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Abstract

As an increasing number of modern big data systems utilize horizontal scaling,

the general trend in the distributed systems world has been to use general purpose

com- modity hardware to reduce capital expenditure. System failures resulting from

the use of inferior hardware have therefore become common at scale. Further, con-

gested datacenter networks can result in high communication latencies and packet

drops at network switches. Coded computing is a novel computing technique based

on error correcting codes that aims to achieve algorithm based fault tolerance in a

distributed system that is composed of unreliable compute nodes and networks. In

this thesis, we explore the application of coded computing techniques to the prob-

lem of distributed matrix multiplication. Matrix multiplication is foundational to a

number of applications today ranging from machine learning to scientific comput-

ing. We discuss some applications of coded matrix multiplication and then discuss

the design and implementation of a Mesos framework that utilizes coded computing

for distributed matrix multiplication and the methodology used to evaluate it. Fi-

nally, we discuss a novel scheduling strategy to minimize the latency of coded matrix

multiplication jobs.
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1

Introduction

We are entering an era of ever-increasing data and computational requirements,

paving the way towards increased distributed and parallel processing. For instance,

nowadays, neural networks with millions of parameters [28, 43, 17] are becoming in-

creasingly ubiquitous. To meet such requirements, supercomputing as well as cloud

infrastructure are being leveraged constantly to support massive parallelism. How-

ever, one of the main challenges of large scale computing is to ensure reliability at

scale [15, 12, 41, 2, 26]. The unreliability in massively distributed computing can be

attributed to various factors, such as straggling, failures and soft errors:

• Straggling: The latency of the distributed computing system is often bottle-

necked by a few slow workers known as “stragglers” [3, 33]. For instance, it

was reported that stragglers are the biggest limiting factor when implementing

distributed coordinate descent in the internal Google cloud [38].

• Faults, failures, soft-errors: For circuits and systems, faults and soft-errors [55,

36] are believed to be one of the main causes of the saturation of Moore’s law on

computation capacity. In the context of cloud computing, thousands of machine
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and hard disk failures have been detected in newly configured clusters [2].

The primary objective of the system proposed in this thesis is to provide reliability

and predictable performance in the face of stragglers. It is able to meet this objective

by applying strategies derived from the field of “Coded Computing”. Coded Comput-

ing is an emerging direction of research that was first proposed to mitigate stragglers

and reduce tail latency [32] in large scale distributed systems. Coded computing

techniques build upon, and often improve on, the Algorithm Based Fault Tolerance

(ABFT) [20, 18] paradigm. While ABFT techniques were originally employed to

improve the circuit-level reliability of matrix multiplication operations, coded com-

puting techniques employ error-correcting and erasure codes that are originally used

for communication and storage systems respectively to make computation tolerant

to faults and stragglers. There have been various research efforts in the systems

community to reduce the tail latency by introducing redundancy [47, 11, 49, 42], but

most strategies are based on naive replication. To protect against one node failure in

a task the runs on 10 nodes, replication requires at least adding one replica for each

node, resulting in the computation being carried out on 20 nodes. This implies that

the overhead and resource requirement for the task is doubled under replication. A

simple coded computing strategy using a (11,10) MDS code [30] would reduce the

number of nodes required by 45% while offering the same amount of redundancy as

replication. Other systems level solutions to straggler mitigation are based on the

stale-synchronous parallel machine learning strategy [16].

In recent years, there have been significant theoretical advances in the field of

coded computing. For example, a provably optimal redundant computing strategy

for matrix-matrix multiplication was proposed in [9]. Coded computing techniques

are applied to machine learning problems in [25, 7, 44]. However, the experimental

testing of the existing coded computing techniques are often ad-hoc and application-
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specific and the effectiveness of coded computing in real-world general purpose dis-

tributed systems has not yet been evaluated. Different proposed techniques target

different types of computation frameworks such as the standard master-worker frame-

work [30], shared-memory systems [31], or fully-distributed systems [34, 22, 8, 7, 50].

Some existing frameworks for coded computing experimnets include HT-condor [6]

or MPI-based platforms on Amazon EC2 [30].

1.1 Contributions

In this work, we propose a novel, cloud-based general purpose platform called Cre-

dence that enables researchers across different domain areas, from theorists to prac-

titioners, to easily design and run coded computing experiments. The main benefits

of the Credence platform are the following:

• Credence provides a cloud-based platform for reliable computing, that can scale

across multiple nodes. Currently it provides deployment support for AWS

but can be easily extended to other cloud providers, using their respective

deployment APIs. Credence makes no assumptions on the underlying hardware

or network topology unlike MPI. It is therefore portable and simple to use in

different cloud environments.

• Credence as a platform is extensible and can incorporate newer coding strate-

gies and techniques. Its architecture exposes standard programming interfaces

to its users, which internally could work with any number of coding schemes

and manipulation strategies.

• Credence uses a driver program written by the user. This program is a series

of manipulations that the users want to perform on their data. It therefore

abstracts away the complexities associated with distributed encoding and de-
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coding and cluster management from the users, leaving them to focus solely on

the implementation of their algorithms.

This thesis is laid out as follows. First, we review recent coded computing tech-

niques: polynomial codes [51], MatDot codes, and generalized PolyDot codes [7]. We

then motivate coded computing using real world applications. Next, we describe the

design and implementation of Credence and then evaluate the performance of coded

matrix multiplication on the system. Finally, we introduce the design of a scheduling

algorithm for coded matrix multiplication jobs.

1.2 A Primer on Coded Matrix Multiplication

1.2.1 Distributed Matrix Multiplication Without Codes

Before we introduce the coded matrix multiplication strategy, we first describe a

commonly used distributed matrix multiplication technique that does not utilize

coded computing. Consider the problem of computing the product C = AB where

A and B are N -by-N matrices. Given a grid of n-by-n worker nodes, the matrices A

and B can be partitioned into N{n-by-N{n chunks and distributed across the grid

of workers. Each worker at the grid position pr, cq can compute an outer product as

follows:

Cr,c “
c´1
ÿ

p“0

Ar,pBp,c (1.1)

Note that if any of the workers in the grid fails, the result matrix C cannot be

retrieved. This is the fundamental idea in SUMMA [45]. This strategy is also known

as blocked matrix multiplication. We will refer to this technique for the remainder of

this thesis as uncoded matrix multiplication.
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1.2.2 Coded Matrix Multiplication

We now describe the coded matrix multiplication strategies proposed in [10] to sup-

port coded matrix multiplication in Credence. We assume that we have a cluster

consisting of a master node and P worker nodes and that we want to compute C

= AB where A and B are N -by-N matrices. A worker node has limited memory

and computing power, so each node can receive the 1{m-th fraction of matrices A

and B. Once a worker node completes its assigned computation, it reports the result

back to a fusion node. Under this system model, recovery threshold is defined as the

minimum number of workers required to recover the final computation output. The

system model is discussed further in Section 3.2.

MatDot Codes

In this coded matrix multiplication strategy, the matrix A is partitioned vertically

and B is partitioned horizontally as shown below,

A “ rA1 A2 . . . Ams , B “

»

—

—

—

–

B1

B2
...

Bm

fi

ffi

ffi

ffi

fl

, (1.2)

where Ai,Bi (i “ 1, ¨ ¨ ¨ ,m) are N ˆN{m and N{m ˆN dimensional submatrices,

respectively.

