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Abstract

The ventral visual pathway in the brain plays central role in visual object recog-
nition. The classical model of the ventral visual pathway, which poses it as a hier-
archical, distributed and feed-forward network, does not match the actual structure
of the pathway, which is highly interconnected with reciprocal and non-hierarchical
projections. Here we address three major consequences of this non-classical struc-
ture with regard to neural dynamics and interactions: (i) the model does not consider
any extended information processing dynamics; (ii) the model does not allow for
adaptive and recurrent interactions between areas; (iii) the model only character-
izes evoked-response with no state-dependence from the neural context. To begin
to address these gaps in the classical model, we focus on the categorical-selective
regions in the ventral pathway and study the neural dynamics and interactions us-
ing intracranial electroencephalography (iEEG), which overcomes the limitations of
spatiotemporal resolution in current non-invasive human neuroimaging techniques.

With respect to the first consequence, we applied multivariate pattern analysis
(MVPA) methods to the iEEG signal to analyze the dynamic roles of the word and
face sensitive areas. We found that both areas demonstrated a similar multi-stage
information processing dynamic wherein the representation in category-selective
fusiform gyrus evolves from a gist category-level and similarity-based representa-
tion to an invariant and highly detailed individual representation over the course of
500 ms. In addition, our results also suggest a dissociation between structural and
motion in the face processing streams.

Regarding to the second consequence, we introduced a novel method termed
Multi-Connection Pattern Analysis (MCPA) to extract the discriminant information
about cognitive states solely from the shared activity between neural populations
from the interacting brain areas. Our results on iEEG and fMRI data with MCPA
support the hypothesis that individual-level exemplar information is not only en-
coded by the population activity within certain brain populations, but also repre-
sented through recurrent interactions between multiple distributed populations at the
network level.

Finally, to address the third consequence, we designed a two-stage generalized
linear model to study the relationship between category tuning and the ongoing neu-
ral activity in category selective cortical areas. We used this model to demonstrate
that endogenous activity modulates the category selective tuning in the post-stimulus
evoked response, and the same aspects of endogenous activity that modulate tuning
also predict perceptual behavior.

Taken together, in this thesis we develop and apply statistical methods to assess
the properties of the non-classical structure in the ventral visual stream, and high-
light contributions of regions to multiple stages of processing through interactive and
distributed computation that is influenced by ongoing neural context.
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Chapter 1

Introduction

1.1 Background

Vision is extremely important for human beings in almost every aspect of daily life. A great
amount of the information that human brain receives is through vision, and a great portion of the
cortex is devoted to vision (DiCarlo et al., 2012; Felleman and Van Essen, 1991). It is crucial
for humans to process visual information and recognize visual stimuli rapidly and reliably, and
humans have tremendous ability to recognize objects. For example, we can effortlessly detect
and identify objects from among tens of thousands of possibilities within less than a second,
despite the huge amount of variation in the appearance of the objects and the environment. Un-
derstanding how visual information is represented and processed in the brain is one of the central
questions in cognitive neuroscience. Throughout the years, researchers have studied the visual
system and made significant breakthrough in understanding how vision works in the brain, from
cellular to system level.

The prevalent view of visual recognition is that visual information is represented and pro-
cessed in a hierarchical and distributed manner that involves multiple brain areas and circuits
(Felleman and Van Essen, 1991; Haxby et al., 2001; Mishkin et al., 1983). This framework has
led to many successful computational models of visual system, such as Neocognitron (Fukushima
and Miyake, 1982), HMAX (Riesenhuber and Poggio, 1999), and convolutional neural network
(LeCun et al., 1989). In such framework, the information processing proceeds along two distinct
cortical pathways, the ventral stream and the dorsal stream, which are mainly involved in object
and spatial vision respectively (Kravitz et al., 2013; Mishkin et al., 1983) (Figure 1.1A). With
such framework, it is essential to address the following two questions:

(1) What is the role of each brain area that is involved in the network? In other words, what
information is encoded and processed in each area of the network? This would lead to
the encoding and decoding problems in neuroscience (Averbeck et al., 2006; Dayan and
Abbott, 2001). In the encoding problem, we try to understand that given a specific visual
stimulus, how would it be represented in the neural activity of the corresponding brain
area? For the decoding problem, on the other hand, we try to understand that given a
specific pattern of neural activity, what is the triggering visual input.

(2) How are different areas connected? For each area of interest, what other areas is it com-
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municating to during the process of object perception? And how are these connections
facilitating or contributing to object perception? This leads to the concept of functional
connectivity (Friston et al., 1993; Gerstein and Perkel, 1969; Gerstein et al., 1989), which
describes the temporal correlation between neural activity measured from distinct neural
populations.

In this thesis, we mainly focus on the ventral stream and the process of visual object recog-
nition, and elaborate on these two questions from novel aspects.

The ventral stream gets its input from the lateral geniculate nucleus (LGN) and proceeds
along the occipitotemporal cortex (areas V1, V2, V3, V4, lateral occipital complex [LOC], etc.)
into anterior inferior temporal cortex (aIT) (see Figure 1.1). Functionally, as we progress along
the stream, the size of the neuronal receptive field becomes larger, and the tuning properties of
the neurons become more complex and abstract. V1 neurons have small receptive field size and
are tuned to directed lines, while IT neurons have larger receptive field size and are tuned to
more complex categorical information, such as cats and flowers (Kravitz et al., 2013). Moreover,
these category-selective neurons often clustered in different regions of the ventral temporal cor-
tex, forming different category-selective cortical regions. A large body of neuroimaging studies
have revealed multiple distinct regions, primarily located in the temporal cortex, that demonstrate
functional selectivity to specific categories of visual stimuli, e.g. the fusiform face area (Kan-
wisher et al., 1997), the parahippocampal place area (Epstein and Kanwisher, 1998), the visual
word form area (Cohen et al., 2000), etc. These category-selective brain regions play central role
in the visual cognition of objects, and damage to these regions can lead to selective deficits with
respect to the visual cognition of the specific category of objects (Farah, 2004). (Cohen et al.,
2000; Downing et al., 2001; Epstein and Kanwisher, 1998; Kanwisher et al., 1997; Martin, 2007).
The category-level functional specificity alone apparently does not constitute the full story of vi-
sual perception. Throughout the years, many studies are devoted to investigate different aspects
of the perceptual process across different levels. For example, with regard to the processes of
face and word recognition, multiple regions of interest have been identified, and their coding,
temporal dynamics, as well as interactions between them, have been investigated (Nestor et al.,
2011; Puce et al., 1999; Sugase et al., 1999; Wandell, 2011). In this thesis, we particularly focus
on the dynamic properties and interactions within and between these category-selective regions,

The classical hierarchical framework of the ventral stream comes from the static view that
the information flows in one direction from posterior to anterior (Figure 1.1B,C). Each node in
the network acts as a passive filter that cumulates inputs from the outputs of the previous layers
and feeds the information forward after performing local computations. This classical frame-
work captures many of the key characteristics of the ventral pathway and has been employed in
many visual cognition models with significant success (Riesenhuber and Poggio, 2000; Yamins
et al., 2014). To facilitate such a static feedforward model, we would expect that the actual neural
anatomical structure of the cortex is also largely feedforward. However, a close look at the actual
neural anatomy reveals that the majority of the connections between areas in the ventral visual
stream are reciprocal, and the only one-directional connections are actually feedback connec-
tions coming from top-down projections (Kravitz et al., 2013). This inconsistency between the
computational model and the actual anatomical structure in the ventral visual stream would lead
to several important caveats that the model cannot fully account for. In this thesis, we primarily
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Figure 1.1: Classical framework of visual object perception. A) The ventral (blue) and dorsal
(red) pathways in the macaque monkey brain. B) The classical hierarchical view of visual infor-
mation processing in the ventral pathway. The approximate range of latencies of first response in
each area is shown on the left. Adapted from (Kravitz et al., 2013). C) The classicial hierarchi-
cal view of the feedforward computations in ventral visual pathway as described in the HMAX
model (Riesenhuber and Poggio, 2000; Serre et al., 2007a). Adapted from (Kravitz et al., 2013)
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focus on three of the gaps in the classical framework:

(i) the model does not consider any extended information processing dynamics;

(ii) the model does not allow for adaptive and recurrent interactions between areas;

(iii) the model only characterizes evoked-response with no state-dependence from the neural
context.

From a methodological point of view, two of the major methods that have been developed to
address these two questions are multivariate pattern analysis (MVPA) and functional connectivity
analysis.

MVPA uses classification techniques from statistical machine learning to decode the patterns
of multivariate neural activity with respect to different stimuli or cognitive conditions, and to
infer the underlying neural coding within certain neural populations (Haxby et al., 2001; Nor-
man et al., 2006). The rationale behind MVPA is that if a region is contributed to the visual
perception of a certain category, then it must be involved in the encoding of the information,
and has discriminant neural representation for the categorical information. And this represen-
tational difference would lead to different visual perception. On the other hand, if we read out
this discriminant neural representation, we can decode the visual information. Therefore, we can
analyze the role of the area in the visual perception process by decoding the visual representation
in a categorical-selective region, and see what kind of discriminant information is represented in
that area. Therefore, two major factors with regard to MVPA should be noticed and will be ad-
dressed in this thesis: 1) the outcome of MVPA depends on the features fed into the model, and
we can address different questions by manipulating the input features of the model 2) MVPA is
a correlational methods, and no causal link can be directly established through MVPA.

Functional connectivity assumes that statistical dependence between neural signals from dif-
ferent areas implies information communication between regions (Friston et al., 1993). Func-
tional connectivity has been applied to find the interaction between regions in the visual percep-
tual system, e.g. Ishai (2008); Nestor et al. (2011). However, the prevalent functional connec-
tivity methods can only answer the ”yes/no” question with regard to the interactions between
brain areas, i.e. whether or not two areas are talking to each other, but are not able to probe the
”how” question, i.e. how are the two areas talking to each other and what information is being
communicated through the interactions.

1.2 Overview of Thesis Contributions and Structure

1.2.1 Information processing dynamics
The first gap is about the extended information processing dynamics beyond the simple hier-
archical feed-forward sweep along the pathway. According to this feedforward framework, the
whole process, as a serial information flow, would finish within∼100 ms as a result of the synap-
tic delay from V1 to aIT (Figure 1.1B). However, as the anatomical evidence suggests, there are
both feedforward and feedback connections between areas in the ventral pathway, and majority
of the connections between these areas are indeed reciprocal (Kravitz et al., 2013). In addi-
tion, electrophysiological studies have also identified late time signatures that account for object
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recognition, which suggests feedback and recurrent interactions (Puce et al., 1999; Sugase et al.,
1999). Therefore, what is the timecourse of information processing in each area becomes an im-
portant question. Previous human cognitive studies often rely on imaging techniques that have
low temporal resolution (Haxby et al., 2000; McCandliss et al., 2003; Price and Devlin, 2003),
such as fMRI, which makes it difficult to identify multiple stages of processing within the time
scale of several hundred milliseconds. On the other hand, previous human electrophysiology
studies mainly relied on univariate statistics on the signature peaks in the event related potentials
(ERPs) (Bentin et al., 1996; Puce et al., 1999), which often does not give a full picture about the
dynamic timecourse. As a result, it remains unclear what dynamic roles the category-selective
regions play during the process of visual stimuli, such as faces and words.

To investigate the spatiotemporal dynamics, we seek for a signal modality that satisfies the
following requirements: (1) a neural signal modality with high temporal resolution (e.g. on
the order of millisecond); (2) fine spatial resolution is also necessary in order to localize the
category-selective region of interest with high accuracy; (3) probing the dynamic neural coding
would also require high signal-to-noise ratio (SNR). Despite the magnificent breakthroughs over
the past few decades, these requirements on spatiotemporal resolution and SNR have exceeded
the limitations of non-invasive imaging modalities, such as fMRI, MEG and scalp EEG. On the
contrary, intracranial EEG (iEEG) recording, as an alternative technique, fulfills these require-
ments and serves as the ideal signal modality for investigating the spatiotemporal dynamics of
the neural activity in the category-selective visual areas. In this thesis, we collect iEEG data
from a large cohort of human patients and study the recognition process of two representative
categories of visual objects, words and faces.

The first part of this thesis evolves from the two basic questions mentioned earlier in this
chapter, probing the spatiotemporal dynamics of the neural activity in cateogory-selective areas
from the following aspects:

Apply multivariate pattern analysis (MVPA) methods to the iEEG signal to analyze the dy-
namic roles of the face and word sensitive areas during the face and word recognition processes.

• In Chapter 2, we apply pattern classification method to elucidate the dynamic role the left
midfusiform gyrus (lmFG) plays with an early processing stage organized by orthographic
similarity and a later stage supporting individuation of single words. Furthermore, we
utilized direct cortical stimulation to demonstrate a causal role of lmFG in word naming.
This study try to resolve a central issue in the neurobiology of reading, which is a debate
regarding the visual representation of words, particularly in lmFG.

• In Chapter 3, we investigate the dynamic role of the face sensitive patches in the fusiform
gyrus plays during the perception of face category and individual faces. We demonstrate a
similar gist-to-fine temporal dynamics in the face sensitive fusiform gyrus.

• In Chapter 4, we use similar approaches to further study the role that fusiform plays in
the perception of emotional facial expressions. We directly test the competing hypotheses
about whether fusiform contributes to the processing of facial expressions. Our results
suggest a dissociation between structural and motion in the face processing streams.
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1.2.2 The representational structure of the neural interactions

The second gap comes from the fact that the classical framework is based upon the idea of pas-
sive filtering. Recent studies demonstrate that neural populations in perceptual areas alter their
response properties based on context, task demands, etc. (Gilbert and Li, 2013). These modula-
tions of response properties suggest that lateral and long-distance interactions are adaptive and
dynamic processes responsive to the type of information being processed. However, not only the
classical framework does not account for such adaptive process, we also lack an analytical tool
to probe such information presentations. With respect to the first basic question of neural coding
within a certain population, pattern classification methods from modern statistics and machine
learning, such as MVPA (Haxby et al., 2001, 2014), have gained popularity in recent years for
decoding the information content contained in neuroimaging data analysis. These methods al-
low one to go beyond examining the involvement of a population in a particular neural process
and infer the representational content of the population activity. However, when we turn to the
second basic question and focus on the information represented through interactions between
areas, current MVPA methods do not allow one to assess the discriminant information encoded
in the pattern of functional connections between different neural populations. Furthermore, tra-
ditional methods for assessing functional connectivity only allow one to examine differences in
the degree of coupling across conditions and not the information carried by the pattern of in-
terregional connections (Coutanche and Thompson-Schill, 2013; Finn et al., 2015; Kriegeskorte
and Kievit, 2013; Richiardi et al., 2011; Rosenberg et al., 2016; Shirer et al., 2012; Wang et al.,
2015). Therefore, we seek for a novel method to decode the representation structure of the neural
interactions between populations.
• In Chapter 5, we introduce a novel method termed Multi-Connection Pattern Analysis

(MCPA) to extract the discriminant information about cognitive states solely from the
shared activity between neural populations from two brain areas. With this new tool, we
can perform single-trial prediction and classification, and probe the represetntational struc-
ture of the interactions between areas of interest. Specifically, MCPA is applied to iEEG
and fMRI data recorded from interacting regions in the visual cortex to evaluate the infor-
mation representation in the pattern of interactions between areas.

1.2.3 State-dependence of neural coding

The third gap in the classical framework comes from the fact that brain does not act in a de-
terministic manner and neural activations are state-dependent. Even identical repetitions of the
exact input stimulus would result in different neural activation, which would ultimately lead to
variance in the behavioral domain, such as reaction time, sensory perception, etc. In the last
part of the thesis, we study the space of the state-dependent dynamics in neural activity from the
ventral visual pathway.

An important source of the variation in the neural dynamics is the spontaneous ongoing ac-
tivity. Previous studies have demonstrated that both the post-stimulus evoked response (Arieli
et al., 1996; Başar, 1980; Brandt and Jansen, 1991; Fox et al., 2006; Fries et al., 2001; Henriks-
son et al., 2015; Kisley and Gerstein, 1999; Luczak et al., 2009; Tsodyks et al., 1999) and the
performance of sensory perception (Busch et al., 2009; Ergenoglu et al., 2004; Mathewson et al.,
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2009; Ress et al., 2000; Thut et al., 2006; Van Dijk et al., 2008; VanRullen et al., 2011) depend
on the internal brain state before stimulus presentation. However, most of the previous studies
have explored these two relationships separately. To influence perceptual behavior, the variance
in spontaneous ongoing activity should modulate the discriminant neural coding that directly
relates to visual perception. It is yet unclear whether the endogenous activity modulates neural
coding and category-selectivity in the ventral stream, which then provides a neural pathway for
behavioral modulation. Therefore, we need to analyze how the pre-stimulus activity modulate
the categorical sensitivity in the evoked response on a single-trial basis.
• In Chapter 6, we build a block-wise generalized linear model (GLM) to study the corre-

lation between the categorical sensitivity and the pre-stimulus neural activity in the same
brain area. We use this GLM to test the hypothesis that pre-stimulus spontaneous activ-
ity can modulate the categorical sensitivity in post-stimulus evoked response and that the
same aspects of pre-stimulus activity that modulate tuning also correlate to variance in the
perceptual behavior.

Figure 1.2: Probing the dynamics and interactions in the visual system along different
methodological dimensions.

1.2.4 Methodological summary
From the methodological point of view, we elaborate around the multivariate representational
space and explore along different methodological dimensions in order to attain a comprehensive
understanding of the aforementioned questions with regard to the spatiotemporal dynamics and
interactions underlying visual perception (Figure 1.2):
• The basic methodological building block that we employ is decoding the dynamics of

neural representation using event-related response from a single region of interest (ROI)
(Chapters 2, 3, 4).
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• Moving along the dimension of causality, we use electrical stimulation to make causal
inference about the neural computation taking place within certain ROI (Chapter 2, and
see also (Aminoff et al., 2016)).

• Moving from a single region to interacting regions, we develop new algorithm to probe the
representation of neural communications between interacting regions (Chapter 5).

• By involving the spontaneous activity into the decoding model, we evaluate the state-
dependency in the neural dynamics of each ROI (Chapter 6).

We hope this thesis not only addresses the gaps in the classical model of the visual hierarchy
and sheds light upon the underlying information processing dynamics of visual perception, but
also demonstrates how novel applications of statistical machine learning techniques can allow
cognitive neuroscientists to ask fine-grained questions about neural information processing and
information flow at both the scale of local brain regions and the scale of broadly distributed
networks.

Related publications
• Chapter 2 - Decoding and disrupting left mid-fusiform gyrus activity during word reading

(PNAS 2016).
• Chapter 3 - Dynamic encoding of face information in the human fusiform gyrus (Nature

Communications 2014).
• Chapter 4 - Posterior Fusiform and Midfusiform Contribute to Distinct Stages of Facial

Expression Processing (Cerebral Cortex 2018).
• Chapter 5 - Multi-Connection Pattern Analysis: decoding the representational content of

neural communication (Neuroimage 2017).
• Chapter 6 - Endogenous activity modulates category tuning in cortex and influence per-

ceptual behavior (Work presented at VSS 2018, CCN 2018 and SfN 2018, manuscript in
preparation for submission).
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Chapter 2

Temporal dynamics in human fusiform
underlying word individuation

In the first part of the thesis, we mainly explore the dynamics of the neural representation in two
neighboring category-selective areas in the ventral pathway, the visual word form area and the
fusiform face area. These two areas show strong selectivity with respect to two important visual
categories in daily life, the visual words and the faces. We start with the analysis of visual word
form area in this chapter.

The nature of the visual representation for words has been fiercely debated for over 150 years.
In this chapter, we used direct brain stimulation, pre- and post-surgical behavioral measures,
and intracranial electroencephalography to provide support for, and elaborate upon, the visual
word form hypothesis. This hypothesis states that activity in the left mid-fusiform gyrus (lmFG)
reflects visually organized information about words and word-parts. Using machine learning
methods to analyze the temporal dynamics of electrophysiological data from four patients with
electrodes placed directly in their lmFG, we found that information contained in early lmFG
activity was consistent with an orthographic similarity space. Furthermore, disrupting lmFG
activity through stimulation or surgical resection led to impaired perception of whole words
and word-parts. Finally, the lmFG contributed to at least two distinguishable stages of word
processing, an early stage that reflects gist-level visual representation sensitive to orthographic
statistics, and a later stage that reflects more precise representation sufficient for the individuation
of orthographic word forms. These results provide strong support for the visual word form
hypothesis and demonstrate the dynamic role the lmFG plays in multiple stages of orthographic
representation.

2.1 Introduction

A central debate in understanding how we read, documented at least as far back as Charcot,
Dejerine, and Wernicke, has revolved around whether or not visual representations of words can
be found in the brain. Specifically, Charcot and Dejerine posited the existence of a center for
the visual memory of words (Bub et al., 1993), whereas Wernicke firmly rejected that notion,
proposing that reading only necessitates representations of visual letters that feed forward into
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the language system (Wernicke, 1977). Similarly, the modern debate revolves around whether
or not there is a visual word form system that becomes specialized for the representation of
orthographic knowledge (e.g. the visual forms of letter combinations, morphemes, and whole
words; (Bub et al., 1993; Dehaene et al., 2002; Warrington and Shallice, 1980). One side of the
debate is characterized by the view that the brain possesses a visual word form area that is a
major, reproducible site of orthographic knowledge (Dehaene and Cohen, 2011), while the other
side disavows any need for reading-specific visual specialization, arguing instead for neurons
that are general purpose analyzers of visual forms (Price and Devlin, 2011).

The visual word form hypothesis has attracted great scrutiny because the historical novelty of
reading makes it highly unlikely that evolution has created a brain system specialized for reading.
This places the analysis of visual word forms in stark contrast to other processes that are thought
to have specialized neural systems, such as social, verbal language, or emotional processes,
which can be seen in our evolutionary ancestors. Thus, testing the word form hypothesis is
critical not only for understanding the neural basis of reading, but also for understanding how
the brain organizes information that must be learned through extensive experience and for which
we have no evolutionary bias.

Advances in neuroimaging and lesion mapping have refocused the modern debate surround-
ing the visual word form hypothesis on the left mid-fusiform gyrus (lmFG). This focus reflects
widespread agreement that the lmFG region plays a critical role in reading. Supporting evidence
includes demonstrations that literacy shapes the functional specialization of the lmFG in children
and adults (Ben-Shachar et al., 2011; Brem et al., 2010; Dehaene et al., 2010; Schlaggar and Mc-
Candliss, 2007), the lmFG is affected by orthographic training in adults (Glezer et al., 2015; Xue
and Poldrack, 2007), and damage to the lmFG impairs visual word identification in literate adults
(Behrmann and Shallice, 1995; Gaillard et al., 2006). However, debate remains about whether
the lmFG constitutes a visual word form area (Binder et al., 2006; Cohen et al., 2002; Dehaene
and Cohen, 2011; Glezer et al., 2009; McCandliss et al., 2003; Warrington and Shallice, 1980)
or not (Farah and Wallace, 1991; Price and Devlin, 2003, 2011). That is: does it support the
representation of orthographic knowledge about graphemes, their combinatorial statistics, ortho-
graphic similarities between words, and word identity (Vinckier et al., 2007), or does it have
receptive properties tuned for general purpose visual analysis, with lexical knowledge emerging
from the spoken language network (Price and Devlin, 2011)?

To test the limits of the modern visual word form hypothesis, we present results from four
neurosurgical patients (P1-4) with electrodes implanted in their lmFG. We acquired pre and post
surgery neuropsychological data in P1, performed direct cortical stimulation in P1 and P2, and
recorded intracranial electroencephalography (iEEG) in all four participants to examine a num-
ber of indicators that have been proposed as tests for the visual word form hypothesis by both
supporters and opponents of this hypothesis (Dehaene and Cohen, 2011; Price and Devlin, 2011).
Pattern classification methods from machine learning were then used to measure whether neu-
ral coding in this region is sufficient to represent different aspects of orthographic knowledge,
including the identity of a printed word. We separately evaluated the timecourse of lmFG sen-
sitivity to different aspects of orthographic information to assess both early processing, which
should exclusively or predominantly capture bottom-up visual processing, and later processing,
which likely captures feedback and recurrent interactions with higher-level visual and non-visual
regions. Consequently, we were able to assess the dynamic nature of orthographic representation
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within the lmFG and thereby provide a novel perspective on the nature of visual word represen-
tation in the brain.

2.2 Methods

2.2.1 Subjects

Four patients (2 males, ages 25-45) undergoing surgical treatment for medicine-resistant epilepsy
participated in the experiments. The patients gave written informed consent to participate in this
study, under a protocol approved by the University of Pittsburgh Medical Center Institutional
Review Board. See supplement for demographic and clinical information about each participant.

2.2.2 Experimental paradigm

The experiment paradigm and the data pre-processing method were similar to those described
previously by Ghuman and colleagues (Ghuman et al., 2014). Paradigms were programmed in
MATLAB using Psychtoolbox and custom written code. All stimuli for the Category Localizer,
Covert Naming, Word Individuation and Stimulation were presented on a 22-inch LCD computer
screen placed approximately 2 meters from participant’s head at the center of the screen (∼
10◦ × 10◦ of visual angle). All stimuli for P1-P3 were identical. Due to a considerable delay
in testing, the covert naming and word individuation stimuli were modified and updated for P4
in order to address additional questions beyond the scope of the current study. However, the
critical characteristics of the stimuli and contrasts in the analyses remain consistent across all
four patients. The category localizer was identical for all patients.

2.2.3 Category localizer

Stimuli

In the localizer experiment, 90 different images from 3 categories were used, with 30 images of
bodies (50% male), 30 images of words, and 30 phase scrambled images. Phase scrambled im-
ages were created in MATLABTM by taking the 2-dimensional Fourier transform of the image,
extracting the phase, adding random phases, recombining the phase and amplitude, and taking
the 2-dimensional inverse Fourier transform.

Design and procedure

In the category localizer, each image was presented for 900 ms with 900 ms inter-trial interval,
during which a fixation cross was presented at the center of the screen. There were two consec-
utive blocks in a session. Each block consisted of all the 180 images with a random presenting
order. At random, 1/3 of the time an image would be repeated, which yielded a total of 480 trials
in one recording session. The participant was instructed to press a button on a button box when
an image was repeated (1-back task).
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2.2.4 Electrical brain stimulation

Stimuli

The stimuli used during electrode stimulation for P1 included 60 7-letter words with 11.35
(10.60-13.67) mean log frequency, determined by the HAL Study used in the English Lexicon
project (http://elexicon.wustl.edu/); single letters; and 13 famous faces that were
familiar and nameable by P1. Stimuli were presented repeatedly during the session, starting with
low stimulation trials. Thus, stimuli presented during high stimulation trials were likely to have
been seen previously. The stimuli used during electrode stimulation for P2 included 46 7-letter
words with 10.93 (10.02-13.13) mean log frequency, and black and white pictures of common
objects and animals. The 46 words that were presented during stimulation trials were out of a set
of 155 words total that did not repeat.

Design and procedure

Electrical current during stimulation passed between adjacent electrode pairs (e.g., 1 & 2, 3 &
4, etc.). During the stimulation session pre-surgery, stimulation (1-10 mA, peak-to-peak ampli-
tude, which is the distance between the negative and positive square waves delivered to the two
contacts, i.e. this is 2 times the amplitude of the square waves) was alternatingly applied with
sham stimulation while P1 and P2 overtly named words (P1 and P2), letters (P1), famous faces
(P1), and pictures (P2). Each stimulus trial began with a beep, followed by 750 ms of fixation
and then the stimulus. The stimulus remained on the screen until it was named, after which an
experimenter manually advanced to the next item. Naming times were computed by calculating
the time between the beep and the response (minus 750 ms). Only trials in which the electrode
stimulation overlapped with the first 500ms of stimulus presentation were included in further
statistical analyses. T-tests comparing high and low stimulation trials were computed assuming
unequal variances and df adjusted based on Levene’s test for equality of variances.

2.2.5 Covert Naming: Sensitivity to Bigram Frequency

Stimuli

In the covert word-naming experiment, words with non-overlapping high and low bigram fre-
quency (70 each for P1, 40 each for P4), controlled for lexical frequency, were used as visual
stimuli.

Design and Procedure

In the covert word-naming experiment, each word was presented once, in a random order, for
3000 ms with 1000 ms inter-trial interval during which a fixation cross was presented at the
center of the screen. The patient was instructed to press a button the moment when he began to
covertly name the word to himself in order to ensure phonological encoding of each word and to
avoid potential movement artifacts that could result from overt articulation.
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2.2.6 Word Individuation
Stimuli

In the word individuation experiment, 20 different English words, with word length ranging from
2 to 5, were used as visual stimuli. Similar word pairs differed by one letter and different word
pairs did not share any letters. All comparisons were made within the same word length.

Design and Procedure

In the word individuation experiment, each image was presented for 900 ms with 900 ms inter-
trial interval, during which time a fixation cross was presented at the center of the screen. There
were 24 consecutive blocks within a session. Each block consisted of all the 20 words with a
random order. At random, 1/6 of the time an image would be repeated, which yielded a total of
560 trials in one session. The patient was instructed to press a button on a button box when an
image was repeated.

2.2.7 Data Preprocessing
Local field potential (LFP) Data for the Category Localizer, Covert Naming, and Word Individu-
ation tasks were collected at 1000 Hz using a Grapevine neural interface system (Ripple, LLC).
They were subsequently band-pass filtered offline from 1-115 Hz and notch filtered from 59-61
Hz, both using fifth order Butterworth filters in MATLAB, to remove slow and linear drift, the
line noise, and high frequency noise. Raw data was inspected for ictal events and none were
found during experimental recordings. To further reduce potential artifacts in the data, trials with
peak amplitude 5 standard deviations away from the mean across the rest of the trials or with
absolute peak amplitude larger than 350 µV were eliminated. In addition, trials with a difference
larger than 25 µV between consecutive sampling points were eliminated. These criteria resulted
in the elimination of less than 1% of trials in each session.

2.2.8 Electrode Selection
Word sensitive electrodes were chosen based on anatomical and functional considerations. Elec-
trodes of interest were restricted to those that were located on the fusiform gyrus. In addition,
electrodes were selected such that their peak 3-way classification d′ score (see below for how this
was calculated) exceeded 1 (p < 0.001 based on a permutation test, as described below) and the
event related potential (ERP) for words was larger than the ERP for the other non-words object
categories, namely bodies and phase scrambled images.

P1, P2 and P3 each had 8 electrode contacts on a single strip on the ventral temporal lobe.
P4 had 28 electrode contacts on two high-density strips on the ventral temporal lobe. For P1, out
of the 8 electrode contacts, only the first three channels satisfied the criteria described above and
all analyses included data from all 3 of these electrode channels. The remaining five channels
failed to satisfy either of the two criteria. For P2, 3 out of the 8 electrode channels (channels 1,
3 and 4) satisfied the criteria. Only channels 3 and 4 were used for all analyses because chan-
nel 1 was non-contiguous with the other channels and more medial than would be expected for
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word sensitive lmFG. For P3, out of the 8 electrode channels, only one channel (the third elec-
trode channel on the strip) satisfied the criteria. Hence we used the data from this one electrode
channel for the multivariate classification analysis. For P4, 3 out of the 28 high-density ventral
temporal electrode channels satisfied the two criteria (channels 8, 9 and 22) and all analyses
included data from all 3 of these channels. The precise locations varied slightly, which is a typ-
ical characteristic of word-selective cortex described in the literature (Glezer and Riesenhuber,
2013). All patients’ postoperative structural MRIs were normalized to Talairach space using
AFNI’s auto tlrc program to confirm the location of the word-selective contacts in the fusiform
gyrus (Figure 2.1).

2.2.9 Multivariate classification analysis
Considering that the size of the training set was smaller than the data dimensionality, a low-
variance classifier (specifically, Gaussian naı̈ve Bayes) was used. Principle component analysis
(PCA) and linear discriminant analysis (LDA) were used to lower the dimensions in the case of
multi-way categorical classifications. However, we found the dimensionality reduction method
was not plausible in the pair-wise words classification case, because the smaller number of trials
made the estimation of covariance unreliable. For all classification analyses, the Gaussian naı̈ve
Bayes classifier was trained based on the data from each time point of 100 ms windows from
single trials in the training set (the time course pattern from 100 ms of single trial potentials) and
was used to label the condition of the corresponding data from that time window from the testing
trial. The classification accuracy was estimated by counting the correctly labeled trials. This
procedure was then repeated for all time windows slid with 10 ms steps between −100 ∼ 600
ms relative to the presentation of the stimuli. A recent study showed that combining single trial
potentials with the broadband signal improves classification accuracy in iEEG. In P1 and P4, we
found results consistent with this report showing increased classification accuracy in the range
of ∼ 1% at the peak timepoints (no statistical changes were seen in that all effects reported as
significant remain significant and all effects reported as not significant remain not significant).
In P3 however, the broadband signal was flat despite clear single trial potential effects. Thus, for
the sake of consistency across subjects, and because the results did not substantively change in
P1 or P4, we use only single trial potentials throughout.

For the multi-way categorical classifications with K categories (here K = 2, 3), the classi-
fication accuracy was estimated through nested leave-p-out cross-validation. In the first level of
cross-validation, single-trial potentials were first split into training (80% of the trials) and testing
set (20% of the trials) randomly. For each random split, PCA was trained based on the training
set to lower the dimensionality down to P . Then LDA was used to project the data into K-1
dimensional space. Finally a Gaussian naı̈ve Bayes classifier was trained based on the projected
training set. The selection of the model parameter P was achieved by finding the P that gave
greatest d′ for Bayes classification based on an additional level of random sub-sampling vali-
dation with 50 repeats using only the training set. After training, true positive and false alarm
rates of the target condition were calculated across all of the test trials. d′ was calculated as
d′ = Φ−1(true positive rate) − Φ−1(false alarm rate), where Φ−1(x) is the inverse of the Gaus-
sian cumulative distribution function. The random split was repeated for 200 times and the
classification accuracy was estimated by averaging across results from these 200 random splits.
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For the pair-wise classification in the word individuation task, the pairwise classification
accuracy was estimated through leave-one-out cross-validation. Specifically, for each pair of
words, each trial was left out in turn as the testing trial, with the remaining trials used for the
training set. Finally, the overall pairwise classification accuracy was estimated through averaging
across all 190 word-pairs. The classification accuracy for each specifically controlled condition
was estimated by averaging the corresponding word-pairs.

2.2.10 Permutation test

Permutation testing was used to assess the statistical significance of classification accuracy and
the corresponding d′ value against the chance level for all the classification analyses described
above. Specifically, the null hypothesis could be stated as that the peak classification accuracy
was at chance level, using a global null hypothesis over the entire time course. This results in
significance values corrected for multiple time comparisons (Maris and Oostenveld, 2007). For
each permutation, the condition labels of all the trials were randomly permuted, and the same
classification procedure as described above was performed on the data with permuted labels.
The maximum classification accuracy across the 100 - 600 ms time window was then extracted
as the test statistic. The permutation procedure was repeated for N times (N = 200 or 500, N
is chosen heuristically based on the computational complexity of the problem and the accuracy
of estimation that is needed). The estimated p-value of the classification accuracy, corrected
for multiple comparisons, was then determined based on the distribution that results from the
permutation procedure.

Notably, the classification accuracy reported is generally greater than what is found using
non-invasive measures of neural activity, such as fMRI (Nestor et al., 2011). Nonetheless, the
fact that iEEG pools over the activity of hundreds of thousands of neurons likely means that
finer scale recordings, such as recording simultaneously from many single neurons, may have
improved classification accuracy.

It is also notable that a recent study showed that combining both the single trial potentials,
as we did here, and the broadband signal results in higher classification accuracy than either of
those signals alone (Miller et al., 2016). In our case, P3 showed clean single trial potential data,
but poor quality broadband data. For that reason, we chose to use the single trial potential data
for all of our analyses. That said, in P1 and P4, the classification accuracy for single words did
improve when combining single trial potentials and the broadband signal, as predicted by Miller
et al. (2016). However, the classification accuracy improvement was quantitative and none of
hypothesis testing (e.g. what was and was not significant at the p < 0.05 level), between time-
course comparisons, or indeed, none of the conclusions from the results change when combining
broadband and single trial potential data.
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2.3 Results

2.3.1 Verification of orthographic selectivity at lmFG electrode sites

In order to identify their seizure foci, four patients with medically intractable epilepsy, under-
went iEEG, which included insertion of multi-contact electrodes into or on their ventral temporal
cortex (VT) (Figure 2.1). To assess the word sensitivity and specificity of lmFG, we used a Gaus-
sian naı̈ve Bayes classifier to decode the neural activity (single trial potentials) while participants
viewed three different categories of visual stimuli: words, bodies, and phase-scrambled objects
(30 images per category, each repeated once). In each patient in electrode contacts in lmFG, we
observed a strong early sensitivity to words at 100 ms 400 ms (Figure 2.2a, 2.2b), which was
verified using a classifier model (Figure 2.2c; averaged peak d′ = 1.26, at 245 ms after stimu-
lus onset, p < 0.001; see Supplement Figure S2-5 for each individual contact on the electrodes
from each participant). The position of the lmFG electrode contacts in the anterior end of the
posterior fusiform sulcus is consistent with the putative ”visual word form area” described in
the functional neuroimaging literature (Baeck et al., 2015; Wandell, 2011; Whaley et al., 2016).
Further, the timing of the category selective response is consistent with evoked potential findings
obtained from scalp electrodes (Maurer et al., 2005) and previous iEEG studies (Hamamé et al.,
2013, 2014; Nobre et al., 1994; Whaley et al., 2016), which have described orthographic-specific
effects approximately 200 ms after stimulus onset.

After completion of the iEEG study, in P1 a focal resection in the posterior basal temporal
lobe was performed. This included removal of tissue at the location of the implanted VT elec-
trode (Supplemental Figure 6), leading us to predict that P1 would exhibit post-surgical changes
in visual word recognition consistent with acquired alexia (Gaillard et al., 2006). Neuropsycho-
logical assessments of naming times were conducted pre- and post-surgery at 1.5-weeks (acute),
6-weeks, and 3-months to assess the impact of the resection on his perception of visual stimuli.
P1 was asked to name words (3, 5, or 7 letters (Behrmann and Shallice, 1995)) and a mixed set
of stimuli (words, letters, single digits, 3-digit numbers, famous faces, objects, music notes, and
guitar tabs) aloud as rapidly and accurately as possible. After removal of the area surrounding
the VT electrode, P1 showed the characteristics of acquired alexia, specifically letter-by-letter
reading (Figure 2.3c) and longer naming times particularly for letters and words (Figure 3d)
as predicted based on the role of this area in orthographic processing (Behrmann and Shallice,
1995; Gaillard et al., 2006). Additionally, orthographic processes were impacted to a greater
degree than phonological processes by the resection (Supplemental Figure 1). See Supplemental
Results for further description and elaboration on P1’s post-resection reading deficits.

