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Abstract

Many different phenomena, such as spreading of infectious diseases in networks and dissemination of
information through social networks are modeled as a diffusion over a network of nodes. Localizing the
source of diffusion becomes crucial for quarantine efforts, as well as for identifying trendsetters. In many
real world networks, due to their size, it is unfeasible to observe the infection times of all nodes. In this case,
identification of the source node is carried out based only on a subset of nodes, called observer nodes. The
choice of observer nodes heavily impacts the accuracy of source localization.

In this thesis we specifically focus on the analysis and design of observer selection strategies with the
goal of understanding which are the best nodes to observe that contribute the most to the disambiguation of
the source on graphs for different diffusion scenarios. There are four main contributions of our work:

• We model the dynamics of network diffusion in a purely deterministic scenario as a linear time-
varying system, and present a necessary and sufficient condition for exact source localization in the
context of the proposedmodel, as well as in the context of graph theory. Relating the observer selection
problem to a known problem in graph theory, we design observer selection strategies with performance
guarantees.

• We present necessary and sufficient conditions for exact source localization when the network topology
is not fully known as the edges between different communities are hidden, and the components are all
trees, cycles, grids and complete graphs. We also give sufficient conditions when the components are
of arbitrary structure.

• We formulate ametric, based on error exponents, that can be used to compare different observer subsets
from the perspective of source localization error. We evaluate the metric for three different diffusion
scenarios; in each, the infection times are modeled as random variables with different distributions:
Gaussian, Laplace and exponential.

• We develop different sequential selection strategies, optimal and sub-optimal, for dynamic observer
selection in both deterministic and stochastic setting, and demonstrate the applicability of one of the
proposed strategies on a real-world dataset of a cholera outbreak.
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Chapter 1

Introduction

Many different phenomena that are observed in today’s technological, social and biological networks are
modeled as network diffusion. Examples include: propagation of diseases in human populations [2],
spreading ofworms, email viruses and faults in communication networks [3] and dissemination of information
and propagation of influence in social networks [4]. In disease propagation, individuals are modeled as the
nodes, and the connections between them as the edges, as many diseases spread through contact of an infected
individual with the disease-free ones. Similarly, in spreading of computer viruses, the communication
equipment represents the nodes and the channels between them are the edges, while in rumor propagation,
again, the individuals are the nodes, and the friendship ties between them are the network edges.

In all of the above examples of diffusion, localizing the source, i.e., the node that initiated the diffusion,
plays a crucial role in limiting the damages or identifying trendsetters. Identifying patient zero, also referred
as the index case, is helpful for understanding the origin of the disease and for prevention of further outbreaks.
Localizing and isolating the computer hosting a virus is a key to curbing the infection, and also aids the
authorities in apprehending the perpetrators. Similarly, law enforcement agencies may want to identify
individuals who initiate industry rumors or publish malicious information on social network sites. On the
other hand, marketing companies would like to single out influential individuals in peer networks, who
initiate certain trends or purchasing behavior. Therefore, source localization represents a task of significant
interest.

Often, information available for source localization includes the times when the nodes first became
infected or informed. However, in many real-world networks, due to their size and the cost of data collection,
as well as privacy issues, it is unfeasible to observe the infection times of all nodes [5, 6, 7, 8, 9, 10, 11].
In these cases, identification of the source node involves only observations of a subset of nodes, called
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observer nodes. The choice of these observer nodes heavily impacts the ability to localize the source, hence,
selection of observer nodes plays a critical role for the task of source localization in graphs. In this thesis we
specifically focus on the analysis and design of observer selection strategies with the goal of understanding
which are the best nodes to observe that contribute the most to disambiguation of the source on graphs for
different diffusion scenarios.

1.1 A general network diffusion model

In this work, we refer to network diffusion to describe the process of a contagion spreading through a network,
where the network is modeled as a graph. A contagion may correspond to a virus, a trend or information, and
a network can be social, technological or biological. A network is represented using a graph G = {V, E},
where V = {1, 2, . . . , N } is the set of vertices representing the individuals or nodes and E ⊆ V × V is the set
of edges that may correspond to communication channels or personal ties. There is an edge between nodes
i and j, (i, j) ∈ E, if nodes i and j can communicate directly. If (i, j) ∈ E implies that ( j, i) ∈ E, then the
associated graph is called undirected. We will assume G to be undirected, as infections, rumors or viruses
spread through channels and ties which are typically bidirectional. Additionally, we will consider that the
diffusion spreads over a connected graph, meaning that there is a path between any two vertices in a network.
If some network nodes were disconnected from the rest, the contagion could not reach them, and they would
not be relevant to the diffusion process. Then, to study diffusion we would only consider the remaining part
of the network, which is connected. In Chapters 2 and 4 we will assume to have complete knowledge of
network topology: complete knowledge of nodes and edges between them. However, in Chapter 3 we relax
this assumption and allow some uncertainty in our knowledge of the underlying graph. We still assume
complete knowledge of network nodes, while we consider that some edges are hidden and remain unknown
to us. In this case, the graph that we observe is disconnected, but the graph over which the contagion has
propagated is in fact connected.

The distance between two vertices u and v in graph G represents the number of edges in a shortest path
connecting them and will be denoted as dG (u, v). When there is no ambiguity in the identity of the graph
that is referred to, the graph subscript will be dropped to simplify the notation and distance will be denoted
as d(u, v). The vector of graph distances of node u to a set of nodes O = {o1, . . . , or } in a graph G will be
denoted as dG (O, u) = [dG (u, o1), . . . , dG (u, or )]T . Again, subscript G will be dropped in case there is no
uncertainty in the identity of the graph. The adjacency matrix A of graph G is a N × N symmetric matrix,
with elements [A]i j = 1 if (i, j) ∈ E and [A]i j = 0 otherwise.

We assume a widely used Susceptible-Infected propagation model [12] that was initially used in modeling
of epidemics. In this model, nodes can be in either one of two states: infected or not yet infected (susceptible).
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In our setting, wewill use the term infected node to denote a node towhich a contagion has reached, regardless
of what that contagion is: an infection, a computer virus, a rumor or a certain purchasing or social trend.
Initially, only one infected node is present in the network and we denote it as the source node. Once a node
becomes infected, it remains in that state indefinitely and continues spreading the contagion. As all nodes
are susceptible to the contagion, after some time the whole network will become infected with probability 1.

The time when the first node became infected is referred to as the activation time, t0. We will be
considering several models for t0: assuming it to be known, completely unknown and modeling it as a
random variable with known distribution. Once a node u is infected at time tu , it sends the information to
its neighbor v at time tv = tu + θuv , where θuv denotes the propagation delay along the edge between nodes
u and v. Infection time refers to the first time when a node receives the contagion. In Chapter 4 we will
be making a distinction between a true infection time, which refers exactly to the time when a node became
infected, and an observed infection time, which denotes a time when an individual exhibits symptoms of
infection or reports knowing of a certain rumor. In Chapters 2 and 3, we will make no such distinction,
as we assume both these times to be the same. We will also be considering several different models for
the propagation delay along the edge. In Chapters 2 and 3, we will consider this delay to be a constant
and identical for all the edges. In order to simplify the presentation, we will assume this constant to be
exactly 1, as we can always normalize all the variables. In Chapter 4 we will model the propagation delay
as a random variable with normal distribution. Additionally, in Chapter 4 we will consider the existence
of observation noise which will prevent direct observation of a node’s true infection time, and instead only
observed infection times will be known. Observation noise will be modeled as a random variable with
exponential or Laplace distribution.

Due to network size, limited resources and privacy issues, the infection times cannot be observed for
all the nodes. We denote those nodes whose state can be observed and whose infection times are known
as observers. We will denote with O = {o1, o2, . . . , or } the set of observers, with r typically being much
smaller than the total number of nodes N . Infection times of observers are deterministic in Chapters 2 and
3, and in Chapter 4 they are stochastic.

Note: Vectors will be denoted in bold, matrices with bold capital letters, [M]i j will denote the i, j-th
entry of the matrix M , while vT will stand for the transpose of vector v.

1.2 Related work

Due to many different events that can be modeled as spreading of epidemics in a network, this topic has
been widely researched by many different communities. Initially, the focus has been on the dynamics of the
diffusion process, for example, analyzing the effect of the rate of disease spreading on the final size of the
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infected population, and investigating the conditions under which epidemics either die out or persist. Classic
epidemiology models assume that the population is uniform and homogeneously mixing, i.e., an infected
individual is equally likely to spread the disease to any other member of the population [12]. Later works
removed this assumption and studied the effect of topology on the spreading of epidemics, for example
[2, 13].

Another active line of research focuses onmaking predictions about the likelihood of an infectious disease
outbreak. One type of prediction relates to the risk that a novel infection will appear in a given population, or
given an infectious disease is present, what would be its impact on the population in terms of the number of
infected individuals or which individuals are most likely to be infected next? Another type of prediction deals
with the impact of possible intervention: how many and which individuals should be selected for treatment,
vaccination or quarantine in order to contain the epidemic [14]. In order to predict the spatiotemporal patterns
of epidemic spreading there has been a lot of work on developing realistic computational epidemic models.
Generally, there have been two approaches to modeling: agent based - where the agents represent single
individuals, and meta-population based - where the system is divided into regions [15]. Agent-based models
provide a rich scenario, but with a high computation cost, while meta-population models are less detailed but
more scalable. An example of an agent-based approach is presented in [16], where spreading of smallpox is
simulated on large-scale graphs built using actual census, land-use, and population-mobility data. A general
stochastic meta-population model that incorporates actual travel and census data from 220 countries was
developed in [17] and validated on data from the global spread of SARS. A Global Epidemic and Mobility
model, also based on meta-population scheme that incorporates railway and airline connections, presented
in [15], allows for simulation of the spread of epidemics at the worldwide scale. When the contact network
cannot be mapped fully as it changes in time, past contact data can also be used to infer the risk of infection.
For example, in [18], a risk assessment analysis incorporating a measure of node’s tendency to maintain
contacts and knowledge of past structural and temporal pattern properties is shown to provide accurate
predictions. The question of an optimal vaccination strategy has also been widely researched. For example,
an optimal vaccination strategy for a foot-and-mouth outbreak is investigated in [19], and a radius of each
infected farm around which vaccination should be performed is determined using a stochastic, farm-based,
spatially-structured model. In [20], it is shown that the most efficient protocol for vaccination in the case of
sexually-transmitted diseases consists of sampling people at random and vaccinating their latest contacts.

The study of identifying the source of diffusion started later, with the work of [4], where the most likely
source of a rumor is located by observing which nodes have been infected at a certain time and knowing the
underlying network structure. The standard Susceptible-Infected model for epidemics is assumed. The time
taken for a node to infect its susceptible neighbor is modeled as a random variable. Across all edges, the
random variables are independent and have an exponential distribution. A source estimator that depends on
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a metric denoted as rumor centrality is proposed and it corresponds to the maximum-likelihood estimator
for regular trees. Even with a single source and assuming that the neighbors of an infected node are all
equally likely to be infected at each time step, it was shown in [4] that source localization is a #P-complete
problem. Based on the estimator for trees, an efficient heuristic estimator for general graphs is proposed and
its performance is verified through simulations.

Incorporating a priori knowledge of the set of suspect nodes with the snapshot observation of infected
nodes, a maximum a posteriori (MAP) estimator for source identification is proposed in [21] and exact and
asymptotic results on its performance on regular tree-type networks are presented.

The problem is extended to multiple sources in [22]. When the number of sources is unknown a priori,
an estimator for sources and their infection regions (subsets of nodes infected by each source) is derived by
approximating the rumor centrality metric of [4]. Theoretical performance measures are obtained for the
class of geometric trees, and by simulation, for general networks.

In [23], the effect ofmultiple observations on the performance of the source estimator is analyzed, showing
that sequential observations for a single instance of rumor spreading cannot improve detectability over the
initial snapshot observation. On the other hand, multiple independent observations, which correspond to
different spreading instances from the same source, lead to dramatic improvement in detectability.

Due to the size of the networks of interest and the cost of collecting data, it is often not feasible to
know the status of all the nodes in the network. Assuming that each node reports its infection status with
probability p > 0, the rumor centrality estimator is extended in [7]. It is shown that for regular trees, such
an estimator achieves a probability of correct detection close to the optimal, where p = 1, as long as the
sampling probability p is higher than a fixed threshold. On the other hand, for geometric trees, for any
p > 0, the estimator achieves essentially the same performance as in the case of p = 1. Under the same
assumptions, the problem is analyzed in [8] and it is shown that the source estimator associated with the
most likely infection path in a tree is a Jordan center, i.e., the node with the minimum distance to the set of
observed infected nodes.

Moving away from the Susceptible-Infectedmodel, [24] investigates the single source estimation problem
for the Susceptible-Infected- Recovered (SIR) model, where an infected node may recover and will not be
infected again. Recovery can happen due to a number of reasons: an individual might heal and become
immune, or anti-virus software can be installed on a computer. The maximum likelihood estimator, in this
case, is hard to obtain even for regular trees, as there are many possible infection sample paths, and hence an
estimator based on the most likely infection path is proposed. As in [8], the source estimator associated with
the most likely infection path of infinite trees is a Jordan center of the network. Similar results are obtained
for the Susceptible-Infected- Susceptible (SIS) model analyzed in [25]. In the SIS model, a recovered node
is susceptible to be infected again, which can model certain diseases like tuberculosis, or change of opinion
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under the influence of peers in social networks. In the independent cascade (IC) model, nodes are also in
one of the two states: infected or susceptible and each infected node only attempts to activate each of its
susceptible neighbors once with specified probability. In [26], it is proved that the Jordan infection center
is also the MAP estimator of the source for tree networks under the IC model. Based on this estimator, an
algorithm is developed for general networks with detection guarantees derived for Erdős-Rényi graphs.

For both SI and SIR models, in [27] many epidemic realizations are obtained by simulation for each
suspected source node, and the node for which the realizations have highest similarity to the observed
epidemics is identified as the source. Departing frommaximum-likelihood estimation and its approximations,
in [28], several different network centrality measures are applied to identify the source; The principle of
Minimum Description Length and the smallest eigenvector of the Laplacian sub-matrix are used in [29] to
localize multiple sources; a spectral technique which identifies the nodes whose removal leads to the highest
reduction of the largest eigenvalue of the adjacency matrix is proposed in [30], while a greedy algorithm in
[6] determines the minimal number of nodes needed to reach a subset of preselected nodes that reported the
rumor. In [31], an inference algorithm based on Dynamic Message Passing is proposed to localize a source
under the SIR model. In [32], a new metric, Rationality Observation Value, is defined for localizing a source
in a tree graph and generalized for an arbitrary graph.

In all of the previously discussed works, observations based on which the source was localized comprised
only a snapshot of the network at a certain time, i.e., knowledge of which nodes were infected at a certain
time. However, in [5] additional information is available: the exact time of infection of a subset of nodes.
In SI settings, the propagation time needed for a node to infect a neighbor is modeled as a Gaussian random
variable, rather than an exponential one as in [4, 7, 21, 22, 23]. This is justified by the fact that in large
networks observed infection times represent a sum of a large number of propagation times, hence, they can
be approximated by Gaussian variables due to the central limit theorem. An optimal maximum-likelihood
estimator is derived for tree networks, while its extension is applied to general networks and its effectiveness
tested on a real data set from a cholera outbreak. As in other works [4, 21, 22, 23], the transition from
a tree network to an arbitrary one is done by assuming that the diffusion occurred in a network through
a breadth-first search (BFS) tree, motivated by intuition that the infection spreads from the source along
minimum-distance paths. A modified breadth-first algorithm for constructing a spreading tree for each node
is proposed in [33]. The nodes are then ranked according to either the cost of the tree or the timestamps, and
the source is chosen as the top-ranked node. Simulation results in [33] show that using such construction of
trees compared to BFS trees yields a higher accuracy of source localization. Table 1.1 summarizes related
work that focuses on source localization.

In some of the above cited works [5, 6, 7, 8, 9, 10, 11], estimation involves only a subset of nodes in order
to include the practical constraint that the status of all the nodes cannot be known in many real networks,
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due to their size, resource constraints or privacy issues. In [7, 8] each node has a certain probability p

of being observed, and the estimators achieve desirable performance conditioned on p being larger than
a certain threshold. In [5, 6, 9, 10, 11], nodes whose status can be observed are selected in advance.
Since the performance of the estimator depends on the number and choice of these preselected nodes,
different selection techniques are investigated. In [5] two strategies are compared by simulations: random
and the selection of high-degree nodes, while in [6] the proposed strategies involve not only random and
high-degree nodes, but also nodes with the largest betweenness centrality and nodes at a specified distance
away from each other. Similarly, in [10], several placement strategies of the observers based on centralities
of nodes (high-degree, high-betweenness, high-clustering coefficient, high-eigenvector and high-closeness)
are compared using simulations. In contrast to the probabilistic models, [34] studies the problem from a
combinatorial optimization point of view: framing the problem of finding the smallest set of observed nodes
that guarantees deterministic identification of the source as a graph theoretic problem of finding a minimum
weighted doubly resolving set (DRS). As in [5], the infection times of a subset of nodes is known, while
the time when the source became active is considered unknown. However, the propagation times are now
assumed a constant. Using the concept of DRS, in [9], a polynomial-time dynamic programming algorithm
is proposed for selecting an optimal number of observers in a tree that yields the lowest uncertainty in source
localization, again for deterministic propagation times. A sufficient condition for source localization based
on unique difference of distances to the observers is given in [11], without making a connection to the
concept of DRS.

Another aspect of network diffusion that has increasingly received attention from the research commu-
nities is inference of the network topology over which diffusion takes place. The motivation for this line
of investigation comes from certain types of propagation, where it is not always possible to know who has
infected or informed whom, as in virus spreading when individuals become sick, without knowing from
where the virus came from, or in viral marketing where people who purchase products or adopt particular
behaviors do not explicitly acknowledge who was their influencer [35, 36, 37, 38].

The link prediction problem aims to extract missing or identify inaccurate diffusion links. This is useful,
for example, in biological networks where costly field and/or laboratory experiments are needed to learn
whether a link exists between two nodes. Then, instead of checking all possible links, researchers can focus
on the most likely, predicted, links [35]. In addition, the data in constructing social networks may contain
inaccurate information and link prediction algorithms can be applied to identify such links. The probability of
a link between two nodes can depend solely on similarity of their network properties, or a certain underlying
network structure can be assumed; the survey of different methods is found in [35]. Inference of both the
missing edges and nodes is tackled in [36], where a Kronecker graph is used to model the underlying network,
and the Expectation Maximization method is used to estimate both the model parameters, as well as the
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edges in the missing part of the network.

In [37] the whole network structure is inferred based on infection times of nodes frommultiple contagions
(the idea, information, virus, disease), without any assumptions on the structure of the underlying network.
The probability of an edge between any two nodes depends only on the time difference of their infection
times, and the most likely propagation tree for each contagion is considered, as the number of possible
diffusion trees is exponentially high. The final network is inferred by maximizing a log-likelihood function
using the property of submodularity. The subsequent work [38], removes the assumption that all connected
nodes in the network infect their neighbors with the same probability and estimates both the missing edges,
as well as the edge transmission probabilities. The complete network structure is also inferred in [41], but
now, the probability of an edge between two nodes does not depend on the difference of their infection times,
but on the number of infected nodes between those times. In [39], the problem of source localization and the
problem of learning the diffusion graph are tackled at the same time using compressed sensing. For the SIS
model, an epidemic network is reconstructed observing the change in the state of the nodes and the source is
localized as the node that never changes its infected state. In [40], the network is again reconstructed using the
difference of infection times. The parameters of the Gaussian distribution that characterizes the propagation
delays along the edges are learnt and then the source is localized by maximizing the log-likelihood, similarly
to [5].

Our work most closely follows [5], as we also assume that we are able to observe the infection times
of a subset of nodes and that a single contagion spreads according to the Susceptible-Infected model, with
each infected node spreading the infection to its neighbors with probability equal to 1. In Chapter 4, we
first study the problem in a purely deterministic scenario as done in [9, 34] in order to derive analytical
results that would help in understanding a more practical framework. We assume the network structure to
be completely known and we propose optimal, and efficient sub-optimal, both block and sequential, node
selection strategies. Next, in Chapter 3, we relax the assumption of complete knowledge of the network
and assume that some connections are not observed, with the same motivation as discussed for the link
prediction and network completion problem [35, 36, 37, 38, 41]. Again for deterministic propagation times,
we derive necessary and sufficient conditions for correct source localization in terms of selected observers,
which has not been addressed previously. In Chapter 4, we present node selection strategies, again block and
sequential, now for stochastic infection times, either assuming the propagation delay to be a random variable
or by assuming some uncertainty in observing the infection times. Unlike in previous work [5, 6, 10, 11]
that also assumes stochastic infection times, we go beyond comparing the performance of centrality based
selection strategies through simulations. Specifically, we derive a theoretical framework based on which we
propose new observer selection strategies. Table 1.2 summarizes and compares our work with related work
that focuses on observer selection problem.
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1.3 Thesis contributions

The main focus of this thesis is the analysis and design of node selection strategies for the purpose of source
localization. We analyze the effect of partially available knowledge, both of the infection times and of the
underlying topology over which diffusion takes place, on the source localization problem. Next, we list the
thesis contributions chapter by chapter.

Chapter 2: Node selection for deterministic infection times

• We define the concept of network observability that characterizes whether the infection times of
observed nodes lead to correct source identification when the infection times are deterministic. We
develop the model for describing diffusion dynamics similar to the model of the dynamics of a linear
time-varying system. We present necessary and sufficient condition for network observability in
the context of the proposed model, as well as in the context of graph theory. Leveraging on the
approximate algorithms for the set cover problem, we develop algorithms for selecting the smallest
number of observers for source localization and for achieving the lowest uncertainty for a specified
number of observers, both with performance guarantees. Part of this work was published in [42].

• We analyze the problem of sequential selection of observed nodes from two perspectives: which nodes
to observe such that the source is localized with the lowest cost, and for a pre-specified number of time-
steps, which nodes to observe such that the resulting number of possible source candidates is lowest.
We solve both problems optimally with a dynamic programming approach. Using the framework of
adaptive submodularity, we also develop greedy algorithms with performance guarantees. This work
was published in [43].

Chapter 3: Node selection for deterministic infection times and in the presence of uncertainty in
the network topology

• We extend the concept of network observability when the network structure is not completely known
and the edges between different communities are hidden. We present necessary and sufficient condi-
tions for network observability when the components are all trees, cycles, grids and complete graphs.
We also give sufficient conditions when the components are of arbitrary structure. This work was
published in [44] and [45].

• We show that the number of topologies consistent with the observed disconnected network scales
exponentially with the number of unknown edges. We formulate the source localization problem in
networks with unknown inter-components edges as a binary linear integer program. This work was
published in [46].
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Chapter 4: Node selection for stochastic infection times

• We define a metric based on error exponents for vanishing noise in order to compare the performance
of different observer subsets in the context of source localization. We evaluate the error exponent
for vanishing noise for three different diffusion scenarios; in each, the infection times are modeled as
random variables with different distributions: Gaussian, Laplacian and exponential. This work has
been submitted to IEEE Transactions to Signal Processing [47].

• We design an algorithm for sequential source localization when infection times are modeled as
correlated Gaussian random variables. We apply a sequential multiple hypothesis test and an observer
selection criterion inspired by adaptive submodularity. We validate the proposed algorithm with real
data from a cholera outbreak.
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Chapter 2

Node selection fordeterministic infection times

Understanding how a particular selection of network nodes inherently affects the performance of any source
estimator requires an analysis of a deterministic propagation model. Uncertainty in the observations or
in the knowledge of the underlying network topology can additionally introduce ambiguity in the source
localization. We would like to grasp the limitations of the observation model which are purely the result
of node selection. Knowing the restrictions imposed by an observer subset on estimation of the source
identity gives us a way to upper bound the performance of any source estimator under additional uncertainty.
Considering a noiseless scenario to assess the limitations of the observation model is similar to the analysis
of system observability. There, observation noise is not considered when characterizing whether the internal
state of the system can be inferred from the system’s output. Later in this chapter, we are going to use this
analogy with the observability of linear systems to model the dynamics of deterministic diffusion and define
our own concept of observability in regards to the inference of the source location.

Let us first describe a deterministic propagation model. Once a node u is infected at time tu , it infects its
neighbor v at time tv = tu + µ. We are assuming the propagation delay along the edge u − v to be a constant
µ, for all u, v pairs of nodes connected by an edge. To simplify the notation, and without loss of generality,
we assume µ = 1, as we could easily normalize all relevant variables with the value of µ. The time when
the source node became active is denoted as t0. Initially, we will assume t0 to be known, to model the cases
when some external event influences the start of the diffusion. For example, after an earthquake or a public
incident, rumors may start flooding the social media. Once the activation time is known, it can be subtracted
from all infection times, and hence, we can set it to zero. In Subsections 2.1.3 and 2.2.4 we will analyze the
case of unknown t0. Assuming node s to be the source, the infection time of a node oi equals the sum of
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propagation delays along the edges on a shortest path from the source to node oi

toi = t0 +
∑

u,v∈P(oi,s)

µu,v = t0 + d(oi, s), (2.1)

where P(oi, s) is the shortest path between oi and s and d(oi, s) is the graph distance, i.e., the number of
edges in this path. Assuming t0 = 0, we have that the infection time of each node in a deterministic model
equals its graph distance to the source.

Since our ability to determine the source location based on the observed infection times heavily depends
on the number and the choice of observed nodes, we are interested in finding a subset of nodes that would
allow us to correctly localize the source. Given that usually resources for observing the nodes are limited
and costly, in terms of time and effort required to learn the infection times, we would like to identify the
source with the smallest number of observers. Another important issue that we analyze is how to choose
a fixed number of observers, when our budget for observing is known and limited, to attain the lowest
uncertainty in the source identity. In this Chapter we analyze these questions in two different settings: block
and sequential. Sometimes, the choice of observers should be made before any diffusion has occurred, and
hence all the observers are selected at the same time, in a block. Other times, however, the observers are
selected dynamically, after the diffusion has already occurred. Then, previous observations can be used to
decide which subsequent node should be selected in order to determine the source position, either with the
smallest observation cost, or with the smallest uncertainty. For block selection strategies, in Section 2.1,
we will analyze the problem using two different approaches, one based on linear systems, and the second
based on graph theory, in order to gain intuition into the problem and leverage on the available results. For
sequential observer selection, in Section 2.2, we also apply two different approaches, one optimal using
dynamic programming, and another one, more efficient, applying the adaptive submodularity principle that
gives a greedy approach, yet with performance guarantees.

2.1 Block selection

When the choice of observer nodes should be made in advance of any contagion spreading, block selection
strategies need to be considered. In expectation of the arrival of an epidemic outbreak, due to epidemics
spreading in nearby regions, medical teams can be placed in advance near certain communities to be able to
quickly localize patient zero and quarantine an infection. By advance selection of appropriate individuals
to follow on a social network, marketing companies can trace back trends to influential trendsetters. Since
the source is determined using observers’ infection times and these correspond to observers’ distance to an
unknown source node, we need to understand how graph distances affect the ability to localize the source.
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In Subsection 2.1.1 we present a model for the dynamics of network diffusion similar to state update of
a linear time-varying system. Based on this model we propose a concept of network observability which
characterizes the ability to uniquely localize the source. We then provide a necessary and sufficient condition
for unique localization. In Subsection 2.1.2, we reformulate the observer selection problem as an existing
problem of finding a resolving set of a graph and leverage on existing results to design observer selection
strategies. Subsection 2.1.3 discusses the results when the activation time, t0, is not known.

2.1.1 Linear systems model

Since we are using the Susceptible-Infected (SI) model [12] for network diffusion, nodes can be in either one
of two states: infected or not yet infected. Once a node is infected it remains in that state. Letting t denote
a discrete time index, then in our deterministic model with known activation time, only the source node is
infected at t = 0. A node infected at time t infects all its neighbors at time t + 1. Let us denote with xi the
state of node i at time t, such that

xi (t) =



0, node i is still not infected at time t

1, otherwise
. (2.2)

Stacking the states of all N nodes at time t into a vector, we obtain the vector of states x(t). Let ei , denote a
column vector with all entries equal to 0 except for the i-th entry, which equals 1 . Then, the initial state x(0)

equals es , where s corresponds to the index of the source node. The infection time of node i, ti , corresponds
to the time when the node became infected, i.e., the time when its state changed from xi (ti − 1) = 0 to
xi (ti ) = 1. Let O = {o1, o2, . . . , or } denote the set of observers. Typically r is much smaller than the total
number of nodes N , as not all the individuals report hearing a rumor, nor the infection times of all patients
are available. The observers are the only nodes whose infection times are known and we denote the vector of
their states as y(t) ∈ Rr . The states of observers are obtained from the full state vector throughmultiplication
by r × N matrix C =

[
eo1, eo2, . . . , eor

]T . With A, we represent an adjacency matrix of a graph. We will
also be using the concept of a walk which is a sequence of vertices (possibly repeated) where each vertex is
adjacent to the preceding vertex in the sequence. The length of a walk is the number of edges that it uses. Let
us also denote by M , a binary matrix that has the same sparsity structure as matrix M , but with all nonzero
elements replaced with 1, as follows

[M]i j =



0, [M]i j = 0

1, [M]i j , 0
.
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Now, we can state a theorem that characterizes the evolution of network diffusion under the above discussed
assumptions.

Theorem 1. The dynamics of network diffusion, under the deterministic SI propagation model, can be

characterized as follows

x(t) = Φ (t, 0) x(0) (2.3a)

y(t) = C x(t), (2.3b)

where Φ (t, 0) = At + At−1.

Proof. The state equation (2.3a) for node i can be rewritten as

xi (t) =
∑
j

[Φ]i j (t, 0)x j (0) = [Φ]is (t, 0). (2.4)

The last equality of (2.4) holds since x(0) has a single nonzero entry for the source node. Now we refer
to the specific properties of the powers of adjacency matrices [48], where the i j-th entry of At equals the
number of walks of length t between nodes i and j. Based on this property, we have that if the distance of
node i to the source is ti , then [Φ]is (t, 0) = 0 for all t < ti , which consequently gives xi (t) = 0 for all t < ti .
At t = ti , both [Φ]is (t, 0) and xi (t) assume the value 1. If there exists a walk of length ti , then there also
exists at least one walk of length ti + 2l, for l = 0, 1, . . ., as any edge included in the walk can be repeated
(once in the forward and once in the backward direction) to add a cycle to the walk, increasing its length.
Hence Ati+2l > 0, and subsequently [Φ]is (ti + 2l, 0) = 1. At times t = ti + (2l + 1), [Φ]is (t, 0) is equal
to 1, at least due to the term At−1. Therefore, for all t ≥ ti , [Φ]is (t, 0) = 1 and the state of the node is 1,
reflecting the fact the node i became infected at time ti .

The observation equation (2.3b) models that at each time t, only the state of the observers can be seen.
Thus, the equations (2.3) describe the state evolution and available observations for the diffusion process in
a general network. �

Presented model of dynamics of network diffusion corresponds to a space state representation of a linear
time-varying systemwith a constant observation matrix. Stacking equations (2.3b) for times t = 0, . . . , N−1,
we get the following matrix equation
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y(0)

y(1)
...

y(N − 1)



=



C

CΦ (1, 0)
...

CΦ (N − 1, 0)



x(0),

or equivalently
YN−1 = ON−1x(0). (2.5)

We refer to Nr × N matrix ON−1 as a network observability matrix. Using the analogy with linear system
we introduce the concept of network observability in the context of source localization.

Definition 1. For a subset of observers, we call a network observable, if and only if any source node can be
unambiguously localized based on the observers’ infection times in the deterministic propagation model.

Based on the proposed model of network diffusion 2.3 we present the necessary and sufficient conditions
for network observability.

Theorem 2. If the rank of the observability matrix ON−1 is equal to N for a given subset of observers, then

the network is observable . The source can be localized by recovering the initial condition as follows

x(0) =
(
O

T
N−1ON−1

)−1
O

T
N−1YN−1. (2.6)

The necessary condition for network observability is for the observability matrix ON−1 to have N unique

columns.