The matrices A and B are then encoded using the following polynomials:

pMA pxq “
m
ÿ

i“1

Aix
i´1, pMB pxq “

m
ÿ

j“1

Bix
m´j. (1.3)

A master node distributes encoded matrices, pMA pαcq and pMB pαcq to the c-th worker

node (c “ 1, ¨ ¨ ¨ , P ). Then the c-th worker node computes the following product at

5



x “ αc:

pMC pxq “ PM
A pxqP

M
B pxq “

m
ÿ

i“1

m
ÿ

j“1

AiBjx
m´1`pi´jq, (1.4)

and returns the result to a fusion node. Note that the coefficient of xm´1 in equa-

tion 1.4 is C “
řm
i“1AiBi. Since the degree of the polynomial pCpxq is 2m´ 2, once

the fusion node receives the evaluation of pCpxq at any 2m´ 1 distinct points, it can

recover the coefficients of pMC pxq. The recovery threshold is therefore K “ 2m ´ 1.

This was proven in [10] to be the optimal recovery threshold for the given storage

constraint that a worker node can store 1{m-th fraction of each input matrix [52].

Systematic MatDot Codes

Although Credence does not support Systematic MatDot Codes, we have found this

coding strategy to be useful in practice. A code is called systematic if, for the first

m worker nodes, the output of the r-th worker node is the product ArBr. We refer

to the first m worker nodes as systematic worker nodes. Having systematic nodes is

useful because if all the systematic nodes complete their computation in time, there

is no need for decoding. Systematic MatDot codes are achieved by applying different

encoding polynomials. Let pSApxq “
řm
i“1AiLipxq and pSBpxq “

řm
i“1BiLipxq where

Lipxq is defined as follows for i P t1, . . . ,mu:

Lipxq “
ź

jPt1,...,muztiu

x´ xj
xi ´ xj

. (1.5)

Using these polynomials, the worst-case recovery threshold remains the same as non-

systematic MatDot codes [10].

Generalized PolyDot Codes

Polynomial codes [51] have a recovery threshold of m2 and a communication cost of

OpN2{m2q, wheres MatDot codes have a lower recovery threshold of 2m ´ 1, but

6



a higher communication cost of OpN2q per node. PolyDot codes proposed in [10]

provide an intermediate recovery threshold and communication cost between Poly-

nomial codes and MatDot codes. In this coded matrix multiplication strategy, the

matrices A and B are partitioned both horizontally and vertically as shown below,

A “

»

—

–

A0,0 . . . A0,n´1
...

. . .
...

Am´1,0 . . . Am´1,n´1

fi

ffi

fl

, B “

»

—

–

B0,0 . . . B0,d´1
...

. . .
...

Bn´1,0 . . . Bn´1,d´1

fi

ffi

fl

(1.6)

The matrices A and B are then encoded using the following polynomials:

pApu, vq “
m´1
ÿ

i“0

n´1
ÿ

j“0

Ai,ju
ivj, pBpv, wq “

n´1
ÿ

j“0

d´1
ÿ

k“0

Bi,jv
n´1´jwk (1.7)

As before, a master node distributes encoded matrices, pApuc, vcq and pBpvc, wcq

to the c-th worker node (c “ 1, ¨ ¨ ¨ , P ). Then the c-th worker node then computes

the following product at x “ αc:

pCpu, v, wq “
m´1
ÿ

i“0

n´1
ÿ

j“0

n´1
ÿ

j1“0

d´1
ÿ

k“0

Ai,jBj1,ku
ivn´1`j´j

1

wk (1.8)

Now, fixing j1 “ j, we observe that the coefficient of uivn´1wk for i “ 0, 1, . . . ,m´ 1

and k “ 0, 1, . . . , d ´ 1 turns out to be
řn´1
j“0 Ai,jBj,k “ Ci,k. These md coefficients

constitute the m ˆ d sub-matrices (or blocks) of C “ AB. Therefore, C can be

recovered at the decoder if all these md coefficients of the polynomial pCpu, v, wq can

be interpolated from its evaluations at different nodes.

For garbage alignment, Dutta et al. [8] propose the substitution pu “ vn, w “ vmnq

to convert pCpu, v, wq into a polynomial of a single variable v. The polynomial

therefore reduces to:

rSpvq “ rSpu, v, wq|u“vn,w“vmn “

m´1
ÿ

i“0

n´1
ÿ

j“0

n´1
ÿ

j1“0

d´1
ÿ

k“0

Wi,jXj1,kv
ni`mnk`n´1`j´j1

(1.9)
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which is a polynomial in a single variable v. Its degree is given by npm ´ 1q `

mnpd´ 1q ` n´ 1` n´ 1 “ mnd` n´ 2. Thus, the fusion node needs to wait for

mnd`n´ 1 nodes, each producing a unique evaluation, to be able to interpolate all

its mnd ` n ´ 1 coefficients. Note that by substituting m “ 1, n “ n, and d “ 1,

Generalized PolyDot specializes to MatDot.
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2

Coded Computing in the Real World

2.1 Introduction

This chapter motivates coded computing by introducing some examples of coded

computing applied to real world problems in machine learning. Coded implementa-

tions of k-nearest neighbors estimation, linear regression, and deep neural network

training are analyzed in this chapter.

2.2 Fast k-NN Estimation Using MatDot Codes

In this section, we consider the problem of finding the k nearest neighbors of a query

point in a given high-dimensional dataset. To solve this problem efficiently, our

goal is to speed up the MRPT algorithm for k-NN estimation [21] by parallelizing

it, and to make it resilient to stragglers. The k -nearest neighbor (k -NN) problem

is often a first step used in a variety of real world applications (see [21]) including

genomics, personalized search, network security, and web based recommendation

systems. We formulate a coded computing problem for MRPT, and then apply the

coded matrix multiplication strategy MatDot codes to further reduce the query time

9



for the distributed architecture in a system that is prone to straggling.

The MRPT Algorithm

This section briefly describes the two stages of the MRPT algorithm: (i) off-line

index construction stage and (ii) on-line query stage. Assume that we are given a

d-dimensional dataset X consisting of N points, represented as a d ˆ N matrix X.

Given a query point q, the problem of k -nearest neighbors involves finding a set of

points κ Ď X such that |κ| “ k and distpx,qq ď distpy,qq for each x P κ, y P X zκ,

and the function distp¨q is the distance function in the d -dimensional Euclidean space

given by:

distpu,vq “ }u´ v} “
a

}u}2 ` }v}2 ´ 2u ¨ v (2.1)

where u and v are two vectors in this space.

Index Construction in MRPT

In the MRPT index construction phase, a sparse d-dimensional random projection

vector r is chosen, in which each entry ri is sampled from the following distribution:

ri “

#

N p0, 1q with probability a

0 with probability 1´ a.

Typically, the sparsity parameter a can be chosen as 1?
d
, as in [21], to obtain good

accuracy. Now, each d-dimensional data-point p P X is then projected onto the

sparse vector r. The dataset X is then divided into two subsets at the median point

of the projected values. The process is then repeated recursively for every subset

at a level, with a new random vector r chosen for that tree level, until depth ` is

reached. Thus, for every tree t P T , the entire dataset X is partitioned into 2` cells

(or leaves), denoted as L1, L2, . . . , L2l , all of which contain rN
2`
s or tN

2`
u data-points.

10



Online Query Stage in MRPT

Given a d-dimensional query vector q, the first step in the MRPT query stage is

to generate a candidate set of indices (pruned data-point indices) S Ă t1, 2, . . . , Nu

such that |S| ! N .

For each Random Projection (RP) tree t P T , at each level the query vector q is

projected onto the random vector r for that level and then assigned a branch based

on whether its value is greater than or less than the median of the projections of

all other data-points with r. This process is then repeated recursively until a leaf is

reached.

