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Abstract

We need tools and techniques for program analysis that address the unique prob-

lems faced when analyzing compiled code. During compilation, the compiler strips

away source code information, such as control flow, types, and variable locations. As

a result, analysis of compiled code faces a number of unique challenges. Previous work

has proposed techniques to perform an individual analysis in isolation. However, pre-

vious work has not focused on the co-dependencies between these individual analysis.

For example, value set analysis requires control flow analysis, which in turn requires

value set analysis. We need techniques that can handle such co-dependencies in order

to effectively check higher-level security properties.

In this thesis we propose using a logic-language based approach to encode co-

dependent analysis and build a tool called Holmes based on our approach to demon-

strate our ideas on real code. We demonstrate novel techniques for extending Datalog

semantics to efficiently and effectively reason about real binary code. Our approach

allows one to elegantly encode the co-dependence between value-set and control-flow

analysis described above. We demonstrate Holmes and our approach by encoding

real-world co-dependent analysis, and showing that Holmes can act as a framework to

effectively check higher-level properties, such as use-after-free, on real compiled code.

iv



Contents

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 6

2.1 Binary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Logic Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Binary Type Recovery (BiTR) 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Inference Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Motivating Holmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Holmes 60

4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Holmes Specification 85

5.1 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Example Input Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Herbrandization (Revisited) . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Alias Analysis 104

6.1 Analysis Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conclusion 135

7.1 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 137

vi



List of Tables

3.1 Feature Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Result Summary (Probability Metric) . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Result Summary (TIE Distance Metric) . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Real CVE Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Ubuntu /usr/bin Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 GUEB Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



List of Figures

3.1 Type Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 An Example Stack Region named x . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Loop Sum C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Loop Sum Assembly (64-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Constraint Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Effects of Unconstrained Type Variables . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Solved List Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Points-to Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



Chapter 1

Introduction

We need program analysis techniques that can find security bugs in binary programs. Binary

program analysis is essential because software is often only available in binary form. Even

when source code is available, some security properties are more appropriately checked at

the binary level. As an example, use-after-free bugs present in source may not be present at

the binary level if the compiler chooses to elide a read when a register caches its value.

Authors designed existing tools [16, 35, 54, 70] as a sequence of analyses to perform

with the results of each previous analysis being available to the next. In this model, an

analysis author must ensure the framework calculates any information needed before their

analysis, but after any analyses that could benefit their dependency’s accuracy. Representing

individual analyses as nodes with a directed edge between n1 and n2 indicating that n1 must

execute before n2, this graph forms a sequence or line.

Compilers have moved from this sequence or line model to a dependency-based DAG

model to avoid the cumbersome explicit staging inherent to the line model. The widely used

compiler backend LLVM[47] instead uses a “pass” model. The line model is essentially an

ad-hoc form of LLVM’s pass model. In LLVM’s pass model, each pass declares what analyses

it depends upon, allowing the LLVM pass manager to dynamically schedule the analyses and

allow a configurable pipeline. Considering the graph representation again, LLVM’s model is

a DAG. The execution order selected by LLVM’s engine would be one of the valid sequences
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a careful programmer could have picked in the line model.1

This DAG model works well over source code, but falls short when applied to compiled

code. The binary analysis tool Jakstab [45] focuses on the co-dependency of value analysis

and lifting. It takes the approach of running these two analyses to a fixed point, and

provides a hook for user-defined analyses to run on each iteration. The graph of execution

dependencies looks like a single cycle because Jakstab does not explicitly encode analysis

dependencies. The Jakstab approach is undoubtedly a step forwards. However, it still causes

unnecessary recalculation and places a form of monotonicity requirements on analyses in

order to remain correct. A natural extension is to allow the expression of dependencies, as

in LLVM, but also cycles, as in Jakstab. We investigate this full graph model of analysis

management in this thesis.

We often want co-dependent analysis to detect bugs. Jakstab [45] is one example where

simply integrating two analyses (value analysis and control flow recovery/disassembly) lead

to better results than IDA[35] (the industry standard for reverse engineering) for jump reso-

lution. The result is that an evaluation of a security property done over the CFG presented

by IDA would miss some true positives along the undetected control flow edges. Specifying

these analyses as logical rules within the same environment would provide the same power

Jakstab found by integrating them for free. Investigations via the Doop[14] system for pro-

gram analysis found that integrating exception analysis and points-to analysis gave them

candidate target sets which were half the size on average for each object. Extra precision of

this sort translates into reduced false positives when evaluating security conditions over the

program.

Our main insight is that we need an analysis framework that allows for arbitrary cycles

in the dependency graph. Further, we want a framework that is extensible so that adding

new analyses is easier. Using a logic language is a natural approach to representing such a

dependency graph.

Previous work in program analysis suggests that logic languages can help to structure

1Assuming a single evaluation thread.
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this problem. Datalog has previously been successfully used to analyze programs [4, 14,

17, 46, 78]. Existing work has modeled a wide variety of properties from aliasing in com-

piled code [17] to security properties such as SQL injectability and cross site scriptability

(XSS) [46] as facts in a deductive database. This work suggests a Datalog format as a

potential common representation. Dataflow analyses are also representable [52] in this way.

We can even call out to code not written as logical rules2. This makes it possible to

repurpose previously written analyses, or to write new analyses which may not be best

represented as logic rules. There are still some restrictions on how such code can operate

(for example, no visibly preserved state across calls) but taking this approach gives the

flexibility required to be an integration system.

Thesis statement. A Datalog derivative with extensions for negation and ex-

ternal callbacks can drive multiple potentially co-dependent analyses to reason

about binary programs effectively.

Co-dependent Analyses. We examined the co-dependent analyses of control flow recovery

(§ 2.1.1), value analysis (§ 2.1.2), and alias analysis (§ 2.1.4, § 6). Datalog fits well as a

structuring tool for these analyses due to its incrementality and ability to handle mutual

recursion.

Negation. In previous work, the framework runs an analysis “to completion” before pro-

ceeding. A later analysis can use the results of a prior analysis in two different ways. The

first way is direct consumption of the facts provided by the analysis. In the case of a control

flow recovery analysis, this would be treating a jump as possible because it is present in the

returned CFG. The second way is a consumption of information on what was not returned

by the analysis. Following the control flow example, the later analysis may assume that

because the control flow analysis has completed, any edge not present in the recovered con-

trol flow graph cannot happen. In this way previous frameworks implicitly encoded negated

information. Similarly, the a dataflow analysis producing an upper bound which increases

throughout the analysis, such as a may-alias dataflow (§ 6.1.4), is not meaningful until it

2We use a system similar to external predicates using a common extension of logic language. §2.2.1
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can no longer grow. As a result, the usability of a dataflow analysis implicitly depends on

the negated information that no larger upper bound will be created, normally determined

by waiting for the analysis to complete.

Co-dependence eliminates the ability to stage analyses since it may not be possible to

know that an analysis will not continue later. As a result, the use of negated information must

be made explicit (§ 4.2.4). Explicit negation also allows us to deal with more exotic control

flow than “to completion”. Our binary type reconstructor BiTR performs simultaneous

constraint solving for type inference, with a goal of ignoring as few constraints as possible

while still arriving at a consistent answer. Our form of negation is useful for describing that

a particular solution is minimal (§ 3.3.6), and avoiding the computation of non-minimal

solutions.

External Code. Datalog systems use external predicates to allow programmers to specify

functionality outside the catalog programming language. Access to external code is impor-

tant to allow the use of already existing analysis code, such as BAP [16] lifting and ELF

parsing. External code also allows us to utilize traditional imperative data structures, such

as hash tables, during the implementation of performance critical analyses (§ 6). We allow

a more limited form of external predicates we call callbacks. The use of callbacks as opposed

to external predicates allows us to more easily implement the engine (§ 4.3.2).

We investigated our thesis statement by designing and implementing Holmes, a logic

language engine designed for the integration of binary analyses. BiTR (§ 3) inspired this

design. For this purpose we invented a novel form of negation, based on circumscription [53]

suited to this particular application (§ 4.2.4). This negation can further make progress from

failed hypotheses (§ 4.2.5). This adaptation allows Holmes to resolve an output even in the

case of cyclic negation. This is concretely the case in the use of VSA[11]3 to resolve function

pointers or other indirect jumps. We also investigated different implementation approaches

for Holmes (§ 4.3).

3 Value-set-analysis is the current state of the art for performing range analysis for variables in binary
code.
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We present a type recovery mechanism for compiled code which inspired the Holmes

design (§ 3). We define a descriptive type system, more powerful than direct C types for

performing inference, wile being more flexible than a traditional prescriptive type system

(§ 3.2). We address the problem of inconsistent type constraints by suggesting a resolution

system which seeks a solution in which it drops the fewest constraints (§ 3.3). Finally,

previous work in type recovery used a metric which minimized the importance of correct

recovery of structure types. In § 3.4.1, we provide a novel metric for type recovery based on

the probability of correctness of any individual query by a reverse engineer or downstream

analysis. Throughout, we show how the design and implementation of BiTR motivates the

features selected for Holmes.

We provide a specification for the Holmes logic language (§ 5). This enhances the ability

to reason about the results of an analysis by constraining what derivations the analysis

engine may follow. The specification also makes it possible to determine compliance for

alternative implementations of the engine, potentially allowing programs to run on backends

other than the initial one written for this thesis.

We show that Holmes can implement different sensitivities of alias analysis, and show

how this affects practical use-after-free classification (§ 6). We implemented co-dependent

alias analysis, use-after-free detection, and control flow recovery using Holmes. This imple-

mentation provides evidence for the feasibility of using a logic language as an integration

layer for cyclically dependent analyses. This concrete bug finding tool demonstrates the

applicability of the Holmes language to the domain of compiled-code program analysis. We

translate analysis techniques from the compiler and program analysis communities into anal-

ysis of compiled code (§ 6.1). We measure the performance cost and precision benefits of

different sensitivities of alias analysis by leveraging the modularity of the Holmes-based im-

plementation (§ 6.3). We did not set out to invent a new or better alias analysis. Rather,

we set out to demonstrate the suitability of Holmes as a platform for this type of analysis.
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Chapter 2

Background

2.1 Binary Analysis

Questions of control flow, value analysis, alias analysis, and type recovery all have added

challenges when analyzing compiled programs compared to analyzing source code.

Some of these challenges fall into the category of absent abstraction. Function locations,

variable locations and bounds, variable types, and control flow graphs are all generally taken

for granted even in the analysis of “low level” languages such as C, but are absent in binaries.

Another general class of added difficulty comes from the increased apparent state of a

compiled program. A program with more state is more difficult to analyze. One of the

features of functional code that makes it easier to analyze is its thorough reduction of state.

Traditional procedural or imperative languages make this slightly more difficult through the

use of state variables which expand the set of implicit inputs to each step greatly. Binary

code is yet more difficult to analyze. It becomes quickly difficult to determine what parts

of memory and registers are really live without abstractions like array bounds or variable

scoping. It is difficult statically to know whether the process may access a given piece of state

in the future. Execution effectively “leaks” state that existing analysis cannot determine

will be unreachable. This increased state increases the problem size for alias analysis, value

analysis, and type recovery, making it more difficult to find tractable approaches.
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2.1.1 Control Flow Recovery

Recovering a complete control flow graph is a known difficult challenge in binary analysis.

Algorithms for recovering any of the other missing abstractions depend strongly on having a

pre-existing control flow graph[11, 33, 49, 51, 57, 60, 78]. However, determining the poten-

tial targets of an indirect (computed) jump becomes more difficult without the abstractions

present in the source language. Despite this, real systems frequently use approaches which

are both an over- and under-approximation due to the difficulty of this problem. These

approaches usually produce representations which are useful when used directly by a hu-

man or UI. However, picking such an unsound approach can result in unsoundness in every

downstream analysis

The goal of control flow recovery is to generate a complete graph of possible program

counter transitions in the program while containing minimal number of spurious edges. The

simple form of control flow recovery involves performing recursive descent disassembly from

a given entry point and watching for a transition to a distinguished exit node (usually via

a function return). However, indirect jumps due to function pointers, C++ virtual method

calls, and even creative compilation of case statements can wreak havoc on this method since

the value of the jump target to is not known ahead of time.

In each of the above cases, the compiler would be able to accurately determine the range

of jump targets based on its own code generation information and information present in the

source code. The type of a C++ object determines a small subset of legal function targets

for a given method. The compiler can determine where jumps which came from switch

statements will go as they have explicit targets in the source. Function pointers are the

most difficult to resolve. At the source level, the compiler at least has the ability to restrict

the possible targets to functions of the right type. Compilation strips away abstractions

needed to perform any of these analyses. This renders them useless for direct use on raw

compiled code.
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2.1.2 Value Analysis

It follows that recovering over-approximations of the range of potential values for pieces of

state in a program would be useful. One common way to do this is to perform abstract

interpretation of the program over a domain designed to model the range of values well [11,

29, 57]. A program with more state is more difficult to analyze. One of the features of

functional code that makes it easier to analyze is its thorough reduction of state. Traditional

procedural or imperative languages make this slightly more difficult through the use of state

variables which expand the set of implicit inputs to each step greatly. Binary code is yet

more difficult to analyze. It becomes quickly difficult to determine what parts of memory

and registers are really live without abstractions like array bounds or variable scoping. It

is difficult statically to know whether the process may access a given piece of state in the

future. Execution effectively “leaks” state that existing analysis cannot determine will be

unreachable. This increased state increases the problem size of analyses such as alias analysis,

value analysis, and type recovery, making it more difficult to find tractable approaches.

Unfortunately, Value Set Analysis1 (VSA) assumes that the control flow graph has al-

ready known in order to sequence its transformations. Additionally, it can lose nearly all

its precision by loops whose transformations are not well represented by its particular do-

main. The state of the art approach to the co-dependence of the control flow recovery and

value analysis problems is to iterate control flow recovery followed by value analysis. This

process allows the creation of new paths from new values, which in turn re-inform the value

analysis [45].

2.1.3 Type Recovery

Another important static analysis is type recovery. A binary program may not necessarily

have a traditional assignment of types to variables. However, source language requirements

and programmer volition make it likely that there is a useful assignment of types. Even

1 Value Set Analysis is the current state of the art for value analysis over compiled code.
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assembly programmers and dynamic language users [36] usually use consistent types to

some extent.

There are two primary sources for type information after the compiler strips abstractions:

propagation from API/ABI boundaries and how the program interacts with the structure

of the data. Propagation [67] of type information from code boundaries entails knowing a

priori that a particular library or service in use by the program matches some signature,

then following definitions of its arguments and uses of its results to annotate the program

with this information. This technique is straightforward and keeps useful information like

type and field names. Unfortunately, it encounters difficulties with any kind of internal data

structure. Usage based analysis [49, 51] to perform better at recovering internal structures,

and works by examining how the code defines and uses state and generating constraints for

types based on that.

2.1.4 Alias Analysis

An alias analysis endeavors to answer the question “Do these two pointers point to the same

thing?” There are two basic varieties: may and must alias. Must alias means that two values

will definitely point to the same thing, but the lack of such a relationship means nothing.

May alias means that two values might point to the same thing, and the lack of such a

relationship means they definitely will not.

Additionally, alias analyses have different degrees of sensitivity. The sensitivity of an alias

analysis refers to what additional parameters the analysis examines when asking whether

two pointers alias. A flow-sensitive analysis uses the program counter or statement location

as a parameter.2 A context-sensitive analysis uses program call stack as a parameter. This

term is also sometimes used to discuss the granularity of the memory model in use, e.g. a

“field sensitive analysis” is one in which the model distinguishes between writes to s->x vs

s->y. In our case, a lack of type information and the presence of pointer arithmetic adds

2 This implicitly encodes the location within the control flow graph since the analysis is also conditioned
on the particular compilation of the source program.
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complexity to field sensitivity, so it differs from the traditional presentation (§ 6.1.8).

Analysis which is both context and flow insensitive is generally efficient, in nearly lin-

ear time [71]. However, their lack of sensitivity makes the drawing of variable boundaries

important and removes all ability to reason about a variable being overwritten as a safety

property. Common examples of this are Steensgaard [71] and Andersen’s [6].

Flow-sensitive analyses are still more seldom used due to their longer run times, but

modern techniques are beginning to allow them to scale to larger codebases [38]. Flow

sensitivity is the most important sensitivity for our use case because it helps us to reason

about overwritten variables. For example, if the program frees a variable, then overwrites

it with a fresh pointer (for example, free followed by strdup), this avoids leaving the

variable as potentially free. It is additionally specifically important to the binary domain

due to the repeated re-use of registers. Over the course of a function, the register RAX

probably maps to multiple different variables, depending on the current program counter.

Flow sensitivity helps to keep these relationships separated by parameterizing the alias

relationship accordingly. The implementation of a flow sensitive analysis generally follows

the pattern of performing dataflow on a points-to relationship to a fixpoint.

Context-sensitive analyses are frequently used in analysis of Java and other object ori-

ented programs because it helps to reason about which class of objects may have been the

argument to a function, and thus which methods may be the target of the call. The two

primary ways to accomplish this are to either take a call-site approach (tracking a stack

of return addresses), or an object based approach where method calls take as a parameter

which objects they may have occurred on. We will focus on the call-site approach in this

thesis as not all the code under examination is object oriented, and we are not performing

object recovery on the code which is.

The call-site approaches are generally distinguished from one another based on the do-

main used for the stack tracking. With an unbounded stack, it reduces to inlining every

function call. This can result in an expansion of problem size, and cannot terminate in the

case of recursion. If an analysis can handle the larger control flow graph, it can special
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case out recursion by either contracting strongly connected components of the function call

graphs to single nodes, or by truncating stacks on recursive calls to the last time this call

site occurred. Another option is to limit how much of the context the domain tracks. A

common approach is to limit the domain by tracking only the most recent k calls for some

fixed k. In this case, a strategy to deal with recursion is not required, but may still prove

useful to put available precision to the best use possible.

One of the most focused on analyses for alias analysis over binaries is VSA [11]. VSA

integrates the problem of alias and value analysis by doing abstract interpretation over a

domain called a strided interval, with dynamic allocations appearing as free variables. This

formulation has produced useful results in the past, but its relative expense [66] has limited

its applications, especially with regards to whole program analysis. The authors of VSA also

applied to variable recovery [12].

2.1.5 Dynamic Analyses

Dynamic analyses are those which focus on properties of individual executions, or statements

of the form “there exists a trace with the property. . . ”. These analyses are frequently good

at pinpointing problems or increasing the accuracy of approximations. However, being path

oriented limits these techniques to describing what could happen, rather than what must

always be the case.

Fuzzing

One common modern way to find issues in code is to simply perform a large number of

executions with varied inputs. This technique is known as “fuzzing”, and is widely used

in the search for security flaws. Fuzzing is especially useful for analyzing compiled code as

it does not rely on source-level abstractions. The primary two defining axes of fuzzing are

blackbox [25, 39, 62] vs whitebox [10, 19, 32] and generational [25] vs mutational [39].
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Symbolic Execution

A slightly more sophisticated (though more expensive) approach is to keep inputs “symbolic”

while executing. Essentially, the evaluator uses expressions based on input variables in the

place of concrete values unless the evaluator requires a concrete value to take a step. When

a the evaluator encounters a conditional branch, it extends path constraint by conjunction

with the condition. This restricts the range of feasible inputs for this execution. When the

next instruction is a potentially dangerous operation (such as jumping to or dereferencing a

symbolic value), a SMT solver can check a formula for the plausibility of the “bad” scenario3.

The execution engine constructs the formula by taking the conjunction of the path constraint

with whatever condition suffices to cause the badly behaved event. If the SMT solver returns

a satisfying assignment to the formula, that solution describes a bug-causing input[9, 20]. If

the formula passed is complete (the operation is only dangerous if the formula is satisfiable),

an UNSAT response from the SMT solver give safety for this path only. Since loops may

create an infinite number of paths, it is difficult to demonstrate that any region is safe this

way. The major benefit of the symbolic execution and SMT approach is that it results in a

concrete trace which exercises a bug condition.

2.2 Logic Language

Logic languages are a family of declarative programming languages which express compu-

tation as a series of rules used to derive a conclusion. This makes them well suited to the

task at hand because it allows us to describe the provenance of information and to separate

the execution strategy for a suite of analyses from the expression of said analyses. We will

focus our review on Datalog and Prolog as exemplars of two styles of logic programming.

3 SMT stands for Satisfiability Modulo Theory. It is a SAT solver whose variables have extra domains
and additional operations. The SMT solvers discussed here operate over the theory of bitvectors.
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2.2.1 Datalog

Basics

Predicates form the concept of a relation between multiple values. For example,

parent(·, ·)

represents a relation in which the left argument is the parent of the right argument. A “fact”

is a particular member of a relation. We use italics to denote a constant. As an example,

parent(alice, bob)

represents the fact that alice is bob’s parent. The set of facts known is sometimes referred to

as the database. The database has two parts: extensional and intensional. The extensional

portion of the database is those facts which the program author or user provides to the system

prior to execution; the intensional database consists of those derived from the extensional

database. In order to actually perform computation with this system and create such an

extensional database logic languages use “rules” which function similarly to inference rules

from traditional proof writing. To write rules, I’ll use X to represent a variable named x.

Following in the vein of the previous examples,

sibling(X,Y)← parent(P,X),parent(P,Y)

expresses that if for some assignment to P, X, and Y, we know that X shares parent P

with Y, then we can derive that X and Y are siblings. The left hand side is the head and

represents the template used to build new facts with this rule. The right hand side is the body

and describes the search or match which must have a result on the database. An evaluation

engine applies rules“to saturation”. This means that it applies all rules repeatedly until the

body no longer has any new matches in the database.4 Given this, rule declaration order is

irrelevant. 5

4 Without external code, this is equivalent to “the head is in the database, or the body does not
match“. With external code however, the head is not necessarily predictable, so we instead describe each
rule triggering at most once per assignment of variables which matches the database.

5 Rule declaration order is irrelevant to results. It may cause different performance in some engines.
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Example: Uncle

If we ignore the genderedness of the term “Uncle”, calculating from a series of parent/child

relations all of the uncles is a straightforward example. We begin with an extensional

database consisting of:

parent(alice, bob) parent(alice, charlie) parent(bob, deb) parent(bob, ed)

We take the sibling rule from the earlier example, and also

uncle(X,Y)← sibling(X,P),parent(P,Y)

which indicates that someone is an uncle if they are that person’s parent’s sibling.

We can compute the complete database from these rules and the extensional database.

The uncle rule cannot apply, since there are no facts for the sibling predicate. Applying the

sibling rule to saturation yields a database of

parent(alice, bob) parent(alice, charlie) parent(bob, deb) parent(bob, ed)

sibling(bob, charlie) sibling(charlie, bob) sibling(deb, ed) sibling(ed , deb)

The right hand side of the sibling rule no longer applies, so the only option now is to execute

the uncle rule. Doing so to saturation yields

parent(alice, bob) parent(alice, charlie) parent(bob, deb) parent(bob, ed)

sibling(bob, charlie) sibling(charlie, bob) sibling(deb, ed) sibling(ed , deb)

uncle(charlie, deb) uncle(charlie, ed)

At this point, the program has finished because neither rule applies, and so the program has

finished. It has also derived the only two uncle facts possible.
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Example: Related

Alternatively, perhaps we only wish to know if two people are related. Consider the rules

related(X,Y)← parent(X,Y)

related(Y,X)← related(X,Y)

related(X,Z)← related(X,Y), related(Y,Z)

We could structure the previous rule set as a two-step procedure: find the siblings, then

find siblings of parents. This rule set is potentially more interesting because it is a recursive

build up of information. However, this is not any more difficult than the previous query since

Datalog applies its rules to saturation. The first rule translates a parent/child relationship

into a “related” relationship. The second provides symmetry. The third provides transitivity.

This is sufficient to compute the actual related set. Execution proceeds much the same as

the previous example, simply firing each rule until no rules are able to fire. The only real

difference is that the second and third rule will fire recursively.

Termination

It might be surprising to realize that the language as described thus far is actually termi-

nating despite allowing recursive rules. Heads construct facts with variables or directly with

values. If constructed with a variable, the body must bind that variable. If a body binds a

variable to a value, that value must have been in the database. As a result, the only possible

values are those which were in the extensional database and those mentioned concretely in

the rules. With a finite domain of values and a finite list of predicates, there is a finite list

of facts which any execution could instantiate.

Evaluation is a series of steps. Each step fires the first rule it can find which matches,

or if no rule matches, terminates. Since this evaluation strategy is always productive or

terminating, and we have established a finite upper bound on the database, we have a bound

on the length of such an evaluation. This evaluation strategy matches the saturating/fixpoint
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semantics of Datalog because it only produces facts according to the rules and only stops

when no rules apply.

There are some important caveats to termination as a language feature. Termination

directly implies a limit to the language’s power. Datalog’s inability to create new symbols

can be limiting. Unmodified Datalog can still implement a number of different kinds of

closure or search procedures, but even simple arithmetic is outside of its purview if not within

a bounded domain. Some language modifications (including those needed for Holmes) will

introduce the ability to generate new symbols. When this happens, the resulting language

loses its termination guarantees.

External Predicates

One example of a case where introducing new symbols might be desirable is the ability to

perform arithmetic. It is possible to encode arithmetic over some finite domain (e.g., 0 −

(264−1)) by adding a predicate for each binary operation and prepopulating the extensional

database with all the values. However, having such a table is massively impractical.