Proof. In a network of N nodes, the largest distance between any pair of nodes is at most N − 1, meaning
that the states of all the observers will be 1, at most by time N − 1 and will remain the same for all t ≥ N − 1.
Product CΦ (t, 0) has an interesting structure; its i j-th entry is equal to 1, only if there is a path of length
smaller or equal to t between observer oi and node j, otherwise it is 0. Hence, all entries of CΦ (t, 0) are
equal to 1, for t ≥ N − 1. Therefore, stacking CΦ (t, 0), for t > N − 1 will not increase the rank of the
observability matrix. This is parallel to the property of linear time-varying systems where, where if the
initial state can be recovered, then it can be recovered from observations y(0), . . . , y(N − 1). From (2.5), if
the observability matrix has a full column rank, we obtain (2.6), as a standard result from linear algebra.

In order to uniquely identify the source node based on the distances of observers to it, it is necessary
that at least one observer has a different distance to the source node, compared to all the remaining nodes.
If the observability matrix has N unique columns, looking at the structure of the product CΦ (t, 0), this is
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1

2 3

4 5 6 Figure 2.1: An example tree network with 6 nodes.
Assuming that node 3 is the only observer, the observ-
ability matrix has only 4 unique columns and rank 4,
and hence, the network is not observable. In this case,
if the infection time of node 3 was t3 = 3, then the
source could be either node 4 or 5. However, if t3 = 2,
then we would be able to correctly identify the source
as node 2, even though the network is not observable.

equivalent to the condition that there are no two nodes with the same distances to the observers, which is
exactly what is needed for correct localization. �

Verifying the observability of a network using Theorem 2 does not require knowledge of infection
times of the observers. Thus, it is a task that can be efficiently performed offline, before the actual source
localization takes place. The observability of a network does not depend on the source node, meaning that
in such a network, regardless of which node is the source, the information from the observers is sufficient to
identify it. However, this condition is not necessary for a particular choice of the source node. As Figure 2.1
illustrates, a network might be generally unobservable given a particular choice of observers, but this does
not imply that the information provided by the observers is insufficient to identify the source node in all the
cases.

Since the infection times of the observers correspond to their graph distance to the source, localizing the
source, other than with (2.6), can be performed directly using graph distances. Let us denote with D ∈ Rr×N

the distance matrix, whose elements [D]i j represent the distance between observer oi and node j. Again, let
y ∈ Rr be the vector of infection times of observers. Then the source localization problem can be stated as
finding the column of matrix D which exactly equals vector y. The column number is then the identity of the
source node. In case of unobservable network and multiple source suspects, there are multiple columns of D
equal to y. Further analysis of the observer selection problem in the context of graph distance is presented
in the next subsection.

2.1.2 Graph theoretic model

Network observability, other than through terminology from systems theory, can also be defined using the
terms from graph theory as presented in the following Theorem.

Theorem 3. For a given subset of nodes O, a network G is observable, if and only if the set O is a resolving

set of G.
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Proof. The necessary condition for correct source localization from Theorem 2 implicitly states that the
choice of observers needs to be such that all the nodes in a network have different distances to them. Let
us denote with d(i,O) = [d(i, o1), . . . , d(i, ok )] the r-vector of distances from node i to the set of observers
O = {o1, . . . , or }. Then, having the set of observers that will satisfy the necessary condition for correct node
localization can be stated as d(i,O) , d( j,O) for all i, j pairs of nodes. Stated as such, finding the set of
observers with this property corresponds to the problem of finding a resolving set of nodes O of the graph
[49]. �

The introduction of resolving sets by [50] was motivated by the application of placement of a minimum
number of sonar detectors in a network and independently, also for describing the structure of chemical
compounds in pharmaceutical chemistry [51]. In [52], resolving sets are analyzed in order to determine
the minimum number of landmarks needed for robot navigation on a graph. A resolving set of the smallest
cardinality is called a metric basis and the cardinality of the metric basis is called the metric dimension of
a graph. We state the connection between the smallest set of observers and a metric basis in the following
Corollary of Theorem 3.

Corollary 4. The smallest set of nodes that makes a network G observable forms a metric basis of G.

Due to the time and cost involved with monitoring the nodes, localizing the source using the minimum
possible resources is certainly a problem of interest. By establishing a connecting between the minimum
number of observers for network observability and a known problem of finding a metric basis, we can take
advantage of known results from graph theory. Although finding a metric basis of an arbitrary graph is
NP-hard problem [52], for some families of graphs it can be easily determined [53]. Table 2.1 summarizes
some of these results. Specific results, among others, also exist for hypercubes and wheel graphs [53], as
well as for random networks [54].

Table 2.1: A minimum number of nodes that achieves network observability for special graph classes

Name path cycle complete tree d-dim grids
Min no. of nodes 1 2 n − 1 no. of leaves-K a d
An example subset leaf 2 consecutive nodes all but 1 node a subset of leaves corner vertices

a K is the number of nodes of at least three degrees that are on the shortest path between at least two leaves.

The problem of finding the metric dimension of a graph can be cast as the set cover problem [52]. In
the set cover problem there is a set U of n elements and a collection S = {S1, . . . , Sm } of m subsets of U

such that their union covers U . The goal is to select as few subsets as possible from S such that their union
covers U . For the problem of finding the metric dimension, we have that the set U corresponds to the set of
all node pairs i, j for i , j, and each Si is a set of node pairs that node i distinguishes, for i = 1, . . . , N . A
node i distinguishes two nodes u, v if it has different distances to them, i.e., d(i, u) , d(i, v). Hence, the goal
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is to selects as few nodes as possible in order to distinguish all node pairs. Set cover problem is known to be
NP-Hard, but there exist approximation algorithms for it. Greedy cover algorithm that selects one by one the
node that distinguishes the highest number of node pairs is a (log N + 1) approximation [52, 55]. Then the
same greedy approach with performance guarantees can be applied in order to select the minimum number
of observers that achieve network observability. Algorithm 1 shows the pseudocode for the greedy cover.

Algorithm 1 Greedy algorithm for selecting the minimum number of observers needed for
network observability
1: O ← ∅ // O is the current observer set
2: U ← {all i, j pairs of nodes, for i , j} // U is the current set of indistinguishable pairs
3: while U , ∅ do
4: select a node i that distinguishes the most node pairs
5: O ← O ∪ i
6: U ← U \ {node pairs distinguished by node i}
7: end while

Other than finding the smallest set that achieves observability, we are also interested in selecting a given
number of observers that achieves the smallest uncertainty in source identity. One way to look at this problem
is to frame it as a maximum coverage problem. Maximum coverage is another known NP-hard problem
where there is a set U of n elements and a collection S = {S1, . . . , Sm } of m subsets of U such that their
union covers U . Also, an integer r ≤ m is specified, and the goal is to select r subsets from S such that their
union has the maximum cardinality. Greedy cover is now a 1− 1

e approximation algorithm for the maximum
coverage problem [55]. Again, the same greedy approach with performance guarantees can be applied in
order to select r observers that distinguish between the most node pairs. Here, we measure the ambiguity
in the source identity with the number of indistinguishable node pairs. If there are p nodes that cannot be
mutually distinguished, that means

(
p
2

)
pairs that are not distinguishable. Algorithm 2 shows the pseudocode

for the greedy cover.

Algorithm 2 Greedy algorithm for selecting r observers that lead to the smallest ambiguity in the source
identity
1: O ← ∅ // O is the current observer set
2: U ← {all i, j pairs of nodes, for i , j} // U is the current set of indistinguishable pairs
3: for k = 1 to r do
4: select a node i that distinguishes the most node pairs
5: O ← O ∪ i
6: U ← U \ {node pairs distinguished by node i}
7: end for

The performance of Algorithm 1 is illustrated with the following simulation example. We generated 500
Erdős-Rényi graphs, eachwithwith 20 nodes and a randomly chosen probability of an edge, p ∈ (0, 1). Erdős-
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Figure 2.2: Performance of the Algorithm 1 for 500
Erdős-Rényi graphs with 20 nodes and different edge
probabilities.

Rényi is a random graphmodel where each pair of nodes is connectedwith equal probability, independently of
other pairs. For each graph, we found the smallest set of observers, by checking all the possible combinations.
Since finding the smallest set is a combinatorial problem, it is computationally very intensive and hence
we use only a 20 node graph. Also, for each graph, we use Algorithm 1 to find an approximation of the
smallest set. We binned the edge probabilities in 50 evenly sized bins, and for each bin, we averaged the
true smallest number of observers, as well as the number of observers found by the greedy algorithm. As
Figure 2.2 shows, the approximation algorithm closely follows the optimal solution, and in around 70% of
cases, the two quantities actually coincide. The greedy approach chooses at most two observers more than
the minimum needed, and this occurred in less than 2% of realizations. Also, the example illustrates that as
the edge probability increases and the graph becomes more dense, more observers are needed to correctly
distinguish between the nodes. For very sparse graphs, the number of needed observers is small, but as the
graph increasingly resembles a complete one, the minimum number of observers tends to n − 1.

2.1.3 A note on unknown activation time

When the activation time of the source is not known, then the infection times of the observers are not used
to directly estimate the source location [5, 9, 34, 40]. Instead, one of the observers is chosen as a reference
point, and relative observed times are defined. Let us select o1 as the reference observer, and denote with
xoi the relative infection time of observer oi . Assuming the source to be node s, from the expression for
observers’ infection time (2.1) we have

xoi = toi − to1 = d(oi, s) − d(o1, s). (2.7)

Now, the new observations for source localization are no longer observers’ distances to the source, but the
difference of distances. In [34] it was shown that the source can be unambiguously localized using the
difference of distances if the observers form a doubly resolving set. Let u, v, i, j be four distinct nodes of G.
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Nodes {u, v} doubly resolves {i, j}, or {u, v} doubly resolves i and j, if [56]

d(u, i) − d(u, j) , d(v, i) − d(v, j).

Every doubly resolving set is also a resolving set, while the reverse does not hold [56]. Finding the smallest set
of the observers that achieves network observability corresponds to another known problem in graph theory:
finding a minimum doubly resolving set, which is an N P-hard problem. Polynomial time approximation
algorithm exist for this problem that achieves an approximation ratio of (1 + o(1)) log N [34]. Hence, this
algorithm can also be applied to find a minimum number of observers needed for network observability. The
result from [34] shows that if S is a doubly resolving set, and s is any node from S, then every pair of nodes is
distinguished by at least one element of {{s, v} : v ∈ S \ {s}}. As a consequence of this result, the definition
of resolved and unresolved set does not depend on the particular choice of a reference point [9], which is a
fact that we will make use of in Subsection 2.2.4.

2.2 Sequential selection

In the previous section, we proposed selection strategies where all observers were selected at the same time.
Now, we analyze the selection strategy when nodes are chosen dynamically, and the current observer is
selected based on the infection times of the previous observers. This might be useful, for example, when a
person who initiated a certain trend over a social network should be identified. Then the choice of which
blog or site should be examined to help track this person is made after reading the previous site, as the
newly acquired information is used to narrow down the search. Similarly, after an outbreak, mobile teams of
doctors can be dispatched one by one to track down the zero patient and each new team can benefit from the
observations of the previous teams in order to decide which is the most informative site to observe next. We
examine the dynamic selection problem from two perspectives. First, we wish to find a selection strategy
such that the source can be unambiguously localized with the smallest cost. Here, we consider that nodes
might have different cost of observing, where cost is associated with resources, like time and effort, required
to learn the node’s infection time. The second problem we analyze is when the number of nodes that can
be observed is predefined and we look at the strategy that would result with the smallest number of source
candidates.

Now, we formulate the problem of finding a selection strategy that leads to source localization with the
lowest cost. As shown in Theorem 3, a source s can be unambiguously identified by an observer set O if and
only if d(s,O) , d(i,O), for all nodes i ∈ V, i , s. However, as the identity of node s is unknown, the goal
is to find a strategy π that minimizes the expected cost, for all possible sources s ∈ V . Let us denote with
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c(i) the cost of observing node i. Then finding the optimal strategy can be formulated as follows

min
π
Es [c (O (π))]

subject to d(O (π) , s) , d(O (π) , i), ∀s ∈ V, s , i, (2.8)

where O (π) is the set of observers selected according to strategy π and c(O (π)) is the sum of costs of all
nodes in the set O (π), i.e., c(O (π)) =

∑
i∈O(π) c(i). Let t be a vector of observed infection times. We

denote with S(O) = {s1, ..., sl } a set of source candidates after a set O of nodes has been observed, i.e.,
S(O) = {s′ : d(O, s′) = t }. It is important to note that the members of set O are selected one at a time,
and the selection stops when S(O) = {s}, i.e., there is only a single source candidate. The order by which
the nodes are selected influences the total cost c(O), as for different sequences of observers the stopping
criterion might be met at different times, thereby incurring different total cost.

Next, we formulate the problem of finding a strategy of selecting a number of observers r such that the
ambiguity in the source identity is the lowest. Here, we consider all nodes have cost equal to 1, as the cost
here denotes a time-step. Then the goal is to find a strategy π for observer selection, such that the expected
ambiguity is the lowest, i.e., the expected number of source candidates is the smallest for r selected observers.
The problem can be stated as follows

min
π
Es |S (O (π)) |

subject to |O (π) | ≤ r, (2.9)

where again the expectation refers to all the possible sources.

In Subsection 2.2.1 we show that both of these problems can be optimally solved using dynamic
programming with imperfect state knowledge. However, since most networks of interest are very large, the
computation cost of the optimal approach is prohibitive. Hence, in Subsection 2.2.2, we propose efficient
approximation strategies. The performance of the proposed selection strategies is illustrated in Section 2.2.3.
Initially, we assume that the time when the source became active is known, and in the Subsection 2.2.4, we
relax that assumption and extend the results.

2.2.1 Optimal strategy

Stochastic dynamic programming is an optimization methodology for problems where information becomes
available sequentially, and each time after new information becomes available, a certain action is selected and
executed [57]. In order to optimally solve (2.8) and (2.9), we apply dynamic programming for imperfect state
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(a) An example network (b) Observation diagram when
node 1 is the source

Figure 2.3: Analysis of source candidates (b) for a network shown in (a). The source candidates are shown
given that the true source is node 1. Red arrows and numbers on (b) represent the nodes selected for
observation, while the ovals show the resulting source candidates, with some self-loops omitted. For

example, if node 4 is selected as the first observer, the source is exactly determined, as S({4}) = {1}, while
selecting the sequence of observers 5, 2, 3 results in source candidates 1, 4, since S({5, 2, 3}) = {1, 4}. The

metric dimension of the network is 2, while the resolving number is 4.

information, i.e., when the exact state of the system is not known, and the decisions are based on partially
available information about the state. In our settings, the state of the system corresponds to the identity of
the source. Each node has a certain probability of being the source, encoded as the prior distribution over
the nodes. When prior is not available, initial probabilities are set to 1/N . The identity of the source cannot
be directly observed, and instead the distances to it are known through the infection times of the observers.
In the first part, for simplified presentation, we will assume the activation time to be known. Later, we will
extend the results to accommodate unknown activation time.

For t0 = 0, although what is directly observed are the infection times of the observers, which are equal
to their distance to the source, for more intuitive presentation, we will model the information that becomes
available as the identity of the current source candidates, i.e., nodes whose distance vector to the observers
equals observed infection times. We denote as Sk = {s1, . . . , sl } the source candidates after k nodes have
been observed, i.e., after k-th time step. Figure 2.3b shows an analysis of resulting source candidates for
all possible observer sequences, when the source is node 1 and the network is as shown on 2.3a. At the
beginning of each time-step k, the information vector based on which the subsequent action is taken is
Ik = (o1, . . . , ok−1, Sk−1). Hence, the selection of a new observer is based on the knowledge of previously
selected observers and the current source candidates.

In order to apply dynamic programming, we analyze all the possible sequences backwards, starting from
the selection of the last observer, to the first, one step at a time. However, since different sequences of
selected observers result in localizing the source at different time steps, the last step occurs at different times
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for different sequences. Therefore, we propose to do the following. We set the final time step equal to the
resolving number of the graph, ρ. The resolving number is the minimum number p such that every p-subset
of V is a resolving set of G [58]. Hence, after ρ time-steps, every observer sequence results in a single source
candidate, and there is no need to analyze longer sequences. Unlike metric dimension, it can be determined
in polynomial time. Now, we set the terminal cost, i.e., the cost after time step ρ, to 0 for all sequences.
Next, we address the issue that some observer sequences resulted in source localization at times earlier than
ρ. Let gl denote the cost at step l, specifically let gl (i) denote the cost of selecting node i as the l-th observer
at time step l. Then, if the source is identified at the end of time-step k, i.e., |Sk | = 1, we set the cost gl of
each subsequent action to 0, i.e., gl (i) = 0, for l > k and ∀i ∈ V . Until the source is identified, the cost of
selecting each node i is its cost c(i), i.e., gl (i) = c(i), for l ≤ k, if the source is identified in the k−th step.
In this way, we can analyze all the sequences from the same ending point, while accommodating that some
sequences reach the goal at an earlier time, hence the cost of each subsequent step after source localization
has already been done should be 0. Now, applying the dynamic programming cost calculation [57], we have
that the tail cost Jρ (Iρ ) for the last step ρ is

Jρ (Iρ ) = min
o∈V

[
Es

{
gρ (o) |Iρ, o

}]
, (2.10)

where the expectation is taken over all the possible sources s ∈ V . Hence, the tail cost examines the cost
for each possible information vector Iρ , which contains all preceding sequences of ρ − 1 observers and the
resulting source candidates of each sequence. The cost of action at time step ρ is conditioned on the new
observer selected, as well as on the existing information vector. This models that the cost of selecting an
observer might be 0, even though the cost of the nodes is non-zero, if the source has already been localized,
i.e., |Sρ−1 | = 1. For each information vector, the optimal cost (2.10) is evaluated, and the observer that
achieves this cost is selected as the optimal observer for a given Iρ .

o∗ρ (Iρ ) = argmin
o∈V
Es

{
gρ (o) |Iρ, o

}
.

For the preceding observers k = 1, . . . , ρ − 1, the tail cost is given as the solution of the optimization
problem

Jk (Ik ) = min
o∈V

[
Es {gk (o) + Jk+1(Ik+1) |Ik, o}

]
. (2.11)

Now the tail cost at time k not only includes the cost of selecting a node o as the observer, but also the
remaining cost-to-go Jk+1, which depends on all the previous, and the newly selected observer, as well as the
updated source candidates, obtained after observing the k-th observer. Again, for each possible information
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vector, a node that minimizes the cost at step k is chosen as the optimal observer for a given Ik .

o∗k (Ik ) = argmin
o∈V
Es {gk (o) + Jk+1(Ik+1) |Ik, o} .

The information vector I1 is empty, as there is no previous observation available for the selection of the
first observer. The obtained optimal sequences are of length ρ, but only the k first nodes are of interest,
where k is the first step for which |Sk | = 1. The calculations (2.10) and (2.11) are done off-line, before the
observer selection starts. Then, the optimal o∗1 is the first selected node, and based on its observation which
results in I2, the second observer is selected, and so on.

The value of the optimal cost J1 represents the total optimal cost, an expected amount of resources that
are spent to identify the source without any uncertainty. If the cost of all the nodes equals 1, the optimal
cost is upper bounded by the metric dimension. The reasoning is as follows: one selection strategy could be
observing the nodes that form a resolving set. With this strategy, it is guaranteed that regardless of the source,
there would be no ambiguity after selection of such a set. Now, equations (2.10) and (2.11) give an optimal
solution which cannot be larger than the solution produced by any other strategy. The additional information
available during the selection process can contribute to the reduction of the expected cost, compared to the
off-line strategy.

Next, in order to apply dynamic programming to optimally solve optimization problem (2.9), we slightly
modify the previously described setup. Since a sequence of r nodes should be selected, the horizon is set to r

time-steps, and different sequences of the same length have different terminal cost, as they result in different
number of source candidates. The terminal cost is associated with the cardinality of the set of candidates;
the larger the set is, the larger the uncertainty. Now, we have the cost of the last step for an information vector
Ir is determined as

Jr (Ir ) = min
o∈V

[Es {|Sr | |Ir, o}] . (2.12)

Again, for each information vector, an optimal observer is selected as the node that achieves the minimal
cost.

The remaining steps, k = 1, . . . , r − 1 do not add any additional cost, as we assume all nodes have the
same cost and the goal is to have the smallest ambiguity possible within a given time frame. Hence the
preceding tail-costs only average over possible sources as follows

Jk (Ik ) = min
o∈V

[Es {Jk+1(Ik+1) |Ik, o}] , (2.13)

and at each time step, for a given Ik , an optimal observer is selected as the node that achieves the minimal
cost. As mentioned before, there is no previous observation available for the selection of the first observer.
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Again, these calculations are completed before the selection process starts. After selection of the first
node, based on its infection time, the subsequent observer is chosen as the node that minimizes the cost J2,
for the given information vector. From (2.13) the obtained optimal cost, J1 represents an expected number of
node suspects after observing T observers. The results of applying (2.11) and (2.13) to a network depicted
in Figure 2.3a is shown in Table 2.2.

Table 2.2: The expected cost calculated for each node of the network shown in Figure 2.3a of being selected
as o1. For problem(2.8), the cost is evaluated with (2.11), while for problem (2.9), it is evaluated with

(2.13). All nodes are assumed to have cost equal to 1 and for problem (2.9), r = 1. Optimal J1 is calculated
as the smallest such cost. We have, then, for problem (2.8), that the expected cost is calculated as

Es {1 + J2(o, S1) |o}, with J1 = 8/5 and any one of the nodes 1, 2, 3 or 4 as an optimal first observer. As for
the problem (2.9) when only one can be selected for observation, the expected cost is Es {|S1 | |o}, the

optimal node is node 5, and J1 = 9/5, i.e., on average there will be 9/5 source candidates after observing
the infection time of node 5.

Expected
cost of o1 for

Node
1 2 3 4 5

Problem (2.8) from (2.11) 8/5 8/5 8/5 8/5 9/5
Problem (2.9) from (2.13) 11/5 11/5 11/5 11/5 9/5

2.2.2 Greedy strategies

Even though dynamic programming leads to optimal solutions, it is not a feasible strategy for larger networks.
Problems (2.8) and (2.9) are of combinatorial nature and there is an exponential growth of computational
and storage requirements as the network size increases. Hence, we need to resort to sub-optimal, yet more
efficient, selection strategies. We will take advantage of adaptive submodularity, as for the problems with
this property, a simple adaptive greedy algorithm is guaranteed to be competitive with the optimal policy
[59]. Before we apply the adaptive submodular framework, we explain the necessary concepts [59].

Adaptive submodular functions are a generalization of submodular set functions to adaptive policies [59].
Submodular functions are functions with diminishing return property, where the benefit of an item when
added to a set will not be increase when that item is added to a larger set. Whereas submodular functions
deal with sets, adaptive submodular functions handle sequences. Additional difference is the presence of
uncertainty in the state of the items, whose true state is learned only when the item is selected. Let E be a
finite set of items, and each item i ∈ I is in unknown state from a set T of possible states. The item states are
represented by a function φ : I → T which is called a realization. Prior probability over realization, p(φ)

is known. After selection of each item, its state is observed, and observations are represented using partial
realization ψ, a function that maps the items that we already picked into their states. A partial realization
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ψ is consistent with a realization φ, ψ ∼ φ, if they are equal everywhere in the set of observed items. Let
f denote a utility function that depends on which items we pick and which state each item. Then, given
a partial realization φ and an item i, the conditional expected marginal benefit of i conditioned on having
observed ψ, is

∆(i |ψ) = E
[

f (ψ ∪ i, φ) − f (ψ, φ) |φ ∼ ψ
]
,

where the expectation is computed with respect to the posterior belief about the state of all items i not yet
selected, p(φ|ψ). Hence, the conditional expected marginal benefit of a function quantifies the expected
benefit of selecting an item, given previously observed items, where the expectation is taken with respect to
the posterior probability distribution of the unknown state. A function f is adaptive monotone if

∆(i |ψ) ≥ 0, ∀i ∈ I . (2.14)

A function f is adaptive submodular if

∆(i |ψ) ≥ ∆(i |ψ ′), for ψ ⊆ ψ ′, (2.15)

and i is an action not included in ψ ′. It is important to note that when comparing the two expected marginal
benefits, there is a difference in both the set of items previously selected and the expectation is taken with
respect to two different posterior distributions, p(φ|ψ) vs. p(φ|ψ ′) .

Now, that we have introduced the known concepts of adaptive submodularity framework, we need to apply
it for problems 2.8 and 2.9. We define our utility function as the number of discarded source candidates after
observing a set of observers O, i.e., f (O, s) = N − |S(O) |. In the following theorem we state its interesting
properties.

Theorem 5. Function f (O, s) = N − |S(O) | is adaptive monotone and submodular for a uniform source

prior.

Proof. The set of nodes that can be selected as the observers represent the set of items. The unknown state
of the item is the node’s infection time, i.e., its distance to the source, which is learnt only after a node
is observed. A realization is the identity of the source node, while a partial realization is the identity of
the current source candidates. For a uniform source prior, all nodes are equally likely to be the source and
P(s = s), for s = 1, . . . , N . After observing a set of observers O, and obtaining a set of source candidates
S(O) = {s1, s2, . . . , sl, sl+1, . . . , sm }, the posterior probability of each node being the source is updated. Now
P(s = s) = 1

|S (O) | , for s ∈ S(O), and P(s = s) = 0, for s < S(O). The conditional expected marginal benefit
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of observing a node o equals

∆ (o|S(O)) = E [N − S(O ∪ o) − N + S(O) |S(O)] = E [|S(O) | − |S(O ∪ o) | |S(O)] , (2.16)

where the expectation is taken with respect to the posterior probability of the source given the current source
candidates. Let us fix source s. All the nodes that are source candidates after observing the set O cannot be
mutually distinguished, and for any node s′ ∈ S(O) and s′′ ∈ S(O ∪ o) we have that

d(s′,O) = d(s′′,O) = d(s,O). (2.17)

For all the nodes that remain source candidates after additionally observing node o , s′ ∈ S(O ∪ o), it also
holds d(s′, o) = d(s, o). Hence, S(O) ⊇ S(O ∪ o) holds for any source s, and thus for the expected value as
well. Therefore, ∆ (o|S(O)) ≥ 0, and hence the condition for adaptive submodularity (2.14) holds.

Let hs (O, o) = |S(O) | − |S(O∪ o) | denote the number of source candidates from S(O) that are discarded
after observing o, given that the source was s. A source candidate s′ is discarded if its distance to the
observer o is not equal to d(s, o), where s is the true source. Hence hs (O, o) equals the number of source
candidates s′ ∈ S(O) that have d(s′, o) , d(s, o).

In order to establish the condition for submodularity (2.15), we need to show that

1
|S(O) |

∑
s∈S (O)

hs (O, o) ≥
1

|S(O′) |

∑
s∈S (O′)

hs (O′, o) (2.18)

holds for any set O′ ⊇ O and any new observer o < O′.

Let S(O′) = {s1, s2, . . . , sl } denote the set of source candidates after a set of O′ observers is selected.
Since O′ ⊇ O, we have that S(O′) ⊆ S(O). Let X = S(O) \ S(O′) denote a set of candidates which are
discarded after O′ \ O observers were additionally selected after the initial set O. Set X can also be empty,
if newly selected observers have the same distance to all the source candidates. Now we can split the sum
that runs over s ∈ S(O) into s ∈ S(O′) and s ∈ X to obtain a new expression for the LHS of (2.18)

1
|S(O) |

∑
s∈S (O)

hs (O, o) =
1

|S(O) |

∑
s∈S (O′)

hs (O, o) +
1

|S(O) |

∑
s∈X

hs (O, o). (2.19)

Let us denote with Rs (T ) = {i : i ∈ T, d(i, o) , d(s, o)} a subset of nodes fromT that are no longer considered
source candidates after observing o. Now we can further split the sum

∑
s∈S (O′) hs (O, o) into two sums, one

referring to discarded source candidates from S(O′) and the other including the discarded source candidates
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from X , after a new observer o is selected

∑
s∈S (O′)

hs (O, o) =
∑

s∈S (O′)

hs (O′, o) +
∑

s∈S (O′)

|Rs (X ) |. (2.20)

Plugging back (2.19) and (2.20) into (2.18) we obtain

1
|S(O) |

*.
,

∑
s∈X

hs (O, o) +
∑

s∈S (O′)

|Rs (X ) |+/
-
≥

(
1

|S(O′) |
−

1
|S(O) |

) ∑
s∈S (O′)

hs (O′, o). (2.21)

After a little simplification of (2.21) we obtain

∑
s∈X

hs (O, o) +
∑

s∈S (O′)

|Rs (X ) | ≥
|X |
|S(O′) |

∑
s∈S (O′)

hs (U, o). (2.22)

Now, we analyze the RHS of (2.22). For s = s1, the value of hs (O′, o) equals the number of nodes from
S(O′) = {s1, s2 . . . , sl } that have distance to the observer o different from d(s1, o). The sum on the RHS of
(2.22) runs over all values of s ∈ {s1, s2 . . . , sl }. Therefore,

∑
s∈S (O′) hs (O′, o) counts the number of node

pairs that have different distance to o (and equals twice this number) as shown in Table 2.3. Now, let k be
the number of different values that d(s′, o), for s′ ∈ S(O′) can take. Denoting each of the possible values as
ai , for i = 1, . . . , k, let pi , be a number of nodes s′ ∈ S(O′) that have d(s′, o) = ai . Then we can rewrite∑

s∈S (O′) hs (O′, o) as

∑
s∈S (O′)

hs (O′, o) = |S(O′) |( |S(O′) | − 1) −
k∑
i=1

pi (pi − 1), (2.23)

as |S(O′) |( |S(O′) | − 1)− is the value the sum can take if all d(s′, o) for s′ ∈ S(O′) have different values
from each other and each term pi (pi − 1) subtracts those pairs that have the same value of the distance to the
observer. This subtraction only takes place if there are at least two nodes with the same value ai .

gs (O′, o)

ru
nn

in
g
va
lu
es

of
th
e
su
m

d(s1, o) d(s2, o) . . . d(sl, o)
d(s1, o)
d(s2, o)
. . .

d(sl, o)

Table 2.3: RHS of (2.22):
∑

s∈S (O′) hs (O′, o)
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Let p = maxi pi be the cardinality of the largest set of source candidates with the same value d(s′, o),
s′ ∈ S(U). Now we can bound the RHS of (2.22) as

|X |
|S(O′) |

∑
s∈S (O′)

hs (O′, o) ≤
|X |
|S(O′) |

(
|S(O′) |( |S(O′) | − 1) − p(p − 1)

)
. (2.24)

Next, we analyze the LHS of (2.22). Similarly, as above, we notice that for s = sl+1, the value of
gs (O, o) equals the number of nodes from {s1, s2 . . . , sl, sl+1, . . . , sm } which have the distance to o different
from d(sl+1, o). The sum

∑
s∈X gs (O, o) runs for values s ∈ {sl+1, . . . , sm }. The second term on the

LHS of (2.22) is
∑

s∈S (O′) |Rs (X ) |. For s = s1, the value of |Rs (X ) | equals to the number of nodes from
{sl+1, . . . , sm } which have the distance to o different from d(s1, o). The sum

∑
s∈S (O′) |Rs (X ) | runs for

values s ∈ {s1, . . . , sl }. Now, we notice that both terms of the LHS of (2.22) count the number of different
values of the distance to the observer o for sets of nodes {s1, . . . , sl } and {sl+1, . . . , sm }. Additionally, the
first term of the LHS of (2.22) also counts the number of node pairs that have different values of distances
to the new observer o from the set of nodes {sl+1, . . . , sm }.