The anatomical locus and category-specificity of the recorded iEEG response in P1-P4, and
the post-resection alexia in P1, were highly consistent with our localization of lmFG electrodes
to tissue that is central to the visual word form debate. We then tested specific putative indicators
of the visual word form hypothesis using data obtained from cortical stimulation (P1 & P2) and
iEEG (P1, P3 & P4) from these electrode sites.
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Figure 2.1: Location of implanted electrodes. Individual electrode contacts are visible on
axial (A, C, E, G) and coronal (B, D, F) views of the post-implantation MRI (P1: A-B;
P2: C-D; P3: E-F; P4: G). The VT depth electrodes were placed at the anterior end of the mid-
fusiform sulcus in P1-P3 (yellow arrow), and P4 was implanted with a left temporal subdural grid
crossing the lmFG. Red arrowheads (A-F) and red filled circles (G) indicate the word-selective
contacts identified in the category localizer, which were used in subsequent electrophysiologi-
cal and/or stimulation experiments. Talairach coordinates corresponding to the word-selective
contacts were located in post-operative MRI structural images, and were all identified in the left
fusiform gyrus, BA 37 (P1 electrodes: -31, -36, -13; -35, -37, -13; -39, -38, -12; P2 electrodes:
-30, -46, -11; -34, -46, -12; P3 electrode: -31, -35, -14; P4 electrodes: -38, -51, -21 ; -41, -50,
-22; -41, -54, -20).
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Figure 2.2: Verification of orthographic selectivity at lmFG electrode site. a) Example of
averaged event related potential (ERP) across lmFG electrodes in one of the participants (P1) for
three different stimulus categories (bodies, words and non-objects). The colored areas indicate
standard errors. b) Averaged event related potential (ERP) across all lmFG electrodes and across
all of the participants for three different stimulus categories (bodies, words and non-objects). The
colored areas indicate standard errors. c) Time course of word categorical sensitivity in lmFG
electrodes measured by sensitivity index d′ (mean d′ plotted against the beginning of the 100 ms
sliding window), averaged across three participants. The MTPA classifier uses time-windowed
single-trial potential signal from the electrodes from each subject (window length = 100 ms) with
each time point in the window from each electrode as multivariate input features (see Methods
for details). Across-participant standard errors are shaded grey. See Supplemental Figure 2-5 for
single electrode word categorical sensitivity.

2.3.2 Disrupting lmFG Activity Impairs Both Lexical and Sublexical Or-
thographic Processing

One indicator of whether the lmFG functions as a specialized visual word form system is whether
disrupting its activity using electrical stimulation impairs the normal perception of both printed
words and sublexical orthographic components (Hamamé et al., 2013; Nobre et al., 1994), but not
other kinds of visual stimuli. As part of pre-surgical language mapping, P1 and P2 underwent
an electrical stimulation session where they named two kinds of orthographic stimuli (words
[P1 & P2] and letters [P1]), as well non-orthographic objects (faces [P1] and pictures [P2]).
We hypothesized that high stimulation (6-10 mA) to the lmFG electrodes would cause greater
disruption to reading orthographic stimuli than low stimulation (1-5 mA) due to the observed
category-specificity of the iEEG response, but no disruption would be seen for stimulation during
object (face or picture) naming. Indeed, P1 and P2 were significantly slower at reading words
at high stimulation than low stimulation (Figure 2.3a,2.3b; P1: Mean RTlow stim = 967ms, Mean
RThigh stim = 1860 ms, t(18) = 2.42, Cohen’s d = 1.14, p = 0.026; P2: Mean RTlow stim =
1586ms, Mean RThigh stim = 8700ms, t(7) = 11.28, Cohen’s d = 5.15, p < .001 ). P1 also
misidentified 5% of words (naming ’number’ as ’nature’) under high stimulation on the lmFG
electrodes. P2 did not misidentify any words, but was generally unable to name words until the
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Figure 2.3: The effect of stimulation on naming times in lmFG and pre and post-surgery
neuropsychological naming task performance. a) The average naming reaction time for
words, letters, and faces under low stimulation (1-5 mA) and high stimulation (6-10 mA) to
lmFG electrodes in P1. Error bars correspond to standard error, * p < 0.05. b) The average nam-
ing reaction time for words and pictures under low stimulation (1-5 mA) and high stimulation
(6-10 mA) to lmFG electrodes in P2. Error bars correspond to standard error, *** p < 0.001. c)
Word length effect pre- and post-surgery in P1. d) Average percent change in reaction time in
the Mixed Naming Task Pre vs. Post-surgery in P1, *** p < 0.001.

stimulation had ceased. Her self-report suggested an orthographic disruption rather than speech
arrest. Specifically, for the word ’illegal’ she reported thinking two different words at the same
time, and trying to combine them. For the word ’message’, she reported thinking that there was
an ’n’ in the word (see SI Video 2). P1 was also asked to name single letters during stimulation
in lmFG electrodes. With limited letter trials during stimulation (two low stimulation and five
high stimulation), there was no significant difference in reaction time in letter naming between
high and low stimulation. However, P1 responded incorrectly to two letter stimuli, initially
responding ’A’ for ’X’, and responding ’F’ and then ’H’ to the visual stimulus ’C’, both of which
he had previously named accurately during the stimulation session (see SI Video 1). Importantly,
naming times for non-orthographic stimuli were not significantly affected by stimulation in lmFG
electrodes (P1, faces: Mean RTlow stim = 1211 ms, Mean RThigh stim = 1246 ms, t(12) = 0.11,
Cohen’s d = 0.05, p = 0.92; P2, pictures: Mean RTlow stim = 1350 ms, Mean RThigh stim = 1490
ms, t(10) = 0.18, Cohen’s d = 0.13, p = 0.86). These results are consistent with previous
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reports of selective impairments due to stimulation in the lmFG for reading orthographic stimuli
(Mani et al., 2008). Notably, the category specific perceptual alteration seen in P1 and P2 shows
similar feature-level distortions of identity as has been reported faces when stimulating right
mFG (Parvizi et al., 2012). These stimulation results indicate that disruption of lmFG function
impairs both the skilled identification of visual words and sublexical components of word forms
(i.e., letters), supportive of the visual word form hypothesis.
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Figure 2.4: Dynamics of sensitivity to sublexical orthographic statistics (bigram frequency)
in the lmFG. Classification accuracy timecourse for comparison between low bigram frequency
real words (low BG) vs. high bigram frequency real words (high BG) in lmFG electrodes for P1
and P4 respectively, plotted against the beginning of the 100 ms sliding window. The classifier
uses time-windowed single-trial potential signal from the electrodes from each subject (window
length = 100 ms) with each time point in the window from each electrode as multivariate input
features (See Methods for details). The * corresponds to the peak of the windows in which
p < 0.05 corrected for multiple comparisons. The p = 0.05 significance threshold corresponds
to accuracy = 58.2% (P1), and 59.3% (P4). The horizontal grey line at 50% indicates chance
level.

2.3.3 Electrophysiological Evidence for a Visual Word Form Representa-
tion in the lmFG

We next used techniques from machine learning in iEEG data from P1 and P4 to assess the
sensitivity of lmFG to sublexical, orthographic statistics (bigram frequency) that has been hy-
pothesized as an indicator for a visual word form system (Binder et al., 2006; Vinckier et al.,
2007). To examine the dynamics of orthographic statistic sensitivity, we used a multivariate
temporal pattern analysis (MTPA) classification procedure to test how the lmFG represents as-
pects of orthographic knowledge critical to the word form hypothesis at different stages of the
timecourse.

In order to measure sublexical sensitivity as a test of the word form hypothesis, P1 and P4
performed a covert naming task with high and low bigram frequency words, controlled for lexical
frequency. The MTPA classifier was sensitive to differences between high and low bigram fre-
quency during a relatively early time window in both participants (Figure 2.4; P1: peak accuracy
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= 58.6%, p < 0.05 at 200-330 ms after stimulus onset; P4: peak accuracy = 60.2%, p < 0.05 at
210-310 ms after stimulus onset; all classification analyses were tested using permutation tests to
correct for multiple comparisons). This finding is consistent with early discrimination between
words and pseudowords in Kanji, which differ in sublexical statistical properties (i.e., likelihood
of a particular character preceding another) in the basal temporal cortex (Tanji et al., 2005). It
has been noted that testing the visual word form hypothesis requires examining the represen-
tation in lmFG that results primarily from feed-forward input from earlier parts of the ventral
visual processing stream (Dehaene and Cohen, 2011). Thus, the result that sublexical aspects of
orthographic information began at a relatively early time point in processing is supportive of the
word form hypothesis (Binder et al., 2006; Dehaene and Cohen, 2011; Duncan et al., 2010; Price
and Devlin, 2011; Vinckier et al., 2007).

Figure 2.5: Dynamics of word individuation selectivity in the lmFG. Dynamics of averaged
pair-wise word individuation accuracy for different conditions in lmFG electrodes for P1, P3,
and P4 respectively, plotted against the beginning of the 100 ms sliding window. The classifier
uses time-windowed single-trial potential signal from the electrodes from each subject (window
length = 100 ms) with each time point in the window from each electrode as multivariate input
features (See Methods for details). The time course of the accuracy is averaged across all word-
pairs of the corresponding conditions. The colored areas indicate standard errors. Similar pair:
a pair of words that have the same length and are only different in one letter, e.g. ’lint’ and
’hint’. Different pair: a pair of words that have the same length and are different in all letters,
e.g. ’lint’ and ’dome’. Horizontal grey line indicates chance level (accuracy = 50%). Colored *
corresponds to the peak of the windows in which p < 0.05 corrected for multiple comparisons.
The p = 0.05 significance threshold corresponds to accuracy = 56.5% (P1), 56.0% (P3), and
57.1% (P4).

2.3.4 Temporal Dynamics of Word Individuation in lmFG
To further elucidate the dynamic nature of orthographic representation, we next looked at the
sensitivity of lmFG to different aspects of individual words in P1, P3, and P4. Using words that
varied in their degree of visual similarity (e.g., words that differed by one letter vs. all letters),
we determined at what similarity level an MTPA classifier could discriminate between any two
items. We found that at an early time window after stimulus onset, an MTPA classifier could
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significantly discriminate between words that did not share any letters (e.g., ’lint’ vs. ’dome’;
P1: peak classification accuracy = 59.6%, p < 0.05 from 120-250ms; P3: peak classification
accuracy = 58.3%, p < 0.05 from 180-360ms; P4: peak classification accuracy = 60.3%, p <
0.05 from 100-430ms, all p-values were corrected for multiple time comparisons; Figure 2.5), but
could not discriminate between words that only differed by one letter (e.g., ’lint’ vs. ’hint’; P1:
peak classification accuracy = 52.7%, p > 0.1; P3: peak classification accuracy = 53.7%, p >
0.1; P4: peak classification accuracy = 56.6%, p > 0.05; Figure 2.5). This result demonstrates
an organization governed by an orthographic similarity space at the sublexical level, a finding
consistent with our observation of bigram frequency effects in a relatively early time window.
However, within a later time window, an MTPA classifier could discriminate between any two
words (Figure 2.5). Notably, this includes word pairs with only one letter difference (P1: peak
classification accuracy = 57.1%, p < 0.05 from 360-470 ms; P3: peak classification accuracy =
57.3%, p < 0.05 from 470-640 ms; P4: peak classification accuracy = 59.2%, p < 0.05 from
490-620 ms).

2.4 Discussion
Our findings, which indicate that orthographic representation within the lmFG qualitatively shifts
over time, provide a novel advancement on the debate about the visual word form hypothesis
(Bub et al., 1993; Wernicke, 1977). Specifically, we demonstrated that lmFG meets all of the
proposed criteria for a visual word form system: early activity in lmFG coded for orthographic
information at the sublexical level, disrupting lmFG activity impaired both lexical and sublexical
perception, and early activity reflected an orthographic similarity space. Early activity in lmFG
is sufficient to support a gist-level representation of words that differentiates between words with
different visual statistics (e.g., orthographic bigram frequency).

Notably, the results in the late time window suggest that orthographic representation in lmFG
shifts from gist-level representations to more precise representations sufficient for the individu-
ation of visual words. In this late window, the lmFG became nearly insensitive to orthographic
similarity as shown by similar classification accuracy for word pairs that differed by one letter
compared to word pairs that were completely orthographically different. This kind of unique en-
coding of words is required to permit the individuation of visual words, a necessary step in word
recognition (see Table 2.4 for summary). The time window in which this individuation signal is
seen suggests that interactions with other brain regions transform the orthographic representation
within the lmFG in support of word recognition. Such interactivity could function to integrate
the orthographic, phonological, and semantic knowledge that together uniquely identifies a writ-
ten word (Whaley et al., 2016). Lack of spatiotemporal resolution to detect dynamic changes in
lmFG coding of orthographic stimuli using fMRI may help to explain competing evidence for
and against the visual word form hypothesis in the literature (Dehaene and Cohen, 2011; Price
and Devlin, 2011).

The dynamic shift in the specificity of orthographic representation in the lmFG has a very
similar time course as the coarse-to-fine processing shown in face sensitive regions of the human
fusiform (Ghuman et al., 2014). Considering that only an gist-level representation is available
until approximately 250 ms, and that saccade planning and execution generally occur within
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Table 2.1: Summary of positive (X) results in early and late time windows
Early Late

Word category > Objects X X
Sensitivity to bigram frequency X X
Sensitivity to lexical status X
Orthographic similarity space:
’lint’ vs ’dome’ > ’lint’ vs ’hint’

X

200-250 ms during natural reading (Reichle et al., 1998), the gist-to-individuated word process-
ing dynamic has important implications for neurobiological theories of reading. It suggests that
when visual word form knowledge first makes contact with the language system, it is in the
form of gist-level information that is insufficient to distinguish between visually similar alter-
natives. This is consistent with evidence that readers are vulnerable to making errors in word
individuation during natural reading, but contextual constraints are normally sufficient to avoid
misinterpretations (Levy et al., 2009). In other words, in most cases, accurate individuation is
achieved through continued processing that likely involves mutually constraining orthographic,
phonological, semantic, and contextual information resulting in a more precise individuated word
representation.

Another notable pattern in the gist-to-individuation temporal dynamic is that during the later
time window when individuation is significant (∼ 300 − 500 ms, see Figure 2.5), the power to
detect category-level word selectivity (i.e., words vs. bodies and scrambled images; see Figure
2), which arguably only requires gist-level discrimination, weakens and the ERP response has
waned. This is also consistent with a temporal selectivity pattern described for faces (Ghuman
et al., 2014). One potential explanation for this selectivity and power shift could be that individ-
uation is achieved by relatively few neurons (sparse coding) (Young and Yamane, 1992). Sparse
coding would imply that relatively few word sensitive neurons were active and that the summed
approximate word-related activity in this time period therefore would be weak. However, the
neurons that were active encode for more precise word information, which would explain the
significant word individuation reported here.

The mechanism underlying the representational shift from gist-to-individuation could have
implications for models of reading disorders, like dyslexia, where visual word identification
is impaired (Bruck, 1990). Indeed, the effects of lmFG stimulation, especially slower reading
times, are suggestive of acquired (Behrmann and Shallice, 1995) and developmental reading
pathologies (Bowers and Wolf, 1993), which have been linked to dysfunction of lmFG (Martin
et al., 2016). The extent to which individual word reading may be impaired by excess noise in
the visual word form system, or the inadequate ability to contextually constrain noisy input into
the language system, is for future research to untangle.

In summary, our results provide strong evidence that the lmFG is involved in at least two
temporally distinguishable processing stages: an early stage that allows for category level word
decoding and gist-level representation organized by orthographic similarity and a later stage
supporting precise word individuation. An unanswered question is how the representation in the
lmFG transitions between stages in these local neural populations and how interactions between
areas involved in reading may govern these transitions. Taken together, the current results sug-
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gest a model in which lmFG contributes to multiple levels of orthographic representation, via a
dynamic shift in the computational analysis of different aspects of word information.

2.5 Appendix: Supplement Methods and Results

Patient Medical History

Patient P1 was a 25-year-old right-handed man with medically intractable epilepsy since the
age of 7. The clinical onset of his partial complex, secondary generalizing seizures was char-
acterized by behavioral arrest and inability to speak. His 3-Tesla MRI was negative for any
visible lesions. The patient had undergone two surgeries prior to the current one, first a partial
anterior temporal lobectomy (7 years prior), and then a second surgery to complete the resec-
tion of residual mesial structures (1 year prior). The patient exhibited baseline low average to
moderately impaired skills on IQ measures, but exhibited stable performance after his first and
second surgeries, with the exception of a decline on a verbal memory task after the first surgery.
Following further evaluation that included repeat video-EEG and magnetoencephalography, the
multidisciplinary epilepsy team recommended that the patient undergo intracranial monitoring
via stereo-electroencephalography (SEEG) to attempt to definitively delineate the seizure focus.
Ictal intracranial EEG suggested a seizure focus in the posterior left inferior temporal gyrus. Lan-
guage mapping was performed for surgical planning purposes. The epilepsy board recommended
resection of the presumed seizure onset zone that included portions of the middle, inferior and
fusiform gyri, to which the patient consented, after discussion of the potential risks and benefits
of surgery, including the eventuality of a reading impairment. The patient had a period of seizure
freedom for 10 weeks following surgery, but subsequently has continued to experience seizures.

Patient P2 was a 31-year-old female with a 4-year duration of medically intractable epilepsy,
with seizures occurring several times per week. Seizures began as alteration of awareness, pro-
gressing to generalized convulsions. The patient’s highest level of education is college course-
work, and neuropsychological testing revealed impairment in verbal greater than visual memory,
with an estimate of overall intelligence in the low-average range. A 3T MRI was normal. She
underwent left frontotemporal SEEG, which revealed seizure onset in the left anterior mesial
temporal lobe. She underwent a left anterior temporal lobectomy and has remained seizure free.

Patient P3 was a 41-yar-old-man with a 3-year duration of medically intractable epilepsy,
with seizures occurring several times per week. Seizures began with automatisms and alteration
of awareness, progressing to alterations in speech. The patient’s highest level of education is a
high school degree, and neuropsychological testing revealed deficits in verbal learning and mem-
ory skills, with overall intelligence estimated in the average range. A 3T MRI was normal. He
underwent bilateral frontotemporal SEEG, which predominately revealed a left anterior temporal
neocortical onset zone, with a possible smaller, independent focus in the right frontal operculum.
He underwent a left anterior temporal lobectomy and has remained seizure free.

Patient P4 was a 45-year-old female with an 11-year duration of medically intractable epilepsy,
with seizures occurring several times per month. Seizures began with an aura of anxiety, pro-
gressing to automatisms, alteration of awareness and tongue biting. The patients highest level of
education is a Master of Science, and neuropsychological testing revealed no lateralizing find-
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ings, with an estimate of overall intelligence in the high-average range. A 3T MRI revealed
a lesion in the left inferior temporal gyrus consistent with low-grade glioma. She underwent
intracranial monitoring via implantation of left temporal subdural grids and depth electrodes.
Findings were consistent with peri-lesional seizure onset. She underwent resection of the lesion,
found to be a ganglioglioma, and has remained seizure free.

Neuropsychological Tests
Stimuli

Neuropsychological assessments with P1 were conducted for research purposes before and 1.5-
weeks, 6-weeks, and 3-months post-surgery. Tasks included the word naming test reported by
Behrmann and colleagues (Behrmann and Shallice, 1995) that manipulates word-length (40 of
each three, five, and seven-letter words) with frequency and concreteness matched, and a mixed-
naming test that included 10 of each type of the following stimuli: letters, six-letter words, single
digits, three-digit numbers, famous faces known by the patient, pictures, and single musical notes
and guitar tab chords (due to the patients interest in reading music). A broad array of standard-
ized neuropsychological tests were administered pre- and post-surgery, but we only report the
two most relevant to his reading ability: TOWRE (Sight Word Efficiency and Phonemic De-
coding Efficiency tests (Torgesen et al., 1999)) and CTOPP Phonological Awareness (Elision
and Blending Words (Wagner et al., 1999)), which were administered before, and 6-weeks and
3-months post-surgery (Figure S1).

Design and Procedure

For both the word-length effect task and the mixed naming task, stimuli were presented in the
center of the screen until they were named without a time limit. The patient pressed the spacebar
upon naming the item and all responses were recorded using a digital recorder. A fixation cross
was displayed between each stimulus and the patient had to press the spacebar again to display
the next stimulus. A single tone was played simultaneously as the stimulus was presented, and
precise naming times were later extracted from the digital auditory files using the Audacity pro-
gram (audacity.sourceforge.net). Standard procedures were followed for the TOWRE (Torgesen
et al., 1999) and CTOPP (Wagner et al., 1999).

Post-Resection Neuropsychological Assessment
P1 showed no difference in reading times based on word length pre-surgery (mean reading times
for 3, 5, and 7 letter words were 583 ms, 589 ms, and 582 ms respectively; Figure 3b). At 1.5-
weeks, 6-weeks and 3-months post-surgery, P1 showed a linear increase in reading times as a
function of word length after surgery and lmFG resection (mean latency: 1583 ms), and there
was a consistent letter-by-letter reading pattern in each session, with longer latencies for longer
words (slopes of 277 ms, 317 ms, and 310 ms per letter in each session, see supplement for more
details). A 2 × 3 ANOVA was conducted with session (pre and post- surgery mean latencies)
and word length (3, 5, 7) as repeated measures. There was a significant main effect of session,

25



F (1, 39) = 557.75, η2 = 0.94, p < 0.001, with longer latencies in the post-surgery session, and
a significant main effect of word length, F (2, 78) = 21.47, η2 = 0.36, p < 0.001, with longer
words having greater latencies. Importantly, there was a significant interaction between session
and word length, F (2, 78) = 23.33, η2 = 0.37, p < 0.001, such that the word length effect was
greater post-surgery than pre-surgery.

Significant increases in naming times from pre-surgery to post-surgery (average of all three
post-sessions) were observed for words t(28) = 4.63, d = 1.74, p < 0.001, and letters, t(32) =
3.87, d = 1.35, p < 0.001, in addition to 3-digit numbers, t(35) = 3.49, d = 1.18, p <
0.001 (t-tests assuming unequal variances and df adjusted based on Levene’s test for equality
of variances for all three conditions; Figure 2.3c). The largest magnitude increase in naming
times was observed with words (103%). The finding of slower numeral naming after removal
of the lmFG is consistent with a weaker left-hemisphere ’visual number form area’ that is also
sensitive to letters and words (Shum et al., 2013). Significant changes were not found for any
other categories. The selectivity of P1’s deficits confirms that the resected tissue was an integral
component of a symbolic orthographic processing network that operates at both the sublexical
and lexical levels.
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Figure 2.6: Time course of word categorical sensitivity in each single electrode of P1. Time
course of word categorical sensitivity in each single electrode of P1 measured by sensitivity index
d′(mean d′ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d′ = 0). Electrodes
1-3 were the contact of interest for further analysis in P1.
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Figure 2.7: Time course of word categorical sensitivity in each single electrode of P2. Time
course of word categorical sensitivity in each single electrode of P2 measured by sensitivity index
d′(mean d′ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d′ = 0). Electrodes
3 and 4 were the contact of interest for further analysis in P2 as electrode 1 was non-contiguous
with the other word sensitive electrodes and medial to the fusiform.
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Figure 2.8: Time course of word categorical sensitivity in each single electrode of P3. Time
course of word categorical sensitivity in each single electrode of P2 measured by sensitivity index
d′(mean d′ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d′ = 0). Electrode
3 was the contact of interest for further analysis in P3.
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Figure 2.9: Time course of word categorical sensitivity in each single electrode of P4. Time
course of word categorical sensitivity in each single electrode of P2 measured by sensitivity index
d′(mean d′ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d′ = 0). A high-
density electrode strip was used in P4. This strip contained 2 rows of 14 electrode contacts and
thus the electrodes of interest, 8, 9, and 22, were next to each other. Other electrodes were either
substantially medial to the fusiform (1-5, 15-19) or the classification accuracy was a result of
stronger activity for the non-word control stimuli (7,10-12, 20, 21, 23-25).
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Figure 2.10: P1 performance on neuropsychological tests. P1 performance on neuropsycho-
logical tests. Visual Word Recognition (mean number of correctly named words in TOWRE
Sight Word and Phonemic Decoding Efficiency; pre-surgery: Form A; post-surgery: Form B)
and Phonological Awareness (mean correct trials in CTOPP Elision and Blending Words) were
measured pre- and post-surgery (6-weeks and 3-months). P1’s post-surgery performance on a
standardized test of visual word recognition (Torgesen et al., 1999) decreased to a greater ex-
tent compared to a test of phonological awareness, which remained stable after surgery (Wagner
et al., 1999)(see Figure 2.11). This suggests that P1’s resection disrupted orthographic, but not
phonological processes.
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Figure 2.11: P1 resection location. .The former location of the same depth electrode (red line)
is indicated on co-registered views of the postoperative MRI (A, B), in relation to the cortical
regions that were resected (blue region).
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Chapter 3

Temporal dynamics in human fusiform
underlying face individuation

In addition to reading visual word forms, the other important category of stimuli that requires
extensive amount of recognition processing in daily life is the faces. Humans’ ability to rapidly
and accurately detect, identify, and classify faces under variable conditions derives from a net-
work of brain regions highly tuned to face information. The fusiform face area (FFA) is thought
to be a computational hub for face processing, however temporal dynamics of face information
processing in FFA remains unclear. In this chapter we use multivariate pattern classification to
decode the temporal dynamics of expression-invariant face information processing using elec-
trodes placed directly upon FFA in humans. Early FFA activity (50-75 ms) contained informa-
tion regarding whether participants were viewing a face. Activity between 200-500 ms contained
expression-invariant information about which of 70 faces participants were viewing along with
the individual differences in facial features and their configurations. Long-lasting (500+ ms)
broadband gamma frequency activity predicted task performance. These results elucidate the
dynamic computational role FFA plays in multiple face processing stages and indicate what in-
formation is used in performing these visual analyses.

3.1 Introduction

Face perception relies on a distributed network of interconnected and interactive regions that are
strongly tuned to face information (Haxby et al., 2000). One of the most face selective regions
in the brain is located in fusiform gyrus (the fusiform face area, FFA). Damage to FFA results
in profound impairments in face recognition (Barton et al., 2002) and the FFA is thought to be a
processing hub for face perception (Nestor et al., 2011). Recent studies have demonstrated that
the FFA activity contains information about individual faces invariant across facial expression
(Nestor et al., 2011) and gaze/viewpoint (Anzellotti et al., 2013) and have started to describe
some of the organizing principles of individual-level face representations (Cowen et al., 2014;
Davidesco et al., 2013; Goesaert and de Beeck, 2013). However, due to the use of low temporal
resolution analyses or imaging modalities, little is known regarding the relative timing of when
FFA becomes sensitive to different aspects of face-related information. Specifically, face pro-
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cessing is thought to occur through a set of partially distinct stages (Bruce and Young, 1986)
and it remains unclear in which of these stages FFA participates and, more generally, when they
occur in the brain.

Evidence from FFA in humans and the putative analog to FFA in non-human primates has
demonstrated that FFA shows strong selectivity for faces versus non-face objects (Allison et al.,
1999; Kanwisher et al., 1997; McCarthy et al., 1997; Perrett et al., 1982; Sugase et al., 1999;
Tsao et al., 2006). There is disagreement about when exactly the FFA, and the human brain in
general, first responds selectively to faces (Itier and Taylor, 2004; Pitcher et al., 2012; Rossion
and Caharel, 2011). In particular, it is unknown when FFA becomes face selective relative to
areas in lateral occipital cortex (Itier and Taylor, 2004; Pitcher et al., 2009, 2012), relative to
single neurons in the cortex of non-human primates (Baylis et al., 1985; Perrett et al., 1982;
Sugase et al., 1999; Tsao et al., 2006), and relative to rapid behavioral face detection (Crouzet
et al., 2010). A recent study using intracranial electrocorticography (ECoG) showed that fusiform
becomes sensitive to the category of a visual object around 100 ms after stimulus onset (Liu et al.,
2009). However, the brain network highly tuned to face information (Haxby et al., 2000) may
allow faces to be processed more rapidly than other categories of objects. Therefore it remains
unclear how early FFA becomes face selective and whether it contributes to face detection.

Regarding face individuation, ensembles of single neurons responsive to individual faces
have been identified in face sensitive cortical regions of the non-human primate brain (Freiwald
et al., 2009; Leopold et al., 2006; Sugase et al., 1999; Tsao et al., 2006). Studies with humans also
show that FFA encodes information about individual faces (Davidesco et al., 2013; Nestor et al.,
2011). However, little is known regarding the temporal dynamics of individual face processing
in FFA, particularly relative to other processing stages.

Furthermore, it remains unknown whether FFA is sensitive to the key facial features used for
face recognition, particularly the eyes, mouth, and configural face information. Single neurons
of middle face patch in the non-human primate (a putative homolog of FFA) show sensitivity to
external facial features (face aspect ratio, direction, hair length, etc.) and properties of the eyes
(Freiwald et al., 2009). A recent ECoG study showed that FFA is sensitive to global and external
features of the face and head (face area, hair area, etc.) (Davidesco et al., 2013). Behavioral
studies have shown that the eyes are the most important facial feature used for face recognition,
followed by the mouth (Haig, 1986) and that configural and holistic processing of faces is cor-
related with face recognition ability (DeGutis et al., 2013). It remains unknown whether FFA
is sensitive to individual differences in these featural and configural properties critical to face
recognition, particularly when changeable aspects of the face (e.g. expression) are taken into
account.

Finally, how FFA contributes to task-related stages of face processing is undetermined. Specif-
ically, previous studies have described a late, long-lasting (lasting many hundreds of millisec-
onds) face specific broadband gamma frequency (40+ Hz) activity (Davidesco et al., 2013; Engell
and McCarthy, 2010; Kawasaki et al., 2012). Broadband gamma activity is closely related to the
underlying population firing rates (Manning et al., 2009; Ray and Maunsell, 2011), both of which
are face selective for many hundreds of milliseconds after seeing a face (Engell and McCarthy,
2010; Kawasaki et al., 2012; Tsao et al., 2006), extending well beyond the timeframe of face
individuation seen in non-human primates (Tsao et al., 2006). It is unknown what role this long-
lasting activity plays in face processing. Here we examine whether this long-lasting gamma band
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activity reflects the maintenance of face information in support of perceptual decision-making
and working memory processes (Freedman et al., 2003; Shadlen and Newsome, 2001).

We used intracranial ECoG in humans and multivariate pattern classification methods to doc-
ument the temporal dynamics of face information processing in the FFA from the moment a
face is first viewed through response-related processing. Multivariate pattern classification was
used to decode the contents and timecourse of information processing in FFA in order to eluci-
date the dynamics and computational role of this area in face perception. Electrophysiological
activity (specifically the timecourse of the single-trial voltage potentials and broadband gamma
frequency power) from the epileptically unaffected FFA was assessed while each of four patients
(P1-4) participated in two face processing experiments (see Figure 3.1 for electrode locations;
all face sensitive electrodes appear to be in mid-fusiform, lateral to the mid-fusiform sulcus,
see Weiner et al. (2014) for a detailed description regarding the face sensitive regions of the
fusiform). Experiment 1 was adopted to examine the temporal dynamics of face sensitivity and
specificity in FFA (e.g. face detection) and experiment 2 was employed to examine the temporal
dynamics of face individuation and categorization invariant with respect to facial expression. The
results of these experiments demonstrate that within 75 ms of presentation, FFA activity encodes
the presence of a face (face detection), between 200-450 ms FFA activity encodes which face it
is (face individuation), and late (500+ ms) broadband gamma FFA activity encodes task-related
information about faces. These results demonstrate the dynamic contribution of FFA to multiple,
temporally distinct face processing stages.

3.2 Methods

3.2.1 Subjects
The experimental protocols were approved by the Institutional Review Board of the University
of Pittsburgh. Written informed consent was obtained from all participants.

Four human subjects underwent surgical placement of subdural electrode grids and ventral
temporal electrode strips as standard of care for surgical epilepsy localization. P1 was male, age
26, and had seizure onset in the hippocampus. P2 was female, age 30, and had seizure onset in
the frontal lobe. P3 was female, age 30, and had seizure onset in premotor cortex. P4 was male,
age 65, and had seizure onset in the hippocampus. None of the participants showed evidence of
epileptic activity on the FG electrode used in this study. The order of the participants (P1-P4) is
chronological based on their recording dates.

3.2.2 Stimuli
In experiment 1, 30 images of faces (50% male), 30 images of bodies (50% male), 30 images of
shoes (50% men’s shoes), 30 images of hammers, 30 images of houses, and 30 images of phase
scrambled faces were used. Phase scrambled images were created in Matlab by taking the 2-
dimensional spatial Fourier spectrum of the image, extracting the phase, adding random phases,
recombining the phase and amplitude, and taking the inverse 2-dimensional spatial Fourier spec-
trum. Each image was presented in pseudorandom order and repeated once in each session.
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Faces in experiment 2 were taken from the Karolinska Directed Emotional Faces stimulus
set (Lundqvist et al., 1998). Frontal views and 5 different facial expressions (happy, sad, angry,
fearful, and neutral) from all 70 faces (50% male) in the database were used for a total of 350
face images, each presented once in random order during a session. Due to time and clinical
considerations, P3 was shown 40 faces (50% male) from the database for a total of 200 faces
each presented once in random order during a session.

All stimuli were presented on an LCD computer screen placed approximately 2 meters from
participants’ heads.

3.2.3 Experimental paradigms

In experiment 1, each image was presented for 900 ms with 900 ms inter-trial interval during
which a fixation cross was presented at the center of the screen (∼ 10◦ × 10◦ of visual angle).
At random, 20% of the time an image would be repeated. Participants were instructed to press
a button on a button box when an image was repeated (1-back). Only the first presentations of
repeated images were used in the analysis.

In experiment 2, each face was presented for 1500 ms with 500 ms inter-trial interval during
which a fixation cross was presented at the center of the screen. Subjects were instructed to
report whether the face was male or female via button press on a button box. Each individual
participated in two sessions of experiment 2 on different days.

Paradigms were programmed in MATLABTM using Psychtoolbox and custom written code.

3.2.4 Data preprocessing

Data were collected at 2000 Hz. They were subsequently bandpass filtered offline from 1-115
Hz using a second order Butterworth filter to remove slow and linear drift, the 120 Hz harmonic
of the line noise, and high frequency noise. Data were also notch filtered from 55-65 Hz using
a second order Butterworth filter to remove line noise. To reduce potential artifacts in the data,
trials with maximum amplitude 5 standard deviations above the mean across the rest of the trials
were eliminated. In addition, trials with a change of more than 25 µV between consecutive
sampling points were eliminated. These criteria resulted in the elimination of less than 6% of
trials in each subject.

3.2.5 Electrode localization

Coregistration of iEEG electrodes used the method of Hermes et al. (2010). High resolution
CT scans of patients with implanted electrodes are combined with anatomical MRI scans before
neurosurgery and electrode implantation. The Hermes method accounts for shifts in electrode
location due to the deformation of the cortex by utilizing reconstructions of the cortical surface
with FreeSurferTM software and co-registering these reconstructions with a high-resolution post-
operative CT scan. It should be noted that electrodes on the ventral surface typically suffer
minimal shift as compared to those located near the craniotomy. A cortical surface reconstruction
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was not possible in P4 due to the lack of a high-resolution MRI. Instead the high-resolution post-
operative CT scan was transformed into MNI space using a low resolution T1 MRI and the
electrode locations manually determined.

3.2.6 Electrode selection
Electrodes were chosen based on anatomical and functional considerations. Electrodes of in-
terest were restricted to those that were located on the fusiform gyrus. In addition, electrodes
were selected such that their peak 6-way face classification d′ score (see below for how this was
calculated) exceeded 1.5 and the ERP for faces was larger than the ERP for other the other object
categories. To avoid concerns about circularity with regards to electrode selection, only the data
from the training set (odd trials, see below) for the classification results reported were used for
electrode selection. Thus, all statistical values and classification accuracies reported for 6-way
face classification are derived from data independent of those used for electrode selection and
classifier training.

This procedure yielded 1 electrode per participant, except for P1 where it yielded 3 nearby
electrodes (see Supplementary Fig. 1). In the case of P1, we averaged the signal from the three
face sensitive electrodes (all three electrodes are shown in Figure 3.1). For P2 the third electrode
displayed a peak d′ greater than 1.5, however, in examining the ERP it was evident that face
classification accuracy in the third electrode on the strip was due to lesser face activity relative
to the other conditions (see Supplementary Fig. 4). Face classification on the fourth electrode
for P2 was also above threshold and the activity in this electrode followed the pattern from other
subjects (e.g. greater face activity relative to other conditions), thus we chose this electrode. It
should be noted that even if the anatomical restriction was lifted and all electrodes were used, no
additional electrodes would have been chosen in any participant.

In addition to the 4 participants included in the study, 6 other individuals participated in the
experimental paradigm during the study period. None of these individuals had any electrodes
that met the selection criteria and thus were not included in the analysis. In 2 of these individ-
uals, there were no electrodes on ventral temporal cortex. The electrode locations from the 4
excluded participants with ventral temporal cortex electrodes are shown in Supplementary Fig.
2. In 1 of these individuals, data quality was poor (excessive noise) for unknown reasons (EP2,
none of the electrodes showed any visual response and were anterior to FFA). In 3 of these in-
dividuals, data quality was reasonable and there were electrodes on ventral temporal cortex, yet
none met the selection criteria (see Supplementary Fig. 3). In one of the non-included partic-
ipants one electrode exceeded the d′ threshold (see Supplementary Fig. 3), but this was due to
lesser face activity relative to the other conditions (see Supplementary Fig. 4). Considering the
ventral electrode strips are placed without functional or anatomical/visual guidance, a yield of
4/7 individuals with ventral strip electrodes having electrodes placed over highly face selective
regions is a substantial yield.

3.2.7 Experiment 1 classification analysis and statistics
For classification, single-trial potentials were first split into odd trials used as the training set and
even trials used as the test set. The Euclidean distance between the time windowed data from
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each of the test and each of the training trials was then calculated. The single-trial potentials
from the test trial were assigned to the stimulus condition with k-nearest neighbors classifier.
Alternatively, using the correlation (instead of Euclidean distance) between the test and train-
ing sets and the results did not yield substantively different results. The selection of k was
determined by finding the greatest d′ for k-nearest neighbors classification based on random sub-
sampling validation with 50 repeats using only the training set. True positive and false alarm rates
were calculated across all of the test trials. d′ was calculated as d′ = Ψ−1(true positive rate) −
Ψ−1(false alarm rate) where Ψ−1(x) is the inverse of the Gaussian cumulative distribution func-
tion.

Because training and test data were separated (rather than cross validation) and not reversed
(e.g. the training and test sets were not switched), there is no statistical dependence between
the training and test sets and classification accuracy follows the binomial distribution. The null
hypothesis for statistical testing was that the true positive rate was equal to the false positive rate
under the binomial distribution (this justifies the use of a one tailed t-test).