One way to deal with this issue is to introduce external predicates: predicates whose

truth is not defined by presence in the database. Instead, the engine computes or queries its

truth from some external system when needed. This leads to the need for a mode system.

Consider an external predicate sum(·, ·, ·), where the first entry is the sum of the other two.

When trying to match the body of a rule, it becomes important that at the match algorithm

sends at least two values to the external code; if only it only sends one, the resulting match

set will have the enormous size of |D|2 where D is our domain set. In the case of functions

designed to be hard to invert (e.g., a hash function), this becomes not only a result size

concern and an actual implementability concern. To deal with this, external predicates can

have “mode signatures”. These signatures explain which entries are logical inputs and which

are outputs. For example, we could have

sum(−,+,+) hash(−,+)
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A mode checking phase on the rule can then guarantee that matches against the sum pred-

icate only needs an implementation of

add : uint64→ uint64→ uint64

rather than needing to assume the presence of subtraction and possible-addends operations.

Unfortunately, adding external predicates adds all possibilities for their result values to

the upper bound for the termination. Adding an external predicate which only produces a

small type such as a boolean has little effect on our ability to bound execution. Adding a

finite-but-large type like uint64 makes any numerical approximation of runtime from value

count irrelevant, but still technically gives termination. Adding a type with non-finite size

like lists or strings breaks termination. As a simple example, consider an external predicate

which appends the character ‘a’ called ‘extend’. Then

infinite(X)← infinite(Y), extend(Y,X)

infinite(“′′)

provides a simple infinite loop by extending the string with more ‘a’s forever.

Backwards Chaining

The evaluation model discussed thus far is what is commonly known as forward chaining, or

bottom-up search. This approach searches for a proof by taking known facts and deriving

anything they can hoping to reach the goal. However, there are some applications for which

this approach does not work well — as an example, any system that would have a potentially

infinite intensional database would never complete execution with such a semantics.

Prolog uses the opposite approach: backwards chaining or top-down search. In backwards

chaining, a particular goal match directs the search rather than enumerating all possible

derivations from available information. The logic engine examines the goal and the available

rules and breaks it down via unification to a series of potential subgoals, then recurses.
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2.2.2 Negation

Stratified Negation

One interpretation of negation is as the inability of the system to prove a particular fact. For

example, this sort of negation could be useful to describe routing. We can describe network

reachability as:

reachable(X,Y)← link(X,Y)

reachable(Y,X)← reachable(X,Y)

reachable(X,Z)← reachable(X,Y), reachable(Y,Z)

Next, our machine has a local network and a gateway — a common configuration. Traffic

serviceable by the local network should be directly sent, while the remainder of routable

traffic should go to the gateway.

route(local ,T)← reachable(local ,T)

route(gw ,T)← ¬reachable(local ,T), reachable(gw ,T)

In the case of this set of rules, negation has a clear interpretation. First, generate all

reachability predicates. Then, if reachable was not derivable thus far, matches against

not reachable should succeed. However, recursive rules and negation can mix to cause

termination and stability issues. Consider the set of rules:

p(X)← ¬q(X)

q(X)← ¬p(X)

There is no interpretation of this which terminates with the fixpoint semantics, or which

provides a minimal model [72]. To deal with this, Datalog imposes a requirement on negation

known as stratification. It is possible to phrase this requirement as a graph property:

Create a graph where the predicates are nodes with an edge between two nodes iff there

is a rule in the program which uses the source node predicate as a premise to derive the
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destination node predicate. Additionally, label all those edges where the with a negated

premise predicate. There must be no cycles which include one or more negated edges.

2.2.3 Circumscription

Circumscription is a concept in logic related to including Occam’s Razor into deriving a

model from logic statements. We discuss it here because it will be relevant to the Holmes

treatment of reasoning from incomplete information.

As an example of why circumscription might be useful, consider the following: There are

three cups marked a, b, and c. There are balls in cup a, and at least one of cups b and c.

This encodes to:

a ∧ (b ∨ c)

We know the above formula is true, but not the truth values for a, b, and c, there are three

possible satisfying assignments:

(true, true, false), (true, false, true), (true, true, true)

Circumscription is a mode of reasoning that in this situation allows us to examine the first

two options rather than the third. It is about picking the minimal situation that could

correspond to what we know.

McCarthy’s paper introducing the idea [53] gives more examples. A slightly simpler (if

imprecise) way of thinking about circumscription is to consider it as taking a specification

of truth which is irrefutable, while interpreting a minimal set of facts as true — conclusions

are not necessarily grounded in fact, but rather are statements without refutation.

Original Definition

Originally, McCarthy defined circumscription with respect to first order logic. Specifically,

the circumscription of a predicate P to a predicate Q in a formula A is

(A[Q/P ] ∧ ∀x.Q(x)→ P (x))→ (∀x.P (x)→ Q(x))
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McCarthy calls this a “sentence schema”. Essentially, this says that for a given formula A

we know to be true, and some predicate P we have incomplete information about, if some

other (usually artificially defined) predicate Q could replace P in A without changing its

truth value, and P is true whenever we know Q to be true, then we can have the other

half of the implication, making Q a legitimate proxy for P . Practically applying this usually

involves declaring a Q which is true in exactly those situations we know P to be. As a simple

example, consider the formula

P (0) ∧ P (1) ∧ P (2)

Define a predicate for circumscription Q as

Q(x) ≡ (x = 0) ∨ (x = 1) ∨ (x = 2)

essentially explicitly enumerating the cases in which P must be true. Circumscribing P in

the example formula using Q yields

P (x)→ (x = 0) ∨ (x = 1) ∨ (x = 2)

This transformation gives more information about P than the original formula. Specifically,

we now know that ¬P (4).

Relation to Logic Programming

Circumscription is directly connected to modern logic programming through the negation

features present in some logic language dialects. We express the database and rules as a

single logical formula by encoding as a conjunction of known facts as predicates applied to

concrete values and rules encoded as implications. Circumscribing over this formula will yield

results consistent with a given logic program. It will also allow us to potentially derive more

by giving us an explicit definition of a predicate. Circumscription provides the theoretical
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underpinnings for stratified negation. For example, take the system

square(w) square(x )

silver(x ) silver(z )

circle(X)⇐ ¬square(X)

copper(X)⇐ ¬silver(X)

penny(X)⇐ copper(X), circle(X)

If we ask “Is y a penny?”, i.e. ?penny(y), the system without circumscription cannot answer

yes. The system cannot derive that y is circular because it neither knows that a priori, nor

does it know that it is non-square. Circumscribing over both square(·) and silver() in the

system allows us to derive ¬square(y) and ¬silver(y). In this way, circumscription forms

the basis for the form of negation present in logic languages.
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Chapter 3

Binary Type Recovery (BiTR)

First, we examine the problem of binary type recovery without Holmes. We designed this

system prior to Holmes, but gave the inspiration for most of its features, as we discuss along

the way.

3.1 Introduction

Type information is not used by the CPU, and as such, the compiler throws it away dur-

ing normal compilation. This information has a wide variety of uses, including software

verification, reverse engineering, and binary similarity detection. Reverse engineering relies

heavily upon the reconstruction of types to make the lifted code comprehensible to a hu-

man. Similar data structure use can indicate similar code [21]. Knowledge of types can

also assist in fuzzing and automated decompilation. All in all, many methods of analyzing

Locals Structures Polymorphism Recursion Variable Recovery Ind. Kind

TIE  G# # # # Static
Hex Rays  # # # # Static
Rewards # # # #  Dynamic
Howard   # #  Dynamic
BiTR      Static

Table 3.1: Feature Matrix
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binaries post-compilation require some degree of type construction to work properly, and

better automated type reconstruction can help with this.

The binary type reconstruction problem is: Given a binary program without types, re-

construct the type information that the compiler had at code generation time, but did not

emit with the final binary. We specifically focus on C, but hope that extensions to our

techniques can eventually allow them to work on larger classes of languages. Effectively, the

goal is to recover an abstraction stripped away by the compiler as it was emitting code. This

is distinct from traditional type inference in two important ways: First, even if the code

does not have a valid type assignment, it is important to succeed in assigning meaningful

types to most variables. Second, operations with the same concrete implementation are not

differentiated, e.g. adding numbers vs indexing into an array, and this differentiation must

occur during inference.

Type reconstruction has received increased attention in recent years because it is an im-

portant activity for reverse engineering COTS (Commercial Off The Shelf) software. Recent

work includes TIE [49], the Hex Rays Decompiler [35], Rewards [50], and Howard [68]. At

a high level, the goal of each tool was the same: recover high-level type information from

low-level code. However, the scope and fidelity of each tool has varied considerably.

Table 3.1 shows an overview of current research and the scope of reconstruction per-

formed. Rewards proposed type propagation from known type sources, such as system and

library calls, to type sinks in a dynamic trace, and using this information to type the cells in

a memory image. Howard, Hex Rays, and TIE all also do type propagation. Hex Rays and

Howard add the ability to infer local variables, which they then label with propagated type

information. TIE adds the ability to infer variables not used in a trace, along with a type

range. TIE also infers general structural types. Hex Rays and Rewards do not infer any

structures, they simply propagate information from known sources. Howard infers structure

fields and arrays accessed during a dynamic trace, but cannot handle recursive definitions

such as a linked list [68]. In practice, however, TIE outputs structure types rarely, and in

our experiments, only inferred a single field. There are also systems for type forensics, where
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the analyst is generally given a set of types and the goal is to match them to compiled code

and/or a memory image. We discuss this work in § 3.5. Static approaches have the benefit

of typing all the visible code in the binary, while dynamic approaches have the benefit of

knowing true address information as memory accesses occur. When reverse engineering, one

often wants to look at an area of code first to decide whether it is worth exploring, rather

than needing to find a way to reach that code before considering its nature. This makes the

dynamic approach less well suited to the task at hand.

Unfortunately, current techniques left large amounts of code untyped. In particular,

previous work did not infer polymorphic types. In C, these are often implemented by cast-

ing to/from void*. Nor did previous techniques infer recursive types, such as linked lists.

Specifically, Hex Rays, Rewards, and Howard did not make type inference a central goal, but

instead focused on type propagation. TIE inferred types in addition to doing propagation.

It did this by first accumulating a set of constraints for typing based on how code used and

defined variables. Next, the type constraint solver attempted to unify the constraints into

a typing solution. The main limitation of TIE was the constraint solver was not powerful

enough to include polymorphic or recursive types, and did a poor job coming up with precise

answers for structures.

When propagation from sources or sinks cannot determine the type of a register or

memory cell, reverse engineering the type comes down to analyzing how the program uses

and defines the register, and then finding a typing that is consistent with all uses. The

general approach to solving this mechanically is to first formulate a system of constraints

from the code, then solve them by some mechanism. There are a large number of ways to

approach this: Are variables constrained, or are registers and memory locations? Should

we represent aliased operations like pointer arithmetic and addition by intersection-typed

functions, or multiple applicable rules? How does the solver prioritize possible branches of

a typing to explore?

In this chapter we present BiTR, a type recovery system for compiled code that handles

the full range of C data types excluding unions. Like TIE, we take a type inference approach
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where analysis first generates constraints on the types of variables, which are then solved to

an upper and lower bound on its type. The main difference is that our constraint solver uses

a more powerful constraint and type framework, avoiding issues plaguing previous work.

We observed that three main design decisions hampered TIE in particular. First, TIE’s

constraint solver attempted to brute force a solution to typing constraints. BiTR introduces

the notion of consistency of constraints, which we use to intelligently prune inconsistent

solutions during type resolution. Second, TIE’s use of structure subtyping obscures the link

between different pointers in a way that makes it harder for their constraint solving engine

to recover structures. Third, TIE required variable recovery before type inference, thus tying

overall performance to the variable recovery engine. Often a reverse engineer only wants to

know the type of a memory cell, as in Rewards. In such cases we need not discern the type

of every variable. BiTR decouples variable recovery from inferring types.

To test our approach, we implemented our techniques in BiTR and measured the accu-

racy of our results. We type approximately twice as many more locations (16.8% in TIE vs

36.78% in BiTR), and do so more accurately. Further, we generate types about five times

faster than TIE.

In this chapter we show the following specific results:

• We provide a descriptive type system with structure, recursive, and polymorphic types

(§ 3.2.2), designed for inferrability, expressiveness, and specificity.

• We develop an efficient type inference engine. Our main observation is that early

branch pruning greatly speeds up the search of the typing space (§ 3.4.6).

• We develop techniques that show variable recovery is not required in order to do type

reconstruction, assuming the inference system has sufficient capability to deal with

structures (§ 3.3.2).

• We implement our technique and show that we can correctly reverse engineer twice as

many types as TIE (§ 3.4.3).
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§ 3.2 describes the type system used to describe the types of registers throughout the

code. § 3.3.1 shows a worked example of our inference methodology. § 3.3 describes how

the system works mechanically, building on the intuition from the worked example. § 3.4

presents our experiments and results, evaluating the effectiveness of BiTR and explaining

in detail why we got the results we did, and subtleties in the experiments.

3.2 Type System

We approach the problem of recovering types from compiled code with the goal of recovering

the type of every register at every program point. The main complication here is that there

are operations with multiple possible meanings, and we must discover which one is actually

in use. For example, in the case of addition, the operation may mean any of array indexing,

struct indexing, or arithmetic addition. There may be multiple legal interpretations available

in some cases. We design our type system to try to restrict the number of legal interpretations

as much as possible, while still accepting real-world programs generated under a C-like

paradigm.

To this end, we set out to form a descriptive type system. This means we primarily focus

on describing what actions are actually taken in practice; we focus on the property that

if what the code is doing is reasonable, we accept and characterize how that could be the

case, rather than rejecting the code outright because it does not fit our type system. We

must take an approach along these lines, because unlike in a compiler, we cannot simply

reject the code if the binary fails to make clear its own safety. Before diving into the type

system itself, we examine some of the decisions made when designing a type system for type

reconstruction, and why we made the decisions we did. Then, we explain the type system

used by BiTR internally to describe and infer types before BiTR projects the internal types

out to C-like types upon completion.
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3.2.1 Design Space

To describe the types of the registers in compiled programs, we have a wide variety of

possibilities to consider. Along one axis, we can try to be strict or permissive in our typing.

The benefit of greater strictness here is that we can claim more properties about the typed

code. However, strict type systems have the downside that if we receive code that does

something outside the small window of proof techniques we have envisioned, we will suddenly

be getting little to no information about the binary. Adding the ability to perform more

operations (for example, array indexing) to the type system is usually costly in terms of

complexity of inference implementation and in terms of speed. Permissiveness has the upside

of being willing to skip some of these complex operations (for example, trying to prove that

an array index is in bounds and a multiple of the size) and of being more likely to give

usable output even if a proof strategy fails. However, permissive type systems also have

the downside that there may be more typings available for a given program. Additionally,

a satisfying typing in such a system will be unlikely to provide useful properties about the

program.

The specificity of our type system lies along another axis. The more features we add, the

more complex the inference will become, but also the more useful the produced typings will

be. If we are strict, the specificity governs what we can and cannot type. If we are permissive,

this governs how well we will be able to use the information present in the code. An example

of specificity would be whether we have an all encompassing code pointer type versus one

that encodes some kinds of input and output types, or in the extreme case, preconditions

and post-conditions on the values. Expressiveness instead deals with those things that we

would simply be unable to even talk about otherwise. For example, without some kind of

recursive type, all data structures would need to have a finite depth known ahead of time.

In our environment, permissiveness has an advantage over strictness. A strict typing

system would provide much value as an analysis framework, but if we want to work generally

on the bulk of programs, a strictly safe environment would exclude too many of programs
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from analysis. Along expressiveness and specificity, we make compromises in order to keep

the system tractable. In the area of specificity, we look to differentiate regular pointers from

arrays, and to allow for the description of polymorphic data structures. In expressiveness,

we add support for recursive types. To the best of the authors’ knowledge, we are the only

reconstruction system to support polymorphic types, and one of two to support any form

of recursive types [26]. Using our approach, we can infer recursive types for free. We also

support polymorphic types through appropriate use of subtyping with a similar method.

The differentiation of pointers from arrays is a minor point theoretically, but in practice it

can be convenient to know whether a variable points to a single cell or multiple. In order

to avoid complex dependent typing, we ignore array lengths and any form of proof that a

computed value has some property.

3.2.2 BiTR Type System

The BiTR type system expresses the core reasoning concepts used by the tool to decide

what type to assign to a register or expression, and what range of types it is considering. In

Figure 3.1 we show the grammar for defining the types.

Types. The intw type represents integers of width w. Our intermediate semantics language

(BIL) represents memory writes as non-destructive updates to a global array. As such, we

need a type for that array: mem. This type can be directly inferred from the source language,

as a value of type mem is only created by performing a write to an existing mem, and that

operation is unambiguous. It does not correspond to anything in C or other source language,

it is just to type our memory variable. To represent flags or other single bit registers, we

use the bool type. Technically, we could type these values with single-bit unsigned integers.

However, we wish to distinguish between variables we perform arithmetic on versus those

we apply boolean operations to, since we are trying to recover abstractions.

>, ⊥, >w, and ⊥w are synthetic types for use in subtyping bounds and to complete our

lattice. > and ⊥ are universal top and bottom for all our types. >w and ⊥w are provide
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τ ::= intw |mem | bool
| > |⊥ |>w | ⊥w

| rv∗@o | rv[·]@o
|µA.τA | ∀τ � A � τ ′.τA

| code

ρ ::= (o : A)∗

τA ::= τ which may use the type variable A

w ::= any positive natural number

| s size of pointer

A ::= type variables

rv ::= region variables

o ::= any integer

Figure 3.1: Type Grammar

-8 code
0 x∗@n
4 int32

Figure 3.2: An Example Stack Region named x

a top and bottom bound for types of size w. This allows us to use subtyping bounds to

indicate knowledge of the size of something, as given by the width of a write or similar low

level clues.

Region variables (and the regions they represent) are specific to our particular system.

The grammar represents regions as ρ. Regions are a collection of mappings from offsets to

type variables. The regions form the basis for our inference of structs. Figure 3.2 shows the

region corresponding to the stack for a function with one integer stack variable. Note that

when combined with an offset, the same region can be represent the stored base pointer (if

the function is a leaf function, otherwise the base pointer must be abstract), the initial stack

pointer, and the stack pointer right before return. In another example, we can represent a

structure representing a sized string
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struct {

int size;

char* str;

}

in BiTR as r∗0@0 where

r0 = (0 : t0)(4 : t1) t0 = int32 t1 = r1[·]@0

r1 = (0 : t2) t2 = int8

At first, this might seem a clumsy way of dealing with structures, but it has a specific

important benefit — it can express that two pointers point at the same kind of structure,

or that two structure members point at the same type, even when that structure definition

or type information is incomplete. This allows information from different interactions with

the same structure to naturally propagate into all uses.

rv∗@o and rv[·]@o represent pointer and array types respectively. The rv indicates which

form of region the pointer points at. The o acts as an offset into that region, allowing two

pointers at a constant offset from one another to refer to the same region. Adding a constant

value to either a pointer or an array can perform an indexing into the region, accessing one of

the struct fields. Arrays can have variable values or constant values added to them to index

into the array, keeping the offset constant. Were we to attempt to detect array bounds, we

could describe rv∗@o as rv[·]@o with size 1. However, as we allow arbitrary indexing into

arrays, but not into pointers, it is useful to distinguish between the two.

µA.τA introduces a recursive type. Within τA, A refers to τA. Since our type system does

not have additive types as a primitive, the only useful place to put A is inside a region that

a pointer uses. This provides an implicit option type (our pointers are nullable), allowing

the recursive types to be finite size. This corresponds to the common C usage of using a

struct pointer as a member of the struct itself.

∀τ � A � τ ′.τA constructs a polymorphic type. τ is the lower bound, and τ ′ the upper

bound. Our inference system does not directly generate polymorphic types. It instead

30



generates a network of bounding constraints between type variables, possibly including cycles

or partially constrained types. When the value of a specific type variable is requested,

partially constrained types are universally quantified, and cyclically constrained types are

quantified via µ. This allows for the expression of polymorphic linked lists and other simple

data structures. This allows us to deal with some cases where C programmers use void*

and casts to deal with their lack of polymorphism. The upper and lower bounds are most

commonly used in conjunction with >w and ⊥w to indicate a type variable for which only

we only know its size, but in principle could express other restrictions.

code represents any pointer to code that is a valid jump target. In future work, we

may attempt to type this more specifically, expressing type preconditions for the jump and

treating it more like a continuation. Function pointers, and values created by setjmp use

this type. However, its most common and practical use is to represent the return pointer

the function jumps to in order to return control to its caller.

Subtyping An important feature of the system is subtyping — this allows us to constrain

the bounds of a type even when we do not know everything about it yet. We define subtyping

via meet: if τ0 ∧ τ1 = τ0, then τ0 v τ1.

τ ∧ τ = τ > ∧ τ = τ
τ ′ ∧ τ = τ ′′

τ ∧ τ ′ = τ ′′
sizeof(τ) = s

>s ∧ τ = τ

sizeof(τ) 6= sizeof(τ ′)

τ ∧ τ ′ = ⊥
sizeof(r∗@o), w

r∗@o ∧ intw = r∗@o

sizeof(r∗@o), w

r[·]@o ∧ intw = r[·]@o
r@o = r′@o′

r[·]@o ∧ r′∗@o′ = r[·]@o
r@o 6= r′@o′

r∗@o ∧ r′∗@o′ = ⊥s
r@o 6= r′@o′

r[·]@o ∧ r′∗@o′ = ⊥s
r@o 6= r′@o

r[·]@o ∧ r′[·]@o′ = ⊥s

No above rules apply sizeof(τ) = sizeof(τ ′) = w

τ ∧ τ ′ = ⊥w

No above rules apply sizeof(τ) 6= sizeof(τ ′)

τ ∧ τ ′ = ⊥

31



We omit structural subtyping here. This is an intentional omission, with the rationale that

casting from one compatible struct to another is an uncommon operation in C, and removing

the possibility of such a cast allows better propagation of information about the structures

by demanding that the unification of regions to proceed.

Expressions. We also require rules explaining expression typing. We omit some of the more

obscure rules dealing with different types of casting bitvector concatenation and slicing for

brevity.
n const e v r∗@o
r, o− n∗@ v e+ n

n const e v r[·]@o
r, o− n[·]@ v e+ n

e′ v ints e v r[·]@o
r, o[·]@ v e+ e′

e v r∗@o

∗e : r@o(0)

e v r[·]@o
∗e : r@o(0)

⊕ here is a substitute for most mathematical operations (+, -, etc), and φ is an SSA φ node.

e : intw e′ : intw
e⊕ e′

e v τ e′ v τ ′

φ(e, e′) v τ ∨ τ ′

e v r∗@o e′ : r@o(0)

∗e = e′ : mem

e v r[·]@o e′ : r@o(0)

∗e = e′ : mem

Type and Region Variable Binding. In a traditional type system, the program binds

variables before use. However, as this system was primarily designed for inference rather

than direct use, it assumes initially that all region variables and type variables may be

mutually recursive. A set of bindings for type variables and region variables which satisfies

the constraints we will describe later forms the solution to our typing problem. However,

this system of a mess of mutually recursive bindings is difficult for humans to read and

understand, so when the user asks for the binding for a given type variable, we narrow

the scopes of type variables as much as possible, introducing ∀ and µ where appropriate,

while substituting in region variables for their bindings, making a self-contained type. The

polymorphic types arise from type variables who are insufficiently restricted in the response

type. Recursive types arise from type variables whose bounds refer to themselves.

In summary, during inference, all region variables and type variables are potentially

mutually recursive and exist together. When the type is output, µ and ∀ bind new type

32



variables, and region variables do not exist as we substitute them with the regions they

represent.

3.2.3 Approach

In order to actually generate types according to this model, we first lift all the statements

to BIL[16] (an IL for modeling CPUs used by BAP) to make them easier to analyze. Next,

BiTR generates a set of subtyping constraints for each statement, restricting the types that

each register could have. Finally, we search the constraint space for a maximally correct

solution, generating a narrow range of types. Unfortunately, aspects of our typing system,

namely ad-hoc polymorphism, subtyping, and equirecursion, do not coexist in any exiting

unification system the authors could find, so the authors wrote a new one to solve the

constraints.

3.3 Inference Method

There are two major components in the inference of types for a piece of code. First, we

generate type constraints based on the action of the code itself, with every update to a register

assigned its own type variable. BIL statements which have multiple possible meanings (an

add that could be a numeric or a pointer operation for example) generate a disjunction

constraint. Then, we solve these constraints, and use the now-known types for each type

variable to form the solution. The constraint generation phase occurs on SSA-form BIL, as

generated by BAP [16]. This allows the constraint generation to use the use-def information

built into SSA, allowing separate constraint generation for each statement. The constraint

solving is the more difficult part, and uses an extended form of unification in order to

transform the constraints into a set of conservative conditions on the type of a given register

definition. The choice of which constraint to satisfy in each disjunction effectively specifies

what operation would a decompiler would select in the translation to a typed language
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1 struct l i s t {
2 struct l i s t ∗ next ;
3 int v ;
4 } ;
5
6 int loop sum ( struct l i s t ∗ l ) {
7 int v = 0 ;
8 while ( l != NULL) {
9 v += l−>v ;

10 l = l−>next ;
11 }
12 return v ;
13 }

Figure 3.3: Loop Sum C

without intersection types [40, 65]1.