Each tree had already partitioned the dataset X into 2l cells or leaves. For

1 ď t ď T , let ftp¨q be defined as:

ftpx : qq “
2`
ÿ

i“1

1px P Li,q P Liq (2.2)

where 1px P Li,q P Liq denotes the indicator function that returns 1 if both x and

q reside in the same cell. Let F p¨q be a function that returns the number of trees in

which x and q occur in the same leaf, defined as follows:

F px;qq “
T
ÿ

t“1

ftpx,qq. (2.3)

The candidate set of indices (pruned points) S can then be finally chosen as follows:

S “ tj Ă t1, 2, . . . , Nu : xj P X and Fpxj;qq ě νu (2.4)

Here, ν is a pre-configured parameter known as the voting threshold. Thus, the set

S denotes the set of indices Ă t1, 2, . . . , Nu for which at least ν trees have found the

corresponding data-point xj in the same cell as q.

Finally, exact distance calculations are performed for each xj with j P S, to

obtain the approximate k nearest neighbors to the query-vector q. The algorithm
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for this stage is mentioned in Algorithm 1. Here, TREE QUERYpq, tq is a function

corresponding to tree t that returns the pruned collection of the indices of the data-

points that lie in the same cell (or leaf) as q. Thus, TREE QUERYpq, tq gives tj Ă

t1, . . . , Nu : 1pxj P Li,q P Liq “ 1 for some Liu. The exact distance calculation is

performed as shown in Equation (2.1).

Algorithm 1 The MRPT Query Phase

1: procedure Approximate Knn(q, k, T , ν)
2: S Ð H

3: Let votes = [0, . . . , 0] be a new n-dimensional array
4: for t in T do
5: for point in TREE QUERY(q, t ) do
6: votes[point] Ð votes[point] + 1
7: if votesrpoints “ ν then
8: S Ð S Y {point}
9: return EXACT KNN(q, k, S )

Problem Formulation for Distributed MRPT

Consider the d -dimensional dataset X as before. In the distributed architecture,

given a query q, we first find the possible candidate set of indices (pruned indices)

S using the recursive algorithm described in Section 2.2. Now the search space for

the true nearest neighbors κ reduces to the set of data-points whose indices are in

S, i.e., κ Ď txj : j P Su.

To find the set κ, we compute the exact Euclidean distance from each data-point

xj (for j P S) to the query point q. Examining the terms constituting the Euclidean

distance in (2.1), the Euclidean norm }xj} for each xj P X can be precomputed and

the same can be done to get }q}. We must now only compute the dot product xj ¨

q to obtain the Euclidean distances from each xj to q.

To do this, we first represent the data-points indexed in the set S as a d ˆ |S|

matrix XpSq that contains only the data-points xj (columns of X) such that j P S.
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Figure 2.1: Partitioning the data matrix X and the query vector q in Distributed
MRPT.

The transpose of this matrix is the |S| ˆ d matrix XpSqT that essentially denotes all

the rows of the matrix XT indexed in S.

Consider the column vector w such that w “ XpSqTq. Note that each element

of the vector w corresponds to the dot-product xj ¨ q “ xTj q for some j P S. The

Euclidean distance from xj to q can now be determined as all the terms in (2.1) are

known to us, which includes the individual norms as well as the dot product xj ¨ q.

The problem thus reduces to the following: compute the vector w “ XpSqTq in a

distributed computing cluster where XT is known in advance. Since the computation

w “ XpSqTq is the only stage of the algorithm that must be done at runtime (in

the online stage) and scales linearly with d, we now discuss strategies that compute

vector w in a distributed setting.

Uncoded Distributed Matrix-Vector Multiplication

We split XT into P equal partitions as follows (see Figure 2.1):

XT
“
“

XT
1 XT

2 . . . XT
P

‰

. (2.5)

Now consider a cluster consisting of one master node and P worker nodes as shown

in Fig. Figure 2.2. Each partition XT
i is distributed across the worker nodes such

that worker Wi stores the partition Xi
T in advance (off-line).
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Figure 2.2: Architecture with Uncoded Distributed Matrix Multiplication.

Note that, if XT is partitioned using the strategy just discussed, the matrix XpSqT

also gets partitioned as follows:

XpSqT “
“

X1pSq
T X2pSq

T . . . XP pSq
T
‰

(2.6)

In the online phase, we only split the query q into P equal partitions, tqi : i P

t1, . . . , P uu (again see Figure 2.1). The product w can then be expressed as:

w “

P
ÿ

i“1

XipSq
Tqi (2.7)

Given a query q for which the k nearest neighbors must be determined, the

master node first computes the possible candidate set S for q from its MRPT index

set of trees T and then transmits the set S and partition qi of q to worker node

Wi. For every S, each worker node Wi only fetches the matrix XipSq
T from XT

i

already stored in its memory. It then computes the product XipSq
Tqi and returns
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the resulting vector to the master node. The master node can thus compute the

vector w by adding the results using Equation (2.7), and determine the k nearest

neighbors using the exact distances.

Coded Distributed Matrix-Vector Multiplication using MatDot Codes

In order to successfully compute the vector w using the strategy described in Sec-

tion 2.2, the master node must wait for every worker node Wi to successfully return

the product XipSq
Tqi. In a straggler-prone environment, this might cause unprece-

dented delays in computation. Thus, to avoid waiting for all nodes and be able to

recover the matrix-vector product by only waiting for some out of all workers to finish,

we will now apply the MatDot-based distributed matrix multiplication strategy [10].

We partition the matrix XT vertically again, but into m partitions instead of P

as follows:

XT
“
“

XT
1 XT

2 . . . XT
m.
‰

(2.8)

We then use the following encoding polynomial:

PXT pβq “
m
ÿ

j“1

XT
j β

j´1. (2.9)

The rows of PXT pβq indexed in set S actually represent the following polynomial:

PXT pSqpβq “
m
ÿ

j“1

XjpSq
Tβj´1. (2.10)

We will be referring to this observation later.

Now, given a cluster with a master node and P worker nodes, as shown in Figure

2.3, each worker node Wi is initialized with a different βi, using which it computes

the polynomial PXT (βi) in (2.9). This encoding step can be performed off-line as XT

is known in advance.
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Figure 2.3: Distributed Architecture with Coded Matrix Multiplication Using Mat-
Dot Codes.

During the online stage, given a query q for which the k nearest neighbors must be

determined, the master node first partitions q into m parts: tqj : j P t1, 2, . . . ,muu.

We then use the following encoding polynomial:

Pqpβq “
m
ÿ

j“1

qjβ
m´j (2.11)

As in Section 2.2, the master node first determines the candidate set S. It then

transmits S and the encoded query Pqpβiq obtained from Equation 2.11 to worker

Wi. The worker Wi then fetches only the matrix PXpSqT pβiq from its stored PXT pβiq

(recall Equation (2.10)) which essentially denotes all the rows of PXT pβiq indexed

in S. Then, it computes the product PXpSqT pβiqPqpβiq and returns the result to the

master node.

The coefficient of βm´1 in the polynomial PXpSqT pβqPqpβq turns out to be our
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Figure 2.4: Steps Involved in DNN Training

desired desired matrix-vector product XpSqTq “
řm
j“1XjpSq

Tqj from the property

of MatDot codes. We need to evaluate the polynomial at only 2m´1 distinct points

so as to determine the coefficient for every power of β. The master node must

therefore wait for at least 2m ´ 1 worker nodes following which it can determine

the term
řm
i“1XipSq

Tqi using polynomial interpolation. We then follow the strategy

of comparing the exact distances in Section 2.2 to obtain the set of the k nearest

neighbors to q.

