortly). Note that, in (3.49), each agent l ∈ Ωn intends to send it’s exact estimate to

agent n, but agent n receives a noisy version of estimates from agents in its neighborhood as the inter-agent

communication is over noisy links. The update in (3.18) can be written in a compact manner as follows:

θ(t+ 1) = θ(t)− bαt (L⊗ IM ) θ(t)

+ αtG(θ(t))Σ−1 (y(t)− h (θ(t))) + bαtΨ(t), (3.50)

where θ(t)> = [θ1(t)> · · · θN (t)>], h(θ(t)) =
[
h>1 (θ1(t)) · · ·h>N (θN (t))

]>
, y(t)> = [y1(t)> · · · yN (t)>]>,

G (θ(t)) = diag [∇h1 (θ1(t)) , · · · ,∇hN (θN (t))], Σ = diag [Σ1, · · · ,ΣN ] and

Ψ>(t) =
[(∑

l∈Ω1
ψ1,l(t)

)> · · · (∑l∈ΩN
ψN,l(t)

)>]>
.

We make the following assumption on the weight sequence {αt}.

Assumption 3.8.1. The weight sequence {αt} is of the form αt = (t+ 1)−1 and the positive constant b is

such that b < 1
λN (L) .

3.9 Main Results: CIGLRT Imperfect Communication

We define the following quantities which will be crucial for stating the next theorem : let Σ∗c,1 and Σ∗c,0 be

given by

Σ∗c,1 = VLM1V
>
L

Σ∗c,0 = VLM0V
>
L (3.51)

respectively, where M1 and M0 are given by

[M1]ij =
[
V>LΣ∗1VL

]
ij

(b [DL]ii + b [DL]jj + 1)−1
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[M0]ij =
[
V>LΣ∗0VL

]
ij

(b [DL]ii + b [DL]jj + 1)−1, (3.52)

respectively, and Σ∗1 and Σ∗0 are given by

Σ∗1 = h∗(1N ⊗ θ∗)Σ−1(h∗(1N ⊗ θ∗))> + b2Σc

Σ∗0 = b2Σc, (3.53)

respectively, whereas VL and DL represent the matrix of eigenvectors and eigenvalues of L respectively, i.e.,

L = V>LDLVL, (3.54)

and Σc denotes the covariance matrix of the channel noise encountered in the test statistic exchange among

agents given by the process {ζ(t)}.

Theorem 3.9.1. Consider the algorithm under Assumptions 3.5.1-3.5.5, and the sequence {z(t)}. We then

have under Pθ∗

√
t+ 1

(
z(t)− (bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

)
D

=⇒ N
(
0,Σ∗c,1

)
(3.55)

∀n, and under P0

√
t+ 1 (z(t))

D
=⇒ N

(
0,Σ∗c,0

)
, ∀n, (3.56)

where
D

=⇒ denotes convergence in distribution (weak convergence).

Theorem 3.9.1 asserts the asymptotic normality of the test statistic {zn(t)}, ∀n. It is to be noted that the

asymptotic mean of z(t) which is given by (bL + I)−1 h∗(1N⊗θ∗)Σ−1h(1N⊗θ∗)
2 has all of its entries positive,

as (bL + I) is a M -matrix (see, Poole and Boullion (1974)) and hence its inverse has all of its entries non-

negative, i.e.,
[
(bL + I)

−1
]
ij
≥ 0, ∀i, j = 1, · · · , N . The next result concerns with the characterization of

thresholds which ensures the probability of miss and probability of false alarm as defined in (3.28) decay to

zero asymptotically.

Theorem 3.9.2. Let the hypotheses of Theorem 3.9.1 hold. Consider the decision rule defined in (3.13).

For agent n, all θ∗ which satisfy[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

>
2
∑N
n=1Mn

N
, (3.57)

we have the following choice of the thresholds

2
∑N
n=1Mn

N
< ηn <

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

, (3.58)

for which we have that PM,θ∗(t) → 0 and PFA(t) → 0 as t → ∞. Specifically, PFA(t) decays to zero
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exponentially with the following large deviations exponent7

lim sup
t→∞

1

t
log (P0 (zn(t) > ηn))

≤ max

{
− η2

n

8b2 ‖Σc‖
,−LE(λ∗)

}
, (3.59)

where LE(.) and λ∗ are given by

LE(λ) =
Nηnλ

4
+

(∑N
n=1Mn

2

)
log (1− λ) ,

λ∗ =
2
∑N
n=1Mn

Nηn
(3.60)

respectively.

It is to be noted that the thresholds across agents can be chosen to be different owing to the unequal

asymptotic mean at different agents and hence the large deviations upper bound across different agents may

be different. We discuss how the above result can be used in practice to identify thresholds that lead to

asymptotic decay of the probabilities of error. It is to be noted that as the observation parameters, i.e.,

Mn, N are known apriori, the threshold can be chosen to be
2
∑N
n=1 Mn

N + ε, where ε can be chosen to be

arbitrarily small. Further, from the feasible range of thresholds in (3.34), a range on the θ∗s’ can be obtained

in terms of ‖h (1N ⊗ θ∗)‖ such that under H1, as long as the true value θ∗ of the parameter belongs to this

range, the probability of miss is guaranteed to decay to zero asymptotically. It is important to note in this

context that there exists some weak signals, i.e., signals with low ‖h (1N ⊗ θ∗)‖ (but non-zero), for which

there may not exist a choice of thresholds to ensure asymptotically decaying probability of miss. The signals

for which Theorem 3.9.1 is rendered to be inconclusive in the manner described above, can be categorized

in terms of θ∗.

3.10 Simulations

3.10.1 CIGLRT −NL

We generate a random geometric network of 10 agents. The location of agents are generated by sampling the x

coordinates and the y coordinates from a uniform distribution on the interval [0, 1]. We link two vertices by an

edge if the distance between them is less than or equal to g = 0.4. We go on iterating this procedure until we

get a connected graph. The network connectivity expressed in terms of r = ‖W − J‖ is given by r = 0.3904.

We consider the underlying parameter to be a 5-dimensional parameter, i.e., M = 5 and θ∗ = [π/6 −
π/4 π/4 −π/5 π/6]. For the nonlinear observation model, we consider trigonometric sensing functions which

are given by, f1(θ) = 5 sin(θ1 +θ2), f2(θ) = 5 sin(θ3 +θ2), f3(θ) = 5 sin(θ3 +θ4), f4(θ) = 5 sin(θ4 +θ5), f5(θ) =

5 sin(θ1 + θ5), f6(θ) = 5 sin(θ1 + θ3), f7(θ) = 5 sin(θ4 + θ2), f8(θ) = 5 sin(θ3 + θ5), f9(θ) = 5 sin(θ1 + θ4) and

f10(θ) = 5 sin(θ1 + θ5), where the underlying parameter is 5 dimensional, θ = [θ1, θ2, θ3, θ4, θ5]. However,

we restrict the values of θ to the set
[
−π4 ,

π
4

]5 ∈ R5. Note that, in spite of restricting the parameter to a

set, the alternate hypothesis is still parameterized by vector parameters from a continuous set. The local

sensing models are unobservable, but collectively they are globally observable since, sin(·) is one-to-one on

7By large deviations exponent, we mean the large deviations upper bound.
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the set
[
−π4 ,

π
4

]5
and the set of linear combinations of the θ components corresponding to the arguments

of the sin(·)’s constitute a full-rank system for θ. The agents make noisy scalar observations where the

observation noise process is Gaussian and the noise covariance is given by R = 2I10. It is readily seen that

the sensing model with the restriction that the parameter can take values from the set
[
−π4 ,

π
4

]5
satisfy

Assumptions 3.5.1-3.5.4. We carry out 2000 Monte-Carlo simulations for analyzing the convergence of the

parameter estimate sequences. The estimates are initialized to be 0, i.e., θn(0) = 0 for n = 1, · · · , 10. The

normalized error for the n-th agent at time t is given by the quantity ‖θn(t)− θ∗‖. Figure 3.1 shows the

estimation error at every agent against the time index t. For the analysis of the probability of miss, we
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Figure 3.1: CIGLRT −NL: Convergence of estimation error at each agent

run the algorithm for 2000 sample paths so as to empirically estimate the probability of miss. Figure 3.2

verifies the assertion in Theorem 3.7.2. The threshold is chosen to be equal to 7. It is to be noted that,

from Figure 3.2 the probability of miss starts decaying even before the parameter estimates get reasonably

close to the true underlying parameter, which further indicates the online nature of the proposed algorithm

CIGLRT −NL. The decay of the probability of the miss can be attributed to the fact that, in order to

reach the correct decision, the decision statistics of the agents need to cross the threshold which is achieved

even before the agents’ parameter estimates reach close to the true underlying parameter.

3.10.2 CIGLRT − L

We generate a planar ring network of 10 agents, where every agent has exactly two neighbors. We consider

the underlying parameter to be a 5-dimensional parameter, i.e., M = 5 and θ∗ = θ∗ = [1 0.9 1.2 1.1 1.5].

The observation matrices for the agents are of the dimension 5× 1, i.e., Mn = 1, ∀n. Specifically the Hn’s

are given by H1 = [1 1 0 0 0], H2 = [0 1 1 0 0], H3 = [0 0 1 1 0], H4 = [0 0 0 1 1], H5 = [1 0 0 0 1], H6 =

[1 0 1 0 0], H7 = [0 1 0 1 0], H8 = [0 0 1 0 1], H9 = [1 0 0 1 0], H10 = [0 1 0 0 1]. The noise covariance

matrix Σ is taken to be 3I10. We emphasize that the above design ensures global observability (in the sense

of Assumption 3.6.1), as the matrix G is invertible, but at the same time the parameter of interest is locally
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Figure 3.2: CIGLRT −NL: Probability of miss of the agents
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Figure 3.3: CIGLRT − L: Convergence of estimation error at each agent

unobservable at all agents. The network is poorly connected which in turn is reflected by the quantity

r = ‖W − J‖ and is given by 0.8404. In particular, for the parameter estimation algorithm, a = 9.1 and

δ2 = 0.4, where a, δ2 are as defined in Assumption 3.6.2. The time-lag k is taken to be k = 20. Figure

3.3 shows the convergence of the parameter estimates of the agents to the underlying parameter in different

dimensions which in turn demonstrates the consistency of the parameter estimation scheme.

For the analysis of the probability of miss, we run the algorithm for 2000 sample paths. The threshold is

chosen as η =
( 1
N +
√
Nrk−1)

∑N
n=1 Mn

2 +0.01 = 0.8280. The evolution of the test statistic can be closely seen in
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Figure 3.4: CIGLRT − L: Probability of Miss at each agent
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Figure 3.4 with the probability of miss decaying exponentially and thus verifying the assertion in Theorem

3.7.3. It is to be noted that, from Figure 3.4 the probability of miss starts decaying even before the parameter

estimates get reasonably close to the true underlying parameter, which further indicates the online nature

of the proposed algorithm CIGLRT − L. The large deviations exponent across different agents are plotted

in Figure 3.5. The theoretical upper bound in (3.46) is found to be 0.045. The simulation results verify that

the empirically estimated large deviations exponent upper bound for different agents is upper bounded by

the theoretically derived upper bound8

3.11 Summary of Contributions

• Distributed Composite Hypothesis Testing Algorithms: We propose two distributed recursive

composite hypothesis testing algorithms, where the composite alternative concerning the state of the

field is modeled as a vector of (continuous) unknown parameters determining the parametric family

of probability measures induced on the agents’ observation spaces under the hypotheses. Due to the

local unobservability, agents can not conduct hypothesis testing just based on their own samples.

We explicitly characterized a distributed decision making scheme, where agents collaborate in their

neighborhood over a possibly sparse communication graph.

• Recursive Detection Algorithm with decaying probabilities of errors: We show that in spite

of being a recursive algorithm (hence suboptimal9), the proposed algorithm CIGLRT −NL, which

is based on general non-linear observation models, guarantees asymptotically decaying probabilities of

false alarm and miss under minimal conditions of global observability and connectivity of the inter-agent

communication graph. We also characterize the feasible choice of thresholds and other algorithm design

parameters for which such an asymptotic decay of probabilities of errors in the large sample (time)

limit can be guaranteed. Through algorithm CIGLRT − L, we focus on a linear observation setup,

where we not only characterize thresholds and other algorithm parameters which ensure exponentially

decaying probabilities of error, but also analyze the upper bounds of the associated large deviations

exponent of the probabilities of error under global observability as functions of the network and model

parameters.

• Extension of Wilks’ Theorem: In the context of centralized detection literature, the weak con-

vergence of the decision statistics under the null and the alternate hypothesis (see, Wilks (1938) for

example) is usually not enough to establish the decay rates of the probability of errors. To be spe-

cific, in this chapter we extend Wilks’ theorem to the distributed recursive setup and characterize the

asymptotic normality of the decision statistic sequence. However, the statistical dependencies exhib-

ited in the decision static update due to the parameter estimation scheme and the decision statistic

update running in a parallel fashion warrants the development of technical machinery so as to address

concentration of measure for sums of non i.i.d random variables which in turn helps characterize the

decay exponent of the probability of errors.

8It is an upper bound if the quantity of interest is 1
t

log (P(.)). It is a lower bound if the quantity of interest is the positive

exponent, i.e., − 1
t

log (P(.)).
9The sub-optimality with respect to GLRT is due to inaccurate parameter estimates being incorporated into the decision

statistic in the proposed algorithm in contrast to the optimal parameter estimate incorporated into the decision statistic in
case of the classical GLRT.
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3.12 Conclusion and Future Directions

In this chapter, we have considered the problem of a recursive composite hypothesis testing in a network of

sparsely interconnected agents where the objective is to test a simple null hypothesis against a composite

alternative concerning the state of the field, modeled as a vector of (continuous) unknown parameters deter-

mining the parametric family of probability measures induced on the agents’ observation spaces under the

hypotheses. We have proposed two consensus+innovations type recursive online algorithms, CIGLRT −NL
and CIGLRT − L, in which every agent updates its parameter estimate and decision statistic by simultane-

ous processing of neighborhood information and local newly sensed information and in which the inter-agent

collaboration is restricted to a possibly sparse but connected communication graph. We have established

the consistency of the parameter estimate sequences and characterized the large deviations exponent upper

bounds of the probabilities of errors pertaining to the detection scheme for the algorithms. A natural direc-

tion for future research consists of considering models with non-Gaussian noise. We also intend to develop

extensions of the CIGLRT −NL in which the parameter domain is restricted to constrained domains such

as convex subsets of the Euclidean space or manifolds.



Chapter 4

Communication Efficient Distributed

Detection

4.1 Introduction

In this chapter, we study convergence in probability of products of random, independent, but not identically

distributed stochastic and symmetric matrices Wt, where the topologies that underline the matrices have

time-varying distributions. Specifically, we consider the model in which there exists a baseline graph describ-

ing all feasible communication links; nodes randomly activate over time, independently one from another,

such that each node is active with a certain time-dependent probability, and two nodes communicate only

if they are active at the same time. A major motivation for studying the products of stochastic matri-

ces that underlie the described randomized time varying communication protocol is the recent work Sahu

et al. (2018e); therein, it is shown that incorporating the described protocol into consensus+innovations

distributed estimation significantly improves the estimator’s communication efficiency.

In this chapter, our goal is to characterize for the described model of the Wt’s the speed at which the

probabilities that the product of the Wt’s stays bounded away from its limiting matrix. More precisely, we

are interested in computing

R = − lim
t→+∞

1

t
logP (‖Wt · . . . ·W1 − J‖ ≥ ε) , (4.1)

for an arbitrary ε ∈ (0, 1], provided that the limit in (4.1) exists1. Here, N is the number of network nodes,

and the limiting matrix J = 11>/N .While prior work derives rate (4.1) for products of independent, identi-

cally distributed (i.i.d.) matrices, the non-i.i.d. case of independent matrices with time-varying distributions

has not been studied before. Quantity (4.1) is an important metric that has many potential applications in

consensus+innovations-based distributed inference. For example, reference Bajovic et al. (2011) (see also Ba-

jović et al. (2013)) studies error exponents for Bayes error probability of consensus+innovations distributed

detection under the i.i.d. matrices model. The reference shows that rate R critically determines detection

error exponent.

It is well-known that, if the random (doubly stochastic) matrices Wt are i.i.d., then the product Wt · . . . ·W1

converges almost surely to the consensus matrix J Bajović et al. (2013), and, since almost sure convergence

implies convergence in probability, we thus have that the probabilities in (4.1) decay to zero. In our previous

1As we show later, the limit in (4.1) exists and is independent of ε.

54
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work Bajović et al. (2013), we show that this convergence is exponentially fast, and we computed the exact

rate R for the i.i.d. matrices. In this chapter, we consider the time varying randomized activation model

described above for which the weight matrices are no longer identically distributed. We show that the limit

in (4.1) continues to exist, and moreover we compute exactly the limit R. Specifically, we show that R is

given by the minimal vertex cut of the baseline graph, where the nodes’ associated cut costs are defined by

the nodes’ limiting activation probabilities.

We demonstrate the significance of the studied non-i.i.d. matrix model and the derived rate R in the context

of consensus+innovations distributed detection. More precisely, we consider a distributed detector with a

randomized and time-varying sparsified communication protocol, where neighborhood communications are

probabilistically sparsified in a time varying fashion with the goal of reducing the detector’s communication

cost. By utilizing result (4.1), we first show theoretically that the detector with time-varying and sparsified

protocol can be designed to achieve asymptotic optimality at all signal-to-noise ratio (SNR) regimes; this

is achieved when the activation probabilities converge to unity, possibly at a very slow rate, e.g., as 1 −
Ω(1/log(t)). In contrast, the previously studied i.i.d.-based detectors achieve asymptotic optimality only if

the SNR exceeds a threshold. Therefore, effectively, we construct a “universally” asymptotically optimal

detector that makes significant communication savings. Intuitively, by slowly increasing the node activation

probabilities, we achieve the “optimality range” of the static protocol, but the rate of increase of probabilities

is crafted carefully to achieve a reduced communication cost. Interestingly, while in Sahu et al. (2018e) it is

possible to decrease the activation probabilities over time and achieve an order optimal O(1/t) estimation

mean square error (MSE) decay, here the probabilities need to increase in time (though possibly very slowly).

The intuition for this difference is that the “baseline process” here – the decay of error probability – is much

faster (it behaves like e−c t, c > 0 a constant) than the “baseline process” in Sahu et al. (2018e) – the rate

of MSE decay, which behaves like 1/t.

Despite being very challenging to prove, rate R has a clear intuitive interpretation. The time instants when

the matrix product gets a step closer to the limiting matrix J are the time instants when the union graph

of the topologies gets connected. It is then easy to see that the event (4.1) is feasible only if the number of

these improvement times is sufficiently small. We show that the event in (4.1) is therefore equivalent to the

event that the number of improvements is sublinear in t. The latter effectively corresponds to the scenario

that the activated nodes fail to form a connected graph. The most likely way in which this can happen is

given by the vertex cut with participating nodes which are the “easiest” to disconnect, i.e., with smallest

limiting occurrence probabilities.

4.2 Related Work

Products of stochastic matrices have been studied for a long time, e.g., DeGroot (1974), and the problem

receives a continued interest, e.g., Olfati-Saber and Murray (2004); Tahbaz-Salehi and Jadbabaie (2010);

Touri and Nedic (2014). The problem of computing the exact large deviations rate in (4.1), arising, e.g.,

in the analysis of distributed detection Bajovic et al. (2011), see also Braca et al. (2010); Cattivelli and

Sayed (2011a); Nedić et al. (2014); Shahrampour et al. (2014); Nedić et al. (2016), has been studied before

in Bajović et al. (2013) for the i.i.d. matrices and in Bajović et al. (2012) for temporally dependent matrices,

where the temporal dependence is modeled through a Markov chain. This chapter complements the prior

work by establishing the limit (4.1) for a class of time varying matrix distributions that have not been studied

before. As explained above, the newly studied class has a significant relevance for distributed detection.
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4.3 Model and preliminaries

Random nodes’ activation and random matrix model. The network of nodes is modeled as an undirected

graph G = (V ,E), where V = {1, 2, ..., N} is the set of nodes, and E ⊆
(
V
2

)
is the set of all communication

links between nodes. We assume that G is connected. During network operation, network nodes activate at

random with certain probabilities that we assume are different for different nodes. To each node i ∈ V , we

associate, for each time t = 1, 2, ..., a Bernoulli random variable ξi,t, which is equal to 1 if i is active at time

t, and otherwise is 0. Let pi,t = P (ξi,t = 1) ∈ (0, 1) denote the probability that i is active at time t and let

Vt collect all the nodes in V that are active at time t. For arbitrary two nodes i, j ∈ V to communicate at

time t, it is necessary and sufficient that i and j are both active at that time.

Let Gt denote the graph obtained by collecting all the nodes that are active at time t, together with their

induced communication links. More precisely, Gt = (Vt, Et), where the set of active edges at time t is given

by

Et =
{
{i, j} ∈ E : i, j ∈ Vt

}
. (4.2)

We make the following assumption on the nodes’ activations and on the weight matrices Wt.

Assumption 4.3.1.

1. For each i ∈ V , ξi,t and ξi,s are independent for t 6= s, for any t, s ≥ 1.

2. For each node i, pi,t increases monotonically with t according to the following formula:

pi,t = pi(1− αt), (4.3)

where αt ∈ (0, 1] is a monotonically decreasing sequence converging to 0, equal for all nodes, and

pi ∈ (0, 1] is the limiting activation probability of node i.

It is easy to see from Assumption 1 that the topologies Gt, t ≥ 1, are independent. We further make the

following assumptions on the weight matrices Wt.

Assumption 4.3.2. 1. The weight matrices Wt, t ≥ 1, are independent.

2. For each t, each realization of Wt is symmetric, stochastic and has positive diagonals, and it conforms

to the structure of Gt, i.e., [Wt]ij = 0 if {i, j} /∈ Et, i 6= j.

3. There exists δ > 0 such that, for each t, [Wt]ij > δ whenever [Wt]ij > 0.

The rest of the section gives preliminaries needed to state and prove the main result on rate R calculation.

Union graph of topologies. We denote by Γ(t, s) the random graph that collects the edges from all the

graphs Gr that appeared from time r = s+ 1 to r = t, s < t, i.e.,

Γ(t, s) := Γ({Gt, Gt−1, . . . , Gs+1}).

Similarly as with Γ, for any s < t we analogously define the product matrix over time window r = s+ 1 to

r = t,

Φ(t, s) = WtWt−1 · . . .Ws+1. (4.4)

To simplify the notation, it is also of interest to introduce the error matrix Φ̃(t, s) = Φ(t, s)− J, a norm of

which quantifies how close the product is to its limit J.
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Using the notion of the union graph Γ, we define the sequence of times Ti, i = 1, 2, . . ., that mark times

when Γ gets connected:

Ti = min{t ≥ Ti−1 + 1 : Γ(t, Ti−1) is connected}, for i ≥ 1, (4.5)

with T0 = 0. It is well-known that for every time window (s, t] over which the occurred edges accumulate

to a connected graph, the spectral norm of the error matrix Φ̃(t, s) drops below one (see, e.g., Lemma 11

in Bajović et al. (2013)). Hence, the sequence of times {Ti}i≥1 therefore defines the times when the averaging

process makes an improvement and gets closer to matrix J . Finally, for any fixed t ≥ 1, we introduce the

number of improvements until time t, denoted by Mt, Mt = max {i ≥ 0 : Ti ≤ t} .

Vertex cut. For an arbitrary graph G = (V,E) the vertex cut is defined as any subset of graph nodes C such

that the remaining graph G\C :=
(
V \ C,E\C

)
is not connected, where E\C := {{i, j} ∈ E : i, j ∈ V \ C};

or, in words, G\C is the graph obtained from the initial graph G by removing from G all the vertices that

belong to C and all the edges connected to these vertices. We denote the set of all vertex cuts of G by C(G).

If each node i ∈ V is assigned a cost ci ∈ R, then, the minimal vertex cut is defined as a vertex cut C ⊆ V

such that the sum of costs of nodes in C is minimal among all vertex cuts C ∈ C(G). We denote the

associated cost by

V C
(
G, {ci}i∈V

)
= min
C∈C(G)

{∑
i∈C

ci

}
. (4.6)

4.4 Main result

We now state the main result of the chapter– existence and characterization of the rate R via vertex cut.

Theorem 4.4.1. Let Assumptions 4.3.1 and 4.3.2 hold. The rate of consensus R in (1) is then, for any

ε ∈ (0, 1], given by

R = V C
(
G, {− log qi}i∈V

)
, (4.7)

where qi = (1− pi).

For simplicity, we will present a proof for the case when each pi is strictly less than one, but the result can

be extended to allow for the unit values of some or all of the pi’s. Also, note that, when pi = 1− qi = 1, for

i = 1, ..., N , then R = +∞.

Proof. We start with the following result from Bajović et al. (2013), which asserts that, if the number of

improvements until time t scale linearly with t, for t ≥ 1, then, starting from some finite time t, the events

in (4.1) have zero probabilities (see Lemma 14, part 1 in Bajović et al. (2013)).

Lemma 4.4.2. Consider the sequence of events {Mt ≥ βt}, where β ∈ (0, 1], t = 1, 2, . . .. For every

β, ε ∈ (0, 1], there exists sufficiently large t0 = t0(β, ε) such that

P
(∥∥∥Φ̃(t, 0)

∥∥∥ ≥ ε, Mt ≥ βt
)

= 0, ∀t ≥ t0(β, ε). (4.8)

Using the preceding result, it is easy to see that, for any fixed β ∈ (0, 1), a necessary condition for
∥∥∥Φ̃(t, 0)

∥∥∥ ≥
ε is that Mt ≤ βt (as otherwise the probability of this event is 0, which is asserted by Lemma 4.4.2). On

the other hand, it is easy to see that the sufficient condition for this event to occur is that Mt = 0 (as in
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this case
∥∥∥Φ̃(t, 0)

∥∥∥ = 1, see Lemma 11 in Bajović et al. (2013)). Thus, we have that for each β ∈ (0, 1), all

t ≥ t0(β, ε),

P (Mt = 0) ≤ P
(∥∥∥Φ̃(t, 0)

∥∥∥ ≥ ε) ≤ P (Mt < βt) . (4.9)

We prove the theorem by proving first that the left hand-side has an exponential decay rate equal to R, as

given in (4.7). We then show that the right hand-side probability in (4.9) decays with an β-dependent rate

that gets closer to R as β decreases to 0, and in the limit equals R.

We start by noting that the event Mt = 0 is equivalent to the event that Γ(t, 0) is disconnected. Let C?

denote the minimal vertex cut of G, where the node costs are assigned as in the claim of the theorem. It is

easy to see that a sufficient condition for Γ(t, 0) to be disconnected is that each of the nodes in the set C?

was inactive over the time interval from time 1 to time t. Thus,

P (Γ(t, 0) ; not connected) = P (Vt ∩ C? = ∅, k = 1, ..., t)

=

t∏
k=1

∏
i∈C?

(1− pi,k)

≥
∏
i∈C?

(1− pi)t, (4.10)

where the second equality follows by the Assumption 4.3.1.1 and last inequality follows by the monotonic

increase of the probabilities of nodes’ activations, Assumption 4.3.1.2. Computing the logarithm, dividing

by t and computing the limit t→ +∞, we obtain from (4.10) and (4.9)

lim inf
t→+∞

1

t
logP

(∥∥∥Φ̃(t, 0)
∥∥∥ ≥ ε) ≥ −R. (4.11)

We next turn to computing the exponential rate of the right hand-side in the inequality (4.9). We start by

noting that

P (Mt < βt) =

dβte−1∑
m=0

P (Mt = m)

=

dβte−1∑
m=0

∑
1≤t1≤...≤tm≤k

P (Tl = tl, for 1 ≤ l ≤ m, Tm+1 > t) , (4.12)

where in the second equality we consider all possible realizations of Tl, l ≤ m. We focus on one arbitrary

allocation of times Tl = tl, 1 ≤ l ≤ m, Tm+1 > t and the respective probability.

By the construction of the sequence Tl, for each l ≤ m, we have that supergraph Γ(tl − 1, tl−1) is not

connected, for l ≤ m. Also, the condition Tm+1 > k implies that Γ(t, Tm) is not connected. Denoting

tm+1 = t+ 1 for compact representation, we have

P (Tl = tl, for l ≤ m, Tm+1 > t) (4.13)

≤ P (Γ(tl − 1, tl−1) not connected, for l ≤ m+ 1)

=

m+1∏
l=1

P(Γ(tl − 1, tl−1) not connected) (4.14)

where the last equality follows by the independence of the graph realizations. Note that, for arbitrary t > s,
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the event that the supergraph Γ(t, s) is not connected can be represented as the union of events that an

arbitrary vertex cut of G was absent from the random graphs Gk over time window s < k ≤ t, i.e.,

{Γ(t, s) not connected} = ∪C∈C(G) {Vk ∩ C = ∅, s < k ≤ t} . (4.15)

Applying (4.15) to each of the intervals tl−1 < k ≤ tl − 1 and computing the probabilities, we get by the

union bound

P ({Γ(tl − 1, tl−1) not connected})

≤
∑

C∈C(G)

P (Vk ∩ C = ∅, tl−1 ≤ k ≤ tl − 1)

=
∑

C∈C(G)

∏
tl−1≤k≤tl−1

∏
i∈C

(1− pi,k) . (4.16)

Expressing 1− pi,k = (1− pi)
(

1 + pi
1−piαk

)
≤ (1− pi) (1 + καk), where κ = maxi∈V pi/(1− pi), and using

the fact that 1 + x ≤ ex, we obtain from (4.16):

P ({Γ(tl − 1, tl−1) not connected})

≤
∑

C∈C(G)

e
Nκ

∑
tl−1<k≤tl−1 αk

∏
i∈C

(1− pi)(tl−1−tl−1)

≤
∣∣C(G)

∣∣ eNκ∑
tl−1<k≤tl−1 αke−(tl−1−tl−1)V C(G,{− log qi}i∈V ). (4.17)

Applying the preceding inequality for each time interval tl−1 < k ≤ tl − 1 yields in (4.13)

P (Tl = tl, for l ≤ m, Tm+1 > t)

≤
∣∣C(G)

∣∣m eNκ∑
1≤k≤t, k 6=ti

αke−(k−m)V C(G,{− log qi}i∈V )

≤
∣∣C(G)

∣∣m eNκ∑t
k=1 αke−(k−m)V C(G,{− log qi}i∈V ). (4.18)

The preceding bound holds for each of the terms in (4.12) that correspond to a fixed number of improvements

Mt = m, and since there are
(
t
m

)
possible allocations of times T1, ..., Tm, we obtain

P (Mt = m)

≤
(
t

m

) ∣∣C(G)
∣∣m e−(k−m)V C(G,{− log qi}i∈V )eNκ

∑t
k=1 αk

≤
(
te

m

)m ∣∣C(G)
∣∣m e−(k−m)V C(G,{− log qi}i∈V )eNκ

∑t
k=1 αk . (4.19)

It is easy to see that, for any β < 1/2, the preceding bound is maximal for m = βt. Therefore,

P (Mt < βt) ≤ βt
(
te

βt

)βt ∣∣C(G)
∣∣βt

× e−(k−βt)V C(G,{− log qi}i∈V )eNκ
∑t
k=1 αk . (4.20)
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Computing the logarithm, dividing by t, and taking the limit t→ +∞ yields

lim sup
t→+∞

P (Mt < βt) ≤ β log
e

β
+ β log |C(G)|

− (1− β)V C
(
G, {− log qi}i∈V

)
+ κ lim

t→+∞

∑t
k=1 αk
t

. (4.21)

By Assumption 4.3.1.2, the last term vanishes, and taking the infimum with respect to β > 0, we finally

obtain

lim sup
t→+∞

P (Mt < βt) ≤ −V C
(
G, {− log qi}i∈V

)
. (4.22)

Combining with (4.11), the claim of Theorem 4.4.1 follows.

4.5 Application to distributed detection

We now demonstrate the usefulness of Theorem 4.4.1 by applying it to consensus+innovations distributed

detection; see also Bajovic et al. (2011); Sahu and Kar (2017). The detection problem is as follows. Sensors

in a N -node network cooperate to decide on a binary hypothesis, H1 versus H0. Each sensor i, at each time

step t, t = 1, 2, ..., performs a measurement Yi,t; the measurements are i.i.d., both in time and across sensors,

where under hypothesis Hl, Yi,t has the density function fl, l = 0, 1, for i = 1, . . . , N and t = 1, 2, . . .. In

the aforementioned detector, each sensor i maintains its (scalar) local decision statistic xi,t and compares it

with the zero threshold; if xi,t > 0, sensor i accepts H1; otherwise, it accepts H0. At each time t, a sensor i

updates its decision statistic xi,t by exchanging its decision statistic in the neighborhood and by assimilation

of decision statistics from its neighborhood and its latest sensed information through a log-likelihood ratio

Li,t = log
f1(Yi,t)
f0(Yi,t)

:

xi,t =
∑
j∈Oi,t

[Wt]ij

(
t− 1

t
xj,t−1 +

1

t
Lj,t

)
, (4.23)

with xi,0 = 0. Here Oi,t is the (random) neighborhood of sensor i at time t (including i), and [Wt]ij is

the (random) averaging weight that sensor i assigns to sensor j at time t. We let the N × N matrix Wt

that collects the weights [Wt]ij in (4.23) adhere to the model in Assumption 4.3.2. In other words, sensors

utilize a randomized communication protocol as described in Assumptions 4.3.1 and 4.3.2 and the preceding

paragraphs. We additionally assume that sensors’ observations are independent from the activation protocol,

i.e., from matrices Wt. To assess communication-wise benefits of the sparsified communication protocol,

we benchmark detector (4.23) against the detector with the same algorithmic form as in (4.23), except

that the weight matrix is replaced by a constant doubly stochastic matrix W. Intuitively, the benchmark

utilizes communications across all links at all times, and it is hence natural to expect that it has a better

performance with respect to time, i.e., with respect to the number of measurements processed. However, as

shown ahead, the detector with sparsified communications practically matches the benchmark’s performance

time-wise while achieving a better performance communication-wise.

For detector (4.23), rate of consensus R plays a major role in its asymptotic performance, as measured by

the worst-sensor error exponent of the Bayes error probability: mini=1,...,N

{
− 1
t log

(
P e
i,t

)}
, where P e

i,t is the

Bayes error probability for sensor i at time t. While prior work Bajovic et al. (2011) characterized asymptotic

performance of detectors of form (4.23) when the weight matrices are deterministic or randomly varying in

an i.i.d. fashion, Theorem 4.4.1 gives us the opportunity to characterize here the detection performance
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under the assumed sparsified time-varying protocol. Namely, it can be shown that the results in Bajovic

et al. (2011) can be extended to the matrix model here to show the following: if the rate of consensus R
in (4.1) satisfies: R ≥ (N − 1)Ctot, where Ctot = Ctot(N, f1, f0) is the exponential decay rate of the error

probability of the best centralized detector (Chernoff information), then distributed detector (4.23) with

sparsified time varying communications as defined in Assumptions 1 and 2 is asymptotically optimal, i.e., it

achieves the best possible error exponent.

We now comment on the achieved result. It is known from Bajovic et al. (2011) that a detector of the

form (4.23) is asymptotically optimal under either deterministic or under an i.i.d. weight matrix model,

provided that R exceeds (N −1)Ctot. Here, we show that asymptotic optimality is still achievable under the

time-varying weight model satisfying Assumption 4.3.2 with slowly increasing node activation probabilities.

This result has, for example, the following implication on improving communication efficiency in distributed

detection: a detector of form (4.23) with the assumed time-varying randomized communication protocol –

wherein the activation probabilities are slowly increasing to unity (and so R = +∞) – is asymptotically

optimal for any value of SNR (any value of Ctot) and is equivalent to the detector with a constant weight

matrix W. Hence, as the detector with the randomized protocol has a lower communication cost while

essentially equivalent performance time-wise, one can expect that it becomes more communication efficient.

We next present a simulation example that confirms such improvements in communication efficiency.

We consider a geometric network with N = 20 sensors. We place the sensors uniformly over a unit square,

and connect those sensors whose distance dij is less than a radius. The total number of (undirected) links

is 63. For the sensors’ measurements, we use the Gaussian distribution f1 ∼ N (m,σ2), f0 ∼ N (0, σ2),

with m = 0.01, and σ2 = 0.2. We consider two different detectors of form (4.23). The first one is the

benchmark for which each link is online at all times. The second detector utilizes at each node i activation

probability pt = 1 − 1/log(t + 2), t = 1, 2, . . .. For the averaging weights of the benchmark, we use for

each link {i, j} a constant weight Wij = 0.1. To compensate for random activations, the second detector

assigns weight 0.1/pt whenever a link is online. Figure 1 (top) plots the simulated Bayes error probability

versus per node communication cost, averaged across nodes and across 20, 000 Monte Carlo algorithm runs.

We can see that the detector with time-varying sparsified communications (solid line) achieves significant

communication savings with respect to the benchmark, while at the same time practically matches the

benchmark’s performance with respect to time (see Figure 1, bottom).

4.6 Contributions

• Large Deviations Characterization for product of doubly stochastic weight matrices: For

product of doubly stochastic weight matrices which are not identically distributed, we characterized

the exponential rate of convergence and quantified the large deviations exponent to be given by the

minimal vertex cut of the baseline graph, where the nodes’ associated cut costs are defined by the

nodes’ limiting activation probabilities.

• Communication Efficient Distributed Detector: We theoretically established that the detector

with time-varying and sparsified protocol can be designed to achieve asymptotic optimality at all

signal-to-noise ratio (SNR) regimes; this is achieved when the activation probabilities converge to

unity, possibly at a very slow rate, e.g., as 1 − Ω(1/log(t)). Therefore, effectively, we constructed a

“universally” asymptotically optimal detector that makes significant communication savings.
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Figure 4.1: Estimated probability of error (in the log scale) versus per node communication cost (top)
and versus time (bottom) for the benchmark detector (blue dotted line) and the detector with sparsifying
communications (red solid line).
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4.7 Conclusion and Future Directions

We have derived the exact large deviations rate for products of a class of non-i.i.d. random stochastic

and symmetric matrices that arise with distributed inference under randomized communication protocols.

We applied the results to consensus+innovations distributed detection to derive universally asymptotically

optimal detectors with significantly reduced communication cost. Future directions involve characterizing

large deviations rate for products of matrices with Markovianity and extending the communication efficient

protocol to composite hypothesis testing.



Part II

Distributed Estimation
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Chapter 5

Communication Efficient Distributed Linear

Estimation: CREDO

5.1 Introduction

Distributed data processing techniques have been increasingly employed to solve problems pertaining to

optimization and statistical inference. With massive computing resources that are available at scale, and

ever growing sizes of data sets, it becomes highly desirable, if not necessary, to distribute the task among

multiple machines or multiple cores. The benefits of splitting the task into smaller subtasks are multi-

pronged, namely, it makes the problem at hand, scalable, parallelized and fast. In the context of distribution

stochastic optimization, several methods (see, for example Zhang et al. (2013b,a); Heinze et al. (2016); Ma

et al. (2015); Recht et al. (2011)) have been proposed which exhibit impressive performance in platforms

such as Mapreduce and Spark. The aforementioned methods, though highly scalable, are designed for

master-worker or similar types of architectures. That is, they require the presence of a master node, i.e.,

a central coordinator which is tasked with splitting the dataset by data points (batches) or by features

among worker nodes and enabling the read/write operations of the iterates of the worker nodes so as to

ensure information fusion across the worker nodes. However, with several emerging applications, master-

worker type architectures may not be feasible or desirable due to physical constraints. Specifically, we

are interested in systems and applications where the entire data is not available at a central/master node,

is sensed in a streaming fashion and is intrinsically distributed across the worker nodes. Such scenarios

arise, e.g., in systems which involve Internet of Things (IoT). For example, a smart campus with sensors

of various kinds, a smart building or monitoring a large scale industrial plant. Therein, a network of large

number of heterogeneous entities (usually, geographically spread) connected in a arbitrary network structure

individually perform sensing for data arriving in a streaming fashion. The sensing devices have limited

communication capabilities owing to on board power constraints and harsh environments. A typical IoT

framework is characterized by a heterogeneous network of entities without a central coordinator, where

entities have localized knowledge and can exchange information among each other through an arbitrary pre-

specified communication graph. Furthermore, the data samples arrive in a streaming fashion. The ad-hoc

nature of the IoT framework necessitates the information exchange in a crafted manner, rather than just

a single or few rounds of communication at the end as in Zhang et al. (2013b,a); Heinze et al. (2016); Ma

et al. (2015).

Distributed algorithms for statistical inference and optimization in the aforementioned frameworks are char-
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acterized by a central coordinator-less recursive procedures, where each entity in the network maintains its

own estimate or optimizer for the problem at hand. Also, due to heterogeneity of the entities and lack of

global model information, the information exchange is limited to the iterates and not the raw data. This

additionally enhances privacy as far as the data samples are concerned. In particular, the diffusion and

consensus+innovations schemes have been extensively used for various distributed inference problems in

the aforementioned frameworks, which include distributed parameter estimation, distributed detection and

multi-task learning, to name a few (see, for example Kar and Moura (2011); Cattivelli and Sayed (2010);

Bajović et al. (2015); Lopes and Sayed (2008); Sahu and Kar (2016); Jakovetic et al. (2011); Chen et al.

(2014)). Other variants of distributed recursive algorithms of such kinds have generated a lot of interest

of lately (see, for example Nedić et al. (2014); Ram et al. (2010a); Braca et al. (2008); Ram et al. (2010b,

2009); Nedic and Ozdaglar (2009)).

An entity or node in an IoT setup is usually equipped with on board communication and computation

units. However, finite battery power calls for frugal communication protocols as the power used in com-

munication tends to beat the power required for on board computation. Thus, communication efficiency

is highly relevant and sought for in such scenarios. The previously studied distributed algorithms men-

tioned above, have the mean square error decay as Θ(C−1
t ), in terms of the communication cost Ct. In

this chapter, we present a distributed recursive algorithm, Communication Efficient REcursive Distributed

EstimatiOn (CREDO) characterized by a frugal communication protocol while guaranteeing provably rea-

sonable performance, which improves the MSE communication rate dependence to Θ
(
C−2+ζ
t

)
. Specifically,

this chapter focuses on the above described class of distributed, recursive algorithms for estimation of an un-

known vector parameter θ, where each worker continuously observes noisy measurements of low-dimensional

linear transformations of θ. For this problem,we improve the communication efficiency of existing distributed

recursive estimation methods primarily in the consensus+innovations and the diffusion frameworks Kar

and Moura (2011); Cattivelli and Sayed (2010); Bajović et al. (2015); Lopes and Sayed (2008); Sahu and

Kar (2016); Jakovetic et al. (2011); Chen et al. (2014), which in turn improves the communication efficiency

of variants such as Nedić et al. (2014); Ram et al. (2010a); Braca et al. (2008); Ram et al. (2010b, 2009);

Nedic and Ozdaglar (2009).

5.1.1 Contributions

Our contributions are as follows:

We propose a scheme, namely CREDO, where each node at time t communicates only with a certain

probability that decays sub linearly to zero in t. That is, communications are increasingly sparse, so that

communication cost scales as Θ(tδ), where the growing rate δ is a tunable parameter strictly less than one

that can go down to 0.5.

We show that, despite significantly lower communication cost, the proposed method achieves the best possible

Θ(1/t) rate of MSE decay in time t (t also equals to per-worker number of data samples). Importantly, this

result translates into significant improvements in the rate at which MSE decays with communication cost Ct –

namely from Θ(1/Ct) with existing methods to Θ(1/C2−ζ
t ) with the proposed method, where ζ > 0 arbitrarily

small.

We further study asymptotic normality and the corresponding asymptotic variance of the proposed method

(that in a sense relates to the constant in the Θ(1/t) MSE decay rate). We characterize and quantify

interesting trade-offs between the communication cost and the asymptotic variance of the method. In

particular, we explicitly quantify the regime (the range of communication cost growing rate δ) where the
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asymptotic variance is network-independent and, at the same time, communication cost is strictly sub

linear (δ < 1). Numerical examples both on synthetic and real data sets confirm the significantly improved

communication efficiency of the proposed method.

A key insight behind CREDO is that it recognizes that inter-node communications can be made (prob-

abilistically) increasingly sparse without sacrificing estimation performance. It is known from stochastic

approximation that the weights that each node assigns to its neighboring nodes can be made to decrease

with time while keeping the estimator strongly consistent. CREDO replaces such a deterministic weight

w(t) (t being time) with a Bernoulli random variable that equals one with probability w(t) < 1. Thus,

CREDO is much cheaper to implement as communication takes place only with probability w(t), with w(t)

decaying to zero. Despite the adaptive weighting being very different, existence of broad regimes of algorithm

parameters are shown where CREDO’s estimation performance matches closely the benchmarks iteration-

wise. However, as CREDO has much fewer communications per iteration, it becomes more communication

efficient.

To achieve the results above, we developed several technical innovations. Specifically, the studied setup re-

quires analysis of mixed time-scale stochastic approximation algorithms with three different time scales. This

setup stands in contrast with the classical single time-scale stochastic approximation, the properties of which

are well known. It is also very different from the more commonly studied two time-scale stochastic approxi-

mation (see, for instance Borkar (2008)) in which a fast process is coupled with a slower dynamical system.

We develop here new technical tools that allow us to handle the case of number of operating time-scales to

be three instead of two as in Kar et al. (2013a) for mixed time-scale stochastic approximation (described in

details later).

5.2 Related Work

We now briefly review the literature on distributed inference and motivate our algorithm CREDO. Dis-

tributed inference algorithms can be broadly divided into two classes. The first class of distributed inference

algorithms proposed in Liu and Ihler (2014); Ma et al. (2015); Ma and Takáč (2015); Heinze et al. (2016);

Zhang et al. (2013b) require a central master node so as to coordinate as far as assigning sub-tasks to the

worker nodes is concerned. There are two reasons as to why such methods do not apply in our setting.

Firstly, in them, in order for the central node to be able to assign sub-tasks, such a setup requires the central

node to have access to the entire dataset. However, in the setup considered in this chapter, where the data

samples are intrinsically distributed among the worker nodes and rather ad-hoc, the presence of a central

master node is highly impractical. Even in the case when the data is distributed among nodes to start with,

the local data samples collected via (3.15) are not sufficient to uniquely reconstruct the global parameter of

interest. In particular, the sensing matrix Hn at an agent n is rank deficient, i.e., rank(Hn) = Mn < M , in

general. We refer to this phenomenon as local unobservability. With communication being the most power

hungry aspect for an ad-hoc sensing entity, communicating raw data back to a central node so as to re-assign

the data among worker nodes is prohibitive. Thus in such an ad-hoc and distributed setup, a communication

protocol should involve information fusion via exchange of the latest estimates among worker nodes enables

each worker node to aggregate information about all the entries of the parameter.

Secondly, they do not apply to the model (3.15) being considered here. For example, if Hn = hI, it re-

duces to the case, where each worker can work independently to obtain a reasonably good estimate of θ

and algorithms such as CoCoA+ (Ma et al. (2015)) and Dual − LOCO (Heinze et al. (2016)) can then

address the problem efficiently through data splitting across samples and features respectively. However,
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if Hn = e>n , where en is the n-th canonical basis vector of RM , a random splitting across samples would

lead to estimates with a high mean square error, while a feature wise splitting is still possible. But, in the

case when, Hn = (en + en−1)
>

, neither sample splitting nor feature splitting is possible and such a setup

necessitates more rounds of communication as opposed to just one round of communication at the end as in

the case of CoCoA+ (Ma et al. (2015)) and Dual − LOCO (Heinze et al. (2016)).

The second class of distributed inference algorithms involve setups, which are characterized by the absence

of a master node. Communication efficient distributed recursive algorithms in the context of distributed

optimization with no central node, where data is available apriori and is not collected in a streaming fashion

has been addressed in Tsianos et al. (2012, 2013); Jakovetic et al. (2016) through increasingly sparse com-

munication, adaptive communication scheme and selective activation of nodes respectively. However, the

explicit characterization of the performance metric for instance MSE, in terms of the communication cost

has not been addressed in the aforementioned references.

The very well studied class of distributed estimation algorithms in the consensus+innovations framework Kar

and Moura (2011); Kar et al. (2013a) characterize the algorithm parameters, under which estimate sequences

optimal in the sense of asymptotic covariance can be obtained. However, the inter-agent message passing

and the associated communication cost is not taken into account in the aforementioned algorithms. The lack

of exploration into the dimension of communication cost in the context of distributed estimation algorithms

in the consensus+innovations framework motivated us to develop a stochastic communication protocol in

this chapter, which exploited the redundancy in inter-agent message passing while not compromising on the

optimality aspect of the estimate sequence. Hence, in order to test the efficacy of our stochastic message-

passing protocol, we take the distributed estimation algorithm proposed in Kar and Moura (2011); Kar

et al. (2013a) as the benchmark.

5.3 Problem Setup: Motivation and Preliminaries

There are N workers deployed in the network. Every worker n at time index t makes a noisy observation

yn(t), a noisy function of θ, where θ ∈ RM . Formally the observation model for the n-th worker is given by,

yn(t) = Hnθ + γn(t), (5.1)

where Hn ∈ RMn×M is the sensing matrix, where Mn < M , {yn(t)} ∈ RMn is the observation sequence for

the n-th worker and {γn(t)} is a zero mean temporally independent and identically distributed (i.i.d.) noise

sequence at the n-th worker with nonsingular covariance Σn, where Σn ∈ RMn×Mn . The noise processes

are independent across different workers. We state an assumption on the noise processes before proceeding

further. The linear observation model assumed here can be extended to nonlinear observation models when

the nonlinear functions are regular and sufficiently smooth.

Assumption 5.3.1. There exists ε1 > 0, such that, for all n, Eθ

[
‖γn(t)‖2+ε1

]
<∞.

The above assumption encompasses a general class of noise distributions in the setup. The heterogeneity of

the setup is exhibited in terms of the sensing matrix and the noise covariances at the worker nodes. Each

worker node is interested in reconstructing the true underlying parameter θ. We assume a worker node

is aware only of its local observation model and hence does not know about the observation matrix and

noise processes of other worker nodes. In this chapter, we are interested in estimators that, at each node n,

continuously produce estimates of θ at each time t, i.e., after each new sample y(t) is acquired.
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5.3.1 Motivation and Related Work

We now briefly review the literature on distributed inference and motivate our algorithm CREDO. Dis-

tributed inference algorithms can be broadly divided into two classes. The first class of distributed inference

algorithms proposed in Liu and Ihler (2014); Ma et al. (2015); Ma and Takáč (2015); Heinze et al. (2016);

Zhang et al. (2013b) require a central master node so as to coordinate as far as assigning sub-tasks to the

worker nodes is concerned. There are two reasons as to why such methods do not apply in our setting.

Firstly, in them, in order for the central node to be able to assign sub-tasks, such a setup requires the central

node to have access to the entire dataset. However, in the setup considered in this chapter, where the data

samples are intrinsically distributed among the worker nodes and rather ad-hoc, the presence of a central

master node is highly impractical. Even in the case when the data is distributed among nodes to start with,

the local data samples collected via (5.1) are not sufficient to uniquely reconstruct the global parameter of

interest. In particular, the sensing matrix Hn at an agent n is rank deficient, i.e., rank(Hn) = Mn < M , in

general. We refer to this phenomenon as local unobservability. With communication being the most power

hungry aspect for an ad-hoc sensing entity, communicating raw data back to a central node so as to re-assign

the data among worker nodes is prohibitive. Thus in such an ad-hoc and distributed setup, a communication

protocol should involve information fusion via exchange of the latest estimates among worker nodes enables

each worker node to aggregate information about all the entries of the parameter.

Secondly, they do not apply to the model (5.1) being considered here. For example, if Hn = hI, it reduces

to the case, where each worker can work independently to obtain a reasonably good estimate of θ and algo-

rithms such as CoCoA+ (Ma et al. (2015)) and Dual − LOCO (Heinze et al. (2016)) can then address the

problem efficiently through data splitting across samples and features respectively. However, if Hn = e>n ,

where en is the n-th canonical basis vector of RM , a random splitting across samples would lead to esti-

mates with a high mean square error, while a feature wise splitting is still possible. But, in the case when,

Hn = (en + en−1)
>

, neither sample splitting nor feature splitting is possible and such a setup necessitates

more rounds of communication as opposed to just one round of communication at the end as in the case of

CoCoA+ (Ma et al. (2015)) and Dual − LOCO (Heinze et al. (2016)).

The second class of distributed inference algorithms involve setups, which are characterized by the absence

of a master node. Communication efficient distributed recursive algorithms in the context of distributed

optimization with no central node, where data is available apriori and is not collected in a streaming fashion

has been addressed in Tsianos et al. (2012, 2013); Jakovetic et al. (2016) through increasingly sparse com-

munication, adaptive communication scheme and selective activation of nodes respectively. However, the

explicit characterization of the performance metric for instance MSE, in terms of the communication cost

has not been addressed in the aforementioned references.

The very well studied class of distributed estimation algorithms in the consensus+innovations framework Kar

and Moura (2011); Kar et al. (2013a) characterize the algorithm parameters, under which estimate sequences

optimal in the sense of asymptotic covariance can be obtained. However, the inter-agent message passing

and the associated communication cost is not taken into account in the aforementioned algorithms. The lack

of exploration into the dimension of communication cost in the context of distributed estimation algorithms

in the consensus+innovations framework motivated us to develop a stochastic communication protocol in

this chapter, which exploited the redundancy in inter-agent message passing while not compromising on the

optimality aspect of the estimate sequence. Hence, in order to test the efficacy of our stochastic message-

passing protocol, we take the distributed estimation algorithm proposed in Kar and Moura (2011); Kar

et al. (2013a) as the benchmark.
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5.4 CREDO: Communication efficient REcursive Distributed estimatiOn

We now present the proposed CREDO estimator. CREDO is based on a specifically handcrafted time

decaying communication rate protocol. Intuitively, we basically exploit the idea that, once the information

flow starts in the graph and a worker node is able to accumulate sufficient information about the parameter

of interest, the need to communicate with its neighboring nodes goes down. Technically speaking, for each

node n, at every time t, we introduce a binary random variable ψn,t, where

ψn,t =

ρt with probability ζt

0 else,
(5.2)

where ψi,t’s are independent both across time and the nodes, i.e., across t and n respectively. The random

variable ψn,t abstracts out the decision of the node n at time t whether to participate in the neighborhood

information exchange or not. We specifically take ρt and ζt of the form

ρt =
ρ0

(t+ 1)ε/2
, ζt =

ζ0
(t+ 1)(τ1/2−ε/2)

, (5.3)

where 0 < ε < τ1 and 0 < τ1 ≤ 1. Furthermore, define βt to be

βt = (ρtζt)
2

=
β0

(t+ 1)τ1
. (5.4)

With the above development in place, we define the random time-varying Laplacian L(t), where L(t) ∈ RN×N

which abstracts the inter-node information exchange as follows:

Li,j(t) =


−ψi,tψj,t {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−
∑
l 6=i ψi,tψl,t i = j.

(5.5)

The above communication protocol allows two nodes to communicate only when the link is established in a bi-

directional fashion and hence avoids directed graphs. The design of the communication protocol as depicted

in (5.2)-(5.5) not only decays the weight assigned to the links over time but also decays the probability of

the existence of a link. Such a design is consistent with frameworks where the working nodes have finite

power and hence not only the number of communications, but also, the quality of the communication decays

over time. We have, for {i, j} ∈ E:

E [Li,j(t)] = − (ρtζt)
2

= −βt = − c3
(t+ 1)τ1

E
[
L2
i,j(t)

]
=
(
ρ2
t ζt
)2

=
c4

(t+ 1)τ1+ε
. (5.6)

Thus, we have that, the variance of Li,j(t) is given by,

Var (Li,j(t)) =
β0ρ

2
0

(t+ 1)τ1+ε
− a2

(t+ 1)2τ1
. (5.7)
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Define, the mean of the random time-varying Laplacian sequence {L(t)} as L(t) = E [L(t)] and L̃(t) =

L(t)− L(t). Note that, E
[
L̃(t)

]
= 0, and

E
[∥∥∥L̃(t)

∥∥∥2
]
≤ N2E

[
L̃2
i,j(t)

]
=

N2β0ρ
2
0

(t+ 1)τ1+ε
− N2a2

(t+ 1)2τ1
, (5.8)

where ‖·‖ denotes the L2 norm. The above equation follows from equivalence of the L2 and Frobenius norms.

We also have that, L(t) = βtL, where

Li,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−
∑
l 6=i Li,l i = j.

(5.9)

We formalize the assumptions on the inter-worker communication graph and global observability.

Assumption 5.4.1. We require the following global observability condition. The matrix G =
∑N
n=1 H>nΣ−1

n Hn

is full rank.

Assumption 5.4.1 is crucial for our distributed setup. This notion of rendering the parameter locally unob-

servable while it being globally observable in the context of distributed inference was introduced in Kar and

Moura (2011), and has been subsequently used in Lalitha et al. (2014); Sahu and Kar (2017). It is to be

noted that such an assumption is needed for even a setup with a centralized node which has access to all

the data samples at each of the worker nodes at each time. Assumption 5.4.1 ensures that if a node could

stack all the data samples together at any time t, it would have sufficient information about the parameter

of interest so as to be able to estimate the parameter of interest without any communication. Hence, the

requirement for this assumption naturally extends to our distributed setup. We formalize an assumption on

the connectivity of the inter-agent communication graph before proceeding further.

Assumption 5.4.2. The inter-agent communication graph is connected on average, i.e., λ2(L) > 0, which

implies λ2(L(t)) > 0, where L(t) denotes the mean of the Laplacian matrix L(t) and λ2 (·) denotes the second

smallest eigenvalue.

Assumption 5.4.2 ensures consistent information flow among the worker nodes. Technically speaking, the

communication graph modeled here as a random undirected graph need not be connected at all times. Hence,

at any given time, only a few of the possible links could be active. The connectedness in average basically

ensures that over time, the information from each worker node in the graph reaches other worker nodes over

time in a symmetric fashion and thus ensuring information flow. It is to be noted that assumption 5.4.2

ensures that L(t) is connected at all times as L(t) = βtL. With the communication protocol established, we

propose an update, where every node n generates an estimate sequence {xn(t)}, where xn(t) ∈ RM in the

following way:

xn(t+ 1) = xn(t)−
∑
l∈Ωn

ψn,tψl,t (xn(t)− xl(t))︸ ︷︷ ︸
Neighborhood Consensus

+ αtH
>
nΣ−1

n (yn(t)−Hnxn(t))︸ ︷︷ ︸
Local Innovation

, (5.10)



CHAPTER 5. COMMUNICATION EFFICIENT DISTRIBUTED LINEAR ESTIMATION: CREDO 72

where Ωn denotes the neighborhood of node n with respect to the network encapsulated by L and αt is the

innovation gain sequence which is given by αt = a/(t + 1). It is to be noted that a node n can send and

receive information in its neighborhood at time t, when ψn,t 6= 0. At the same time, when ψn,t = 0, node n

neither transmits nor receives information. The link between node n and node l gets assigned a weight of

ρ2
t if and only if ψn,t 6= 0 and ψl,t 6= 0.

Remark 5.4.1. The stochastic approximation procedure, employed here is a mixed time-scale stochastic

approximation as opposed to the classical single time-scale stochastic approximation, the properties of which

are well known. Note, the above notion of mixed time-scale is very different from the more commonly studied

two time-scale stochastic approximation (see, for instance Borkar (2008)) in which a fast process is coupled

with a slower dynamical system. More relevant to our study are the mixed time-scale dynamics encountered

in Gelfand and Mitter (1991) and Kar et al. (2013a) in which a single update procedure is influenced by

multiple potentials with different time-decaying weights. However, as opposed to the innovations term being

a martingale difference sequence in the context of mixed time-scale stochastic approximation as proposed

in Gelfand and Mitter (1991), the mixed time-scale stochastic approximation employed in this chapter does

not have an innovation term which is a martingale difference sequence and hence is of sufficient technical

interest. The addition of the residual Laplacian L̃(t) sequence in the update further complicates the update

in the context of this chapter, by making the number of operating time-scales to be three instead of two as in

Kar et al. (2013a) for which we had to develop new technical machinery.

The above update can be written in a compact form as follows:

x(t+ 1) = (INM − L(t)⊗ IM ) x(t)

+ αtGHΣ−1
(
y(t)−G>Hx(t)

)
, (5.11)

where αt = a
t+1 , x(t) = [x>1 (t) x>2 (t) · · ·x>N (t)]>, GH = diag[H>1 ,H

>
2 , · · · ,H>N ], y(t) = [y>1 (t) y>2 (t) · · ·y>N (t)]>

and Σ = diag [Σ1, · · · ,ΣN ].

Remark 5.4.2. The Laplacian sequence that plays a key role in the analysis, takes the form L(t) =

βtL + L̃(t), where L̃(t) the residual Laplacian sequence does not scale with βt owing to the fact that the

communication rate is chosen adaptively makes the analysis significantly different from Kar et al. (2013a).

Thus, unlike Kar et al. (2013a), the Laplacian matrix sequence is not identically distributed; the sequence

of effective Laplacians have a decaying mean, thus adding another time-scale in the already mixed time-scale

dynamics which necessitates the development of new technical tools which lets us prove the order optimal

convergence of the estimate sequence.

We formalize an assumption on the innovation gain sequence {αt} before proceeding further.

Assumption 5.4.3. Let λmin (·) denote the smallest eigenvalue. We require that a satisfies1

amin{λmin (Γ) , λmin
(
L⊗ IM + GHΣ−1G>H

)
, β−1

0 } ≥ 1,

where ⊗ denotes the Kronecker product.

The communication cost per node for the proposed algorithm is given by Ct =
∑t−1
s=0 ζs = Θ

(
t1+(ε−τ1)/2

)
,

which in turn is strictly sub-linear as ε < τ1.

1Note that, Γ and L⊗ IM + GHΣ−1G>H are positive definite matrices.
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5.4.1 Consistency of CREDO

Theorem 5.4.3. Let assumptions 5.3.1-5.4.3 hold and let τ1 in the consensus potential in (5.4) be such that

0 < τ1 ≤ 1. Consider the sequence {xn(t)} generated by (5.10) at each worker n. Then, for each n, we have

Pθ

(
lim
t→∞

xn(t) = θ
)

= 1. (5.12)

In particular, if τ1 satisfies 0 < τ1 ≤ 0.5− (2 + ε1)−1, we have that for all τ ∈ [0, 1/2),

Pθ

(
lim
t→∞

(t+ 1)τ‖xn(t)− θ‖ = 0
)

= 1.

At this point, the estimate sequence generated by CREDO at any worker n is strongly consistent, i.e., xn(t)→
θ almost surely (a.s.) as t→∞. Furthermore, the above characterization for 0 < τ1 ≤ 0.5−(2+ε1)−1 yields

order-optimal convergence, i.e., from results in classical estimation theory, it is known that there exists no

τ ≥ 1/2 such that a estimator {θc(t)} satisfies (t+ 1)τ‖θc(t)−θ‖ → 0 a.s. as t→∞. The proof is relegated

to Appendix D. We now state a main result which establishes the MSE communication rate for the proposed

algorithm CREDO.

Communication Efficiency of CREDO

Theorem 5.4.4. Let the hypothesis of Theorem 5.4.3 hold. Then, we have,

Eθ

[
‖xn(t)− θ‖2

]
= Θ

(
C
− 2
ε−τ1+2

t

)
, (5.13)

where ε < τ1 and is as defined in (5.3).

The version of the CREDO algorithm, with βt = a(t + 1)−1, achieves a communication cost of Ct =

Θ
(
t0.5(1+ε)

)
. Hence, the MSE as a function of Ct in the case of τ1 = 1 is given by MSE = Θ(C−2/(1+ε)

t ).

However, it can be shown from standard arguments in stochastic approximation that updates with βt =

a(t+ 1)−1−δ with δ > 0, though results in a communication cost of Ct = Θ(t0.5(1+ε−δ)), it does not generate

estimate sequences which converge to θ. The proof is relegated to Appendix D.

With the above development in place, we state a result which allows us to benchmark the asymptotic ef-

ficiency of the proposed algorithm and the instantiations of it in terms of τ1. To be specific, the next

result establishes the asymptotic normality of the parameter estimate sequence {xn(t)} and characterizes

the asymptotic covariance of the estimate sequence, while the proof is relegated to Appendix D.

Theorem 5.4.5. Let the hypotheses of Theorem 5.4.3 hold and in addition let 0 < τ1 ≤ 0.5 − (2 + ε1)−1.

Then, we have,

√
t+ 1 (xn(t)− θ)

D
=⇒ N

(
0,
aI

2N
+

(
Γ− I

2a

)−1

4N

)
, (5.14)

where Γ = 1
N

∑N
n=1 H>nΣ−1

n Hn.

The asymptotic covariance as established in (5.14) is independent of the network. Technically speaking,

as long as the averaged Laplacian L is connected, and the consensus and the innovation potentials, i.e.,

βt and αt respectively are chosen appropriately, the asymptotic covariance is independent of the network
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connectivity, i.e., it is independent of the network instantiations across all times and is just a function of

the sensing model parameters and the noise covariance. It is to be noted that the optimal asymptotic

covariance achieved by the oracle estimator is given by NΓ. Such an asymptotic covariance can be achieved

by a distributed setup where every worker node is aware of every other worker node’s sensing model. To be

particular, if a gain matrix G =
∑N
n=1N

−1H>nΣ−1
n Hn is multiplied to the innovation term of the update in

(5.10), the optimal asymptotic covariance is achievable (see, for example Kar et al. (2013a)). However, such

an update would need global model information available at each worker node.

We now discuss the interesting trade-offs between the communication cost and the asymptotic covariance

that follow from Theorem 5.4.5 and some existing results Kar et al. (2012, 2013a) (see Table 5.1). At

this juncture, we consider the setup, where the τ1 in the consensus potential βt in (5.4) is taken to be

1/2− (2 + ε1)−1 ≤ τ1 ≤ 1. We specifically consider the case where τ1 = 1. It has been established in prior

work (see, for example Kar et al. (2012)) that in this case the asymptotic covariance depends on the network

instantiation. To be specific, the averaged Laplacian L which abstracts out the time-averaged information

flow among the worker nodes has a key role in the asymptotic covariance in such a case. However, such a

scheme, i.e., a single time scale variant of the proposed algorithm (in general for 1/2− (2 + ε1)−1 ≤ τ1 ≤ 1)

enjoys a lower communication rate. Technically speaking, for the case when τ1 = 1, the communication rate

is given by Ct = Θ
(
t0.5(1+ε)

)
. Hence, there is an intrinsic trade-off between the communication rate and the

achievable asymptotic variance.

Intuitively, the algorithm exhibits a threshold behavior in terms of the consensus potential τ1. The threshold

behavior is summarized in table 5.1. In the case when, τ1 < 1/2 − 1
2+ε1

, the algorithm achieves a network

Table 5.1: CREDO: Trade-off between Communication cost and Asymptotic Covariance

Trade-Odd Convergence Asymptotic Covariance Comm. Cost.

0 < τ1 <
1
2 −

1
2+ε1

Consistent Network Independent Θ
(
t

3
4 + ε

2

)
1
2 −

1
2+ε1

≤ τ1 ≤ 1 Consistent Network Dependent Θ
(
t

1+ε
2

)
τ1 > 1 Does not converge Diverges Θ (1)

independent asymptotic covariance while ensuring the communication rate to be strictly sub linear. However,

in the case when 1/2 − 1
2+ε1

≤ τ1 ≤ 1, the algorithm has a communication rate which is lower than the

previous regime, but then achieves asymptotic covariance which depends on the network explicitly. Finally,

in the case when τ1 > 1, the algorithm does not even converge to the true underlying parameter.

5.5 Directed CREDO

Till now, with the communication scheme we have forced each instance of the communication graph to be

undirected. Technically speaking, an agent can send or receive information when it is awake. We motivate

a communication scheme next, where we allow each instance of the communication graph to be directed

as long as they are undirected on average. Intuitively speaking, it encapsulates a setup where agents at

each epoch do not receive information from their neighbors, but over time the number of messages sent and

received from neighbors is roughly the same. We present directed CREDO next. For each node n, at every
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time t, we introduce a binary random variable ψn,t, where

ψn,t =

ρt with probability ζt

0 else,
(5.15)

where ψi,t’s are independent both across time and the nodes, i.e., across t and n respectively. The random

variable ψn,t abstracts out the decision of the node n at time t whether to transmit its statistic to the

neighborhood or not. We specifically take ρt and ζt of the form

ρt =
ρ0

(t+ 1)ε
, ζt =

ζ0
(t+ 1)(τ1−ε)

, (5.16)

where 0 < ε < τ1 and 0 < τ1 ≤ 1. Furthermore, define βt to be

βt = ρtζt =
β0

(t+ 1)τ1
. (5.17)

With the above development in place, we define the random time-varying Laplacian L(t), where L(t) ∈ RN×N

which abstracts the inter-node information exchange as follows:

Li,j(t) =


−ψj,t {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E∑
l 6=i ψl,t i = j.

(5.18)

We have, for {i, j} ∈ E:

E [Li,j(t)] = −ρtζt = −βt = − β0

(t+ 1)τ1

E
[
L2
i,j(t)

]
= ρ2

t ζt =
ρ0β0

(t+ 1)τ1+ε
. (5.19)

Thus, we have that, the variance of Li,j(t) is given by,

Var (Li,j(t)) =
β0ρ0

(t+ 1)τ1+ε
− β2

0

(t+ 1)2τ1
. (5.20)

Define, the mean of the random time-varying Laplacian sequence {L(t)} as L(t) = E [L(t)] and L̃(t) =

L(t)− L(t). Note that, in spite of the sequence {L(t)} being a directed graph sequence, L(t) is undirected.

Note that, E
[
L̃(t)

]
= 0, and

E
[∥∥∥L̃(t)

∥∥∥2
]
≤ N2E

[
L̃2
i,j(t)

]
=

N2β0ρ0

(t+ 1)τ1+ε
− N2β2

0

(t+ 1)2τ1
, (5.21)
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where ‖·‖ denotes the L2 norm. The above equation follows from equivalence of the L2 and Frobenius norms.

We also have that, L(t) = βtL, where

Li,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−
∑
l 6=i Li,l i = j.

(5.22)

We formalize the assumption regarding the average connectivity and the undirectedness of the sequence of

the communication graphs.

Assumption 5.5.1. The inter-agent communication graph is connected and undirected on average, i.e.,

λ2(L) > 0, which implies λ2(L(t)) > 0, where L(t) denotes the mean of the Laplacian matrix L(t) and λ2 (·)
denotes the second smallest eigenvalue.

With the communication protocol established, we propose an update, where every node n generates an

estimate sequence {xn(t)}, where xn(t) ∈ RM in the following way:

xn(t+ 1) = xn(t)−
∑
l∈Ωn

ψl,t (xn(t)− xl(t))︸ ︷︷ ︸
Neighborhood Consensus

+ αtH
>
nΣ−1

n (yn(t)−Hnxn(t))︸ ︷︷ ︸
Local Innovation

, (5.23)

where Ωn denotes the neighborhood of node n with respect to the network encapsulated by L and αt is the

innovation gain sequence which is given by αt = a/(t+ 1).

The above update can be written in a compact form as follows:

x(t+ 1) = (INM − L(t)⊗ IM ) x(t)

+ αtGHΣ−1
(
y(t)−G>Hx(t)

)
, (5.24)

where αt = a
t+1 , x(t) = [x>1 (t) x>2 (t) · · ·x>N (t)]>, GH = diag[H>1 ,H

>
2 , · · · ,H>N ], y(t) = [y>1 (t) y>2 (t) · · ·y>N (t)]>

and Σ = diag [Σ1, · · · ,ΣN ].

Lemma 5.5.1. For each n, the process {xn(t)} satisfies

Pθ
(

sup
t≥0
‖x(t)‖ <∞

)
= 1. (5.25)

Proof. We first note that,

L(t) = βtL + L̃(t), (5.26)

where E
[
L̃(t)

]
= 0 and E

[
L̃2
i,j(t)

]
= c4

(t+1)τ1+ε − c23
(t+1)2τ1

.

Define, z(t) = x(t)− 1N ⊗ θ∗ and V (t) = ‖z(t)‖2. By conditional independence, we have that,

E [V (t+ 1)|Ft] = V (t)

+ z>(t)
(
INM − βt

(
L⊗ IM

)
− αtGHΣ−1G>H

)2
z(t)
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+ Eθ∗

[∥∥∥(L̃(t)⊗ IM

)
z(t)

∥∥∥2
]

+ α2(t)Eθ∗

[∥∥GHΣ−1
(
y(t)−G>H1N ⊗ θ∗

)∥∥2
]

− 2z>(t)
(
βt
(
L⊗ IM

)
+ αtGHΣ−1G>H

)
z(t), (5.27)

where the filtration {Ft} may be taken to be the natural filtration generated by the random observations,

the random Laplacians i.e.,

Ft = σ

({
{yn(s)}Nn=1 , {L(s)}

}t−1

s=0

)
, (5.28)

which is the σ-algebra induced by the observation processes. For t ≥ t1, it can be shown that,

z>(t)
(
INM − βt

(
L⊗ IM

)
− αtGHΣ−1G>H

)2
z(t)

≤ (1− c4αt)2 ‖z(t)‖2 . (5.29)

Note, that L̃(t) is row stochastic and hence
(
L̃(t)⊗ IM

)
z(t) = zC⊥(t).

Eθ∗

[∥∥∥(L̃(t)⊗ IM

)
z(t)

∥∥∥2
]
≤ c5 ‖zC⊥(t)‖2

(t+ 1)τ1+ε
(5.30)

We use the following inequalities so as to analyze the recursion in (5.27).

Eθ∗

[∥∥GHΣ−1
(
y(t)−G>H1N ⊗ θ∗

)∥∥2
]
≤ c6

z>(t)
(
βt
(
L⊗ IM

)
+ αtGHΣ−1G>H

)
z(t)

≥ βtλ2

(
L
)
‖zC⊥(t)‖2 + c7αt ‖z(t)‖2 . (5.31)

Using the inequalities derived in (5.31), we have,

E [V (t+ 1)|Ft] ≤ (1 + c8α
2(t))V (t)

− c9
(
βt −

c5
(t+ 1)τ1+ε

)
‖zC⊥(t)‖2 + c6α

2(t). (5.32)

As c5
(t+1)τ1+ε goes to zero faster than βt, ∃t2 such that ∀t ≥ t2, βt ≥ c5

(t+1)τ1+ε . By the above construction we

obtain ∀t ≥ t2,

Eθ∗ [V (t+ 1)|Ft] ≤ (1 + α2(t))V (t) + α̂2
t , (5.33)

where α̂(t) =
√
c6αt. The product

∏∞
s=t(1 + α2

s) exists for all t. Now let {W (t)} be such that

W (t) =

( ∞∏
s=t

(1 + α2
s)

)
V2(t) +

∞∑
s=t

α̂2
s, ∀t ≥ t2. (5.34)

By (5.34), it can be shown that {W (t)} satisfies,

Eθ∗ [W (t+ 1)|Ft] ≤W (t). (5.35)
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Hence, {W (t)} is a non-negative super martingale and converges a.s. to a bounded random variable W ∗ as

t → ∞. It then follows from (C.163) that V (t) → W ∗ as t → ∞. Thus, we conclude that the sequences

{xn(t)} are bounded for all n.

Lemma 5.5.2. Let the hypothesis of Lemma 5.5.1 hold. Then, we have,

Pθ

(
lim
t→∞

xn(t) = θ
)

= 1. (5.36)

Proof of Lemma 5.5.2. Following as in the proof of Lemma 5.5.1, for t large enough

Eθ[V (t+ 1)|Ft] ≤
(
1− 2c4αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (5.37)

as for t large enough, −2c4αt+ c7α
2
t < 0. Now, consider the {Ft}-adapted process {V1(t)} defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c8

∞∑
s=t

(t+ 1)−2, (5.38)

for appropriately chosen positive constant c8.Since, {(t+ 1)−2} is summable, the process {V1(t)} is bounded

from above. Moreover, it also follows that {V1(t)}t≥t1 is a supermartingale and hence converges a.s. to a

finite random variable. By definition from (5.38), we also have that {V (t)} converges to a non-negative finite

random variable V ∗. Finally, from (5.37), we have that,

Eθ[V (t+ 1)] ≤ (1− c7αt)Eθ[V (t)] + c9(t+ 1)−2, (5.39)

for t ≥ t1. The sequence {V (t)} then falls under the purview of Lemma C.3.1, and we have Eθ[V (t)]→ 0 as

t → ∞. Finally, by Fatou’s Lemma, where we use the non-negativity of the sequence {V (t)}, we conclude

that

0 ≤ Eθ[V ∗] ≤ lim inf
t→∞

Eθ[V (t)] = 0, (5.40)

which thus implies that V ∗ = 0 a.s. Hence, ‖z(t)‖ → 0 as t→∞ and the desired assertion follows.