Let us analyze the smallest number of nodes from the set of S(O′) = {s1, . . . , sl } that have the distance
to observer different from d(sl+1, o). We have already grouped the values of these distances into groups of
p1, . . . , pk nodes, with p denoting the cardinality of the largest group. Then, the number of nodes with the
different distance from d(sl+1, o) is at least |S(O′) | − p. The same reasoning holds also for d(sl+2, o), . . . ,
d(sm, o). Therefore the LHS of (2.22) is at least 2|X |( |S(O′) | − p). Now applying these bounds to (2.22),
we need to show that

2|X |(|S(O′) | − p) ≥
|X |
|S(O′) |

(
|S(O′) |(|S(O′) | − 1) − p(p − 1)

)
. (2.25)

Since S(O′) ≥ 1, we can rearrange (2.25) to obtain

(p − |S(O′) |)(p − |S(O′) | − 1) ≥ 0. (2.26)

As 1 ≤ p ≤ |S(O′) |, we can see that (2.26) always holds, which implies that (2.18) also always holds, which,
in turn, proves the submodularity claim. �

Now, applying the results of Theorem 5, we can reformulate (2.8) and (2.9) with a uniform prior as an
adaptive stochastic optimization problem, in order to take advantage of the guarantees available for its greedy
approximate algorithms. Problem (2.8) can be cast as an Adaptive Stochastic Minimum Cost Cover problem
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as follows

min
π
Es [c (O (π))]

subject to N−S (O (π)) ≥ N − 1, ∀s ∈ V, s , i, (2.27)

while (2.9) can be stated as Adaptive Stochastic Maximization

max
π
Es [N − |S (O (π)) |]

subject to |O (π) | ≤ r . (2.28)

Greedy algorithm, at each iteration, myopically increases the expected objective value, given currently
available observations. Hence, at each time step, a node o is selected, such that it maximizes the expected
marginal benefit ∆(o|S(O)) given by (2.16), knowing the current source candidates S(O). Basically, a node
o is selected as the next observers if its expected decrease in the number of current source candidates is the
highest. Algorithm 3 shows the pseudocode for the greedy approach applied to problem (2.27).

Algorithm 3 Greedy algorithm for sequential selection of observers for source localization with the smallest
cost based on adaptive submodularity
1: O ← ∅ // O is the current observer set
2: S(O) ← {1, . . . , N } // S(O) is the set of current source candidates
3: while |S(O) | > 1 do
4: foreach o ∈ V \O do ∆(o|S(O)) = Es∈S (O) [|S(O) | − |S(O ∪ o) | |S(O)]
5: Select o∗ ∈ argmaxo ∆(o |S (O))

c (o)
6: O ← O ∪ {o∗}
7: Observe o∗ and determine new source candidates S(O)
8: end while

Let c(πopt ) denote the optimal cost of (2.27), and c(πg ) represent the expected cost achieved by
Algorithm 3. Then c(πg ) ≤ c(πopt )

(
log (N (N − 1)) + 1

)
is guaranteed to hold [59].

Greedy approach can also be applied to problem (2.28). Again, node o is chosen such that it maximizes
the expected decrease in the number of source candidates. Algorithm 4 shows the pseudocode for the greedy
approach applied to problem (2.27). Let f (πoptr ) denote the optimal expected number of source candidates
after r steps, and f (πgr ) represents the expected value of candidates obtained by Algorithm 4. Then the
results in [59] guarantee that f (πg

k
) ≤ (1 − e−1) f (πopt

k
) + N

e .
We additionally propose a second approximation strategy for observer selection. In the adaptive Algo-

rithms 3 and 4, an observer is selected that minimizes the weighted expected number of source candidates. In
this approach, an observer is selected based on the worst case scenario, by minimizing the weighted highest
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Algorithm 4 Greedy algorithm for sequential selection of r observers that lead to the smallest ambiguity in
the source identity based on adaptive submodularity
1: O ← ∅ // O is the current observer set
2: S(O) ← {1, . . . , N } // S(O) is the set of current source candidates
3: for k = 1 to r do
4: foreach o ∈ V \O do ∆(o|S(O)) = Es∈S (O) [|S(O) | − |S(O ∪ o) | |S(O)]
5: Select o∗ ∈ argmaxo ∆(o |S (O))

c (o)
6: O ← O ∪ {o∗}
7: Observe o∗ and determine new source candidates S(O)
8: end for

possible number of source candidates. We denote as T p
S

(o) the nodes of the set S which are at distance p to
node o, where p = 1, . . . , lS (o), and lS (o) is the maximum such distance, i.e. T p

S
(o) = {t : t ∈ S, d(o, t) = p}

and lS (o) = maxi∈S d(o, i). Then |T p
S (O) (o) | represents the number of current source candidates that are at

the same distance from the node o, i.e., they cannot be distinguished by node o, and will remain as the source
candidates. Hence, δ(o, S(O)) = maxp |T p

S (O) (o) | is the number of the largest, mutually indistinguishable,
group of source candidates. In this approach that minimizes the worst case ambiguity, a node o is chosen such
that this largest group is the smallest. The pseudocode for the greedy approach that myopically minimizes
the highest ambiguity in order to localize the source with the smallest cost is given by Algorithm 5.

Algorithm 5 Greedy algorithm for sequential selection of observers for source localization with the smallest
cost based on minimizing the worst case
1: O ← ∅ // O is the current observer set
2: S(O) ← {1, . . . , N } // S(O) is the set of current source candidates
3: while |S(O) | > 1 do
4: foreach o ∈ V \O do δ(o, S(O)) = maxp |T p

S (O) (o) |
5: Select o∗ ∈ argmino c(o)δ(o, S(O))
6: O ← O ∪ {o∗}
7: Observe o∗ and determine new source candidates S(O)
8: end while

The same approach can be used to approximate the problem (2.28), and the resulting pseudocode is
shown in Algorithm 6.

2.2.3 Simulation results

Now, we illustrate the performance of the approaches proposed in Sections 2.2.1 and 2.2.2. We will compare
the performance of both the optimal and the greedy algorithms with a weighted random selection which we
will use as a benchmark. Specifically, this random selection at each step randomly selects a node i with
a normalized probability p(i) inversely proportional to its cost, i.e., p(i) = 1

c (i)/
∑

j
1

c ( j ) , thereby selecting
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Algorithm 6 Greedy algorithm for sequential selection of r observers that lead to the smallest ambiguity in
the source identity based on minimizing the worst case
1: O ← ∅ // O is the current observer set
2: S(O) ← {1, . . . , N } // S(O) is the set of current source candidates
3: for k = 1 to r do
4: foreach o ∈ V \O do δ(o, S(O)) = maxp |T p

S (O) (o) |
5: Select o∗ ∈ argmino c(o)δ(o, S(O))
6: O ← O ∪ {o∗}
7: Observe o∗ and determine new source candidates S(O)
8: end for

more costly nodes with less probability.

We applied the algorithms for observer selection to randomly generated small world networks of various
sizes. Small world networks are used to model many real-world phenomena and systems, such as power
grids, social influence networks and even the collaboration graph of film actors [60]. The small world model
starts from a ring lattice, where each edge is rewired at randomwith a certain probability p. This construction
interpolates between a regular graph (p = 0) and a completely random one (p = 1). We generated a lattice,
with each node being connected with an edge to all the nodes within distance 2 in a lattice. Then, all the
edges were rewired randomly with p = 0.3. For each network size, 100 random networks were considered,
and the result of each algorithm was averaged for these 100 realizations. A uniform source prior was used,
and node costs were chosen randomly in the range (0, 1).

The cost incurred by the optimal and greedy approaches for localizing the source, i.e., for problem
(2.8), is shown in Figure 2.4. As Figure 2.4a clearly demonstrates, both the optimal and the two greedy
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Figure 2.4: The performance of dynamic programming and greedy approaches for solving the problem (2.8)
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Figure 2.6: The performance of Algorithms 3 and
5 for larger sized networks

approaches, Algorithms 3 and 5, incur significantly lower cost than the benchmark random selection. In
order to compare the proposed approaches, their costs are shown in Figure 2.4b, without the benchmark.
Both greedy algorithms result in only slightly higher cost than the one incurred by the optimal strategy,
with Algorithm 3 performing slightly better than the Algorithm 5. The cost of source localization counter
intuitively decreases with the network size, which is just an artifact of the way that the node cost is generated,
and not normalized by the sum of all the node costs. In a network with higher number of nodes, since
node costs are generated randomly, there is a wider range of values available, and a higher number of less
expensive nodes, resulting in a lower total cost, even though the number of the observed nodes increases.

Figure 2.5 shows the corresponding average execution time, which is, as expected, much higher for the
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Figure 2.7: The performance of dynamic programming and greedy approaches for solving the problem (2.9)
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optimal solution, and the lowest for the random selection. Due to the high computation cost of dynamic
programming, we compared only the performance of the approximation algorithms for larger networks, sized
100 − 500 nodes. Figure 2.6 shows that both the greedy approaches, Algorithms 3 and 5, achieve source
localization with a cost much lower than the benchmark random selection, on the average 13 times lower.
The gap between greedy and random selection increases as the number of nodes increases.

Similar conclusions can bemade regarding the algorithms’ performance for localizing the source with the
smallest ambiguity, given that only 2 observers can be selected. In this case, all the nodes have the same cost
that equals 1. The performance of the dynamic programming and greedy approaches for solving the problem
(2.9) is shown in Figure 2.7, now for networks with 10 − 30 nodes. Again, both the optimal approach and
the Algorithms 4 and 6 yield much lower number of source candidates than the random selection, especially
as the number of nodes in the network increases. Algorithm 4 achieves near optimal performance. The
time required for all of the approaches is shown in Figure 2.7b. The dynamic programming is much more
computationally intensive than the other algorithms, requiring around 700 times more execution time than
the Algorithm 4 for the network of 30 nodes, for comparable performance.

2.2.4 Extending the results to unknown activation time

As discussed in Subsection 2.1.3, when the activation time is not known, instead of infection times, the
relative infection times are used, defined by (2.7). Since the source can be unambiguously identified only if
the set of observers forms a doubly resolving set, we can reformulate the problem of finding a strategy for
observer selection that achieves source localization with the smallest cost as follows

min
π
Es [c (O (π))]

subject to d(oi (π), s)−d(oj (π), s) , d(oi (π), s′) − d(oj (π), s′),

∀s, s′ ∈ V, s , s′, for some oi (π), oj (π) ∈ O (π) . (2.29)

Here oi (π) and oj (π) denote a pair of observers selected by the strategy π, and it can be a differ-
ent observer pair that differentiates between different pairs of nodes s and s′, for s, s′ ∈ V . Next,
let us fix the source to be node s and stack relative infection times of r observers into a vector x =

[d(o2, s) − d(o1, s), . . . , d(or, s) − d(o1, s)]T . Now, the source candidates are all the nodes that have their
relative infection time equal to that of the source, i.e.,

S(O) =
{
s′ :

[
d(o2, s′) − d(o1, s′), . . . , d(or, s′) − d(o1, s′)

]T
= x

}
. (2.30)
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With this modified definition of the source candidates, the formulation of the problem of finding a strategy
of selecting r observers, such that the ambiguity in the source identity is the lowest, is equivalent to (2.9).
Since relative times are used, at least two observers are needed, hence, |O(π) | ≥ 2.

the dynamic programming approach can again be applied to solve the problems (2.29) and (2.9) with
the updated definition of S(O). Only a few more adjustments are necessary for the method given in the
Subsection 2.2.1. An important result from [34], stated in the Subsection 2.1.3, shows that for a doubly
resolving set, a choice of the reference point is not important; it can be any node from the set. Hence,
when analyzing sequences of observers, we can arbitrarily choose a reference observer, and easily determine
source candidates. The horizon for analysis of observer sequences of the problem (2.29) is set to N − 1,
instead of the resolving number, ρ, of the graph. Now, any N − 1 subset of nodes is a doubly resolving
set, and, therefore, any sequence of N − 1 observers will result in an unambiguous source localization. For
both problems, the selection of the first and the second observer, which was the penultimate and the ultimate
step in the backward analysis in the Subsection 2.2.1, are performed at the same time. As selecting a single
observer is not meaningful, initially, a pair of observers should be selected. Then, instead of determining
costs-to-go, J1 and J2, for example, for the first problem (2.29), there is only a single stage

J1,2 = min
o1,o2∈V

[
Es

{
g1,2(o1) + g1,2(o2) + J3(I3) |o1, o2

}]
,

and, analogously, for the second problem. In this step, there are no previous observations available and
information vector I1,2 is empty, as was previously I1. Again, all the analysis is performed before the
selection takes place, then, the first two observers are selected as the ones that achieve J1,2. Based on their
infection times, their relative infection time is determined, and the next observer is selected. Hence, the
results from the Subsection 2.2.1 can also be used when the activation time is not known.

Again, we are also interested in the approximation algorithms due to the combinatorial nature of the
problems. Next, we show that the results from Subsection 2.2.2 also apply.

Theorem 6. Function f (O, s) = N − |S(O) | is adaptive monotone and submodular for a uniform source

prior and when S(O) represents a set of source candidates with the relative infection times equal to the

source.

Proof. The conditional expected marginal benefit is again given by (2.16), except that S(O) is now defined
as (2.30). Let us fix the source to be node s. All the nodes that are source candidates after observing the set
O = {o1, . . . , or } cannot be mutually distinguished, and for any node s′ ∈ S(O) and s′′ ∈ S(O ∪ o) we have
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that

[
d(s′, o2) − d(s′, o1), . . . , d(s′, or ) − d(s′, o1)

]T
=

[
d(s′′, o2) − d(s′′, o1), . . . , d(s′′, or ) − d(s′′, o1)

]T
= [d(s, o2) − d(s, o1), . . . , d(s, or ) − d(s, o1)]T .

For all the nodes that remain source candidates after additionally observing node o , s′ ∈ S(O ∪ o), it also
holds d(s′, o) − d(s′, oi ) = d(s, o) − d(s, oi ), for all i = 1, . . . , r . Hence, S(O) ⊇ S(O ∪ o) again holds for
any source s, and thus for the expected value as well. Therefore, we once more have ∆ (o|S(O)) ≥ 0, and
the condition for adaptive submodularity (2.14) holds.

Again, let hs (O, o) = |S(O) | − |S(O ∪ o) | denote the number of source candidates from S(O) that are
discarded after observing o, given that the source was s. A source candidate s′ is discarded if

d(s′, o) − d(s′, oi ) , d(s, o) − d(s, oi ). (2.31)

The choice of observer oi ∈ O is arbitrary, as if (2.31) holds for one oi , it holds for all the other observers,
as well. We prove this by contradiction. We assume (2.31) holds for some oi ∈ O, but not for oj ∈ O, j , i,
i.e.,

d(s′, o) − d(s′, oj ) = d(s, o) − d(s, oj ). (2.32)

Since s′ ∈ S(O), it means it cannot be doubly resolved from s by oi, oj , and

d(s′, oi ) − d(s′, oj ) = d(s, oi ) − d(s, oj ) (2.33)

holds. Combining (2.32) and (2.32) we have

d(s′, oi ) − d(s, oi ) = d(s′, oj ) − d(s, oj ) = d(s′, o) − d(s, o),

which is a contradiction with the assumption (2.31). Hence, if a node o doubly resolves s′ and s, the choice
of the reference node is again arbitrary. Then, hs′ (O, o) equals the number of source candidates s′ ∈ S(O)

for which (2.31) holds. To show that the function is adaptive submodular, we need to show that the condition
(2.18) holds. Now we fix oi and denote q(s) = d(s, o) − d(s, oi ). Then, for s = s1, the value of hs (O′, o)

equals the number of nodes s′ from S(O′) = {s1, . . . , sl } that have q(s′) , q(s1), and
∑

s∈S (O′) hs (O′, o)

counts the number of node pairs that have different values of q(s) (and equals twice this number). This is
similar to the Table 2.3, except d(s′, o) is replaced with q(s′), for s′ = s1, . . . , sl . Using the same reasoning
as in the Theorem 5, we can once more bound

∑
s∈S (O′) hs (O′, o) with (2.23). The rest of the proof also

38



follows the proof of Theorem 5, with q(s′) taking the role of d(s′, o). �

Applying the results of the Theorem 6, we can again use the formulations (2.27) and (2.27) and solve
them using greedy approaches that has performance guarantees. Hence, Algorithm 3 can be applied to
perform sequential selection of observers for source localization with the smallest cost based on adaptive
submodularity and Algorithm 4 for sequential selection of r observers that lead to the smallest ambiguity in
the source identity based on adaptive submodularity, even when the activation time is not known.

2.3 Summary

In this Chapter, we have analyzed the observer selection problem assuming there was no uncertainty in the
nodes’ infection times. This enabled us to isolate the effect of the choice of observers on the ability to uniquely
localize the source, ignoring (for now) the additional ambiguity introduced by noise. We have tackled two
specific problems: determining a set of nodes that would lead to source localization with the smallest cost,
and determining a set of nodes with a given cardinality that would lead to the smallest uncertainty in the
source identity. These two problems were analyzed in two different settings: block and sequential.

For the block selection that assumes all the nodes are selected at the same time, in Subsection 2.1.1, we
have modeled the dynamics of diffusion as a linear time-varying system. This allowed us to define a concept
of network observability which characterizes the ability to localize a diffusion source given the observations
of a subset of nodes. We presented a sufficient and necessary condition for network observability. In
Subsection 2.1.2 we have related the problem of observer selection to a known problem of finding a resolving
set of a graph. We have shown that the network is observable only if the set of observers forms a resolving
set. We leveraged on existing results from graph theory to determine the smallest set of nodes needed for
network observability for special graph classes, whereas for general graphs this is an NP-hard problem.
Using the connection with resolving sets and the set cover problem, we presented approximation algorithms
with performance guarantees. These results were established under the assumption that the time when the
source became active is known, while in Subsection 2.1.3 we presented available results when that time is
unknown.

In Section 2.2, we have analyzed the dynamic observer selection strategies, i.e., when the observations
of the previous observer are used to select the subsequent one. Using dynamic programming with imperfect
state knowledge, in Subsection 2.2.1, we determined the optimal strategy for both problems. As the optimal
approach is computationally very intensive, in Subsection 2.2.2, we developed efficient approximation
algorithms. Using the adaptive submodularity framework, we obtained performance guarantees for a greedy
approach. In Subsection 2.2.3, we illustrated the near optimal performance of the greedy algorithms. Once
more, these results were established under the assumption that the time when the source became active is
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known, while in Subsection 2.2.4 we omitted this assumption and extended the results. We showed that the
presented algorithms can also be applied in this case.
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Chapter 3

Node selection fordeterministic infection times

and in the presence of uncertainty in the

network topology

In the previous chapter, we have assumed that the network topology, the underlying graph over which
contagion spreads, is completely known. However, in many cases, this assumption does not hold. Individuals
may not be willing to disclose all their social connections, and not all information is propagated through
monitored social network sites. Often, local connections within communities are well known, while the
connections between them are not always fully observed. This may happen when diseases spread from
one community to another through random contact, rather than a known friendship connection, or when
novel information is spread through weak, rather than strong, social ties [61]. In this chapter, we relax
the assumption of complete knowledge of network topology and instead assume that the structure of local
network components is available, while inter-component edges are the ones that are not observed. We, once
more, assume deterministic propagation, in order to specifically analyze the effect of the choice of observers
on the ability to disambiguate the source, now in the presence of uncertainty in the network topology. We
will assume the activation time to be known.

Since we assume to have the knowledge of the structure of local communities, but not of the connections
between them, the observed network is a disconnected graph F that comprises k ≥ 2 connected components,
Ci , for i = 1, . . . k. As we are interested only in the first time that a node gets informed or infected, we assume
the number of unobserved inter-component edges is k − 1, making the graph connected, yet there are no
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cycles between the components. We denote as F (k) the class of such observed graphs with k components
and k − 1 missing edges. Then, with H (F), we denote the class of all the possible graphs that can be
constructed by adding k − 1 edges between the components of the observed graph such that the resulting
graph is connected. If the observed graph is F ∈ F (k), then the true network structure can be any graph
from the class H (F). One straightforward idea in handling the network uncertainty would be to analyze
separately all possible graphs from the class H (F) from the perspective of network observability. The
following Theorem shows why the explicit enumeration of all such topologies is not a feasible option.

Theorem 7. For a disconnected graph F ∈ F (k) of k components, each comprising |Ci | nodes, i = 1 . . . k,

the cardinality of the classH (F) is

|H (F) | =
kk−2∑
p=1

∏
(i, j )∈Tp

|Ci | |Cj |, (3.1)

where Tp ∈ T (k) and T (k) denotes a class of trees with k nodes.

Proof. Given k nodes, there are kk−2 spanning trees that can be constructed [62]. Considering components
as isolated supernodes, we denote with Tp ∈ T (k), for p = 1, . . . , kk−2, all the possible trees that can
be formed by joining supernodes in a tree, by adding k-1 edges between them. Since an edge between
two components can connect any two nodes on each component, there is a total of |Ci | |Cj | ways in which
components i and j can be linked. Therefore, as each edge between components i and j in a tree Tp can be
realized in |Ci | |Cj | ways, each tree of supernodes, Tp , can be realized as

∏
(i, j )∈Tp

|Ci | |Cj | different trees on
the set of nodes, from which (3.1) follows. �

Arranging the component sizes in ascending order, |C1 | ≤ . . . ≤ |Ck |, the number of possible topologies,
|H (F) |, can be bounded as

kk−2 |C1 |
k−1

k∏
j=2
|Cj | ≤ |H (F) | ≤ kk−2 |Ck |

k−1
k−1∏
j=1
|Cj |. (3.2)

From Theorem 7 and (3.2), it follows that the number of possible topologies scales exponentially with
the number of connected components, and also grows with the components’ sizes. Hence, analyzing each
possible topology separately is computationally very challenging even for small networks with only a few
missing edges. Again, we are interested in unambiguous source localization and determining the smallest
set of nodes that would achieve it, despite the lack of complete knowledge of the diffusion graph. Hence, in
Section 3.1, we extend the concept of network observability to accommodate incomplete network topology.
Then, we determine the smallest set of observers needed to achieve observability for certain graph classes,
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and establish an upper bound for an arbitrary graph. In Section 3.2, we address the problem of source
localization in a partially known graph using binary linear integer programming.

3.1 Block selection

When the network topology is completely known, the concept of network observability is given by Definition
1. When the edges between different components are unknown, we extend the concept in the following
Definition.

Definition 2. For a subset of observers, we call a partially known network F ∈ F (k) observable, if and
only if any source node can be unambiguously localized based on the observers’ infection times in the
deterministic propagation model, even without knowing which graph from H (F) is the true underlying
diffusion graph.

Now, in an observable network, observers’ infection times are sufficient to disambiguate the source
without knowing exactly how local components are connected. Once more, due to the limited resources,
and the cost associated with node observation, a question of interest would be finding the smallest set of
nodes that would lead to observability. Previously, in Theorem 3, it was shown that the set of nodes that
makes a network observable, forms a resolving set of a graph. The smallest set needed for observability
actually corresponds to a resolving set of the smallest cardinality: a metric basis of the graph. In order to
accommodate for the uncertainty in network topology, we extend the concept of resolving sets. Now, let
dH1 (u,O) be the distance vector of u to the set O = {o1, . . . , or } in the graph H1, that is, dH1 (u, oi ) is the
length of the shortest path between nodes u and oi in the graph H1, for i = 1, . . . , r . Then, we introduce the
following concept.

Definition 3. For a graph F ∈ F (k), we call a set O ⊆ V an extended resolving set, if for any two different
vertices u and v, and any two graphs H1, H2 ∈ H (F), we have dH1 (u,O) , dH2 (v,O).

The cardinality of the smallest extended resolving set of a graph F, denoted by γ(F), we call the extended
metric dimension of F. Denoting ametric dimension of a graphwithmd, we have thatmaxHi ∈H (F ) md(Hi ) ≤

γ(F) ≤ n − 1. Note that while a resolving set is determined for one fixed graph, a generalized resolving
set concerns a whole class of graphs. In the next Theorem, we relate the concepts of observability and an
extended resolving set.

Theorem 8. For a given subset of nodes O, a partially known network F ∈ F (k) is observable, if and only

if the set O is an extended resolving set of F.
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(a) Vertices o1, o2 and o3 are included in the observed set
O.

(b) Vertices o1, o2, o3, o4 and o5 are included in the
observed set O.

Figure 3.1: An example of a partially known network with two components. A missing edge is the one
connecting the two components. In (a) distances of a vertex u from the set O in the graph H1 are the same

as the distances of a vertex v to the set O in the graph H2: dH1 (u, o1) = 4 = dH2 (v, o1),
dH1 (u, o2) = 2 = dH2 (v, o2) and dH1 (u, o3) = 2 = dH2 (v, o3). Without knowing if the true graph is H1 or
H2 the source cannot be correctly identified, as it can be either vertex u or v. In (b), two more vertices are
included in set O. It can be checked that O is now a minimum cardinality extended resolving set. Now, the

distances of the vertices u and v to the set O are different, as dH1 (u, o4) = 3 , 1 = dH2 (v, o4) and
dH1 (u, o5) = 3 , 1 = dH2 (v, o5). Hence, the vertices u and v can be distinguished and the source can be

unambiguously localized, even if it is not known exactly how the two components are connected.

Proof. The infection times of the observers correspond to their distance to the source. These node distances
might be different for different topologies from the class of H (F). Whereas, previously, for one fixed
graph, unambiguous source localization was possible given that all nodes had distinct distances to the set
of observers, now these distances should be distinct, in and across, all possible graphs. Then, even without
knowing the exact identity of the graph from H (F), the uniqueness of distances is both necessary and
sufficient to identify any possible source based on the observed distances. �

An example that illustrates network observability for a partially known network is shown in Figure 3.1. In
Subsection 3.1.1 we determine the smallest set of nodes that is both necessary and sufficient for unambiguous
source localization when components have a specific structure, while in Subsection 3.1.2 we present a
sufficient condition when components have an arbitrary structure.

3.1.1 Results for special graph classes

For uninterrupted flow, we first state all the results, and then give the proofs at the end of the Subsection.
First, we set up the notation. For a connected graph G, i, j ∈ V , denote an i − j-path to be a sequence of all
different vertices v0 = i, v1, . . . , v` = j, such that for i = 0, . . . , `−1, {vi, vi+1} ∈ E. Let V (Ci ) denote the set
of all vertices of component Ci . Let L (Ci ) denote the set of all leaves of component Ci . Let K (Ci ) be the set
of vertices of component Ci that have degree greater than two, and that are connected by paths of degree-two
vertices to one or more leaves in Ci (when considering Ci as a separate graph and ignoring edges to other
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components). For a given vertex c ∈ K (Ci ), call the leaves connected to c via such degree-two-paths to be
the associated leaves of c. Note that for a tree that is not a path each leaf is associated to exactly one vertex
c ∈ K (Ci ). For a fixed component Ci of F ∈ F (k), denote by Si a minimum cardinality resolving set of
Ci (so that md(Ci ) = |Si |.) The M × N-grid with M, N ≥ 2, is the graph whose vertices correspond to the
points in the plane with integer coordinates, x-coordinates being in the range 0, . . . , M − 1, y-coordinates in
the range 0, . . . , N − 1, and two vertices are connected by an edge whenever the corresponding points are at
Euclidean distance 1. The four vertices of degree two are called corner vertices.

Theorem 9. Let F ∈ F (k) be a graph of k components, where each component is a tree. Then for F to

be observable, the necessary and sufficient number of observers is min j
∑k

i=1, i, j |L (Ci ) | + |Sj |, unless all

components are isolated vertices, in which case k − 1 nodes are needed. In the first case, we may assume

without loss of generality, that the minimum is attained for j = k. Then the set consisting of all leaves

from components 1, . . . , k − 1 together with a minimum cardinality resolving set of the k-th component is a

minimum cardinality extended resolving set of the graph F.

Theorem 10. Let F ∈ F (k) be a graph of k components, where each component is a complete graph. Let

I1 denote the set of indices of components that are isolated vertices, I2 the set of indices of components that

have only 2 vertices, and I3 the set of indices of components that contain at least 3 vertices. If I1 and I2
are empty, then, for F to be observable the necessary and sufficient number of observers is n − k and the

set consisting of all but one vertex of each component is a minimum cardinality extended resolving set of the

graph F. Otherwise,
∑

i∈I3 (|Ci | − 1) + 2|I2 | + |I1 | − 1 nodes are needed (note that I3 might be empty, in

which case the contribution of the preceding sum over I3 is zero). The set consisting of all but one vertex from

each component of at least size 3 and all but one vertex from the components of sizes 1 or 2 is a minimum

cardinality extended resolving set of the graph F.

Theorem 11. Let ∈ F (k) be a graph of k components, where each component is a grid. Then, for F to

be observable the necessary and sufficient number of observers is 3k − 1. Let Oi =
{
r i1, r

i
2, r

i
3

}
denote a

set of three corner vertices from component Ci . Then O = ∪k−1
i=1 Oi ∪ Sk is a minimum cardinality extended

resolving set of F.

Theorem 12. Let F ∈ F (k) be a graph of k components, where each component is a cycle of size greater

than 3. Let ke denote the number of components with an even number of vertices. Then, for F to be

observable the necessary and sufficient number of observers is 2k + ke − 1, if ke > 0, and γ(F) = 2k,

otherwise. For a component Ci with an even number of vertices ni , define Oi =
{
r i1, r

i
2, r

i
3

}
, where r i1, r i2 are

two neighboring vertices in Ci and r i3 is a vertex at distance at least
ni−2
2 from both of them, also in Ci . For

a component Ci with an odd number of vertices ni , define Oi =
{
r i1, r

i
2

}
, where r i1 and r i2 are two vertices

of Ci that are at distance ni−1
2 from each other. If ke = 0, O = ∪k

i=1Oi is a minimum cardinality extended
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resolving set of F. If ke > 0, assume without loss of generality that Ck is a component with an even number

of vertices. Then O = ∪k−1
i=1 Oi ∪ Sk is a minimum cardinality extended resolving set of F.

Proof of Theorem 9.

Let u, v ∈ V be any two different vertices, and let H1, H2 be any two graphs from the set of possible
graphs H (F). We need to show that the set O = ∪k−1

i=1 L (Ci ) ∪ Sk is a set of smallest cardinality for which
dH1 (u,O) , dH2 (v,O) holds when all the components are trees, unless all components are isolated vertices,
in which case O = ∪k−1

i=1 Ci .
We first prove the claim of sufficiency. If both u and v are any two vertices in the same component,

then u and v are distinguishable as the set of all the leaves of a tree is a resolving set. Hence we may
assume u ∈ V (Ci ) and v ∈ V (Cj ) for i , j. We may may also assume without loss of generality that
i < k. Let p be the vertex in Ci and q the vertex in Cj , such that any path from a vertex in Ci to any
vertex in Cj in H2 contains a subpath p − q. Note that dH2 (p, q) ≥ 1. If u is a leaf, as it is contained in
L (Ci ), it is distinguishable from v, since 0 = dH1 (u, u) < dH2 (u, v). If u is not a leaf, and u = p, then
for any leaf r ∈ L (Ci ), dH2 (r, v) = dH2 (r, p) + dH2 (p, q) + dH2 (q, v) ≥ dH1 (r, p) + dH2 (p, q) > dH1 (r, p).
Thus, the two distance vectors are not equal either. Otherwise, if u is not a leaf, and u , p, let r be a
leaf in L (Ci ) such that u is on the path from r to p. Such a leaf clearly exists, as u is not a leaf, it has
at least two neighbors and, hence, it has a descendant leaf r on the path that does not include p. Then
dH2 (r, v) = dH2 (r, u) + dH2 (u, p) + dH2 (p, q) + dH2 (q, v) > dH1 (r, u) + dH1 (u, p) > dH1 (r, u). Thus, the
two distance vectors also in this case are not equal, which completes the proof of sufficiency.

Now, we prove the claim of necessity. Let O be an arbitrary extended resolving set. We will show that
O has to be at least of the size given by the sufficient condition.