3.3.1 List Summation Example

First, we demonstrate BiTR in action. We use a loop sum function, shown in Figure 3.3,

which sums the elements in a list. Figure 3.4 shows the disassembly of the compiled code.

We have replaced all the addresses with an incrementing label to enable us to reference

instructions more easily in this example. First, we lift the compiled code to BIL, then lift

that to SSA, and finally run simple optimizations on the result to make it more readable.

This leaves the code as in Figure 3.7(Appendix), but without the annotations. This diagram

also contains an embedded disassembly showing where the code came from.

The first thing a reverse engineer would do is to identify that the program uses rsp as

the stack, see the standard function prologue in instructions 00 to 01, and skip past the

prologue. At this point instruction 02 loads rdi into stack slot −0x18, and remember that

this stack slot has a type corresponding to the first argument of the function, assuming that

normal AMD64 calling conventions are in use. Instruction 03 then initializes stack slot −0x4

to 0. However, since the write is 32 bits wide and not a 64-bit wide write, we immediately

1 Intersection types represent a more general type for values which can have multiple possible types
which are not partially ordered on the subtyping lattice.
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1 loop sum :
2 00 : push %rbp
3 01 : mov %rsp ,%rbp
4 02 : mov %rdi ,−0x18(%rbp )
5 03 : movl $0x0 ,−0x4(%rbp )
6 04 : jmp 11
7 05 : mov −0x18(%rbp ) ,%rax
8 06 : mov 0x8(%rax ) ,%eax
9 07 : add %eax ,−0x4(%rbp )

10 08 : mov −0x18(%rbp ) ,%rax
11 09 : mov (%rax ) ,%rax
12 10 : mov %rax ,−0x18(%rbp )
13 11 : cmpq $0x0 ,−0x18(%rbp )
14 12 : jne 5
15 13 : mov −0x4(%rbp ) ,%eax
16 14 : pop %rbp
17 15 : r e tq

Figure 3.4: Loop Sum Assembly (64-bit)

know the stack slot −0x4 is not a pointer. So, we assume stack slot −0x4 is an integer.

Next, following the jump from 04 to 11, 11 compares 0 against stack slot −0x18, the one

that contains the first function argument.

Along the inequality case in 12, the next instruction is 05. This branch dereferences slot

−0x18, adds 8, and dereferences it again. Now we know that the input must be a pointer,

with something at offset 8. Finally, we note that the width of the read is 32 bits, so we again

have the situation from earlier — this is an integer. At 07, the code adds the value read

out back into stack slot −0x4. 08-09 dereference slot −0x18, so we know that in addition

to pointing at something at offset 8, stack slot −0x18 also points to something at offset 0.

Instruction 10 moves that value into stack slot −0x18! We now know that in addition to

having a 32-bit integer at offset 8, at offset 0 stack slot −0x18 will have a value the same

type as itself. If we assume the branch where our new pointer is null as we traverse 11 and

12 this time, we see that the value at stack slot −0x4 is the one returned. As a result, we

now know that this function takes a linked list of integers as an argument, and returns an

integer.
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Now, this is roughly how a human would solve the problem. There are heuristics (e.g.

this branch is feasible because the value is nonzero, then the code dereferences this variable,

so this variable is a nullable pointer), shortcuts (ignore the function prelude), and tricks (e.g.

treating stack slots as variables) that the human used which are not ideal for automated

analysis. Branch feasibility is potentially expensive, function preludes vary across compilers

and options, and stack-slots-as-variables can break when pointer math uses stack addresses.

However, there a number of tricks in that narration which are relevant to computers. For

example, when we found something out about a value in a register, and the register came

from stack slot −0x18, we would not just assign the property to that register, we would also

assign the property to the stack slot, and the function argument. This process that enabled

us to discern that the struct had at least two accessed fields. Additionally, we noticed that

there was dataflow from a variable into itself, and used this to realize that the input variable

must contain a recursive type.

We will now approach this in a more mechanized way, similar to how our reconstruction

system would attack the problem. We omit some steps for brevity, but the reasoning will

follow the same basic procedure. Assume for notation that τ(v) is a function that grabs

the type variable corresponding to a variable. First, we go about generating constraints for

each BIL statement. For example, when we subtract 8 from the initial rsp, we have two

possibilities — either rsp was an integer, in which case we’re doing arithmetic and would

want to generate

(int64 v τ(R RSP 211)) ∧ (τ(R RSP 328) v int64))

However, if we have a pointer, we instead want something along the lines of

(τ(R RSP 328) = 0∗@0) ∧ (τ(R RSP 211) = 0∗@− 8)

(0 is a fresh region variable in this example). Since we do not know which operation the

instruction represents at constraint generation time (i.e. which arm of the intersection type

for the addition operator is actually in use), we take the disjunction of these choices to get
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the total constraint. The next statement is a store; the choice of operations is unambiguous:

(mem v τ(mem64 212))∧ (τ(mem64 327) v mem)

∧(τ(R RSP 211) = 1∗@0)∧ (1 : (0 : 2)) ∧ (τ(R RBP 0) v 2)

The region variable 1, and type variable 2, are both fresh here. We derive the rest of the

constraints in a similar fashion.

Now that we have this list of constraints, how are we going to solve them? The difficulty

lies in these optional clauses, so we handle those last. We can start maintaining sets of type

variables which form equivalence classes to make sure the information gained constrains to

all of them. We can bound these equivalence classes above and below. We can do the same

for region variables, but keeping track of offsets.

Actually trudging through this would take a while, but we can focus on seeing that rdi

in this example must contain a recursive reference. rdi corresponds to type variable 16

in the constraint list provided. Selecting non-optional constraints first, and resolving the

type variable unification and region variable unification constraints arrives at this quickly.

The computer does not follow a pattern with a goal in mind like this. The inference engine

just goes through the constraints which it can consistently absorb one by one, generating a

context which contains a reduced form of the constraints.

Though much less practical for the manual reverse engineer, this method is vastly more

mechanizable and less brittle. Effectively, to finish the example, the reverser would keep

adding to their understanding, consuming constraints, until a disjunction makes a choice

necessary. At that point, the reverser would bookmark their current understanding, and try

one of the choices. If a given path did not work out, the reverser would backtrack to another

choice. The key here is that incorrect choices will fail quickly; if the reverser tries to pick

the integer math option on an addition, and the operation was really pointer arithmetic,

by absorbing the non-choice constraints first, it will instantly see a contradiction in the

accumulated knowledge of the situation.

Figure 3.7 shows the complete result of running this algorithm in full on the loop sum
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example. That representation, while more complete, is complex and verbose, so here we

instead display the recovered types of selected registers at function entry. The stack (esp)

at function entry:

∗(−32 : µA. ∗ (0 : A)(8 : int32))

(−12 : int32)(−8 : ∀B � ⊥64 � >64.B)

The -8 position on the stack is to contain the old value of rbp. Its value is never used or

defined, so the algorithm does not discover anything beyond its size. At position −12, we

see our first local variable. We know from manual inspection that this contained the running

sum. The algorithm inferred it to be a 32-bit integer, as we would hope. Lastly, at −32 we

see the local pointer the function used to iterate through the linked list - it contains a next

pointer at offset 0, and a 32-bit integer payload at offset 8.

Examining rdi at function start gives us our input type, since this function uses the

normal C 64-bit calling convention:

µA. ∗ (0 : A)(8 : int32)

This gives us what we expected - the function is taking in a linked list of 32-bit integers.

Finally, we examine rax at function exit to see what it returns, and see that it contains a

padded int32

3.3.2 Sufficiency of Register Types

Previous work [26, 49] has used some form of variable recovery before attempting to regen-

erate types in order to avoid dealing with storage locations whose type will change as the

program executes. TIE used methods from DIVINE [12] to find its list of variable locations,

while SecondWrite depended on LLVM’s mem2reg pass. As SecondWrite mentions, DIVINE

is slow, and thus poorly suited to large scale analysis. SecondWrite’s choice of mem2reg is

much faster, but any nontrivial use of a stack address will prevent that slot from promotion
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to a variable, and therefore prevent its analysis. Instead we opt to avoid the notion of vari-

able recovery during our type recovery. Any access to a variable must either be through one

of the available registers, or via a prearranged, well-known address (i.e. for a global). As a

result, if we track the types of registers, including the fields of their structures, we recover

the types of the variables without even considering which areas were originally variables and

which are not until evaluation. This also removes dependence on assumptions of variable

access patterns, and provides a more direct view of the types at the assembly level. With

minor tweaks at function call boundaries, even the stack bears representation as another

struct pointer. This major insight allows us to avoid dependence on potentially expensive

or fragile analyses as preconditions for our inference.

3.3.3 Constraint Generation

Using a SSA-based representation means we can examine statements separately, as the

transformation encodes the dataflow problem in the naming. The constraint generation

does not need to ask whether this eax and that eax are the same, as the variable names

identify a unique definition site. As a result, we do not need to consider the context in which

a statement occurs in order to generate the constraints for that statement. The constraints

will interact with other constraints, but this will dispatch on type variable matching rather

than control flow. This greatly simplifies this step.

Constraint Forms

We can constrain our unifier based on the statements defining and using variables. First,

we can apply upper and lower bounds to a type variable. This expresses that in whatever

solution we come up with, the type variable must fall in a given range. For example, if the

program assigns a pointer to a variable, its type must be above the pointer type. Similarly,

if the program jumps to a variable, that variable must fall below code. We represent these

restrictions as A v τ , τ v A, or A v B. Notably, a type variable must be alone on at
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constr ::=A v τ | τ v A|A v B

|A ∼= τ |A ∼= B

| rv : ρ

| constr ∧ constr

stmt constr ::= constr

| stmt constr ∨ stmt constr

program constr ::= stmt constr

| program constr ∧ program constr

Figure 3.5: Constraint Grammar

least one side of the constraint. We were able to express all the expression and statement

constraints in this form. Disallowing statements of the form τ v τ ′ made implementing the

solver easier due to the ability to index any constrained entity by a type variable rather

than needing the ability to break down both sides simultaneously to make a the original

constraint hold true.

Additionally, we have constraints for explicit unification, of the form A ∼= τ or A ∼= B.

Again, we intentionally did not allow τ ∼= τ ′ for simplicity. This constraint indicates that

we somehow either know the exact content of a type variable, or that two type variables

really refer to the same thing. This is primarily useful for dealing with assignments to

structures, where we want to merge the constraints accumulated so far on fields of two

regions discovered to be the same. For most purposes, unifying a type variable with a type

is the same as applying an upper and lower bound of that type to the type variable. The

one exception to this is for pointers, which due to their subtyping structure, will not unify

their regions unless an exact match on all defined offsets is present.

The last kind of constraint is the unification of region variables with regions, written

rv : ρ. This kind of constraint requires that those fields defined in ρ are in the solution

for rv, and unify with the type variables in those fields in ρ. This allows conveniently

constraining portions of a structure type at a time.
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By taking the conjunction of constraints formed like this, we can express any particular

interpretation of a statement. However, one of the unique parts of this particular typing

problem is that some of our functions (especially +) have multiple interpretations which

cannot be conveniently formed into a single type. For example, it is unclear whether x is a

number or pointer in the expression x+ 2, and as a result, the type of x+ 2 is unclear. This

forces us to either consider intersection types [40, 65] or use a disjunction of constraints per

statement. In the intersection typing approach, the system generates as complete a type as

possible for each variable. For example, if we were trying to type a function f(x) = x + 2,

the type would be similar to f : (int→ int) ∧ (ptr(r@n)→ ptr(r@(n+ 2))). This approach

initially seems more elegant because it allows more complete descriptions of a piece of code.

This approach fares poorly in our application because even inference of well-behaved code can

quickly become exponential both in the time taken and in the size of the result type. Instead,

we opt to generate a disjunction of constraints for statements which include expressions

which would require intersection typing for a most general type. As long as we are satisfying

one constraint, the expression will be legal, and in practice, operations like + are not used

for different purposes in the same generated code. This approach leaves out some possible

typings (e.g. if whether a variable is a pointer or an integer is unclear, the system will

end up needing to select one) and makes a small number of programs no longer legal (for

example, a non-builtin plus function used both for pointer arithmetic and for integer math).

Additionally, the choice to use constraints will make our search problem (in terms of finding

which interpretations work) more tractable than inference would be in the intersection typing

case. As a result, a statement’s constraint (stmt constr) is a disjunction of conjunctions of

the core constraint type (constr). In order to describe the entire program, we take the

conjunction of all the statement constraints and solve the result.

As each of these constraints are separately generated, in a Datalog-based system we could

express their generation as an external predicate on a single rule. This rule could generate a

separate fact for each possible disjunction for an IL statement, or a single no-op constraint

for instructions which would normally not have yielded one.
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Inter-procedural Constraints

The basics of inter-procedural analysis are straightforwards in this system. We use unique

variables when lifting each function and store them in a table. On a function call, we look

up the target function’s input registers, and say that their types must be a supertype of

the type of those same registers at the event of function call. Next, we process the output

registers similarly, applying subtyping constraints here instead. There are two issues here,

both deriving from the stack: pointer super/subtyping and stack slot re-use. The first issue

occurs when applying a supertyping to the stack register upon a call. The stack register’s

struct will then include temporaries from the callee. This will work fine, until two functions

calls occur in sequence with incompatible local stacks. This will cause an issue because the

stack is now constrained to have incompatible uses of stack slots beneath the caller’s stack.

The second issue is that compilers will commonly re-use stack slots for calling functions,

so if the program calls functions with incompatible inputs in sequence, the stack will be ill-

typed. The easiest approach is to simply assume that the stack register has lost all meaning

post function call, and re-infer the relevant portions based on its use after that. However,

this will be dropping potentially useful information. A slightly more sophisticated approach

would be to try to identify function call prologues and pull the stack type from before them.

Unfortunately, that approach would be compiler specific.

Instead, we add the ability to erase type variables from regions after a function call

occurs. For example, on an i386 system, calling a two argument function will cause the

bottom three values on the stack (e.g. including the return pointer) to no longer be present

in the type of the stack post call. This is one of the few convention-specific adaptations of the

system; the function call ABI is agnostic, as the convention definition is just a description of

what registers each call uses/defines, and what registers the convention uses for input and

output. However, in order to deal with stack-based calling convention, we have adapted to

the notion that the stack pointer has a special set of invariants at calls.
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Examples

One example of a simple constraint generation would be for a multiplication. If we have the

a fragment of code in the IL X1 : 64 = X0 : 64 ∗ 3, we are dealing with the simpler case of

a non-intersecting expression. We know the exact bit-width of X0 and X1 from the lifting

process. Assuming that X0 and X1 correspond to the type variables τ0 and τ1 respectively,

we would generate the constraint (τ0 v int64) ∧ (int64 v τ1). Note that these constraints are

only one-sided subtypings. X0 is only constrained to be usable as an integer. For all we

know X0 could have been a pointer, and this would still be legal. X1 on the other hand must

be definable by an integer. As a result, if X1 is later dereferenced, the system will find this

to be inconsistent. In a slightly more complex example, we examine Y1 : 64 = Y0 : 64+8 in a

system with 64-bit pointers. In this case, this statement needs to generate two possibilities

— one assuming that addition is an operation over integers, and one assuming the addition

describes pointer arithmetic. Assuming type variables similar to previous example, we end up

with a constraint ((τ0 v int64)∧ (int64 v τ1))∨ ((τ0 v rv∗@0)∧ (rv∗@8 v τ1)). This describes

both the pointer structure indexing behavior and the integer behavior simultaneously. Later,

when trying to solve the constraints, we will have to select one of these behaviors. In the

actual system, we also must cope with the possibility that 8 is an array index, so we add yet

another constraint to the disjunction.

3.3.4 Unification

Unification is the process of coming up with a valid substitution for a set of type variables

such that the substituted system will satisfy some set of constraints. Normally, these are

only equality constraints. However, in our system we are simultaneously solving regular

unification constraints and subtyping constraints to come up with a substitution for each

type variable that will satisfy not only the equality constraints, but also the subtype ranges.

In order to do this, we maintain a context that tracks which constraints we have absorbed,

maintains a simplified form of constraints, and allows for efficient checking of whether the
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context is still consistent.

The simplest kind of constraint is a lower or upper bound. If the constraint is entirely

abstract (e.g. both are type variables, and neither type variable has a known substitution)

then we just record the relation into our context for consistency checking as we load other

constraints. If one bound is concrete, we load that bound into the type variable’s constraint

in the context, taking a meet or join as necessary. If both bounds are concrete, we check

that the two types are subtypes, possibly propagating requirements to the context if both

are pointers. In the special case where the constrained types are pointers, we want to delay

processing of this constraint until the context has processed the rest of the constraints. The

reason for this is that we need all of the offsets defined on the pointers that ever will be in

order to propagate them across during this. In practice, these constraints tend to match

function calls, and so running them last is usually a good decision; each function is usually

understandable on its own.

When two type variables must be equal by a constraint, if both are abstract, the context

merges their bounds, and one of their equivalence classes chosen as the representative for

both. If only one is concrete, the system checks that the determined type matches concrete

bounds (e.g. bounds which are types) and then takes all the bounds which are on type

variables, and sends them to the corresponding type variable. For example, if we are unifying

τ0 and τ1, and we know τ0 is a int64, and τ1 v τ2 in the context, then we might end up

picking τ0 as the representative for τ1, deleting τ1’s constraint entry, and adding τ1 v τ2 to

τ2’s constraints. If both type variables are concrete, the system verifies equality, unifying

argument regions in the case of pointers.

During pointer unification, region variables will need unification. First, we need to make

sure that for each element in the region, we unify those type variables. Then, we need to

select one region variable to be the representative for all the equivalent region variables.

Notably, since all pointers are modulo offsets, each region variable also needs to know its

offset from the representative. Finally, we update that region with all the type variables

that had definitions in one but not the other. If we want to unify a region variable with a
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sample region, the core operation is to provide a set of type variable unifications for some

subset of offsets.

The primary design issues here are to avoid cycles in updates when there are cycles in

the types, and to track only the relevant parts of the constraints (effectively reducing them).

This allows us to efficiently check whether or not we have violated constraints in order to

ensure that our search through the possible disjoint constraints can take place efficiently.

This operation, when implemented in Datalog, would need some care to avoid excessive

redundant computation. When adding two constraints to the solution context, the order

should not matter if both of them would succeed. Specifically, they should commute. Ad-

ditionally, if we have solved some set of constraints together, we do not wish to attempt to

solve any subset. These two properties together suggest a lattice-like aggregation structure.

3.3.5 Search

As we alluded to before, instead of dealing with exponentially sized types, we choose to use

constraints which were potentially disjunctive. Unfortunately, having disjunctions in our

constraints means we have to make choices when attempting to unify them. This forms

a sort of search problem where for each statement, we want to select the statement that

will lead us to a valid unifier, if possible. Initially, this seems worrisome, as there are a

potentially exponential number of choices. Luckily, as alluded to in our discussion of how

to absorb a constraint into the context, we can cheaply check for correctness in partially

inferred contexts. As a result, we can make a choice, and then if the choice is wrong, stop

before we have spent time dealing with the whole path. This, combined with the desire

to only require a single path, not all paths, reduces what would naively be an exponential

process to a tractable one.

Unfortunately, not all programs are typeable. This can occur for a number of reasons,

including the program doing something that is actively unsafe, unmodeled operations, and

lifting or control flow analysis errors. A good type recovery algorithm needs to be robust
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in the face of this, so we need some goal for what to do if the constraints are not simulta-

neously satisfiable. We choose to select an answer which satisfies the maximum number of

constraints. In the degenerate case where all constraints are simultaneously satisfiable, the

satisfying solution is still the best one. In situations where the constraints are not simulta-

neously satisfiable, this goal corresponds to assuming we misunderstood the meaning of a

minimum number of statements.

First, we sort the constraints by the number of disjunctive clauses. This means that

in the case where the constraints are satisfiable, the solver processes the non-branching

constraints first. This is both positive from a search perspective (early decisions are less

likely to be wrong), and from a domain specific perspective, as pointer reads and writes

are of this form. Processing pointer reads and writes early means that incorrect choices for

pointer arithmetic are likely to fail immediately. Then, for every constraint, we process each

disjunction into a separate possible context. We then score each context with a triple of the

number of constraints possibly satisfied, the number of constraints already satisfied, and a

tie-breaker value. In each of the constraints, the disjunction ordering matches how probable

the interpretation is. For example, doing array indexing by a constant is less likely than

doing struct indexing by a constant. We base the tie breaker on the combined likelihood

of each disjunction choice in a vacuum. At each step, we take the current context under

examination, grab its next constraint, then for each choice, or the choice of dropping the

constraint, generate the possible next steps, and place them into a heap. The sorting order

for the heap is first by constraints already processed (to avoid backtracking when we do not

need to), then by possible constraints to solve (to ensure we will search for the best solution

first), and finally by the tie breaker, to prefer constraint choices that are more likely a priori.

3.3.6 Non-Monotonicity

Searching for a minimum number of dropped constraints again informs Holmes design. En-

abling the arbitrary dropping of constraints in a Datalog representation would result in an
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intermediate state too large to deal with. Even if dropping only one constraint is sufficient,

a program written in this way would compute the potential dropping of every possible con-

straint, resulting in an enormous set of facts. In order to make this more practical, we

would either need to introduce control flow primitives (such as Prolog’s cut) or some form

of non-monotonic reasoning. Assuming no explicit control flow primitives, we require non-

monotonic reasoning because adding a new arm to a disjunctive constraint would add a fact,

but possibly reduce the number of facts which a correctly designed system would derive due

to decreasing the number of dropped constraints.

This form of non-monotonicity matches circumscription in combination with the call/cc

feature. We can structure a maximum number of dropped constraints as a closed world

hypothesis (circumscription), making an assumption that the number of constraints to drop

will not increase. Then, if for a given number of maximum dropped constraints, it can

determine that no complete solution can exist, the maximum number of dropped constraints

can increase (call/cc), retracting the insolubility assertion in the process.

3.3.7 Limitations

BiTR does not implement every possible type, or understand every form of invariant. For

example, BiTR does not know how to deal with union types, even if a tag indicates which

type the variable is. We could extend to deal with such types, but doing so would make

the system a good deal more complicated, and move from being only dataflow dependent to

being control flow dependent as well. Additionally, BiTR does not analyze value bounds on

types, as one might expect from an enumeration type or an array index. Adding this form

of analysis would require more detailed understanding of the numeric operation, and would

require analysis resembling VSA[11].

Another issue is in the use of functions with variable arity. In order to do inter-procedural

analysis, BiTR matches the input and output registers together for unification. However,

without separate instantiation of the function at each call site, the varargs portions of the
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function’s input stack will not match across usage of the functions. If functions were sepa-

rately instantiated however, information from each call site would not propagate to another.

It would be possible to write code that special cased the varargs on x86 calling convention,

but this is specialization and future work.

Finally, the more inconsistent the program, the longer the system will take to recover

the types. Especially nonsensical programs can take a long time as the system attempts to

optimize for the fewest number of broken constraints.

3.4 Evaluation

Finally, we must judge our system’s performance directly, to demonstrate the effectiveness

of our ideas in practice.

3.4.1 Metrics

In order to judge the usefulness of our system, we need some way to compute how well BiTR

reconstructed types on a known compilation. Previous work usually split accuracy and con-

servatism into separate measures [26, 49]. Conservatism here is usually done as a measure-

ment of how often inference is wrong, whether due to a bug or an inherent problem with the

system. There have been multiple different approaches to accuracy measurement. TIE [49]

used a distance metric based on lattice distance, with inner portions of the type counting less

for accuracy. SecondWrite [26] reforms this somewhat, defining their pointer recovery accu-

racy based on detecting the number of indirections. However, their modification still leaves

the question of how to evaluate structure correctness unaddressed. REWARDS [50], as a

dynamic system, did take into account the layers of indirection, as REWARDS categorized

memory locations in the image. However, REWARDS used a simple notion of correctness,

checking whether the types presented for a given piece of memory were equal to the debug

type in its entirety.
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In addition to the differing notions of accuracy and what correct means, there is an issue

with the decoupling of the conservatism, accuracy, and precision metrics. When decoupled,

non-conservatism resulting in greater apparent accuracy and precision is not necessarily

punished in accordance with which type variables non-conservatism occurs on.

Additionally, lattice distance is not a great measurement of accuracy, as simply guessing

that all variables are integers of size equal to their storage size is effective on the distance

scale. A majority variables are integers, and integers are only a short distance away from

the pointer type if the type turns out to be pointer-sized, and this is directly at the middle

of the top to bottom range. The lattice model further falls apart when we consider the

notion of alternative lattices. When comparing two systems, which lattice should measure

the distance between types on? Are two systems even comparable anymore? As more work

occurs in type reconstruction, having a metric which will allow for the comparison of systems

with radically different views of typing will be important.

We mix the notions of accuracy, conservatism, and precision together into a single metric.

We define as our quality metric over a binary:

Q = E[B(A) ∈ C(A)] =
1

n

∑
A

|C(A) ∩B(A)|
|B(A)|

where B(A) is the set of types BiTR recommends for type variable A, and C the set of

types (usually a singleton) given by debugging information or ground truth.