2.3 Deep Neural Network Training Using Generalized PolyDot Codes

We assume that a DNN with L layers (excluding the input layer) is being trained

using backpropagation with Stochastic Gradient Descent (SGD) with a mini-batch

size of B “ 1 [40]. The DNN thus consists of L weight matrices, one for each layer,

that represent the connections between the l-th and pl´1q-th layer for l “ 1, 2, . . . , L.
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At the l-th layer, Nl denotes the number of neurons. Thus, the weight matrix to be

trained is of dimension Nl ˆ Nl´1. For simplicity of presentation, we assume that

Nl “ N for all layers. In every iteration, the DNN (i.e. the L weight matrices) is

trained based on a single data point and its true label through three stages, namely,

feedforward, backpropagation and update, as shown in Figure 2.4. At the beginning

of every iteration, the first layer accesses the data vector (input for layer 1) and

starts the feedforward stage which propagates from layer l “ 1 to l “ L. For a layer

l, let us denote the weight matrix, input for the layer and backpropagated error for

iteration k by W lpkq, xlpkq and δlpkq respectively. The operations performed in

layer l during feedforward stage can be summarized as:

• Compute matrix-vector product slpkq “W lpkqxlpkq.

• Compute input for layer pl ` 1q given by xpl`1qpkq “ fpslpkqq where fp¨q is a

nonlinear activation function applied elementwise.

At the last layer (l “ L), the backpropagated error vector is generated by assessing

the true label and the estimated label, fpsLpkqq, which is output of last layer. Then,

the backpropagated error propagates from layer L to 1, also updating the weight

matrices at every layer alongside. The operations for the backpropagation stage can

be summarized as:

• Compute matrix-vector product rclpkqsT “ rδlpkqsTW lpkq.

• Compute backpropagated error vector for layer pl ´ 1q given by rδpl´1qpkqsT “

rclpkqsTDlpkq where Dlpkq is a diagonal matrix whose i-th diagonal element

depends only on the i-th value of xlpkq. More specifically, Dlpkq is a diagonal

matrix whose i-th diagonal element is a function gp¨q of the i-th element of

xlpkq, such that, gpfpuqq “ f 1puq for the chosen nonlinear activation function
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fp¨q in the feedforward stage. This is equivalent to computing the Hadamard

product: rδpl´1qpkqsT “ rclpkqsT ˝ gprxlpkqsT q.

Finally, the step in the update stage is as follows:

• Update as: W lpk` 1q ÐW lpkq ` ηδlpkqrxlpkqsT where η is the learning rate.

In DNN training with PolyDot codes, the three stages are modified to support

coded matrix multiplication. Prior to training, every node stores an N
m
ˆN

n
sub-matrix

(or block) ofW encoded using generalized PolyDot. Recall from Equation (1.7) that,

ĂW pu, vq “
m´1
ÿ

i“0

n´1
ÿ

j“0

Wi,ju
ivj. (2.12)

Thus every node stores a sub-matrix ĂWp “ ĂW pap, bpq at the beginning of the train-

ing. Each input x to the DNN is encoded at each worker as follows:

rxpvq “
n´1
ÿ

j“0

xjv
n´j´1. (2.13)

Thus every node stores a sub-matrix rxp “ rxpbpq at the beginning of the training.

We will refer to ĂWp and rxp at the k-th iteration as ĂW pkq and rxpkq respectively. The

steps performed during the feedforward stage can be summarized as:

• Compute matrix-vector product rspkq “ ĂW pkq.rxpkq.

• Wait for the recovery threshold for this operation to be met and decode rspkq

to get slpkq.

• Compute input for layer pl ` 1q given by xpl`1qpkq “ fpslpkqq where fp¨q is a

nonlinear activation function applied elementwise.
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Similar to the feedforward stage, every worker encodes the backpropagated error

(transpose) δT is available at every worker. Each worker then splits δT into m equal

parts and encodes them using the polynomial:

rδT puq “
m´1
ÿ

i“0

δTi u
m´i´1. (2.14)

In the backpropagation stage in coded DNN training, for p “ 0, 1, . . . , P ´ 1, the

p-th node does the following:

• Computes rδT puq at u “ ap, yielding rδTp :“ rδT papq. Next, it performs the

computation rcTp :“ rδTp
ĂWp. rδT puq at u “ ap, yielding rδTp :“ rδT papq.

• Next, it performs the computation rcTp :“ rδTp
ĂWp. Consider the polynomial:

rcT pu, vq “ rδT puqĂW pu, vq “
m´1
ÿ

i1“0

m´1
ÿ

i“0

n´1
ÿ

j“0

δTi1Wi,ju
m´1`i´i1vj.

The products computed at each node result in the evaluations of this polyno-

mial rcT pu, vq at pu, vq “ pap, bpq. Similar to feedforward stage, each node then

decodes the coefficients of um´1vj in the polynomial for j “ 0, 1, . . . , n´1, and

thus reconstructs n sub-vectors forming cT .

• Computes backpropagated error vector for layer pl ´ 1q as in uncoded DNN

training.

The key part is updating the coded ĂWp. Observe that since x and δ are both

available at each node, it can encode the vectors as
řm´1
i“0 δiu

i and
řn´1
j“0 xjv

j at
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u “ ap and v “ bp respectively, and then update itself as follows:

ĂWp Ð ĂWp ` ηp
m´1
ÿ

i“0

δia
i
pqp

n´1
ÿ

j“0

xjb
j
pq
T

“

m´1
ÿ

i“0

n´1
ÿ

j“0

pWi,j ` ηδix
T
j q

loooooooomoooooooon

Update of Wi,j

aipb
j
p. (2.15)

Thus, the update step preserves the coded nature of the weight matrix, with negligible

additional overhead [8] and the coded weight matrices do not have to be decoded,

modified, and re-encoded .

2.4 Multi-label Linear Regression Using Generalized PolyDot Codes

Here, we discuss a technique of coded linear regression and demonstrate how it

can be implemented easily using generalized PolyDot codes. This technique can

be obtained as a special case of the more detailed coded DNN training strategy.

Similar to feedforward stage, each node then decodes the coefficients of um´1vj in

the polynomial for j “ 0, 1, . . . , n ´ 1, and thus reconstructs n sub-vectors forming

cT .

Problem Formulation:

We are given a dataset χ consisting of pairs of vectors px,yq denoting the datapoint

and its multi-dimensional label. We would like to train a matrixW over this dataset,

such that:

W “ argminW

ÿ

px,yqPχ

1

|χ|
||Wx´ y||2. (2.16)

The training is performed iteratively using Stochastic Gradient Descent (or its mini-

batch variant). At each iteration, the algorithm picks up a pair px,yq (or a mini-
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batch of such pairs), and updates the trained W as follows:

W “W ´ η∇W ||Wx´ y||22

“W ´ 2ηpWx´ yqxT

“W ` 2ηδxT where δ “ y ´Wx. (2.17)

We are provided with a system of P memory-constrained distributed worker

nodes, such that, each node can only store a fixed fraction of W . Additionally,

the nodes are also prone to delays due to straggling. The goal is to be able to par-

allelize this iterative computation across P memory-constrained nodes along with

redundancy, such that we do not have to wait for all the nodes to finish at each

iteration.