Case I: Let Ci and Cj be two components with at least 2 vertices, such that both have a leaf which is not
included in O. Let u be such a leaf in component Ci with neighbor u′ and v be a leaf in Cj with neighbor
v′, such that u, v < O. We claim that u and v are indistinguishable, as illustrated in Figure 3.2a. We can
construct H1 by connecting u with v′, and u with some vertex z` of every other component C` (if there are
more than 2 components). H2 is then constructed by connecting v with u′ and v with the same vertex z` for
any C` with ` < {i, j} as in H1; the other newly added edges are the same in H1 and H2 (and not involving
either Ci nor Cj ). Now, we have dH1 (u,O) = dH2 (v,O), as follows. For any vertex r ∈ Ci \ {u}, we have
dH1 (u, r) = 1 + dH1 (u′, r), and dH2 (v, r) = dH2 (u′, r) + 1 = dH1 (u′, r) + 1. For any vertex r ∈ Cj \ {v},
we have dH1 (u, r) = dH1 (v′, r) + 1, and dH2 (v, r) = dH2 (v′, r) + 1 = dH1 (v′, r) + 1. Finally, for a vertex
r ∈ C`, ` , i, j, we have dH1 (u, r) = 1 + dH1 (z`, r) = 1 + dH2 (z`, r) = dH2 (v, r). Thus the vertices u and v
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(a) Both components have a leaf which is not
included in O.
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u∉O
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(b) All leaves of Ci are in O and
Cj is not a path.

z
Cj

v

uH1
...

H2

C

(c) All leaves of Ci are in
O and Cj is a path.

Figure 3.2: Case I in the Proof of Theorem 9: Constructing trees H1 and H2 when both components Ci and
Cj have at least two vertices.

Ci
u

Cj

H1 v

c∈O
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zC

(a) Cj is a path.

Ci

H1

v'∉O  

v
z

Cj

c
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u

C

(b) Cj is not a path.

Figure 3.3: Case II in the Proof of Theorem 9: Constructing trees H1 and H2 when component Ci has only
one vertex.

are indistinguishable, and the claim holds. Hence, either all the leaves of component Ci or component Cj

have to be included in O. Without loss of generality, let us assume that all the leaves of Ci are included in O.
Now we assume that only |Sj | − 1 vertices are selected from the component Cj . In the first sub-case, when
Cj is not a path, from [49], we have |Sj | = |L

(
Cj

)
| − |K

(
Cj

)
|. If only |Sj | − 1 vertices were taken from Cj ,

then there exists a vertex c in K
(
Cj

)
with two associated leaves u and v, such that no vertex from the paths

c − u nor c − v is included in O. But then there exist a vertex u′ on the path c − u, and a vertex v′ on the
path c − v, such that dC j (u

′, c) = dC j (v
′, c). Note that u′ might coincide with u, and v′ might coincide with

v. The vertices u′ and v′ are indistinguishable from each other in Cj . Constructing a tree H1 by connecting
any vertex z` from every other component C`, ` , j, with any fixed vertex in K

(
Cj

)
, we see that u′ and v′

still are indistinguishable by vertices in O, as shown in Figure 3.2b. In the second sub-case, when Cj is a
path with leaves u and v, Sj comprises only one leaf. If no vertex from Cj is in O, H1 can be constructed by
connecting one of its leaves u with some vertex z` of every other component C`, while H2 is constructed by
connecting z` to the other leaf v, and vertices u and v are indistinguishable, as Figure 3.2c shows. Thus, at
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least |Sj | vertices have to be taken from Cj .

Case II: Ci consists of only one vertex, u, and Cj has at least 2 vertices. By the same arguments as in
Case I, it can be seen that at least |Sj | vertices from component Cj have to be included in O. We will show
now that u has to be included in O as well. In the first sub-case, when Cj is a path, H1 can be constructed by
connecting u with the leaf c ofCj where c ∈ O, and then connecting c to a vertex z` of every other component
C`, ` , i, j. Let v be the vertex in Cj which is the neighbor of c. If u is not chosen, u is indistinguishable
within H1 from v, as can be seen in Figure 3.3a. As for the second sub-case, when Cj is not a path, let
c be a vertex in K

(
Cj

)
such that the path to its associated leaf v′ contains no vertices from O. Then H1

is constructed by connecting u with c, and then connecting c to a vertex z` of every other component C`,
` , i, j. Let v be the neighbor of c in Cj which lies on the path c − v′. Note that v can coincide with v′.
Then u is indistinguishable within H1 from v, as shown in Figure 3.3b. Hence, u must also be included in O.

Case III: Both Ci and Cj contain only one vertex. Call these u and v, respectively. At least one of them
has to be included in O: otherwise, we can construct H1 by connecting both u and v to some vertex z`

from every other component C`, ` , i, j, and then u and v are indistinguishable within H1. If there are only
two components, each with one vertex, H1 is constructed by connecting them. Clearly, if neither vertex is
included in O, the set O is empty, and the two vertices are indistinguishable within H1.

Therefore, for any pair of components Ci and Cj , an extended resolving set O has to include all leaves
from one component and a resolving set from the other, unless both have size 1, in which case only 1 vertex
is enough. Hence, if there exists at least one component which has 2 or more vertices, from all but one
component all the leaves have to be taken, and from the remaining component, at least a resolving set. If all
k components have only one vertex, the set O has to contain k − 1 vertices. �

Proof of Theorem 10.

Let u, v ∈ V be any two different vertices, and let H1, H2 be any two graphs from the set of possible
graphsH (F). First we need to show that the set O consisting of all but one vertex from each component is
a set of smallest cardinality for which dH1 (u,O) , dH2 (v,O) holds when all the components are complete
graphs with at least 3 vertices.

First, we prove the claim of sufficiency. Let us denote the set of all but one vertex on componentCi byOi .
If u and v are in the same component, they are distinguishable, since each Oi is a resolving set of component
Ci [52]. Hence, let us assume that vertex u ∈ V (Ci) is not included in Oi , and that vertex v ∈ V (Cj ) is not
included in O j , and i , j. Let p ∈ V (Ci ) and q ∈ V (Cj ), such that p − q is contained in every shortest path
between vertices of components Ci and Cj in H2. Note again that dH2 (p, q) ≥ 1. We prove the claim by
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Figure 3.4: Proof of Theorem 10: Constructing trees H1 and H2 when both components Ci and Cj are
complete graphs.

contradiction and assume that the following relations hold:

dH1 (u, r) = 1 = dH2 (v, r) = dH2 (v, q) + dH2 (q, p) + dH2 (p, r), (3.3)

for every r ∈ Oi . Then for dH2 (p, q) = 1, the condition dH2 (p, r) = 0 would have to hold, while for
dH2 (p, q) > 1, the condition dH2 (p, r) < 0 would have to hold for all r ∈ Oi . In either case, this is not
possible, and the claim is proved.

To prove the claim of necessity, let O be an arbitrary extended resolving set. Assume that in one
component Ci there are two vertices, u and v, that are not included in O. We construct H1 by adding the
edges between a fixed vertex t ∈ V (Ci ) \ {u, v} and some fixed vertex z` of some other component C`. Then
we have dH1 (u, r) = dH1 (v, r) for all r ∈ O, and this completes the proof.

Now, we consider the case when there is at least one component of size 1 or 2. We need to show that
a minimum cardinality extended resolving set O should contain all but one vertex of each component of
size at least 3 and all but one vertex from the components of sizes 1 or 2. First, we prove the claim of
sufficiency. If either u or v is included in O, w.l.o.g. say u, then u and v are clearly distinguishable, as,
dH1 (u, u) = 0 , dH2 (u, v), for any H1, H2 ∈ (F). Therefore, let u < O be a vertex belonging to component
Ci , and let v < O be a vertex belonging to component Cj . Let p ∈ V (Ci ) and q ∈ V (Cj ), such that the path
p − q is contained in every shortest path between vertices from Ci and Cj in H2. Note that dH2 (p, q) ≥ 1.
Since only one vertex from a component of sizes 1 or 2 is not included in O, let us assume u is in a
component of size at least 3. Then by the same argument as in (3.3) and the following discussion, we must
have dH1 (u, r) , dH2 (v, r) for some r ∈ O.

To prove the claim of necessity, let O be an arbitrary extended resolving set. We will show that O has to
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be at least of the size given by the sufficient condition.

Case I: Let Ci be a component of size at least 3, with two vertices, u and v, that are not included in O.
This is exactly the case discussed when there are only components of size at least 3 and it is shown in Figure
3.4a. Thus, all but one vertex from each component of size at least 3 has to be included in O.

Case II: Let Ci be a component of size 2, where neither vertex is included in O. Let u, v be the two
vertices from the component Ci . We can construct H1 by connecting u with any vertex z` ∈ V (C`), and H2

by connecting v again to the same vertex z` ∈ V (C`), for any ` , i. In both H1 and H2 all other connections
between components are the same and not including Ci . Then, we have that u and v cannot be distinguished,
as illustrated in Figure 3.4b. Hence at least one vertex from a component of size 2 has to be included in O.

Case III: LetCi be a component of size 2 with one vertex, u, that is not included inO. First, let us consider
the sub-case when Cj is a component of size 2, and vertex v ∈ V (Cj ) is a vertex not included in O. Then, H1

can be constructed by connecting u with the vertex cj ∈ Cj , where cj ∈ O, and then connecting cj to some
vertex z` of every other componentC`. H2 can be constructed by connecting v with the vertex ci ∈ Ci , where
ci ∈ O, and then connecting ci to the same vertex z` of every other component C`. All the other connections
in H1 and H2 are the same and not including either Ci or Cj . Now we have that dH1 (u, r) = dH2 (v, r) for
all r ∈ O, and u and v are indistinguishable, as Figure 3.4c shows. Next, we consider the sub-case when Cj

is a an isolated vertex, not included in O. We can construct H1 by connecting ci ∈ V (Ci ), where ci ∈ O to
the isolated vertex from Cj . Then, u and the vertex from Cj are indistinguishable. Hence, all but one vertex
from the components of size 2 have to be included in O.

Case IV: Let both Ci and Cj be isolated vertices. Note that this is equivalent to Case III of the Proof of
Theorem 9. Now all but one vertex from the components of sizes 1 have to be included in O.

Hence, the set O should contain all but one vertex on each component of at least size 3 and all but one
vertex from the components of sizes 1 or 2. �

Proof of Theorem 11.

Let u, v ∈ V be any two different vertices, and let H1, H2 be any two graphs from the set of possible
graphsH (F). We need to show that the set O comprising three corner vertices from k − 1 components and
a resolving set of the k-th component is a set of smallest cardinality for which dH1 (u,O) , dH2 (v,O) holds
when all the components are grids.

Let us denote the size of the grid Ci as xi × yi . We assume that each vertex l ∈ V (Ci ) has assigned
to it a position vector (xl, yl ) which represents its location on the integer lattice Ci , with the first selected
corner vertex r i1 at position (0, 0), r i2 at (xi, 0) and r i3 at (0, yi ). First, let us prove the claim of sufficiency.
If u and v are in the same component, they are distinguishable, since any two corner vertices having the
same value in one coordinate form a resolving set of a grid [52]. Hence, let us assume that u ∈ V (Ci ) and

50



v ∈ V (Cj ), for i , j and i < k. Let p be the vertex in Ci and q the vertex in Cj , such that any path from a
vertex in Ci to any vertex in Cj in H2 contains a subpath p − q, with dH2 (p, q) ≥ 1. If u = p, then for all
r ∈ Oi we have dH2 (v, r) = dH2 (r, p) + dH2 (p, q) + dH2 (q, v) > dH2 (r, p) = dH1 (r, u). Therefore u and v

are distinguishable. For u , p, let us prove the claim by contradiction. Assuming dH1 (u,Oi ) = dH2 (v,Oi ),
we obtain the following equations:

dH1 (u, r i1) = xu + yu

= dH2 (v, r i1) = xp + yp + dH2 (p, q) + dH2 (q, v)

dH1 (u, r i2) = xi − xu + yu

= dH2 (v, r i2) = xi − xp + yp + dH2 (p, q) + dH2 (q, v)

dH1 (u, r i3) = xu + yi − yu

= dH2 (v, r i3) = xp + yi − yp + dH2 (p, q) + dH2 (q, v). (3.4)

The system of equations (3.4) can be rewritten in matrix form

Aα = b,

where

A =



1 1 −1

−1 1 −1

1 −1 −1



, α =



xu

yu

dH2 (p, q) + dH2 (q, v)



, b =



xp + yp

−xp + yp

xp − yp



.

A is a matrix of full rank, implying that the system of equations (3.4) has a unique solution, given by A−1b.
The only solution is xu = xp , yu = yp , and dH2 (p, q) + dH2 (q, v) = 0, contradicting dH2 (p, q) ≥ 1. The set
∪k−1
i=1 Oi ∪ Sk is a set of cardinality 3k − 1, and this completes the sufficiency claim.

For the claim of necessity, let us assume that there exist two components Ci and Cj , such that from each
of them, only two vertices are chosen. Let

{
r i1, r

i
2

}
be the set of two vertices from Ci and let

{
r j
1, r

j
2

}
be the

set of two vertices from Cj that are included in O.

Case I: In at least one component, the vertices included inO are not two corner vertices with one identical
coordinate. Let us assume that this is the case with Ci . We claim that there exist two vertices u and v in Ci

which are indistinguishable by r i1 and r i2. Denote by (xr i1, yr i1 ) and by (xr i2, yr i2 ) the positions at which r i1 and
r i2 are located in the grid.

51



Ci

r1
i

z
H1

u

v...

...

...

...

...
...

... ...

...

...

......

...

...

r2
i

...
...

...
... C

(a) The vertices r i1 and r i2 are
not corner vertices and they
differ in both coordinates.

Ci

r1
i

H1

u v

...

...
...

...

...
...

...

...

...

...

...

...

...

...

r2
i

...
...

...
...

...

...

z

C

(b) The vertices r i1 and r i2 are not
corner vertices and they differ in

one coordinate.

Ci

r1
i

u

...
...

...

...

...

... r2
i

...
... H1

u'

Cj

r1
j

v

r2
j...

...

...

...

...

...
...

...

v'

H2

zC

(c) The vertices r i1 and r i2 are two corner
vertices with one identical coordinate.

Figure 3.5: Proof of Theorem 11: Constructing H1 and H2 when the components are grids.

First, let us consider the sub-case, when r i1 and r i2 differ in both coordinates, as shown in Figure 3.5a.
Without loss of generality, let us assume that yr i1 < yr i2

. Let ∆x = |xr i2 − xr i1 | and ∆y = yr i2
− yr i1

. Let u be
the vertex at (xr i2, yr i1 ). For ∆x ≤ ∆y , let v be the vertex at (xr i1, yr i1 + ∆x ), while for ∆x > ∆y , we consider
two possible cases. For xr i1 < xr i2 , let v be the vertex at (xr i1 + ∆x − ∆y, yr i2

), and for xr i1 > xr i2 , let v be the
vertex at (xr i2 + ∆y, yr i2

). Constructing a tree H1 by connecting some vertex z` from every other component
C`, ` , i, with either r i1 or r i2, we have dH1 (u, r i1) = ∆x = dH1 (v, r i1) and dH1 (u, r i2) = ∆y = dH1 (v, r i2).
Hence the vertices u and v are indistinguishable by any vertex in O.

In the second sub-case, r i1 and r i2 differ in only one coordinate, as Figure 3.5b illustrates. Then, let u and
v be two neighbors of r i1, which are not on the shortest path r i1 − r i2. These two vertices exist, as all vertices
on the grid, except the corner vertices, have at least 3 neighbors. Now, we have dCi (u, r

i
1) = 1 = dCi (v, r

i
1)

and dCi (u, r
i
2) = 1 + dCi (r

i
1, r

i
2) = dCi (v, r

i
2). Therefore, there always exist two vertices u and v, such that

they are not distinguishable by any two vertices of Ci which are not two corner vertices with one identical
coordinate. Constructing a tree H1 by connecting some vertex z` from every other component C`, ` , i,
with either r i1 or r i2, we see that u and v still are indistinguishable by any vertex in O.

Case II: From both components Ci and Cj , two corner vertices with one identical coordinate are included
in O. Let u′ be a vertex on Ci that is a neighbor of r i1 such that it shares one coordinate with both r i1 and
r i2. Then let u be a neighbor of u′ such that it does not share any coordinates with r i1. Similarly, let v′ be a
vertex in Cj that is a neighbor of r j

1 such that it shares one coordinate with both r j
1 and r j

2 . Then let v be
a neighbor of v′ such that it does not share any coordinates with r j

1 . We can construct H1 by connecting u

with v′ and u with some vertex z` of every other component C` (if there are more than 2 components). Then
H2 is constructed by connecting v with u′ and v with the same vertex z` as in H1, as shown in Figure 3.5c.
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The distances of u and v from the vertices in O are

dH1 (u, r i1) = dH2 (v, r i1) = 2

dH1 (u, r i2) = dH2 (v, r i2) = 1 + dH1 (u′, r i2)

dH1 (u, r j
1 ) = dH2 (v, r j

1 ) = 2

dH1 (u, r j
2 ) = dH2 (v, r j

2 ) = 1 + dH2 (v′, r j
2 )

dH1 (u, r) = dH2 (v, r) = 1 + dH1 (z`, r),

for r ∈ C`, ` , i, ` , j. Hence the vertices u and v are indistinguishable.

Therefore, at least 3 vertices of component Ci or component Cj have to be included in O. Without loss of
generality, let us assume that 3 vertices in Ci are included in O. Now we assume that only |Sj | − 1 = 1 vertex
is selected from Cj . Then there exist two vertices u and v in component Cj , which are at the same distance
from the only vertex r included from Sj . We construct H1 by connecting some vertex z` from every other
component C` to vertex r in component Cj . Observe that the vertices u and v are still not distinguishable
within H1, and hence at least |Sj | = 2 vertices have to be included from component Cj . In conclusion, for
any two components, at least 3 vertices from one and 2 vertices from the other one have to be included in O,
and thus |O | ≥ 3(k − 1) + 2 = 3k − 1. �

Proof of Theorem 12.

Let u, v ∈ V be any two different vertices, and let H1, H2 be any two graphs from the set of possible
graphs H (F). We need to show that the set O as defined in the statement of the theorem with cardinality
equal to 2k + ke − 1 if the number of components with an even number of vertices, ke is non-zero, or 2k,
otherwise, is a set of smallest cardinality for which dH1 (u,O) , dH2 (v,O) holds when all components are
cycles.

First, let us prove the claim of sufficiency. As in Theorem 11, let us assume that vertex u is located in
component Ci and vertex v is in component Cj (when u and v belong to the same component, they are clearly
distinguishable, as any two neighboring vertices of an even cycle and any two vertices at distance (ni − 1)/2
in the case of an odd cycle Ci form a resolving set of a cycle). Let u ∈ V (Ci ), v ∈ V (Cj ), with i , j and
i < k. Let p be the vertex in Ci and q the vertex in Cj , such that any path from a vertex in Ci to any vertex
in Cj in H2 contains a subpath p − q, with dH2 (p, q) ≥ 1. If the vertices u and v are not distinguishable by
Oi , then dH1 (u, r) = dH2 (v, r) = dH1 (p, r) + dH2 (p, q) + dH2 (q, v) holds for some H1 and H2 and all r ∈ Oi .
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Figure 3.6: Case I in the Proof of Theorem 12: Both cycle components have an even number of vertices.

Therefore, the following must hold
dH1 (u, r) > dH1 (p, r). (3.5)

Case I: Both components Ci and Cj have an even number of vertices. For a component Ci , due to the
placement of r i3, the distance dH (r i1, r

i
3) ∈

{
ni−2
2 , ni

2

}
, for any H ∈ H (F). The same holds for dH (r i2, r

i
3).

Let us first consider the sub-case where both p and u lie in the same half of the cycle, i.e., both lie either
on the shorter path r i2 − r i3 or on the shorter path r i1 − r i3, as shown in Figure 3.6a. Suppose without loss of
generality that they both lie on the shorter path r i2 − r i3. As one of the vertices out of {u, p} is closer to r i3
and the other one is closer to r i2, (3.5) cannot hold simultaneously for both r i2 and r i3. The other sub-case
that needs to be considered is when u and p lie in different semi-cycles, one on the shorter path r i2 − r i3,
and the other on the shorter path r i1 − r i3, as illustrated in Figure 3.6b. Notice that for any vertex w that is
on the shorter path r i1 − r i3, the distance dH (w, r i2) = min{dH (w, r i1) + 1, dH (w, r i3) + dH (r i3, r

i
2)}. We have

dH (w, r i1)+1 ≤ ni

2 −1+1 =
ni

2 , and also dH (w, r i3)+dH (r i3, r
i
2) ≥ 1+ ni−2

2 =
ni

2 . Therefore, the first term of
the minimum can never be larger than the second term, hence we can write dH (w, r i2) = dH (w, r i1) + 1. The
same reasoning holds when w is on the shorter path r i2−r i3, and then we can write dH (w, r i1) = dH (w, r i2)+1.
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Figure 3.7: Proof of Theorem 12: Constructing H1 and H2 when the components are cycles.
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Now, for vertices u and p that lie in different semi-cycles, we either have dH1 (u, r i1) = dH1 (u, r i2) + 1 and
dH1 (p, r i1) = dH1 (p, r i2) − 1, or dH1 (u, r i1) = dH1 (u, r i2) − 1 and dH1 (p, r i1) = dH1 (p, r i2) + 1. If now (3.5)
holds and u and v are indistinguishable by r i1 and r i2, then we would have to have

dH2 (p, q) + dH2 (q, v) = dH1 (u, r i1) − dH1 (p, r i1) = dH1 (u, r i2) − dH1 (p, r i2).

If now dH1 (u, r i1) = dH1 (u, r i2) + 1 and dH1 (p, r i1) = dH1 (p, r i2) − 1 holds, then we would have to have

dH1 (u, r i1) − dH1 (p, r i1) = dH1 (u, r i2) − 1 − dH1 (p, r i2) − 1,

which is clearly not possible. If dH1 (u, r i1) = dH1 (u, r i2) − 1 and dH1 (p, r i1) = dH1 (p, r i2) + 1 holds, the
analogous contradiction appears, and hence in both cases (3.5) cannot hold.

Case II: At least one of the components Ci or Cj has an odd number of vertices. Let us assume that
this is the case with Ci . Similarly, as in Case I, let us first consider the sub-case where both p and u lie
in the same half of the cycle, i.e., both on the shorter path r i1 − r i2 or both on the longer path r i1 − r i2. As
before, one of the vertices out of {u, p} is closer to r i1, and the other is closer to r i2, and thus (3.5) cannot hold
simultaneously for both r i1 and r i2. The other sub-case that needs to be considered is when u and p lie in
different semi-cycles, one on the shorter path r i1 − r i2, of length

ni−1
2 , and the other on the longer path r i1 − r i2,

of length ni+1
2 . Then either we have dH1 (u, r i2) = ni−1

2 − dH1 (u, r i1) and dH1 (p, r i2) = ni+1
2 − dH1 (p, r i1), or

dH1 (u, r i2) = ni+1
2 − dH1 (u, r i1) and dH1 (p, r i2) = ni−1

2 − dH1 (p, r i1). From dH1 (u, r i2) > dH1 (p, r i2) as given
by Condition (3.5), we obtain dH1 (p, r i1) > dH1 (u, r i1) + 1 or dH1 (p, r i1) > dH1 (u, r i1) − 1. In either case, we
get that (3.5) cannot hold for both r = r i1 and r = r i2.

Note that when comparing components Ci and Cj with i , j, only vertices of the extended resolving set
coming from component Ci were used to distinguish between any two vertices from components Ci and Cj .
Hence, for one component, say, Ck , it is enough to choose a resolving set, that is, a set that distinguishes
all vertices within Ck (a minimum cardinality resolving set is always of size 2). Hence, if ke > 0, we may
assume that Ck is an even cycle. Thus only 2 vertices are chosen from Ck , and from all other even cycles 3
vertices are chosen. Thus, in this case 2k + ke − 1 vertices are enough. If ke = 0, then 2 vertices are chosen
from each component, giving the bound 2k in this case.

Now, we prove the claim of necessity. Observe first that clearly at least 2 vertices of each cycle have to
be chosen, as otherwise the two neighbors of the chosen vertex r cannot be distinguished; one can construct
a graph H1 by connecting r with one fixed vertex of each other component, and the two neighbors of r are
indistinguishable.

Let us first assume that there exist two componentsCi andCj both containing an even number of vertices,
and from each component, only two vertices are included in O. Denote by r i1, r

i
2 the vertices chosen from Ci

55



and by r j
1, r

j
2 the vertices chosen from Cj . If in at least one component, say Ci , the two selected vertices r i1

and r i2 are at distance exactly
ni

2 from each other, let u and v be two neighbors of r i1. Note that u and v are
equidistant from both r i1 and r i2. Constructing H1 by connecting some vertex z` from every other component
C` to r i1, the vertices u and v are still not distinguishable within H1, as shown in Figure 3.7a. Otherwise, let
us assume that in both components Ci and Cj the vertices selected in O are not at distance exactly ni

2 ( n j

2 ,
respectively) from each other. Let u then be a neighbor of r i1 in Ci that is on the longer path r i1 − r i2, and let v
be a neighbor of r j

1 in Cj that is on the longer path r j
1 − r j

2 . We can construct H1 by connecting u with r j
1 and

u with some vertex z` of every other component C` (if there are more than 2 components). H2 is constructed
by connecting v with r i1 and v with the same vertex z` (for every other component C`) as in H1, as shown in
Figure 3.7b. The distances of the vertices u, v from the vertices in O are

dH1 (u, r i1) = dH2 (v, r i1) = 1

dH1 (u, r i2) = dH2 (v, r i2) = 1 + dH1 (r i1, r
i
2)

dH1 (u, r j
1 ) = dH2 (v, r j

1 ) = 1

dH1 (u, r j
2 ) = dH2 (v, r j

2 ) = 1 + dH2 (r j
1, r

j
2 )

dH1 (u, r) = dH2 (v, r) = 1 + dH1 (z`, r),

for r ∈ Ol , l , i, j. Hence the vertices u and v are indistinguishable.

Therefore, if both Ci and Cj have an even number of vertices, at least 3 vertices of component Ci or
3 vertices of component Cj have to be included in O. Hence, from all but one component with an even
number of vertices, 3 vertices have to be chosen, and from the remaining ones, at least 2. This completes
the proof. �

3.1.2 Results for general graph classes

Next, we determine a set of nodes that achieves network observability when components are of arbitrary
structure. In order to clearly present the results, we review the concept of boundary of a graph. For a
connected graph G, a vertex v is a boundary vertex of u if dG (w, u) ≤ dG (v, u), for all w that are neighbors
of v [63]. A vertex v is a boundary vertex of G if it is a boundary vertex of some vertex of G. The set of all
boundary vertices of a vertex u is denoted as ∂(u). The boundary of a vertex set S ⊆ V is the set of vertices
in G that are boundary vertices for some vertex u ∈ S. The boundary of graph G, ∂(G), is the set of all
boundary vertices of G. It is well known that the boundary is a resolving set, see [64]. For example, the
boundary of a tree is the set of its leaves, whereas the boundary of a grid is the set of its 4 corner vertices,
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and the boundary of a cycle is the whole vertex set [64]. We start with the following easy observation.

Observation 1. Let G be a connected graph. Consider any two vertices r and u of G, and consider a shortest
path r − u. Either u is a boundary vertex for r , or there exists some vertex u′ such that the shortest path r − u

can be extended to a shortest path r − u′, with u′ being a boundary vertex for r .

Proof. If u is not a boundary vertex for r , then by definition there exists a neighbor w of u such that
dG (w, r) > dG (u, r). Thus, dG (w, r) ≥ dG (u, r) + 1, and in particular, a shortest path r − u can be extended
to w such that along this extended path, the lower bound can be attained, and thus dG (w, r) = dG (u, r) + 1.
Hence, the path r − w going through u is also a shortest path r − w. If w is then a boundary vertex for r ,
we are done, and otherwise we iteratively apply the same argument with w playing the role of u. The claim
follows. �

We are now ready to show our results in terms of boundary vertices.
For general graph classes we have the following results, the second one tightening the first one, as the

boundary of a graph can be very large.

Theorem 13. For any arbitrary graph F ∈ F (k) with k connected components, the observer set O =

∪k−1
i=1 ∂(Ci ) ∪ Sk achieves network observability.

Theorem 14. Let F ∈ F (k) be an arbitrary graph with k connected components, let Si be a resolving set

of Ci , and let Oi = Si ∪ ∂(Si ). Then the observer set O = ∪k−1
i=1 Oi ∪ Sk achieves network observability.

Proof of Theorem 13.

Let u, v ∈ V be any two different vertices, and let H1, H2 be any two graphs from the set of possible
graphs H (F). We need to show that for the set O = ∪k−1

i=1 ∂(Ci ) ∪ Sk the condition dH1 (u,O) , dH2 (v,O)

holds for an arbitrary graph.
Since the boundary is a resolving set, any two vertices belonging to the same component are distinguish-

able by a set that contains the boundaries of k − 1 components and a resolving set of the k-th component. As
before, let u ∈ V (Ci ), v ∈ V (Cj ), let p ∈ V (Ci ) and q ∈ V (Cj ) such that any path from a vertex in Ci to any
vertex in Cj in H2 contains a subpath p− q, and let i < k. If u is a boundary vertex, it is distinguishable from
v, since 0 = dH1 (u, u) < dH2 (u, v). If u is not a boundary vertex, and u = p, then for any boundary vertex
r ∈ ∂(Ci ), dH2 (r, v) = dH2 (r, p) + dH2 (p, q) + dH2 (q, v) ≥ dH1 (r, p) + dH2 (p, q) > dH1 (r, p). Thus, the
two distance vectors are not equal either. Now, we consider the case when u , p. If u is a boundary vertex
for p, let u′ = u. Otherwise, the shortest path between p and u in component Ci can be extended to a shortest
path p − u′ by Observation 1, such that u′ is a boundary vertex of p. For a fixed shortest path p − u′ we have
dH2 (u′, v) = dH2 (u′, p)+dH2 (p, q)+dH2 (q, v) = dH1 (u′, u)+dH1 (u, p)+dH2 (p, q)+dH2 (q, v) > dH1 (u′, u),
which completes the proof. �
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Figure 3.8: Proof of Theorem 14: Extending the shortest path r − u to a shortest path r − u′.

Proof of Theorem 14.

Let u, v ∈ V be any two different vertices, and let H1, H2 be any two graphs from the set of possible
graphs H (F). We need to show that for the set O = ∪k−1

i=1 Oi ∪ Sk , where Oi = Si ∪ ∂(Si ), the condition
dH1 (u,O) , dH2 (v,O) holds for an arbitrary graph.

Let r ∈ Si be a vertex from a resolving set of a componentCi . Once more, let u ∈ V (Ci ), v ∈ V (Cj ), with
i < k. Let p be the vertex in Ci and q the vertex in Cj , such that any path from a vertex in Ci to any vertex
in Cj in H2 contains a subpath p − q, with dH2 (p, q) ≥ 1. As in the proof of Theorem 13, if u is a boundary
vertex for r , let u = u′. Otherwise, by Observation 1, the shortest path between r and u in component Ci

can be extended to a shortest path r − u′, with u′ being a boundary vertex for r . We need to show that
dH1 (u, u′) , dH2 (v, u′), for any vertex v belonging to some other componentCj (as in the previous theorems,
if u and v are in the same component, they are distinguishable by the resolving set of that component). If u

is a boundary vertex itself, then we clearly have dH1 (u, u′) = 0 , dH2 (v, u′), so we may assume u , u′. If r

does not distinguish u and v, then dH1 (u, r) = dH2 (v, r) = dH1 (p, r) + dH2 (p, q) + dH2 (q, v) and

dH1 (u, r) > dH1 (p, r), (3.6)

holds, since dH2 (p, q) ≥ 1.

Case I: There exists a shortest path from u′ to p in component Ci that passes through u. Hence there
exists a shortest path from u′ to v in H2 that passes through u. Then we have dH2 (u′, v) = dH1 (u′, u) +

dH1 (u, p) + dH2 (p, v) > dH1 (u′, u). Thus u and v have different distances to u′, and they are distinguishable.