This has a slight abuse of notation. Within the expected value, B(A) is a random variable

that generates a uniformly random member of the set B(A). Additionally, in the expected

value, A is the random variable picking a uniformly random value from the domain of C

This metric represents the rate at which a user of the system would be correct if it

selected a type uniformly from our recommendations. This kind of evaluation represents the

expected performance in an environment similar to what a user might experience if reverse

engineering code — each time they ask the system for assistance, what is the probability

that the system will recover the relevant portion of the debugging information.

Unfortunately, we can only compare ourselves to TIE with this metric, as we do not have

49



Implementation Unconstrained Constrained Conservativity
BiTR 21.02%± 2.64 38.00%± 5.81 91.72%± 3.35
TIE 12.64%± 7.06 16.80%± 1.63 90.31%± 2.66

Improvement 8.38% 21.2% 1.41%

Table 3.2: Result Summary (Probability Metric)

access to implementations of the other systems. Note that while TIE describes a methodology

for comparing its results against structure types, it does not in practice actually produce

structure types. We report conservativeness and average lattice distance as well, but we do

not consider these our primary objectives.

3.4.2 Can BiTR recover types in sample cases?

In small example programs which sum lists, walk binary trees, and perform simple look-ups

in arrays of structs, we achieved 100% success. They provide a stark comparison to TIE,

which produced 11% on summation of lists (corresponding to all things of a given size being

valid), correctly identified the temporary variables in the tree walking for 15%, and could

not determine that the global array containing the structs in existed, getting another 12% on

temporary variables. We mention these programs to highlight that BiTR handles behavior

that was previously not even measured in the literature. Hex-Rays’ [35] performance on

the loop summation example, as seen in the introduction, would have scored a 14% with

that output. Note that the comparison here is somewhat unfair, because IDA must express

exactly one type to the user. As a result, Hex-Rays’ other numbers are not reported as the

comparison is not meaningful or fair.

3.4.3 Does BiTR’s recovery ability exceed previous work?

For a more real-world evaluation, we ran our system over coreutils, a collection of common

programs installed on nearly every UNIX system. The programs in coreutils represent a

variety of different kinds of workloads, and are open source, so we were readily able to build
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Implementation Unconstrained Dist. Constrained Dist.
BiTR 1.32± 0.06 0.65± 0.075
TIE 2.10± 0.044 1.58± 0.25

Improvement 0.78 0.93

Table 3.3: Result Summary (TIE Distance Metric)

and examine debug symbols for them. We use this data set to answer this and our remaining

questions.

In an effort to demonstrate the validity of our new metric and compare ourselves to

systems other than TIE (on which we were able to generate our new metric scoring due

to TIE access), we also report statistics of conservatism and distance in the same way as

previous work [26, 49]. Overall, on coreutils we achieve conservatism of 95.95% and an

average distance of only 1.33. If we only examine type variables which had at least one

constraint reference them, we see instead an average distance of 0.68, an improvement on

previous work.

3.4.4 Is BiTR’s recovery good on an absolute scale?

Unfortunately, we cannot run most of the other systems under this metric, as implementa-

tions are not readily available. However, we did get access to an implementation of TIE [49],

so we ran TIE under this new metric in addition to our work. Over all the type information

contained in the DWARF information for coreutils, BiTR achieved a 21.01% recovery

rate. TIE, when scored on this metric, achieved a 12.65% rate.

As our new metric has a direct interpretation in terms of its usefulness to the reverse

engineer, these values show that BiTR is useful for recovering types. Additionally, it high-

lights the progress made on an absolute scale. However, it also shows how much further the

field has to go — a one in five chance of having the correct type is unlikely to be the best

possible solution.

Under-constrained Types. One of the biggest sources of error in our analysis is under-

constrained types. The code references and operates on these variables, but due to the low
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number of operations performed on them, there is no way to know definitively what the type

of these variables are. For example, in the C snippet

int f(void* x) {

? v = x;

return (v == 0);

}

we would get code which would be legal if our mystery type (represented by a ?) were

either an int or a pointer of some variety. We can use heuristics when outputting a type for

decompilation (for example, preferring the lower bound of a type in order to avoid casting),

but since both are legal, and all constraints on v are visible in this snippet, we would never

be able to get an exact type.

Dealing with these would be a matter of better heuristics, and would have left the realm of

program analysis and gone into the realm of programmer analysis. The heuristic of selecting

the lower bound is not a good one, as this will reduce conservativity, but sometimes this

choice may make sense. Developing heuristics to deal with this issue is outside the scope of

this work, but presents an interesting challenge discovered in our experiments.

3.4.5 How does BiTR fare at recovering constrained types?

In order to more closely examine the effect that unconstrained type variables have on our

metrics, we generated a probability mass plot of response quality in both situations, as shown

in Figure 3.6. This shows the difference between responses that BiTR has constraints on,

and those it does not. When we restrict ourselves to type variables which the code accessed,

our recovery rate spikes to 36.78%, showing great overall improvement.

This makes sense as a measurement because it demonstrates the ability of the tool to

police the boundaries of its own knowledge. Specifically, it measures the performance of the

tool when used as an advisor rather than as the sole source of types. When BiTR has seen
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the type variable in question constrained, it has a much greater level of information available

on what the type could be.

Unconstrained Type Variables. The primary source of error reflected in this difference

is data that is never written to or read from. For example, while most coreutils binaries

contain a close stream function which operates on a stream structure, there is no indi-

cation of the inner properties of this structure in the code itself. However, the compiler

constructs debugging symbols in the presence of header files that describe the fields of the

stream structure. As a result, the score is strongly deflated. We can partially mitigate

this by using type signatures for library functions, but we did not use signatures for all

functions in our experiments, nor would this information always be available. BiTR can

recover some unconstrained variables through appropriate type signing (or analysis of the

target shared library). Unfortunately, there are also cases where some fields of a structure

are never referenced over its entire life cycle.
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3.4.6 How does BiTR scale?

It is important to note its scaling characteristics relative to the size of the input problem.

Two good proxies for problem size are number of type variables and number of constraints.

In practice, in our conjunction of disjunctions, there are about approximately the same

number of disjunctive clauses as there are type variables. BiTR experimentally uses an

amount of memory linear in both of number of constraints and type variable count, and

time proportional to the square. This happens because when checking consistency, the

system checks each live type variable rather than only those whose constraints may have

changed. Adding an optimization which only checked those type variables affected directly

or indirectly by incorporating a new constraint would replace a factor of N with K logN by

removing the requirement to check every live type variable.

3.5 Related Work

As this work stands at the confluence of compilation, instruction set architectures, static

analysis, and type theory, there is a great deal of prior work that provided the foundation

to create BiTR. There have been other attempts to perform binary type recovery. Type

theorists have explored the relevant formal systems that enable us to appropriately describe

the constraints imposed by the wide variety of instructions. Others have tried to build

decompilers, each of which contains at least an attempt at type reconstruction.

3.5.1 Types in Compiled Code

In large part, previous work has considered dynamic approaches, which use execution traces

to get information about concrete values. Another school of thought takes a more forensics-

oriented approach, attacking the problem by looking for known data structures within a

dump or trace. Finally, there is the school to which this work belongs, static type recovery,

where the approach regenerates type information from a representation of the code, rather
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than from sample runs or matching known data structures.

Dynamic Type Description. Rewards [50] takes a dynamic, trace-oriented approach

to the problem, taking execution traces and known system calls, and propagating types

from system calls through the trace’s reads and writes. The dynamic approach has the

advantage that the analysis can know what values a memory location or register actually

held at a given program point. Additionally, the dynamic approach does not have to solve

the problem of indirect jumps, as when working with traces the next instruction is precisely

computed. Finally, since Rewards had exact aliasing information via pointer values on each

trace, flowing information from the system call barrier (their major outside source of types) is

easier. The primary limitation of this approach is that it cannot assign appropriate types for

structures which do not cross the system call barrier, such as container data structures. This

approach of providing dynamic information from the crossing of the system call barrier could

be supplied as additional constraints to a system like BiTR to further improve accuracy.

Howard [68] extends the work of Rewards by focusing on access patterns instead of

simple propagation, and annotating variables from the original code, rather than locations

on a dump.

Type Forensics. Another approach known as shape analysis [21, 37, 41, 61, 79] uses

dynamic traces to generate shape graphs, which they then analyze to make guesses at the

types of memory locations. The systems generate the shape graph by first generating a

trace, then matching the access pattern to the simplest possible graph of type structures.

Some generate this trace from the compiled program, and some must annotate the program

prior to compilation to achieve this trace. Once the system generates the shape graph, it

compares the shape graph to multiple possibilities of what the data structure might be in

attempt to classify it e.g. as a binary tree or linked list. One benefit of this technique is that

when the system finds a match, more information on a name of the data structure may be

available. However, if the program uses a data structure not expected by the system, some

of these methods will fall short. For example, MemPick will report it to be a generic graph.

It also suffers from the standard dynamic analysis issue of being unable to generate types
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for paths the test cases did not drive it down.

Static Type Recovery. Like TIE [49], we built BiTR on BAP [16], and also took the

approach of trying to generate ranges of constraints. However, TIE performs much worse

under our metric, which we feel more fully represents accuracy of more complicated types.

TIE’s metric is problematic for the reasons described in [26], but the proposed replacement

metric is still dependent on a notion of distance. TIE is also slow, which hobbles its use as

a large scale analysis tool. The use of DIVINE’s methods was one of the bottlenecks, which

we avoided in BiTR by recovering the type of everything that is addressable through the

registers or a constant integer used along a dataflow that ended in a read or write. TIE

rarely inferred structure types, though its type system contained them. This was in part

encouraged by a metric which put less weight on the types of struct members. Finally, if run

on a static binary (e.g. without dynamic library hints), the amount TIE could infer itself

was minimal.

SecondWrite [26] instead takes the approach of lifting to a LLVM-based IR [47], then

using mem2reg to detect variables and LLVM pointer analysis to compute the types. Their

reconstruction is simpler and faster than TIE’s, but the approach has issues: mem2reg is

a nice shortcut, but has the problem that mem2reg will not promote anything which has

a use other than a load or store [47]. As a result, if on-stack references are in use, those

stack slots will not be properly promoted to variables. Additionally, dependence on pointer

analysis leaves them without a way to detect recursive types within their framework, and

makes nested structures unlikely to work.

Another work focusing primarily on structure recovery [73] approached the problem from

the angle of figuring out what idioms compilers used to address arrays and structs, and

then tried to reconstruct structs and arrays. However, by the authors’ own admission,

this approach cannot handle nested structs. Additionally, their dependence on assumptions

about how the compiler will act and how the source language must work cause the output

to be of limited use for understanding properties of code which was not necessarily built by

the compilers or language expected.
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3.5.2 Type Theory

Some of the inspiration for this form of type characterization §3.2 came from intersection

typing [40, 65]. Though we did not end up using intersection types for inferrability purposes

(even the decidability of the inference turns out to be difficult and limited [43]), this work

informed our choice of a constraint-intersection §3.3 approach instead of type-intersection

approach.

Earlier efforts to generate typed assembly [22, 55] also bear similarity to our work. Typed

assembly language methodologies are attempting to assign types to the registers in compiled

code during compilation. Some of the TAL ideas are applicable, and still others could

potentially help in future reconstruction work as safer types. However, the majority are

inappropriate for the work because the compiler or author must make the code conform to

the system, rather than the system describing the code.

3.5.3 Decompilation

One of the main applications for type reconstruction is decompilation. Some approaches [56]

even suggest that the type reconstruction can help guide the decompilation itself rather

than simply being a set of annotations applied at the end. This idea has existed [24] in

decompilation for a while, but progress has been slow. More recent decompilers [64] have

used some of the other research [49] in the area to improve their results as well. Given the

poor state of affairs in Hex-Rays [35], more work in this field could improving the usability

of much of the decompiler work would not be surprising.

3.6 Motivating Holmes

BiTRwas designed before the inception of Holmes. Despite this, its operation matches

the computational patterns we will introduce when we describe the language (§ 4). The

constraint generation step matches simple Datalog rules, with external predicates or an
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equivalent feature (§ 4.2.2). We process SSA instructions one at a time and transform them

into constraints to try to simultaneously satisfy. The solving phase matches up with the

aggregation feature (§ 4.2.3). We can promote a single constraint into a partial solution

context, and the operation to add a new constraint to the context transformed into a join

operation between two partial contexts. Finally, attempting to leave out a minimum of

constraints corresponds to circumscription(§ 4.2.4) and call/cc (§ 4.2.5). Specifically, we

circumscribe over the quantity of predicates to ignore in a final answer. If no final answer

can is possible, we increase the number by using a max join operation on the maximum

number of dropped clauses. If we circumscribe over the list of available merged contexts at

well, we can detect the case of an inability to produce an answer, and increase the number

of potential dropped clauses. This step requires call/cc, as we must circumscribe over the

maximum number of predicates to drop to know there is no solution, but our response to

knowing there is no solution is to extend that predicate.

A BiTR system re-implemented in this way would still calculate more than the system

described here. This is because it would examine all minimal constraint dropping solutions

rather than stopping after finding one. It would also gain in incrementality, as adding or

removing a constraint (such as due to user annotation, or a small patch) would be able to

operate on the existing state as much as possible. The non-Datalog implementation would

need additional work to become incremental in this way.
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Chapter 4

Holmes

Holmes is a dialect of Datalog, tailored with extensions for the specific use case of analyzing

compiled code. Specifically, a normal dialect of Datalog will fall short on several tools desired

by the analysis author:

• Data structures

• Aggregation

• Negation

4.1 Feature Selection

To address these lacks, we add a few features to base Datalog.

4.1.1 Callbacks

Tasks which do not involve a fixpoint, but do involve computation, can frequently be both

more difficult and more expensive to write in pure Datalog. For example, parsing an ELF

and splitting it up into segments, sections, generating records for its symbols, etc. could in

principle be written in Datalog. However, this would be difficult to write (operating on a

string as a linked list, or similar structure), slow to compute due to many-way joins, and
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would require that the input first be transformed before even entering the program. Other

similar examples include lifting (translating a sequence of bytes into a semantics language),

concrete execution, and arithmetic.

Previous approaches have noted that many of these steps come towards the beginning

of analysis, and perform these tasks as a precompute phase before handing the results to

Datalog to process. In our case, we are trying specifically to avoid such phasing. The lifter

might be needed again for previously undiscovered code. The loader might be needed again

if we discover a call to execve and wish to follow it. Doing a phased Datalog prevents the

easy interleaving of these functionalities into the global fixpoint.

Datalog predicates are not always the best data structure for all tasks. Datalog predicates

can effectively be viewed as an append-only, deduplicated, index-by-anything table for each

predicate with rows corresponding to true instances of the predicate. This structure is very

versatile, and can represent a wide variety of concepts. However, some concepts are better

represented in other ways. One example is ILs and ASTs. As frequently nested, branched

structures, they can be represented in Datalog, but walking one would take a very large

number of lookups compared to using a traditional algebraic data type approach, not to

mention the clumsiness. Other similar concepts include formulae (as in SMT) and any kind

of variable-length buffer representation. All of these can be done in pure Datalog, assuming

appropriate preprocessing has been done. However, the resulting time and space costs make

this something to be avoided.

To address the above two, we add the ability to register a callback to a Datalog rule. If

specified, whenever a that rule fires, the corresponding callback will be used supplementarily

to determine the values to substitute into the head. This allows use of traditional functional

or imperative style code to implement data structure transformations or perform operations

which would be slow to do in the base Datalog. Additionally, it allows us to more readily

incorporate existing code (such as the BAP [16] lifter) rather than rewriting it from scratch.

This is equivalently powerful to external predicates in other languages in terms of ex-

pressivity. Any callback specified could instead be turned into an external predicate and
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simply appended to the query. A query involving external predicates might need to be split

up into phases to be expressed in callbacks. If an output variable of an external predicate is

present in another term in the query, one would need to do a secondary join after evaluating

the external predicate. As the callback only occurs at the end of a query, there will only be

one join per query. The callback restriction simplifies the design of the Datalog engine (the

join engine is entirely separate from the callbacks), at the cost of the ability for a sufficiently

advanced engine to better optimize such queries.

4.1.2 Monotonic Aggregation

Traditionally in Datalog, the body of a rule may only access a fixed (though arbitrary)

number of facts at the same time. Even counting can be difficult. To verify that there are

at least three instances of some predicate p, one would normally write:

p(x) & p(y) & p(z) & neq(x, y) & neq(y, z) & neq(x, y)

The size of this query grows as n2 in the number of elements to be counted.

This same difficulty occurs when encoding a dataflow or abstract interpretation algorithm

into Datalog. When two branches come together, a new fact representing the state with the

meet lattice operation for the chosen domain applied needs to be generated. If we do this

naively, simply matching on the existence of two states at that program point and generating

a new one by merging, the resulting runtime will be super-linear in the number of performed

meets.

In existing systems [14] this is dealt with by ensuring the state in question can be extended

simply by adding more facts. This solution works in some cases, but it prevents the use of

data structures like strided intervals [11] or widening operators in dataflow algorithms which

lack finite descending chains.1 This is because all of these situations require reasoning about

1 A lattice is said to have finite descending chains if at any point at the lattice, there are a finite number
of values less than it on the lattice. This property is desirable for a dataflow analysis because it guarantees
termination. When finite descending chains are not present, a dataflow analysis can provide a “widening”
operator, which can force the termination of the system by moving farther in the lattice under heuristic
conditions.
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a variable sized subset of the data to make their conclusion, not just a fixed window.

Finally, external solvers often need to receive all the inputs up front, rather than incre-

mentally. Calling out to an SMT solver will not work if the formula from symbolic execution

is stored as facts in a Datalog representation; the program would first have to walk them

with a rule and a callback (or a rule and an external predicate in another system) to build

up a viable representation and hand it off. The same is true even of simpler concepts, like

applying Steensgaard’s algorithm [71] to a set of constraints - the algorithm will either need

to process all constraints at once, or it will end up store incremental program states in the

database as well, ending up back at the n2 problem.

Traditionally, this is dealt with by applying a post-processing step to the Datalog compu-

tation. After rules have been executed to saturation, a query is run, and the aggregation is

performed by an outside-of-Datalog program. As stated earlier though, we want all portions

of the analysis to be able to trigger all others to avoid explicit phasing.

Some of these specific scenarios can be worked around with via clever rules, but they

do not apply universally. For example, the counting check might instead use a greater than

operator instead of not-equals, assuming that field is ordered. The resulting query would

then only have linear size in the count to check against. However, this construction still only

handles counting a fixed number of unique results.

To address the issue of combining information from multiple facts efficiently, we allow

for predicates with aggregation. If a predicate is declared with aggregation, a provided

meet operator will be used to aggregate submissions to each aggregate field for which all

non-aggregate fields match. In the case of counting, we simply use set-union as our meet

operator. For dataflow or abstract interpretations, we can have parameters like program

location be non-aggregate fields, while the state is an aggregated one. Programs using this

feature need to be aware that they may receive the aggregation of any subset of derived

facts, and are only guaranteed to ever receive the aggregation at the fixpoint.
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4.1.3 Hypothetical Circumscription

Some questions revolve more around what isn’t there than what is. For instance, if ud22 is

found in the binary, we might wish to determine if it is in fact statically unreachable. This

requires us to be able to state that we know all of the edges entering that basic block3, not

some subset.

As a more concrete application, if we have an algorithm which works on the SSA4 repre-

sentation of a function, creating an SSA representation of that function requires the entire

control flow graph. If we add edges later, conclusions derived from the incomplete SSA form

might become incorrect.

Traditional Datalog either disallows negation, or allows it through explicit stratification.

In the context of doing program analysis on binaries, we might wish to avoid this even when

reasoning purely monotonically. Consider an analysis which determines whether a function

will never return. This information is important in analysis of a calling function because it

should not expect control to proceed past the called function. To declare that a function

will never return when called, we must know all the paths within it, not just some of them.

As a result, we are implicitly talking about knowing the negation of additional edges in the

control flow graph.

If we employed stratified negation, the system needs to declare an entire predicate satu-

rated, not part of one. As a result, to reason based on the absence of any control flow edge,

the system would need to assume saturation of the entire control flow graph. This leaves us

unable to employ information that a called function will never return in the CFG definition

for a calling function.

2 LLVM inserts this instruction to denote unreachable code, and is intended to cause a trap if hit
3 A basic block is a sequence of instructions with exactly one entry point and one exit point. Other code

in the program does not jump to the middle of the block, and execution does not leave the block until the
end.

4 SSA, or single static assignment, is an intermediate representation frequently used by compilers to
make explicit the dependency of variables on previously computed values. Each variable in SSA form is
defined precisely once in the program, and additional variables are created for cases involving mutation.
When multiple control flow paths to define a variable exist, a φ expression is used, selecting a previous
definition indexed by the path taken to arrive at the current block.
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To address this need, we add hypothetical circumscription. The core concept is that

we can at need assume that a particular chunk of information is expanded, and reason

forwards. In the event that this turns out to be false, we can retract that assumption,

and reason forwards again. This allows us to deal with cases of negation which are not

trivially stratified. In the language, this feature is implemented as the an additional kind

of body atom. If a rule circumscriptively matches on an aggregated predicate, the resulting

computation will be as if it matched only on the aggregation which is present in the final

fixpoint database. Circumscription is in contrast with monotonic aggregation, where rules

must have correct operation for any subset of the possible aggregations along the way. This

can be used to implement the stratified case in a straightforward manner, and also to support

dynamic negation as describe in the never-returning example above.

4.1.4 Call/CC

The astute reader may have become worried at the end of that last subsection, as it is not

without reason that the standard approach to negation involves stratification. In the case

that we have a negated inference cycle not just on predicates, as stratification prohibits,

but on the actual facts, the approach as described so far would lead to alternation and

indeterminacy.

Interestingly, there is actually a use case for allowing negated cycles in program analysis.

In the case of the outputs of an dataflow analysis or a control flow recovery, we will need to

circumscribe over their results in order to know we have received the actual output. Using

an incomplete run of an alias analysis, for example, would result in too-small upper bounds

being used. However, due to the interconnectedness of these examples, the complete alias

analysis information might alter the control flow graph by refining the information used

to determine the target of indirect jumps. Changing the control flow graph would in turn

invalidate the circumscribed alias analysis.

Strictly looking at the system thus far, this would loop. Altering the control flow graph
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would retract the alias analysis, which would retract the alteration to the control flow graph.

Thinking about what a human would do if they had gone down the same reasoning path

points to a potential solution. If the analyst had assumed they had been shown the totality

of control flow, and from that, came to find a new control flow edge, the analyst would

decide that their initial assumption must have been wrong, and that edge really is there.

Essentially, this step is (¬P → P )→ P .

This matches the type signature of call/cc5, and not without reason. In this case, the

continuation is the reasoning strategy forwards, assuming P can be determined to be true.

If P is not determinable to be true, this continuation cannot actually be invoked, and we

never go down that path. If P can be determined to be true, in a traditional programming

language we might go down that path. In our case, we are constantly watching for P to be

determined to be true, and if it is, we immediately take the continuation.

This feature is invisible to the user other than for performance characteristics. The user

need only specify their rules as usual, circumscribing over things which need to be complete,

and if this call/cc condition arises, it will be automatically dealt with by reasoning forwards

from the new (expanded) circumscription, after retracting relevant other derivations.

4.2 Informal Semantics

Before giving a more formal treatment of what outputs are correct for a given Holmes

program, we describe how each feature functions informally, as in a programmer’s guide.

Afterwards, there is a simple traced execution of a toy program which employs all of these

features.

5 call/cc stands for “call with current continuation” and is a programming technique originating in
Lisp. It allows a function passed to it to receive as an argument a function corresponding to the rest of the
program, known as the continuation. It is commonly used to represent failure and backtracking, but is not
limited to those uses.
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4.2.1 Initial Syntax

In Holmes, there are three kinds of possible statements, predicate declarations, rule decla-

rations, and queries. In a predicate declaration, a predicate is given a name, and a series of

typed fields. When done in a tuple-predicate style, this looks like:

derefs_var (Var, Location)

where Var and Location are types in the embedding language. This style can be used in

cases where the meaning of each field is obvious. In larger projects or more complicated

predicates, it is preferable to name fields. A predicate with named fields is written as

derefs_var {var: Var, loc: Location}

To avoid confusion, a predicate may only be defined in one of these two styles.

Rule declarations contain a rule name, a head, and a body. The rule name is used purely

for error reporting, debugging, and provenance reporting. It does not have any effect on the

operation of the program. A body consists of a series of atoms, joined by & symbols. The

order of atoms in the body has no effect on the program. Matches are written in one of two

styles depending on the style of the predicate.

If the predicate is a tuple style predicate, we can write

tuple_predicate (w, ~1, _, q)

This unifies the first field with the variable w, the second field with the constant 1, leaves

the third field unconstrained, and binds the last field to the variable q.

In the field style, we can instead write

field_predicate {w, x: ~1, z: q}

assuming the predicate has fields named w, x, y, and z. This implements the same match

as above. Matching on field predicates introduces two shorthands. First, unused fields need

not be named (y in this case). We could write y: , but it is unnecessary, making it easier
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to work with higher arity predicates. Secondly, referencing a field with no binding implicitly

binds it to a variable of the same name (w expands to w: w in the example).