3.2.8 Experiment 2 classification analysis and statistics
To determine if information regarding individual faces was present in the timecourse of the
single-trial potentials, we used across sessions binary nearest neighbors classification (e.g. k =
1). Specifically, the neural responses for the five presentations (each with a different facial ex-
pression) of two faces in the second session were used as the training set. The test set was the
average signal across the five presentations of one of those faces in the first session. The Eu-
clidean distance between the single-trial potentials from the test face and each training face in a
100 ms window was calculated. The test neural activity was classified as belonging to the face
that corresponded to the neural activity in the training set that was closest to the neural activity
from the test trial. This procedure was then repeated for all possible pairs of faces and all time
windows slid with 5 ms steps between 0-500 ms after the presentation of the face. It should
be noted that single trial classification was also examined and while classification accuracy was
lower, it was still as statistically significant in each participant as when using the average activity
across expressions for the 70 face identities (statistical significance was higher due to the use of
350 individual trials instead of 70 averaged trials, which increased statistical power, 40 faces and
200 trials in P3).

In addition, cross-expression classification was also calculated using the same classifier and
time windows as above. In this case the neural response for the eight presentations of four of
the expressions (4 expressions × 2 sessions) of two faces were used as the training set. The
test set was the average signal across the two presentations of the remaining expressions for one
of those faces in the first session. This procedure was repeated for each pair of faces and with
each expression left out as the test set (e.g. leave-one-expression-out cross-validation). Note that
using cross-validation, instead of holdout validation as in the cross-session classification, and
analyzing the 5 expressions separately, lowered the statistical threshold for this analysis.

Permutation testing was used for statistical testing of classification accuracy in experiment 2.
Specifically, the labels of the faces in each session were randomly permuted. The same procedure
as above was performed on these permuted trials. The maximum classification accuracy across
the 0-500 ms time window was then extracted. Using the maximum classification accuracy across
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the time window implies a global null hypothesis over the entire window, which corrects for
multiple time comparisons (Maris and Oostenveld, 2007). The labels were randomly permuted
again and this procedure was repeated 500 times. Using this procedure, p = 0.05, corrected for
multiple comparisons, corresponded to a classification accuracy of approximately 57% (±0.2%
across the 4 individuals).

Classification of the 5 facial expressions (Supplementary Fig. 5) was done using k-nearest
neighbors as in experiment 1.

Classification accuracy when the two training faces were the same gender or when they were
different gender was also compared in Supplementary Fig. 6. This was done because partici-
pants’ task was gender classification and we wanted to address the potential concern that neural
classification for individual faces could have been driven by task demands.

3.2.9 Facial feature analysis

Facial features were determined based on anatomical landmarks found by IntraFace (Xiong and
De la Torre, 2013). This toolbox marks 49 points on the face along the eyebrows, down the
bridge of the nose, along the base of the nose, and outlining the eyes and mouth. Based on
these landmarks we calculated the first 12 facial feature dimensions listed in Figure 3.3B. Red,
green, and blue intensities were calculated by taking the average intensity for these colors in
two 20 × 20 pixel squares, one on each cheek, the bottom of which was defined to align with
the bottom of the nose and the middle to horizontally align with the middle of the eye. High,
middle and low spatial frequencies were determined by calculating the mean power at different
levels of a Laplacian pyramid (Burt and Adelson, 1983). The image was iteratively low-pass
filtered and subtracted from the original image to generate a 6 level Laplacian pyramid (from
level 0 to level 5), similar to 2-dimensional wavelet decomposition. The level with smaller index
contained higher frequency components. By adding up in pairs, e.g. level 0&1, level 2&3, level
4&5, we get 3 images that corresponding to the high, mid and low frequency components of the
original image (note that if we add all 6 levels together we will get the original image). We then
performed a 2-dimensional Fast Fourier Transform for these three images to calculate the mean
power for each of them.

The values for these 18 feature dimensions were averaged across the five facial expressions
for each of the 70 faces (40 for P3). Finally, the values for each variable were normalized by
subtract the mean and dividing by the standard deviation across the 70 faces so that none would
unduly influence the canonical correlation analysis.

3.2.10 Canonical correlation analysis

Canonical correlation analysis (CCA) finds the maximally correlated linear combinations of two
multidimensional variables (Hotelling, 1936), in this case variable one was the 18 facial feature
dimensions and variable two was the single-trial potentials between 200 and 500 ms after stimu-
lus onset. Briefly, the first canonical coefficients of the face and neural variables (x1, x2, , xm and
y1, y2, , yn) respectively are found by maximizing the correlation between the canonical variables
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(W1 and V1) defined by:

maximize
W1∈Rm,V1∈Rn

(W T
1 x)TV T

1 y (3.1)

subject to ‖W1‖ = ‖V1‖ = 1 (3.2)

This procedure is then repeated for W2 and V2 to Wp and Vp where p = min(m,n) and
all W s are uncorrelated to one another and all V s are uncorrelated to find subsequent canonical
coefficients and functions. Significance of Wilks’ λ (the multivariate generalization of the inverse
of R2) was based on the chi-squared statistic.

In the presence of noise, CCA is prone to overfit the data unless the number of samples
substantially exceeds the dimensionality of the data. To reduce the dimensionality of the neural
data, we performed a principal components analysis (PCA) on the faces x timepoints data (70
faces × 300 time points) and used the first N eigenvalues as the neural dimensions in the CCA.
The number of eigenvalues (N) was chosen such that they accounted for 90% of the variance in
the neural data. This yielded 9 eigenvalues for P1, 8 for P2, 9 for P3, and 8 for P4.

3.2.11 Gamma band analysis and statistics
Time-frequency power spectra were calculated using a Fourier transform with a Hanning window
taper calculated with a 200 ms sliding window and 2 Hz frequency step for each trial. The peak
frequency in the gamma range for all trials in experiment 1 collapsed across conditions and
subjects was found to be 65 Hz and a window of ± 25 Hz around this peak was used as the
frequency window of interest. Trials in experiment 2 were ranked by reaction time (RT) and
split into fastest, middle, and slowest thirds according to RT. In addition, Spearman’s ρ between
RT and gamma power across trials was calculated. Spearman’s ρ was used to minimize the
potential for outliers skewing the correlation, though it should be noted that Pearsons correlation
and Spearman’s ρ did not substantially differ in any participants and both were significant in all
runs and participants.

3.3 Results

3.3.1 Timecourse and magnitude of face sensitivity in FFA
To assess the face sensitivity and specificity of FFA (experiment 1), we used a k-nearest neigh-
bors algorithm to decode the neural activity while participants viewed 6 different categories of
visual images: faces, human bodies, houses, hammers, shoes, and phase-scrambled faces (30 im-
ages per category, each repeated once, presented in random order; faces, bodies, and shoes were
balanced for gender; see Figure 3.2A for examples). Participants pressed a button if an image
was repeated in consecutive trials (20% of trials, repeated images were excluded from analysis).
Each individual participated in two sessions of experiment 1; one session from P4 was not used
due to evidence of an ictal event during the recording (a total of 7 sessions across 4 participants).
We classified single trial voltage potentials between 100-250 ms after stimulus presentation into
one of the six categories described above and examined the decoding accuracy using the signal
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Figure 3.1: Locations of electrodes used in the study and their neighboring electrodes on
subjects’ native pial surface reconstruction. Electrodes in red denote the ones used in the
experiment and electrodes in white denote the other contacts on the same electrode strip. A high
resolution MRI was not available for pial surface reconstruction of P4 and thus the electrode is
visualized on a low resolution T1 MRI slice. MNI coordinates of electrodes are as follows: P1
- (35, -59, -22), (33, -53, -22), (42, -56, -26); P2 - (40, -57, -23); P3 - (-33, -44, -31); P4 - (-38,
-36, -30). All electrodes are over the fusiform gyrus.

recorded from face sensitive electrodes (see methods for details on electrode selection and Figure
3.1 for locations). This time range was selected for the initial analysis because it includes most
of the previously described face sensitive electrophysiological responses (Allison et al., 1999;
Engell and McCarthy, 2010; Itier and Taylor, 2004)(also see Figure 3.2A & B). We were able
to identify the category of a stimulus presented on a given trial with 54 - 93% accuracy across
the 7 sessions if the stimulus was a face (6-way classification, chance = 16.7%). Neural activ-
ity for non-face images was misclassified as a face in 0-8% across the sessions (P1 = 93%/0%,
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Figure 3.2: Dynamics of face selectivity in human FFA. (A) Example of stimuli from each
condition and event related potential (ERP) waveforms from session 1 of P1. Across trial means
are plotted and standard errors are shaded in light colors. (B) Average ERP waveforms across
the four participants. In each participant a positive going face sensitive peak between 100-140
ms and a negative going face sensitive peak between 160-200 ms could be identified.(C) Face
classification accuracy over time as measured by d′ (n = 4, mean d′ plotted against the beginning
of the 100 ms sliding window), which takes into account both the true and false positive rate.
Classification is based on single trial voltage potentials. See Supplementary Fig. 1 for individual
subject d′ time courses for these electrodes and neighboring electrodes. Standard deviations are
shaded grey. (D) Face classification accuracy in the first 100 ms after stimulus onset with 25 ms
windows. Classification is based on single trial voltage potentials. d′ scores in panels B and C
differ due to the different window sizes used for the respective analyses. Standard deviations are
shaded grey.
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82%/1%; P2= 88%/8%, 54%/8%; P3= 73%/6%, 77%/1%; P4= 67%/8%; true positive rate/false
positive rate; chance = 16.7%/16.7%; p < 10−5 in each of the eight sessions). Little consistency
in classification accuracy was seen across sessions and participants for the five other object cat-
egories (Supplementary Table 1). In addition, in all participants electrodes 1-2 cm away from
the electrodes of interest showed little face-sensitive (peak sensitivity index d′ < 1, Figure 3.1
and Supplementary Fig. 1), suggesting that face sensitivity was constrained within 1-2 cm. The
high sensitivity and specificity for face classification reported here demonstrates that human FFA
regions are strongly face selective (Baylis et al., 1985; Tsao et al., 2006).

Figure 3.2C shows the temporal dynamics of single trial face classification averaged across
participants in FFA using the sensitivity index (d′), which takes into account both the true and
false positive rate for face detection. Face sensitivity was seen in FFA between approximately
50-350 ms after stimulus onset. To determine the onset of face selective activity in FFA, we
examined the d′ for face classification from 0-100 ms in 25 ms moving windows shifted by 12.5
ms. All windows between 50-100ms showed significant face sensitivity (Figure 3.2D, 50-75 ms:
mean d′ = 0.200, t(3) = 3.13, p = 0.0260; 62.5-87.5 ms: mean d′ = 0.368, t(3) = 3.72,
p = 0.0169; 75-100 ms: mean d′ = 0.551, t(3) = 5.91, p = 0.0048), earlier time windows did
not reach statistical significance. None of the other five categories, including phase scrambled
faces, showed significant classification in these time windows. This suggests that this rapid
face processing was not driven by spatial frequency information (Rossion and Caharel, 2011) as
phase scrambled faces contain the same spatial frequency content as intact faces. The 50-75 ms
time window is earlier than human fusiform becomes sensitive to other visual object categories
(Liu et al., 2009). However, this time window is consistent with the reports of the earliest face
sensitivity in single cortical neurons in non-human primates (Baylis et al., 1985; Perrett et al.,
1982; Sugase et al., 1999; Tsao et al., 2006) and rapid behavioral face detection (Crouzet et al.,
2010) suggesting that FFA is involved in face detection.

3.3.2 Timecourse of individual-level face processing in FFA
In each of two sessions recorded on separate days, P1-P4 were shown 70 different faces, each re-
peated 5 times with different facial expressions each time (happy, sad, angry, fearful, and neutral
expressions) for a total of 350 unique images. The participants’ task was to report the gender of
each face they saw (50% male, 50% female faces). We used a nearest neighbor classification al-
gorithm to determine how accurately we could predict which face (given two drawn from the set
of faces) a participant was viewing at a particular moment in session 1 based on a model trained
on the timecourse of the single-trial voltage potentials from session 2. Session 2 was used as
the training set and session 1 as the test set for this analysis to test classification on previously
unseen faces. In each of the four participants in experiment 2, above chance intra-session clas-
sification of the neural response to individual faces was observed (Figure 3.3A, p < 0.05 using
a permutation test, corrected for multiple time comparisons). Classification accuracy peaked in
P1 at 65% and was significant in the 210-390 ms time window, in P2 at 59% and was significant
in the 280-460 ms time window, in P3 at 63% and was significant in the 270-490 ms time win-
dow, and in P4 at 60% and was significant in the 350-540 ms time window (chance = 50%; 57%
corresponds to p = 0.05 corrected for multiple comparisons). In addition, we examined whether
individual-level face classification was invariant over expression by training the classifier on four
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Figure 3.3: Face individuation in human FFA. (A) Time course of individual level face classi-
fication accuracy based on single trial voltage potentials in each participant. This shows, given
two faces, how accurately we could predict which one the participant was viewing based on the
neural data, plotted against the beginning of the 100 ms sliding window. Red line at 57% in-
dicates p = 0.05, corrected for multiple time comparisons based on the permutation test, grey
line indicates chance accuracy (50%). (B) Across-expression, individual level face classification
accuracy. This shows, given two faces with a particular expression, how accurately we could
predict which one the participant was viewing based on the neural data from the other four ex-
pressions used in the study. Red line at 55.5% indicates p = 0.05, corrected for multiple time
comparisons based on the permutation test, grey line indicates chance accuracy (50%).

of the five expressions and testing the other, then repeating this with different expressions in
the training and test set until each expression (leave-one-expression-out cross-validation). In
each participant, above chance across-expression classification of the neural response to individ-
ual faces was observed (Figure 3.3B, p < 0.05 using a permutation test, corrected for multiple
time comparisons). This across-expression classification had a similar timecourse as the across-
session classification in Figure 3.3A suggesting that the coding for individual faces in FFA is not
driven by low-level differences between images and is at least partially invariant over expression.
Indeed, classification of expression failed to reach statistical significance at any point between 0
and 500 ms (Supplementary Fig. 5). In addition, classification accuracy across face genders was
similar to classification within face gender (Supplementary Fig. 6), suggesting that classification
of individual faces in FFA was not driven by task demands. Also, training with the data from
session 1 and classifying the data from session 2 changed the peak classification accuracy by less
than 0.5%, the peak time by less than 15 ms, and the significant time window by less than 25
ms. Furthermore, individual faces could not be classified above chance in the adjacent or nearby
electrodes (Supplementary Fig. 7). These results suggest that the 200-500 ms time window is
critical for expression-invariant face individuation in FFA.
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Figure 3.4: Facial feature sensitivity of FFA electrodes. Multivariate canonical correlation
coefficients between the single trial voltage potentials and facial features for the individual faces.
Canonical coefficients have a similar interpretation as beta coefficients in multiple regression.
Coefficients were normalized by first taking the absolute value and then dividing by the sum of
all coefficients across the 18 facial feature variables.

3.3.3 Facial information used in service of face individuation

To investigate what specific face information FFA encodes in the service of face individuation we
mapped anatomical landmarks on each of the faces presented in experiment 2 and projected each
face into an 18-dimensional ”feature space” that applied to all faces (e.g. eye area, nose length,
mouth width, skin tone, etc.; see Figure 3.4 for a full list of the features used) (Xiong and De la
Torre, 2013). The multivariate canonical correlation between these facial feature dimensions and
the voltage potentials between 200-500 ms post-stimulus onset was then calculated to evaluate
the shared relationship between these variable sets. The full canonical model between the neural
activity and the face feature space was significant in P1, P3, and P4 and approached significance
in P2 (P1: χ2(171) = 211.33, Wilks’ λ = 0.021, p = 0.019; P2: χ2(152) = 181.21, Wilks’ λ =
0.045, p = 0.053; P3: χ2(171) = 230.93, Wilks’ λ < 0.001, p < 0.001; P4: χ2(152) = 194.06,
Wilks’ λ = 0.03, p = 0.012) demonstrating that FFA activity is sensitive to individual differences
in these facial feature dimensions. Only the full model was significant as none of the other
hierarchical statistical tests reached significance. Figure 3.4 presents the normalized function
weights for the full canonical model demonstrating that the most relevant facial variables were
related to the eyes, the mouth, and the ratio between eye and mouth dimensions. There are also
notable differences across participants, with P1 showing strong sensitivity to eye information and
almost no sensitivity to mouths and P4 showing strong sensitivity to mouth information and less
to eyes. It is unclear if these differences are due to different electrode locations (see Figure 3.1),
random variation (as we do not have the power with only 4 participants to statistically quantify
these individual differences), or different face processing strategies among participants. More
generally, we did not track eye movements and therefore cannot relate our results to particular
face processing strategies or preclude FFA sensitivity to other internal or external facial features
(Davidesco et al., 2013; Freiwald et al., 2009). Rather our results show that, under free viewing
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conditions, FFA is tuned to natural variations in eye and mouth feature dimensions and configural
information relating the eyes to the mouth in service of face individuation.

Figure 3.5: Long-lasting task-related broadband gamma activity. (A) Mean and standard
error of gamma band (40 - 90 Hz) power for face and non-face trials across all participants in
experiment 1 (n = 4). Grey bar indicates p < 0.05 for face versus non-face objects based on the
Wilcoxon rank-sum test. See Supplementary Fig. 8 for face and non-face gamma band power
for each individual participant. (B) Mean and standard error of gamma band power split into
thirds by reaction time for gender discrimination in experiment 2 (n = 4; mean reaction time =
P1: 788 ms; s.d. = 269 ms; P2: 870 ms; s.d. = 221 ms; P3: 1065 ms; s.d. = 299 ms; P4: 872
ms; s.d. = 216 ms). Significant correlation was seen in each individual participant between 500-
1000 ms gamma band power and reaction time (Figure 3.5A). (C) Same as for (B) but with trials
aligned to the behavioral response (time 0 = response onset) for the 4 participants in experiment
2. A significant correlation between pre-response gamma band power (-300 ms to -100 ms) and
reaction time was seen in each individual participant (Figure 3.5B).

3.3.4 Broadband gamma activity predicts task performance
Finally, we examined the role of the slowly decaying broadband gamma power (40-90 Hz) ac-
tivity that has been shown to be face sensitive (Davidesco et al., 2013; Engell and McCarthy,
2010; Kawasaki et al., 2012). The results from experiment 1 confirm that this gamma activity
shows strong selectivity for faces and also showed that it lasts for the entire trial (Figure 3.5A
and Supplementary Fig. 8). Experiment 1 was a working memory task and one possible role
for face-specific activity that persists for the entire trial is task-related maintenance of face infor-
mation that is manipulated by frontal and/or parietal regions involved in working memory and
decision making (Freedman et al., 2003; Lara and Wallis, 2014; Shadlen and Newsome, 2001).
In support of this hypothesis, in repeated trials face activity decayed more rapidly than in first
presentations, potentially due to the release of task demands once detection was accomplished.
However, the relative paucity of repeated face trials and decreased face activity due to repetition
suppression makes interpreting these results difficult. Thus, to test the hypothesis that broad-
band gamma frequency activity was related to maintaining the face representation in support of
task-related processing, we examined the relationship between long-lasting gamma activity and
behavioral reaction time in experiment 2. In support of a role in task-related processing, the de-
cay time of the gamma activity from 500-1000 ms after stimulus presentation predicted reaction
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Figure 3.6: Gamma power predicts reaction time in each participant. (A) Scatter plots of
mean gamma power over the 500 to 1000 ms post stimulus window versus reaction time. (B)
Scatter plots of mean gamma power over the -100 to -300 ms pre response window versus reac-
tion time.
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time in experiment 2. Specifically, longer lasting gamma activity was significantly correlated
with slower response times (p < 0.05) in the gender identification task for each participant (Fig-
ure 3.5B and 3.6A). The amplitude of this gamma band activity 100-300 ms prior to the response
significantly predicted reaction time for each participant and this activity returned to baseline
only once the participants had responded and task demands had waned (Figure 3.5C and 3.6B).
While this gamma frequency power significantly predicted reaction time, we were unable to de-
code the gender decision of the participant from this activity. In summary, greater than baseline,
face-specific broadband gamma power was seen until the point of behavioral response, and a
larger gamma peak and more rapid decay predicted more rapid decisions of face gender, but this
gamma activity did not predict behavioral responses (i.e. ”male” or ”female”).

3.4 Discussion
Our results establish the timecourse of information processing in human FFA and elucidate the
specific computations FFA performs on faces from the moment a face is first viewed through
decision-related processing. These results demonstrate that FFA activity first contains face spe-
cific information approximately 50-75 ms after subjects viewed a face. FFA displays sharp face
sensitivity between 100-250 ms, with little evidence for selectivity for four other categories of
non-face objects or phase scrambled faces. Individual-level face information invariant over fa-
cial expression could be decoded for previously unseen faces between 200-500 ms. During this
same time window, the neural activity from FFA contained information about individual differ-
ences in eye and mouth features and the relative size of eyes versus mouths, suggesting that the
FFA uses this information to individuate faces. Finally, late, long-lasting (500+ ms) gamma fre-
quency band activity (40-90 Hz) predicted participants trial-by-trial reaction times in a gender
categorization task. Taken together, these results reveal the highly dynamic role that FFA plays
in multiple distinct stages of face processing.

One caveat of the current work is that the input to all of our analyses was the timecourse
of FFA activity recorded from single electrodes in each participant. The significant decoding
demonstrated in this analysis suggests that FFA displays at least a degree of temporal encoding of
face information (Richmond et al., 1987). However, the data we report are only weakly sensitive
to information that is primarily coded spatially. Specifically, the data are differentially sensitive
to neural populations with different proximity or different orientations relative to the electrodes.
That said information primarily encoded spatially is far less likely to be detected by our analyses
than information encoded temporally. Thus, lack of significant classification (for example for
expression or the gender decision) does not necessarily imply that FFA is not sensitive to this
information, but rather it is not coded temporally.

FFA is face sensitive in the 50-75 ms time window. This time window is as early (or earlier)
as face sensitivity in lateral occipital face sensitive regions (Itier and Taylor, 2004; Pitcher et al.,
2009) and is consistent with onset of face sensitivity reported for single cortical neurons in non-
human primates (Baylis et al., 1985; Perrett et al., 1982; Sugase et al., 1999; Tsao et al., 2006).
Behaviorally, it has been shown that humans can saccade towards a face within 100-150 ms
(Crouzet et al., 2010). The decoding of face information in the 50-75 ms time window reported
here is consistent with FFA playing a role in this rapid face detection. The early face sensitivity
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of FFA reported here provides strong evidence that this area is involved in face detection.
A recent human ECoG study showed that category selective activity is first observed in tem-

poral cortex around 100 ms after stimulus onset (Liu et al., 2009). Our results show that human
FFA becomes face sensitive in the 50-75 ms window, suggesting that faces are processed more
rapidly in temporal cortex than other object categories. Indeed, studies of single neuron firing
latencies in non-human primates have reported that face sensitivity first arises around the 50-75
ms window (Baylis et al., 1985; Perrett et al., 1982; Sugase et al., 1999; Tsao et al., 2006). This
more rapid processing of face information may be a result of the network of areas highly tuned
to face properties (Haxby et al., 2000). Future studies will be required to determine if non-face
categories with highly tuned perceptual networks (e.g. words (Behrmann and Plaut, 2013) and
bodies (Peelen and Downing, 2007)) are also processed more rapidly than other categories of
objects. One caveat is that the ECoG study by Liu et al. (2009) reported that the 100 ms object
category response in temporal cortex shows invariance to viewpoint and scale changes and future
studies will be required to determine if the 50-75 ms FFA face sensitive response is invariant over
these transformations as well.

The time window critical for individual level classification occurred between 200-500 ms,
after face sensitivity observed in experiment 1 had mostly waned. One potential explanation
why face individuation occurred during a period where face-specific activity is relatively weak
is that individual level face information may be represented by relatively few neurons (sparse
coding) (Young and Yamane, 1992). Sparse coding would imply that relatively few face sensitive
neurons were active and that the summed face-related activity in this time period therefore would
be weak. However, the neurons that were active encode for individual level face information,
which would explain the significant decoding of identity we report here. One point to note
is that while face-specific voltage potentials had waned in this time period, significant face-
specific broadband gamma activity was observed in the same time period as individual level face
classification, though it too was declining. To the extent that this broadband gamma activity
reflects single neuron firing (Manning et al., 2009; Ray and Maunsell, 2011), the decrease in
this activity potentially also supports a sparse coding hypothesis. One caveat being that further
studies are required to determine if the decrease in broadband gamma is due less neurons being
active in this time period (sparse coding) or a decrease in the firing rate.

Neuroimaging studies and lesion studies in patients have implicated parts of anterior temporal
cortex strongly connected to the FFA (Pyles et al., 2013; Thomas et al., 2009) as important
to face individuation (Collins and Olson, 2014; Kriegeskorte et al., 2007; Nestor et al., 2011).
Furthermore, a recent study suggested that FFA might act as a hub of face identity processing
and act in concert with these anterior temporal face sensitive regions (Nestor et al., 2011). The
timewindow in which we found individual-level face coding (200-500 ms) is generally consistent
with the idea that recurrent top-down and bottom-up interactions are likely to be critical to face
individuation. Note that in P3 and perhaps in P1 there are two peaks of individual-level face
classification. More data will be required to statistically substantiate these two peaks, however
the dual peaks suggest the possibility of a feedback loop involved in face individuation.

Neural activity in FFA during the same time window when significant individual-face de-
coding was observed (200-500 ms) displayed significant multivariate correlation to variation in
the eyes, mouth, and eye-mouth ratio. Behavioral studies have shown that the eyes are the most
important facial feature used for face recognition, followed by the mouth (Haig, 1986) and that
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holistic and configural face processing ability is correlated with face recognition (DeGutis et al.,
2013). A recent study revealed that electrical stimulation of FFA distorts the perception of facial
features (Parvizi et al., 2012). Furthermore, previous studies have demonstrated the importance
of the presence of the eyes for face perception in general, and FFA activity in particular (Mc-
Carthy et al., 1999). Our results lend strong evidence to the hypothesis that FFA uses individual
differences in these facial features in service of face individuation and recognition.

We show that FFA shows face specific gamma frequency power that lasts until task demands
wane and that the amplitude of this power predicts participants’ reaction times. Recent studies
demonstrate that long-lasting FFA gamma activity is modulated by task-related attention to faces
and facial expression (Engell and McCarthy, 2010; Kawasaki et al., 2012), in support of the hy-
pothesis that this activity is integral to task-performance. While this activity did predict reaction
time, it did not predict the gender decision. This suggests that FFA supports task-related pro-
cessing, potentially by keeping face information on-line, but decision-specific processing occurs
elsewhere, likely in frontal and parietal regions using the information from FFA (Freedman et al.,
2003; Shadlen and Newsome, 2001). Indeed, a recent study challenged the view that frontal ar-
eas store working-memory and task-relevant information and suggested that these areas instead
control and manipulate information that is stored elsewhere (Lara and Wallis, 2014). In the case
of faces our results suggest that at least some of this information is stored in FFA.

In summary, our results provide strong evidence that the FFA is involved in three temporally
distinct, but partially overlapping processing stages: face detection, expression-independent in-
dividuation using facial features and their configuration, and task-related gender classification.
Information about these processing stages was present in the recordings from electrodes within
a 1 cm radius in each participant suggesting that the same, or at least very nearby, neural popu-
lations are involved in these multiple information processing stages. A key open question is how
processing transitions between stages in these local neural populations. One hypothesis is that
the dynamics of these processing stages are governed by interactions between multiple regions
of the face processing network. Taken together with previous findings, the current results suggest
a model in which FFA contributes to the entire face processing sequence through computational
analysis of multiple aspects of face information at different temporal intervals.

3.5 Appendix: Supplement Results

Electrode selection

Figure 3.7 shows face classification accuracy in electrodes used in the study and their neighbors
for all 4 subjects. For P1 there were 4 electrodes on two neighboring strips on the ventral tem-
poral lobes, for P2-P4 there were 6 electrodes on a single ventral temporal strip (Figure 3.1).
Electrodes were chosen based on the criteria that peak d′ be above 1.5 (p < .001, shown in the
center column, other than for P1). In P1, three electrodes exceeded this threshold (the middle
and fourth electrodes in the first row and the middle electrode in the second row) and for all
analyses the signal from these three electrodes was averaged. Independently loading these three
electrodes into the analyses does not substantially alter the results and indeed each electrode
showed similar d′ timecourse in experiment 1 and each showed above chance classification and
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similar classification timecourses for individual faces in experiment 2. In P2, two neighboring
electrodes exceeded this threshold. However, the signal recorded from the second electrode on
the strip (shown in the second column of the third row) was excluded because, unlike the re-
sponses from other face sensitive electrodes selected for this study, faces evoked substantially
less activity than the other stimulus categories used in experiment 1 in this electrode (see Figure
3.12A for ERP from this channel and exclusion criteria in methods section). The signal recorded
from the third electrode on the strip (shown in the center column) displayed the more typical
pattern of greater activity for faces relative to the other conditions and thus for P2 this electrode
was chosen in the study. Electrodes neighboring the face electrodes chosen for the study had
significantly smaller d′ in each participant (with the exception of the second electrode in P2, as
mentioned above). In addition, in most participants the electrodes neighboring the electrode of
interest did not show significant face sensitivity (p > .05 corrected for multiple comparisons,
this corresponds to a peak d′ of .97) and in all participants the electrodes 2 cm away did not show
significant face sensitivity.

Table 3.1: Classification accuracy in the 100-250 ms time window for non-face objects. Cells
contain the true positive rate/the false positive rate for each condition. Bold cells indicate p < .01
classification accuracy. Face classification accuracy was significant at p < 10−5 in all sessions
based on the binomial test.

P1 P1 P2 P2 P3 P3 P4
Category Session 1 Session 2 Session 1 Session 2 Session 1 Session 2 Session 1

Faces 93 / 0 82 / 1 88 / 8 54 / 8 73 / 6 77 / 1 67 / 8
Bodies 29 / 22 33 / 23 31 / 15 35 / 24 59 / 14 17 / 5 30 / 21

Hammers 11 / 15 32 / 30 23 / 11 7 / 18 28 / 23 17 / 9 27 / 23
Houses 22 / 11 37 / 17 15 / 5 31 / 15 10 / 10 23 / 4 33 / 16
Shoes 37 / 26 48 / 30 44 / 17 32 / 14 53 / 36 57 / 24 23 / 26

Phase scrambled faces 7 / 22 12 / 10 32 / 19 0/8 17 / 8 10 / 12 20 / 9
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Figure 3.7: Face classification accuracy in electrodes used in the study and their neighbors.
(see Figure 3.1 for locations of electrodes and these neighbors) Face classification accuracy over
time as measured by d′ (plotted against the beginning of the 100 ms sliding window) for all
electrodes used in the study and their neighboring electrodes. There was 1 cm between the
centers of neighboring electrodes. The first column of electrodes represents the most medial
and/or posterior electrode on its strip.
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Figure 3.8: Electrode localization for 4 participants excluded from the main analyses due to
lack of face sensitive activity.
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Figure 3.9: Face classification accuracy in electrodes from participants excluded due to lack
of face sensitive electrodes. (see Figure 3.8 for locations of electrodes and these neighbors) Face
classification accuracy over time as measured by d′ (plotted against the beginning of the 100 ms
sliding window) for all electrodes used in the study and their neighboring electrodes. There
was 1 cm between the centers of neighboring electrodes. None of these show significant face
sensitivity (p > .05 corrected for multiple comparisons, this corresponds to a peak d′ of .97)
except for the first electrode in EP4 (peak d′ = 1.5). However, the signal recorded from this
electrode was excluded because faces evoked substantially less activity than the other stimulus
categories used in experiment 1 in this electrode (see Figure 3.10B for ERP from this channel
and exclusion criteria in methods section).
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Figure 3.10: ERPs from electrodes with significant d′ due to faces showing less activity than
other categories. (A) ERP from electrode in the second column of P1 in Figure 3.7. (B) ERP
from electrode in the first column, top row of EP4 in Figure 3.9. These electrodes were excluded
from the analyses in the main text because they were not deemed to be in FFA due to the lower
amplitude signal for faces relative to other categories.

Figure 3.11: Face expression classification. Five-way classification accuracy for facial expres-
sions (angry, fearful, sad, happy, and neutral) over time in experiment 2. Grey line indicates
p < .05 corrected for multiple comparisons based on the permutation test.
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Figure 3.12: Effects of task demands on face individuation. Time course of individuation
level face classification accuracy divided by within (blue) and across (red) gender classification
in each participant. This shows, given two faces, how accurately we could predict which one
the participant was viewing based on the neural data plotted against the beginning of the 100
ms sliding window. For within gender classification, all training and test faces were the same
gender and for between gender classification, the two training faces were of different genders. If
individuation was driven by task demands, only between gender classification would be greater
than chance. The similarity between within and between gender classification suggests that
individuation during the 200-500 ms time period was not driven by task demands.
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Figure 3.13: Face individuation in all electrodes from P1-P4. Time course of individual level
face classification accuracy based on single trial voltage potentials in each participant. This
shows, given two faces, how accurately we could predict which one the participant was viewing
based on the neural data, plotted against the beginning of the 100 ms sliding window. p = .05,
corrected for multiple time comparisons is at 57%. The layout of electrodes is the same as in
Figure 3.7. In P1 for the analyses in the main text, the signals second and third electrode from
the top row and the second electrode in the second row were averaged prior to classification,
canonical correlation analysis, gamma power analysis, etc.
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Figure 3.14: Face specific gamma power in each participant. Mean and standard error of
gamma band (40-90 Hz) power for face and non-face trials in each participant in experiment 1.
Grey bars indicate p < .05 using an across trial t-test between face and non-face objects.
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Chapter 4

Spatiotemproal dynamics in human
fusiform underlying facial expression
perception

Though the fusiform is well-established as a key node in the face perception network, its role in
facial expression processing remains unclear, due to competing models and discrepant findings.
To help resolve this debate, we recorded from 17 subjects with intracranial electrodes implanted
in face sensitive patches of the fusiform. Multivariate classification analysis showed that facial
expression information is represented in fusiform activity, in the same regions that represent
identity, though with a smaller effect size. Examination of the spatiotemporal dynamics revealed
a functional distinction between posterior and mid-fusiform expression coding, with posterior
fusiform showing an early peak of facial expression sensitivity at around 180 ms after subjects
viewed a face and mid-fusiform showing a later and extended peak between 230 460 ms. These
results support the hypothesis that the fusiform plays a role in facial expression perception and
highlight a qualitative functional distinction between processing in posterior and mid-fusiform,
with each contributing to temporally segregated stages of expression perception.

4.1 Introduction

Face perception, including detecting a face, recognizing face identity, assessing sex, age, emo-
tion, attractiveness, and other characteristics associated with the face, is critical to social com-
munication. An influential cognitive model of face processing distinguishes processes associated
with recognizing the identity of a face from those associated with recognizing expression (Bruce
and Young, 1986). A face sensitive region of the lateral fusiform gyrus, sometimes called the
fusiform face area, is a critical node in the face processing network (Calder and Young, 2005;
Duchaine and Yovel, 2015; Haxby et al., 2000; Ishai, 2008) that has been shown to be involved
in identity perception (Barton, 2008; Barton et al., 2002; Ghuman et al., 2014; Goesaert and
de Beeck, 2013; Nestor et al., 2011). What role, if any, the fusiform plays in face expression
processing continues to be debated, particularly given the hypothesized cognitive distinction be-
tween identity and expression perception.
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Results demonstrating relative insensitivity of the fusiform to face dynamics (Pitcher et al.,
2011), reduced fusiform activity for attention to gaze direction (Hoffman and Haxby, 2000), and
findings showing insensitivity of the fusiform to expression (Breiter et al., 1996; Foley et al.,
2012; Streit et al., 1999; Thomas et al., 2001; Whalen et al., 1998) led to a model that proposed
that this area was involved strictly in identity perception and not expression processing (Haxby
et al., 2000). This model provided neuroscientific grounding for the earlier cognitive model that
hypothesized a strong division between identity and expression perception (Bruce and Young,
1986). Recently, imaging studies have increasingly suggested that fusiform is involved in ex-
pression coding (Achaibou et al., 2015; Bishop et al., 2015; Fox et al., 2009; Ganel et al., 2005;
Vuilleumier et al., 2001; Xu and Biederman, 2010). Positive findings for fusiform sensitivity to
expression have led to the competing hypothesis that the division of face processing is not for
identity and expression, but rather form/structure and motion (Duchaine and Yovel, 2015). How-
ever, mixed results have been reported in examining whether the same patches of the fusiform
that code for identity also code for expression (see Zhang et al. (2016) for a study that exam-
ined both, but saw negative results for expression coding). Furthermore, some studies show
the fusiform has an expression-independent identity code (Ghuman et al., 2014; Nestor et al.,
2011). Taken together, prior results provide some, but not unequivocal, evidence for a role of the
fusiform in expression processing.

Beyond whether the fusiform responds differentially to expression, one key question is whether
the fusiform intrinsically codes for expression or if differential responses are due to task-related
and/or top-down modulation of fusiform activity (Dehaene and Cohen, 2011). Assessing this
requires a method with high temporal resolution to distinguish between early, more bottom-
up biased activity, and later activity that likely involved recurrent interactions. Furthermore, a
passive viewing or incidental task is required to exclude biases introduced by variable task de-
mands across stimuli. The low temporal resolution of fMRI makes it difficult to disentangle early
bottom-up processing from later top-down and recurrent processing. Some previous intracranial
electroencephalography (iEEG) studies have used an explicit expression identification task, mak-
ing task effects difficult to exclude (Kawasaki et al., 2012; Müsch et al., 2014; Tsuchiya et al.,
2008). Those that have used an implicit task have shown mixed results regarding whether early
fusiform response is sensitive to expression (Müsch et al., 2014; Pourtois et al., 2010). Further-
more, iEEG studies often lack sufficient subjects and population-level analysis to allow for a
generalizable interpretation.

To help mediate between these two models and clarify the role of the fusiform in facial
expression perception, iEEG was recorded from 17 subjects with a total of 31 face sensitive
electrodes in face sensitive patches of the fusiform gyrus while these subjects viewed faces with
neutral, happy, sad, angry, and fearful expressions in a gender discrimination task. Multivariate
temporal pattern analysis (MTPA) on the data from these electrodes was used to analyze the
temporal dynamics of neural activity with respect to facial expression sensitivity in fusiform. In
a subset of 7 subjects, identity coding was examined in the same electrodes also using MTPA.
In addition to examining the overall patterns across all electrodes, the responses from mid- and
posterior fusiform, as well as the left and right hemisphere, were compared. To supplement these
iEEG results, a meta-analysis of 64 neuroimaging studies was done examining facial expres-
sion sensitivity in the fusiform. The results support the view that fusiform response is sensitive
to facial expression and suggest that the posterior and mid-fusiform regions play qualitatively
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different roles in facial expression processing.

4.2 Methods

4.2.1 Participants
The experimental protocols were approved by the Institutional Review Board of the University
of Pittsburgh. Written informed consent was obtained from all participants.

17 human subjects (8 male, 9 female) underwent surgical placement of subdural electrocor-
ticographic electrodes or stereoelectroencephalography (together electrocorticography and stere-
oelectroencephalography are referred to here as iEEG) as standard of care for seizure onset zone
localization. The ages of the subjects ranged from 19 to 65 years old (mean = 37.9, SD = 12.7).
None of the participants showed evidence of epileptic activity on the fusiform electrodes used in
this study nor any ictal events during experimental sessions.