Theorem 5.5.3. Let the hypothesis of Theorem 5.5.1 hold. Then, we have,

Eθ

[
‖xn(t)− θ‖2

]
= Θ

(
C
− 1
ε−τ1+1

t

)
, (5.41)

where ε < τ1 and is as defined in (5.3).

It is to be noted that, in particular if τ1 = 1, we have that Eθ

[
‖xn(t)− θ‖2

]
= Θ

(
C−

1
ε

t

)
for all ε > 0.

Proof of Theorem 5.5.3. Proceeding as in proof of Lemma 5.5.2, we have, for t large enough

Eθ[V (t+ 1)|Ft] ≤
(
1− 2c4αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (5.42)
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as for t large enough, −c4αt + c7α
2
t < 0. Before proceeding further, we note that, from (5.29),

x>
(
βt
(
L⊗ IM

)
+ αtGHΣ−1G>H

)
x

= αtx
>
(
βt
αt

(
L⊗ IM

)
+ GHΣ−1G>H

)
x

≥ αtx>
(
(L⊗ IM ) + GHΣ−1G>H

)
x ≥ c4αt, (5.43)

where

c4 = λmin

((
L⊗ IM

)
+ GHΣ−1G>H

)
. (5.44)

Thus, we have that

∥∥INM − βt (L⊗ IM
)
− αtGHΣ−1G>H

∥∥ ≤ 1− c4αt, (5.45)

for all t ≥ t1, where t1 is chosen to be appropriately large. Now, consider the {Ft}-adapted process {V1(t)}
defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c8

∞∑
s=t

(t+ 1)−2, (5.46)

for appropriately chosen positive constant c8.Since, {(t+ 1)−2} is summable, the process {V1(t)} is bounded

from above. Moreover, it also follows that {V1(t)}t≥t1 is a supermartingale and hence converges a.s. to a

finite random variable. By definition from (5.38), we also have that {V (t)} converges to a non-negative finite

random variable V ∗. Finally, from (5.42), we have that,

Eθ[V (t+ 1)] ≤ (1− c4αt)Eθ[V (t)] + c8(t+ 1)−2

⇒ Eθ[V (t+ 1)] ≤ (1− c4αt)Eθ[V (t)] + c10αt(t+ 1)−1 (5.47)

for t ≥ t1. The summability of {αt} in conjunction with assumption ?? ensures that the sequence {V (t)}
then falls under the purview of Lemma C.1.3, and we have

lim sup
t→∞

(t+ 1)Eθ[V (t+ 1)] <∞

⇒ Eθ[V (t)] = O

(
1

t

)
. (5.48)

It is to be noted that the communication cost Ct for the proposed CREDO algorithm, is given by Ct =

Θ
(
t1+ε−τ1

)
and thus the assertion follows.

5.6 Simulation Results

This section corroborates our theoretical findings through simulation examples and demonstrates on both

synthetic and real data sets communication efficiency of CREDO. Subsection 5.6.1 considers synthetic data,

while Subsection 5.6.2 presents simulation results on real data sets.
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5.6.1 Synthetic Data

Specifically, we compare the proposed communication-efficient distributed estimator, CREDO, with the

benchmark distributed recursive estimator which utilizes all inter-neighbor communications at all times,

i.e., has a linear communication cost. The example demonstrates that the proposed communication-efficient

estimator matches the MSE rate of the benchmark estimator. The simulation also shows that the proposed

estimator improves the MSE communication rate with respect to the benchmark. The simulation setup is

as follows. We consider three instances of undirected graphs with N = 20 nodes, with relative degrees2

of nodes slated at 0.3736, 0.5157 and 0.6578. The graphs were generated as connected graph instances

of the random geometric graph model with radius r =
√

ln(N)/N . We set M = 10 and Mn = 1, for all

n = 1, ..., N ; i.e., the unknown parameter θ ∈ R10, while each node makes a scalar observation at each time t.

The noises γn(t) are Gaussian and are i.i.d. both in time and across nodes and have the covariance matrix

equal to 0.25× I. The sampling matrices Hn’s are chosen to be 2-sparse, i.e., every nodes observes a linear

combination of two arbitrary entries of the vector parameter. The non-zero entries of the Hn’s are sampled

from a standard normal distribution. The sampling matrices Hn’s at the same time satisfy Assumption 5.4.1.

The parameters of the benchmark and the proposed estimator are as follows. The benchmark estimator’s

consensus weight is set to 0.1(t + 1)−0.49. With the proposed estimator, we study the first two regimes as

illustrated in Table 5.1,i.e., 0 < τ1 <
1
2 and 1

2 ≤ τ1 ≤ 1. For the second regime, we study two different

cases. We set ρt = 0.1(t + 1)−0.01 for both the regimes. We set ζt = (t + 1)−0.235, ζt = (t + 1)−0.315 and

ζt = (t+ 1)−0.49 for the above mentioned first and two cases of the second regime respectively; that is, with

the proposed estimator, we set ε = 0.01, τ1 = 0.49, ε = 0.01, τ1 = 0.65 and ε = 0.01, τ1 = 1 for the first and

two cases of the second regime respectively. Note that the Laplacian matrix associated with the benchmark

estimator and the expected Laplacian matrix associated with the proposed estimator, CREDO are equal in

each of the three generated networks, i.e., L = L. With all the three estimators, the innovation weight is

set to αt = (3.68(t+ 20))−1. Note that all the theoretical results hold unchanged for the “time-shifted” αt

used here. The purpose of the shift in the innovation potential is to avoid large innovation weights in the

initial iterations. As a performance metric, we use the relative MSE estimate averaged across nodes:

1

N

N∑
n=1

‖xn(t)− θ‖2

‖xn(0)− θ‖2
,

further averaged across 50 independent runs of the three estimators. Here, xn(0) is node n’s initial estimate.

With both estimators, at each run, at all nodes, we set xn(0) = 0. Figure 5.1 plots the estimated relative

MSE versus time t in log-log scale for the three networks. From figure 5.1, we can see that the MSE

decay of the proposed estimator coincides with that of the benchmark estimator, especially in the τ1 = 0.49

regime across all the three networks, inspite of having lower communication costs. CREDO with τ1 = 0.65

and τ1 = 1, has higher convergence constants3 with respect to the MSE decay rates as compared to the

benchmark estimator, though with far lower communication costs. We can also see that, for network 1 and

network 2, with relative degree slated at 0.3136 and 0.5157 respectively, the MSE in the case of τ1 = 0.65

and τ1 = 1 shifts further away from the MSE curve of network 3 and thus illustrating the network dependent

convergence constant in the regime 1/2 ≤ τ1 ≤ 1. At the same time, from Figure 5.1 it can be seen that

with τ1 = 0.49, the convergence is practically independent of the network similar to the convergence of

2Relative degree is the ratio of the number of links in the graph to the number of possible links in the graph.
3It basically points to the fact that, though the MSE in all the cases have a t−1 scaling, but the variance of the τ1 = 0.65

and τ1 = 1 case involves bigger constants and thus larger variance.
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the benchmark estimator, as predicted by Theorem 5.4.5. Figure 5.2 plots the estimated relative MSE

versus average per-node communication cost Ct. We can see that the proposed scheme has an improved

communication rate with respect to the benchmark, as predicted by the theory. In spite of higher convergence

constants with respect to the MSE decay rates, in the case of τ1 = 0.65 and τ1 = 1, the MSE decay rate in

terms of the communication cost is still faster than the benchmark estimator. Also, in the case of τ1 = 0.49,

there is a close to 10× reduction in the communication cost for the same achievable relative MSE of 0.005

as compared to the benchmark estimator. Figure 5.2, illustrates the trade-off between the MSE decay rate

and the communication cost, there in, the lowest communication cost enjoyed by CREDO results in higher

convergence constant with respect to the MSE decay, while the lowest convergence constant with respect to

the MSE decay rate enjoyed by the benchmark estimator results in the highest communication cost.

Figure 5.1: Comparison of the proposed and benchmark estimators in terms of relative MSE: Number of
Iterations. The solid lines represent the benchmark, the three different colors indicate the three different
networks, while the three regimes are represented by the dotted lines.
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Figure 5.2: Comparison of the proposed and benchmark estimators in terms of relative MSE: Communication
cost per node. The solid lines represent the benchmark, the three different colors indicate the three different
networks, while the three regimes are represented by the dotted lines.

5.6.2 Real Datasets

In order to evaluate the performance of CREDO, we ran experiments on three real-world datasets, namely

cadata (Lib), Abalone (Lichman (2013)) and bank (Del).

For the cadata dataset (20640 data points, 8 features), we divided the samples into 20 equal parts of 900

data points each, after keeping 2640 data points as the test set. For the 20 node network, we constructed

a random geometric graph. For the Abalone dataset (4177 data points, 8 features), we divided the samples

into 10 equal parts of 360 points each, after keeping 577 data points as the test set. For the 10 node

network, we constructed a random geometric graph. For the bank dataset (8192 data points, 9 features),

we divided the samples into 20 equal parts equal parts of 350 points each, after keeping 1192 data points

as the test set. For the 20 node network, we constructed a random geometric graph. We added Gaussian

noise to the dependent variables, i.e., housing price, the age of Abalone and fraction of rejecting customers

respectively. The training datasets, with respect to the sensing model (5.1), have dynamic regressors (a

regressor here corresponds to a feature vector of one data point), i.e, time-varying Hn’s for each agent n.

Thus, we perform a pre-processing step where we average the training data points’ regressors at each node

to obtain an averaged Hn, which is then subsequently used at every iteration t in the update (5.10). For

each experiment (each dataset), a consistency check is done by ensuring that
∑
n=1 H

>
nΣ−1

n Hn is invertible

and thus global observability holds. As the number of data points at each node are the same, we sample

along iterations t data points at each node without replacement, and thus the total number of iterations t

we run the algorithms equals the number of data points at each node. In other words, the algorithm passes

through each data point exactly once. We summarize the comparison of the number of communications

needed by directed and undirected CREDO and the benchmark algorithm at the test error obtained after

the total number of iterations in Table 5.2. In particular, the test errors obtained in the cadata, abalone

and the bank dataset are 0.015, 0.03 and 0.007 of the initial test error, respectively. In figures 5.3, 5.4 and

5.5, we plot the evolution of the test error for each of the datasets as a function of the number of iterations
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Figure 5.3: CADATA Dataset: Comparison of the CREDO and benchmark estimators
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Figure 5.4: Abalone Dataset: Comparison of the CREDO and benchmark estimators

and the communication cost. It can be seen that while undirected CREDO matches the final test error of

that of the benchmark algorithm, it requires on average thrice as less number of communications. Directed

CREDO reduces the number of communications even further by reducing the number of communications by

three times while maintaining the same test error.

Note that the theoretical setup rigorously establishes results pertaining to observation models with static

regressors, i.e., static sensing matrices. However, the simulations on the real world datasets show that in spite

of the time-varying regressors, the algorithm continues to demonstrate its improved communication efficiency

over the benchmark. Moreover, as the sampling at each node is without replacement, the transients as far

the performance is concerned can be improved by making the weight sequences decay after a few iterations

instead of every iteration. Such a decay, while ensuring that the algorithm requirements are satisfied, would

ensure for faster assimilation of new data points.
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Figure 5.5: Bank Dataset: Comparison of the CREDO and benchmark estimators

Table 5.2: CREDO: Communication cost across three datasets

Dataset Test Error Network size Directed CREDO Undirected CREDO Benchmark

CADATA 2.15 20 86 261 722
ABALONE 0.95 10 61 192 558
BANK 0.015 20 98 252 696

5.7 Summary of Contributions

• Improved MSE-Communication Rate Tradeoff: We show that, despite significantly lower com-

munication cost, CREDO achieves the best possible O(1/t) rate of MSE decay in time t (t also equals to

per-worker number of data samples). Importantly, this result translates into significant improvements

in the rate at which MSE decays with communication cost Ct – namely from O(1/Ct) with existing

methods to O(1/C2−ζ
t ) with the proposed method, where ζ > 0 arbitrarily small. With the directed

CREDO development, we demonstrate that the MSE communication cost dependence can be further

improved to O(1/C−1/ζ
t ). In particular, the algorithm CREDO points to the fact that several commu-

nications in typical distributed estimation setup are redundant and there is no loss in the convergence

rate when such redundant communications are dropped.

• Three time-scale stochastic approximation: To achieve the results above, we developed several

technical innovations. Specifically, the studied setup requires analysis of mixed time-scale stochastic

approximation algorithms with three different time scales. This setup stands in contrast with the

classical single time-scale stochastic approximation, the properties of which are well known. It is

also very different from the more commonly studied two time-scale stochastic approximation (see, for

instance Borkar (2008)) in which a fast process is coupled with a slower dynamical system. We develop

here new technical tools that allow us to handle the case of number of operating time-scales to be three

instead of two as in Kar et al. (2013a) for mixed time-scale stochastic approximation.

5.8 Conclusion and Future Directions

In this chapter, we have proposed a communication efficient distributed recursive estimation schemes CREDO,

for which we established strong consistency of the estimation sequence and characterized the asymptotic co-
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variance of the estimate sequence in terms of the sensing model and the noise covariance. The communication

efficiency of CREDO was characterized in terms of the dependence of the MSE on the communication cost.

To be specific, we have established that the MSE of CREDO can be as good as Θ
(
C−2+ζ
t

)
, where ζ > 0 and

ζ is arbitrarily small. Future research directions include the development of communication schemes, which

are adaptive in terms of the connectivity of a node, and local decision making in terms of whether to commu-

nicate or not based on neighborhood information. The algorithm presented in this chapter can be thought of

as a distributed method to solve a stochastic optimization problem with a stochastic least squares-type cost

function. A natural direction is hence to extend the proposed ideas to stochastic distributed optimization.



Chapter 6

Distributed Weighted Non-linear Least

Squares: CIWNLS

6.1 Introduction

The chapter focuses on distributed nonlinear least squares estimation in distributed information settings.

Each agent in the network senses sequentially over time independent and identically distributed (i.i.d) time-

series that are (nonlinear) functions of the underlying vector parameter of interest corrupted by noise. To be

specific, we are interested in the design of recursive estimation algorithms to estimate a vector parameter of

interest that are consistent and order-optimal in the sense of pathwise convergence rate and such that their

asymptotic error covariances are comparable with that of the centralized weighted nonlinear least squares

estimator1. The estimation algorithms we design are recursive – they process the agents’ observations

at all times as and when they are sensed, rather than batch processing. This contrasts with centralized

setups, where a fusion center has access to all the observations across different agents at all times, i.e.,

the inter-agent communication topology is all-to-all or all-to-one. Centralized estimators are burdened by

high communication overheads, synchronization issues, and high energy requirements. Moreover, there is

the requirement of global model information, i.e., the fusion center requiring information about the local

models of all agents. All these make centralized estimation algorithms difficult to implement in multi-agent

distributed setups of the type considered in this chapter, motivating us to revisit the problem of distributed

sequential parameter estimation. To accommodate energy constraints in many practical networked and

wireless settings, the inter-agent collaboration is limited to a pre-assigned possibly sparse communication

graph. Moreover, due to limited computation and storage capabilities of individual agents in a typical

multi-agent networked setting, we restrict to scenarios where individual agents are only aware of their

local model information; hence, we allow for heterogeneity among agents, with different agents possibly

having different local sensing models and noise statistics. This chapter proposes a distributed recursive

algorithm, namely, the CIWNLS (Consensus + innovations Weighted Nonlinear Least Squares), which is

of the consensus + innovations form Kar et al. (2012). We specifically focus on a setting in which the

agents make i.i.d observations sequentially over time, only possess local model information, and update

their parameter estimates by simultaneous assimilation of the information obtained from their neighboring

agents (consensus) and current locally sensed information (innovation). This justifies the name CIWNLS,

1A centralized estimator has access to all agent data at all times and has sufficient computing ability to implement the
classical weighted nonlinear least squares estimator Jennrich (1969); Wu (1981) at all times.

86
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which is a distributed weighted nonlinear least squares (WNLS) type algorithm of the consensus+innovations

form. To replicate practical sensing environments accurately, we model the underlying vector parameter as

a static parameter, that takes values in a parameter set Θ ⊆ RM (possibly a strict subset of RM ). The

dimension M is possibly large, but the observation of any agent n is Mn dimensional with typically Mn �M

in most applications; this renders the parameter locally unobservable at each agent. The key assumptions

concerning the sensing functions in this chapter are required to hold only on the parameter set Θ and not on

the entire space2 RM . The distributed sequential estimation approach of the consensus + innovations form

that we present accomplishes the following:

Consistency under global observability: We assume global observability3 and certain monotonicity

properties of the multi-agent sensing model, as well as the connectedness of the inter-agent communication

graph. We show that our recursive distributed estimator generates parameter estimate sequences that are

strongly consistent at each agent. Global observability is a minimal requirement for consistency; in fact, it

is necessary for consistency of centralized estimators as well.

Optimal pathwise convergence rate4: We show that the proposed distributed estimation algorithm

CIWNLS yields order-optimal pathwise convergence rate under certain smoothness conditions on the sens-

ing model. These conditions are standard in the recursive estimation literature and we require them to hold

only on the parameter set Θ. Even though recursive, our distributed estimation approach guarantees that

the parameter estimates are feasible at all times, i.e., they belong to the parameter set Θ. Further, the

parameter estimates at each local agent n are as good as the optimal centralized estimator as far as pathwise

convergence rate is concerned. The key point to note here is that, for the above order optimality to hold we

need to only assume that the inter-agent communication graph is connected irrespective of how sparse the

link realizations are.

Asymptotic Normality: Under standard smoothness conditions on the sensing model, the proposed

distributed estimation algorithm CIWNLS is shown to yield asymptotically normal5 parameter estimate

sequences. Distributed estimation does pay a price. The asymptotic covariance of the proposed distributed

estimator is not as efficient as that of the centralized estimator; nonetheless, it shows the benefits of inter-

agent collaboration. In absence of inter-agent collaboration, the parameter of interest most likely is unob-

servable at each individual agent, and hence non-collaborative or purely decentralized procedures will lead

to divergence under the usual asymptotic normality scaling at the individual network agents.

6.2 Related Work

Distributed inference approaches addressing problems related to distributed estimation, parallel computing,

and optimization in multi-agent environments through interacting stochastic gradient and stochastic approx-

imation algorithms have been developed extensively in the literature –see, for example, early work Tsitsiklis

(1984); Tsitsiklis et al. (1986); Bertsekas et al. (1984); Kushner and Yin (1987). Existing distributed estima-

2By taking the parameter set Θ = RM , the unconstrained parameter estimation problem can be addressed, and thus the
setup in this chapter enables a richer class of formulations.

3Global observability corresponds to the centralized setting, where an estimator has access to the observations of all sensors
at all times. The assumption of global observability does not mean that each sensor is observable; rather, if there was a
centralized estimator with simultaneous access to all the sensor measurements, this centralized estimator would be able to
reasonably estimate the underlying parameter. A more precise definition is provided later in Assumption 6.3.2.

4By optimal pathwise convergence rate, we mean the pathwise convergence rate of the centralized estimator to the true
underlying parameter with noisy observations.

5An estimate sequence is asymptotically normal if its
√
t scaled error process, i.e., the difference between the sequence and

the true parameter converges in distribution to a normal random variable, where t refers to (discrete) time or equivalently the
number of sampling epochs.
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tion schemes in the literature can be broadly divided into three classes. The first class includes architectures

that are characterized by the presence of a fusion center (see, for example Aysal and Barner (2008); Luo

(2005)) that receives the estimates or local measurements or their quantized versions from the network

agents and performs estimation. The second class involves single snapshot data collection (see, for ex-

ample Das and Mesbahi (2006); Schizas et al. (2008c)) followed by distributed consensus or optimization

protocols to fuse the initial estimates. In contrast to these classes, the third class involves agents making

observations sequentially over time and where inter-agent communication, limited to arbitrary pre-assigned

possibly sparse topologies, occurs at the same rate as sensing (see, for example Braca et al. (2010, 2008);

Kar et al. (2012); Lopes and Sayed (2008)). Two representative schemes from the third class are consen-

sus+innovations type Kar et al. (2012); Kar and Moura (2008a) and diffusion type algorithms Lopes and

Sayed (2008); Chen and Sayed (2012); Matta et al. (2016); Cattivelli and Sayed (2011b, 2010). Broadly

speaking, these algorithms simultaneously assimilate a single round of neighborhood information, consensus

like in Bertsekas et al. (1984); Olfati-Saber et al. (2007); Dimakis et al. (2010); Jadbabaie et al. (2003), with

the locally sensed latest information, the local innovation; see for example consensus+innovation approaches

for nonlinear distributed estimation Kar et al. (2012, 2013b) and detection Bajovic et al. (2011); Jakovetic

et al. (2012); Sahu and Kar (2017). A key difference between the diffusion algorithms discussed above and

the consensus+innovations algorithms presented in this chapter is the nature of the innovation gains (the

new information fusion weights). In the diffusion framework, the innovation gains are taken to be constant,

whereas, in the consensus+innovations schemes these are made to decay over time in a controlled fashion.

The constant innovation gains in the diffusion approaches facilitate adaptation in dynamic parameter envi-

ronments, but at the same time lead to non-zero residual estimation error at the agents (see, for example,

Lopes and Sayed (2008)), whereas the time-varying innovation weights in the consensus+innovations ap-

proach ensure consistent parameter estimates at the agents. In Kar and Moura (2014), strong consistency of

the parameter estimate sequence is established, and it is shown that the proposed algorithm is asymptotically

efficient, i.e., its asymptotic covariance is the same as that of the optimal centralized estimator. However, in

Kar and Moura (2014), the smoothness assumptions on the sensing functions need to hold on the entire pa-

rameter space, i.e., RM . In contrast, we consider here a setup where the parameter belongs to a constrained

set and the smoothness conditions on the sensing functions need to hold only on the constrained parameter

set; this allows the algorithm proposed in this chapter, namely CIWNLS, to be applicable to other types

of application scenarios. Moreover, in Kar and Moura (2014) the problem setup needs more detailed knowl-

edge of the statistics of the noise processes involved, as it aims to obtain asymptotically efficient (in that

the agent estimates are asymptotically normal with covariance equal to the inverse of the associated Fisher

information rate) estimates for general statistical exponential families. In particular, to achieve asymptotic

efficiency, Kar and Moura (2014) develops a consensus+innovations type distributed recursive variant of

the maximum likelihood estimator (MLE) that requires knowledge of the detailed observation statistics. In

contrast, in this chapter, our setup only needs knowledge of the noise covariances and the sensing functions.

Technically speaking, for additive noisy observation models, the weighted nonlinear squares estimation, the

distributed version of which is proposed in this chapter, applies to fairly generic estimation scenarios, i.e.,

where observation noise statistics are unknown.

6.3 Sensing Model and Preliminaries

Let θ ∈ Θ (to be specified shortly) be an M -dimensional (vector) parameter that is to be estimated by a

network of N agents. We specifically consider a discrete time system. Each agent n at time t makes a noisy



CHAPTER 6. DISTRIBUTED WEIGHTED NON-LINEAR LEAST SQUARES: CIWNLS 89

observation yn(t) that is a noisy function (nonlinear) of the parameter. Formally, the observation model for

the n-th agent is given by

yn(t) = fn(θ) + ζn(t), (6.1)

where fn(·) is, in general, a non-linear function, {yn(t)} is a RMn-valued observation sequence for the n-th

agent and for each n, {ζn(t)} is a zero-mean temporally independent and identically distributed (i.i.d.) noise

sequence with nonsingular covariance matrix Rn, such that, ζn(t) is Ft+1-adapted and independent of Ft.
In typical application scenarios, the observation at each agent is low-dimensional, i.e., Mn �M , and usually

a function of only a subset of the M components of θ, i.e., agent n observes a function of Kn components

of θ with Kn �M , which most likely entails that the parameter of interest θ is locally unobservable at the

individual agents. Hence, to achieve a reasonable estimate of the parameter θ, it is necessary for the agents

to collaborate through inter-agent message passing schemes.

Since, the sources of randomness in our formulation are the observations yn(t)’s by the agents, the filtration

{Ft} may be taken to be the natural filtration generated by the random observations, i.e.,

Ft = σ

({
{yn(s)}Nn=1

}t−1

s=0

)
, (6.2)

which is the σ-algebra induced by the observation processes.

To motivate our distributed estimation approach (presented in Section 6.4) and benchmark its performance

with respect to the optimal centralized estimator, we now review some concepts from centralized estimation

theory.

Centralized weighted nonlinear least-squares (WNLS) estimation. Consider a network of agents

where a hypothetical fusion center has access to the observations made by all the agents at all times and then

conducts the estimation scheme. In such scenarios, one of the most widely used estimation approaches is

the weighted nonlinear least squares (WNLS) (see, for example, Jennrich (1969)). The WNLS is applicable

to fairly generic estimation scenarios, for instance, even when the observation noise statistics are unknown,

which precludes other classical estimation approaches such as the maximum likelihood estimation. We

discuss below some useful theoretical properties of WNLS like, in case the observation noise is Gaussian, it

coincides with the (asymptotically) efficient maximum likelihood estimator. To formalize, for each t, define

the cost function

Qt (z) =

t∑
s=0

N∑
n=1

(yn(s)− fn(z))
>

R−1
n (yn(s)− fn(z)) , (6.3)

where Rn denotes the positive definite covariance of the measurement noise ζn(t). The WNLS estimate θ̂t

of θ at each time t is obtained by minimizing the cost functional Qt(·),

θ̂t ∈ argmin
z∈Θ
Qt(z). (6.4)

Under rather weak assumptions on the sensing model (stated below), the existence and asymptotic behavior

of WNLS estimates have been analyzed in the literature.

Assumption 6.3.1. The set Θ is a closed convex subset of RM with non-empty interior int(Θ) and the true

(but unknown) parameter θ ∈ int(Θ).
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Assumption 6.3.2. The sensing model is globally observable, i.e., any pair θ, θ́ of possible parameter

instances in Θ satisfies
N∑
n=1

∥∥∥fn(θ)− fn(θ́)
∥∥∥2

= 0 (6.5)

if and only if θ = θ́.

Assumption 6.3.3. The sensing function fn(.) for each n is continuously differentiable in the interior

int(Θ) of the set Θ. For each θ in the set Θ, the matrix Γθ that is given by

Γθ =
1

N

N∑
n=1

∇fn (θ) R−1
n ∇f>n (θ) , (6.6)

where ∇f denotes the gradient of f(·), is invertible.

Smoothness conditions on the sensing functions, such as the one imposed by assumption 6.3.3 is common in

the literature addressing statistical inference algorithms in non-linear settings. Note that the matrix Γθ is

well defined at the true value of the parameter θ as θ ∈ int(Θ) and the continuous differentiability of the

sensing functions hold for all θ ∈ int(Θ).

Assumption 6.3.4. There exists ε1 > 0, such that, for all n, Eθ

[
‖ζn(t)‖2+ε1

]
<∞.

The following classical result characterizes the asymptotic properties of (centralized) WNLS estimators.

Proposition 6.3.1. (Jennrich (1969)) Let the parameter set Θ be compact and the sensing function fn(·) be

continuous on Θ for each n. Then, a WNLS estimator of θ exists, i.e., there exists an {Ft}-adapted process

{θ̂t} such that

θ̂t ∈ argminz∈ΘQt(z), ∀t. (6.7)

Moreover, if the model is globally observable, i.e., Assumption 6.3.2 holds, the WNLS estimate sequence {θ̂t}
is consistent, i.e.,

Pθ

(
lim
t→∞

θ̂t = θ
)

= 1. (6.8)

Additionally, if Assumption 6.3.3 holds, the parameter estimate sequence is asymptotically normal, i.e.,

√
t+ 1

(
θ̂t − θ

)
D

=⇒ N (0,Σc) , (6.9)

where

Σc = (NΓθ)
−1
, (6.10)

Γθ is as given by (6.6) and
D

=⇒ refers to convergence in distribution (weak convergence).

The WNLS estimator, apart from needing a fusion center that has access to the observations across all agents

at all times, also incorporates a batch data processing as implemented in (6.4). To mitigate the enormous

communication overhead incurred in (6.4), much work in the literature has focused on the development
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of sequential albeit centralized estimators that process the observations y(t) across agents in a recursive

manner. Under additional smoothness assumptions on the local observation functions fn(·)’s, recursive

centralized estimators of the stochastic approximation type have been developed by several authors, see, for

example, Sakrison (1965); Has’minskij (1974); Pfanzagl (1973); Stone (1975); Fabian (1978). Such centralized

estimators require a fusion center that process the observed data in batch mode or recursive form. The fusion

center receives the entire set of agents’ observations, {yn(t)}, n = 1, 2, 3, · · · , N, at all times t. Moreover,

both in the batch and the recursive processing form, the fusion center needs global model information in the

form of the local observation functions fn(·)’s and the observation noise statistics, i.e., the noise covariances

Rn’s across all agents. In contrast, this chapter develops collaborative distributed estimators of θ at each

agent n of the network, where each agent n has access to its local sensed data yn(t) only and local model

information, i.e., its own local sensing function fn(·) and noise covariance Rn. To mitigate the communication

overhead, we present distributed message passing schemes in which agents, instead of forwarding raw data

to a fusion center, participate in a collaborative iterative process to estimate the underlying parameter

θ. The agents also maintain a copy of their local parameter estimate that is updated by simultaneously

processing local parameter estimates from their neighbors and the latest sensed information. To obtain

a good parameter estimate with such localized communication, we propose a distributed estimator that

incorporates neighborhood information mixing and local data processing simultaneously (at the same rate).

Such estimators are referred to as consensus + innovations estimators, see Kar et al. (2012), for example.

Example: Distributed Static Phase Estimation in Smart Grids

Many applications within cyber physical systems and internet of things can be modeled as non-linear dis-

tributed estimation problems of type (1). Such class of models arises, e.g., with state estimation in power

systems; therein, a phasorial representation of voltages and currents is usually utilized, wherein non-linearity

in general emerges from power-flow equations. Here, we focus on the specific problem within the class, namely

distributed static phase estimation in smart grids. We describe the model briefly and refer to, e.g., Ilic’ and

Zaborszky (2000); Kar et al. (2012) for more details. Here, graph G corresponds to a power grid network

of n = 1, ..., N generators and loads (here a single generator or a single load is a node in the graph), while

the edge set E corresponds to the set of transmission lines or interconnections. (For simplicity, even though

not necessary, we assume that the physical interconnection network matches the inter-node communication

network.) Assume that G is connected. The state of a node n is described by (Vn, φn), where Vn is the

voltage magnitude and φn is the phase angle. As commonly assumed, e.g., Ilic’ and Zaborszky (2000), we

let the voltages Vn be known constants; on the other hand, angles φn are unknown ant are to be estimated.

Following a standard approximation path, the real power flow across the transmission line between nodes n

and l can be expressed as, e.g., Ilic’ and Zaborszky (2000):

Pnl(φ) = Vn Vl bnl sin(φnl), (6.11)

where φ is the vector that collects the unknown phase angles φn across all nodes, bnl is line (n, l)’s admittance,

and φnl = φn − φl. Denote by Em ⊂ E the set of lines equipped with power flow measuring devices. The

power flow measurement at line (n, l) is then given by:

ynl(t) = Pnl(φ) + γnl(t) = Vn Vl bnl sin(φnl) + γnl(t), (6.12)

where {γnl(t)} is the zero mean i.i.d. measurement noise with finite moment E[|γnl(t)|2+ε1 ], for some

ε1 > 0. Assume that each measurement ynl(t) is assigned to one of its incident nodes n or l. Further,
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let Ω′n denote the set of all indexes l such that measurements ynl(t) are available at node n. Then, it

becomes clear that the angle estimation problem is a special case of model (1), with the measurement

vectors yn(t) = [ynl(t), l ∈ Ω′n]>, n = 1, ..., N , noise vectors γn(t) = [γnl(t), l ∈ Ω′n]>, n = 1, ..., N , and

sensing functions fn(φ) = [Vn Vl bnl sin(φnl), l ∈ Ω′n]>. n = 1, ..., N . It can be shown that under reasonable

assumptions on noise angle ranges (that correspond to the admissible parameter set Θ) and the smart grid

network and admittances structure, the assumptions we make on the sensing model are satisfied,6 and hence

CREDO −NL can be effectively applied; we refer to Ilic’ and Zaborszky (2000); Kar et al. (2012) for details.

6.4 A Distributed Estimator : CIWNLS

We state formally assumptions pertaining to the inter-agent communication and additional smoothness con-

ditions on the sensing functions required in the distributed setting.

Assumption 6.4.1. The inter-agent communication graph is connected, i.e., λ2(L) > 0, where L denotes

the associated graph Laplacian matrix.

Assumption 6.4.2. For each n, the sensing function fn(·) is Lipschitz continuous on Θ, i.e., for each agent

n, there exists a constant kn > 0 such that

‖fn (θ)− fn (θ∗)‖ ≤ kn ‖θ − θ∗‖ , (6.13)

for all θ,θ∗ ∈ Θ.

Distributed algorithm. In the proposed implementation, each agent n updates at each time t its estimate

sequence {xn(t)} and an auxiliary sequence {x̂n(t)} using a two-step collaborative procedure; specifically,

1) x̂n(t) is updated by a consensus+innovations rule and, subsequently, 2) a local projection to the feasible

parameter set Θ updates xn(t). Formally, the overall update rule at an agent n corresponds to

x̂n(t+ 1) = xn(t)− βt
∑
l∈Ωn

(xn(t)− xl(t))︸ ︷︷ ︸
neighborhood consensus

− αt (∇fn(xn(t))) R−1
n (fn(xn(t))− yn(t))︸ ︷︷ ︸

local innovation

(6.14)

and

xn(t+ 1) = PΘ[x̂n(t+ 1)], (6.15)

where : Ωn is the communication neighborhood of agent n (determined by the Laplacian L); ∇fn(·) is the

gradient of fn, which is a matrix of dimension M×Mn, with the (i, j)-th entry given by
∂[fn(xn(t))]j
∂[xn(t)]i

; PΘ[·]
the projection operator corresponding to projecting7 on Θ; and {βt} and {αt} are consensus and innovation

6To see this, note that the dependence of the measurements on the state is through sinusoidal functions, which are everywhere
differentiable and thus the gradient of f(·) within the domain Θ exists everywhere. Moreover, as the derivatives of sin(·) and
cos(·) are bounded, the norm of gradient is bounded in the example considered to motivate the formulation. Finally, regarding
assumption 6.3.2, it can be shown that the assumption is satisfied if: (1) graph G is connected; (2) the set of admissible phase
angle values, i.e., the parameter constraint set Θ, is chosen appropriately; (3) the real power flow between nodes n and l is
non-zero if and only if there exists a physical transmission line connecting the nodes; and (4) voltage magnitude Vn 6= 0, for all
nodes n. Please see Proposition 27 in Kar et al. (2012).

7The projection on Θ is unique under assumption 6.3.1.
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weight sequences given by

βt =
b

(t+ 1)δ1
, αt =

a

t+ 1
, (6.16)

where a, b > 0, 0 < δ1 < 1/2− 1/(2 + ε1) and ε1 was defined in Assumption 6.3.4.

The update in (6.14) can be written in a compact manner as follows:

x̂(t+ 1) = x(t)− βt (L⊗ IM ) x(t)

+ αtG(x(t))R−1 (y(t)− f (x(t))) , (6.17)

where: x(t)> = [x1(t)> · · ·xN (t)>]; x̂(t)> = [x̂1(t)> · · · x̂N (t)>], f(x(t)) =
[
f1(x1(t))> · · · fN (xN (t))>

]>
;

R−1 = diag
[
R−1

1 , · · · ,R−1
N

]
; and G (x(t)) = diag [∇f1 (x1(t)) , · · · ,∇fN (xN (t))]. We refer to the parameter

estimate update in (6.15) and the projection in (6.16) as the CIWNLS (Consensus + innovations Weighted

Nonlinear Least Squares) algorithm.

Remark 6.4.1. The parameter update is recursive and distributed in nature and hence is an online al-

gorithm. Moreover, the projection step in (6.15) ensures that the parameter estimate sequence {xn(t)} is

feasible and belongs to the parameter set Θ at all times t.

Methods for analyzing the convergence of distributed stochastic algorithms of the form (6.14)-(6.17) and

variants were developed in Kar et al. (2012); Kar and Moura (2011); Kar et al. (2013a); Kar and Moura

(2014). The key is to obtain conditions that ensure the existence of appropriate stochastic Lyapunov func-

tions. To enable this, we propose a condition on the sensing functions (standard in the literature of general

recursive procedures) that guarantees the existence of such Lyapunov functions and, hence, the convergence

of the distributed estimation procedure.

Assumption 6.4.3. The following aggregate strict monotonicity condition holds: there exists a constant

c1 > 0 such that for each pair θ, θ́ in Θ we have that

N∑
n=1

(
θ − θ́

)>
(∇fn(θ)) R−1

n

(
fn(θ)− fn(θ́)

)
≥ c1

∥∥∥θ − θ́∥∥∥2

. (6.18)

We assume that the noise covariances are known apriori. However, in scenarios where the noise covariances

are not known apriori, in order to verify Assumption 6.4.3, only the gradient ∇fn (·) needs to be computed.

In case of unknown noise distribution, i.e., unknown noise covariance, the first few observations can be used

to estimate the noise covariance so as to get a reasonable estimate of the inverse noise covariance. The

estimated noise covariance can then be used to verify the assumption.

Remark 6.4.2. We comment on the Assumption 6.3.1-6.4.3. Assumptions 6.3.1-6.3.4 are classical with

respect to the WNLS convergence. Assumption 6.4.2 specifies some smoothness conditions of the non-linear

sensing functions. The smoothness conditions aid in establishing the consistency of the recursive CIWNLS
algorithm. The classical WNLS is usually posed in a non-recursive manner, while the distributed algorithm

we propose is recursive and hence, to ensure convergence we need Lyapunov type conditions, which in turn

is specified by Assumption 6.4.3. Moreover, Assumptions 6.4.2-6.4.3 are only sufficient conditions. The key

assumptions to establish our main results, Assumptions 6.3.1, 6.3.2, 6.4.2, and 6.4.3 are required to hold

only in the parameter set Θ and need not hold globally in the entire space RM . This allows our approach
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to apply to very general nonlinear sensing functions. For example, for functions of the trigonometric type

(see Section 2.8 for an illustration), properties such as the strict monotonicity condition in 6.4.3 hold in the

fundamental period, but not globally. As another specific instance, if the fn(·)’s are linear8, condition (6.5) in

Assumption 6.3.2, reduces to
∑N
n=1 F>nR−1

n Fn being full rank (and hence positive definite). The monotonicity

condition in Assumption 6.4.3 in this context coincides with Assumption 6.3.2, i.e., it is trivially satisfied

by the positive definiteness of the matrix
∑N
n=1 F>nR−1

n Fn. Asymptotically efficient distributed parameter

estimation schemes for the general linear model have been developed in Kar and Moura (2011); Kar et al.

(2013a).

6.5 Main Results: CIWNLS

This section states the main results, while the proofs are relegated to Appendix E. The first concerns the

consistency of the estimate sequence in the CIWNLS algorithm.

Theorem 6.5.1. Let assumptions 6.3.1-6.3.2 and 6.3.4-6.4.3 hold. Furthermore, assume that the constant

a in (6.16) satisfies

ac1 ≥ 1, (6.19)

where c1 is defined in Assumption 6.4.3. Consider the sequence {xn(t)} generated by (6.15)-(6.16) at each

agent n. Then, for each n, we have

Pθ

(
lim
t→∞

(t+ 1)τ‖xn(t)− θ‖ = 0
)

= 1 (6.20)

for all τ ∈ [0, 1/2). In particular, the estimate sequence generated by the distributed algorithm (6.14)-(6.17)

at any agent n is consistent, i.e., xn(t)→ θ a.s. as t→∞.

At this point, we note that the convergence in Theorem 6.5.1 is order-optimal, in that standard arguments in

(centralized) estimation theory show that in general there exists no τ ≥ 1/2 such that a centralized WNLS

estimator {θ̂t} satisfies (t+ 1)τ‖θ̂t − θ‖ → 0 a.s. as t→∞.

The next result establishes the asymptotic normality of the parameter estimate sequence {xn(t)} and char-

acterizes the asymptotic covariance of the proposed CIWNLS estimator. This can be benchmarked with

the asymptotic covariance of the centralized WNLS estimator.

Theorem 6.5.2. Let the assumptions 6.3.1-6.4.3 hold. Assume that in addition to assumption 6.3.1, the

parameter set Θ is a bounded set. Furthermore, let a defined in (6.16) satisfy

a > max

{
1

c1
,

1

2 infθ∈Θ Λθ,min

}
, (6.21)

where c1 is defined in Assumption 6.4.3, Λθ and Λθ,min denote respectively the diagonal matrix of eigenvalues

and the minimum eigenvalue of Γθ, with Γθ defined in (6.6). Then, for each n, the parameter estimate

sequence at agent n, {xn(t)}, under Pθ satisfies the following asymptotic normality condition,

√
t+ 1 (xn(t)− θ)

D
=⇒ N (0,Σd) , (6.22)

8To be specific, fn (θ) is then given by Fnθ, where Fn is the sensing matrix with dimensions Mn ×M .
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where

Σd =
aI

2N
+

(
NΓθ − NI

2a

)−1

4
, (6.23)

and
D

=⇒ refers to convergence in distribution (weak convergence).

As the parameter set Θ is a bounded set in Theorem 6.5.2, in addition to being a closed set as in Assumption

6.3.1, we have that Θ is compact and hence infθ∈Θ Λθ,min = minθ∈Θ Λθ,min, i.e., the infimum is attained.

Moreover, from Assumption 6.3.3, we have that the matrix Γθ is invertible ∀θ ∈ Θ and hence infθ∈Θ Λθ,min >

0. Further, under the assumption that a > 1
2 infθ∈Θ Λθ,min

, the difference of the asymptotic covariance of the

distributed estimator and that of the centralized estimator, i.e., the matrix aI
2N +

(Γθ− I
2a )
−1

4N − (NΓθ)
−1

, is

positive semidefinite. The above claim can be established by comparing the i-th eigenvalue of the asymptotic

covariance of the distributed estimator with that of the centralized estimator, as both the covariance matrices

are simultaneously diagonalizable, i.e., have the same set of eigenvectors. To be specific,

a2Λ2
θ,ii − 2aΛθ,ii + 1 ≥ 0

⇒ 1

Λθ,ii
≤ a2Λθ,ii

2aΛθ,ii − 1

⇒ 1

NΛθ,ii
≤ a2Λθ,ii

2aNΛθ,ii −N
, (6.24)

which holds for all i = 1, 2, · · · , N .

We now benchmark the asymptotic covariance of the proposed estimator CIWNLS with that of the optimal

centralized estimator. From Assumption 6.4.2, we have for all θ ∈ Θ

‖Γθ‖ ≤ max
n=1,··· ,N

k2
n

∥∥R−1
n

∥∥ = k∗max, (6.25)

where kn is defined in Assumption 6.4.2. Moreover, from the hypotheses of Theorem 6.5.2 we have that

Λθ,min >
1
2a , for all θ ∈ Θ. Thus, we have the following characterization of the eigenvalues for the matrix

Γθ for all θ ∈ Θ,

1

2a
< Λθ,ii ≤ k∗max, (6.26)

for all i. The difference of the i-th eigenvalue of the asymptotic covariance of the distributed estimator and

the centralized estimator Λd,i, is given by Λd,i =
(aΛθ,ii−1)2

NΛθ,ii(2aΛθ,ii−1) . Now, we consider two cases. Specifically,

if the condition

k∗max > max

{
1

c1
,

1

2 infθ∈Θ Λθ,min

}
, (6.27)

is satisfied, then a can be chosen to be a < 1/k∗min, and then we have,

1

2a
< Λθ,ii ≤

1

a
. (6.28)

It is to be noted that the function h(x) = (ax−1)2

Nx(2ax−1) is non-increasing in the interval
(

1
2a ,

1
a

)
. Hence, we
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have that

‖Σd −Σc‖ =
(aΛθ,min − 1)

2

NΛθ,min (2aΛθ,min − 1)
, (6.29)

where,

max

{
1

c1
,

1

2 infθ∈Θ Λθ,min

}
< a <

1

k∗max

. (6.30)

In the case, when the condition in (6.27) is violated, we have that,

‖Σd −Σc‖

= max

{
(aΛθ,min − 1)

2

NΛθ,min (2aΛθ,min − 1)
,

(aΛθ,max − 1)
2

NΛθ,max (2aΛθ,max − 1)

}

≤ max

{
(aΛθ,min − 1)

2

NΛθ,min (2aΛθ,min − 1)
,

(ak∗max − 1)
2

Nk∗max (2ak∗max − 1)

}
, (6.31)

where Λθ,max denotes the largest eigenvalue of Γθ. Note that the proposition in (6.31) is equivalent to

(6.29), when the condition in (6.27) is satisfied. Hence, for all feasible choices of a, which are in turn given

by (6.21), the characterization in (6.31) holds.

The above mentioned findings can be precisely stated in the form of the following corollary:

Corollary 6.5.3. Let the hypothesis of Theorem 6.5.2 hold. Then, we have,

‖Σd −Σc‖

≤ max

{
(aΛθ,min − 1)

2

NΛθ,min (2aΛθ,min − 1)
,

(ak∗max − 1)
2

Nk∗max (2ak∗max − 1)

}
, (6.32)

where Σd and Σc are defined in (6.23) and (6.10), respectively.

Furthermore, as noted above that the difference of the asymptotic covariance of the distributed estimator

and that of the centralized estimator is positive semi-definite. (This is intuitively expected, as a distributed

procedure may not outperform a well-designed centralized procedure.) The inefficiency of the distributed

estimator with respect to the centralized WNLS estimator, as far as the asymptotic covariance is concerned,

is due to the use of suboptimal innovation gains (see, for example (6.14)) used in the parameter estimate

update. An optimal innovation gain sequence would require the knowledge of the global model information,

i.e., the sensing functions and the noise covariances across all the agents. (See Remark 4.3 below for a

detailed discussion.) Though the distributed estimation scheme is suboptimal with respect to the centralized

estimator as far as the asymptotic covariance is concerned, its performance is significantly better than the

non-collaborative case, i.e., in which agents perform estimation in a fully decentralized or isolated manner.

In particular, since the agent sensing models are likely to be locally unobservable for θ, the asymptotic

covariances in the non-collaborative scenario may diverge due to non-degeneracy.

Remark 6.5.4. In this context, we briefly review the methodology adopted in Kar and Moura (2014) to

achieve asymptotically efficient distributed estimators for general standard statistical exponential families.

The asymptotic efficiency of the estimator proposed in Kar and Moura (2014) is a result of a certainty-
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equivalence type distributed optimal gain sequence generated through an auxiliary consistent parameter esti-

mate sequence (see, for example Section III.A. in Kar and Moura (2014)). The generation of the auxiliary

estimate sequence comes at the cost of more communication and computation complexity as two other parallel

recursions run in addition to the parameter estimate recursion. To be specific, the adaptive gain refinement,

which is the key for achieving asymptotic efficiency, involves communication of the gain matrices that belong

to the space RM×M . Moreover, in a setting like the one considered in this chapter, where the parameter

belongs to a closed convex subset Θ ∈ RM , the parameter estimate at all times provided by the algorithm in

Kar and Moura (2014) might not be feasible. In contrast, the communication and computation complexity

in CIWNLS is significantly lower than that of the algorithm proposed in Kar and Moura (2014). The price

paid by CIWNLS is the lower asymptotic performance as measured in terms of the asymptotic covariance

as we discuss next.

We compare the computational and communication overhead of CIWNLS and of the algorithm in Kar and

Moura (2014). For simplicity, we consider a d-regular communication graph with every agent connected to d

other agents. We compute the computation and communication overhead agent wise. In one sampling epoch,

an agent in CIWNLS communicates M -dimensional parameter estimates to its neighbors, i.e., the communi-

cation overhead is Md. In the algorithm proposed in Kar and Moura (2014) (see, (8)-(11) in Section III.A),

an agent not only communicates its auxiliary and optimal parameter estimates but also its gain matrix, to its

neighbors, with the communication overhead 2Md+M2d. With respect to the computational overhead, in

every sampling epoch the number of computations in CIWNLS at agent n is given by O (MnM +M(d+ 1)).

The maximum computational overhead across all agents is thus given by maxn=1,··· ,N O (MnM +M(d+ 1)).

In comparison, the number of computations at any agent in the algorithm proposed in Kar and Moura (2014)

is given by O
(
M3 + 2M2(d+ 1) + 2M(d+ 1)

)
. Thus, the communication and computational complexity of

the proposed algorithm is much lower than that of the algorithm proposed in Kar and Moura (2014), at the

cost of suboptimal asymptotic estimation error covariances.

6.6 Communication Efficient CIWNLS: CREDO −NL

Following along the lines of the sparsifying communication protocol proposed in Chapter 4, we propose a

communication efficient version of the algorithm CIWNLS. In particular, following the notation as in 4,

we propose an update, where every node n generates an estimate sequence {xn(t)}, where xn(t) ∈ RM in

the following way:

x̂n(t+ 1) = xn(t)− βt
∑
l∈Ωn

ψn,tψl,t (xn(t)− xl(t))︸ ︷︷ ︸
neighborhood consensus

− αt (∇fn(xn(t))) R−1
n (fn(xn(t))− yn(t))︸ ︷︷ ︸

local innovation

(6.33)

and

xn(t+ 1) = PΘ[x̂n(t+ 1)], (6.34)

where Ωn denotes the neighborhood of node n with respect to the network represented by L, αt is the

innovation gain sequence which is given by αt = α0/(t + 1), α0 > 0, and PΘ[·] the projection operator

corresponding to projecting on Θ. The random variable ψn,t determines the activation state of a node n.

By activation we mean, if ψn,t 6= 0 then node n can send and receive information in its neighborhood at
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time t. However, when ψn,t = 0, node n neither transmits nor receives information. The link between node

n and node l gets assigned a weight of ρ2
t if and only if ψn,t 6= 0 and ψl,t 6= 0.

The update in (6.33) can be written in a compact manner as follows:

x̂(t+ 1) = x(t)− (L(t)⊗ IM ) x(t)

+ αtG(x(t))R−1 (y(t)− f (x(t))) . (6.35)

Here, ⊗ denotes the Kronecker product, and:

x(t)> = [x1(t)> · · ·xN (t)>]

x̂(t)> = [x̂1(t)> · · · x̂N (t)>]

f(x(t)) =
[
f1(x1(t))> · · · fN (xN (t))>

]>
R−1 = diag

[
R−1

1 , · · · ,R−1
N

]
G (x(t)) = diag [∇f1 (x1(t)) , · · · ,∇fN (xN (t))] .

We refer to the parameter estimate update in (6.33) and the projection in (6.34) in conjunction with the

randomized communication protocol as the CREDO −NL algorithm.

6.7 Main Results: CREDO −NL

In this section, we present the main results of the proposed algorithm CREDO −NL, while the proofs are

relegated to Appendix E.

Theorem 6.7.1. Let assumptions 6.3.1-6.3.2 and 6.3.4-6.4.3 hold. Consider the sequence {xn(t)} generated

by algorithm (6.33) at each agent n, with the parameters set to ρt = ρ0

(t+1)ε/2
, ζt = ζ0

(t+1)(1/2−ε/2) , and

αt = α0/(t+ 1), where ρ0, ζ0, α0 are arbitrary positive numbers. Then, for each n, we have

Pθ

(
lim
t→∞

xn(t) = θ
)

= 1. (6.36)

Theorem 6.7.1 verifies that the estimate sequence generated by CREDO −NL at any agent n is strongly

consistent, i.e., xn(t)→ θ almost surely (a.s.) as t→∞.

We now state a main result which establishes the MSE communication rate for the proposed algorithm

CREDO −NL.

Theorem 6.7.2. Let the hypothesis of Theorem 6.7.1 hold. Then, we have,

E
[
‖xn(t)− θ‖2

]
= Θ

(
1

t

)
. (6.37)

Furthermore, we have:

E
[
‖xn(t)− θ‖2

]
= Θ

(
C−

2
ε+1

t

)
, (6.38)

where 0 < ε < 1 and is as defined in (5.3).
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Figure 6.1: CIWNLS: Network Deployment of 10 agents

Remark 6.7.3. Observe that CREDO −NL algorithm, with βt = β0 (t + 1)−1 has communication cost of

Ct = Θ
(
t0.5(1+ε)

)
. From this, we can see that MSE as a function of Ct is given by MSE = Θ(C−2/(1+ε)

t ). Of

course, with βt that decays faster than 1/t, communication cost reduces further. However, it can be shown

that in this case the algorithm no longer produces good estimates. Namely, from standard arguments in

stochastic approximation, it can be shown that for βt = β0 (t+1)−1−δ, with δ > 0, CREDO −NL’s estimate

sequence may not converge to θ.

6.8 Simulations

6.8.1 CIWNLS

We generate a random geometric network of 10 agents, shown in Figure 2.1. The x coordinates and the y

coordinates of the agents are sampled from a uniform distribution on the interval [0, 1]. We link two vertices

by an edge if the distance between them is less than or equal to g = 0.4. We go on re-iterating this procedure

until we get a connected graph. We choose the parameter set Θ to be Θ =
[
−π4 ,

π
4

]5 ∈ R5. This choice of Θ

conforms with Assumption 6.3.1. The sensing functions are chosen to be certain trigonometric functions as

described below. The underlying parameter is 5 dimensional, θ = [θ1, θ2, θ3, θ4, θ5]. The sensing functions

across different agents are given by, f1(θ) = sin(θ1 + θ2), f2(θ) = sin(θ3 + θ2), f3(θ) = sin(θ3 + θ4), f4(θ) =

sin(θ4 + θ5), f5(θ) = sin(θ1 + θ5), f6(θ) = sin(θ1 + θ3), f7(θ) = sin(θ4 + θ2), f8(θ) = sin(θ3 + θ5), f9(θ) =

sin(θ1 + θ4) and f10(θ) = sin(θ1 + θ5). Clearly, the local sensing models are unobservable, but collectively

they are globally observable since, in the parameter set Θ under consideration, sin(·) is one-to-one and the set

of linear combinations of the θ components corresponding to the arguments of the sin(·)’s constitute a full-

rank system for θ. Hence, the sensing model conforms to Assumption 6.3.2. The agents make noisy scalar

observations where the observation noise process is Gaussian and the noise covariance is given by R = 2I10.

The true (but unknown) value of the parameter is taken to be θ = [π/6, − π/7, π/12, − π/5, π/16]. It is

readily verified that this sensing model and the parameter set Θ =
[
−π4 ,

π
4

]5
satisfy Assumptions 6.3.4-6.4.3.

The projection operator PΘ onto the set Θ defined in (6.15) is given by,

[xn(t)]i =


π
4 [x̂n(t)]i ≥ π

4

[x̂n(t)]i
−π
4 < [x̂n(t)]i <

π
4

−π
4 [x̂n(t)]i <

−π
4 ,

(6.39)

for all i = 1, · · · ,M .

The sensing model is motivated by distributed static phase estimation in smartgrids. For a more complete
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Figure 6.2: CIWNLS: Convergence of normalized estimation error at each agent
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Figure 6.3: CIWNLS: Asymptotic variance at each agent

treatment of the classical problem of static phase estimation in power grids, we direct the reader to Ilic’

and Zaborszky (2000). Coming back to the current context, to be specific, the physical grid can be modeled

as a network with the loads and generators being the nodes (vertices), while the transmission lines being

the edges, and the sensing model reflects the power flow equations. The goal of distributed static phase

estimation is to estimate the vector of phases from line flow data. The interested reader is directed to

Section IV.D of Kar et al. (2012) for a detailed treatment of distributed static phase estimation.

We carry out 250 Monte-Carlo simulations for analyzing the convergence of the parameter estimates and

their asymptotic covariances. The estimates are initialized to be 0, i.e., xn(0) = 0 for n = 1, · · · , 5. The

normalized error for the n-th agent at time t is given by the quantity ‖xn(t)− θ‖ /5. Figure 6.2 shows the

normalized error at every agent against the time index t. We compare it with the normalized error of the

centralized estimator in Figure 2.2. We note that the errors converge to zero as established in Theorem

6.7.1. The decrease in error is rapid in the beginning and slows down with increasing t; this is a consequence

of the decreasing weight sequences {αt} and {βt}. Finally, in Fig. 6.3 we compare the asymptotic variances
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of our scheme and that of the centralized WNLS estimator. For the distributed estimator CIWNLS and

for each n, Fig. 6.3 plots the quantities (t + 1) ‖xn(t)− θ‖2 averaged over the Monte-Carlo trials. By

Theorem 4.2, this quantity is expected to converge to the trace of the asymptotic covariance Σd of the

CIWNLS, i.e., tr(Σd), the same for all n. We also simulate the centralized WNLS and plot the scaled

error (t + 1)
∥∥∥θ̂(t)− θ

∥∥∥2

averaged over the Monte-Carlo trials. Similarly, from Proposition 6.3.1 we have

that Eθ

[
(t+ 1)

∥∥∥θ̂(t)− θ
∥∥∥2
]
→ tr (Σc). In this simulation setup, tr (Σc) and tr (Σd) are evaluated to be

3.6361 and 5.4517, respectively, a loss of about 1.76 dB. From the simulation experiment conducted above,

the experimental values of tr (Σc) and tr (Σd) are found to be 3.9554 and 5.6790 respectively.

6.8.2 CREDO −NL

This section corroborates our theoretical findings through simulation examples and demonstrates the com-

munication efficiency of CREDO −NL.

Specifically, we compare the proposed communication efficient distributed estimator, CREDO −NL, with

the benchmark distributed recursive estimator in (6.14) and the diffusion algorithm as in Towfic et al. (2016)9,

which both utilize all inter-neighbor communications at all times, i.e., they have a linear communication

cost. The example demonstrates that the proposed communication efficient estimator has a similar MSE

iteration-wise rate as the two benchmark estimators. The simulation also shows that the proposed estimator

improves the MSE communication rate with respect to the two benchmarks.

The parameters of the two benchmarks and of the proposed estimator are as follows. The benchmark

estimator in (6.14) has the consensus weight set to 0.48(t + 1)−1. For the proposed estimator, we set

ρt = 0.45(t + 1)−0.01 and ζt = (t + 1)−0.49. The step size sequence for the benchmark estimator proposed

in Towfic et al. (2016) is set to µt = (0.3(t+ 20))−1. It is to be noted that the Laplacian matrix considered

for the benchmark estimator and the expected Laplacian matrix for the proposed estimator, CREDO −NL
are equal, i.e., L = L. The innovation weight is set to αt = (0.3(t+ 20))−1. It is to be noted that with the

time shifted innovation potential, the theoretical results continue to hold. As a performance metric, we use

the relative MSE estimate averaged across nodes:

1

N

N∑
n=1

‖xn(t)− θ‖2

‖xn(0)− θ‖2
,

further averaged across 100 independent runs of the estimators. In the above equation, xn(0) refers to the

initial estimates at each node, which is set as xn(0) = 0. Figure 6.4 plots the relative MSE decay in terms of

the number of iterations or the number of samples. It can be seen that the MSE decay of the two benchmark

estimators and the MSE decay of the proposed estimator CREDO −NL are very similar with respect to the

iteration count. Figure 6.5 plots the MSE decay of the three estimators in terms of the communication cost

per node. It can be seen for example that, at a relative MSE level of 10−1, the proposed estimator requires

20x and 18x less communications as compared to the estimator in (6.14) and the algorithm in Towfic et al.

9 Applied to our setting and in our notation, the diffusion method as in Towfic et al. (2016) takes the following form:

x′n(t+ 1) = xn(t)− µt (∇fn(xn(t))) R−1
n (fn(xn(t))− yn(t))

xn(t+ 1) =
∑

l∈Ωn∪{n}
aln x′l(t+ 1).

Here, xn(t) is the solution estimate at agent n, x′n(t) is an auxiliary sequence at agent n, µt is the step-size, and the aln’s are
combination weights that constitute together a N ×N column-stochastic matrix.
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(2016). One can also notice a faster MSE decay in terms of the communication cost for CREDO −NL as

compared to the benchmark (6.14), thus confirming our theory.
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Figure 6.4: Comparison of the proposed and benchmark estimators in terms of relative MSE: Number of
Iterations. The light blue line represents the CIWNLS algorithm, the dark blue line represents the
diffusion based algorithm proposed in Towfic et al. (2016) and the red line represents the proposed

estimator.
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Figure 6.5: Comparison of the proposed and benchmark estimators in terms of relative MSE:
Communication Cost Per Node. The light blue line represents the CIWNLS algorithm, the dark blue line

represents the diffusion based algorithm proposed in Towfic et al. (2016) and the red line represents the
proposed estimator.

Discussion

In the context of existing work on non-linear distributed methods, e.g., Kar and Moura (2014); Sahu et al.

(2016); Jennrich (1969); Ram et al. (2010a,b, 2009); Nedic and Ozdaglar (2009). this chapter contributes by

developing a method with a strictly faster communication rate of Θ(1/C2−ζ
t )(ζ > 0 arbitrarily small) with

respect to existing Θ(1/Ct) rates. Further, with respect to existing works that develop methods designed to

achieve communication efficiency, e.g., Tsianos et al. (2012, 2013); Jakovetic et al. (2016); Lan et al. (2017);

Wang et al. (2016), we develop here a different scheme with randomized increasingly sparse communications.

Finally, this chapter is a continuation of works Sahu et al. (2018e,a) but, in contrast with Sahu et al.

(2018e,a), it considers non-linear observation models. It would be interesting to apply the proposed method

on real data sets, e.g., in the context of IoT or power systems applications, in addition to synthetic data

tests considered here.
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6.9 Summary of Contributions

• Asymptotic characterization of WNLS: We show the intrinsic trade-off between communication

and optimality. In particular, by restricting the exchange of model information among the agents, by not

exchanging gain matrices as in Kar and Moura (2014), we quantify the loss in the estimation accuracy in

terms of the asymptotic covariance. Distributed estimation does pay a price. The asymptotic covariance

of the proposed distributed estimator is not as efficient as that of the centralized estimator; nonetheless,

it shows the benefits of inter-agent collaboration. In absence of inter-agent collaboration, the parameter

of interest most likely is unobservable at each individual agent, and hence non-collaborative or purely

decentralized procedures will lead to divergence under the usual asymptotic normality scaling at the

individual network agents.

• Communication Efficient CIWNLS: Despite dropping communications and the presence of non-

linearities in the sensing model, we show that the proposed algorithm achieves the optimal Θ(1/t) rate

of the mean square error (MSE) decay. The achievability of the optimal MSE decay in terms of time t

translates into significant improvements in the rate at which MSE scales with respect to the per-agent

average communication cost Ct up to time t – namely from Θ(1/Ct) with existing methods, e.g., Kar

and Moura (2014); Sahu et al. (2016); Jennrich (1969); Ram et al. (2010a,b, 2009); Nedic and Ozdaglar

(2009), to Θ(1/C2−ζ
t ) with the proposed method, where ζ > 0 is arbitrarily small. We also establish

strong consistency of the estimate sequence at each agent, showing that each agent’s local estimator

converges almost surely to the true parameter θ.

6.10 Conclusion and Future Directions

In this chapter, we have considered the problem of distributed recursive parameter estimation in a network

of sparsely interconnected agents. We have proposed a consensus + innovations nonlinear least squares type

algorithm, CIWNLS, in which every agent updates its parameter estimate at every observation sampling

epoch by simultaneous processing of neighborhood information and locally sensed new information and in

which the inter-agent collaboration is restricted to a possibly sparse but connected communication graph.

Under rather weak conditions, connectivity of the inter-agent communication and a global observability

criterion, we have shown that the proposed algorithm leads to consistent parameter estimates at each agent.

Furthermore, under standard smoothness assumptions on the sensing nonlinearities, we have established

order-optimal pathwise convergence rates and the asymptotic normality of the parameter estimate sequences

generated by the proposed distributed estimator CIWNLS. In the context of CREDO −NL which is a

communication efficient distributed estimation scheme for non-linear observation models, we established

strong consistency of the estimate sequence at each agent and characterized the MSE decay in terms of the

per-agent communication cost Ct. CREDO −NL achieves the MSE decay rate Θ
(
C−2+ζ
t

)
, where ζ > 0 and

ζ is arbitrarily small. A natural direction for future research consists of obtaining techniques and conditions

to obtain innovation gains so as to reduce the gap between the agent asymptotic covariances and that of the

centralized WNLS estimator. Methods developed in Kar and Moura (2014) may be employed and extended

to obtain such characterization. Future research directions also include extending the proposed algorithm

to a mixed-time scale stochastic approximation type algorithm, so as to achieve an asymptotic covariance

independent of the network, as well as to extend the presented ideas to distributed stochastic optimization.



Chapter 7

Communication Efficient Distributed

Estimation: Random Fields Estimation

7.1 Introduction

In this chapter, we are interested in distributed inference of the state of large-scale cyber physical sys-

tems (CPS) like sensor networks monitoring a spatially distributed field tracking environmental modalities,

or CPS where physical entities with sensing capabilities are deployed over large areas. An important example

of the systems of interest is the smart grid–a large network of generators and loads instrumented with, for

example, phasor measurement units (PMUs). Our goal is to reconstruct the physical field or state of the

CPS that is represented by a parameter or a random field. The structure of the physical layer is reflected

through the coupling among the observation sequences across different nodes. Suppose, for the purpose of

illustration, corresponding to each field location, there is a low-power inexpensive sensor monitoring the

location. The noisy sensor measurement at a location in the field is not only influenced by the parameter or

field component at that location but possibly is a function of neighboring field components. As an example,

in the smart grid context, a sensor at a node (location) may obtain a measurement of the power flowing

into that node, which in turn is a function of the field components (e.g., voltages, angles) at that node and

neighboring nodes. This coupling among parameter components in the measurements will be referred to

as the physical coupling in the sequel. However, since the local measurement at a location is influenced by

multiple field parameters, due to possible lack of observability or identifiability, in order to come up with

a provably consistent estimates of the parameter components of interest, each agent exchanges information

with its neighborhood which conforms to a pre-assigned inter-agent communication graph. The inter-agent

communication graph forms the cyber layer of the system and is different from that of the physical layer, i.e.,

the coupling structure among the parameter components induced by the distributed measurement model.

Due to the large-scale of the CPS and the high-dimensionality of the field, reconstructing the entire field

at each agent may be too taxing and beyond the capability of the agents, and hence, agents may only be

interested in estimating certain components of the parameter field locally; furthermore, the components of

interest at a given agent, referred to as the interest set of the agent, varies from agent to agent.

We propose a scheme, namely CIRFE , where each entity reconstructs only a subset of the components of the

state modeled by a vector parameter, and thereby also reducing the dimension of messages being communi-

cated among the agents. Under mild conditions of the connectivity of the network, we establish consistency

of the estimate sequence at each agent with respect to the components of the parameters in its interest set.

104
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The proposed scheme allows heterogeneity in terms of agents’ objectives, while still allowing for inter-agent

collaboration. Through CIRFE , we address communication efficiency for the class of distributed inference

algorithm of the consensus+innovations form by reducing the dimension of vectors exchanged among the

agents.

7.2 Related Work

Existing central coordinator less distributed estimation schemes, such as in Kar and Moura (2011); Das

and Mesbahi (2006); Schizas et al. (2008a); Lopes and Sayed (2008); Stankovic et al. (2007); Schizas et al.

(2008b); Ram et al. (2010b); Sahu and Kar (2016) aim to reconstruct the entire parameter at each node of

the networked setup, thus conforming to a homogeneous objective across all nodes. Distributed recursive

inference schemes addressing estimation of a possibly high-dimensional parameter vector (see, for example

Kar and Moura (2011); Das and Mesbahi (2006); Schizas et al. (2008a); Lopes and Sayed (2008); Stankovic

et al. (2007); Schizas et al. (2008b); Ram et al. (2010b); Sahu and Kar (2016)), tend to communicate at

each (discrete or slotted) time step in its neighborhood and exchange estimates of the entire parameter

vector at each time instant. Owing to the high-dimensionality of the state vector and limited storage and

processing capabilities in the individual entities of a large-scale CPS, exchanging high-dimensional estimates

may be undesirable. The aforementioned setups subsume the knowledge of the dimension of the state vector

to be estimated and hence adapt the storage requirements at each agent to cater to the exact dimension of

the state vector. A random field estimation scheme in a fully distributed setup with arbitrary connected

inter-agent communication topology where agents reconstruct only a subset of the physical field which, in

turn, is coupled with the sensing field was also proposed in Kar (2010) (Chapter 3). The current work is

inspired by Kar (2010) and generalizes the development in Kar (2010) in several fronts to achieve better

estimate performance.

7.3 Problem Formulation

Consider N physical agents monitoring a field over a large physical area. Each agent n is associated with a

scalar state θ∗n, which represents the field intensity parameter at its location. The agents are equipped with

sensing capabilities. We assume each agent observes a time-series of measurements, given by noisy linear

functions of its state and the states of neighboring agents. Due to this coupling in the observations, an agent

should cooperate with neighbors to reconstruct its own state. For simplicity, we assume that the individual

agent states are scalars. Our results can be generalized to vector valued states, though at the cost of extra

notation. The observation at each agent is of the form:

yn(t) = Hnθ
∗ + γn(t), (7.1)

where Hn ∈ RMn×N is a sparsifying (to be clarified soon) sensing matrix, {yn(t)} is a RMn -valued observa-

tion sequence for the n-th agent and for each n where possibly Mn � N , {γn(t)} is a zero-mean temporally

independent and identically distributed (i.i.d.) noise sequence with nonsingular covariance matrix Rn. It is

to be noted that the assumption that the dimension of the parameter θ∗ is equal to the number of agents,

N , is simply made for clarity of presentation. In particular, all our proofs and assertions will continue to

hold with appropriate modifications if the dimension of the global parameter is different from N .

Assumption 7.2.1. There exists ε1 > 0, such that, for all n, Eθ

[
‖γn(t)‖2+ε1

]
<∞.
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The above assumption encompasses a broad class of noise distributions in the setup. The heterogeneity

of the setup is exhibited in terms of the sensing matrix and the noise covariances at the agents. We now

formalize an assumption on global model observability.

Assumption 7.2.2. The matrix G =
∑N
n=1 H>nR−1

n Hn is full rank.

Assumption 7.2.2 is crucial for our distributed setup. It is to be noted that such an assumption is needed

for even a setup with a centralized node which has access to all the data samples at each of the agent nodes

at each time. Assumption 2.3.2 ensures that if a hypothetical fusion center could stack all the data samples

together at any time t, it would have sufficient information so as to be able to unambiguously estimate

the parameter of interest. Hence, the requirement for this assumption naturally extends to our distributed

setup. As far as reconstructing the parameter θ is concerned, there is an inherent scalability issue as the

dimension of the parameter scales with the size of the network. Owing to the ad-hoc nature of setups as

described above and observations being made at different agents in a sequential manner, one has to resort

to recursive message-passing schemes while conforming to a communication protocol specified by a inter-

agent communication graph. Given the possibly high-dimensional state of the field, it is not desirable and

communication-wise feasible to exchange the high-dimensional data in the form of parameter estimates and

for each agent to estimate the entire vector. Before, going over specifics of our algorithm, we next review

recursive estimation both in the centralized and distributed setups.

7.3.1 Preliminaries

In this section, we go over the preliminaries of classical distributed estimation.

Distributed Estimation:

In the setup described above in (7.1), if a hypothetical fusion center having access to the data samples at all

nodes at all times were to conduct the parameter estimation in a recursive manner, a (centralized) recursive

least-squares type approach could be employed as follows:

xc(t+ 1) = xc(t)

+
a

t+ 1

N∑
n=1

H>nΣ−1
n (yn(t)−Hnxc(t))︸ ︷︷ ︸

Global Innovation

,

where a is a positive constant such that a > N/
(
λmin

(∑N
n=1 H>nR−1

n Hn

))
. However, such a fusion center

based scheme may not be implementable in our distributed multi-agent setting with time-varying sparse

inter-agent interaction primarily due to the fact that the desired global innovation computation requires

instantaneous access to the entire set of network sensed data at all times at the fusion center. Moreover, the

fusion center intends to reconstruct the entire high-dimensional state and thus, maintains a N -dimensional

estimate at all times. If in the case of a distributed setup, an agent n in the network were to replicate the

centralized update by replacing the global innovation in accordance with its local innovation, the update for

the parameter estimate becomes

x̂n(t+ 1) = x̂n(t)
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+
a

t+ 1
H>nΣ−1

n (yn(t)−Hnx̂n(t))︸ ︷︷ ︸
Local Innovation

,

where {x̂n(t)} represents the estimate sequence at agent n. The above update involves purely decentralized

and independent local processing with no collaboration among the agents whatsoever. However, note that in

the case when the data samples obtained at each agent lacks information about all the features, the parameter

estimates would be erroneous and sub-optimal. As in the case of the fusion center based approach outlined

above, each agent maintains a N -dimensional estimate at all times and hence the messages exchanged in

the neighborhood are N -dimensional and could be very large depending on the size of the network. Hence,

as a surrogate to the global innovation in the centralized recursions, the local estimators compute a local

innovation based on the locally sensed data as an agent has access to information only in its neighborhood.

The information loss at a node is compensated by incorporating an agreement or consensus potential into

their updates which is then incorporated (see, for example Kar and Moura (2011); Kar et al. (2013a); Sahu

et al. (2016)) as follows:

xn(t+ 1) = xn(t)− b

(t+ 1)δ1

∑
l∈Ωn(t)

(xn(t)− xl(t))︸ ︷︷ ︸
Neighborhood Consensus

+
a

t+ 1
Γ−1H>nΣ−1

n (yn(t)−Hnxn(t))︸ ︷︷ ︸
Local Innovation

, (7.2)

where 0 < δ1 < 1, Ωn(t) represents the neighborhood of agent n at time t and a, b are appropriately

chosen positive constants. In the above scheme, the information exchange among agent nodes is limited

to the parameter estimates. It has been shown in previous work that under appropriate conditions (see,

for example Kar and Moura (2011)), the estimate sequence {xn(t)} converges to θ∗ and is asymptotically

normal, i.e.,

√
t+ 1 (xn(t)− θ)

D
=⇒ N

(
0, (NΓ)

−1
)
,

where Γ = 1
N

∑N
n=1 H>nR−1

n Hn and
D

=⇒ denotes convergence in distribution. The above established asymp-

totic normality also points to the conclusion that the MSE decays as Θ(1/t). For future reference, we will

refer to the distributed estimation approach in (7.2) as the classical consensus+innovations approach. The

aforementioned scheme, though optimal in terms of the asymptotic covariance entails the availability of

global model information at each agent and exchange of the entire parameter estimate which in turn is

N -dimensional among agents. Furthermore, due to the inherent spatial coupling in the observation sequence

at each node with other nodes in its neighborhood, the availability of a particular entry of the state vector is

localized to a small area. Hence, a large-scale deployment of such a system, would incorporate a significant

delay for an agent to assimilate information about a particular entry of the state vector which is not local

with respect to its neighborhood. Moreover, such a scheme requires the knowledge of the dimension of the

state vector at each agent and storage of a high-dimensional local estimates, same as the size of the entire

state vector. Such prior knowledge about attributes of the parameter such as dimension in conjunction with

requirement for large memory at each agent might be practically infeasible owing to the ad-hoc nature and

limited sensing, computation and storage capabilities of agents in a networked setup.

Thus, in both of the schemes above, specifically in the case which involves estimating a high-dimensional pa-
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rameter, it might not be practical to estimate the entire parameter at each agent. In such a high-dimensional

parameter estimation scheme, it is highly favorable to estimate only a few entries of the parameter based on

the requirements of each agent, which could potentially reduce the dimensions of messages being exchanged

in the network thereby reducing the implementation complexity considerably.

