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Abstract

Forward Selection (FS) is a popular variable selection method for linear regression. Working in a sparse high-

dimensional setting, we derive su�cient conditions for FS to attain model-selection consistency, assuming

the true model size is known. Compared with earlier results for the closely-related Orthogonal Matching

Pursuit (OMP), our conditions are similar but obtained using a di�erent argument. We also demonstrate

why a submodularity-based argument is not fruitful for the purpose of correct model recovery.

Since the true model size is rarely known in practice, we also derive su�cient conditions for model-

selection consistency of FS with a data-driven stopping rule, based on a sequential variant of cross-validation

(CV). As a by-product of our proofs, we also have a sharp (su�cient and almost necessary) condition for

model selection consistency when using �wrapper� forward search for linear regression. This appears to be

the �rst consistency result for any wrapper model-selection method. We illustrate intuition and demonstrate

performance of our methods using simulation studies and real datasets.
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Chapter 1

Introduction

Regression variable selection procedures are used widely each day to estimate sparser, more interpretable

models in every quantitative �eld. When analyzing large, high-dimensional datasets, greedy forward selection

algorithms are valued for their low computational costs and their ability to deal with the case of p > n.

However, greedy algorithms can be di�cult to study analytically, and questions remain about their model-

selection consistency and practical choices of stopping rules.

Two of the most commonly used such procedures are Forward Selection (FS, Efroymson, 1960) and

Orthogonal Matching Pursuit (OMP, Pati et al., 1993). To select the next variable to enter, FS �nds the one

additional predictor that will minimize the residual sum of squares (RSS). OMP approximates this process

by merely �nding the predictor most correlated with the current response residuals, as if predictors were

orthogonal. For this reason, OMP has been simpler to explore analytically, while the properties of FS are

less thoroughly understood. Despite conceptual similarities between FS and OMP, these procedures can

di�er in practice, and therefore FS deserves to be studied in its own right.

In this thesis, we study the model selection property of FS from several di�erent perspectives. Assume

iid data (Xi, Yi)
n
i=1 satisfying

Yi = XT
i β + εi

where Xi ∈ Rp, and εi is independent noise with mean 0 and variance σ2. Let J∗ = {1 ≤ j ≤ p : βj 6= 0}.

First, we derive su�cient conditions under which FS will select the correct subset S of active variables after

k = |J∗| steps. Roughly speaking, assume that the coordinates of X have unit variance and absolute pair-

wise correlations no larger than 1/(2k− 1), and that the minimum absolute value of non-zero entries of β is

not too small. Then we prove in Section 3.2 that

P (Ĵk = J∗)→ 1
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where Ĵk is the subset of variables selected by FS after step k. This result is similar to those established for

OMP (Tropp, 2004; Cai and Wang, 2011). We also show that a su�cient condition for exact recovery can

be derived using the property of submodularity. However, this condition is so restrictive as to be of limited

practical use.

Our second main contribution is a highly practical, data-driven stopping rule for FS, using a sequential

cross-validation (SeqCV) method. Consider splitting the dataset at random into two parts: a training or

construction set of size nc, and a test or validation set of size nv, with nc + nv = n. In traditional �full�

cross-validation (FullCV), we would �t the entire FS model path
{
Ĵt : 1 ≤ t ≤ min{nc, p}

}
to the training

set, then choose as k̂ the value of t whose Ĵt minimizes RSS on the test set. By contrast, in SeqCV we choose

the smallest t whose Ĵt is a local minimizer of test RSS.

SeqCV has two advantages over FullCV at large sample sizes. First, by alternating the training and test

steps, this sequential search for k̂ can be much more e�cient than FullCV when k � min{nc, p} and the full

path need not be computed. Second, SeqCV avoids FullCV's tendency to over�t. If we assume the conditions

for the known-k case above, and also assume that nc, nv both grow quickly enough while the training ratio

nc/nv goes to 0 quickly enough, then we show in Section 4.1 that

P (Ĵk̂ = J∗)→ 1

where subset Ĵk̂ is selected by FS on the training data with k̂ chosen by SeqCV. We also discuss the

challenging task of selecting nc/nv for a given �nite dataset.