Case II: All shortest paths from u′ to p in component Ci do not pass through u. Hence no shortest path
from u′ to v in H2 passes through u. Let b be the vertex closest to u on this path, such that the path b − u′

is common to both shortest paths p − u′ and r − u′, as illustrated in Figure 3.8. Note that b might coincide
with u′, but not with u. Also observe that since b is on the extension of a shortest path r − u to a shortest
path r − u′, at least one shortest path r − b passes through u. Therefore, we have

dH1 (r, u) + dH1 (u, b) ≤ dH1 (r, p) + dH1 (p, b). (3.7)
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Since (3.6) holds, from (3.7) it follows that

dH1 (u, b) < dH1 (p, b). (3.8)

Now, from (3.8) and the fact that dH2 (v, p) = dH2 (v, q) + dH2 (q, p) ≥ 1 we obtain

dH2 (v, u′) = dH2 (v, p) + dH2 (p, b) + dH2 (b, u′)

> dH2 (v, p) + dH2 (u, b) + dH2 (b, u′)

> dH1 (u, u′).

Therefore, u and v have different distances to the boundary vertex u′, and they are thus distinguishable
by a boundary vertex of a vertex belonging to the resolving set. The theorem follows. �

Inspecting the proofs of Theorems 9, 11, 12, we see that when comparing two vertices from Ci and Cj,

in fact only the structure of Ci and its resolving set matters. Therefore, whenever one of the components
of the observed disconnected graph F is a tree (cycle, or grid, respectively), then instead of including a
resolving set and its boundary vertices, it is sufficient to choose all leaves in the case the component is a tree
(two neighboring vertices together with a vertex at distance at least n−2

2 from both of them in the case of
the even cycle on n vertices, two vertices at distance n−1

2 from each other in the case of an odd cycle on n

vertices, and three corner vertices in the case of the grid, respectively). Note that this might be better than
the bound claimed by Theorem 14, which for example in the case of the grid requires all four corner points to
be chosen. Also, note that applying Theorem 14 to the case when all components are trees can yield exactly
the results of Theorem 9. When a subset of leaves is selected as a resolving set of a tree component, then the
resolving set and its boundary is precisely the set of all the leaves, hence Theorem 14 constructs a minimum
cardinality extended resolving set.

In order to illustrate the tightness of the bound given by Theorem 14 on the cardinality of the smallest
set that achieves unambiguous source localization in a partially known network, we performed the following
simulations. Since the calculation of the true smallest set is computationally intensive even for modest
network sizes, we have adapted Algorithm 1 as follows. For a partially known graph F ∈ F (2), we
constructed all the possible graphs from the class ofH (F). Then the set of pairs that need to be distinguished
was set to the set of all possible pairs (i, j), for i , j, across all possible graphs, i.e., node i in any graph
H1 should be distinguishable from node j in any graph H2, for H1, H2 ∈ H (F). Even this approximation
algorithm has high memory and computation requirements. Then, such modified Algorithm 1 selects one
by one a node that distinguishes the most node pairs across all possible topologies that can be constructed
by adding an edge between two components of the graph. We have generated 200 graphs, where each graph

59



20 25 30 35 40

0.2

0.4

0.6
Boundary bound

Greedy algorithm

Network size

P
er

ce
n
ta

g
e

o
f

o
b
se

rv
er

s

Figure 3.9: Performance of the boundary bound

comprises two Erdős-Rényi components, of random size ni ∈ [10, 20] nodes, and with nip = 4, where p is
the edge probability. For each graph, we found the observer set given by Theorem 14, where the boundary
was determined of a (not necessarily the smallest) resolving set of each component, found by Algorithm 1, as,
again, determining the exact metric basis was computationally too intensive. Also, for each graph, adapted
Algorithm 1 was used to find an observer set that achieves network observability and we have averaged all
the results for the same size networks. Figure 3.9 shows that the average percentage of observers selected by
the bound is higher than by the greedy algorithm. However, unlike the latter, Theorem 14 does not require
comparison of distance vectors through an exponential number of enumerated topologies, but can be applied
in polynomial time.

3.2 Source localization using observed infection times

Source localization in a deterministic diffusionmodelwithout any additional uncertainties is a straightforward
process of identifying a node whose distances to the observers match the infection times, as shown in
Subsection 2.1.1. Once, the assumption of complete knowledge of network edges is relaxed, localizing the
source becomes a challenging problem. Now, the number of possible topologies that are consistent with the
partially known network can be very high as shown in Theorem 7. Source localization should be performed
in each of one of those topologies in order to find the source node and topology consistent with the observed
infection times. If a network is observable, as defined by Definition 2, then, the source localization would
result in a single source candidate, otherwise, more than one node may fit the observed infection time. Next,
we formulate the localization of a source in a partially known network F ∈ F (k) as a binary integer linear
program. Although the proposed approach is computationally very intensive, it does not require explicit
enumeration of all the possible topologies from H (F), and source localization need not be performed for
each topology individually. In our formulation, for each node s ∈ V , a multicommodity flow problem with
side constraints [65] is formulated, assuming node s is the source, and the feasibility of the problem is
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checked. If the problem is feasible, then a node s is a viable source candidate. A feasible solution implies
that there exists a topology consistent with the known disconnected network, such that the distances from
the assumed source to the observers are equal to the observed infection times. Assuming the optimization
problem is feasible for a certain node, by solving it, we recover the topology. For some source candidates,
there might exist more than one possible topology where the distances match the infection times. Solving
the optimization problem gives us the structure of at most one such graph, as the main goal is to verify the
possibility of a node being the source, and for this, the existence of a single topology is sufficient. Before
stating the optimization problem, we introduce concepts and notation.

The incidence matrix B of a graph with m edges and N nodes is an N × m matrix defined as

[B]i j =




1, node i is the head of the edge j

−1, node i is the tail of the edge j

0, otherwise

.

As we are considering undirected graphs, the direction of the edges can be set arbitrarily, as later we will
consider each edge twice, once in each direction, as it is typically done for similar network optimization
problems [65]. Let us denote with Ep a set of all possible missing edges, those between nodes of different
components. With Bext we denote an extended incidence matrix, where the edges are from the set of known
edges E, as well as from the set of possible missing edges Ep . With B̃ = [Bext,−Bext ] we denote an
incidence matrix, where we consider all the edges of Bext in both directions. The set E j is a set of edges that
are incident with the observer j, and similarly, the set Es is a set of edges that are incident with the assumed
source s. The set of edges that connect components Ca and Cb is denoted as Ea,b , for a, b = 1, . . . , k and
a , b. An optimization variable in our formulation is a binary vector, x ∈ Rm , whose i-th entry is set to 1
if edge i, from the matrix Bext , is selected to be a part of the final constructed topology. For each observer
node j, an auxiliary binary optimization variable x j ∈ R

2m is used to construct a path between the observer
j and an assumed source s. If i-th entry of x j equals 1, then this implies that edge i from matrix B̃ is a part of
the constructed path. The infection time of the observer node j is denoted as t j . With 1 we denote a vector
where all entries are equal to 1, while ei denotes a column vector where all entries are equal to 0 except
for the i-th entry, which equals 1. The matrix J has the structure [Im, Im], where Im is an identity matrix
of size m. Finally, we state a binary integer program that verifies whether a node s could be the source of
diffusion for the observed infection times.

min 1T x (3.9)

subject to
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B̃x j = e j − es (3.10)

1T x j = t j (3.11)

Jx j ≤ 1 (3.12)∑
p∈E j

eTp Jx j ≤ 1 (3.13)

∑
p∈Es

eTp Jx j ≤ 1 (3.14)

Jx j ≤ x (3.15)∑
o∈O

Jxo ≥ x (3.16)

x ≤ 1 (3.17)∑
p∈Ea,b

xT ep ≤ 1 (3.18)

∑
p∈Ep

xT ep ≤ k − 1 (3.19)

x j ∈ {0, 1}2m (3.20)

∀ j = 1, . . . , r

∀a, b = 1, . . . , k, a , b.

With the constraint (3.10), a path between each observer node j and the assumed source s is constructed,
by selecting the edges from the incidence matrix which includes all the existing and all additional possible
edges in both directions [65]. The constraint (3.11) makes the length of such path exactly equal to the
infection time. Each observer - source path should not include the same edge in two different directions, as
we are looking for the shortest path between two nodes, and this is set by (3.12). For the same reason, the
observer j and the source s should only be the terminal points of the path, which is constrained by (3.13)
and (3.14), respectively. The paths are directed from the observers to the source, and therefore constructed
from the edges of matrix B̃, which includes each edge in both directions. However, the goal is to construct
an undirected topology from the union of these paths, hence, a direction of the edge should be disregarded.
By (3.15)–(3.17), an edge is used in the final topology if it is in at least one observer-source path, regardless
of the direction in which it was used. Thus, the dimension of x, a variable that represents edges in the final
topology is only half of the dimension of the variables x j that represent the paths. Constraint (3.18) ensures
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Figure 3.10: A tree network of 20 nodes
with two unobserved edges. The edge be-
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that the constructed union of paths contains at most one edge that connects two components, in order to
avoid inter-component loops. Since there are k components, at most k-1 edges can be added from the set
of all the possible edges, and this is the role of the constraint (3.19). Finally, (3.20) constrains the variables
x j to be binary. Explicit enforcement for the binary structure of x is not necessary, as it is formed through
constraints (3.15)–(3.17) on binary variables x j .

The number of nodes and topologies that match the observed times and network structure depend on
the number of missing edges, the placement of observers and the source. If a network is not observable,
the proposed program (3.9) will be feasible for more than one node, and this is not related to the proposed
approach. However, the proposed approach itself can also contribute to the number of false candidates.
Although constraints (3.13) and (3.14) prevent loops around terminal points in the observer-source paths
and constraint (3.18) limits the number of inter-component edges, still paths could include some loops, for
example in the case where there are components with no observers. In such a case a node might be falsely
classified as feasible.

We illustrate the effect of the number of observers on the source localization problem for a tree network
of 20 nodes with only 2 unobserved edges shown in Figure 3.10. From this partially known tree, 5, 880
trees can be constructed by adding 2 edges. We have used GNU Linear Programming Kit (GLPK) package,
that is intended for solving large-scale programming, to solve the proposed optimization program (3.9). The
total time needed to verify the feasibility of the linear binary program (3.9) for each node in a network was
recorded, as well as the number of nodes for which the problem was feasible. These results were averaged
over all possible sources and simulations were repeated for different numbers of observers, selected from
each of the 3 components sized 6, 7 and 7 nodes. During selection, priority was given to 11 leaves. Figure
3.11a shows that initially the time needed to solve (3.9) dramatically grows with the number of observers,
while Figure 3.11b shows an opposite trend in the number of possible solutions. Initially, with almost no
constraints, a tree consistent with the observations can quickly be constructed for many nodes. Including
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Figure 3.11: The effect of the number of observers on the optimization problem (3.9) for a 20 node tree
with two unobserved edges.

more observers increases the number of constraints and more time is needed to find such a tree or to conclude
that the problem is unfeasible. The rate by which the number of suspects decreases with the number of
observed leaves dramatically drops after including, at least, one node from each component. When the
number of observers reaches 9, the network becomes observable. Around that point, correspondingly, the
solving time starts to decrease with the number of observers. Now, only one node can be the source suspect,
and for all the other nodes, the problem can relatively quickly be classified as unfeasible due to an increasing
number of constraints.

3.3 Summary

In this Chapter, we have analyzed the observer selection problem, again for a deterministic diffusion model,
but this time allowing partial knowledge of network topology. Often, the structure of local communities
is well known, while the connections between different communities are unknown, as it may be a weak
connection or a random contact. Hence, we have studied source localization problem in a graph, where the
edges in each connected components are known, but not the edges that connect different components. We
have extended the concept of network observability in this context to denote the ability to disambiguate the
source based on the infection times of the observers, even without knowing the full diffusion graph. We have
shown that the number of connected graphs that can be constructed by connecting k components with k − 1
edges scales exponentially with the number of components. Therefore, we did not analyze the observability
problem in each of these topologies separately.

In Subsection 3.1.1, we have presented necessary and sufficient conditions for the smallest set of observers
that makes a network observable, when the components are all trees, complete graphs, grids or cycles. When
the components are of an arbitrary structure, in Section 3.1.2, we presented a way, based on the concept of
graph boundary, to select observers such that the network becomes observable. For some special graphs, like
trees and grids, the cardinality of the set of observers selected based on the presented condition is minimum,
or close to a minimum. However, the simulation results on Erdős-Rényi graphs illustrated that this cardinality
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can also be far from the smallest. Still, construction of such a set can be done easily, in polynomial time.
In Section 3.2, we have addressed the problem of source localization in partially known graphs. We have

formulated a binary integer linear program, whose feasibility should be verified N times, each time assuming
a different node to be the source. Each node for which the proposed optimization problem is feasible
represents a source candidate. Although binary integer linear program is computationally very intensive, the
proposed formulation does not require explicitly enumerating an exponential number of topologies that are
compatible with the partially known network.
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Chapter 4

Node selection for stochastic infection times

In this chapter, we address the observer selection problem in the presence of uncertainty in the infection
times. In Chapters 2 and 3, we have assumed that there is no uncertainty in the observations, and the
observed infection times match the true times of infection. The time taken by a node to infect its neighbor
was considered a known constant, and there was no observation noise. Now, we relax these assumptions, and
analyze separately three different diffusion scenarios, either modeling the propagation delay along the edges
between two neighboring nodes as a random variable, as it is done in Subsection 4.1.2, or still considering
the delay to be a constant, but introducing observation noise, as it is done in Subsections 4.1.3 and 4.1.4. Due
to uncertainty in the observations, disambiguation of the source now cannot be guaranteed and instead the
error probability of source localization needs to be considered. As the choice of observers also influences the
source localization process, a question of interest is identifying the subset of observers that would minimize
the error probability. However, obtaining an exact analytical expression for error probability is generally not
a tractable problem, and, therefore, finding an optimal subset of observers that minimizes this error is not
feasible.

Instead, in Subsection 4.1, we present a metric that acts as a surrogate for error probability and could
be used to compare the performance of different subsets of observers in source localization, considering
that all observers are selected at the same time. We apply the large deviations approach to derive error
exponents that characterize the asymptotic behavior of the error probability of source localization. The
analyzed asymptotics refers not to an increasing number of observations, but to vanishing uncertainty. In the
settings that we consider, the number of observations is limited, as each observation comes from a different
node, and the number of nodes in a network is fixed and finite. Hence, we evaluate the rate of error decay
as uncertainty in the observations decreases and use it as a tool for comparison of observer subsets. Subset

67



selection based on this criterion is optimal from the perspective of fastest error decay when randomness
decreases. However, as we show in Subsection 4.1.5, simulation results illustrate that the proposed metric
is also very useful in a more realistic setting for non-negligible noise, as those subsets characterized by a
higher error exponent generally yield lower error probability than others.

The metric that we develop in Subsection 4.1 can also be used for other applications. One of them is
defense of networks, a very active research field as networks are subject to various forms of attacks [66, 67].
Even if the network nodes include their sender identification in the messages, this can be forged in order
to conceal the true identity of the sender, which may send malicious packets. Hence, when designing
a network, it may be useful to compare different topologies regarding their ability to identify the sender
node. Assuming there are certain points in the network where packets are examined and the identity of any
flagged packet is ascertained based on the packet arrival times, different topologies may yield different error
probabilities. Since calculating the error probability is not feasible, there is a need for a surrogate metric
for selecting topologies, which is exactly the metric that we propose. In another potential application, the
goal is to preserve the anonymity of the sender [68]. If an individual, like a whistleblower or an activist,
needed to publish online certain information, knowing that some sites are monitored, an important question
would be from which site to post this sensitive information in order to preserve anonymity. Even though the
identity of the sender may be forged, an additional level of anonymity may be introduced by the sender by
publishing from a point in the network that gives the most uncertainty in sender localization based on the
message arrival times. Our theoretically based metric provides an effective means of assessing which nodes
are harder to pinpoint for a given network and defined monitoring points.

In Section 4.2, we return to the problem of dynamic observer selection, but now in a stochastic setting.
We propose a sequential algorithm for source localization and apply a criterion developed for deterministic
infection times. We demonstrate the applicability of the localization algorithm and the merit of the criterion
for observer selection on a real-world data set of a cholera outbreak in Subsection 4.2.1.

4.1 Block selection

When the infection times are stochastic, even if the infection times of all the nodes are available, there is
a certain level of error probability associated with source localization which depends on the stochasticity
of observations. Now, if observations are available from only a subset of nodes, the error probability not
only depends on the uncertainty in the infection times, but also on the choice of observers, whose infection
times are used to localize the source. Hence, in this setting, identifying which observers lead to a low error
probability of source localization becomes an important issue. For stochastic infection times, not only the
combinatorial aspect of this problemmakes this task challenging, but also the absence of a general expression
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for the error probability. Since deriving an expression for error probability is typically not tractable, we need
to develop a substitute metric, related to the error probability, yet analytically tractable.

Motivated by asymptotic analysis of error probability in multiple hypothesis testing, we also resort
to the asymptotic study of error probability. However, a common approach in the asymptotic analysis is a
characterization of the behavior of error probability as the number of observation keeps increasing. Then, the
rate of error probability decay for an asymptotically large number of observations is derived [69]. However,
for the problem of observer selection, this approach is not applicable, as each new observation represents
a new observer, and, in our case, the number of observers is fixed, and the impact of a particular set of
observers on error probability is exactly what needs to be evaluated, relative to some other set of observers.
Another approach for asymptotic analysis in networks is considering a growing sequence of graphs whose
number of nodes tends to infinity [70]. Analysis for growing number of nodes is performed for graph classes
such as wireless ad-hoc networks [71] or randomly growing graphs [70], where the graph grows according
to a specific rule: either all nodes are uniformly distributed and have the same range for connection, or each
new node connects to a fixed number of randomly chosen nodes, with a probability of a connection to an
old node depending on its degree. Applying this type of graph - growing analysis to our observer selection
problem comes with an issue of how to keep increasing the graph, such that it reflects the error probability
even though the number of observations is fixed and the number of potential sources is asymptotically
increasing. Depending on how new nodes are added, graph distances between observers and all the other
nodes are changing accordingly, which in turn affects the observers’ infection times and, consequently,
the error probability. Therefore, in order to avoid this issue, we resort to a different type of asymptotic
analysis, where the number of observers is fixed and the topology is preserved while the uncertainty is the
one that is asymptotically decreasing. We analyze how the error probability decreases as the uncertainty in
the observations diminishes and evaluate the rate of this decrease in error probability. For each subset of
observers of interest, we determine the rate of change in error probability, considering that the observations
are becoming decreasingly random or noisy, and then we use the obtained rate to compare different subsets.
The observer subset with a higher rate achieves a faster decrease in error probability as uncertainty in the
observations decreases, compared to a subset with a lower rate.

Before we can apply the asymptotic analysis, we frame source localization as multiple hypothesis testing,
where for each node in a network we have a different hypothesis. A hypothesis Hs corresponds to the
assumption that node s is the actual source. Then the error probability of choosing the wrong hypothesis
corresponds to the probability of localizing the source incorrectly, which is exactly what we wish to analyze.
Let us fix the subset of observer nodes O and denote with x the observations from the set O. This might,
for example, correspond to a vector of infection times of nodes from the set O. The probability distribution
associated with each hypothesis Hs is the conditional probability density of observations p(x; s) given that
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node s is the source. Without any prior knowledge of the source position, we assume that all network nodes
are equally likely source candidates and hence, each hypothesis has the same prior probability π = 1/N .
The maximum a posteriori probability decision rule minimizes the Bayesian probability of error, and in our
case of uniform priors, it corresponds to the maximum likelihood estimator [69]. As discussed before, the
corresponding probability of error is typically difficult to calculate and usually not tractable. Consequently,
determining the subset of observers that globally minimizes the error is generally not analytically feasible.
Instead, to guide us in the selection process of observers that would lead to the lowest error probability of
source localization, we analyze asymptotic behavior or error probability. We will show that for the class of
distributions that we consider, the error probability achieves exponential decay with decreasing uncertainty.
Then, the metric that we will use to compare performances of different observer subsets is the value of the
exponent, i.e., the rate of exponential decay.

Currently in the literature, the strategies for observer selection are based on centrality measures [5, 6,
10, 11], which take into consideration how central a node is within a given topology. As we show in later
subsections, our proposed metric, based on exponents, encompasses not only the effect of topology, but also
depends on the parameters of propagation. As uncertainty vanishes, infection times become deterministic,
and even in this setting, centralities are not optimal selection strategies. Instead, as we have showed in
Chapter 2, the concept of a resolving set is what plays a crucial role for observer selection. We will show
experimentally, in Subsection 4.1.5, that even for non-zero level of uncertainty, using exponents as selection
criterion leads to lower error probability than using centrality measures, even though exponents are derived
for vanishing uncertainty.

4.1.1 A general framework for deriving error exponents

In this subsection, we derive a general framework for evaluating the error exponents that control the decrease
of error probability as the uncertainty in the observations vanishes. First, we will prove the main steps,
and then, we complete the proofs for specific diffusion models, in subsequent subsections. The class of
distributions that we consider is of the form

p(x; i) = h(η)e−
1
η g(x,ai ), (4.1)

for i = 1, . . . , N , which belong to a wider class of elliptical distributions [72] and includes themost commonly
used distributions: Gaussian, Laplace and exponential. Here η is the noise parameter such that the uncertainty
decreases when η → 0. We have that h(η) is a function with η log (h(η)) → 0 for η → 0 and g

(
x, ai

)
is a non-negative, continuous, function of x that equals zero only when x = ai . In the case of Gaussian
distributionN (µi, σ2), η represents the variance σ2, ai is the mean µi and g

(
x, ai

)
corresponds to (x−µi )2

2 .
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In a binary hypothesis case, the error probability of the maximum-likelihood estimator, Pe , is bounded
as

Pe ≤

∫ (
1
π

p (x; k)
)α (

1
π

p (x; l)
)1−α

dx, (4.2)

for 0 ≤ α ≤ 1 [69]. Extending to the multiple hypothesis case, the bound on the overall error probability is

Pe ≤

N∑
k=1

∑
l>k

Pe (k, l) =
N∑
i=1

∑
j>i

elog Pe (k,l ), (4.3)

where Pe (k, l) is the pairwise error probability for hypotheses Hk and Hl , bounded as shown in (4.2). Let
us denote with cα (k, l, η) the α-Chernoff divergence between two distributions p(x; k) and p(x; l) [73]

cα (k, l, η) = − log
∫

p (x; k)α p (x; l)1−α dx. (4.4)

The maximum value attained for 0 ≤ α ≤ 1 represents the Chernoff distance between two distributions and
it does not always have a closed form expression

C(k, l, η) = max
0≤α≤1

cα (k, l, η). (4.5)

For each specific value of noise parameter η, the corresponding Chernoff distance might be different, and
we highlight this dependence explicitly in C(k, l, η). We can rewrite (4.3) as

Pe ≤
1
N

N∑
k=1

∑
l>k

e−C (k,l,η) . (4.6)

Let us denote with γ(k, l) the following limit

γ(k, l) = lim
η→0

C (k, l, η)
1/η

. (4.7)

The existence of the limit is shown in the next sections for three popular noise models. Let (i, j) be a pair of
nodes such that the limit γ(k, l) is the lowest, i.e.,

γ(i, j) = min
(k,l )

γ(k, l). (4.8)

The choice of a node pair (i, j) does not depend on the value of η, and there might be more than one pair of
nodes that minimize (4.7). Applying the results of Lemma 15 below, we will show that γ(i, j) upper bounds
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the error exponent as
lim
η→0

log Pe

1/η
≤ −γ(i, j). (4.9)

Lemma 15. Let the following inequality hold

Pe (t) ≤ κ
n∑
i=1

e−βi (t ), (4.10)

where κ is a constant. If the functions βi (t) exhibit an asymptotic linear growth, i.e., the following limits

exist

βi = lim
t→∞

β(t)
t
≥ 0, (4.11)

then the following inequality holds

lim
t→∞

log(Pe (t))
t

≤ −βp, (4.12)

where βp = min{β1, . . . , βn }.

Proof. Since (4.11) holds, we can rewrite βi (t) as

βi (t) = βit + bi (t), (4.13)

where bi (t) is a sublinear function for which lim
t→∞

bi (t )
t = 0 holds. Now, plugging (4.13) into (4.10), and we

have

Pe (t) ≤ κ
n∑
i=1

e−βi t−bi (t ) . (4.14)

From here, we have

log(Pe (t))
t

≤
log(κ)

t
+
1
t
log *

,

n∑
i=1

e−βi t−bi (t )+
-

=
log(κ)

t
+
1
t
log *

,
e−βp t

n∑
i=1

e−(βi−βp )t−bi (t )+
-

=
log(κ)

t
− βp +

1
t
log *

,

n∑
i=1

e−(βi−βp )t−bi (t )+
-

≤
log(κ)

t
− βp +

1
t
log *

,

n∑
i=1

e−bi (t )+
-
, (4.15)

where the last inequality of (4.15) holds since βp ≤ βi , for all i. Next, we will apply the following generic
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inequality to (4.15)

log(A1 + . . . + An ) ≤ log(nmax{A1, . . . , An })

= log(n) +max{log(A1), . . . , log(An )}

≤ log(n) +max{| log(A1) |, . . . , | log(An ) |}

≤ log(n) + | log(A1) | + . . . + | log(An ) |.

Now, we obtain
log(Pe (t))

t
≤

log(κ)
t
− βp +

log(n)
t
+

n∑
i=1

|bi (t) |
t

,

to which we apply limt→∞ and prove the claim. �

Using (4.6) in place of (4.10), substituting 1/η for t, 1/N for κ, indices k, l for i and C(k, l, η) for βi (t),
provided that limits (4.7) exist– as we will later show – we can obtain the upper bound (4.9). With this we
establish that γ(i, j) defined in (4.8) upper bounds our error exponent.

In order to claim that the exponent exactly equals γ(i, j), we also need to establish a lower bound

lim
η→0

log(Pe )
1/η

≥ −γ(i, j). (4.16)

Let P(e|Hs ) denote the probability of an error given that hypothesis Hs is true. Then, we have

P(e) =
N∑
s=1

P(e|Hs )P(Hs ) =
1
N

N∑
s=1

P(e|Hs )

≥
1
N

P(e|Hi ) ≥
1
N

∫
Ωi j

p(x; Hi )dx (4.17)

where Ωi j = {x : p(x; Hi ) ≤ p(x; H j )} defines a region of error where H j is selected even though Hi is
the true hypothesis. Then, plugging (4.17) into (4.16), the lower bound that we need to show becomes

lim
η→0

η log
(
1
N

∫
Ω

p(x; Hi )dx
)
≥ −γ(i, j), (4.18)

for some region of error Ω ⊆ Ωi j .

Before we state the Lemma needed to establish this lower bound, we introduce the necessary notation.
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Let vol(S) denote the volume of a set S and we define a function f (a,Ω) as

f (a,Ω) = inf {g(x, a) | x ∈ Ω} , (4.19)

where again g(x, a) is a non-negative function for x ∈ Ω and any a, and g(x, a) = 0 for x = a.

We also define a set R that includes all the points x where g(x, a) is bounded as

R (`, ` + ε ) = {x : ` < g(x, a) < ` + ε } . (4.20)

Now we state the lemma that proves the lower bound for the error exponent (4.18).

Lemma 16. If the following holds
Pe ≥ h(η)

∫
Ω

e−
1
η g(x,a)dx, (4.21)

where Ω is a set such that

i) a < Ω

ii) for every ε > 0, and for l = f (a,Ω)

vol (Ω ∩ R (l, l + ε )) > 0, (4.22)

and h(η) is a function such that

lim
η→0

η log (h(η)) = 0, (4.23)

then the following bound holds

lim
η→0

log(Pe )
1/η

≥ − f (a,Ω).

Proof. Let us first fix ε > 0. Since (4.21) holds, we have

Pe ≥ h(η)
∫
Ω∩R (l,l+ε)

e−
1
η g(x,a)dx

≥ h(η)
∫
Ω∩R (l,l+ε)

e−
1
η (l+ε)dx (4.24)

= h(η)e−
1
η (l+ε) vol (Ω ∩ R (l, l + ε )) , (4.25)

where (4.24) holds since g(x) at any point in a set R (l, l + ε ) is at most l + ε , as defined by (4.20). Next, we
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apply the limit and logarithm to (4.25) to obtain

lim
η→0

log(Pe )
1/η

≥ lim
η→0

(
η log (h(η)) −

1
η

(l + ε )

+η vol (Ω ∩ R (l, l + ε ))
)
≥ −(l + ε ). (4.26)

The last step of (4.26) holds due to the assumptions (4.22) and (4.23). Since (4.26) holds for any ε > 0, now
we take ε → 0 which yields exactly our claim

lim
η→0

log(Pe )
1/η

≥ −l = − f (a,Ω). (4.27)

�

In Lemma 16 we have shown that we can lower bound the error exponent for vanishing noise in terms of
a function f (a,Ω) defined as (4.19). Using the results from the following Lemma, we will replace the set Ω
in the bound by its closure.

Lemma 17. Let f (a,Ω) be a function defined as in (4.19). If g(x, a) is a continuous function on Ω, and Ω

is a closure of the set Ω, then f (a,Ω) = f (a,Ω).

Proof. Since Ω ⊇ Ω, the following inequalities hold

f (a,Ω) = inf
x∈Ω

g(x) ≤ inf
x∈Ω

g(x) = f (a,Ω).

Now we show the inequality f (a,Ω) ≥ f (a,Ω) by contradiction. Suppose that f (a,Ω) < f (a,Ω). Then
there is a x̄ ∈ Ω \ Ω such that inf

x∈Ω
g(x, a) < g( x̄, a) < inf

x∈Ω
g(x, a), as g( x̄, a) is a continuous function.

Therefore, we can find a δ > 0 such that the ball centered at x̄ of radius δ is contained insideΩ\Ω. However,
Ω \Ω is the boundary of Ω and by definition contains no interior points, so we arrive at a contradiction, and
prove the claim. �

Now, based on the results of Lemma 17, we can further bound the error exponent from (4.27) as

lim
η→0

log(Pe )
1/η

≥ − f (a,Ω). (4.28)

Next, for a set Ω which is the closure of the set Ω = {x : p(x; i) < p(x; j)} if we show that the solution
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of the minimization problem

min
x

g(x, ai )

s.t. x ∈ Ω, (4.29)

exactly equals γ(i, j), we can establish the lower bound (4.16). This is because Lemma 16 and 17 prove that
the error exponent is lower bounded by f (x,Ω), which is by definition the minimum of g(x, a) for x ∈ Ω.
Then, showing that this same minimum equals γ(i, j) completes the proof that the error exponent is indeed
lower bounded by γ(i, j). Once we establish this, together with the upper bound (4.9), we have that the
error exponent exactly equals our γ(i, j). In the following section, for three different propagation models we
complete these steps and derive exact expressions for the exponents. In these propagation models, infection
times are modeled as either Gaussian, Laplace or exponential random variables. Although the details of
derivation of the exponents are quite specific, the proofs follow the same general steps:

• α-Chernoff divergence from (4.4) is evaluated

• Chernoff distance as the maximum of α-Chernoff divergence for 0 ≤ α ≤ 1 is calculated

• γ(k, l) is evaluated as (4.7), and γ(i, j) is defined as (4.8)

• The error exponent is upper bounded with γ(i, j) using the result of Lemma 15

• The error exponent is lower bounded with f (a,Ω) by applying Lemma 16 , where f (a,Ω) is defined
as (4.19)

• The closure of set Ω is determined and the error exponent is lower bounded with f (a,Ω) by applying
Lemma 17

• The value of f (a,Ω) is shown to be exactly equal to γ(i, j) using duality

• The error exponent is then lower bounded with γ(i, j), since it is bounded by f (a,Ω) which equals
γ(i, j)

• The error exponent exactly equals γ(i, j), since it is both lower and upper bounded by it

When the infection times are modeled as exponential random variables, derivation of γ(k, l) is more
straightforward, while for other models, derivation is more involved. Application of Lemma 16 in Gaussian
propagation model is again not straightforward and requires additional analysis, as set Ω depends on the
parameter η, unlike in the other two models. In Laplace model, the closure of set Ω is not as intuitive as in
other models, hence the duality result is established through multiple steps.
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4.1.2 Observations are modeled as Gaussian random variables

In the first scenario that we analyze, we model the time taken for node u to infect its neighbor v along the
edge u − v, i.e., θu,v , as a Gaussian random variable. Traditionally, in epidemic modeling, this propagation
delay along the edges is taken to be a variable with exponential distribution [12]. However, in some recent
work [5, 33, 40], this propagation time is approximated by a Gaussian variable. The central limit theorem is
invoked for this approximation, as the infection time of an observer is a sum of the propagation times along
the edges of the shortest path between the source and observer. As the infection times can be approximated
with a Gaussian variable, then the individual propagation delays are also modeled as a Gaussian variable.
We will also follow this reasoning. Hence, we assume that θuv , for all u, v pairs where u and v are connected
by an edge, are independent, identically distributed random variables with Gaussian distribution N (µ, σ2)

[5].