7.3.2 Connections with Distributed Optimization

In principle, distributed stochastic optimization, with each node interested in a few entries of the optimization

variable, is more general than the distributed estimation/random fields setup studied here. Indeed, one

recovers the setup here with specializing the cost functions to be quadratic. However, this is true only for

a very generic formulation of distributed stochastic optimization, where no strong convexity is assumed,

each node is interested in a subset of the variable of interest, and the gradient (first order) information is

subject to noise, and the underlying network is random. However, to the best of our knowledge, there is

no present work that simultaneously addresses all of these aspects. For example, in Mota et al. (2015),

the setup involves a static network connected at all times with each agent having access to an incremental

first order oracle, i.e., access to exact gradient information; the chapter establishes convergence the iterate

sequences to the optimizer, however, rates of convergence are not provided. In Alghunaim and Sayed (2017),

the authors consider coupled distributed stochastic optimization setups where the coupling is induced by

interest sets of different agents over static networks. The setup in Alghunaim and Sayed (2017) encompasses

estimation setups, given that global observability1 holds for each entry of the parameter in the respective

clusters, which in turn is subsumed in the setup. Technically speaking, typical distributed optimization

setups rely on local observability2 without assuming local correctness3 at each agent. However, in the case of

distributed estimation, the agents lack local observability but preserve local correctness. Moreover, the study

of the mean square error in Alghunaim and Sayed (2017) reflects errors in terms of the step sizes only and

does not reflect explicit dependence in terms of the number of agents collaborating to estimate a particular

entry of the parameter. In comparison with Mota et al. (2015); Alghunaim and Sayed (2017), we consider a

distributed estimation setup over time-varying networks connected only on average and provide asymptotic

characterization of the estimator as time goes to ∞. Furthermore, we specifically characterize the scaling

of the asymptotic variance of each entry of the parameter in terms of the number of agents interested in

reconstructing the particular entry in question. We also characterize the fundamental condition so as to

generate consistent estimates of each entry of the parameter and show that connectivity of the network and

global observability is not enough to ensure consistency of the estimates. We direct the reader to assumption

7.4.3 and the discussion after assumption 7.4.4 for a detailed illustration. In particular, we establish that

connectivity of the subgraphs induced by the interest sets is a sufficient condition to enforce assumption

7.4.3. It is an open question as to what is a necessary condition (in terms of the network structure, sensing

structure, and the interest sets’ structure) so as to enforce assumption 7.4.3.

1Global Observability refers to the condition, when the parameter can be reconstructed by stacking the samples collected
from all the agents.

2Local observability refers to the condition, where an agent can reconstruct its own state based on its own observation
sequence.

3Local correctness refers to the condition, where the set of local optimizers for the agent’s local cost function includes the
optimizer of the global objective.
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7.4 CIRFE: Distributed Random Fields Estimation

In this section, we develop the algorithm CIRFE . The parameter to be reconstructed which is the vector of

states accumulated over the entire network is θ∗ ∈ RN . The sparsifying nature of Hn in (7.1) is related to the

coupling induced by the measurements in the field. To be specific, let us define Ĩn as the set of agents whose

states influence the measurement yn(t) at agent n, i.e., Ĩn collects the agents for which the corresponding

columns of matrix Hn is non-zero. In what follows, we say an agent n is physically coupled to an agent l if

the observation at agent n is influenced by the state component θ∗l . Typically, Ĩn is a small subset of the total

number of agents N . Technically speaking, the above mentioned coupling induced by the measurements can

be expressed in terms of an adjacency matrix, Â, where Ânl = 1 if l ∈ Ĩn and 0 otherwise. Now, that we

have abstracted out the physical coupling (physical layer) in the networked system under consideration, we

discuss about the communication layer (cyber layer), i.e., the inter-agent communication network and the

associated communication protocol. Before getting into the communication protocol, we introduce interest

sets of agents’ around which the communication protocol is built.

Assumption 7.4.1. The set of agents physically coupled with agent n is a subset of the interest set of agent

n, i.e., Ĩn ⊂ In.

Furthermore, we assume that the interest set of every agent n is non-empty.

We number the nodes (equivalently, components of θ) in the interest sets of agents in increasing order.

Thus, the interest set In at an agent n can be considered to be a vector with dimension |In|. For example,

In(r) = p indicates that agent p is the r-th agent in increasing order in the interest set In. We also have that

I−1
n (p) = r. Moreover, as each agent n is only interested in reconstructing the states of agents in its interest

set, the estimate at agent n, xn(t) ∈ R|In|, ∀ t. At every time instant t, an agent n simultaneously fuses

information received from the neighbors and the latest sensed information to update its parameter estimate.

However, as the interest set of agents in the neighborhood might not be the same as that of the agent itself,

the information received from the neighbors needs censoring. Let the message received from agent l at time

t be denoted by xl(t) ∈ R|Il|, where l ∈ Ωn. The censored message processed by agent n, xrl,n(t) ∈ R|In| is

generated as follows:

e>j xrl,n(t) =

e>I−1
l (In(j))

xl(t) In(j) ∈ Il

0 otherwise,
(7.3)

where ej and eI−1
l (In(j)) are canonical vectors with ej ∈ R|In| and eI−1

l (In(j)) ∈ R|Il|. Agent n only wants

to use estimates of those states from an agent in its neighborhood which are common to their interest sets.

Formally, with agent l, agent n only wants to use estimates of the states in the set In ∩ Il. Similarly, while

using the obtained estimate states from the neighbors, only those states in the set In ∩ Il are updated. We

also define the transformed estimate xsl,n(t) ∈ R|In| at agent n, for each l ∈ Ωn(t) as follows:

e>j xsl,n(t) =

e>j xn(t) In(j) ∈ Il
0 otherwise.

(7.4)

where j ∈ {1, · · · , |In|}. The agent n also incorporates the latest sensed information yn(t) while updating

the parameter estimate at each sampling epoch and only retains the components of interest, i.e., those in
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Figure 7.1: A network example emphasizing the notion of structural observability.

In. For a given vector z ∈ R|In|, let zPIn ∈ RN be the vector whose j-th component is given by

e>j zPIn =

e>I−1
n (j)

z j ∈ In

0 otherwise.
(7.5)

Finally, for a given vector z ∈ RN , zIn denotes the vector in R|In|, where e>j zIn = e>In(j)z.

We now introduce the algorithm CIRFE for distributed parameter estimation:

xn(t+ 1) = xn(t)−
∑

l∈Ωn(t)

βt
(
xsl,n(t)− xrl,n(t)

)
︸ ︷︷ ︸

Neighborhood Consensus

+ αtH
>
nR−1

n

(
yn(t)−Hnx

PIn
n (t)

)
In︸ ︷︷ ︸

Local Innovation

, (7.6)

where Ωn(t) represents the neighborhood of agent n at time t; and {βt} and {αt} are the consensus and

innovation weight sequences given by

βt =
β0

(t+ 1)δ1
, αt =

a

t+ 1
, (7.7)

where a, b > 0 and 0 < δ1 < 1/2− 1/(2 + ε1) and ε1 was as defined in Assumption 2.3.1. It is to be noted

that with the interest set of each agent being In = {1, 2, · · · , N}, we have that the update in (7.6) reduces to

the classical consensus+innovations update for linear parameter estimation schemes (see, Kar et al. (2013a)

for example). Thus, the classical consensus+innovations parameter estimation scheme, is strictly a special

case of the update in (7.6).

We now illustrate the introduced setup and algorithm (7.6) with a 5 agents network example in Fig. 7.1.

Each node n corresponds to a physical component θ∗n. Thus, θ∗ ∈ R5. The solid lines connecting the nodes

correspond to the inter-node communication pattern. Each node observes a noisy scalar functional. In

particular, we assume

y3(t) =
1

3
(θ∗2 + θ∗3 + θ∗4) + γ3(t)

yn(t) = θ∗n + γn(t), n = 1, 2, 4, 5. (7.8)

Note that then the noise covariance matrix Rn is a positive scalar, n = 1, 2, ..., 5. Also, for n 6= 5, Hn is

a 5-dimensional (row) vector with all entries equal to zero except the n-th entry which equals one. On the

other hand, H3 = [ 0, 1/3, 1/3, 1/3, 0 ]. we have that Ĩn = {n} for n = 1, 2, 4, 5, and Ĩ3 = {2, 3, 4}. Let
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us also assume that the agents’ interest sets are given by In = Ĩn, for each n = 1, 2, ..., 5. For notational

simplicity, we omit time index t when writing the agents’ estimates; that is, we write xn in place of xn(t).

Also, we denote by [xn]i the i-th entry of xn. Then, agent 3’s estimate x3 is a 3 × 1 vector, with [x3]1

being an estimate of θ∗2 , [x3]2 being an estimate of θ∗3 , and [x3]3 being an estimate of θ∗4 . Regarding the

remaining agents n 6= 3, we have that xn is a scalar, with xn being an estimate of θ∗n. Next, consider agent 3

and its interaction with agent 2. The censored quantity xr32 at agent 3 based on the received message from

agent 2 equals xr32 = [ x2, 0, 0 ]>. Further, the agent 3’s own censored estimate, adapted so that it can be

combined with xr32, equals xs32 = [ [x3]1, 0, 0 ]>. Note that the first entry in both xr32 and xs32 corresponds

to an estimate of θ∗2 , the second entry of both xr32 and xs32 corresponds to an estimate of θ∗3 , and the third

entry of both xr32 and xs32 corresponds to an estimate of θ∗4 . The second and third entry in both xr32 and xs32

is zero, because the intersection of the agents’ 2 and 3 interest sets I1∩I2 = {2}, i.e., it does not include the

interest for θ∗3 nor for θ∗4 . Further, we have that xr23 = [x3]1 and xs23 = x2. The remaining pairs of quantities

xrnl and and xsnl are defined analogously. Next, agent 3’s estimate “lifted” to the N = 5-dimensional space

equals x̃3 = [0, [x3]1, [x3]2, [x3]3, 0 ]>. Note that the first and fifth entries in x̃3 are zero, because agent 3

does not have interest in θ∗1 nor in θ∗5 . Similarly, we have that x̃2 = [ 0, x2, 0, 0, 0 ]>. We next specialize the

update rule (7.6) for the example considered here and agent 3; we have:[x3]1(t+ 1)

[x3]2(t+ 1)

[x3]3(t+ 1)


︸ ︷︷ ︸

x3(t+1)

=

[x3]1(t)

[x3]2(t)

[x3]3(t)


︸ ︷︷ ︸

x3(t)

+βt


x2(t)

0

0

−
[x3]1(t)

0

0




︸ ︷︷ ︸
xr32(t)−xs32(t)

+ βt


 0

0

x4(t)

−
 0

0

[x3]3(t)




︸ ︷︷ ︸
xr34(t)−xs34(t)

+ αt

1/3

1/3

1/3


︸ ︷︷ ︸
(H>3 )I3

R−1
3

(
y3(t)− 1

3
([x3]1(t) + [x3]2(t) + [x3]3(t))

)
. (7.9)

We formalize an assumption on the connectivity of the inter-agent communication graph before proceeding

further.

Assumption 7.4.2. The inter-agent communication graph is connected on average, i.e., λ2(L) > 0, where L

denotes the mean of the sequence of identically and independently distributed (i.i.d) graph Laplacian sequence

{L(t)}.

Remark 7.4.1. In the parameter estimation scheme in (7.6), an agent n uses only those components of its

neighbor l’s estimate xl(t), which belong to its interest set In. Thus, agents n and l combine components

linearly which belong to In ∩ Il and reject the rest of the components. From an implementation viewpoint,

it is desirable for an agent l to only transmit those components to agent n which belong to In ∩Il instead of

transmitting the entire xl(t) to agent n as the one which involves exchanging only those components which

are common to the agents has lower communication overhead. In the former case, the receiving agent n will

zero out the components it does not require, so both the transmission strategies would lead to the same update.
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Moreover, in the innovation term, where an agent n uses its own previous state to compute the innovation,

an agent subsequently retains only the components of interest so as to keep the update economical in terms of

size. We also emphasize here that the inter-agent communication graphs {L(t)} and the physical adjacency

matrix Â induced by the measurement coupling may be structurally different.

We now present a more compact representation of the CIRFE algorithm so as to be able to establish its

asymptotic convergence properties. Let I denote a subset of {1, 2, · · · , N}. Define the diagonal matrix PI

which selects the corresponding non-zero components of I from a RN2

dimensional vector. In particular,

PI = diag [PI1
, · · · , PIn ], where each PIn ∈ RN×N and is a diagonal matrix such [PIn ]i,i = 1 if i ∈ In or 0

otherwise.

For the 5-agent network example associated with Figure 1, we have for n 6= 3 that PIn is the 5 × 5 matrix

with all the entries equal to zero, except the (n, n)-th entry which equals one. The matrix PI3
has all the

entries equal to zero, except the (2, 2)-th, (3, 3)-th, and (4, 4)-th entries, which al equal to one.

For the estimate sequence {xn(t)} at agent n, let {x̃n(t)} ∈ RN denote the auxiliary estimate sequence, where

x̃n(t) = xn(t)PIn . With the above development in place, it is easy to see that, for y ∈ RN ,
(
xrl,n(t)

)PIn
=

PInPIl x̃l(t),
(
xsl,n(t)

)PIn
= PInPIl x̃n(t) and (xn(t))

PIn = PIn x̃n(t). The CIRFE update in (7.6) can then

be written in terms of the auxiliary processes as follows:

x̃n(t+ 1) = x̃n(t)−
∑

l∈Ωn(t)

βtPInPIl (x̃n(t)− x̃l(t))

+ αtPInH>nR−1
n (yn(t)−HnPIn x̃n(t)) . (7.10)

We introduce the matrix LP ∈ RN2×N2

so as to make the above representation more compact.

[LP(t)]nl =

−PIn
∑N
r=1:r 6=n Lnr(t)PIr if n = l

Lnl(t)PIlPIn otherwise,
(7.11)

where [LP(t)]nl ∈ RN×N denotes the (n, l)-th sub-block of the block matrix LP . It follows by elementary

matrix multiplication properties that PLP(t) = LP(t). It is also to be noted that LP is a symmetric matrix.

The matrix LP(t) at each time step t can be decomposed as follows:

LP(t) = LP + L̃P(t), (7.12)

where {LP(t)} is an i.i.d. sequence with mean LP and L̃P(t) = LP(t)− E [LP(t)]. Thus, we have that the

residual sequence {L̃P(t)} satisfies E
[
L̃P(t)

]
= 0.

With the above development in place, the update in (7.10) can be written in a compact form as follows:

x̃(t+ 1) = x̃(t)− βtLP(t)x̃(t) + αtPGHR−1
(
y(t)−G>HPx̃(t)

)
, (7.13)

where x̃>(t) =
[
x̃>1 (t), · · · , x̃>N (t)

]>
, y(t)> = [y1(t)> · · · yN (t)>]>, R = diag [R1, · · · ,RN ], P = diag [PI1

, · · · ,PIN ],

and GH = diag[H>1 ,H
>
2 , · · · ,H>N ].

Remark 7.4.2. In the case when the noise covariance is not known apriori, a recursive estimator of the

inverse noise covariance can be used so as to be used as a plugin estimate for R−1
n . A plugin estimate for
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R−1
n at time t+ 1, denoted by R̂−1

n (t+ 1) can be generated as follows:

Qn(t+ 1) =
1

t

t∑
s=0

yn(s)y>n (s)−

(
1

t

t∑
s=0

yn(s)

)(
1

t

t∑
s=0

yn(s)

)>
R̂−1
n (t+ 1) = (Qn(t+ 1) + γtIMn

)
−1
,

where γt is a time-decaying sequence such that γt → 0 as t→∞.

Also, given the sensing model and the assumption that the dimension of the observations at each agent n,

given by Mn is Mn � N , inverting a low-dimensional matrix is not particularly computationally taxing. In

particular, Mn can be equal to 1 for instance in which the inverse noise covariance matrix can be estimated

seamlessly. Furthermore, it is to be noted that the update can be adapted to be of the following form, where

R−1 is replaced by I

x̃(t+ 1) = x̃(t)− βtLP(t)x̃(t) + αtPGH

(
y(t)−G>HPx̃(t)

)
,

which does not require the inverse noise covariance. We remark that with the above update, the algorithm

still retains the property concerning the almost sure convergence of the parameter estimate at each agent to

the entries of the parameter corresponding to its interest set. Thus, the computational cost can be reduced

drastically with an update of the following form as defined above, which does not involve any matrix inver-

sions. Thus, when knowledge or calculation of R−1 is an issue, algorithm (7.13) can be replaced with the

update above, retaining consistency but possibly with a loss in terms of the asymptotic covariance.

Remark 7.4.3. The recursive update in (7.13) is of the stochastic approximation type. The stochastic

approximation procedure, employed here is a mixed time-scale stochastic approximation as opposed to the

classical single time-scale stochastic approximation (see, for exampleNevelson and Khasminskĭı (1973)). The

above notion of mixed time-scale is very different from the more commonly studied two time-scale stochastic

approximation (see, for instance Borkar (2008)) in which a fast process is coupled with a slower dynamical

system. The approach employed here is similar to the ones in Gelfand and Mitter (1991) and Kar et al.

(2013a) in which a single update procedure is influenced by multiple potentials with different time-decaying

weights. Now, suppose that the interest set of each agent consists of all components of θ∗, i.e., the update

in (7.13) reduces to the classical consensus+innovations update in (2). A key technical step employed in

the analysis of classical consensus+innovations procedures of the type in (7.2) (see, for example, Kar et al.

(2013a)) consists of an approximation of the update in (7.2) to a single time-scale stochastic approximation

procedure that is asymptotically equivalent to the former, in particular, that converges to the original iterate

sequence at a rate faster than (t + 1)0.5. Typically, in the context of (7.2) the approximating single time-

scale procedure is the network-averaged estimate sequence, x̃avg(t) =
(

1>N
N ⊗ IN

)
x̃(t), and the analysis in

Kar et al. (2013a) uses the fact that the Laplacian L(t) in (7.2) has a left eigen vector of 1N2 and that

every agent is interested in estimating the entire parameter vector. However, in the context of the update

in (7.13), every agent is interested in only a few entries of the parameter which makes the characterization

of asymptotic properties of the estimate sequences highly non-trivial and substantially different from prior

work on consensus+innovations type estimation procedures Kar et al. (2013a) in which agents share the

common objective of estimating all components of the parameter. However, in contrast to prior work on

consensus+innovations type estimation procedures (see, for example Kar et al. (2013a)) in which agents

share the common objective of estimating all components of the parameter, the analysis with heterogeneous
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agent objectives in (7.13), in that each agent is interested in a different subset of components, requires new

technical machinery. In particular, to obtain asymptotic properties of (7.13), we develop a more generalized

approximation of the mixed time-scale procedure to an appropriate single time-scale procedure that takes

into account of the heterogeneity in agent objectives; this approximation and subsequent analysis require new

technical tools that we develop in this chapter.

Define the subspace SP ∈ RN2

by SP =
{

y ∈ RN2 |y = Pw, for some w ∈ RN2
}

. We now formalize a key

assumption relating the interest sets In to the network connectivity and global observability.

Assumption 7.4.3. There exists a constant c1 > 0 such that,

y>
(
β0

α0
LP + PGHR−1G>HP

)
y ≥ c1 ‖y‖2 ,∀ y ∈ SP , (7.14)

where P = diag [PI1
, · · · ,PIN ].

We formalize an assumption on the innovation gain sequence {αt} before proceeding further.

Assumption 7.4.4. Let λmin (·) denote the smallest eigenvalue. We require that a satisfies,

amin{λmin

(
N∑
n=1

PInH>nR−1
n HnPIn

)
, c1, β

−1
0 } ≥ 1,

where ⊗ denotes the Kronecker product and c1 is defined in (7.14).

It is to be noted that in Assumption 7.4.3, if P = IN2 , then the subspace SP reduces to RN2

and the

condition in (7.14) reduces to a commonly employed Lyapunov condition in classical consensus+innovations

type inference procedures (see, for example, Lemma 6 in Kar and Moura (2011)) which, in turn, can be

enforced by global observability and the mean connectivity of the network under consideration. However,

in the case when P 6= IN2 , the case considered in this chapter, global observability and connectivity of

the network is not sufficient to obtain the condition in (7.14). The insufficiency of global observability

and connectivity of the network in order to enforce (7.14) can be attributed to heterogeneous objectives of

the agents and censoring of messages at agents leading to an inherent information loss. Intuitively, such a

condition calls for existence of information pathways between agents who share a particular component in

their interest sets and the particular component in question to be observable at this set of agents collectively.

As we show in the following (Lemma 7.4.4), a sufficient condition for Assumption 7.4.3 is that in addition

to the global observability and the mean network connectedness, the induced subgraph for every entry of

the vector θ∗ needs to be connected. The induced subgraph for the r-th entry is the set of agents and their

associated links which have the r-th entry of θ∗ in their interest sets.

In the following, we will establish consistency of the CIRFE under Assumption 7.4.3. We now show by a

simple example that, in general, Assumption 7.4.3 is stronger than mean connectivity and global observabil-

ity. To this end, consider again the simple network consisting of 5 nodes in Fig. 7.1 and (7.8). Clearly, in

this case, G =
∑5
n=1 H>nHn is invertible and, as shown, the communication network is connected. In case,

every node wants to estimate the entire θ∗, then the above inference task reduces to the inference setup

considered in Kar and Moura (2011); Sahu et al. (2016). Consider the case where In = Ĩn for n = 1, 2, 3, 4,

i.e., these nodes are interested in reconstructing only their own states and those who influence their obser-

vations. However, let I5 = {5, 1}, i.e., node 5 is interested in the state of node 1. This problem falls under

the purview of CIRFE . Clearly, Assumption 7.4.2 is satisfied. However, it can be shown by calculating the
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various terms, that assumption 7.4.3 is not satisfied and hence, convergence of CIRFE to desired values is

not guaranteed. This shows that mean connectivity and global observability is not sufficient for assump-

tion 7.4.3 in general. We provide an intuitive explanation, why the CIRFE is not expected to yield accurate

estimates in this case and why the Lyapunov type requirement in assumption 7.4.3 is sufficient for CIRFE ’s

desired convergence.. Looking at Fig. 7.1, we note that the only node that observes (at least partially) the

component θ∗1 is node 1, i.e., the influence of the state θ∗1 only affects the observations at node 1. Clearly,

for node 5 to be able to reconstruct θ∗1 , it should be able to access information about θ∗1 from the allowed

communication graph. Moreover, there is a path connecting node 1 to node 5. However, the other nodes in

the path are not interested in reconstructing θ∗1 , so they do not participate in the exchange of information

regarding θ∗1 . For example, node 2 ignores the estimate of θ∗1 at node 1 and similarly the others. As a result,

the information about θ∗1 never reaches node 5, although the communication network is connected. Note

that the induced subgraph of component 1 of θ∗ is disconnected, and it involves only nodes 1 and 5 and no

links.

At the same time, it is easy to see that this problem is resolved if an extra communication link is added

between nodes 1 and 5. Thus, we see that connectivity of the subgraph formed by those nodes interested

in reconstructing θ1 seems to facilitate proper information flow necessary for the desired convergence of

CIRFE . Based on this intuition, we formulate a general structural connectivity condition (see Kar (2010))

that guarantees the satisfaction of 7.4.3 which, in turn, will be used subsequently to derive the convergence

of CIRFE . We direct the reader to Lemma 3.4.1 in Kar (2010) for a proof.

Lemma 7.4.4 (Lemma 3.4.1 in Kar (2010)). Let assumption 7.4.2 be satisfied and the global observability

condition hold. For each component r of θ∗, define the subset Ir ⊂ [1, · · · , N ] by

Ir = {n ∈ [1, · · · , N ] | r ∈ In} (7.15)

Let G denote the network graph corresponding to the mean Laplacian L, i.e., there is an edge between nodes

n and l in G iff the (n, l)-th entry in L is non-zero. For each 1 ≤ r ≤ N , denote the induced subgraph Gr of

G with node set Ir. Then, condition 7.4.3 is satisfied if Gr is connected for all r.

Technically speaking, the average connectedness of the induced subgraphs in conjunction with the global

observability of the entry of the parameter relevant to the subgraphs is enough to ensure consistency of

the estimate sequence of the entry of the parameter. The combinatorial perspective brought about by the

preceding observation being, can one relax the connectivity of the induced subgraph. For example, consider

the r-th entry of the parameter. Let the number of agents interested to estimate the entry is Nr out of which

M agents (referred to as O-agents) have the entry incorporated into their observations. In the case, when

one can split Nr agents into disconnected components where each component consists of non-zero number

of agents which observe the entry and the entry is rendered globally observable with respect to those O-

agents in that component, would ensure the estimates of that entry being consistent at each agent which is

interested to reconstruct that agent. However, as the subgraphs induced by interest sets are coupled in lieu

of the interest sets, it might not be possible to ensure such a construction as the one described before for

each entry of the parameter.
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7.5 CIRFE: Main Results

In this section we formally state the main results concerning the distributed parameter estimation CIRFE
algorithm, while the proofs are relegated to F. The first result concerns with the consistency of the parameter

estimate sequence at each agent n.

Theorem 7.5.1. Consider the parameter estimate sequence {x̃(t)} generated by the CIRFE algorithm

according to (7.6). Then, we have,

Pθ∗

(
lim
t→∞

x̃(t) = P (1N ⊗ θ∗)
)

= 1. (7.16)

At this point, we note that the estimate sequence generated by CIRFE at any agent n is strongly consistent,

i.e., xn(t) → θ∗In almost surely (a.s.) as t → ∞. It is also to be noted that, owing to the heterogeneous

objectives of the agents, the consensus in terms of the estimates sequences across any pair of agents is only

limited to the common components of the parameter in their interest sets.

Theorem 7.5.2. Let the hypothesis of theorem 7.5.1 hold. Then, we have,

E
[
‖x̃(t)− P (1N ⊗ θ∗)‖2

]
= O

(
1

t

)
(7.17)

Thus, we note that the mean square error of the estimate sequence with respect to the components of the

parameter θ∗ decays as 1/t.

Theorem 7.5.3. Let the hypotheses of Theorem 7.5.1 hold. Then, the time-scaled sequence
√
t+ 1 (x̃(t)− P (1N ⊗ θ∗))

is asymptotically normal, i.e.,

√
t+ 1 (x̃(t)− P (1N ⊗ θ∗))

D
=⇒ N (0,SR) , (7.18)

where

SR = PMP>

[M]ij =

[
PQ

(
N∑
n=1

PInH>nR−1
n HnPIn

)
QP

]
ij

×
(

[Λ]ii + [Λ]jj − 1
)−1

, (7.19)

and P and Λ are orthonormal and diagonal matrices such that P>Q
(∑N

n=1 PInH>nR−1
n HnPIn

)
P = Λ,

in which, Q = diag
[

1
Q1
, 1
Q2
, · · · , 1

QN

]
, with Qi denoting the number of agents interested in the i-th entry of

θ∗.

noindent Theorem 7.5.3 establishes the asymptotic normality of the time-scaled (auxilliary) estimate se-

quence. Noting that the estimate sequence {xn(t)} is a linear transformation of the auxiliary estimate

sequence, we conclude that
√
t+ 1

(
xn(t)− θ∗In

)
is also asymptotically normal. It is also to be noted that,

when the interest sets of each agent is the identity matrix, i.e., every agent is interested to reconstruct the

entire parameter, the matrix Q reduces to I
N and the asymptotic covariance reduces to that of the classical

consensus+innovations linear parameter estimation case (see Kar and Moura (2011) and the corresponding
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update in (7.2)). In this sense, the classical linear parameter estimation case is a special case of the problem

being addressed here. It is to be noted that the case in which Q reduces to 1

Q̃
I for some Q̃ < N (Q̃ < N

agents interested in each entry of θ∗), the asymptotic covariance reduces to,

SR =
aI

2Q̃
+

(
1
N

∑N
n=1 H>nR−1

n Hn + I
2a

)−1

Q̃
.

The asymptotic covariance as derived in Theorem 7.5.3 explicitly showcases the heterogeneity in the scaling

with respect to different components of the parameter through Q, as different components have different

cardinalities of interest sets.

The convergence rate is unaffected by the communication of low-dimensional estimates, i.e., the mean square

error of the proposed scheme decays as 1/t as characterized by Theorem 7.5.2. However, by communicating

low dimensional estimates which is due to the interest sets being strict subsets of {1, 2, · · · , N}, the variance of

the estimation scheme is affected in terms of scaling by the number of agents. In particular, as demonstrated

by Theorem 7.5.3, the variance of the estimate sequence scales inversely with the number of agents interested

to reconstruct the particular entry. Thus, larger the size of the communicated estimates lower is the variance.

For instance, the variance scaling as 1/N is obtained if every agent is interested to reconstruct the entire

parameter. Intuitively speaking, the difference in scaling can be attributed to averaging by a smaller number

of agents against averaging by the entire network. However, note that the scaling is only with respect to the

asymptotic covariance and as we will demonstrate later on line graphs, the finite time variance of the error

estimates can be lower for the proposed algorithm with respect to agents which directly do not observe the

component of the parameter being estimated.

7.6 Simulation Results

In this section, we demonstrate the efficiency of the proposed algorithm CIRFE through simulation exper-

iments on a synthetic dataset. In particular, we construct a 10 node ring network, where every agent has

exactly two nodes in its communication neighborhood. We number the nodes from 1 to 10. The neighbors

for the i-th node in the communication graph are the nodes (i− 1)mod 10 and (i+ 1)mod 10.

The physical coupling which affects each agent’s observations is assumed to be an agent’s 2-hop neighborhood.

For instance, node 1’s observations are affected by the value of the field at nodes 9, 10, 2 and 3. Thus, Ĩ1 =

{9, 10, 2, 3}. The interest set of each agent is taken to be all the field values which affects its observation. For

instance, I1 = {9, 10, 1, 2, 3}. We resort to a static Laplacian in the simulation setup here. We also note that

in this case the inter-agent communication network is sparser than the physical network induced by measure-

ment coupling. Each agent makes a scalar observation at each time. Hence, the observation matrix for each

agent is given by a 5-sparse 10-dimensional row vector. To be specific, the observation matrices used in the

simulation setup are given by H1 = [1.0, 1.2, 1.3, 0, 0, 0, 0, 0, 1.4, 1.5], H2 = [1.5, 1.0, 1.2, 1.3, 0, 0, 0, 0, 0, 1.4],

H3 = [1.4, 1.5, 1.0, 1.2, 1.3, 0, 0, 0, 0, 0], H4 = [0, 1.4, 1.5, 1.0, 1.2, 1.3, 0, 0, 0, 0], H5 = [0, 0, 1.4, 1.5, 1.0, 1.2, 1.3, 0, 0, 0],

H6 = [0, 0, 0, 1.4, 1.5, 1.0, 1.2, 1.3, 0, 0], H7 = [0, 0, 0, 0, 1.4, 1.5, 1.0, 1.2, 1.3, 0], H8 = [0, 0, 0, 0, 0, 1.4, 1.5, 1.0, 1.2, 1.3],

H9 = [1.3, 0, 0, 0, 0, 0, 1.4, 1.5, 1.0, 1.2] and H10 = [1.2, 1.3, 0, 0, 0, 0, 0, 1.4, 1.5, 1.0]. The noise covariance R is

taken to be I10. The parameter capturing the field values is taken to be θ = [1.2, 1.3, 1.4, 0.8, 0.7, 1.1, 0.9, 1.0, 1.8, 0.6].

It can be seen that Assumption 7.4.3 is satisfied, by verifying Lemma 7.4.4 for the third parameter compo-

nent θ∗3 .

We carry out 500 Monte-Carlo simulations for analyzing the convergence of the parameter estimates. The
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Figure 7.2: CIRFE : Convergence of normalized estimation error at each agent
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Figure 7.3: CIRFE : Comparison of e>3 θ
∗ estimation error
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Figure 7.4: CIRFE : Comparison of e>7 θ
∗ estimation error

estimates are initialized as xn(0) = 0 for n = 1, · · · , 10. The normalized error for the n-th agent at time t

is given by the quantity ‖xn(t)− PInθ‖ /5, as each agent’s interest set has the cardinality of 5. Figure 7.2

shows the normalized error at every agent against the time index t. In Figures 7.3 and 7.4 we compare the

performance of CIRFE to the classical distributed estimator in Kar and Moura (2011) (see (7.2) for the

corresponding update), where each agent is interested in reconstructing the entire state or the parameter

vector. We refer to the estimates of the distributed estimator in Kar and Moura (2011) as “classical” and

“classical-d” (to be specified shortly) in the sequel. In Figures 7.3 and 7.4, “Classical-d” represents the case

in the algorithm in Kar and Moura (2011), where an agent does not observe the entry to be estimated and

entirely depends on the neighborhood communication to estimate the quantity of interest. We specifically

study the estimation performance of the agents in the “Classical-d” case, as these are the agents that tend

to increase the communication overhead considerably by being interested in estimates of components that

they do not directly observe, relying on other agents possibly far off to obtain the desired information. Note
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Figure 7.5: CIRFE : Comparison of e>2 θ
∗ estimation error
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Figure 7.6: CIRFE : Comparison of e>9 θ
∗ estimation error

that, in the current simulation setup, such class of agents do not exist for the proposed CIRFE algorithm.

It can be observed from figures 7.3 and 7.4 that the estimation error in CIRFE is higher than that of the

classical distributed estimator but at the same time exchanging 5-dimensional or even smaller dimensional

messages as opposed to 10-dimensional messages in the case of the classical consensus+innovations estimator

in Kar and Moura (2011). This analysis brings about an inherent trade-off between estimation error and

the dimension of the messages exchanged between agents. It is also to be noted that the agents in case of

CIRFE store 5-dimensional vectors at each time step as opposed to 10-dimensional vectors in the case of

the classical. An intuitive way to interpret the higher estimation error is noting the fact that, effective for

the algorithm CIRFE , the estimation procedure for each entry of the parameter θ∗ effectively happens over

a line graph, whereas for the Classical and “Classical-d” procedures the communication graph to which the

estimation procedure conforms to is a ring graph. In order to demonstrate the effectiveness of the algorithm

CIRFE , we consider a line graph, where the agents have the same sensing model as in the previous case

except for the two edges of the line graph. Thus, agent 1 and 10’s observations are dependent on agent 2 and

agent 9’s state. Furthermore, we assume that each agent’s observation is physically coupled with the states

of the agents’ in its one-hop neighborhood. The interest set for the 1st and 10th agents are taken to be {1, 2}
and {9, 10} respectively. All the other agents, have interest sets of cardinality three, i.e, itself and its one-hop

neighborhood. In Figures 7.5 and 7.6 we compare the performance of CIRFE to the classical distributed

estimator in Kar and Moura (2011) (see (7.2) for the corresponding update), with the aforementioned line

graph setup. For the “classical-d” case, the agent selected was the farthest end of the graph. It is well

known that under a line graph, the performance of a distributed protocol is affected due to poor connectivity.

It can be seen from figures 7.5 and 7.6 that the performance of CIRFE closely resembles that of the classical

benchmark algorithm with respect to an agent which observes the particular entry. However, for agents far

away from the agent which observes the particular entry, CIRFE outperforms them. Intuitively speaking,
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while in this case, the communication protocol for each entry of the parameter in CIRFE conforms to a

line graph, where the maximum number of vertices in each is 3, for the benchmark the line graph consists

of 10 agents. In order to reinforce the effectiveness of CIRFE , we ran experiments on a 30 node line graph,

where each agent except the nodes numbered 1, 2, 29 and 30, have an interest set of cardinality 5. The

nodes numbered 1, 2, 29 and 30 are assumed to have interest sets of cardinality 3, 4, 4 and 3 respectively.

For instance the interest sets of agents 1 and 2 are given by {1, 2, 3} and {1, 2, 3, 4} respectively. We assume

that the physical coupling which affects each agent’s observation is limited to its two-hop neighborhood. In

Figures 7.7 and 7.8 we compare the performance of CIRFE to the classical distributed estimator in Kar and

Moura (2011) (see (7.2) for the corresponding update), with the aforementioned line graph setup. For the

“classical-d” case, the agent selected was the farthest end of the graph as in the previous case. It can be seen

from figures 7.7 and 7.7 that the performance of CIRFE closely resembles that of the classical benchmark

algorithm with respect to an agent which observes the particular entry. However, for agents far away from

the agent which observes the particular entry, CIRFE outperforms them.

Technically speaking, in the classical case, an agent which is diameter number of steps away from a particular

agent requires diameter number of time steps to fuse information from the other agent for an entry which it

does not observe. In contrast with the classical case, the estimation of a particular entry of the parameter

effectively happens over the induced subgraph with respect to the particular entry which typically will have

smaller diameter as compared to the original graph. In conclusion, forcing an agent to obtain estimates of all

parameter components may actually slow down the overall process in many scenarios of interest (especially

situations involving large graphs with poor connectivity), as some of these components are only observed at

agents geographically distant from the agent under consideration.
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7.7 Summary of Contributions

• Generalized consensus+innovations: Through CIRFE , we illustrated that the classical con-

sensus+innovations framework is a special case of CIRFE . In particular, we extended the idea of

consensus to a heterogeneous version which exhibits consensus to subspaces which is common to a few

agents. Such a construction, also threw light on the necessity of looking beyond global observability

and connectivity of the graph for establishing consistency of the estimate sequence.

• Lower Dimensional Message Exchange: We propose a scheme, namely CIRFE , where each entity

reconstructs only a subset of the components of the state modeled by a vector parameter, and thereby

also reducing the dimension of messages being communicated among the agents. Under mild conditions

of the connectivity of the network, we establish consistency of the estimate sequence at each agent with

respect to the components of the parameters in its interest set. The proposed scheme allows hetero-

geneity in terms of agents’ objectives, while still allowing for inter-agent collaboration. Technically

speaking, the heterogeneity in terms of agents’ objectives seeks for consensus in agents’ estimates only

in terms of the components in their interest sets rather than the entire high-dimensional parameter

vector as in the case of other distributed estimation algorithms proposed in Kar and Moura (2011); Das

and Mesbahi (2006); Schizas et al. (2008a); Lopes and Sayed (2008); Stankovic et al. (2007); Schizas

et al. (2008b); Ram et al. (2010b); Sahu and Kar (2016).

7.8 Conclusion and Future Directions

In this chapter, we have proposed a consensus + innovations type algorithm, CIRFE , for estimating a

high-dimensional parameter or field that exhibits a cyber-physical flavor. In the proposed algorithm, every

agent updates its estimate of a few components of the high-dimensional parameter vector by simultaneous

processing of neighborhood information and local newly sensed information and in which the inter-agent

collaboration is restricted to a possibly sparse communication graph. Under rather generic assumptions we

establish the consistency of the parameter estimate sequence and characterize the asymptotic variance of the

proposed estimator. A natural direction for future research consists of considering models with non-linear

observation functions and extension of the proposed algorithm CIRFE to quantized communication schemes

in the lines of Kar et al. (2012) and Zhang et al. (2017).
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Distributed Optimization
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Chapter 8

Communication Efficient Stochastic

Optimization: First Order

8.1 Introduction

Distributed optimization and learning algorithms attract a great interest in recent years, thanks to their

widespread applications including distributed estimation in networked systems, e.g., Kar and Moura (2011),

distributed control, e.g., Bullo et al. (209), and big data analytics, e.g., Daneshmand et al. (2015).

In this chapter, we study communication efficient distributed stochastic optimization algorithms that oper-

ate over random networks and minimize smooth strongly convex costs. We consider standard distributed

stochastic gradient methods where at each time step, each node makes a weighted average of its own and

its neighbors’ solution estimates, and performs a step in the negative direction of its noisy local gradient.

Before going to the communication efficient version, we first study distributed stochastic optimization over

random networks. The underlying network is allowed to be randomly varying, similarly to, e.g., the models

in Lobel and Ozdaglar (2011); Lobel et al. (2011); Jakovetic et al. (2014b). More specifically, the network is

modeled through a sequence of independent identically distributed (i.i.d.) graph Laplacian matrices, where

the network is assumed to be connected on average. (This translates into the requirement that the alge-

braic connectivity of the mean Laplacian matrix is strictly positive.) Random network models are highly

relevant in, e.g., internet of things (IoT) and cyber physical systems (CPS) applications, like, e.g., predictive

maintenance and monitoring in industrial manufacturing systems, monitoring smart buildings, etc. Therein,

networked nodes often communicate through unreliable/intermittent wireless links, due to, e.g., low-power

transmissions or harsh environments.

We show that, by carefully designing the consensus and the gradient weights (potentials), the considered dis-

tributed stochastic gradient algorithm achieves the order-optimal O(1/k) rate of decay of the mean squared

distance from the solution (mean squared error – MSE). This is achieved for twice continuously differen-

tiable strongly convex local costs, assuming also that the noisy gradients are unbiased estimates of the true

gradients and that the noise in gradients has bounded second moment. To the best of our knowledge, this

is the first time an order-optimal convergence rate for distributed strongly convex stochastic optimization

has been established for random networks. For the communication efficient first order distributed stochastic

optimization, we propose a novel method that is shown to achieve the O(1/(Ccomm)4/3−ζ) MSE communi-

cation rate. At the same time, the proposed method retains the order-optimal O(1/(Ccomp)) MSE rate in

terms of the computational cost, the best achievable rate in the corresponding centralized setting.
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8.2 Related Work

We now briefly review the literature. In the context of the extensive literature on distributed optimization,

the most relevant to our work are the references on: 1) distributed strongly convex stochastic (sub)gradient

methods; and 2) distributed (sub)gradient methods over random networks (both deterministic and stochastic

methods). For the former thread of works, several papers give explicit convergence rates under different

assumptions. Regarding the underlying network, references Tsianos and Rabbat (2012); Towfic et al. (2016)

consider static networks, while the works Yuan et al. (2018); Vanli et al. (2017); Nedic and Olshevsky (2016)

consider deterministic time-varying networks.

References Tsianos and Rabbat (2012); Towfic et al. (2016) consider distributed strongly convex optimiza-

tion for static networks, assuming that the data distributions that underlie each node’s local cost function

are equal (reference Tsianos and Rabbat (2012) considers empirical risks while reference Towfic et al. (2016)

considers risk functions in the form of expectation); this essentially corresponds to each nodes’ local func-

tion having the same minimizer. References Yuan et al. (2018); Vanli et al. (2017); Nedic and Olshevsky

(2016) consider deterministically varying networks, assuming that the “union graph” over finite windows of

iterations is connected. The papers Tsianos and Rabbat (2012); Towfic et al. (2016); Yuan et al. (2018);

Vanli et al. (2017) assume undirected networks, while Nedic and Olshevsky (2016) allows for directed net-

works but assumes a bounded support for the gradient noise. The works Tsianos and Rabbat (2012); Yuan

et al. (2018); Vanli et al. (2017); Nedic and Olshevsky (2016) allow the local costs to be non-smooth, while

Towfic et al. (2016) assumes smooth costs, as we do here. With respect to these works, we consider random

networks, undirected networks, smooth costs, and allow the noise to have unbounded support.

Distributed optimization over random networks has been studied in Lobel and Ozdaglar (2011); Lobel et al.

(2011); Jakovetic et al. (2014b). References Lobel and Ozdaglar (2011); Lobel et al. (2011) consider non-

differentiable convex costs and no (sub)gradient noise, while reference Jakovetic et al. (2014b) considers

differentiable costs with Lipschitz continuous and bounded gradients, and it also does not allow for gradient

noise, i.e., it considers methods with exact (deterministic) gradients.

Finally, we review the class of works that are concerned with designing distributed methods that achieve

communication efficiency, e.g., Tsianos et al. (2012, 2013); Jakovetic et al. (2016); Lan et al. (2017); Wang

et al. (2016); Sahu et al. (2018e,d). In Wang et al. (2016), a data censoring method is employed in the

context of distributed least squares estimation to reduce computational and communication costs. However,

the communication savings in Wang et al. (2016) are a constant proportion with respect to a method

which utilizes all communications at all times, thereby not improving the order of the convergence rate.

References Tsianos et al. (2012, 2013); Jakovetic et al. (2016) also consider a different setup than we do here,

namely they study distributed optimization where the data is available a priori (i.e., it is not streamed).

This corresponds to an intrinsically different setting with respect to the one studied here, where actually

geometric MSE convergence rates are attainable with stochastic-type methods, e.g., Mokhtari and Ribeiro

(2016). In terms of the strategy to save communications, references Tsianos et al. (2012, 2013); Jakovetic

et al. (2016); Lan et al. (2017) consider, respectively, deterministically increasingly sparse communication, an

adaptive communication scheme, and selective activation of agents. These strategies are different from ours;

we utilize randomized, increasingly sparse communications in general. In references Sahu et al. (2018e,d),

we study distributed estimation problems and develop communication-efficient distributed estimators. The

problems studied in Sahu et al. (2018e,d) have a major difference with respect to the current chapter in that,

in Sahu et al. (2018e,d), the assumed setting yields individual nodes’ local gradients to evaluate to zero at

the global solution. In contrast, the model assumed here does not feature such property, and hence it is
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more challenging.

8.3 Problem Setup

The network of N agents in our setup collaboratively aim to solve the following unconstrained problem:

min
x∈Rd

N∑
i=1

fi(x), (8.1)

where fi : Rd 7→ R is a convex function available to node i, i = 1, ..., N . We make the following assumption

on the functions fi(·):

Assumption 8.2.1. For all i = 1, ..., N , function fi : Rd 7→ R is twice continuously differentiable with

Lipschitz continuous gradients. In particular, there exist constants L, µ > 0 such that for all x ∈ Rd,

µ I � ∇2fi(x) � LI.

From Assumption 8.2.1 we have that each fi, i = 1, · · · , N , is strongly convex with modulus µ. Using

standard properties of convex functions, we have for any x,y ∈ Rd:

fi(y) ≥ fi(x) +∇fi(x)> (y − x) +
µ

2
‖x− y‖2,

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

We consider distributed stochastic zeroth order optimization to solve (8.1) over random networks. Inter-

agent communication is modeled by a sequence of independent and identically distributed (i.i.d.) undirected

random networks: at each time instant k = 0, 1, ..., the underlying inter-agent communication network is

denoted by G(k) = (V,E(k)), with V = {1, ..., N} being the set of nodes and E(k) being the random set

of undirected edges. The edge connecting node i and j is denoted as {i, j}. The time-varying random

neighborhood of node i at time k (excluding node i) is represented as Ωi(k) = {j ∈ V : {i, j} ∈ E(k)}.
The graph Laplacian of the random graph G(k) at time k is given by L(k) ∈ RN×N , where L(k) is given by

Lij(k) = −1, if {i, j} ∈ E(k), i 6= j; Lij(k) = 0, if {i, j} /∈ E(k), i 6= j; and Lii(k) = −
∑
j 6=i Lij(k). It is to

be noted that the Laplacian at each time instant is symmetric and a positive semidefinite matrix. As the

considered graph sequence is i.i.d., we have that E[ L(k) ] = L. Let the graph corresponding to L be given

by G = (V,E).

We make the following assumption on G.

Assumption 8.2.2. The inter-agent communication graph is connected on average, i.e., G is connected. In

other words, λ2(L) > 0.

We denote by |L| the cardinality of a set of Laplacians chosen from the total number of possible Lapla-

cians (necessarily finite) so as to ensure p = infL∈L P (L(t) = L) > 0.

8.3.1 Gradient noise model and the algorithm

We consider the following distributed stochastic gradient method to solve (8.1). Each node i, i = 1, ..., N ,

maintains over time steps (iterations) k = 0, 1, ..., its solution estimate xi(k) ∈ Rm. Specifically, for arbitrary
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deterministic initial points xi(0) ∈ Rm, i = 1, ..., N , the update rule at node i and k = 0, 1, ..., is as follows:

xi(k + 1) = xi(k)− βk
∑

j∈Ωi(k)

(xi(k)− xj(k)) (8.2)

− αk (∇fi(xi(k)) + vi(k) ) .

The update (8.2) is performed in parallel by all nodes i = 1, ..., N . The algorithm iteration is realized as

follows. First, each node i broadcasts xi(k) to all its available neighbors j ∈ Ωi(k), and receives xj(k) from

all j ∈ Ωi(k). Subsequently, each node i, i = 1, ..., N makes update (8.2), which completes an iteration. In

(8.2), αk is the step-size that we set to αk = α0/(k + 1), k = 0, 1, ..., with α0 > 0; and βk is the (possibly)

time-varying weight that each node assigns to all its neighbors. We set βk = β0/(k + 1)ν , k = 0, 1, ..., with

ν ∈ [0, 1/2]. Here, β0 > 0 is a constant that should be taken to be sufficiently small; e.g., one can set

β0 = 1/(1 + θ), where θ is the maximal degree (number of neighbors of a node) across network. Finally,

vi(k) is noise in the calculation of the fi’s gradient at iteration k.

For future reference, we also present algorithm (8.2) in matrix format. Denote by x(k) =
[
x>1 (k), · · · ,x>N (k)

]> ∈
RNm the vector that stacks the solution estimates of all nodes. Also, define function F : RNm 7→ R, by

F (x) =
∑N
i=1 fi(xi), with x =

[
x>1 , · · · ,x>N

]> ∈ RNm. Finally, let Wk = (I− Lk)⊗Im, where Lk = βkL(k).

Then, for k = 0, 1, ..., algorithm (8.2) can be compactly written as follows:

x(k + 1) = Wkx(k)− αk (∇F (x(k)) + v(k)) . (8.3)

We make the following standard assumption on the gradient noises. First, denote by Fk the history of

algorithm (8.2) up to time k; that is, Fk, k = 1, 2, ..., is an increasing sequence of sigma algebras, where Fk
is the sigma algebra generated by the collection of random variables {L(s), vi(t)}, i = 1, ..., N , s = 0, ..., k−1,

t = 0, ..., k − 1.

Assumption 8.3.2. For each i = 1, ..., N , the sequence of measurement noises {v̂i(k)} satisfies for all

k = 0, 1, ...:

E[ v̂i(k) | Fk ] = 0, almost surely (a.s.)

E[ ‖v̂i(k)‖2 | Fk ] ≤ cf‖xi(k)‖2 + σ2, a.s., (8.4)

where cf and σ2 are nonnegative constants.

It is to be noted that assumption 8.3.2 is trivially satisfied, when {vi(k)} is an i.i.d. zero-mean, finite second

moment, noise sequence such that vi(k) is also independent of the history Fk. However, the assumption

allows the noise to be dependent on the current iterate at all times.

8.3.2 A machine learning motivation

The optimization-algorithmic model defined by Assumptions 8.2.1 and 8.3.2 subsumes, e.g., important ma-

chine learning applications. Consider the scenario where fi corresponds to the risk function associated with

the node i’s local data, i.e.,

fi(x) = Edi∼Pi [ `i (x; di) ] + Ψi(x). (8.5)

Here, Pi is node i’s local distribution according to which its data samples di ∈ Rq are generated; `i(·; ·) is a

loss function that is convex in its first argument for any fixed value of its second argument; and Ψ : Rm → R
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is a strongly convex regularizer. Similarly, fi can be an empirical risk function:

fi(x) =
1

ni

 ni∑
j=1

`i (x; di,j)

+ Ψi(x), (8.6)

where di,j , j = 1, ..., ni, is the set of training examples at node i. Examples for the loss `i(·; ·) include the

following:

`i(x; ai, bi) =
1

2

(
a>i x− bi

)2
(quadratic loss) (8.7)

`i(x; ai, bi) = ln
(

1 + exp(−bi(a>i x))
)

(logistic loss)

For the quadratic loss above, a data sample di = (ai, bi), where ai is a regressor vector and bi is a response

variable; for the logistic loss, ai is a feature vector and bi ∈ {−1,+1} is its class label. Clearly, both the risk

(8.5) and the empirical risk (8.6) satisfy Assumption 8.2.1 for the losses in (8.7).

We next discuss the search directions in (8.2) and Assumption 8.3.2 for the gradient noise. A common search

direction in machine learning algorithms is the gradient of the loss with respect to a single data point1:

gi(x) = ∇`i (x; di) +∇Ψi(x).

In case of the risk function (8.7), di is drawn from distribution Pi; in case of the empirical risk (8.6), di

can be, e.g., drawn uniformly at random from the set of data points di,j , j = 1, ..., ni, with repetition along

iterations. In both cases, gradient noise vi = gi(x)−∇fi(x) clearly satisfies assumption (8.3.2). To see this,

consider, for example, the risk function (8.5), and let us fix iteration k and node i’s estimate xi(k) = xi.

Then,

E [vi(k) | Fk] = E [gi(k)−∇fi(xi(k)) |xi(k) = xi]

= E[∇`i (xi(k); di) |xi(k) = xi] +∇Ψi(xi)

− (∇fi(xi) +∇Ψi(x))

= Edi∼Pi [∇`i (x; di)] +∇Ψi(xi)

− (Edi∼Pi [∇`i (x; di)] +∇Ψi(xi)) = 0.

Further, for the empirical risk, assumption (8.3.2) holds trivially. For the risk function (8.5), assump-

tion (8.3.2) holds for a sufficiently “regular” distribution Pi. For instance, it is easy to show that the

assumption holds for the logistic loss in (8.7) when Pi has finite second moment, while it holds for the square

loss in (8.7) when Pi has finite fourth moment.

Note that our setting allows that the data generated at different nodes be generated through different

distributions Pi, as well as that the nodes utilize different losses `i’s and regularizers Ψi’s. Mathematically,

this means that ∇fi(x?) 6= 0, in general. In words, if a node i relies only on its local data di, it cannot

recover the true solution x?. Nodes then engage in a collaborative algorithm (8.2) through which, as shown

ahead, they can recover the global solution x?.

1Similar considerations hold for a loss with respect to a mini-batch of data points; this discussion is abstracted for simplicity.
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8.4 Performance Analysis

8.4.1 Statement of main results and auxiliary lemmas

We are now ready to state our main result.

Theorem 8.4.1. Consider algorithm (8.2) with step-sizes αk = α0

k+1 and βk = β0

(k+1)ν , where β0 > 0,

α0 > 2N/µ, and ν ∈ [0, 1/2]. Then, for each node i’s solution estimate xi(k) and the solution x? of

problem (8.1), there holds:

E
[
‖xi(k)− x?‖2

]
= O(1/k).

We remark that the condition α0 > 2N/µ can be relaxed to require only a positive α0, in which case the

rate becomes O(ln(k)/k), instead of O(1/k).2 Also, to avoid large step-sizes at initial iterations for a large

α0, step-size αk can be modified to αk = α0/(k+ k0), for arbitrary positive constant k0, and Theorem 8.4.1

continues to hold. Theorem 8.4.1 establishes the O(1/k) MSE rate of convergence of algorithm (8.2); due to

the assumed fi’s strong convexity, the theorem also implies that E [f(xi(k))− f(x?)] = O(1/k). Note that

the expectation in Theorem 8.4.1 is both with respect to randomness in gradient noises and with respect

to the randomness in the underlying network. The O(1/k) rate does not depend on the statistics of the

underlying random network, as long as the network is connected on average (i.e., satisfies Assumption 8.2.2.)

The hidden constant depends on the underlying network statistics, but simulation examples suggest that

the dependence is usually not strong (see Section 4).

Proof strategy and auxiliary lemmas. Our strategy for proving Theorem 8.4.1 is as follows. We

first establish the mean square boundedness (uniform in k) of the iterates xi(k), which also implies the

uniform mean square boundedness of the gradients ∇fi(xi(k)) (Subsection 3-B). We then bound, in the

mean square sense, the disagreements of different nodes’ estimates, i.e., quantities (xi(k)− xj(k)), showing

that E[ ‖xi(k)− xj(k)‖2 ] = O(1/k) (Subsection 3-C). This allows us to show that the (hypothetical) global

average of the nodes’ solution estimates x(k) := 1
N

∑N
i=1 xi(k) evolves according to a stochastic gradient

method with the gradient estimates that have a sufficiently small bias and finite second moment. This allows

us to show the O(1/k) rate on the mean square error at the global average, which in turn allows to derive a

similar bound at the individual nodes’ estimates (Subsection 3-D).

In completing the strategy above, we make use of the following Lemma; the Lemma is a minor modification

of Lemmas 4 and 5 in Kar and Moura (2011).

Lemma 8.4.2. Let z(k) be a nonnegative (deterministic) sequence satisfying:

z(k + 1) ≤ (1− r1(k)) z1(k) + r2(k),

where {r1(k)} and {r2(k)} are deterministic sequences with

a1

(k + 1)δ1
≤ r1(k) ≤ 1 and r2(k) ≤ a2

(k + 1)δ2
,

with a1, a2, δ1, δ2 > 0. Then, (a) if δ1 = δ2 = 1, there holds: z(k) = O(1); (b) if δ1 = 1/2 and δ2 = 3/2, then

z(k) = O(1/k); and (c) if δ1 = 1, δ2 = 2, and a1 > 1, then z(k) = O(1/k).

2This subtlety comes from equation (32) ahead and the requirement that c20 > 1. If c20 ≤ 1, it can be shown that in (8.32)
the right hand side modifies to a O(ln(k)/k) quantity.
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Subsequent analysis in Subsections 3-b until 3-d restricts to the case when ν = 1/2, i.e., when consensus

weights equal βk = β0

(k+1)1/2 . That is, for simplicity of presentation, we prove Theorem 8.4.1 for case ν = 1/2.

As it can be verified in subsequent analysis, the proof of Theorem 8.4.1 extends to a generic µ ∈ [0, 1/2) as

well. As another step in simplifying notations, throughout Subsections 3-b and 3-c, we let m = 1 to avoid

extensive usage of Kronecker products; again, the proofs extend to a generic m > 1.

8.4.2 Mean square boundedness of the iterates

This Subsection shows the uniform mean square boundedness of the algorithm iterates and the gradients

evaluated at the algorithm iterates.

Lemma 8.4.3. Consider algorithm (8.2), and let Assumptions 1-3 hold. Then, there exist nonnegative

constants cx and c ∂f such that, for all k = 0, 1, ..., there holds:

E[ ‖x(k)‖2 ] ≤ cx and E[ ‖∇F (x(k))‖2 ] ≤ c ∂f .

Proof.

Denote by xo = x∗1N and recall (8.3). Then, we have:

x(k + 1)− xo = Wk(x(k)− xo) (8.8)

− αk (∇F (x(k))−∇F (xo))

− αkv(k)− αk∇F (xo).

By mean value theorem, we have:

∇F (x(k))−∇F (xo) (8.9)

=

[∫ 1

s=0

∇2F (xo + s(x(k)− xo)) d s

]
(x(k)− xo)

= Hk (x(k)− xo) .

Note that LI < Hk < µI. Using (8.9) in (8.8) we have:

x(k + 1)− xo = (Wk − αkHk) (x(k)− xo) (8.10)

− αkv(k)− αk∇F (xo).

Denote by ζ(k) = x(k)− xo and by ξ(k) = (Wk − αkHk) (x(k)− xo)− αk∇F (xo). Then, there holds:

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ ‖ξ(k)‖2

− 2αk ξ(k)>E[ v(k) | Fk ] + α2
k E[ ‖v(k)‖2 | Fk ]

≤ ‖ξ(k)‖2 +N α2
k (cv ‖x(k)‖2 + c′v), a.s., (8.11)

where we used Assumption 8.3.2 and the fact that ξ(k) is measurable with respect to Fk. We next bound

‖ξ(k)‖2. Note that ‖Wk − αkHk‖ ≤ 1 − µαk for sufficiently large k. Therefore, we have for sufficiently

large k:

‖ξ(k)‖ ≤ (1− µαk) ‖ζ(k)‖+ αk ‖∇F (xo)‖. (8.12)
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We now use the following inequality:

(a+ b)2 ≤ (1 + θ) a2 +

(
1 +

1

θ

)
b2, (8.13)

for any a, b ∈ R and θ > 0. We set θ = c0
k+1 , with c0 > 0. Using the inequality (8.13) in (8.12), we have:

‖ξ(k)‖2 ≤
(

1 +
c0

k + 1

)
(1− αkµ)2

× ‖ζ(k)‖2 +

(
1 +

k + 1

c0

)
α2
k‖∇F (xo)‖2.

Next, for c0 < α0µ, the last inequality implies:

‖ξ(k)‖2 ≤
(

1− c1
k + 1

)
‖ζ(k)‖2 (8.14)

+
c2

k + 1
‖∇F (xo)‖2,

for some constants c1, c2 > 0. Combining (8.14) and (8.11), we get:

E[ ‖ζ(k + 1)‖2 | Fk ] ≤
(

1− c′1
k + 1

)
‖ζ(k)‖2

+
c′2

k + 1
, (8.15)

for some c′1, c
′
2 > 0. Taking expectation in (8.15) and applying Lemma 8.4.2, it follows that E[ ‖ζ(k)‖2 ] =

E[ ‖x(k) − xo‖2 ] is uniformly (in k) bounded from above by a positive constant. It is easy to see that the

latter implies that E[ ‖x(k)‖2 ] is also uniformly bounded. Using the Lipschitz continuity of ∇F , we finally

also have that E[ ‖∇F (x(k))‖2 ] is also uniformly bounded. The proof of Lemma 8.4.3 is now complete.

8.4.3 Disagreement bounds

Recall the (hypothetically available) global average of nodes’ estimates x(k) = 1
N

∑N
i=1 xi(k), and denote

by x̃i(k) = xi(k) − x(k) the quantity that measures how far apart is node i’s solution estimate from the

global average. Introduce also vector x̃(k) = ( x̃1(k), ..., x̃N (k) )>, and note that it can be represented as

x̃(k) = (I− J) x(k), where we recall J = 1
N 11>. We have the following Lemma.

Lemma 8.4.4. Consider algorithm (8.2) under Assumptions 1–3. Then, there holds:

E[ ‖x̃(k)‖2 ] = O(1/k).

As detailed in the next Subsection, Lemma 8.4.4 is important as it allows to sufficiently tightly bound the

bias in the gradient estimates according to which the global average x(k) evolves.

Proof. It is easy to show that the process {x̃(k)} follows the recursion:

x̃(k + 1) = W̃(k)x̃(k)− αk (I− J) (∇F (x(k)) + v(k))︸ ︷︷ ︸
w(k)

, (8.16)
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where W̃(k) = W(k)−J = I−L(k)−J. Note that, E
[
‖w(k)‖2

]
≤ c7 <∞, which follows due to the mean

square boundedness of x(k) and ∇F (x(k)). Then, we have:

‖x̃(k + 1)‖ ≤
∥∥∥W̃(k)

∥∥∥ ‖x̃(k)‖+ αk ‖w(k)‖ .

We now invoke Lemma 4.4 in Kar et al. (2013b) to note that, after an appropriately chosen k1, we have for

∀k ≥ k1,

‖x̃(k + 1)‖ ≤ (1− r(k)) ‖x̃(k)‖+ αk ‖w(k)‖ , (8.17)

with r(k) being a Fk-adapted process that satisfies r(k) ∈ [0, 1], a.s., and:

E [r(k)|Fk] ≥ c8βk =
c9

(k + 1)
1
2

a.s., (8.18)

for some constants c8, c9 > 0. Using (8.13) in (8.17), we have:

‖x̃(k + 1)‖2 ≤ (1 + θk) (1− r(k))2 ‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k ‖w(k)‖2 ,

for θk = c10

(k+1)
1
2

. Then, we have:

E
[
‖x̃(k + 1)‖2 |Fk

]
≤ (1 + θk)

(
1− c9

(k + 1)
1
2

)2

‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k E[ ‖w(k)‖2 | Fk ], a.s.

Next, for c10 < c9 (c10 can be chosen freely), we have:

E
[
‖x̃(k + 1)‖2

]
≤
(

1− c11

(k + 1)
1
2

)
E
[
‖x̃(k)‖2

]
(8.19)

+
c12

(k + 1)
3
2

Utilizing Lemma 8.4.2, inequality (8.19) finally yields E
[
‖x̃(k + 1)‖2

]
= O

(
1
k

)
. The proof of the Lemma is

complete.

8.4.4 Proof of Theorem 8.4.1

We are now ready to prove Theorem 8.4.1.

Proof.

Consider global average x(k) = 1
N

∑
n=1 xi(k). From (8.16), we have:

x(k + 1) = x(k)− αk

 1

N

N∑
i=1

∇fi (xi(k)) +
1

N

N∑
i=1

vi(k)︸ ︷︷ ︸
v(k)
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which implies:

x(k + 1) = x(k)− αk
N

[
N∑
i=1

∇fi (xi(k))

−∇fi (x(k)) +∇fi (x(k))]− αkv(k).

Recall f(·) =
∑N
i=1 fi(·). Then, we have:

x(k + 1) = x(k)− αk
N
∇f (x(k)) (8.20)

− αk
N

[
N∑
i=1

∇fi (xi(k))−∇fi (x(k))

]
− αkv(k),

which implies:

x(k + 1) = x(k) (8.21)

− αk
N

[∇f (x(k)) + e(k)] ,

where

e(k) = Nv(k) +

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (8.22)

Note that, ‖∇fi (xi(k))−∇fi (x(k))‖ ≤ L ‖xi(k)− x(k)‖ = L ‖x̃i(k)‖. Thus, we can conclude for

ε(k) =

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))

the following:

E
[
‖ε(k)‖2

]
≤ c15

(k + 1)
. (8.23)

Note here that (8.21) is an inexact gradient method for minimizing f with step size αk/N and the random

gradient error e(k) = Nv(k) + ε(k). The term Nv(k) is zero-mean, while the gradient estimate bias is

induced by ε(k); as per (8.23), the bias is at most O(1/k) in the mean square sense.

With the above development in place, we rewrite (8.20) as follows:

x(k + 1) = x(k)− αk
N
∇f (x(k))− αk

N
ε(k)− αkv(k). (8.24)

This implies, recalling that x? is the solution to (8.1):

x(k + 1)− x? = x(k)− x? (8.25)

− αk
N

∇f (x(k))−∇f (x?)︸ ︷︷ ︸
= 0

− αk
N
ε(k)− αkv(k). (8.26)
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By the mean value theorem, we have:

∇f (x(k))−∇f (x?) =

[∫ 1

s=0

∇2f (x? + s (x(k)− x?))

]
d s︸ ︷︷ ︸

Hk

× (x(k)− x?) , (8.27)

where it is to be noted that NL < Hk < Nµ. Using (8.27) in (8.24), we have:

(x(k + 1)− x?) =
[
I− αk

N
Hk

]
(x(k)− x?) (8.28)

− αk
N
ε(k)− αkv(k).

Denote by m(k) =
[
I− αk

N Hk

]
(x(k)− x?)− αk

N ε(k). Then, (8.28) is rewritten as:

(x(k + 1)− x?) = m(k)− αkv(k), (8.29)

and so:

‖x(k + 1)− x?‖2 ≤ ‖m(k)‖2 − 2αkm(k)>v(k)

+ α2
k ‖v(k)‖2 .

The latter inequality implies:

E[ ‖x(k + 1)− x?‖2 | Fk ] ≤ ‖m(k)‖2

− 2αkm(k)>E[ v(k) | Fk ] + α2
kE[ ‖v(k)‖2 | Fk], a.s.

Taking expectation, using the fact that E[ v(k) | Fk ] = 0, Assumption 8.3.2, and Lemma 8.4.3, we obtain:

E
[
‖x(k + 1)− x?‖2

]
≤ E

[
‖m(k)‖2

]
+

c17

(k + 1)2
, (8.30)

for some constant c17 > 0. Next, using (8.13), we have for m(k) the following:

‖m(k)‖2 ≤ (1 + θk)
∥∥∥I− αk

N
Hk

∥∥∥2

‖x(k)− x?‖2

+

(
1 +

1

θk

)
α2
k

N2
‖ε(k)‖2

≤ (1 + θk) (1− c18αk)2 ‖x(k)− x?‖2

+

(
1 +

1

θk

)
α2
k

N2
‖ε(k)‖2 ,

with c18 = µ/N , because µ I � Hk � L I. After choosing θk = c19

(k+1) such that c19 < α0 c18/2 = α0 µ/(2N)

and after taking expectation, we obtain:

E[ ‖m(k)‖2 ] ≤
(

1− c20

k + 1

)
E[ ‖x(k)− x?‖2 ] +

c21

(k + 1)2
, (8.31)
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where c20 > α0 µ/(2N) > 1 (because α0 > 2N/µ) and c21 is a positive constant. Combining (8.31) and

(8.30), we get:

E
[
‖x(k + 1)− x?‖2

]
≤
(

1− c20

k + 1

)
‖x(k)− x?‖2

+
c21

(k + 1)2
+

c17

(k + 1)2
.

Invoking Lemma 8.4.2, the latter inequality implies:

E
[
‖x(k + 1)− x?‖2

]
≤ c22

(k + 1)
, (8.32)

for some constant c22 > 0. Therefore, for the global average x(k), we have obtained the mean square rate

O
(

1
k

)
. Finally, we note that,

‖xi(k)− x?‖ ≤ ‖x(k)− x?‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥ . (8.33)

After using:

‖xi(k)− x?‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x?‖2 ,

and taking expectation, it follows that E
[
‖xi(k)− x?‖2

]
= O

(
1
k

)
, for all i = 1, ..., N . The proof is complete.

8.5 Communication Efficient Distributed Stochastic Optimization

In this section, we develop the communication efficient distributed stochastic optimization. We consider

distributed stochastic gradient methods to solve (8.1). That is, we study algorithms of the following form:

xi(k + 1) = xi(k)−
∑

j∈Ωi(k)

γi,j(k) (xi(k)− xj(k))

− αkĝi(xi(k)), (8.34)

where the weight assigned to an incoming message γi,j(k) and the neighborhood of an agent Ωi(k) are

determined by the specific instance of the designated communication protocol. The approximated gradient

ĝi(xi(k)) is specific to the optimization, i.e., whether it is a zeroth order optimization or a first order

optimization scheme. Technically speaking, a first order optimization scheme approximates the gradient as

an unbiased estimate of the gradient. In the case of first order optimization, the agents query a stochastic

first order oracle (SFO) and receive unbiased estimates of the gradient. In subsequent sections, we will

explore the gradient approximations in greater detail. Before stating the algorithms, we first discuss the

communication scheme. Specifically, we adopt the following model.

8.5.1 Communication Scheme

The inter-node communication network to which the information exchange between nodes conforms to is

modeled as an undirected simple connected graph G = (V,E), with V = [1 · · ·N ] and E denoting the

set of nodes and communication links. The neighborhood of node n is given by Ωn = {l ∈ V | (n, l) ∈ E}.
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The node n has degree dn = |Ωn|. The structure of the graph is described by the N × N adjacency

matrix, A = A> = [Anl], Anl = 1, if (n, l) ∈ E, Anl = 0, otherwise. The graph Laplacian L = D − A

is positive semidefinite, with eigenvalues ordered as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L), where D is

given by D = diag (d1 · · · dN ). Thus, L corresponds to the maximal graph, i.e., the graph of all allowable

communications. We now describe our randomized communication protocol that selects a (random) subset

of the allowable links at each time instant for information exchange.

For each node i, at every time k, we introduce a binary random variable ψi,k, where

ψi,k =

ρk with probability ζk

0 otherwise,
(8.35)

where ψi,k’s are independent both across time and the nodes, i.e., across k and i respectively. The random

variable ψi,k abstracts out the decision of the node i at time k whether to participate in the neighborhood

information exchange or not. We specifically take ρk and ζk of the form

ρk =
ρ0

(k + 1)ε/2
, ζk =

ζ0
(k + 1)(τ/2−ε/2)

, (8.36)

where 0 < τ ≤ 1
2 and 0 < ε < τ . Furthermore, define βk to be

βk = (ρkζk)2 =
β0

(k + 1)τ
, (8.37)

where β0 = ρ2
0ζ

2
0 . With the above development in place, we define the random time-varying Laplacian L(k),

where L(k) ∈ RN×N abstracts the inter-node information exchange as follows:

Li,j(k) =


−ψi,kψj,k {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E∑
l 6=i ψi,kψl,k i = j.

(8.38)

The above communication protocol allows two nodes to communicate only when the link is established

in a bi-directional fashion and hence avoids directed graphs. The design of the communication protocol

as depicted in (8.35)-(8.38) not only decays the weight assigned to the links over time but also decays the

probability of the existence of a link. Such a design is consistent with frameworks where the agents have

finite power and hence not only the number of communications, but also, the quality of the communication

decays over time. We have, for {i, j} ∈ E and i 6= j:

E [Li,j(k)] = − (ρkζk)2 = −βk = − β0

(k + 1)τ

E
[
L2
i,j(k)

]
=
(
ρ2
kζk
)2

=
ρ2

0β0

(k + 1)τ+ε
. (8.39)

Thus, we have that, the variance of Li,j(k) is given by,

Var (Li,j(k)) =
β0ρ

2
0

(k + 1)τ+ε
− β2

0

(k + 1)2τ
. (8.40)

Define, the mean of the random time-varying Laplacian sequence {L(k)} as Lk = E [L(k)] and L̃(k) =

L(k)− Lk. Note that, E
[
L̃(k)

]
= 0, and

E
[∥∥∥L̃(k)

∥∥∥2
]
≤ 4N2E

[
L̃2
i,j(k)

]
=

4N2β0ρ
2
0

(k + 1)τ+ε
− 4N2β2

0

(k + 1)2τ
, (8.41)
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where ‖·‖ denotes the L2 norm. The above equation follows by relating the L2 and Frobenius norms.

We also have that, Lk = βkL, where

Li,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−
∑
l 6=i Li,l i = j.

(8.42)

Technically speaking, the communication graph at each time k encapsulated as L(k) need not be connected

at all times, although the graph of allowable links G is connected.. In fact, at any given time k, only a

few of the possible links could be active. However, since Lk = βkL, we note that, by Assumption 8.2.2,

the instantaneous Laplacian L(k) is connected on average.The connectedness in average basically ensures

that over time, the information from each agent in the graph reaches other agents over time in a symmetric

fashion and thus ensuring information flow, while providing the leeway for the instantaneous communication

graphs at different times to be not connected.

We employ a primal algorithm for solving the optimization problem in (8.1). In particular, the update in

(8.34) can then be written in a vector form as follows:

x(k + 1) = Wkx(k)− αkĜ(x(k)), (8.43)

where x(k) =
[
x>1 (k), · · · ,x>N (k)

]> ∈ RNd, F (x) =
∑N
i=1 fi(xi), x =

[
x>1 , · · · ,x>N

]> ∈ RNd, Ĝ(x(k)) =

[ĝ>i (xi(k)), · · · , ĝ>(xN (k))]> and Wk = (I− L(k)) ⊗ Id. We state an assumption on the weight sequences

before proceeding further.

Assumption 8.5.1. The weight sequence αk is given by α0/(k + 1), where α0 > 1/µ. For the sequence ρk
as defined in (8.36), it is chosen in such a way that,

ρ2
0 ≤

4N2

λ2

(
L
) . (8.44)

Communication Cost Define the communication cost Ck to be the expected per-node number of trans-

missions up to iteration k, i.e.,

Ck = E

[
k−1∑
s=0

I{node C transmits at s}

]
, (8.45)

where IA represents the indicator of event A. Note that the per-node communication cost in (8.45) is the

same as the network average of communication costs across all nodes, as the activation probabilities are

homogeneous across nodes. We now proceed to the main results pertaining to the proposed communication

efficient first order optimization schemes.

8.6 Convergence rates: Statement of main results and interpretations

We state the main result concerning the mean square error at each agent i next, while the proof is relegated

to Appendix G.

Theorem 8.6.1. Consider algorithm (8.2) with step-sizes αk = α0

k+1 and βk = β0

(k+1)1/2 , where β0 > 0 and

α0 > 2/µ.
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1) Then, for each node i’s solution estimate xi(k) and the solution x? of problem (8.1), , ∀k ≥ 0 there holds:

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
β2

0(k + 1)

+ 2Qk +
4∆1,∞α

2
0

λ2
2

(
L
)
β2

0(k + 1)
, (8.46)

where, ∆1,∞ = 2 ‖∇F (x(k))‖2+4cuq∞(N,α0)+4Nσ2
1 and q∞(N,α0) = E

[
‖x(k2)− xo‖2

]
+π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+

4 ‖∇F (xo)‖2
µ2 , k2 = max{k0, k1}, k0 = inf{k|µ2α2

k < 1} and k1 = inf
{
k|µ

2
> 2cuαk

}
, with Mk and Qk decaying

faster than the rest of the terms.