4.2.2 Experiment design
In this study, each subject participated in two experiments. Experiment 1 was a functional
localizer experiment and Experiment 2 was a face perception experiment. The experimental
paradigms and the data pre-processing methods were similar to those described previously by
Ghuman et al. (2014).

Stimuli

In Experiment 1, 180 images of faces (50% male), bodies (50% male), words, hammers, houses,
and phase scrambled faces were used as visual stimuli. Each of the six categories contained 30
images. Phase scrambled faces were created in MATLABTM by taking the 2-dimensional spatial
Fourier spectrum of each of the face images, extracting the phase, adding random phases, recom-
bining the phase and amplitude, and taking the inverse 2-dimensional spatial Fourier spectrum.

In Experiment 2, face stimuli were taken from the Karolinska Directed Emotional Faces
stimulus set (Lundqvist et al., 1998). Frontal views and 5 different facial expressions (fearful,
angry, happy, sad, and neutral) from 70 faces (50% male) in the database were used, which
yielded a total of 350 unique images. A short version of Experiment 2 used a subset of 40 faces
(50% male) from the same database, which yielded a total of 200 unique images. 4 subjects
participated in the long version of the experiment, and all other subjects participated in the short
version of the experiment.

Paradigms

In Experiment 1, each image was presented for 900 ms with 900 ms inter-trial interval during
which a fixation cross was presented at the center of the screen (∼ 10◦ × 10◦ of visual angle).
At random, 1/3 of the time an image would be repeated, which yielded 480 independent trials in
each session. Participants were instructed to press a button on a button box when an image was
repeated (1-back).
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In Experiment 2, each face image was presented for 1500 ms with 500 ms inter-trial interval
during which a fixation cross was presented at the center of the screen. This yielded 200 inde-
pendent trials per session. Faces subtended approximately 5 degrees of visual angle in width.
Subjects were instructed to report whether the face was male or female via button press on a
button box.

Paradigms were programmed in MATLABTM using Psychtoolbox and custom written code.
All stimuli were presented on an LCD computer screen placed approximately 150 cm from par-
ticipants heads.

All of the participants performed one session of Experiment 1. 9 of the subjects performed
one session of Experiment 2, and the other 8 participants performed two or more sessions of
Experiment 2.

4.2.3 Data preprocessing
The electrophysiological activity was recorded using iEEG electrodes at 1000 Hz. Single-trial
potential signal was extracted by band-passing filtering the raw data between 0.2-115 Hz using
a fourth order Butterworth filter to remove slow and linear drift, and high frequency noise. The
60 Hz line noise was removed using a fourth order Butterworth filter with 55-65 Hz stop-band.
Power spectrum density (PSD) at 2-100 Hz with bin size of 2 Hz and time-step size of 10 ms
was estimated for each trial using multi-taper power spectrum analysis with Hann tapers, using
FieldTrip toolbox (Oostenveld et al., 2011). For each channel, the neural activity between 50
and 300 ms prior to stimulus onset was used as baseline, and the PSD at each frequency was
then z-scored with respect to the mean and variance of the baseline activity to correct for the
power scaling over frequency at each channel. The broadband signal was extracted as mean z-
scored PSD across 40-100 Hz. Event-related potential (ERP) and event-related broadband signal
(ERBB), both time-locked to the onset of stimulus from each trial, were used in the following
data analysis. Specifically, the ERP signal is sampled at 1000 Hz and the ERBB is sampled at
100 Hz.

To reduce potential artifacts in the data, raw data were inspected for ictal events, and none
were found during experimental recordings. Trials with maximum amplitude 5 standard devia-
tions above the mean across all the trials were eliminated. In addition, trials with a change of
more than 25 µV between consecutive sampling points were eliminated. These criteria resulted
in the elimination of less than 1% of trials.

4.2.4 Electrode localization
Coregistration of grid electrodes and electrode strips was adapted from the method of Hermes
et al. (2010). Electrode contacts were segmented from high resolution post-operative CT scans
of patients coregistered with anatomical MRI scans before neurosurgery and electrode implan-
tation. The Hermes method accounts for shifts in electrode location due to the deformation of
the cortex by utilizing reconstructions of the cortical surface with FreeSurferTM software and
co-registering these reconstructions with a high-resolution post-operative CT scan. SEEG elec-
trodes were localized with Brainstorm software (Tadel et al., 2011) using post-operative MRI
co-registered with pre-operative MRI images.
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4.2.5 Electrode selection

Face sensitive electrodes were selected based on both anatomical and functional constraints.
Anatomical constraint was based upon the localization of the electrodes on the reconstruction
using post-implantation MRI. In addition, multivariate temporal pattern analysis (MTPA) was
used to functionally select the electrodes that showed sensitivity to faces, comparing to other
conditions in the localizer experiment (see below for MTPA details). Specifically, three criteria
were used to screen and select the electrodes of interest: (1) electrodes of interest were restricted
to those that were located in the mid-fusiform sulcus, on the fusiform gyrus, or in the sulci adja-
cent to fusiform gyrus; (2) electrodes were selected such that their peak 6-way classification d′

score for faces (see below for how this was calculated) exceeded 0.5 (p < 0.01 based on a permu-
tation test, as described below); (3) electrodes were selected such that the peak amplitude of the
mean ERP and/or mean ERBB for faces was larger than the peak of mean ERP and/or ERBB for
the other non-face object categories in the time window of 0 500 ms after stimulus onset. Dual
functional criteria are used because criterion (2) insures only that faces give rise to statistically
different activity from other categories, but not necessarily activity that is greater in magnitude.
Combining criteria (2) and (3) insures that face activity is both statistically significantly different
from other categories and greater magnitude in the electrodes of interest.

4.2.6 Multivariate temporal pattern analysis (MTPA)

Multivariate methods were used instead of traditional univariate statistics because of their supe-
rior sensitivity Ghuman et al. (2014); Haxby et al. (2014); Hirshorn et al. (2016). In this study,
MTPA was applied to decode the coding of stimulus condition in the recorded neural activity.
The timecourse of the decoding accuracy was estimated by classification using a sliding time
window of 100 ms. Previous studies have demonstrated that both the low-frequency and the
high-frequency neural activity contribute to the coding of facial information (Furl et al., 2017;
Ghuman et al., 2014; Miller et al., 2016), therefore, both ERP and ERBB signals in the time
window are combined as input features for the MTPA classifier. According to our preprocessing
protocol, the ERP signal is sampled at 1000 Hz and the ERBB is sampled at 100 Hz, which
yields 110 temporal features in each 100 ms time window (100 voltage potentials for ERP and
10 normalized mean power-spectrum density for ERBB). The 110 dimensional data were then
used as input for the classifier. The goal of the classifier was to learn the patterns of the data
distributions in such 110-dimensional space for different conditions and to decode the conditions
of the corresponding stimuli from the testing trials. The classifier was trained on each electrode
of each subject separately to assess the electrode sensitivity to faces and facial expressions. For
Experiment 1, it was a 6-way classification problem and we specifically focused on the sensitiv-
ity of face category against other non-face categories. Therefore, we used the sensitivity index
(d′) for face category against all other non-face category as the metric of face sensitivity. d′ was
calculated as d′ = Ψ−1(true positive rate) − Ψ−1(false alarm rate) where Ψ−1(x) is the inverse
of the Gaussian cumulative distribution function. d′ was used because it is an unbiased measure
of effect size and one that takes into both the true positive and false positive rates. It also has the
advantage that it is an effect size measure that has similar interpretation as Cohen’s d (Cohen,
1988; Sawilowsky, 2009) while also being applicable to multivariate classification. In addition,
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we provide full receiver-operator characteristic (ROC) curves for completeness and as validation
of d′ values. For Experiment 2, averaged pair-wise classification between every possible pair of
facial expressions (10 pairs in total) was used.

The choice of the classifier is an empirical problem. The performance of the classifier de-
pends on whether the assumptions of the classifier approximate the underlying truth of the data.
Additionally, the complexity of the model and the size of the dataset affect performance (bias-
variance trade-off). In this study, we employed Naı̈ve Bayes (NB) classifiers, which assumes
that each of the input features are conditionally independent from one another, and are Gaussian
distributed. The classification accuracy of the classifier was estimated through 5-fold cross-
validation. Specifically, all the trials were randomly and evenly spited into five folds. In each
cross-validation loop, the classifier was trained based on four folds and the performance was
evaluated on the left out fold. The overall performance was estimated by averaging across all
the 5 cross-validation loops. In general, different classifiers gave similar results. Specifically,
we evaluated the performance of different classifiers (NB, support vector machines, and random
forests) on a small subset of the data, and NB classifier tended to perform better than other com-
monly used classifiers in the current experiment, but other classifiers also gave similar results. In
addition, our previous experience (Hirshorn et al., 2016) with similar datasets also suggested that
NB performed reasonably well in such classification analysis. We therefore used NB throughout
the work presented here. The advantage of the Naı̈ve Bayes classifier in the current study is
likely due to intrinsic properties of the high dimensional problem (Bickel and Levina, 2004) that
make a high-bias low-variance classifier (i.e. NB classifier) preferable compared to the low-bias
high-variance classifiers (i.e. support vector machines).

4.2.7 Permutation testing

Permutation testing was used to determine the significance of the sensitivity index d′. For each
permutation, the condition labels of all the trials were randomly permuted and the same proce-
dure as described above was used to calculate the d′ for each permutation. The permutation was
repeated for a total of 1000 times. The d′ of each permutation was used as the test statistic and
the null distribution of the test statistic was estimated using the histogram of the permutation test.

4.2.8 K-means clustering

K-means clustering was used to cluster the electrodes in to groups based on both functional
and anatomical features (Kaufman and Rousseeuw, 2009). Specifically, we applied k-means
clustering algorithm to the electrodes in a 2D feature space of MNI y-coordinate and the peak
classification accuracy time. Note that each dimension was normalized through z-scoring in
order to account for different scales in space and time. Silhouette coefficients were used to
evaluate the performance of models with different values of k (Kaufman and Rousseeuw, 2009).
For each point x, the Silhouette coefficient is defined as (b− a)/max(a, b), where a is the mean
intra-cluster distance from x to each points in the same cluster, and b is the mean inter-cluster
distance from x to each points in the nearest cluster that x does not belong to.
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4.2.9 Clustering analysis

We applied k-means clustering to the electrodes in the 2D space of MNI y-coordinate and peak
classification time for facial expressions, with different values of k, and evaluated the model
performance by computing the Bayes information criterion (BIC) and the mean Silhouette coef-
ficient (SC) across all points.

Following (Kass and Wasserman, 1995; Pelleg et al., 2000), the BIC was estimated using
Schwartz criterion. Specifically,

BIC = l(D|θ̂)− p

2
logN

, where l(D|θ̂) is the log-likelihood of the data under the assumption of k-means (spherical
Gaussian) taken at the maximum likelihood estimation of parameters θ̂, p is the total number of
parameters in the model, and N is the total number of data points.

Following (Kaufman and Rousseeuw, 2009), the Silhouette value for the i-th point was com-
puted as Si = (bi − ai)/max(ai, bi) , where ai is the average within cluster distance for the i-th
point, and bi is the minimum average between cluster distance for the i-th point (minimized over
all other clusters). The mean SC was then estimated by averaging the Silhouette value over all
data points.

4.2.10 Facial feature analysis

The facial features from the stimulus images were extracted following the similar process as
(Ghuman et al., 2014). Anatomical landmarks for each picture were first determined by IntraFace
(Xiong and De la Torre, 2013), which marks 49 points on the face along the eyebrows, down the
bridge of the nose, along the base of the nose, and outlining the eyes and mouth. Based on these
landmarks we calculated 17 facial feature dimensions listed in Table 4.4. The values for these
17 feature dimensions were normalized by subtracting the mean and dividing by the standard
deviation across the all the pictures. The mean representation of each expression in facial feature
space was computed by averaging across all 70 faces of the same expression.

4.2.11 Representational similarity analysis (RSA)

RSA was used to analyze the neural representational space for expressions (Kriegeskorte and
Kievit, 2013). With pair-wised classification accuracy between each pair of facial expressions,
we constructed the representational dissimilarity matrix (RDM) of the neural representation of
facial expressions, with the element in the i-th column of the j-th row in the matrix corresponding
to the pairwise classification accuracy between the i-th and j-th facial expressions. The corre-
sponding RDM in the facial feature space was constructed by assessing the Euclidean distance
between the vectors for the i-th and the j-th facial expressions averaged over all identities in the
17-dimensional facial feature space (Figure 4.7 top left).
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4.2.12 Meta-analysis
Activation likelihood estimation (ALE, (Eickhoff et al., 2012; Laird et al., 2005)) was used for
the meta-analysis of the neuroimaging literature. We first searched the online database of neu-
roimaging studies on Neurosynth.org and found around 300 imaging studies with the keyword
”facial expressions”. We then further narrowed the list down to 64 fMRI by only including the
studies that had a direct full brain mapping by contrasting between emotional facial expressions,
e.g. fear vs neutral, happy vs sad, etc. We only took into account the reported activation foci for
the contrast between facial expressions. Then all of the activation foci in those relevant full brain
map results were collected and extracted as 3D coordinates in MNI space. In the ALE, each
of the extracted foci was assigned as the center of a Gaussian distribution, whose variance was
scaled by the number of subjects in the corresponding experiment. These Gaussian distributions
were then combined to build a full brain map of ALE. The ALE map was corrected for multiple
comparison using cluster-based permutation test. Then we performed a spatial permutation test
with 1000 permutations to construct a null distribution of the full brain activation. The ALE and
the corresponding statistical analysis were performed based on GingerALE 2.3.6 (Eickhoff et al.,
2009; Turkeltaub et al., 2012).

4.3 Results

4.3.1 Electrode selection and face sensitivity
The locations of the 31 fusiform electrodes from 17 participants sensitive to faces are shown in
Figure 4.1A and Table 1. The averaged event-related potential (ERP) and event-related broad-
band gamma activity (ERBB) responses (see Methods for detailed definitions of ERP and ERBB)
for each category across all channels are shown in Figure 4.1C and Figure 4.1D respectively. The
averaged sensitivity index (d′) for faces peaked at 160 ms (d′ = 1.22, p < 0.01 in every channel,
Figure 4.1B). Consistent with previous findings (Allison et al., 1999; Eimer, 2000c, 2011; Ghu-
man et al., 2014), strong sensitivity for faces was observed in the fusiform around 100-400 ms
after stimulus onset.

4.3.2 Facial expression classification at group level
For each participant, the classification accuracy between each pair of facial expressions was es-
timated using 5-fold cross-validation (see Methods for details). As shown in Figure 4.2B, the
averaged timecourse peaked at 190 ms after stimulus onset (average decoding at peak d′ = 0.12,
p < 0.05, Bonferroni corrected for multiple comparisons). In addition to the grand average,
on the single electrode level, 21 out of the 31 electrodes from 12 out of 17 subjects showed a
significant peak in their individual timecourses (p < 0.05, permutation test corrected for multi-
ple comparisons). The locations of the significant electrodes are shown in Figure 4.2A and all
electrodes are listed in Table 4.4.

The effect size for the mean peak expression classification is relatively low. This is in part
because the electrodes consisted of two distinct populations with different timecourses (see be-
low). Additionally, due to the variability in electrode position, iEEG effect sizes can be lower
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Figure 4.1: The face sensitive electrodes in the fusiform. A) The localization of the 31 face
sensitive electrodes in (or close to) fusiform area, mapped onto a common space based on MNI
coordinates. We moved depth electrode locations to the nearest location on the overlying cortical
surface, in order to visualize all the electrodes. B) The timecourse of the sensitivity index (d′)
for faces versus the other categories in the six-way classification averaged across all 31 fusiform
electrodes. The shaded areas indicate standard error of the mean across electrodes. The red line
corresponds to p < 0.01 with Bonferroni correction for multiple comparisons across 60 time
points. C) The ERP for each category averaged across all face sensitive fusiform electrodes.
The shaded areas indicate standard error of the mean. D) The ERBB for each category averaged
across all face sensitive fusiform electrodes. The shaded areas indicate standard error of the
mean.

in some cases than what would be seen with electrodes optimally placed over face patches. To
assess whether this was the case, we examined the correspondence between face category de-
coding and expression decoding based on the logic that placement closer to face patches should
lead to higher face category decoding accuracy. A significant positive correlation between the
decoding accuracy (d′) for face category and the decoding accuracy (d′) for facial expressions
was seen (Pearson correlation r = 0.57, N = 21, p = 0.007). This suggests that electrode
position relative to face patches in the fusiform can explain some of the effect size variability
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Figure 4.2: The timecourse of the facial expression classification in fusiform. A) The lo-
cations of the electrodes with significant face expression decoding accuracy, with the posterior
fusiform group colored in cyan and the mid-fusiform group colored in magenta. B) The time-
course of mean and standard error for pairwise classification between different face expressions
in all 31 fusiform electrodes. The shaded areas indicate standard error of the mean across elec-
trodes. Dashed line: p = 0.05 threshold with Bonferroni correction for 60 time points [600 ms
with 10 ms stepsize]) C) The time of the peak classification accuracy was plotted against the
MNI y-coordinate for each single electrode with significant expression classification accuracy.
K-means clustering partitions these electrodes into posterior and mid- fusiform groups. Dashed
oval represent the 2-σ contour using the mean and standard deviation along the MNI x- and y-
axes. D) The mean and standard error for pairwise classification between different face expres-
sions in posterior fusiform electrodes and mid- fusiform electrodes. The posterior group peaked
at 180 ms after stimulus onset and the mid-fusiform group had an extended peak starting at 230
ms and extending to 450 ms (both p < 0.05, binomial test, Bonferroni corrected; dashed line:
p = 0.05 threshold with Bonferroni correction for 60 time points [600 ms with 10 ms stepsize]).
The shaded areas indicate standard error of the mean across electrodes. See below for receiver
operator characteristic (ROC) curves validating classification analysis (Figure 4.4).

for expression classification. That suggests the true effect size for expression classification for
optimal electrode placement may be closer to what was seen for electrodes with higher accuracy
(0.4-0.6, see Table 4.4) rather than the mean across all electrodes.
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4.3.3 Spatiotemporal dynamics of facial expression decoding
The next question we addressed was whether spatiotemporal dynamics of facial expression rep-
resentation in fusiform was location dependent. Specifically, we compared the dynamics of ex-
pression sensitivity between left and right hemispheres, and between posterior and mid- fusiform
regions for electrodes showing significant expression sensitivity.

We first analyzed the lateralization effect for the expression coding in fusiform. The mean
timecourses of decoding accuracy for left and right fusiform did not differ at the p < 0.05
uncorrected level at any time point (Figure 4.5).

In contrast substantial differences were seen in the timing and representation of expression
coding between posterior and mid- fusiform. This was first illustrated by plotting the time of the
peak decoding accuracy in each individual electrode against the corresponding MNI y-coordinate
of the electrode (Figure 4.2C). A qualitative difference was seen between the peak times for
electrodes posterior to approximately y = −45 compared to those anterior to that, rather than a
continuous relationship between y-coordinate and peak time. This was quantified by a clustering
analysis using both Bayesian information criterion (BIC) (Kass and Wasserman, 1995) and Sil-
houette analysis (Kaufman and Rousseeuw, 2009)(Figure 4.6), which both showed evidence for
a cluster-structure in the data (Bayes factor > 20) with k = 2 as the optimal number of clusters
(mean Sillhouette coefficient = 0.59). The 2 clusters corresponded to the posterior and mid-
fusiform (Figure 4.2C). The border between these data-driven clusters corresponds well with
prior functional and anatomical evidence showing that the mid-fusiform face patch falls within a
1 cm disk centered around the anterior tip of mid-fusiform sulcus (MFS; which falls at y = −40
in MNI coordinates) with high probability (Weiner et al., 2014). That would make the border
between the mid-fusiform and posterior fusiform face patch approximately y = −45 in MNI
coordinates, which is very close to the border produced by the clustering analysis (y = −45.9).

The timecourse of the posterior and mid- fusiform clusters were then examined in detail. As
shown in Figure 4.2D, the timecourse of decoding accuracy in the posterior group peaked at 180
ms after stimulus onset and the timecourse of mid-fusiform group first peaked at 230 ms and the
peak extended until approximately 450 ms after stimulus onset.

4.3.4 Comparison of the contributions from ERP and ERBB features to
the classification

Here we compared the classification results using both ERP and ERBB vs using ERP or ERBB
alone. As shown in Figure 4.3, both ERP and ERBB contributed to the expression decoding (left
panel has higher d′ than the other two panels). The posterior d′ peak improves from 0.19 with
only ERP features to 0.23 combining both ERP and ERBB features. The mid-fusiform d′ peak
improves from 0.19 with only ERP features to 0.21 combining both ERP and ERBB features.
ERP features made greater contribution to the expression discrimination than ERBB (the middle
panel has larger d′ than the right panel, and the results in the middle panel are very close to results
in the left panel). Due to the 1/f decay in the power spectrum, the ERP signal is dominated
by low frequency components (mainly alpha and beta bands). This suggests that it is the low
frequency components in ERP that mainly contributes to the facial expressions representation in
the fusiform (Furl et al., 2017).
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Figure 4.3: Comparison of the contributions from ERP and ERBB features. The mean and
standard error for pairwise classification between different face expressions in posterior fusiform
electrodes and mid- fusiform electrodes, using both ERP and ERBB features (left), using only
ERP features (middle), and using only ERBB features (right).

Figure 4.4: The mean ROC curve and area-under-curve (AUC) for posterior fusiform electrodes
and mid-fusiform electrodes at early (150-200 ms after stim onset) and late stage (400-450 ms
after stim onset).

4.3.5 Selection of models for k-means clustering

We applied k-means clustering to the electrodes in the 2D space of MNI y-coordinate and peak
classification time for facial expressions, with different values of k, and evaluate the model per-
formance by computing the Bayes information criterion (BIC) and the mean Silhouette coeffi-
cient (SC) across all points.

As shown in Figure 4.6, for k = 1, BIC = −61.28; for k = 2, BIC = −54.63. There-
fore, Bayes factor between the hypothesis (H1) that there is a cluster structure (k = 2) and
the null hypothesis (H0) that there is no cluster structure (k = 1) can be approximated as
BF = exp ((BIC1 −BIC0)/2). This approximation yields a BF > 20, which suggests a
strong evidence of H1 over H0. In other words, there is a strong clustering structure in the data.

Moreover, for k = 2, BIC = −54.63, the mean SC = 0.601; for k = 3, BIC = −56.29,
the mean SC = 0.490; for k = 4, BIC = −58.54, mean SC = 0.428. Both BIC and mean SC
suggest that k = 2 is the optimal number of clusters. Therefore, k = 2 was used in the study.
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Figure 4.5: The mean and standard error for classification between different face expres-
sions in left and right fusiform electrodes. The timecourse of the left fusiform peaked at 220
ms after stimulus onset with mean d′ = 0.19, and the timecourse of the right fusiform peaked
at 180 ms after stimulus onset with mean d′ = 0.18 (both p < 0.05, binomial test, Bonferroni
corrected).

4.3.6 Representational similarity analysis

A recent meta-analysis suggests that fusiform is particularly sensitive to the contrast between
specific pairs of expressions (Vytal and Hamann, 2010). To examine this in iEEG data, the
representation dissimilarity matrices (RDMs) for facial expressions in the early and late activity
in posterior and mid-fusiform were computed Figure 4.7. No contrasts between expressions
showed significant differences in posterior fusiform in the late window or in mid-fusiform in
the early window (p > 0.1 in all cases, T-test), as expected due to the corresponding low overall
classification accuracy. In the early posterior fusiform, expressions of negative emotions (fearful,
angry) were dissimilar to happy and neutral expressions (p < 0.05 in each case, T-test), but
not very distinguishable from one another. In the late mid-fusiform activity, happy and neutral
expressions were both distinguishable from expressions of negative emotions and from each
other (p < 0.05 in each case, T-test). The results showed partial consistency with a previous
meta-analysis based on neuroimaging studies (consistent in angry vs. neutral, fearful vs. neutral,
fearful vs. happy, and fear vs sad) (Vytal and Hamann, 2010). However, the previous meta-
analysis also reported statistical significance for the contrasts of fearful vs. angry and angry vs.
sad, which were absent in our results.

One question is the degree to which the representation in fusiform reflects the structural
properties of the facial expressions subjects were viewing. To examine this question, an 17-
dimensional facial feature space was constructed based on a computer vision algorithm (Xiong
and De la Torre, 2013). The features characterize structural and spatial frequency properties of
each image, e.g. eye width, eyebrow length, nose height, eye-mouth width ratio, skin tone, etc.
An RDM was then built between the expressions in this feature space and compared to the neural
feature spaces. There was a significant correlation between posterior fusiform representation
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Figure 4.6: Clustering analysis. A) BIC of k-means models with different values of k (k =
1, 2, 3, 4). B) Mean SC of k-means models with different values of k (k = 2, 3, 4, note that SC
is not applicable for k = 1). C) The distribution of Silhouette Coefficients (SC) with different
values of k in k-means clustering. From left to right, k = 2, 3, and 4.

space in the early time window (Spearman’s rho = 0.24, p < 0.05, permutation test). The
correlation between mid- fusiform representation space in the late time window and the facial
feature space was smaller and did not reach statistical significance (Spearman’s rho = 0.15,
p > 0.1, permutation test).

4.3.7 Comparison to facial identity classification

Given the strongly supported hypothesis the fusiform plays a central role in face identity recog-
nition, the effect size of identity and expression coding in the fusiform was compared. Due to
the relatively few repetitions of individual faces, individuation was examined in only the 7 sub-
jects that had sufficient repetitions of each face identity allowing for multivariate classification
of identity across expression; identity decoding was previously reported for 4 of these subjects
in a recent study (Ghuman et al., 2014). Across the 7 total subjects (3 here and 4 reported pre-
viously), the mean peak d′ = 0.50 for face identity decoding was significantly greater than the
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Figure 4.7: Representational similarity analysis (RSA) between the facial feature space and
the representational spaces of posterior and mid- fusiform at both early and late stages.
Top row: representational dissimilarity matrices (RDM) of facial expressions in the facial feature
space (left), RDM of posterior fusiform at early stage (middle), RDM of posterior fusiform at late
stage (right). Bottom row: RDM of mid-fusiform at early stage (middle), RDM of mid-fusiform
at late stage (right). Abbreviations: AF fearful, AN angry, HA happy, NE neutral, SA sad.

mean peak accuracy for facial expression decoding in the exact same set of electrodes (mean
peak d′ = 0.20; t(6) = 3.7821, p = 0.0092). With regards to the timing of identity (mean peak
time = 314 ms) versus expression sensitivity, the posterior peak time for expression classifica-
tion was significantly earlier than the peak time for identity (t(18) = 4.45, p = 0.0003). The
mid-fusiform extended peak time for expression classification overlapped with the peak time for
identity.

4.3.8 Meta-analysis of the neuroimaging literature

In the broad neuroimaging literature, we found 64 fMRI studies with full brain contrasts between
face expressions (See Table 4.4). Among the 64 studies, 24 studies report at least one significant
focus of fusiform sensitivity to differences in expressions (See Figure 4.8 for activation map). A
total of 999 significant foci were reported in those experiments for contrasts between different fa-
cial expressions (Figure 4.8). A full brain activation likelihood estimation (ALE) was performed
and significance was assessed using a cluster-based permutation test. 4 significant clusters were
found at the p < 0.01 threshold, none of which included the fusiform. The MNI coordinates for
the center and the corresponding label names of the 4 clusters are shown in Table 4.4.
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Figure 4.8: Activation map for facial expressions. (Red) Whole brain activation map from
all 64 relevant fMRI studies. (Green square) Voxels in fusiform reported in 24/64 of the fMRI
studies that have significant contrast between facial expressions. (Blue dots) iEEG electrodes
in fusiform that have significant facial expression decoding. (Blue line) the border between
posterior and mid-fusiform clusters based upon clustering analysis in the iEEG electrodes.

4.4 Discussion
Multivariate classification methods were used to evaluate the encoding of facial expressions
recorded from electrodes placed directly in face sensitive fusiform cortex. Though the effect
size for expression classification is smaller than for identity classification, the results support a
role for the fusiform in the processing of facial expressions. Electrodes that were sensitive to
expression were also sensitive to identity, suggesting a shared neural substrate for identity and
expression coding in the fusiform. The results also show that the posterior and mid- fusiform are
dynamically involved in distinct stages of facial expression processing and have different rep-
resentations of expressions. The differential representation and magnitude of the temporal dis-
placement between the sensitivity in posterior and mid-fusiform suggests these are qualitatively
distinct stages of facial expression processing and not merely a consequence of transmission or
information processing delay along a feedforward hierarchy.

Fusiform is sensitive to facial expression
The results here show that the fusiform is sensitive to expression, though the effect size for
classification of expression in the fusiform using iEEG is small-to-medium (Cohen, 1988). The
results also suggest that the same patches of the fusiform that are sensitive to expression are
sensitive to identity as well. Given the variability of the effect size due to the proximity of elec-
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trode placement relative to face patches, the relative effect size may be more informative than
the absolute effect size. The magnitude for facial expression classification is approximately half
what was seen for face identity classification. This suggests that while fusiform contributes to
facial expression perception, it is to a lesser degree than face identity processing. Greater in-
volvement in identity than expression perception is expected for a region involved in structural
processing of faces because identity relies on this information more than expression because ex-
pression perception also relies on facial dynamics. These results support models that hypothesize
fusiform involvement in form/structural processing, at least for posterior fusiform (see discus-
sion on spatially and temporally segregated stages of processing below), which can support facial
expression processing (Calder and Young, 2005; Duchaine and Yovel, 2015). These results do
not support models that hypothesize a strong division between facial identity and expression
processing (Bruce and Young, 1986; Haxby et al., 2000).

To test what a brain region codes for one must examine its response for early, bottom-up
activation during an incidental task or passive viewing (Dehaene and Cohen, 2011), otherwise
it is difficult to disentangle effects of task demands and top-down modulation. Indeed, previous
studies have demonstrated that extended fusiform activity, particularly in the broadband gamma
range, is modulated by task-related information (Engell and McCarthy, 2010; Ghuman et al.,
2014). Some previous iEEG studies of expression coding in the fusiform have used an explicit
expression judgment task and examined only broadband gamma activity, making it difficult to
draw definitive conclusions about fusiform expression coding from these results (Kawasaki et al.,
2012; Tsuchiya et al., 2008). One previous study that used an implicit task did not show evidence
of expression sensitivity during the early stage of activity in the fusiform (Müsch et al., 2014);
another did show evidence of expression sensitivity, though it reported results only from a single
subject (Pourtois et al., 2010). The results here show in a large iEEG sample that the early
response of the fusiform most sensitive to bottom-up processing is modulated by expression, at
least for the posterior fusiform.

The effect size for facial expression classification is consistent with mixed findings in the neu-
roimaging literature for expression sensitivity in the fusiform (Harris et al., 2014; Harry et al.,
2013; Haxby et al., 2000; Skerry and Saxe, 2014; Tsuchiya et al., 2008; Zhang et al., 2016).
IEEG generally has greater sensitivity and lower noise than non-invasive measures of brain ac-
tivity. Methods with lower sensitivity, such as fMRI, would be expected to have a substantial
false negative rate for facial expression coding in the fusiform. To quantify fMRI sensitivity to
expression we performed a meta-analysis on 64 studies. Of these studies, 24 reported at least
one expression sensitive loci in the fusiform. However, at the meta-analytic level, no significant
cluster of expression sensitivity was seen in the fusiform after whole brain analysis (see Table
4.4, and Figure 4.8). Thus, consistent with the iEEG effect size for expression decoding in the
fusiform seen here, there is some suggestion in the fMRI literature for expression sensitivity in
the fusiform, but it is relatively small in magnitude and does not achieve statistical significance
at the whole brain level.
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Multiple, spatially and temporally segregated stages of face expression pro-
cessing in the fusiform

Using a data-driven analysis, posterior and mid-fusiform face patches were shown to contribute
differentially to expression processing. The dividing point between post-fusiform and mid-
fusiform electrodes found in a data-driven manner is consistent with the anatomical border for
the posterior and mid-fusiform face patches previously described, suggesting a strong coupling
between the anatomical and functional divisions in fusiform (Weiner et al., 2014). While pos-
terior and mid-fusiform have been shown to be cytoarchitectonically distinct regions each with
separate face sensitive patches (Freiwald and Tsao, 2010; Weiner et al., 2014, 2017), functional
differences between these patches have remained elusive in the literature. The results here sug-
gest that these anatomical and physiological distinctions correspond to functional distinctions in
the role of these areas in face processing, as reflected in qualitatively different temporal dynamics
in these regions for facial expression processing. Specifically, posterior fusiform participates in
a relatively early stage of facial expression processing that may be related to structural encoding
of faces. Mid-fusiform demonstrates a distinct pattern of extended dynamics and participates in
a later stage of processing that may be related to a more abstract and/or multifaceted representa-
tion of expression and emotion. These results support the revised model of fusiform function that
posits the fusiform contributes to structural encoding of facial expression during the initial stages
of processing (Calder and Young, 2005; Duchaine and Yovel, 2015), with the notable addition
that it may be primarily posterior fusiform contributes to structural processing.

The early time period of expression sensitivity in posterior fusiform overlaps with strong
face sensitive activity measured non-invasively around 170 ms after viewing a face, which is
thought to reflect structural encoding of face information (Bentin and Deouell, 2000; Blau et al.,
2007; Eimer, 2000a,c, 2011). Face sensitive activity in this time window has been shown to be
insensitive to attention and is thought to reflect a ”rapid, feed-forward phase of face-selective
processing.” (Furey et al., 2006) Additionally, a face adaptation study showed that activity in this
window reflects the actual facial expression rather than the perceived (adapted) expression (Furl
et al., 2007). Consistent with these previous findings, the RSA results here show that the early
posterior activity is significantly correlated to the physical/structural features of the face.

The expression sensitivity in mid-fusiform onset began later than the posterior fusiform
(around 230 ms), and remained active until ∼450 ms after viewing a face. Face sensitive ac-
tivity in this time window has been shown to be sensitive to face familiarity and to attention
(Eimer, 2000b; Eimer et al., 2003). Previous studies and the results presented here show that
face identity can be decoded from the activity in this later time window in mid-fusiform (Ghu-
man et al., 2014; Vida et al., 2017) and reflects a distributed code for identity among regions of
the face processing network (Li et al., 2017). Thus, this later activity may relate to integration of
multiple kinds of face information, such integration of identity and expression. Additionally, the
previously mentioned face adaptation study showed that activity in this window reflects the sub-
jectively perceived facial expression after adaptation (Furl et al., 2007). The RSA analysis here
showed that the activity in this time window in mid-fusiform was not significantly correlated with
physical similarity of the facial expressions. This lack of correlation with the physical features of
the space, combined with the result that mid-fusiform activity does show significant expression
decoding, suggests that the representation in mid-fusiform may reflect a more conceptual repre-
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sentation of expression. Taken together, these results and prior findings suggest the mid-fusiform
expression sensitivity in this later window reflect a more abstract and subjective representation
of expression and may be related to integration of multiple face cues, including identity and ex-
pression. This abstract and multifaceted representation is likely to reflect processes arising from
interactions across the face processing network (Ishai, 2008).

To conclude, the results presented here support the hypothesis that the fusiform contributes
to expression processing (Calder and Young, 2005; Duchaine and Yovel, 2015). The finding that
the same part of the fusiform is sensitive to both identity and expression contradicts models that
hypothesize separate pathways for their processing (Bruce and Young, 1986; Haxby et al., 2000)
and instead supports the hypothesis the fusiform supports structural encoding of faces in service
of both identity and expression (Duchaine and Yovel, 2015). The results also show there is a
qualitative distinction between face processing in posterior and mid-fusiform, with each con-
tributing to temporally and functionally distinct stages of expression processing. This distinct
contribution of these two fusiform patches suggest that the structural and cytoarchitectonic dif-
ferences between posterior and mid-fusiform are associated with functional differences between
the contributions of these areas to face perception. Taken together, the results here illustrate the
dynamic role the fusiform plays in multiple stages of facial expression processing.
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Table 4.1: MNI coordinates and facial expression sensitivity (d′) for all face sensitive electrodes.
Electrode ID is labeled by subject number (SX) and electrode from that subject (a, b, etc.). Sen-
sitivity to expression defined as p < 0.05 decoding accuracy corrected for multiple comparisons.

Electrode ID X (mm) Y (mm) Z (mm) Peak time (ms) Peak d′ Sensitive to expressions
S1a 35 -59 -22 260 0.29 Y
S1b 33 -53 -22 150 0.31 Y
S1c 42 -56 -26 200 0.20 N
S2a 40 -57 -23 170 0.34 Y
S3a -33 -44 -31 580 0.18 N
S4a -38 -36 -30 440 0.12 N
S5a -38 -36 -20 300 0.25 Y
S5b -42 -37 -19 330 0.25 Y
S6a 34 -40 -11 540 0.24 Y
S6b 39 -40 -10 490 0.33 Y
S7a 36 -57 -21 100 0.42 Y
S8a -22 -72 -9 100 0.23 Y
S8b -40 -48 -23 170 0.38 Y
S9a 32 -46 -7 180 0.34 Y
S9b 36 -48 -8 160 0.40 Y
S10a 29 -46 -15 310 0.31 Y
S11a -25 -38 -17 580 0.36 Y
S11b -34 -38 -18 400 0.46 Y
S11c -49 -37 -20 430 0.27 Y
S12a 41 -33 -19 70 0.06 N
S12b 37 -51 -9 70 0.22 Y
S12c 35 -59 -4 80 0.23 Y
S13a 43 -36 -13 400 0.11 N
S13b 44 -48 -11 190 0.10 N
S14a -52 -54 -17 30 0.14 N
S15a -37 -47 -10 180 0.64 Y
S16a -39 -45 -11 160 0.03 N
S17a -43 -53 -26 90 0.20 N
S17b -46 -50 -28 110 0.31 Y
S17c -30 -63 -20 120 0.27 Y
S17d -45 -56 -25 40 0.13 N

Table 4.4: A summary list for the 64 neuroimaging studies
included in the meta-analysis (the 24 studies that report sig-
nificant emotional sensitivity in fusiform are marked with *).

title authors journal year
1* A common neural code for per-

ceived and inferred emotion.
Skerry AE, Saxe R Journal of neuro-

science
2014
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2 A left amygdala mediated network
for rapid orienting to masked fear-
ful faces.

Carlson JM, Reinke KS,
Habib R

Neuropsychologia 2009

3 A neural network reflecting individ-
ual differences in cognitive process-
ing of emotions during perceptual
decision making.