Heads are written exactly as a body atom, except that unbound fields and fields bound

to variables not defined by the right side of the rule are disallowed. Putting it all together,

a rule looks like

reaching_propagate: reaching {loc, var} <-

reaching {loc: prev, var}

& succ (prev, loc)

& unchanged {loc: prev, var}

Rules written like this act as normal Datalog rules, interpreted with a fixpoint semantics.

If facts are present in the database so that an assignment to variables exists for which the

right side is all present, then the left hand side will be added to the database.

Queries are essentially named body, which may be evaluated as a way of querying the

program state by the embedding language. The name of a query determines the name of

the function which will appear in the interface of the resulting database object. Queries are

written

?all_reaching: reaching {loc, var}

When the database’s query all reaching function is called, it will respond with a set of

possible assignments to loc and var, essentially returning the current state of that predicate

to the user.

Facts are inserted at the level of the embedding language, the database can be run for

an arbitrary number of steps (or to fixpoint), and queries can be performed whenever the

database is not stepping.
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4.2.2 Callbacks

Callbacks are used in Holmes to allow the use of more traditional procedural or functional

style code for some rules. After writing a rule, add + f, where f is the name of the callback

to be invoked. When the rule is considered, it will first try to match its body. If this

succeeds, the variable assignments which match will be passed, one at a time, to f. f will

return for each input assignments a list of assignments to those variables present in the head,

but unbound by the body. If there are no variables left undefined in the head, whether f

returns a least an empty assignment structure (e.g. a list of one element, with that element

being the null assignment) determines whether the rule will actually produce its head. For

example, in the rule

simple_func: p(y) <- q(x) & r(x) + f

f would be expected to take in the value of x, and return a list of values for y. If we wrote

check_even: special_even(x) <- special(x) + is_even

A is even function which checked the last bit of x, then either returned [{}] (a list con-

taining the empty binding) for true or [] (an empty list) for false could implement this

rule.

4.2.3 Monotonic Aggregation

Monotonic aggregation defines a new way to declare predicate fields. When declaring a

field, a caret (^) followed by a function name in the embedding language with signature

(T, T ) → T where T is the type of the field may be provided. Such a function should be a

lattice meet operator - it should be associative, commutative, and idempotent. This function

acts as an “aggregator” for that field. Whenever a new fact is added which matches the

non-aggregated fields of a another fact, they will be combined according to this aggregator.

Because the order of rule execution is up to the engine, this means the rule may receive

multiple, incomplete aggregations along the way, or it may only receive the final aggregation
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- the only guarantee is that if run to a fixpoint, the rule will have received the final (largest)

aggregation.

For example, say that we wrote the program:

p(i32, IntSet^union)

q(i32, IntSet)

promote: q(x, ints) <- p(x, ints)

?result: q(x, ints)

and then inserted facts

p(0, {1, 2})

p(1, {2, 5})

p(0, {1, 3})

p(0, {2, 4})

When calling query result after the program completed, we would be guaranteed to

always see the assignments (0, {1, 2, 3, 4}), (1, {2, 5}). However, we might also see

present (0, {1, 2}), (0, {1, 3}), (0, {2, 4}), (0, {1, 2, 3}), (0, {1, 2, 4}).

Their presence in the output is up to the discretion of the evaluation engine.

Generally, this kind of aggregation is useful in cases where a rule wants to operate on

all the information that is available, but future information will not make any of its actions

incorrect. Imagine p in our example as having a first field representing a variable, and

the second representing values it held in a specific evaluation of a program. In this case,

the aggregation allows us to query for the set of values we know are possible to find in that

variable. Our inferences will not become wrong in the future, because the predicate describes

a lower bound, which is allowed to move up (via union).
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4.2.4 Hypothetical Circumscription

Hypothetical circumscription extends monotonic aggregation by allowing us to only examine

the largest aggregation we find. Circumscription is written on an atom by prepending a

tilde to the predicate name. If we extend the example from monotonic aggregation with a

circumscriptive match on p, e.g.

promote_complete: r(x, ints) <- ~p(x, ints)

r will contain only the pairs (0, {1, 2, 3, 4}) and (1, {2, 5}) once the program is done executing.

Examining the database in the middle of execution may yield different results, but the engine

will correct these before a fixpoint is reached.

This tool is intended to be used to query an aggregation which aggregates in a different

lattice direction than the one it is queried. As a concrete example, consider abstract inter-

pretation. Abstract interpretation assigns bounds to a variable which get larger and larger

as the computation proceeds. This can be monotonically queried to see if something is going

to be in bounds - this will only ever go from false to true as the bounds expand, never the

other direction. However, the most useful part of an abstract interpretation bound are the

values it rules out - those which are outside the bounds. In order to know that a value is

outside the bounds, we need to know that we are looking at the final aggregate for that

particular domain, and there circumscription becomes important.

Well Behaved Circumscription

In the vast majority of programs, circumscription will not bring any surprises to the table.

However, it is possible to encode a notion of choice using circumscription, causing the fixpoint

evaluator to choose between one of two possible worlds. For example, consider the program

p(IntSet^union)

q(IntSet^union)

big_p_world: p(~{2}) <- ~q(~{1})
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big_q_world: q(~{2}) <- ~p(~{1})

and insert both p({1}) and q({1}). The engine will now either output p({1, 2}), q({1})

or p({1}), q({1, 2}), and what it does is implementation defined, and may even differ

from run to run.

This nondeterminism is usually not desired, but there are currently no checks to detect

it, either at compilation time or at run time. Stratifying [72] circumscription will avoid

this, but part of the strength of circumscription is to allow exactly unstratified negation.

This can occur when there are two facts (not predicates) which have in their derivation

a dependency cycle containing two circumscriptions. Even if this is the case, it may not

force this nondeterminism, depending on the action of the rules. The condition where one

circumscription is present is dealt with via call/cc, presented next.

Even if a program has has nondeterministic circumscription, all is not lost. The engine

will still emit a single, consistent world in which all constraints described in the program

hold. In many cases, this may be sufficient, and the nondeterminism embedded in the

internals of the computation, rather than in the output.

4.2.5 call/cc

The call/cc feature does not add any new syntax; it extends the interpretation of circum-

scription to deal with the case where simple fixpoint evaluation will fail to find an output

set that complies with all provided rules. Consider the program

p(IntSet^union)

inconsistent: p(~{2}) <- ~p(~{1})

where we add p({1}) to the database initially. Naively, we would oscillate between the two

states p({1, 2}) and p({1}), never finding an answer. With call/cc, we instead interpret

p({1, 2}) only to be the correct result moving forwards. Essentially, the engine will assert

p({2}) on the basis that we cannot proceed without p({2}). More specifically, matching

72



p( {1}) is matching on, among other things, ¬p({2}). From this, we derive p({2}). This

fits the form of call/cc, so we add p({2}) to the database, with call/cc as the provenance

rather than a rule.

In general, this feature is intended so that a circumscription is allowed to extend itself.

For example, if an analysis assumes it will be provided the complete control flow graph

(circumscription) in order to perform SSA, then determine that a new value is possible for

an indirect call (extending the control flow graph), call/cc is the component that allows the

engine to retain the new control flow edge despite the fact that the old SSA form needs to

be retracted.

4.3 Implementation

In order to evaluate the language as a means towards program analysis, we need a running

implementation.

4.3.1 Holmes (Old Implementation)

Initially, I produced a database backed implementation which compiled down to a combina-

tion of Rust and SQL (initially C++ and SQL) and had Postgres handle joins, deduplication,

and data storage. This had the advantage of being able to handle significantly larger working

sets in theory, but in practice had significant performance issues which lead me to change

approaches. Despite this, I feel it is worth discussing here both because the failures of the

implementation point out some of the unique challenges and simplifications that can be

made in evaluating Datalog, but also because it seems inevitable that to analyze programs

substantially larger than those examined in this thesis, either a distributed platform or a

disk-backed system will need to be used. It is my hope that these lessons learned will help

a future external-database based implementor avoid the same pitfalls. Most of the details

here are focused on Postgres, but other systems take a generally similar approach so similar

problems are likely to occur.
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As a result, this section is mostly focused on what went wrong, rather than on how the

system was constructed. The source is available at https://github.com/maurer/holmes,

but be aware that it does not represent a complete implementation of the language. In

particular, it only has partial support for aggregation, and no support for circumscription.

Indices

Database software usually does not know which indices would be ideal to keep, and since

keeping extra indices is is expensive in both time and disk, most SQL systems require the

user to specify the indices to keep manually. Work is ongoing [59] to remedy this problem,

but is not yet a production tool. In the meantime, if we wish our translated Datalog queries

to run efficiently, the database must be provided with a list of indices to keep.

We tried a number of heuristics, including indexing in a global attribute ordering, index-

ing per query based on left-to-right joins, and just indexing all fields in order, and having

the programmer reorder fields to boost performance. None of these approaches worked in

practice. Both the global ordering and the left-to-right joins failed in large part because

the query planner would choose to reorder the joins at runtime in multiple different ways.

The programmer manually ordering fields could find local optima, but because predicates

are used in multiple ways, it too falls short.

The solution in use at the time this approach was switched away from was to annotate

the program with an explicit set of indexes to keep. We generated these indices by profiling

the running program, and adding indices which would allow the query planner to avoid

nested loops or full table scans where possible.

Append-Only, High Write

One interesting aspect of a Datalog system that the workload is entirely append-only other

than retraction events, which are intended to be rare. This knowledge is unused by the

database in executing queries. If it materializes a view to execute a query, and an underlying
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table is updated by an append, it will re-materialize the whole view, not perform any kind

of incremental maintenance.

One of the expensive parts of many queries was insisting that it only return results

which contained at least one new fact - one which hadn’t been returned in this query before.

That tables can only be appended to could enable the incremental maintenance of the join,

allowing more efficient computation of the join, and retrieval of only the new data.

There are also some database schemas (such as the star schema) which become more

possible in the absence of mutation or deletion.

Query Planning

Query planning, while of benefit to users who do not know all their SQL ahead of time, or

whose tables remain in steady states, was the biggest issue with this approach. Databases

commonly use a component called a query planner to translate SQL statements into an inter-

nal representation (loops, merge joins, hash joins, index walks, etc) that they can concretely

execute. This component depends on a variety of information, including but not limited to:

• Whether the statement was prepared

• If prepared, how many times it has been executed

• What indices are available

• Information from the statistics daemon

Other than examining what indices are available, these conditions turn out to be highly

anti-productive for a Datalog workload.

The statistics daemon is designed with the assumption that there is a sort of “steady

state” for a database, in which the relative sizes of the tables will remain similar. This makes

sense for usual customers of databases, but in our case, a large part of operation looks like

heavy insert activity on a specific table. As a result, the statistics daemon’s information is

generally woefully out of date.
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We prepare virtually all statements, since we intend to execute them repeatedly and want

to avoid time in the parser. However, as of the time this system was developed, Postgres

would ossify the query plan as of the 5th time a prepared statement was executed. This was

done based on the assumptions that SQL connections do not live so long that the database

changes a lot, so by the fifth time the query is run, the plan is unlikely to be improved, and

performance will be increased by avoiding the planner entirely. In practice, this means that

any recursive rule (like one marking nodes as reachable, or performing a dataflow) will have

suboptimal performance. The rule executes five times, and during that time, the statistics

daemon either has old out of date information, or even if it updates, information that the

table it’s reading out of is terribly small. The query planner then makes bad decisions based

on this, then sets them in stone. As a result, indices sit there unused, and logarithmic

operations are done linearly.

If the statements are not prepared, we incur parsing and planning overhead on every

query. In practice, those costs were low in comparison to the troublesome queries. The true

problem with completely non-prepared statements is that the query planner would rapidly

change strategies, meaning that which indices are needed would change at different points

in execution.

Since in our case we have a fixed query set and a rapidly changing database, it would most

likely make more sense to absorb the query planner into the compilation process somehow.

Postgres did not at the time of implementation have a way for a client to provide it with

an explicit query plan short of building and providing a plugin which ran said plan as a

function.

Star Schema

As alluded to earlier, one benefit of an append-only workload is that star schemas have lower

overhead, as garbage collecting the child tables is not necessary. Star schemas are normally

used for “data warehousing”, a sort of large scale database where an organization’s data

is all loaded into a single schema before being pulled out again into smaller databases for
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actual processing. The idea is that most values are referenced rather than included directly

in tables. Warehousing engineers are largely interested in the standardization of these values

and the resulting compression.

In our case, a star schema is interesting both for reasons of compression, and for ease of

indexing. Indexing an IL instruction sequence6, whether by hash or by ordering, is much

slower than sorting by a tuple of integers. We discovered this technique after the pivot to

an in-memory database, so I have no observations of its performance, but I expect it would

help.

Large Objects

With an external database, the use of large objects becomes non-trivially expensive. If the

database is local, and the bus between the program and the database is shared memory,

this is not a major issue. However, even over a local unix socket, repeated accesses to large

objects can inhibit performance.

This shows up in practice when dealing with binary sections and segments during lifting.

If the lifting rule needs the segment, the architecture, and an offset into that segment to

perform the lifting, this can incur several copies of the segment per instruction. In my

sample programs, most segments were between 300k and 600k bytes, causing this to incur a

nontrivial cost.

The first solution, specific to this problem, was an all-at-once chunking of the segment.

We requested the segment from the database, then produced a 16-byte chunk (maximum

length of an x86 instruction is 15 bytes) at every offset, and sent it back. In the future,

requests would access this chunked data rather than the original. This resulted in a 16-17x

blowup of the space to store the base binary, but as that paled in comparison to everything

else it was not especially significant.

The second solution was to add another extension to Datalog allowing some functions to

6 IL instruction sequence refers to a lifted representation of an assembly instruction or sequence of
assembly instructions into an ”intermediate language” which as fewer, more orthogonal operations.
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exist as special external predicates to be run database side. These all needed to be builtins,

and while the approach was slightly more efficient, overall I no longer think the improvement

warranted the complexity.

If I were to address this again today, I would use a star schema database side, and

implement a cache client side for fetched star objects.

4.3.2 Mycroft

Mycroft is a row-oriented, single-threaded, in-memory Datalog engine, taking into account

the experiences of the initial implementation. It operates as a macro which transforms

Datalog into Rust code, which can then be compiled into a running program. In its current

form, it addresses most, though not all, of the pain points encountered with Postgres. The

query planner is replaced by a single plan, generated at compile time, which parameterizes

itself only on the size of the relevant tables at that moment. This replacement also means that

we know precisely what indices will be useful, and can generate them. The join algorithm is

aware of the incrementality of append only joins, and uses this to speed up requests for new

results. As Mycroft is in process and in memory, large objects are not a problem. They are

returned as read-only references to the existing structure, and can be operated on that way.

The implementation is available at https://github.com/maurer/mycroft, and as a crate

on crates.io for direct inclusion in rust projects.

Callbacks vs. External Predicates

By selecting callbacks instead of external predicates, we pushed some of the execution strat-

egy back onto the programmer, rather than needing the engine to determine it. With even

one external predicate, it will not be clear to the engine how to structure the search for solu-

tions to the body most efficiently without hints. For example, if we have p(x, y)&q(x, z)&r(x, z),

where p and q are traditional predicates, and r(−,+) is external, there are three possible

match orders. We could match on p, then invoke r, then match on q, the reverse, or match
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on p and q, then invoke r. All have merits depending on the extents of p and q and the

runtime characteristics of r. When a query is purely data, this simplifies into join processing

(§ 4.3.2). Efficient join computation is still complex, but is a thoroughly studied area. With

r as a black box however, any such processing order will be fundamentally heuristic. With

multiple external predicates in the same rule, the problem is exacerbated, with more orders

becoming possible, and another uncharacterized evaluation cost.

Using the callback method, the programmer knows the callback will only be invoked on a

complete match, and may use an intermediate predicate to structure the matching strategy

how they choose. Additionally, since the functions are mono-directional and occupy a special

place in the language, this removes the complexity of mode checking from both the compiler

and the author/reader of code. In our implementation, the staging is explicit: The body is

matched in its entirety, any callback is run, and the head is instantiated.

This method does have one performance downside. As Holmes does not have any notion

of a temporary predicate, any rules which would use two external predicates normally will

potentially eat up additional space. Forcing tabling when two external predicates would

be used may not be desirable in all cases. This may improve performance at times due to

effectively tabling a subquery of the intended query, but it may also waste space and time

in others.

Typed Storage

Rather than store data values directly in rows as was done in the PostgreSQL-based imple-

mentation, here we keep a separate deduplication table for each type of data on which we

operate. This allows us to efficiently map back and forth between values, which the callbacks

need to consume, and integer keys, which are convenient for indexing and join algorithms.

This is reminiscent of the star schemas discussed before. As our system is mostly-append

(other than retractions due to circumscription) we design this as an insert-only structure.

An additional benefit, more relevant here than with Postgres, is that this greatly reduces

our memory footprint.
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At compile time, each type present in one or more predicates has a modified robin-hood

hash table declared for it. This table has two pieces: a vector backing which stores the

actual data, and a vector of hash/key pairs. There are two operations this table needs to

support: acquiring the key for an object, whether or not it’s present already, and acquiring

an object from its key. Finding the key for an object is accomplished by using a lookup on

the hash table portion of the structure, inserting into both the table and the vector of data

in the event of a lookup failure. Finding the object for a key (the more common case) works

by indexing into the vector.

The only principal difference between this and a simpler design (a standard hash table

mapping from the value to the key, and a vector mapping from a key to a value) is that

it stores the data only once, and without any indirection. This gave a modest 23% time

performance boost over the standard library implementation in time, and approximately

halved space on an earlier version of the use-after-free detector. The closest approach still

using the standard data structure would have been to use a smart pointer to share data

between the data structures, or a hash table of hashes. The smart pointer caused trouble

with the interfaces, and hashing twice incurred a performance penalty, so we used this custom

hash table design for deduplication and unique key assignment.

Aggregation

As aggregation is described at the predicate level, we can implement it directly on the

tuple storage. Tuple storage is structured as a map from the tuple of non-aggregate fields

(reordered to the front) to a tuple of aggregate fields. These aggregate fields are represented

by a triple of the value-keys to be aggregated, a current aggregate value, and an index

indicating how many of the value-keys are aggregated in the cached value. This allows for a

lazily updated computation of the meet.

When a tuple is inserted into the store, if a value with the same non-aggregate fields is

present, the value-key list is extended, but the aggregate is left alone. If it is not present,

we initialize the aggregate value with the value of the key in that slot, fill in the key in the
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keys-to-be-aggregated, and set the index to 1. When retrieving a tuple, we check whether

the index is equal to the length of the comprising keys. If it is not, we start the iteration

at the index, and perform iterative meets until the aggregate is up to date. We then return

the tuple, extended by the aggregate fields and reordered.

Join Computation

Datalog computation is join-heavy, and as a result attempting to compute the join naively

can lead to disastrous execution times. There are a variety of existing join approaches.

RDBMSes tend to favor straightforward strategies, such as nested looping, hash join, and

merge join. Merge joins require a relevant index, but generally perform substantially better

unless tables are extremely small. Hash joins operate by creating an intermediate data

structure of one of the tables which is indexed by the hash of the joined values.

However, for high-arity join patterns, better algorithms exist, usually formulated as

“worst-case join” algorithms. Ngo showed [58] that it is possible to develop join algorithms

which are optimal even under these conditions. This algorithm is rather complex, and is

intended for theoretical results rather than actual implementation. However, LogicBlox [7]

developed an algorithm known as Leapfrog Trie-join [77] which achieves these same bounds

while remaining practically implementable over traditional indices. Unfortunately, this al-

gorithm is patented, and so could not be used. This indicates a potential for future imple-

mentations to derive a novel approach from the AGM [8] bound or Ngo’s [58] approach, but

developing such an algorithm is beyond the scope of this thesis.

In Mycroft, we used a simultaneous merge join ordered from smallest table to largest

table. An index is selected for each table which walks it in unification argument order, with

constant arguments being sorted to the front. The first index is advanced to the first tuple

where all the constant arguments match. This is made easier by the use of integer-only

tuples, as the non-constant arguments can be represented as 0 in a query to the index.

Then, candidate variable bindings are made to the unification terms (if possible) and the

next table is considered. When on the last table, if a candidate set of assignments to the
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unification terms can be completed, it is emitted and the index advanced by one step. If

the index cannot advance or the index fails to unify with earlier tables, we know that no

further result is possible, and go back one table, and continue. This approach keeps around

only a small amount of additional state, linear in the number of atoms in the query, as it is

returning results.

However, due to our need for incremental results, we can improve this mechanism sub-

stantially. Rather than computing the entire join at once, we split it into sub-joins, one for

each atom in the query. We have a separate, much smaller index for “new” facts in referenced

predicates, requested by the query at database initialization time. We perform a sub-join

with each predicate’s large index swapped for this small index to get exactly those results

which we would receive that we did not before, then chain them for a result. The small

indexes are emptied during this operation, so they will not yield the same results again.

As an example, consider evaluating the query A(x, y)&B(y, z)&C(z, x) for incremental

results. The first time it is evaluated, we perform a full join, ignoring the sub-join strategy -

it would be equivalent to performing the full join 3 times. Then, we insert two facts into A,

and one into C. Running the query again, we perform three sub-joins, one on A′, B, C, one

on A,B′, C, and one on A,B,C ′. In our join algorithm above, remember that we sorted the

smallest table to the left. As a result, the join with B′ immediately terminates, yielding no

results. For the join with C ′, it essentially acts as a join on A and B only, with a constant

restriction. The join with A′ is similar, but the A′ portion of the join yields two facts, so it

essentially runs two constant constrained joins of B and C.

Provenance Tracking

In order to later manage circumscription, or to allow a human to trace the reasoning of a

program, we need to keep track of where facts come from. To do this, in conjunction with

each tuple we store a list of possible justifications. A justification is composed of the ID

of a rule, and the IDs of the facts used to match the body of that rule. An aggregation is

represented simply as the list of fact IDs aggregated for the match. A map is additionally
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maintained from fact IDs to justifications which contain them.

Circumscription, Call/CC, and Retraction

Implementing circumscription essentially involves monitoring accessed aggregations to see

if they would change, and responding with a retraction. The previous description of ag-

gregates does not easily allow for this. A tuple insertion does not know if something has

depended on this aggregation’s completeness, and if so what. To deal with this, if a tuple

is circumscriptively fetched, we replace the list of merged keys in the aggregate field with a

newly minted aggregate ID. Three maps are maintained for aggregate IDs:

• Aggregate ID to comprising Fact IDs

• Aggregate ID to dependent justifications

• Fact IDs to Aggregate IDs they comprise

If a tuple insertion occurs and would need to update an aggregate represented by an

aggregate ID, that aggregate ID is retracted. The retraction code acts as a work list, initially

populated by the broken aggregation. First, it removes any justifications broken by the

current retracted item. Then, it retracts (by adding to the work list) any facts which now

lack justification. If the current retracted item is a fact, it also retracts any aggregate IDs

which now have one fewer fact.

In the special case where the tuple just inserted was also retracted, we replace its justifi-

cation with one referencing the members of its now broken aggregate ID. This ensures that

while this justification no longer cares about the expansion of the circumscription, it will

still be properly retracted if one of the facts in the original aggregate becomes invalid.

Future Work

There is plenty of room for improvement in the concrete implementation of the language

engine.
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Currently, we keep more indices than are strictly necessary. Even with our current join

strategy, the count of indices kept could be reduced through a mechanism to match attribute

ordering between queries more frequently. With a more modern join like tetris join [44] it

could even be possible to keep a single index per predicate.

Results of some sub-joins get used repeatedly, and can be known not to change through

topological sorting. Currently, this is exploited through manual tabling - the creation of

dummy predicates to keep the completed join as a realized structure. However, it should be

possible to generate these temporary structures automatically in some cases.

Pivoting indices from a simple in-memory btree to a MVCC7-style structure would allow

multiple worker threads to be evaluating rules at the same time. As modern systems gen-

erally have additional cores, this should lead to performance improvements overall (though

degradation in bottleneck phases). This approach also meshes well with optionally backing

some data structures with disk due to either large size or low traffic. Many MVCC trees are

already designed as on-disk data structures due to their use in traditional RDBMS systems.

Allowing some data to reside on disk would increase the maximum size of analysis the system

could perform on a single binary, or allow for easier multi-binary analysis.

In an ideal world, this system could even be distributed. Other than circumscription and

the decision to terminate, every component of this system can operate safely with a partial

knowledge of the database. As a result, it seems plausible that with appropriate heuristics

for shuffling and synchronization around circumscription, this language could be well suited

for distributed execution.

7 MVCC stands for Multiple Version Concurrency Control. MVCC trees are common in database design
because they map well to the block-at-a-time disk update structure and because they allow for multiple
transactions to act on the same index in a way that makes it clear if the index was invalidated while using
it. They accomplish this by retaining any portion of the tree which is being accessed by some transaction,
and garbage collecting as threads leave. This results in ”multiple versions” of the tree being accessible
simultaneously in order to deal with concurrency contention, thus the name.
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Chapter 5

Holmes Specification

Holmes differs from base Datalog in callbacks (analogous to external predicates), aggregates,

circumscription, and call/cc. External predicates already have a well understood semantics,

and we will model callbacks as interpreted functions by extension of our Herbrand universe

during instantiation (§5.3.1). We can represent aggregates in the presence of interpreted

functions by a syntactic transformation, other than for purposes of circumscription. Adding

call/cc forces a solution to exist when it otherwise would not, adding a restricted set of

solutions which violate the minimality constraint of stable set semantics when no stable set

exists.