2) The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
,

leading to the following MSE-communication rate:

E
[
‖xi(k)− x?‖2

]
= O

(
C−

4
3

+ζ

k

)
, (8.47)

where ζ can be arbitrarily small.

We remark that the condition α0 > 2/µ can be relaxed to require only a positive α0, in which case the rate

becomes O(ln(k)/k), instead of O(1/k). Also, to avoid large step-sizes at initial iterations for a large α0,

step-size αk can be modified to αk = α0/(k + k0), for arbitrary positive constant k0, and Theorem 8.6.1

continues to hold. Theorem 8.6.1 establishes the O(1/k) MSE rate of convergence of algorithm (8.2); due to

the assumed fi’s strong convexity, the theorem also implies that E [f(xi(k))− f(x?)] = O(1/k).

8.7 Simulation example

We provide a simulation example on `2-regularized logistic losses and random networks where links fail

independently over iterations and across different links, with probability pfail. The simulation corroborates

the derived O(1/k) rate of algorithm (8.2) over random networks and shows that deterioration due to increase

of pfail is small.

We consider empirical risk minimization (8.6) with the logistic loss in (8.7) and the regularization functions

set to Ψi(x) = κ
2 ‖x‖

2, i = 1, ..., N , where κ > 0 is the regularization parameter that is set to κ = 0.5.

The number of data points per node is ni = 10. We generate the “true” classification vector x′ = ((x′1)>, x′0)>

by drawing its entries independently from standard normal distribution. Then, the class labels are generated

as bij = sign
(
(x′1)>ai,j + x′0 + εij

)
, where εij ’s are drawn independently from normal distribution with zero

mean and standard deviation 2. The feature vectors ai,j , j = 1, ..., ni, at node i are generated as follows:

each entry of each vector is a sum of a standard normal random variable and a uniform random variable

with support [0, 5 i]. Different entries within a feature vector are drawn independently, and also different

vectors are drawn independently, both intra node and inter nodes. Note that the feature vectors at different

nodes are drawn from different distributions.

The algorithm parameters are set as follows. We let βk = 1
θ (k+1)1/2 , αk = 1

k+1 , k = 0, 1, ... Here, θ is the

maximal degree across all nodes in the network and here equals θ = 6. Algorithm (8.2) is initialized with

xi(0) = 0, for all i = 1, ..., N .



CHAPTER 8. COMMUNICATION EFFICIENT STOCHASTIC OPTIMIZATION: FIRST ORDER 138

We consider a connected network G with N = 10 nodes and 23 links, generated as a random geometric graph:

nodes are placed randomly (uniformly) on a unit square, and the node pairs whose distance is less than a

radius are connected by an edge. We consider the random network model where each (undirected) link in

network G fails independently across iterations and independently from other links with probability pfail.

We consider the cases pfail ∈ {0; 0.5; 0.9}. Note that the case pfail = 0 corresponds to network G with all

its links always online, more precisely, with links failing with zero probability. Algorithm (8.2) is then run

on each of the described network models, i.e., for each pfail ∈ {0; 0.5; 0.9}. This allows us to assess how

much the algorithm performance degrades with the increase of pfail. We also include a comparison with the

following centralized stochastic gradient method:

y(k + 1) = y(k)− 1

N(k + 1)

N∑
i=1

∇` ( y(k); ai(k), bi(k) ) , (8.48)

where (ai(k), bi(k)) is drawn uniformly from the set (ai,j , bi,j), j = 1, ..., ni. Note that algorithm (8.48)

makes an unbiased estimate of
∑N
i=1∇fi(y(k)) by drawing a sample uniformly at random from each node’s

data set. Algorithm (8.48) is an idealization of (8.2): it shows how (8.2) would be implemented if there

existed a fusion node that had access to all nodes’ data. Hence, the comparison with (8.48) allows us

to examine how much the performance of (8.2) degrades due to lack of global information, i.e., due to

the distributed nature of the considered problem. Note that step-size in (8.48) is set to 1/N(k + 1) for

a meaningful comparison with (8.2), as this is the step-size effectively utilized by the hypothetical global

average of the nodes’ iterates with (8.2). As an error metric, we use the mean square error (MSE) estimate

averaged across nodes: 1
N

∑N
i=1 ‖xi(k)− x?‖2.

Figure 1 plots the estimated MSE, averaged across 100 algorithm runs, versus iteration number k for different

values of parameter pfail in log10-log10 scale. Note that here the slope of the plot curve corresponds to the

sublinear rate of the method; e.g., the −1 slope corresponds to a 1/k rate. First, note from the Figure that,

for any value of pfail, algorithm (8.2) achieves on this example (at least) the 1/k rate, thus corroborating our

theory. Next, note that the increase of the link failure probability only increases the constant in the MSE

but does not affect the rate. (The curves that correspond to different values of pfail are “vertically shifted.”)

Interestingly, the loss due to the increase of pfail is small; e.g., the curves that correspond to pfail = 0.5

and pfail = 0 (no link failures) practically match. Figure 1 also shows the performance of the centralized

method (8.48). We can see that, except for the initial few iterations, the distributed method (8.2) is very

close in performance to the centralized method. In Figure 8.2, the test error of the communication efficient

first order optimization scheme is compared with the test error of the benchmark scheme which refers to the

optimization scheme with the communication graph abstracted by a static Laplacian in terms of iterations

or equivalently the number of queries per agent to the stochastic first order oracle, i.e., gradient evaluations.

Figure 8.3 demonstrates the superiority of the proposed communication efficient first order optimization

scheme in terms of the test error versus communication cost as compared to the benchmark as predicted by

Theorem 8.6.1. For example, at the same relative test error level, the proposed algorithm uses up to 3x less

number of transmissions as compared to the benchmark scheme.

8.8 Contributions

• O(1/k) rate of decay: We showed that, by carefully designing the consensus and the gradient weights

(potentials), the considered distributed stochastic gradient algorithm achieves the order-optimal O(1/k)



CHAPTER 8. COMMUNICATION EFFICIENT STOCHASTIC OPTIMIZATION: FIRST ORDER 139

Figure 8.1: Estimated MSE versus iteration number k for algorithm (8.2) with link failure probability
pfail = 0 (red, solid line); 0.5 (blue, dashed line); and 0.9 (green, dash-dot line). The Figure also shows the
performance of the centralized stochastic gradient method in (8.48) (black, dotted line).
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Figure 8.2: Communication Efficient 1st order Optimization: Test Error vs Iteration
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Figure 8.3: Communication Efficient 1st order Optimization: Test Error vs Communication Cost

rate of decay of the mean squared distance from the solution (mean squared error – MSE). This is

achieved for twice continuously differentiable strongly convex local costs, assuming also that the noisy

gradients are unbiased estimates of the true gradients and that the noise in gradients has bounded

second moment. To the best of our knowledge, this is the first time an order-optimal convergence rate

for distributed strongly convex stochastic optimization has been established for random networks.

• O(1/(Ccomm)4/3−ζ) MSE communication rate: We developed novel methods for first order dis-

tributed stochastic optimization, based on a probabilistic inter-agent communication protocol that

increasingly sparsifies agent communications over time. For the first order distributed stochastic opti-

mization, we propose a novel method that is shown to achieve the O(1/(Ccomm)4/3−ζ) MSE communi-

cation rate. At the same time, the proposed method retains the order-optimal O(1/(Ccomp)) MSE rate

in terms of the computational cost, the best achievable rate in the corresponding centralized setting.

8.9 Conclusion

In this chapter, we considered a distributed stochastic gradient method for smooth strongly convex opti-

mization. Through the analysis of the considered method, we established for the first time the order optimal

O(1/k) MSE convergence rate for the assumed optimization setting when the underlying network is randomly

varying. Furthermore, we have developed and analyzed a novel class of methods for distributed stochastic

optimization of the first order that are based on increasingly sparse randomized communication protocols.

We have established for the proposed first order method explicit mean square error (MSE) convergence rates

with respect to (appropriately defined) computational cost Ccomp and communication cost Ccomm. The

proposed first order method achieves the O(1/(Ccomm)4/3−ζ) MSE communication rate, while maintaining

the order-optimal O(1/(Ccomp)) MSE computational rate. Numerical examples on real data demonstrate

the communication efficiency of the proposed methods.



Chapter 9

Communication-Efficient Stochastic

Optimization: Zeroth Order

9.1 Introduction

Stochastic optimization has taken a central role in problems of learning and inference making over large

data sets. Many practical setups are inherently distributed in which, due to sheer data size, it may not be

feasible to store data in a single machine or agent. Further, due to the complexity of the objective functions

(often, loss functions in the context of learning and inference problems), explicit computation of gradients

or exactly evaluating the objective at desired arguments could be computationally prohibitive. The class of

stochastic optimization problems of interest can be formalized in the following way:

min f(x) = minEξ∼P [F (x; ξ)] ,

where the information available to implement an optimization scheme usually involves gradients, i.e.,

∇F (x; ξ) or function values of F (x; ξ) itself. However, both the gradients and the function values are

only unbiased estimates of the gradients and the function values of the desired objective f(x). Moreover,

due to huge data sizes and distributed applications, the data is often split across different agents, in which

case the (global) objective reduces to the sum of N local objectives, F (x; ξ) =
∑N
i=1 Fi(x; ξ), where N

denotes the number of agents. Such kind of scenarios are frequently encountered in setups such as empirical

risk minimization in statistical learning Vapnik (1998). In order to address the aforementioned problem

setup, we study zeroth distributed stochastic strongly convex optimization over networks.

There are N networked nodes, interconnected through a preassigned possibly sparse communication graph,

that collaboratively aim to minimize the sum of their locally known strongly convex costs. We focus on

zeroth and first order distributed stochastic optimization methods, where at each time instant (iteration) k,

each node queries a stochastic zeroth order oracle (SZO) for a noisy estimate of its local function’s value at

the current iterate (zeroth order optimization). In the proposed stochastic optimization methods, an agent

updates its iterate at each iteration by simultaneously assimilating information obtained from the neighbor-

hood (consensus) and the queried information from the relevant oracle (innovations). In the light of the

aforementioned distributed protocol, our focus is then on examining the tradeoffs between the communica-

tion cost, measured by the number of per-node transmissions to their neighboring nodes in the network; and

computational cost, measured by the number of queries made to SZO (zeroth order optimization).

Contributions. Our main contributions are as follows. We first analyze a distributed zeroth order optimiza-

141
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tion scheme for strongly convex functions utilizing Kiefer Wolfowitz stochastic approximation. Furthermore,

we develop novel methods for zeroth order distributed stochastic optimization, based on a probabilistic

inter-agent communication protocol that increasingly sparsifies agent communications over time. For the

proposed zeroth order method, we establish the O(1/(Ccomm)8/9−ζ) mean square error (MSE) convergence

rate in terms of communication cost Ccomm, where ζ > 0 is arbitrarily small. At the same time, the method

achieves the order-optimal O(1/(Ccomp)2/3) MSE rate in terms of computational cost Ccomp in the context

of strongly convex functions with second order smoothness.

The achieved results reveal an interesting relation between the zeroth and first order distributed stochastic

optimization. Namely, as we show here, the zeroth order method achieves a slower MSE communication

rate than the first order method due to the (unavoidable) presence of bias in nodes’ local functions’ gradient

estimation. Interestingly, increasing the degree of smoothness1 p in cost functions coupled with a fine-tuned

gradient estimation scheme, adapted to the smoothness degree, effectively reduces the bias and enables the

zeroth order optimization mean square error to scale as O(1/(Ccomp)(p−1)/p). Thus, with increased smooth-

ness and appropriate gradient estimation schemes, the zeroth order optimization scheme gets increasingly

close in mean square error of its first order counterpart. In a sense, we demonstrate that the first order

(bias-free) stochastic optimization corresponds to the limiting case of the zeroth order stochastic optimiza-

tion when p→∞.

In more detail, the proposed distributed communication efficient stochastic methods work as follows. They

utilize an increasingly sparse communication protocol that we recently proposed in the context of distributed

estimation problems Sahu et al. (2018e). Therein, at each time step (iteration) k, each node participates

in the communication protocol with its immediate neighbors with a time-decreasing probability pk. The

probabilities of communicating are equal across all nodes, while the nodes’ decisions whether to communi-

cate or not are independent of the past and of the other nodes. Upon the transmission stage, if active, each

node makes a weighted average of its own solution estimate and the solution estimates received from all of

its communication-active (transmitting) neighbors, assigning to each neighbor a time-varying weight βk. In

conjunction with the averaging step, the nodes in parallel assimilate the obtained neighborhood information

and the local information through a local gradient approximation step – based on the noisy functions esti-

mates only – with step-size αk.

By structure, the proposed distributed zeroth and first order stochastic methods are of a similar nature,

expect for the fact that rather than approximating local gradients based on the noisy functions estimates in

the zeroth order case, the first order setup assumes noisy gradient estimates are directly available.

Brief literature review. We now briefly review the literature. In the context of the extensive literature on

distributed optimization, the most relevant to our work are the references that fall within the following three

classes of works: 1) distributed strongly convex stochastic optimization; 2) distributed optimization over

random networks (both deterministic and stochastic methods); and 3) distributed optimization methods

that aim to improve communication efficiency.

9.2 Related Work

While we pursue stochastic optimization in this chapter, the case of deterministic noiseless distributed

optimization has seen much progress (Boyd et al. (2011); Shi et al. (2015); Yuan et al. (2016, 2017)) and

more recently accelerated methods (Jakovetic et al. (2014a); Xi and Khan (2017)). For the first class of works,

1Degree of smoothness p refers to the function under consideration being p-times continuously differentiable with the p-th
order derivative being Lipschitz continuous.
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several papers give explicit convergence rates in terms of the iteration counter k, that here translates into

computational cost Ccomp or equivalently number of queries to SZO or SFO, under different assumptions.

Regarding the underlying network, references Tsianos and Rabbat (2012); Towfic et al. (2016) consider

static networks, while the works Yuan et al. (2018); Vanli et al. (2017); Nedic and Olshevsky (2016) consider

deterministic time-varying networks. They all consider first order optimization.

References Tsianos and Rabbat (2012); Towfic et al. (2016) consider distributed first order strongly convex

optimization for static networks, assuming that the data distributions that underlie each node’s local cost

function are equal (reference Tsianos and Rabbat (2012) considers empirical risks while reference Towfic

et al. (2016) considers risk functions in the form of expectation); this essentially corresponds to each nodes’

local function having the same minimizer. References Yuan et al. (2018); Vanli et al. (2017); Nedic and

Olshevsky (2016) consider deterministically varying networks, assuming that the “union graph” over finite

windows of iterations is connected. The papers Tsianos and Rabbat (2012); Towfic et al. (2016); Yuan et al.

(2018); Vanli et al. (2017) assume undirected networks, while Nedic and Olshevsky (2016) allows for directed

networks and assumes a bounded support for the gradient noise. The works Tsianos and Rabbat (2012);

Yuan et al. (2018); Vanli et al. (2017); Nedic and Olshevsky (2016) allow the local costs to be non-smooth,

while Towfic et al. (2016) assumes smooth costs, as we do here. With respect to these works, we consider

random networks (that are undirected and connected on average), smooth costs, and allow the noise to

have unbounded support. The authors of Hajinezhad et al. (2017) propose a distributed zeroth optimization

algorithm for non-convex minimization with a static graph, where a random directions-random smoothing

approach was employed.

For the second class of works, distributed optimization over random networks has been studied in Lobel

and Ozdaglar (2011); Lobel et al. (2011); Jakovetic et al. (2014b). References Lobel and Ozdaglar (2011);

Lobel et al. (2011) consider non-differentiable convex costs, first order methods, and no (sub)gradient noise,

while reference Jakovetic et al. (2014b) considers differentiable costs with Lipschitz continuous and bounded

gradients, first order methods, and it also does not allow for gradient noise, i.e., it considers methods with

exact (deterministic) gradients. Reference Jakovetic et al. (2018) considers distributed stochastic first order

methods and establishes the method’s O(1/k) convergence rate. References Sahu et al. (2018b) considers a

zeroth order distributed stochastic approximation method, which queries the SZO 2d times at each iteration

where d is the dimension of the optimizer and establishes the method’s O(1/k1/2) convergence rate in terms

of the number of iterations under first order smoothness.

In summary, each of the references in the two classes above is not primarily concerned with studying com-

munication rates of distributed stochastic methods. Prior work achieves order-optimal rates in terms of

computational cost (that translates here into the number of iterations k), both for the zeroth order, e.g.,

Sahu et al. (2018b), and for the first order, e.g., Jakovetic et al. (2018), distributed strongly convex op-

timization.2In contrast, we establish here communication rates as well. This chapter and our prior works

Sahu et al. (2018b,c) distinguish further from other works on distributed zeroth order optimization, e.g., Ha-

jinezhad et al. (2017); Duchi et al. (2015), in that, not only the gradient is approximated through function

values due to the absence of first order information, but also the function values themselves are subject to

noise. Reference Sahu et al. (2018c) considers a communication efficient zeroth order approximation scheme,

where the convergence rate is established to be O(1/k1/2) and the MSE-communication is improved to

O(1/(Ccomm)2/3−ζ). In contrast to Sahu et al. (2018c), with additional smoothness assumptions we improve

the convergence rate to O(1/k2/3) and the MSE-communication is further improved to O(1/(Ccomm)8/9−ζ).

2The works in the first two classes above utilize a non-diminishing amount of communications across iterations, and hence
they achieve at best the O(1/(Ccomm)) (first order optimization) and O(1/(Ccomm)1/2) communication rates.
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Finally, we review the class of works that are concerned with designing distributed methods that achieve

communication efficiency, e.g., Tsianos et al. (2012, 2013); Jakovetic et al. (2016); Lan et al. (2017); Wang

et al. (2016); Sahu et al. (2018e,d). In Wang et al. (2016), a data censoring method is employed in the

context of distributed least squares estimation to reduce computational and communication costs. However,

the communication savings in Wang et al. (2016) are a constant proportion with respect to a method

which utilizes all communications at all times, thereby not improving the order of the convergence rate.

References Tsianos et al. (2012, 2013); Jakovetic et al. (2016) also consider a different setup than we do here,

namely they study distributed optimization where the data is available a priori (i.e., it is not streamed).

This corresponds to an intrinsically different setting with respect to the one studied here, where actually

geometric MSE convergence rates are attainable with stochastic-type methods, e.g., Mokhtari and Ribeiro

(2016). In terms of the strategy to save communications, references Tsianos et al. (2012, 2013); Jakovetic

et al. (2016); Lan et al. (2017) consider, respectively, deterministically increasingly sparse communication, an

adaptive communication scheme, and selective activation of agents. These strategies are different from ours;

we utilize randomized, increasingly sparse communications in general. In references Sahu et al. (2018e,d),

we study distributed estimation problems and develop communication-efficient distributed estimators. The

problems studied in Sahu et al. (2018e,d) have a major difference with respect to the current setup in that,

in Sahu et al. (2018e,d), the assumed setting yields individual nodes’ local gradients to evaluate to zero at

the global solution. In contrast, the model assumed here does not feature such property, and hence it is

more challenging.

Finally, we comment on the recent paper Lan et al. (2017) that develops communication-efficient distributed

methods for both non-stochastic and stochastic distributed first order optimization, both in the presence

and in the absence of the strong convexity assumption. For the stochastic, strongly convex first order

optimization, Lan et al. (2017) shows that the method therein gets ε-close to the solution in O(1/
√
ε)

communications and with an O(1/ε) computational cost. The current setup has several differences with

respect to Lan et al. (2017). First, reference Lan et al. (2017) does not study zeroth order optimization.

Second, this work assumes for the gradient noise to be independent of the algorithm iterates. This is a strong

assumption that may be not satisfied, e.g., with many machine learning applications. Third, while we assume

here twice differentiable costs, this assumption is not imposed in Lan et al. (2017). Finally, the method in Lan

et al. (2017) is considerably more complex than the one proposed here, with two layers of iterations (inner

and outer iterations). In particular, the inner iterations involve solving an exact minimization problem which

necessarily points to the usage of an off-the-shelf solver, the computation cost of which is not factored into

the computation cost in Lan et al. (2017).

9.3 Model and the proposed algorithms

The network of N agents in our setup collaboratively aim to solve the following unconstrained problem:

min
x∈Rd

N∑
i=1

fi(x), (9.1)

where fi : Rd 7→ R is a strongly convex function available to node i, i = 1, ..., N . We make the following

assumption on the functions fi(·):

Assumption 9.3.1. For all i = 1, ..., N , function fi : Rd 7→ R is twice continuously differentiable with
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Lipschitz continuous gradients. In particular, there exist constants L, µ > 0 such that for all x ∈ Rd,

µ I � ∇2fi(x) � L I.

From Assumption 9.3.1 we have that each fi, i = 1, · · · , N , is µ-strongly convex. Using standard properties

of strongly convex functions, we have for any x,y ∈ Rd:

fi(y) ≥ fi(x) +∇fi(x)> (y − x) +
µ

2
‖x− y‖2,

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

We also have that from assumption 9.3.1, the optimization problem in (9.1) has a unique solution, which

we denote by x∗ ∈ Rd. Throughout the chapter, we use the sum function which is defined as f : Rd →
R, f(x) =

∑N
i=1 fi(x). We consider distributed stochastic gradient methods to solve (9.1). That is, we study

algorithms of the following form:

xi(k + 1) = xi(k)−
∑

j∈Ωi(k)

γi,j(k) (xi(k)− xj(k))

− αkĝi(xi(k)), (9.2)

where the weight assigned to an incoming message γi,j(k) and the neighborhood of an agent Ωi(k) are

determined by the specific instance of the designated communication protocol. The approximated gradient

ĝi(xi(k)) is specific to the optimization, i.e., whether it is a zeroth order optimization or a first order opti-

mization scheme. Technically speaking, as we will see later, a zeroth order optimization scheme approximates

the gradient as a biased estimate of the gradient while a first order optimization scheme approximates the

gradient as an unbiased estimate of the gradient. The variation in the gradient approximation across first

order and zeroth order methods can be attributed to the fact that the oracles from which the agents query for

information pertaining to the loss function differ. For instance, in the case of the zeroth order optimization,

the agents query a stochastic zeroth order oracle (SZO) and in turn receive noisy function values (unbiased

estimates) for the queried point. However, in the case of first order optimization, the agents query a stochas-

tic first order oracle (SFO) and receive unbiased estimates of the gradient. In subsequent sections, we will

explore the gradient approximations in greater detail. We first focus on a distributed zeroth order scheme for

random networks. In the sequel, we will turn our attention to communication efficient zeroth order schemes.

We consider distributed stochastic zeroth order optimization to solve (9.1) over random networks. Inter-

agent communication is modeled by a sequence of independent and identically distributed (i.i.d.) undirected

random networks: at each time instant k = 0, 1, ..., the underlying inter-agent communication network is

denoted by G(k) = (V,E(k)), with V = {1, ..., N} being the set of nodes and E(k) being the random set

of undirected edges. The edge connecting node i and j is denoted as {i, j}. The time-varying random

neighborhood of node i at time k (excluding node i) is represented as Ωi(k) = {j ∈ V : {i, j} ∈ E(k)}.
The graph Laplacian of the random graph G(k) at time k is given by L(k) ∈ RN×N , where L(k) is given by

Lij(k) = −1, if {i, j} ∈ E(k), i 6= j; Lij(k) = 0, if {i, j} /∈ E(k), i 6= j; and Lii(k) = −
∑
j 6=i Lij(k). It is to

be noted that the Laplacian at each time instant is symmetric and a positive semidefinite matrix. As the

considered graph sequence is i.i.d., we have that E[ L(k) ] = L. Let the graph corresponding to L be given

by G = (V,E).

We make the following assumption on G.

Assumption 9.3.2. The inter-agent communication graph is connected on average, i.e., G is connected. In

other words, λ2(L) > 0.
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9.4 Distributed Kiefer Wolfowitz type Optimization

We employ a distributed Kiefer Wolfowitz stochastic approximation (KWSA) type method to solve (9.1).

Each node i, i = 1, ..., N , in our setup maintains a local copy of its local estimate of the optimizer xi(k) ∈ Rd

at all times. In order to carry out the optimization, each agent i makes queries to a stochastic zeroth order

oracle at time k, from which the agent obtains noisy function values of fi(xi(k)). Denote the noisy value of

fi(·) as f̂i(·) where,

f̂i(xi(k)) = fi(xi(k)) + v̂i(k). (9.3)

Due to the unavailability of the analytic form of the functionals, the gradient can not be evaluated and

hence, we resort to a gradient approximation. In order to approximate the gradient, each agent makes two

calls to the stochastic zeroth order oracle corresponding to each dimension. For instance, for dimension

j ∈ {1, · · · , d} agent i queries for fi(xi(k)+ ckej) and fi(xi(k)− ckej) at time k and obtains f̂i(xi(k)+ ckej)

and f̂i(xi(k) − ckei) respectively, where ck is a carefully chosen time-decaying potential (to be specified

soon). Denote by gi(xi(k)) the approximated gradient, obtained as for each j ∈ {1, · · · , d} :

e>j gi(xi(k)) =
f̂i (xi(k) + ckej)− f̂i (xi(k)− ckej)

2ck

⇒ e>j gi(xi(k)) =
fi (xi(k) + ckej)

2ck

− fi (xi(k)− ckej)
2ck

+
v̂+
i,j(k)− v̂−i,j(k)

2ck
, (9.4)

where v̂+
i,j(k) and v̂−i,j(k) denote the measurement noise corresponding to the measurements f̂i (xi(k) + ckej)

and f̂i (xi(k)− ckej) respectively. The vectors v̂+
i (k) ∈ Rd and v̂−i (k) ∈ Rd stack all the component wise

measurement noise at a node i and are given by v̂+
i (k) =

[
v̂+
i,1(k), · · · , v̂+

i,N (k)
]

and v̂−i (k) =
[
v̂−i,1(k), · · · , v̂−i,N (k)

]
respectively. For the rest of this section, we define vi(k)

.
=
(
v̂+
i (k)− v̂−i (k)

)
/2. Using the mean value the-

orem, we have,

gi(xi(k)) = ∇f(xi(k)) + ckPi(xi(k)) +
vi(k)

ck
, (9.5)

where

e>j Pi(xi(k)) =
e>j ∇2f(xi(k) + ckα

+
i,jej)ej

2

−
e>j ∇2f(xi(k)− ckα−i,jej)ej

2
,

where 0 ≤ α+
i,j , α

−
i,j ≤ 1. Finally, for arbitrary deterministic initializations xi(0) ∈ Rd, i = 1, ..., N , the

optimizer update rule at node i and k = 0, 1, ..., is given as follows:

xi(k + 1) = xi(k)− βk
∑

j∈Ωi(k)

(xi(k)− xj(k))

− αkgi(xi(k)). (9.6)
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It is to be noted that unlike first order stochastic gradient methods, where the algorithm has access to

unbiased estimates of the gradient. The local gradient estimates gi(·) used in (9.6) are biased (see (9.5)) due

to the unavailability of the exact gradient functions and their approximations using the zeroth order scheme

in (9.54). The update is carried on in all agents parallely in a synchronous fashion. The weight sequences

{αk}, {ck} and {βk} are given by αk = α0/(k + 1), ck = c0/(k + 1)δ and βk = β0/(k + 1)τ respectively,

where α0, c0, β0 > 0. We state an assumption on the weight sequences before proceeding further.

Assumption 9.4.1. The constants α0, δ > 0 and τ ∈ (0, 1) are chosen such that,

∞∑
k=1

α2
k

c2k
<∞. (9.7)

Denote by x(k) =
[
x>1 (k), · · · ,x>N (k)

]> ∈ RNd, P(x(k)) =
[
P>1 (x1(k)) , · · · ,P>N (xN (k))

]> ∈ RNd the

vectors that stacks the local optimizers and the gradient bias terms (see (9.5))of all nodes. Also, define

function F : RNd 7→ R, by F (x) =
∑N
i=1 fi(xi), with x =

[
x>1 , · · · ,x>N

]> ∈ RNd. Finally, let Wk =

(I− Lk)⊗ Id, where Lk = βk L(k). Then the update in (9.58) can be written as:

x(k + 1) = Wkx(k)

− αk
(
∇F (x(k)) + ckP(x(k)) +

v(k)

ck

)
. (9.8)

Let Fk denote the history of the proposed algorithm up to time k. Given that the sources of randomness

in our algorithm are the noise sequence {v(k)} and the random network sequence {Lk}, Fk is given by the

σ-algebra generated by the collection of random variables {L(s), vi(s)}, i = 1, ..., N , s = 0, ..., k − 1.

Assumption 9.4.2. For each i = 1, ..., N , the sequence of measurement noises {v̂i(k)} satisfies for all

k = 0, 1, ...:

E[ v̂i(k) | Fk ] = 0, almost surely (a.s.)

E[ ‖v̂i(k)‖2 | Fk ] ≤ cf‖xi(k)‖2 + σ2, a.s., (9.9)

where cf and σ2 are nonnegative constants.

It is to be noted that assumption 9.4.2 is trivially satisfied, when {vi(k)} is an i.i.d. zero-mean, finite second

moment, noise sequence such that vi(k) is also independent of the history Fk. However, the assumption

allows the noise to be dependent on the current iterate at all times.

9.5 Performance Analysis: Distributed KWSA

9.5.1 Main Result and Auxiliary Lemmas

We state the main result concerning the mean square error at each agent i next.

Theorem 9.5.1. 1) Consider the optimizer estimate sequence {x(k)} generated by the algorithm (9.6).

Let assumptions 9.3.1-9.4.2 hold. Then, for each node i’s optimizer estimate xi(k) and the solution x? of
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problem (9.1), ∀k ≥ k2 there holds:

E
[
‖xi(k)− x∗‖2

]
≤ 2Rk +

64N∆1,∞α
2
0

µc20p
2
Lβ

2
0(k + 1)2−2τ−2δ

4(L− µ)2N2dc20
µ(k + 1)2δ

+
8∆1,∞α

2
0

p2
Lβ

2
0c

2
0(k + 1)2−2τ−2δ

+
4Nα0

(
cfq∞(N, d, α0, c0) +Nσ2

1

)
c20µ(k + 1)1−2δ

, (9.10)

where, k2 = max
{
k0, (4|E|ρ2

0)1/ε − 1
}

, ∆1,∞ = 6cfq∞(N, d, α0, c0)+6Nσ2
1 and q∞(N, d, α0, c0) = E

[
‖x(k0)− xo‖2

]
+

√
Nd(L−µ)α0c0

δ +
Nd(L−µ)2α2

0c
2
0

1+2δ +
α2

0(2cfN‖xo‖2+Nσ2)
c20(1−2δ)

+ 4‖∇F (xo)‖2
µ2 +

2α2
0c0
√
Nd(L−µ)‖∇F (xo)‖

1+δ . In the latter k0

is given by k0 = inf
{
k : µ

2 > (L− µ)
√
Ndck +

2cfαk
c2k

}
. Rk is a term which decay faster than the rest of

the terms.

2) In particular, the rate of decay of the RHS of (9.67) is given by (k+1)−δ1 , where δ1 = min {1− 2δ, 2− 2τ − 2δ, 2δ}.
By, optimizing over τ and δ, we obtain that for τ = 1/2 and δ = 1/4 and hence,

E
[
‖xi(k)− x∗‖2

]
≤ 2Rk +

64N∆1,∞α
2
0

µc20p
2
Lβ

2
0(k + 1)0.5

4(L− µ)2N2dc20
µ(k + 1)0.5

+
8∆1,∞α

2
0

p2
Lβ

2
0c

2
0(k + 1)0.5

+
4Nα0

(
cfq∞(N, d, α0, c0) +Nσ2

1

)
c20µ(k + 1)0.5

= O

(
1

k
1
2

)
, ∀i.

Theorem 9.5.1 establishes the O(1/k1/2) MSE rate of convergence of the algorithm (9.6); due to the as-

sumed fi’s strong convexity, the theorem also implies that E [f(xi(k))− f(x?)] = O(1/k1/2). Note that the

expectation in Theorem 9.5.1 is both with respect to randomness in gradient noises and with respect to the

randomness in the underlying network. The O(1/k1/2) rate is independent of the statistics of the underlying

random network, as long as the network is connected on average.

From (9.10), it might seem that the dependence of the upper bound is linear in terms of d. However, on

tuning the constants α0 � d−1/5, β0 � d−1/10 and c0 � d−3/10, the dependence of E
[
‖xi(k)− x∗‖2

]
can be

reduced to d2/5. It is to be noted that the upper bound derived in (9.10) matches with that of the minimax

bound for (centralized) zeroth order optimization with twice continuously differentiable cost functions as

derived in Duchi et al. (2015). The sublinear rate of convergence of zeroth order optimization algorithms in

the context of KWSA can be attributed to the biased gradients. For better finite time convergence rates,

bias-reduction techniques such as the “twicing trick” and finite difference interpolation techniques can be

used.

Proof strategy and auxiliary lemmas. Establishing the main result in Theorem 9.5.1 involves three

crucial steps which are outlined in the subsections 9.5.2, 9.5.3 and 9.5.4. Subsection 9.5.2 concerns with

the mean square boundedness of the iterates xi(k), which also implies the mean square boundedness of the

gradients ∇fi(xi(k)). In subsection 9.5.3, the mean square error of the disagreements of a node’s optimizer

estimate with respect to the network averaged optimizer estimate ,i.e., x(k) := 1
N

∑N
i=1 xi(k), is character-

ized in terms of k and the algorithm parameters. Finally, subsection 9.5.4 characterizes the optimality gap of

the networked average optimizer estimate sequence with respect to the optimizer of (9.1) and on combining

the result from subsection 9.5.3, the result follows.
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9.5.2 Mean square boundedness of the iterate sequence

This subsection shows the mean square boundedness of the algorithm iterates.

Lemma 9.5.2. Let the hypotheses of Theorem 9.5.1 hold. In addition assume that, ‖∇F (1N ⊗ x∗)‖ is

bounded. Then, we have,

E
[
‖x(k)− xo‖2

]
≤ qk0(N, d, α0, c0)

+

√
Nd(L− µ)α0c0

δ
+
Nd(L− µ)2α2

0c
2
0

1 + 2δ

+
α2

0

(
2cfN ‖xo‖2 +Nσ2

)
c20(1− 2δ)

+ 4
‖∇F (xo)‖2

µ2

.
= q∞(N, d, α0, c0),

where E
[
‖x(k0)− xo‖2

]
≤ qk0

(N, d, α0, c0) and k0 = inf
{
k : µ

2 > (L− µ)
√
Ndck +

2cfαk
c2k

}
.

Proof.

x(k + 1) = Wkx(k)

− αk
ck

(
ck∇F (x(k)) + c2kP(x(k)) + v(k)

)
. (9.11)

Denote xo = 1N ⊗ x∗. Then, we have,

x(k + 1)− xo = Wk(x(k)− xo)

− αk (∇F (x(k))−∇F (xo))

− αk
ck

v(k)− αk∇F (xo)− αkckP(x(k)). (9.12)

By Leibnitz rule, we have,

∇F (x(k))−∇F (xo)

=

[∫ 1

s=0

∇2F (xo + s(x(k)− xo)) ds

]
(x(k)− xo)

= Hk (x(k)− xo) . (9.13)

By Lipschitz continuity of the gradients and strong convexity of f(·), we have that LI < Hk < µI. Denote

by ζ(k) = x(k)− xo and by ξ(k) = (Wk − αkHk) (x(k)− xo)− αk∇F (xo). Then, there holds:

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ E
[
‖ξ(k)‖2| Fk

]
− 2αkE

[
ξ(k)>| Fk

]
E[ v(k) | Fk ] + α2

k E[ ‖v(k)‖2 | Fk ]

+ α2
kc

2
kP
>(x(k))P(x(k))− 2αkckP

>(x(k))E [ξ(k)|Fk]

+ P (x(k))> E [v(k)|Fk] . (9.14)

We use the following inequalities:

− 2αkckP
>(x(k))

(
I− βkL− αkHk

)
(x(k)− xo)
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≤ 2αkck ‖P(x(k))‖
∥∥I− βkL− αkHk

∥∥ ‖x(k)− xo‖

≤
√
Nd(L− µ)αkck (1− µαk)

(
1 + ‖x(k)− xo‖2

)
≤
√
Nd(L− µ)αkck +

√
Nd(L− µ)αkck ‖x(k)− xo‖2 , (9.15)

α2
kc

2
kP
>(x(k))P(x(k)) ≤ Nd (L− µ)2 α2

kc
2
k, (9.16)

and

α2
k

c2k
E
[
‖v(k)‖2 |Fk

]
≤ α2

k

c2k
cfN ‖x(k)‖2 +

α2
k

c2k
Nσ2

≤ 2
α2
k

c2k
cf ‖x(k)− xo‖2 +

α2
k

c2k

(
2cf ‖xo‖2 +Nσ2

)
. (9.17)

Then from (9.14), we have,

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ E
[
‖ξ(k)‖2| Fk

]
+
√
Nd(L− µ)αkck‖ζ(k)‖2 + 2

α2
k

c2k
cf‖ζ(k)‖2

+
α2
k

c2k

(
2cf ‖xo‖2 +Nσ2

)
+
√
Nd(L− µ)αkck

+Nd (L− µ)
2
α2
kc

2
k + 2α2

kck
√
Nd(L− µ) ‖∇F (xo)‖ . (9.18)

We next bound E
[
‖ξ(k)‖2| Fk

]
. Note that ‖Wk − αkHk‖ ≤ 1− µαk. Therefore, we have:

‖ξ(k)‖ ≤ (1− µαk) ‖ζ(k)‖+ αk ‖∇F (xo)‖. (9.19)

We now use the following inequality:

(a+ b)2 ≤ (1 + θ) a2 +

(
1 +

1

θ

)
b2, (9.20)

for any a, b ∈ R and θ > 0. We set θ = µαk. Using the inequality (9.20) in (9.19), we have:

‖ξ(k)‖2 ≤ (1 + µαk) (1− αkµ)2 ‖ζ(k)‖2

+

(
1 +

1

µαk

)
α2
k‖∇F (xo)‖2

≤ (1− αkµ) ‖ζ(k)‖2 + 2
αk
µ
‖∇F (xo)‖2. (9.21)

Using (9.21) in (9.18), we have,

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ 2
αk
µ
‖∇F (xo)‖2 + ‖ζ(k)‖2

×
(

1− αkµ+
√
Nd(L− µ)αkck + 2

α2
k

c2k
cf

)
+
α2
k

c2k

(
2cf ‖xo‖2 +Nσ2

)
+
√
Nd(L− µ)αkck

+Nd (L− µ)2 α2
kc

2
k + 2α2

kck
√
Nd(L− µ) ‖∇F (xo)‖ . (9.22)



CHAPTER 9. COMMUNICATION-EFFICIENT STOCHASTIC OPTIMIZATION: ZEROTH ORDER151

Define k0 as follows:

k0 = inf

{
k :

µ

2
> (L− µ)

√
Ndck +

2cfαk
c2k

}
.

It is to be noted that k0 is necessarily finite as ck → 0 and αkc
−2
k → 0 as k →∞.

Proposition 9.5.3. Let the hypotheses of Theorem 9.5.1 hold. Then, we have ∀k ≥ k0,

E
[
‖ζ(k + 1)‖2

]
≤ qk0

(N, d, α0, c0) + 4
‖∇F (xo)‖2

µ2

+

√
Nd(L− µ)α0c0

δ
+
Nd(L− µ)2α2

0c
2
0

1 + 2δ

+
α2

0

(
2cfN ‖xo‖2 +Nσ2

)
c20(1− 2δ)

+
2
√
Nd(L− µ) ‖∇F (xo)‖

1 + δ
.
= q∞(N, d, α0, c0)

With the above development in place, we can bound the variance of the noise process {v(k)} as follows:

E
[
‖v(k)‖2 |Fk

]
≤ 0.5E

[∥∥v̂+(k)
∥∥2 |Fk

]
+ 0.5E

[∥∥v̂−(k)
∥∥2 |Fk

]
≤ 2cfq∞(N, d, α0, c0) + 2N

(
σ2 + ‖x∗‖2

)
︸ ︷︷ ︸

σ2
1

. (9.23)

9.5.3 Disagreement Bounds

We now study the disagreement of the optimizer sequence {xi(k)} at a node i with respect to the (hypothet-

ically available) network averaged optimizer sequence, i.e., x(k) = 1
N

∑N
i=1 xi(k). Define the disagreement

at the i-th node as x̃i(k) = xi(k)− x(k). The vectorized version of the disagreements x̃i(k), i = 1, · · · , N ,

can then be written as x̃(k) = (I− J) x(k), where J = 1
N (1N ⊗ Id) (1N ⊗ Id)

>
= 1

N 1N1>N ⊗ Id. We have

the following Lemma:

Lemma 9.5.4. Let the hypotheses of Theorem 9.5.1 hold. Then, we have ∀k ≥ k1

E
[
‖x̃(k + 1)‖2

]
≤ Qk +

4∆1,∞α
2
0

p2
Lβ

2
0c

2
0(k + 1)2−2τ−2δ

= O

(
1

k2−2δ−2τ

)
,

where Qk is a term which decays faster than (k + 1)−2+2τ+2δ and k1 = (4|E|ρ2
0)1/ε − 1.

As detailed in the next Subsection, Lemma 9.5.4 plays a crucial role in providing a tight bound for the bias

in the gradient estimates according to which the global average x(k) evolves.
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Proof. The process {x̃(k)} follows the recursion:

x̃(k + 1) = W̃kx̃(k)

− αk
ck

(I− J)
(
ck∇F (x(k)) + v(k) + c2kP (x(k))

)︸ ︷︷ ︸
w(k)

, (9.24)

where W̃k = Wk − J = (I− Lk)⊗ Id − J. Using (9.20) in (9.24), we have,

‖x̃(k + 1)‖2 ≤ (1 + θk)
∥∥∥W̃kx̃(k)

∥∥∥2

+

(
1 +

1

θk

)
α2
k

c2k
‖w̃(k)‖2 . (9.25)

We, now bound the term E
[∥∥∥W̃kx̃(k)

∥∥∥2

|Fk
]
.

E
[∥∥∥W̃(k)x̃(k)

∥∥∥2

|Fk
]

= x̃>(k)E
[
W̃2(k)− J|Fk

]
x̃(k)

= x̃>(k)
(
I− 2βkL + β2

kL
2

+ L̃(k)2 − J
)

x̃(k)

≤
(
1− 2βkλ2

(
L
)

+ β2
kλ

2
N

(
L
)

+
4|E|β0ρ

2
0

(k + 1)1/2+ε
− 4β2

k|E|
)
‖x̃(k)‖2

≤
(

1− 2βkλ2

(
L
)

+
4|E|β0ρ

2
0

(k + 1)1/2+ε

)
‖x̃(k)‖2

≤
(
1− βkλ2

(
L
))
‖x̃(k)‖2 , (9.26)

where the last inequality holds for k ≥ (4|E|ρ2
0)1/ε − 1

.
= k1. Then, we have, ∀k ≥ k1,

E
[
‖x̃(k + 1)‖2 |Fk

]
≤ (1 + θk) (1− βkλ2

(
L
)
) ‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k

c2k
E
[
‖w(k)‖2 |Fk

]
, (9.27)

where

E
[
‖w(k)‖2 |Fk

]
≤ 3c2k ‖∇F (x(k))‖2 + 3E

[
‖v(k)‖2 |Fk

]
+ 3c2k ‖P (x(k))‖2

≤ 3c2k ‖∇F (x(k))‖2 + 3c2kNd(L− µ)2

+ 6cfq∞(N, d, α0, c0) + 6Nσ2
1

⇒ E
[
‖w(k)‖2

]
≤ 3

(
2cf + c2kL

2
)
q∞(N, d, α0, c0)

+ 3c2kNd(L− µ)2 + 6Nσ2
1

= 6cfq∞(N, d, α0, c0) + 6Nσ2
1︸ ︷︷ ︸

∆1,∞

+ 3c2kNd(L− µ)2 + 3c2kL
2q∞(N, d, α0, c0)︸ ︷︷ ︸

c2k∆2,∞

.
= ∆k
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⇒ E
[
‖w(k)‖2

]
<∞. (9.28)

With the above development in place, we then have,

E
[
‖x̃(k + 1)‖2

]
≤ (1 + θk)

(
1− βkλ2

(
L
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k

c2k
∆k. (9.29)

In particular, we choose θ(k) = βk
2 λ2

(
L
)
.

Proposition 9.5.5. Let the hypotheses of Theorem 9.5.1 hold. Then, we have k ≥ k2 = max{k0, k1} where

k1 = (4|E|ρ2
0)1/ε − 1,

E
[
‖x̃(k + 1)‖2

]
≤ Qk +

4∆1,∞α
2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ

.

Hence, we have the disagreement given by,

E
[
‖x̃(k + 1)‖2

]
= O

(
1

k2−2δ−2τ

)
.

9.5.4 Proof of Theorem 9.5.1

In this subsection, we complete the proof of Theorem 9.5.1 by characterizing the optimality gap of the net-

work averaged optimizer estimate sequence and then combining it with the result obtained in Lemma 9.5.4.

Denote x(k) = 1
N

∑
n=1 xi(k). From (9.24), we have,

x(k + 1) = x(k)

− αk
ck

ckN
N∑
i=1

∇fi (xi(k)) +
c2k
N

N∑
i=1

Pi (xi(k))︸ ︷︷ ︸
P (x(k))

+
1

N

N∑
i=1

vi(k)︸ ︷︷ ︸
v(k)


⇒ x(k + 1) = x(k)

− αk
Nck

[
N∑
i=1

∇fi (xi(k))−∇fi (x(k)) +∇fi (x(k))

]
− αk
ck

(
v(k) + P (x(k))

)
. (9.30)

Recall that f(·) =
∑N
i=1 fi(·). Then, we have,

x(k + 1) = x(k)− αk
N
∇f (x(k))

− αk
N

[
N∑
i=1

∇fi (xi(k))−∇fi (x(k))

]
− αk
ck

(
v(k) + P (x(k))

)



CHAPTER 9. COMMUNICATION-EFFICIENT STOCHASTIC OPTIMIZATION: ZEROTH ORDER154

⇒ x(k + 1) = x(k)− αk
Nck

[ck∇f (x(k)) + e(k)] , (9.31)

where

e(k) = Nv(k)

+NP (x(k)) + ck

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (9.32)

Note that, ck ‖∇fi (xi(k))−∇fi (x(k))‖ ≤ ckL ‖xi(k)− x(k)‖ = ckL ‖x̃i(k)‖. We also have that,
∥∥P (x(k))

∥∥ ≤
(L− µ)

√
dc2k. Thus, we can conclude that, ∀k ≥ k2

ε(k) = ck

N∑
i=1

(∇fi (xi(k))−∇fi (x(k))) +NP (x(k))

⇒ ‖ε(k)‖2 ≤ 2NL2c2k ‖x̃(k)‖2 + 2(L− µ)2N2dc4k

⇒ E
[
‖ε(k)‖2

]
≤ 8NL2∆1,∞α

2
0

λ2
2

(
L
)
c20β

2
0(k + 1)2−2τ

+
2(L− µ)2N2dc40

(k + 1)4δ

+
4NL2Qkc

2
0

(k + 1)2δ
. (9.33)

With the above development in place, we rewrite (9.31) as follows:

x(k + 1) = x(k)− αk
N
∇f (x(k))− αk

Nck
ε(k)− αk

ck
v(k)

⇒ x(k + 1)− x∗ = x(k)− x∗ − αk
N

∇f (x(k))−∇f (x∗)︸ ︷︷ ︸
= 0


− αk
Nck

ε(k)− αk
ck

v(k). (9.34)

By Leibnitz rule, we have,

∇f (x(k))−∇f (x∗)

=

[∫ 1

s=0

∇2f (x∗ + s (x(k)− x∗)) ds

]
︸ ︷︷ ︸

Hk

(x(k)− x∗) , (9.35)

where it is to be noted that NL < Hk < Nµ. Using (9.35) in (9.34), we have,

(x(k + 1)− x∗) =
[
I− αk

N
Hk

]
(x(k)− x∗)

− αk
Nck

ε(k)− αk
ck

v(k). (9.36)

Denote by m(k) =
[
I− αk

N Hk

]
(x(k)− x∗)− αk

Nck
ε(k) and note that m(k) is conditionally independent from

v(k) given the history Fk. Then (9.36) can be rewritten as:

(x(k + 1)− x∗) = m(k)− αk
ck

v(k)

⇒ ‖x(k + 1)− x∗‖2 ≤ ‖m(k)‖2

− 2
αk
ck

m(k)>v(k) +
α2
k

c2k
‖v(k)‖2 . (9.37)
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Using the properties of conditional expectation and noting that E [v(k)|Fk] = 0, we have,

E
[
‖x(k + 1)− x∗‖2 |Fk

]
≤ ‖m(k)‖2 +

α2
k

c2k
E
[
‖v(k)‖2 |Fk

]
⇒ E

[
‖x(k + 1)− x∗‖2

]
≤ E

[
‖m(k)‖2

]
+

2α2
k

(
cfq∞(N, d, α0, c0) +Nσ2

1

)
c2k

. (9.38)

Using (9.20), we have for m(k),

‖m(k)‖2 ≤ (1 + θk)
∥∥∥I− αk

N
Hk

∥∥∥2

‖x(k)− x∗‖2

+

(
1 +

1

θk

)
α2
k

N2c2k
‖ε(k)‖2

≤ (1 + θk)

(
1− µα0

k + 1

)2

‖x(k)− x∗‖2

+

(
1 +

1

θk

)
α2
k

N2c2k
‖ε(k)‖2 . (9.39)

On choosing θk = µα0

k+1 , we have for all k ≥ k2,

E
[
‖m(k)‖2

]
≤
(

1− µα0

N(k + 1)

)
E
[
‖x(k)− x∗‖2

]
+

16L2∆1,∞α
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ

+
4(L− µ)2Ndα0c

2
0

µ(k + 1)1+2δ

+
8Qkc

2
0

µ(k + 1)2δ

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

N(k + 1)

)
× E

[
‖x(k)− x∗‖2

]
+

16L2∆1,∞α
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ

+
4(L− µ)2Ndα0c

2
0

µ(k + 1)1+2δ

+
8Qkc

2
0

µ(k + 1)2δ
+

2α2
0

(
cfq∞(N, d, α0, c0) +Nσ2

1

)
c20(k + 1)2−2δ

. (9.40)

Then, we have ∀k ≥ k2

E
[
‖x(k + 1)− x∗‖2

]
≤ exp

− µ
N

k∑
l=k5

αl

E
[
‖x(k)− x∗‖2

]
︸ ︷︷ ︸

t6

+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=k5

16L2∆1,∞α
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ︸ ︷︷ ︸

t7

+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=k5

4(L− µ)2Ndα0c
2
0

µ(k + 1)1+2δ

︸ ︷︷ ︸
t8
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+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=k5

8Qkc
2
0

µ(k + 1)2δ

︸ ︷︷ ︸
t9

+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=k5

2α2
0cfq∞(N, d, α0, c0)

c20(k + 1)2−2δ

︸ ︷︷ ︸
t10

+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=k5

2α2
0Nσ

2
1

c20(k + 1)2−2δ

︸ ︷︷ ︸
t11

+
32L2∆1,∞α

2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ︸ ︷︷ ︸
t12

+
4(L− µ)2N2dc20
µ(k + 1)2δ︸ ︷︷ ︸

t13

+
2Nc20Qk

µα0(k + 1)2δ−1︸ ︷︷ ︸
t14

+
4Nα0

(
cfq∞(N, d, α0, c0) +Nσ2

1

)
c20µ(k + 1)1−2δ︸ ︷︷ ︸

t15

. (9.41)

It is to be noted that the term t6 decays exponentially. The terms t7, t8, t9, t10 and t11 decay faster than

its counterparts in the terms t12, t13, t14 and t15 respectively. We note that Ql also decays faster. Hence,

the rate of decay of E
[
‖x(k + 1)− x∗‖2

]
is determined by the terms t12, t13 and t15. Thus, we have that,

E
[
‖x(k + 1)− x∗‖2

]
= O

(
k−δ1

)
, where δ1 = min {1− 2δ, 2− 2τ − 2δ, 2δ}. For notational ease, we refer to

t6 + t7 + t8 + t9 + t10 + t11 + t14 = Mk from now on. Finally, we note that,

‖xi(k)− x∗‖ ≤ ‖x(k)− x∗‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥
⇒ ‖xi(k)− x∗‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x∗‖2

⇒ E
[
‖xi(k)− x∗‖2

]
≤ 2Rk +

64N∆1,∞α
2
0

µc20p
2
Lβ

2
0(k + 1)2−2τ−2δ

4(L− µ)2N2dc20
µ(k + 1)2δ

+
8∆1,∞α

2
0

p2
Lβ

2
0c

2
0(k + 1)2−2τ−2δ

+
4Nα0

(
cfq∞(N, d, α0, c0) +Nσ2

1

)
c20µ(k + 1)1−2δ

⇒ E
[
‖xi(k)− x∗‖2

]
= O

(
1

kδ1

)
, ∀i, (9.42)

where δ1 = min {1− 2δ, 2− 2τ − 2δ, 2δ} and Rk = Mk + Qk. By, optimizing over τ and δ, we obtain that

for τ = 1/2 and δ = 1/4,

E
[
‖xi(k)− x∗‖2

]
= O

(
1

k
1
2

)
, ∀i.

Before stating the communication efficient algorithm, we first discuss the communication scheme. Specifi-
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cally, we adopt the following model.

Communication Scheme

The inter-node communication network to which the information exchange between nodes conforms to is

modeled as an undirected simple connected graph G = (V,E), with V = [1 · · ·N ] and E denoting the set

of nodes and communication links. The neighborhood of node n is given by Ωn = {l ∈ V | (n, l) ∈ E}. The

node n has degree dn = |Ωn|. The structure of the graph is described by the N × N adjacency matrix,

A = A> = [Anl], Anl = 1, if (n, l) ∈ E, Anl = 0, otherwise. The graph Laplacian L = D − A is

positive semidefinite, with eigenvalues ordered as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L), where D is given by

D = diag (d1 · · · dN ). We make the following assumption on L.

Assumption 9.5.1. The inter-agent communication graph is connected on average, i.e., L is connected. In

other words, λ2(L) > 0.

Thus, L corresponds to the maximal graph, i.e., the graph of all allowable communications. We now describe

our randomized communication protocol that selects a (random) subset of the allowable links at each time

instant for information exchange.

For each node i, at every time k, we introduce a binary random variable ψi,k, where

ψi,k =

ρk with probability ζk

0 otherwise,
(9.43)

where ψi,k’s are independent both across time and the nodes, i.e., across k and i respectively. The random

variable ψi,k abstracts out the decision of the node i at time k whether to participate in the neighborhood

information exchange or not. We specifically take ρk and ζk of the form

ρk =
ρ0

(k + 1)ε/2
, ζk =

ζ0
(k + 1)(τ/2−ε/2)

, (9.44)

where 0 < τ ≤ 1
2 and 0 < ε < τ . Furthermore, define βk to be

βk = (ρkζk)2 =
β0

(k + 1)τ
, (9.45)

where β0 = ρ2
0ζ

2
0 . With the above development in place, we define the random time-varying Laplacian L(k),

where L(k) ∈ RN×N abstracts the inter-node information exchange as follows:

Li,j(k) =


−ψi,kψj,k {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E∑
l 6=i ψi,kψl,k i = j.

(9.46)

The above communication protocol allows two nodes to communicate only when the link is established

in a bi-directional fashion and hence avoids directed graphs. The design of the communication protocol

as depicted in (3.27)-(9.46) not only decays the weight assigned to the links over time but also decays the

probability of the existence of a link. Such a design is consistent with frameworks where the agents have

finite power and hence not only the number of communications, but also, the quality of the communication

decays over time. We have, for {i, j} ∈ E and i 6= j:

E [Li,j(k)] = − (ρkζk)2 = −βk = − β0

(k + 1)τ
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E
[
L2
i,j(k)

]
=
(
ρ2
kζk
)2

=
ρ2

0β0

(k + 1)τ+ε
. (9.47)

Thus, we have that, the variance of Li,j(k) is given by,

Var (Li,j(k)) =
β0ρ

2
0

(k + 1)τ+ε
− β2

0

(k + 1)2τ
. (9.48)

Define, the mean of the random time-varying Laplacian sequence {L(k)} as Lk = E [L(k)] and L̃(k) =

L(k)− Lk. Note that, E
[
L̃(k)

]
= 0, and

E
[∥∥∥L̃(k)

∥∥∥2
]
≤ 4N2E

[
L̃2
i,j(k)

]
=

4N2β0ρ
2
0

(k + 1)τ+ε
− 4N2β2

0

(k + 1)2τ
, (9.49)

where ‖·‖ denotes the L2 norm. The above equation follows by relating the L2 and Frobenius norms.

We also have that, Lk = βkL, where

Li,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−
∑
l 6=i Li,l i = j.

(9.50)

Technically speaking, the communication graph at each time k encapsulated as L(k) need not be connected

at all times, although the graph of allowable links G is connected.. In fact, at any given time k, only a

few of the possible links could be active. However, since Lk = βkL, we note that, by Assumption 9.5.1,

the instantaneous Laplacian L(k) is connected on average.The connectedness in average basically ensures

that over time, the information from each agent in the graph reaches other agents over time in a symmetric

fashion and thus ensuring information flow, while providing the leeway for the instantaneous communication

graphs at different times to be not connected.

We employ a primal algorithm for solving the optimization problem in (9.1). In particular, the update in

(9.2) can then be written in a vector form as follows:

x(k + 1) = Wkx(k)− αkĜ(x(k)), (9.51)

where x(k) =
[
x>1 (k), · · · ,x>N (k)

]> ∈ RNd, F (x) =
∑N
i=1 fi(xi), x =

[
x>1 , · · · ,x>N

]> ∈ RNd, Ĝ(x(k)) =

[ĝ>i (xi(k)), · · · , ĝ>(xN (k))]> and Wk = (I− L(k)) ⊗ Id. We state an assumption on the weight sequences

before proceeding further.

Assumption 9.5.2. The weight sequence αk is given by α0/(k + 1), where α0 > 1/µ. For the sequence ρk
as defined in (5.3), it is chosen in such a way that,

ρ2
0 ≤

4N2

λ2

(
L
) . (9.52)

In the following sections, we propose two different approaches to solve the optimization problem in (9.1).

The first approach involves zeroth order optimization, while the second approach involves a first order

optimization. We first study the zeroth order approach to the problem in (9.1).

9.6 Communication Efficient Zeroth Order: RDSA

We employ a random directions stochastic approximation (RDSA) type method from Nesterov and Spokoiny

(2011) adapted to our distributed setup to solve (9.1). Each node i, i = 1, ..., N , in our setup maintains a local
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copy of its local estimate of the optimizer xi(k) ∈ Rd at all times. In addition to the smoothness assumption

in 2.3.1, we define additional smoothness assumptions in the context of zeroth order optimization.

Assumption 9.6.1. For all i = 1, ..., N , the functions fi : Rd 7→ R have their Hessian to be M -Lipschitz,

i.e.,

‖∇2fi(x)−∇2fi(y)‖ ≤M ‖x− y‖,∀i = 1, · · · , N.

In order to carry out the optimization, each agent i makes queries to the SZO at time k, from which the

agent obtains noisy function values of fi(xi(k)). Denote the noisy value of fi(·) as f̂i(·) where,

f̂i(xi(k)) = fi(xi(k)) + v̂i(k; xi(k)), (9.53)

where the first argument in v̂i(k; xi(k)) is the iteration number, and the second argument is the point

at which the SZO oracle is queried. The properties of the noise v̂i(k; xi(k)) are discussed further ahead.

Typically due to the unavailability of the analytic form of the functionals in zeroth order methods, the

gradient cannot be explicitly evaluated and hence, we resort to a gradient approximation. In order to

approximate the gradient, each agent makes three calls to the stochastic zeroth order oracle. For instance,

agent i queries for fi(xi(k) + ckzi,k), fi(xi(k) + ckzi,k/2) and fi(xi(k)) at time k and obtains f̂i(xi(k) + ckzi,k),

f̂i(xi(k) + ckzi,k/2) and f̂i(xi(k)) respectively, where ck is a carefully chosen time-decaying constant and zi,k

is a random vector (to be specified soon) such that E
[
zi,kz

>
i,k

]
= Id.

Denote by ĝi(xi(k)) the approximated gradient which is given by:

ĝi(xi(k))
.
= 2g̃i

(
xi(k),

ck
2

)
− g̃i (xi(k), ck)

=
4f̂i
(
xi(k) + ck

2
zi,k
)
− 4f̂i (xi(k))

ck
zi,k

− f̂i (xi(k) + ckzi,k)− f̂i (xi(k))

ck
zi,k, (9.54)

where g̃i (·, ·) represents a first order finite difference operation and θ1, θ2 ∈ [0, 1]. Note that, the gradient

approximation derived in (9.54) involves the noise in the retrieved function value from the SZO differently

from other RDSA approaches such as in Duchi et al. (2015); Nesterov and Spokoiny (2011). The finite

difference technique used in (9.54) resembles, the twicing trick commonly used in Kernel density estimation

which is employed so as to reduce bias and approximately eliminate the effect of the second degree term from

the bias. It is also to be noted that the number of queries made to the SZO at every gradient approximation

is 3. Thus, we can write,

ĝi(xi(k)) = ∇fi (xi(k)) + E [ĝi(xi(k))|Fk]−∇fi (xi(k))︸ ︷︷ ︸
ckbi(xi(k))

+ gi(xi(k))− E [ĝi(xi(k))|Fk] +
vi(k; xi(k))zi,k

ck︸ ︷︷ ︸
hi(xi(k))

, (9.55)

where

gi(xi(k)) =
4fi
(
xi(k) + ck

2
zi,k
)
− 4fi (xi(k))

ck
zi,k

− fi (xi(k) + ckzi,k)− fi (xi(k))

ck
zi,k, (9.56)
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vi(k; xi(k)) = 4
(
f̂i
(
xi(k) +

ck
2

zi,k
)
− fi

(
xi(k) +

ck
2

zi,k
))

− 3(f̂i(xi(k))− fi(xi(k)))− (f̂i (xi(k) + ckzi,k)

− fi (xi(k) + ckzi,k)), (9.57)

and, Fk denotes the history of the proposed algorithm up to time k. Given that the sources of randomness

in our algorithm are the noise sequence {v(k; x(k))}, the random network sequence {L(k)} and the random

vectors for directional derivatives {zk}, Fk is given by the σ-algebra generated by the collection of random

variables {L(s), v(k; x(k)), zi,s}, i = 1, ..., N , s = 0, ..., k − 1.

In general, the higher order smoothness imposed by Assumption 2.4.1 allows us to use a higher order finite

difference approximation for estimating the gradient. Due to assumption 9.5.2, the bias in the gradient

estimate by employing a second order finite difference approximation of the gradient is of the order O(c2k).

Instead, a first order finite difference approximation of the gradient would have yielded a bias of O(ck). More

generally, an assumption involving p-th order smoothness of the loss functions would have enabled usage of

a p-th degree finite difference approximation of the gradient thus leading to a bias of O(cpk).

Assumption 9.6.2. The zi,k’s are drawn from a distribution P such that E
[
zi,kz

>
i,k

]
= Id, s1(P ) = E

[
‖zi,k‖4

]
and s2(P ) = E

[
‖zi,k‖6

]
are finite.

We provide two examples of two such distributions. If zi,k’s are drawn fromN (0, Id), then E
[
‖zi,k‖4

]
= d(d+2)

and E
[
‖zi,k‖6

]
= d(d + 2)(d + 4). If zi,k’s are drawn uniformly from the l2-ball of radius

√
d, then we have,

‖zi,k‖ =
√
d, E

[
‖zi,k‖4

]
= d2 and E

[
‖zi,k‖4

]
= d3. For the rest of the chapter, we assume that zi,k’s are

sampled from a normal distribution with E
[
zi,kz

>
i,k

]
= Id or uniformly from the surface of the l2-ball of

radius
√
d.

Remark 9.6.1. The RDSA scheme (see, for example Nesterov and Spokoiny (2011)) used here is similar

to the simultaneous perturbation stochastic approximation scheme (SPSA) as proposed in Spall (1992). In

SPSA, each dimension i of the optimization iterate is perturbed by a random variable ∆i. However, instead

of RDSA where the directional derivative is taken along the sampled vector z, the directional derivative in

case of SPSA is along the direction [1/∆1, · · · , 1/∆d] which thus needs boundedness of the inverse moments

of the random variable ∆i. The particular choice for ∆i’s is taken to be the Bernoulli distribution with

∆i’s taking values 1 and −1 with probability 0.5. It is to be noted that at each iteration, both RDSA and

SPSA approximate the gradient by making two calls to the stochastic zeroth order oracle as opposed to d

calls in the case of Kiefer Wolfowitz Stochastic Approximation (KWSA) (see, Kiefer and Wolfowitz (1952)

for example).

For arbitrary deterministic initializations xi(0) ∈ Rd, i = 1, ..., N , the optimizer update rule at node i and

k = 0, 1, ..., is given as follows:

xi(k + 1) = xi(k)−
∑

j∈Ωi(k)

ψi,kψj,k (xi(k)− xj(k))

− αkĝi(xi(k)), (9.58)

where ĝi(·) is as defined in (9.55). Comparing to the general update in (9.2), the time-varying weight γi,j(k)

at agent i to the incoming message from agent j is given by ψj,k.
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Remark 9.6.2. The main intuition behind the randomized activation albeit in a controlled manner for both

the zeroth order and first order optimization methods is the fact that in expectation both the updates exactly

reduce to the update where the communication graph between agents is realized by the expected Laplacian.

It is to be noted that unlike first order stochastic gradient methods, where the algorithm has access to

unbiased estimates of the gradient, the local gradient estimates gi(·) used in (9.58) are biased (see (9.55))

due to the unavailability of the exact gradient functions and their approximations using the zeroth order

scheme in (9.54). The update is carried on in all agents parallely in a synchronous fashion. The weight

sequences {αk}, {ck} and {βk} are given by αk = α0/(k + 1), ck = c0/(k + 1)δ and βk = β0/(k + 1)τ

respectively, where α0, c0, β0 > 0. We state an assumption on the weight sequences before proceeding

further.

Assumption 9.6.3. The sequence ck is given by:

ck =
1

s1(P )(k + 1)δ
, (9.59)

where δ > 0. The constant δ > 0 is chosen in such a way that,

∞∑
k=1

α2
k

c2k
<∞ (9.60)

The update in (9.58) can be written as:

x(k + 1) = Wkx(k)− αk∇F (x(k))− αkckb(x(k))

− αkh(x(k)), (9.61)

where b(x(k)) =
[
b>1 (x1(k)) , · · · ,b>N (xN (k))

]> ∈ RNd and h(x(k)) =
[
h>1 (x1(k)) , · · · ,h>N (xN (k))

]> ∈ RNd.
We state an assumption on the measurement noises next.

Assumption 9.6.4. For each i = 1, ..., N , the sequence of measurement noises {vi(k; xi(k))} satisfies for

all k = 0, 1, ...:

E[ vi(k; xi(k)) | Fk, zi,k] = 0, almost surely (a.s.)

E[ vi(k; xi(k))2 | Fk, zi,k] ≤ cv‖xi(k)‖2 + σ2
v, a.s., (9.62)

where cv and σ2
v are nonnegative constants.

Assumption 9.6.4 is standard in the analysis of stochastic optimization methods, e.g., Towfic et al. (2016). It

is stated in terms of noise vi(k; xi(k)) in (9.57) rather then directly in terms of the SZO noises in equation

(9.53), for notational simplicity. An equivalent statement can be made in terms of the noises in (9.53). The

assumption about the conditional independence between the random directions zi,k and the function noise

vi(k; xi(k)) is mild. It merely formalizes the model that we consider, namely that, given history Fk, drawing

a random direction sample zi,k and querying function values from the SZO are performed in a statistically

independent manner.

We remark that by Assumption 9.6.4,

E [vi(k; xi(k))zi,k|Fk] = E [zi,kE [vi(k; xi(k))|Fk, zi,k] | Fk]

⇒ E [vz(k; x(k)) | Fk] = 0. (9.63)
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and,

E
[
‖vi(k; xi(k))zi,k‖2 |Fk

]
= E

[
‖zi,k‖2 E

[
v2
i (k; xi(k))|Fk, zi,k

]
|Fk
]

≤ E
[
‖zi,k‖2

] (
cv‖xi(k)‖2 + σ2

v

)
, (9.64)

where if zi,k’s are sampled from a normal distribution with E
[
zi,kz

>
i,k

]
= Id or uniformly from the surface

of the l2-ball of radius
√
d, then we have,

E
[
‖vi(k; xi(k))zi,k‖2 |Fk

]
≤ d

(
cv‖xi(k)‖2 + σ2

v

)
. (9.65)

Communication Cost Define the communication cost Ck to be the expected per-node number of trans-

missions up to iteration k, i.e.,

Ck = E

[
k−1∑
s=0

I{node C transmits at s}

]
, (9.66)

where IA represents the indicator of event A. Note that the per-node communication cost in (9.66) is the

same as the network average of communication costs across all nodes, as the activation probabilities are

homogeneous across nodes. We now proceed to the main results pertaining to the proposed zeroth order

optimization scheme.

9.7 Convergence rates: Statement of main results and interpretations

In this section, we state the main results while the proofs are relegated to Appendix H.

9.7.1 Main Results: RDSA

We state the main result concerning the mean square error at each agent i next.

Theorem 9.7.1. 1) Consider the optimizer estimate sequence {x(k)} generated by the algorithm (9.58).

Let assumptions 9.3.1-9.5.2 and 9.6.1-9.6.4 hold. Then, for each node i’s optimizer estimate xi(k) and the

solution x? of problem (9.1), ∀k ≥ 0 there holds:

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

64NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)2−2τ−2δ

16NM2d2(P )c40
µ2(k + 1)4δ

+ 2Qk +
8∆1,∞α

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ

, (9.67)

where, ∆1,∞ = 6dcvq∞(N, d, α0, c0)+6dNσ2
1 and q∞(N, d, α0, c0) = E

[
‖x(k2)− xo‖2

]
+4 ‖∇F (xo)‖2

µ2 +
√
Ns1(P )Mα0c

2
0

8δ
+

Ns21(P )M2α2
0c

4
0

16(1+4δ)
+
dα2

0(2cvN‖xo‖2+Nσ2
v)

c20(1−2δ)
+
α2

0c
2
0

√
Ns1(P )M‖∇F (xo)‖

1+2δ
+

2Nα2
0c

4
0s2(P )

1+4δ
+

4α2
0c

2
0Ns1(P )

1+2δ
‖∇F (xo)‖2, k2 = max{k0, k1},

k0 = inf{k|µ2α2
k < 1} and k1 = inf

{
k|µ

2
>
√
N
4
s1(P )Mc2k + 2dcvαk

c2
k

+ 4αkc
2
kNs1(P )L2

}
, with Mk and Qk decaying

faster than the rest of the terms.

2) In particular, the rate of decay of the RHS of (9.67) is given by (k+1)−δ1 , where δ1 = min {1− 2δ, 2− 2τ − 2δ, 4δ}.
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By, optimizing over τ and δ, we obtain that for τ = 1/2 and δ = 1/6,

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)2/3

16NM2d2(P )c20
µ2(k + 1)2/3

+ 2Qk +
8∆1,∞α

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2/3

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)2/3

= O

(
1

k
2
3

)
, ∀i.

3) The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
.

and the MSE-communication rate is given by,

E
[
‖xi(k)− x?‖2

]
= O

(
C−8/9+ζ
k

)
, (9.68)

where ζ can be arbitrarily small.

Theorem 9.7.1 asserts an O
(
C−8/9+ζ
k

)
MSE-communication rate can be achieved while keeping the MSE

decay rate at O
(
k−

2
3

)
. The performance of the zeroth order optimization scheme depends explicitly on

the connectivity of the expected Laplacian through the terms
32NL2∆1,∞α

2
0

µ2λ2
2(L)c20β2

0(k+1)0.5
and

8∆1,∞α
2
0

λ2
2(L)β2

0c
2
0(k+1)0.5

. In

particular, communication graphs which are well connected, i.e., have higher values of λ2

(
L
)

will have lower

MSE as compared to a counterpart with lower values of λ2

(
L
)
.

If higher order smoothness assumptions are made, i.e., a p-th order smoothness assumption is made which

is then exploited by means of a p-th degree finite difference gradient approximation, then by repeating the

same proof arguments, the rate in terms of iteration count can be shown to improve to O
(
k−

p
p+1

)
. The

improvement can be attributed to a better bias-variance tradeoff as illustrated by the terms
8M2d2(P )c40
µ2(k+1)2pδ and

4Nα0(dcvq∞(N,d,α0,c0)+dNσ2
1)

µc20(k+1)1−2δ . The corresponding MSE-communication rate improves to O

(
C
− 4p

3(p+1)
+ζ

k

)
.

9.8 Simulations

9.8.1 Distributed KWSA

We provide a simulation example pertaining to `2-regularized logistic losses in random network characterized

by link failures independent across iteration and links with probability pfail. To be specific, we consider

`2-regularized empirical risk minimization with logistic loss, where the regularization function is given by

Ψi(x) = κ
2 ‖x‖

2, i = 1, ..., N , with κ = 0.3. In our simulation setup, each node has access to ni = 10

data points. The class labels and the classification vector given by bij = sign
(
(x′1)>ai,j + x′0 + εij

)
and

x′ = ((x′1)>, x′0)> respectively have εijs and the entries of x′ drawn independently from standard normal

distribution. The feature vectors ai,j , j = 1, ..., ni, across different nodes i = 1, · · · , N and across different

entries are drawn independently from different distributions. To be specific, at node i, ai,j , j = 1, ..., ni

is generated by adding a standard normal random variable and an uniform random variable with support

[0, 5 i].
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We set βk = 1
θ (k+1)1/2 , αk = 1

k+1 , ck = 1
(k+1)1/4 , k = 0, 1, ..., where θ = 7 is the maximum degree across

nodes. The optimizer estimate at each node is initialized as xi(0) = 0, ∀ i = 1, ..., N .

We consider a connected network G with N = 10 nodes and 23 links, generated as an instance of a random

geometric graph. The random network model assumes link failures independent across iterations and links

with probability pfail, where pfail ∈ {0; 0.5; 0.7}. The case pfail = 0 corresponds to the case where none of

the links fail. We also include a comparison with the centralized zeroth order KWSA based optimization

method:

y(k + 1) = y(k)− 1

N(k + 1)

N∑
i=1

∇gi ( y(k); ai(k), bi(k) ) , (9.69)

where (ai(k), bi(k)) is drawn uniformly from the set (ai,j , bi,j), j = 1, ..., ni. Algorithm (9.69) shows

how (9.58) would be implemented if there existed a fusion node with access to all nodes’ data. Hence, the

comparison with (9.69) allows us to study the degradation of (9.6) due to lack of global model information.

The step size for (9.69) is set to 1/N(k + 1). As an error metric, we use the mean square error (MSE)

estimate averaged across nodes: 1
N

∑N
i=1 ‖xi(k)− x?‖2.

Figure 9.1 plots the estimated MSE, averaged across 100 algorithm runs, versus iteration number k for

pfail ∈ {0; 0.5; 0.7} in log10-log10 scale. The slope of the plot curve corresponds to the sublinear rate of

the method; e.g., the −1/2 slope corresponds to a 1/k0.5 rate. It is to be noted that for all values of pfail,

the algorithm (9.58) achieves on this example (at least) the 1/k0.5 rate, thus corroborating our theory. The

increase of the link failure probability only increases the constant in the MSE but does not affect the rate

but the curves are only vertically shifted. Interestingly, the loss due to the increase of pfail is small; e.g.,

the curves that correspond to pfail = 0.5 and pfail = 0 (no link failures) practically match. Figure 9.1 also

shows the performance of the centralized method (9.69). We can see that, the distributed method (9.6) is

very close in performance to the centralized method.
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Figure 9.1: Estimated MSE versus iteration number k for algorithm (9.58) with link failure probability
pfail = 0 (blue, solid line); 0.5 (red, solid line); and 0.7 (pink, solid line). The Figure also shows the
performance of the centralized stochastic gradient method in (9.69) (black, dashed line).