We now demonstrate an example where each node only stores 1{4 fraction of

matrix W . The primary operations to be performed are the matrix-vector product

Wx, followed by the subtraction of vectors, i.e., δ “ y´Wx, and then the update

of W using a rank-1 update rule pW `2ηδxT q. At the beginning of the training, we

choose an initial value for the parameter matrix W . The matrix W is distributed

across the workers which then encodes the matrix using the generalized PolyDot

encoding strategy as shown in Equation (1.7). In particular, each node stores a

unique evaluation of the polynomial (with u “ v2):

ĂW pu, vq “W0,0 `W0,1v `W1,0u`W1,1uv. (2.18)

Because encoding of sub-matrices is expensive, we only encode these sub-matrices

once initially at the beginning of training, and for subsequent iterations, we only per-

form coded updates instead of encoding the sub-matrices afresh. At every iteration,

the vector x is also divided into 2 equal parts x0 and x1, and then encoded as:

rxpvq “ x0v ` x1. (2.19)

Each node already stores a unique evaluation of ĂW pu, vq with u “ v2, and obtains an

evaluation of rxpvq at the same value. It thus multiplies ĂW pu, vq with rxpvq, resulting
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in the evaluation of the following polynomial:

ĂW pu, vqrxpvq “ p.q ` pW0,0x0 `W0,1x1qv ` p.qv
2

` pW1,0x0 `W1,1x1qv
3
` p.qv4. (2.20)

After this multiplication, each node stores its resulting shard from the output. As

the polynomial is of degree 4, the cluster only has to wait for any 5 worker nodes to

finish itself before it can interpolate all the coefficients of the polynomial, which also

includes sub-vectors of the result Wx.

Once the matrix-vector product Wx is computed, the cluster can compute the

subtraction δ “ y ´Wx. After this step, each worker node locally divides δ and x

into 2 sub-vectors respectively, and performs local encoding of sub-vectors which is

much cheaper than encoding matrices. The model is then updated as shown below:

ĂW`
pu, vq “ ĂW pu, vq ` 2ηp δ0 ` δ1u

looomooon

local encoding

qp x0 ` x1v
looomooon

local encoding

q
T

“ pW0,0 ` δ0x
T
0 q ` pW0,1 ` δ0x

T
1 qv

` pW1,0 ` δ1x
T
0 qu` pW1,1 ` δ1x

T
1 quv

“W`
0,0 `W

`
0,1v `W

`
1,0u`W

`
1,1uv.

This local encoding of sub-vectors, followed by local rank-1 update results in the

update of the coded sub-matrix without having to encode the sub-matrix afresh.

This process is then repeated iteratively for all (x,y) P χ.
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3

Credence: A Platform For Coded Computing

In this chapter, we describe the design and implementation of Credence on Mesos.

We first describe how individual matrix multiplication jobs are run on Credence and

then describe the Credence programming model.

3.1 An Introduction to Mesos

Mesos [19] is a platform for resource sharing between distributed systems, called

frameoworks, at datacenter scale. It is different from other resource sharing systems

such as YARN [46] in that it does not implement its own scheduler. The Mesos

allocator is a pluggable module that uses the DRF resource allocation strategy [13]

by default. Mesos makes offers to different frameworks leaves job scheduling decisions

up to the framework itself. It is therefore employs a push-based allocation strategy.

Distributed systems running on YARN, called applications, make resource requests to

the YARN resource manager which internally implements an application scheduling

policy. Employing a push-based policy in Mesos has the following advantages [19]:

it allows frameworks to make decisions on scheduling and error and fault handling,

and it makes the Mesos design simple and robust.
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Figure 3.1: The Mesos Master-Slave Architecture.

A Mesos cluster consists of one master and one or more slaves, also called agents.

Frameworks can utilize cluster resources by registering themselves with the Mesos

master from within their schedulers. This may also involve an authentication step.

Once registered, Mesos begins to make resource offers to the framework’s scheduler

at which point the framework can utilize the cluster’s resources to run its jobs. Typ-

ically, jobs consist of tasks that are run in parallel on workers in a cluster. Classical

examples of systems that follow this architecture are MapReduce [4] in Hadoop and

Spark [54]. Mesos runs tasks inside independent units called executors on Mesos

agents. Tasks may be executables, BASH or Python scripts, JAR files, and even

Docker containers. Mesos implements complete isolation between executors running

on the same agent by the use of Linux cgroups. Once executors terminate, resources

are returned to Mesos and can now be offered to other frameworks. Frameworks run-

ning on Mesos are therefore not limited to a statically allocated share of the cluster’s

resources and can dynamically scale their resource consumption up and down based

on load. Figure 3.1 shows how two frameworks running on Mesos can share the clus-
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Figure 3.2: The (n,r,k) Fork-Join System with Centralized Scheduling.

ter’s resources. Mesos communicates with a framework’s scheduler using callbacks.

It invokes different functions inside the scheduler where user defined behavior can

be implemented for different callbacks. For example, the resourceOffers callback is

invoked when Mesos wants to offer resources to the scheduler.

3.2 System Model

3.2.1 Fork-Join Systems

In fork-join systems, a job is forked into tasks which are run on statistically identical

servers. Such a system may also implement redundancy so that all the forked tasks

do not need to finish for the job to complete successfully. A general model for fork-

join systems is the pn, rf , r, kq fork-join model [24]. In this model, a job is forked on

to rf of n statistically identical servers. When any r ă“ rf tasks are ready to run

on the servers, tasks are cancelled on individual servers so as to retain only r tasks.

Of the r tasks that run, only k must finish for the job to complete successfully.
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3.2.2 Credence as a Fork-Join System

Credence is modeled as a (n,r,k) fork-join system with centralized scheduling. The

simple (n,r,k) fork-join system in Figure 3.2 shows jobs J1, J2, ..., JM waiting to be

scheduled on the n workers. The pn, r, kq fork-join system is a special case of the

pn, rf , r, kq fork-join system with rf “ r. This means that any matrix multiplication

operation, which we refer to as a job, is run on r of the n servers available, and

only k of the servers must finish for the job to complete succesfully. Note that for

coded matrix multiplication, k corresponds to the recovery threshold of the matrix

multiplication operation, whereas for uncoded matrix multiplication, k “ r. One can

see that the fork-join model for Credence dovetails perfectly with the Mesos job and

task model. In a cluster consisting of n nodes, the Credence centralized scheduler

accepts r resource offers for a job from Mesos and runs matrix multiplication tasks

on the r workers. Once k of the r workers finish, Credence can decode the result or

save it for decoding offline. This corresponds to the JOIN stage in Figure 3.2.

3.3 Architecture

3.3.1 Programming Model

Credence is built using the Dask [39] engine. Dask provides Credence with two

important features: a DAG (Directed Acyclic Graph) scheduler and a distributed

Numpy [48] array implementation. A developer implements a driver program to sub-

mit a job to Credence. Within the driver program, a developer can create distributed

Dask arrays, encode them using the Generalized PolyDot codes, and multiply en-

coded or uncoded matrices. Encoded arrays are stored within a special data structure

known as the EncodedArray. An EncodedArray holds no data by itself, but contains

references to encoded Dask arrays on different workers. We will use the terms driver

program and job interchangeable throughout the remainder of this thesis. Developers
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Figure 3.3: Multiplying Two Uncoded Matrices of Size (100x100) in Credence Using
the Dask DAG Scheduler.

can also use Dask lazy operations to add tasks to a Dask computation graph and

finally compute [39] the results.

Figure 3.3 shows the DAG constructed during the multiplication of two uncoded

p100x100q matrices on 4 workers nodes on Credence. Rectangular nodes in the

graph identify intermediate results while circular nodes identify the operations being

performed on them. The rechunk ´merge nodes in the graph indicate the matrix

number and the portion being multiplied. For example, prechunk´merge´#1, 0, 0q

identifies the submatrix at grid position p0, 0q of the first matrix. Each tensordot

corresponds to the computation of one element AriBic of the outer product for Crc

and each sum in the upper nodes of the graph correspond to the computation Crc “
ř

AriBic as shown in Section 1.2.1.