Meriau K, Wartenburger I,
Kazzer P, Prehn K, Lammers
CH, van der Meer E, Vill-
ringer A, Heekeren HR

NeuroImage 2006

4 Affect-specific activation of shared
networks for perception and execu-
tion of facial expressions.

Kircher T, Pohl A, Krach S,
Thimm M, Schulte-Ruther M,
Anders S, Mathiak K

Social cognitive
and affective
neuroscience

2013

5 Amygdala activation at 3T in re-
sponse to human and avatar facial
expressions of emotions.

Moser E, Derntl B, Robinson
S, Fink B, Gur RC, Grammer
K

Journal of neuro-
science methods

2007

6 Amygdala integrates emotional ex-
pression and gaze direction in re-
sponse to dynamic facial expres-
sions.

Sato W, Kochiyama T, Uono
S, Yoshikawa S

NeuroImage 2010

7 Amygdala reactivity predicts auto-
matic negative evaluations for facial
emotions.

Dannlowski U, Ohrmann P,
Bauer J, Kugel H, Arolt V,
Heindel W, Suslow T

Psychiatry re-
search

2007

8 Amygdala response to facial ex-
pressions in children and adults.

Thomas KM, Drevets WC,
Whalen PJ, Eccard CH, Dahl
RE, Ryan ND, Casey BJ

Biological psy-
chiatry

2001

9 Amygdala response to facial ex-
pressions reflects emotional learn-
ing.

Hooker CI, Germine LT,
Knight RT, D’Esposito M

Journal of neuro-
science

2006

10 Anxiety predicts a differential neu-
ral response to attended and unat-
tended facial signals of anger and
fear.

Ewbank MP, Lawrence AD,
Passamonti L, Keane J, Peers
PV, Calder AJ

NeuroImage 2009

11 Automatic emotion processing as a
function of trait emotional aware-
ness: an fMRI study.

Lichev V, Sacher J, Ihme K,
Rosenberg N, Quirin M, Lep-
sien J, Pampel A, Rufer M,
Grabe HJ, Kugel H, Kerst-
ing A, Villringer A, Lane RD,
Suslow T

Social cognitive
and affective
neuroscience

2014

12 Beyond threat: amygdala reactivity
across multiple expressions of fa-
cial affect.

Fitzgerald DA, Angstadt M,
Jelsone LM, Nathan PJ, Phan
KL

NeuroImage 2006
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13* Binding action and emotion in so-
cial understanding.

Ferri F, Ebisch SJ, Costan-
tini M, Salone A, Arciero G,
Mazzola V, Ferro FM, Ro-
mani GL, Gallese V

PloS one 2013

14* Both of us disgusted in My insula:
the common neural basis of seeing
and feeling disgust.

Wicker B, Keysers C, Plailly
J, Royet JP, Gallese V, Rizzo-
latti G

Neuron 2003

15 Brain networks involved in haptic
and visual identification of facial
expressions of emotion: an fMRI
study.

Kitada R, Johnsrude IS,
Kochiyama T, Lederman SJ

NeuroImage 2010

16* Brain responses to dynamic facial
expressions of pain.

Simon D, Craig KD, Miltner
WH, Rainville P

Pain 2006

17 Brain responses to facial expres-
sions of pain: emotional or motor
mirroring?

Budell L, Jackson P, Rainville
P

NeuroImage 2010

18* Cerebral integration of verbal and
nonverbal emotional cues: impact
of individual nonverbal dominance.

Jacob H, Kreifelts B, Bruck
C, Erb M, Hosl F, Wildgruber
D

NeuroImage 2012

19 Cerebral regulation of facial expres-
sions of pain.

Kunz M, Chen JI, Lauten-
bacher S, Vachon-Presseau E,
Rainville P

Journal of neuro-
science

2011

20 Classification images reveal the in-
formation sensitivity of brain vox-
els in fMRI.

Smith FW, Muckli L, Bren-
nan D, Pernet C, Smith ML,
Belin P, Gosselin F, Hadley
DM, Cavanagh J, Schyns PG

NeuroImage 2008

21 Converging evidence for the advan-
tage of dynamic facial expressions.

Arsalidou M, Morris D, Tay-
lor MJ

Brain topography 2011

22* Decoding of affective facial expres-
sions in the context of emotional
situations.

Sommer M, Dohnel K, Mein-
hardt J, Hajak G

Neuropsychologia 2008

23 Dynamic facial expressions evoke
distinct activation in the face per-
ception network: a connectivity
analysis study.

Foley E, Rippon G, Thai NJ,
Longe O, Senior C

Journal of cogni-
tive neuroscience

2012

24* Dynamic stimuli demonstrate a cat-
egorical representation of facial ex-
pression in the amygdala.

Harris RJ, Young AW, An-
drews TJ

Neuropsychologia 2014
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25* Emotions in motion: dynamic com-
pared to static facial expressions of
disgust and happiness reveal more
widespread emotion-specific acti-
vations.

Trautmann SA, Fehr T, Her-
rmann M

Brain research 2009

26 Enhanced neural activity in re-
sponse to dynamic facial expres-
sions of emotion: an fMRI study.

Sato W, Kochiyama T,
Yoshikawa S, Naito E,
Matsumura M

Cognitive brain
research

2004

27* Facial emotion modulates the neu-
ral mechanisms responsible for
short interval time perception.

Tipples J, Brattan V, Johnston
P

Brain topography 2015

28* Facial expression and gaze-
direction in human superior
temporal sulcus.

Engell AD, Haxby JV Neuropsychologia 2007

29 Facial expressions and complex
IAPS pictures: common and differ-
ential networks.

Britton JC, Taylor SF, Sud-
heimer KD, Liberzon I

NeuroImage 2006

30 Frontal lobe networks for effec-
tive processing of ambiguously ex-
pressed emotions in humans.

Nomura M, Iidaka T, Kakehi
K, Tsukiura T, Hasegawa T,
Maeda Y, Matsue Y

Neuroscience let-
ters

2003

31 Functional imaging of face and
hand imitation: towards a motor
theory of empathy.

Leslie KR, Johnson-Frey SH,
Grafton ST

NeuroImage 2004

32* Functional neuroanatomy of per-
ceiving surprised faces.

Schroeder U, Hennenlot-
ter A, Erhard P, Haslinger
B, Stahl R, Lange KW,
Ceballos-Baumann AO

Human brain
mapping

2004

33 Functional responses and structural
connections of cortical areas for
processing faces and voices in the
superior temporal sulcus.

Ethofer T, Bretscher J, Wi-
ethoff S, Bisch J, Schlipf S,
Wildgruber D, Kreifelts B

NeuroImage 2013

34 Incongruence effects in crossmodal
emotional integration.

Muller VI, Habel U, Derntl B,
Schneider F, Zilles K, Turet-
sky BI, Eickhoff SB

NeuroImage 2011

35* Integration of cross-modal emo-
tional information in the human
brain: an fMRI study.

Park JY, Gu BM, Kang DH,
Shin YW, Choi CH, Lee JM,
Kwon JS

Cortex 2010

36* Investigating the brain basis of fa-
cial expression perception using
multi-voxel pattern analysis.

Wegrzyn M, Riehle M,
Labudda K, Woermann F,
Baumgartner F, Pollmann S,
Bien CG, Kissler J

Cortex 2015
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37 Is a neutral expression also a neutral
stimulus? A study with functional
magnetic resonance.

Carvajal F, Rubio S, Serrano
JM, Rios-Lago M, Alvarez-
Linera J, Pacheco L, Martin P

Experimental
brain research

2013

38* Leaving a bad taste in your mouth
but not in my insula.

von dem Hagen EA, Beaver
JD, Ewbank MP, Keane J,
Passamonti L, Lawrence AD,
Calder AJ

Social cognitive
and affective
neuroscience

2009

39 Masked presentations of emo-
tional facial expressions modulate
amygdala activity without explicit
knowledge.

Whalen PJ, Rauch SL, Etcoff
NL, McInerney SC, Lee MB,
Jenike MA

Journal of neuro-
science

1998

40 Mind your left: spatial bias in sub-
cortical fear processing.

Siman-Tov T, Papo D, Gadoth
N, Schonberg T, Mendelsohn
A, Perry D, Hendler T

Journal of cogni-
tive neuroscience

2009

41* Multiple mechanisms of conscious-
ness: the neural correlates of emo-
tional awareness.

Amting JM, Greening SG,
Mitchell DG

Journal of neuro-
science

2010

42 Neural mechanism for judging the
appropriateness of facial affect.

Kim JW, Kim JJ, Jeong BS,
Ki SW, Im DM, Lee SJ, Lee
HS

Cognitive brain
research

2005

43* Neural mechanism of unconscious
perception of surprised facial ex-
pression.

Duan X, Dai Q, Gong Q,
Chen H

NeuroImage 2010

44 Neural responses to ambiguity in-
volve domain-general and domain-
specific emotion processing sys-
tems.

Neta M, Kelley WM, Whalen
PJ

Journal of cogni-
tive neuroscience

2013

45* Nonconscious emotional process-
ing involves distinct neural path-
ways for pictures and videos.

Faivre N, Charron S, Roux P,
Lehericy S, Kouider S

Neuropsychologia 2012

46* Orbitofrontal and hippocampal
contributions to memory for face-
name associations: the rewarding
power of a smile.

Tsukiura T, Cabeza R Neuropsychologia 2008

47 Orbitofrontal Cortex Reactivity to
Angry Facial Expression in a Social
Interaction Correlates with Aggres-
sive Behavior.

Beyer F, Munte TF, Gottlich
M, Kramer UM

Cerebral cortex 2014

48 Positive facial affect - an fMRI
study on the involvement of insula
and amygdala.

Pohl A, Anders S, Schulte-
Ruther M, Mathiak K,
Kircher T

PloS one 2013
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49 Preferential amygdala reactivity to
the negative assessment of neutral
faces.

Blasi G, Hariri AR, Alce
G, Taurisano P, Sambataro F,
Das S, Bertolino A, Wein-
berger DR, Mattay VS

Biological psy-
chiatry

2009

50 Pupillary contagion: central mech-
anisms engaged in sadness process-
ing.

Harrison NA, Singer T, Rot-
shtein P, Dolan RJ, Critchley
HD

Social cognitive
and affective
neuroscience

2006

51* Reduced emotion processing effi-
ciency in healthy males relative to
females.

Weisenbach SL, Rapport LJ,
Briceno EM, Haase BD, Ve-
derman AC, Bieliauskas LA,
Welsh RC, Starkman MN,
McInnis MG, Zubieta JK,
Langenecker SA

Social cognitive
and affective
neuroscience

2014

52* Segregating intra-amygdalar re-
sponses to dynamic facial emotion
with cytoarchitectonic maximum
probability maps.

Hurlemann R, Rehme AK,
Diessel M, Kukolja J, Maier
W, Walter H, Cohen MX

Journal of neuro-
science methods

2008

53 Similarities and differences in per-
ceiving threat from dynamic faces
and bodies. An fMRI study.

Kret ME, Pichon S, Grezes J,
de Gelder B

NeuroImage 2011

54 Stop looking angry and smile,
please: start and stop of the very
same facial expression differen-
tially activate threat- and reward-
related brain networks.

Muhlberger A, Wieser MJ,
Gerdes AB, Frey MC, Weyers
P, Pauli P

Social cognitive
and affective
neuroscience

2011

55 Temporal pole activity during per-
ception of sad faces, but not happy
faces, correlates with neuroticism
trait.

Jimura K, Konishi S,
Miyashita Y

Neuroscience let-
ters

2009

56* The amygdala and FFA track both
social and non-social face dimen-
sions.

Said CP, Dotsch R, Todorov
A

Neuropsychologia 2010

57 The amygdala processes the emo-
tional significance of facial expres-
sions: an fMRI investigation using
the interaction between expression
and face direction.

Sato W, Yoshikawa S,
Kochiyama T, Matsumura M

NeuroImage 2004

58 The behavioral and neural effect of
emotional primes on intertemporal
decisions.

Luo S, Ainslie G, Monterosso
J

Social cognitive
and affective
neuroscience

2014
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59* The changing face of emotion: age-
related patterns of amygdala activa-
tion to salient faces.

Todd RM, Evans JW, Morris
D, Lewis MD, Taylor MJ

Social cognitive
and affective
neuroscience

2011

60* The functional correlates of face
perception and recognition of emo-
tional facial expressions as evi-
denced by fMRI.

Jehna M, Neuper C, Is-
chebeck A, Loitfelder M,
Ropele S, Langkammer C,
Ebner F, Fuchs S, Schmidt R,
Fazekas F, Enzinger C

Brain research 2011

61 The highly sensitive brain: an fMRI
study of sensory processing sensi-
tivity and response to others’ emo-
tions.

Acevedo BP, Aron EN, Aron
A, Sangster MD, Collins N,
Brown LL

Brain and behav-
ior

2014

62 The Kuleshov Effect: the influence
of contextual framing on emotional
attributions.

Mobbs D, Weiskopf N, Lau
HC, Featherstone E, Dolan
RJ, Frith CD

Social cognitive
and affective
neuroscience

2006

63 The stimuli drive the response: an
fMRI study of youth processing
adult or child emotional face stim-
uli.

Marusak HA, Carre JM,
Thomason ME

NeuroImage 2013

64* Viewing facial expressions of pain
engages cortical areas involved in
the direct experience of pain.

Botvinick M, Jha AP, Bylsma
LM, Fabian SA, Solomon PE,
Prkachin KM

NeuroImage 2005
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Table 4.2: 17 features used for the facial feature space
Feature # Feature name

1 eyebrow length
2 inter-eyebrow distance
3 eye width
4 inter-eyes distance
5 vertical distance between eyes and nosetip
6 horizontal length of the nose
7 distance between nose and upper lip
8 face height
9 face width
10 eye height
11 width of the mouth
12 intense of red on cheeks
13 intense of green on cheeks
14 intense of blue on cheeks
15 contrast polarity between eyes and nose
16 eye area
17 eye mouth ratio

Table 4.3: The MNI coordinates for the weighted center, volume, and the corresponding label
name of the significant clusters in the ALE map from meta-analysis

Cluster # X (mm) Y (mm) Z (mm) Volume (mm3) Lateralization Label
1 23 -3 -18 6088 right amygdala
2 -22 -4 -18 4640 left amygdala
3 56 -42 5 2520 right middle/superior temporal gyrus
4 3 11 53 1464 right superior frontal gyrus
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Chapter 5

Decoding the patterns of neural
interactions underlying categorical and
individual image perception

In this chapter, we move from analyzing representation dynamics within a specific region of
interest to a larger scale. Specifically, we are interested in the representational structure of the
interactions between brain areas. The lack of multivariate methods for decoding the representa-
tional content of interregional neural communication has left it difficult to know what information
is represented in distributed brain circuit interactions, in addition to the information represented
in each of the local brain area. In this chapter, we address this gap and present a novel method
termed Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between
the activity patterns of the populations as a factor of the information being processed. These maps
are used to predict the activity from one neural population based on the activity from the other
population. Successful MCPA-based decoding indicates the involvement of distributed compu-
tational processing and provides a framework for probing the representational structure of the
interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addi-
tion, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety
of hypothesis associated with information coding in neural communications. We apply MCPA
to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the
utility of this method for decoding individual natural images and faces in functional connectivity
data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA
may be used to test computational models of information transfer among regions of the visual
processing stream. Thus, MCPA can be used to assess the information represented in the cou-
pled activity of interacting neural circuits and probe the underlying principles of information
transformation between regions.

5.1 Introduction

Since at least the seminal studies of Hubel and Wiesel (Hubel and Wiesel, 1959) the compu-
tational role that neurons and neural populations play in processing has defined, and has been
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defined by, how they are tuned to represent information. The classical approach to address this
question has been to determine how the activity recorded from different neurons or neural popu-
lations varies in response to parametric changes in the information being processed. Single unit
studies have revealed tuning curves for neurons from different areas in the visual system respon-
sive to features ranging from the orientation of a line, shapes, and even high level properties such
as properties of the face (Desimone et al., 1984; Hubel and Wiesel, 1959; Tsao et al., 2006). Mul-
tivariate methods, especially pattern classification methods from modern statistics and machine
learning, such as multivariate pattern analysis (MVPA), have gained popularity in recent years
and have been used to study neural population tuning and the information represented via popu-
lation coding in neuroimaging and multiunit activity (Cox and Savoy, 2003; Ghuman et al., 2014;
Haxby et al., 2001; Haynes and Rees, 2006; Hirshorn et al., 2016; Kamitani and Tong, 2005; Pol-
drack, 2011; Polyn et al., 2005). These methods allow one to go beyond examining involvement
in a particular neural process by probing the nature of the representational space contained in the
pattern of population activity (Edelman et al., 1998; Haxby et al., 2014; Kriegeskorte and Kievit,
2013).

Neural populations do not act in isolation, rather the brain is highly interconnected and cog-
nitive processes occur through the interaction of multiple populations. Indeed, many models of
neural processing suggest that information is not represented solely in the activity of local neural
populations, but rather at the level of recurrent interactions between regions (Grossberg, 1982;
Kveraga et al., 2007; Lee and Mumford, 2003). However previous studies only focused on the
information representation within a specific population (Freiwald et al., 2009; Ghuman et al.,
2014; Haxby et al., 2014; Hirshorn et al., 2016; Nestor et al., 2011; Tsao et al., 2006), as no
current multivariate methods allow one to directly assess what information is represented in the
pattern of functional connections between distinct and interacting neural populations with prac-
tical amounts of data. Such a method would allow one to assess the content and organization of
the information represented in the neural interaction. Thus, it remains unknown whether func-
tional connections passively transfer information between encapsulated modules (Fodor, 1983)
or whether these interactions play an adaptive computational role in processing. Note that our
definition of non-adaptive information transfer is equivalent to a static linear projection where no
computational ”work” is done in the interaction between the regions and therefore no informa-
tion is added (from an information theory perspective). Adaptive information transfer is one in
which computational work related to the behavioral state or condition is performed and therefore
state or condition specific information is added through the interaction between regions; this is
equivalent to a non-linear function.

Univariate methods that go beyond assessing the degree of coupling between populations
to assess changes in the relationship between the activity as a factor of condition also exam-
ine adaptive communication between regions. For example the psychophysiological interactions
(PPI; (Friston et al., 1997)) and dynamic causal modeling methods (Friston et al., 2003) are sen-
sitive to adaptive interregional communication. Multivariate methods, however, in comparison to
univariate methods, allow for more sensitive detection of cognitive states, relating brain activity
to behavior on a trial-by-trial basis, and characterizing the structure of the neural code (Norman
et al., 2006). Thus, a multivariate pattern analysis method for functional connectivity analysis is
critical for decoding the representational structure of interregional interactions.

In this paper, we introduce a multivariate analysis algorithm combining functional connec-
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tivity and pattern recognition analyses that we term Multi-Connection Pattern Analysis (MCPA).
MCPA works by learning the discriminant information represented in the shared activity be-
tween distinct neural populations by combining multivariate correlational methods with pattern
classification techniques from machine learning in a novel way. Much the way that MVPA goes
beyond a t-test or ANOVA by building a multivariate model of local activity that is then used
for single-trial prediction and classification, MCPA goes beyond PPI by building a multivariate
connectivity model that is then used for single-trial prediction and classification. This single-trial
prediction and classification makes MCPA distinct from previous connectivity approaches that
only statistically test the absolute or relative functional connectivity between two populations
(Cribben et al., 2012; Finn et al., 2015; Richiardi et al., 2011; Shirer et al., 2012; Wang et al.,
2015) and allows for a detailed probe of the representational structure of the interaction.

The MCPA method consists of an integrated process of learning connectivity maps based on
the pattern of coupled activity between two populations A and B conditioned on the stimulus
information and using these maps to classify the information representation in shared activity
between A and B in test data. The rationale for MCPA is that if the activity in one area can be
predicted based on the activity in the other area and the mapping that allows for this prediction is
sensitive to the information being processed, then this suggests that the areas are communicating
with one another and the communication pattern is sensitive to the information being processed.
Thus, MCPA simultaneously asks two questions: 1) Are the multivariate patterns of activity from
two neural populations correlated? (i.e. is there functional connectivity?) and 2) Does the con-
nectivity pattern change based on the information being processed? This is operationalized by
learning a connectivity map that maximizes the multivariate correlation between the activities of
the two populations in each condition. This map can be thought of like the regression weights that
transform the activity pattern in area A to the activity pattern in area B (properly termed ”canoni-
cal coefficients” because a canonical correlation analysis [CCA] is used to learn the map). These
maps are then used to generate the predictions as part of the classification algorithm. Specifically,
a prediction of the activity pattern in one region is generated for each condition based on the ac-
tivity pattern in the other region projected through each mapping. Single trial classification is
achieved by comparing these predicted activity patterns with the true activity pattern (see Figure
5.1 for illustration). With MCPA single trial classification based on multivariate functional con-
nectivity patterns is achieved allowing the nature of the representational space of the interaction
to be probed.

We present a number of simulations to validate MCPA for a realistic range of signal-to-noise
ratios (SNR) and to show that MCPA is insensitive to local information processing. We apply
MCPA to examine the inter-regional representation for natural visual stimuli in visual cortex
using functional magnetic resonance imaging (fMRI) data. Specifically, we show that the inter-
actions between regions of the visual stream (V1, V2, V3, V4, and lateral occipital cortex [LO])
are sensitive to information about individual natural images. We combine MCPA with repre-
sentational similarity analysis to demonstrate that MCPA can be used to evaluate computational
models and make inferences regarding the underlying neural mechanism of information trans-
ferring. To demonstrate MCPA’s applicability to electrophysiological signals and multivariate
oscillatory synchrony, we use MCPA to examine the circuit-level representation for faces us-
ing intracranial electroencephalography (iEEG) data. Specifically, we show that the interaction
between the occipital face area (OFA) and the fusiform face area (FFA) represents information
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about individual faces. Despite the potential caveat of small effect size due to the limited size of
dataset, these results demonstrate that MCPA can be used to probe the nature of representational
space resulting from processing distributed across neural regions.

5.2 Methods

5.2.1 Overview

The MCPA method consists of a learning phase and a test phase (as in machine learning, where
a model is first learned, then tested). In the learning phase, the connectivity maps for each condi-
tion that characterize the pattern of shared activity between two populations is learned. In the test
phase, these maps are used to generate predictions of the activity in one population based on the
activity in the other population as a factor of condition and these predictions are tested against
the true activity in the two populations. Similar to linear regression where one can generate a
prediction for the single variable A given the single variable B based on the line that correlates
A and B, MCPA employs a canonical correlation model (a generalization of multivariate linear
regression) and produces a mapping model for each condition as a hyperplane that correlates
multidimensional vectors A and B. Thus one can generate a prediction of the observation in
multivariate space A given the observation in multivariate space B on a single trials basis. In this
sense, MCPA is more analogous to a machine learning classifier combined with a multivariate
extension of PPI (Friston et al., 1997) rather than being analogous to correlation-based functional
connectivity measures.

The general framework of MCPA is to learn the connectivity map between the populations
for each task or stimulus condition separately based on training data. Specifically, given two
neural populations (referred to as A and B), the neural activity of the two populations can be
represented by feature vectors in multi-dimensional spaces (Haxby et al., 2014). The actual
physical meaning of the vectors would vary depending on modality, for example spike counts for
a population of single unit recordings; time point features for event-related potentials (ERP) or
event-related fields; time-frequency features for electroencephalography, electrocorticography
(ECoG) or magnetoencephalography; or single voxel blood-oxygen-level dependent (BOLD)
responses for functional magnetic resonance imaging. A mapping betweenA andB is calculated
based on any shared information between them for each condition on the training subset of
the data. This mapping can be any kind of linear transformation, such as any combination of
projections, scalings, rotations, reflections, shears, or squeezes.

These mappings are then tested as to their sensitivity to the differential information being
processed between cognitive conditions by determining if the neural activity can be classified
based on the mappings. Specifically, for each new test data trial, the maps are used to predict
the neural activity in one area based on the activity in the other area and these predictions are
compared to the true condition of the data. The trained information-mapping model that fits the
data better is selected and the trial is classified into the corresponding condition. This allows one
to test whether the mappings were sensitive to the differential information being represented in
the neural interaction in the two conditions.

The flow of the MCPA framework is demonstrated in Figure 5.1 and Algorithm 1. An
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implementation of MCPA with sample data and scripts in MATLAB are freely available at
https://github.com/yuanningli/MCPA.

Figure 5.1: Illustration of the connectivity map and classifier of MCPA. The MCPA frame-
work is demonstrated as a two-phase process: learning and testing. Top left: an illustration
of the learned functional information mapping between two populations under condition 1. The
representational state spaces of the two populations are shown as two planes and each pair of
blue and red dots correspond to an observed data point from the populations. The functional in-
formation mapping is demonstrated as the colored pipes that project points from one space onto
another (in this case, a 90 degree clockwise rotation). Bottom left: an illustration of the learned
functional information mapping between two populations under condition 2 (in this case, a 90
degree counterclockwise rotation). Top right: an illustration of the predicted signal by map-
ping the observed neural activity from one population onto another using the mapping patterns
learned from condition 1. The real signal in the second population is shown by the red dot.
Bottom right: an illustration of the predicted signal by mapping the observed neural activity
from one population onto another using the mapping patterns learned from condition 2. In this
case, MCPA would classify the activity as arising from condition 1 because of the better match
between the predicted and real signal.
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Algorithm 1: Multi-Connection Pattern Analysis (MCPA)

Data: training data: matrices {X(i)
A ∈ RmA×ni ,X

(i)
B ∈ RmB×ni} for training observation in

ROI-A and ROI-B under condition i, i = 1, ..., k ;
testing data: xA ∈ RmA , xB ∈ RmA for observation in ROI-A and ROI-B
Result: Prediction of condition y for observation (xA,xB)

1 Learning phase:
2 for i← 1 to k do
3 Apply CCA on {X(i)

A ,X
(i)
B } to get linear mapping function R

(i)
BA,R

(i)
AB;

4 Testing phase:
5 for i← 1 to k do
6 Use xA and R

(i)
BA to reconstruct activity in ROI-B under condition i, x̂

(i)
B = R

(i)
BAxA;

7 Use xB and R
(i)
AB to reconstruct activity in ROI-A under condition i, x̂

(i)
A = R

(i)
ABxB;

8 Assign the condition that gives maximum average correlation coefficient as:
9 y = argmax

i∈{1,..,k}
corr(x̂(i)

B ,xB) + corr(x̂(i)
A ,xA)

5.2.2 Connectivity Map
The first phase of MCPA is to build the connectivity map between populations. The neural signal
in each population can be decomposed into two parts: the part that encodes shared information,
and the part that encodes non-shared local information (including any non-shared measurement
noise, shared measurement noise, such as movement artifacts in fMRI, can result in artifactually
inflated connectivity, but for well-balanced and randomized experiments should not differ be-
tween conditions and therefore does not affect MCPA discrimination). We assume that the parts
of the neural activities that represent the shared information in the two populations are linearly
correlated (though, this can easily be extended by the introduction of a non-linear kernel). The
model can be described as follows:

C ∼ N (0, Id), min{mA,mB} ≥ d ≥ 1 (5.1)

A|C = WAC + D, D ∼ N (µA,ΨA), WA ∈ RmA×d, ΨA � 0 (5.2)

B|C = WBC + E, E ∼ N (µB,ΨB), WB ∈ RmB×d, ΨB � 0 (5.3)

where A ∈ RmA and B ∈ RmB are the population activity vectors in A and B respectively,
C ∈ Rd is the common activity, D ∈ RmA and E ∈ RmB are local activities, mA,mB are the
dimensionality of activity vector in population A and B respectively. Without loss of generality,
µA = µB = 0 can be assumed. The activity in population A can be decomposed into shared
activity WAC and local activity D, while activity in B can be decomposed into shared activity
WBC and local activity E. The shared discriminant information only lies in the mapping matrix
WA and WB since C always follows the standard multivariate normal distribution (though cor-
relation measures that do not assume normally distributed data can also be applied with minor
modifications to the calculation). In statistics, canonical correlation analysis (CCA) is optimally
designed for such a model and estimate the linear mappings (Bach and Jordan, 2005; Hardoon
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et al., 2004). In brief, let S be the covariance matrix

S =

[
SAA SAB
STAB SBB

]
= E

[(
A
B

) (
A
B

)T]
(5.4)

Therefore WA and WB can be estimated by solving the following eigen problem{
S−1AASABS−1BBSBAUA = ρ2UA

S−1BBSBAS−1AASABUB = ρ2UB

(5.5)

And we have {
WA = SAAUAdM1

WB = SBBUBdM2

(5.6)

where UAd and UBd are the first d columns of canonical directions UA and UB, and M1,M2 ∈
Rd×d are arbitrary matrices such that M1M

T
2 = Pd, Pd is the diagonal matrix with the first d

elements of P = UT
BSBAUA. Therefore, M1 and M2 are just matrices used to normalize the

projection of A and B onto the latent space. So M1 and M2 can take arbitrary value as long as
M1M

T
2 = Pd, where Pd is the diagonal matrix representing the variance along each of the d

latent dimensions. Therefore, we can just take M1 = M2 = P
1/2
d .

With WA and WB, the shared information C can be estimated using its posterior mean
E(C|A) and E(C|B), where E(C|A) = MT

1 UT
AA and E(C|B) = MT

2 UT
BB. Let M1 = M2

and equate E(C|A) and E(C|B), this shared information can be used as a relay to build the
bidirectional mapping between A and B. Specifically,

MT
1 UT

AA = MT
2 UT

BB (5.7)

⇒

{
B̂ = (MT

2 UT
B)†MT

1 UT
AA = UT

B
†
UT
AA = RBAA

Â = (MT
1 UT

A)†MT
2 UT

BB = UT
A
†
UT
BB = RABB

(5.8)

where

RBA = UT
B

†
UT
A = UB(UT

BUB)−1UT
A (5.9)

RAB = UT
A

†
UT
B = UA(UT

AUA)−1UT
B (5.10)

To ensure stability, we use `2 regularization, which yields the ridge estimator (Tikhonov and
Arsenin, 1977; Vinod, 1976){

(SAA + λ1ImA
)−1SAB(SBB + λ2ImB

)−1SBAUA = ρ2UA

(SBB + λ2ImB
)−1SBA(SAA + λ1ImA

)−1SABUB = ρ2UB

(5.11)

and

RBA = UB(UT
BUB + λ3Id)

−1UT
A (5.12)

RAB = UA(UT
AUA + λ4Id)

−1UT
B (5.13)
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In the first step, the connectivity map is estimated for each condition separately. Suppose
we have n1 trials in condition 1 and n2 trials in condition 2 in the training set, the training data
for the two conditions are represented in matrices as [X

(1)
A ,X

(1)
B ]T and [X

(2)
A ,X

(2)
B ]T respectively,

where X
(1)
A ∈ RmA×n1 , X

(1)
B ∈ Rmb×n2 are the population activity for A and B under condition

1 respectively, and X
(2)
A ∈ RmA×n2 , X

(2)
B ∈ Rmb×n2 are the population activity for A and B

under condition 2 respectively. The testing data vector is then represented as [xTA,x
T
B]T , where

xA ∈ RmA and xB ∈ RmB are population activities in A and B respectively. Using CCA, the
estimations of the mapping matrices with respect to different conditions are R(1) and R(2). To
sum up, by building the connectivity map, linear mapping function R is estimated from the
data for each condition so that the activity of the two populations can be directly linked through
bidirectional functional connectivity that captures only the shared information.

5.2.3 Classification
The second phase of MCPA is a pattern classifier that takes in the activity from one popula-
tion and predicts the activity in a second population based on the learned connectivity maps
conditioned upon the stimulus condition or cognitive state. The testing data is classified into
the condition to which the corresponding model most accurately predicts the true activity in the
second population.

The activity from one population is projected to another using the learned CCA model,

x
(i)
B = R

(i)
BAxA (5.14)

x
(i)
A = R

(i)
ABxB (5.15)

The predicted projections x
(i)
B are compared to the real observation xB, and then the testing

trial is labeled to the condition where the predicted and real data match most closely. Cosine
similarity (correlation) is used as the measurement of the goodness of prediction. The mapping
is bidirectional, so A can be projected to B and vice versa. In practice, the similarities from the
two directions are averaged in order to find the condition that gives maximum average correlation
coefficient. Therefore, we have

ŷpred = argmax
i

xTBx
(i)
B

‖xB‖‖x(i)
B ‖

+
xTAx

(i)
A

‖xA‖‖x(i)
A ‖

(5.16)

5.2.4 Simulated experiments
Simulations to evaluate the general performance of MCPA

To test the performance of MCPA, we used BOLD signal recorded from areas V1 and V2 to
simulate shared and local activity in two populations and tested the performance of MCPA on
synthetic data as a factor of the number of dimensions in each population and signal-to-noise
ratio (SNR; Figure 5.2a). We further evaluated three control experiments to demonstrate that
MCPA is insensitive to the presence or change in the local information. For the first simulation
(Figure 5.2a), we sampled from the empirical distribution of BOLD signal recorded from area V1
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in the visual cortex and used it as the shared activity, and independently sampled signal from the
empirical distributions of activity in V1 and V2 as the local unshared activity. (See fMRI method
described below for experiment details). The shared activity for both conditions in population
A was drawn from the empirical distribution of the first d principal components of V1 activity
to mimic a d-dimensional normal distribution Y

(i)
A ∼ N (0,Σd), for i = 1, 2, where Σd is a

diagonal matrix with the j-th element in the diagonal as σ2
j . The shared activity in population

B under two different conditions were generated by rotating YA with different rotation matrices
separately, Y

(i)
B = R(i)Y

(i)
A , where R(1) and R(2) were two d-by-d random rotation matrices

corresponding to the information mapping functions under condition 1 and 2 respectively, and
for simplicity, R(i) is orthonormal with R(i)TR(i) = Id. In addition to the shared activity, local
activity in A and B was randomly drawn from the empirical distributions of the first d principal
components of V1 and V2 activity respectively and multiplied by a factor of σ to simulate white
noise E(i) ∼ N (0, σ2Σd).

The two important parameters here are the dimensionality d and the variance σ2. SNR was
used to characterize the ratio between the variance of shared activity and variance of local activ-
ity, and the logarithmic decibel scale SNRdB = −10 log10(σ

2) was used. To cover the wide range
of possible data recorded from different brain regions and different measurement modalities, we
tested the performance of MCPA with d ranging from 2 to 25 and SNR ranging from -20 dB to
20 dB (σ2 ranged from 0.01 to 100). Note that each of the d dimensions contain independent
information about the conditions and have the same SNR. Thus the overall SNR does not change,
but the amount of pooled information does change with d. For each particular setup of param-
eters, the rotation matrices R(i) were randomly generated first, then 200 trials were randomly
sampled for each condition and evenly split into training set and testing set. MCPA was trained
using the training set and tested on the testing set to estimate the corresponding true positive
rate (TPR) and false positive rate (FPR) for the binary classification. The sensitivity index d′

was then calculated as d′ = Φ−1(TPR) − Φ−1(FPR), where Φ−1(x) is the inverse function of
the cdf of standard normal distribution. This process was repeated 100 times and the mean and
standard errors across these 100 simulations were calculated. Note that the only discriminant
information about the two conditions is the pattern of interactions between the two populations,
and neither of the two populations contains local discriminant information about the two con-
ditions in its own activity. We further tested and confirmed this by trying to classify the local
activity in populations A and B (see below). To avoid an infinity d′ value, with 100 testing trials
per condition, the maximum and minimum for TPR or FPR were set to be 0.99 and 0.01, which
made the maximum possible d′ to be 4.65.

The MCPA method captures the pattern of correlation between neural activities from pop-
ulations and is invariant to the discriminant information encoded in local covariance. To see
this, we took the simulation data described above and applied MVPA (naı̈ve Bayes) to each of
the two populations separately. Note that in each of the two populations, we set the two condi-
tions to have the same mean and covariance. As a result, there should be no local discriminant
information within any of the two populations alone.
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Robustness of MCPA to non-informative dimensions

In addition to the existing simulations that evaluate the influence of SNR and informative dimen-
sionality on the performance of MCPA, we evaluated the influence of having non-informative
dimensionality on the performance of MCPA (Figure 5.2b). Specifically, we simulated 10 in-
formative dimensions and simulate P = 30 additional dimensions that are not informative for
discrimination and apply MCPA to this simulated data without PCA. We changed the number
of training samples available for MCPA and evaluated the performance of MCPA as a factor of
the ratio between number of dimensions and the number of training samples per condition. The
intuition is that, with a fixed amount of informative dimensions, when the number of training
samples decreases, the model would suffer from overfitting and the performance would decay.

Control simulations

For the first control simulation (Figure 5.2c), we fixed the dimensionality at d = 10 and SNR
at 0 dB (σ2 = 1). For condition 1, X

(1)
A ,X

(1)
B were drawn independently from the empirical

distributions of the first d principal components of area V1 and area V2 using the corresponding
empirical distributions; for condition 2, X

(2)
A ,X

(2)
B were drawn independently from the same

distribution in the empirical distributions of the first d principal components of area V1 and
area V2. Then we changed the local variance in one of the conditions. For the features in
population A and B under condition 1, we used X

(1)
A

′
= kX

(1)
A , and X

(1)
B

′
= kX

(1)
B , where k

ranged from 1 to 9. Thus, in both populations, the variance of condition 1 was different from
the variance of condition 2, and such difference would increase as k became larger. Therefore,
there was no information shared between the two populations under either condition, but each
of the population had discriminant information about the conditions encoded in the variance for
any k 6= 1.

For the second control simulation (Figure 5.2d), we fixed the dimensionality at 10 and SNR at
0 dB (σ2 = 1) and kept the rotation matrices of different conditions different from each other. As
a result, the amount of shared discriminant information represented in the patterns of interactions
stayed constant. Then we changed the local variance in one of the conditions. For the features
in population A under condition 1, we used X

(1)
A

′
= kX

(1)
A , where k ranged from 1 to 9. Thus,

population A, the variance of condition 1 was different from the variance of condition 2, and such
difference would increase as k became larger. According to our construction of MCPA, it should
only pick up the discriminant information contained in the interactions and should be insensitive
to the changes in local discriminant information from any of the two populations.

For the third control simulation (Figure 5.2e), we introduced local discriminant information
into the two populations to demonstrate that MCPA is insensitive to the presence of constantly
correlated local information (Figure 5.2e). We fixed the dimensionality at 10 and SNR at 0 dB
(σ2 = 1) and kept the rotation matrices constant for different conditions. As a result, the amount
of shared discriminant information represented in the patterns of interactions was 0. Then we
changed the local variance in one of the conditions. For the features in population A and B under
condition 1, we used X

(1)
A

′
= kX

(1)
A , and X

(1)
B

′
= kX

(1)
B , where k ranged from 1 to 9. Thus,

in both populations, the variance of condition 1 was different from the variance of condition 2,
and such difference would increase as k became larger. Notably, such local information was
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actually correlated through interactions between the populations. However, since the pattern of
interaction did not vary as the condition changed, there was no discriminant information about
the conditions represented in the interactions. According to our construction of MCPA, it should
not pick up any discriminant information in this control case.

5.2.5 Examining visual cortex coding for natural images using MCPA

fMRI methods

The fMRI dataset was taken from CRCNS.org Kay et al. (2011). See (Kay et al., 2008; Naselaris
et al., 2009) for details regarding subjects, stimuli, MRI parameters, data collection, and data
preprocessing. In the experiment, two subjects performed passive natural image viewing tasks
while BOLD signals were recorded from the brain. The experiment contains two stages: a
training stage and a validation stage. In the training stage, two separate trials were recorded in
each subject. In each trial, a total of 1750 images were presented to the subject, which yields a
total of 3500 presentations of images (3500 = 1750 images × 2 repeats). In the validation stage,
another 120 images were presented to the subject in 13 repeated trials, which yields a total of
1560 presentations (1560 = 120 images × 13 repeats). The single-trial response for each voxel
was estimated using deconvolution method and used for the following analysis. The voxels were
assigned to 5 visual areas (V1, V2, V3, V4, and lateral occipital [LO]) based on retinotopic
mapping data from separate scans (Kay et al., 2008; Naselaris et al., 2009).