9.8.2 Communication Efficient RDSA

In this section, we provide evaluations of the proposed communication efficient zeroth order optimization

algorithm on the Abalone dataset (Lib). To be specific, we consider `2-regularized empirical risk minimization
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for the Abalone dataset, where the regularization function is given by Ψi(x) = 1
2‖x‖

2. We consider a 10

node network for both the zeroth and first order optimization schemes. The Abalone dataset has 4177 data

points out of which 577 data points are kept aside as the test set and the other 3600 is divided equally

among the 10 nodes resulting in each node having 360 data points. For the zeroth order optimization,

we compare the proposed undirected sequence of Laplacian constructions based optimization scheme and

the static Laplacian (Benchmark) based optimization schemes. The benchmark scheme is characterized by

the communication graph being static and thereby resulting agents connected through a link to exchange

messages at all times. The data points at each node are sampled without replacement in a contiguous

manner. The vectors zi,ks for evaluating directional derivatives were sampled from a normal distribution

with identity covariance. Figure 9.2 compares the test error for the three aforementioned schemes, where

it can be clearly observed that the test error is indistinguishable in terms of the number of iterations or

equivalently in terms of the number of queries to the stochastic zeroth oracle. Figure 9.3 demonstrates the

superiority the proposed algorithm in terms of the test error versus communication cost as compared to the

benchmark as predicted by Theorem 9.7.1. For example, at the same relative test error level, the proposed

algorithm uses up to 3x less number of transmissions as compared to the benchmark scheme.
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Figure 9.2: Communication Efficient RDSA: Test Error vs Iterations

0 0.5 1 1.5 2 2.5 3
Communication cost in log10

15

20

25

30

35

Te
st

 E
rr

or

Benchmark
Proposed

Figure 9.3: Communication Efficient RDSA: Test Error vs Communication Cost
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9.9 Contributions

• Non-Asymptotic Rates for Distributed KWSA: Through the distributed KWSA algorithm, we

specifically characterized non-asymptotic rates of the algorithm in terms of the different algorithm

parameters and the network connectivity. While asymptotic properties of KWSA in terms of almost

sure convergence and asymptotic normality of the optimizer sequence has been studied in Kiefer and

Wolfowitz (1952), to the best of our knowledge this is the first time a non-asymptotic characterization

of a distributed implementation of KWSA has been obtained.

• Bias-Reduced Communication Efficient RDSA: We proposed a communication efficient dis-

tributed zeroth order scheme akin to the RDSA scheme albeit using three function evaluation at each

epoch which in spirit draws from the twicing trick in kernel density estimation. In addition to the twic-

ing trick, we have established for the proposed zeroth order method explicit mean square error (MSE)

convergence rates with respect to (appropriately defined) computational cost Ccomp and communica-

tion cost Ccomm. Specifically, the proposed zeroth order method achieves the O(1/(Ccomm)8/9−ζ) MSE

communication rate, which significantly improves over the rates of existing methods, while maintaining

the order-optimal O(1/(Ccomp)2/3) MSE computational rate.

9.10 Conclusion and Future Directions

In this chapter, we have developed and analyzed a novel class of methods for distributed stochastic op-

timization of the zeroth and first order that are based on increasingly sparse randomized communication

protocols. We have established for the proposed zeroth order method explicit mean square error (MSE) con-

vergence rates with respect to (appropriately defined) computational cost Ccomp and communication cost

Ccomm. Specifically, the proposed zeroth order method achieves the O(1/(Ccomm)8/9−ζ) MSE communication

rate, which significantly improves over the rates of existing methods, while maintaining the order-optimal

O(1/(Ccomp)2/3) MSE computational rate. Numerical examples on real data demonstrate the communica-

tion efficiency of the proposed methods. Future directions include extending the communication efficient

scheme to non-convex and non-smooth functions.



Chapter 10

Zeroth Order Frank Wolfe

10.1 Introduction

In this chapter, we aim to solve the following stochastic optimization problem:

min
x∈C

f (x) = min
x∈C

Ey∼P [F (x; y)] , (10.1)

where C ∈ Rd is a closed convex set. This problem of stochastic constrained optimization has been a focus of

immense interest in the context of convex functions Bubeck et al. (2015) and non-convex functions especially

in the context of deep learning Goodfellow et al. (2016). Solutions to the problem (10.1) can be broadly

classified into two classes: algorithms which require a projection at each step, for example, projected gradient

descent Bubeck et al. (2015) and projection free methods such as the Frank-Wolfe algorithm Jaggi (2013).

Furthermore, algorithms designed to solve the above optimization problem access various kinds of oracles,

i.e., first order oracle (gradient queries) and zeroth order oracle (function queries). In this chapter, we focus

on a stochastic version of projection free method, namely Frank-Wolfe algorithm, with access to a zeroth

order oracle.

Derivative free optimization or zeroth order optimization is motivated by settings where the analytical form of

the function is not available or when the gradient evaluation is computationally prohibitive. Developments in

zeroth order optimization has been fueled by various applications ranging from problems in medical science,

material science and chemistry Gray et al. (2004); Marsden et al. (2008); Gray et al. (2004); Deming et al.

(1978); Marsden et al. (2007). In the context of machine learning, zeroth order methods have been applied

to attacks on deep neural networks using black box models Chen et al. (2017), scalable policy optimization

for reinforcement learning Choromanski et al. (2018) and optimization with bandit feedback Bubeck et al.

(2012). For the problem in (10.1), it is well known that the primal sub-optimality gap of first order schemes

are dimension independent. However, algorithms which involve a projection operator might be expensive in

practice depending on the structure of C. Noting the potentially expensive projection operators, projection

free methods such as Frank-Wolfe Jaggi (2013) have had a resurgence. Frank-Wolfe avoids the projection

step, and only requires access to a linear minimization oracle, which can be implemented efficiently and needs

to be solved to a certain degree of exactness. Stochastic versions of Frank-Wolfe have been studied in both

the convex Hazan and Kale (2012); Hazan and Luo (2016); Mokhtari et al. (2018) and non-convex Reddi

et al. (2016) setting with access to stochastic first order oracles (SFO). However, convergence of stochastic

Frank-Wolfe with access to only stochastic zeroth order oracle (SZO) remains unexplored.

167
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Reference Setting Memory Primal Rate Oracle

Jaggi (2013) Det. Convex - O(1/t) SFO

Hazan and Kale (2012) Stoch. Convex O(t) O(1/t1/2) SFO

Mokhtari et al. (2018) Stoch. Convex O(1) O(1/t1/3) SFO

Lacoste-Julien (2016) Det. Non-convex - O(1/t1/2) SFO

Reddi et al. (2016) Stoch. Non-convex O(
√
t) O(1/t1/4) SFO

RDSA [Theorem 10.5.2(1)] Stoch. Convex 1 O(d1/3/t1/3) SZO

I-RDSA [Theorem 10.5.2(2)] Stoch. Convex m O((d/m)1/3/t1/3) SZO

KWSA [Theorem 10.5.2(3)] Stoch. Convex d O(1/t1/3) SZO

I-RDSA [Theorem 10.5.3] Stoch. Non-convex m O((d/m)1/3/t1/4) SZO

Table 10.1: Convergence of Frank-Wolfe: Det. refers to deterministic while stoch. refers to stochastic.
Memory indicates the number of samples at which the gradients needs to be tracked in the first order case.
In the zeroth order case, it indicates the number of directional derivatives being evaluated at one sample.
The rates correspond to the rate of decay of E[f (xt) − f (x∗)] in the convex setting and the Frank-Wolfe
duality gap in context of the non-convex setting.

10.2 Related Work

Algorithms for convex optimization with access to a SZO have been studied in Wang et al. (2018); Duchi

et al. (2015); Liu et al. (2018); Sahu et al. (2018b), where in Liu et al. (2018) to address constrained

optimization a projection step was considered. In the context of projection free methods, Frank and Wolfe

(1956) studied the Frank-Wolfe algorithm for smooth convex functions with line search which was extended to

encompass inexact linear minimization step in Jaggi (2013). Subsequently with additional assumptions, the

rates for classical Frank-Wolfe was improved in Lacoste-Julien and Jaggi (2015); Garber and Hazan (2015).

Stochastic versions of Frank-Wolfe for convex optimization with number of calls to SFO at each iteration

dependent on the number of iterations with additional smoothness assumptions have been studied in Hazan

and Kale (2012); Hazan and Luo (2016) so as to obtain faster rates, while Mokhtari et al. (2018) studied the

version with a mini-batch size of 1. In the context of non-convex optimization, a deterministic Frank-Wolfe

algorithm was studied in Lacoste-Julien (2016), while Reddi et al. (2016) addressed the stochastic version

of Frank-Wolfe and further improved the rates by using variance reduction techniques. Table 10.1 gives

a summary of the rates of various algorithms. For the sake of comparison, we do not compare our rates

with those of variance reduced versions of stochastic Frank-Wolfe in Reddi et al. (2016); Hazan and Luo

(2016), as our proposed algorithm does not employ variance reduction techniques which tend to incorporate

multiple restarts and extra memory in order to achieve better rates. However, note that our algorithm can

be extended so as to incorporate variance reduction techniques.

In this chapter, we study a setting of the stochastic Frank-Wolfe where a small batch-size (independent

of dimension or the number of iterations) is sampled at each epoch while having access to a zeroth order

oracle. Unlike, the first order oracle based stochastic Frank-Wolfe, the zeroth order counterpart is only

able to generate biased gradient estimates. We focus on three different zeroth order gradient approximation

schemes, namely, the classical Kiefer Wolfowitz stochastic approximation (KWSA) Kiefer and Wolfowitz

(1952), random directions stochastic approximation (RDSA) Nesterov and Spokoiny (2011); Duchi et al.

(2015), and an improvized RDSA (I-RDSA). KWSA samples directional derivatives along the canonical

basis directions at each iteration, while RDSA samples one directional derivative at each iteration, and I-
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RDSA samples m < d directional derivatives at each iteration. Näıve usage of the biased gradient estimates

in the linear minimization step, in addition to the stochasticity of the function evaluations, can lead to

potentially diverging iterate sequences.

To circumvent the potential divergence issue due to non-decaying gradient noise and bias, we use a gradient

averaging technique used in Yang et al. (2016); Ruszczyński (2008); Mokhtari et al. (2018) to get a surro-

gate gradient estimate which reduces the noise and the associated bias. The gradient averaging technique

intuitively reduces the linear minimization step to that of an inexact minimization if the exact gradient was

available. For each of the zeroth order optimization schemes, i.e., KWSA, RDSA, and I-RDSA, we derive

primal sub-optimality bounds and Frank-Wolfe duality gap bounds and quantify the dependence in terms

of the dimension and the number of epochs. We show that the primal sub-optimality gap to be of the

order O(d1/3/T 1/3) for RDSA, which improves to O((d/m)1/3/T 1/3) for I-RDSA, and O(1/T 1/3) for KWSA

at the cost of additional directional derivatives. The dimension dependence in zeroth order optimization

is unavoidable due to the inherent bias-variance trade-off but nonetheless, the dependence on the number

of iterations matches that of its first order counterpart in Mokhtari et al. (2018). Furthermore, we also

derive rates for non-convex functions and show the Frank-Wolfe duality gap to be O(d1/3/T 1/4), where the

dependence on the number of iterations matches that of its first order counterpart in Reddi et al. (2016).

To complement the theoretical results, we also demonstrate the efficacy of our algorithm through empirical

evaluations on datasets. In particular, we perform experiments on a dataset concerning constrained black

box non-convex optimization, where generic first order methods are rendered unusable and show that our

proposed algorithm converges to a first order stationary point.

10.3 Frank-Wolfe: First to Zeroth Order

In this paper, the objective is to solve the following optimization problem:

min
x∈C

f (x) = min
x∈C

Ey∼P [F (x; y)] , (10.2)

where C ∈ Rd is a closed convex set, the loss functions and the expected loss functions, F (·; y) and f(·)
respectively are possibly non-convex. However, in the context of the optimization problem posed in (10.2),

we assume that we have access to a stochastic zeroth order oracle (SZO). On querying a SZO at the iterate

xt, yields an unbiased estimate of the loss function f(·) in the form of F (xt; yt). Before proceeding to the

algorithm and the subsequent results, we revisit preliminaries concerning the Frank-Wolfe algorithm and

zeroth order optimization.

10.3.1 Background: Frank-Wolfe Algorithm

The celebrated Frank-Wolfe algorithm is based around approximating the objective by a first-order Taylor

approximation. In the case, when exact first order information is available, i.e., one has access to an

incremental first order oracle (IFO), a deterministic Frank-Wolfe method involves the following steps:

vt = argmin
v∈C
〈∇f (xt) ,v〉

xt+1 = (1− γt+1) xt + γt+1vt,
(10.3)
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where γt = 2
t+2 . A linear minimization oracle (LMO) is queried at every epoch. Note that, the exact

minimization in (3.1) is a linear program1 and can be performed efficiently without much computational

overload. It is worth nothing that the exact minimization in (3.1) can be replaced by an inexact minimization

of the following form, where a v ∈ C is chosen to satisfy,

〈∇f (xt) ,v〉 ≤ argmin
v∈C
〈∇f (xt) ,v〉+ γtC1,

and the algorithm can be shown to retain the same convergence rate (see, for example Jaggi (2013)).

10.3.2 Background: Zeroth Order Optimization

The crux of zeroth order optimization consists of gradient approximation schemes from appropriately sampled

values of the objective function. We briefly describe the few well known zeroth order gradient approximation

schemes. The Kiefer-Wolfowitz stochastic approximation (KWSA, see Kiefer and Wolfowitz (1952)) scheme

approximates the gradient by sampling the objective function along the canonical basis vectors. Formally,

gradient estimate can be expressed as:

g(xt; y) =

d∑
i=1

F (xt + ctei; y)− F (xt; y)

ct
ei, (10.4)

where ct is a carefully chosen time-decaying sequence. KWSA requires d samples at each step to evaluate

the gradient. However, in order to avoid sampling the objective function d times, random directions based

gradient estimators have been proposed recently (see, for example Duchi et al. (2015); Nesterov and Spokoiny

(2011)). The random directions gradient estimator (RDSA) involves estimating the directional derivative

along a randomly sampled direction from an appropriate probability distribution. Formally, the random

directions gradient estimator is given by,

g(xt; y, zt) =
F (xt + ctzt; y)− F (xt; y)

ct
zt, (10.5)

where zt ∈ Rd is a random vector sampled from a probability distribution such that E
[
ztz
>
t

]
= Id and ct is

a carefully chosen time-decaying sequence. With ct → 0, both the gradient estimators in (10.4) and (10.5)

turn out to be unbiased estimators of the gradient ∇f(xt).

10.4 Zeroth Order Stochastic Frank-Wolfe: Algorithm & Analysis

In this section, we start by stating assumptions which are required for our analysis.

Assumption 10.4.1. In problem (10.2), the set C is bounded with finite diameter R.

Assumption 10.4.2. F is convex and Lipschitz continuous with

√
E
[
‖∇xF (x; ·)‖2

]
≤ L1 for all x ∈ C.

Assumption 10.4.3. The expected function f(·) is convex. Moreover, its gradient ∇f is L-Lipschitz

continuous over the set C, i.e., for all x, y ∈ C

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ . (10.6)

1Technically speaking, when C is given by linear constraints.
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Algorithm 1 Deterministic Zeroth Order Frank Wolfe

Require: Input, Loss Function F (x), L (Lipschitz constant for the gradients), Convex Set C, Sequences
γt = 2

t+1 , ct = Lγt
d .

Output: : xT or 1
T

∑T
t=1 xt.

1: Initialize x0 ∈ C
2: for t = 0, 1, . . . , T − 1 do

3: Compute g(xt) =
∑d
i=1

F (xt+ctei)−F (xt)
ct

ei,
4: Compute vt = argmins∈C〈s,g(xt)〉,
5: Compute xt+1 = (1− γt) xt + γtvt.
6: end for

Assumption 10.4.4. The zt’s are drawn from a distribution µ such that M(µ) = E
[
‖zt‖6

]
is finite, and

for any vector g ∈ Rd, there exists a function s(d) : N 7→ R+ such that,

E
[
‖〈g, zt〉zt‖2

]
≤ s(d) ‖g‖2 .

Assumption 10.4.5. The unbiased gradient estimates, ∇F (x; y) of ∇f(x), i.e., Ey∼P [∇F (x; y)] = ∇f(x)

satisfy

E
[
‖∇F (x,y)−∇f(x)‖2

]
≤ σ2 (10.7)

We note that Assumptions 10.4.1-10.4.3 and 10.4.5 are standard in the context of stochastic optimization.

Assumption 2.4.2 provides for the requisite moment conditions for the sampling distribution of the directions

utilized for finding directional derivatives so as to be able to derive concentration bounds. In particular, if µ

is taken to be uniform on the surface of the Rd Euclidean ball with radius
√
d, then we have that M(µ) = d3

and s(d) = d. Moreover, if µ is taken to be N (0, Id), then M(µ) = d(d+ 2)(d+ 4) ≈ d3 and s(d) = d. For

the rest of the paper, we take µ to be either uniform on the surface of the Rd Euclidean ball with radius
√
d

or N (0, Id). Before getting into the stochastic case, we demonstrate how a typical zeroth order Frank-Wolfe

framework corresponds to an inexact classical Frank-Wolfe optimization in the deterministic setting.

10.4.1 Deterministic Zeroth Order Frank-Wolfe

The deterministic version of the optimization in (10.2) can be re-stated as follows:

min
x∈C

F (x) . (10.8)

In order to elucidate the equivalence of a typical zeroth order Frank-Wolfe framework corresponds to

an inexact classical Frank-Wolfe optimization, we restrict our attention to the Kiefer-Wolfowitz stochastic

approximation (KWSA) for gradient estimation. In particular, the KWSA gradient estimator in (10.4) can

be expressed as follows:

g(xt) =

d∑
i=1

F (xt + ctei)− F (xt)

ct
ei

= ∇F (xt) +

d∑
i=1

ct
2
〈ei,∇2F (xt + λtctei)ei〉ei, (10.9)
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where λ ∈ [0, 1]. The linear optimization step with the current gradient approximation reduces to:

〈v,g(xt)〉 = 〈v,∇F (xt)〉

+
ct
2

d∑
i=1

〈ei,∇2F (xt + λtctei)ei〉〈v, ei〉

⇒ min
v∈C
〈v,g(xt)〉 ≤ min

s∈C
〈s,∇F (xt)〉+

ctLRd

2
. (10.10)

In particular, if ct is chosen to be ct = γt
d and γt = 2

t+1 , we obtain the following bound characterizing the

primal gap:

Theorem 10.4.1. Given the zeroth order Frank-Wolfe algorithm in Algorithm 1, we obtain the following

bound:

F (xt)− F (x∗) =
Qns
t+ 2

, (10.11)

where Qns = max{2(F (x0)− F (x∗)), 4LR2}.

The proof of the above theorem is relegated to Appendix I. Theorem 10.4.1 asserts that with appropriate

scaling of ct, i.e., the smoothing parameter for the zeroth order gradient estimator, the iteration dependence

of the primal gap matches that of the classical Frank-Wolfe scheme. In particular, for a primal gap of ε, the

number of iterations needed for the zeroth order scheme in algorithm 1 is O
(

1
ε

)
, while the number of calls

to the linear minimization oracle and zeroth order oracle are given by O
(

1
ε

)
and O

(
d
ε

)
respectively.

In summary, Theorem 10.4.1 shows that the deterministic zeroth order Frank-Wolfe algorithm reduces to

the inexact classical Frank-Wolfe algorithm with the corresponding primal being dimension independent.

However, the dimension independence comes at the cost of querying the zeroth order oracle d times at each

iteration. In the sequel, we will focus on the random directions gradient estimator in (10.5) for the stochastic

zeroth order Frank-Wolfe algorithm.

10.4.2 Zeroth Order Stochastic Frank-Wolfe

In this section, we formally introduce our proposed zeroth order stochastic Frank-Wolfe algorithm. A naive

replacement of ∇f(xk) by its stochastic counterpart, i.e., ∇F (xk; yk) would make the algorithm potentially

divergent due to non-vanishing variance of gradient approximations. Moreover, the naive replacement would

lead to the linear minimization constraint to hold only in expectation and thereby potentially also making

the algorithm divergent. We use a well known averaging trick to counter this problem which is as follows:

dt = (1− ρt) dt−1 + ρtg (xt,yt) , (10.12)

where g (xt,yt) is a gradient approximation, d0 = 0 and ρt is a time-decaying sequence. Technically speaking,

such a scheme allows for E
[
‖dt −∇f (xt)‖2

]
to go to zero asymptotically. With the above averaging scheme,

we replace the linear minimization and the subsequent steps as follows:

dt = (1− ρt) dt−1 + ρtg (xt,yt)

vt = argmin
v∈C
〈dt,v〉

xt+1 = (1− γt+1) xt + γt+1vt. (10.13)
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We resort to three different gradient approximation schemes for approximating g (xt,yt). In particular, in

addition to the the KWSA scheme and the random directions scheme, as outlined in (10.4) and (10.5), we

employ an improvised random directions gradient estimator (I-RDSA) by sampling m directions at each

time followed by averaging, i.e., {zi,t}mi=1 for which we have,

gm(xt; yt, zi,t)

=
1

m

m∑
i=1

(
F (xt + ctzi,t; y)− F (xt; y)

ct
zi,t

)
. (10.14)

It is to be noted that the above gradient approximation scheme uses more exactly one data point while

utilizing m directional derivatives. In order to quantify the benefits of using such a scheme, we present the

statistics concerning the gradient approximation of RDSA and I-RDSA. We have from Duchi et al. (2015)

for RDSA,

Ezt∼µ,yt∼P [g(x; yt, zt)] = ∇f (x) + ctLv (x, ct)

Ezt∼µ,yt∼P

[
‖g(x; yt, zt)‖2

]
≤ 2s(d)E

[
‖∇F (x; yt)‖2

]
+
c2t
2
L2M(µ), (10.15)

Using (10.15), similar statistics for the improvised RDSA gradient estimator can be evaluated as follows:

Ezt∼µ,yt∼P [gm(x; yt, zt)] = ∇f (x) +
ct
m
Lv (x, ct)

Ezt∼µ,yt∼P

[
‖gm(x; yt, zt)‖2

]
≤
(

1 +m

2m

)
c2tL

2M(µ)

+ 2

(
1 +

s(d)

m

)
E
[
‖∇F (x; yt)‖2

]
, (10.16)

where ‖v (x, ct)‖ ≤ 1
2E
[
‖z‖3

]
. As we will see later the I-RDSA scheme improves the dimension dependence

of the primal gap, but it comes at the cost of m calls to the SZO. We are now ready to state the zeroth

order stochastic Frank-Wolfe algorithm which is presented in algorithm 2. Before the main results, we first

study the evolution of the gradient estimates in (10.12) and the associated mean square error. The following

Lemma studies the error of the process {dt} as defined in (10.12).

Lemma 10.4.2. Let Assumptions 10.4.1-10.4.5 hold. Given the recursion in (10.12), we have that ‖∇f(xt)−
dt‖2 satisfies

1) for the RDSA gradient approximation scheme

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tL
2
1 + 8ρ2

t s(d)L2
1

+ 2ρ2
t c

2
tL

2M(µ) +
2L2R2γ2

t

ρt
+
ρt
2
c2tL

2M(µ)

+
(

1− ρt
2

)
E
[
‖∇f(xt−1)− dt−1‖2

]
, (10.17)

2) for the I-RDSA gradient approximation scheme

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

t

(
σ2 + 2L2

1

)
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Algorithm 2 Stochastic Gradient Free Frank Wolfe

Require: Input, Loss Function F (x), Convex Set C, number of directions m, sequences γt = 2
t+8 ,

(ρt, ct)RDSA =
(

4
d1/3(t+8)2/3 ,

2
d3/2(t+8)1/3

)
(ρt, ct)I−RDSA =

(
4

(1+ d
m )

1/3
(t+8)2/3

, 2
√
m

d3/2(t+8)1/3

)
(ρt, ct)KWSA =

(
4

(t+8)2/3 ,
2

d1/2(t+8)1/3

)
.

Output: xT or 1
T

∑T−1
t=0 xt.

1: Initialize x0 ∈ C
2: for t = 0, 2, . . . , T − 1 do
3: Compute

KWSA:

g(xt; y) =
∑d
i=1

F (xt+ctei;y)−F (xt;y)
ct

ei

RDSA: Sample zt ∼ N (0, Id),

g(xt; y, zt) = F (xt+ctzt;y)−F (xt;y)
ct

zt

I-RDSA: Sample {zi,t}mi=1 ∼ N (0, Id),

g(xt; y, zt) = 1
m

∑m
i=1

F (xt+ctzi,t;y)−F (xt;y)
ct

zi,t

4: Compute dt = (1− ρt) dt−1 + ρtg (xt,yt)
5: Compute vt = argmins∈C〈s,dt)〉,
6: Compute xt+1 = (1− γt) xt + γtvt.
7: end for

+
ρt

2m2
c2tL

2M(µ) + 8ρ2
t

(
1 +

s(d)

m

)
L2

1

+

(
1 +m

2m

)
ρ2
t c

2
tL

2M(µ) +
2L2R2γ2

t

ρt

+
(

1− ρt
2

)
E
[
‖∇f(xt−1)− dt−1‖2

]
(10.18)

3) for the KWSA gradient approximation scheme

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 2ρtc

2
tdL

2

+
2L2R2γ2

t

ρt
+
(

1− ρt
2

)
E
[
‖∇f(xt−1)− dt−1‖2

]
. (10.19)

We use the following Lemma so as to study the dynamics of the primal gap.

Lemma 10.4.3. Consider the zeroth order Frank Wolfe Algorithm in 1. Let Assumptions 10.4.1-10.4.5

hold. Then, the primal gap F (xt+1)− F (x∗) satisfies

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗))

+ γt+1R‖∇F (xt)− dt‖+
LR2γ2

t+1

2
. (10.20)

With the above recursions in place, we can now characterize the finite time rates of the mean square errors

for the different error approximation schemes. In particular, using Lemma 10.4.2, we first state the main

result concerning the setting, where the objective is convex.
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10.5 Main Results

In this section, we state the main results, while the proofs are relegated to Appendix I. We first state the

main results concerning the primal gap of the proposed algorithm.

Primal Gap: We state the main results involving the different gradient approximation schemes for the

primal gap, which provide a characterization of E [f(xt)− f(x∗)].

Theorem 10.5.1. Let Assumptions 10.4.1-10.4.5 hold. Let the sequence γt be given by γt = 2
t+8 .

1) Then, we have the following primal sub-optimality gap for the algorithm in 2, with the RDSA gradient

approximation scheme:

E [f(xt)− f(x∗)] = O

(
d1/3

(t+ 9)1/3

)
. (10.21)

2) In case of the I-RDSA the gradient approximation scheme, the primal sub-optimality gap is given by,

E [f(xt)− f(x∗)] = O

(
(d/m)1/3

(t+ 9)1/3

)
. (10.22)

3) Finally, for the KWSA gradient approximation scheme, the primal sub-optimality gap is given by,

E [f(xt)− f(x∗)] = O

(
1

(t+ 9)1/3

)
. (10.23)

Theorem 10.5.1 quantifies the dimension dependence of the primal gap to be d1/3. At the same time the

dependence on iterations, i.e., O(T−1/3) matches that of the stochastic Frank-Wolfe which has access to first

order information as in Mokhtari et al. (2018). The improvement of the rates for I-RDSA and KWSA are

at the cost of extra directional derivatives at each iteration. The number of queries to the SZO so as to

obtain a primal gap of ε, i.e., E [f(xt)− f(x∗)] ≤ ε is given by O
(
d
ε3

)
, where the dimension dependence is

consistent with zeroth order schemes and cannot be improved on as illustrated in Duchi et al. (2015)

Dual Gap: We state the main results involving the different gradient approximation schemes for the dual

gap, which provide a characterization of G (x) = maxv∈C〈∇F (x),x− v〉.

Theorem 10.5.2. Let Assumptions 10.4.1-10.4.5 hold. Let the sequence γt be given by γt = 2
t+8 .

1) Then, we have the following dual gap for the algorithm in 2, with the RDSA gradient approximation

scheme:

E
[

min
t=0,··· ,T−1

G (x(t))

]
≤ 7(F (x0)− F (x∗))

2T

+
LR2ln(T + 7)

T
+
Q
′
+R
√

2Q

2T
(T + 7)2/3, (10.24)

where Q = 32d−1/3σ2 + 64d−1/3L2
1 + 128d2/3L2

1 + 2L2R2d2/3 + 416d2/3L2 and Q
′

= max{2(f(x0) −
f(x∗)), 2R

√
2Q+ LR2/2}.
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2) In case of the I-RDSA the gradient approximation scheme, the dual gap is given by,

E
[

min
t=0,··· ,T−1

G (x(t))

]
≤ 7(F (x0)− F (x∗))

2T

+
LR2ln(T + 7)

T
+
Q
′

ir +R
√

2Qir
2T

(T + 7)2/3, (10.25)

where Qir = 32 (1 + d/m)
−1/3

σ2 + 128 (1 + d/m)
2/3

L2
1 + 64 (1 + d/m)

−1/3
L2

1 + 2L2R2 (1 + d/m)
2/3

+

416 (1 + d/m)
2/3

L2 and Q
′

ir = max{2(f(x0)− f(x∗)), 2R
√

2Qir + LR2/2.

3) Finally, for the KWSA gradient approximation scheme, the dual gap is given by,

E
[

min
t=0,··· ,T−1

G (x(t))

]
≤ 7(F (x0)− F (x∗))

2T

+
LR2ln(T + 7)

T
+
Q
′

kw +R
√

2Qkw
2T

(T + 7)2/3, (10.26)

where Qkw = max
{

4‖∇f(x0)−d0‖2, 32σ2+32L2+2L2R2
}

and Q
′

kw = max{2(f(x0)−f(x∗)), 2R
√
Qkw+

LR2/2}.

Theorem 10.5.2 quantifies the dimension dependence of the Frank-Wolfe duality gap to be d1/3. At the same

time the dependence on iterations, i.e., O(T−1/3) matches that of the primal gap and hence follows that the

number of queries to the SZO so as to obtain a Frank-Wolfe duality gap of ε, i.e., E [mint=0,··· ,T−1 G (x(t))] ≤ ε
is given by O

(
d
ε3

)
. In particular, theorem 10.5.2 asserts that the initial conditions are forgotten as O(1/T ).

10.5.1 Zeroth-Order Frank-Wolfe Non-Convex

We employ the following algorithm for the non-convex stochastic Frank-Wolfe:

Algorithm 3 Stochastic Gradient Free Frank-Wolfe

Require: Input, Loss Function F (x), Convex Set C, number of directions m. Sequences γ = 1
T 3/4 ,

(ρt, ct) =

(
4

(1+ d
m )

1/3
(t+8)2/3

, 2
√
m

(d3/2(t+8)1/3)

)
Output: xT .

1: Initialize x0 ∈ C
2: for t = 0, 1, . . . , T − 1 do
3: Compute

Sample {zi,t}mi=1 ∼ N (0, Id), g(xt; y, zt) = 1
m

∑m
i=1

F (xt+ctzi,t;y)−F (xt;y)
ct

zi,t

4: Compute dt = (1− ρt) dt−1 + ρtg (xt,y)
5: Compute vt = argmins∈C〈s,dt)〉,
6: Compute xt+1 = (1− γ) xt + γvt.
7: end for

We use the following assumption concerning the smoothness of the non-convex loss function.

Assumption 10.5.1. The gradients ∇f are L-Lipschitz continuous over the set C, i.e., for all x, y ∈ C

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .
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Theorem 10.5.3. Let Assumptions 10.4.3-10.5.1 hold. Then, we have the following dual gap for iterations

t = 0, 1, · · · , T − 1 for the algorithm as described in (10.13)

E
[

min
t=0,··· ,T−1

G (x(t))

]
≤ Q′

T 1/4
= O

(
(d/m)1/3

T 1/4

)
, (10.27)

where Q′ = max{91/3(f(x0)− f(x∗)), QncR(d/m)1/3}.

Theorem 10.5.3 quantifies the dimension dependence of the Frank-Wolfe duality gap for non-convex functions

to be d1/3. At the same time the dependence on iterations, i.e., O(T−1/4) matches that of the rate of SFW

in Reddi et al. (2016) and hence follows that the number of queries to the SZO so as to obtain a Frank-Wolfe

duality gap of ε, i.e., E [mint=0,··· ,T−1 G (x(t))] ≤ ε is given by O
(
d4/3

ε4

)
.

10.6 Experiments

We now present empirical results for zeroth order Frank-Wolfe optimization with an aim to highlight three

aspects of our method: (i) it is accurate even in stochastic case (Section 10.6.1) (ii) it scales to relatively

high dimensions (Section 10.6.2) (iii) it reaches stationary point in non-convex setting (Section 10.6.3).

Methods and Evaluation We look at the optimality gap |f(xoptimizer)−f(x∗)| as the evaluation metric,

where xoptimizer denotes the solution obtained from the employed optimizer and x∗ corresponds to true

solution. Most existing zero order optimization techniques like Nelder-Mead simplex (Nelder and Mead,

1965) or bound optimization by quadratic approximation (BOBYQA; Powell 2009) can only handle bound

constraints, but not arbitrary convex constraints as our method can. Thus, for all experiments, we could

compare proposed zeroth order stochastic Frank-Wolf (0-FW) only with COBYLA, a constrained optimizer

by linear approximation, which is popular in engineering fields (Powell, 1994). For experiments where SFO is

available, we additionally compare with stochastic proximal gradient descent (PGD) and first order stochastic

Frank-Wolfe method (1-FW).

10.6.1 Stochastic Lasso Regression

To study performance of various stochastic optimization, we solve a simple lasso regression on the dataset

covtype (n = 581012, d = 54) from libsvm website2. We use the variant with feature values in [0, 1] and

solve the following problem:

min
‖w‖1≤1

1

2
‖y −X>w‖22

where X ∈ Rn×d represents the feature vectors and y ∈ Rn are the corresponding targets.

For the 0-FW, we used I-RDSA with m = 6. This problem represents a stochastic setting and from Figure

10.1a we note that the performance of 0-FW matches that of 1-FW in terms of the number of oracle calls

to their respective oracles in spite of the dimension involved being d = 54.

10.6.2 High Dimensional Cox Regression

To demonstrate efficacy of zeroth order Frank-Wolfe optimization in a moderately high dimensional case, we

look at gene expression data. In particular, we perform patient survival analysis by solving Cox regression

2Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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(also known as proportional hazards regression) to relate different gene expression profiles with survival time

(Sohn et al., 2009). We use the Kidney renal clear cell carcinoma dataset3, which contains gene expression

data for 606 patients (534 with tumor and 72 without tumor) along with survival time information. We

preprocess the dataset by eliminating the rarely expressed genes, i.e. we only keep genes expressed in 50%

of the patients. This leads to a feature vector xi of size 9376 for each patient i. Also, for each patient i, we

have the censoring indicator variable yi that takes the value 0 if patient is alive or 1 if death is observed with

ti denoting the time of death. In this setup, we can obtain a sparse solution to cox regression by solving the

following problem (Park and Hastie, 2007; Sohn et al., 2009):

min
‖w‖1≤10

1

n

n∑
i=1

yi

−x>i x + log

∑
j∈Ri

exp(x>j w)


where Ri is the set of subjects at risk at time ti, i.e. Ri = {j : tj ≥ ti}.
This problem represents a high-dimensional setting with d = 9000. For this setup, we take m = 900 for the

I-RDSA scheme of our proposed algorithm. Due to the unavoidable dimension dependence of zeroth order

schemes, Figure 10.1b shows the gap between 1-FW and 0-FW to be around 2× and thereby reinforcing the

result in Theorem 10.5.1 (2)

10.6.3 Black-Box Optimization

Finally, we show efficacy of zeroth order Frank-Wolfe optimization in a non-convex setting for a black-box

optimization. Many engineering problems can be posed as optimizing forward models from physics, which are

often complicated, do not posses analytical expression, and cannot be differentiated. We take the example

of analyzing electron back-scatter diffraction (EBSD) patterns in order to determine crystal orientation of

the sample material. Such analysis is useful in determining strength, malleability, ductility, etc. of the

material along various directions. Brute-force search has been the primary optimization technique in use

(Ram et al., 2017). For this problem, we use the forward model of EBSD provided by EMSoft4. There are

d = 6 parameters to optimize over the L∞-ball of radius 1.

This problem represents a non-convex black box optimization setting for which we used m = 1 for the

I-RDSA, i.e. RDSA. Figure 10.1c shows that our proposed algorithm converges to a first order stationary

point there by showing the effectiveness of our proposed algorithm for black-box optimization.

10.7 Contributions

• Dimension dependence of d1/3: We proposed a zeroth order Frank-Wolfe method for which we

showed that in the deterministic case it reduces to the inexact version of Frank-Wolfe method. In

particular, when per epoch only one directional derivative is sampled, we showed that the primal gap

and Frank-Wolfe gap have a dependence of d1/3 which is the best known dimension dependence among

all zeroth order schemes.

3Available at http://gdac.broadinstitute.org
4Software is available at https://github.com/EMsoft-org/EMsoft

http://gdac.broadinstitute.org
https://github.com/EMsoft-org/EMsoft
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10.8 Conclusion and Future Directions

In this chapter, we proposed a stochastic zeroth order Frank-Wolfe algorithm. The proposed algorithm does

not depend on hard to estimate quantities like Lipschitz constants and thus is easy to deploy in practice.

For the proposed algorithm, we quantified the rates of convergence of the proposed algorithm in terms of the

primal gap and the Frank-Wolfe duality gap, which we showed to match its first order counterpart in terms

of iterations. In particular, we showed that the dimension dependence, when one directional derivative is

sampled at each iteration to be O(d1/3). We demonstrated the efficacy of our proposed algorithm through

experiments on multiple datasets. Natural future directions include extending the proposed algorithm to

non-smooth functions and incorporating variance reduction techniques to get better rates.
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Figure 10.1: Comparison of proposed zeroth order Frank-Wolfe (0-FW) with first order Frank-Wolfe (1-FW),
proximal gradient descent (PGD), and another zero order constrained optimaztion by linear approximation
(COBYLA) on various problems.



Chapter 11

Conclusions

The thesis develops methodology and algorithms to study distributed inference and optimization problems

in resource constrained networked setups. Typical examples that fall under the scope of this study include

cyberphysical systems and IoTs, which are typically deployed outside of a data center and hence have

no central coordinator. Also, the aforementioned systems are deployed in random environments and are

constrained in terms of resources, like communication bandwidth, computational power and sensing power

in lieu with finite battery power. The networked entities need to collaborate with each other through local

information exchange in terms of functions of data and not the data itself so as to be able to address the

task at hand. The main thrust of this thesis centers around the fact that the energy needed to communicate

is a few orders higher than the resources needed to sense data or perform local computations. In light of the

aforementioned fact, one aspect of our work focuses on development of communication efficient distributed

inference schemes. We explore different aspects of communication efficiency in terms of communicating in

an increasingly sparse manner and reducing dimensions of messages. We study the performance of these

distributed schemes keeping in mind the trade-off between optimality in terms of convergence rate and the

communication cost. A major thrust of this thesis is to develop optimization schemes for loss functions

which are analytically intractable and involve expensive gradient computations. We develop and explore

communication efficient schemes for gradient free optimization and establish the communication optimality

trade-off for them. The technical tools used in the study include mixed time scale stochastic approximation,

large deviation theory and optimization. Our methods are generic and of independent interest to the general

theory of these classical disciplines. We recapitulate the main contributions of this thesis.

Chapter 2 Distributed Sequential Detection: This chapter studies the problem of distributed sequen-

tial detection in the context of multi-agent networks. The proposed sequential detection procedure CISPRT
was inspired from Wald’s SPRT. We derive thresholds for the proposed distributed sequential detection pro-

cedure which guarantee the algorithm to terminate while adhering to the pre-specified error tolerances. In

particular, we established the dependence of the thresholds in terms of the network connectivity. In addition

to the thresholds of the procedures, we characterized the tails of the stopping time distribution of CISPRT
and showed its proximity with respect to its centralized counterpart. The thresholds and stopping time dis-

tribution of the algorithm CISPRT facilitate the comparison of the expected stopping time of the proposed

algorithm to that of its counterpart and quantifying the dependence in terms of the network connectivity.

In this chapter, we also provide a computationally tractable version of the stopping time distribution of the

classical SPRT procedure.

181
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Chapter 3 Distributed Composite Hypothesis Testing: This chapter studies the problem of recur-

sive distributed composite hypothesis testing, where one of the hypotheses admits infinite parameterization.

In such setups, it is customary to have an inherent maximization scheme to estimate the underlying param-

eter parameterizing the alternate hypothesis. We proposed algorithms CIGLRT − L and CILGRT −NL
catering to linear and non-linear observation models respectively, where the aforementioned maximization

and the decision statistic update are performed parallely and in an online manner ,i.e., as and when a new

sample is collected. We characterize the convergence of the maximization to the true underlying parameter

and algorithm parameters which ensure the decay of the probabilities of error concerning the hypothesis

testing procedure at hand. In particular, for CIGLRT − L, we establish the exponential decay of the prob-

abilities of error by studying concentration bounds for quadratic forms of Wishart matrices. Furthermore,

we also considered a noisy communication model imposed to the setup in CIGLRT − L, for which we de-

rived algorithm parameters as a function of every agent’s local connectivity so as to ensure asymptotically

decaying probabilities of errors.

Chapter 4 Communication Efficient Distributed Detection: This chapter studies convergence in

probability of products of random, independent, but not identically distributed stochastic and symmetric

matrices Wt, where the topologies that underline the matrices have time-varying distributions. In particular,

the chapter is motivated by the convergence properties of product of stochastic matrices that it is typically

encountered while analyzing the probabilities of errors in distributed simple hypothesis testing. Technically

speaking, we characterize the following quantity:

R = − lim
t→+∞

1

t
logP (‖Wt · . . . ·W1 − J‖ ≥ ε) , (11.1)

We show that the limit in (11.1) exists, and moreover we compute exactly the limit R. Specifically, we show

that R is given by the minimal vertex cut of the baseline graph, where the nodes’ associated cut costs are de-

fined by the nodes’ limiting activation probabilities.We demonstrate the significance of the studied non-i.i.d.

matrix model and the derived rate R in the context of consensus+innovations distributed detection. More

precisely, we consider a distributed detector with a randomized and time-varying sparsified communication

protocol, where neighborhood communications are probabilistically sparsified in a time varying fashion with

the goal of reducing the detector’s communication cost.By utilizing result (4.1), we first show theoretically

that the detector with time-varying and sparsified protocol can be designed to achieve asymptotic optimality

at all signal-to-noise ratio (SNR) regimes; this is achieved when the activation probabilities corresponding

to each node converge to unity, possibly at a very slow rate, e.g., as 1− Ω(1/log(t)).

Chapter 5 Communication Efficient Linear Parameter Estimation: CREDO This chapter stud-

ies the problem of communication efficient distributed linear parameter estimation, where we improve the

communication cost of the distributed scheme without compromising on the optimality in terms of the con-

vergence rate. We propose a scheme CREDO, where each node at time t communicates only with a certain

probability that decays sub linearly to zero in t. That is, communications are increasingly sparse, so that

communication cost scales as O(tδ), where the growing rate δ is a tunable parameter strictly less than one

that can go down to 0.5. We show that, despite significantly lower communication cost, the proposed method

achieves the best possible O(1/t) rate of MSE decay in time t (t also equals to per-worker number of data

samples). Importantly, this result translates into significant improvements in the rate at which MSE decays

with communication cost Ct –namely from O(1/Ct) with existing methods to O(1/C2−ζ
t ) with the proposed
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method, where ζ > 0 arbitrarily small. CREDO is build around the restriction that at each sampling epoch,

the communication graph is restricted to being undirected. With further relaxation which allows for the

communication graph to be directed while still being undirected in expectation, we show that the commu-

nication cost can be further reduced to O(tδ) where δ can be arbitrarily small. Hence, for the directed

CREDO, we show that the MSE decays with communication cost as O(C−1/ζ
t ), where ζ > 0 is arbitrarily

small. From a technical standpoint, the number of time scales involved in the proposed algorithm is 3 which

further generalizes the consensus+innovations framework.

Chapter 6 Distributed Weighted Non-linear Least Squares: CIWNLS The chapter focuses on

distributed nonlinear least squares estimation in distributed information settings. This chapter proposes a

distributed recursive algorithm, namely, the CIWNLS (Consensus + innovations Weighted Nonlinear Least

Squares), which is of the consensus + innovations form Kar et al. (2012). We specifically focus on a setting

in which the agents make i.i.d observations sequentially over time, only possess local model information,

and update their parameter estimates by simultaneous assimilation of the information obtained from their

neighboring agents (consensus) and current locally sensed information (innovation). We show that our

recursive distributed estimator generates parameter estimate sequences that are strongly consistent at each

agent. Furthermore, we also show that the proposed distributed estimation algorithm CIWNLS yields

order-optimal pathwise convergence rate under certain smoothness conditions on the sensing model and

characterize the asymptotic covariance of the estimator. Technically speaking, we quantify the inherent

trade-off between the optimality of the estimation scheme in terms of the asymptotic covariance and the

sharing of model information among the agents. Following as in lines of Chapter 5, we also develop a

communication efficient version of CIWNLS, namely CREDO −NL, for which we focus on a single time

scale consensus+innovations algorithm. For CREDO −NL, we show that the MSE decays as O(1/C2−ζ
t ) in

terms of communication cost Ct, where ζ > 0 is arbitrarily small.

Chapter 7 Communication Efficient Distributed Estimation: Random Fields Estimation The

chapter focuses on a heterogeneous setup which involves distributed linear parameter estimation, where

estimating the entire parameter at each agent is prohibitive due to excessive communication and mem-

ory overhead. Instead of estimating the entire parameter, agents choose to estimate only a few entries

of the entire parameter, referred to as their interest set. We propose a scheme, namely CIRFE , where

each entity reconstructs only a subset of the components of the state modeled by a vector parameter, and

thereby also reducing the dimension of messages being communicated among the agents. The proposed

scheme allows heterogeneity in terms of agents’ objectives, while still allowing for inter-agent collaboration.

Through CIRFE , we address communication efficiency for the class of distributed inference algorithm of

the consensus+innovations form by reducing the dimension of vectors exchanged among the agents. In par-

ticular, we extended the idea of consensus to a heterogeneous version which exhibits consensus to subspaces

which is common to a few agents. Under mild conditions of the connectivity of the network, we establish

consistency of the estimate sequence at each agent with respect to the components of the parameters in its

interest set.

Chapter 8 Communication Efficient Distributed Optimization: First Order The chapter focuses

on first order distributed optimization schemes over random networks. We showed that, by carefully de-

signing the consensus and the gradient weights (potentials), the considered distributed stochastic gradient

algorithm achieves the order-optimal O(1/k) rate of decay of the mean squared distance from the solution
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(mean squared error – MSE). This is achieved for twice continuously differentiable strongly convex local

costs, assuming also that the noisy gradients are unbiased estimates of the true gradients and that the noise

in gradients has bounded second moment. We developed novel methods for first order distributed stochas-

tic optimization, based on a probabilistic inter-agent communication protocol that increasingly sparsifies

agent communications over time. For the first order distributed stochastic optimization, we propose a novel

method that is shown to achieve the O(1/(Ccomm)4/3−ζ) MSE communication rate. At the same time, the

proposed method retains the order-optimal O(1/(Ccomp)) MSE rate in terms of the computational cost, the

best achievable rate in the corresponding centralized setting.

Chapter 9 Communication Efficient Distributed Optimization: Zeroth Order The chapter fo-

cuses on optimization setups involving loss functions which do not admit to analytical forms and hence

the associated gradient computations are analytically intractable. We first analyze a distributed zeroth

order optimization scheme for strongly convex functions utilizing Kiefer Wolfowitz stochastic approxima-

tion. Furthermore, we develop novel methods for zeroth order distributed stochastic optimization, based on

a probabilistic inter-agent communication protocol that increasingly sparsifies agent communications over

time. We proposed a communication efficient distributed zeroth order scheme akin to the RDSA scheme

albeit using three function evaluation at each epoch which in spirit draws from the twicing trick in kernel

density estimation. In addition to the twicing trick, we have established for the proposed zeroth order

method explicit mean square error (MSE) convergence rates with respect to (appropriately defined) compu-

tational cost Ccomp and communication cost Ccomm. Specifically, the proposed zeroth order method achieves

the O(1/(Ccomm)8/9−ζ) MSE communication rate, which significantly improves over the rates of existing

methods, while maintaining the order-optimal O(1/(Ccomp)2/3) MSE computational rate.

Chapter 10 Zeroth Order Frank Wolfe The chapter focuses on stochastic constrained optimization

involving stochastic zeroth order oracles. We develop a zeroth order projection free algorithm in lines of

the celebrated Frank Wolfe algorithm so as to address the problem at hand. In particular, we establish

the equivalence of the zeroth order Frank Wolfe scheme with that of the classical Frank Wolfe method in

a deterministic optimization setting. n this chapter, we proposed a stochastic zeroth order Frank-Wolfe

algorithm. The proposed algorithm does not depend on hard to estimate quantities like Lipschitz constants

and thus is easy to deploy in practice. For the proposed algorithm, we quantified the rates of convergence

of the proposed algorithm in terms of the primal gap and the Frank-Wolfe duality gap, which we showed

to match its first order counterpart in terms of iterations. In particular, we showed that the dimension

dependence, when one directional derivative is sampled at each iteration to be O(d1/3). We demonstrated

the efficacy of our proposed algorithm through experiments on multiple datasets.



Bibliography

Delve datasets. http://www.cs.toronto.edu/~delve/data/datasets.html. 82

Libsvm regression datasets. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

regression.html. 82, 164

S. A. Alghunaim and A. H. Sayed. Distributed coupled multi-agent stochastic optimization. arXiv preprint

arXiv:1712.08817, 2017. 108

T. W. Anderson. The non-central wishart distribution and certain problems of multivariate statistics. The

Annals of Mathematical Statistics, pages 409–431, 1946. 219

T. C. Aysal and K. E. Barner. Constrained decentralized estimation over noisy channels for sensor networks.

IEEE Transactions on Signal Processing, 56(4):1398–1410, 2008. 88
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C. Ma and M. Takáč. Partitioning data on features or samples in communication-efficient distributed

optimization? arXiv preprint arXiv:1510.06688, 2015. 67, 69

C. Ma, V. Smith, M. Jaggi, M. Jordan, P. Richtarik, and M. Takac. Adding vs. averaging in distributed

primal-dual optimization. In International Conference on Machine Learning, pages 1973–1982, 2015. 1,

65, 67, 68, 69

A. L. Marsden, M. Wang, J. Dennis, and P. Moin. Trailing-edge noise reduction using derivative-free

optimization and large-eddy simulation. Journal of Fluid Mechanics, 572:13–36, 2007. 167

A. L. Marsden, J. A. Feinstein, and C. A. Taylor. A computational framework for derivative-free optimization

of cardiovascular geometries. Computer methods in applied mechanics and engineering, 197(21-24):1890–

1905, 2008. 167

V. Matta, P. Braca, S. Marano, and A. H. Sayed. Diffusion-based adaptive distributed detection: Steady-

state performance in the slow adaptation regime. IEEE Transactions on Information Theory, 62(8):

4710–4732, Aug 2016. ISSN 0018-9448. doi: 10.1109/TIT.2016.2580665. 88

A. Mokhtari and A. Ribeiro. Dsa: Decentralized double stochastic averaging gradient algorithm. The Journal

of Machine Learning Research, 17(1):2165–2199, 2016. 124, 144

A. Mokhtari, H. Hassani, and A. Karbasi. Conditional gradient method for stochastic submodular max-

imization: Closing the gap. In International Conference on Artificial Intelligence and Statistics, pages

1886–1895, 2018. 167, 168, 169, 175



BIBLIOGRAPHY 192
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Appendix A

Spectral Graph Theory: Preliminaries

Spectral Graph Theory For an undirected graph G = (V,E), V denotes the set of agents or vertices with

cardinality |V | = N , and E the set of edges with |E| = M . The unordered pair (i, j) ∈ E if there exists an

edge between agents i and j. We only consider simple graphs, i.e., graphs devoid of self loops and multiple

edges. A path between agents i and j of length m is a sequence (i = p0, p1, · · · , pm = j) of vertices, such

that (pt, pt+1) ∈ E, 0 ≤ t ≤ m−1. A graph is connected if there exists a path between all the possible agent

pairings. The neighborhood of an agent n is given by Ωn = {j ∈ V |(n, j) ∈ E}. The degree of agent n is

given by dn = |Ωn|. The structure of the graph may be equivalently represented by the symmetric N ×N
adjacency matrix A = [Aij ], where Aij = 1 if (i, j) ∈ E, and 0 otherwise. The degree matrix is represented

by the diagonal matrix D = diag(d1 · · · dN ). The graph Laplacian matrix is represented by

L = D−A. (A.1)

The Laplacian is a positive semidefinite matrix, hence its eigenvalues can be sorted and represented in the

following manner

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L). (A.2)

Furthermore, a graph is connected if and only if λ2(L) > 0 (see Chung (1997) for instance).
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Appendix B

Proofs of Theorems in Chapter 2

Proof of Lemma 2.5.5. Let us define the event Ais as {γld,i ≤ Sd,i(s) ≤ γhd,i}. Now, note that

P1(Td,i > t) = P1(∩ts=1A
i
s), (B.1)

and

P1(∩ts=1A
i
s) ≤ P1(Ait). (B.2)

By Proposition 2.4.2, under H1, for any t, the quantity Sd,i(t) is Gaussian with mean mt and variance upper

bounded by 2mt
N + 2mr2(1−r2t)

1−r2 . Hence we have, for all i = 1, 2, . . . , N .

P1(Td,i > t) ≤ Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
. (B.3)

Proof of Corollary 2.5.6. For simplicity of notation, let a = Nm
4 and b = σ2π2

2N(γhc−γlc)2 . From (2.41), we have,

1

t
log(P1(Tc > t)) ≥ 1

t
log

(
exp

(
Nµγlc
σ2

)
K∞t

(
γhc
)
− exp

(
Nµγhc
σ2

)
K∞t

(
γlc
))

=
1

t
log (exp (− (a+ b) t))

+
1

t
log

(
b

∞∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
×
(

exp

(
Nµγlc
σ2

)
sin

(
sπγhc
γhc − γlc

)
− exp

(
Nµγhc
σ2

)
sin

(
sπγlc
γhc − γlc

)))
. (B.4)

For all t, S ≥ 1, let

U(t, S) =
1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
×
(

exp

(
Nµγlc
σ2

)
sin

(
sπγhc
γhc − γlc

)
− exp

(
Nµγhc
σ2

)
sin

(
sπγlc
γhc − γlc

)))
(B.5)
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and let g = exp
(
Nµγhc
σ2

)
+ exp

(
Nµγlc
σ2

)
.

Note that for all t ≥ 1, the limit

lim
S→∞

U(t, S) (B.6)

exists and is finite (by Theorem 2.5.4), and similarly for all S ≥ 1,

lim
t→∞

U(t, S) = lim
t→∞

1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
× sin

(
sπγhc
γhc − γlc

)(
exp

(
Nµγlc
σ2

)
+ (−1)s+1 exp

(
Nµγhc
σ2

)))
= lim
t→∞

1

t
log

(
bg

a+ b
sin

(
πγhc

γhc − γlc

))
= 0, (B.7)

where we use the fact that only the largest exponent in a finite summation of exponential terms contributes

to its log-normalised limit as t→∞ and

sin

(
sπγhc
γhc − γlc

)
= (−1)s sin

(
sπγlc
γhc − γlc

)
. (B.8)

Finally, using the fact that there exists a constant c5 > 0 (independent of t and S) such that for all t, S ≥ 1,

U(t, S) ≤ 1

t
log

(
bg

S∑
s=1

s

a+ s2b
exp

(
−b(s2 − 1)t

))
≤ c5, (B.9)

we may conclude that the convergence in (B.6)-(B.7) are uniform in S and t respectively. This in turn

implies that the order of the limits may be interchanged and we have that

lim
t→∞

lim
S→∞

U(t, S) = lim
S→∞

lim
t→∞

U(t, S) = 0. (B.10)

Hence, we have from (B.4) and (B.10),

lim inf
t→∞

1

t
log(P1(Tc > t)) ≥ −(a+ b)

+ lim
t→∞

lim
S→∞

1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
× sin

(
sπγhc
γhc − γlc

)(
exp

(
Nµγlc
σ2

)
− (−1)s exp

(
Nµγhc
σ2

)))
= −(a+ b) + lim

S→∞
lim
t→∞

1

t
log

(
b

S∑
s=1

s(−1)s+1

a+ s2b
exp

(
−b(s2 − 1)t

)
× sin

(
sπγhc
γhc − γlc

)(
exp

(
Nµγlc
σ2

)
+ (−1)s+1 exp

(
Nµγhc
σ2

)))
= −(a+ b) + lim

S→∞
lim
t→∞

1

t
log

(
bg

a+ b
sin

(
πγhc

γhc − γlc

))
= −(a+ b) = −

(
Nm

4
+

σ2π2

2N(γhc − γlc)2

)
. (B.11)
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Proof of Theorem 2.5.7. We use the following upper bound for Q function in the proof below

Q(x) ≤ 1

x
√

2π
e−x

2/2 (B.12)

From (2.43),(B.12) and (B.9), we have,

lim sup
t→∞

1

t
log(P1(Td,i > t))

≤ lim sup
t→∞

1

t
log
( 1√

2π

√
2mt
N + 2m r2(1−r2t)

(1−r2)

(−γhd,i +mt)
e

−N(−γhd,i+mt)
2

4mt+4mN
r2(1−r2t)

(1−r2)

)

≤ lim sup
t→∞

1

t

log
(√ 2mt

N + 2m r2(1−r2t)
(1−r2)√

2π(mt− γhd,i)

)
−

N(γhd,i)
2

4mt+ 4m r2(1−r2t)
(1−r2)

− Nmt

4 + 4 r
2(1−r2t)

(t(1−r2))

+
Nmγhd,it

2mt+ 2mN r2(1−r2t)
(1−r2)


⇒ lim sup

t→∞

1

t
log(P1(Td,i > t)) ≤ −Nm

4
.

(B.13)

The proof of Theorem 2.5.8 requires an intermediate result that estimates the divergence between the agent

statistics over time.

Lemma B.0.1. Let the Assumptions 2.3.1, 2.4.1 and 2.4.2 hold. Then, there exists a constant c1, depending

on the network topology and the Gaussian model statistics only, such that

E1

[
sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

]
≤ c1 (B.14)

for all agent pairs (i, j).

Proof. Denoting by Sd(t) = tPd(t) the vector of the agent test statistics Sd,i(t)’s, we have,

Sd(t+ 1) = W (Sd(t) + η(t+ 1)) . (B.15)

Let Sd(t) denote the average of the Sd,i(t)’s, i.e.,

Sd(t) = (1/N) . (Sd,1(t) + · · ·+ Sd,N (t)) , (B.16)

Noting that JSd(t) = Sd(t)1 and WJ = JW = J , we have from (B.15)

vt+1 = (W − J) vt + ut+1, (B.17)



APPENDIX B. PROOFS OF THEOREMS IN CHAPTER 2 203

where vt and ut, for all t ≥ 0, are given by

vt = Sd(t)− Sd(t)1 (B.18)

and

ut+1 = (W − J) η(t+ 1). (B.19)

It is important to note that the sequence {ut} is i.i.d. Gaussian and, in particular, there exists a constant

c2 such that E1[‖ut‖2] ≤ c2 for all t.

Now, by (B.17) we obtain

‖vt+1‖ ≤ r‖vt‖+ ‖ut+1‖, (B.20)

where recall r = ‖W − J‖ < 1. Since the sequence {ut} is i.i.d. and L2-bounded, an application of the

Robbins-Siegmund’s lemma (see Baldi et al. (2002)) yields

E1

[
sup
t≥0
‖vt‖

]
≤ c3 <∞, (B.21)

where c3 is a constant that may be chosen as a function of r, c2 and E1[‖v0‖]. Now, noting that, for any

pair (i, j),

E1

[
sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

]
≤ E1

[
sup
t≥0
‖Sd,i(t)− Sd(t)‖

]
+ E1

[
sup
t≥0
‖Sd,j(t)− Sd(t)‖

]
≤ 2c3, (B.22)

the desired assertion follows.

Proof of Theorem 2.5.8. We prove the upper bound in Theorem 2.5.8 first. Since P1(Td,i <∞) = 1, for the

upper bound we have,

E1[Td,i] =

∞∑
t=0

P1(Td,i > t)

(a)

≤
∞∑
0

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)

=

b
γhd,i
m c∑
0

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(1)

+

b
3γhd,i
2m c∑

b
γh
d,i
m c+1

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(2)

+

b
2γhd,i
m c∑

b
3γh
d,i

2m c+1

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(3)

+

∞∑
b

2γh
d,i
m c+1

Q
( −γhd,i +mt√

2mt
N + 2mr2(1−r2t)

1−r2

)
︸ ︷︷ ︸

(4)

(b)

≤
γhd,i
m

+
γhd,i
4m

+
1

2
e
Nγhd,i
2(k+1)

b
2γhd,i
m c∑

b
3γh
d,i

2m c+1

e
−(Nγhd,i)

2−Nm2t2

4m(k+1)t +
1

2(1− e
−Nm
4(k+1) )
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≤
5γhd,i
4m

+
1

2(1− e
−Nm
4(k+1) )

+
1

2
e

3Nγhd,i
8(k+1)

b
2γhd,i
m c∑

b
3γh
d,i

2m c+1

e
−Nmt
4(k+1)

≤
5γhd,i
4m

+
1

1− e
−Nm
4(k+1)

, (B.23)

where (a) is due to the upper bound derived in Lemma 2.5.5 and (b) is due to the following : 1) ∀t ∈ [0, bγ
h
d,i

m c]
in (1), −γhd,i + mt is negative and hence every term in the summation can be upper bounded by 1; 2)

∀t ∈ [bγ
h
d,i

m c+ 1, b 3γhd,i
2m c] in (2), −γhd,i +mt is positive and hence every term in the summation can be upper

bounded by 1
2 ; and 3) for the terms (3) and (4), the inequality Q(x) ≤ 1

2e
−x2/2 is used and the sums are

upper bounded by summing the resulting geometric series.

In order to obtain the lower bound, we first note that conditioned on hypothesis H1, at the stopping time

Td,i, an agent exceeds the threshold γhd,i with probability at least 1− ε and is lower than the threshold γld,i
with probability at most ε. Moreover, with α = β = ε, γhd,i = −γld,i.
Now, denote by Ehi the event Ehi = {Sd,i(Td,i) ≥ γhd,i} and by Eli the event Eli = {Sd,i(Td,i) ≤ γld,i}. Since

P1(Td,i <∞) = 1, we have that

E1 [Sd,i(t)] = E1

[
Sd,i(t).IEhi

]
+ E1

[
Sd,i(t).IEli

]
, (B.24)

where I{·} denotes the indicator function. We now lower bound the quantities on the R.H.S. of (B.24). Note

that γhd,i ≥ 0 and Sd,i(t) ≥ γhd,i on Ehi . Hence

E1

[
Sd,i(t).IEhi

]
≥ γhd,iP1

(
Ehi
)
≥ (1− ε)γhd,i. (B.25)

Now recall the construction in the proof of Lemma B.0.1 and note that by (B.15) we have

Sd,i(t) = Sd,i(t− 1)−
∑
j∈Ωi

wij (Sd,i(t− 1)− Sd,j(t− 1)) + ηi(t). (B.26)

Hence, we have that

Sd,i(Td,i).IEli (B.27)

≥ Sd,i(Td,i − 1).IEli −
∑
j∈Ωi

wij‖Sd,i(Td,i − 1)− Sd,j(Td,i − 1)‖ − ‖ηi(Td,i)‖ (B.28)

≥ Sd,i(Td,i − 1).IEli −
∑
j∈Ωi

wij sup
t≥0
‖Sd,i(t)− Sd,j(t)‖ − ‖ηi(Td,i)‖. (B.29)

Now, observe that on the event Eli, Sd,i(Td,i − 1) > γld,i a.s. Since γld,i < 0 and P1(Eli) ≤ ε (by hypothesis),

we have that

γld,iε ≤ γld,iP1(Eli) (B.30)

= E1

[
γld,i.IEli

]
≤ E1

[
Sd,i(Td,i − 1).IEli

]
. (B.31)
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Note that, by Lemma B.0.1, we have

E1

∑
j∈Ωi

wij sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

 (B.32)

≤
∑
j∈Ωi

wijE1

[
sup
t≥0
‖Sd,i(t)− Sd,j(t)‖

]
(B.33)

≤ |Ωi|c1. (B.34)

Finally, by arguments similar to Wald (1973); Lorden (1970) for characterizing expected overshoots in

stopped random sums (see, in particular, Theorem 1 in Lorden (1970)) it follows that there exists a constant

c4 (depending on the Gaussian model statistics and the network topology only) such that

E1 [‖ηi(Td,i)‖] ≤ c4. (B.35)

In particular, note that, the constant c4 in (B.35) may be chosen to be independent of the thresholds and,

hence, the error tolerance parameter ε. Substituting (B.30)-(B.35) in (B.27) we obtain

E1

[
Sd,i(Td,i).IEli

]
≥ γld,iε− |Ωi|c1 − c4. (B.36)

This together with (B.24)-(B.25) yield

E1 [Sd,i(Td,i)] ≥ (1− ε) γhd,i + γld,iε− |Ωi|c1 − c4 (B.37)

= (1− 2ε) γhd,i − c, (B.38)

where the last equality follows by noting that γhd,i = −γld,i and taking the constant c to c = |Ωi|c1 + c4.

We note that the event {Td,i = t} is independent of ηi, i > t. We also have from Theorem 2.5.1 that

P1(Td,i <∞) = 1. Hence, we have,

E1[Sd,i(Td,i)] = E1[

Td,i∑
j=1

ei
>Wt+1−jη(j)]

= E1

 ∞∑
j=1

I{Td,i≥j}ei
>WTd,i+1−jη(j)


=

∞∑
j=1

E1

[
I{Td,i≥j}ei

>WTd,i+1−j]E1 [η(j)]

= m

∞∑
j=1

E1

[
I{Td,i≥j}ei

>WTd,i+1−j]1
= m

∞∑
j=1

E1

[
I{Td,i≥j}ei

>WTd,i+1−j1
]

= mE1 [Td,i] . (B.39)
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Combining (B.39) and (B.37) we have,

(1− 2ε)γhd,i
m

− c

m
≤ E1[Td,i] (B.40)

and the desired assertion follows.

Proof of Theorem 2.5.9. From (2.46), we first note that

E1[Td,i]

E1[Tc]
≥ 1,∀i = 1, 2, . . . , N. (B.41)

From the upper bound for the stopping time distribution derived for the CISPRT in (B.3), we have the

following upper bound for E1[Td,i]

E1[Td,i] ≤
5γhd,i
4m

+
1

1− e
−Nm
4(k+1)

. (B.42)

We choose the threshold γhd,i to be

γhd,i = γh,0d =
8(k + 1)

7N
(log(

2

ε
)− log(1− e

−Nm
4(k+1) )). (B.43)

Using (B.42) and (B.43), we have

lim sup
ε→0

E1[Td,i]

E1[Tc]
≤ lim
ε→0

10
7 (k + 1) log( 2

ε ) +O(1)

(1− 2ε) log(1−ε
ε )

. (B.44)

Noting that,

lim sup
ε→0

O(1)

(1− 2ε) log(1−ε
ε )

= 0, (B.45)

we obtain

lim sup
ε→0

E1[Td,i]

E1[Tc]
≤ 10(k + 1)

7
. (B.46)

Combining (B.46) and (B.41), the result follows.



Appendix C

Proofs of Theorems in Chapter 3

C.1 Proof of Main Results : CIGLRT −NL

C.1.1 Proof of Theorem 3.7.1

Proof. The proof of Theorem 3.7.1 is accomplished in steps, the key ingredients being Lemma C.1.1 and

Lemma C.1.2 which concern the boundedness of the processes {θn(t)}, n = 1, · · · , N and subsequently the

consistency of the agent estimate sequences respectively. To this end, we follow the basic idea developed

in Kar and Moura (2014), but with subtle modifications to take into account the state-dependent nature of

the innovation gains. We state Lemma C.1.1 and Lemma C.1.2 here, with the proofs relegated to Appendix

C.3.

Lemma C.1.1. Let the hypothesis of Theorem 3.7.1 hold. Then, for each n and ∀θ∗ the process {θn(t)}

Pθ∗
(

sup
t≥0
‖θn(t)‖ <∞

)
= 1. (C.1)

Lemma C.1.2. Let the hypotheses of Theorem 3.7.1 hold. Then, for each n and ∀θ∗, we have,

Pθ∗
(

lim
t→∞

θn(t) = θ∗
)

= 1. (C.2)

In the sequel, we analyze the rate of convergence of the parameter estimate sequence to the true parameter.

We will use the following approximation result (Lemma C.1.3) and the generalized convergence criterion

(Lemma C.1.4) for the proof of Theorem 3.7.1.

Lemma C.1.3 (Lemma 4.3 in Fabian (1967)). Let {bt} be a scalar sequence satisfying

bt+1 ≤
(

1− c

t+ 1

)
bt + dt(t+ 1)−τ , (C.3)

where c > τ, τ > 0, and the sequence {dt} is summable. Then, we have,

lim sup
t→∞

(t+ 1)τ bt <∞. (C.4)

207
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Lemma C.1.4 (Lemma 10 in Dubins and Freedman (1965)). Let {J(t)} be an R-valued {Ft+1}-adapted

process such that E [J(t)|Ft] = 0 a.s. for each t ≥ 1. Then the sum
∑
t≥0 J(t) exists and is finite a.s. on

the set where
∑
t≥0 E

[
J2(t)|Ft

]
is finite.

We now return to the proof of Theorem 4.1.

Proof of Theorem 3.7.1. We follow closely the corresponding development in Lemma 5.9 of Kar et al.

(2013a). Define τ̄ ∈ [0, 1/2) such that,

Pθ∗
(

lim
t→∞

(t+ 1)τ̄ ‖x(t)‖ = 0
)

= 1, (C.5)

where x(t) = θ(t)−1N ⊗ θ∗. Note that such a τ̄ exists by Lemma C.1.2 (in particular, by taking τ̄ = 0). We

now analyze and finally show that there exists a τ such that τ̄ < τ < 1/2 for which the claim holds. Now,

choose a τ̂ ∈ (τ̄ , 1/2) and let µ = (τ̂ + τ̄)/2. By standard algebraic manipulations, it can be readily seen

that the recursion for {x(t)} satisfies

‖x(t+ 1)‖2 = ‖x(t)‖2 − 2βtx
>(t) (L⊗ IM ) x(t)

− 2αtx
>(t)G (θ(t)) Σ−1 (h (θ(t))− h (θ∗))

+ β2
t x
>(t) (L⊗ IM )

2
x(t)

+ 2αtβtx
>(t) (L⊗ IM ) G (θ(t)) Σ−1 (h (θ(t))− h (θ∗))

+ α2
t (y(t)− h (θ∗))

>
Σ−1G> (θ(t)) G (θ(t)) Σ−1 (y(t)− h (θ∗))

+ α2
t (h (θ(t))− h (θ∗))

>
Σ−1G> (θ(t))

×G (θ(t)) Σ−1 (h (θ(t))− h (θ∗))

+ 2αtx
>(t)G (θ(t)) Σ−1 (y(t)− h(θ∗)) . (C.6)

Let J(t) = G (θ(t)) Σ−1 (y(t)− h (θ∗)). From Assumption 2.4.1, we have that ‖∇hn (θn(t))‖ is uniformly

bounded from above by kn for all n. Hence, we have that ‖G (θ(t))‖ ≤ maxn=1,··· ,N kn. Now, we consider

the term α2
t ‖J(t)‖2. Since, the noise process under consideration is a temporally independent Gaussian

sequence and 2µ < 1, we have, ∑
t≥0

(t+ 1)2µα2
t ‖J(t)‖2 <∞ a.s. (C.7)

Let W(t) = αtx
>(t)G (θ(t)) Σ−1 (y(t)− h(θ∗)). It follows that Eθ∗ [W(t)|Ft] = 0.

We also have that Eθ∗
[
W2(t)|Ft

]
≤ α2

t ‖x(t)‖2 ‖J(t)‖2. Noting, that the noise under consideration is

temporally independent with finite second moment, we have,

Eθ∗
[
W2(t)|Ft

]
= o

(
(t+ 1)−2−2τ̄

)
(C.8)

and hence,

Eθ∗
[
(t+ 1)4µW2(t)|Ft

]
= o

(
(t+ 1)−2+2τ̂

)
. (C.9)

Hence, by Lemma C.1.4, we conclude that
∑
t≥0(t+ 1)2µW(t) exists and is finite, as 2τ̂ < 1 and hence the
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left hand side (L.H.S) in (C.9) is summable. Using all the inequalities derived in (C.156)-(C.158), we have,

‖x(t+ 1)‖2 ≤
(
1− c1αt + c5

(
αtβt + α2

t

))
‖x(t)‖2

− c6(βt − β2
t ) ‖xC⊥(t)‖2 + α2

t ‖J(t)‖2 + 2W(t). (C.10)

Finally, noting that c1αt dominates c5
(
αtβt + α2

t

)
and βt dominates β2

t , we obtain

‖x(t+ 1)‖2 ≤ (1− c1αt) ‖x(t)‖2 + α2
t ‖J(t)‖2 + 2W(t). (C.11)

Now, using the analysis in (C.7)-(C.9), we have, from (C.11)

‖x(t+ 1)‖2 ≤ (1− c1αt) ‖x(t)‖2 + dt(t+ 1)−2µ, (C.12)

where

dt(t+ 1)−2µ = α2
t ‖J(t)‖2 + 2W(t). (C.13)

Finally, noting that c1αt(t+ 1) ≥ 1 > 2µ, an immediate application of Lemma C.1.3 gives

lim sup
t→∞

(t+ 1)2µ ‖x(t)‖2 <∞ a.s. (C.14)

So, we have that, there exists a τ with τ̄ < τ < µ for which (t + 1)τ ‖x(t)‖ → 0 as t → ∞. Thus for every

τ̄ for which (3.32) holds, there exists τ ∈ (τ̄ , 1/2) for which the result in (3.32) continues to hold. We thus

conclude that the result holds for all τ ∈ [0, 1/2).

C.1.2 Proof of Theorem 3.9.1

Proof. The proof of Theorem 3.9.1 needs the following Lemma from Fabian (1968) (stated in a form suitable

to our needs) concerning the asymptotic normality of non-Markov stochastic recursions and an intermediate

result which concerns with the asymptotic normality of the averaged decision statistic.

Lemma C.1.5 (Theorem 2.2 in Fabian (1968)). Let {zt} be an Rk-valued {Ft}-adapted process that satisfies

zt+1 =

(
Ik −

1

t+ 1
Γt

)
zt + (t+ 1)−1ΦtVt + (t+ 1)−3/2Tt, (C.15)

where the stochastic processes {Vt}, {Tt} ∈ Rk while {Γt}, {Φt} ∈ Rk×k. Moreover, for each t, Vt−1 and

Tt are Ft -adapted, whereas the processes {Γt}, {Φt} are {Ft} adapted.

Also, assume that

Γt → Ik, Φt → Φ and Tt → 0 a.s. as t→∞. (C.16)

Furthermore, let the sequence {Vt} satisfy E [Vt|Ft] = 0 for each t and suppose there exists a positive

constant C and a matrix Σ such that C >
∥∥E [VtV

>
t |Ft

]
− Σ

∥∥ → 0 a.s. as t → ∞ and with σ2
t,r =∫

‖Vt‖2≥r(t+1)
‖Vt‖2 dP, let limt→∞

1
t+1

∑t
s=0 σ

2
s,r = 0 for every r > 0.
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Then, we have,

(t+ 1)1/2zt
D

=⇒ N
(
0,ΦΣΦ>

)
. (C.17)

We state the lemma concerning the asymptotic normality of the averaged decision statistic here, while the

proof is relegated to Appendix C.3.