We assume that the underlying network is a tree, a graph with no cycles. Unlike general graphs, trees are
tractable, as there is only a single path between any pair of nodes. For a general network, tree-based analysis
is again used [4, 5, 8, 10, 22, 33, 40], by taking into consideration that the diffusion spreads through a network
in the form of some spanning tree. The paths from the source to the nodes in a graph, for the first time when
each node became infected or received information, actually corresponds to some spanning tree. However,
the exact tree is unknown, and enumerating all of them is not feasible, as there is an exponential number
of them. Typically, the breadth-first search (BFS) tree is used as an approximation of the true spanning
tree, while in [33], cost and tree-based ranking algorithms are used to construct trees which perform better
in experimental evaluations than BFS. We will now provide the analysis for a tree network, and the above
mentioned approximations can be used to apply tree-based analysis for a general network.

We will analyze two scenarios: in the first we model the activation time of the source as a random
variable and in the second we assume no knowledge of the activation time. As we will later show, evaluating
the error exponent is actually simpler in the case no characterization of t0 is available.

Scenario I

Wemodel the activation time of the source as a random variable with distributionN (µ0, σ2), independent
of the random propagation delays (where µ0 is sufficiently large compared to σ2 to avoid negative activation
time). We assume that the variance of the activation time is equal to the variance of the propagation delay
in order to simplify the presentation, but, the model also admits a different variance. The infection time of a
node ol when s is the source is

tol
= t0 +

∑
i, j ∈P(ol ,s)

θi, j,

where P(ol, s) is the shortest path between ol and s. The mean and the variance of the infection time of
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node ol are
E(tol

) = µd(ol, s) + µ0, var (tol
) = (d(ol, s) + 1)σ2,

where d(ol, s) denotes the graph distance between the nodes ol and s. Even though the propagation delays
associated with edges are independent, the infection times of any two nodes ok and ol may be correlated, due
to the random activation time and the common edges between the paths from nodes ok and ol to the source
node s. Now, the covariance of the infection times of nodes ok and ol , assuming the source is node s, is

cov(tok
, tol

) =E
[(

tok
− µd(ok, s) − µ0

) (
tol
− µd(ol, s) − µ0

)]

=σ2 (1 + |P(ok, s) ∩ P(ol, s) |) , (4.30)

where |.| denotes the cardinality, and P(ok, s) ∩ P(ol, s) denotes the common edges of paths P(ok, s) and
P(ol, s). The number of these common edges can be calculated as

|P(k, s) ∩ P(l, s) | =
1
2

(d(k, s) + d(l, s) − d(k, l)) . (4.31)

Then, compactly, the covariance matrix associated with the source node s, and the set of observers O =

{o1, . . . , or } is

Σs =
σ2

2
(
d1T + 1dT − D + 211T

)
, (4.32)

where d depends on the vector of graph distances of the source to the observers as d = µ [d(o1, s), . . . , d(or, s)]T ,
1 is a vector with all entries equal to 1 and D ∈ Rr×r is the matrix of graph distances between observers.
Finally, assuming node s to be the source, the infection times of the observers x =

[
to1, . . . , tor

]T , are
characterized by a multivariate Gaussian distribution N (µs,Σs ), where

µs = d + µ01, (4.33)

and Σs is given by (4.32). Therefore, for each network node s, we have a different hypothesis Hs with
distribution N (µs,Σs ) describing the infection times of the observers.

Scenario II

If no assumptions on t0 can be made, then one observer, say o1, can be chosen as the reference, and
instead of the infection times, their difference is used. Assuming the source to be node s, we denote with
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xok
this new observation for observer ok to obtain [5]

xok
= tok

− to1 =
∑

i, j ∈P(ok ,s)

θi, j −
∑

i, j ∈P(o1,s)

θi, j . (4.34)

Now the infection times of the observers, assuming node s to be the source, are again characterized with
multivariate Gaussian distribution, but with different parameters. The mean equals

µs = µ [d(s, o2) − d(s, o1), . . . , d(s, or ) − d(s, o1)]T , (4.35)

while the covariance no longer depends on the source and is

[Σ]k, i = σ2



d(o1, ok+1), k = i

|P(o1, ok+1) ∩ P(o1, oi+1) |, k , i
. (4.36)

Having the statistical characterization of the observed infection times, for each possible source, for both
scenarios, we proceed to derive the exact expression for γ(k, l) given by (4.7). The variance of the random
propagation delay, σ2, takes the role of the randomness parameter η. Since the densities p(x; k) and p(x; l)

are multivariate Gaussian with equal priors, the α-Chernoff divergence from (4.4) evaluates to [73]

cα
(
k, l, σ2

)
=

1
2
log

det (αΣk + (1 − α)Σl )
(detΣk )α (detΣl )1−α

+
α(1 − α)

2
(
µk − µl

)T (αΣk + (1 − α)Σl )−1
(
µk − µl

)
.

(4.37)

Next, we can decouple each covariance matrix as Σi = σ2Σ̃i , where Σ̃i depends only on the graph
structure (and possibly on the source node), but not on the variance of the propagation delay along the edges.
Then, α-Chernoff divergence from (4.37) can be rewritten as

cα
(
k, l, σ2

)
=

1
2
log

det
(
αΣ̃k + (1 − α)Σ̃l

)
(
det Σ̃k

)α (
det Σ̃l

)1−α + α(1 − α)
2σ2

(
µk − µl

)T (
αΣ̃k + (1 − α)Σ̃l

)−1 (
µk − µl

)
= f1(α, k, l) +

1
σ2 f2(α, k, l), (4.38)

where det(M ) is the determinant of a matrix M and

f1(α, k, l) =
1
2
log

det
(
αΣ̃k + (1 − α)Σ̃l

)
(
det Σ̃k

)α (
det Σ̃l

)1−α ,
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f2(α, k, l) =
α(1 − α)

2
(
µk − µl

)T Γ−1 (
µk − µl

)
(4.39)

and
Γ = αΣ̃k + (1 − α)Σ̃l . (4.40)

Using the results of the following lemmas, we will show that analysis of the asymptotic behavior can be
restricted only to analysis of f2(α, k, l) of α-Chernoff divergence given by (4.38).

Lemma 18. Let Φ(α, θ) = g1(α) + θg2(α), where g1 and g2 are continuous functions of α for 0 ≤ α ≤ 1.
Let α∗(θk ) denote the maximizer of Φ(α, θ) for fixed value θ = θk . Then

lim
θ→0

max
0≤α≤1

Φ(α, θ) = g1(α∗(0)).

Proof. Since g2 is a continuous function in the interval 0 ≤ α ≤ 1, it can be bounded by some constant h,
i.e.,

|g2(α) | < h, (4.41)

for 0 ≤ α ≤ 1. For the sequence θk → 0, let αk denote the corresponding maximizer of Φ(α, θk ), i.e.,
αk = α

∗(θk ). Then we have that the following bounds hold

Φ(αk, θk ) ≥Φ(α∗(0), θk ) (4.42)

=g1(α∗(0)) + θkg2(α∗(0)) ≥ g1(α∗(0)) − θk h. (4.43)

Inequality (4.42) holds as αk maximizes Φ(α, θk ), while inequality (4.43) holds since function g2 can be
bounded as (4.41).

Then, from (4.43), we further have

lim inf
k→∞

Φ(αk, θk ) ≥ lim inf
k→∞

g1(α∗(0)) − θk h = g1(α∗(0)). (4.44)

Next, we also have

g1(α∗(0)) =Φ(α∗(0), 0) ≥ Φ(αk, 0) = g1(αk ) = g1(αk ) + θkg2(αk ) − θkg2(αk )

≥Φ(αk, θk ) − θk h. (4.45)

From (4.45) we obtain
Φ(αk, θk ) ≤ g1(α∗(0)) + θk h
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and
lim sup

k→∞

Φ(αk, θk ) ≤ lim sup
k→∞

g1(α∗(0)) − θk h = g1(α∗(0)). (4.46)

Combining the upper (4.44) and lower (4.46) bound, finally yields

lim
k→∞

Φ(αk, θk ) = g1(α∗(0)).

�

Lemma 18 holds for functions of the form g1(α) + θg2(α), while we have cα
(
k, l, σ2

)
= f1(α, k, l) +

1
σ2 f2(α, k, l). Therefore, we will also need the result of the following lemma that holds for the functions of
the form g1(α) + 1

θ g2(α).

Lemma 19. Let F (α, θ) = g1(α) + 1
θ g2(α), where g1 and g2 are continuous functions of α for 0 ≤ α ≤ 1.

Let α∗(θk ) denote the maximizer of F (α, θ) for fixed value θ = θk . Then

lim
k→∞

θk max
0≤α≤1

F (α, θ) = g2(α∗(0)).

Proof. We can rewrite F (α, θ) as 1
θ (g2(α) + θg1(α)) = 1

θ Φ̃(α, θ). Then α∗(θk ) is the maximizer of F (α, θ),
as well as of Φ̃(α, θ) for 0 ≤ α ≤ 1. Again, for the sequence θk → 0, let αk denote the corresponding
maximizer α∗(θk ). Then, applying the results of Lemma 18, we obtain

lim
k→∞

F (αk, θk )θk = lim
k→∞

θk
1
θk
Φ̃(αk, θk ) = g2(α∗(0)).

�

In order to finish evaluating the exact expression for γ(k, l) from (4.7) we can now apply the results of
Lemma 19 as follows

γ(k, l) = lim
σ2→0

C
(
k, l, σ2

)
1/σ2

= lim
σ2→0

σ2
(

f1
(
α∗(σ2), k, l

)
+

1
σ2 f2

(
α∗(σ2), k, l

))
= f2

(
α∗(0), k, l

)
= max

0≤α≤1
f2 (α, k, l)

= max
0≤α≤1

α(1 − α)
2

(
µk − µl

)T Γ−1 (
µk − µl

)
, (4.47)

where Γ is defined as (4.40).

81



Now, following (4.8), we denote with γ(i, j) the smallest exponent γ(k, l) given by (4.47). Establishing
that γ(i, j) upper bounds the error exponent is already given by Lemma 15, while the lower bound requires
additional steps. First, we will show that analysis of a problem for arbitrary matrices Σi and Σ j can be
simplified by applying simultaneous diagonalization of positive definite matrices [74]. We diagonalize Σi
and Σ j as

Σ̃i = SST and Σ̃ j = SΛi jS
T ,

where Λi j is a real diagonal matrix with non-negative diagonal elements. Now we can rewrite f2(α, i, j) as

α(1 − α)
2

(
µi − µ j

)T
S−T (αI + (1 − α)Λ)−1S−1

(
µi − µ j

)
.

Then, instead of analyzing the error exponent for distinguishing between distributions N (µi, σ
2Σ̃i ) and

N (µ j, σ
2Σ̃ j ), we can analyze the equivalent problem of determining the error exponent for distributions

N (S−1µi, σ
2I ) andN (S−1µ j, σ

2Λ). Hence, we focus our attention to the case when Σ̃i = I and Σ̃ j = Λ and
denote µ′i = S−1µi and µ′j = S−1µ j . Also, before we apply Lemma 16 to lower bound the error exponent,
we need the result of the following lemma.

Lemma 20. Let {Bn } be a monotone increasing sequence of sets and g(x, a) is a non-negative continuous

function for x ∈ Ω and any a. Then the following holds

lim
n→∞

inf {g(x, a) |x ∈ Bn } = inf
{
g(x, a) |x ∈ lim

n→∞
Bn

}
.

Proof. Let B = lim
n→∞

Bn = ∪n→∞Bn , and b = inf {g(x, a) |x ∈ B}. Let bn = inf {g(x, a) |x ∈ Bn }. Then
we need to show lim

n→∞
bn = b. Since Bn ⊆ Bn+1, we have b = inf

x∈B
g(x, a) ≤ inf

x∈Bn

g(x, a) = bn , from
which b ≤ lim

n→∞
bn follows. To prove the inequality in the other direction, since B = ∪n→∞Bn , we have the

following: for each x ∈ B, there is some n such that x ∈ Bn , hence bn ≤ b, and lim
n→∞

bn ≤ b. �

We now use Lemmas 16 and 20 to prove the Theorem that establishes a lower bound on the exponent,
and then we relate this bound to our expression of γ(i, j) through Theorem 23.

Theorem 21. The following bound holds

lim
σ2→0

log(Pe )
1/σ2 ≥ − inf

x∈Ω

x − µ
′
i

2

2
, (4.48)
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for Ω =
{
x :

1
2

x − µ
′
i

2
>

1
2

(x − µ′j )
TΛ−1(x − µ′j )

}
. (4.49)

Proof. First, comparing the distribution p(x; i) to (4.1), we note that the function h(σ2) = 1/
(
2πσ2

)r/2
.

Then
σ2 log

(
h(σ2)

)
= −σ2r/2 log(2πσ2)

σ2→0
−−−−−→ 0,

thereby satisfying the assumption (4.23) of Lemma 16. Function g(x, µ′i ) =
x − µ

′
i

2
/2 is surely non-

negative and continuous. Let us denote Ωσ2 =
{
x : p(x; Hi ) < p(x; H j )

}
, which can be rewritten as

Ωσ2 =



x : σ2K +

x − µ
′
i

2

2
>

(x − µ′j )
TΛ−1(x − µ′j )

2



,

where K = −1
2σ

2 log detΛ. We cannot directly apply the result established by Lemma 16, as the set Ωσ2

depends on the value of σ2, unlike the set Ω from Lemma 16. Let us separately consider the cases K ≥ 0
and K < 0.

Case I: K ≥ 0

For any value of σ2 > 0, we have that Ω ⊂ Ωσ2 . Then

Pe ≥
1(

2πσ2)r/2
∫
Ω
σ2

e−
1

2σ2 ‖x−µ
′
i ‖

2
dx

≥
1(

2πσ2)r/2
∫
Ω

e−
1

2σ2 ‖x−µ
′
i ‖

2
dx

In order to use the result of Lemma 16, we need to show that its assumptions hold. We have that µ′i < Ω,
unless µ′i = µ

′
j , and we exclude this case and later discuss it. Next we will show that the intersection of the

set Ω and the set R (l, l + ε ), where l = inf{x − µ
′
i

2
/2| x ∈ Ω} has a non-empty interior.

Let us first fix ε > 0. Then, there exists x̄ ∈ Ω such that g(µ′i, x̄) < f (µ′i,Ω) + ε . Since x̄ ∈ Ω, there
exist a δ1 > 0 such that an open ball, centered at x̄ of radius δ1, denoted as B( x̄, δ1), is contained inΩ. Also,
x̄ ∈ B(µ′i, l + ε ), and so there exists δ2 > 0, such that B( x̄, δ2) ⊂ B(µ′i, l + ε ). Let δ = min{δ1, δ2}. Then for
any ε > 0, we have a point x̄ and a radius δ, such that B( x̄, δ) is both in the set Ω and the ring R (l, l + ε ),
implying that x̄ is an interior point of the intersection. Hence, the assumption vol

(
Ω ∩ Rµ′i

(l, l + ε )
)
> 0

holds and we can now apply Lemma 16.

Case II: K < 0

Let us denote with σ2
n a decreasing sequence which converges to 0. For each value σ2

n , we have the
corresponding Ωσ2

n
, with Ωσ2

p
⊂ Ωσ2

q
, for p > q. Then Ω = ∪σ2

n→∞
Ωσ2

n
. Now, we fix σ2 > 0, and choose
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σ̄2 > σ2, which gives Ωσ̄2 ⊂ Ωσ2 . Then we can bound the error probability as

Pe ≥
1(

2πσ2)r/2
∫
Ω
σ2

e−
1

2σ2 ‖x−µ
′
i ‖

2
dx

≥
1(

2πσ2)r/2
∫
Ω
σ̄2

e−
1

2σ2 ‖x−µ
′
i ‖

2
dx

Again, by excluding the case µ′i = µ
′
j and invoking the same arguments as in the previous case to verify that

assumption (4.22) holds, we apply the results of Lemma 16 to obtain

lim
σ2→0

log(Pe )
1/σ2 ≥ − f (µ′i,Ωσ̄2 ). (4.50)

Again, Ω = ∪σ̄2→∞Ωσ̄2 , where Ωσ̄2 are monotone increasing sets for σ̄2 → ∞. Then we can apply Lemma
20 to obtain

lim
σ̄2→∞

f (µ′i,Ωσ̄2 ) = f (µ′i,Ω). (4.51)

Plugging (4.51) into (4.50), we finally obtain the claim. �

Next, instead of the set Ω, we will need to use its closure, which we state in the following lemma.

Lemma 22. Set
Ω =

{
x :

1
2

x − µ
′
i

2
≥

1
2

(x − µ′j )
TΛ−1(x − µ′j )

}
is the closure of the set Ω defined in (4.49).

Proof. Since f (x) = 1
2

x − µ
′
i

2
− 1

2 (x− µ′j )
TΛ−1(x− µ′j ) is a continuous function, setΩ is an open, while

Ω is a closed set. What remains to be shown is that every point in the set

S =
{
x :

1
2

x − µ
′
i

2
=

1
2

(x − µ′j )
TΛ−1(x − µ′j )

}

is a limit of sequences xk ∈ Ω and yk < Ω. First we will exclude the case µ′i = µ
′
j , as depending on the

eigenvalues of Λ, set Ω could be an empty set or the whole space, and its boundary would then be an empty
set. We can consider a sequence xk = x + v, where entries of v are all zeros except the first entry which is
s/k, and x ∈ S. The sequence obviously converges to x, and we will show that there is always a value of s,
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such that xk ∈ Ω. Denoting m =
[
Λ−1

]
11
, we have

f (xk ) =
1
2

x + v − µ′i

2
−
1
2

(x + v − µ′j )
TΛ−1(x + v − µ′j )

=
1
k

*
,

s2

k

(
1 −

1
m

)
+ 2s *

,
x1 − µ′i1 −

x1
m
+
µ′
j1

m
+
-

+
-
.

If t = x1 − µ′i1 − x1/m + µ′j1/m > 0 and s = 1, for large enough k, such that the sign of the second term,
term t, dominates, we have that f (xk ) > 0. Otherwise, if t < 0, we set s = −1 and obtain f (xk ) > 0, hence
showing that every point in S is a limit of some sequence in Ω. Similarly, taking yk = x + v, but this time
taking s = −1 for t > 0 and s = 1 for t < 0, we generate a sequence yk → x as k → ∞. Then for large
enough k, we have that yk belongs to the complement of Ω, as f (yk ) < 0. For t = 0, we can construct the
sequences by perturbing not the first entry of x, as we have done so far, but any other entry for which t , 0,
unless x − µ′i = Λ

−1(x − µ′j ) holds. IfΛ
−1 − I is either positive or negative definite matrix, the set S consists

of x = µ′i = µ
′
j , which is the case we have previously excluded. If Λ−1 − I is neither positive nor negative

definite, it implies that some eigenvalues of Λ−1 are greater than 1, while others are less. Then we take s = 1
and form a sequence xk by perturbing the entry of x for which the corresponding eigenvalue is greater than
1, and less than 1 to generate yk . �

The next Theorem uses an interesting duality phenomenon to relate the upper bound shown for error
exponent in Theorem 21 to our expression for γ(i, j), the minimum value of (4.47).

Theorem 23. The optimization problem

max
0≤α≤1

α(1 − α)
2

(
µ′i − µ

′
j

)T
(αI + (1 − α)Λ)−1

(
µ′i − µ

′
j

)
. (4.52)

is the dual of the minimization problem

min
x

x − µ
′
i

2

2

s.t.
1
2

x − µ
′
i

2
≥
1
2

(x − µ′j )
TΛ−1(x − µ′j ). (4.53)

Proof. The Lagrangian dual function of (4.53) is

L(x, ν) =
1
2
xT

(
I + ν(Λ−1 − I

)
x +

(
−µ′i + ν

(
µ′i − Λ

−1µ′j
))T

x

+
1
2
ν
(
µ′j

TΛ−1µ′j − µ
′
i
T µ′i

)
+
1
2
µ′i

T µ′i . (4.54)
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Denoting c = 1
2 ν

(
µ′j

TΛ−1µ′j − µ
′
i
T µ′i

)
+ 1

2µ
′
i
T µ′i , b = −µ′i + ν

(
µ′i − Λ

−1µ′j
)
and M = I + ν(Λ−1 − I ), the

dual function is

L(ν) = inf
x

(x, ν) =



c − 1
2bTM+b, M � 0

−∞, otherwise
(4.55)

Then the dual problem of (4.53) is

max L(ν)

s.t. ν ≥ 0 (4.56)

Strong duality holds for problem (4.53) and its dual (4.56) based on the S-procedure [75] provided that
Slater’s condition is satisfied, even though it is not a convex problem. Since we can always take x = µ′j ,
and we assume µ′i , µ

′
j , the constraint is satisfied with strict inequality and strong duality holds. The KKT

conditions are then

(
I + ν(Λ−1 − I

)
x − µ′i + ν

(
µ′i − Λ

−1µ′j
)
= 0 (4.57)

g(x) = (x − µ′j )
TΛ−1(x − µ′j ) −

x − µ
′
i

2
≤ 0 (4.58)

ν ≥ 0 (4.59)

νg(x) = 0. (4.60)

From (4.60), we have either that ν = 0 or g(x) = 0. If ν = 0, from (4.57), we obtain x = µ′i . Plugging back
this solution into the constraint (4.58), we obtain

(
µ′i − µ

′
j

)T
Λ−1

(
µ′i − µ

′
j

)
≤ 0, which is a contradiction,

for all µ′i , µ
′
j since Λ

−1 � 0. For x = µ′i = µ
′
j , the value of both optimization problems, (4.53) and (4.52),

is 0. For the general case, µ′i , µ
′
j , we have that g(x) = 0.

Rearranging (4.55) gives

L(ν) =ν(ν − 1)µ′i
TM−1Λ−1µ′j −

1
2

(ν − 1)2µ′i
TM−1µ′i

−
1
2

(ν − 1)µ′i
T µ′i +

1
2
νµ′j

TΛ−1µ′j −
1
2
ν2µ′j

TΛ−1M−1Λ−1µ′j . (4.61)
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After applying the equality (I + AB)−1 = I − A(I + BA)−1B and further rearranging, we finally obtain

L(ν) =
ν(1 − ν)

2
(
µ′i − µ

′
j

)T
(νI + (1 − ν)Λ)−1

(
µ′i − µ

′
j

)
,

which is exactly the expression for Chernoff α-divergence, where the Lagrangian multiplier has the role of
the parameter α, and this proves the claim. �

Theorem 23 was the last step needed to show that γ(i, j) lower bounds the error exponent. Since it also
upper bounds the exponent, we conclude that the error exponent for vanishing noise when the observations
are modeled as Gaussian variables is indeed

γ(i, j) = max
0≤α≤1

α(1 − α)
2

(
µi − µ j

)T
Γ−1

(
µi − µ j

)
,

for
Γ = αΣ̃i + (1 − α)Σ̃ j .

Note that Theorem 23 proves that the value of the error exponent is a minimum that the exponent of the
distribution function p(x; i) reaches in the error region, where H j is chosen, even though Hi is the true
hypothesis.

For the observation model where no assumption on the activation time can be made, and the difference
of infection times is used, the covariance matrix is the same for all the distributions of suspect nodes. It can
be easily seen that Γ from (4.40) then exactly equals 1

σ2Σ, where Σ is defined by (4.36). Then the optimal
value of α that maximizes γ(i, j) from (4.47) easily evaluates to 1

2 , giving a closed form for the exponent

γ(i, j) =
1
8

(
µi − µ j

)T
Γ−1

(
µi − µ j

)
.

In the previous analysis, we have excluded the case of equal means µi = µ j , and hence, µ′i = µ′j , as
for this case there is no exponential error decay. However, the expression for the error exponent (4.7) is still
valid, as it evaluates to zero.

4.1.3 Observations are modeled as Laplace random variables

In this scenario, we assume the propagation delay between two neighboring nodes u and v, θu,v to be a
constant, and to simplify the notation, w.l.o.g. we assume it to be 1. Then, assuming s is the source, the true
infection time of observer op equals its graph distance to the source node d(op, s). However, we assume that
the observations of infection times are corrupted with noise with Laplace distribution. This is motivated by
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the use of Laplace noise in modeling outliers, because of its heavy-tail property, and the possible presence
of outlier behavior in information networks [76]. Now, denoting the observed infection time of observer op

as xp , we have
xp = d(op, s) + np,

where np is a random variable with density p(np ) = 1
2bp

e−
|np−µ

′
p |

bp . Hence, the distribution characterizing
the infection time of observer op is

p(xp ; s) =
1

2bp
e−
|np−µ

′
p−d (op ,s) |
bp ,

where we allow the noise parameters to differ across different nodes, while the noise remains independent
across nodes. Stacking the observations from all observer nodes into a vector x, denoting µsp = µ′p+d(op, s),
b = min

p
bp and writing bp = vpb, for p = 1, . . . , r , we obtain

p(x; s) =
r∏

p=1

1
2bvp

e−
|x−µsp |

bvp . (4.62)

Now b takes the role of the noise parameter η. Next, we evaluate the α-Chernoff divergence (4.4) to obtain

cα (k, l, b) = − log
r∏

p=1

∫
1

2bvp
e−

α |xp−µ
k
p |+(1−α) |xp−µlp |

vpb dxp

= − log
r∏

p=1

1
2bvp

(
bvpe−(1−α)

|µkp−µ
l
p |

bvp +
bvp

1 − 2α
*
,
e−α

|µkp−µ
l
p |

bvp − e−(1−α)
|µkp−µ

l
p |

bvp +
-
+ bvpe−α

|µkp−µ
l
p |

bvp

)

= − log
r∏

p=1

(1 − α) e−α
|µkp−µ

l
p |

bvp − αe−(1−α)
|µkp−µ

l
p |

bvp

1 − 2α
. (4.63)

In order to derive the expression for γ(k, l), and consequently for the error exponent, we will use the following
lemmas.

Lemma 24. Given cα (k, l, b) as in (4.63), the following holds

c = lim
b→0

bcα (k, l, b) =



α
∑r

p=1
|µk

p−µ
l
p |

vp
, α ≤ 1

2

(1 − α)
∑r

p=1
|µk

p−µ
l
p |

vp
, α ≥ 1

2

. (4.64)
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Proof. We have the following

c = lim
b→0

b r log(1 − 2α) − b
r∑

p=1
log *

,
(1 − α) e−α

|µkp−µ
l
p |

bvp − αe−(1−α)
|µkp−µ

l
p |

bvp +
-
.

Changing the variables as y = 1/b and tp = |µkp − µ
l
p |/vp , we further have

c = lim
b→0
−

r∑
p=1

log
(
(1 − α) e−αytp − αe−(1−α)tp

)
y

= lim
b→0
−

r∑
p=1

αtp (1 − α)
(
1 − e−(1−2α)tpy

)
−1 + α + αe−(1−2α)tpy

, (4.65)

where in (4.65) we used L’Hopital’s rule. For α < 1
2 , we have that e−(1−2α)tpy → 0, as y → ∞, hence

c =
r∑

p=1
αtp = α

r∑
p=1

|µkp − µ
l
p |

vp
, for α <

1
2
.

For α < 1
2 , again we apply L’Hopital’s rule to (4.65) to obtain

c =
r∑

p=1
(1 − α)tp = (1 − α)

r∑
p=1

|µkp − µ
l
p |

vp
, for α >

1
2
.

For α = 1
2 , we look at lim

α→ 1
2

cα (k, l, b). Since logarithm is a continuous function, we exchange it with the

limit to obtain

lim
α→ 1

2

cα (k, l, b) = −
r∑

p=1
log lim

α→ 1
2

(1 − α) e−α
tp
b − αe−(1−α)

tp
b

1 − 2α
.

Applying L’Hopital’s rule we obtain

lim
α→ 1

2

cα (k, l, b) = −
r∑

p=1
log e

−tp
2b

b + 1
2 tp

b
= −

r∑
p=1

( tp
2b
+ log

(
1 +

tp
2b

))
. (4.66)

From here, we have

c =
r∑

p=1

tp
2b
=

r∑
p=1

|µkp − µ
l
p |

2vp
, for α =

1
2
,

which completes the proof. �
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Lemma 25. Given cα (k, l, b) as in (4.63), the following holds

γ(k, l) = lim
b→0

b max
0≤α≤1

cα (k, l, b) =
r∑

p=1

|µkp − µ
l
p |

2vp
. (4.67)

Proof. First we need to show that for 0 < x ≤ x̄ and k ≥ 0 the following inequality holds

x log
(
1 +

k
x

)
≤ x̄ log

(
1 +

k
x̄

)
+

k

1 + k
x̄

. (4.68)

Applying the Mean Value Theorem, for ȳ < y, z ∈
[
ȳ, y

]
we have

log (1 + y) ≤ log (1 + ȳ) +
y − ȳ

1 + ȳ
≤ log (1 + ȳ) +

y

1 + ȳ
. (4.69)

Substituting y = k/x and multiplying by x in (4.69), we obtain

x log
(
1 +

k
x

)
≤ x log

(
1 +

k
x̄

)
+

k

1 + k
x̄

.

Using x ≤ x̄, we obtain (4.68). Let c be as defined in (4.64). In order to switch the order of the operators
lim and max in (4.67), we first need to show that b cα (k, l, b) uniformly converges to c, for b→ 0. Denoting
tp = |µkp − µ

k
p |/vp , we have

b cα (k, l, b) = −
r∑

p=1
b log *

,
e−α

tp
b
1 − α − αe

tp
b (2α−1)

1 − 2α
+
-
.

For α < 1
2 , we have

b cα (k, l, b) =
r∑

p=1
αtp − G1(α, b),

where

G1(α, b) =
r∑

p=1
log

1 − α − αe
tp
b (2α−1)

1 − 2α
.

Next, since e
tp
b (2α−1) < 1 we have

G1(α, b) ≥
r∑

p=1
b log

1 − α − α
1 − 2α

= 0.
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Applying the inequality ex ≥ x + 1, we can also lower bound G1(α, b) for 0 ≤ α ≤ 1
2 to get

G1(α, b) ≤
r∑

p=1
b log

1 − α − α
(
1 + tp

b (2α − 1)
)

1 − 2α

=

r∑
p=1

b log
(
1 + α

tp
b

)
≤ rb log

(
1 +

maxp tp
2b

)
.

Next, we substitute x = b and k = 1
2 maxp tp in (4.68) to obtain

G1(α, b) ≤ r b̄ log
(
1 +

maxp tp
2b̄

)
+

r maxp tp

2 + maxp tp

b̄

b̄→0
−−−−→ 0.

Therefore, for every ε > 0, there is a b̄ > 0 such that 0 ≤ G1(α, b) < ε , which shows b cα (k, l, b) uniformly
converges to α

∑r
p=1

|µk
p−µ

k
p |

vp
, for α < 1

2 .

Now for α > 1
2 , we have

b cα (k, l, b) = −
r∑

p=1
b log *

,
e−(1−α)

tp
b
−(1 − α)e

tp
b (1−2α) + α

2α − 1
+
-

=

r∑
p

(1 − α)tp −
r∑

p=1
b log *.

,

α − (1 − α)e
(1−2α)tp

b

2α − 1
+/
-
.

Now, denoting

G2(α, b) =
r∑

p=1
log *.