Categorical image classification

To control for repetition of each individual image and to increase the image number being used,
we used the data from the training stage for the categorical image classification. The 1750 images
were manually sorted into 8 categories (animals, buildings, humans, natural scenes, textures,
food, indoor scenes, and manmade objects). In order to maintain enough statistical power, only
categories with more than 100 images were used in the analysis. As a result, 3 categories (food,
indoor scenes, and manmade objects) were excluded.

For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO, MCPA was applied to
classify the functional connectivity patterns for each possible pair of image categories (total of
10 pairs). For each specific pair of categories, BOLD signal from all the voxels in the ROIs
were used as features in MCPA. Principal Component Analysis (PCA) was used to reduce the
dimensionality to P, where P corresponds to the number of PCs that capture 90% of variation in
the data, which yielded∼100-200 PCs. Leave-one-trial-out cross-validation was used in order to
estimate the classification accuracy. This procedure was repeated for all 10 pairs. Classification
accuracy and the corresponding sensitivity index d′ were used to quantify the performance of
MCPA.

Single image classification using MCPA

For single image classification the 13 repetitions of each individual image from the validation
stage data was used.
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For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO, MCPA was applied to
classify the functional connectivity patterns for each possible pair of images (total of 7140 pairs).
For each specific pair of categories, BOLD signal from all the voxels in the ROIs were used as
features in MCPA. Considering the limited number of trials in each condition, PCA was first used
with the data from the training stage to reduce the representation dimensionality to 10. Because
the top PCs that explain most variations may contain variance not related to the stimuli, the
10 PCs were selected from the top 50 PCs, based on maximizing the between-trial correlations
for single images. As a result, we reduced the dimensionality of the validation data from more
than 1000 to 10 based on the training dataset, which was completely independent from all the
validation data that was used in the learning and testing stages of MCPA. Leave-one-out cross-
validation was then used in order to estimate the classification accuracy. This procedure was
repeated for all 7140 pairs. Classification accuracy and the corresponding sensitivity index d
were used to quantify the performance of MCPA.

MVPA analysis

MVPA was applied to classify the neural activity within each ROI (V1, V2, V3, V4, and LO) or
from a pair of ROIs simultaneously (V1-V2, V2-V3, V3-V4, and V4-LO) for each possible pair
of categories (total of 10 pairs). The same features extracted from all the voxels within the ROI,
as described above, were used in MVPA analysis. Naı̈ve Bayes classifier was used as the linear
classifier and leave-one-out cross-validation was used in order to estimate the classification accu-
racy. This procedure was repeated for all 10 pairs. Classification accuracy and the corresponding
sensitivity index d were used to quantify the performance of MVPA.

Permutation test

Permutation testing was used to evaluate the significance of the classification accuracy d′. For
each permutation, the condition labels of all the trials were randomly permuted and the same
procedure as described above was used to calculate the classification accuracy (d′) for each per-
mutation. The permutation was repeated for a total of 1000 times. The classification accuracy
(d′) of each permutation was used as the test statistic and the null distribution of the test statistic
was estimated using the histogram of the permutation test.

Representational similarity analysis

Based on the classification results, for each classification analysis, the representational dissimi-
larity matrix (RDM) was constructed such that the j-th element in the i-th row, mij , equals the
dissimilarity (classification accuracy) between the condition i and condition j in the correspond-
ing representational space defined by the analysis. Spearmans rank correlation was used to com-
pare representational dissimilarity matrices in order to account for outliers and non-normality in
the data.
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Psychophysiological interactions

PPI (Friston et al., 1997) was used to analyze the pattern of interactions between V1 and V4 for
each pair of image categories (total of 10). The response in each ROI was extracted by taking
the first principal component across all voxels. The PPI model can be written as

y = β1x1 + β2x2 + β3x3 + ε (5.17)

where y is the response in ROI1, x1 is the response in ROI2, x2 is the categorical condition (1 or
-1), and x3 is the psychophysiological interaction (x3 = x1x2).

HMAX model and connectivity patterns

The implementation of HMAX model by Serre et al. (2007b) was used. Each image was fed into
the network and the activations in the four layers (S1, C1, S2, and C2) were recorded. At each
patch size level, for image k (k = 1, 2, , 120), the activation pattern in simple layer i (i = 1, 2)
is recorded as Ski , which is a square matrix with retinotopic mapping to the image space. On
the other hand, the activation pattern in complex layer i (i = 1, 2) is represented as vector
Ck
i with each element representing the activation of one single unit (for C1, this is achieved by

concatenating all the units in the layer into one vector). The activation of each unit in the complex
layer was calculated by taking a maximum over its corresponding pool of units in the previous
simple layer. For each complex unit, we recorded the location of the corresponding maximum
activation simple unit. As a result, we got a Ni-by-2 connectivity matrix Vk

i for complex layer
Ci for image k, where Ni is the total number of units in Ci and each row is the 2-D coordinate
of the corresponding maximum activation simple unit. Thus, the connectivity pattern between
simple layer Si and complex layer Ci for image k was described by such connectivity matrix
Vk
i . Considering all pairs of images, the RDM of the connectivity pattern Mi is calculated

by taking the Frobenius norm of the difference between each pair of connectivity matrix, i.e.
Mi(j, k) = ‖Vj

i −Vk
i ‖F .

The representation space for each single layer was then extracted by concatenating all units
in the layer into one vector. The RDM of each single layer was calculated using the Euclidean
distance between the corresponding activation vectors of the images.

Representation similarity analysis and permutation test

Permutation test was used to determine the statistical significance of the correlation between the
RDM from MCPA and the RDM from HMAX. Specifically, for each pair of ROIs (i.e. V1-
V2, V2-V3, V3-V4, and V4-LO), we calculated the corresponding 120-by-120 RDM for all the
images from MCPA and averaged across the two subjects, noted as MROI1-ROI2, where ROI1-
ROI2 = V1-V2, V2-V3, V3-V4, or V4-LO. Then we used the RDMs of HMAX (Mi, i = 1, 2)
described in the previous part and calculate the Spearman’s rank correlation between MROI1-ROI2

and Mi. As a result, we have ρROI1-ROI2
i = corr(MROI1-ROI2,Mi). Then to compare the correlation

from different layers in HMAX to MCPA, we use ∆ρROI1-ROI2 = ρROI1-ROI2
1 − ρROI1-ROI2

2 as the
test statistic. For each permutation, the labels of the 120 images were randomly permuted and
the above procedure was repeated. With a total of 1000 permutations, we got the empirical
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distribution of the test statistic for the null hypothesis that there is no difference between the two
correlations. A p-value for the real test statistic can then be estimated.

5.2.6 Examining OFA-FFA coding for individual faces using MCPA

Subject

A human subject underwent surgical placement of iEEG depth electrodes (stereotactic electroen-
cephalography) into the right temporal lobe as standard of care for surgical epilepsy localization.
The subject a 56 year-old male. No epileptiform discharges or other evidence of epileptic activity
were recorded from the electrode contacts used in this study. The experimental protocols were
approved by the Institutional Review Board of the University of Pittsburgh. Written informed
consent was obtained from the participant.

Stimuli

In the localizer experiment, 180 images of faces (50% male), bodies (50% male), words, ham-
mers, houses, and phase scrambled faces were used as a functional localizer. Each category
contained 30 images. Phase scrambled faces were created in Matlab by taking the 2-dimensional
spatial Fourier spectrum of each of the face images, extracting the phase, adding random phases,
recombining the phase and amplitude, and taking the inverse 2-dimensional spatial Fourier spec-
trum. Each image was presented in pseudorandom order and repeated once in each session.

Faces in the individuation experiment were taken from the Karolinska Directed Emotional
Faces stimulus set (Lundqvist et al., 1998). Frontal views and 5 different facial expressions
(happy, sad, angry, fearful, and neutral) from all 70 faces (50% male) in the database were used,
which yielded a total of 350 face images, each presented once in random order during a session.
The patient participated in a total of 3 sessions.

All stimuli were presented on an LCD computer screen placed approximately 2 meters from
participants’ heads.

Experimental paradigms

In the localizer experiment, each image was presented for 900 ms with 900 ms inter-trial interval
during which a fixation cross was presented at the center of the screen (∼ 10◦ × 10◦ of visual
angle). At random, 25% of the time an image would be repeated. Participants were instructed to
press a button on a button box when an image was repeated (1-back). Only the first presentations
of repeated images were used in the analysis.

In the individuation experiment, each face was presented for 1500 ms with 500 ms inter-trial
interval during which a fixation cross was presented at the center of the screen. Faces subtended
approximately 5 degrees of visual angle in width. Subjects were instructed to report whether the
face was male or female via button press on a button box.

Paradigms were programmed in MATLABTM using Psychtoolbox and custom written code.
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Data preprocessing

The electrophysiological activity in OFA and FFA were recorded simultaneously using iEEG
electrodes at 1000 Hz. They were subsequently bandpass filtered offline from 1-170 Hz using
a fifth order Butterworth filter to remove slow and linear drift, the 180 Hz harmonic of the
line noise, and high frequency noise. The 60 Hz line noise and the 120 Hz harmonic noise
were removed using DFT filter. To reduce potential artifacts in the data, trials with maximum
amplitude 5 standard deviations above the mean across the rest of the trials were eliminated. In
addition, trials with a change of more than 25 µV between consecutive sampling points were
eliminated. These criteria resulted in the elimination of less than 1% of trials.

As the last step of the data preprocessing, we extracted wavelet features using Morlet wavelets.
The number of cycles of the wavelet was set to be 7. The entire epoch length of the data was
1500ms (-500 ∼ 1000 ms relative to stimulus onset). To avoid numerical issues in MATLAB,
the lowest frequency was set at 7 Hz. The wavelet features were estimated using FieldTripTM

toolbox. Finally, we took all the wavelet features at 7-100 Hz, with 1 Hz steps, at every 10 ms
as features, which yielded a 94-dimensional feature vector at every time point. All the wavelets
were normalized to the baseline by subtracting the mean value and divided by the standard devi-
ation of the data from 350ms to 50ms before stimulus onset.

Electrode selection

Face sensitive electrodes were selected based on anatomical and functional considerations. Elec-
trodes of interest were restricted to those that were located in or near the fusiform gyrus or inferior
occipital cortex. In addition, MVPA was used to functionally select the electrodes that showed
sensitivity to faces, comparing to other conditions in the localizer experiment. Specifically, elec-
trodes were selected such that their peak 6-way classification d′ score exceeded 1 (p < 0.001
based on a permutation test, as described below) and the event related potential (ERP) for faces
was larger than the ERP for the other non-face object categories.

There were 12 contacts on a depth electrode on the ventral temporal lobe extending along
the anterior-posterior axis. Among all the contacts, only three (the 1st, 6th and 7th contacts, see
Figure 5.5a for the location of these contacts) satisfied the criterion described above (see Figure
S1 for d′ timecourses from all contacts on the depth electrode). The first contact was near the
mid-fusiform gyrus while the other two were near posterior end of the fusiform gyrus/anterior
end of the inferior occipital cortex. Hence we used the data from the first electrode as FFA
signal and the averaged data across the 6th and 7th electrodes as the OFA signal (see Figure S2
for averaged ERP data in the two areas). The post-operative structural MRI scan did not allow
us to carefully distinguish the precise localization of the ”OFA” electrodes and it may be that
these electrodes are in fact in the posterior fusiform and properly labeled ”FFA-1” according to
the recent nomenclature introduced by Weiner and Grill-Spector (2010). However, considering
OFA and FFA-1 are contiguous with one another and it has not been determined what, if any,
functional distinction there is between the two, we use ”OFA” for the label of the electrodes out
of convenience.
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MCPA Analysis

MCPA was applied to classify the OFA-FFA connectivity for each possible pair of faces (total
of 2415 pairs). For each specific pair of faces, averaged wavelet features within a 50 ms time
window were used as features in MCPA. Principal Component Analysis (PCA) was used to
reduce the dimensionality from 94 to P , where P corresponds to the number of PCs that capture
95% of variation in the data, the typical value of P is around 7∼8. Leave-one-trial-out cross-
validation was used in order to estimate the classification accuracy. This procedure was repeated
for all 2415 pairs and all time windows slid with 10 ms step between 0 and 600ms after stimulus
onset. Similar to previous simulations, d′ was used to quantify the performance of MCPA.

Permutation test was used to determine the significance of the d′ timecourse of MCPA (Maris
and Oostenveld, 2007). During each permutation, the condition labels of all the trials were ran-
domly permuted and the same procedure as described above was used to calculate the timecourse
of d′ for each permutation. The permutation was repeated for a total of 1000 times. The mean
d′ during 200-500 ms of each permutation was used as the test statistic and the null distribution
of the test statistic was estimated using the histogram of the permutation test. The time window
200-500 ms was chosen based on the fact that the sensitivity of facial identity was only presented
in OFA and FFA roughly 200 -500 ms after stimulus onset (Ghuman et al., 2014).

5.3 Results

5.3.1 Simulations
We used simulations to test and verify the performance and properties of MCPA on synthetic
data. Specifically, synthetic data generated based on real fMRI data representing neural activity
of two distinct populations and the information represented in the interaction between those
populations was manipulated to construct different testing conditions.

In the first simulation, we evaluated the ability of MCPA to detect information represented
in the functional connectivity pattern when it was present as a factor of the SNR and the number
of dimensions of the data. The mean and standard error of the sensitivity index (d′) from 100
simulation runs for each particular setup (dimensionality and SNR) are shown in Figure 5.2a. The
performance of the MCPA classifier increased when SNR or effective dimensionality increased.
Classification accuracy saturated to the maximum when SNR and number of dimensions were
high enough (SNR > 5dB, dimensionality > 10). The performance of MCPA was significantly
higher than chance (p < 0.01, permutation test) for SNRs above -5 dB for all cases where the
dimensionality was higher than 2, when the pattern of the multivariate mapping between the
activity was changed between conditions.

In addition, we examined how robust MCPA is to uninformative dimensions. This simulation
assesses performance of MCPA as the number of training samples changes and approaches the
total number of dimensions. In the evaluation with a fixed number of 10 informative dimension
and 30 non-informative dimension (40 dimension in total), MCPA was shown to be highly robust
to uninformative dimensions and gave significant classification accuracy until the ratio between
the number of total dimensions and the number of training samples approaches ∼ 80% (Figure
5.2b).
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Figure 5.2: Synthetic data and control simulation experiments. The mean and standard er-
ror for 100 simulation runs are plotted. The horizontal gray line corresponds to chance level
(d′ = 0). The dashed line (d′ = 0.42, corresponding accuracy 58.5%) corresponds to the chance
threshold, p = 0.01, based on a permutation test. The maximum possible d′ = 4.65 (equivalent
to 99% accuracy because the d for 100% accuracy is infinity). (a) The sensitivity of MCPA for
connectivity between two populations as a factor of SNR and the number of effective dimen-
sions in each population. (b) The robustness of MCPA to non-informative dimensions. (c) The
insensitivity of MCPA when there is variable local discriminant information, but no circuit-level
information (control case 1). MCPA and MVPA were applied to control case 1. (d) The insensi-
tivity of MCPA to changes in local discriminant information with fixed circuit-level information
when there is both local and circuit-level information (control case 2). (e) The insensitivity of
MCPA to variable local discriminant information when the circuit-level activity is correlated, but
does not contain circuit-level information about what is being processed (control case 3).

The first control simulation was designed to confirm that when two unconnected populations
both carry local discriminant information, MCPA would not be sensitive to that piece of informa-
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tion. As shown in Figure 5.2c, MCPA did not show any significant classification accuracy above
chance (d′ = 0) as changed. On the other hand, the MVPA classifier that only took the data from
local activity showed significant classification accuracy above chance level and the performance
increased as local discriminant information increased.

The second control simulation was designed to test if MCPA would be insensitive to changes
in local discriminant information when there was constant information coded in neural commu-
nication. Local discriminant information was injected into the populations by varying the ratio
of the standard deviation (k) between the two conditions. When MVPA was applied to the lo-
cal activity, increasing classification accuracy was seen as k became larger (Figure 5.2d). This
result confirmed that discriminant information was indeed encoded in the local activity in the
simulation. On the other hand, the performance of MCPA did not change with the level of lo-
cal discriminant information (d′ stayed around 1.65 for all cases, corresponding to accuracy =
79%), demonstrating that MCPA is only sensitive to changes in information contained in neural
interactions.

The final control simulation tested whether MCPA is simply sensitive to the presence of func-
tional connectivity between two populations per se or is only sensitive to whether the functional
connectivity contains discriminant information. Specifically, are local discriminant information
in two populations, and a correlation between their activity, sufficient for MCPA decoding? It
should not be, considering that MCPA requires that the pattern of the mapping between the pop-
ulations to change as a factor of the information being processed (see Figure 5.1). The final
control simulation was designed to assess whether MCPA is sensitive to the case where two pop-
ulations communicate, but in a way that would not imply distributed computational processing.
Specifically, neural activity in areas A and B were simulated such that local discrimination was
possible in each population and the activity of the two populations was correlated, but the interac-
tion between them was invariant to the information being processed. Figure 2e shows that in this
case MCPA did not classify the activity above chance, despite significant correlation between the
regions and significant local classification (MVPA). Thus, functional connectivity between the
populations is a necessary, but not sufficient, condition for MCPA decoding. Therefore, MCPA
is only sensitive to the case where the mapping itself changes with respect to the information
being processed, which is a test of the presence of distributed neural computation.

5.3.2 Single image classification of visual cortex interactions using MCPA
To assess its performance on real neural data, MCPA was applied to Blood-oxygen-level-dependent
(BOLD) fMRI measurements of human occipital visual areas, in two subjects (Subject 1 and Sub-
ject 2) during passive viewing of 13 repetitions of 120 natural images (Kay et al., 2008, 2011;
Naselaris et al., 2009). MCPA was used for single-trial classification of these images for the
interactions between V1-V2, V2-V3, V3-V4, and V4-lateral occipital (LO) cortex (e.g. 4 total
region pairs × 2 subjects; see Figure 5 of Naselaris et al. (2009) for depictions of these regions
in these subjects). Across the 8 pairs of regions the mean sensitivity index (d′) of the single trial
classification was 0.405 (s.d. = 0.094), with all of the pairs showing significant classification at
p < 0.01 corrected for multiple comparisons (permutation test). In both subjects, MCPA classi-
fication accuracy declined going up the classic visual hierarchy. The classification accuracies are
shown in Table 5.1.
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Table 5.1: Mean d′ and classification accuracy of MCPA for Subject 1 and Subject 2 (chance
level: d′ = 0, accuracy = 50%, * p < 0.01, permutation test)

Subject 1 V1-V2 V2-V3 V3-V4 V4-LO
d′ 0.477 * 0.443 * 0.408 * 0.319 *

accuracy 58.5% * 57.9% * 57.3% * 55.7% *
Subject 2 V1-V2 V2-V3 V3-V4 V4-LO

d′ 0.589 * 0.470 * 0.330 * 0.271 *
accuracy 60.3% * 58.5% * 55.9% * 54.9% *

5.3.3 Using MCPA-based RSA to test models of between-area information
transformation

One important application of MCPA is to evaluate models and test theoretical hypotheses regard-
ing the computational operation underlying how representations are transformed from one region
to another. MCPA-based representational similarity analysis (RSA) can be used to compare the
representational space derived from the interaction between brain regions to representational
spaces derived from the transformation of representations in computational models. To illustrate
this we compare the representational space for natural images in the same fMRI dataset described
above to the representational space derived from the transformation between layers of the HMAX
model of the visual processing stream (Riesenhuber and Poggio, 1999; Serre et al., 2007b), which
is a representative neural network model derived from the classical framework of ventral visual
pathway (Figure 1.1C). HMAX has four layers going from S1 to C1 to S2 to C2 along the hi-
erarchy. The transformation of the representation between S1 and C1 (S1-C1 transformation)
occurs through a local, non-linear max-pooling operation and the transformation between S2 and
C2 (S2-C2 transformation) occurs through a more global non-linear max-pooling operation. We
compared the representational dissimilarity matrices (RDMs) derived from these HMAX trans-
formations to the RDMs derived from MCPA between V1-V2, V2-V3, V3-V4, and V4-LO. The
transformation between C1 and S2 occurs through a passive filtering that does not give rise to an
RDM because the transformation is effectively the same across all C1 representations.

As shown in Figure 5.3, we found that the RDM derived from the S1-C1 transformation in
HMAX correlates with the V2-V3 RDM based upon MCPA of the fMRI data (mean Spearman’s
ρ = 0.053, p < 0.05, permutation test). Furthermore, the S1-C1 correlation to V2-V3 was
significantly greater (p < 0.05, permutation test) than the S2-C2 correlation to V2-V3. The
RDM derived from the S2-C2 transformation in HMAX correlates with the V4-LO RDM based
upon MCPA of the fMRI data (mean Spearman’s ρ = 0.112, p = 0.002, permutation test).
Furthermore, the S2-C2 correlation to V4-LO was significantly greater (p < 0.01, permutation
test) than the S1-C1 correlation to V4-LO. Additionally, none of the individual layers in HMAX
showed a consistent significant correlation with the connectivity-based RDM from MCPA. Taken
together, these results suggest that the interaction between the lower layers of the neural visual
hierarchy reflects an operation more like the operation between the lower layers of the model
of the visual hierarchy than between higher layers of the model. Furthermore, the interaction
between higher layers of the neural visual hierarchy reflects an operation more like the operation
between higher layers of the model than between lower layers of the model.
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Figure 5.3: Correlating MCPA and HMAX. Correlation coefficients between the between-
layer connectivity patterns in HMAX (S1-C1, and S2-C2) and the between-area connectivity
patterns in fMRI data extracted by MCPA (V1-V2, V2-V3, V3-V4, and V4-LO) were plotted.
The correlation was evaluated by Spearman’s rank correlation coefficients. For S1-C1, correla-
tion peaked at V2-V3, mean Spearman’s ρ = 0.053 (* p = 0.036, permutation test within each
subject, and p-values were combined using Fisher’s method). For S2-C2, correlation peaked at
V4-LO, mean Spearman’s ρ = 0.112 (** p = 0.001, permutation test within each subject, and
p-values were combined using Fisher’s method).

5.3.4 Comparing the between region representation to the local represen-
tation

To assess whether the information represented in the between region interactions reflected a
distinct computational process or merely reflected the representation in either of the individual
areas, RSA was performed. To increase our power, we performed this RSA at the category level
(animals, buildings, humans, natural scenes, and textures) based on classification accuracy rather
than the single image level because the dataset contained many more repetitions per category than
per image (Figure 5.4). This yielded a total of 24 correlations (8 MCPA-based matrices correlated
with each of the two regions that contribute to each MCPA and with MVPA that takes the two
regions together). 20 out of the 24 correlations were negative, many showing large negative
correlation coefficients (see Table 5.2 for details and see below for and effect size calculations
[Wilks′λ] and statistical tests for the canonical correlations, mean Spearman’s ρ = −0.420,
s.d. = 0.346). In other words, categories that were relatively easy to decode based on the
activity within regions using MVPA were relatively more difficult to decode based on the shared
activity between that region and the other regions in the visual stream using MCPA and vice
versa (Figure 5.4). This negative correlation suggests that the communication between regions
represents information that has not been explained aspects by local computational processes.
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Table 5.2: Spearman’s rank correlation coefficients ρ between MCPA of ROI1-ROI2 and MVPA
of ROI1-ROI2 in Subjects 1 and 2.

Subject 1 V1-V2 V2-V3 V3-V4 V4-LO
MVPA (both ROIs) 0.333 -0.527 -0.576 -0.309
MVPA (ROI1 only) 0.333 -0.055 -0.721 -0.442
MVPA (ROI2 only) 0.176 -0.370 -0.491 -0.442

Subject 2 V1-V2 V2-V3 V3-V4 V4-LO
MVPA (both ROIs) -0.685 -0.673 -0.479 -0.527
MVPA (ROI1 only) -0.539 -0.758 -0.782 -0.539
MVPA (ROI2 only) -0.855 -0.794 -0.418 0.055

5.3.5 Comparing MCPA to PPI

To demonstrate the dominance of MCPA over classical univariate methods, we applied PPI to the
same data to analyze categorical effective analysis between neighboring areas. As a comparison,
80 different pairs of categories (10 pairs of categories × 4 pairs of regions × 2 subjects) were
analyzed using both PPI and MCPA. 4/80 PPI results were significant with p < 0.05 (uncor-
rected), while 13/80 MCPA results were significant with p < 0.05 (uncorrected). As a result,
the number of significant MCPA results is significantly larger than the number of significant PPI
results (p < 0.01, permutation test). Note that it is not clear how many of these 80 different pairs
of categories are expected to be classifiable given that the regions examined are not category
sensitive, other than LO. Thus, it is not clear if 13/80 is close to the number of category pairs
that would be classifiable with perfect data or if this is a low percentage of that number, but the
key point in the context of validating MCPA is that MCPA is more sensitive than univariate (PPI)
methods.

5.3.6 Single face identity classification of OFA-FFA interactions using MCPA

To further assess its performance on electrophysiological data, MCPA was applied on intracra-
nial electroencephalography (iEEG) data recorded from OFA and FFA in one human epileptic
patient during a visual perception task (see Figure 5a for the electrode locations). MCPA was
applied in the classification between each possible pair of faces. Previous studies on the time-
course of face individuation (Ghuman et al., 2014) have demonstrated that the 250-450 ms time
window is critical for the processing of face individuation information. For MCPA, as shown in
Figure 5.5b, with a chance level of d′ = 0 and corresponding accuracy = 50%, the classification
accuracy was significantly above chance level across that time window (averaged d′ = 0.14,
mean classification accuracy 52.7%, p < 0.01, permutation test). The CCA weights for the FFA
and OFA are plotted in Figure 5.5c, showing that 15-30 Hz in FFA and 25-40 Hz in OFA con-
tributed most strongly to their interaction in response to individual faces, suggesting that there
may be a degree of cross-frequency coupling involved in the OFA-FFA coding for faces. Using
MVPA, classification accuracy was significantly above chance level across that time window in
FFA (averaged d′ = 0.42, mean accuracy 58%, p < 0.01, permutation test), replicating previous
reports (Ghuman et al., 2014), classification accuracy was also above chance level across that
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Figure 5.4: MCPA and MVPA results for fMRI categorical data. RSA results based on
MCPA and MVPA Subjects 1 and 2. Categories: A-animals, B-buildings, H-humans, S-natural
scenes, T-textures. Row 1,3: RSA based on MCPA for Subject 1, 2; Row 2, 5: RSA based on
MVPA with two ROIs at a time of Subject 1, 2; Row 3, 6: RSA based on MVPA with one ROI
at a time of Subject 1, 2 (chance level: accuracy = 50%).

time window in OFA (averaged d′ = 0.13, mean accuracy 52.6%, p < 0.05, permutation test).
In the early time window (50 250 ms), MCPA did not show significant classification accuracy
(averaged d′ = 0.116, mean accuracy 51.6%, p > 0.1, permutation test). See below for statistical
testing of the single face canonical correlation models.

As a control analysis, we took a contact outside of the fusiform gyrus that did not show face
sensitivity and performed the same analysis between the control contact and the OFA and FFA
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contacts. As shown in Figure 5.5b, the averaged d′ of MCPA between the control contact and
both the OFA and FFA contacts was not significant above chance level (d′ = 0.074 for control
& FFA, accuracy = 51.2%, d′ = 0.012 for control & OFA, accuracy = 50.3%, both p > 0.1,
permutation test).

With the caveat that the effect size is small, the results support the hypothesis individual level
face information is represented in the OFA-FFA interaction pattern.

a b c

R L

Figure 5.5: iEEG experiments and MCPA results. (a) Location of the electrodes of interest.
The blue dot corresponds to the location of the FFA contact while the red dot corresponds to the
location of the OFA contacts. (b) MCPA applied between (1) the OFA and FFA channels, (2) the
FFA channel and the control channel, (3) the OFA channel and the control channel. The mean d′

of pairwise face classification over all 2415 pair of faces across the 200-500 ms timewindow after
stimulus onset is plotted. * p < 0.01, permutation test. (c) Averaged absolute loading weights
in the functional connectivity model of MCPA for OFA and FFA across the frequency spectrum
during the time window of 250-450 ms after stimulus onset. (chance level: d′ = 0, accuracy =
50%)

5.3.7 Testing significance of CCA models
The significance of MCPA relies on two factors: the presence of functional connectivity and
the discriminant information in the connectivity patterns. Both are necessary conditions for the
significance of MCPA. Here we evaluate the significance of the CCA models in order to further
support the MCPA results. This is particularly useful for interpreting non-significant or low
accuracy MCPA results. If the CCA models are significant, but MCPA yields non-significant
results, this suggests that the areas are functionally connected, but the connectivity pattern does
not change with respect to condition (e.g. a passive linear filter). If MCPA does not show
significant decoding and the CCA statistics are non-significant, this suggests that the areas are
not functionally connected (or have weak functional connectivity at best.

For category-level decoding with the fMRI data, we have enough repetitions to perform para-
metric test. Specifically, we have ∼ 200 − 400 trials per condition, and we use the first N PCs
that account for 90% of the variance as the features for each ROI. The typical N ranges from

109



∼ 100 − 200. Therefore, for each pair of ROIs under each condition, we can evaluate the CCA
model and get Nc canonical variate pairs, where Nc = min(N1, N2), and N1, N2 are the numbers
of PCs extracted from the two ROIs under this categorical condition. As a result, we will have
Nc Wilks′λ, noted as λ1, , λNc , where λi corresponds to the test statistic for the model including
the i-th to the Nc-th canonical variate pairs. In addition, we can also compute the canonical
correlation ri for each pair of canonical variates. To get a p-value for each individual canonical
correlation ri, we performed a permutation test. Specifically, for all the trials in one category,
we permute the order of the trials in ROI2 while maintaining the original order of the trials in
ROI1. As a result, we get surrogate CCA models and we can then compute the corresponding
canonical correlation ri for each pair of canonical variates. We repeated this permutation process
1000 times to get the surrogate distribution of the canonical correlations, and then estimated the
corresponding p-value. This yields sufficient small λ1 (smaller than eps(0) in MATLAB) for
all categories and all pairs of ROIs, meaning that the whole CCA model is significant for all
categories and all pairs of ROIs (p < eps(0)). Note that eps(0) = 1e-324. As for each single
canonical correlation, 86.9% of all the individual canonical correlations (5718/6580 canonical
correlations) reach statistical significance of p < 0.01, based on the permutation test.

For the single image case in fMRI, because for each condition we have only 13 repetitions
Wilk’s λ and the Chi-square approximation are not reliable. Therefore, we use permutation test-
ing and compute the averaged canonical correlation across all conditions as the test statistic for
each pair of canonical variates. The procedure of permutation testing is similar to the one de-
scribed for category-level decoding above. We first fixed the order of trials in ROI1 and permuted
the ordering of the trials in ROI2 randomly. Then for each of the 120 images, we estimated the
CCA model for each pair of ROIs and computed the corresponding canonical correlations for
each pair of canonical variates. As a result, we can evaluate the significance of each canonical
correlation averaged across all images using permutation. Since we have 2 subjects, each with
4 pairs of ROIs, and 10 canonical correlations for each pairs of ROIs, there are 80 averaged
canonical correlations in total. Based on 1000 permutations, 64/80 canonical correlations are
significant at p < 0.01. Moreover, 61/80 canonical correlations are significant at p < 0.001.
(Note that with 1000 permutations, the minimum p value is p < 0.001 when the test statistic is
larger than all 1000 empirical statistics computed from the permutations)

Similarly, for face individuation in iEEG data, we also use permutation test and compute the
averaged canonical correlation across all conditions as the test statistic. As a result, the first 7
canonical correlations have p < 0.001, and the last canonical correlation has p = 0.003. The cor-
responding averaged canonical correlation values are r = [1.00, 1.00, 0.97, 0.89, 0.75, 0.56, 0.33, 0.10].

5.3.8 Evaluating feature-selection using PCA
To assess the influence of selecting the most relevant PCs, the percent of variance explained by
the subset of PCs are summarized in Table 5.3. As we discuss in the Methods part, the PCs that
are most task-relevant are usually not just the top PCs with regards to variance explained. As was
pointed out in a previous study using the same public fMRI data as we used here (Henriksson
et al., 2015), a majority of the variance in the activity is due to intrinsic fluctuations. Therefore,
we computed and selected the top PCs that are task relevant by correlating the first half trials
with the second half trials in a separate run in this data set (what was called the training data
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in the original Kay et al. (2008) paper). As expected, the task-relevant PCs explain a smaller
portion of the total variance than the top PCs. As mentioned, we select PCs based on a set of
data that is totally independent from the actual training and testing data for MCPA. This rules
out the possibility of overfitting induced by the selection of PCs.

Table 5.3: Amount of variance explained by the subset of selected PCs
% of variance explained V1 V2 V3 V4 LO

top 10 PCs 21.71 17.00 15.35 11.43 11.97
top 50 PCs 36.04 30.22 28.39 24.43 27.24

10 selected PCs 5.09 4.84 4.89 5.33 6.24

5.4 Discussion

This paper presents a novel method to assess the information represented in the patterns of in-
teractions between two neural populations. MCPA works by learning the mapping between the
activity patterns from the populations from a training data set, and then classifying the neural
communication pattern using these maps in a test data set. Simulated data demonstrated that
MCPA was sensitive to information represented in neural interaction for realistic SNR ranges.
Furthermore, MCPA is only sensitive to the discriminant information represented through dif-
ferent patterns of interactions irrespective of the information encoded in the local populations.
Applying this method to fMRI data demonstrated that the multivariate connectivity patterns
between areas along the visual stream represent information about individual natural images.
MCPA-based RSA showed that, at the category level, the representational structure of the inter-
action between regions is negatively correlated to the representational structure locally within
each region. Furthermore, MCPA was used to test hypotheses from the HMAX model regarding
the computational operation that transforms the representation between regions along the visual
processing pathway. Finally, as an example with electrophysiological data, applying MCPA to
iEEG data showed that the multivariate connectivity pattern between OFA and FFA represents
information at the level of individual faces.

One practical consideration with MCPA is that CCA generally requires the number of trials
to be substantially larger than the number of variables in the two areas. This is often not the
case in neuroscientific studies and therefore dimensionality reductions may be required. In the
optimal case, this dimensionality reduction would be performed in the canonical space reducing
the number of canonical variables used in MCPA-based classification. However, we find that
performing a PCA to reduce dimensionality prior to CCA generally performs better than reducing
the dimensionality in the canonical space, which is in line with previous in neuroscientific studies
using CCA (Karageorgiou et al., 2012; Smith et al., 2015). While it is not entirely clear why PCA
before CCA performs better than dimensionality reduction using CCA alone, it is likely because
CCA is known to be very sensitive to noise (Anderson, 1958; Gittins, 2012) and using PCA for
dimensionality reduction can have the added benefit of noise reduction.
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5.4.1 MCPA as assessing adaptive processing

Significant discrimination within each population and significant functional connectivity be-
tween them is not sufficient to produce MCPA and indeed local classification within each pop-
ulation is not even necessary (Figures 5.2a and 5.2e respectively). MCPA requires the pattern
of connectivity (linear correlations) between the two populations to vary across the different
conditions. In other words, MCPA is sensitive to both the degree of functional connectivity in
the conditions and how distinct the mappings are across conditions. As an example, if the two
populations interact, but the interaction behaves like a passive linear filter, mapping the activity
between the populations in a similar way in all conditions, MCPA would not be sensitive to the
interaction because the mapping does not change (Figure 5.2e). Instead, MCPA is more akin
to testing for non-constant linear filtering or distributed, interactive computation that behaves as
a non-linear process where the nature of the interaction adapts (from a linear perspective) as a
factor of the information that is being processed. Recent studies demonstrate that neural pop-
ulations in perceptual areas alter their response properties based on context, task demands, etc.
(Gilbert and Li, 2013). These modulations of response properties suggest that lateral and long-
distance interactions are adaptive and dynamic processes responsive to the type of information
being processed. In this context adaptive is meant purely in the sense that the linear transforma-
tion between the multivariate activity in the two regions change as a factor of condition. As noted
previously, this is equivalent to a non-linear filter and adaptive denotes that information is added
to the representation in an information theoretic sense. Adaptive not necessarily imply active
changing of connections in a neuroscientific sense. This type of adaptation can occur through
a passive non-linear transfer function that accounts for the stimulus condition and the structural
connectivity certainly does not change in the timeframes measured in functional neuroscientific
studies. MCPA provides a platform for examining the role of interregional connectivity patterns
in this type of adaptive process. Indeed, MCPA can be interpreted as testing whether distributed
computational ”work” is being done in the interaction between the two populations (Friston
et al., 1997) and the interaction does not just reflect a passive relay of information between two
encapsulated modules (Fodor, 1983).

Passive linear filters do not allow for information to be added to the representation through
computational work being done in the interaction between regions. Sensitivity to this type of
computation is a central appeal of fully non-linear models of neural representation and neural
interactions, such as deep neural network approaches. However, these approaches often require
tens of thousands or even millions of trials before they achieve good performance (Goodfellow
et al., 2016), which is impractical for most neuroscientific applications. MCPA is not sensitive to
multivariate non-linear interactions within conditions, but is sensitive to multivariate non-linear
relationships between the interregional interaction pattern and the conditions. This is effectively
a piecewise linear approximation of the underlying nonlinear function relating the condition
space to the interaction pattern between regions. This restriction relative to deep neural network
and other non-linear function approximation approaches allows MCPA to perform well with
reasonable numbers of trials (10s of trials in our examples), which is critical for being practically
useful in neuroscience. Thus, one strength of MCPA is the ability to capture some key aspects of
non-linear neural computations without requiring an impractical amount of data.
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5.4.2 MCPA and representation space

In addition to allowing one to infer whether distributed computational work is being done in
service of information processing, MCPA provides a platform for assessing its representational
structure (Haxby et al., 2014). Much as MVPA has been used in representational similarity
analyses to measure the structure of the representational space at the level of local neural popu-
lations (Edelman et al., 1998; Kriegeskorte, 2011; Kriegeskorte and Kievit, 2013), MCPA can be
used to measure the structure of the representational space at the level of network interactions.
Specifically, the representational geometry of the interaction can be mapped in terms of the sim-
ilarity among the multivariate functional connectivity patterns corresponding to the brain states
associated with varying input information. The representational structure can be compared to be-
havioral measures of the structure to make brain-behavior inferences and assess what aspects of
behavior a neural interaction contributes to. It can also be compared to models of the structure to
test theoretical hypotheses regarding the computational role of the neural interaction (Kriegesko-
rte, 2011; Kriegeskorte et al., 2008). By comparing the representational space in models to the
neural representation, one can assess how well these models approximate the neural representa-
tion in both absolute and relative terms. Much the way MVPA-based RSA analyses have been
used to examine these models at the level of individual brain regions (Kriegeskorte et al., 2008),
RSA analyses can be used to assess how well the representation inferred by these models transfer
functions fit the representation measured in the brain using MCPA.