Lemma C.1.6. Let the hypotheses of Theorem 3.9.1 hold. Consider the averaged decision statistic sequence,

{zavg(t)}, defined as zavg(t) = 1
N

∑N
n=1 zn(t). Then, we have, under Pθ∗ for all ‖θ∗‖ > 0,

√
t+ 1

(
zavg(t)−

h> (θ∗N ) Σ−1h (θ∗N )

2N

)
D

=⇒ N
(

0,
h> (θ∗N ) Σ−1h (θ∗N )

N2

)
,∀n. (C.18)

We now use a lemma which establishes that the sequences {zavg(t)} and {zn(t)} are indistinguishable in the
√
t time scale. We state the lemma here, while the proof is relegated to Appendix C.3.

Lemma C.1.7. Given the averaged decision statistic sequence, {zavg(t)}, for each δ0 ∈ [0, 1) we have

Pθ∗( lim
t→∞

(t+ 1)δ0(z(t)− 1N ⊗ zavg(t) = 0) = 1. (C.19)

We now return to the proof of Theorem 3.9.1.

Proof of Theorem 3.9.1. Note that as δ0 in Lemma C.1.7 can be chosen to be greater than 1
2 , we have

for all n,

Pθ∗
(

lim
t→∞

∥∥∥∥√t+ 1

(
zn(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N

)
−
√
t+ 1

(
zavg(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N

)∥∥∥∥ = 0

)
= Pθ∗

(
lim
t→∞

∥∥√t+ 1 (zn(t)− zavg(t))
∥∥ = 0

)
= Pθ∗

(
lim
t→∞

∥∥(t+ 1)0.5−δ0(t+ 1)δ0 (zn(t)− zavg(t))
∥∥ = 0

)
= 1, (C.20)

where the last step follows from Lemma C.1.7 and the fact that δ0 > 1/2. Thus, the difference of the

sequences
{√

t+ 1
(
zn(t)− h>(θ∗N )Σ−1h(θ∗N )

2N

)}
and

{√
t+ 1

(
zavg(t)− h>(θ∗N )Σ−1h(θ∗N )

2N

)}
converges a.s. to

zero and hence we have,

√
t+ 1

(
zn(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N

)
D

=⇒ N
(

0,
h> (θ∗N ) Σ−1h (θ∗N )

N2

)
. (C.21)
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C.1.3 Proof of Theorem 3.7.2

Proof. From (3.14), we have,

PM,θ∗(t) = P1,θ∗ (zn(t) < η)

= P1,θ∗

(
zn(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N

< η − h> (θ∗N ) Σ−1h (θ∗N )

2N

)
= P1,θ∗

(√
t+ 1

(
zn(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N

)
<
√
t+ 1

(
η − h> (θ∗N ) Σ−1h (θ∗N )

2N

))
. (C.22)

Now, invoking Theorem 3.9.1, where we have established the asymptotic normality for the decision statistic

sequence {zn(t)}, we have,

lim
t→∞

P1,θ∗

(√
t+ 1

(
zn(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N

)
<
√
t+ 1

(
η − h> (θ∗N ) Σ−1h (θ∗N )

2N

))
= P1,θ∗(z < −∞) = 0, (C.23)

where z is a normal random variable with z ∼ N
(

0,
h>(θ∗N )Σ−1h(θ∗N )

N2

)
. In the derivation of (C.23) we have

used the Portmanteau characterization for weak convergence and the fact that

η <
h> (θ∗N ) Σ−1h (θ∗N )

2N
. (C.24)

Hence, we have, from (C.22) and (C.23)

lim
t→∞

PM,θ∗(t) = 0 (C.25)

as long as (C.24) holds.

For the null hypothesis H0, from (3.14) and with 0 < λ < 1, we have,

PFA(t) = P0 (zn(t) > η)

= P0

(
1

t

t−1∑
s=0

e>nWt−1−sh> (θ(s)) Σ−1

(
y(s)− h (θ(s))

2

)
> η

)

= P0

1

t

t−1∑
s=0

N∑
j=1

φn,j(s, t− 1)
(
h>j (θj(s)) Σ−1

j γj(s)

−
h>j (θj(s)) Σ−1

j hj (θj(s))

2

)
> η

)
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= P0

1

t

t−1∑
s=0

N∑
j=1

φn,j(s, t− 1)

(
γ>j (s)Σ−1

j γj(s)

2

−
(γj(s)− hj (θj(s)))

>
Σ−1
j (γj(s)− hj (θj(s)))

2

)
> η

)

≤ P0

1

t

t−1∑
s=0

N∑
j=1

φn,j(s, t− 1)
γ>j (s)Σ−1

j γj(s)

2
> η


(a)

≤ P0

1

t

t−1∑
s=0

N∑
j=1

(
1

N
+
√
Nrt−1−s

)
γ>j (s)Σ−1

j γj(s)

2
> η


≤ exp

(
− tηλ

1
N +

√
N

)

×
N∏
j=1

t−1∏
s=0

E0

[
exp

(
λ

1
N +

√
Nrt−1−s

2
N + 2

√
N

γj(s)
>Σ−1

j γj(s)

)]
(b)
= exp

(
− tηλ

1
N +

√
N

)

× exp

− t−1∑
s=0

(∑N
n=1Mn

2

)
log

1−
λ
(

1
N +

√
Nrt−1−s

)
1
N +

√
N


≤ exp

(
− tηλ

1
N +

√
N

)
exp

(
−

(∑N
n=1Mn

2

)
log (1− λ)

)

× exp

− (t− 1)

(∑N
n=1Mn

2

)
log

1−
λ
(

1
N +

√
Nr
)

1
N +

√
N

 , (C.26)

where φn,j (s, t− 1) denotes the (n, j)-th element of Wt−1−s, (a) follows due to ‖φn,j (s, t− 1) − 1
N ‖ ≤√

Nrt−1−s and (b) follows due to the fact that the random variable γj(s)
>Σ−1

j γj(s) is a chi-squared random

variable with Mj degrees of freedom and the associated moment generating function exists since λ < 1.

Now, taking limits on both sides of the equation (C.26), we have,

1

t
log (P0 (zn(t) > η))

≤ − ηλ
1
N +

√
N
−

(∑N
n=1Mn

2t

)
log (1− λ)

− t− 1

t

(∑N
n=1Mn

2

)
log

1−
λ
(

1
N +

√
Nr
)

1
N +

√
N


⇒ lim sup

t→∞

1

t
log (P0 (zn(t) > η))

≤ − ηλ
1
N +

√
N
−

(∑N
n=1Mn

2

)
log

1−
λ
(

1
N +

√
Nr
)

1
N +

√
N


= −LE(λ). (C.27)
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First we note that, as (C.27) holds for all λ ∈ (0, 1), we have that

lim sup
t→∞

1

t
log (P0 (zn(t) > η)) ≤ −LE(1− ε), (C.28)

where ε ∈ (0, 1). Moreover, as LE(λ) is a continuous function of λ in the interval λ ∈ (0, 1], we can force ε

to zero and thereby conclude that

lim sup
t→∞

1

t
log (P0 (zn(t) > η)) ≤ −LE(1). (C.29)

Now consider λ∗ which is given by

λ∗ =
1
N +

√
N

1
N +

√
Nr
−

(
1
N +

√
N
)∑N

n=1Mn

2η
. (C.30)

It is to be noted that λ∗ is positive when

η >

(
1
N +

√
Nr
)∑N

n=1Mn

2
. (C.31)

Furthermore, LE(λ) is maximixed at λ = λ∗ when λ∗ ∈ (0, 1). Hence, in the case when λ∗ ∈ (0, 1), we have

lim sup
t→∞

1

t
log (P0 (zn(t) > η)) ≤ −LE(λ∗). (C.32)

It is to be noted that LE(λ) is an increasing function of λ in the interval (0, λ∗) and hence in the case when

λ∗ > 1, we have that LE(λ) is non-negative and increasing in the interval (0, 1) and we have the exponent

as LE(1) from (C.29). Finally, combining (C.29) and (C.32), we have,

lim sup
t→∞

1

t
log (P0 (zn(t) > η)) ≤ −LE (min{λ∗, 1}) . (C.33)

Finally, the above arguments and the threshold choices obtained in (C.24) and (C.31) establish that as long

as the true θ∗ satisfies the following condition

h> (θ∗N ) Σ−1h (θ∗N )

2N
>

(
1
N +

√
Nr
)∑N

n=1Mn

2
, (C.34)

any η satisfying (
1
N +

√
Nr
)∑N

n=1Mn

2
< η <

h> (θ∗N ) Σ−1h (θ∗N )

2N
. (C.35)

would guarantee PM,θ∗(t),PFA(t)→ 0 as t→∞. Hence, the assertion is proved.

C.2 Proof of Main Results : CIGLRT − L

C.2.1 Proof of Theorem 3.7.3
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Proof. The following result which characterizes
∥∥INM − βt (L⊗ IM )− αtGHΣ−1G>H

∥∥, will be crucial for

the subsequent analysis. We state the result here, while the proof is relegated to Appendix C.4.

Lemma C.2.1. Let the Assumptions 3.6.1-3.6.2 hold. Consider the parameter estimate update of the

CIGLRT − L algorithm in (3.20). Then, we have,

∥∥INM − βt (L⊗ IM )− αtGHΣ−1G>H
∥∥ ≤ 1− c1αt, ∀t ≥ t1, (C.36)

where

c1 = min
‖x‖=1

x>
(
L⊗ IM + GHΣ−1G>H

)
x

= λmin

(
L⊗ IM + GHΣ−1G>H

)
, (C.37)

t1 = max{t2, t3}, (C.38)

and t2, t3 are positive constants (integers) chosen such that ∀t ≥ t2,

βtλN (L) + αtλmax

(
GHΣ−1G>H

)
≤ 1, (C.39)

and ∀t ≥ t3,

αtλmin

(
L⊗ IM + GHΣ−1G>H

)
< 1 (C.40)

respectively.

Under the null hypothesis, we have, for all λ ∈ (0, 1),

zn(kt) = e>nWk−1Gθ(k(t− 1))Σ−1

×
(

s(k(t− 1))− G>Hθ(k(t− 1))

2

)
. (C.41)

From (C.41), we have,

P0 (zn(kt) > η) ≤ e
− (k(t−1)+1)ηλ

1
N

+
√
Nrk−1 E0

[
e

(k(t−1)+1)
1
N

+
√
Nrk−1 λzn(kt)

]
(a)
= e

− (k(t−1)+1)ηλ
1
N

+
√
Nrk−1 ×

E0

exp

 λ
1
N +

√
Nrk−1

k(t−1)∑
i=0

N∑
j=1

φn,j(k − 1)

(
γ>j (i)Σ−1

j γj(i)

2

−
(γj(i)−Hjθj(t− 1))

>
Σ−1
j (γj(i)−Hjθj(t− 1))

2

))]
(b)

≤ e
− (k(t−1)+1)ηλ

1
N

+
√
Nrk−1 E0

exp

 λ
1
N +

√
Nrk−1

N∑
j=1

φn,j(k − 1)
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×
k(t−1)∑
i=0

γ>j (i)Σ−1
j γj(i)

2


(c)

≤ e
− (k(t−1)+1)ηλ

1
N

+
√
Nrk−1 E0

exp

λ N∑
j=1

k(t−1)∑
i=0

γ>j (i)Σ−1
j γj(i)

2


(d)
= e

− (k(t−1)+1)ηλ
1
N

+
√
Nrk−1

N∏
j=1

k(t−1)∏
i=0

E0

[
exp

(
λγ>j (i)Σ−1

j γj(i)

2

)]
(e)
= exp

(
−λη(k(t− 1) + 1)

1
N +

√
Nrk−1

−
(k(t− 1) + 1)

∑N
n=1Mn

2
log(1− λ)

)
, (C.42)

where φn,j(k − 1) denotes the (n, j)-th entry of Wk−1 and r denotes ‖W − J‖. It is to be noted that

(a) follows due to the fact that under the null hypothesis the observations made at the agents are of the

form yn(t) = γn(t), (b) follows due to the fact that the inverse covariances are positive definite and hence

the quadratic forms are positive, (c) follows due to |φn,j(k − 1) − 1
N | ≤

√
Nrk−1, (d) follows due to the

independence of the noise processes over time and space and (e) follows due to the fact that for each i, j the

random variable γj(i)
>Σ−1

j γj(i) corresponds to a standard chi-squared random variable with Mj degrees of

freedom and the associated moment generating functions1 exists since λ < 1.

Taking limits on both sides, we have,

lim sup
t→∞

1

kt
log (P0 (zn(kt) > η))

≤ − λη
1
N +

√
Nrk−1

−
∑N
n=1Mn

2
log(1− λ), (C.43)

which holds for all λ with 0 < λ < 1. Now, supposing that

η >

(
1
N +

√
Nrk−1

)∑N
n=1Mn

2
, (C.44)

it can be shown that the right-hand side (RHS) of (C.43) is minimized at λ∗ = 1 − ( 1
N +
√
Nrk−1)

∑N
n=1 Mn

2η .

It is to be noted that with the condition in (C.44) in force, λ∗ ∈ (0, 1). Hence, by substituting λ = λ∗ in

(C.43) we have,

lim sup
t→∞

1

kt
log (P0 (zn(kt) > η)) ≤ − η

1
N +

√
Nrk−1

−
∑N
n=1Mn

2

1 + log
2η(

1
N +

√
Nrk−1

)∑N
n=1Mn

 . (C.45)

We specifically focused on the sub-sequence {zn(kt)} for the derivation of large deviations2 exponent in this

proof. It can be readily seen that other time-shifted sub-sequences (with constant time-shifts upto k units)

also inherit a similar large deviations upper bound as by construction, (see (3.24) for example), the decision

1The moment generating function E [exp(ρz)] of a chi-squared random variable z with Mn degrees of freedom exists and is

given by (1− 2ρ)−
Mn
2 for all ρ < 1/2.

2By large deviations exponent, we mean the exponent associated with our large deviations upper bound.
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statistic zn(kt) stays constant on the time interval [kt, kt+ k − 1]. Hence, the large deviations upper bound

can be extended as a large deviations upper bound for the sequence {zn(t)}.

For notational simplicity we denote 1N⊗θ∗ as θ∗N . Before analyzing the probability of miss P1,θ∗ (zn(kt) < η)

and its error exponent, we first analyze the term
∥∥G>H (θ(t)− θ∗N )

∥∥2
. We have,

∥∥G>H (θ(t)− θ∗N )
∥∥ ≤ ‖GH‖ ‖θ(t)− θ∗N‖ . (C.46)

From (3.20), we have that,

θ(t+ 1)− θ∗N =
(
INM − βt (L⊗ IM )− αtGHΣ−1G>H

)︸ ︷︷ ︸
A(t)

× (θ(t)− θ∗N ) + αtGHΣ−1γ(t). (C.47)

Let

γG(t) = GHΣ−1γ(t). (C.48)

Then, we have,

‖θ(t)− θ∗N‖
2

= (θ(t)− θ∗N )
>

(θ(t)− θ∗N )

=

t−1∑
i=0

t−1∑
j=0

αiαjγG(i)>αiαj

t−2−i∏
u=0

A(t− 1− u)

t−1∏
v=j+1

A(v)γG(j)

= γ>G,tPtγG,t = tr
(
PtγG,tγ

>
G,t

)
, (C.49)

where

γG,t = [γ>G(0) γ>G(1) · · · γ>G(t− 1)]> (C.50)

and Pt is a block matrix of dimension NMt × NMt, whose (i, j)-th block i, j = 0, · · · , t − 1 is given as

follows:

[Pt]ij = αiαj

t−2−i∏
u=0

A(t− 1− u)

t−1∏
v=j+1

A(v). (C.51)

First, note that the A(i)’s commute and are symmetric and hence the individual blocks [Pt]ij-s and Pt is

symmetric. We also note that, Pt is positive semi-definite, as using an expansion similar to (C.49) it can be

shown that any quadratic form of Pt is non-negative.

Before, characterizing the large deviation exponents, we state the following lemma, the proof of which is

provided in Appendix C.4.

Lemma C.2.2. Let Assumptions 3.6.1-3.6.3 and 3.6.5 hold. Given, the block matrix Pt as defined in

(C.51), we have the following upper bound,

t ‖Pt‖ ≤ c3
(t1 + 1)

2c1α0

t2c1α0−1
+
α2

0

t
+

α2
0

2c1α0 − 1
, ∀t ≥ t1, (C.52)
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where t1 is as defined in (C.38)-(C.40) and c3 =
∑t1−1
v=0 α2

v

∏t1−1
u=v+1 ‖A(u)‖.

For H1, we have,

zn(kt) =
1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

×
k(t−1)∑
i=0

θ>j (k(t− 1))H>j Σ−1
j γj(i)

−
(Hj (θj(k(t− 1))− θ∗))>Σ−1

j (Hj (θj(k(t− 1))− θ∗))
2

+
(θ∗)

>
H>j Σ−1

j Hjθ
∗

2
. (C.53)

For notational simplicity, we denote,

η2 =
−2Nη + (θ∗)

>
Gθ∗

(
1−N

√
Nrk−1

)
4
∥∥GHΣ−1G>H

∥∥(1 +N
√
Nrk−1

) . (C.54)

Moreover, supposing that

η <
(θ∗)

>
Gθ∗

(
1−N

√
Nrk−1

)
2N

, (C.55)

we have η2 > 0, and the probability of miss can be characterized as follows:

P1,θ∗ (zn(kt) < η)

= P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

×
k(t−1)∑
i=0

θ>j (k(t− 1))H>j Σ−1
j γj(i)

−
(Hj (θj(k(t− 1))− θ∗))>Σ−1

j (Hj (θj(k(t− 1))− θ∗))
2

+
(θ∗)

>
H>j Σ−1

j Hjθ
∗

2
< η

)
(a)

≤ P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

×
k(t−1)∑
i=0

θ>j (k(t− 1))H>j Σ−1
j γj(i)

−
(Hj (θj(k(t− 1))− θ∗))>Σ−1

j (Hj (θj(k(t− 1))− θ∗))
2

< η −
(θ∗)

>
Gθ∗

(
1
N −

√
Nrk−1

)
2
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(b)

≤ P1,θ∗

 N∑
j=1

φn,j(k − 1)

×
(Hj (θj(k(t− 1))− θ∗))>Σ−1

j (Hj (θj(k(t− 1))− θ∗))
2

> −η
2

+
(θ∗)

>
Gθ∗

(
1
N −

√
Nrk−1

)
4


+ P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

×
k(t−1)∑
i=0

θ>j (k(t− 1))H>j Σ−1
j γj(i)

<
η

2
−

(θ∗)
>

Gθ∗
(

1
N −

√
Nrk−1

)
4


(c)

≤ t1 + t2 + t3, (C.56)

where (a) follows from |φn,j(k − 1) − 1
N | ≤

√
Nrk−1, (b) follows from the union bound, (c) follows from

the union bound and the inequality |φn,j(k − 1) − 1
N | ≤

√
Nrk−1 and, (t1), (t2) and (t3) are as defined in

(C.136). Note that, Assumption 3.6.4 ensures that 1
N −

√
Nrk−1 is positive.

t1 = P1,θ∗

∥∥∥GHΣ−1G>H

∥∥∥ ‖θ(k(t− 1))− θ∗N‖2

2
>
−2Nη + (θ∗)>Gθ∗

(
1−N

√
Nrk−1

)
4
(

1 +N
√
Nrk−1

)


t2 = P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

k(t−1)∑
i=0

(θj(k(t− 1))− θ∗)>H>j Σ−1
j γj(i) <

η

4
−

(θ∗)>Gθ∗
(

1
N
−
√
Nrk−1

)
8


t3 = P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

k(t−1)∑
i=0

(θ∗)
>

H>j Σ−1
j γj(i) <

η

4
−

(θ∗)>Gθ∗
(

1
N
−
√
Nrk−1

)
8

 , (C.136)

First, we analyze the term (t1) in (C.56). We first note that, if λ is chosen to be λ ≤ c4, where

c4 =
1∥∥GHΣ−1G>H

∥∥(c3 (t1+1)2c1α0

kt
2c1α0−1
1

+
α2

0

kt1
+

α2
0

2c1α0−1

) , (C.137)

we have that ktλ
∥∥Pkt

(
Ikt ⊗GHΣ−1G>H

)∥∥ < 1. Hence, we finally have that ∀t ≥ t1, with t1 as defined in

(C.38)

det
(
INMkt − ktλPkt

(
Ikt ⊗GHΣ−1G>H

))
≥ (1− ktλ ‖Pkt‖

∥∥GHΣ−1G>H
∥∥)NMkt, (C.138)

which ensures the existence of the moment generating function of the Wishart distribution under consider-
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ation (to be specified shortly). We have,

P1,θ∗

(
‖θ(k(t− 1))− θ∗N‖

2

2
> η2

)
≤ e−λη2ktE1,θ∗

[
exp

(
ktλ ‖θ(k(t− 1))− θ∗N‖

2
)]

(a)
= e−λη2ktE1,θ∗

[
exp

(
ktλ tr

(
Pkt

2
γG,ktγ

>
G,kt

))]
(b)
= e−λη2kt ×

(
det
(
INMkt − ktλPkt

(
Ikt ⊗GHΣ−1G>H

)))−1/2
, (C.139)

where in (a), we use the definition of Pkt and γG,kt as defined in (C.51) and (C.50) respectively and in (b)

we use the moment generating function of the Wishart distribution (see, for example, Anderson (1946)) as

γG,ktγ
>
G,kt follows a Wishart distribution. Moreover, from (C.237), we have that,

lim sup
t→∞

kt ‖Pkt‖ ≤
α2

0

2c1α0 − 1
. (C.140)

Now, on using (C.140) and (C.138) in (C.139), we have,

P1,θ∗

(
‖θ(k(t− 1))− θ∗N‖

2
> η2

)
≤ e−λη2kt ×

(
det
(
INMkt − ktλPkt

(
Ikt ⊗GHΣ−1G>H

)))−1/2

≤ e−λη2kt ×
(
1− ktλ ‖Pkt‖

∥∥GHΣ−1G>H
∥∥)−NMkt/2

⇒ 1

kt
log
(
P1,θ∗

(
‖θ(k(t− 1))− θ∗N‖

2
> η2

))
≤ −λη2 −

NM

2
log
(
1− ktλ ‖Pkt‖

∥∥GHΣ−1G>H
∥∥)

⇒ lim sup
t→∞

1

kt
log
(
P1,θ∗

(
‖θ(k(t− 1))− θ∗N‖

2
> η2

))
≤ −λη2 −

NM

2
log

(
1−

λα2
0

∥∥GHΣ−1G>H
∥∥

2c1α0 − 1

)
. (C.141)

Let LD(λ) = λη2 + NM
2 log

(
1− λα2

0‖GHΣ−1G>H‖
2c1α0−1

)
. We first note that LD(0) = 0. In order to ensure that

the term (t1) decays exponentially, the function LD(.) needs to be increasing in an interval of the form,

[0, c5], where 0 < c4 ≤ c5, with c4 as defined in (C.137) which is formalized as follows:

λ <
2c1α0 − 1

α2
0

∥∥GHΣ−1G>H
∥∥ − NM

2η2
= c∗4, (C.142)

with η2 as defined in (C.54). In order to have a positive large deviations upper bound, the RHS of (C.142)

needs to be positive and hence, we require,

2c1α0 − 1

α2
0

∥∥GHΣ−1G>H
∥∥ − NM

2η2
> 0

⇒ η <
(θ∗)

>
Gθ∗

(
1−N

√
Nrk−1

)
2N



APPENDIX C. PROOFS OF THEOREMS IN CHAPTER 3 220

−
Mα2

0

∥∥GHΣ−1G>H
∥∥2
(

1 +N
√
Nrk−1

)
2c1α0 − 1

. (C.143)

We note that the condition derived in (C.143) is tighter than (C.55). Now, combining the threshold condition

derived above in (C.143) and the one derived in (C.44), we have the following condition on the parameter

θ∗

(θ∗)
>

Gθ∗
(

1−N
√
Nrk−1

)
2N

>
Mα2

0

∥∥GHΣ−1G>H
∥∥2
(

1 +N
√
Nrk−1

)
2c1α0 − 1

+

(
1
N +

√
Nrk−1

)∑N
n=1Mn

2
(C.144)

which ensures the exponential decay of the term (t1). Now, when we analyze (t2) and (t3) in (C.56), we

note that (t2) involves an additional time-decaying term, i.e., θj(k(t−1))−θ∗ which contributes to the large

deviations upper bound as well. Hence, the exponent which will dominate among (t2) and (t3), would be

the exponent of their sum. Using the condition derived in (C.55) and the union bound on (t3), we have,

P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

k(t−1)∑
i=0

(θ∗)
>

H>j Σ−1
j γj(i)

<
η

4
−

(θ∗)
>

Gθ∗
(

1
N −

√
Nrk−1

)
8


≤ Q

−η
√
k(t−1)+1

4 +

√
k(t−1)+1(θ∗)>Gθ∗( 1

N−
√
Nrk−1)

8√∑N
j=1 (θ∗)

>
H>j Σ−1

j Hjθ∗
(

1
N +

√
Nrk−1

)


⇒ lim sup
t→∞

1

kt
log

P1,θ∗

 1

(k(t− 1) + 1)

N∑
j=1

φn,j(k − 1)

×
k(t−1)∑
i=0

(θ∗)
>

H>j Σ−1
j γj(i)

<
η

4
−

(θ∗)
>

Gθ∗
(

1
N −

√
Nrk−1

)
8



≤ −


(
−η4 +

(θ∗)>Gθ∗( 1
N−
√
Nrk−1)

8

)2

2
∑N
j=1 (θ∗)

>
H>j Σ−1

j Hjθ∗
(

1
N +

√
Nrk−1

)2

 . (C.145)

Combining (C.145) and (C.141), we have,

lim sup
t→∞

1

kt
log (P1,θ∗ (zn(kt) < η))
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≤ max

−
(
−η4 +

(θ∗)>Gθ∗( 1
N−
√
Nrk−1)

8

)2

2
∑N
j=1 (θ∗)

>
H>j Σ−1

j Hjθ∗
(

1
N +

√
Nrk−1

)2

,−LD (min {c4, c∗4})} = LD1 (η) , (C.146)

We specifically focused on the sub-sequence {zn(kt)} for the derivation of large deviations3 exponent in this

proof. It can be readily seen that other time-shifted sub-sequences (with constant time-shifts upto k units)

also inherit a similar large deviations upper bound as by construction, (see (3.24) for example), the decision

statistic zn(kt) stays constant on the time interval [kt, kt+ k − 1]. Hence, the large deviations upper bound

can be extended as a large deviations upper bound for the sequence {zn(t)}.

C.3 Proofs of Lemmas in Section C.1

Proof of Lemma C.1.1. The proof follows similarly as the proof of Lemma IV.1 in Kar and Moura (2014)

with appropriate modifications to take into account the state-dependent nature of the innovation gains.

Define the process {x(t)} as x(t) = θ(t)− 1N ⊗ θ∗ where θ∗ denotes the true but unknown parameter. The

process {x(t)} satisfies the following recursion:

x(t+ 1) = x(t)− βt(L⊗ IM )x(t)

+ αtG (θ(t)) Σ−1 (y(t)− h(θ(t))) , (C.147)

which implies that,

x(t+ 1) = x(t)− βt(L⊗ IM )x(t)

+ αtG (θ(t)) Σ−1 (y(t)− h (θ∗N ))

− αtG (θ(t)) Σ−1 (h (θ(t))− h (θ∗N )) . (C.148)

It follows from basic properties of the Laplacian L, that

(L⊗ IM ) (1N ⊗ θ∗) = (L1N )⊗ (IMθ
∗) = 0. (C.149)

Taking norms of both sides of (C.147), we have,

‖x(t+ 1)‖2 = ‖x(t)‖2 − 2βtx
>(t) (L⊗ IM ) x(t)

− 2αtx
>(t)G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

+ β2
t x
>(t) (L⊗ IM )

2
x(t)

+ 2αtβtx
>(t) (L⊗ IM ) G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

− 2αtβtx
>(t) (L⊗ IM ) G (θ(t)) Σ−1 (y(t)− h (θ∗N ))

+ α2
t (y(t)− h (θ∗N ))

>
Σ−1G> (θ(t))

×G (θ(t)) Σ−1 (y(t)− h (θ∗N ))

3By large deviations exponent, we mean the exponent associated with out large deviations upper bound.
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+ α2
t (h (θ(t))− h (θ∗N ))

>
Σ−1G> (θ(t))

×G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

+ 2αtx
>(t)G (θ(t)) Σ−1 (y(t)− h(θ∗N ))

− 2α2
t (y(t)− h (θ∗N ))

>
Σ−1G> (θ(t))

×G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N )) . (C.150)

Consider the orthogonal decomposition,

x = xc + xc⊥, (C.151)

where xc denotes the projection of x to the consensus subspace C with

C = {x ∈ RMN | x = 1N ⊗ a, for some a ∈ RM}. (C.152)

From, (3.1), we have that,

Eθ∗ [y(t)− h (θ∗N )] = 0. (C.153)

Consider the process

V2(t) = ‖x(t)‖2 . (C.154)

Using conditional independence properties we have,

Eθ∗ [V2(t+ 1)|Ft] = V2(t) + β2
t x
>(t) (L⊗ IM )

2
x(t)

+ α2
tEθ∗

[
(y(t)− h (θ∗N ))

>
Σ−1G> (θ(t))

×G (θ(t)) Σ−1 (y(t)− h (θ∗N ))
]
− 2βtx

>(t) (L⊗ IM ) x(t)

− 2αtx
>(t)G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

+ 2αtβtx
>(t) (L⊗ IM ) G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

+ α2
t

∥∥∥(h (θ(t))− h (θ∗N ))
>

G> (θ(t)) Σ−1
∥∥∥2

. (C.155)

We use the following inequalities ∀t ≥ t1,

x>(t) (L⊗ IM )
2
x(t)

(q1)

≤ λ2
N (L)||xC⊥(t)||2;

x>(t)G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N )) ≥ c1||x(t)||2
(q2)

≥ 0;

x>(t) (L⊗ IM ) x(t)
(q3)

≥ λ2(L) ‖xC⊥(t)‖2 ;

x>(t) (L⊗ IM ) G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))
(q4)

≤ c2 ‖x(t)‖2 , (C.156)

for c1 as defined in Assumption 2.4.2, and a positive constant c2, where (q2) follows from Assumption 2.4.2

and (q4) follows from Assumption 2.4.1 by which we have that ‖∇hn (θn(t))‖ is uniformly bounded from

above by kn for all n, and hence, we have that ‖G (θ(t))‖ ≤ maxn=1,··· ,N kn. We also have
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Eθ∗
[
(y(t)− h (θ∗N ))

>
Σ−1G>(θ(t))

×G (θ(t)) Σ−1 (y(t)− h (θ∗N ))
]
≤ c4, (C.157)

for some constant c4 > 0. In (C.157), we use the fact that the noise process under consideration is Gaussian

and hence has finite moments. We also use the fact that ‖G (θ(t))‖ ≤ maxn=1,··· ,N kn, which in turn follows

from Assumption 2.4.1.

We further have that,

(h (θ(t))− h (θ∗N ))
>

Σ−1G> (θ(t))

G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N )) ≤ c3 ‖x(t)‖2 , (C.158)

where c3 > 0 is a constant. It is to be noted that (C.158) follows from the Lipschitz continuity in Assumption

2.4.1 and the fact that ‖G (θ(t))‖ ≤ maxn=1,··· ,N kn.

Using (C.155)-(C.158), we have,

Eθ∗ [V2(t+ 1)|Ft] ≤
(
1 + c5

(
αtβt + α2

t

))
V2(t)

− c6(βt − β2
t )||xC⊥(t)||2 + c4α

2
t , (C.159)

for some positive constants c5 and c6. As β2
t goes to zero faster than βt, ∃t2 such that ∀t ≥ t2, βt ≥ β2

t .

Hence ∃t2 and ∃τ1, τ2 > 1 such that for all t ≥ t2

c5
(
αtβt + α2

t

)
≤ c7

(t+ 1)τ1
= γt, c4α

2
t ≤

c8
(t+ 1)τ2

= γ̂t (C.160)

where c7, c8 > 0 are constants.

By the above construction we obtain, ∀t ≥ t2,

Eθ∗ [V2(t+ 1)|Ft] ≤ (1 + γt)V2(t) + γ̂t, (C.161)

where the positive weight sequences {γt} and {γ̂t} are summable, i.e.,∑
t≥0

γt <∞,
∑
t≥0

γ̂t <∞. (C.162)

By (C.162), the product
∏∞
s=t(1 + γs) exists for all t. Now let {W (t)} be such that

W (t) =

( ∞∏
s=t

(1 + γs)

)
V2(t) +

∞∑
s=t

γ̂s, ∀t ≥ t2. (C.163)

By (C.163), it can be shown that {W (t)} satisfies,

Eθ∗ [W (t+ 1)|Ft] ≤W (t). (C.164)

Hence, {W (t)} is a non-negative super martingale and converges a.s. to a bounded random variable W ∗ as

t → ∞. It then follows from (C.163) that V2(t) → W ∗ as t → ∞. Thus, we conclude that the sequences
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{θn(t)} are bounded for all n.

Proof of Lemma C.1.2. The proof follows exactly the development in theorem IV.1 of Kar and Moura (2014).

Let x(t) denote the residual θ(t)− 1N ⊗ θ∗.
For ε ∈ (0, 1), define the set Γε

Γε =

{
θ ∈ RNM : ε ≤ ‖θ − 1N ⊗ θ∗‖ ≤

1

ε

}
. (C.165)

Let ρε denote the {Ft} stopping time

ρε = inf{t ≥ 0 : θ(t) /∈ Γε}, (C.166)

where Γε is defined in (C.165). Let {V ε(t)} denote the stopped process

V ε(t) = V2(max{t, ρε}),∀t, (C.167)

with V2(t) as defined in (C.154).

Then, we have,

V ε(t+ 1) = V2(t+ 1)I (ρε > t) + V2(ρε)I (ρε ≤ t) , (C.168)

where I(·) denotes the indicator function. Due to the fact that I (ρε > t) and V2(ρε)I (ρε ≤ t) are adapted to

Ft for all t, we have,

Eθ∗ [V ε(t+ 1)|Ft] = Eθ∗ [V2(t+ 1)] I (ρε > t)

+ V2(ρε)I (ρε ≤ t) , (C.169)

for all t.

First, noting the inequality derived in (C.156) in (q2) and rewriting it as,

−x(t)TG (θ(t)) Σ−1 (h (θ(t))− h (θ∗N )) ≤ −c1||x(t)||2, (C.170)

we have with a slight rearrangement of terms from the expansion in (C.155),

Eθ∗ [V2(t+ 1)|Ft] = V2(t) + β2
t x

T (t) (L⊗ IM )
2
x(t)

+ α2
tEθ∗

[
(y(t)− h (θ∗N ))

>
Σ−1G> (θ(t))

×G (θ(t)) Σ−1 (y(t)− h (θ∗N ))
]
− 2βtx

>(t) (L⊗ IM ) x(t)

− 2αtx
>(t)G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

+ 2αtβtx
>(t) (L⊗ IM ) G (θ(t)) Σ−1 (h (θ(t))− h (θ∗N ))

+ α2
t

∥∥(h (θ(t))− h> (θ∗N )
)
G> (θ(t)) Σ−1

∥∥2
. (C.171)
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Now, using (C.170) in (C.171) and the inequalities derived in (C.156)-(C.158), we have,

Eθ∗ [V2(t+ 1)|Ft] ≤
(
1− c1αt + c5

(
αtβt + α2

t

))
V2(t)

− c6(βt − β2
t )||xC⊥(t)||2 + c4α

2
t , (C.172)

where c5, c6, c4 are appropriately chosen constants.

Now, by choosing a large enough tε, such that for all t ≥ tε, we can assert that,

βt − β2
t ≥ 0,

c1αt − c5
(
αtβt + α2

t

)
≥ c7αt. (C.173)

Thus, we have for t ≥ tε,

Eθ∗ [V2(t+ 1)|Ft] ≤ (1− c1αt)V2(t) + c4α
2
t . (C.174)

Furthermore, by the definition of Γε, we have,

‖x(t)‖2 ≥ ε2 on {x(t) ∈ Γε} , (C.175)

and hence by the definition of V2(t), we have that there exists a constant c7 (ε) > 0 such that

V2(t) ≥ c7(ε) on {x(t) ∈ Γε} . (C.176)

Using the above relation in (C.174), we then have for all t ≥ tε,

Eθ∗ [V2(t+ 1)|Ft]I (ρε > t)

≤
[
V2(t)− c8(ε)αt + c4α

2
t

]
I (ρε > t) , (C.177)

where c8(ε) > 0 is an appropriately chosen constant. Finally, the observation that αt > α2
t establishes that

Eθ∗ [V2(t+ 1)|Ft]I (ρε > t) ≤ [V2(t)− c9(ε)αt] I (ρε > t) , (C.178)

where c9(ε) > 0 is an appropriately chosen constant Finally, from (C.169), we have that

Eθ∗ [V ε(t+ 1)|Ft] ≤ V2(t)I (ρε > t) + V2)(ρε)I (ρε ≤ t)

− c9(ε)αtI (ρε > t)

= V ε(t)− c9(ε)αtI (ρε > t) . (C.179)

It is to be noted that {V ε(t)}t≥tε satisfies Eθ∗ [V ε(t+1)|Ft] ≤ V ε(t) for all t ≥ tε, which being a non-negative

supermartingale, there exists an a.s. finite V ε such that V ε(t+ 1)→ V ε a.s. as t→∞. To this end, define

the process {V ε1 (t)} given by

V ε1 (t) = V ε(t) + c9(ε)

t−1∑
s=0

αsI(ρε > s), (C.180)
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and by (C.179) we have that

Eθ∗ [V ε1 (t+ 1)|Ft] ≤ V ε(t)− c9(ε)αtI (ρε > t)

+ c9(ε)

t−1∑
s=0

αsI(ρε > s) = V ε1 (t), (C.181)

for all t ≥ tε. Hence, we have that {V ε1 (t)}t≥tε is a non-negative supermartingale and there exists a finite

random variable V ε1 such that V ε1 (t)→ V ε1 a.s. as t→∞. From the definition in (C.180), we have that the

following limit exists:

lim
t→∞

c9(ε)

t−1∑
s=0

αsI(ρε > s) = V ε1 − V ε <∞ a.s. (C.182)

We also have that as t→∞,
∑t−1
s=0 αs →∞, the limit condition in (C.182) is satisfied only if ρε <∞ a.s.

Let’s define the sequence {x(ρ1/p)}, by choosing ε = 1/p, for each positive integer p > 1. By definition, we

have,

∥∥x(ρ1/p)
∥∥ ∈ [1, 1/p) ∪ (p,∞) a.s. (C.183)

We also have from Lemma C.1.1 that

Pθ∗
(∥∥x(ρ1/p)

∥∥ > p i.o.
)

= 0, (C.184)

where i.o. denotes infinitely often as p → ∞. Hence, by (C.183) we have that there exists a finite integer

valued random variable p∗ such that
∥∥x(ρ1/p)

∥∥ < 1/p∗, ∀p ≥ p∗, which in turn implies that
∥∥x(ρ1/p)

∥∥→ 0

as p→∞. Finally, we have that

Pθ∗
(

lim inf
t→∞

∥∥x(ρ1/p)
∥∥ = 0

)
= 1. (C.185)

With the above development in place we have from (C.154) that lim inft→∞ V2(t) = 0 a.s. Noting that the

limit of {V2(t)} exists, we have that V2(t)→ 0 as t→∞ a.s. and again from (C.154), we have that x(t)→ 0

as t→∞ a.s.

Proof of Lemma C.1.6. Define, the process {ẑavg(t)} as follows :

ẑavg(t) = zavg(t)− h> (θ∗N ) Σ−1h (θ∗N )

2N
. (C.186)

The recursion for {ẑavg(t)} can then be represented as

ẑavg(t+ 1) =

(
1− 1

t+ 1

)
ẑavg(t)

+
1

N (t+ 1)

N∑
n=1

h>n (θn(t)) Σ−1
n (yn(t)− hn (θ∗))

− 1

2N(t+ 1)

N∑
n=1

(hn (θn(t))− hn (θ∗))
>

Σ−1
n (hn (θn(t))− hn (θ∗))



APPENDIX C. PROOFS OF THEOREMS IN CHAPTER 3 227

=

(
1− 1

t+ 1

)
ẑavg(t) +

1

N (t+ 1)
h> (θ(t)) Σ−1 (y(t)− h (θ∗N ))

− 1

2N(t+ 1)
(h (θ(t))− h (θ∗N ))

>
Σ−1 (h (θ(t))− h (θ∗N )) . (C.187)

In order to apply Lemma C.1.5 to the process {ẑavg(t)}, define

Γt = I,

Φt =
1

N
h> (θ(t)) Σ−1,

Vt = y(t)− h (θ∗N ) ,

Tt =
√
t+ 1 (h (θ(t))− h (θ∗N ))

>
Σ−1 (h (θ(t))− h (θ∗N )) . (C.188)

From Assumption 2.4.1, we have that,

‖h (θ(t))− h (θ∗N )‖ ≤ kmax ‖θ(t)− θ∗‖ , (C.189)

where kmax = maxn=1,··· ,N kn, with the kn’s defined in Assumption 2.4.1. Moreover, from theorem 3.7.1 we

have that, with τ = 1/4,

lim
t→∞

√
t+ 1 ‖θ(t)− θ∗N‖

2
= 0 a.s. (C.190)

The above implies that

lim
t→∞

√
t+ 1 (h (θ(t))− h (θ∗N ))

>
Σ−1 (h (θ(t))− h (θ∗N ))

≤ lim
t→∞

√
t+ 1 ‖h (θ(t))− h (θ∗N )‖2

∥∥Σ−1
∥∥ = 0. (C.191)

From Theorem 3.7.1, we have Φt = 1
N h> (θ(t)) Σ−1 → 1

N h> (θ∗N ) Σ−1 a.s. as t→∞.

Clearly, Eθ∗ [Vt|Ft] = 0 and Eθ∗
[
VtV

>
t |Ft

]
= Σ. Due to the i.i.d nature of the noise process, the required

uniform integrability condition for the process {Vt} is also verified. Hence, {zavg(t)} falls under the purview

of Lemma C.1.5 and the assertion follows.

Proof of Lemma C.1.7. Define the process {p(t)} as follows:

p(t) = z(t)− 1N ⊗ zavg(t). (C.192)

Then {p(t)} evolves as

p(t+ 1) =
t

t+ 1
(W − J)p(t)

+
1

t+ 1

(
h∗ (θ(t))− 11>

N
h> (θ(t))

)
J (y(t))

− 1

2(t+ 1)

(
h∗ (θ(t)) Σ−1h (θ(t))

−1N
N
⊗
(
h> (θ(t)) Σ−1h (θ(t))

))
, (C.193)
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where J (y(t)) = Σ−1y(t). The following lemmas are instrumental for the subsequent analysis. Lemma

C.3.1 is concerned with a stochastic approximation type result which will be used later in the proof, whereas,

Lemma C.3.2 establishes the a.s. boundedness of J (y(t)).

Lemma C.3.1 (Kar (2010)). Consider the scalar time-varying linear system

u(t+ 1) = (1− r1(t))u(t) + r2(t), (C.194)

where {r1(t)} is a sequence, such that, 0 ≤ r1(t) ≤ 1 and is given by

r1(t) =
a1

(t+ 1)δ1
(C.195)

with a1 > 0, 0 ≤ δ1 ≤ 1, whereas the sequence {r2(t)} is given by

r2(t) =
a2

(t+ 1)δ2
(C.196)

with a2 > 0, δ2 ≥ 0. Then, if u(0) ≥ 0 and δ1 < δ2, we have

lim
t→∞

(t+ 1)δ0u(t) = 0, (C.197)

for all 0 ≤ δ0 < δ2 − δ1.

Proof. A proof of this Lemma can be found in Kar (2010) in the proof of Lemma 3.3.3 in Chapter 3.

Lemma C.3.2. Define J(y(t)) as follows:

J (y(t)) = Σ−1y(t) (C.198)

Then we have

Pθ∗
(

lim
t→∞

1

(t+ 1)δ
||J(y(t))|| = 0

)
= 1. (C.199)

Proof. Consider any ε1 > 0. By Chebyshev’s inequality, we have,

Pθ∗
(

1

(t+ 1)δ
‖J(y(t))‖ > ε1

)
≤ 1

ε
1+ 1

δ
1 (t+ 1)1+δ

Eθ∗
[
‖J(y(t))‖1+ 1

δ

]
=

K(θ∗)

(t+ 1)1+ 1
δ

(C.200)

where Eθ∗ [‖J(y(t))‖1+ 1
δ ] = K(θ∗) < ∞ because the noise in consideration is Gaussian and has finite mo-

ments. Moreover, since δ > 0, the sequence (t+ 1)1+ 1
δ is square summable and we obtain

∑
t>0

Pθ∗
(

1

(t+ 1)δ
‖J(y(t))‖ > ε1

)
<∞. (C.201)
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Hence, we have from the Borel-Cantelli Lemma, for arbitrary ε1 > 0,

Pθ∗
(

1

(t+ 1)δ
‖J(y(t))‖ > ε1 i.o.

)
= 0, (C.202)

where i.o. stands for infinitely often and the claim follows from standard arguments.

We also have from Lemma C.1.1 that

P
(

sup
t≥0

∥∥∥∥(h∗ (θ(t))− 11>

N
h> (θ(t))

)∥∥∥∥ <∞) = 1, (C.203)

and combining this with lemma C.3.2, we have,

P
(

sup
t≥0

∥∥∥∥(h∗ (θ(t))− 11>

N
h> (θ(t))

)
J(y(t))

∥∥∥∥ <∞) = 1. (C.204)

To prove uniform bounds, we use truncation arguments. For a scalar d, let its truncation (d)A0 be defined

at level A0 by

(d)A0 =

 d
|d| min(|d|, A0), if d 6= 0

0, if d = 0,
(C.205)

while for a vector, the truncation operator is applied component-wise. To this end, we consider sequences

{pA0
(t)}, which is in turn given by,

pA0(t+ 1) =
t

t+ 1
(W − J) pA0(t) +

1

t+ 1
(J1 (y(t)))

A0(t+1)δ

− 1

2(t+ 1)

((
h∗ (θ(t)) Σ−1h (θ(t))

−1N
N
⊗
(
h> (θ(t)) Σ−1h (θ(t))

)))A0

, (C.206)

where J1 (y(t)) =
(
h∗ (θ(t))− 11>

N h> (θ(t))
)
J(y(t)), A0 > 0 and δ > 0.

In order to prove the assertion,

Pθ∗
(

lim
t→∞

(t+ 1)δ0p(t) = 0
)

= 1, (C.207)

it is sufficient to prove that for every A0 > 0,

Pθ∗
(

lim
t→∞

(t+ 1)δ0pA0
(t) = 0

)
= 1, (C.208)

which is due to the following standard arguments. The pathwise boundedness of the different terms in the

recursion for p(t) as defined in (C.206) implies that, for every ε > 0, there exists Aε such that

Pθ∗
(
sup ‖J1(y(t))‖ < Aε(t+ 1)δ0

)
> 1− ε, (C.209)

and
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Pθ∗
(
sup

∥∥(h∗ (θ(t)) Σ−1h (θ(t))

−1N
N
⊗
(
h> (θ(t)) Σ−1h (θ(t))

))∥∥∥∥ < Aε

)
> 1− ε. (C.210)

In particular, (C.209) follows from the pathwise boundedness of {θ(t)} proved in Lemma C.1.1, whereas,

(C.210) follows from the a.s. convergence in Lemma C.3.2. The processes {p(t)} and {pAε(t)} agree on the

set where both of the above mentioned events occur. Hence, it follows that,

Pθ∗ (sup ‖p(t)− pAε(t)‖ = 0) > 1− 2ε. (C.211)

Invoking the claim in (C.208), we have,

Pθ∗
(

lim
t→∞

(t+ 1)δ0p(t) = 0
)
> 1− 2ε. (C.212)

The assertion then can be proved by taking ε to 0.

In order to establish the claim in (C.208), for every A0 > 0, consider the scalar process {p̂A0
(t)}t≥0 defined

as

p̂A0
(t+ 1) = ‖IN − δL− J‖ p̂A0

(t) +
NA0

2(t+ 1)

+
NA0(t+ 1)δ0

t+ 1
, (C.213)

where p̂A0(0) is initialized as p̂A0(0) = ‖pA0(0)‖ and δ is as defined in (3.12). From (C.206), we have,

‖pA0(t+ 1)‖ ≤ t

t+ 1
‖(W − J)‖ ‖pA0(t)‖

+
1

t+ 1

∥∥∥(J1 (y(t)))
A0(t+1)δ

∥∥∥
+

1

2(t+ 1)

∥∥((h∗ (θ(t)) Σ−1h (θ(t))

−1N
N
⊗
(
h> (θ(t)) Σ−1h (θ(t))

)))A0

∥∥∥∥∥
≤ ‖IN − δL− J‖ ‖pA0

(t)‖+
NA0

2(t+ 1)
+
NA0(t+ 1)δ0

t+ 1
. (C.214)

Given the initial condition for p̂A0
(0), through an induction argument we have that

‖pA0(t+ 1)‖ ≤ p̂A0(t+ 1),∀t. (C.215)

Moreover, we also have that,

‖IN − δL− J‖ =
λN (L)− λ2 (L)

λN (L) + λ2 (L)
. (C.216)
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Using (C.216) in (C.213), we have,

p̂A0(t+ 1) ≤
(

1− 2λ2 (L)

λN (L) + λ2 (L)

)
p̂A0(t) +

2NA0

(t+ 1)1−δ0
, (C.217)

where 2λ2(L)
λN (L)+λ2(L) < 1 and hence the recursion in (C.217) comes under the purview of Lemma C.3.1. Hence,

we have

Pθ∗
(

lim
t→∞

(t+ 1)δ0 p̂A0
(t) = 0

)
= 1. (C.218)

Finally, the assertion follows from by invoking (C.215) and noting that, for arbitrary A0 > 0,

Pθ∗
(

lim
t→∞

(t+ 1)δ0pA0
(t) = 0

)
= 1. (C.219)

C.4 Proofs of Lemmas in Section C.2

Proof of Lemma C.2.1. First, we note that both the matrices L ⊗ IM and GHΣ−1G>H are symmetric and

positive semi-definite. Then the matrix L ⊗ IM + GHΣ−1G>H is positive semi-definite as it is the sum of

two positive semi-definite matrices. To prove that the matrix L⊗ IM + GHΣ−1G>H is positive definite, let’s

assume that it’s not positive definite. Hence there exists x ∈ RNM , where x 6= 0 such that

x>
(
L⊗ IM + GHΣ−1G>H

)
x = 0, (C.220)

which further implies that

x> (L⊗ IM ) x = 0 and x>
(
GHΣ−1G>H

)
x = 0. (C.221)

Moreover, x can be written as x =
[
x>1 , · · · ,x>N

]>
, with xn ∈ RM for all n. Now note that, by the properties

of the graph Laplacian (C.221) holds if and only if (iff )

xn = g, ∀n, (C.222)

where g ∈ RM and g 6= 0. Hence, from (C.221),we have,

N∑
n=1

g>H>nΣ−1
n Hng = g>Gg = 0, (C.223)

which is a contradiction from Assumption 3.6.1 as G is invertible. Hence, we have that L⊗IM +GHΣ−1G>H
is positive definite. Since βt/αt →∞ as t→∞, there exists an integer t4 (sufficiently large) such that ∀t ≥ t4
and for all x with ‖x‖ = 1,

x>
(
βt (L⊗ IM ) + αtGHΣ−1G>H

)
x

= αtx
>
(
βt
αt

(L⊗ IM ) + GHΣ−1G>H

)
x
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≥ αtx>
(
(L⊗ IM ) + GHΣ−1G>H

)
x ≥ c1αt, (C.224)

where

c1 = λmin

(
(L⊗ IM ) + GHΣ−1G>H

)
. (C.225)

We now choose a t3 > t4 such that ∀t ≥ t3, c1αt < 1.

In order to ensure that all the eigenvalues of
(
INM − βt (L⊗ IM )− αtGHΣ−1G>H

)
are positive, we choose

a t2 such that ∀t ≥ t2,

βtλN (L) + αtλmax(GHΣ−1G>H) < 1. (C.226)

It is to be noted that such choices of t3 and t2 are possible as βt, αt → 0 as t→∞. Moreover, the condition

in (C.226) readily implies that λmax

(
βt (L⊗ IM ) + αtGHΣ−1G>H

)
≤ βtλN (L) + αtλmax(GHΣ−1G>H) < 1

for all t ≥ t2. Hence, from (C.224), we have ∀t ≥ t1, with t1 = max{t2, t3}, and for all x such that ‖x‖ = 1,

x>
(
INM − βt (L⊗ IM )− αtGHΣ−1G>H

)
x ≤ 1− c1αt, (C.227)

which implies that

∥∥INM − βt (L⊗ IM )− αtGHΣ−1G>H
∥∥ ≤ 1− c1αt, (C.228)

for all t ≥ t1.

Proof of Lemma C.2.2. The following Lemma from Bourin and Lee (2013), will be used in the subsequent

analysis.

Lemma C.4.1 (Bourin and Lee (2013)). Given a positive-semidefinite matrix P (Nt × Nt), with each of

its blocks (N ×N) being symmetric, the following result holds for any invariant norm,

‖P‖ ≤

∥∥∥∥∥
t∑
i=1

[P]ii

∥∥∥∥∥ . (C.229)

From Lemma C.4.1, we have that,

‖Pt‖ ≤
t∑
i=1

‖[Pt]ii‖ . (C.230)

From Lemma C.2.1. we have that, ∀t ≥ t1,

‖A(u)‖ ≤ (1− c1αu), (C.231)

which implies

‖[Pt]ii‖ ≤ α
2
i

t−1∏
u=i

(1− c1αu)2, (C.232)
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for all t ≥ t1. Using (C.231), the RHS of (C.230) can be rewritten as

t∑
i=1

‖[Pt]ii‖ ≤ c3
t−1∏
u=t1

(1− c1αu)2 +

t∑
v=t1

α2
v

t−1∏
u=v+1

(1− c1αu)2, (C.233)

where c3 is given by

c3 =

t1−1∑
v=0

α2
v

t1−1∏
u=v+1

‖A(u)‖ . (C.234)

Using the properties of Riemann integration and the inequality (1− x) ≤ e−x, for x ∈ (0, 1), we have,

t−1∏
u=i

(1− c1αu)2 ≤
(
i+ 1

t

)2c1α0

, (C.235)

where, in the derivation, we also use the property that

t∑
u=i+1

1

u
> ln

(
t

i+ 1

)
. (C.236)

On using (C.235), in (C.233) we have ∀t ≥ t1,

t∑
i=1

‖[Pt]ii‖ ≤ c3
t−1∏
u=t1

(1− c1αu)2

+

t∑
v=t1

α2
v

t−1∏
u=v+1

(1− c1αu)2

≤ c3
(
t1 + 1

t

)2c1α0

+

t−1∑
u=t1+1

α2
u

(
u+ 1

t

)2c1α0

= c3

(
t1 + 1

t

)2c1α0

+ α2
0

t−1∑
u=t1+1

1

t2c1α0(u+ 1)2−2c1α0

= c3

(
t1 + 1

t

)2c1α0

+
α2

0

t2

+ α2
0

t−2∑
u=t1+1

1

t2c1α0(u+ 1)2−2c1α0

(a)

≤ c3

(
t1 + 1

t

)2c1α0

+
α2

0

t2

+
α2

0

t2c1α0

∫ t−1

t1

1

(s+ 1)2−2c1α0
ds

≤ c3
(
t1 + 1

t

)2c1α0

+
α2

0

t2
+

α2
0

t2c1α0

(
t2c1α0−1

2c1α0 − 1

)
. (C.237)

The above implies that, for all t ≥ t1,

t

t∑
i=1

‖[Pt]ii‖
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(b)

≤ c3
(t1 + 1)

2c1α0

t2c1α0−1
+
α2

0

t
+

α2
0

2c1α0 − 1
. (C.238)

where in (a) and (b), we use the fact that 2c1α0 − 1 > 1 by Assumption 3.6.5. The proof follows by noting

that the RHS of (C.238) is a non-increasing function of t.

Proof of Theorem 3.9.1. The proof of Theorem 3.9.1 needs the following Lemma from Fabian (1968) con-

cerning the asymptotic normality of non-Markov stochastic recursions.

Lemma C.4.2 (Theorem 2.2 in Fabian (1968)). Let {zt} be an Rk-valued {Ft}-adapted process that satisfies

zt+1 =

(
Ik −

1

t+ 1
Γt

)
zt + (t+ 1)−1ΦtVt + (t+ 1)−3/2Tt, (C.239)

where the stochastic processes {Vt}, {Tt} ∈ Rk while {Γt}, {Φt} ∈ Rk×k. Moreover, for each t, Vt−1 and

Tt are Ft -adapted, whereas the processes {Γt}, {Φt} are {Ft} adapted.

Also, assume that

Γt → Γ,Φt → Φ and Tt → 0 as t→∞, (C.240)

where Γ is symmetric and positive definite, and admits an eigen decomposition of the form P>ΓP = Λ,

where Λ is diagonal and P is orthogonal. Furthermore, let the sequence {Vt} satisfy E [Vt|Ft] = 0 for each

t and there exists a positive constant C and a matrix Σ such that C >
∥∥E [VtV

>
t |Ft

]
− Σ

∥∥ → 0 as t → ∞
and with σ2

t,r =
∫
‖Vt‖2≥r(t+1)

‖Vt‖2 dP, let limt→∞
1
t+1

∑t
s=0 σ

2
s,r = 0 for every r > 0.

Then, we have,

(t+ 1)1/2zt
D

=⇒ N
(
0,PMP>

)
, (C.241)

where

[M]ij =
[
P>ΦΣΦ>P

]
ij

(
[Λ]ii + [Λ]jj − 1

)−1

. (C.242)

Define the process {ẑ(t)} as

ẑ(t) = z(t)− (bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)
2

. (C.243)

It can be shown that the process {ẑ(t)} satisfies the recursion

ẑ(t+ 1) =

(
IN −

1

t+ 1
Γ(t)

)
ẑ(t) +

1

t+ 1
Φ(t)V(t)

+ (t+ 1)−3/2T(t), (C.244)

where the processes {Γ(t)}, {Φ(t)}, {V(t)} and {Tt} are given by

Γ(t) = Γ = bL + I,Φ(t) = Φ = I,

V(t) = K(t)Σ−1γ(t) + bζ(t) = h∗(θ(t))Σ−1γ(t) + bζ(t)

T(t) = (t+ 1)1/2U(t)
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= (t+ 1)1/2 (h∗(θ(t))− h∗(1N ⊗ θ∗)) Σ−1 (h(1N ⊗ θ∗)− h(θ(t))) . (C.245)

From, Theorem 3.7.1, we have the following convergences : (t + 1)1/2U(t) → 0 and K(t) → K∗ = h∗(θ∗)

a.s. as t→∞. By Egorov’s Theorem the a.s. convergence can be taken to be uniform convergence on sets

of arbitrarily large probability measure, and hence for every δ > 0, there exist uniformly bounded processes{
Uδ(t)

}
and

{
Kδ(t)

}
satisfying

Pθ∗
(

sup
s≥tδε

∥∥Kδ(s)−K∗
∥∥ > ε

)
= 0

Pθ∗
(

sup
s≥tδε

(t+ 1)1/2
∥∥Uδ(s)

∥∥ > ε

)
= 0 (C.246)

for each ε > 0 and some tδε chosen appropriately large, such that

Pθ∗
(

sup
t≥0

max
{∥∥Kδ(t)−K(t)

∥∥ ,∥∥Uδ(t)−U(t)
∥∥} = 0

)
> 1− δ. (C.247)

With the above development in place, we define the process {ẑδ(t)} for each δ > 0 by,

ẑδ(t+ 1) =

(
IN −

1

t+ 1
Γ

)
ẑδ(t) +

1

t+ 1
ΦVδ(t)

+ (t+ 1)−3/2Tδ(t), (C.248)

where ẑδ(0) = ẑ(t), Vδ(t) = Kδ(t)Σ−1γ(t) + bΨ(t), Tδ(t) = (t+ 1)1/2Uδ(t) and

Pθ∗
(

sup
t≥0

∥∥ẑδ(t)− ẑ(t)
∥∥ = 0

)
> 1− δ. (C.249)

Since, T(t) and K(t) may not converge uniformly, Lemma C.1.5 might not be directly applicable. Hence,

we first consider the process {ẑδ(t)} for some δ > 0. It is to noted that by construction, we have,

lim
t→∞

Tδ(t) = 0,Eθ∗
[
Vδ(t)|Ft

]
= 0 ∀t,

lim
t→∞

E
[
Vδ(t)(Vδ(t))>|Ft

]
(a)
= h∗(1N ⊗ θ∗)Σ−1(h∗(1N ⊗ θ∗))> + b2Σc

= Σ∗1, (C.250)

where (a) follows from the fact that the agent observation noises and channel noises are mutually uncorre-

lated. Moreover, the uniform boundedness of the process
{
Kδ
t

}
ensures the existence of a constant C such

that

∥∥E [Vδ(t)(Vδ(t))>|Ft
]
−Σ∗1

∥∥ < C, ∀t ≥ 0. (C.251)

Furthermore, the process {Vδ(t)} satisfies the uniform integrability assumption of Lemma C.1.5. Hence, by
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Lemma C.1.5, we have that,

(t+ 1)1/2
(
ẑδ(t)

) D
=⇒ N (0,Σ∗c,1), (C.252)

for each δ > 0 where Σ∗c,1 is as defined in (3.51). To extend the asymptotic normality to the process {ẑ(t)},
define any continuous bounded function g : RN → R. By, Portmanteau’s theorem (Billingsley (1999)), we

have that

lim
t→∞

Eθ∗
[
g
(

(t+ 1)1/2ẑδ(t)
)]

= Eθ∗ [g (z)] , (C.253)

for each δ, where z is a normal random variable with z ∼ N (0,Σ∗c,1). We denote the sup-norm of g(.) as

‖g‖∞ which is necessarily finite and hence from (C.249), we have that,∥∥∥Eθ∗ [g ((t+ 1)1/2ẑδ(t)
)]
− Eθ∗

[
g
(

(t+ 1)1/2ẑ(t)
)]∥∥∥

≤ 2δ ‖g‖∞ . (C.254)

We then have, from (C.253),

lim sup
t→∞

∥∥∥Eθ∗ [g ((t+ 1)1/2ẑ(t)
)]
− Eθ∗ [g (z)]

∥∥∥ ≤ 2δ ‖g‖∞ . (C.255)

Since the above development holds for each δ > 0, we have,

lim
t→∞

Eθ∗
[
g
(

(t+ 1)1/2ẑ(t)
)]

= Eθ∗ [g (z)] . (C.256)

As the weak convergence derived above holds for all bounded continuous functions g(.), we have the required

weak convergence (convergence in distribution) of the sequence
{

(t+ 1)1/2ẑ(t)
}

.

The proof for the asymptotic normality under P0 follows exactly in a similar way.

Proof of Theorem 3.9.2. From (3.28), we have,

PM,θ∗(t) = P1,θ∗ (zn(t) < ηn)

= P1,θ∗

(
zn(t)−

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

< ηn −
[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

)
= P1,θ∗

(√
t+ 1

(
zn(t)−

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

)
<
√
t+ 1

(
ηn −

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

))
. (C.257)

To this end, invoking Theorem 3.9.1, where we established asymptotic normality for the decision statistic
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sequence {zn(t)}, we have,

lim
t→∞

P1,θ∗

(√
t+ 1

(
zn(t)−

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

)
<
√
t+ 1

(
ηn −

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

))
= P1,θ∗(z < −∞) = 0, (C.258)

where z is a normal random variable with z ∼ N
(

0,
[
Σ∗c,1

]
nn

)
.

Under H0, we have,

PFA(t) = P0 (zn(t) > ηn)

= P0

(
1

t

t−1∑
s=0

e>nΦ(s, t− 1)

(
h∗(θ(s))Σ−1

(
y(s)− h(θ(s))

2

)
+ bζ(s)) > ηn)

≤ P0

(
1

t

t−1∑
s=0

e>nΦ(s, t− 1)

(
h∗(θ(s))Σ−1

(
y(s)− h(θ(s))

2

))
>
ηn
2

)
︸ ︷︷ ︸

(a1)

+ P0

(
b

t

t−1∑
s=0

e>nΦ(s, t− 1)ζ(s) >
ηn
2

)
︸ ︷︷ ︸

(a2)

, (C.259)

where

Φ(s, t− 1) =

t−1∏
q=s

(I− αqL) , if s 6= t− 1,

Φ(s, t− 1) = I, if s = t− 1. (C.260)

We first analyze the term Φ(s, t− 1)− J. We have,

‖Φ(0, t− 1)− J‖ ≤
t−1∏
s=0

(1− bαsλ2(L))

≤ exp

(
−bλ2(L)

t−1∑
s=0

αs

)

≤
(

1

t

)bλ2(L)

. (C.261)

Similarly, it may be shown that for each 0 < s ≤ t− 1,

‖Φ(s, t− 1)− J‖ ≤
(
s+ 1

t

)bλ2(L)

≤ 1, (C.262)

which implies that
∥∥Φn,j(s, t− 1)− 1

N

∥∥ ≤ √N , where Φn,j(s, t − 1) denotes (n, j)-th entry of Φ(s, t − 1).
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Now, we analyze the term (a1). From (C.25), we have,

P0

(
1

t

t−1∑
s=0

e>nΦ(s, t− 1)

(
h∗(θ(s))Σ−1

(
y(s)− h(θ(s))

2

))
>
ηn
2

)
= P0

1

t

t−1∑
s=0

N∑
j=1

Φn,j(s, t− 1)

(
γ>j (s)Σ−1

j γj(s)

2

−
(γj(s)− hj (θj(s)))

>
Σ−1
j (γj(s)− hj (θj(s)))

2

)
>
ηn
2

)

≤ P0

1

t

t−1∑
s=0

N∑
j=1

Φn,j(s, t− 1)

(
γ>j (s)Σ−1

j γj(s)

2

)
>
ηn
2


≤ P0

1

t

t−1∑
s=0

N∑
j=1

∥∥∥∥Φn,j(s, t− 1)− 1

N

∥∥∥∥
(
γ>j (s)Σ−1

j γj(s)

2

)
>
ηn
4


︸ ︷︷ ︸

(t1)

+ P0

 1

Nt

t−1∑
s=0

N∑
j=1

(
γ>j (s)Σ−1

j γj(s)

2

)
>
ηn
4


︸ ︷︷ ︸

(t2)

≤ P0

1

t

t−1∑
s=0

N∑
j=1

√
N

(
γ>j (s)Σ−1

j γj(s)

2

)
>
ηn
4


+ P0

 1

Nt

t−1∑
s=0

N∑
j=1

(
γ>j (s)Σ−1

j γj(s)

2

)
>
ηn
4

 , (C.263)

where Φn,j (s, t− 1) denotes the (n, j)th element of Φ(s, t − 1). Hence, it can be concluded the decay

exponent of (t2) will dominate the decay exponent of (a1). For 0 < λ < 1, we have,

P0

 1

Nt

t−1∑
s=0

N∑
j=1

(
γ>j (s)Σ−1

j γj(s)

2

)
>
ηn
4


≤ exp

(
−Ntηnλ

4

) N∏
j=1

t−1∏
s=0

E0

[
exp

(
λ
γj(s)

>Σ−1
j γj(s)

2

)]

= exp

(
−Ntηnλ

4
− t

(∑N
n=1Mn

2

)
log (1− λ)

)
(C.264)

which implies that,

1

t
log
(
P0

(
zn(t) >

ηn
4

))
≤ −Nηnλ

4
−

(∑N
n=1Mn

2

)
log (1− λ) . (C.265)
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Hence, we finally have,

lim sup
t→∞

1

t
log
(
P0

(
zn(t) >

ηn
4

))
≤ −Nηnλ

4
−

(∑N
n=1Mn

2

)
log (1− λ) = −LE(λ). (C.266)

Assuming ηn to be,

ηn >
2
∑N
n=1Mn

N
, (C.267)

we have that, on maximizing LE(λ)

λ∗ = 1−
2
∑N
n=1Mn

Nηn
, (C.268)

λ∗ is a feasible maximizer.

Hence, using (C.268) and (C.267) in (C.266), we have,

lim sup
t→∞

1

t
log
(
P0

(
zn(t) >

ηn
4

))
≤ −Nηn

4
−
∑N
n=1Mn

2

(
1

N
+ log

Nηn

2
∑N
n=1Mn

)
. (C.269)

Now, we analyze the term (a2) in (C.259) and for λ > 0, we have,

P0

(
b

t

t−1∑
s=0

e>nΦ(s, t− 1)ζ(s) >
ηn
2

)

≤ exp

(
− tληn

2

)
E0

[
exp

(
bλ

t−1∑
s=0

e>nΦ(s, t− 1)ζ(s)

)]

= exp

(
− tληn

2

) t−1∏
s=0

E0

[
exp

(
bλe>nΦ(s, t− 1)ζ(s)

)]
= exp

(
− tληn

2

) t−1∏
s=0

exp

(
λ2b2

2
e>nΦ(s, t− 1)ΣcΦ(s, t− 1)en

)

≤ exp

(
− tληn

2

) t−1∏
s=0

exp

(
λ2b2

2
‖Σc‖

)
(a)
= exp

(
− tληn

2
+
tλ2b2 ‖Σc‖

2

)
. (C.270)

Taking limits on both sides, we have,

lim sup
t→∞

1

t
log

(
P0

(
b

t

t−1∑
s=0

e>nΦ(s, t− 1)ζ(s) >
ηn
2

))
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≤ exp

(
−ληn

2
+
λ2b2 ‖Σc‖

2

)
. (C.271)

In order to have a positive decay exponent for (a2), we have,

λ <
ηn

b2 ‖Σc‖
. (C.272)

To this end, minimizing the right hand side (RHS) of (C.271), we have,

lim sup
t→∞

1

t
log

(
P0

(
b

t

t−1∑
s=0

e>nΦ(s, t− 1)ζ(s) >
ηn
2

))

≤ − η2
n

8b2 ‖Σc‖
, (C.273)

where the minimizer is at λ∗ = ηn
2b2‖Σc‖ .

Finally, combining the exponents of (a1) and (a2) obtained in (C.269) and (C.273), we obtain the following

large deviations upper bound characterization for the probability of false alarm for ηn >
2
∑N
n=1 Mn

N ,

lim sup
t→∞

1

t
log (P0 (zn(t) > ηn))

≤ max

{
− η2

n

8b2 ‖Σc‖
,−LE(λ∗)

}
. (C.274)



Appendix D

Proofs of Theorems in Chapter 5

Proof sketch of Theorem 5.4.3

The proof of almost sure convergence of the estimate sequence to θ involves establishing the boundedness

of the estimate sequence. With the boundedness of the estimate sequence in place, we show the conver-

gence of the estimate sequence to its averaged estimate sequence {xavg(t)}, where xavg(t) = 1
N

∑N
n=1 xn(t)

at a rate faster t1/2 and finally show that the averaged estimate sequence converges to θ with a rate

{(t + 1)τ} τ ∈ [0, 1/2). The final result follows by noting that, the averaged estimate sequence and the

estimate sequence are indistinguishable in the {(t+ 1)τ} time scale, where τ ∈ [0, 1/2).

Proof sketch of Theorem 5.4.5

The proof of the asymptotic normality of the estimate sequence proceeds in the following procedure. The

first step involves establishing the asymptotic normality of the averaged estimate sequence xavg(t). More-

over, an intermediate result ensures that the averaged estimate sequence and the estimate sequence are

indistinguishable in the {(t + 1)
1
2 } time scale. With the above development in place, it follows that the

asymptotic normality of the averaged estimate sequence xavg(t) can be extended to that of the estimate

sequence {xn(t)}.

Lemma D.0.1. For each n, the process {xn(t)} satisfies

Pθ
(

sup
t≥0
‖x(t)‖ <∞

)
= 1. (D.1)

Proof. We first note that,

L(t) = βtL + L̃(t), (D.2)

where E
[
L̃(t)

]
= 0 and E

[
L̃2
i,j(t)

]
= c4

(t+1)τ1+ε − c23
(t+1)2τ1

.

Define, z(t) = x(t)− 1N ⊗ θ∗ and V (t) = ‖z(t)‖2. By conditional independence, we have that,

E [V (t+ 1)|Ft] = V (t)

+ z>(t)
(
INM − βt

(
L⊗ IM

)
− αtGHΣ−1G>H

)2
z(t)

+ z>(t)Eθ∗

[(
L̃(t)⊗ IM

)2
]

z(t)

241
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+ α2(t)Eθ∗

[∥∥GHΣ−1
(
y(t)−G>H1N ⊗ θ∗

)∥∥2
]

− 2z>(t)
(
βt
(
L⊗ IM

)
+ αtGHΣ−1G>H

)
z(t), (D.3)

where the filtration {Ft} may be taken to be the natural filtration generated by the random observations,

the random Laplacians i.e.,

Ft = σ

({
{yn(s)}Nn=1 , {L(s)}

}t−1

s=0

)
, (D.4)

which is the σ-algebra induced by the observation processes. For t ≥ t1, it can be shown that,

z>(t)
(
INM − βt

(
L⊗ IM

)
− αtGHΣ−1G>H

)2
z(t)

≤ (1− c4αt)2 ‖z(t)‖2 . (D.5)

We use the following inequalities so as to analyze the recursion in (D.3).

z>(t)Eθ∗

[(
L̃(t)⊗ IM

)2
]

z(t) ≤ c5 ‖zC⊥‖
2

(t+ 1)τ1+ε

Eθ∗

[∥∥GHΣ−1
(
y(t)−G>H1N ⊗ θ∗

)∥∥2
]
≤ c6

z>(t)
(
βt
(
L⊗ IM

)
+ αtGHΣ−1G>H

)
z(t)

≥ βtλ2

(
L
)
‖zC⊥‖

2
+ c7αt ‖z(t)‖2 . (D.6)

Using the inequalities derived in (D.6), we have,

E [V (t+ 1)|Ft] ≤ (1 + c8α
2(t))V (t)

− c9
(
βt −

c5
(t+ 1)τ1+ε

)
‖zC⊥‖

2
+ c6α

2(t). (D.7)

As c5
(t+1)τ1+ε goes to zero faster than βt, ∃t2 such that ∀t ≥ t2, βt ≥ c5

(t+1)τ1+ε . By the above construction we

obtain ∀t ≥ t2,

Eθ∗ [V (t+ 1)|Ft] ≤ (1 + α2(t))V (t) + α̂2
t , (D.8)

where α̂(t) =
√
c6αt. The product

∏∞
s=t(1 + α2

s) exists for all t. Now let {W (t)} be such that

W (t) =

( ∞∏
s=t

(1 + α2
s)

)
V2(t) +

∞∑
s=t

α̂2
s, ∀t ≥ t2. (D.9)

By (D.9), it can be shown that {W (t)} satisfies,

Eθ∗ [W (t+ 1)|Ft] ≤W (t). (D.10)

Hence, {W (t)} is a non-negative super martingale and converges a.s. to a bounded random variable W ∗

as t → ∞. It then follows from (D.9) that V (t) → W ∗ as t → ∞. Thus, we conclude that the sequences

{xn(t)} are bounded for all n.
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We now prove the almost sure convergence of the estimate sequence to the true parameter. In the sequel,

we establish the order optimal convergence of the estimate sequence in the regime of 0 < τ1 <
1
2 −

1
2+ε1

.

Lemma D.0.2. Let the hypothesis of Theorem 5.4.3 hold. Then, we have,

Pθ

(
lim
t→∞

xn(t) = θ
)

= 1. (D.11)

Proof of Lemma D.0.2. Following as in the proof of Lemma D.0.1, for t large enough

Eθ[V (t+ 1)|Ft] ≤
(
1− 2c4αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (D.12)

as for t large enough, −2c4αt+ c7α
2
t < 0. Now, consider the {Ft}-adapted process {V1(t)} defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c8

∞∑
s=t

(t+ 1)−2, (D.13)

for appropriately chosen positive constant c8.Since, {(t+ 1)−2} is summable, the process {V1(t)} is bounded

from above. Moreover, it also follows that {V1(t)}t≥t1 is a supermartingale and hence converges a.s. to a

finite random variable. By definition from (D.13), we also have that {V (t)} converges to a non-negative

finite random variable V ∗. Finally, from (D.12), we have that,

Eθ[V (t+ 1)] ≤ (1− c7αt)Eθ[V (t)] + c9(t+ 1)−2, (D.14)

for t ≥ t1. The sequence {V (t)} then falls under the purview of Lemma C.3.1, and we have Eθ[V (t)]→ 0 as

t → ∞. Finally, by Fatou’s Lemma, where we use the non-negativity of the sequence {V (t)}, we conclude

that

0 ≤ Eθ[V ∗] ≤ lim inf
t→∞

Eθ[V (t)] = 0, (D.15)

which thus implies that V ∗ = 0 a.s. Hence, ‖z(t)‖ → 0 as t→∞ and the desired assertion follows.