We will first go over the negation model embedded at base Datalog to demonstrate how

it works (§ 5.1). Then, we will show how to construct the Herbrand universe for a program

with callbacks, aggregates, and circumscription (§ 5.3). Finally, we will give semantics for

the Herbrand instantiation of a Holmes program which interprets circumscription as infinite

negation, and call/cc as the failure of one of those negated terms (§ 5.4).

85



5.1 Negation

5.1.1 Other forms of Negation

The first primary distinction to draw in negation is strong negation vs negation-as-failure, or

NaF. Strong negation describes having knowledge that something is not the case, whereas

NaF describes knowing that we will never have proof that something is the case. This

difference is more formally defined by Gelfond and Lifshitz [31].1 In this work we will focus

on negation-as-failure.

One way of interpreting negation is stable-set semantics [30]. In stable-set semantics, to

check whether a proposed model is a stable set, we first take the reduct of the logic program

under the proposed model. To do this, we remove all negated atoms in the body which are

not present in the proposed model (and so are satisfied), and then remove all rules which

still have negated atoms in them (which were not satisfied). If the model is the minimal

model of this reduct (this new reduced program), then it is a stable set, or stable model of

the program. This interpretation admits an arbitrary number of potential stable models,

including none.

Another approach is well-founded negation [75]. This approach constructs what it calls

unfounded sets. These are sets of values which, relative to a given partial interpretation, are

unprovable. It then augments the partial interpretation with the negation of the unfounded

set, and constructs a new minimal model, treating negated atoms as only true if explicitly

present in the new partial interpretation. This procedure runs until it reaches a fixed point,

and produces exactly one well-founded partial model, which will be a subset of all stable

models [75].

In our case, stable-set semantics falls short due to the potential for no model, and the

well-founded approach may return partial solutions if there is no stable set or multiple stable

sets.

1 This article refers to strong negation as classical negation.
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5.1.2 Negation in Holmes

Traditional Datalog bodies consist only of a set of atoms to be simultaneously satisfied. In

addition to this, we allow the atoms of the body to be optionally negated. In the original

input program, the head may not be negated.

As we have no function symbols or interpreted functions, we define a Herbrand universe

U which is simply the set of constants in the program. B is the set of every predicate

instantiated at every combination of values in U.

We instantiate the program into the Herbrand universe, making a version of each rule

with every variable instantiated at every member of U. This eliminates pattern matching

and reduces all rules to a set of rules of the form

p←
∧

qi ∧
∧
¬rj

where p, qi, ri ∈ B.

For example, if we begin with the program

A(x)← B(x) ∧ C(0)

B(1)← ¬C(1)

B(1)← ¬A(0) ∧ ¬A(1)

We only see the symbols 0 and 1 present. This means U = {0, 1} for this program, and

B = {A(0), A(1), B(0), B(1), C(0), C(1)}. Instantiating all variables in the program at all

possible values from U, we get a variable-free version:

A(0)← B(0) ∧ C(0)

A(1)← B(1) ∧ C(0)

B(1)← ¬C(1)

B(1)← ¬A(0) ∧ ¬A(1)
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We can now remove parameters from predicates by assigning a name to each member of B.

p← q ∧ r

s← t ∧ r

t← ¬u

t← ¬p ∧ ¬s

Now the program is in the general form described above.

In derived forms, we also allow rules of the form

¬p←

which simply asserts ¬p. We do not allow rules of this form in the initial program to ensure

that the initial program is not directly contradictory. We will use N to describe a possibly

negated term, e.g. it has form p or ¬p where p ∈ B.

For a program Π which consists of a set of such rules,

N0 ←
∧

i∈I Ni ∈ Π ∀i ∈ I.Π |= Ni

Π |= N0

m.p.

We will define an interpretation of negation in such programs via a Kripke frame. We

say a program Π is consistent if it does not model both truth and falsehood for a single fact.

∀p ∈ B(Π).Π |= p→ Π 6|= ¬p
C(Π)

consistent

We say a program Π decides a fact if it models it as either true or false.

Π |= p

Π / p
decide-true

Π |= ¬p
Π / p

decide-false

These rules equip us to describe our Kripke frame. A program which decides all predicates

and is not inconsistent is a world.

C(Π) ∀p ∈ B(Π).Π / p

W (Π)
world-base
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Any program which is a subset of a world is a world.

W (Π′) Π ⊆ Π′

W (Π)
world-subs

We define a relation between worlds ; describing adding an assumption to the program on

the left to arrive at the program on the right.

p ∈ B(Π) Π 6 /p W (Π ∪ (¬p←))

Π ; Π ∪ (¬p←)
assume-false

p ∈ B(Π) Π 6 /p W (Π ∪ (p←)) ¬W (Π ∪ (¬p←))

Π ; Π ∪ (p←)
assume-true

We complete the Kripke frame by defining the accessibility as transitive closure over ;.

Π ≤ Π
refl

Π0 ≤ Π1 Π1 ; Π2

Π0 ≤ Π2
assume

We consider a formula F true for an input program Π if Π |= �F under this frame. Here,

� means possibly, so this condition says that it is possibly the case that this formula holds.

We can visualize this on a directed graph with worlds as nodes and the single-step form of

our accessibility relation (;) as an edge. This condition means that if we start from Π, our

input program, we can find a connected program Π′ so that Π′ |= F . Conceptually, this

means that there exists an allowed choice of assumptions so that F holds.

Example

Consider the program we Herbrandized previously, extended with the initial fact {r}, calling

the initial program Π0. Initially, we have that Π0 |= r. We cannot derive any more from

Π0 because r is not sufficient to invoke any rule through m.p. We proceed by considering a

candidate world Π1 = Π0 ∪ {¬u←}. Through iterative application of m.p. we get

Π1 |= r ∧ ¬u ∧ t ∧ s

p and q are still undecided, so we create candidate worlds

Π2 = Π1 ∪ {¬p←}
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Π3 = Π2 ∪ {¬q ←}

At Π3, we have through iterative application of m.p.

Π3 |= ¬p ∧ ¬q ∧ r ∧ s ∧ t ∧ ¬u

As a result, for all each predicate, Π3 decides it, e.g. Π3 / p, Π3 / q, etc. either through

decides-true or decides-false depending on its negation in the earlier formula. Specifically,

∀p ∈ B(Π3).Π3 / p

Since Π3 only derives the truth of r, s, t, and does not derive any of their negation, by the

consistent rule we have C(Π3). With these combined, we can apply the world-base rule and

get W (Π3). By world-subset, Π0,Π1,Π2 are all worlds as they are subsets of Π3.

We focus on the accessibility relation next. If we apply assume-false to Π3 and the

predicate q, we get Π2 ; Π3. Repeatedly applying it yields

Π0 ; Π1 ; Π2 ; Π3

Starting with refl on Π0, we get Π0 ≤ Π0. Iteratively applying assume, we get that Π0 ≤ Π3.

Now we combine this information to show that what Π3 models is a legal output for the

input program. Recall that

Π3 |= ¬p ∧ ¬q ∧ r ∧ s ∧ t ∧ ¬u

Since Π0 ≤ Π3, we can additionally say that the above formula is possible at Π0.

Π0 |= �(¬p ∧ ¬q ∧ r ∧ s ∧ t ∧ ¬u)

call/cc

Adding the assume-true rule is what differentiates our negation model from stable-set se-

mantics. This rule allows the addition of positive assumptions (i.e. assuming p as opposed

to only being able to assume ¬p). We specifically restrict this rule so that it requires that p
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is not decided, and ¬p would prevent a complete, consistent truth assignment to predicates.

By restricting assume-true we still rule out trivial solutions like setting everything true, but

in a looser way than the minimal model over the reduct (§ 5.1.1) It is looser because it

allows for models which are not minimal over the reduct. When applying assume-true, it

adds a true proposition which has no derivation from the rules. This proposition would not

be present in any minimal model. As assume-true is only allowed in cases where assume-

false would lead to no solution, it still prohibits the trivial solution (all predicates are in the

model).

How Negations Differ

We consider the program consisting only of the rule P ← ¬P to concretely examine the

difference between these negation strategies.

In the case of a stable-set semantics, this can have no model. The only two candidate

models are {P} or ∅. Under the first model, the rule is not satisfied, so the reduct is the

empty program. This reduct does not support P , and so it is not a minimal model, and not

a stable set. Under the second model, the reduct is P ←, and so it is not a model of the

reduct because P must hold.

Under well-founded negation, the unfounded set is empty, because P still appears on the

left hand side of the rule. As a result, evaluation terminates immediately. Well-founded

negation returns the partial model ∅.

Following our negation system, we begin with

Π = {P ← ¬P}

Now, we define two candidate worlds,

Π− = Π ∪ {¬P ←}

Π+ = Π ∪ {P ←}
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In the case of Π−, we have both Π− |= P and Π− |= ¬P , so ¬C(Π−). As a result, ¬W (Π−).

For Π+, we have only that Π+ |= P , so C(Π). Since P is the totality of BΠ+, W (Π+) by

world-base. By world-subs, W (Π). We can apply assume-true, using W (Π+), ¬W (Π−), and

that Π does not decide P . This gives Π ; Π+. Finally

Π+ |= P

Since Π ; Π+, by refl and assume Π ≤ Π+, so

Π |= �P

This simple example shows the differences between the approaches. In the face of this

kind of uncertainty, stable-set semantics will choose not to give an answer, well-founded

semantics will not decide either way, and Holmes-style semantics will allow call/cc to justify

a fact in order to return a consistent complete answer.

In Holmes, circumscription corresponds to a potentially-infinite variety of assume-false

in which the program assumes false every version of a specific aggregate greater than the

proposed circumscription. call/cc corresponds to assume-true, but is a bit more complex.

With finite assume-false, the assume-true rule can assert as true the undecided predicate for

which assume-false failed. Since circumscription assumes false for multiple predicates, call/cc

must select a specific predicate amongst those which has itself given rise to a contradiction

to assert as true.

5.2 Example Input Program

The subsequent sections will describe how to support a full Holmes program rather than the

toy subset above. We will use the following Holmes program as an input example to show

how to perform each translation step more concretely.

Listing 5.1: Holmes Code

1 P( Int )
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2 Q( Int )

3 R( Set ( Int ) ˆ union )

4

5 inc : Q( y ) <− P( x ) + ( y = inc ( x ) )

6 promote R : R( s ) <− Q( x ) + ( s = promote ( x ) )

7 check threshold : P( x ) <− R( s ) + ( x = thre sho ld ( s ) )

8 force odd : Q( x ) <− ˜R( s ) + ( x = al l even ( s ) )

where in pseudocode,

Listing 5.2: Procedural Pseudocode

1 fn inc ( x : Int ) −> [ In t ] {

2 return [ x + 1 ]

3 }

4

5 fn promote ( x : Int ) −> [ Set ( Int ) ] {

6 return [ Set . s i n g l e t o n ( x ) ]

7 }

8

9 fn th re sho ld ( s : Set ( Int ) ) −> [ In t ] {

10 i f s . sum ( ) > 7 {

11 return [ 1 0 1 ]

12 } e l s e {

13 return [ ]

14 }

15 }

16

17 fn force odd ( s : Set ( Int ) ) −> [ In t ] {

18 i f s . a l l ( is even ) {

19 return [ s . max( ) + 1 ]
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20 } e l s e {

21 return [ ]

22 }

23 }

In Listing 5.1, we have explicitly written the input and output variables for clarity. In the

actual existing Holmes implementation, these rules would lack those bindings. The variables

bound in the body and free in the head would imply the inputs and outputs:

force odd : Q( x ) <− ˜R( s ) + al l even

This program has three predicates - P , Q, and R. P and Q range over integers. R

ranges over sets of integers, and aggregates those sets via union. Since R has no non-

aggregate parameters, every fact added to R will aggregate. The inc rule causes Q to

contain the next integer for every member of P . The promote R rule creates singleton sets

from every member of Q and puts them into R. check threshold adds P (101) if R has a

set which sums to more than 7. Finally, force odd will add an odd number to R’s set if it

does not contain one by adding one more than the maximum of the set. Since force odd

circumscribes on R, it should do this only if the final result would otherwise contain only even

numbers. The rule would do nothing on an intermediate state, unlike check threshold.

5.3 Herbrandization (Revisited)

In the previous setting, we did not have any form of external code, and so could not produce

new symbols. Now, we have both interpreted functions and lattice joins. We first show how

to define the Herbrand universe and base in the presence of these complications. Then, we

show how to instantiate a Holmes program at a Herbrand base constructed this way. In

the previous setting, this just eliminated variables in the rules. Now, we also remove the

callbacks and aggregates.
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5.3.1 Herbrand universe

Instead of function symbols which produce new values, as in a traditional construction, we

have interpreted functions and lattice joins. This is different from the normal construction

because both interpreted functions and lattice joins may produce values which are equal

to existing values. To address the equality issue, we assume that our construction receives

the implementations of the callbacks and join operations as the real program would, and

actually execute them on input values rather than creating symbolic expansions.

Define U0 to be those constants present in the program, combined with varieties tupled

up to the maximum arity of the provided functions. Consider joins as equivalent to callbacks

which just happen to return only one argument. Let F be the set of functions, modified to

take tuples for multiple arguments, and to return their results “flattened”, e.g. if a callback

would return a = 1, b = 2 and a = 3, b = 4, its representative in F returns {1, 2, 3, 4}. Since

both joins and callbacks are typed, if an input would be outside their domain, they return

∅.

Given Ui, construct Ui+1 by

Ui+1 =
⋃

x∈Ui,f∈F

f(x)

We then combine these stages:

U = lim
j→∞

⋃
0≤i<j

Ui

The resulting universe will only be finite if the closure of all the functions and lattice

joins over the original symbols is finite. This is unlikely to be the case in practical programs:

even adding an “increment” function is sufficient to cause an infinite universe here.

We construct the Herbrand base B by instantiating each predicate at every value of U

and adding a ⊥ value. When determining what facts are true, this ⊥ acts just like any other

member of the base. We will later make use of ⊥ in order to indicate that the program

contradicts a circumscription and is inconsistent.
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Example We start with the extensional database P (1), P (3), P (5) and the program from

Listing 5.1. Beginning with Herbrandization, we have

U0 = {1, 3, 5}

since no other constants are present in the rules. Applying all function symbols possible to

U0 gives us

U1 = {2, 4, 6, {1}, {3}, {5}}

Repeating the process gives

U2 = {3, 5, 7, {2}, {4}, {6}, {1, 3}, {1, 5}, {3, 5}}

and so on, so that U is the set of all integers ≥ 1 and all sets of such integers. To create B,

we instantiate all predicates in against compatible values in U, giving

B = {P (1), P (2), · · · , Q(1), Q(2), · · · , R({1}), R({2}), · · · , R({1, 2}) · · · }

5.3.2 Program Instantiation

For predicates which have aggregation (§ 4.2.3), rewrite them as rules with interpreted

functions. Recall that

P (τ0 · · · τm, σ0 ∧ j0 · · ·σn ∧ jn)

means we have a predicate P , which when there are two instances of P for which the first

m + 1 arguments are equal, the latter n + 1 arguments will have their information merged

by a lattice join operation indicated by ji.

To translate the above form, we create a new function

j(a0 · · · an, b0 · · · bn) = {c0 = j0(a0, b0) · · · cn = jn(an, bn)}

and add the rule (§ 4.2.2)

P (x0 · · · xm, c0 · · · cn)← P (x0 · · ·xm, a0 · · · an), P (x0 · · ·xm, b0 · · · bn) + j
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where +j as in the informal Holmes description means to attach the function j to run after

the match to generate a set of assignments to variables in the head not bound by the body.

We define a partial ordering over facts in aggregate predicates based on the lattices used

to combine their fields. For a predicate P defined as above, and

Pa = P (x0 · · ·xm, y0 · · · yn) (5.1)

Pb = P (x0 · · · xm, z0 · · · zn) (5.2)

we define the partial ordering as

Pa ≤ Pb ↔
n∧

i=0

yi ≤ zi

where the lattice defined by the join operator ji defines the partial order for the aggregate

field with index i. If the first m+ 1 fields do not match, then Pa and Pb are incomparable.

For each aggregated predicate P , introduce an additional predicate Pc with the same

field types. Pc will act as a concrete representation that P at the same fields as Pc would be

a maximum on the ordering we defined. Essentially, it says that if Pc(~x, ~y), then if P (~a,~b)

is true, P (~a,~b) ≤ P (~x, ~y), or there is no ordering between them.

Beginning with the Holmes program after translating aggregations as above, replace of

all circumscripted matches to P with matches against Pc and P at the same indices. Finally,

for each Pc, add a rule

⊥ ← Pc(~x, ~y) ∧ P (~x, ~z) + P-less-than

where P-less-than checks whether Pc(~x, ~y) < P (~x, ~z) (defined via ≤ and 6=) and returns a

singleton list of no assignments if so, and an empty list otherwise. Here, we are using the

⊥ value added to the Herbrand base to indicate that the fact matched by the P portion

contradicts the circumscriptive guess matched by the Pc portion. This essentially adds a

rule saying that an upper bound proposed by Pc must not contradict known information

about P .

After translating aggregation and circumscription, the program looks like normal Datalog

but with functions attached to some rules. For every element of the Herbrand universe,
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instantiate the rule, run the function concretely on the variables bound in the body, and

instantiate the head term. This will result in a rules of the form

p←
∧

qi

where p, qi ∈ B.

Example We now focus on instantiating the program given in Listing 5.1 based on the

universe from the previous section.

Instantiating inc and promote R gives

Q(2)← P (1)

Q(3)← P (2)

...

R({1})← Q(1)

R({2})← Q(2)

...

which is analogous to what we did in the finite example.

The guards and combination rules for our aggregated predicate R look like

R({1, 2})← R({1}) ∧R({2})

R({1, 3})← R({1}) ∧R({3})
...

⊥ ← Rc({1}) ∧R({2})

⊥ ← Rc({1}) ∧R({3})
...
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The first half describes the instantiation of the “union” aggregator on R. The second half

has the guard rules which derive ⊥ if the program exceeds a bound.

The rule check threshold translates to

P (101)← R({8})

P (101)← R({9})
...

P (101)← R({1, 7})
...

Since assignments are not generated when the condition is not met (value sums to > 7), this

is a rule for each set which has a sum more than 7.

Finally, force odd instantiates as

Q(3)← R({2}) ∧Rc({2})

Q(5)← R({4}) ∧Rc({4})

Q(5)← R({2, 4}) ∧Rc({2, 4})
...

It again only generates rules if there was an output from the function, and adds an odd

number to R if it doesn’t already have one by adding the max plus 1.

5.4 Semantics

We begin by defining a few extra sets relative to the initial program which we will use for

interpretation. Let K(Π) ⊆ B(Π) be the set of circumscripted facts added, e.g. they were

of the form Pc(·).

Let A(Π) be a set of tuples of an aggregated predicate and all of its non-aggregated

inputs. For example, for P (x0, · · ·xn, y0, · · · ym) and all y are aggregate fields, P (x0, · · ·xn)
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for each possible value of x0 through xn would be present in A(Π). We will refer to members

of A(Π) as aggregates.

Let Ka(Π) where a ∈ A(Π) be the set of circumscribed facts which correspond to the ag-

gregation a. For example, if a = P (x0, · · · xn), thenKa(Π) would contain Pc(x0, · · ·xn, y0, · · · ym)

for all possible values of yi.

Let D(Π, c) where c ∈ K(Π) be the non-circumscribed version of the fact, e.g. if c

corresponds to Pc(x0 · · ·xn), then D(Π, c) ∈ B corresponds to P (x0 · · ·xn).

Most of this construction should look familiar from the simple negation semantics.

Π 6|= ⊥
C(Π)

consistent

Like previously, consistency here requires that none of the negations assumed by a circum-

scription also be present in the model in a non-negated form. Since we added special guard

rules when introducing the Pc predicates, we can just check that ⊥ cannot be directly derived

to check that the program does not violate any circumscriptive assumption.

Rather than deciding individual facts as we did previously, we now decide aggregates.

Π |= c Π |= D(Π, c)

Π / a
bounded

∀c ∈ Ka(Π).Π 6|= D(Π, c)

Π / a
no-base

The bounded case indicates that we have circumscribed this aggregate, and so have decided

it. The no-base case indicates that this aggregate is totally unpopulated by the program. As

we cannot circumscribe over it, the program decides the aggregate. Specifically, the program

has decided on the negation of all values which could make up the aggregate.

Our world-base rule is similar to the finite case. If a program decides all aggregates

(rather than all predicates) and it is consistent, then it is a world.

∀a ∈ A(Π).Π / a C(Π)

W (Π)
world-base

As before, any subset of a world is also a world

Π′ ⊆ Π W (Π)

W (Π′)
world-subs
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We define accessibility stepwise again. If an aggregate a isn’t decided yet, and circum-

scribing it would not cause any inconsistency, we may do it.

Π 6 /a c ∈ Ka(Π) W (Π ∪ c)
Π ;a Π ∪ c circ

The circ rule is analogous to assume-false because adding c to Π is essentially adding ∀p ∈

V (Π, c).¬p.

To support the call/cc feature of Holmes (§4.2.5), let Πc be Π ∪ c with all rules of the

form ⊥ ← c∧ p removed. In other words, Πc is Π∪ c, but will ignore inconsistencies derived

from the addition of c.

Π 6 /a W (Π ∪ p) 6 ∃c′ ∈ Ka(Π).Π ;a Π ∪ c′ Πc |= �p
Π ;a Π ∪ p call/cc

This rule says that if we cannot construct ;a using the circ rule, but Πc would extend

the aggregate a with new information, then we can extend a with the new information

even though the proposed circumscription would not result in a world. The call/cc rule is

analogous to the assume-true rule. It is only accessible when circ (which was similar to

assume-false) is not, and allows adding a single p ∈ V (Π, c) as an otherwise-unsupported

choice to allow deduction to proceed.

We define ≤ based on ; inductively as before. Finally, we hold a formula to be true for

a Holmes program if after translating it as above to a program Π, Π |= �F .

Example In the previous section, we finished instantiating Listing 5.1 as normal Datalog.

Call that base program Π0. We have extensionally that Π0 |= P (1)∧P (3)∧P (5). Applying

inc and promote R gives us that Π0 |=

Q(2), Q(4), Q(6)

R({2}), R({4}), R({6}), R({2, 4}), R({2, 6}), R({4, 6}), R({2, 4, 6})
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Adding check threshold gives additionally that Π0 |=

P (101)

Q(102)

R({102}), R({2, 102}) · · ·R({2, 4, 6, 102})

At Π0, force odd does nothing, since Rc has no members.

In this case, we have only one aggregate: R(·). As a result, there are only two ways

forwards - circumscribe or call/cc that aggregate. To use call/cc, we need to know that

circumscribing does not result in a world, so we start by circumscribing. Define Π1 = Π0 ∪

Rc({2, 4, 6, 102}). Since both Π1 |= Rc({2, 4, 6, 102}) and Π1 |= R({2, 4, 6, 102}), Π1 / R(·)

by the bounded rule. However, with the addition of the circumscription, force odd now

adds Π1 |=

Q(103)

R({103} · · ·R({2, 4, 6, 102, 103})

⊥

One of the guard rules for the circumscription applied because {2, 4, 6, 102, 103} > {2, 4, 6, 102}

in the ordering induced by union. Π1 is inconsistent because Π1 |= ⊥. As a result, Π1 is not

a world.

Circumscription failed in this case, so it is time to apply call/cc. We construct Π1c as

in the rule - we delete all the guard rules for Rc({2, 4, 6, 102}) from Π1. Since those were

the only rules which could derive ⊥, and Π1 decided R(·), we can say that by world-base,

W (Π1c). In order to apply call/cc, we now need to pick a conclusion of Π1c to pull out,

identified as p in the rule. In this case, we will choose Q(103). We define

Π2 = Π0 ∪ {Q(103)}

At Π2, we still don’t decide R(·), so we try to circumscribe it closed again, this time with

Rc({2, 4, 6, 102, 103}). Define

Π3 = Π2 ∪ {Rc({2, 4, 6, 102, 103})}
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This time, no new rules fire, since 103 is odd. Since Π3 decides R(·) and is consistent (no

guard rules fire), W (Π3).

Now that we have our final world, we need to work our way back to Π0. Since Π0 ⊆

Π2 ⊆ Π3, and W (Π3), by world-subs we get W (Π0) and W (Π2). Applying circ, we see that

since Π2 and Π3 are both worlds, Π2 does not decideR(·), and Π3’s change from Π2 is to add

the circumscription,

Π2 ;R(·) Π3

To apply call/cc, we need to demonstrate that R(·) cannot be circumscribed at Π0. Π1

is not a world, so it cannot circumscribe R(·) at {2, 4, 6, 102}. Picking any other value to

circumscribe at would either not decide R(·) because it cannot prove Π0 |= D(Π0, c) if bigger

or incomparable, and would trigger an inconsistency rule if smaller. As a result,

6 ∃c′ ∈ KR(·).Π0 ;a Π0 ∪ c′

Since Π0 6 /R(·), W (Π2), the above, and Π1c |= Q(103), we can apply call/cc to get

Π0 ;R(·) Π2

Since Π0 ; Π2 ; Π3, Π0 ≤ Π3. We get as our final answer that Π0 |= �

P (1), P (3), P (5), P (101)

Q(2), Q(4), Q(6), Q(102), Q(103)

R({2}), · · ·R({2, 4, 6, 102, 103})
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Chapter 6

Alias Analysis

In order to show that Holmes is useful in practice, we implement a concrete system with it.