Figure 3.4 shows the DAG generated during the multiplication of two p100x100q

matrices encoded using MatDot codes with a polynomial of degree 2. (Note that

Credence is able to support both MatDot codes and Polynomial codes using its

Generalized PolyDot implementation). The path on the right side leading up to

solve indicates the construction of the Vandermonde matrix used during interpola-

tion, whereas the left side leading up to solve shows the construction of the matrix

consisting of the MatDot encoding polynomial evaluated at three different points

28



Figure 3.4: Multiplying Two Encoded Matrices of Size (100x100) in Credence Using
the Dask DAG Scheduler.

by three different workers. As per the strategy laid out in [10], the matrices have

been encoded beforehand. The solve operation indicates that the MatDot encoding

polynomial is being interpolated to determine its coefficients. For this example, the

second element in the resulting matrix is the product C “ AB.

Credence currently supports only online decoding. This means results are de-

coded as soon as the recovery threshold for a matrix multiplication operation is met.

Decoding can be distributed across the cluster or can be performed at the client node

from where jobs are submitted. Distributed decoding is supported by the linear al-

gebra primitives offered by Dask for its distributed Numpy arrays. Decoding at the

client is done by Numpy’s linear algebra library.

3.4 Mesos Schedulers in Credence

Every Credence job contains a CredenceContext instance using which it requests

resources from the Credence scheduler and creates, encodes, and multiplies matrices
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on the cluster. The CredenceContext instance can interact with the following two

kinds of schedulers.

3.4.1 Single Driver Scheduler

The Single Driver Scheduler is created and started by a driver program. It’s sole

purpose is to request resources from Mesos for the job and it terminates when the

job completes. This scheduler is useful during debugging or testing driver programs,

or if the developer knows that there is only one matrix multiplication job that is to

be run on the cluster.

3.4.2 Configurable Scheduler

The Configurable Scheduler implements all of the Mesos scheduler callbacks plus

a get driver by policy function in which developers can define their own scheduling

policies. Currently, only the First-Come-First-Served (FCFS) policy is supported.

It is different from the Single Driver scheduler in that it is a long running daemon

and does not terminate after the last job exits. This scheduler runs the following

three remote object threads using which driver programs can communicate with it:

• SchedulerInterface : Driver programs make RPC calls on this interface to re-

quest resources from the Configurable Scheduler. Invocations to the Schedu-

lerInterface contain the number of workers r required for the job , the number

of CPUs, memory and disk required per worker, and optionally, the recovery

threshold k for the job. The SchedulerInterface object then adds this infor-

mation to a data structure inside the Configurable Scheduler. When Mesos

offers resources to the Configurable Scheduler, the get driver by policy logic

dictates which driver inside the scheduler’s data structure will be scheduled.

In the current implementation of the Configurable Scheduler, invocations to the

SchedulerInterface are blocking. This means that a driver program will block
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until all of the resources it requested are allocated to it and it is scheduled.

The current implementation of the Credence Configurable Scheduler therefore

supports only gang scheduling.

• TerminateInterface : Driver programs make RPC calls on this interface after

their recovery threshold k is met. This allows the Configurable Scheduler ter-

minate the Dask DAG scheduler for the job and clean up any driver related

state it had maintained.

• AddStatsInterface : A Credence driver program can optionally use this interface

to inform the scheduler about the time taken to encode and multiply matrices.

This is explained in more detail in Section 4.

3.5 Local Linear Algebra in Credence

A primary objective behind Credence is to use standard linear algebra libraries for

node local computations so that different coded matrix multiplication strategies can

be compared on a standardized platform. In this regard, all of the linear algebra

performed at each worker or at the master during polynomial interpolation are per-

formed using BLAS [29]. The first BLAS library was written in FORTRAN in 1979,

but there are a number of variants available today. Credence uses the OpenBLAS

implementation of BLAS for linear algebra operations. For example, all matrix mul-

tiplications are performed using the GEMM kernel.

3.6 Evaluation

In this section, we compare the performance of coded matrix multiplication to un-

coded matrix multiplication on Credence. Additionally, we also compare coded ma-

trix multiplication on Credence to MLLib. MLLib is a machine learning library that
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1 2 3 4 5

Square 1000 5000 10000 25000 50000
Rectangular 1000x50 5000x100 10000x100 25000x1000 50000x2000
Matrix-Vector 1000 5000 10000 25000 50000

Table 3.1: Specifications of matrix multiplication experiments conducted on Cre-
dence. The first row shows the side of the square matrices being multiplied. For
example, 1000 indicates that two square matrices of side 1000 are being multiplied.
The second row shows the dimensions of rectangular matrices being multiplied with
square matrices. For example, 1000x50 indicates that a square matrix of side 1000
is being multiplied with a rectangular matrix of dimensions 1000x50. The third row
shows the length of the vector being multiplied with a square matrix of the same
side. For example, 1000 indicates that a vector of length 1000 is being multiplied
with a square matrix of side 1000. All the matrices and vectors we use are dense.

is built on Apache Spark [54] for distributed machine learning. It also exposes matrix

abstractions of RDDs for linear algebra.

3.6.1 Methodology

To evaluate the performance of coded matrix multiplication on Credence to uncoded

matrix multiplication, we multiply matrix with the following attributes on a cluster

consisting 20, 50, 100, and 150 workers. We use two coded matrix mutliplication

strategies in our experiments - MatDot codes and Polynomial Codes. The degree of

the encoding polynomial for all experiments involving coded matrix multiplication

using MatDot codes is 2 and for Polynomial codes is 9. Each matrix multiplication

experiment is conducted in a different driver program, and the driver that is running

the experiment is the only job running on Credence. We use the Single Driver

Scheduler for all experiments and decode the results online.

We also evaluate the performance of running a large number of jobs on Credence.

To do this, we use a randomly generated trace file consisting a jobs the system

must run. The trace file is a CSV file where each line contains the specifications

of the job to be run. The first column is the side of two square matrices that are
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to be multiplied, the second column identifies the matrix multiplication strategy

to be used for the job, namely MatDot, Polynomial, or uncoded, and third column

indicates the number of workers to use for the job. Again, we set the degree of degree

of the encoding polynomial to 2 for MatDot codes and 9 for polynomial codes. The

trace file we use for this experiment consists of 100 jobs. We use the Configurable

Scheduler with FCFS scheduling for this experiment. We set the arrival rate λ of

jobs to the scheduler to 2 per second.

All of our experiments are conducted in the AWS public cloud on t2.xlarge in-

stances. t2.xlarge instances come with 4 Intel Xeon processors and 16 GB of memory.

A Chaos Engineering Approach To Testing Credence

We repeat the experiments listed above under an environment inspired by the princi-

ples of chaos engineering [1]. Chaos testing was popularized by Netflix and is based

on the premise that modern distributed systems have scaled to an extent that they

cannot reliably be tested by humans. Systems may therefore manifest unexpected or

undesired behavior in production. Netflix built a set of tools called the Simian Army1

to induce chaos in their production systems in an attempt to test their resilience. A

commonly used open sourced tool in the Simian Army suite is Chaos Monkey. Chaos

Monkey can be used to induce a number of types of failures in cloud based environ-

ments. For example, it can be configured to terminate virtual machines, generate

computational load, corrupt disks and network packets, or kill processes. We use

Chaos Monkey to simulate network latency, a common cause of straggling. Chaos

Monkey simulates network latency using tc, a popular traffic shaping tool. tc adds

latency to network traffic flowing through an interface by adding qdiscs, or queuing

disciplines, in the kernel. All traffic that is outgoing on an interface is queued ac-

1 The word ”simian” identifies something ”relating to, resembling, or affecting apes or monkeys”.
The idea behind the name Simian Army is that the Netflix engineers wanted their services to be
available even if a monkey was destroying their datacenter.
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cording to the queuing discipline configured. Chaos Monkey uses the default FIFO

qdisc and adds latency that simulates WAN performance.