The MCPA-based RSA analysis presented here relating the representational space derived
from the interaction between regions of the visual processing stream to the transformation oper-
ations in HMAX is a concrete example of how MCPA can be used to test models of how rep-
resentations are transformed between regions. This example also helps illustrate the underlying
hypothesis being tested by MCPA: that there is a non-constant linear function that relates how the
transformation of the activity between regions changes with respect to the experimental condi-
tion. A non-constant linear function is analogous to a local linear approximation of a non-linear
function, as we have seen in the example of HMAX. The existence of this non-constant linear
function is what allows for information to be added to the representation through distributed
computational work. By comparing the MCPA-based representational space to models of this
function, we can gain insight into what this transformation function might be. For example, in
the case of the S1-C1 transformation HMAX, this function is a local, non-linear max-pooling
operation and in the case of the S2-C2 operation it is a more global, non-linear max-pooling op-
eration (Riesenhuber and Poggio, 1999). Furthermore, this is why MCPA could not be compared
to the transformation between the C1 and S2 layers of the HMAX model because the transfor-
mation between those layers is a passive filter operation, e.g. a trivial, constant linear function
relating the between layer transformation to the stimulus condition. This example suggests one
mechanism by which a network with fixed structural connectivity can give rise to adaptive com-
munication, namely through a non-linear transformation operation that are adaptive in a linear
sense. In addition to testing specific hypothesis-driven transformation operations, such as the
ones in HMAX, more data-driven models of the transformation operations, such as ones in deep
neural network models (Yamins et al., 2014), could also be tested using the MCPA-based RSA
approach.
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5.4.3 Relationship between MCPA and other functional connectivity/multivariate
methods

These two properties of MCPA, 1) being able to assess distributed computational processing
rather than just whether or not areas are communicating and 2) being able to determine the
representational structure of the information being processed, set MCPA apart from previously
proposed functional connectivity methods. In these previous methods the functional connectivity
calculation is performed separately from the classification calculation. Specifically, either func-
tional connectivity is first calculated using standard methods, then a model is built on the popu-
lation of connectivity values and this model is tested using classification approaches (Finn et al.,
2015; Richiardi et al., 2011; Rosenberg et al., 2016; Shirer et al., 2012; Wang et al., 2015) or the
model is first built on the activity in each region and tested using classification approaches and
the classification performance is correlated (Coutanche and Thompson-Schill, 2013; Kriegesko-
rte and Kievit, 2013). These methods are very useful for assessing how differences in large-scale
patterns of connectivity relate to individual subject characteristics (e.g. connectome fingerprint-
ing) in the first case and comparing the representational structure between regions in the second
case. In contrast, in MCPA the model is the connectivity map and classification is done to
directly test the information contained in these maps. The separation of the connectivity and
classification calculations in other approaches precludes being able to assess distributed compu-
tational processes because these methods are sensitive to passive information exchange between
encapsulated modules, as described above, and thus conflate passive and adaptive communica-
tion. Critically, they do not specifically probe how connectivity patterns change as a factor of
condition or state, as is required to efficiently perform the representational similarity analysis
in a practical manner and decode how the information processed in the interaction is encoded
and organized. As a concrete example, these previous methods would not be able to compare
the representational structure of the neural interaction between regions to the structure from a
computational model, as was done here with fMRI.

MCPA can be roughly considered a multivariate extension of PPI with the addition of a
prediction and classification framework. Compared to PPI, which is univariate, MCPA allows
one to exploit the multivariate space of interaction patterns. As a result, MCPA is sensitive to
aspects of information coded in interregional interactions that PPI may not be able to detect
(Norman et al., 2006), for example in event-related fMRI designs where PPI is known to lack
statistical power (O’Reilly et al., 2012). Indeed, in the fMRI data presented here, PPI was no
better than chance in detecting interregional interactions at the visual category level, whereas
MCPA was significantly better than chance. Much the way MVPA allows one to go beyond
ANOVAs/t-tests in a single area/population (e.g. single trial classification, RSA, complex model
testing), MCPA allows one to go beyond PPI and do these types of analyses at the level of the
shared activity between regions.

The specific instantiation of MCPA presented here treats connectivity as a bi-directional lin-
ear mapping between two populations. However, the MCPA framework could be easily gener-
alized into more complicated cases. For example, instead of using correlation-based methods
like CCA, other directed functional connectivity algorithms, such as Granger causality based on
an autoregressive framework, potentially using partial CCA for the time-lagged autoregressive
step, could be used to examine directional interactions. This would allow one to examine time-
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lagged multivariate connectivity patterns to infer directionality. Additionally, kernel methods,
such as kernel CCA (Hardoon et al., 2004), or deep learning methods, such as deep CCA (An-
drew et al., 2013), could be applied to account for non-linear interactions. Another possible and
more general framework would be to use non-parametric functional regression method to build a
functional mapping between the two multidimensional spaces in the two populations. MCPA can
also be expanded to look at network-level representation by implementing the multiset canonical
correlation analysis, wherein the cross-correlation among multiple sets of activity patterns from
different brain areas is calculated (Kettenring, 1971). MCPA could be used with a dual search-
light approach to examine whole brain communication (Kriegeskorte et al., 2006). Also, MCPA
could be adapted by optimizing the CCA to find the connectivity maps that uniquely describe,
or at least best separate, the conditions of interest. Furthermore, both with and without these
modification, the framework of MCPA may have a number of applications outside of assessing
the representational content of functional interactions in the brain, such as detecting the presence
of distributed processing on a computer network, or examining genetic or proteomic interactions.
MCPA is used here with fMRI BOLD signals and iEEG signal, but it can be applied to nearly
any neural recording modality, including scalp electroencephalography, magnetoencephalogra-
phy, multiunit firing patterns, single unit firing patterns, spike-field coherence patterns, to assess
the information processed by cross-frequency coupling, etc.

5.4.4 Limitations and implication from MCPA results
One caveat with the MCPA results with real data presented here is that many of the effect sizes
are small. One likely reason for this is that for the decoding of individual images in fMRI and
faces in iEEG the number of trials per image was very small (13 for individual images in fMRI
and 15 for individual faces in iEEG). Despite the small number of trials, the classification accu-
racy is roughly on a par with previous exemplar-level individuation classification results using
fMRI and iEEG (Ghuman et al., 2014; Nestor et al., 2011; Said et al., 2010; Skerry and Saxe,
2014). Furthermore, the HMAX-MCPA correlation is roughly on par with previously reported
correlations between HMAX and single unit activity from non-human primates (Khaligh-Razavi
and Kriegeskorte, 2014; Yamins et al., 2013). Given a larger number of trials, MCPA classifica-
tion performance should improve. The classification performance seen here can be considered
a ”worst case scenario” to some extent given the low number of trials and yet performance still
was not far below what has been previously reported using multivariate classification on these
types of data. Nonetheless, the low effect size and small number of subjects reported here is a
strong caveat to the potential neuroscientific interpretation of the fMRI and iEEG data.

The MCPA results from visual cortex show that the representational space derived from
MCPA was negatively correlated to the representational space derived from MVPA from either
of the local populations. This inverse relationship is consistent with the idea that the communica-
tion between regions represents information that has not been explained by local computational
processes. With the strong caveat that these results require replication in more subjects and as-
sessment with paradigms designed to directly test these hypotheses, this negative correlation is
consistent with the hypothesis that neural interactions code for information not resolved in local
computational processes (Friston, 2010; Lee and Mumford, 2003; Rumelhart et al., 1988).

The current prevalent view is that face perception is mediated by a distributed network with
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multiple brain areas including the OFA and FFA. Structural and functional connectivity analysis
for the core network has shown that FFA is strongly connected to OFA (Gschwind et al., 2011;
Ishai, 2008; Pyles et al., 2013). While these results suggest the hypothesis that face individuation
may involve the interaction between these populations (and likely other face processing regions),
direct evidence for this hypothesis has been lacking. Our results here support the hypothesis
that individual-level facial information is not only encoded by the activity within certain brain
populations, but also represented through recurrent interactions between multiple populations at a
network level. This interaction was biased towards frequencies in the Beta and low Gamma bands
and exhibited a degree of cross-frequency coupling. This analysis indicates that assessing cross-
frequency interactions between regions is another potential application of MCPA. In addition,
MCPA showed significant face individuation in approximately the 200-500 ms time window after
stimulus onset, but did not show any significant face individuation in the early time window (50-
200 ms after stimulus onset), which is consistent with a previous MVPA study based on iEEG
recording from FFA only (Ghuman et al., 2014). More broadly, the fMRI and iEEG MCPA
results suggest that the computational work done in service of visual processing occurs not only
on the local level, but also at the level of distributed brain circuits.

Previously, multivariate pattern analysis methods have been used to analyze the sensitivity to
information within a certain area and functional connectivity methods have been used to assess
whether or not brain networks participate in a particular process. With MCPA, the two perspec-
tives are merged into one algorithm, which extends multivariate pattern analysis to enable the
detailed examination of information sensitivity at the network level. Thus, the introduction of
MCPA provides a platform for examining how computation is carried out through the interac-
tions between different brain areas, allowing us to directly test hypotheses regarding circuit-level
information processing.

5.5 Appendix: Supplement Figures
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Figure 5.6: iEEG Single electrode face sensitivity. Time course of face categorical sensitivity
in each single electrode measured by sensitivity index d′ (mean d′ plotted against the beginning
of the 100 ms sliding window). The classifier uses time-windowed ERP signal from a single
electrode (window length = 100 ms) as input features (See Methods for details). Horizontal grey
line indicates chance level (d′ = 0). The channels are labeled 1-12 from anterior to posterior.
Electrodes were chosen based on the criteria that peak d′ be above 1 (p < 0.001, channels 1, 6,
and 7). Channel number 1 was used as the FFA electrode and channels 6 and 7 were used for the
OFA electrodes based on their anatomical locations.
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Figure 5.7: Face selectivity in FFA and OFA. Averaged ERP response recorded from FFA and
OFA contacts for each category during the localizer task. The colored area corresponds to the
standard error.
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Chapter 6

Pre-stimulus modulation of the
post-stimulus temporal dynamics

In previous chapters, we studies the representation structure of the event-related neural activity
within regions of interest, as well as the interaction patterns between areas. In this last part of the
thesis, we extend the scope of our analysis to the neural activity before the onset of the stimuli.
Perception reflects not only on processing sensations, but also the endogenous neural state when
sensory inputs enter the brain. However, the neural mechanism by which endogenous neural
states influence perception remains largely unknown. Results from 246 electrodes implanted in
visual processing regions in the brains of 30 humans shows that endogenous activity modulates
the sharpness of trial-by-trial neural tuning to visual inputs, a property of the brain related to
the quality of the visual representation. Furthermore, the same aspect of the endogenous activity
that influences visual tuning also predicts trial-by-trial reaction time in a perceptual task. These
results provide evidence for a neural mechanism that links endogenous neural states to the quality
of the neural representation, which in turn influences perception.

6.1 Introduction

Neural responses in perceptual circuits with respect to sensory inputs give rise to cognitive per-
ception of the stimuli. However, even with the same stimulus input, the corresponding neural
responses can be extremely variable. Therefore, perception depends on not only sensory input,
but also the neural and cognitive state when a stimulus is presented. Traditionally, this endoge-
nous activity has been treated as noise to be discarded and averaged over. However, it is becom-
ing increasingly clear that endogenous fluctuations in neural activity influence both the neural
response to sensory input and behavior. Previous studies has linked the endogenous activity to
global cognitive states, such as attention or arousal, as well as infra-slow resting-state fluctua-
tions (Fox et al., 2006; Kastner et al., 1999; Klimesch, 1999; Seeley et al., 2007). There have
been a number of studies showing the correlation between endogenous activity and post-stimulus
neural response. It has been shown that the amplitude, variance, and patterns in the post-stimulus
neural response are shaped by the endogenous ongoing activity (Arieli et al., 1996; Başar, 1980;
Fox et al., 2006; Henriksson et al., 2015; Kisley and Gerstein, 1999). Furthermore, it has also
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been shown that endogenous activity can also explain the variance in behavior across a number of
perceptual domains including vision and audition (Busch et al., 2009; Kayser et al., 2016; Math-
ewson et al., 2009; Ress et al., 2000; Thut et al., 2006; VanRullen et al., 2011). Taken together,
these results suggest a possible link between the endogenous activity and sensory perception of
stimuli, in that the spontaneous activity can potentiate category recognition via modulating the
post-stimulus activity.

However, how endogenous fluctuations of neural activity influence perception remains un-
known because little empirical evidence exists linking these fluctuations to an aspect of the neu-
ral response associated with the quality of the perceptual representation. Specifically, it remains
unknown if there is a link between endogenous activity and the sharpness of neural tuning that
ultimately influences behavioral performance. This link would provide a mechanistic bridge
between endogenous neural states and perception.

In this study, we used direct recording from category selective regions in a large cohort of hu-
man subjects using intracranial electroencephalography (iEEG) to probe the relationship between
endogenous activity and category neural tuning, as well as behavioral perception. Specifically,
we directly tested and verified two main hypotheses. First, the endogenous activity modulates the
degree of category tuning in response to visual stimuli; second, the same aspect in endogenous
activity that modulates tuning also correlates with behavioral perception. We further evaluated
the spatial and temporal specificity of the endogenous modulation signal. The results suggest
that the endogenous modulation effect is a reflection of local processes, and the majority of the
endogenous modulation effect are transient, with a small fraction of all the channels showing
trial-by-trial auto-correlation in endogenous modulation of tuning.

6.2 Methods

6.2.1 Subjects

The experimental protocols were approved by the Institutional Review Board of the University of
Pittsburgh. Written informed consent was obtained from all participants. 30 human subjects (11
male, 19 female) underwent surgical placement of subdural electrocorticographic electrodes or
stereoelectroencephalography (together electrocorticography and stereoelectroencephalography
are referred to here as iEEG) as standard of care for seizure onset zone localization. The ages of
the subjects ranged from 19 to 64 years old (mean = 38.2, S.D. = 11.9). None of the participants
showed evidence of epileptic activity on the fusiform electrodes used in this study nor any ictal
events during experimental sessions.

6.2.2 Stimuli

In each session, 180 images of faces (50% male), bodies (50% male), words, hammers, houses,
and phase scrambled faces were used as visual stimuli. Each of the six categories contained 30
images, and each image was presented twice. At random, 1/3 of the time an image would be
repeated, which yielded 480 independent trials in each.
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6.2.3 Paradigms

In the experiment, each image was presented for 900 ms with 900 ms inter-trial interval during
which a fixation cross was presented at the center of the screen (∼ 10◦ × 10◦ of visual angle).
At random, 1/3 of the time an image would be repeated, which yielded 480 independent trials
in each session. Participants were instructed to press a button on a button box when an image
was repeated (1-back), and their reaction time between stimulus onset and button press was
recorded. Paradigms were programmed in MATLAB using Psychtoolbox and custom written
code. All stimuli were presented on an LCD computer screen placed approximately 150 cm
from participants’ heads.

6.2.4 Data analysis

Data preprocessing

The electrophysiological activity was recorded using iEEG electrodes at 1000 Hz. Common ref-
erence and ground electrodes were placed subdurally at a location distant from any recording
electrodes, with contacts oriented toward the dura. Single-trial potential signal was extracted by
band-passing filtering the raw data between 0.2-115 Hz using a fourth order Butterworth filter
to remove slow and linear drift, and high frequency noise. The 60 Hz line noise was removed
using a fourth order Butterworth filter with 55-65 Hz stop-band. Power spectrum density (PSD)
at 2-100 Hz with bin size of 2 Hz and time-step size of 10 ms was estimated for each trial us-
ing multi-taper power spectrum analysis with Hann tapers, using FieldTrip toolbox (Oostenveld
et al., 2011). We define the neural activity within the [-500, -100] ms interval relative to the stim-
ulus onset as the pre-stimulus activity, and the neural activity within the [100, 500] ms interval
relative to the stimulus onset as the post-stimulus activity. For each channel, the PSD at each fre-
quency was z-scored with respect to the mean and variance of the baseline activity to correct for
the power scaling over frequency at each channel. The broadband gamma signal was extracted
as mean z-scored PSD across 40-100 Hz. Event-related potential (ERP) and event-related broad-
band gamma signal (ERBB), both time-locked to the onset of stimulus from each trial, were
used in the following data analysis. Specifically, the ERP signal is sampled at 1000 Hz and the
ERBB is sampled at 100 Hz. In addition to the potential signal and PSD, the pre-stimulus phase
information was also extracted from each trial. Specifically, discrete time Fourier transform was
applied to the raw signal in the [-500, -100] ms time interval, which had a total length of 400
points sampled at 1000 Hz. As a result, the phase information between 0-1000 Hz was extracted
with a step-size of 2.5 Hz. Finally, we used the phases from 0 to 150 Hz as the pre-stimulus
phase features.

To reduce potential artifacts in the data, raw data were inspected for ictal events, and none
were found during experimental recordings. Trials with maximum amplitude 5 standard devia-
tions above the mean across all the trials were eliminated. In addition, trials with a change of
more than 25 µV between consecutive sampling points were eliminated. These criteria resulted
in the elimination of less than 1% of trials.
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Electrode localization

Coregistration of grid electrodes and electrode strips was adapted from the method of Hermes
et al. (2010). Electrode contacts were segmented from high resolution post-operative CT scans
of patients coregistered with anatomical MRI scans before neurosurgery and electrode implan-
tation. The Hermes method accounts for shifts in electrode location due to the deformation of
the cortex by utilizing reconstructions of the cortical surface with FreeSurferTM software and
co-registering these reconstructions with a high-resolution post-operative CT scan. SEEG elec-
trodes were localized with Brainstorm software (Tadel et al., 2011) using post-operative MRI
co-registered with pre-operative MRI images.

Electrode selection

Category-selective electrodes were selected based on a 6-way classifier. Specifically, we train a
multinomial logistic regression model to classify the post-stimulus neural activity with respect
to the 6 different categories from each other. The sensitivity index (d′) for each category was
then computed as d′ = Z(true positive rate) − Z(false positive rate), where Z(x) is the inverse
function of the cumulative density function of standard normal distribution. An electrode is
selected as category-selective if the maximum d′ across all categories is greater than 0.5 (p <
0.01, permutation test). The selected electrode is then assigned to the category with maximum
d′.

Two-stage generalized linear model (GLM)

We considered the neural activity within the [−500,−100] ms pre-stimulus time interval as proxy
for the endogenous activity, noted as Xpre ∈ RN×T1 , where N is the number of trials and T1 is
the number of features in the pre-stimulus time window; and we used neural activity from the
[100, 500] ms time interval relative to stimulus onset as the post-stimulus evoked activity that
encodes category information, noted as Xevk ∈ RN×T2 , where T2 is the number of features in the
post-stimulus time window. A GLM (6.1) was used to represent category tuning. Specifically,

p(y|Xevk, Xpre) = f(Xevkβevk, Xpreβpre) (6.1)

where
p(y|Xevk, Xpre) =

1

1 + exp (−(Xevkβevk −Xpreβpre))
(6.2)

is sigmoid function, and βpre ∈ RT1+1, βevk ∈ RT2+1 are weight vectors for the pre- and post-
stimulus features and the intercepts.

The model decodes the category y from the post-stimulus neural activity Xevk, conditioning
on the pre-stimulus activity Xpre in each of the category-selective electrode. Considering the
high dimensional settings and strong temporal correlation in the features, elastic-net penalty was
used to regularize model (6.1) (Hastie et al., 2015). Therefore, fitting the model requires solving
the following optimization problem:

argmin
βevk,βpre

− `(βevk, βpre) + λ1P
evk
α (βevk) + λ2P

pre
α (βpre) (6.3)
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where

`(βevk, βpre) =
1

N
{yT (Xevkβevk −Xpreβpre)− 1T log(1 + exp (Xevkβevk −Xpreβpre))} (6.4)

is the log likelihood of the GLM.

P evk
α (βevk) =

1− α
2
‖βevk‖22 + α‖βevk‖1 (6.5)

is the standard elastic-net penalty (Zou and Hastie, 2005), and P evk
α (βevk) is a similar elastic-

net penalty but with group structure to account for the phase features (see below for a detailed
description of the penalty structure).

The model was fitted in a two-stage manner (Algorithm 2). In the first step, we forced
βpre = 0 and only searched for optimal dimension β∗evk in the post-stimulus activity that best
discriminates between categories. In other words, we solve the following standard elastic-net
problem, which can be solved using coordinate descent (Friedman et al., 2010) (see Appendix
for details):

β∗evk = argmin
βevk

− `(βevk, βpre = 0) + λ1P
evk
α (βevk) (6.6)

Solving (6.6) would result in a trial-by-trial neural metric, Xevkβevk, which quantified the
post-stimulus category selectivity. In the second step, we fixed the optimal dimension β∗evk and
optimized the model with respect to βpre. Specifically, this is equivalent to solving the following
group elastic-net problem, which can be solved using block coordinate descent, which is similar
to the approaches described in Meier et al. (2008); Simon and Tibshirani (2012) (see Appendix
for details):

β∗pre = argmin
βpre

− `(β∗evk, βpre) + λ2P
pre
α (βpre) (6.7)

This allowed the category classification to be made conditioning on the pre-stimulus activ-
ity, and critically, provided a neural metric Xpreβpre in pre-stimulus activity that quantifies the
amount of influence from pre-stimulus activity on the post-stimulus category selectivity on a
trial-by-trial basis. We defined MI = Xpreβpre as the pre-stimulus modulation index (MI).

Path algorithm with decreasing λ is often used in solving such regularized optimization prob-
lem, and techniques such as warm starts, active sets, etc. are also used to speed up the algorithm.
The optimal regularization parameters λ1 and λ2 were selected using cross-validation based on
minimizing the deviance along the path. And the performance of the model can be evaluated
using a held-out testing set or another level of cross-validation.

The group elastic-net penalty

For the post-stimulus part, we only consider the ERP and ERBB features, noted as xevk =
[xERPevk , xERBBevk ], with the corresponding weights βevk = [βevk0 , βERPevk , βERBBevk ], and we applied
regularization term

P evk
α (βevk) =

1− α
2
‖βevk‖22 + α‖βERPevk ‖1 + α‖βERBBevk ‖1 (6.8)
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in (6.3). For the pre-stimulus part, we use ERP, ERBB and phase features, noted as xpre =
[xERPpre , xERBBpre , xphasepre ], and the corresponding weights βpre = [βpre0 , βERPpre , βERBBpre , βphasepre ]. As-
sume that we have phase [θ1, , θK ], where θ ∈ [−π, π), corresponding to frequencies of inter-
est [f1, , fK ]. To transfer the circular phase value onto the real axis in order to facilitate the
`1-norm penalty, we consider feature vector xphasepre = [sin θ1, cos θ1, ..., sin θK , cos θK ], where
sin θ, cos θ ∈ [−1, 1], and group lasso penalty term

G(βphasepre ) =
√

2
K∑
i=1

√
βphasepre,(i,1)

2
+ βphasepre,(i,2)

2
(6.9)

where [βphasepre,(i,1), β
phase
pre,(i,2)] are the pair of weights corresponding to phase feature pair [sin θ1, cos θ1].

Here group-lasso penalty is applied to the sin-cos pair to ensure a uniform penalty on all θ ∈
[−π, π). As a result, the group elastic-net penalty for the pre-stimulus weights can be written as

P pre
α (βpre) =

1− α
2
‖βpre‖22 + α‖βERPpre ‖1 + α‖βERBBpre ‖1 + αG(βphasepre ) (6.10)

Algorithm 2: Training the two-stage GLM
Data: data matrices Xpre ∈ RN×T1 , Xevk ∈ RN×T2 for pre-stimulus and post-stimulus

data, data label y ∈ RN ;
where N is the number of samples, T1 = tERPpre + tERBBpre + tphasepre , T2 = tERPevk + tERBBevk , and
Xpre = [XERP

pre , XERBB
pre , Xphase

pre ], Xevk = [XERP
evk , XERBB

evk ];
Parameters: the elastic-net hyper-parameter α, maximum regularization parameter λmax
and minimum regularization parameter ελmax.
Result: Weight vectors for pre- and post-stimulus features

β∗pre = [βpre0 , βERPpre , βERBBpre , βphasepre ], β∗evk = [βevk0 , βERPevk , βERBBevk ]

1 Fit the elastic-net problem for post-stimulus features:
2 for the i-th cross-validation split {X(i)

evk,train, X
(i)
evk,test} do

3 for λ← λmax to ελmax (decrement λ) do
4 solve elastic-net problem (6.6) using coordinate descent ;
5 (see Appendix for detailed derivation of the coordinate descent)
6 estimate the deviance of the solution on X(i)

evk,test

7 find optimal β∗evk that minimizes deviance;
8 Fix the post-stimulus part and fit the group elastic-net problem for pre-stimulus

features:
9 for the i-th cross-validation split {X(i)

pre,train, X
(i)
pre,test} do

10 for λ← λmax to ελmax (decrement λ) do
11 solve group elastic-net problem (6.7) using block coordinate descent ;
12 (see Appendix for detailed derivation of the block coordinate descent)
13 estimate the deviance of the solution on X(i)

pre,test

14 find optimal β∗pre that minimizes deviance.
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Cross-electrode correlation in pre-stimulus MI

To evaluate the spatial properties of the pre-stimulus modulation effect, we computed the corre-
lation of the single trial pre-stimulus MI between category-selective electrodes in each subject.
For the i-th category-selective electrode, we got MIi = Xpre,iβpre,i from the GLM. The cross-
electrode correlation between two category-selective electrodes i and j was estimated by com-
puting the correlation coefficient between MIi and MIj across all trials. To avoid confounding
effect from local spatial correlation between two nearby electrodes, we only considered a pair of
electrodes that were > 2cm apart from each other. For each subject, the mean cross-electrode
correlation was estimated by averaging the pairwise correlation coefficients across all such pairs
of category-selective electrodes.

Autocorrelation in pre-stimulus MI

To evaluate the temporal properties of the pre-stimulus modulation effect, we computed the auto-
correlation of the single trial pre-stimulus MI between consecutive trials with lags ranging from
1 to 20 in each category-selective electrodes. Specifically, for any given electrode, the autocor-
relation with lag k is

rk =

∑N−k
t=1 (MI(t) −MI)(MI(t+k) −MI)∑N
t=1(MI(t) −MI)(MI(t) −MI)

To evaluate the temporal property, we tested for the significance of the first-order autocorrela-
tion, since it is essential for any temporal dependencies caused by slow-fluctuation in the signal.
Specifically, the upper bound of the 95% confidence interval was approximately estimated as
2/
√
N where N is the total number of trials.

Permutation test

Permutation tests were used to test for significance of the effects in this study. In order to con-
struct a surrogated distribution of the pre-stimulus MI, in each permutation we generated random
projection weight vectors β(i)

rand ∈ RT1 , such that they all had the same number of non-zero ele-
ments as the actual solution from the real data, i.e. ‖β(i)

rand‖0 = ‖β∗pre‖0. We repeated this process
1000 times for each electrode, and the histogram of Xpreβ

(i)
rand, i = 1, ..., 1000, was used as the

null distribution of the pre-stimulus MI.

6.3 Results

6.3.1 Category-selective electrodes
From the 30 patients, we located 246 channels that demonstrated category-selectivity to one of
the six categories (Figure 6.1, Table 6.1). Among all the channels, 230 were located in the ventral
temporal cortex. As shown in Figure 6.1, the category selective electrodes covered bilateral
ventral temporal cortex.
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Figure 6.1: Experiment paradigm and electrode locations. A) Experiment paradigm in which
the subject is shown a series of images and performs a 1-back repeat detection task. B) The
lateral and ventral views of the locations of the 246 category-selective electrodes mapped onto a
common brain surface.

6.3.2 Endogenous activity modulates category tuning

First, we examined whether conditioning on the pre-stimulus endogenous activity changes the
classification accuracy. In each category selective electrode, we applied the two-stage GLM to
the iEEG data to decode the preferred category from the others. For each of the six categories,
we collected all the category-sensitive electrodes corresponding to the category, and computed
the averaged classification sensitivity index (d′) across all these electrodes. The two-stage GLM
provides two different classifiers: the first step of the optimization results in a classifier that only
extracts discriminant features from the post-stimulus evoked response; the second step of the
optimization effectively trains a classifier with the post-stimulus discriminant features condition-
ing on pre-stimulus activities. The averaged d′s from the two classifiers in the GLM were then
compared against each other to test the first hypothesis. As shown in Figure 6.2A and Table
6.1, we found that the inclusion of pre-stimulus activity improved the classification accuracy for
all visual categories. Specifically, across all category-selective electrodes, the mean sensitivity
index d′ = 1.04 with only post-stimulus activity. Conditioning on pre-stimulus activity, the mean
d′ improved to 1.17 (p < 1×10−5, paired t-test). This result confirmed that, at a functional level,
conditioning on pre-stimulus endogenous activity improves trial-by-trial category tuning.
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Table 6.1: Number of electrodes showing significant category sensitivity for each of the stimulus
categories, and the comparisons of classification results from the two-stage GLM

Category Bodies Faces Words Tools Houses Scrambled
non-objects

# of elec-
trodes

9 56 92 16 37 36

d′ (evoked
only)

1.1822 1.3957 0.9252 0.7289 1.0585 0.8219

d′ (evoked +
endogenous)

1.3093 1.5072 1.0628 0.8334 1.2046 1.0105

p-value 0.0264 < 10−5 < 10−5 0.0024 < 10−5 < 10−5

6.3.3 Endogenous activity influences perceptual behavior
Using the two-stage GLM, we extracted pre-stimulus modulation index (MI) for each single trial,
which is a neurological metric that quantifies the influence of the endogenous activity on the post-
stimulus discriminant features. Next, we tested if the same aspect of pre-stimulus activity that
modulates post-stimulus category tuning also correlates to behavioral perception. Trials were
divided into whether they came from the preferred condition for a particular electrode (face trials
for electrodes recording from face sensitive regions, word trials for electrodes recording from
word sensitive regions, etc.) or the non-preferred condition for that electrode (non-face trials for
electrodes recording from face sensitive regions, etc.). To assess this, we further divided the trials
from each condition into two groups purely by the magnitude of the trial-by-trial pre-stimulus
MI derived from the two-stage GLM in each category-sensitive electrode, and compared the
averaged reaction time in the 1-back task in the low MI group and the high MI group across
all category-sensitive electrodes. Trial-by-trial reaction time was significantly correlated to the
MI for the preferred conditions across electrodes (R2 = 0.067, p = 0.0059), but not the non-
preferred conditions (R2 = 0.015, p = 0.71). As shown in Figure 6.2B, for the preferred
conditions, the mean reaction time for the high pre-stimulus modulation trials was 663.2 ms,
while the mean reaction time for the low pre-stimulus modulation trials was 681.9 ms. Indeed,
there is a significant difference in reaction time between high and low pre-stimulus MI trials (p <
0.05, permutation test). Moreover, using single-trial pre-stimulus MI to predict the perceptual
behavior performance of trials with non-preferred stimulus condition of the electrode, we found
no significant difference between the reaction time of high MI trials and low MI trials (high MI
non-preferred trials mean RT = 669.9 ms, low MI non-preferred trials mean RT = 669.6 ms,
n.s.).

6.3.4 Contribution of temporal and spectral features
We also evaluated the contribution of different kind of pre-stimulus features. Specifically, we
compared the overall mean d′ from the first step using only the post-stimulus features to the
overall mean d′ from the second step using (1) all pre-stimulus features, (2) only pre-stimulus
phase features, (3) only pre-stimulus broadband features, (4) only pre-stimulus ERP features. As
shown in Figure 6.3A, all 4 cases showed significant improvements in the classification accuracy
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compared to the results of post-stimulus features only (p < 10−5, paired t-test). This suggests
that all kinds of features, including phase, ERP and broadband activity, are contributing to the
pre-stimulus modulation of category tuning.

In addition, we are particularly interested in whether there are specific frequencies in the
pre-stimulus activity that contribute to the modulation. The sparse model that we employed is
often used for feature selection (Tibshirani, 1996). Therefore, by reviewing the nonzero features
selected in model (6.3), we can probe the contribution of phases from different frequencies to
the modulation of the post-stimulus category tuning. We computed the empirical frequency of
having non-zero weight for each phase feature in model (6.3) across all electrodes and subjects.
As shown in Figure 6.3, only phases of 15-30 Hz showed significant higher chance of being
selected in the sparse GLM. The probability peaked at 15 Hz (p < 0.05, permutation test).

Figure 6.2: Pre-stimulus activity contributes to category decoding and predicts reaction
time. A) Category classification accuracy before and after conditioning on pre-stimulus activity.
(*p < 0.05, **p < 0.01, ***p < 0.001, paired t-test) B) (Left) the averaged reaction time for low
MI and high MI trials in the preferred condition of the electrode; (right) the averaged reaction
time for low MI and high MI trials in the non-preferred conditions of the electrode. (error bar:
standard error, *p < 0.05, permutation test)

6.3.5 Spatial and temporal specificity of the endogenous modulation effect

An emerging question is what is the nature of the pre-stimulus modulation effect. First we looked
at the spatial property and ask whether it is a global or local effect. To evaluate the spatial speci-
ficity of the signal, we computed the trial-by-trial cross-electrode correlation in the pre-stimulus
MI from category-selective electrodes in each subject. We found significant cross-electrode cor-
relation in pre-stimulus MI between pairs of electrodes that share the same category-selectivity
(mean absolute Spearman’s ρ = 0.111, p < 0.05, permutation test), but not between pairs of elec-
trodes that have different category-selectivity (mean absolute Spearman’s ρ = 0.0797, p > 0.05,
permutation test) (Figure 6.4A). In general, we observed larger correlation between electrodes
of the same category-selectivity than electrodes of different category-selectivity (p < 0.05, Man-
nWhitney U test) (Figure 6.4A).

The next question we ask about the pre-stimulus modulation is whether it is a transient or
long-term effect. To evaluate the temporal specificity of the modulation effect, we computed
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Figure 6.3: Contributions of different pre-stimulus features in the model. A) From left to
right, the averaged classification d′ across all electrodes for: (post:only) post-stimulus features
only, (pre:all) all pre-stimulus features, (pre:phase) pre-stimulus phase features only, (pre:BB)
pre-stimulus broadband features only, (pre-ERP) pre-stimulus ERP features only (*** p < 10−5,
paired t-test); B) The averaged empirical probability of having non-zero weights in the sparse
GLM model for different pre-stimulus phase features of different frequency (shaded area: boot-
strapped 95% confidence interval of being selected in the sparse GLM with random feature se-
lection that has the same `0-norm as the current solutions).

the auto-correlation in the pre-stimulus modulation index in consecutive trials for each category-
sensitive electrode. As shown in Figure 6.4B, we found that ∼ 15% of the channels showed
significant auto-correlation at p < 0.05 uncorrected level. Therefore while in the large majority
of the channels the effect is transient, in a number of channels, where the number is higher than
expected by chance, the pre-stimulus effect may be related to infra-slow fluctuations often seen
in resting state studies in some cortical regions.
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Figure 6.4: The spatial and temporal specificity of the pre-stimulus modulation effect. A)
The mean absolute correlation coefficient (Spearman’s rho) for cross-electrode correlation in the
pre-stimulus MI between a pair of electrodes with the same category selectivity (left bar) versus
a pair of electrodes with different category selectivity (right bar). (*p < 0.05, MannWhitney
U test). B) The auto-correlation function for pre-stimulus MI across consecutive trials in each
category-selective channel. The solid line indicates the average auto-correlation across all elec-
trodes. The dotted lines correspond to p = 0.05 threshold, uncorrected.

6.4 Discussion
In this study, we analyzed the relationship between endogenous activity and category tuning, as
well as behavioral visual perception, using iEEG data from a large cohort of 30 patients. We
found that endogenous activity influences the degree of category tuning in response to visual
stimuli. The same aspects in endogenous activity that influences post-stimulus category tuning
also correlates with perceptual behavior performance. This modulation provides a potential neu-
ral basis for perceptual variation arising from shifts in endogenous ongoing activity. Furthermore,
the endogenous modulation effect is a reflection of local processes within category-selective net-
works. The majority of the endogenous modulation effect are transient, but a small fraction of
the category-selective channels show trial-by-trial auto-correlation in endogenous modulation of
tuning.

6.4.1 The endogenous activity modulates category tuning

There have been a number of studies analyzing the relationship between the pre-stimulus activity
and the post-stimulus evoked response. However, as we have pointed out, most of the previous
studies have mainly focused on the overall unsupervised correlation between the endogenous
activity and the evoked response in features including phase and oscillatory power of the event-
related response (Becker et al., 2008; Fellinger et al., 2011; Rajagovindan and Ding, 2011) or
blood oxygen-level dependent (BOLD) signal (Scheeringa et al., 2011). While these studies
show that endogenous activity can affect the stimulus evoked response, they do not establish
that it can modulate the quality of the neural representation for stimuli in ways that are related to
perception. When we study perception, a central question is how different stimuli are represented
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and encoded differentially in the corresponding brain areas (Averbeck et al., 2006; Haxby et al.,
2001; Kriegeskorte et al., 2006). As a result, it is crucial to identify the relationship between
endogenous activity and the critical discriminant neural representation/encoding that accounts
for perception. In other words, it is important to know not only whether endogenous activity
correlates to the post-stimulus activity overall, but also whether endogenous activity selectively
modulates the post-stimulus activity along the critical dimensions that directly link to the tuning
property of the category selective areas. A common way to study neural tuning in a category-
selective area is to use a discriminant model to extract important features in the evoked response
that discriminate the preferred category from the others (Norman et al., 2006). Therefore, what
remains to be figured out here is whether endogenous activity modulate the post-stimulus evoked
response along these critical discriminant features.

To evaluate the modulation effect along the critical discriminant dimensions, pre-stimulus
activity was used as a proxy for the endogenous neural state of the brain when stimuli were
presented. Specifically, changes in classification accuracy as a factor of conditioning on the
pre-stimulus activity were examined. Because the pre-stimulus activity contains no information
about the conditions the only way classification accuracy can improve using this model is if the
pre-stimulus activity contains information about how sharply tuned the stimulus response along
the critical dimension will be on a particular trial. The algorithm is designed to use this informa-
tion, if it is present, to change the category boundary in the discriminant dimension on each trial
to optimize classification accuracy. As we seen in our results, a significant improvement in the
classification accuracy suggests that conditioning on pre-stimulus activity adds extra information
to the category tuning model. In addition, as shown in the supplement results, the pre-stimulus
activity predicts the distance to classification boundary on a trial by trial basis. This provides
further mechanistic evidence about how pre-stimulus activity actually modulates post-stimulus
category tuning. These result show that critical features of the pre-stimulus activity relate to
the sharpness of the neural tuning and modifying the discriminant model based on this rela-
tionship improves classification accuracy. Therefore, these results support first hypothesis that
pre-stimulus activity modulates the degree of category tuning in category-selective areas over the
cortex.