We chose to focus on the problem of use-after-free, as it is a little-explored area for static

binary analysis. We used Holmes here to link together control flow analysis, alias analysis,

string recovery, and general function loading in order to build a working use-after-free engine.

There were 238 use-after-free (UaF) vulnerability disclosures (CWE-416) issued in 2017

alone, with 36.2% given a critical security rating. Use-after-free bugs happen when a program

frees a pointer and subsequently writes to or reads from the memory pointed at. Use-after-

free bugs can lead to DoS, control flow hijack, and information leaks.

Despite the number of CVEs, few tools exist that can automatically and statically detect

such bugs in off-the-shelf binary code. However, there are tools for finding such bugs in

source code [13, 27]. Requiring source code limits the applicability of these techniques to

developers with full source access.

In this chapter, we focus on the question “Can we use Holmes to bridge the gap between

analysis for UaF bugs in source code versus compiled code?” In particular, previous work

has been unable to apply source code techniques [6, 38, 42, 71] to compiled code. Can we

adapt such techniques to be effective even without source?

At a high level, UaF bugs require reasoning about memory allocation and memory alias-

ing. Source code techniques are more plentiful due to the rich and mature research area
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of alias, points-to, and similar schemes for reasoning about memory over the lifetime of

a program. In comparison, at the binary level the primary approach for reasoning about

memory is Value Set Analysis [11], which is less mature and has limitations in practice such

as inability to reason about all arithmetic operations (e.g., bit-shifts and division) and the

fact it may not terminate without ad-hoc widening in the presence of loops. For example,

GUEB [28] proposed to detect UaF bugs using VSA, but is handicapped by disallowing

cyclic paths to allow rapid termination of VSA.

We present a new binary-level static analysis approach for detecting UaF bugs in exe-

cutable programs. One of the main technical challenges we address is showing how to adapt

source-code memory alias analysis to compiled code, where previous work has instead created

all-new binary-only approaches to alias analysis like VSA. We experiment with two classes

of analysis: flow insensitive alias analysis via a Steensgaard-type [71] algorithm, and flow-

sensitive alias analysis using a data flow approach adapted from Andersen [5] style analysis

with added rules to handle binary-specific details such as calling conventions and computed

addresses. We also add context-sensitivity by allowing the analysis to reason about the

call-stack discipline followed by executable code, and a type of field sensitivity appropriate

for direct pointer arithmetic without type information. To the best of our knowledge, there

is little work in applying the literature in source alias analysis to compiled code, and no

previous work has shown how to then use such techniques to find UaF bugs statically in

compiled code.

We have built a tool called Marduk that uses Holmes to drive the different levels and

co-dependencies in binary analysis, alias analysis, and UaF detection. Taking this approach

allows us to have an end-to-end reasoning chain from input binary to why this particular

candidate use-after-free could not be disproven with a given sensitivity.

We evaluated Marduk over 7 real CVEs and the Juliet test suite released by IARPA for

purposes of verifying our detection capabilities and measuring false positives in the face of

bugs. Additionally, we measured false positive rates against a background of expected-good

binaries (we assume no true positives): a random sampling from the $PATH of a default
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Ubuntu installation.

Marduk is available at https://github.com/maurer/marduk.

6.1 Analysis Design

First, our system transforms the input binary into structured semantics we can work with

throughout the rest of the process. Second, we perform alias analysis over the structured

representation. This allows us to know all the pointers which may point to freed memory

after each free. Finally, we look for reads and writes through potentially freed pointers to

create our list of candidate use-after-frees.

6.1.1 Alias Analysis

Alias analysis consists of computing the possible ways to access different variables. If deref-

erencing two expressions may access the same variable, they alias.

Our machine-level alias analysis involves three main design choices:

1. Selecting variables. We describe alias analysis over program variables, but unlike C,

the assembly from a binary does not contain variable information.

2. Selecting sensitivity. We can return points-to information parameterized on different

pieces of context. Common examples of parameters are flow sensitivity (program loca-

tion), context sensitivity (call stack), field sensitivity (offsets within memory regions),

and object sensitivity (possible construction sites for a “this” pointer). In this work,

we examine, flow, context, field, and recency [11], how to implement them on compiled

code, and their effects on precision and performance.

3. Solving for points-to relationships. The generation of the aliasing information is un-

dertaken differently for flow-insensitive vs flow-sensitive varieties of alias analysis. The

flow-insensitive variety uses a constraint satisfaction technique and simultaneous solv-
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Figure 6.1: System Diagram

ing via Steensgaard [71]. Flow-sensitive varieties use the inter-procedural dataflow

described in §6.1.5.

6.1.2 Front-End

Before we can apply our analysis, we first need to transform the raw bytes of the input file

into a form similar to the AST1 received after parsing. Techniques in this section are not

novel; we describe them for completeness to understand our overall system.

The front end:

• Parses the executable file container, e.g., ELF on Linux

• Finds potential function entry points

• Builds a control flow graph

• Provides an intermediate language with the semantics for every reachable instruction

• Builds a call graph and call-site information

We use the BAP [16] framework to provide ELF parsing, entry point identification, and

instruction semantics.

1Abstract Syntax Tree
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Variables. In our approach, we use 3 kinds of variables:

• Stack slots, parameterized by which function they are in. Written sp+off@func

• Registers

• Dynamic Allocations, parameterized by their allocation site. Written dyn@loc

We use an abstract location in these parameterizations. In the context-insensitive case it is

simply the address of the instruction, and in the context-sensitive case it is the pair of the

address with the return stack.

Our choice of dynamic allocation variables defines our heap model. We assume that two

memory regions may only alias if they share an allocation site. This assumption matches

reality unless the program releases pointer back to the allocator via free, but then uses it

afterwards (a use-after-free bug). This may violate the assumption because a write to or

read from the now freed pointer may alias with newly returned memory. As a result, this

heap model is correct at least until the first use-after-free in an execution. As we are not

performing a value analysis, we also assume all accesses are in-bounds. Essentially, if a

use-after-free is the first memory violation to occur, we will locate it.

Calculating Update Summaries. In order to avoid analyzing the full complexity of

IL instructions within alias analysis, we first transform them to contain only the relevant

dataflow information. Our update summaries are then a description of the action of an IL

instruction on the points-to relationship, where a and b are variables as defined above:

• a = b

• a = *b

• a = &b

• *a = b

• *a = *b
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• *a = &b

We generate a list of these constraints for each instruction and associated with the lo-

cation of the instruction. At allocation sites we emit the summary a = &dyn@loc, meaning

that the variable a (usually RAX) takes on the address of the allocation region corresponding

to that location.

6.1.3 Insensitive Analysis

In the flow-insensitive case, we modify the summaries before use to adapt our variable

selection to better fit the problem. Specifically, we annotate registers with definition sites,

similar to SSA form.

We compute the possible definition sites of each register on the right side of a summary,

and clone the summary for every possible definition. If the left side of a summary contains

a register, we parameterize it with the location it came from. We do this because a single

register may hold multiple different logical variables at different points of time. The register

location parameterization allows us to avoid every definition of a register being potentially

readable from every other site in the program. Without our approach, the resulting alias

sets would be too imprecise to be useful as a register’s alias set (e.g., RAX) would include

information about all variables ever assigned to RAX by register allocation. Notably, this

would include every call to malloc. This parameterization adds a little bit of flow sensitivity

even in otherwise insensitive analysis.

We then aggregate all update summaries from the program and solve them by equality via

Steensgaard’s algorithm. Steensgaard runs in almost linear time [71] making it possible to

compute over nearly any binary, though is less precise than flow-sensitive analysis, described

below. We use insensitive analysis as a baseline to help quantify the additional precision

derived by adding additional sensitivity.
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6.1.4 Adding Flow Sensitivity

We structure our flow sensitive analysis as a dataflow problem. At each assembly instruction,

we use a transfer function based on Andersen’s [5] inclusion-style analysis. We use the inter-

procedural dataflow adaptation described next (§6.1.5). The same rules and functions handle

both context-sensitive and context-insensitive analysis, as the Location’s stack context is

optional.

A dataflow analysis is defined by a transfer function which calculates how a statement

should update the dataflow facts (alias sets in our case), a set of control flow edges to walk

from a set of starting points, and a meet function with specifies how to merge information

sets at control flow graph confluence points. We describe these below.

By default, alias analysis calculates alias sets even when a variable is dead. We run a pass

before alias analysis to determine which variables are live. We use this information to remove

dead points-to information to improve performance and precision. This technique increases

performance because we do not waste time and space updating and tracking points-to sets

which cannot affect the outcome. It also increases precision because if no pointers to a given

allocation exist any longer, we know any new pointer to that allocation points to copy of

that region which does not need the information from the old copy.

Transfer Function. The transfer function processes the update summaries. We follow

Andersen as shown in Listing 6.2:

• Definitions of variables are destructive

• Apply writes through variables to each value they may point to.

• Right hand sides go through 0, 1, or 2 levels of dereference for &b, b, and *b respectively

to generate the set to update with

Figure 6.2 shows the transfer function rules for each statement type. The “Initial”

section shows a sample initial configuration a points-to relation might have. Both a and

b are two-level pointers, with x and y representing the possible things pointed to at each
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Figure 6.2: Points-to Updates

level. The chart labels each other box by an update summary, and shows what would change

about the points-to relation. The shown transfer function is for field-insensitive analysis; as

each summary is not tracking offsets, we cannot perform a destructive update to anything

dereferenced on the left hand side.

For updates to stack slots or registers, we can perform a “destructive” update. The a =

examples in Figure 6.2 demonstrate this style of update. This means that since we know the

new value is the only value the variable could have, we can replace the points-to set. In the

case of pointer write though, we cannot do this, because our analysis is not field sensitive.

A field sensitive analysis extends this destructive update logic to writes through pointers

with a points-to size of one, allowing for more destructive updates and increasing the pre-

cision of our analysis. We will explain and add field sensitivity shortly in section 6.1.8, but

until then, pointer updates need to remain non-destructive.

After we complete the updates to the points-to structure, we remove all variables which

are no longer live according to the previously computed information. The program will not

use these variables, so tracking them is imprecise and expensive.

Finally, we perform a mark-and-sweep garbage collection of the tracked pointers, using

stack slots, registers, and anything reachable at the entrance of the function as roots. This
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Listing 6.1: Flow Sensitive Pointer Analysis Rules

1 f low in ( Location , PointsToˆpt union )
2 flow out ( Location , PointsTo )
3
4 f l ow in i t : f low in ( loc , {}) <− mal loc ca l l { l o c }
5
6 f low step : f low in ( dst , pts ) <−
7 succ { src , dst , i s c a l l : f a l s e , i s r e t : f a l s e } & flow out ( src , pts )
8
9 f low xfer : f low out ( loc , pts2 ) <−

10 f low in ( loc , pts ) & updates ( loc , us ) & k i l l ( loc , ks ) & l i v e { loc ,
l i v e }

11 & f low : : x f e r ( pts , us , ks , pts2 )

Listing 6.2: Process Update

1 match update {
2 *a = &b =>
3 f o r a target in pts [ a ] {
4 pts out . add ( a target , b )
5 }
6 a = &b =>
7 pts out . r e p l a c e ( a , {b})
8 a = b =>
9 pts out . r e p l a c e ( a , pts [ b ] )

10 a = *b =>
11 pts out . r e p l a c e ( pts [ pts [ b ] ] )
12 *a = b =>
13 f o r a target in pts [ a ] {
14 pts out . add ( a target , pts [ b ] )
15 }
16 *a = *b =>
17 f o r a target in pts [ a ] {
18 pts out . add ( a target ,
19 pts [ pts [ b ] ] )
20 }
21 }

last caveat is necessary so that if a function writes through one of its arguments, then never

uses it again, the parent will still see the update even though the callee no longer knows

how to reference the region. This allows us to forget about allocations which are no longer

accessible.
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Dataflow Listing 6.1 shows the overall flow rules we use. Andersen-style analysis formu-

lates updates as inclusion constraints, rather than equality constraints like Steensgaard. In

the initial declaration of predicates, we declare flow in to aggregate via set union on each

points-to set. Since each flow in value at a location produces a unique flow out value,

aggregation is not necessary on that predicate. We create an empty input map at every

allocation site, because allocation is the only action which will add information to an empty

points-to relation. flow step propagates points-to relations along normal succession edges.

Finally, flow xfer performs the meat of the operation, absorbing the update summaries

into the current context by applying the transfer function.

6.1.5 Inter-procedural Dataflow

Our approach to inter-procedural dataflow follows the example of Reps [63] with some mod-

ifications. Some optimizations described in that work are inapplicable to our domain due

to source-level assumptions. However, their general structure for procedural dataflow still

applies. At the site of a call, we add an inter-procedural edge from the call site to the target

function. Following this edge elides stack slots which are not currently pointed to. This is

a departure from Reps in that their restricted domain, all local variables were not passed

through. We add an intra-procedural edge which skips over the call, applying effects (see

§6.1.9) and clobbering variables not preserved by the function. Finally, at each return site,

we add an inter-procedural edge which forgets the stack slots local to that function if not

pointed to. We do not report an error even if a local stack slot is reachable in the parent

to, as this is a legal possibility in the case of a recursive call which passes one of its stack

variables by reference. Again, we depart from Reps here by keeping around what would

normally be local variables if they are reachable through dereferences.

flow call and flow ret apply at function entry and exit to cut down on unneces-

sary information propagation, applying the restrictions for our inter-procedural edges, as

described earlier.
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Listing 6.3: Inter-procedural Rules

1 f l ow ca l l : f low in ( dst , pts2 ) <−
2 succ { src , dst , i s c a l l : true} & flow out ( src , pts )
3 & f low : : c a l l ( pts , dst , pts2 )
4 f low ret : f low in ( dst , pts2 ) <−
5 succ { src , dst , i s r e t : true} & flow out ( src , pts ) & func {base ,

conta in s : dst }
6 & f low : : r e t ( pts , base , pts2 )
7 f low ca l l over : f low in ( dst , pts2 ) <−
8 ca l l ove r { src , func , dst } & flow out ( src , pts )
9 & f low : : over ( pts , pts2 )

Listing 6.4: Example (C)

1 char∗ g ( ) {
2 return malloc (1 ) ;
3 }
4 void f ( ) {
5 char∗ x = malloc (1 ) ;
6 ∗x = ’ a ’ ; // Safe
7 char∗ g a = g ( ) ;
8 ∗g a = ’ a ’ ; // Safe
9 char∗ g b = g ( ) ;

10 ∗g b = ’ a ’ ; // Safe
11 f r e e ( x ) ;
12 f r e e (g a) ;
13 ∗x = ’b ’ ; // UaF
14 ∗g b = ’b ’ ; // Safe , but needs con t ex t
15 }

flow call over propagates information at a call site over a function call, skipping

it but removing definitions for variables known to be overwritten by the function. This

corresponds to the special intra-procedural edge added to our dataflow when processing a

call. This rule also enables analysis through functions which were not provided, albeit with

the assumption that the function was effectively a no-op.

6.1.6 Inter-procedural Flow-Sensitive Example

In this section, we provide an example of the context- and flow- sensitive analysis on a

simple example shown in Listing 6.4. To provide clarity on how updating alias sets work,
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this example does not show data-flow merges, which is a set union operation as previously

described.

Listing 6.4 contains one real use-after-free bug. We also show one location that is safe,

but without context-sensitivity the analysis will raise an additional false positive. Without

context-sensitivity, both the allocations for g a and g b get merged, making the analysis

believe g a aliases g b when it does not.

Listing 6.5: Annotated Flow-Insensitive Analysis

1 g :

2 subq $8 , %rsp

3 movl $1 , %edi

4 { RAX −> {dyn@5 , dyn@13 } ; sp+24@f −> dyn@1 }

5 ca l l malloc ; &dyn@5

6 { RAX −> dyn@5 ; sp+24@f −> dyn@13 }

7 addq $8 , %rsp

8 ret

9

10 f :

11 subq $40 , %rsp

12 movl $1 , %edi

13 ca l l malloc ; &dyn@13

14 { RAX −> dyn@13 }

15 movq %rax , 24(% rsp )

16 { RAX −> dyn@13 ; sp+24@f −> dyn@1}

17 movb $97 , (%rax ) ; Safe

18 ca l l g

19 { RAX −> dyn@5 ; sp+24@f −> dyn@13}

20 movq %rax , 16(% rsp )

21 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

22 sp+16@f −> dyn@5}

23 movb $97 , (%rax ) ; Safe

24 ca l l g
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25 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

26 sp+16@f −> dyn@5}

27 movq %rax , 8(%rsp )

28 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

29 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0}

30 movb $97 , (%rax ) ; Safe

31 movq 24(% rsp ) , %r d i

32 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

33 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0 ;

34 RDI −> dyn@13 }

35 ca l l f r e e ; ; f r e e s memory po in ted to by RDI

36 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

37 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0 ;

38 RDI −> dyn@13 ; dyn@1 −> free@35 }

39 movq 16(% rsp ) , %r d i

40 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

41 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0 ;

42 RDI −> dyn@5 ; dyn@13 −> free@35 }

43 ca l l f r e e

44 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

45 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0 ;

46 RDI −> dyn@5 ; dyn@13 −> free@35 ;

47 dyn@5 −> f ree@43 }

48 movq 24(% rsp ) , %rax

49 { RAX −> dyn@13 ; sp+24@f −> dyn@1 ;

50 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0 ;

51 RDI −> dyn@5 ; dyn@13 −> free@35 ;

52 dyn@5 −> f ree@43 }

53 movb $98 , (%rax ) ; UaF

54 movq 8(%rsp ) , %rax

55 { RAX −> dyn@5 ; sp+24@f −> dyn@13 ;

56 sp+16@f −> dyn@5 ; sp+8@f −> dyn@0 ;

57 RDI −> dyn@5 ; dyn@13 −> free@35 ;
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58 dyn@5 −> free@43 }

59 movb $98 , (%rax ) ; Safe , but needs con t ex t

60 addq $40 , %rsp

61 ret

We show the corresponding assembly, annotated with comments on the location of the

UaF and alias sets, in Listing 6.5. Portions of the alias set highlighted in green are new

bindings. Portions in blue are bindings which have been destructively updated. In the

example, the variables are:

• The stack slots of f (g has none): sp+24@f, sp+16@f, sp+8@f

• All used registers (other than the stack): RDI, RAX

• Allocations split on sensitivity, using the form dyn@addr{stack}

– Context-insensitive: dyn@5 and dyn@13

– Context-sensitive: dyn@5{19}, dyn@5{25}, dyn@13{}

Comments show the alias sets after each step. For example, right before the free on line

35, the alias set is:

{ RAX -> dyn@0; sp+24@f -> dyn@1; sp+16@f -> dyn@0; sp+8@f -> dyn@0; RDI ->

dyn@0 }

This shows that RDI is pointing to the memory location dyn@1, the allocation site for

x in the source code. Right after the free on line 35, the alias set changes to show dyn@1

is now free. The UAF detector would say any pointer that resolves to dyn@1 is therefore a

use-after-free bug, which happens on line 53.

If we had been context-sensitive, the points-to relation at 59, the false positive, would

instead be

{ RAX -> dyn@5{25}; sp+24@f -> dyn@13{}; sp+16@f -> dyn@5{19}; sp+8@f ->

dyn@5{25}; RDI -> dyn@5{19}; dyn@13{} -> free@35; dyn@5{19} -> free@43 }
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The key difference here is that RAX points to dyn@5{25} rather than just dyn@5, so we

can distinguish it from the freed allocation. This allows context sensitivity to weed out more

false positives.

6.1.7 Adding Context Sensitivity

Context-sensitivity requires we only change our Location values to contain information

about the stack. We add an empty stack to entry points to initialize the new stack-enhanced

CFG. Called functions must copy their control flow graphs to separate versions for every

stack the program calls them at. When generating the target of a call function, we now add

the current instruction’s fall-through to the stack as a return address. If the return address

is already on the stack, we truncate the stack so that it is the topmost.

Unfortunately, with an unbounded stack, of our real-world samples (§6.3.2), this approach

exhausts available resources (128G RAM) for all but gnome-nettool. To remedy this, we

use a k-stack approach combined with the stack truncation above. If a call’s location has a

stack, the stack is first checked to see if the call site is present. If so, we truncate the stack

as before. Otherwise, we push the call site onto the stack, and if the stack is longer than k,

we remove the oldest entry. In the case of our example, a stack size of 1 would be sufficient,

and we’d see the allocations dyn@0{10}, dyn@0{11}, and dyn@1{}.

6.1.8 Adding Field Sensitivity

Up until now, we’ve been treating each memory region like a single homogeneous bag:

Anything written into it ever is a possible result on any subsequent read. This reduces

precision.

In traditional alias analysis, simply treating each variable with a struct type as though it

were multiple variables, one for each field, can implement field sensitivity. Unfortunately, in

the binary case, things are slightly messier for two reasons: overlapping fields, and variable
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offset writes. Since this is only a pointer analysis, not a general value analysis, we only

consider fields with size equal to the pointer size.

Previously, we used a simple set to denote what a variable might point to. We now

replace this with a “field map”. We will use the word “reference” to describe the pair of

a variable and an offset. The offset may be a fixed value, or a special value indicating a

computed offset.

A field map has two components: a set of references for unknown offsets, and a set of

references for some subset of possible fixed offsets. If we see a fixed offset read, we return

the offset’s set if defined, otherwise the unknown set. If we instead see a computed offset

read, we return the union of every set (both unknown and fixed) present in the map.

We split update rules into cases for a single pointer write (so we know which memory

cell the write updated precisely) and for multiple possibilities.

Single Pointer. For a fixed offset write on a variable, we destructively update the set

corresponding to that offset. In case of a computed offset write, we extend both the unknown

set, and every tracked offset to contain the new reference. If a write targets an overlapping

field, we empty the field it overlaps.

Multiple Pointers. For a fixed offset write to variable, extend the set corresponding to

that offset. If we find a computed offset write, we extend both the unknown set, and every

tracked offset to contain the new reference.

This structure is conservative so long as we accept the assumption that pointers are not

constructed piece-wise. Specifically, multiple writes construct a single pointer, we will not

know about it. This limitation was present in the previous, field insensitive formulation, but

becomes more obvious in the description of the field sensitive extension. This practice is

extremely uncommon (outside bulk copy functions like memcpy), so we accept this limitation

to limit the need to reason about the exact possible values of a computed offset.

Unfortunately, this formulation gives the alias analyzer slightly too much power. Specif-

ically, it can now count. Despite the fact that we did not model actually performing arith-

metic, a incrementing a pointer in a loop will look like repeatedly examining relative offsets
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of a struct. To deal with this, we add a widening operator2which, if the same variable points

to a fixed limit or more offsets in a region, will replace it with pointing to an unknown offset

to that region. This reclaims termination.

6.1.9 Recent Allocation Domain

Using the site or site and size of an allocation to define the allocation domain is common.

However, this can have poor behavior around loops:

1 char∗ x ;

2 whi l e (1 ) {

3 s i t e 0 :

4 x = mal loc (1 ) ;

5 ∗x = ’ a ’ ;

6 f r e e ( x ) ;

7 }

If running a dataflow computation to fixpoint, on the second iteration, the allocation

for site 0 will appear already freed. The usual response to this type of imprecision is to

unroll loops a fixed number of times. However, we intend our tool to be complete (assuming

a complete control flow graph, provided functions, etc.) so we want to avoid fixed unrolling.

To this end, we extend our allocation domain with a “recent” bit, similar to the MRAB

vs NMRAB abstraction [11], though for different purposes. Relative to a concrete trace,

the address most recently given by an allocation at a given site belongs to the set where

“recent” is true. All other addresses issued by that site belong to the set where “recent” is

false. In our static form, a value belongs to the recent set for an allocation site if there exists

some trace for which it was the last allocated from that site. It belongs to the non-recent

set if there exists some trace for which it was not most recently allocated. Note that once

2 A widening operator is an addition to a dataflow analysis which provides termination by moving further
on the lattice than is strictly necessary under certain conditions.
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in static form, the recent set may have more than one member, and may even intersect with

the non-recent set.

This extension is a departure from the normal Andersen alias analysis. It is only for pre-

cision, not correctness. We can consider this as 1 bit path-sensitivity, where path-sensitivity

would be parameterizing on entire sequences of instructions which could reach the current

point.

To implement this in our static alias analysis, we construct summaries for each function

of allocations and possible allocations. When processing the edge which skips the function,

we update the points-to relation using information from this summary to keep recency

information accurate. We do this by modifying the behavior of flow call over to update

the caller points-to for the purpose of representing what may have happened in the callee.

We define an “effect” to be a set of definite allocation sites and a set of possible allocation

sites that may occur when calling the function. To apply an effect to a points-to set: For

every definite allocation site, make the recent bit false. For every possible allocation site,

duplicate any recent references to have both recent and non-recent values. Listing 6.6 shows

this change.