Consider the averaged estimate sequence, {xavg(t)}}, which follows the following update:

xavg(t+ 1) =

(
IM −

αt
N

N∑
n=1

H>nΣ−1
n Hn

)
xavg(t)

+
αt
N

N∑
n=1

H>nΣ−1
n

(
xn(t)− xavg(t)

)
+
αt
N

N∑
n=1

H>nΣ−1
n γn(t). (D.16)

The following Lemmas will be used to quantify the rate of convergence of distributed vector or matrix valued

recursions to their network-averaged behavior.
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Lemma D.0.3. Let {zt} be an R+ valued Ft-adapted process that satisfies

zt+1 ≤ (1− r1(t)) zt + r2(t)Ut(1 + Jt),

where {r1(t)} is an Ft+1-adapted process, such that for all t, r1(t) satisfies 0 ≤ r1(t) ≤ 1 and

a1 ≤ E [r1(t)|Ft] ≤
1

(t+ 1)δ1

with a1 > 0 and 0 ≤ δ1 < 1. The sequence {r2(t)} is deterministic and R+ valued and satisfies r2(t) ≤ a2

(t+1)δ2

with a2 > 0 and δ2 > 0. Further, let {Ut} and {Jt} be R+ valued Ft and Ft+1 adapted processes, respectively,

with supt≥0 ‖Ut‖ < ∞ a.s. The process {Jt} is i.i.d. with Jt independent of Ft for each t and satisfies the

moment condition E
[
‖Jt‖2+ε1

]
< κ < ∞ for some ε1 > 0 and a constant κ > 0. Then, for every δ0 such

that 0 ≤ δ0 < δ2 − δ1 − 1
2+ε1

, we have (t+ 1)δ0zt → 0 a.s. as t→∞.

Lemma D.0.4 (Lemma 4.1 in Kar et al. (2013a)). Consider the scalar time-varying linear system

u(t+ 1) ≤ (1− r1(t))u(t) + r2(t), (D.17)

where {r1(t)} is a sequence, such that

a1

(t+ 1)δ1
≤ r1(t) ≤ 1 (D.18)

with a1 > 0, 0 ≤ δ1 ≤ 1, whereas the sequence {r2(t)} is given by

r2(t) ≤ a2

(t+ 1)δ2
(D.19)

with a2 > 0, δ2 ≥ 0. Then, if u(0) ≥ 0 and δ1 < δ2, we have

lim
t→∞

(t+ 1)δ0u(t) = 0, (D.20)

for all 0 ≤ δ0 < δ2 − δ1. Also, if δ1 = δ2, then the sequence {u(t)} stays bounded, i.e. supt≥0 ‖u(t)‖ <∞.

Lemma D.0.5. Let the Assumptions 5.3.1-5.4.3 hold. Consider the averaged estimate sequence as in (D.16).

Then, we have,

P
(

lim
t→∞

(t+ 1)
1
2 +δ (x(t)− 1N ⊗ xavg(t)) = 0

)
= 1 (D.21)

Proof. Let Lt denote the set of possible Laplacian matrices (necessarily finite) at time t. Note, that the

finiteness property of the cardinality of the set Lt holds for all t. Since the set of Laplacians is finite, we

have,

p = inf
L∈Lt

pL > 0, (D.22)

with pL = P (L(t) = L) for each L ∈ Lt such that
∑

L∈Lt pL = 1. The connectedness of the network in an
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average sense, i.e., λ2

(
L(t)

)
> 0 implies that for every z ∈ C⊥, where,

C =
{
x|x = 1N ⊗ a,a ∈ RM

}
, (D.23)

we have, ∑
L∈Lt

z>Lz ≥
∑

L∈Lt

z>pLLz = z>L(t)z ≥ λ2

(
L(t)

)
‖z‖2 . (D.24)

Owing to the finite cardinality of Lt and (D.24), we also have that for each z ∈ C⊥,∃Lz ∈ Lt such that,

z>Lzz ≥
λ2

(
L(t)

)
|Lt|

‖z‖2 (D.25)

Moreover, since Lt is finite, the mapping Lz : C⊥ 7→ Lt can be realized as a measurable function. It is also

to be noted that, L(t) = ρ2
t L̂, where L̂ is a Laplacian such that [L̂]ij ∈ Z. For each, L ∈ Lt, the eigen

values of INM − ρ2
t

(
L̂⊗ IM

)
are given by M repetitions of1 and 1 − ρ2

tλn

(
L̂
)

, where 2 ≤ n ≤ N . Thus,

for t ≥ t0,
∥∥∥INM − ρ2

t

(
L̂⊗ IM

)∥∥∥ ≤ 1 and
∥∥∥(INM − ρ2

t

(
L̂⊗ IM

))
z
∥∥∥ ≤ ‖z‖. Hence, we can define a jointly

measurable function rL,z given by,

rL,z =

1 if t < t0 or z = 0

1− ‖(INM−ρ2
t(L̂⊗IM))z‖
‖z‖ otherwise,

(D.26)

which satisfies 0 ≤ rL,z ≤ 1 for each (L, z). Define {rt} to be a Ft+1 process given by, rt = rL(t),zt for each

t and
∥∥∥(INM − ρ2

t

(
L̂⊗ IM

))
zt

∥∥∥ = (1− rt) ‖zt‖ a.s. for each t. Then, we have,

∥∥∥(INM − ρ2
t

(
L̂zt ⊗ IM

))
zt

∥∥∥2

= z>t

(
INM − 2ρ2

t

(
L̂⊗ IM

))
zt

+ z>t ρ
4
t

(
L̂zt ⊗ IM

)2

zt

≤

(
1− 2βt

λ2

(
L
)

|Lt|

)
‖zt‖2 + c1ρ

4
t ‖zt‖

2

≤

(
1− βt

λ2

(
L
)

|Lt|

)
‖zt‖2 (D.27)

where we have used the boundedness of the Laplacian matrix and the fact that Lt = βtL. With the above

development in place, choosing an appropriate t1 (making t0 larger if necessary), for all t ≥ t1, we have,

∥∥∥(INM − ρ2
t

(
L̂zt ⊗ IM

))
zt

∥∥∥ ≤ (1− βt
λ2

(
L
)

4|Lt|

)
‖zt‖2 . (D.28)

Then, from (D.28), we have,

E
[∥∥∥(INM − ρ2

t

(
L̂zt ⊗ IM

))
zt

∥∥∥∣∣∣Ft]
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=
∑

L∈Lt

pL (1− rL,zt) ‖zt‖

≤

1−

pβtλ2

(
L
)

4|Lt|
+
∑

L 6=Lzt

 ‖zt‖ . (D.29)

Since,
∑

L 6=Lzt
pLrL,zt ≥ 0, we have for all t ≥ t1,

(1− E [rt|Ft]) ‖zt‖

= E
[∥∥∥(INM − ρ2

t

(
L̂zt ⊗ IM

))
zt

∥∥∥∣∣∣Ft]
≤

(
1− pβt

λ2

(
L
)

4|Lt|

)
‖zt‖ . (D.30)

As rt = 1 on the set {zt = 0}, we have that,

E [rt|Ft] ≥ pβt
λ2

(
L
)

4|Lt|
. (D.31)

Thus, we have established that,

‖(INM − (L(t)⊗ IM )) zt‖ ≤ (1− rt) ‖zt‖ , (D.32)

where {rt} is a R+ valued Ft+1 process satisfying (D.31). With the above development in place, consider

the residual process {x̃(t)} given by x̃(t) = x(t) − xavg(t). Thus, we have that the process {x̃(t)} satisfies

the recursion,

x̃(t+ 1) = (INM − L(t)⊗ IM ) x̃(t) + αtz̃(t), (D.33)

where the process {z̃(t)} is given by

z̃(t) =

(
INM −

1

N
1N ⊗ (1N ⊗ IM )

>
)

×GHΣ−1
(
y(t)−G>Hx(t)

)
. (D.34)

From (D.34), we also have,

z̃(t) = Jt + Ut, (D.35)

where,

Jt =

(
INM −

1

N
1N ⊗ (1N ⊗ IM )

>
)

×GHΣ−1
(
y(t)−G>Hθ

)
Ut =

(
INM −

1

N
1N ⊗ (1N ⊗ IM )

>
)

×GHΣ−1
(
G>Hθ −G>Hx(t)

)
. (D.36)
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By Lemma D.0.1, we also have that, the process {x(t)} is bounded. Hence, there exists an Ft-adapted

process {Ũt} such that
∥∥Ut

∥∥ ≤ Ũt and supt≥0 Ũt <∞ a.s.. Furthermore, denote the process Ut as follows,

Ut = max

{
Ũt,

∥∥∥∥INM − 1

N
1N ⊗ (1N ⊗ IM )

>
∥∥∥∥} . (D.37)

With the above development in place, we conclude,

∥∥Ut

∥∥+
∥∥Jt∥∥ ≤ Ut (1 + Jt) , (D.38)

where Jt = y(t)−G>Hθ. Then, from (D.32)-(D.33) and noting that x̃(t) ∈ C⊥, we have,

‖x̃(t+ 1)‖ ≤ (1− rt) ‖x̃(t)‖+ αtUt(1 + Jt), (D.39)

which then falls under the purview of Lemma D.0.3 and hence we have the assertion,

P
(

lim
t→∞

(t+ 1)δ0 (x(t)− 1N ⊗ xavg(t)) = 0
)

= 1, (D.40)

where 0 < δ0 < 1− τ1 and hence δ0 can be chosen to be 1/2 + δ, where δ > 0 and we finally have,

P
(

lim
t→∞

(t+ 1)
1
2 +δ (x(t)− 1N ⊗ xavg(t)) = 0

)
= 1. (D.41)

Lemma D.0.6. Let the Assumptions 5.3.1-5.4.3 hold. Consider the averaged estimate sequence as in (D.16).

Then, we have,

Pθ

(
lim
t→∞

xavg(t) = θ
)

= 1. (D.42)

Proof. Define, the residual sequence, {zt}, where z(t) = xavg(t)−θ, which can be then shown to satisfy the

recursion

zt+1 = (IM − αtΓ) zt + αtUt + αtJt, (D.43)

where

Γ =
1

N

N∑
n=1

H>nΣ−1
n Hn

Ut =
1

N

N∑
n=1

H>nΣ−1
n

(
xn(t)− xavg(t)

)
Jt =

1

N

N∑
n=1

H>nΣ−1
n γn(t). (D.44)

From, Lemma D.0.5, we have that,

P
(

lim
t→∞

(t+ 1)δ0 (x(t)− 1N ⊗ xavg(t)) = 0
)

= 1, (D.45)
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where 0 < δ0 < 1 − τ1. Fix, a δ0 and then by convergence of (t + 1)δ0Ut → 0 a.s. as t → ∞ and Egorov’s

theorem, the a.s. convergence may be assumed to be uniform on sets of arbitrarily large probability measure

and hence for every δ > 0, there exists uniformly bounded process {Uδ
t} satisfying,

Pθ

(
sup
s≥tδε

(s+ 1)δ0
∥∥Uδ

t

∥∥ > ε

)
= 0, (D.46)

for each ε > 0 and some tδε chosen appropriately large enough such that

Pθ

(
sup
t≥0

∥∥Uδ
t −Ut

∥∥ = 0

)
> 1− δ. (D.47)

With the above development in the place, for each δ > 0, define the Ft-adapted process {zδt} which satisfies

the recursion

zδt+1 = (IM − αtΓ) zδt + αtU
δ
t + αtJt, z

δ
0 = z0, (D.48)

and

Pθ

(
sup
t≥0

∥∥zδt − zt
∥∥ = 0

)
> 1− δ. (D.49)

It is to be noted that, in order to show that zt → 0 as t→∞, it suffices to show that zδt → 0 for each δ > 0.

We now focus on the process {zδt} for a fixed but arbitrary δ > 0. Let {V δt } denote the Ft-adapted process

such that V δt =
∥∥zδt∥∥2

. Then, we have,

Eθ

[
V δt+1

]
≤ ‖IM − αtΓ‖2 V δt + 2αt

(
Uδ
t

)>
(IM − αtΓ) zδt

+ α2
t

∥∥Uδ
t

∥∥2
+ α2

t Eθ

[
‖Jt‖2

∣∣∣Ft] . (D.50)

For large enough t, we have, ∥∥∥2αt
(
Uδ
t

)>
(IM − αtΓ) zδt

∥∥∥ ≤ 2αt
∥∥Uδ

t

∥∥∥∥zδt∥∥
≤ 2αt

∥∥Uδ
t

∥∥∥∥zδt∥∥2
+ 2αt

∥∥Uδ
t

∥∥ . (D.51)

We note that Eθ

[
‖Jt‖2

∣∣∣Ft] is bounded and making tδε larger if necessary in order to ensure
∥∥Uδ

t

∥∥ ≤
ε(t+ 1)−δ0 , it follows that ∃c1, c2 such that

Eθ

[
V δt+1

]
≤
(
1− c1αt + c2αt(t+ 1)−δ0

)
V δt

+ c2
(
αt(t+ 1)−δ0 + α2

t (t+ 1)−2δ0 + α2
t

)
≤ (1− c3αt)V δt + c4αt(t+ 1)−δ0 ≤ V δt + c4αt(t+ 1)−δ0 (D.52)

which is ensured by making c4 > c2 and c3 < c1 respectively. As the process {αt(t + 1)−δ0} is summable,

the process {V δt} given by,

V
δ

t = V δt + c4

∞∑
s=t

αs(s+ 1)−δ0 , (D.53)
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is bounded from above. Thus, we have that {V δt}t≥tδε is a supermartingale and hence converges to a finite

random variable. From (D.53), we have that the process {V δt } converges to a finite random variable V δ. We

also have from (D.52), for t ≥ tδε

Eθ

[
V δt+1

]
≤ (1− c3αt)Eθ

[
V δt
]

+ c4αt(t+ 1)−δ0 .. (D.54)

Since δ0 > 0, the recursion in (D.54) falls under the purview of Lemma D.0.4 and thus we have, Eθ

[
V δt
]
→ 0

as t→∞. The sequence {V δt } is non-negative, so by Fatou’s Lemma, we have,

0 ≤ Eθ

[
V δ
]
≤ lim inf

t→∞
Eθ

[
V δt
]

= 0. (D.55)

Hence V δ = 0 a.s. and thus
∥∥zδt∥∥→ 0 as t→∞ and the assertion follows.

We will use the approximation result (Lemma C.1.3) and the generalized convergence criterion (Lemma

C.1.4) for the proof of Theorem 5.4.3. Lemma D.0.6 establishes the almost sure convergence of the aver-

aged estimate sequence {xavg(t)} to the true underlying parameter. We now establish the order optimal

convergence of the estimate sequence in terms of t.

Proof of Theorem 5.4.3. We first analyze the rate of convergence of the process {zδt} as developed in Lemma

D.0.6 and note that the rate of convergence of the process {zδt} suffices for the rate of convergence of the

process {zt}. For each δ > 0, recall the process {zδt} as in (C.199)-(D.48). Let τ ∈ [0, 1/2) be such that,

Pθ

(
lim
t→∞

(t+ 1)τ
∥∥zδt∥∥ = 0

)
= 1. (D.56)

It is to be noted that such a τ always exists from Lemma D.0.6. We now focus on showing that there exists

τ such that τ < τ < 1/2 for which the assertion holds. Define τ̃ ∈ (τ, 1/2) and µ = 1
2 (τ + τ̃). Then, for each

δ > 0,

∥∥zδt+1

∥∥2 ≤ ‖IM − αtΓ‖2
∥∥zδt∥∥2

+ α2
t

∥∥Uδ
t

∥∥2

+ α2
t ‖Jt‖

2

+ 2αt
(
zδt
)>

(IM − αtΓ) Jt

+ 2αt
∥∥Uδ

t

∥∥ (‖IM − αtΓ‖ ∥∥zδt∥∥+ αt ‖Jt‖
)
. (D.57)

We have that, 1 > τ1 + 1
2+ε1

+ 1
2 , hence the process {Uδ

t} may be chosen such that,
∥∥Uδ

t

∥∥ = o
(
(t+ 1)−1/2

)
.

Moreover, as
∥∥zδt∥∥ = o

(
(t+ 1)−τ

)
, we have,

2αt
∥∥Uδ

t

∥∥ ‖IM − αtΓ‖ ∥∥zδt∥∥ = o
(

(t+ 1)−3/2−τ
)
. (D.58)

From Assumption 5.3.1, we have that,

Pθ

(
lim
t→∞

(t+ 1)−1/2−ε ∥∥Jδt∥∥) = 1, for each ε > 0, (D.59)

and hence we conclude that

2α2
t

∥∥Uδ
t

∥∥ ‖Jt‖ = o
(

(t+ 1)−3/2−τ
)
. (D.60)
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Since, 2µ = τ + τ̃ and τ̃ < 1/2, we have the following conclusions∑
t≥0

(t+ 1)2µαt
∥∥Uδ

t

∥∥ ‖IM − αtΓ‖ ∥∥zδt∥∥ <∞∑
t≥0

(t+ 1)2µα2
t

∥∥Uδ
t

∥∥ ‖Jt‖ <∞∑
t≥0

(t+ 1)2µα2
t

∥∥Uδ
t

∥∥2
<∞

∑
t≥0

(t+ 1)2µα2
t ‖Jt‖

2
<∞. (D.61)

With the above development in place, let {W δ
t } denote the Ft+1-adapted sequence given by

W δ
t = αt

(
zδt
)>

(I− αtΓ) Jt, (D.62)

where Eθ

[
W δ
t

∣∣Ft] = 0 and for t chosen sufficiently large, we have that,

Eθ

[(
W δ
t

)2∣∣∣Ft] = o
(
(t+ 1)−2−2τ

)
⇒ Eθ

[
(t+ 1)4µ

(
W δ
t

)2∣∣∣Ft] = o
(
(t+ 1)−2−2τ+4µ

)
= o

(
(t+ 1)−2+2τ̃

)
. (D.63)

Since, 2τ̃ < 1, the sequence Eθ

[
(t+ 1)4µ

(
W δ
t

)2∣∣∣Ft] is summable and by Lemma C.1.4,
∑
t≥0(t+ 1)2µW δ

t

exists. It may be shown that as αt → 0 as t→∞,

‖I− αtΓ‖2 ≤ 1− c1αt, (D.64)

where c1 = λmin (Γ). Then, from (D.57), we have,

∥∥zδt+1

∥∥2 ≤ (1− c1αt)
∥∥zδt∥∥2

+ dt(t+ 1)−2µ, (D.65)

where the term dt(t+1)−2µ represents all the residual terms in (D.57). The fact that limt→∞
∑t
s=0 ds exists

and is finite in conjunction with c1αt(t + 1) ≥ 1 ≥ 2µ (from Assumption 5.4.3) brings (D.65) under the

purview of Lemma C.1.3 and yields

lim sup
t→∞

(t+ 1)2µ
∥∥zδt∥∥2

<∞ a.s., (D.66)

which leads to the conclusion that there exists τ with τ < τ < µ, such that (t+1)τ
∥∥zδt∥∥→ 0 as t→∞. The

fact that the above development holds for all δ > 0, we conclude that (t + 1)τ ‖zt‖ → 0 as t → ∞. Hence,

for every τ for which

Pθ

(
lim
t→∞

(t+ 1)τ‖xavg(t)− θ‖ = 0
)

= 1 (D.67)

holds, then there exists τ ∈ (τ , 1/2) for which the convergence continues to hold. Finally, an application of
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induction yields the result

Pθ

(
lim
t→∞

(t+ 1)τ‖xavg(t)− θ‖ = 0
)

= 1,∀τ ∈ [0, 1/2) (D.68)

The above result in conjunction with Lemma D.0.5 and the usage of triangle inequality yields ∀τ ∈ [0, 1/2)

(t+ 1)τ ‖xn(t)− θ‖ ≤ (t+ 1)τ
∥∥xavg(t)− θ

∥∥
+ (t+ 1)τ

∥∥xn(t)− xavg(t)
∥∥

⇒ lim
t→∞

(t+ 1)τ ‖xn(t)− θ‖ = 0 a.s. (D.69)

Proof of Theorem 5.4.4. Proceeding as in proof of Lemma D.0.2, we have, for t large enough

Eθ[V (t+ 1)|Ft] ≤
(
1− 2c4αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (D.70)

as for t large enough, −c4αt + c7α
2
t < 0. Before proceeding further, we note that, from (D.5),

x>
(
βt
(
L⊗ IM

)
+ αtGHΣ−1G>H

)
x

= αtx
>
(
βt
αt

(
L⊗ IM

)
+ GHΣ−1G>H

)
x

≥ αtx>
(
(L⊗ IM ) + GHΣ−1G>H

)
x ≥ c4αt, (D.71)

where

c4 = λmin

((
L⊗ IM

)
+ GHΣ−1G>H

)
. (D.72)

Thus, we have that

∥∥INM − βt (L⊗ IM
)
− αtGHΣ−1G>H

∥∥ ≤ 1− c4αt, (D.73)

for all t ≥ t1, where t1 is chosen to be appropriately large. Now, consider the {Ft}-adapted process {V1(t)}
defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c8

∞∑
s=t

(t+ 1)−2, (D.74)

for appropriately chosen positive constant c8.Since, {(t+ 1)−2} is summable, the process {V1(t)} is bounded

from above. Moreover, it also follows that {V1(t)}t≥t1 is a supermartingale and hence converges a.s. to a

finite random variable. By definition from (D.13), we also have that {V (t)} converges to a non-negative

finite random variable V ∗. Finally, from (D.70), we have that,

Eθ[V (t+ 1)] ≤ (1− c4αt)Eθ[V (t)] + c8(t+ 1)−2
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⇒ Eθ[V (t+ 1)] ≤ (1− c4αt)Eθ[V (t)] + c10αt(t+ 1)−1 (D.75)

for t ≥ t1. The summability of {αt} in conjunction with assumption 5.4.3 ensures that the sequence {V (t)}
then falls under the purview of Lemma C.1.3, and we have

lim sup
t→∞

(t+ 1)Eθ[V (t+ 1)] <∞

⇒ Eθ[V (t)] = O

(
1

t

)
. (D.76)

Furthermore, from (D.74), we also have that

Eθ[V1(t)] ≤ Eθ[V (t)] +
c6π

2

6

⇒ Eθ[‖xn(t)− θ‖2] = O

(
1

t

)
. (D.77)

It is to be noted that the communication cost Ct for the proposed CREDO algorithm, is given by Ct =

Θ
(
t1+

ε−τ1
2

)
and thus the assertion follows in conjunction with (D.77).

D.0.1 Asymptotic Normality and Covariance

The proof of Theorem 5.4.5 needs Lemma C.1.5 from Fabian (1968) concerning the asymptotic normality

of the stochastic recursions. In order to establish asymptotic normality and characterize the estimator in

terms of asymptotic covariance, the following Lemma plays a crucial role.

Proof of Theorem 5.4.5. We invoke the definition of the process {zt} as defined in (C.199)-(D.44). We

rewrite the recursion for {zt} as follows:

zt+1 = (IM − αtΓt) zt + (t+ 1)−3/2Tt + (t+ 1)−1ΦtVt, (D.78)

where

Γt = Γ =
1

N

N∑
n=1

H>nΣ−1
n Hn

Tt = a(t+ 1)1/2Ut

=
a

N

N∑
n=1

H>nΣ−1
n (t+ 1)1/2

(
xn(t)− xavg(t)

)
→ 0, t→∞

Φt = aI

Vt = Jt =
1

N

N∑
n=1

H>nΣ−1
n γn(t), E [Vt|Ft] = 0,

E
[
VtV

>
t |Ft

]
=

1

N2

N∑
n=1

H>nΣ−1
n Hn, (D.79)

and the convergence of Tt follows from Lemma D.0.5. Due to the i.i.d nature of the noise process, we have

the uniform integrability condition for the process {Vt}. Hence, {xavg(t)} falls under the purview of Lemma
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C.1.5 and we thus conclude that

(t+ 1)1/2 (xavg(t)− θ)
D

=⇒ N (0,PMP>), (D.80)

where

aP>ΓP = aΛ,

[M]ij =

[
a2P>Φ

(
1

N2

N∑
n=1

H>nΣ−1
n Hn

)
Φ>P

]
ij

×
(
a [Λ]ii + a [Λ]jj − 1

)−1

=
a2

N
[Λ]ij

(
a [Λ]ii + a [Λ]jj − 1

)−1

, (D.81)

which also implies that M is a diagonal matrix with its i-th diagonal element given by a2Λii
2aNΛii−N . Note that,

Assumption 5.4.3 ensures that a2Λii
2aNΛii−N > 0, ∀i. We already have that PΛP> = Γ. Hence, the matrix

with eigenvalues as a2Λii
2aNΛii−N is given by

PMP> =
aI

2N
+

(
Γ− I

2a

)−1

4N
. (D.82)

Now from Lemma D.0.5, we have that the processes {xn(t)} and {xavg(t)} are indistinguishable in the

(t+ 1)1/2 time scale, which is formalized as follows:

Pθ

(
lim
t→∞

∥∥√t+ 1 (xn(t)− θ)−
√
t+ 1 (xavg(t)− θ)

∥∥ = 0
)

= Pθ

(
lim
t→∞

∥∥√t+ 1 (xn(t)− xavg(t))
∥∥ = 0

)
= 1. (D.83)

Thus, the difference of the sequences
{√

t+ 1 (xn(t)− θ)
}

and
{√

t+ 1 (xavg(t)− θ)
}

converges a.s. to zero

as t→∞ and hence we have,

√
t+ 1 (xn(t)− θ)

D
=⇒ N

(
0,
aI

2N
+

(
Γ− I

2a

)−1

4N

)
. (D.84)



Appendix E

Proofs of Theorems in Chapter 6

In this section, we provide the proofs of Theorems 6.5.1 and 6.5.2.

E.0.1 Proof of Theorem 6.5.1

Proof. The proof of Theorem 6.5.1 is accomplished in three steps. First, we establish the boundedness of

the estimate sequence followed by proving the strong consistency of the estimate sequence {xn(t)} and then

in the sequel we establish the rate of convergence of the estimate sequence to the true underlying parameter.

We follow the basic idea developed in Kar and Moura (2014).

Lemma E.0.1. Let the hypothesis of Theorem 6.5.1 hold. Then, for each n, the process {xn(t)} satisfies

Pθ
(

sup
t≥0
‖x(t)‖ <∞

)
= 1. (E.1)

Proof. The proof is built around a similar framework as the proof of Lemma IV.1 in Kar and Moura (2014)

with appropriate modifications to take into account the state-dependent nature of the innovation gain and

the projection operator used in (6.16). Define the process {z(t)} as follows z(t) = x(t) − 1N ⊗ θ where θ

denotes the true (but unknown) parameter. Note the following recursive relationship:

x̂(t+ 1)− 1N ⊗ θ = z(t)− βt(L⊗ IM )z(t)

+ αtG (x(t)) R−1 (y(t)− f(x(t))) , (E.2)

which further implies that,

x̂(t+ 1)− 1N ⊗ θ = z(t)− βt(L⊗ IM )z(t)

+ αtG (x(t)) (y(t)− f (1N ⊗ θ))

− αtG (x(t)) R−1 (f (x(t))− f (1N ⊗ θ)) . (E.3)

In the above, we have used a basic property of the Laplacian L,

(L⊗ IM ) (1N ⊗ θ) = 0, (E.4)

254
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Since the projection is onto a convex set it is non-expansive. It follows that the inequality

‖xn(t+ 1)− θ‖ ≤ ‖x̂n(t+ 1)− θ‖ (E.5)

holds for all n and t. Taking norms on both sides of (E.2) and using (E.5), we have,

‖z(t+ 1)‖2 ≤ ‖z(t)‖2 − 2βtz
>(t) (L⊗ IM ) z(t)

− 2αtz
>(t)G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ β2
t z
>(t) (L⊗ IM )

2
z(t)

+ 2αtβtz
>(t) (L⊗ IM ) G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ α2
t

∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))
∥∥2

+ α2
t

∥∥G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))
∥∥2

+ 2αtz
>(t)G (x(t)) R−1 (y(t)− f(1N ⊗ θ))

+ 2α2
t (y(t)− f(1N ⊗ θ))

>
R−1G> (x(t))

×G (x(t)) R−1 (f (1N ⊗ θ)− f (x(t))) . (E.6)

Consider the orthogonal decomposition

z = zc + zc⊥, (E.7)

where zc denotes the projection of z to the consensus subspace C = {z ∈ RMN |z = 1N ⊗ a, for some a ∈
RM}. From (6.1), we have that,

Eθ [y(t)− f (1N ⊗ θ)] = 0. (E.8)

Consider the process

V2(t) = ‖z(t)‖2 . (E.9)

Using conditional independence properties, we have,

Eθ[V2(t+ 1)|Ft] ≤ V2(t) + β2
t z
>(t)

(
L⊗ IM

)2
z(t)

+ α2
tEθ

[∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))
∥∥2
]

− 2βtz
>(t)

(
L⊗ IM

)
z(t)

− 2αtz
>(t)G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ 2αtβtz
>(t)

(
L⊗ IM

)
G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ α2
t

∥∥∥(f (x(t))− f (1N ⊗ θ))
>

G> (x(t)) R−1
∥∥∥2

. (E.10)

We use the following inequalities ∀t ≥ t1,

z>(t) (L⊗ IM )
2
z(t)

(q1)

≤ λ2
N (L)||zC⊥(t)||2;
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z>(t)G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ)) ≥ c1||z(t)||2
(q2)

≥ 0;

z>(t) (L⊗ IM ) z(t)
(q3)

≥ λ2(L) ‖zC⊥(t)‖2 ;

z>(t) (L⊗ IM ) G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

(q4)

≤ c2 ‖z(t)‖2 , (E.11)

for c1 as defined in Assumption 6.4.3 and a positive constant c2. Inequalities (q1) and (q4) follow from the

properties of the Laplacian. Inequality (q2) follows from Assumption 6.4.3 and (q4) follows from Assumption

6.4.2 since we have that ‖∇fn (xn(t))‖ is uniformly bounded from above by kn for all n and hence, we have

that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn. We also have

Eθ

[∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))
∥∥2
]
≤ c4, (E.12)

for some constant c4 > 0. In (E.12), we use the fact that the noise process under consideration has finite

covariance. We also use the fact that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn, which in turn follows from Assumption

6.4.1. We further have that,

∥∥G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))
∥∥2 ≤ c3 ‖z(t)‖2 , (E.13)

where c3 > 0 is a constant. It is to be noted that (E.13) follows from the Lipschitz continuity in Assumption

6.4.1 and the result that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn. Using (E.10)-(E.13), we have,

Eθ[V2(t+ 1)|Ft] ≤
(
1 + c5

(
αtβt + α2

t

))
V2(t)

− c6(βt − β2
t )||xC⊥(t)||2 + c4α

2
t , (E.14)

for some positive constants c5 and c6. As β2
t goes to zero faster than βt, ∃t2 such that ∀t ≥ t2, βt ≥ β2

t .

Hence ∃t2 and ∃τ1, τ2 > 1 such that for all t ≥ t2

c5
(
αtβt + α2

t

)
≤ c7

(t+ 1)τ1
= γt and c4α

2
t ≤

c8
(t+ 1)τ2

= γ̂t, (E.15)

where c7, c8 > 0 are constants. By the above construction we obtain ∀t ≥ t2,

Eθ∗ [V2(t+ 1)|Ft] ≤ (1 + γt)V2(t) + γ̂t, (E.16)

where the positive weight sequences {γt} and {γ̂t} are summable i.e.,∑
t≥0

γt <∞,
∑
t≥0

γ̂t <∞. (E.17)

By (E.17), the product
∏∞
s=t(1 + γs) exists for all t. Now let {W (t)} be such that

W (t) =

( ∞∏
s=t

(1 + γs)

)
V2(t) +

∞∑
s=t

γ̂s, ∀t ≥ t2. (E.18)
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By (E.18), it can be shown that {W (t)} satisfies,

Eθ∗ [W (t+ 1)|Ft] ≤W (t). (E.19)

Hence, {W (t)} is a non-negative super martingale and converges a.s. to a bounded random variable W ∗

as t → ∞. It then follows from (E.18) that W (t) → W ∗ as t → ∞. Thus, we conclude that the sequences

{θn(t)} are bounded for all n.

Due to inherent stochasticity associated with the noisy observations, there need not be uniform boundedness

of the estimate sequences. Hence, while Lemma E.0.1 establishes the pathwise boundedness of the parameter

estimate sequence, it does not guarantee uniform boundedness over almost all sample paths.

Lemma E.0.2. Let the hypotheses of Theorem 6.5.1 hold. Then, we have,

Pθ

(
lim
t→∞

xn(t) = θ
)

= 1, ∀n. (E.20)

Proof. Denote the processes {zn(t)} and {ẑn(t)} as

zn(t) = xn(t)− θ and ẑn(t) = x̂n(t)− θ (E.21)

respectively. Let z(t) =
[
z>1 (t) · · · z>n (t)

]>
and ẑ(t) =

[
ẑ>1 (t) · · · ẑ>n (t)

]>
. From, (6.17), we have,

ẑ(t+ 1) = z(t)− βt (L⊗ IM ) z(t)

+ αtG(x(t))R−1 (y(t)− f (x(t))) , (E.22)

where we have used the fact that (L⊗ IM ) (1N ⊗ θ) = 0. Define the {Ft}-adapted process {V (t)} by

V (t) = ‖z(t)‖2 . (E.23)

Now, using (E.2) and the fact that Eθ [y(t)− f (1N ⊗ θ)] = 0, we have,

Eθ[V (t+ 1)|Ft] ≤ V (t) + β2
t z
>(t)

(
L⊗ IM

)2
z(t)

+ α2
tEθ

[∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))
∥∥2
]

− 2βtz
>(t)

(
L⊗ IM

)
z(t)

− 2αtz(t)>G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ 2αtβtz(t)>
(
L⊗ IM

)
G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ α2
t

∥∥∥(f (x(t))− f (1N ⊗ θ))
>

G (x(t))
>

R−1
∥∥∥2

. (E.24)

Following the steps as in the proof of Lemma C.1.1 and using (E.11)-(E.13), we have,

Eθ[V (t+ 1)|Ft] ≤ (1− c7αt)V (t) + c7α
2
t

≤ V (t) + c7α
2
t , (E.25)

for an appropriately chosen positive constant c7. Now, consider the {Ft}-adapted process {V1(t)} defined



APPENDIX E. PROOFS OF THEOREMS IN CHAPTER 6 258

as follows

V1(t) = V (t)− c7
∞∑
s=t

α2
s

= V (t)− bc7
∞∑
s=t

(t+ 1)−2. (E.26)

Since, {(t+ 1)−2} is summable, the process {V1(t)} is bounded from below. Moreover, it also follows that

{V1(t)}t≥t1 is a supermartingale and hence converges a.s. to a finite random variable. By definition from

(E.26), we also have that {V (t)} converges to a non-negative finite random variable V ∗. Finally, from (E.25),

we have that,

Eθ[V (t+ 1)] ≤ (1− c1αt)Eθ[V (t)] + bc7(t+ 1)−2, (E.27)

for t ≥ t1. The sequence {V (t)} then falls under the purview of Lemmas 4 and 5 of Kar and Moura (2011),

and we have Eθ[V (t)] → 0 as t → ∞. Finally, by Fatou’s Lemma, where we use the non-negativity of the

sequence {V (t)}, we conclude that

0 ≤ Eθ[V ∗] ≤ lim inf
t→∞

Eθ[V (t)] = 0, (E.28)

which thus implies that V ∗ = 0 a.s. Hence, ‖z(t)‖ → 0 as t→∞ and the desired assertion follows.

We will use the approximation result from Lemma C.1.3 and the generalized convergence criterion from

Lemma C.1.4 for the proof of Theorem 6.5.1. We now return to the proof of Theorem 6.5.1. Define

τ̄ ∈ [0, 1/2) such that,

Pθ

(
lim
t→∞

(t+ 1)τ̄ ‖z(t)‖ = 0
)

= 1, (E.29)

where {z(t)} is as defined in (E.21) and note that such a τ̄ always exists by Lemma E.0.2 (in particular

τ̄ = 0). We now analyze and show that there exists a τ such that τ̄ < τ < 1/2 for which the claim in (E.29)

holds. Now, choose a τ̂ ∈ (τ, 1/2) and let µ = (τ̂ + τ̄)/2. The recursion for {z(t)} can be written as follows:

‖z(t+ 1)‖2 ≤ ‖z(t)‖2 − 2βtz
>(t) (L⊗ IM ) z(t)

− 2αtz
>(t)G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ β2
t z
>(t) (L⊗ IM )

2
z(t)

+ 2αtβtz
>(t) (L⊗ IM ) G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ α2
t

∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))
∥∥2

+ α2
t

∥∥G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))
∥∥2

+ 2αtz
>(t)G (x(t)) R−1 (y(t)− f(1N ⊗ θ))

+ 2α2
t (y(t)− f(1N ⊗ θ))

>
R−1G> (x(t))

×G (x(t)) R−1 (f (1N ⊗ θ)− f (x(t))) . (E.30)

Let J(t) = G (x(t)) R−1 (y(t)− f (1N ⊗ θ)). Now, we consider the term α2
t ‖J(t)‖2. Since, the noise process
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under consideration has finite second moment and 2µ < 1, we have,

∑
t≥0

(t+ 1)2µα2
t ‖J(t)‖2 <∞. (E.31)

Let W(t) = αtz(t)>G (x(t)) R−1 (y(t)− f(1N ⊗ θ)). It follows that Eθ [W(t)|Ft] = 0. We also have that

Eθ

[
W2(t)|Ft

]
≤ α2

t ‖z(t)‖2 ‖J(t)‖2. Noting that the noise under consideration has finite second order

moment, we have,

Eθ

[
W2(t)|Ft

]
= o

(
(t+ 1)−2−2τ̄

)
, (E.32)

and, hence,

Eθ

[
(t+ 1)4µW2(t)|Ft

]
= o

(
(t+ 1)−2+2τ̂

)
. (E.33)

Hence, by Lemma C.1.4, we conclude that
∑
t≥0(t+1)2µW(t) exists and is finite, as 2τ̂ < 1. Similarly, it can

be shown that, for W1(t) = αtβtz(t)>G (x(t)) R−1 (f(1N ⊗ θ)− y(t)), the sum
∑
t≥0(t+ 1)2µW1(t) exists

and is finite. Finally, consider W2(t) = α2
t (y(t)− f (1N ⊗ θ))

>
R−1G (x(t))

>×G (x(t)) R−1 (f (1N ⊗ θ)− f (x(t))).

It follows that Eθ [W2(t)|Ft] = 0. We also have that Eθ

[
W2

2(t)|Ft
]
≤ α4

t ‖z(t)‖2 ‖J(t)‖2. Following as in

(E.32) and (E.33), we have that
∑
t≥0(t+ 1)2µW2(t) exists and is finite. Using all the inequalities derived

in (E.11)-(E.13), we have,

‖z(t+ 1)‖2 ≤
(
1− c1αt + c2αtβt + c3α

2
t

)
‖z(t)‖2 + α2

t ‖J(t)‖2

− c6(βt − β2
t ) ‖zC⊥(t)‖2 + 2W(t) + 2W1(t) + 2W2(t). (E.34)

Finally, noting that c1αt dominates c2αtβt and c3α
2
t , βt dominates β2

t , we have eventually

‖z(t+ 1)‖2 ≤ (1− c1αt) ‖z(t)‖2

+ α2
t ‖J(t)‖2 + 2W(t) + 2W1(t) + 2W2(t). (E.35)

To this end, using the analysis in (E.31)-(E.33), we have, from (E.35)

‖z(t+ 1)‖2 ≤ (1− c1αt) ‖z(t)‖2 + dt(t+ 1)−2µ, (E.36)

where

dt(t+ 1)−2µ = α2
t ‖J(t)‖2 + 2W(t) + +2W1(t) + 2W2(t). (E.37)

Finally, noting that c1αt(t+ 1) = 1 > 2µ, an immediate application of Lemma C.1.3 gives

lim sup
t→∞

(t+ 1)2µ ‖z(t)‖2 <∞ a.s. (E.38)

So, we have that there exists a τ with τ̄ < τ < µ for which (t+ 1)τ ‖z(t)‖ → 0 as t→∞. Thus, for every

τ̄ for which (5.12) holds, there exists τ ∈ (τ̄ , 1/2) for which the result in (5.12) still continues to hold. By a

simple application of induction, we conclude that the result holds for all τ ∈ [0, 1/2).
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E.0.2 Proof of Theorem 6.5.2

Proof. The proof of Theorem 6.5.2 uses Lemma C.1.5 from Fabian (1968) which concerns with the asymptotic

normality of the stochastic recursions. From Theorem 6.5.1 and the fact that θ lies in the interior of the

parameter set Θ, we have that there exists an ε > 0, such that Bε(θ) ∈ Θ, where Bε(θ) denotes the open

ball centered at θ with radius ε. In particular, fix an ε > 0 for which Bε(θ) ∈ Θ. Then, we have that there

exists a random time tε(ω), which is almost surely finite, i.e., P (tε(ω) <∞) = 1, such that ‖xω(t)− θ‖ < ε

for all t ≥ tε(ω), where ω denotes the sample path. In the above, we introduce the ω-argument to emphasize

that the time tε(ω) is random and sample-path dependent and our analysis is pathwise. With the above

development in place, we note that (6.14) and (6.15) can be rewritten as follows:

x(t+ 1) = x(t)− βt (L⊗ IM ) x(t)

+ αtG(x(t))R−1 (y(t)− f (x(t))) + eP(t), ∀t ≥ 0, (E.39)

where eP(t) is the projection error which is given by,

eP(t) = x(t+ 1)− x̂(t+ 1), (E.40)

and in particular eP(t) = 0 for all t ≥ tε.
Define the process {xavg(t)} as

xavg(t) =

(
1>N
N
⊗ IM

)
x(t). (E.41)

It is readily seen that the process {xavg(t)} satisfies the recursion

xavg(t+ 1) = xavg(t) +

(
1>N
N
⊗ IM

)
eP(t)

+ αt

(
1>N
N
⊗ IM

)
G(x(t))R−1 (y(t)− f (x(t)))

= xavg(t) +

(
1>N
N
⊗ IM

)
eP(t)

+
αt
N

N∑
n=1

∇fn (xn(t)) R−1
n (yn(t)− fn (xn(t))) . (E.42)

Now noting that, for all t ≥ 0, xn(t) ∈ Θ for each n and as Θ is a convex set, we have that xavg(t) ∈ Θ for

all t ≥ 0. Then, we have by the mean-value theorem for each agent n

fn (xavg(t)) = fn (θ) +∇>fn (cθ + (1− c)xavg(t)) (xavg(t)− θ) , (E.43)

where 0 < c < 1. It is to be noted that ∇>fn (cθ + (1− c)xavg(t))→ ∇>fn (θ) as xavg(t)→ θ in the limit

t→∞. Using (E.43) in (E.42), we have for all t ≥ 0,

xavg(t+ 1)− θ =

(
I− αt

N

(
N∑
n=1

∇fn (xn(t)) R−1
n

× ∇>fn (cθ + (1− c)xavg(t))
))

(xavg(t)− θ)
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+
αt
N

N∑
n=1

∇fn (xn(t)) R−1
n ζn(t) +

(
1>N
N
⊗ IM

)
eP(t)

+
αt
N

N∑
n=1

∇fn (xn(t)) R−1
n (fn (xavg(t))− fn (xn(t))) . (E.44)

The following Lemma will be crucial for the subsequent part of the proof.

Lemma E.0.3. For every τ0 such that 0 ≤ τ0 < 1− τ1 − 1/(2 + ε1), we have,

Pθ

(
lim
t→∞

(t+ 1)τ0 (xn(t)− xavg(t)) = 0
)

= 1. (E.45)

Proof. The proof follows exactly like the proof of Lemma IV.2 in Kar and Moura (2014). Note the additional

term that comes up in xn(t)−xavg(t) in the current context due to the projection error is given by eP,n(t)−(
1>N
N ⊗ IM

)
eP(t); nonetheless, this term satisfies the property that

Pθ

(
lim
t→∞

(t+ 1)τ0
(

eP,n(t)−
(

1>N
N
⊗ IM

)
eP(t)

)
= 0

)
= 1

as eP(t) = 0 for all t ≥ tε. Hence, the techniques employed in the proof of Lemma IV.2 also apply here.

Lemma IV.2 in Kar and Moura (2014) is concerned with the asymptotic agreement of the estimates across

any pair of agents, but as an intermediate result the agreement of the estimate at an agent and the averaged

estimate is established.

As τ1 + 1/(2 + ε1) < 1/2, from Lemma E.0.3 we have that there exists an ε2 > 0 (sufficiently small) such

that

Pθ

(
lim
t→∞

(t+ 1)
1
2 +ε2 (xn(t)− xavg(t)) = 0

)
= 1. (E.46)

We consider the process {xavg(t)} for the application of Lemma C.1.5. Hence, comparing term by term of

(E.44) with (C.15), we have,

Γt =
a

N

N∑
n=1

∇fn (xn(t)) R−1
n ∇>fn (cθ + (1− c)xavg(t))

→ a

N

N∑
n=1

∇fn (θ) R−1
n ∇f>n (θ) = aΓθ,

Φt = a

(
1>N
N
⊗ IM

)
G(x(t))R−1 → a

(
1>N
N
⊗ IM

)
G(1⊗ θ)R−1

= aΦ,

Vt = ζ(t),E [Vt|Ft] = 0,E
[
VtV

>
t |Ft

]
= R,

Tt = a(t+ 1)1/2

(
1>N
N
⊗ IM

)
G(x(t))R−1×

(f (1⊗ xavg(t))− f (x(t))) + (t+ 1)3/2

(
1>N
N
⊗ IM

)
eP(t)→ 0, (E.47)

where the convergence of Tt follows from Lemma E.0.3. Due to the i.i.d nature of the noise process, we

have the uniform integrability condition for the process {Vt}. Hence, {xavg(t)} falls under the purview of
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Lemma C.1.5, and we thus conclude that

(t+ 1)1/2 (xavg(t)− θ)
D

=⇒ N (0,PMP>), (E.48)

where

aP>ΓθP = aΛθ,

[M]ij =
[
a2P>ΦRΦ>P

]
ij

(
a [Λ]θ,ii + a [Λ]θ,jj − 1

)−1

=
a2

N
[Λ]ij

(
a [Λ]θ,ii + a [Λ]θ,jj − 1

)−1

, (E.49)

which also implies that M is a diagonal matrix with its i-th diagonal element given by
a2Λθ,ii

2aNΛθ,ii−N . We

already have that PΛθP> = Γθ. Hence, the matrix with eigenvalues as
a2Λθ,ii

2aNΛθ,ii−N is given by

PMP> =
aI

2N
+

(
Γθ − I

2a

)−1

4N
. (E.50)

Now from (E.46), which is a consequence of Lemma E.0.3, we have that the processes {xn(t)} and {xavg(t)}
are indistinguishable in the t1/2 time scale, which is formalized as follows:

Pθ

(
lim
t→∞

∥∥√t+ 1 (xn(t)− θ)−
√
t+ 1 (xavg(t)− θ)

∥∥ = 0
)

= Pθ

(
lim
t→∞

∥∥√t+ 1 (xn(t)− xavg(t))
∥∥ = 0

)
= 1. (E.51)

Thus, the difference of the sequences
{√

t+ 1 (xn(t)− θ)
}

and
{√

t+ 1 (xavg(t)− θ)
}

converges a.s. to

zero as t→∞, and hence we have,

√
t+ 1 (xn(t)− θ)

D
=⇒ N

(
0,
aI

2N
+

(
Γθ − I

2a

)−1

4N

)
. (E.52)

Proof of Theorem 6.7.1.

Lemma E.0.4. For each n, the process {xn(t)} satisfies

Pθ
(

sup
t≥0
‖x(t)‖ <∞

)
= 1. (E.53)

Proof. Consider (6.15). Since the projection is onto a convex set it is non-expansive. It follows that the

inequality

‖xn(t+ 1)− θ‖ ≤ ‖x̂n(t+ 1)− θ‖ (E.54)

holds for all n and t. We first note that,

L(t) = βtL + L̃(t), (E.55)
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where E
[
L̃(t)

]
= 0 and E

[
L̃2
i,j(t)

]
= ρ0β0

(t+1)1+ε − β2
0

(t+1)2 , for {i, j} ∈ E, i 6= j.

Define, z(t) = x(t) − 1N ⊗ θ and V (t) = ‖z(t)‖2. Note that z(t) corresponds to the estimation error

vector at time t; its squared norm V (t) will first serve us as a Lyapunov function to establish the almost

sure boundedness of x(t) as in Lemma E.0.4. Let {Ft} be the natural filtration generated by the random

observations and the random Laplacians i.e.,

Ft = σ

({
{yn(s)}Nn=1 , {L(s)}

}t−1

s=0

)
. (E.56)

By algebraic manipulations, conditional independence, we have that,

E [V (t+ 1)|Ft] ≤ V (t) + β2
t z
>(t)

(
L⊗ IM

)2
z(t)

+ α2
tE
[∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))

∥∥2
]

− 2βtz
>(t)

(
L⊗ IM

)
z(t)

− 2αtz
>(t)G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ 2αtβtz
>(t)

(
L⊗ IM

)
G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

+ α2
t

∥∥∥(f (x(t))− f (1N ⊗ θ))
>

G> (x(t)) R−1
∥∥∥2

+ z>(t)E
[(

L̃(t)⊗ IM

)2
]

z(t). (E.57)

Consider the orthogonal decomposition

z = zC + zC⊥, (E.58)

where zC denotes the projection of z to the consensus subspace C = {z ∈ RMN |z = 1N ⊗ a, for some a ∈
RM}. The following inequalities hold for all t ≥ t1, where t1 is a sufficiently large positive integer:

z>(t)E
[(

L̃(t)⊗ IM

)2
]

z(t)
(q0)

≤ c5 ‖zC⊥‖
2

(t+ 1)1+ε

z>(t)
(
L⊗ IM

)2
z(t)

(q1)

≤ λ2
N (L)||zC⊥(t)||2;

z>(t)G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ)) ≥ c1||z(t)||2
(q2)

≥ 0;

z>(t)
(
L⊗ IM

)
z(t)

(q3)

≥ λ2(L) ‖zC⊥(t)‖2 ;

z>(t)
(
L⊗ IM

)
G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))

(q4)

≤ c2 ‖z(t)‖2 . (E.59)

Here, we recall that λN (L) is the largest eigenvalue of matrix L. Further, c1 is defined in Assumption 6.4.3,

and c2, c5 are appropriately chosen positive constants. Here, zC⊥(t) = z(t) − zC(t), where zC(t) is the

projection of z(t) on the consensus subspace C. Inequality (q0) holds because, as noted above, there holds

that E
[
L̃2
i,j(t)

]
≤ ρ0β0

(t+1)1+ε , for {i, j} ∈ E, i 6= j. Specifically, constant c5 can be taken to equal 2N3 ρ0β0.

Next, inequalities (q1) and (q3) follow from the properties of the Laplacian. Inequality (q2) follows from

Assumption 6.4.3; and (q4) follows from Assumption 6.4.2 since we have that ‖∇fn (xn(t))‖ is uniformly

bounded from above by kn for all n and hence, we have that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn. That is, c2 can
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be taken as (maxn=1,··· ,N kn)2 (maxn=1,··· ,N ‖R−1
n ‖) ‖L‖. We also have

E
[∥∥G (x(t)) R−1 (y(t)− f (1N ⊗ θ))

∥∥2
]
≤ c4, (E.60)

for some constant c4 > 0. In (E.60), we use the fact that the noise process under consideration has

finite covariance. We also use the fact that, almost surely, ‖G (x(t))‖ ≤ maxn=1,··· ,N kn, which in turn

follows from Assumption 6.4.2. In particular, c4 may be taken as (maxn=1,··· ,N kn)2 (maxn=1,··· ,N ‖R−1
n ‖)2

(maxn=1,··· ,N ‖Rn‖)2. We further have that,

∥∥G (x(t)) R−1 (f (x(t))− f (1N ⊗ θ))
∥∥2 ≤ c3 ‖z(t)‖2 , (E.61)

where c3 > 0 is a constant. It is to be noted that (E.61) follows from the Lipschitz continuity in Assumption

6.4.2 and the result that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn. That is, c3 may be taken as (maxn=1,··· ,N kn)4

(maxn=1,··· ,N ‖R−1
n ‖)2. Applying the above bounds, we obtain, after some algebraic manipulations,

E [V (t+ 1)|Ft] ≤ (1 + c8α
2
t )V (t)

− c9
(
βt −

c5
(t+ 1)τ1+ε

)
‖zC⊥‖

2
+ c6α

2
t , (E.62)

where c6, c8, c9 are appropriately chosen positive constants. In particular, c6 may be taken as c6 = c4; c8

may be taken as β2
0 (λN (L))2/α2

0 + 2β0
√
c3 + c3; and c9 may be taken as 2λ2(L). As c5

(t+1)1+ε goes to zero

faster than βt, ∃t2 such that ∀t ≥ t2, βt ≥ c5
(t+1)1+ε . By the above construction we obtain ∀t ≥ t2,

E[V (t+ 1)|Ft] ≤ (1 + α2
t )V (t) + α̂2

t , (E.63)

where α̂(t) =
√
c6αt. The product

∏∞
s=t(1 + α2

s) exists for all t. Now let {W (t)} be such that

W (t) =

( ∞∏
s=t

(1 + α2
s)

)
V (t) +

∞∑
s=t

α̂2
s, ∀t ≥ t2. (E.64)

By (E.64), it can be shown that {W (t)} satisfies,

E[W (t+ 1)|Ft] ≤W (t). (E.65)

Hence, {W (t)} is a non-negative supermartingale and converges a.s. to a bounded random variable W ∗ as

t → ∞. It then follows from (E.64) that V (t) → W ∗ as t → ∞. Thus, we conclude that the desired claim

holds.

We now use Lemma C.3.1 for establishing the convergence of the estimate sequence. Following similar steps

as in the proof of Lemma D.0.1, for t large enough

E[V (t+ 1)|Ft] ≤
(
1− 2c1αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (E.66)

as for t large enough, −2c1αt + c7α
2
t < 0. Here, c7 is appropriately chosen positive constant that may be
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taken as β2
0 (λN (L))2/α2

0 + 2β0
√
c3 + c3. Now, consider the {Ft}-adapted process {V1(t)} defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c6α
2
0

∞∑
s=t

(t+ 1)−2. (E.67)

Since {(t + 1)−2} is summable, the process {V1(t)} is bounded from above. Moreover, it also follows that

{V1(t)}t≥t1 is a supermartingale and hence converges a.s. to a finite random variable. By definition from

(E.67), we also have that {V (t)} converges to a non-negative finite random variable V ∗. Finally, from (E.66),

we have that,

E[V (t+ 1)] ≤ (1− c1αt)E[V (t)] + c6α
2
0 (t+ 1)−2, (E.68)

for t large enough. The sequence {V (t)} then falls under the purview of Lemma C.3.1, and we have

E[V (t)]→ 0 as t→∞. Finally, by Fatou’s Lemma, where we use the non-negativity of the sequence {V (t)},
we conclude that

0 ≤ E[V ∗] ≤ lim inf
t→∞

E[V (t)] = 0, (E.69)

which thus implies that V ∗ = 0 a.s. Hence, ‖z(t)‖ → 0 a.s. as t→∞, and the desired assertion follows.

Proof of Theorem 6.7.2. We can now see that the sequence {V (t)} then falls under the purview of Lemma

C.1.3, and we have

lim sup
t→∞

(t+ 1)E[V (t+ 1)] <∞

⇒ E[V (t)] = O

(
1

t

)
. (E.70)

Inequality (58) now clearly implies that, for each agent n, there holds:

E[‖xn(t)− θ‖2] = O

(
1

t

)
. (E.71)

The communication cost Ct for the proposed CREDO −NL algorithm is given by Ct = Θ
(
t
ε+1

2

)
, and thus

the assertion follows in conjunction with (E.71).



Appendix F

Proofs of Theorems in Chapter 7

Proof of Theorem 7.5.1. Define the sequence, {x̂(t)}, as x̂(t) = x̃(t)− P (1N ⊗ θ∗). Then, we have,

x̂(t+ 1) = x̂(t)−
(
βtLP + αtPGHR−1G>HP

)
x̂(t)

− βtL̃P(t)x̂(t) + αtPGHR−1
(
y(t)−G>HP (1N ⊗ θ∗)

)
. (F.1)

It is clear that {x̂(t)} is Markov with respect to its natural filtration {FX̂
t }. Now, define the function

V : RN2 7−→ R+ as, V (y) = ‖y‖2, for all y. We note that

Eθ∗
[
V (x̂(t+ 1)) | F x̃

t

]
= Eθ∗ [V (x̂(t+ 1)) | x̂(t)] (F.2)

By basic algebraic manipulations, we have,

Eθ∗ [V (x̂(t+ 1)) | x̂(t)]

≤ x̂(t)>
(
I− βtLP − αtPGHR−1G>HP

)2
x̂(t)

+ β2
tEθ∗

[∥∥∥L̃P(t)x̂(t)
∥∥∥2
]

+ α2
tEθ∗

[∥∥PGHR−1
(
y(t)−G>HP (1N ⊗ θ∗)

)∥∥2
]
. (F.3)

We note that βtLP + αtPGHR−1G>HP is uniformly elliptic on the subspace SP , and it is precisely the

subspace where {x̂(t)} resides. We thus prove the result by showing convergence to zero of the sequence

{x̂(t)} through the subspace SP . To this end, using the fact, that, for y ∈ SP ,

y>
(
β0

α0
LP + PGHR−1G>HP

)
y ≥ c1 ‖y‖2 , a.s. (F.4)

By choosing, t1 sufficiently large, we have for x̂(t)> ∈ SP for all t ≥ t1,

x̂(t)>
(
β2
tL

2

P + β2
tEθ∗

∥∥∥L̃P(t)
∥∥∥2

− βtLP
)

x̂(t)

≤
(
c
′

1β
2
t − c

′

3βt

)
‖x̂(t)‖2 ≤ 0, (F.5)

266
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where equality exists if x̂(t) = P (1N ⊗ a), where a ∈ RN . Thus, we obtain the following inequality:

Eθ∗ [V (x̂(t+ 1)) | x̂(t) = y]− V (y) ≤ c11α
2
t

(
1 + ‖y‖2

)
− αtc10 ‖y‖2 (F.6)

for all y ∈ SP . Now, define the function W : T+ × RN2 7−→ R+:

W (t,y) = (1 + V (y))

∞∏
j=t

(1 + c11α
2
j ). (F.7)

From (F.6) it can be shown that, for y ∈ SP ,

Eθ∗ [W (t+ 1, x̂(t+ 1)) | x̂(t) = y]−W (t,y)

≤ −αtc10 ‖y‖2
 ∞∏
j=t+1

(1 + c11α
2
j )


≤ −αtc10 ‖y‖2 (F.8)

Now consider ε > 0, and let Vε denote the set

Vε = {y ∈ RN
2

| ‖y‖ ≥ ε} ∩ SP (F.9)

Also, define τε to be the exit time of the process {x̂(t)} from Vε, i.e.,

τε = inf{i ∈ T+ | x̂(t) /∈ Vε} (F.10)

We now show that τε <∞ a.s. For mathematical simplicity, assume x̂(0) ∈ Vε. Consider the function

W̃ (t,y) = W (t,y) + c10ε
2
t−1∑
j=0

αj (F.11)

By (F.8) it follows that, for y ∈ Vε,

Eθ∗ [W (t+ 1, x̂(t+ 1)) | x̂(t) = y]−W (t,y) ≤ −αtc10ε
2 (F.12)

and hence, it can be shown that, for y ∈ Vε,

Eθ∗
[
W̃ (t+ 1, x̂(t+ 1)) | x̂(t) = y

]
− W̃ (t,y) ≤ 0 (F.13)

Hence, we have that the stopped process {W̃ (max{t, τε}, x̂(max{t, τε}))} is a super martingale. Being

nonnegative it converges a.s. as t→∞. By (F.12), we then conclude that the following term converges,

lim
t→∞

c10ε
2

(t∧τε)−1∑
j=0

αj converges a.s. (F.14)

Since,
∑
t∈T+

αt =∞, the above is possible, only if, τε <∞ a.s.
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We thus note, that the process {x̂(t)} leaves the set Vε almost surely in finite time. Since, the process is

constrained to lie in SP at all times, the finite time exit from Vε suggests,

Pθ∗ (inf{t ∈ T+ | ‖x̂(t)‖ < ε} <∞) = 1 (F.15)

Since ε > 0 is arbitrary, a subsequence almost surely converges to zero, and we have

Pθ∗
(

lim inf
t→∞

‖x̂(t)‖ = 0
)

= 1 (F.16)

Now going back to (F.6) and noting that {x̂(t)} takes values in SP , we conclude that the process {V (x̂(t))}
is a nonnegative supermartingale. Hence,

Pθ∗
(

lim
t→∞

V (x̂(t)) exists
)

= 1 (F.17)

Also, by (F.16)

Pθ∗
(

lim inf
t→∞

V (x̂(t)) = 0
)

= 1 (F.18)

and we conclude that

Pθ∗
(

lim
i→∞

‖x̂(t)‖ = 0
)

= 1 (F.19)

Proof of Theorem 7.5.2. From (F.2)-(F.4) in the proof of Theorem 7.5.1 we have, for t ≥ t1 (t1 chosen

appropriately large) and using the property that x̂(t) resides in SP

Eθ∗ [V (x̂(t+ 1)) | x̂(t)] ≤ (1− c1αt) ‖x̂(t)‖2 + α2
t c2

⇒ Eθ∗
[
‖x̂(t+ 1)‖2

]
≤ (1− c1αt) ‖x̂(t)‖2 + α2

t c2

⇒ E
[
‖x̃(t)− P (1N ⊗ θ∗)‖2

]
= O

(
1

t

)
.

for appropriately chosen constants c1 and c2, where the conclusion in the last line follows from Lemma

C.3.1.

Proof of Theorem 7.5.3. Let the number of agents interested in the i-th entry of θ∗ be Qi. To get the

vector of estimates of the i-th entry of θ∗, left multiply the selector matrix Si ∈ RQi×N2

and noting that

SiLP(t)x̃(t) = LP,i(t)x̃(i, t), where LP,i(t) ∈ RQi×Qi is the subgraph induced by the interest sets for the

i-th entry of θ∗, which is connected as a result of a sufficient condition which enforced Assumption 7.4.3 and

x̃(i, t) ∈ RQi is the vector of estimates for the i-th entry of θ∗.

A vector z ∈ RN2

may be decomposed as z = zC + zC⊥ with zC denoting its projection on the consensus or

agreement subspace C, C =
{

z ∈ RN2 |z = 1N ⊗ a for some a ∈ RN
}

. We first prove the following Lemma

regarding the mean connectedness of the subgraphs LP,i(t).
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Lemma F.0.1. Let {zt} be an RN2

valued Ft-adapted process such that zt ∈ C⊥ for all t. Also, let {Lt} be

an i.i.d. sequence of Laplacian matrices as in assumption 7.4.2 that satisfies

λ2

(
L
)

= λ2 (E [Lt]) > 0, (F.20)

where Lt is Ft+1-adapted and independent of Ft for all t.

‖(IN2 − (L(t)⊗ IN )) zt‖ ≤ (1− rt) ‖zt‖ , (F.21)

where {rt} is a R+ valued Ft+1 process satisfying

E [rt|Ft] ≥ pβt
λ2

(
L
)

4|L|
, (F.22)

where L denotes the set of all possible Laplacians.

The following Lemma in addition to Lemma C.3.1 will be used to quantify the rate of convergence of

distributed vector or matrix valued recursions to their network-averaged behavior.

Lemma F.0.2. Let {zt} be an R+ valued Ft-adapted process that satisfies

zt+1 ≤ (1− r1(t)) zt + r2(t)Ut(1 + Jt),

where {r1(t)} is an Ft+1-adapted process, such that for all t, r1(t) satisfies 0 ≤ r1(t) ≤ 1 and

a1 ≤ E [r1(t)|Ft] ≤
1

(t+ 1)δ1

with a1 > 0 and 0 ≤ δ1 < 1. The sequence {r2(t)} is deterministic and R+ valued and satisfies r2(t) ≤ a2

(t+1)δ2

with a2 > 0 and δ2 > 0. Further, let {Ut} and {Jt} be R+ valued Ft and Ft+1 adapted processes, respectively,

with supt≥0 ‖Ut‖ < ∞ a.s. The process {Jt} is i.i.d. with Jt independent of Ft for each t and satisfies the

moment condition E
[
‖Jt‖2+ε1

]
< κ < ∞ for some ε1 > 0 and a constant κ > 0. Then, for every δ0 such

that 0 ≤ δ0 < δ2 − δ1 − 1
2+ε1

, we have (t+ 1)δ0zt → 0 a.s. as t→∞.

Proof of Lemma F.0.1. Let L denote the set of possible Laplacian matrices which is necessarily finite. Since

the set of Laplacians is finite, we have,

p = inf
L∈L

pL > 0, (F.23)

with pL = P (L(t) = L) for each L ∈ L such that
∑

L∈L pL = 1. We also have that λ2

(
L
)
> 0 implies that

for every z ∈ C⊥, where,

C =
{
x|x = 1N ⊗ a,a ∈ RN

}
, (F.24)

we have, ∑
L∈L

z>Lz ≥
∑
L∈L

z>pLLz = z>Lz ≥ λ2

(
L
)
‖z‖2 . (F.25)
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Owing to the finite cardinality of L and (F.25), we also have that for each z ∈ C⊥,∃Lz ∈ L such that,

z>Lzz ≥
λ2

(
L
)

|Lt|
‖z‖2 (F.26)

Moreover, since L is finite, the mapping Lz : C⊥ 7→ L can be realized as a measurable function. For

each, L ∈ L, the eigen values of IN2 − βt (L⊗ IN ) are given by N repetitions of 1 and 1− βtλn (L), where

2 ≤ n ≤ N . Thus, for t ≥ t0, ‖IN2 − βt (L⊗ IN )‖ ≤ 1 and ‖(IN2 − βt (L⊗ IN )) z‖ ≤ ‖z‖. Hence, we can

define a jointly measurable function rL,z given by,

rL,z =

1 if t < t0 or z = 0

1− ‖(INM−βt(L⊗IM ))z‖
‖z‖ otherwise,

(F.27)

which satisfies 0 ≤ rL,z ≤ 1 for each (L, z). Define {rt} to be a Ft+1 process given by, rt = rL,zt for each t

and ‖(IN2 − βt (L⊗ IN )) zt‖ = (1− rt) ‖zt‖ a.s. for each t. Then, we have,

‖(IN2 − βt (Lzt ⊗ IN )) zt‖2

= z>t (IN2 − 2βt (Lzt ⊗ IN )) zt

+ z>t β
2
t (Lzt ⊗ IN )

2
zt

≤

(
1− 2βt

λ2

(
L
)

|L|

)
‖zt‖2 + c1β

2
t ‖zt‖

2

≤

(
1− βt

λ2

(
L
)

|L|

)
‖zt‖2 (F.28)

where we have used the boundedness of the Laplacian matrix. With the above development in place,

choosing an appropriate t1 (making t0 larger if necessary), for all t ≥ t1, we have,

‖(IN2 − βt (Lzt ⊗ IN )) zt‖ ≤

(
1− βt

λ2

(
L
)

4|L|

)
‖zt‖2 . (F.29)

Then, from (F.29), we have,

E [‖(IN2 − βt (Lzt ⊗ IN )) zt‖| Ft]

=
∑
L∈L

pL (1− rL,zt) ‖zt‖

≤

1−

pβtλ2

(
L
)

4|L|
+
∑

L 6=Lzt

 ‖zt‖ . (F.30)

Since,
∑

L 6=Lzt
pLrL,zt ≥ 0, we have for all t ≥ t1,

(1− E [rt|Ft]) ‖zt‖

= E [‖(IN2 − βt (Lzt ⊗ IN )) zt‖| Ft]

≤

(
1− pβt

λ2

(
L
)

4|L|

)
‖zt‖ . (F.31)
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As rt = 1 on the set {zt = 0}, we have that,

E [rt|Ft] ≥ pβt
λ2

(
L
)

4|L|
. (F.32)

Thus, we have established that,

‖(IN2 − (L(t)⊗ IN )) zt‖ ≤ (1− rt) ‖zt‖ , (F.33)

where {rt} is a R+ valued Ft+1 process satisfying (F.32).

With the above development in place, consider the residual process {x†(t)} given by x†(i, t) = x̃(i, t)−1Qi⊗
x̃avg,i(t), where i denotes the i-th entry of θ∗ and x†(t) =

[
x†(1, t), · · · ,x†(N, t)

]>
. Thus, we have that the

process {x†(i, t)} satisfies the recursion,

x†(i, t+ 1) = (IQi − LP,i(t)) x†(i, t) + αtz̃(i, t), (F.34)

where the process {z̃(i, t)} is given by

z̃(i, t) =

(
IQi −

1

Qi
1Qi1

>
Qi

)
× SiPGHR−1

(
y(t)−G>HPx̃(t)

)
. (F.35)

From (F.35), we also have,

z̃(i, t) = Ji,t + Ui,t, (F.36)

where,

Ji,t =

(
IQi −

1

Qi
1Qi1

>
Qi

)
× SiPGHR−1

(
y(t)−G>HP (1N ⊗ θ∗)

)
Ut =

(
IQi −

1

Qi
1Qi1

>
Qi

)
× SiPGHR−1

(
G>HP (1N ⊗ θ∗)−G>HPx̃(t)

)
. (F.37)

By Theorem 7.5.1, we also have that, the process {x̃(i, t)} is bounded. Hence, there exists an Ft-adapted

process {Ũi,t} such that
∥∥Ui,t

∥∥ ≤ Ũi,t and supt≥0 Ũi,t < ∞ a.s.. Furthermore, denote the process Ui,t as

follows,

Ui,t = max

{
Ũi,t,

∥∥∥∥IQi − 1

Qi
1Qi1

>
Qi

∥∥∥∥} . (F.38)

With the above development in place, we conclude,

∥∥Ui,t

∥∥+
∥∥Ji,t∥∥ ≤ Ui,t (1 + Ji,t) , (F.39)

where Ji,t =
∥∥y(t)−G>HP (1N ⊗ θ∗)

∥∥ and Eθ

[
J2+ε
i,t

]
<∞. Then, from (F.21)-(F.34) we have,

∥∥x†(i, t+ 1)
∥∥ ≤ (1− rt)

∥∥x†(i, t)∥∥+ αtUi,t(1 + Ji,t), (F.40)
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which then falls under the purview of Lemma D.0.3 and hence we have the assertion,

P
(

lim
t→∞

(t+ 1)δ0
(
x̃(i, t)− 1Qi ⊗ x̃avg,i(t)

)
= 0
)

= 1, (F.41)

where 0 < δ0 < 1− τ1 and hence δ0 can be chosen to be 1/2 + δ, where δ > 0 and we finally have,

P
(

lim
t→∞

(t+ 1)
1
2 +δ (x̃(t)− 1N ⊗ x̃avg(t)) = 0

)
= 1, (F.42)

as the above analysis can be repeated each entry i of the parameter of interest θ∗.

The proof of Theorem 7.5.3 needs Lemma C.1.5 from Fabian (1968) concerning the asymptotic normality of

the stochastic recursions. Multiplying the selection matrix, we have,

x̃(i, t+ 1) = x̃(i, t)− LP,i(t)x̃(i, t) + αtSiPGHR−1

×
(
y(t)−G>HPx̃(t)

)
⇒

1>Qi
Qi

x̃(i, t+ 1) =
1>Qi
Qi

x̃(i, t)−
1>Qi
Qi

LP,i(t)x̃(i, t)

+ αt
1>Qi
Qi
SiPGHR−1

(
y(t)−G>HPx̃(t)

)
⇒ x̃avg,i(t+ 1) = x̃avg,i(t) + αt

1>Qi
Qi
SiPGHR−1

×
(
y(t)−G>HPx̃(t)

)
, (F.43)

where {x̃avg,i(t)} is the averaged estimate sequence for the i-th entry of the parameter θ∗. Stacking, all

such averages together we have,

x̃avg(t+ 1) = x̃avg(t) + αtSavgPGHR−1
(
y(t)−G>HPx̃(t)

)
⇒ x̃avg(t+ 1)− θ∗ =

(
I− αtQ

N∑
n=1

PInH>nR−1HnPIn

)
× (x̃avg(t)− θ∗)

+ αtSavgPGHR−1γ(t)

+ αtQ

N∑
n=1

PInH>nR−1
n Hn (x̃n(t)− PIn x̃avg(t)) , (F.44)

where Savg =

[
1>Q1

Q1
S1,

1>Q2

Q2
S2, · · · ,

1>QN
QN
SN
]

and Q = diag
[

1
Q1
, 1
Q2
, · · · , 1

QN

]
. In the above derivation, we

make use of the fact that SavgPGHR−1G>HP1N ⊗ (x̃avg(t)− θ∗) = Q
∑N
n=1 PnH>nR−1Hn (x̃avg(t)− θ∗),

which in turn follows from the fact that,

Savg = Q [PI1
PI2
· · · PIN ] = [QPI1

QPI2
· · ·QPIN ]

⇒ SavgPGHR−1G>HP1N ⊗ (x̃avg(t)− θ∗)

= [QPI1 QPI2 · · ·QPIN ]

×
[
PI1

H>1 R−1
1 H1 (x̃avg(t)− θ∗) · · ·
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PINH>NR−1
N HN (x̃avg(t)− θ∗)

]>
= Q

N∑
n=1

PInH>nR−1Hn (x̃avg(t)− θ∗) . (F.45)

Define, the residual sequence, {zt}, where z(t) = x̃avg(t) − θ∗, which can be then shown to satisfy the

recursion

zt+1 = (IN − αtΓ) zt + αtUt + αtJt, (F.46)

where

Γ = Q

N∑
n=1

PInH>nR−1HnPIn

Ut = Q

N∑
n=1

PInH>nR−1
n Hn (x̃n(t)− PIn x̃avg(t))

Jt = SavgPGHR−1γ(t). (F.47)

We rewrite the recursion for {zt} as follows:

zt+1 = (IN − αtΓt) zt + (t+ 1)−3/2Tt + (t+ 1)−1ΦtVt, (F.48)

where

Γt = Γ = Q

N∑
n=1

PInH>nR−1HnPIn ,Φt = aI

Tt = a(t+ 1)1/2Ut

= aQ

N∑
n=1

PInH>nR−1
n Hn(t+ 1)0.5 (x̃n(t)− PIn x̃avg(t))

t→∞−−−→ 0

Vt = Jt = SavgPGHR−1γ(t), E [Vt|Ft] = 0,

E
[
VtV

>
t |Ft

]
= SavgPGHR−1G>HPSavg

= Q

(
N∑
n=1

PInH>nR−1HnPIn

)
Q (F.49)

Due to the i.i.d nature of the noise process, we have the uniform integrability condition for the process

{Vt}. Hence, {xavg(t)} falls under the purview of Lemma C.1.5 and we thus conclude that

(t+ 1)1/2 (x̃avg(t)− θ)
D

=⇒ N (0,PMP>), (F.50)

in which,

[M]ij =

[
PQ

(
N∑
n=1

PInH>nR−1
n HnPIn

)
QP

]
ij
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×
(

[Λ]ii + [Λ]jj − 1
)−1

, (F.51)

where P and Λ are orthonormal and diagonal matrices such that P>Q
(∑N

n=1 PInH>nR−1
n HnPIn

)
QP = Λ.