,

α − (1 − α)e
(1−2α)tp

b

2α − 1
+/
-
,

using the same reasoning as for the case of α < 1
2 , we have

0 < G2(α, b) ≤
r∑

p=1
b log

(
1 +

(1 − α)tp
b

)
≤ rb log

(
1 +

maxp tp
2b

)
,

Again using (4.68) we can show that b cα (k, l, b) uniformly converges to (1 − α)
∑r

p=1
|µk

p−µ
k
p |

vp
, for α > 1

2 .
For α = 1

2 , we use (4.66) and apply (4.68) to obtain the remainder of the claim on uniform convergence.
Now, since b cα (k, l, b) uniformly converges to c, we have

γ(k, l) = max
0≤α≤1

lim
b→0

b cα (k, l, b) = max
0≤α≤1

c =
r∑

p=1

|µkp − µ
l
p |

2vp
.
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As previously done, we select a node pair (i, j) such that γ(i, j) from (4.67) is the lowest. In the following
steps, we will show that γ(i, j) exactly equals the error exponent. The upper bound on the exponent by γ(i, j)

is established by Lemma 15, but we need, once again, to complete the proof for the lower bound. Comparing
the probability density function (4.62) with the generalized form (4.1) we note that g(x, a) =

∑r
p=1

|xp−ap |

2vp
,

and h(b) =
∏r

p=1
1

2bvp
. Now we state the Theorem that lower bounds the error exponent, and the subsequent

Theorems 27 and 28 will relate this lower bound to γ(i, j).

Theorem 26. The following bound holds

lim
b→0

log(Pe )
1/b

≥ − inf
x∈Ω

r∑
p=1

|xp − µ
i
p |

vp
, (4.70)

for Ω =



x :

r∑
p=1

|xp − µ
i
p |

vp
>

r∑
p=1

|xp − µ
j
p |

vp



. (4.71)

Proof. We note that Ω =
{
x : p(x; Hi ) < p(x; H j )

}
is equivalent with (4.71), and does not depend on

the noise parameter b. Therefore, we just need to verify the conditions to apply Lemma 16. First we note
that µi < Ω. Function g(x, µi ) =

∑r
p=1

|xp−µ
i
p |

2vp
is non-negative and continuous. We follow the same

reasoning as in Case I of Theorem 21 to show that the intersection of the sets Ω and R (l, l + ε ), where
l = inf{g(x, µi ) | x ∈ Ω}, has a non-empty interior. We also confirm that

b log (h(b)) = b log *.
,

r∏
p=1

1
2bvp

+/
-
= −b

r∑
p=1

log
(
2bvp

) b→0
−−−−→ 0,

thereby satisfying all the assumptions of Lemma 16. Applying it proves the claim. �

Unlike in the Gaussian case, the closure of set Ω given by (4.71) is not obtained by substituting
inequality for equality, which we need to apply duality. Therefore, we will first use duality in Theorem 27
to prove that the derived γ(i, j) equals the minimum value of the density function exponent in the error set
Ω′ =

{
x : p(x; Hi ) ≤ p(x; H j )

}
. Then in Theorem 28, we prove that this minimum value is the same even

if the minimization is in the closure of the set Ω given by (4.71). This shows that the lower bound on the
exponent established previously by Theorem 26 can be restated in terms of γ(i, j).
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Theorem 27. The optimal value of the minimization

min
x∈Ω′

r∑
p=1

|xp − µ
i
p |

vp
(4.72)

equals exactly
r∑

p=1

|µ
j
p − µ

i
p |

2vp
,

where

Ω
′ =



x :

r∑
p=1

|xp − µ
i
p |

vp
≥

r∑
p=1

|xp − µ
j
p |

vp



. (4.73)

Proof. We can analyze problem (4.72), which is non-convex, by treating the non-convex constraint set as
a union of convex sets Ω′ = ∪mΩm , m = 1, . . . , 22r , then by solving the problem in each convex set and
selecting the minimum of all solutions. The Lagrangian dual function for a problem with a convex constraint
x ∈ Ωm is

L(x1, . . . , xr, ν) = (1 − ν)
r∑

p=1
f ip (x) + ν

r∑
p=1

f j
p (x),

where if we have xp ≥ µip in Ωm , then f ip (x) =
xl−µ

i
l

vl
, and otherwise, it is f ip (x) =

µi
l
−xl
vl

, with f j
p (x)

defined analogously. We can then split the sum into 4 sums to obtain

L(x1, . . . , xr, ν) =
∑

p∈I1∪I2

xp − µ
i
p (1 − ν) − µ jp
vp

+
∑
p∈I3

(1 − 2ν)xp − µ
i
p (1 − ν) + µ jp

vp
+

+
∑
p∈I4

(2ν − 1)xp + µ
i
p (1 − ν) − µ jp

vp
+

∑
p∈I5∪I6

−xp + µ
i
p (1 − ν) + µ jp
vp

, (4.74)

whereI1 =
{
l : µip < µ

j
p < xp

}
,I2 =

{
l : µ jp < µip < xp

}
,I3 =

{
l : µip < xp < µ

j
p

}
,I4 =

{
l : µ jp < xp < µip

}
,

I5 =
{
l : xp < µ

j
p < µip

}
and I6 =

{
l : xp < µip < µ

j
p

}
. Next we find the dual function as

L(ν) = inf
x∈Ωp

L(x1, . . . , xr, ν).

Finding xp that minimizes (4.74) for each sum, and denoting tq =
∑

p∈Iq |µ
i
p − µ

j
p |/vp , for q = 1, . . . , 6, we

93



obtain the following form for the dual function

L(ν) =




ν (−t1 + t2 + t3 + t4 − t5 + t6) − t2 − t6, 0 ≤ ν < 1
2

1
2 (−t1 − t2 + t3 + t4 − t5 − t6) , ν = 1

2

ν (−t1 + t2 − t3 − t4 − t5 + t6) − t2 + t3 + t4 − t6, ν > 1
2

.

The maximum value of the dual function in Ωm is 1
2 (−t1 − t2 + t3 + t4 − t5 − t6), for ν = 1

2 . Analyzing this
maximum over different Ωm , we see that the maximum is attained for Iq = ∅, q = 1, 2, 5, 6, as each term tq

is non-negative. Then the maximum of the dual function is exactly
∑r

p=1
|µi

p−µ
j
p |

2vp
, as claimed. �

Next, we show that the optimal value of the problem (4.72) is the same when the optimization is carried
out in the closure of set Ω given by (4.71) , instead of the set Ω′ from (4.73).

Theorem 28. The optimal value of the minimization

min
x∈Ω

r∑
p=1

|xp − µ
i
p |

vp
(4.75)

where Ω is the closure of the set Ω defined in (4.71), equals the optimal value of the problem (4.72).

Proof. Let x∗ denote an optimal solution of (4.72). Then, from the proof of Theorem 27, we have that
µip ≤ x∗p ≤ µ

j
p , for µip < µ

j
p , and µ

j
p ≤ x∗p ≤ µip , for µ

j
p < µip . We also have

r∑
p=1

|x∗p − µp |

vp
=

r∑
p=1

|µ
j
p − µ

i
p |

2vp
. (4.76)

Next, we claim that each such point x∗ is a limit point of some sequence from the set Ω. Let yk = x∗ + c,
where c is a vector with entries cp =

sgn(µ j
p−µ

i
p )εp

k , with sgn representing the sign function and ε p ≥ 0.
We will show that yk

k→∞
−−−−→ x∗ and yk ∈ Ω. Let δp = |µ jp − µip |, dp = |x∗p − µ

i
p |, then |x∗p − µ

j
p | =

δp − dp . Then we have |yp − µip | = dp + |cp | and |yp − µ jp | = δp − dp − |cp |, for ε p small enough that
x∗p + cp ≤ µ

j
p , for µip < µ

j
p and x∗p + cp ≥ µ

j
p otherwise. Then, using the above and (4.76), we have∑r

p=1
|yp−µ

i
p |

vp
−

∑r
p=1

|yp−µ
j
p |

vp
=

∑r
p=1

|cp |

vp
> 0. Strict inequality holds as not all ε p can be equal to 0, since

the points µi and µ j do not satisfy the condition (4.76) for x∗. From here we have that each solution x∗ is a
limit point of a sequence yk ∈ Ω, hence x∗ ∈ Ω. We also have that Ω ⊂ Ω′, where Ω′ is defined in (4.73).
This holds since Ω′ is a closed set and contains all its limit points, which includes all the limit points of Ω,
and therefore includes the closure ofΩ. Thus, we have that x∗ is also the solution to (4.75), which completes
the claim. �
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With Theorem 26, we established that the error exponent is bounded by the minimum of the function
g(x, a) in the set Ω, while Theorems 27 and 28 show that this minimum exactly equals γ(i, j). Establishing
this lower bound completes the proof that the error exponent for vanishing noise when the observations are
modeled as random variables with Laplace distribution is indeed

γ(i, j) =
r∑

p=1

|µip − µ
j
p |

2vp
,

for
(i, j) = argmin

k,l
γ(k, l).

In the case of µi = µ j there is no exponential error decay. However, the expression for the exponent is still
valid, as it evaluates to zero.

4.1.4 Observations are modeled as exponential random variables

In this diffusion model, we again assume that a constant time is needed for an infection to spread from a
node to its neighbor, i.e., θu,v is a constant. To simplify the notation, w.l.o.g, we assume the constant to
be 1. However, now we consider that each node shows infection symptoms only after some random time.
This models the existence of an incubation period, which is the time that passes between the moment when
an individual contracts a virus until the symptoms are exhibited. Similarly, a person might hear about a
product and continue spreading the news about it before actually purchasing it. As the exponential noise is
the worst possible non-negative additive noise [77], we model the duration of this incubation period as a
random variable with exponential distribution, independent across observers. Since individuals might vary
in purchasing behavior or in showing symptoms, we characterize each node with its own noise parameter.

We compactly denote the true infection time of each observer op as as
p = d(op, s), for a source node s.

Denoting the observed infection time of observer op as xp , we have

xp = d(op, s) + np = as
p + np,

where np is an exponential random variable with density p(np ) = λpe−λpnpu(np ), u(np ) is the discrete step
function (u(np ) = 1 for np ≥ 0 and u(np ) = 0 for np < 0). Stacking the observations from all observers
into a vector, we obtain x = as + n. Since we assume the noise in different nodes to be independent, the
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observation density is given by

p(x; s) =
r∏

p=1
λpe−λp (xp−a

s
p )u(xp − as

p ). (4.77)

Let λ = minp λp . Then we can write λp = vpλ, for p = 1, . . . , r . Now, the parameter 1/λ has the role of
the randomness parameter η, as noise decreases for λ → ∞. Next, we evaluate α-Chernoff divergence (4.4)
and obtain

cα (k, l, λ) = − log *.
,

r∏
p=1

∫
p
(
xp ; k

)α
p
(
xp ; l

)1−α
dxp

+/
-

= − log *.
,

r∏
p=1

vpλevpλ
(
αak

p+(1−α)al
p

) ∫ ∞

max{ak
p,a

l
p }

e−vpλxp dxp
+/
-

= − log *.
,

r∏
p=1

evpλ
(
αak

p+(1−α)al
p

)
−vpλ max

{
ak
p,a

l
p

}+/
-
. (4.78)

In this case, we can find a closed form solution for the optimization problem (4.5), to obtain the Chernoff
distance between distributions p(x; k) and p(x; l) [78]

C(k, l, λ) = λ β(k, l) (4.79)

where

β(k, l) =




r∑
p=1
I{ak

p>a
l
p }
vp

(
ak
p − al

p

)
, vT ak ≥ vT al

r∑
p=1
I{ak

p<a
l
p }
vp

(
al
p − ak

p

)
, vT ak < vT al

, (4.80)

I is an indicator function for the condition in {.} and v = [v1, . . . , vr ]T . Now, we can evaluate the limit (4.7)
to easily obtain the expression

γ(k, l) = β(k, l). (4.81)

As done before, we select a pair (i, j) that minimizes γ(k, l) to obtain γ(i, j), which we will now prove to
be exactly the error exponent. We follow the same line of reasoning as before and in the next Theorem, we
obtain a lower bound on the exponent, while in Theorem 30, we relate this bound to our γ(i, j).

Theorem 29. The following bound holds

lim
λ→∞

log(Pe )
λ

≥ − inf
x∈Ω

vT (x − ai ), (4.82)
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for

Ω = {x : p(x; i) < p(x; j)} . (4.83)

Proof. Before we apply Lemma 16, we first verify its assumptions. In this case h(λ) =
∏r

p=1 λvp , and we
have

1
λ
log (h(λ)) =

r∑
p=1

log
(
λvp

)
λ

λ→∞
−−−−→ 0,

thereby satisfying assumption (4.23). The set that characterizes the region of error can be written as
Ω =

{
x | x > max{ai, a j }

}
, for vT ai < vT a j . For x ∈ Ω, the function g(x, ai ) = vT (x− ai ) is non-negative,

continuous and evaluates to 0 for x = ai . It is easy to see that ai < Ω. Again, for l = inf{vT (x− ai ) | x ∈ Ω},
as g(x, ai ) is continuous in the sets Ω and R, the same arguments apply as in Case I of Theorem 21 to verify
that the assumption (4.22) holds. We apply the result of Lemma 16 to obtain the claim. �

The set Ω can be rewritten as Ω =
{
x | x > ai, x > a j

}
. Since we have linear inequalities that define the

open set Ω, the closure of the set is then simply Ω =
{
x | x ≥ ai, x ≥ a j

}
, for vT ai < vT a j .

The following Theorem shows that the lower bound shown in the previous Theorem has the same value
as γ(i, j) (4.81).

Theorem 30. The optimal value of the minimization

min
x

vT (x − ai )

s.t. x ≥ ai, x ≥ a j, (4.84)

when vT ai ≤ vT a j holds, equals β(i, j) defined in (4.80).

Proof. The Lagrangian dual function of (4.84) is

L(x, ν1, ν2) = (v − ν1 − ν2)T x + νT1 a
i + νT2 a

j − vT ai . (4.85)

The dual function is

L(ν1, ν2) = inf
x

(x, ν1, ν2)

=




νT1 a
i + νT2 a

j − vT ai, ν1 + ν2 = v

−∞, otherwise
.
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Then the dual problem of (4.84) is

max (ν1 − v)T ai + νT2 a
j

s.t. ν1, ν2 ≥ 0, ν1 + ν2 = v. (4.86)

Strong duality holds for problem (4.84) and its dual (4.86) [75]. KKT conditions are

v − ν1 − ν2 = 0

ai − x ≤ 0, a j − x ≤ 0

ν1, ν2 ≥ 0, νT1 (ai − x) = 0

νT2 (a j − x) = 0. (4.87)

From (4.87), we have either that ν1p = 0, ν2pl = vp, xp = ai
p for a j

p ≥ a j
p , or ν1p = vp, ν2p = 0, xp = ai

p for
ai
p ≥ a j

p . This exactly gives us the first row of β(i, j) from (4.80) when vT ai ≤ vT a j . Now, reversing i and
j, and assuming vT a j ≤ vT ai from the beginning, we get the second row of (4.80). �

With this we conclude that the error exponent is also lower bounded by γ(i, j). Hence the error exponent
for vanishing noise when the observations are modeled as variables with exponential distribution is indeed

γ(i, j) =




r∑
p=1
I{
ai
p>a

j
p

}vp
(
ai
p − a j

p

)
, vT ai ≥ vT a j

r∑
p=1
I{
ai
p<a

j
p

}vp
(
a j
p − ai

p

)
, vT ai < vT a j

, (4.88)

for
(i, j) = argmin

k,l
γ(k, l).

In the case of ai = a j the error decay is not exponential. However, the expression for the error exponent
(4.80) is still valid, as it evaluates to zero.

Properties of the exponent

We have shown that the error exponent for vanishing noise when the observations are modeled as variables
with exponential distribution equals (4.88). In the next Theorem, we show that the exponent has as interesting
property.
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Theorem 31. γ(i, j), given by (4.88), is a metric.

Proof. To show that γ(i, j) satisfies all the conditions for a metric, we first reformulate (4.88). Let q+ denote
a vector where negative entries of q are replaces with 0, i.e., q+i = max {0, qi }. Similarly, let q− denote a
vector where positive entries of q are set to 0, but instead of negative values, their absolute values are taken.
Let · denote an operator of a pointwise product. Then for any vector q, we have q = q+ − q− and for a
positive vector v > 0 we have

‖v · q‖1 = vT q+ + vT q−

vT q = vT q+ − vT q−. (4.89)

Summing the two expressions of (4.89) gives

vT q+ =
1
2

(
‖v · q‖1 + vT q

)
. (4.90)

Now we can rewrite (4.88) as

γ(i, j) = I{vT ai>vT a j }v
T

(
ai − a j

)+
+

I{vT ai=vT a j }v
T

(
ai − a j

)+
+ I{vT ai<vT a j }v

T
(
a j − ai

)+
. (4.91)

When vT ai = vT a j holds, then vT
(
ai − a j

)
= 0 and substituting q = ai − a j in (4.90), we obtain

vT
(
ai − a j

)+
= 1

2
v ·

(
ai − a j

)1. Again, using (4.90), we can rewrite (4.88) as

γ(i, j) =I{vT ai>vT a j }
1
2

(v ·
(
ai − a j

)1 + vT
(
ai − a j

))
+I{vT ai=vT a j }

1
2

v ·
(
ai − a j

)1

+I{vT ai<vT a j }
1
2

(v ·
(
a j − ai

)1 + vT
(
a j − ai

))
Finally, we have

γ(i, j) =
1
2

v ·
(
ai − a j

)1 +
1
2

���v
T ai − vT a j ��� . (4.92)

From (4.92), we directly see that positive-definiteness and symmetry hold. Substituting x = v ·
(
ai − a j

)
and y = v ·

(
a j − ak

)
into ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1, and x = vT ai − vT a j and y = vT a j − vT ak into

|x + y | ≤ |x | + |y |, we see that γ(i, k) ≤ γ(i, j) + γ( j, k) also holds. Thus γ(i, j) is a metric. �
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Figure 4.1: Unit ball in two-dimensional space for
γ(i, j), centered at a point ai = 1 and a j = 1 denoted
with a red circle.

In the proof of Theorem 31, we have made no assumption on the arguments ai and a j , and we have
shown that γ(i, j) is a metric for any two real vectors.

Next, we further examine the properties of the derived exponent γ(i, j), for the simplified case of v = 1.
A unit ball defined in this case is shown in Figure 4.1. The blue line in Figure 4.1 contains all the points
which are at distance 1 from the red point, where distance is defined with γ(i, j), for two vectors ai and a j .
Since in our specific case spatial coordinates represent graph distances to observer nodes, which are integers,
only the vertices of the unit ball are possible values for ai at distance 1 (given that the ball is centered at a
point with integer coordinates).

Although each γ(k, l) can be calculated in O(r) time, still
(
N
2

)
pairwise values of γ(k, l) need to be

calculated for each of
(
N
r

)
different subsets that are examined in order to select an optimal subset. Next, we

present some basic bounds for the error exponent, given that v = 1. Let γ(Or ) denote the smallest γ(i, j)

for all i, j pairs for a fixed subset Or , while γ(r) denotes the smallest γ(i, j) for all i, j pairs for any observer
subset of cardinality r .

Theorem 32. The following bounds hold

γ(Or ) > 0 ⇐⇒ Or is a resolving set. (4.93)

γ (Or ) ≤ γ (Or ∪ or+1) (4.94)

γ(r) ≤ r . (4.95)

Proof. From (4.88) it follows that γ(i, j) = 0 if and only if ai = a j , i.e., if nodes i and j are equidistant to
all the observer nodes. Then the set Or cannot be a resolving set, which is by definition a set of nodes O

such that each pair of nodes has a different distance to at least one node from O [52].

The following inequality (4.94) is intuitive, as it states that the distances between distributions that
characterize source candidates will not decrease if a new node is observed, and consequently, the error will
not decrease any slower if an additional observation is included. Including a new observer node adds a new
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entry to ai and a j , which cannot decrease either
(
ai − a j

)+
or

(
a j − ai

)+
. Then each pairwise distance as

seen from (4.91) does not decrease. This also holds for the smallest distance. Note that here we only claim
that for a fixed subset, a new observer cannot decrease the distance, and hence we also have γ(r) ≤ γ(r + 1),
but it is not generally true that γ(Or ) ≤ γ(Or+1), if Or 1 Or+1.

Inequality (4.95) comes from analyzing γ(i, j), when i and j are neighbor nodes. For any observer ol ,
we have that d(i, ol ) ∈ {d( j, ol ) − 1, d( j, ol ), d( j, ol ) + 1} when i and j are connected by an edge. Hence
���a

i
l
− a j

l
��� = |d(i, ol ) − d( j, ol ) | ≤ 1, and for r observers we have a

i − a j1 ≤ r and ���1
T ai − 1T a j ��� ≤ r .

Using these in (4.92), we have that γ(i, j) ≤ r , when i and j are neighbors, and the same then holds for the
minimal γ(i, j). �

In order to understand how the source localization error differs across different topologies and what is
the best possible exponent that can be reached with any subset selection for a given topology, we analyze the
idealized case when all nodes are monitored.

Theorem 33. For a complete network γ(N ) = 1, for a star γ(N ) = 2, for a path γ(N ) =
⌈
N
2

⌉
and for a tree

γ(N ) ≤ max {2(τa + 1), 2(τb + 1)}, where a and b are nodes at distance 1 to a common ancestor, and τs is

the number of descendants of node s.

Proof. Observing all nodes in a complete graph, for any two nodes i and j, we have that d(i,ON ) and
d( j,ON ) differ only in two entries, as 0 = d(i, i) , d(i, j) = 1 and vice versa, hence γ(N ) = γ(i, j) = 1.

In a star network, d(i,ON ) and d( j,ON ) for any two leaf nodes differ only in the entries i and j. Since
d(i, j) = 2, this pair determines the minimal γ(i, j), as d(i,ON ) and d(c,ON ), where c represents the central
node, differ in all the entries.

In a path network, we label the nodes sequentially, and denote with β =
⌊
d(i, j )

2

⌋2
if d(i, j) is an

odd number, and β =
d(i, j )

2

(
d(i, j )

2 − 1
)
otherwise. Then it can be shown that C(i, j) = β + d(i, j) +

d(i, j) max {i − 1, N − i − d(i, j)}. The minimum is reached for d(i, j) = 1 and i =
⌈
N
2

⌉
, and equals

⌈
N
2

⌉
.

The bound for γ(N ) in trees is obtained by analyzing γ(i, j), when a and b are both at a distance 1
to a common ancestor. Then, nodes a and b are equidistant to all the nodes except themselves and their
descendants. For any node o that is a descendent of a, we have d(o, a) − d(o, b) = d(a, b) = 2, from which
the bound follows. Although not straightforward, this bound is useful in cases such as when a tree has two
leaves connected to the same node (like in a star network). Then, regardless of the remaining structure of the
tree, or selected observer subset, the error exponent can be at most 2. �

4.1.5 Simulation results

In the previous section we have derived exact expressions for error exponents for three different propagation
models. Selecting the subsets that achieve the highest error exponent would guarantee the fastest error decay
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for vanishing noise. Now, we illustrate the applicability of the proposed framework in the case of non-
negligible noise. We show that selecting the subsets with higher exponents leads to lower error probability
through two sets of simulations, the first modeling the infection times as Gaussian, and the second as
exponential variables. The results are similar to the case of infection times modeled as Laplace variables,
hence, to avoid repetition, we omit this case.

The first application we simulated is the selection of a spanning tree when infection times are modeled
as multivariate Gaussian variables. We generated 100 random 20-node trees and from each tree we selected
9 of its leaves, assuming they are the data collection points. We assumed the propagation delay along the
edges and activation time to be random variables with distribution N (1, σ2), where σ ∈ [0.1, 0.5]. Since
calculating the exact error probability is not computationally feasible, we ran 2000 Monte Carlo trials for
each tree to get the error estimate. For each tree, we calculated its error exponent.

The second set of simulations illustrates the merits of the proposed metric for the selection of a subset of
nodes in an Erdős-Rényi graph when observed infection times are modeled as exponential random variables.
We generated 100 Erdős-Rényi graphswith 20 nodes, andwithin each graphwe selected 500 sets of 5 different
observers. For each subset in each graph, we evaluated the exact error probability, which is computationally
very intensive, and hence smaller size graphs were used. Also, for each subset, its error exponent was
calculated. The simulated observation noise had mean in the range [0.2, 3.3]. Since the graphs had true
infection times in the range [0, 6], this represents significant noise.
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Figure 4.2: Relationship between error probability and error exponents for 200 trees of 20 nodes and 9
observers where infection times of the observers are modeled as variables with multivariate Gaussian

distribution
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Figure 4.3: Relationship between error probability and error exponents for 100 Erdős-Rényi graphs of 20
nodes and 500 different subsets of 5 observers where infection times of the observers are modeled as

variables with exponential distribution

Figure 4.2 shows the relationship between the error probability and our error exponent for the first setup,
while Figure 4.3 illustrates it for the second. For Figure 4.2a, for each value of σ2, we bin the exponents of
trees in 8 equally spaced groups, and for each group, we find the average error probability. For Figure 4.3a,
for each value of λ, the error probability of the subsets with the same exponent was averaged. Both figures
clearly show that trees (subsets) with a higher error exponent have a lower error probability. Plotted error
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Figure 4.4: Comparison of average error probability achieved by subsets with the highest exponents with
subsets that have the highest centrality measures
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bars show the standard deviation of the error probability within each exponent group. It can be seen that this
deviation decreases with the decrease of the randomness of observations. For very small randomness, for
non-zero exponent groups, the error probability approaches zero. This decay is faster for groups with higher
exponents. Zero exponent means that there are nodes characterized by the same probability distribution, i.e.,
p(;i) = p(; j), for somei , j, and hence they cannot be distinguished even in a deterministic setting. Then,
the subsets that have a zero value exponent correspond to a non-resolving set of a give graph, as they cannot
distinguish all the nodes in a deterministic setting.

Figure 4.2b shows two scatter plots, one where propagation along the edge is a random variable with
distribution N (1, 0.25), and the second with N (1, 0.04), where each point represents one of 200 trees.
Figure 4.3b also shows two scatter plots, one for λ = 1, and the second for λ = 1/0.5, where each point
represents one of 500 subsets of one specific graph. Both plots show that selection of a tree (subset) with
a higher exponent, generally leads to a lower error probability, even with higher randomness of infection
times. Again, a decrease in randomness decreases the error, with faster decay experienced by trees (subsets)
with higher exponents.

Figures 4.2 and 4.3 illustrate that the proposed metric indeed provides a useful tool for selection of a
subset that achieves low error probability. Next, we compare the error probability of the subset with the
highest exponent with subsets that have the highest centrality measures, which is the current state of the art
for subset selection. We looked at the following centralities: degree (how connected a node is), closeness
(how easily a node can reach other nodes), betweenness (how important a node is in terms of connecting
other nodes), and eigencentrality (how central are node’s neighbors) [61]. We used the same 100 random
Erdős-Rényi graphs with 20 nodes generated for the setup where observed infection times are modeled as
exponential random variables. For each graph, the same 500 sets of 5 different observers were analyzed and
the subset with the highest exponent was selected. Additionally, subsets with the highest degree, closeness,
betweenness and eigencentrality were selected. The error probabilities of these subsets were evaluated for
a fixed level of noise, and the results were averaged for all graphs. This was repeated for different levels of
noise and the obtained plot is shown in Figure 4.4. It clearly shows that the average error probability of the
subset with the highest exponent is lower than of the subset chosen by any centrality, regardless of the noise
level. Therefore, the simulation results indicate that the proposed metric achieves better performance than
all the strategies currently present in the literature. One possible explanation could be because the centrality
based strategies take into consideration only the network structure, while the proposed metric additionally
depends on the parameters of the propagation hence, it incorporates more information on which the error
probability depends on.
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4.2 Sequential selection

In this section, we return to the problem of dynamic observer selection, but now for stochastic infection times.
We will again adopt a diffusion model described in Subsection 4.1.2 where the infection times are modeled
as correlated Gaussian random variables. In this model, the propagation delay along the edge that connects
two neighboring nodes is modeled as a Gaussian variable with known parameters. The model allows for
either known statistical characterization of the source activation time, as well as for completely unknown
time. What differs in these two scenarios is that the observations in the first scenario are directly observed
infection times, while for the second, differences of infection times are used instead. These differences are
again modeled as Gaussian correlated variables.

In the sequential selection, we are interested in finding a strategy of choosing observers such that the
source is localized with the smallest cost, as observing each node has a cost associated with obtaining its
infection times. If all nodes have equal cost, we are simply interested in determining the source using the
smallest number of observers. As the observations have uncertainty, obtaining the source candidates from
the observations is not as straightforward as it was for the deterministic case, and we need to resort to source
estimation. Also, a stopping criterion needs to be defined, in order to determine when sufficient certainty
in the source identity has been reached. In order to design an algorithm for sequential observer selection
for stochastic observations, we again resort to multiple hypothesis testing, but this time, to the sequential
settings.

The goal of hypothesis testing is to classify a sequence of observations into one of M ≥ 2 hypothesis,
using the statistical characterization of observations under each hypothesis [79]. In sequential settings,
the number of observations used to reach a decision is variable and there is a trade-off between decision
accuracy and the number of observations used. While for the binary case M = 2, there exists a sequential test
that is optimal in the sense that it minimizes the average number of observations among all sequential and
non-sequential tests, there are no such available general results for M ≥ 3 [79]. Even in the case when there
is such a test, determining its parameters is not tractable [79]. Instead, sub-optimal sequential tests have been
developed that have a simple structure and asymptotic optimality. Two tests have been proposed [80, 81, 82]
that are asymptotically optimal relative to the expected number of observations when the error probabilities
are vanishingly small, even when the observations are neither identical nor identically distributed, under
certain conditions. For sequential source localization, we apply a sequential test whose stopping time is
lower for given thresholds [79]. Next, we provide the details of the test from [79, 82].

Let Hs , for s = 1, . . . , M be a hypothesis characterized with density function p(x; s) and a prior
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distribution πi > 0. Let αi be the probability of accepting hypothesis Hi incorrectly. Then we have

αi =

M∑
j=1,
j,i

π jα j i, (4.96)

where α j i is the probability of accepting Hi when H j is the true hypothesis. Next, for

ai = log
πi
αi
, (4.97)

the stopping threshold is defined as
bi =

eai

1 + eai
. (4.98)

Let xk be a vector of observations obtained up to a time step k. Then, Πi (k) is the posterior probability
distribution of the hypothesis Hi after obtaining k observations. It can be written as

Πi (k) =
πip(xk ; i)

M∑
j=1

π j p(xk ; j)
. (4.99)

The stopping time τ of the sequential test is then defined as the first k such that

Πi (k) > bi, (4.100)

for at least one i. The decision is made in favor of hypothesis Hm , where m is

m = argmax
j
Π j (τ).

Defined as such, the test outputs a decisionwithout exceeding the previously specified probability of accepting
Hi incorrectly which is given by (4.96), for each i = 1, . . . , M . Next, we apply the above-described sequential
test for source localization.

We frame source localization as a multiple hypothesis testing problem, where each hypothesis represents
a different node being the source, as described in Section 4.1. Each hypothesis Hs , s = 1, . . . , N , is described
with the conditional density of the observations p(x; s) of a given set of observers and for a fixed source s.
We can obtain the statistical characterization of the observations p(x; s) as described in Subsection 4.1.2.
When certain knowledge of source activation times is assumed, observations correspond to the infection
times and are Gaussian variables, with mean given by (4.33) and covariance defined by (4.32). In the absence
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of any knowledge of activation time, the mean is given by (4.35) while the covariance is defined by (4.36),
as the observations are again modeled as correlated Gaussian variables. In both cases, we are assuming the
underlying topology is a tree, based on the same reasoning as in Subsection 4.1.2. It is important to note
that for a different set of observers the density p(x; s), characterizing a hypothesis Hs , changes. As more
observers are selected, the dimension of observations x increases, and densities of all hypotheses change
accordingly.