There are four new functions here. effect merge will merge two local effects at a

confluence point. It does this by intersecting their definite allocations, and migrating all other

allocations to possible allocations. flow::over effect will apply the effect to the points-

to set in addition to its earlier responsibilities. effect::sequence effect will update

the currently processed effect with the called function’s effect by unioning together both

possible and definite effects, then removing those possible effects which are also definite.

effect::malloc just adds the current site as a definite allocation to the effect.

The result is that these effect summaries allow greater precision over allocation sites,

similar to the benefits of loop unrolling, but without sacrificing fix-point semantics.

In our example earlier, this would give rise to three allocations - dyn@0, dyn@1+old, and

dyn@1. This would suppress the false positive by distinguishing between the two invocations

of g. However, were a third added, it would not be able to distinguish between the first two
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Listing 6.6: Rules for Recent Domain

1 f low ca l l over : f low in ( dst , pts2 ) <−
2 ca l l ove r { src , func , dst } &
3 flow out ( src , pts ) &
4 func effect {func, effect} &
5 flow::over effect(pts, effect, pts2)
6
7 l o c a l e f f e c t {base : Location , l o c a l : Location , e f f e c t : E f f e c t }
8 f u n c e f f e c t { func : Location , e f f e c t : E f f e c t ˆ e f f ect merge }
9

10 e f f e c t i n i t : l o c a l e f f e c t {base , l o c a l : base , e f f e c t : no op} <− func {
base }

11 e f f e c t r e t : l o c a l r e t : f u n c e f f e c t ( base , e f f e c t ) <−
12 succ { s r c : l o c a l , i s r e t : true} &
13 l o c a l e f f e c t {base , l o c a l , e f f e c t }
14 e f f e c t x f e r : l o c a l e f f e c t {base , l o c a l : l o ca l 2 , e f f e c t } <−
15 succ { s r c : l o c a l , dst : l o ca l 2 , i s c a l l : f a l s e , i s r e t : f a l s e } &
16 l o c a l e f f e c t {base , l o c a l , e f f e c t }
17 e f f e c t c a l l : l o c a l e f f e c t {base , l o c a l : l o ca l 2 , e f f e c t : e f f e c t 2 } <−
18 ca l l ove r { s r c : l o c a l , func : remote , dst : l o c a l 2 } &
19 f u n c e f f e c t { func : remote , e f f e c t : e f f e c t c a l l } &
20 l o c a l e f f e c t {base , l o c a l , e f f e c t } &
21 e f f e c t : : s equence e f f e c t ( e f f e c t , e f f e c t c a l l , e f f e c t 2 )
22 e f f e c t ma l l o c : l o c a l e f f e c t {base , l o c a l : l o ca l 2 , e f f e c t : e f f e c t 2 } <−
23 succ over { s r c : l o c a l , dst : l o c a l 2 } &
24 l o c a l e f f e c t {base , l o c a l , e f f e c t } &
25 mal l oc ca l l { l o c : l o c a l } &
26 e f f e c t : : mal loc ( e f f e c t , l o c a l , e f f e c t 2 )

invocations of g.

6.1.10 Use-after-Free

With alias relationship in hand, we must determine which reads and writes in the program

are use-after-free candidates. For the flow and flow & context analyses, we can augment

the alias analysis itself to track most of this information for us. When a free occurs, we

generate a special form of the *a = &b summary, with a as the argument to free, and b

as a special value representing things freed at that location. This is as presented in Listing

6.7. read vars generates pointer access information from actual assembly instructions, and

use vars imports it from summaries which can do things like determine argument count
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to printf.

Listing 6.7: Tracking Frees with Flow Sensitivity

1 read vars : dere f var (v , l o c ) <−

2 l i f t { loc , b i l } &

3 func {base , conta in s : l o c } &

4 uaf : : reads vars ( b i l , v )

5 use vars : dere f var (v , l o c ) <−

6 uses ( r , l o c ) &

7 uaf : : use vars ( r , v )

8

9 free summary : summary( loc , s ) <−

10 f r e e c a l l { loc , a rgs } &

11 uaf : : free summary ( args , s )

12 uaf f low : uaf f low (v , loc , l o c2 ) <−

13 deref var (v , l o c2 ) &

14 f low in ( loc2 , pts ) &

15 f low : : i s f r e e d ( pts , v , l o c )

However, this approach only works with alias information that is at least flow sensitive.

Without flow sensitivity, any pointer which was ever freed will appear freed everywhere in

the program, even before that free occurred. As a result, the false positive rate would be

absurd, and such a detector would be more a heap-access detector than a use after free

detector. To help it along and make the difference in false positive rates more about the

precision of the alias information rather than the ability to track state changes, we add a

extra conditions to report a use after free without flow sensitivity by essentially doing flow

sensitive tracking of the freed-property only.

Listing 6.8: Tracking Frees Insensitively

1 base freed : f reed base (v , l o c ) <−

2 f r e e c a l l { loc , a rgs } &
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3 uaf : : f r e e a rg s ( args , v )

4 a l l f r e e d : f reed var ( v2 , l o c ) <−

5 freed base (v , l o c ) &

6 steens po int (v , vs ) &

7 uaf : : expand vars ( vs , v2 )

8

9 path in i t : path ex i s t s ( loc , l o c ) <−

10 freed base ( , l o c )

11 path step : path ex i s t s ( loc , l o c3 ) <−

12 path ex i s t s ( loc , l o c2 ) &

13 succ any { s r c : loc2 , dst : l o c3 }

14

15 uaf : uaf (v , loc , l o c2 ) <− f reed var (v , l o c ) & path ex i s t s ( loc , l o c2 ) &

deref var (v , l o c2 )

Listing 6.8 shows the implementation of this modification. In the first stanza, we mark

the variable freed by the free call and everything it aliases with as potentially freed at that

location. In the next, we find those parts of the program reachable from the free site. We

then finalize the results by saying that if a path exists from a freed variable to a dereference

of that same variable, then there is a use after free candidate. Going much further to

disambiguate variables would begin to graft flow sensitive information into the otherwise

insensitive analysis.

6.2 Implementation

Our implementation consists of 3k lines of Rust and 234 lines of Datalog. We implement

each additional sensitivity (field, context, flow, recency) by adding an additional Datalog

file. The switches to determine which sensitivities actually run operate by adding initial

facts to the database to suppress unwanted rule triggers. As a result of this design, other
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than field sensitivity (which requires significant logic in both the constraint generator and

points-to set structures), we can safely cut out these sensitivities by simply removing the

rules in question (and their associated bound functions).

6.2.1 Limitations

Our system is conservative in almost all cases, but there are a few notable exceptions. If the

provided file links against files which are not provided, the analysis will treat those functions

as if they are no-ops. If in reality, these functions free memory or write to the heap, this

may cause missed vulnerabilities. The system uses the BAP control flow graph and any

indirect jump resolution and the analysis assumes they go nowhere; we do no additional

resolution beyond ret calls. Control flow recovery is a general problem in binary analysis

and not specific to our approach. Essentially, if a prerequisite step gives our algorithm

incomplete information, it will produce an incomplete result. This was sufficient for the

programs analyzed, which were primarily written in C, but some function pointer resolution

would help to achieve good quality result on C++ programs which use vtables or programs

which use a callback architecture (and so rely heavily on function pointers).

We assume the transfer of a pointer from one place to another will take place in a single

assembly instruction - we do not model “the first 3 bytes of a pointer to x” for example.

Finally, we assume that the program follows traditional stack discipline for purposes of

points-to minimization in the sensitive cases. If it is not, aliases from stack calculations

pointing above or below the current stack frame may be incomplete.

6.3 Evaluation

Our evaluation has 3 major components.

• Juliet - How do we perform on a labeled (true positives, false positives, false negatives)

data set?
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• Real World Bugs - Can we detect real bugs?

• Ubuntu $PATH - How often do we alarm on real bug-free code?

We evaluate over the Juliet test set both for comparability with other work [34, 80] and

to act as a baseline for our detection power and false positive rates. It helps answer the

question “In the absences of confounding factors from the real world, how well does this

work?”. We also evaluate over real use-after-free bugs pulled from MITRE’s CVE database.

Evaluating on these verifies that real world code, while potentially confounding, does not

stop our technique from functioning altogether. It also provides a measurement of the false

positive rate in the presence of true positives. Finally, we evaluate over a variety of believed-

good binaries. The intent behind this evaluation is to get a better idea of false positive rates

and analysis costs for average programs believed to be non-buggy.

6.3.1 Juliet

IARPA released the Juliet test suite [2] as a way of providing standardized examples of

CWEs. By building only those corresponding to use-after-free, we get a high density test

suite.

All three sensitivities find all intended bugs in Juliet. Insensitive analysis generates

39834 false positives, reducing to 0 with flow sensitivity. Run time was 19m30s for the

flow sensitive version, and 30m4s for insensitive. However, the insensitive variety generates

its alias information as of 3m23s. The system spent the remainder of the time generating

reachability information.

Unfortunately, while Juliet serves as a good test for true positives, it does not do much

to elicit false positives from our system, which is why both our performance and others’

look too-good-to-be-true here. Within the negative tests, there is little in the way of things

that checkers are traditionally weak against (data structures, recursion, loops, etc.). For this

reason, it is important to evaluate ourselves on real world code as well.
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Program Sensitivity Run time Memory False Positives Binary Size

gnome-nettool
Insensitive 38s 1G 1851

156kFlow 30s 1G 0
Flow + Ctx 2m34s 2G 0

goaccess
Insensitive 4m35s 15G 387459

635kFlow 16m14s 10G 112420
Flow + Ctx 43m34s 34G 87

libarchive
Insensitive 1m23s 3G 4917

366kFlow 34s 1G 852
Flow + Ctx 22m12s 44G 7

shadowsocks-libev
Insensitive 2m12s 5G 130760

631kFlow 3hr46m21s 62G 22357
Flow + Ctx 3hr53m26s 72G 115

mdadm
Insensitive 16m45s 31G 1056570

768kFlow 2hr24m13s 42G 270683
Flow + Ctx 12hr10m43s 111G 14566

isisd
Insensitive 3m46s 8G 58241

451kFlow 18m49s 9G 11776
Flow + Ctx 22m32s 25G 513

Table 6.1: Real CVE Performance

Sensitivity Run time Memory Alarms
Avg Median Stdev Avg Median Stdev Avg Imp

Insensitive 2m26.1s 58.4s 3m38.1s 241.7M 34.1M 1.9G 73.1
Flow 2m14.2s 54.7s 3m19.6s 236.8M 34.1M 1.9G 0.5 93.1%

Flow and Ctx 2m22.1s 55.6s 3m54.9s 349.2M 34.0M 2.3G 0.2 43.5%

Table 6.2: Ubuntu /usr/bin Performance

6.3.2 Live CVEs

Our system successfully detects 7 real bugs across 6 programs. All sensitivities of the checker

detected all bugs. We assume that all potential use after frees which do not match the known

bugs in each of these programs are false positives.

Note that while the insensitive analysis completes quickly and cheaply for every binary,

the false positive rates are so high that the output would be difficult to use. Flow sen-

sitivity reduces false positives significantly. Manual analysis reveals that most remaining

false positives are either due to data structure usage (which decreases the precision of the

127



alias analysis), confused allocation sites from wrapped malloc constructors, and infeasible

paths. Context sensitivity gives additional improvements by helping to differentiate between

instances of calling wrapped mallocs (e.g. new foo() to allocate and initialize a foo).

Performance for insensitive and flow-sensitive analyses appears similar in large part be-

cause the generation of a global program reachability graph for each free is costly. If the

analysis is instead timed in phases, the alias-analysis-only portion for the insensitive sys-

tem takes seconds, while it takes the bulk of the non-CFG-recovery time in a flow-sensitive

analysis.

For the known-vulnerable set, flow sensitivity reduced the false positive set by an aver-

age of 90%, and context sensitivity reduced it by an additional 84.1%. The false positive

reduction for the addition of flow sensitivity is immense, and the increase in time and space

needed for the alias analysis was manageable for programs in our known-vulnerable set, the

largest of which was 768kb. Adding context sensitivity further increased the time and space

cost, but still yielded a major increase in precision.

GUEB

The author of the GUEB [28] tool made his tool open source3, allowing us to compare

against it. We connected IDA, BinNavi, and GUEB and ran the system over the same

bugs we evaluated against. As a caveat, we could not feed them the same binaries our tool

consumed - their tool’s stack only accepts 32-bit, so we recompiled the same vulnerable

programs in 32-bit mode.

Table 6.3 shows the performance. The crashes derive from unhandled cases in the input,

and not fundamental to their methods. The undetected bugs occur due to their choice to

not follow back edges (either as recursion or loops) when computing their VSA. This is an

understandable choice, since VSA can become slow and be difficult to force convergence for

when cycles are present in the input, but in this case it caused their analysis to miss bugs.

Likely due to this forwards-only approach, GUEB terminated rather quickly on all inputs.

3 https://github.com/montyly/gueb
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Program False Positives Bug Found?

gnome-nettool 2 Yes
goaccess crash crash

libarchive 222 Yes
shadowsocks-libev crash crash

mdadm crash crash
isisd 596 No

Table 6.3: GUEB Performance

Listing 6.9: isisd Vulnerability

1 // . . . ( ad j i s a l l o c a t e d and cons t ruc t ed here )
2 for ( l e v e l = IS LEVEL 1 ; l e v e l <= IS LEVEL 2 ; l e v e l++) {
3 // . . .
4 else i f ( new state == ISIS ADJ DOWN) {
5 // . . .
6 i s i s d e l e t e a d j ( adj ) ;
7 }
8 }
9 // . . .

In Listing 6.9, we can see one of the real vulnerabilities the lack of a fixpoint fails to detect.

The loop knows that adj is allocated and non-null on entry, so the first time through the

loop is always fine. However, some paths through the loop free adj, and go around the loop

again. At this point, a use-after-free can occur. If back edges are not followed, the analysis

cannot detect this.

6.3.3 Ubuntu Path Sample

Now that we know that our program will alert us to real world vulnerabilities, we also want

to know how it will behave in the case where no expected vulnerabilities are present. To

this end, we ran our program across /usr/bin on a default Ubuntu Xenial installation, as

shown in Table 6.2.

Adding flow sensitivity provided an average reduction in bug candidates of 93.1% in

those situations where the insensitive code found at least one candidate. Then adding

context sensitivity (k = 1) reduced it by an additional 43.5%, in those situations where the
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flow sensitive analysis had a bug candidate, and the context sensitive analysis terminated.

Manual auditing of the reported bugs did not reveal any true bugs, but did show that a

common pattern amongst false positives was functions for whom one path freed and replaced

a pointer, and the other did neither, and they rejoined. A more aggressive analysis for dead

variables could remedy this by pruning them to allow the freed region to leave the points-to

relationship before the paths rejoined.

The system emitted a maximum of 22 reports on individual binaries (and this worst

case had most of them clustered in the same code area). This was few enough reports to

enable practical manual auditing by a single individual. Unfortunately, none of these reports

corresponded to real bugs upon examination. This does not guarantee these programs are

bug free - while we have a conservative analysis, that is dependent on seeing the entire

control flow graph. In this case this condition is not met. Some C++ programs which use

vtables are present in this path - calls to member functions there will appear as no-ops.

Function pointers are similarly considered to be no-ops. Calls into libraries which were not

analyzed with the binary are similarly absent. Finally, some of these are GUI or threaded

applications, which utilize a callback system we again do not handle control flow edges for.

6.4 Related Work

6.4.1 Dynamic Approaches

A use-after-free bug specifically describes a temporal safety property: In a specific execu-

tion of the program, it releases a region of memory to the allocator, and uses that region

afterwards. As a result, checking this property on an actual execution of the program via

dynamic analysis is appealing. Assuming we have a single execution path in mind, checking

for a use-after-free bug becomes a matter of remembering which addresses have are free,

and watching for additional dereferences of these. 4 This approach avoids false positives

4Technically, to avoid false positives the allocator must not hand out the same region twice, or must
employ some other mitigation strategy.
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by using real runs, and frequently only incurs constant-factor overhead on runs, making it

widely applicable. However, it also has the limitation that bugs along paths not included in

a trace will remain unnoticed.

LLVM’s ASAN [1] and Valgrind [3] approach this through instrumented execution while

monitoring the safety property. ASAN accomplishes this via compile-time instrumentation,

and Valgrind through a hooked virtual machine. Undangle [18] monitors derived pointers

whose allocation the program has freed (dangling pointers) using taint analysis via TEMU

(a virtual machine hooking framework on top of QEMU). DangNull [48] uses LLVM to do

compile time instrumentation to track dangling pointers, writing NULL to them on free. This

converts otherwise exploitable conditions into either a DoS (if there was no null handling) or

a recoverable error. DangSan [74] follows on the work of DangNull, again doing compile time

instrumentation over LLVM bitcode. DangSan distinguishes itself in better multi-threaded

performance, focusing on only on detection rather than recovery.

The major limitation in dynamic analysis is code coverage. Comprehensive test suites can

achieve coverage manually, but these are difficult to write and can often miss the faulty cases

- if the author were thinking about that case when they wrote the code, they likely would not

have written the bug. Fuzzing can allow for automated generation of interesting execution

traces for the purpose of use by dynamic analysis, but relies on statistical techniques or

manual guidance to achieve reasonable coverage. This approach guarantees that found bugs

are real, but ties their power to whatever the mechanism used to generate paths.

6.4.2 Static Approaches

Alternatively, we can search for bugs by tracking properties that will hold across all traces,

and finding uses we don’t know aren’t freed. This approach will not miss any bugs, and does

not depend on any kind of test suites or input generators for its results. Unfortunately, this

approach also brings false positives and a greater potential for scaling issues. As a result,

while the core of static techniques could give the completeness property of detecting all bugs,
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in a final user version may drop this guarantee in order to reduce false positive rates.

Metal proposed [27] the use of simple, programmer written state machines to enforce

additional properties across C code. This approach works for things like interrupts, locking,

no-alloc zones, and no-side effect zones, and is low overhead. It even works for simple

use-after-free bugs where no alias analysis is necessary (e.g. free(x); *x), and found real

instances of this.

Tac [80] applies an insensitive pointer analysis to identify candidate use after frees, then

runs type-state, path-sensitive analysis on the results. In the type-state analysis, when

they encounter what could be a use-after-free or a double-free, rather than immediately

transitioning to the error state, they query their learned model. If the bug is not likely a

real bug by their model, they continue executing past it as though it had no effect. The

support vector machine step, while it does eliminate a good chunk of false positives, does

fundamentally move Tac from one-sided error to two-sided. If the SVM removes a bug

candidate, Tac will not report it. At the same time, in the type-state phase of the algorithm,

they proceed along a slice from the allocation site, meaning they fundamentally cannot know

that a condition is feasible if it depends on prior code, they can only detect infeasibility.

Regardless of the two-sided error, it has good true and false positive rates, so the tool is

practically applicable. It is possible that if Tac used our approach to generate the bug

candidates, the SVM phase might not be as necessary due to the increased precision of both

selected use/free pairs, and the points-to sets provided.

For compiled code, the GUEB [28] is the existing static checker. GUEB employs VSA [11]

to track values, augmented to track allocations and frees. When it finds a situation where

a dereference to a chunk which is possibly freed, it extracts a subgraph of the control flow

graph trying to display only the portion with the allocation, free, and use of the relevant

pointer. In order to allow VSA to run quickly, it use fixed loop unrolling and disallows

recursive calls. This is pragmatic to allow VSA to converge, but causes GUEB to miss some

real world bugs.

One other tool [23] has the distinction of operating on object-oriented code, even in
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the presence of vtables. Their AODA tool has the benefit of reasoning about C++ code,

but the limitation of not reasoning about pointers which have the program copies onto the

heap. When they reason about a use of an object, they use the use-def chain to identify the

instantiation site. They also use the use-def chain to determine what to add to the kill-set

when the program destroys an object.. If a pointer to an object moves onto the heap (e.g.

vector<*SomeObject>), then when moved off, the use-def chain will no longer trace it back

to its origin - this is one of the problems alias analysis solves. They also only examine the

output of MSVC, meaning they are possibly tied to some compiler idioms. However, their

ability to resolve virtual function calls on C++ objects is potentially valuable.

6.4.3 Datalog Program Analysis

Datalog has played a role in program analysis before [14, 78], though only on source code

or a compiler IR like LLVM bitcode or Java bytecode. These approaches transform the

program into a set of input facts to combine with rules and run by a Datalog engine to

receive the final results, essentially phasing the computation. Our approach uses a mixture

of Datalog with traditional procedural code instead. This allows us to do things like lifting

newly found instructions from within the Datalog context or hypothetical reasoning which

requires a computation step. In our implementation, this occurs for every instruction other

than the entry points, since we discover the location of the next instruction during lifting.

However, this also means that we lose Datalog’s termination guarantees and cannot use most

common Datalog engines.

bddbddb [78] used BDDs (binary decision diagrams) to exploit symmetry in context-

sensitive points-to analysis for Java programs. In order to encode this problem as a BDD,

bddbddb first encodes the points-to problem as a Datalog program. Then, they converted

each operation needed to run a Datalog program (join, substitution, extension) into opera-

tions on BDDs, one per predicate. Finally, by running these operations unto fixpoint, the

user can query the resultant BDD efficiently for points-to information which if represented
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concretely would be far too large to manipulate.

Perhaps the closest to Marduk is Doop [14, 15, 69], a program analysis framework

for Java bytecode based in Datalog. Like bddbddb, Doop extracts from the program and

analyses to a pure Datalog program, then runs to completion. Unlike previous work, it

relies less on preprocessing, and performs more of the analysis within the Datalog program

itself. They showed [14] that information needs to flow bidirectionally between pointer and

exception analyses, a condition which Datalog is great at, since it does not require manual

control flow interleaving. Doop distinguishes itself on modeling accuracy as a result of this

analysis combination approach [15], outperforming bddbddb even with the same sensitivity

simply by discovering more of the control graph. Finally, they found that careful modification

of the algorithm can recover most of the compactness wins normally acquired from a BDD

representation [69].

Doop uses LogicBlox [7] as their Datalog backing engine. LogicBlox uses Leapfrog Trie-

Join [77] a novel join algorithm whose primary property is its ability to handle multi-way

joins of the sort found in Datalog queries efficiently. They combine this with incremental

maintenance [76] to provide a framework to compute their Datalog dialect, LogiQL. Log-

icBlox is disk-backed, meaning they might be able to avoid some of the memory issues our

implementation hit for high sensitivity outputs.
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Chapter 7

Conclusion

We have presented Holmes, a new dialect of Datalog for orchestrating binary analyses. We

described the language informally (§ 4) and formally (§ 5). We demonstrated the concrete

use of Holmes to detect real-world bugs as a use-after-free detector (§ 6). We showed that

some analyses, such as type recovery, written without Holmes in mind match its execution

paradigm regardless (§ 3). We conclude that the Holmes approach improves upon the current

ad-hoc model by representing the interplay between analyses.

We described a new EDSL based on a dialect of Datalog (§ 4). We designed Holmes as

an orchestrater of procedural analyses, rather than an individual analysis itself. We show a

novel form of negation via exact aggregation, a useful tool in the domain of binary analysis

(§ 4.2.4). We extend that negation to make progress from failed hypotheses (§ 4.2.5) as is

the case when a control flow graph is incrementally recovered through use of analyses which

assume a complete graph. We describe and evaluate implementation approaches for this

language (§ 4.3).

To enable reasoning about programs written in Holmes, we give a formal semantics

(§ 5). We present the Holmes’ unique extended negation notion in the context of a finite

Datalog world (§ 5.1), showing how it connects with stratified, stable set, and well-founded

semantics. We show how to rewrite a Holmes program into a Datalog program in an infinite

Herbrand universe (§ 5.3). Finally, we show how to augment the negation concept from
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finite Datalog to one which may perform an infinite number of negations in a single step to

enable circumscription (§ 5.4).

We showed that Holmes can function as a framework for real world analyses by creating a

use-after-free detector built on it which leverages Holmes to explore different sensitivities of

alias analysis (§ 6). We translate alias analyses from the traditional programming language

world for use in the binary analysis world (§ 6.1). We quantify the cost/benefit tradeoff for

precision in alias analysis for bug finding (§ 6.3). We show that Holmes assists in the ability

to write such a system concisely and to allow modularity between analyses (§ 6.2).

We show an approach to binary type recovery, BiTR, which performs better than pre-

vious work and would be well suited to Holmes integration (§ 3). We define a descriptive

type system for recovering compiled C code, allowing a more flexible type recovery than is

possible either using only C types or a prescriptive system (§ 3.2). We show how to generate

constraints in this system and solve them in a way that tolerates partially typed programs

(§ 3.3). We provide a novel measurement system for type recovery evaluation based on its

probability of correctness, showing how the previously used distance mechanism falls short

(§ 3.4.1).

7.1 Availability

Much of the work described in this thesis is available for download and use under a BSD

license.

• A legacy implementation of Holmes (feature incomplete) based on PostgreSQL is avail-

able at https://github.com/maurer/holmes

• An in-memory implementation of Holmes, as used for Marduk, is available at https:

//github.com/maurer/mycroft

• Marduk, a static binary use-after-free detector is available at

https://github.com/maurer/marduk
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