Now from (F.42), we have that the processes {x̃n(t)} and {x̃avg(t)} are indistinguishable in the (t + 1)1/2

time scale, which is formalized as follows:

Pθ

(
lim
t→∞

∥∥√t+ 1 (x̃(t)− θ)−
√
t+ 1 (x̃avg(t)− θ)

∥∥ = 0
)

= Pθ

(
lim
t→∞

∥∥√t+ 1 (x̃(t)− x̃avg(t))
∥∥ = 0

)
= 1. (F.52)

Thus, the difference of the sequences
{√

t+ 1 (x̃n(t)− θ)
}

and
{√

t+ 1 (x̃avg(t)− θ)
}

converges a.s. to

zero as t→∞ and hence we have,

√
t+ 1 (x̃n(t)− θ)

D
=⇒ N (0,PMP>). (F.53)



Appendix G

Proofs of Theorems in Chapter 8

G.1 Proof of the main result: First order optimization

Lemma G.1.1. Consider algorithm (8.2), and let the hypotheses of Theorem 8.6.1 hold. Then, we have

that for all k = 0, 1, ..., there holds:

E
[
‖x(k)− xo‖2

]
≤ qk0(N,α0)

+
π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+ 4
‖∇F (xo)‖2

µ2

.
= q∞(N,α0),

where E
[
‖x(k2)− xo‖2

]
≤ qk2

(N,α0), k2 = max{k0, k1}, k0 = inf{k|µ2α2
k < 1} and k1 = inf

{
k|µ2 > 2cuαk

}
.

Proof. Proceeding as in the proof of Lemma H.1.1, with ck = 1 and b(x(k)) = 0, we have that, ∀k ≥
max {k0, k1},

E
[
‖ζ(k + 1)‖2

]
≤

k∏
l=k0

(
1− µαl

2

)
E
[
‖ζ(k0)‖2

]
+
π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+ 4
‖∇F (xo)‖2

µ2

E
[
‖ζ(k + 1)‖2

]
≤ qk2(N,α0) +

π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+ 4
‖∇F (xo)‖2

µ2

.
= q∞(N,α0), (G.1)

where k0 = inf{k|µ2α2
k < 1} and

k1 = inf
{
k|µ

2
> 2cuαk

}
.

and k2 = max{k0, k1}. It is to be noted that k1 is necessarily finite as αk → 0 as k →∞. Hence, we have

that E
[
‖x(k + 1)− xo‖2

]
is finite and bounded from above, where E

[
‖x(k2)− xo‖2

]
≤ qk2(N,α0). From

the boundedness of E
[
‖x(k)− xo‖2

]
, we have also established the boundedness of E

[
‖∇F (x(k))‖2

]
and

E
[
‖x(k)‖2

]
.

275
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With the above development in place, we can bound the variance of the noise process {v(k)} as follows:

E
[
‖u(k)‖2 |Fk

]
≤ 2cuq∞(N,α0)

+ 2N
(
σ2
u + ‖x∗‖2

)
︸ ︷︷ ︸

σ2
1

. (G.2)

The proof of Lemma G.1.1 is now complete.

Recall the (hypothetically available) global average of nodes’ estimates x(k) = 1
N

∑N
i=1 xi(k), and denote

by x̃i(k) = xi(k) − x(k) the quantity that measures how far apart is node i’s solution estimate from the

global average. Introduce also vector x̃(k) = ( x̃1(k), ..., x̃N (k) )>, and note that it can be represented as

x̃(k) = (I− J) x(k), where we recall J = 1
N 11>. We have the following Lemma.

Lemma G.1.2. Let the hypotheses of Theorem 8.6.1 hold. Then, we have

E
[
‖x̃(k + 1)‖2

]
≤ Qk +

2∆1,∞α
2
0

λ2
2

(
L
)
β2

0(k + 1)

= O

(
1

k

)
,

where Qk is a term which decays faster than (k + 1)−1.

Lemma G.1.2 is important as it allows to sufficiently tightly bound the bias in the gradient estimates

according to which the global average x(k) evolves.

Proof. Proceeding as in the proof of Lemma H.1.3 in (H.19)-(H.22), we have,

E
[
‖x̃(k + 1)‖2 |Fk

]
≤ (1 + θk)

(
1− βkλ2

(
L
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
kE
[
‖w(k)‖2 |Fk

]
, (G.3)

where

E
[
‖w(k)‖2 |Fk

]
≤ 2 ‖∇F (x(k))‖2 + 2E

[
‖v(k)‖2 |Fk

]
≤ 2 ‖∇F (x(k))‖2 + 4cuq∞(N,α0) + 4Nσ2

1︸ ︷︷ ︸
∆1,∞

⇒ E
[
‖w(k)‖2

]
<∞. (G.4)

With the above development in place, we then have,

E
[
‖x̃(k + 1)‖2

]
≤ (1 + θk)

(
1− βkλ2

(
L
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k∆1,∞. (G.5)
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In particular, we choose θ(k) = βk
2 λ2

(
L
)
. From (H.25), we have,

E
[
‖x̃(k + 1)‖2

]
≤
(

1− βk
2
λ2

(
L
))

E
[
‖x̃(k)‖2

]
+

(
1 +

2

βkλ2

(
L
))α2

k∆1,∞

=

(
1− βk

2
λ2

(
L
))

E
[
‖x̃(k)‖2

]
+

2α2
k

λ2

(
L
)
βk

∆1,∞ + α2
k∆1,∞. (G.6)

Applying lemma H.1.4 to qk = E
[
‖x̃(k)‖2

]
, dk = ∆k, bk = α2

k, and sk = βk
2 λ2

(
L
)
, we obtain for

m(k) = bk−1
2 c:

E
[
‖x̃(k + 1)‖2

]
≤ exp

(
−

k∑
l=0

s(l)

)
E
[
‖x̃(0)‖2

]
︸ ︷︷ ︸

t1

+ ∆1,∞ exp

− k∑
m=b k−1

2
c

s(m)

 b k−1
2
c−1∑

l=0

(
2α2

l

λ2

(
L
)
βl

+ α2
l

)
︸ ︷︷ ︸

t2

+
2∆1,∞α

2
0

λ2
2

(
L
)
β2

0(k + 1)︸ ︷︷ ︸
t3

+
4∆1,∞α

2
0

λ2

(
L
)
β0(k + 1)3/2︸ ︷︷ ︸
t4

. (G.7)

In the proof of Lemma H.1.4, the splitting in the interval [0, k] was done at bk−1
2 c for ease of book keeping.

The division can be done at an arbitrary point. It is to be noted that the sequence {s(k)} is not summable

and hence terms t1 and t2 decay faster than (k + 1). Also, note that term t4 decays faster than t3. For

notational ease, henceforth we refer to t1 + t2 + t4 = Qk, while keeping in mind that Qk decays faster than

(k + 1). Hence, we have the disagreement given by,

E
[
‖x̃(k + 1)‖2

]
= O

(
1

k

)
.

Lemma G.1.3. Consider algorithm (8.2) and let the hypotheses of Theorem 8.6.1 hold. Then, there holds:

E[ ‖xi(k)− x?‖2 ] = O(1/k).

and

E[ ‖xi(k)− x?‖2 ] = O

(
1

C4/3−ζ
k

)
,

where ζ > 0 can be arbitrarily small, for all i = 1, · · · , N .

Proof. Denote x(k) = 1
N

∑
n=1 xi(k). Then, we have,
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x(k + 1) = x(k)− αk

 1

N

N∑
i=1

∇fi (xi(k)) +
1

N

N∑
i=1

ui(k)︸ ︷︷ ︸
u(k)

 (G.8)

which implies:

x(k + 1) = x(k)− αk
N

[
N∑
i=1

∇fi (xi(k))

−∇fi (x(k)) +∇fi (x(k))]− αku(k).

where

e(k) = Nu(k)

+

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (G.9)

Proceeding as in (H.34)-(H.40), with ck = 1 and b(xi(k)) = 0, ∀i = 1, · · · , N , we have on choosing θk = µα0

k+1 ,

where α0 >
1
µ ,

E
[
‖m(k)‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

8NL2∆1,∞α
3
0

µλ2
2

(
L
)
β2

0(k + 1)2
+

2NL2Qk
µ(k + 1)

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

8NL2∆1,∞α
3
0

µλ2
2

(
L
)
β2

0(k + 1)2
+

2NL2Qk
µ(k + 1)

+ 2α2
k

(
cuq∞(N,α0) +Nσ2

1

)
⇒ E

[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

8NL2∆1,∞α
3
0

µλ2
2

(
L
)
β2

0(k + 1)2
+ 2α2

k

(
cuq∞(N,α0) +Nσ2

1

)
+ Pk, (G.10)

where Pk decays faster as compared to the other terms. Proceeding as in (H.30), we have

E
[
‖x(k + 1)− x∗‖2

]
≤ exp

(
−µ

k∑
l=0

αl

)
E
[
‖x(k)− x∗‖2

]
︸ ︷︷ ︸

t6

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=0

8L2∆1,∞α
3
0

µλ2
2

(
L
)
β2

0(l + 1)2︸ ︷︷ ︸
t7

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

Pl

︸ ︷︷ ︸
t10
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+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

2α2
0

(
cuq∞(N,α0) +Nσ2

1

)
(l + 1)2

︸ ︷︷ ︸
t11

+
16NL2∆1,∞α

2
0

µ2λ2
2

(
L
)
β2

0(k + 1)︸ ︷︷ ︸
t12

+
N(k + 1)Pk

µα0︸ ︷︷ ︸
t14

+
4Nα0

(
cuq∞(N,α0) +Nσ2

1

)
µ(k + 1)︸ ︷︷ ︸

t15

. (G.11)

It is to be noted that the term t6 decays as 1/k. The terms t7, t10 and t11 decay faster than its counterparts

in the terms t12 and t15 respectively. We note that Ql also decays faster. Hence, the rate of decay of

E
[
‖x(k + 1)− x∗‖2

]
is determined by the terms t12 and t15. Thus, we have that, E

[
‖x(k + 1)− x∗‖2

]
=

O
(

1
k

)
. For notational ease, we refer to t6 + t7 + t10 + t11 + t14 = Mk from now on. Finally, we note that,

‖xi(k)− x∗‖ ≤ ‖x(k)− x∗‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥
⇒ ‖xi(k)− x∗‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x∗‖2

⇒ E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
β2

0(k + 1)

+ 2Qk +
4∆1,∞α

2
0

λ2
2

(
L
)
β2

0(k + 1)

⇒ E
[
‖xi(k)− x∗‖2

]
= O

(
1

k

)
, ∀i. (G.12)

The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
.

Thus, we achieve the communication rate to be,

E
[
‖xi(k)− x?‖2

]
= O

 1

C
4
3
−ζ

k

 . (G.13)



Appendix H

Proofs of Theorems in Chapter 9

H.1 Proof of the main result: Zeroth order optimization

The proof of the main result proceeds through three main steps. The first step involves establishing the

boundedness of the iterate sequence, while the second step involves establishing the convergence rate of

the optimizer sequence at each agent to the network averaged optimizer sequence. The convergence of the

network averaged optimizer is then analyzed as the final step and in combination with the second step results

in the establishment of bounds on MSE of the optimizer sequence at each agent.

Lemma H.1.1. Let the hypotheses of Theorem 9.7.1 hold. Then, we have,

E
[
‖x(k)− xo‖2

]
≤ qk2(N, d, α0, c0) + 4

‖∇F (xo)‖2

µ2

+

√
Ns1(P )Mα0c

2
0

8δ
+
Ns2

1(P )M2α2
0c

4
0

16(1 + 4δ)

+
dα2

0

(
2cvN ‖xo‖2 +Nσ2

v

)
c20(1− 2δ)

+
α2

0c
2
0

√
Ns1(P )L ‖∇F (xo)‖

1 + 2δ

+
Nα2

0c
4
0s2(P )

1 + 4δ
+

4α2
0c

2
0Ns1(P )

1 + 2δ
‖∇F (xo)‖2

.
= q∞(N, d, α0, c0),

where E
[
‖x(k2)− xo‖2

]
≤ qk2(N, d, α0, c0), k2 = max{k0, k1}, k0 = inf{k|µ2α2

k < 1} and k1 = inf
{
k|µ

2
>
√
N
4
s1(P )Mc2k + 2dcvαk

c2
k

+ 4αkc
2
kNs1(P )L2

}
.

Proof.

x(k + 1) = Wkx(k)

− αk
ck

(
ck∇F (x(k)) + c2kb(x(k)) + ckh(x(k))

)
. (H.1)

Denote xo = 1N ⊗ x∗. Then, we have,

x(k + 1)− xo = Wk(x(k)− xo)

− αk (∇F (x(k))−∇F (xo))

− αkh(x(k))− αk∇F (xo)− αkckb(x(k)). (H.2)

280
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Moreover, note that, E [h(x(k)) | Fk] = 0. By Leibnitz rule, we have,

∇F (x(k))−∇F (xo)

=

[∫ 1

s=0

∇2F (xo + s(x(k)− xo)) ds

]
(x(k)− xo)

= Hk (x(k)− xo) . (H.3)

By Lipschitz continuity of the gradients and strong convexity of f(·), we have that LI < Hk < µI. Denote

by ζ(k) = x(k)− xo and by ξ(k) = (Wk − αkHk) (x(k)− xo)− αk∇F (xo). Then, there holds:

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ E
[
‖ξ(k)‖2|Fk

]
− 2αkck E

[
ξ(k)>| Fk

]
E[ h(x(k)) | Fk ] + α2

kc
2
k E[ ‖h(x(k))‖2 | Fk ]

+ α2
kc

2
kb
>(x(k))b(x(k))− 2αkckb

>(x(k))E [ξ(k)|Fk]

+ b (x(k))> E [h(x(k))|Fk] . (H.4)

We use the following inequalities:

ckb(xi(k))

=
ck
2
E
[
〈zi,k,∇2fi

(
xi(k) +

(1− θ1)

2
ckzi,k

)
zi,k〉zi,k|Fk

]
− ck

2
E
[
〈zi,k,∇2fi (xi(k) + (1− θ2) ckzi,k) zi,k〉zi,k|Fk

]
⇒ ck ‖b(xi(k))‖ ≤ c2k

4
Ms1(P ). (H.5)

− b>(x(k))E [ξ(k)|Fk]

= −2b>(x(k))
(
I− βkL− αkHk

)
(x(k)− xo)

+ 2αkb
>(x(k))∇F (xo)

≤ 2 ‖b(x(k))‖
∥∥I− βkL− αkHk

∥∥ ‖x(k)− xo‖

+ 2αk ‖b(x(k))‖ ‖∇F (xo)‖

≤
√
N

4
s1(P )Mck (1− µαk)

(
1 + ‖x(k)− xo‖2

)
+ αkck

√
N

2
s1(P )M ‖∇F (xo)‖

≤
√
N

4
s1(P )Mck +

√
N

4
s1(P )Mck ‖x(k)− xo‖2

+ αkck

√
N

2
s1(P )M ‖∇F (xo)‖ , (H.6)

b>(x(k))b(x(k)) ≤ N

16
s2

1(P )M2c2k, (H.7)

E[ ‖h(x(k))‖2 | Fk ] = E
[
‖vz(k; x(k))‖2 |Fk

]
+ E

[
‖g(x(k))− E [ĝ(x(k)) | Fk]‖2 | Fk

]
, (H.8)
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E
[
‖g(x(k))− E [ĝ(x(k)) | Fk]‖2 | Fk

]
≤ E

[
‖g(x(k))‖2 | Fk

]
≤ 4Ns1(P )L2 ‖x(k)− xo‖2 + 4Ns1(P ) ‖∇F (xo)‖2 + 2Nc2ks2(P ), (H.9)

and

E
[
‖vz(k; x(k))‖2 |Fk

]
≤ dcv ‖x(k)‖2 + dNσ2

v

≤ 2dcv ‖x(k)− xo‖2 +
(

2dcv ‖xo‖2 +Nσ2
v

)
. (H.10)

Then from (H.4), we have,

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ E
[
‖ξ(k)‖2|Fk

]
+

√
N

4
s1(P )Mαkc

2
k‖ζ(k)‖2 + 2

dα2
k

c2k
cv‖ζ(k)‖2

+
dα2

k

c2k

(
2cv ‖xo‖2 +Nσ2

v

)
+

√
N

4
s1(P )Mαkc

2
k

+
N

16
s2

1(P )M2α2
kc

4
k + α2

kc
2
k

√
N

2
s1(P )M ‖∇F (xo)‖

+ 4α2
kc

2
kNs1(P )L2‖ζ(k)‖2 + 4α2

kc
2
kNs1(P ) ‖∇F (xo)‖2

+ 2Nα2
kc

4
ks2(P ). (H.11)

We next bound E
[
‖ξ(k)‖2| Fk

]
. Note that ‖Wk − αkHk‖ ≤ 1− µαk. Therefore, we have:

‖ξ(k)‖ ≤ (1− µαk) ‖ζ(k)‖+ αk ‖∇F (xo)‖. (H.12)

We now use the following inequality:

(a+ b)2 ≤ (1 + θ) a2 +

(
1 +

1

θ

)
b2, (H.13)

for any a, b ∈ R and θ > 0. We set θ = µαk. Using the inequality (H.13) in (H.12) and we have ∀k ≥ k0,

where k0 = inf{k|µ2α2
k < 1}:

E
[
‖ξ(k)‖2 |Fk

]
≤ (1 + µαk) (1− αkµ)2 ‖ζ(k)‖2

+

(
1 +

1

µαk

)
α2
k‖∇F (xo)‖2

≤ (1− αkµ) ‖ζ(k)‖2 + 2
αk
µ
‖∇F (xo)‖2. (H.14)

Using (H.14) in (H.11), we have for all k ≥ k0

E[ ‖ζ(k + 1)‖2 | Fk ]

≤
(

1− αkµ+

√
N

4
s1(P )Mαkc

2
k + 2

dα2
k

c2k
cv

+4α2
kc

2
kNs1(P )L2)× ‖ζ(k)‖2
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+
dα2

k

c2k

(
2cv ‖xo‖2 +Nσ2

v

)
+

√
N

4
s1(P )Lαkc

2
k

+
N

16
s2

1(P )M2α2
kc

4
k + 2

αk
µ
‖∇F (xo)‖2 + 2Nα2

kc
4
ks2(P )

+ α2
kc

2
k

√
N

2
s1(P )M ‖∇F (xo)‖+ 4α2

kc
2
kNs1(P ) ‖∇F (xo)‖2 . (H.15)

Define k1 as follows:

k1 = inf

{
k|µ

2
>

√
N

4
s1(P )Mc2k +

2dcvαk
c2k

+ 4αkc
2
kNs1(P )L2

}
.

It is to be noted that k1 is necessarily finite as ck → 0 and αkc
−2
k → 0 as k →∞. We proceed by using the

following auxiliary lemma.

Lemma H.1.2. Let ak ∈ (0, 1), u ≤ 0 and dk ≥ 0, for all k ≥ 1. If qk0
≥ 0 and for all k ≥ k0 there holds

qk+1 ≤ (1− ak)qk + aku+ dk, then, for all k ≥ k0,

qk+1 ≤ qk0
+ u+

k∑
l=l0

dl. (H.16)

Proof. Introduce p(k, l) = (1 − ak) · · · (1 − al), for l ≤ k and also p(k, k + 1) = 1. It is easy to see

that, for every k ≥ k0, qk+1 ≤ p(k, k0)qk0
+ u

∑k
l=k0

p(k, l + 1)al +
∑k
l=k0

p(k, l + 1)dl. Note now that

p(k, l+ 1)al = p(k, l+ 1)− p(k, l), and hence
∑k
l=k0

p(k, l+ 1)al = 1− p(k, k0) ≤ 1. Using the latter together

with the fact that p(k, l + 1) ≤ 1 proves the claim of the lemma.

Applying Lemma H.1.2 to qk = E
[
‖ζ(k)‖2

]
, ak = µαk

2 , u = 4‖∇F (xo)‖2
µ2 , and dk defined as the remaining

term in (H.15) we have, ∀k ≥ max {k0, k1}
.
= k2,

E
[
‖ζ(k + 1)‖2

]
≤ qk2(N, d, α0, c0) + 4

‖∇F (xo)‖2

µ2

+

√
Ns1(P )Mα0c

2
0

8δ
+
Ns2

1(P )M2α2
0c

4
0

16(1 + 4δ)

+
dα2

0

(
2cvN ‖xo‖2 +Nσ2

v

)
c20(1− 2δ)

+
α2

0c
2
0

√
Ns1(P )L ‖∇F (xo)‖

1 + 2δ

+
2Nα2

0c
4
0s2(P )

1 + 4δ
+

4α2
0c

2
0Ns1(P )

1 + 2δ
‖∇F (xo)‖2

.
= q∞(N, d, α0, c0), (H.17)

From (H.17), we have that E
[
‖x(k + 1)− xo‖2

]
is finite and bounded from above, where E

[
‖x(k2)− xo‖2

]
≤

qk2(N, d, α0, c0). From the boundedness of E
[
‖x(k)− xo‖2

]
, we have also established the boundedness of

E
[
‖∇F (x(k))‖2

]
and E

[
‖x(k)‖2

]
.

With the above development in place, we can bound the variance of the noise process {vz(k; x(k))} as
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follows:

E
[
‖vz(k; x(k))‖2 |Fk

]
≤ 2dcvq∞(N, d, α0, c0)

+ 2Nd
(
σ2
v + ‖x∗‖2

)
︸ ︷︷ ︸

σ2
1

. (H.18)

We also have the following bound:

E
[
‖g(x(k))− E [ĝ(x(k)) | Fk]‖2 | Fk

]
≤ 4Ns1(P )L2q∞(N, d, α0, c0) + 4Ns1(P ) ‖∇F (xo)‖2 + 2Nc2ks2(P ).

We now study the disagreement of the optimizer sequence {xi(k)} at a node i with respect to the (hypothet-

ically available) network averaged optimizer sequence, i.e., x(k) = 1
N

∑N
i=1 xi(k). Define the disagreement

at the i-th node as x̃i(k) = xi(k)− x(k). The vectorized version of the disagreements x̃i(k), i = 1, · · · , N ,

can then be written as x̃(k) = (I− J) x(k), where J = 1
N (1N ⊗ Id) (1N ⊗ Id)

>
= 1

N 1N1>N ⊗ Id. We have

the following Lemma:

Lemma H.1.3. Let the hypotheses of Theorem 9.7.1 hold. Then, we have

E
[
‖x̃(k + 1)‖2

]
≤ Qk +

4∆1,∞α
2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ

= O

(
1

k2−2δ−2τ

)
,

where Qk is a term which decays faster than (k + 1)−2+2τ+2δ.

Lemma H.1.3 plays a crucial role in providing a tight bound for the bias in the gradient estimates according

to which the global average x(k) evolves.

Proof. The process {x̃(k)} follows the recursion:

x̃(k + 1) = W̃kx̃(k)

− αk
ck

(I− J)
(
ck∇F (x(k)) + ckh(x(k)) + c2kb (x(k))

)︸ ︷︷ ︸
w(k)

, (H.19)

where W̃k = Wk − J. Then, we have,

‖x̃(k + 1)‖ ≤
∥∥∥W̃kx̃(k)

∥∥∥+
αk
ck
‖w(k)‖ . (H.20)

Using (H.13) in (H.19), we have,

‖x̃(k + 1)‖2 ≤ (1 + θk)
∥∥∥W̃kx̃(k)

∥∥∥2

+

(
1 +

1

θk

)
α2
k

c2k
‖w̃(k)‖2 . (H.21)
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We, now bound the term E
[∥∥∥W̃kx̃(k)

∥∥∥2

|Fk
]
.

E
[∥∥∥W̃(k)x̃(k)

∥∥∥2

|Fk
]

= x̃>(k)E
[
W̃2(k)− J|Fk

]
x̃(k)

= x̃>(k)
(
I− 2βkL + β2

kL
2

+ L̃(k)2 − J
)

x̃(k)

≤
(
1− 2βkλ2

(
L
)

+ β2
kλ

2
N

(
L
)

+
4N2β0ρ

2
0

(k + 1)τ+ε
− 4β2

kN
2

)
‖x̃(k)‖2

≤
(

1− 2βkλ2

(
L
)

+
4N2β0ρ

2
0

(k + 1)τ+ε

)
‖x̃(k)‖2

≤
(
1− βkλ2

(
L
))
‖x̃(k)‖2 , (H.22)

where the last inequality follows from assumption 9.6.3. Then, we have,

E
[
‖x̃(k + 1)‖2 |Fk

]
≤ (1 + θk) (1− βkλ2

(
L
)
) ‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k

c2k
E
[
‖w(k)‖2 |Fk

]
, (H.23)

where

E
[
‖w(k)‖2 |Fk

]
≤ 3c2k ‖∇F (x(k))‖2 + 3c2kE

[
‖h(x(k))‖2 |Fk

]
+ 3c2k ‖b (x(k))‖2

≤ 3c2k ‖∇F (x(k))‖2 +
3

16
c4kNs

2
1(P )M2

+ 6dcvq∞(N, d, α0, c0) + 6dNσ2
1 + 6Nc4ks2(P )

+ 12c2kNs1(P )L2q∞(N, d, α0, c0) + 12c2kNs1(P ) ‖∇F (xo)‖2

⇒ E
[
‖w(k)‖2

]
≤ 3

(
2dcv + c2kL

2(1 + 4Ns1(P ))
)

× q∞(N, d, α0, c0)

+
3

16
c4kNs

2
1(P )M2 + 6Nc4ks2(P )

+ 6dNσ2
1 + 12c2kNs1(P ) ‖∇F (xo)‖2

= ∆1,∞ + c2k∆2,∞
.
= ∆k

⇒ E
[
‖w(k)‖2

]
<∞, (H.24)

where ∆1,∞ = 6dcvq∞(N, d, α0, c0)+6dNσ2
1 and c2k∆2,∞ = 3

16
c4kNs

2
1(P )M2 +3c2kL

2(1+4Ns1(P ))q∞(N, d, α0, c0)+

12c2kNs1(P ) ‖∇F (xo)‖2 + 6Nc4ks2(P ). With the above development in place, we then have,

E
[
‖x̃(k + 1)‖2

]
≤ (1 + θk)

(
1− βkλ2

(
L
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k

c2k
∆k. (H.25)

In particular, we choose θ(k) = βk
2 λ2

(
L
)
. From (H.25), we have,

E
[
‖x̃(k + 1)‖2

]
≤
(

1− βk
2
λ2

(
L
))

E
[
‖x̃(k)‖2

]
+

(
1 +

2

βkλ2

(
L
)) α2

k

c2k
∆k
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=

(
1− βk

2
λ2

(
L
))

E
[
‖x̃(k)‖2

]
+

2α2
k

λ2

(
L
)
c2kβk

∆k +
α2
k

c2k
∆k. (H.26)

For ease of analysis, define s(k) = βk
2 λ2

(
L
)
. We proceed by using the following technical lemma.

Lemma H.1.4. If for all k ≥ k0 there holds

qk+1 ≤ (1− sk)qk +

(
1 +

1

sk

)
bkdk, (H.27)

where qk0
≥ 0, sk ∈ (0, 1), dk, bk ≥ 0 are monotonously decreasing, then, for any k ≥ m(k) ≥ k0

qk+1 ≤ e−
∑k
l=k0

slqk0 + dk0e
−

∑k
l=m(k) sl

m(k)−1∑
l=k0

(
1 +

1

sl

)
bl

+ dm(k)bm(k)
sk + 1

s2
k

. (H.28)

Proof. Similarly as before, define p(k, l) = (1 − sk) · · · (1 − sl) for k0 ≤ l ≤ k, and let also p(k, k + 1) = 1.

Recall that p(k, l + 1)sl can be expressed as p(k, l + 1)sl = p(k, l + 1)− p(k, l). Then, we have:

qk+1 ≤ p(k, k0)qk0 +

k∑
l=k0

p(k, l)

(
1 +

1

sl
bldl

)
(H.29)

≤ p(k, k0)qk0 + dk0p(k,m(k))

m(k)∑
l=k0

(
1 +

1

sl

)
bl

+ bm(k)dm(k)
sk + 1

s2
k

k∑
m(k)

(p(k, l + 1)− p(k, l)) ,

where we break the sum in (H.29) at l = m(k), and use the fact that p (k,m(k)− 1) ≥ p(k, l) for every

l ≤ m(k) − 1, together with the fact that 1/sl ≤ 1/sk, for every l ≤ k. Finally, noting that, for every

l ≤ k, p(k, l) ≤ e−
∑k
m=1 sl , and also recalling that

∑k
m(k) (p(k, l + 1)− p(k, l)) ≤ 1, proves the claim of the

lemma.

Applying the preceding lemma to qk = E
[
‖x̃(k)‖2

]
, dk = ∆k, bk =

α2
k

c2k
, and sk = βk

2 λ2

(
L
)

we have,

E
[
‖x̃(k + 1)‖2

]
≤ exp

(
−

k∑
l=0

s(l)

)
E
[
‖x̃(0)‖2

]
︸ ︷︷ ︸

t1

+ ∆0 exp

− k∑
m=b k−1

2
c

s(m)

 b k−1
2
c−1∑

l=0

(
2α2

l

λ2

(
L
)
c2l βl

+
α2
l

c2l

)
︸ ︷︷ ︸

t2

+
4∆b k−1

2
cα

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t3

+
2∆b k−1

2
cα

2
0

λ2

(
L
)
β0c20(k + 1)2−τ−2δ︸ ︷︷ ︸

t4

. (H.30)

In the above proof, the splitting in the interval [0, k] was done at bk−1
2 c for ease of book keeping. The

division can be done at an arbitrary point. It is to be noted that the sequence {s(k)} is not summable

and hence terms t1 and t2 decay faster than (k + 1)2−2τ−2δ. Also, note that term t4 decays faster than t3.
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Furthermore, t3 can be written as

4∆b k−1
2
cα

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ

=
4∆1,∞α

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t31

+
4c2b k−1

2
c∆2,∞α

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t32

,

from which we have that t32 decays faster than t31. For notational ease, henceforth we refer to t1 + t2 + t32 +

t4 = Qk, while keeping in mind that Qk decays faster than (k+ 1)2−2τ−2δ. Hence, we have the disagreement

given by,

E
[
‖x̃(k + 1)‖2

]
= O

(
1

k2−2δ−2τ

)
.

We now proceed to the proof of Theorem 9.7.1. Denote x(k) = 1
N

∑
n=1 xi(k). Then, we have,

x(k + 1) = x(k)

− αk
ck

ckN
N∑
i=1

∇fi (xi(k)) +
c2k
N

N∑
i=1

bi (xi(k))︸ ︷︷ ︸
b (x(k))

+
ck
N

N∑
i=1

hi(xi(k))︸ ︷︷ ︸
h(x(k))


⇒ x(k + 1) = x(k)− αk

ck

(
h(x(k)) + b (x(k))

)
− αk
Nck

[
ck

N∑
i=1

∇fi (xi(k))−∇fi (x(k)) +∇fi (x(k))

]
. (H.31)

Recall that f(·) =
∑N
i=1 fi(·). Then, we have,

x(k + 1) = x(k)− αk
ck

(
h(x(k)) + b (x(k))

)
− αk
N
∇f (x(k))− αk

N

[
N∑
i=1

∇fi (xi(k))−∇fi (x(k))

]
⇒ x(k + 1) = x(k)− αk

Nck
[ck∇f (x(k)) + e(k)] , (H.32)

where

e(k) = Nh(x(k))

+Nb (x(k)) + ck

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (H.33)

Note that, ck ‖∇fi (xi(k))−∇fi (x(k))‖ ≤ ckL ‖xi(k)− x(k)‖ = ckL ‖x̃i(k)‖. We also have that,
∥∥b (x(k))

∥∥ ≤
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M
4 s1(P )c3k. Thus, we can conclude that, ∀k ≥ k3

ε(k) = ck

N∑
i=1

(∇fi (xi(k))−∇fi (x(k))) +Nb (x(k))

⇒ ‖ε(k)‖2 ≤ 2NL2c2k ‖x̃(k)‖2 +
N

8
M2d2(P )c6k

⇒ E
[
‖ε(k)‖2

]
≤ 8NL2∆1,∞α

2
0

λ2
2

(
L
)
β2

0(k + 1)2−2τ
+
NM2d2(P )c60

8(k + 1)6δ

+
2NL2Qkc

2
0

(k + 1)2δ
. (H.34)

With the above development in place, we rewrite (H.32) as follows:

x(k + 1) = x(k)− αk
N
∇f (x(k))− αk

Nck
ε(k)− αk

ck
h(x(k))

⇒ x(k + 1)− x∗ = x(k)− x∗ − αk
N

∇f (x(k))−∇f (x∗)︸ ︷︷ ︸
= 0


− αk
Nck

ε(k)− αk
ck

h(x(k)). (H.35)

By Leibnitz rule, we have,

∇f (x(k))−∇f (x∗)

=

[∫ 1

s=0

∇2f (x∗ + s (x(k)− x∗)) ds

]
︸ ︷︷ ︸

Hk

(x(k)− x∗) , (H.36)

where it is to be noted that NL < Hk < Nµ. Using (H.36) in (H.35), we have,

(x(k + 1)− x∗) =
[
I− αk

N
Hk

]
(x(k)− x∗)

− αk
Nck

ε(k)− αk
ck

h(x(k)). (H.37)

Denote by m(k) =
[
I− αk

N Hk

]
(x(k)− x∗)− αk

Nck
ε(k) and note that m(k) is conditionally independent from

h(x(k)) given the history Fk. Then (H.37) can be rewritten as:

(x(k + 1)− x∗) = m(k)− αk
ck

h(x(k))

⇒ ‖x(k + 1)− x∗‖2 ≤ ‖m(k)‖2 − 2
αk
ck

m(k)>h(x(k))

+
α2
k

c2k

∥∥h(x(k))
∥∥2
. (H.38)

Using the properties of conditional expectation and noting that E [h(x(k))|Fk] = 0, we have,

E
[
‖x(k + 1)− x∗‖2 |Fk

]
≤ ‖m(k)‖2 +

α2
k

c2k
E
[∥∥h(x(k))

∥∥2 |Fk
]

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤ E

[
‖m(k)‖2

]
+ 2Nα2

kc
2
ks2(P )

+
2α2

k

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
c2k

+ 4α2
kNs1(P )L2q∞(N, d, α0, c0) + 4α2

kNs1(P ) ‖∇F (xo)‖2 . (H.39)

For notational simplicity, we denote α2
kσ

2
h = 2Nα2

kc
2
ks2(P )+4α2

kNs1(P )L2q∞(N, d, α0, c0)+4α2
kNs1(P ) ‖∇F (xo)‖2.
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Using (H.13), we have for m(k),

‖m(k)‖2 ≤ (1 + θk)
∥∥∥I− αk

N
Hk

∥∥∥2

‖x(k)− x∗‖2

+

(
1 +

1

θk

)
α2
k

N2c2k
‖ε(k)‖2

≤ (1 + θk)

(
1− µα0

k + 1

)2

‖x(k)− x∗‖2

+

(
1 +

1

θk

)
α2
k

N2c2k
‖ε(k)‖2 . (H.40)

On choosing θk = µα0

k+1 , where α0 >
1
µ , we have,

E
[
‖m(k)‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

16L2∆1,∞Nα
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ

+
4M2Nd2(P )c40α0

µ(k + 1)1+4δ
+

4L2NQk
µ(k + 1)

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

16NL2∆1,∞α
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ

+
4NM2d2(P )c40α0

µ(k + 1)1+4δ
+

4NL2Qk
µ(k + 1)

+
2α2

k

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
c2k

+ α2
kσ

2
h

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

16NL2∆1,∞α
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ

+
4M2Nd2(P )c40α0

µ(k + 1)1+4δ
+

2α2
0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
c20(k + 1)2−2δ

+ Pk, (H.41)

where Pk = 4NL2Qk
µ(k+1) +

α2
0σ

2
h

(k+1)2 decays faster as compared to the other terms. Proceeding as in (H.30), we

have

E
[
‖x(k + 1)− x∗‖2

]
≤ exp

(
−µ

k∑
l=0

αl

)
E
[
‖x(k)− x∗‖2

]
︸ ︷︷ ︸

t6

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=0

16NL2∆1,∞α
3
0

µλ2
2

(
L
)
c20β

2
0(k + 1)3−2τ−2δ︸ ︷︷ ︸

t7

+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=k5

4M2Nd2(P )c40α0

µ(k + 1)1+4δ

︸ ︷︷ ︸
t8

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

Pl +
2α2

0dcvq∞(N, d, α0, c0)

c20(l + 1)2−2δ

︸ ︷︷ ︸
t10
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+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

2α2
0dNσ

2
1

c20(l + 1)2−2δ

︸ ︷︷ ︸
t11

+
32NL2∆1,∞α

2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t12

+
8NM2d2(P )c40
µ2(k + 1)4δ︸ ︷︷ ︸

t13

+
N(k + 1)Pk

µα0︸ ︷︷ ︸
t14

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ︸ ︷︷ ︸

t15

. (H.42)

It is to be noted that the term t6 decays as 1/k. The terms t7, t8, t10, t11 and t14 decay faster than its

counterparts in the terms t12, t13 and t15 respectively. We note that Ql also decays faster. Hence, the

rate of decay of E
[
‖x(k + 1)− x∗‖2

]
is determined by the terms t12, t13 and t15. Thus, we have that,

E
[
‖x(k + 1)− x∗‖2

]
= O

(
k−δ1

)
, where δ1 = min {1− 2δ, 2− 2τ − 2δ, 4δ}. For notational ease, we refer to

t6 + t7 + t8 + t10 + t11 + t14 = Mk from now on. Finally, we note that,

‖xi(k)− x∗‖ ≤ ‖x(k)− x∗‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥
⇒ ‖xi(k)− x∗‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x∗‖2

⇒ E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

64NL2∆1,∞α
2
0

µ2λ2
2

(
L
)
c20β

2
0(k + 1)2−2τ−2δ

+
16NM2d2(P )c40
µ2(k + 1)4δ

+ 2Qk +
8∆1,∞α

2
0

λ2
2

(
L
)
β2

0c
2
0(k + 1)2−2τ−2δ

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ

⇒ E
[
‖xi(k)− x∗‖2

]
= O

(
1

kδ1

)
, ∀i, (H.43)

where δ1 = min {1− 2δ, 2− 2τ − 2δ, 4δ}. By, optimizing over τ and δ, we obtain that for τ = 1/2 and

δ = 1/6,

E
[
‖xi(k)− x∗‖2

]
= O

(
1

k
2
3

)
, ∀i.

The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
.

Thus, we achieve the communication rate to be,

E
[
‖xi(k)− x?‖2

]
= O

(
1

C8/9−ζ
k

)
, (H.44)

where ζ can be arbitrarily small.



Appendix I

Proofs of Theorems in Chapter 10

Lemma I.0.1. Consider the proposed zeroth order Frank Wolfe Algorithm. Let Assumptions 10.4.1-10.4.5

hold. Then, the sub-optimality F (xt+1)− F (x∗) satisfies

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗))

+ γt+1R‖∇F (xt)− dt‖+
LR2γ2

t+1

2
. (I.1)

Proof. The L-smoothness of the function f yields the following upper bound on f(xt+1):

f(xt+1) ≤ f(xt) +∇f(xt)
T (xt+1 − xt) +

L

2
‖xt+1 − xt‖2

= f(xt) + γt+1(∇f(xt)− dt)
T (vt − xt) + γt+1d

T
t (vt − xt)

+
Lγ2

t+1

2
‖vt − xt‖2 (I.2)

Since 〈x∗,dt〉 ≥ minv∈C{〈v,dt〉} = 〈vt,dt〉, we have,

f(xt+1) ≤ f(xt) + γt+1(∇f(xt)− dt)
T (vt − xt)

+ γt+1d
T
t (x∗ − xt) +

Lγ2
t+1

2
‖vt − xt‖2

≤ f(xt) + γt+1(∇f(xt)− dt)
T (vt − x∗)

+ γt+1∇f(xt)
T (x∗ − xt) +

LRγ2
t+1

2
‖vt − xt‖2. (I.3)

Using Cauchy-Schwarz inequality, we have,

f(xt+1) ≤ f(xt) + γt+1‖∇f(xt)− dt‖‖vt − x∗‖

− γt+1(f(xt)− f(x∗)) +
Lγ2

t+1

2
‖vt − x∗‖2

≤ f(xt) + γt+1R‖∇f(xt)− dt‖ − γt+1(f(xt)− f(x∗))

+
LR2γ2

t+1

2
, (I.4)

291
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and subtracting f(x∗) from both sides of (I.4), we have,

f(xt+1)− f(x∗) ≤ (1− γt+1)(f(xt)− f(x∗))

+ γt+1R‖∇f(xt)− dt‖+
LR2γ2

t+1

2
. (I.5)

Proof of Theorem 10.4.1. We have, from Lemma I.0.1,

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗))

+ γt+1R‖∇F (xt)− g(xt)‖+
LR2γ2

t+1

2

⇒ F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗))

+
ct+1d

2
γt+1R

2 +
LR2γ2

t+1

2
. (I.6)

From, (I.6), we have,

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗)) + LR2γ2
t+1. (I.7)

We use Lemma I.1.1 to derive the primal gap which then yields,

F (xt)− F (x∗) =
Qns
t+ 2

, (I.8)

where Qns = max{2(F (x0)− F (x∗)), 4LR2}.

I.1 Proofs of Zeroth Order Stochastic Frank Wolfe: RDSA

Proof of Lemma 10.4.2 (1). Use the definition dt := (1 − ρt)dt−1 + ρtg(xt; yt, zt) to write the difference

‖∇f(xt)− dt‖2 as

‖∇f(xt)− dt‖2 = ‖∇f(xt)− (1− ρt)dt−1

− ρtg(xt; yt, zt)‖2. (I.9)

Add and subtract the term (1− ρt)∇f(xt−1) to the right hand side of (I.9), regroup the terms and expand

the squared term to obtain

‖∇f(xt)− dt‖2

= ‖∇f(xt)− (1− ρt)∇f(xt−1) + (1− ρt)∇f(xt−1)

− (1− ρt)dt−1 − ρtg(xt; yt, zt)‖2

= ρ2
t‖∇f(xt)− g(xt; yt, zt)‖2 + (1− ρt)2‖∇f(xt−1)− dt−1‖2

+ (1− ρt)2‖∇f(xt)−∇f(xt−1)‖2

+ 2ρt(1− ρt)(∇f(xt)− g(xt; yt, zt))
T (∇f(xt)−∇f(xt−1))
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+ 2ρt(1− ρt)(∇f(xt)− g(xt; yt, zt))
T (∇f(xt−1)− dt−1)

+ 2(1− ρt)2(∇f(xt)−∇f(xt−1))T (∇f(xt−1)− dt−1). (I.10)

Compute the expectation E [(.) | Ft] for both sides of (I.10), where Ft is the σ-algebra given by {{ys}t−1
s=0, {zs}

t−1
s=0}to

obtain

E
[
‖∇f(xt)− dt‖2 | Ft

]
= ρ2

tE
[
‖∇f(xt)− g(xt; yt, zt)‖2 | Ft

]
+ (1− ρt)2‖∇f(xt)−∇f(xt−1)‖2

+ (1− ρt)2‖∇f(xt−1)− dt−1‖2

+ 2(1− ρt)2(∇f(xt)−∇f(xt−1))T (∇f(xt−1)− dt−1)

+ 2ρt(1− ρt)E
[
(∇f(xt)− g(xt; yt, zt))

T (∇f(xt)−∇f(xt−1)) | Ft
]

+ 2ρt(1− ρt)E
[
(∇f(xt)− g(xt; yt, zt))

T (∇f(xt−1)− dt−1) | Ft
]

≤ ρ2
tE
[
‖∇f(xt)− g(xt; yt, zt)‖2 | Ft

]
+ (1− ρt)2‖∇f(xt)−∇f(xt−1)‖2

+ (1− ρt)2‖∇f(xt−1)− dt−1‖2

+ (1− ρt)2βt‖∇f(xt−1)− dt−1‖2 +
(1− ρt)2

βt
‖∇f(xt)−∇f(xt−1)‖2

+ 2ρt(1− ρt)(ctLv (x, ct))
>(∇f(xt)−∇f(xt−1))

+ 2ρt(1− ρt)(ctLv (x, ct))
>(∇f(xt−1)− dt−1)

≤ ρ2
tE
[
‖∇f(xt)− g(xt; yt, zt)‖2 | Ft

]
+ (1− ρt)2‖∇f(xt)−∇f(xt−1)‖2

+ (1− ρt)2‖∇f(xt−1)− dt−1‖2

+ (1− ρt)2βt‖∇f(xt−1)− dt−1‖2 +
(1− ρt)2

βt
‖∇f(xt)−∇f(xt−1)‖2

+ 2ρt(1− ρt)c2t ‖Lv (x, ct)‖2 + ρt(1− ρt) ‖∇f(xt)−∇f(xt−1)‖2

+ ρt(1− ρt) ‖∇f(xt−1)− dt−1‖2

⇒ E
[
‖∇f(xt)− dt‖2

]
≤ ρ2

tE
[
‖∇f(xt)−∇F (xt,yt) +∇F (xt,yt)− g(xt; yt, zt)‖2

]
+ (1− ρt)2E

[
‖∇f(xt)−∇f(xt−1)‖2

]
+ (1− ρt)2‖E

[
∇f(xt−1)− dt−1‖2

]
+ (1− ρt)2βtE

[
‖∇f(xt−1)− dt−1‖2

]
+

(1− ρt)2

βt
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
ρt
4

(1− ρt)c2tL2M(µ) + ρt(1− ρt)E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+ ρt(1− ρt)E

[
‖∇f(xt−1)− dt−1‖2

]
≤ 2ρ2

tE
[
‖∇f(xt)−∇F (xt,yt)‖2

]
+ 2ρ2

tE
[
‖∇F (xt,yt)− g(xt; yt, zt)‖2

]
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+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
+
ρt
2

(1− ρt)c2tL2M(µ)

≤ 2ρ2
tσ

2 + 4ρ2
tE
[
‖∇F (xt,yt)‖2

]
+ 4ρ2

tE
[
‖g(xt; yt, zt)‖2

]
+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
+
ρt
2

(1− ρt)c2tL2M(µ)

≤ 2ρ2
tσ

2 + 4ρ2
tL

2
1 + 8ρ2

t s(d)L2
1 + 2ρ2

t c
2
tL

2M(µ)

+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
+
ρt
2
c2tL

2M(µ), (I.11)

where we used the gradient approximation bounds as stated in (10.15) and used Young’s inequality to

substitute the inner products and in particular substituted 2〈∇f(xt)−∇f(xt−1),∇f(xt−1)− dt−1〉 by the

upper bound βt‖∇f(xt−1)− dt−1‖2 + (1/βt)‖∇f(xt)−∇f(xt−1)‖2 where βt > 0 is a free parameter.

By assumption 10.4.4, the norm ‖∇f(xt) − ∇f(xt−1)‖ is bounded above by L‖xt − xt−1‖. In addition,

the condition in Assumption 10.4.1 implies that L‖xt − xt−1‖ = Lγt‖vt − xt‖ ≤ γtLR. Therefore, we can

replace ‖∇f(xt)−∇f(xt−1)‖ by its upper bound γtLR and since we assume that ρt ≤ 1 we can replace all

the terms (1− ρt)2. Furthermore, using βt := ρt/2 we have,

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tL
2
1 + 8ρ2

t s(d)L2
1 + 2ρ2

t c
2
tL

2M(µ)

+ γ2
t (1− ρt)

(
1 +

2

ρt

)
L2R2 +

ρt
2
c2tL

2M(µ)

+ (1− ρt)
(

1 +
ρt
2

)
E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.12)

Now using the inequalities (1− ρt)(1 + (2/ρt)) ≤ (2/ρt) and (1− ρt)(1 + (ρt/2)) ≤ (1− ρ/2) we obtain

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tL
2
1

+ 8ρ2
t s(d)L2

1 + 2ρ2
t c

2
tL

2M(µ)

+
2L2R2γ2

t

ρt
+
ρt
2
c2tL

2M(µ)

+
(

1− ρt
2

)
)E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.13)

Then, we have, from Lemma I.0.1

E [f(xt+1)− f(x∗)] ≤ (1− γt+1)E [(f(xt)− f(x∗))]
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+ γt+1RE [‖∇f(xt)− dt‖] +
LR2γ2

t+1

2
, (I.14)

and then by using Jensen’s inequality, we obtain,

E [f(xt+1)− f(x∗)] ≤ (1− γt+1)E [(f(xt)− f(x∗))]

+ γt+1R
√

E [‖∇f(xt)− dt‖2] +
LR2γ2

t+1

2
. (I.15)

We state a Lemma next which will be crucial for the rest of the paper.

Lemma I.1.1. Let z(k) be a non-negative (deterministic) sequence satisfying:

z(k + 1) ≤ (1− r1(k)) z1(k) + r2(k),

where {r1(k)} and {r2(k)} are deterministic sequences with

a1

(k + 1)δ1
≤ r1(k) ≤ 1 and r2(k) ≤ a2

(k + 1)2δ1
,

with a1 > 0 , a2 > 0 , 1 > δ1 > 1/2 and k0 ≥ 1. Then,

z(k + 1) ≤ exp

(
−a1δ1(k + k0)1−δ1

4(1− δ1)

)(
z(0) +

a2

kδ10 (2δ1 − 1)

)
+

a22δ1

a1 (k + k0)
δ1
.

Proof of Lemma I.1.1. We have,

z(k + 1) ≤
k∏
l=0

(
1− a1

(l + k0)δ1

)
z(0)

b k2 c−1∑
l=0

k∏
m=l+1

(
1− a1

(m+ k0)δ1

)
a2

(k + k0)2δ1

+

k∑
l=b k2 c

k∏
m=l+1

(
1− a1

(m+ k0)δ1

)
a2

(k + k0)2δ1

≤ exp

(
k∑
l=0

(
1− a1

(l + k0)δ1

))
z(0) +

k∏
m=l+1

(
1− a1

(m+ k0)δ1

) b k2 c−1∑
l=0

a2

(k + k0)2δ1

+
a22δ1

a1 (k + k0)
δ1

k∑
l=b k2 c

k∏
m=l+1

(
1− a1

(m+ k0)δ1

)
a1

(k + k0)δ1

≤ exp

(
−

k∑
l=0

a1

(l + k0)δ1

)
z(0) +

a2

a1k
δ1
0

exp

− k∑
m=b k2 c

a1

(m+ k0)δ1

 b k2 c−1∑
l=0

a1

(k + k0)2δ1

+
a22δ1

a1 (k + k0)
δ1

k∑
l=b k2 c

(
k∏

m=l+1

(
1− a1

(m+ k0)δ1

)
−

k∏
m=l

(
1− a1

(m+ k0)δ1

))

≤ exp

(
−

k∑
l=0

a1

(l + k0)δ1

)
z(0) +

a22δ1

a1 (k + k0)
δ1

+
a2

a1k
δ1
0

exp

− k∑
m=b k2 c

a1

(m+ k0)δ1

 b k2 c−1∑
l=0

a1

(k + k0)2δ1
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≤ exp

(
−

k∑
l=0

a1

(l + k0)δ1

)
z(0) +

a22δ1

a1 (k + k0)
δ1

+
a2

kδ10

exp

(
− a1δ1

4(1− δ1)
(k + k0)1−δ1

)
1

2δ1 − 1
, (I.16)

where we used the inequality that,

k∑
m=b k2 c

1

(m+ k0)δ1
≥ 1

2(1− δ1)
(k + k0)1−δ1 − 1

2(1− δ1)

(
k

2
+ k0

)1−δ1

≥ 1

21+δ1(1− δ1)
(k + k0)1−δ1

(
21−δ1 − 1− (1− δ1)k0

k + k0

)
≥ δ1

4(1− δ1)
(k + k0)1−δ1

Following up with (I.16), we have,

z(k + 1) ≤ exp

(
−

k∑
l=0

− a1

(l + k0)δ1

)
z(0) +

a22δ1

a1 (k + k0)
δ1

+
a2

kδ10

exp

(
− a1δ1

4(1− δ1)
(k + k0)1−δ1

)
1

2δ1 − 1

≤ exp

(
−a1δ1(k + k0)1−δ1

4(1− δ1)

)(
z(0) +

a2

kδ10 (2δ1 − 1)

)
+

a22δ1

a1 (k + k0)
δ1
. (I.17)

For δ = 2/3, we have,

z(k + 1) ≤ exp

(
−a1(k + k0)1/3

2

)(
z(0) +

3a2

k
2/3
0

)
+

a222/3

a1 (k + k0)
2/3

.

Proof of Theorem 10.5.1 (1). Now using the result in Lemma I.1.1 we can characterize the convergence of

the sequence of expected errors E
[
‖∇f(xt)− dt‖2

]
to zero. To be more precise, using the result in Lemma

10.4.2 and setting γt = 2/(t+ 8), ρt = 4/d1/3(t+ 8)2/3 and ct = 2/
√
M(µ)(t+ 8)1/3 for any ε > 0 to obtain

E
[
‖∇f(xt)− dt‖2

]
≤
(

1− 2

d1/3(t+ 8)2/3

)
E
[
‖∇F (xt−1)− dt−1‖2

]
+

32d−1/3σ2 + 64d−1/3L2
1 + 128d2/3L2

1 + 2L2R2d2/3 + 416d2/3L2

(t+ 8)4/3
. (I.18)

According to the result in Lemma I.1.1, the inequality in (I.18) implies that

E
[
‖∇f(xt)− dt‖2

]
≤ Q+

Q

(t+ 8)2/3
≤ 2Q

(t+ 8)2/3
, (I.19)

whereQ = 32d−1/3σ2+64d−1/3L2
1+128d2/3L2

1+2L2R2d2/3+416d2/3L2, whereQ is a function of E
[
‖∇f(x0)− d0‖2

]
and decays exponentially. Now we proceed by replacing the term E

[
‖∇f(xt)− dt‖2

]
in (I.15) by its upper

bound in (I.19) and γt+1 by 2/(t+ 9) to write

E [f(xt+1)− f(x∗)] ≤
(

1− 2

t+ 9

)
E [(f(xt)− f(x∗))]

+
R
√
Q

(t+ 9)4/3
+

2LR2

(t+ 9)2
. (I.20)
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Note that we can write (t+ 9)2 = (t+ 9)4/3(t+ 9)2/3 ≥ (t+ 9)4/392/3 ≥ 4(t+ 9)4/3.Therefore,

E [f(xt+1)− f(x∗)] ≤
(

1− 2

t+ 9

)
E [(f(xt)− f(x∗))]

+
2R
√
Q+ LD2/2

(t+ 9)4/3
. (I.21)

We use induction to prove for t ≥ 0,

E [f(xt)− f(x∗)] ≤ Q′

(t+ 9)1/3
,

where Q′ = max{91/3(f(x0)− f(x∗)), 2R
√

2Q+ LR2/2}. For t = 0, we have that E [f(xt)− f(x∗)] ≤ Q′

91/3 ,

which is turn follows from the definition of Q′. Assume for the induction hypothesis holds for t = k. Then,

for t = k + 1, we have,

E [f(xk+1)− f(x∗)] ≤
(

1− 2

k + 9

)
E [(f(xk)− f(x∗))]

+
2R
√

2Q+ LD2/2

(k + 9)4/3

≤
(

1− 2

k + 9

)
Q′

(t+ 9)1/3
+

Q′

(t+ 9)4/3
≤ Q′

(t+ 10)1/3
.

Thus, for t ≥ 0 from Lemma I.1.1 we have that,

E [f(xt)− f(x∗)] ≤ Q′

(t+ 9)1/3
= O

(
d1/3

(t+ 9)1/3

)
. (I.22)

where Q′ = max{2(f(x0)− f(x∗)), 2R
√

2Q+ LR2/2}.

Proof of Theorem 10.5.2(1). Then, we have,

F (xt+1) ≤ F (xt) + γt〈g(xt),vt − xt〉

+ γt〈∇F (xt)− g(xt),vt − xt〉+
LR2γ2

t

2

⇒ F (xt+1) ≤ F (xt) + γt〈g(xt), argmin
v∈C
〈v,∇F (xt)〉 − xt〉

+ γt〈∇F (xt)− g(xt),vt − xt〉+
LR2γ2

t

2

⇒ F (xt+1) ≤ F (xt) + γt〈∇F (xt), argmin
v∈C
〈v,∇F (xt)〉 − xt〉

+ γt〈∇F (xt)− g(xt),vt − argmin
v∈C
〈v,∇F (xt)〉〉+

LR2γ2
t

2

⇒ F (xt+1) ≤ F (xt)− γtG (xt)

+ γt〈∇F (xt)− g(xt),vt − argmin
v∈C
〈v,∇F (xt)〉〉+

LR2γ2
t

2

⇒ γtE [G (xt)] ≤ E [F (xt)− F (xt+1)] + γtR

√
2Q

(t+ 8)1/3
+
LR2γ2

t

2
+

⇒ E [G (xt)] ≤ E
[
t+ 7

2
F (xt)−

t+ 8

2
F (xt+1) +

1

2
F (xt)

]
+R

√
2Q

(t+ 8)1/3
+
LR2γt

2



APPENDIX I. PROOFS OF THEOREMS IN CHAPTER 10 298

⇒
T−1∑
t=0

E [G (xt)] ≤ E

[
7

2
F (x0)− T + 7

2
F (xT ) +

T−1∑
t=0

(
1

2
F (xt)

]
+R

√
2Q

(t+ 8)1/3
+
LR2γt

2

)

⇒
T−1∑
t=0

E [G (xt)] ≤ E
[

7

2
F (x0)− 7

2
F (x∗)

]
+

T−1∑
t=0

(
1

2
(F (xt)− F (x∗)) +R

√
2Q

(t+ 8)1/3
+
LR2γt

2

)

⇒
T−1∑
t=0

E [G (xt)] ≤
7

2
F (x0)− 7

2
F (x∗) +

T−1∑
t=0

(
Q
′
+R
√

2Q

2(t+ 8)1/3
+

LR2

(t+ 8)

)

⇒ TE
[

min
t=0,··· ,T−1

G (xt)

]
≤ 7

2
F (x0)− 7

2
F (x∗) + LR2ln(T + 7) +

Q
′
+R
√

2Q

2
(T + 7)2/3

⇒ E
[

min
t=0,··· ,T−1

G (xt)

]
≤ 7(F (x0)− F (x∗))

2T
+
LR2ln(T + 7)

T
+
Q
′
+R
√

2Q

2T
(T + 7)2/3. (I.23)

I.2 Proofs for Improvised RDSA

Proof of Lemma 10.4.2(2). Following as in the proof of RDSA, we have,

E
[
‖∇f(xt)− dt‖2 | Ft

]
≤ ρ2

tE
[
‖∇f(xt)− g(xt; yt, zt)‖2 | Ft

]
+ (1− ρt)2‖∇f(xt)−∇f(xt−1)‖2

+ (1− ρt)2‖∇f(xt−1)− dt−1‖2

+ (1− ρt)2βt‖∇f(xt−1)− dt−1‖2

+
(1− ρt)2

βt
‖∇f(xt)−∇f(xt−1)‖2

+ 2ρt(1− ρt)
c2t
m2
‖Lv (x, ct)‖2 + ρt(1− ρt) ‖∇f(xt)−∇f(xt−1)‖2

+ ρt(1− ρt) ‖∇f(xt−1)− dt−1‖2

⇒ E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tE
[
‖∇F (xt,yt)‖2

]
+ 4ρ2

tE
[
‖g(xt; yt, zt)‖2

]
+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
+
ρt
2

(1− ρt)c2tL2M(µ)

≤ 2ρ2
tσ

2 + 4ρ2
tL

2
1 + 8ρ2

t

(
1 +

s(d)

m

)
L2

1 +

(
1 +m

2m

)
ρ2
t c

2
tL

2M(µ)

+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
+

ρt
2m2

c2tL
2M(µ), (I.24)

where we used the gradient approximation bounds as stated in (10.15) and used Young’s inequality to

substitute the inner products and in particular substituted 2〈∇f(xt)−∇f(xt−1),∇f(xt−1)− dt−1〉 by the
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upper bound βt‖∇f(xt−1)− dt−1‖2 + (1/βt)‖∇f(xt)−∇f(xt−1)‖2 where βt > 0 is a free parameter.

According to Assumption 2.4.2, the norm ‖∇f(xt) − ∇f(xt−1)‖ is bounded above by L‖xt − xt−1‖. In

addition, the condition in Assumption 2.3.1 implies that L‖xt − xt−1‖ = Lγt‖vt − xt‖ ≤ γtLR. Therefore,

we can replace ‖∇f(xt) − ∇f(xt−1)‖ by its upper bound γtLR and since we assume that ρt ≤ 1 we can

replace all the terms (1− ρt)2. Furthermore, using βt := ρt/2 we have,

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tL
2
1 + 8ρ2

t

(
1 +

s(d)

m

)
L2

1 +
ρt

2m2
c2tL

2M(µ)

+ γ2
t (1− ρt)

(
1 +

2

ρt

)
L2R2 +

(
1 +m

2m

)
ρ2
t c

2
tL

2M(µ)

+ (1− ρt)
(

1 +
ρt
2

)
E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.25)

Now using the inequalities (1− ρt)(1 + (2/ρt)) ≤ (2/ρt) and (1− ρt)(1 + (ρt/2)) ≤ (1− ρ/2) we obtain

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tL
2
1 + 8ρ2

t

(
1 +

s(d)

m

)
L2

1

+

(
1 +m

2m

)
ρ2
t c

2
tL

2M(µ) +
2L2R2γ2

t

ρt
+

ρt
2m2

c2tL
2M(µ)

+
(

1− ρt
2

)
)E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.26)

Proof of Theorem 10.5.1(2). Now using the result in Lemma I.1.1 we can characterize the convergence of

the sequence of expected errors E
[
‖∇f(xt)− dt‖2

]
to zero. To be more precise, using the result in Lemma

10.4.2 and setting γt = 2/(t+ 8), ρt = 4/
(
1 + d

m

)1/3
(t+ 8)2/3 and ct = 2

√
m/
√
M(µ)(t+ 8)1/3, we have,

E
[
‖∇f(xt)− dt‖2

]
≤

(
1− 2(

1 + d
m

)1/3
(t+ 8)2/3

)
E
[
‖∇F (xt−1)− dt−1‖2

]
+

32
(
1 + d

m

)−1/3
σ2 + 64L2

1

(
1 + d

m

)−1/3
+ 128

(
1 + d

m

)2/3
L2

1

(t+ 8)4/3

+
2L2R2

(
1 + d

m

)2/3
+ 416

(
1 + d

m

)2/3
L2

(t+ 8)4/3
. (I.27)

According to the result in Lemma I.1.1, the inequality in (I.18) implies that

E
[
‖∇f(xt)− dt‖2

]
≤ Qir +

Qir
(t+ 8)2/3

≤ Qir
(t+ 8)2/3

, (I.28)

whereQir = 32
(
1 + d

m

)−1/3
σ2+128

(
1 + d

m

)2/3
L2

1+64
(
1 + d

m

)−1/3
L2

1+2L2R2
(
1 + d

m

)2/3
+416

(
1 + d

m

)2/3
L2

and Qir is a function of E
[
‖∇f(x0)− d0‖2

]
and decays exponentially. Now we proceed by replacing the

term E
[
‖∇f(xt)− dt‖2

]
in (I.15) by its upper bound in (I.28) and γt+1 by 2/(t+ 9) to write

E [f(xt+1)− f(x∗)] ≤
(

1− 2

t+ 9

)
E [(f(xt)− f(x∗))]
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+
R
√

2Qir
(t+ 9)4/3

+
2LR2

(t+ 9)2
. (I.29)

Note that we can write (t+ 9)2 = (t+ 9)4/3(t+ 9)2/3 ≥ (t+ 9)4/392/3 ≥ 4(t+ 9)4/3.Therefore,

E [f(xt+1)− f(x∗)] ≤
(

1− 2

t+ 9

)
E [(f(xt)− f(x∗))]

+
2R
√
Q+ LD2/2

(t+ 9)4/3
. (I.30)

Following the induction steps as in (I.22), we have,

E [f(xt)− f(x∗)] ≤ Q
′

ir

(t+ 8)1/3
= O

(
(d/m)1/3

(t+ 9)1/3

)
. (I.31)

where Q′ir = max{2(f(x0)− f(x∗)), 2R
√

2Qir + LR2/2}.

Proof of Theorem 10.5.2(2). Following as in (I.23), we have,

γtE [G (xt)] ≤ E [F (xt)− F (xt+1)] + γtR

√
2Qir

(t+ 8)1/3
+
LR2γ2

t

2
+

⇒ E [G (xt)] ≤ E
[
t+ 7

2
F (xt)−

t+ 8

2
F (xt+1) +

1

2
F (xt)

]
+R

√
2Qir

(t+ 8)1/3
+
LR2γt

2

⇒
T−1∑
t=0

E [G (xt)] ≤ E

[
7

2
F (x0)− T + 7

2
F (xT ) +

T−1∑
t=0

(
1

2
F (xt)

]
+R

√
2Qir

(t+ 8)1/3
+
LR2γt

2

)

⇒
T−1∑
t=0

E [G (xt)] ≤ E
[

7

2
F (x0)− 7

2
F (x∗)

]
+

T−1∑
t=0

(
1

2
(F (xt)− F (x∗)) +R

√
2Qir

(t+ 8)1/3
+
LR2γt

2

)

⇒
T−1∑
t=0

E [G (xt)] ≤
7

2
F (x0)− 7

2
F (x∗) +

T−1∑
t=0

(
Q
′

ir +R
√

2Qir
2(t+ 8)1/3

+
LR2

(t+ 8)

)

⇒ TE
[

min
t=0,··· ,T−1

G (xt)

]
≤ 7

2
F (x0)− 7

2
F (x∗) + LR2ln(T + 7) +

Q
′

ir +R
√

2Qir
2

(T + 7)2/3

⇒ E
[

min
t=0,··· ,T−1

G (xt)

]
≤ 7(F (x0)− F (x∗))

2T
+
LR2ln(T + 7)

T
+
Q
′

ir +R
√

2Qir
2T

(T + 7)2/3 (I.32)

I.3 Proofs for KWSA

Proof of Lemma 10.4.2(3). Following as in the proof of Lemma 10.4.2, we have,

E
[
‖∇f(xt)− dt‖2

]
≤ (1− ρt)2E

[
‖∇f(xt)−∇f(xt−1)‖2

]
+ (1− ρt)2‖E

[
∇f(xt−1)− dt−1‖2

]
+ (1− ρt)2βtE

[
‖∇f(xt−1)− dt−1‖2

]
+

(1− ρt)2

βt
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
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+
ρt
2

(1− ρt)c2tL2d

+ ρt(1− ρt)E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+ ρt(1− ρt)E

[
‖∇f(xt−1)− dt−1‖2

]
≤ 2ρ2

tσ
2 + 2ρ2

t c
2
tdL

2

+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
+
ρt
2

(1− ρt)c2tL2d

≤ 2ρ2
tσ

2 + 2ρtc
2
tdL

2

+

(
1− ρt +

(1− ρt)2

βt

)
E
[
‖∇f(xt)−∇f(xt−1)‖2

]
+
(
1− ρt + (1− ρt)2βt

)
E
[
‖∇f(xt−1)− dt−1‖2

]
, (I.33)

where we used the gradient approximation bounds as stated in (10.15) and used Young’s inequality to

substitute the inner products and in particular substituted 2〈∇f(xt)−∇f(xt−1),∇f(xt−1)− dt−1〉 by the

upper bound βt‖∇f(xt−1)− dt−1‖2 + (1/βt)‖∇f(xt)−∇f(xt−1)‖2 where βt > 0 is a free parameter.

According to Assumption 2.4.2, the norm ‖∇f(xt) − ∇f(xt−1)‖ is bounded above by L‖xt − xt−1‖. In

addition, the condition in Assumption 2.3.1 implies that L‖xt − xt−1‖ = Lγt‖vt − xt‖ ≤ γtLR. Therefore,

we can replace ‖∇f(xt) − ∇f(xt−1)‖ by its upper bound γtLR and since we assume that ρt ≤ 1 we can

replace all the terms (1− ρt)2. Furthermore, using βt := ρt/2 we have,

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 2ρtc

2
tdL

2 + γ2
t (1− ρt)

(
1 +

2

ρt

)
L2R2

+ (1− ρt)
(

1 +
ρt
2

)
E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.34)

Now using the inequalities (1− ρt)(1 + (2/ρt)) ≤ (2/ρt) and (1− ρt)(1 + (ρt/2)) ≤ (1− ρ/2) we obtain

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 2ρtc

2
tdL

2 +
2L2R2γ2

t

ρt

+
(

1− ρt
2

)
)E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.35)

Proof of Theorem 10.5.1(3). Now using the result in Lemma I.1.1 we can characterize the convergence of

the sequence of expected errors E
[
‖∇f(xt)− dt‖2

]
to zero. To be more precise, using the result in Lemma

10.4.2 and setting γt = 2/(t+ 8), ρt = 4/(t+ 8)2/3 and ct = 2/
√
d(t+ 8)1/3 for any ε > 0 to obtain

E
[
‖∇f(xt)− dt‖2

]
≤(

1− 2

(t+ 8)2/3

)
E
[
‖∇F (xt−1)− dt−1‖2

]
+

32σ2 + 32L2 + 2L2R2

(t+ 8)4/3
. (I.36)
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According to the result in Lemma I.1.1, the inequality in (I.18) implies that

E
[
‖∇f(xt)− dt‖2

]
≤ Qkw

(t+ 8)2/3
, (I.37)

where

Q = max
{

4‖∇f(x0)− d0‖2, 32σ2 + 32L2 + 2L2R2
}

Now we proceed by replacing the term E
[
‖∇f(xt)− dt‖2

]
in (I.15) by its upper bound in (I.28) and γt+1

by 2/(t+ 9) to write

E [f(xt+1)− f(x∗)] ≤
(

1− 2

t+ 9

)
E [(f(xt)− f(x∗))]

+
R
√
Qkw

(t+ 9)4/3
+

2LR2

(t+ 9)2
. (I.38)

Note that we can write (t+ 9)2 = (t+ 9)4/3(t+ 9)2/3 ≥ (t+ 9)4/392/3 ≥ 4(t+ 9)4/3.Therefore,

E [f(xt+1)− f(x∗)] ≤
(

1− 2

t+ 9

)
E [(f(xt)− f(x∗))]

+
2R
√
Qkw + LD2/2

(t+ 9)4/3
. (I.39)

Thus, for t ≥ 0 by induction we have,

E [f(xt)− f(x∗)] ≤ Q′

(t+ 9)1/3
= O

(
d0

(t+ 9)1/3

)
. (I.40)

where Q′ = max{2(f(x0)− f(x∗)), 2R
√
Qkw + LR2/2}.

Proof of Theorem 10.5.2(3). Following as in (I.23), we have,

γtE [G (xt)] ≤ E [F (xt)− F (xt+1)] + γtR

√
2Qkw

(t+ 8)1/3
+
LR2γ2

t

2
+

⇒ E [G (xt)] ≤ E
[
t+ 7

2
F (xt)−

t+ 8

2
F (xt+1) +

1

2
F (xt)

]
+R

√
2Qkw

(t+ 8)1/3
+
LR2γt

2

⇒
T−1∑
t=0

E [G (xt)] ≤ E

[
7

2
F (x0)− T + 7

2
F (xT ) +

T−1∑
t=0

(
1

2
F (xt)

]
+R

√
2Qkw

(t+ 8)1/3
+
LR2γt

2

)

⇒
T−1∑
t=0

E [G (xt)] ≤ E
[

7

2
F (x0)− 7

2
F (x∗)

]
+

T−1∑
t=0

(
1

2
(F (xt)− F (x∗)) +R

√
2Qkw

(t+ 8)1/3
+
LR2γt

2

)

⇒
T−1∑
t=0

E [G (xt)] ≤
7

2
F (x0)− 7

2
F (x∗) +

T−1∑
t=0

(
Q
′

kw +R
√

2Qkw
2(t+ 8)1/3

+
LR2

(t+ 8)

)

⇒ TE
[

min
t=0,··· ,T−1

G (xt)

]
≤ 7

2
F (x0)− 7

2
F (x∗) + LR2ln(T + 7) +

Q
′

kw +R
√

2Qkw
2

(T + 7)2/3

⇒ E
[

min
t=0,··· ,T−1

G (xt)

]
≤ 7(F (x0)− F (x∗))

2T
+
LR2ln(T + 7)

T
+
Q
′

kw +R
√

2Qkw
2T

(T + 7)2/3 (I.41)
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I.4 Proofs for Non Convex Stochastic Frank Wolfe

Proof of Theorem 10.5.3. We reuse the following characterization derived earlier:

Lemma I.4.1. Let Assumptions 10.4.3-10.5.1 hold. Given the recursion in (2.18), we have that ‖∇f(xt)−
dt‖2 satisfies

E
[
‖∇f(xt)− dt‖2

]
≤ 2ρ2

tσ
2 + 4ρ2

tL
2
1

+ 8ρ2
t

(
1 +

s(d)

m

)
L2

1 +

(
1 +m

2m

)
ρ2
t c

2
tL

2M(µ)

+
2L2R2γ2

ρt
+

ρt
2m2

c2tL
2M(µ)

+
(

1− ρt
2

)
)E
[
‖∇f(xt−1)− dt−1‖2

]
. (I.42)

Now using the result in Lemma I.1.1 we can characterize the convergence of the sequence of expected errors

E
[
‖∇f(xt)− dt‖2

]
to zero. To be more precise, using the result in Lemma 10.4.2 and setting γ = T−3/4,

ρt = 4/
(
1 + d

m

)1/3
(t+ 8)1/2 and ct = 2

√
m/
√
M(µ)(t+ 8)1/4 to obtain for all t = 0, · · · , T − 1,

E
[
‖∇f(xt)− dt‖2

]
≤

(
1− 2(

1 + d
m

)1/3
(t+ 8)1/2

)
E
[
‖∇F (xt−1)− dt−1‖2

]
+

32σ2 + 64L2
1 + 128

(
1 + d

m

)1/3
L2

1

(t+ 8)

+
8L2R2

(
1 + d

m

)1/3
+ 416L2

(t+ 8)
. (I.43)

Using Lemma I.1.1, we then have,

E
[
‖∇f(xt)− dt‖2

]
= O

(
(d/m)2/3

(t+ 9)1/2

)
,∀ t = 0, · · · , T − 1 (I.44)

Finally, we have,

F (xt+1) ≤ F (xt) + γt〈dt,vt − xt〉

+ γ〈∇F (xt)− dt,vt − xt〉+
LR2γ2

2

≤ F (xt) + γ〈dt, argmin
v∈C
〈v,∇F (xt)〉 − xt〉

+ γ〈∇F (xt)− dt,vt − xt〉+
LR2γ2

2

≤ F (xt) + γ〈∇F (xt), argmin
v∈C
〈v,∇F (xt)〉 − xt〉

+ γ〈∇F (xt)− dt,vt − argmin
v∈C
〈v,∇F (xt)〉〉+

LR2γ2

2

≤ F (xt)− γG (xt) +
LR2γ2

2
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+ γ〈∇F (xt)− dt,vt − argmin
v∈C
〈v,∇F (xt)〉〉

⇒ γE [G (xt)] ≤ E [F (xt)]− E [F (xt+1)]

+ γRE [‖∇F (xt)− dt‖] +
LR2γ2

2

≤ E [F (xt)]− E [F (xt+1)] + γtR

√
E
[
‖∇F (xt)− dt‖2

]
+
LR2γ2

2

≤ E [F (xt)]− E [F (xt+1)] +Qncγρ
1/2
t R(d/m)1/3 +

LR2γ2

2

⇒ E [Gmin]Tγ ≤ E [F (x0)]− E [F (xt+1)]

+QncγR(d/m)1/3
T−1∑
t=0

ρ
1/2
t +

LR2Tγ2

2

⇒ E [Gmin] ≤ E [F (x0)]− E [F (x∗)]

Tγ

+ γQncR(d/m)1/3

∑T−1
t=0 ρ

1/2
t

Tγ
+
LR2Tγ2

2Tγ

⇒ E [Gmin] ≤ E [F (x0)]− E [F (x∗)]

T 1/4

+
QncRd

1/3

T 1/4m1/3
+
LR2

2T
, (I.45)

where Gmin = mint=0,··· ,T−1 G (xt).
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