6.4.2 Endogenous activity correlates to perceptual behavior
The sharpness of tuning is believed to reflect the quality of the neural representation, which in
turn influences the quality of perception. To assess the relationship between the endogenous neu-
ral state and perception, we determined whether the critical aspects of the endogenous activity
that modulate tuning corresponds to the reaction time on a simple perceptual task. Previous stud-
ies have established that endogenous neural activity correlates to perceptual behavior. A number
of previous studies have shown connections between pre-stimulus endogenous activity and per-
ceptual behavior across several sensory modalities, including vision, audition and somatosensory.
Similar to the modulation effect, different aspects in the pre-stimulus features, including phase
and amplitude of the event-related response/field (Bompas et al., 2015; Linkenkaer-Hansen et al.,
2004; Mathewson et al., 2009), as well as blood oxygen-level dependent (BOLD) signal (Boly
et al., 2007; Hesselmann et al., 2008; Sadaghiani et al., 2009; Schölvinck et al., 2012), are corre-
lated to the variations in the perceptual behavior. However, the mechanism by which perception

131



is modulated by the endogenous activity is unknown because evidence that the same aspect of
the endogenous activity that influences the quality of the neural representation also influences
perception has not been established. A recent study based on scalp EEG and an auditory per-
ception task (Kayser et al., 2016) suggested that the endogenous modulation of perception and
the correlation to behavioral performance are found in different neural circuits. However, here
we presented direct evidence that the two processes can be attributed to the same aspects of pre-
stimulus endogenous activity in the same local category-sensitive circuit. Our results demon-
strated a significant relationship between the pre-stimulus MI and the reaction time in detecting
repetitions in the category that the electrode is sensitive to. Furthermore, no significant corre-
lation was found between the pre-stimulus MI and the reaction time with respect to categories
that the electrode is insensitive to. Effectively, the amount of influence on the post-stimulus dis-
criminant dimension from the pre-stimulus endogenous activity predicted the reaction time in
the one-back task with regard to stimuli in the preferred categories. Taken together, these results
show that the same aspect of the endogenous activity that influences the trial-by-trial tuning in a
region also correlates with the trial-by-trial response time on a perceptual task.

6.4.3 Concerns and possible confounding factor

One concern with regard to the behavior performance is that the task demands discrimination
of individual images, while the category classifier requires discriminant information at category
level. However, as shown in supplement results, the exemplar-level coding and category-level
coding are often correlated in the category selective regions. Previous studies have also suggested
that dynamic neural activity in the same category selective area contribute to both category-level
encoding and exemplar-level encoding (Ghuman et al., 2014; Hirshorn et al., 2016; Li et al.,
2018). As a result, although we used category classifier to define the pre-stimulus MI, it is
reasonable to extend the usage of it to the exemplar case. Indeed, our results also confirmed
this point that pre-stimulus MI derived from a category-level model can actually predict the task
performance that requires individual exemplar level discriminant information.

Another possible confounding factor is the long-lasting broadband activity induced by the
one-back task, which has been demonstrated in previous studies (Ghuman et al., 2014). This
could become problematic when two consecutive trials shared the same category conditions but
did not exactly repeat at the exemplar level. However, as shown in Supplement results, with
category-level repetitions completely removed from the trials, similar modulation effects were
still found when comparing the classification accuracy with and without conditioning on the
pre-stimulus activity.

6.4.4 Spatial and temporal properties of the endogenous modulational sig-
nal

Our analysis on the pre-stimulus features showed that the pre-stimulus ERP, which is domi-
nated by the low frequency component, the pre-stimulus ERBB, which reflects the power of
high frequency broadband activity, and the pre-stimulus phases all contributed to the modulation
of category tuning. Specifically, the alpha/beta phases, peaked at 15 Hz, showed a consistent
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patterns of modulation on the post-stimulus category tuning.
One possible mechanism for this pre-stimulus modulation is that it is a reflection of fluctua-

tions in the global cognitive state. For example, fluctuations in how much attention the patients’
were paying on each trial or fluctuations in arousal. Indeed, previous studies have also tied vari-
ance in the endogenous activity to attention (Bauer et al., 2014; Kastner et al., 1999; Worden
et al., 2000), and showed that attention can modulate neural tuning (Luck et al., 1997; Saproo
and Serences, 2010). If it is true that endogenous modulation is a global effect, significant cross-
electrode correlation in the pre-stimulus MI components should be expected in each subject,
regardless of category-selectivity of the electrodes. However, as the cross-electrode correla-
tion analysis revealed, cross-electrode correlation in pre-stimulus MI is only significant between
electrodes that share the same category-selectivity, but not for electrodes of different category-
selectivity. It would require some local fluctuation at circuit/cellular level to facilitate such an
selective effect (Lee et al., 2018). The differentiation in the cross-electrode correlations could
be a result of stronger anatomical connection between regions in the same cortical network that
show similar category-selectivity, and the local fluctuation is propagated heterogeneously due to
higher level of anatomical connection between these regions (Pyles et al., 2013; Saygin et al.,
2012). As a result, the endogenous modulation is partially a reflection of fluctuations within
category-specific networks (the effect size is weak), but it does not seem to be a reflection of the
global cognitive state, such as attention or arousal.

The other possibility mechanism is that this is a reflection of infra-slow fluctuations, which
has been described in resting state studies (Becker et al., 2011; Fox et al., 2006; Henriksson et al.,
2015). If it is a reflection of intra-slow fluctuations as seen in the resting-state activity, we should
expect significant auto-correlation within each channel between consecutive trials. However, as
demonstrated in the auto-correlation analysis, only in a small fraction of the electrodes, where
the number is higher than expected by chance, the pre-stimulus effect demonstrated long-range
temporal correlation which is often seen in resting state studies (Linkenkaer-Hansen et al., 2001;
Smit et al., 2013), while in the large majority of the channels the effect is transient. The endoge-
nous activity that influences neural tuning and perception is primarily a reflection of transient
fluctuations, though a significant subset of the effect does reflect infra-slow fluctuations, such as
those previously reported in resting state

Prior studies have shown that endogenous activity can influence task related neural activity
and perception. However, a link between the endogenous activity and the quality of the neural
representation that could provide a neural mechanism by which endogenous activity can influ-
ence perception has been lacking. The results here show that the phase in the alpha and beta
frequency bands (12-30 Hz) influences how sharply tuned a region will be to sensory input on
a trial-by-trial basis. Furthermore, the same aspect of the endogenous activity that influences
tuning is also correlated to perception, providing an empirical evidence for a mechanistic link
between endogenous activity, neural tuning, and perception. This aspect of the endogenous ac-
tivity was not a reflection of global neural state, such as global arousal or attention, but rather is
reflection of a mix of transient and infra-slow local fluctuations in endogenous activity. This is
suggestive of local neural fluctuations of endogenous processes, such a local fluctuations of neu-
rotransmitter levels (Lee et al., 2018) or fluctuations in stimulus-specific attention or preference
(Kastner et al., 1999). Future studies will be required to determine the precise nature of the aspect
of the endogenous activity that influences neural tuning. Taken together, these results provide
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empirical support for a mechanism in which the present neural state influences the perception of
sensory input by modulating the tuning properties of local neural populations.

6.5 Appendix: Supplement methods and results

6.5.1 Solving the two-stage GLM using coordinate descent
As shown in (6.3), the overall optimization problem can be written as

argmin
βevk,βpre

− `(βevk, βpre) + λ1P
evk
α (βevk) + λ2P

pre
α (βpre) (6.11)

where

`(βevk, βpre) =
1

N
{yT (Xevkβevk−Xpreβpre)−1T log(1 + exp (Xevkβevk −Xpreβpre))} (6.12)

Solve the elastic-net problem in the first step

In the first step, we set βpre = 0, and solve the following elastic-net problem:

argmin
βevk

− `(βevk) + λ1P
evk
α (βevk) (6.13)

where βevk is a vector that contains the intercept βevk0 and the feature weights βevk

−`(βevk) = − 1

N
{yT (Xevkβevk)− 1T log(1 + exp (Xevkβevk))}

= − 1

N

N∑
i=1

{yi(βevk0 + xTi β
evk)− log[1 + exp(βevk0 + xTi β

evk)]} (6.14)

and

P evk
α (βevk) =

1− α
2
‖βevk‖22 + α‖βevk‖1

=
P∑
i=1

[
1

2
(1− α)‖βevkj ‖22 + α‖βevkj ‖1] (6.15)

For simplicity of the notation, we are omitting the superscript ’evk’ in the following part,
and we assume that X has been standardized such that each dimension x:j has 0 mean and unit
variance.

During the optimizing iterations, assume that the current solution is [β̃, β̃0], we are solving
the updated solution [β0, β] following problem:

argmin
β,β0

− `β̃,β̃0(β, β0) + λ1Pα(β) (6.16)
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we can use quadratic approximation around [β̃, β̃0] for the negative log likelihood term in
(6.16)

−`β̃,β̃0(β, β0) = −`(β̃0, β̃)−∇`(β̃0, β̃)T∆β − 1

2
∆βTH(β̃0, β̃)∆β +R(‖∆β‖2) (6.17)

≈ −1

2

N∑
i=1

wi(zi − β0 − xTi β)2 + C(β̃0, β̃) (6.18)

Note that the last term does not depend on [β0, β], and we have gradient and Hessian at [β̃, β̃0]
as

∇`(β) =
1

N

N∑
i=1

[yi − Pβ̃0,β̃(xi)]xi (6.19)

H(β̃0, β̃) = − 1

N

N∑
i=1

Pβ̃0,β̃(xi)(1− Pβ̃0,β̃(xi))xix
T
i (6.20)

where ∆β = [β0− β̃0, βT − β̃T ]T is the update difference, and Pβ̃0,β̃(xi) = 1
1+exp(−β̃0−xTi β̃)

is the

estimated likelihood at [β̃, β̃0].
Plugging (6.19),(6.20) into (6.17) and the comparing with (6.18), we get

zi = β̃0 + xTi β̃ +
yi − Pβ̃0,β̃(xi)

Pβ̃0,β̃(xi)(1− Pβ̃0,β̃(xi))
(6.21)

wi =
1

N
Pβ̃0,β̃(xi)(1− Pβ̃0,β̃(xi)) (6.22)

As a result, solving (6.16) becomes solving the following regularized weighted least-squares
problem:

argmin
β,β0

− 1

2

N∑
i=1

wi(zi − β0 − xTi β)2 + λ1

T2∑
i=1

[
1

2
(1− α)‖βj‖22 + α‖βj‖1] (6.23)

We use coordinate descent to solve (6.23). Taking subgradient and set it to 0, through some
calculus we get coordinate-wise update

β̃j ←
S(
∑N

i=1wixij(zi − z̃
(−j)
i ), λα)∑N

i=1wix
2
ij + λ(1− α)

(6.24)

where z̃(−j)i = β̃0 +
∑

k 6=j xikβ̃k is the fitted value excluding the contribution from xij , and
S(z, γ) = sign(z)(|z| − γ)+ is the soft-thresholding operator, where

S(z, γ) = sign(z)(|z| − γ)+ =


z − γ if z > 0 and γ < |z|
z + γ if z < 0 and γ < |z|
0 if γ ≥ |z|

(6.25)
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To sum up, in the first step, we solve the elastic-net regularized GLM using coordinate de-
scent, as shown in Algorithm 3.

Algorithm 3: Solve the elastic-net regularized GLM using coordinate descent
Data: data matrix Xevk ∈ RN×T2 for post-stimulus part of the data, data label y ∈ RN ;
where N is the number of samples, T2 = tERPevk + tERBBevk , and Xevk = [XERP

evk , XERBB
evk ];

Parameters: the elastic-net hyper-parameter α, maximum regularization parameter λmax
and minimum regularization parameter ελmax.
Result: Weight vectors for post-stimulus features β∗evk = [βevk0 , βERPevk , βERBBevk ]

1 Fit the elastic-net problem for post-stimulus features:
2 for the i-th cross-validation split {X(i)

evk,train, X
(i)
evk,test} do

3 for λ← λmax to ελmax (decrement λ) do
4 while not converge do
5 update the current quadratic approximation (6.23)by computing (6.21),(6.22);
6 for j ← 1 to T2 (cyclic coordinate descent) do
7 update the weight of each coordinate β̃j using (6.24);

8 estimate the deviance of the solution for current λ on X(i)
evk,test;

9 find optimal λ∗ and the corresponding β∗evk that minimizes deviance.

Solve the group elastic-net GLM problem in the second step

The second step of fitting the two-stage GLM requires fixing the contribution from post-stimulus
features and optimize the model with group elastic-net penalty on the pre-stimulus features.
By fixing the weights from post-stimulus features, for each sample xi, we get a fixed offset
bi = βevk0 + xTi β

∗
evk. Therefore, as in (6.7), we have

β∗pre = argmin
βpre

− `(β∗evk, βpre) + λ2P
pre
α (βpre) (6.26)

where

−`(β∗evk, βpre) = − 1

N
{yT (b−Xpreβpre)− 1T log(1 + exp (b−Xpreβpre))}

= − 1

N

N∑
i=1

{yi(bi − βpre0 − (xprei )Tβpre)− log(1 + exp (bi − βpre0 − (xprei )Tβpre))}

(6.27)

and

P pre
α (βpre) =

1− α
2
‖βpre‖22 + α‖βERPpre ‖1 + α‖βERBBpre ‖1 + αG(βphasepre )

=
1− α

2
‖βpre‖22 + α

G∑
g=1

√
pg‖β(g)

pre‖2 (6.28)
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where the second term is the group-lasso penalty on the pre-stimulus features. Similarly to
the previous part, from now on we omit the ’pre’ in superscript and subscript for simplicity.

Similar to previous part, we first take the quadratic approximation of the negative log likeli-
hood at the current iteration step around [β̃0, β̃] as

−`β̃,β̃0(β, β0) = −`(β̃0, β̃)−∇`(β̃0, β̃)T∆β − 1

2
∆βTH(β̃0, β̃)∆β +R(‖∆β‖2) (6.29)

≈ −1

2

N∑
i=1

wi(zi − β0 − xTi β)2 + C(β̃0, β̃)

= −1

2
(z −

G∑
g=1

X(g)β(g))TW (z −
G∑
g=1

X(g)β(g)) + C(β̃0, β̃) (6.30)

where z = [z1, ..., zN ]T , W = diag{w1, ..., wN}, and X = [X(1), ..., X(G)] is the blocks in
X that corresponding to each group β(g) and

zi = bi + β̃0 + xTi β̃ +
yi − Pβ̃0,β̃(xi)

Pβ̃0,β̃(xi)(1− Pβ̃0,β̃(xi))
(6.31)

wi =
1

N
Pβ̃0,β̃(xi)(1− Pβ̃0,β̃(xi)) (6.32)

and
Pβ̃0,β̃(xi) =

1

1 + exp(−bi − β̃0 − xTi β̃)
(6.33)

Analogously, solving (6.26) becomes iteratively solving the following regularized weighted
least-squares problem:

argmin
β,β0

− 1

2
(z −

G∑
g=1

X(g)β(g))TW (z −
G∑
g=1

X(g)β(g)) + λ2
1− α

2
‖β‖22 + λ2α

G∑
g=1

√
pg‖β(g)‖2

(6.34)

Let r(−g) = z −
∑

j 6=gX
(j)β(j) be the residual excluding the contribution of β(g). The first-

order optimality condition gives

(X(g))TWr(−g) +
[
λ2(1− α)I(g) − (X(g))TWX(g)

]
β(g) + λ2α

√
pgν

(g) = 0 (6.35)

where subgradient

ν(g) ∈

{
{ β(g)

‖β(g)‖2
} if β(g) 6= 0

{u | ‖u‖ ≤ 1} if β(g) = 0
(6.36)

The optimal solution for each group is given as

β̃(g) =


(

(X(g))TWX(g) + λ2
[
(1− α) +

α
√
pg

‖β̃(g)‖

]
I(g)
)−1

(X(g))TWr(−g) if ‖(X(g))TWr(−g)‖2 > λ2α
√
pg

0 if ‖(X(g))TWr(−g)‖2 ≤ λ2α
√
pg

(6.37)

137



An assumption that is often made in group lasso problems is the within-group orthonormality,
where (X(g))TX(g) = I , so that (6.37) has closed form solution (Hastie et al., 2015; Simon and
Tibshirani, 2012). For our case, this orthonormality does not necessarily hold. Therefore we
solve for the general case. Let Q(g) = W 1/2X(g) = (diag{√w1, ...,

√
wN})X(g), and µ(−g) =

W 1/2r−g, then we rewrite (6.37) as

β̃(g) =


(

(Q(g))TQ(g) + λ2
[
(1− α) +

α
√
pg

‖β̃(g)‖

]
I(g)
)−1

(Q(g))Tµ(−g) if ‖(Q(g))Tµ(−g)‖2 > λ2α
√
pg

0 if ‖(Q(g))Tµ(−g)‖2 ≤ λ2α
√
pg

(6.38)
For the case of ‖(Q(g))Tµ(−g)‖2 ≤ λ2α

√
pg, we have explicit solution that β̃(g) = 0. There-

fore we focus on the case of ‖(Q(g))Tµ(−g)‖2 > λ2α
√
pg. Notice that if we know the `2-

norm ‖β(g)‖, then (6.38) becomes closed form solution. Therefore, we first find the norm
‖β(g)‖. We take the singular value decomposition Q(g) = U (g)D(g)(V (g))T , where U (g) and
V (g) has orthonormal columns, and D(g) = diag{d(g)1 , ..., d

(g)
pg } is diagonal matrix. Let η(−g) =

[η
(−g)
1 , ..., η

(−g)
pg ]T = (U (g))Tµ(−g). For simplicity of notations, we are omitting superscript ’(g)’

in U ,D and V , but keep in mind that we are solving for an individual group g. As a result, for
(6.38), we have

β̃(g) =
(

(Q(g))TQ(g) + λ2
[
(1− α) +

α
√
pg

‖β̃(g)‖
]
I(g)
)−1

(Q(g))Tµ(−g) (6.39)

⇐⇒ β̃(g) =
(
V D2V T + λ2V

[
(1− α) +

α
√
pg

‖β̃(g)‖
]
I(g)V T

)−1
V DUTµ(−g) (6.40)

⇐⇒ V T β̃(g) =
(
D2 + λ2

(
(1− α) +

α
√
pg

‖β̃(g)‖
)
I
)−1

Dη(−g) (6.41)

Note that LHS and RHS of (6.41) are two vectors, and take `2-norm on both sides, we get

‖β̃(g)‖22 =

pg∑
i=1

d2i η
2
i(

d2i + λ2(1− α) + λ2
α
√
pg

‖β̃(g)‖

)2 (6.42)

⇐⇒
pg∑
i=1

d2i η
2
i(

[d2i + λ2(1− α)]‖β̃(g)‖2 + λ2α
√
pg
)2 = 1 (6.43)

Therefore, the `2-norm of the optimal solution, ‖β̃(g)‖2, is the solution to equation f(γ) = 0,
which is

f(γ) =

pg∑
i=1

d2i η
2
i(

[d2i + λ2(1− α)]γ + λ2α
√
pg
)2 − 1 = 0 (6.44)

It is easy to check that f is convex, f(0) > 0, and f is monotonically decreasing as γ
increases, and limγ→∞ f(γ) = −1. Therefore, ‖β̃(g)‖2 is the only solution to f(γ) = 0. And
‖β̃(g)‖2 can be efficiently found by Newton’s method.

Once we find the optimal ‖β̃(g)‖2, (6.38) becomes the closed form solution, and we can solve
(6.26) using block coordinate descent. The algorithm can be summarized as in Algorithm 4.

Note that Algorithms 3 and 4 are effectively second-order methods with a fixed step size of 1.
It is also possible to adapt it into a backtrack line search to find an optimal step length adaptively.
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Algorithm 4: Solve the group elastic-net regularized GLM using coordinate descent
Data: data matrix Xpre ∈ RN×T1 for pre-stimulus part of the data, and the corresponding

group partition into G groups, with group length {p1, ..., pG}, data label y ∈ RN

and fixed post-stimulus solution β∗post; where N is the number of samples,
T1 = tERPpre + tERBBpre + tphasepre , and Xpre = [XERP

pre , XERBB
pre , Xphase

pre ];
Parameters: the elastic-net hyper-parameter α, maximum regularization parameter λmax
and minimum regularization parameter ελmax.
Result: Weight vectors for post-stimulus features β∗pre = [βpre0 , βERPpre , βERBBpre , βphasepre ]

1 Fit the group elastic-net problem for pre-stimulus features:
2 for the i-th cross-validation split {X(i)

pre,train, X
(i)
pre,test} do

3 for λ← λmax to ελmax (decrement λ) do
4 while not converge do
5 update the current quadratic approximation (6.34) by computing (6.31),(6.32);
6 for j ← 1 to G (cyclic block coordinate descent) do
7 use Newton’s method to solve for the norm ‖β̃(g)‖ in equation (6.44);
8 update the weight of each coordinate group β̃(g) using ‖β̃(g)‖ and (6.38) ;

9 estimate the deviance of the solution for current λ on X(i)
pre,test;

10 find optimal λ∗ and the corresponding β∗pre that minimizes deviance.

6.5.2 Category-level decoding and exemplar-level decoding

One concern with regard to the behavior performance is that the task demands discrimination
of individual images, while the category classifier requires discriminant information at category
level. However, as shown in supplement results, the exemplar-level coding and category-level
coding are often correlated in the category selective regions. Previous studies have also suggested
that dynamic neural activity in the same category selective area contribute to both category-level
encoding and exemplar-level encoding. Specifically, a significant positive correlation between
the decoding accuracy (d′) for face category and the decoding accuracy (d′) for facial expressions
was seen (Pearson correlation r = 0.57, N = 21, P = 0.007) (Li et al., 2018); a positive
correlation between the decoding accuracy for face category and the decoding accuracy for facial
identity was seen in another case (r = 0.47, N = 13, P = 0.10) (Ghuman et al., 2014; Li et al.,
2018). As a result, although we used category classifier to define the pre-stimulus MI, it is
reasonable to extend the usage of it to the exemplar case. Indeed, our results also confirmed
this point that pre-stimulus MI derived from a category-level model can actually predict the task
performance that requires individual exemplar level discriminant information.

6.5.3 Classification results excluding all categorically repeated trials

Another possible confounding factor is the long-lasting broadband activity induced by the one-
back task, which has been demonstrated in previous studies(Ghuman et al., 2014). This could
become problematic when two consecutive trials shared the same category conditions but did
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not exactly repeat at the exemplar level. However, as shown in Table 6.2, with category-level
repetitions completely removed from the trials, similar modulation effects were still found when
comparing the classification accuracy with and without conditioning on the pre-stimulus activity.

Table 6.2: The comparisons of classification results from the two-stage GLM when excluding all
repeated trials with the same category as the 1-back trial

Category Bodies Faces Words Tools Houses Scrambled
non-objects

# of elec-
trodes

9 56 92 16 37 36

d′ (evoked
only)

1.1018 1.5301 1.0847 0.7881 1.0594 0.8677

d′ (evoked +
endogenous)

1.1936 1.6091 1.1904 0.8990 1.1948 1.0651

p-value 0.0908 1.6× 10−5 < 10−5 9.7× 10−4 < 10−5 < 10−5

6.5.4 Predicting distance to post-stimulus decision boundary
In addition to the two-stage GLM presented in the main text, a linear regression model was
directly applied to evaluate the relationship between pre-stimulus activity and the absolute dis-
tance to the decision boundary in the post-stimulus discriminant model. Specifically, we solved
the following linear regression problem:

|Xevkβevk| = Xpreβpre

Similar to the main results presented in Figure 6.2 and Table 6.1, we found significant correlation
between pre-stimulus activity and absolute distance to the decision boundary in all categories
(Table 6.3).

Table 6.3: The R2 of the linear regression model between pre-stimulus activity and the absolute
distance to the decision boundary in the post-stimulus discriminant model. (p-value estimated
using the Fisher Z-transformation).

Category Bodies Faces Words Tools Houses Scrambled
non-objects

# of elec-
trodes

9 56 92 16 37 36

R2 0.0717 0.0507 0.0377 0.0275 0.0361 0.0221
p-value 0.0327 < 10−5 2.8× 10−4 0.0150 0.0017 0.0678
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Chapter 7

Conclusion and future directions

7.1 Main conclusion

In this thesis, we elaborate around the multivariate representational space in population neural
activity and explore along different methodological dimensions in order to address gaps in the
prevalent hierarchical model of the visual cortex, and attain a comprehensive understanding the
spatiotemporal dynamics and interactions underlying visual perception.

The first part of the thesis (Chapters 2,3,4) mainly focuses on multivariate analysis of the
representation dynamics in local areas. In Chapters 2 and 3 We extend the classical multivari-
ate functional mapping framework and applied it to analyze the spatiotemporal dynamics in the
category-selective patches in fusiform. These areas are critical for visual recognition with dam-
age to these patches leading to category-selective impairments in object recognition, such as
acquired alexia and prosopagnosia. However, many gaps remain in our understanding of the
dynamic role the fusiform plays in contributing to multiple stages of category-specific informa-
tion processing. The results show strong decoding accuracy for faces and words in the FFA
and VWFA respectively, first becoming statistically significant between 50-100 ms and peaking
between 150-200 ms. Next we examined the dynamics of within category decoding. For words
significant decoding was seen in both subjects between approximately 100-250 ms wherein visu-
ally similar words could not be decoded from one another, but dissimilar words could be decoded
(organized by orthographic similarity). There was a later phase between approximately 250-500
ms where even orthographically similar words could be significantly decoded from one another
(individual-level representation). For faces significant expression-invariant decoding was seen in
each subject in the same 250-500 ms time frame. The neural response for faces was organized
by facial feature similarity, emphasizing the role of the eyes and mouth in face individuation. In
addition, results in Chapter 4 show that expression sensitivity display a spatiotemporal division
between early and late processing. Specifically, facial expressions could be decoded from the
fusiform. Significant expression decoding was seen in the 100-250 ms in posterior face sensitive
fusiform and from 250-500 ms in mid-fusiform. Taken together, these results suggest a multi-
stage information processing dynamic wherein the representation in category-selective fusiform
gyrus evolves from a coarse category-level representation to an invariant and highly detailed
individual representation over the course of 500 ms.
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In addition to analyzing local representation dynamics, in the second part of the thesis (Chap-
ter 5) we turn our attention to the representation through population interactions in neural cir-
cuits and we introduce a novel analysis method: MCPA. Previously, multivariate pattern analysis
methods have been used to analyze the sensitivity to information within a certain area and func-
tional connectivity methods have been used to assess whether or not brain networks participate
in a particular process. With MCPA, the two perspectives are merged into one algorithm, which
extends multivariate pattern analysis to enable the detailed examination of information sensitiv-
ity at the network level. Thus, the introduction of MCPA provides a platform for examining how
computation is carried out through the interactions between different brain areas, allowing us to
directly test hypotheses regarding circuit-level information processing. As proof of concept, we
show examples of the applications of MCPA to different neural data to probe the representations
through neural interactions. We showed that the interactions between areas in the visual hierar-
chy encode both categorical and exemplar level information about the stimuli, and that within
area (MVPA) and between area representations (MCPA) encode complimentary information.

The third part of the thesis (Chapter 6), we move along a different dimension of the method-
ological space, and study the relationship between visual category tuning and the pre-stimulus
ongoing brain activity. We found that pre-stimulus activity influences the degree of category
tuning in response to visual stimuli in category-selective cortical regions. The same aspects in
pre-stimulus activity that influences post-stimulus category tuning also correlates with percep-
tual behavior performance. In addition, the pre-stimulus modulation effect is a reflection of local
processes within the network of regions with the same category-selectivity. The majority of
the pre-stimulus modulation effect are transient, but ∼ 15% of the channels show trial-by-trial
auto-correlation in endogenous modulation of tuning.

To sum up, we study the extended information processing dynamics, the interactive and adap-
tive information communication, as well as the state-dependence of evoked response in the brain
network underlying visual perception. By addressing these gaps in the classical hierarchical
model of the visual system, we establish a dynamic model of the visual perception network,
where the early stage (50-150 ms) is dominated by feedforward sweep for coarse visual repre-
sentation and the later stage (200-500 ms) reflects recurrent refinement for detailed visual repre-
sentation, and the local activity is influenced by ongoing neural state.

7.2 Limitations, Challenges and Future directions

Toward optimal representational basis: from local dynamics to full-brain analysis

With the advances in recording techniques, such as the application of high-density grids, it be-
comes possible to record population dynamics with larger and denser coverage. This allows us
to study the representation dynamics at larger scale. The framework that we adopt in this thesis
is mainly ROI-oriented. In principle, our multivariate representation framework can be directly
applied to larger scale neural recordings. However, more care should be taken as we move to-
wards higher-dimensional settings. The high spatial and temporal correlation structure in the
iEEG data makes many of the classical high-dimensional techniques undesirable, such as lasso
and other `1-based regularization methods. To address this problem, future statistical models
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should be able to find the appropriate representational basis from the high-dimensional iEEG
data. In addition, as shown in this thesis, the different aspects of the recorded neural activity
from iEEG, including the ERP, the broadband activity, and phases, all contributing to different
tasks and analysis. Therefore, it suggests that instead of arbitrarily defined features like ERP,
broadband, and phases, we may be able to use a data-driven way to design statistical model that
picks the optimal representation basis for specific types of analysis.

The other challenge that would emerge when shifting to full-brain scale is to combine rep-
resentations from multiple subjects. Because of the heterogeneity in the electrode coverage, it
is not as straight-forward as the ROI-based approach to directly combine results from multiple
subjects with different electrode coverage. How to find a common latent space from the subjects
is another direction that needs further investigation.

From a methodological point of view, these two points above both requires dimensionality re-
duction and representation learning. Recent years have witnessed great advances in deep models
(Goodfellow et al., 2016), and the application of supervised models with deep neural nets have
been successful in directly decoding neural signals (Bashivan et al., 2015; Lawhern et al., 2016;
Manor and Geva, 2015; Schirrmeister et al., 2017; Stober et al., 2014; Wang et al., 2013), as well
as representational similarity analysis between the model feature spaces and the neural spaces
at different brain regions (Cadieu et al., 2014; Yamins et al., 2013; Yamins and DiCarlo, 2016;
Yamins et al., 2014). However, few works have explored unsupervised models that extract and
characterize the intrinsic representation space of the spatiotemporal dynamics in the intracranial
EEG signal. Therefore, another future direction is to design deep generative model for nonlinear
dimensionality reduction to discover the low-dimensional nonlinear manifold that characterizes
the spatiotemporal dynamics of the neural activity in ventral visual stream. This low-dimensional
structure can be used to identify the ”codebook” used by the neural circuits for encoding visual
information in the task-evoked response.

Toward dynamic causal analysis

In Chapter 2, we disrupt the neural activity, using electrical stimulation, to build a causal link
between local neural activity and cognitive functions. Due to the limitation of clinical mapping
session, at this point we do not have the temporal resolution to precisely stimulate the region at
different stages. Therefore, we only focus on building a overall causal link between the region
and cognitive function. However, to get a precise understanding of the temporal dynamics and
delineate the dynamic role of each area at different stages would require precise control of the
stimulation timing and duration. Future works are necessary to develop and apply more precise
stimulation paradigms to perform such dynamic causal analysis for individual ROIs and even
multiple ROIs.

Combining local dynamics and network interactions

The approaches that we take in this thesis isolate the analysis of local dynamics and the analy-
sis of neural interactions from each other, and we demonstrate that the two can be independent
or complementary from each other. An interesting extension would be a network model that
combine both feature representation within each node and the interactions between nodes. Ap-
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proaches from graph neural networks could be potentially adopted toward this task (Hamilton
et al., 2017).

Toward Marr’s framework

Marr’s three levels of analysis framework has guided cognitive neuroscience, especially visual
cognitive neuroscience, for the past few decades. According to Marr’s framework, there are three
different levels of understanding of a cognitive system (Marr, 1982):

1 the computational theory level: what computational problem does the system solve;

2 the representation and algorithm level: from algorithmic point of view, how does the sys-
tem do what it does, what representation is used and how does it manipulate the represen-
tation in order to achieve the computation goal;

3 hardware implementation level: how is the system physically realized.
The works presented in this thesis mainly focus on the first two levels. Future works should
explore the algorithmic and physical space to fully understand the biological basis of the neural
dynamics underlying perception, which may provide insights into building artificial intelligent
systems that overcome current limitations.
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Kathrin Müsch, Carlos M Hamamé, Marcela Perrone-Bertolotti, Lorella Minotti, Philippe Ka-
hane, Andreas K Engel, Jean-Philippe Lachaux, and Till R Schneider. Selective attention
modulates high-frequency activity in the face-processing network. Cortex, 60:34–51, 2014.
4.1, 4.4

Thomas Naselaris, Ryan J Prenger, Kendrick N Kay, Michael Oliver, and Jack L Gallant.
Bayesian reconstruction of natural images from human brain activity. Neuron, 63(6):902–915,
2009. 5.2.5, 5.3.2

Adrian Nestor, David C Plaut, and Marlene Behrmann. Unraveling the distributed neural code of
facial identity through spatiotemporal pattern analysis. Proceedings of the National Academy
of Sciences, 108(24):9998–10003, 2011. 1.1, 2.2.10, 3.1, 3.4, 4.1, 5.1, 5.4.4

Anna C Nobre, Truett Allison, Gregory McCarthy, et al. Word recognition in the human inferior
temporal lobe. Nature, 372(6503):260–263, 1994. 2.3.1, 2.3.2

Kenneth A Norman, Sean M Polyn, Greg J Detre, and James V Haxby. Beyond mind-reading:
multi-voxel pattern analysis of fmri data. Trends in Cognitive Sciences, 10(9):424–430, 2006.
1.1, 5.1, 5.4.3, 6.4.1

Robert Oostenveld, Pascal Fries, Eric Maris, and Jan-Mathijs Schoffelen. Fieldtrip: open source
software for advanced analysis of meg, eeg, and invasive electrophysiological data. Computa-
tional Intelligence and Neuroscience, 2011:1, 2011. 4.2.3, 6.2.4

Jill X O’Reilly, Mark W Woolrich, Timothy EJ Behrens, Stephen M Smith, and Heidi Johansen-
Berg. Tools of the trade: psychophysiological interactions and functional connectivity. Social
Cognitive and Affective Neuroscience, 7(5):604–609, 2012. 5.4.3

Josef Parvizi, Corentin Jacques, Brett L Foster, Nathan Withoft, Vinitha Rangarajan, Kevin S
Weiner, and Kalanit Grill-Spector. Electrical stimulation of human fusiform face-selective

157



regions distorts face perception. Journal of Neuroscience, 32(43):14915–14920, 2012. 2.3.2,
3.4

Marius V Peelen and Paul E Downing. The neural basis of visual body perception. Nature
Reviews Neuroscience, 8(8):636–648, 2007. 3.4

Dan Pelleg, Andrew W Moore, et al. X-means: Extending k-means with efficient estimation of
the number of clusters. International Conference on Machine Learning (ICML), 1:727–734,
2000. 4.2.9

DI Perrett, Edmond T Rolls, and W Caan. Visual neurones responsive to faces in the monkey
temporal cortex. Experimental Brain Research, 47(3):329–342, 1982. 3.1, 3.3.1, 3.4

David Pitcher, Lucie Charles, Joseph T Devlin, Vincent Walsh, and Bradley Duchaine. Triple
dissociation of faces, bodies, and objects in extrastriate cortex. Current Biology, 19(4):319–
324, 2009. 3.1, 3.4

David Pitcher, Daniel D Dilks, Rebecca R Saxe, Christina Triantafyllou, and Nancy Kanwisher.
Differential selectivity for dynamic versus static information in face-selective cortical regions.
NeuroImage, 56(4):2356–2363, 2011. 4.1

David Pitcher, Tanya Goldhaber, Bradley Duchaine, Vincent Walsh, and Nancy Kanwisher. Two
critical and functionally distinct stages of face and body perception. Journal of Neuroscience,
32(45):15877–15885, 2012. 3.1

Russell A Poldrack. Inferring mental states from neuroimaging data: from reverse inference to
large-scale decoding. Neuron, 72(5):692–697, 2011. 5.1

Sean M Polyn, Vaidehi S Natu, Jonathan D Cohen, and Kenneth A Norman. Category-specific
cortical activity precedes retrieval during memory search. Science, 310(5756):1963–1966,
2005. 5.1

Gilles Pourtois, Laurent Spinelli, Margitta Seeck, and Patrik Vuilleumier. Modulation of face
processing by emotional expression and gaze direction during intracranial recordings in right
fusiform cortex. Journal of Cognitive Neuroscience, 22(9):2086–2107, 2010. 4.1, 4.4

Cathy J Price and Joseph T Devlin. The myth of the visual word form area. NeuroImage, 19(3):
473–481, 2003. 1.2.1, 2.1

Cathy J Price and Joseph T Devlin. The interactive account of ventral occipitotemporal contri-
butions to reading. Trends in Cognitive Sciences, 15(6):246–253, 2011. 2.1, 2.3.3, 2.4

Aina Puce, Truett Allison, and Gregory McCarthy. Electrophysiological studies of human face
perception. iii: Effects of top-down processing on face-specific potentials. Cerebral Cortex, 9
(5):445–458, 1999. 1.1, 1.2.1

John A Pyles, Timothy D Verstynen, Walter Schneider, and Michael J Tarr. Explicating the face
perception network with white matter connectivity. PLoS One, 8(4):e61611, 2013. 3.4, 5.4.4,
6.4.4

Rajasimhan Rajagovindan and Mingzhou Ding. From prestimulus alpha oscillation to visual-
evoked response: an inverted-u function and its attentional modulation. Journal of Cognitive
Neuroscience, 23(6):1379–1394, 2011. 6.4.1

158



Supratim Ray and John HR Maunsell. Network rhythms influence the relationship between
spike-triggered local field potential and functional connectivity. Journal of Neuroscience, 31
(35):12674–12682, 2011. 3.1, 3.4

Erik D Reichle, Alexander Pollatsek, Donald L Fisher, and Keith Rayner. Toward a model of eye
movement control in reading. Psychological Review, 105(1):125, 1998. 2.4

David Ress, Benjamin T Backus, and David J Heeger. Activity in primary visual cortex predicts
performance in a visual detection task. Nature Neuroscience, 3(9), 2000. 1.2.3, 6.1

Jonas Richiardi, Hamdi Eryilmaz, Sophie Schwartz, Patrik Vuilleumier, and Dimitri Van
De Ville. Decoding brain states from fmri connectivity graphs. NeuroImage, 56(2):616–626,
2011. 1.2.2, 5.1, 5.4.3

BARRY J Richmond, LANCE M Optican, MICHAEL Podell, and HEDVA Spitzer. Temporal
encoding of two-dimensional patterns by single units in primate inferior temporal cortex. i.
response characteristics. Journal of Neurophysiology, 57(1):132–146, 1987. 3.4

Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cor-
tex. Nature Neuroscience, 2(11):1019–1025, 1999. 1.1, 5.3.3, 5.4.2

Maximilian Riesenhuber and Tomaso Poggio. Models of object recognition. Nature Neuro-
science, 3:1199–1204, 2000. 1.1

Monica D Rosenberg, Emily S Finn, Dustin Scheinost, Xenophon Papademetris, Xilin Shen,
R Todd Constable, and Marvin M Chun. A neuromarker of sustained attention from whole-
brain functional connectivity. Nature Neuroscience, 19(1):165–171, 2016. 1.2.2, 5.4.3
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