3.6.2 Results

In this section, we present the results of matrix multiplication on Credence and

compare coded matrix multiplication to uncoded matrix multiplication on Credence

and MLLib. Detailed results are shown in Appendix A. In this section, we analyze

the results obtained and compare uncoded multiplication on Credence and MLLib

with coded matrix multiplication on the basis of time taken per operation with and

without simulated latency. We also run a trace of matrix multiplication jobs on

Credence whle varying the number of available workers.

Without simulated latency, coded matrix multiplication is able to outperform

uncoded matrix multiplication on MLLib and Credence in most cases. For small

matrices being multiplied on a small number of workers (see Figure A1), the redun-

dancy introduced by coded matrix multiplication adds a small overhead. In the worst

case, coded matrix multiplication with polynomial codes is able to achieve 85% the

speed taken by uncoded matrix multiplication.

A key point to note is that, contrary to expectations, uncoded matrix multipli-

cation scales negatively with the number of workers. This means that for matrices of

same sizes, adding more workers to the system will lead to a degraded performance.

We attrbute this to the fact that blocked matrix multiplication in a distributed sys-

tem incurs a massive communication cost as sub-matrices have to be transferred to

more workers while computing the outer product at some grid position. SUMMA

is able to overcome this because it assumes that the workers being utilized for the

computation are physically arranged in an MPI grid. Owing to this fact, SUMMA

is able to support targeted MPI broadcasts of sub-matrices and is therefore commu-

nication efficient. However, it is unreasonable to assume that a system will exhibit
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similar behavior in public cloud based environments where communication is done

mostly over TCP/IP. Cloud providers provide no guarantee of whether the virtual

machines requested will be on the same host or rack, much less be neatly arranged

in an MPI grid.

We also observe the same behavior with uncoded blocked matrix multiplication

on Spark’s MLLib. Multiplication of dense blocked matrices in MLLib employs a

GridPartitioner which creates an RDD [53] where keys are grid positions and values

are sub-matrices. Computing outer products therefore requires a network inten-

sive shuffle operation. The alternating least squares (ALS) example in the MLLib

paper [35] uses a dense model and is tested only on a cluster of 30 nodes and per-

formance on larger clusters is not analyzed. In [14], Gu et al. propose a strategy

for dense matrix multiplication on MLLib that is able to achieve near linear scaling

with cluster size. They use an adaptive algorithm that uses different matrix multi-

plication strategies based on the size of the matrices being multiplied. For example,

if one of the matrices is smaller than a broadcast threshold, it is broadcasted to all

the workers and the algorithm therefore does not incur the communication penalty

associated with blocked matrix multiplication. If the dimensions of the submatrices

are small or almost equal, they emply a traditional blocked matrix multiplication

strategy. Otherwise, they employ the CARMA [5] strategy for matrix multiplication

in distributed memory systems. This approach is useful because it does not build

any functionality into Spark or MLLib, but is a library built on top of these systems.

It would therefore be possible to implement a similar approach in Credence with

minimal or no changes to underlying functionality. Coded matrix multiplication on

the other hand has a constant communication cost in the sense that the amount of

data communicated is dependent only on the recovery threshold of the operation and

not the number of workers.

When the experiments are repeated under simulated latency conditions, the
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trends remain largely the same. The time taken by uncoded matrix multiplication

on Spark and Credence approximately double and increase with cluster size. Coded

matrix multiplication remains faster than uncoded matrix multiplication for two rea-

sons, Firstly, as discussed above, the amount of communication does not depend on

cluster size. Secondly, the performance of uncoded matrix multiplication is further

degraded as transferring sub-matrices over a network that is affected by latency is

slower.

We then test the scalability of Credence with number of jobs in the system. We

expect the latency of the system for a given set of jobs to decrease as the number of

workers increase. This is because the scheduler has more resources available to it and

can schedule jobs in parallel on different workers. Figure A16 verifies this intuition.

As we increase the number of workers, the time taken to run the same trace decreases

almost linearly.
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4

Towards Optimal Redundant Task Scheduling in
Credence

In the previous chapter, we examined the architecture of Credence and compared it

to an pn, r, kq fork-join system. In this chapter, we apply the analysis of fork-join

systems in [24] to design an optimal redundancy policy for Credence to minimize job

latency.

4.1 Optimal Choices for r in pn, r, kq Fork-Join Systems

In [24], Joshi et al. derive the bounds on latency and cost in pn, kq fork-join systems

and propose a heuristic strategy to choosing the optimal amount of redundancy in

pn, rf , r, kq fork-join systems. Their results are useful because they assume that the

worker nodes follow an arbitrary service time distribution. Assuming worker that all

n workers are homogeneous, they claim that the optimal choices for r˚f for rf and r˚

for r are given by:

r˚f “ rmax (4.1)
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r˚ “ argmin T̂ prq, s.t. Ĉprq ď γ (4.2)

where T̂ prq and ˆCprq are estimates of the expected latency EpT q and cost EpCq,

defined as follows:

T̂ prq fi ErXk:rs `
λrErX2

k:rs

2pn´ λrErXk:rsq
(4.3)

Ĉprq fi rErXk:rs (4.4)

Here, rmax is a limit on the value of rf so as to limit communication cost, γ is

is constraint on the computing cost, and λ is the arrival rate of jobs in the system.

Because Credence is an pn, r, kq fork-join system, rf “ r for Credence and the prob-

lem of determining the optimal amount of redundant tasks for a reduces to finding

a solution for Equation 4.2.

4.2 Design of a Heuristic Strategy for Optimal Redundancy in Cre-
dence

Recall from Section 3.4 the AddStatsInterface remote object in the Credence Con-

figurable Scheduler. RPC calls on this object are a means by which driver programs

can return information on the time taken to encode and multiply matrices by each

of the r workers. Given the encoding time and multiplication times per worker for

some job, the Configurable scheduler adds these values to get the total time taken

by the worker for a job. It then adds these values to a collection that represents

the distribution of worker service times for the environment Credence is running in.

Given this worker service time distribution and the expected recovery threshold k,

we can use Equation 4.2 to find the optimal r value for subsequent jobs. We assume

that the service time distribution is stored as a histogram in memory on the Con-

figurable Scheduler. Algorithm 2 shows how an optimal choice for r can be made in

Credence. For simplicity, we assume no limit on γ.
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Algorithm 2 Algorithm for Optimal Redundancy in Credence

1: procedure optimal r(k,n)
2: r˚ Ð H

3: T̂ ˚ Ð H

4: for every r ě k and ď n do
5: S Ð Sample N values from service time distribution
6: ErXk:rs Ð kth smallest value in S
7: Calculate T̂ (r) from Equation 4.2
8: if T̂ (r) ă T̂ ˚ then
9: T̂ ˚ Ð T̂ prq

10: r˚ Ð r
11: return r˚

Note that the steps in the algorithm above can be taken at the scheduler with-

out adding excessive overheads as Algorithm 2 runs in linear time with complexity

Opn ´ kq if N , the number of samples drawn from the service time distribution, is

a constant. Note also that we assume that the job size, or the sizes of the matrices

being multiplied, is constant. If the job size varies, the service time distribution

increases in dimensionality.