Now, the process of sequential source localization is performed as follows. In the absence of prior
knowledge, initially, all nodes are assumed to be equally likely the source and we have πi = 1/N , for
i = 1, . . . , N . We set the α j i = β as the probability of accepting Hi when H j is the true hypothesis, for all
i , j pairs. Then, from (4.96), the probability of accepting Hi incorrectly is set to

αi =
N − 1

N
β, (4.101)

and from (4.97), we obtain
a = − log (β(N − 1)) . (4.102)

The stopping threshold from (4.98) equals

b =
1

1 + β(N − 1)
. (4.103)

The posterior probability distribution for hypothesis which represents node i being the source is updated
after k observations as

Πi (k) =
(det Σi )−

1
2 e−

1
2 (xk−µi )T Σ−1i (xk−µi )

N∑
j=1

(det Σl )−
1
2 e−

1
2 (xk−µl )T Σ−1

l
(xk−µl )

. (4.104)

The stopping time from (4.100) now simplifies to

τ = inf
{

k : max
i
Πi (k) > b

}
, (4.105)

and the test decides in favor of Hm , the hypothesis for which the threshold is reached.

After the first observer is selected, the posterior probability distribution of each hypothesis, Πi (1) is
updated and the condition for stopping is checked, i.e., whether maxi Πi (1) > b holds. If the condition is
met, the hypothesis Hm which exceeds the threshold is chosen as the true one, meaning that node m is the
most likely source candidate. If the condition is not met for any hypothesis after the first observation, the
test proceeds, another observation is obtained and the condition is checked again. The process is repeated
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until the criterion is met, or all the nodes have been observed. Although the sequential test can be applied to
the context of sequential source localization as described, there are a few issues that need to be resolved.

For a small number of observers, it might happen that not all nodes are characterized by unique densities
p(x; s). Instead, there may exist nodes i , j for which p(x; i) = p(x; j) holds. Then, no observation
from the current set of observers can distinguish between hypotheses Hi and H j , as their characterization of
the observations is the same, and, hence, nodes i and j cannot be distinguished. If such nodes are not the
ones whose evaluated posterior distribution crosses the threshold, then inability to distinguish them has no
consequence on determining the source identity. Otherwise, other observers should be selected until there is
only a single hypothesis that crosses the threshold. Therefore, after selecting each observer, densities p(x; s)

are formulated for the current observer set. Nodes that are characterized by the same p(x; s) are grouped into
an equivalence class. Updated posterior distributions of these classes are checked to see if any one of them
crosses the threshold. If the distribution that crosses the threshold characterizes a group of nodes, or if no
distribution crosses the threshold, another observer is selected. Otherwise, the test is considered complete.

Now, that a method for determining the source and the stopping criterion have been established, we again
address the question of observer selection. As the observations are not known in advance, we cannot select at
time step k a node which would directly maximize maxi Πi (k) in order to meet the stopping criterion (4.105)
with the fewest possible observers. The metric based on error exponents proposed in Section 4.1 can be
used for selecting the subsequent observer, but is more suitable for the block, than for sequential selection as
explained next . For very few observers, as previously discussed, there might be nodes characterized by the
same density and forming an equivalence class. The error exponent can be used to compare the performance
of different observer subsets from the perspective of distinguishing between different classes. However, in
sequential settings, the number of nodes belonging to an equivalence class is also very important, as the
goal is to select a single source candidate with a pre-specified certainty, starting from a single observer.
Therefore, choosing the subsequent observer such that it maximizes the error exponent for the current source
candidates could be a selection strategy, but it might be more beneficial when the number of observers is
not very low. In order to take into consideration the number of nodes belonging to an equivalence class, i.e.,
the nodes that are characterized by the same density p(x; s), we resort to the observer selection method for
deterministic infection times, presented in Subsection 2.2.2.

For sequential observer selection when the infection times have no uncertainty, it was shown that
selecting an observer that maximizes the weighted expected decrease in the number of source candidates
incurs a source localization cost that is bounded in terms of optimal cost. As such greedy observer
selection was shown to be efficient and with performance comparable to optimal, we again apply it for
sequential selection, with only a slight adaptation. Let O = {o1, . . . , ok } be a set of currently selected
observers and S(O) a set of the current source candidates as determined by the sequential test. With
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Algorithm 7 Greedy algorithm for sequential source localization when the infection times are stochastic
1: O ← ∅ // O is the current observer set
2: S(O) ← {1, . . . , N } // S(O) is the set of current source candidates
3: continue← 1 // continue is the flag for proceeding with the test
4: set β and determine b from (4.103) // β is the probability of accepting Hi when H j is true
5: set k = 0 // k is the number of selected observers

6: while |S(O) | > 1 OR continue = 1 do
7: k ← k + 1
8: if k = 1 AND difference of infection times are used as observations then
9: // Initially, when the differences are used, two observers have to be selected at the same time
10: foreach oi, oj ∈ V \O do ∆(oi, oj |S(O)) = |S(O) | − 1

|S (O) |
∑

s∈S (O)
|Ss

d
(O ∪ {oi, oj }) |

11: Select (o∗1, o
∗
2) ∈ argmaxoi,o j

∆(oi,o j |S (O))
c (oi )+c (o j )

12: O ← O ∪ {o∗1, o
∗
2}

13: k ← k + 1
14: Observe o∗1, o

∗
2 and form the vector of all the available observations xk

15: else
16: foreach o ∈ V \O do ∆(o|S(O)) = |S(O) | − 1

|S (O) |
∑

s∈S (O)
|Ss

d
(O ∪ o) |

17: Find all o′ ∈ argmaxo ∆(o |S (O))
c (o)

18: foreach o′ do δ(o′ |S(O)) = −
∑

s∈V \S (O)
|Ss

d
(O ∪ o′) |

19: Select o∗ ∈ argmaxo′ δ(o′ |S(O))
20: O ← O ∪ {o∗}
21: Observe o∗ and form the vector of all the available observations xk
22: end if
23: foreach i = 1 to N do construct p(x; i)
24: Group nodes with same p(x; i) into an equivalence class
25: foreach equivalence class j update the posterior probability distribution Π j (k) given by (4.104)
26: Find m = argmax j Π j (k)
27: Find the set S of all nodes that belong to an equivalence class m
28: S(O) ← S
29: if Πm (k) > b then
30: continue = 0
31: else
32: continue = 1
33: end if
34: end while
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Sd (O ∪ o) we denote a set of source candidates that would remain, if additionally node o was selected
as the observer and source candidates were evaluated for deterministic propagation times. Therefore,
assuming node s is the source we have Ss

d
(O ∪ o) = {s′ : d(O ∪ o, s′) = d(O ∪ o, s)} when infection times

are used directly as observations and when the difference of distances are used, we have Ss
d

(O ∪ o) =

{s′ : [d(o2, s′) − d(o1, s′), . . . , d(ok, s′) − d(o1, s′)] = [d(o2, s) − d(o1, s), . . . , d(ok, s) − d(o1, s)]}. Then,
plugging in (2.16) new expressions for Ss

d
(O∪o), and assuming all source candidates equally likely, we have

that at each time step, an expected decrease in the number of source candidates is

∆(o|S(O)) = |S(O) | −
1

|S(O) |

∑
s∈S (O)

|Ss
d (O ∪ o) |. (4.106)

At each time step, an observer is selected that maximizes ∆(o|S(O))/c(o), as the cost of nodes should also
be considered. If there is more than one node that achieves the maximum, we select the one that contributes
the most to distinguishing the remainder of the nodes V \ S(O). This step is added in the stochastic settings,
as, even though S(O) are the most likely candidates at a given time step, the true source node might be one
of the remaining nodes, due to the uncertainty in the observations. Hence, for each node that maximizes the
weighted expected benefit, we also calculate

δ(o|S(O)) = −
∑

s∈V \S (O)

|Ss
d (O ∪ o) |, (4.107)

and select the node that maximizes (4.107). Selected as such, the subsequent observer contributes the most to
distinguishing among the current source candidates, while also, among the nodes with the same performance,
distinguishes the most remaining nonsource candidate nodes. The pseudocode for the complete sequential
source localization proposed approach is given in Algorithm 7. In the following subsection, we illustrate the
merit of the proposed algorithm on a real data set of cholera outbreak.

4.2.1 Real-world case study: Cholera Outbreak

We test the merits of the proposed Algorithm 7 on the actual data from a real-world epidemic outbreak.
We use information collected for a cholera outbreak in the KwaZulu-Natal province, South Africa, in 2000.
The epidemic was caused by a strain of the bacterium Vibrio cholerae, which colonizes the human intestine
and is transmitted through contamination of aquatic environments [1]. The epidemic lasted for 2 years and
involved about 140, 000 confirmed cholera cases. The data were provided by the KwaZulu-Natal Health
Department and consist of a record of each single cholera case specified by the date and health subdistrict
where it occurred, starting from August 2000. We use the network model, developed in [1], for the basin of
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river Thukela, the largest of the region, where the number of cholera cases recorded amounted to 29, 000. All
the channels of perennial rivers are considered edges and all the endpoints of these channels are considered
as nodes. A hydrographic map of the KwaZulu-Natal province with the Thukela river basin indicated is
shown in Figure 4.5a. The population and the cholera cases of a subdistrict were assigned to the nearest
network node. Some network nodes ended up with no population nor cholera cases assigned to it. The most
affected nodes were those with intermediate population size. As stated in [1], this is probably due to the
fact that the highest population density regions correspond, in this particular case, with the most developed
ones. These cities can then rely on wastewater treatment and treated water supply that help to reduce cholera
transmission as well. The bacteria can spread along stream both upstream and downstream with a slightly
biased propagation downstream, hence, the graph is modeled as undirected. The graphical model describes
spreading of bacteria through waterways, but actual cholera spreading depends on seasonal parameters, as
well as on human-to-human transmission.

The same data set was also used to illustrate the performance of an algorithm for source localization
in [5]. The authors of [5] developed a model for describing the propagation of cholera between two nodes
connected by an edge. The propagation delay along the edge between nodes u and v is modeled as a
Gaussian random variable N (µu,v, σ2

u,v ). The mean µu,v is approximated by ruvΘ/p, where ruv is the
physical distance between communities u and v, p is the spatial drift of cholera, estimated at approximately
3 km/day in [1], and Θ is a threshold that corresponds to the number of registered cholera cases needed to
consider a community infected, and was set at 50. The standard deviation σu,v is considered proportional to
the mean µu,v with a fixed propagation ratio σu,v/µu,v = 0.5. The time when the first community became
infected is considered unknown, and the difference of infection times are used to estimate the source. To
accommodate for a non-negligible measurement delay between infection by the vibrios and reporting to local
health authorities, the covariance of the infection time of an observer is modified by adding an additional
noise term to each entry as follows [5]

Λ = Σ + (M + I )σ2
m,

where Σ is as defined in (4.36), M is a matrix of all ones, I is an identity matrix and σm is the standard
deviation of the measurement delay set to 1 day. The source localization in [5] was performed by finding
the most likely source node within 2 hops of the first infected observer. It should also be noted that the first
community to become infected might not actually be the source of the outbreak due to the delay between the
infection and the actual reporting of the disease [5]. Still, we will refer to the first infected community as the
true source node.

We apply the proposed Algorithm 7 for the same cholera network and propagation model. In order
to incorporate the same prior knowledge as it was used in [5], where the search for the source node was
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distances being computed from the centroid of the subdis-
trict to the node. The results of this interpolation for the
population and the total cumulated cholera cases are shown
in Figure 3, where the color coding is obtained by spatial
linear interpolation of the node values. Comparing the
spatial distribution of population sizes and total cases in
the nodes, one can note that the high population density
areas recorded few cases of cholera as did the low-density
ones. The most affected nodes are those with intermediate
population size. This clearly appears by plotting the cholera
average incidence (i.e., the total number of cases divided by
the population size) as a function of the population size (see
Figure 4). The highest incidence was recorded for population
sizes between 2000 and 30,000. This is probably due to the
fact that the highest population density regions correspond, in
this particular case, with the most developed ones. These
cities can then rely on wastewater treatment and treated water
supply that help to reduce cholera transmission.
[21] The framework described in this paper addresses the

spread of an epidemic in a single river basin, and for the
time being we avoid any modeling of the flux of bacteria
across different catchments. For this reason, in order to test
the validity of the model, we have applied it to the basin of
river Thukela, the largest of the region (see Figure 2). The
29,000 km2 area drained by this river is populated by
1.5 million people, and cholera cases recorded there
amounted to 29,000 (21% of the total cases of the whole
province) during the two epidemic outbreaks considered.
[22] We estimated the birth and mortality rate of the

population as the inverse of the average lifetime for this
region (about 60 years), so n ’ 5 ! 10"5 d"1. Because the
average duration of the cholera disease in an infected person
is approximately 5 d [Codeço, 2001; Hartley et al., 2006],
we set the recovery rate at r = 0.2 d"1. The deaths due to
cholera for the epidemic analyzed were 0.2% of the cholera

cases. Thus we can estimate the cholera mortality rate m by
assuming that after the duration of the disease, 99.8% of the
infected population survive, that is, exp("m/r) = 0.998, and
then m = 4 ! 10"4 d"1. From this simple analysis we
conclude that, given the order of magnitude of the parameters
involved, we can simplify the model setting r + m + n ’ r.
Following Codeço [2001], we assume that people ingest
contaminated water or food once a day (a = 1 d"1).
[23] To model the seasonality of the bacterium ecology as

discussed in section data, we let the net growth rate of
V. cholerae in the aquatic environment vary periodically in

Figure 2. Hydrographic map of KwaZulu-Natal province
with the Thukela river basin evidenced. The dot reports the
location of the first epidemic outbreak in the basin studied.

Figure 3. Spatial linear interpolation of network nodes
value of (a) cholera cases and (b) population size.
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(a) Hydrographic map of the Kwazulu-Natal
province from [1]

node

infected node

source candidate

earl i est infected node

(b) Graphical model of the Thukela river basin

Figure 4.5: Map and a graph model of the Thukela river basin

highly localized within a small neighborhood of the first infected observer, we assume to have a form of
prior knowledge, where the source candidates are considered only those nodes in the southern part of the
region, below geographical longitude of 28.6, as in this region lies the true source. Still, out of N = 287
nodes, a total of 161 nodes were considered possible source candidates. Applying the same threshold of
Θ = 50, we ended up with 52 infected nodes, i.e., nodes that have at least 50 registered cholera cases. Only
these nodes were considered as potential observers. The graphical model of the Thukela river basin, with
indicated infected nodes, possible source candidates and the earliest infected node is shown in Figure 4.5b.
We set the parameter β = 1/N and determine the threshold for stopping from (4.103). Since the activation
time of the source is unknown, the difference of infection times are used as observations. In the first round
of the algorithm, two nodes are selected as observers, according to step 14 of Algorithm 7. The first of these
observers is set as a reference node. When checking whether the posterior distribution that characterizes a
certain node being the source crosses the threshold, we only look at the 161 possible candidates, not all the
nodes. Also, when calculating the benefits of an observer, we first calculate for each observer the average
decrease in the number of current source candidates, and for the observers that maximize this value, we also
evaluate the benefit related only to the remaining possible candidates. Since there is no available information
on the cost of finding the number of cholera cases within each community, we consider the cost of all the
observers to be the same and equal 1. The goal of the sequential source localization is to determine the
source using the smallest number of observers.
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(b) Estimate of the source throughout the iterations of the
Algorithm 7

Figure 4.6: The results of applying Algorithm 7 to the dataset of Cholera outbreak in KwaZulu Natal

Once applied, the Algorithm 7 stops after selecting in total 19 observers which are indicated in Figure
4.6a. It correctly estimates the source as the first infected community. Figure 4.7b shows how the estimate
of the source changed throughout the iterations of the algorithm. After the initial step and the first two
selected observers, there was not a single equivalence class that reached the threshold, the most likely class
contained 7 nodes and those became the most likely source candidates. As more and more observers were
included, the estimates kept getting closer to the true source. After 13 selected observers, the most likely
source candidate was indeed the true source, but its posterior probability distribution still did not cross the
threshold. The true source node remained the most likely candidate after a few more observers were added.
However, after 17 observers, the estimate was shifted towards another node, 2 hops away from it. With 18
observers, both nodes, the true source and the node 2 hops away from it, became the most likely candidates.
After including the observation of the 19-th observer, the true source became the most likely candidate, its
posterior distribution crossed the threshold and the sequential test terminated with the true source correctly
identified. If instead of stopping, the test proceeded and more observers were selected in the same way, the
true source would remain the most likely source candidate until the observation of the 22nd observer was
included. Then, the most likely candidate would proceed to be another node that is also 2 hops away from the
earliest infected node and this would remain to be the estimated source even after including infection times
of all 52 infected nodes. Thus, if all available infection times were used for maximum-likelihood estimation,
the estimate of the source, i.e., the most likely source node, would not be the true source, but a node 2 hops
away from it. This might be a consequence of true data deviating from the used model, as true infection times
do not come from the Gaussian distribution that is used to describe it. As a node is considered infected only
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if more than 50 cholera cases have been registered, we have that, for example, the source node was infected
at day 85, and its neighbor at day 141, while the neighbor’s neighbor (a node two hops away from the source)
was infected at 94th day, i.e., earlier than a node preceding it on the path to the source. Also, as discussed
earlier, spreading of cholera occurs not only through waterways, but depends on seasonal parameters, quality
of water treatment and mobility of infected individuals.

To evaluate the merits of selecting observers using the proposed criterion based on the expected number
of discarded candidates, we repeat the process of sequential source localization, using the same model and
the parameters, except, at each iteration, observers are now selected randomly among the infected nodes. We
repeat the sequential test 100 times, each time selecting observers randomly and the results of the random
selection are shown in Figure 4.7. Whereas with the proposed observer selection criterion the threshold
is reached with 19 observers, on average 34.4 observers were needed if they were selected randomly. The
histogram of the number of randomly selected observers needed to reach the threshold is shown in Figure
4.7a. In more than 50% of the runs, the algorithm stopped after selecting more than 38 observers and with
more than 30% of the runs ending up with more than 44 observers. Figure 4.7b shows the histogram of
the distance between the true source and the estimate of the sequential algorithm with random observer
selection. In 30% of the runs, the source was estimated as one of the nodes at least 3 hops away from the
actual source. The estimate was the true source node in 9% of the cases. In 39% of the cases, the terminated
algorithm determined the source to be the same node that is 2 hops away from the actual source, as would
be determined by selecting all the potential observers. The comparison with random selection illustrates the
benefits of using the proposed selection criterion motivated by adaptive submodularity. Selecting observers
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Figure 4.7: The performance of the random observer selection
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such that they distinguish the most between possible candidates contributes to the stopping criterion of the
sequential test at an earlier time.

4.3 Summary

In this Chapter, we have analyzed the problemof selecting the nodes that contribute themost to the localization
of the source, now when the infection times are stochastic. Infection time of a node is no longer considered
exactly equal to the node’s distance to the source. Instead, we model it as a random variable. Determining
the source identity is performed with a certain error probability. Exact analytical characterization of the
error probability is typically not available. Hence, selecting the nodes that yield the lowest error probability
is not feasible. Therefore, in Section 4.1, we have proposed a surrogate metric for error probability – the
error exponent that characterizes the rate of decay for vanishing uncertainty. Source localization was framed
as a multiple hypothesis problem and we have analyzed the asymptotic behavior of the error. We have
exactly evaluated the error exponent for three different diffusion scenarios; in each, the infection times are
modeled as random variables with different distributions. In the first scenario, we have adopted a common
approximation of a propagation delay between two neighboring nodes with a Gaussian variable of known
mean and variance. In the second and the third scenario we return to the assumption of constant propagation
delay, but we consider the presence of uncertainty in observing the infection times. Motivated by the
modeling of the outliers with Laplace noise, in the second scenario, we introduce Laplace observation noise
to model outlier behavior in networks, with each node characterized by different parameters. In order to
model the presence of an incubation period in the onset of symptoms, we assume that observations are
corrupted by exponential noise in the third scenario that we have considered. Again, as individuals exhibit
different behaviors, each node was characterized by different noise parameters. We have shown that the error
exponent in this case of infection times modeled exponential variables is a metric and we have presented
some interesting bounds for the exponent for some special graphs. For all three diffusion scenarios, the
error exponent for vanishing uncertainty was determined using the same framework. The proofs deviated
from the standard ones in large deviations as we have encountered two intriguing phenomena. First, in the
derivation of exponents, straightforward approaches cannot be applied, since the decision region associated
with each hypothesis changes with diminishing noise. Second, we have discovered an interesting duality
result for three above-mentioned distributions: the optimization problem for finding the error exponent has
a pleasingly simple dual that consists of minimizing the exponent of the density function in the error region.
Selecting observer subsets based on the proposed criterion is certainly optimal from the perspective of the
fastest error decay as uncertainty decreases. In Subsection 4.1.5, we have illustrated with simulations that
the proposed metric is also very useful in a more realistic setting for non-negligible noise, as the subsets
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characterized by a higher error exponent generally yield lower error probability than other subsets. We have
also demonstrated that selecting subsets based on error exponents leads to lower average error probability
compared to subset selection based on the current state of the art, which is centrality based measures. We
have also noted that the proposed metric can be used in other applications related to the identification of a
sender: for selecting a topology that leads to higher probability of a sender identification in the field of the
defense of networks and for selecting a sender node that preserves the anonymity the most.

In Section 4.2, we have addressed the problem of sequential observer selection when the infection times
are modeled as correlated Gaussian random variables. We have developed an algorithm for sequential
source localization by applying sequential multiple hypothesis testing, once again considering each node in
the network as a different alternative for the source. As an observer selection criterion we have adopted a
criterion developed for deterministic infection times based on adaptive submodularity from Subsection 2.2.2.
At each time step of a sequential test, we have proposed to select a node that decreases the most an expected
number of nodes that are characterized by the same density of observations as the current, most likely, source
candidates. In case there is more than one such node, the selected observer is the one that contributes the most
towards distinguishing the distributions that characterize the nodes that are not the current source candidates.
This was added, as due to the presence of uncertainty, the most likely source candidates at a certain time
step, might not be also the most likely at the subsequent time step. The merits of the proposed algorithm
were illustrated on a real data from a cholera outbreak in a South African province in 2000. We have used an
available graphical model [1] of the Thukela river basin that describes the spreading of cholera through rivers
and a previously developed model for times of infection by cholera for the same dataset [5]. Used models
do not take into consideration all the aspects of cholera spreading, as they do not include the parameters
associated with the seasonal aspect of spreading, the possibility of cholera spreading through mobility of
infected individuals and the influence of the quality of water treatment in communities. Therefore, as done in
previous work, we have incorporated prior knowledge on the source location, that still leaves more than half
of nodes as possible, equally likely, source candidates. Also, for observers nodes we have only taken into
account those nodes that have crossed a threshold for infection. Our proposed algorithm correctly identifies
the earliest infected node. The benefits of the proposed criterion for observer selection were illustrated by
comparing with the performance of a random observer selection. When selected randomly, on average, 81%
more observers were needed to determine the source and the source estimate was in around 50% of the runs
neither the earliest infected node nor the node, 2 hops away from it, that would be the estimate if all the
infection times were used for estimation. Hence, we have showed that the proposed algorithm for source
localization and observer selection can successfully be applied to real-world diffusion data.
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Chapter 5

Thesis conclusions and future work

This thesis addresses the question of how to select the observer nodes that contribute the most to the task of
source localization on graphs. In this chapter we summarize the contributions we have made in addressing
this question for various diffusion scenarios. We conclude by discussing the limitations of the work and
some possible future directions.

5.1 Conclusions

In order to understand the exclusive effect of the choice of observers on the ability to disambiguate the source,
we have first analyzed the observer selection strategies in a deterministic scenario, where the infection times
are not corrupted by noise and the network structure is fully known. The observations used to localize the
source were the infection times of the observers, which correspond to their graph distance to the source node.

We have modeled the dynamics of the diffusion process as a linear time-varying system for the case of
block selection, when all the observer nodes are selected at the same time and assuming the activation time
of the source is known. Analogously to characterizing the observability of a system without considering the
observation noise, we have defined the concept of network observability to denote the ability to infer the
source location from the timestamps of observers in a deterministic, noiseless scenario. We have constructed
a network observability matrix and using this matrix, we have provided a necessary and sufficient conditions
for network observability. Additionally, we have shown that a network is observable if and only if the set of
observers forms a resolving set. Then, we have related the problem of selecting the smallest set of nodes that
achieves observability to a known problem of finding the smallest resolving set, which is an NP-Hard problem
for general graphs. Leveraging on the results from graph theory, we have determined this smallest set of
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nodes for special graph classes. We have proposed two greedy algorithms for observer selection by applying
the fact that the problem of finding the smallest resolving set can be framed as a set cover problem and known
approximations can be used. The first approximation algorithm determines a set of nodes that would lead
to source localization with the smallest cost and the second selects a set of nodes of a given cardinality that
would lead to the smallest uncertainty in the source identity. Both algorithms have performance guarantees
based on the known greedy cover approximation.

Still for the deterministic setting, we have also analyzed dynamic observer selection strategies which
are relevant in applications when observations of the previous observer are used to select the subsequent
one. We have also considered that each node might have a different cost, where the cost is associated with
resources, like time and effort, required to learn the node’s infection time. Using dynamic programming with
imperfect state knowledge we have obtained optimal strategies for node selection, again for two problems:
localizing a source with the smallest cost and achieving the smallest uncertainty in the source identity for
a pre-specified number of observers. As the optimal approach is computationally very intensive, we have
developed efficient approximation algorithms for both problems. We have reformulated the problems to fit
the adaptive submodularity framework in order to obtain performance guarantees for the greedy approach.
Initially, the dynamic strategies were analyzed under the assumption of a known source activation time.
Then, we have shown that both the optimal and the greedy approach can be applied for unknown time when
the differences of infection times are used instead of infection times. We have proved that the adaptive
submodular property still holds under the new assumptions.

After analyzing the observer selection problem with no uncertainty present, we have relaxed the as-
sumption of a completely known network structure, while still assuming deterministic infection times. The
structure of local communities is often well known, while the connections between different communities
can be hidden, as it may be a weak friendship connection, a random contact or an offline information ex-
change. Hence, we have studied the observer selection problem in a graph where the edges in each connected
components are known, but not the edges that connect different components. We have shown that the number
of connected graphs that can be constructed by adding inter-component edges scales exponentially with the
number of components. Therefore, we have concluded that the analysis of network observability is not
feasible by individual study of all of the compatible topologies. Thus, we have extended the concept of
network observability in the context of partially known diffusion graph. Now, a partially known network
is considered observable if any source can be determined from the infection times of the observers even
without knowing where are the missing edges. When all the components belong to the same graph type -
either all trees, complete graphs, grids or cycles - we have determined the necessary and sufficient conditions
for the smallest set of observers that makes such a network observable. For example, we have proved that
knowing the infection times of all the leaf nodes on all but one tree component and of the nodes that form a
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resolving set of the last tree component is both necessary and sufficient to uniquely identify the source node,
even without knowing how the tree components are interconnected. When the components have arbitrary
structure, we have presented a strategy for observer selection, based on the concept of graph boundary, that
achieves network observability. If this strategy is applied for some special graphs, like trees and grids, the
cardinality of the set of observers selected is indeed the smallest, or close to it. However, this might not be
the case for general graphs, as we have illustrated through simulations for Erdős-Rényi graphs. Selection of
nodes based on the proposed condition can easily be done in polynomial time by considering each component
separately.

We have also addressed the problem of source localization considering that the inter-component edges
are hidden. We have framed the source localization problem as a binary integer linear program modeling
it as multicommodity flow problem with side constraints. The feasibility of the proposed optimization
problem should be verified for each node in a network. If the problem is feasible for a given node, the node is
considered a source candidate. Although the binary integer linear program is computationally very intensive,
the proposed formulation does not require explicitly enumerating an exponential number of topologies that
are compatible with the partially known network.

After considering the uncertainty in network topology, we have analyzed the observer selection problem
in the presence of uncertainty in the observations. The infection time of a node is no longer considered
exactly equal to the node’s distance to the source and, instead, it is modeled as a random variable. Ideally, we
would like to select the nodes that minimize the source localization error. However, an analytical expression
for the error probability of source localization is typically not available. Therefore, we have developed a
surrogate measure for source localization error, by framing the source localization as a multiple hypothesis
testing problem, where each potential source candidate represents a hypothesis. We have analyzed the
asymptotic behavior of the error probability of hypothesis testing, considering that the uncertainty vanishes,
and not that the number of observations increase, which is the standard approach, as it was not applicable in
our case. The metric that we have proposed represents the error exponent that characterizes the rate of error
decay for vanishing uncertainty. We have exactly evaluated the error exponent for three different diffusion
scenarios. In each of these scenarios the infection times are modeled as random variables with different
distributions: Gaussian, Laplacian and exponential. Our derivation showed that selecting an observer subset
with the largest exponent leads to the fastest error decay as uncertainty in the observations decreases. We
have illustrated with simulations that the proposed metric is also very useful in a more realistic setting for
non-negligible noise, as the subsets characterized by a higher error exponent generally yield lower error
probability than the other subsets. Additionally, we have demonstrated that selection of subsets based on
error exponents leads to lower average error probability compared to subset selection based on the current
state of the art, which is centrality based measures.We have also noted that the proposed metric is useful for
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other applications that include the task of sender identification: for selecting a topology that leads to higher
probability of a sender identification in the field of the defense of networks and for selecting a sender node
that preserves the most its anonymity.

Finally we have addressed the problem of sequential observer selection for a common model where
the propagation delay along an edge, over which the contagion spreads from a node to its neighbor, is
modeled as a Gaussian random variables. We have developed an algorithm for sequential source localization
by applying the sequential multiple hypothesis testing procedure, once again considering each node in the
network as a different hypothesis. As an observer selection criterion we have adopted a criterion developed
for deterministic infection times based on the adaptive submodularity framework. The proposed sequential
algorithm was validated on real data from a cholera outbreak in a South African province in 2000 where
it successfully localized the first infected community. The number of observer nodes was on average 81%
lower than if the choice of observers was random, for even higher accuracy, thereby confirming that the
proposed strategy for observer selection also has merit for stochastic infection times.

5.2 Limitations and future work

In this thesis we have addressed the problem of observer selection for the purpose of source localization by
simplifying certain aspects of the network diffusion model. These simplifications were necessary in order
to theoretically analyze the diffusion process in networks and gain crucial insight for tackling real-world
scenarios. We have started with a very simple, purely deterministic, model, assuming exact knowledge
of the infection times, source activation time and network structure. Later, we allowed uncertainty in the
network structure, but still assuming perfect knowledge of the infection times. Separately, we have relaxed
the restriction on perfect knowledge of the times, but now assuming exact knowledge of the network structure.
We have also allowed the activation time to be unknown. Theoretical analysis of the deterministic model
revealed important insights that were applied in subsequent work where uncertainty was present.

Actual diffusion takes place in the presence of multiple uncertainties at the same time. Additionally,
the assumption that each node infects its neighbor deterministically, with probability one, typically does
not hold. Some possible directions for future work include the analysis of selection strategies while ac-
commodating both partial knowledge of times and topology, as well as considering probabilistic infection
models. Moreover, when assuming the uncertainty in the diffusion topology, we have only considered that
inter-component edges were hidden and the known network consisted of disconnected components, while
it may be less restrictive to assume that an intra-component edge might be hidden as well and multiple
inter-component edges might exist.

Besides adding more uncertainty to the diffusion model, another future direction could be the interpre-
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tation of the results obtained so far in the context of graphs, for example, what are the graph properties of
the subset of nodes that has the highest error exponent, or how the exponent changes for different graph
classes. We have tackled some of these questions for the diffusion model with random incubation period,
when the infection times are modeled as random variables with exponential distribution. However, it would
be interesting to see what can be done for other diffusion models, as well as to further explore the network
parameters (centrality or mutual distance) of the selected observer nodes.

Finally, we would like to adapt the proposed approaches in order to efficiently apply them on large-scale
networks. For example, the proposed metric based on error exponents represents a surrogate metric for error
probability for which no expression is available, and it can be used to compare performances of different
subsets. However, if we would like to identify a subset of k observers that has the highest error exponent, a
total of

(
N
k

)
possible subsets need to be checked, and for each

(
N
2

)
values need to be evaluated, which is not

feasible even for moderate values of N . Hence, a possible research direction of significant practical relevance
would be a modification of this, and other proposed strategies, such that they can easily be implemented on
real networks with a large number of nodes.
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