4.3 Results

To analyze the performance of the heuristic strategy for optimal redundancy, we

compare the time taken by the scheduler to run 40 jobs with optimal values for r

chosen by Algorithm 2 with the time taken to run the same 40 jobs for sub-optimal

values of r. In our experiments, we run jobs with k “ 3 on a cluster of 20 t2.xlarge

instances with FCFS scheduling. We experiment with different arrival rates and

matrix sizes. All experiments are run after the scheduler has been able to collect

3000 readings for the service time distribution. Detailed results are presented in

Appendix A. For jobs with optimal values of r, speedups as high as 3x are observed.

An interesting point to note is the latency for higher values of λ is lower than that

of lower values. This shows that Credence is able to cope with rapidly arriving jobs.
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5

Conclusion

This thesis is focused on the applications of coded computing and the design and eval-

uation of a system that uses the Generalized PolyDot matrix multiplication strategy.

In Chapter 2, we examine how coded computing can be applied to real problems in

machine learning. In Chapter 3, we study the design of Credence, a system that uses

coded matrix multiplication. In Chapter 4, we apply apply the analysis of pn, r, kq

fork-join systems in [24] to choosing optimal redundancy in Credence. The remain-

der of this chapter is organized as follows. We first discuss the insights learned from

this thesis and then mention some open problems which we leave to future work.

5.1 Lessons Learned

In Section 2, we saw that coded matrix multiplication can be applied to a variety

of machine learning and scientific computing [23] problems. Note that if problems

are formulated intelligently, as in Section 2, the overhead of encoding matrices can

be avoided at every iteration. The examples introduced in Section 2 fall under the

category of model parallel machine learning techniques. Model parallel techniques

are characterized by models that are so large that they cannot be held in memory.
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This is in contrast to data parallel machine learning, where models are replicated

across nodes and are trained in parallel from different samples of training data.

In Section 3, we introduce the Credence platform for coded computing. We find

that coded matrix multiplication in Credence leads to predictable performance when

WAN level latencies are simulated in the network. Another point to note is that

blocked matrix multiplication is difficult to scale owing to the communication over-

head. Apart from Marlin [14], we find that this issue is not sufficiently covered in

literature. The broadcast based multiplication strategy, while communication effi-

cient, is difficult to scale. For example, consider the training of a DNN as introduced

in Section 2. Broadcasting a model after updation to every worker at every iteration

would be a very expensive operation. Broadcasting very large models, such as the

Netflix prize matrix [27], would be next to impossible. Moreover, broadcast based

multiplication assumes that one of the matrices can be held in memory at every

worker.

In Section 4, we leverage the ideas behind distribution based scheduling to choos-

ing optimal redundancy in Credence. We find that choosing an optimal number of

redundant tasks can lead to a 3x improvement in latency for a trace of jobs. Because

the strategy makes no assumption of worker service times, we anticipate that it can

be extended to a variety of environments.

5.2 Open Problems

5.2.1 Numerical Errors in Matrix Decoding

Notice that the decoding operation in coded matrix multiplication using Generalized

PolyDot codes involves solving the linear system Ax “ B where each element in

B is the result of multiplying the results of encoding polynomial for each matrix

at at different points vi, each element in xi in x is a matrix that is the coefficient

of vi in the encoding polynomial, and A is the Vandermonde matrix in which the
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knots are each vi at which the encoding polynomials are evaluated. As shown in [37],

Vandermonde matrices are ill conditioned except when the knots vi are spaced on or

about the circle Cp0, 1 “ rx : |x| “ 1sq. We employ this strategy in Credence, but

have observed that the condition number for the matrix A exceeds 1015. for encoding

polynomials that have degree 12 or more. This makes inverting the matrix A without

significant numerical errors difficult. A possible solution could be to choose vi from

the set of Chebyshev points:

xk “ cos
k ´ 1

2π
π, k “ 1, 2, ..., n (5.1)

Polynomial interpolation with Chebyshev points is known to have lower errors than

other points [?].
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Appendix A

Experimental Results

In this appendix, we list some of the results explained in Section 3.6. Figures A1

through A15 depict the time taken for each experiment on 20, 50, 100, and 150 work-

ers. The numbers p1, 2, 1q and p2, 2, 2q indicate the number of horizontal partitions

m of the first matrix, the number of vertical partitions n of the first matrix (also the

number of horizontal partitions of the second matrix), and the number of vertical

partitions d of the second matrix as shown in Section 1.2.2. p1, 2, 1q is therefore Mat-

Dot codes with an encoding polynomial of degree 2 whereas p2, 2, 2q is Polynomial

codes with an encoding polynomial of degree 9. Figure A16 shows the scalability of

Credence with respect to the number of jobs in the system. Figures A17 through

A19 compare the run times for a trace consisting of 40 identical jobs when the values

of r are chosen using Algorithm 2 with sub-optimal values of r.
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Figure A1: Multiplying Two 1000x1000 Square Matrices on 20, 50, 100, and 150
Workers using Credence.

Figure A2: Multiplying Two 5000x5000 Square Matrices on 20, 50, 100, and 150
Workers using Credence.
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Figure A3: Multiplying Two 10000x10000 Square Matrices on 20, 50, 100, and 150
Workers using Credence.

Figure A4: Multiplying Two 25000x25000 Square Matrices on 20, 50, 100, and 150
Workers using Credence.
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Figure A5: Multiplying Two 50000x50000 Square Matrices on 20, 50, 100, and 150
Workers using Credence.

Figure A6: Multiplying a 1000x1000 Square Matrix with a 1000x50 Rectangular
Matrix on 20, 50, 100, and 150 Workers using Credence.
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Figure A7: Multiplying a 5000x5000 Square Matrix with a 5000x100 Rectangular
Matrix on 20, 50, 100, and 150 Workers using Credence.

Figure A8: Multiplying a 10000x10000 Square Matrix with a 10000x100 Rectangular
Matrix on 20, 50, 100, and 150 Workers using Credence.
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Figure A9: Multiplying a 25000x25000 Square Matrix with a 25000x1000 Rectangu-
lar Matrix on 20, 50, 100, and 150 Workers using Credence.

Figure A10: Multiplying a 50000x50000 Square Matrix with a 50000x2000 Rectan-
gular Matrix on 20, 50, 100, and 150 Workers using Credence.
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Figure A11: Multiplying a 1000x1000 Square Matrix with a Vector of Length 1000
on 20, 50, 100, and 150 Workers using Credence.

Figure A12: Multiplying a 5000x5000 Square Matrix with a Vector of Length 5000
on 20, 50, 100, and 150 Workers using Credence.
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Figure A13: Multiplying a 10000x10000 Square Matrix with a Vector of Length
10000 on 20, 50, 100, and 150 Workers using Credence.

Figure A14: Multiplying a 25000x25000 Square Matrix with a Vector of Length
25000 on 20, 50, 100, and 150 Workers using Credence.
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Figure A15: Multiplying a 50000x50000 Square Matrix with a Vector of Length
50000 on 20, 50, 100, and 150 Workers using Credence.

Figure A16: Running a Trace of Matrix Multiplication Jobs on Credence
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Figure A17: Runtimes for Optimal Values of r vs Sub-Optimal Values of r While
Multiplying Two 1000x1000 Square Matrices

Figure A18: Runtimes for Optimal Values of r vs Sub-Optimal Values of r While
Multiplying A 1000x1000 Square Matrix with a 1000x50 Rectangular Matrix
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Figure A19: Runtimes for Optimal Values of r vs Sub-Optimal Values of r While
Multiplying A 1000x1000 Square Matrix with a Vector of Length 1000
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