Finally, in order to help analysts express the uncertainty in the model-selection process, we explore several

approaches to cross-validation with con�dence. By adapting general-purpose procedures for ranking with

con�dence, we can build con�dence sets for the best model from a CV study. This also allows us a new

perspective on the properties of CV with the �one standard error rule� (1SE). Simulations suggest that our

proposed con�dence sets have desirable properties in terms of coverage and set size, deserving further study.

1.1 Motivation

The FS algorithm is commonly used and simple to explain to non-experts. This algorithm has been a

mainstay of regression textbooks since at least Draper and Smith (1966) through today (James et al.,

2013; Cannon et al., 2019), even among statisticians concerned about the misuse of naive inference with

FS�though Buja and Brown (2014) point a way towards valid statistical inference for FS under standard

assumptions of normality. However, its properties have not been studied as completely as those of OMP

and Lasso (Tibshirani, 1996), and hence this gap in the literature is worth �lling for such a popular method.

Although statisticians such as Harrell (2015) have justi�ably criticized the use of FS on small, noisy datasets,
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our work provides a much-needed perspective for how FS behaves on modern datasets with massive sample

sizes n or dimensions p, without strong distributional assumptions. Our theorems and large-scale simulations

are a valuable update to the historical literature on FS, which consists largely of small simulation studies

at low-to-moderate n and p (Dempster et al., 1977; Roecker, 1991; Derksen and Keselman, 1992; Wiegand,

2010).

Likewise, CV is a popular stopping rule among data analysts and easily explained to a lay audience,

yet its properties are not thoroughly understood for random path algorithms like FS. Also, although CV

is appealing because it does not make explicit distributional assumptions, this makes it di�cult to know

when CV is inappropriate. Finally, although CV is used to choose other algorithms' tuning parameters, CV

actually has its own tuning parameters which in practice are chosen heuristically or by tradition. (These

include the ratio of training to testing data; the number of folds or splits; whether to average or vote

across splits; and the stopping rule variant e.g. Full CV, Sequential CV, 1SE rule, etc.) Our theorems and

simulations bridge the wide gap between prior results for low-dimensional �xed-path settings vs. the modern

high-dimensional random FS path setting, while illuminating the role of CV's own tuning parameters.

Further, although the property of exact recovery or correct model selection is not the only important lens

through which to view FS with CV, it is another substantial literature gap. Having a true sparse linear model

is often a strong assumption, rarely achieved �in the wild,� and theoretical conditions for exact recovery tend

to be restrictive. However, there are �elds such as signal processing where both the sparsity assumption and

support-recovery conditions can make sense and optimal model selection may be a reasonable goal. Outside

those �elds, our su�cient conditions for model selection may still help practitioners to design bigger and

better future studies so that �correct� variable selection can be more plausibly approximated. Although we

do not derive necessary conditions, our simulations may also help data analysts avoid using FS and CV on

unsuitable already-observed datasets. Our results can indicate whether to be optimistic or pessimistic about

model selection on a given dataset.

Finally, �lling similar literature gaps for OMP and Lasso led to useful insights into those methods, as well

as bene�cial side outcomes. We have had the same experience through our work on FS. We report several

unexpected but welcome contributions to our understanding of CV and related model-selection algorithms:

• Our theoretical conditions on the cross-validation training:testing split ratio inspired us to derive a

large-n rule of thumb for choosing this ratio in Section 5.2. This process also allowed us to clarify why

this is such a di�cult problem and why the split ratio is rarely �ne-tuned in practice.

• Initially, we started to study SeqCV instead of FullCV for analytical tractability. However, the

large-scale simulations in Section 6.1 also turned out to demonstrate SeqCV's promising statistical

performance, not to mention substantially faster computing time, as compared to FullCV.
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• The bene�ts of combining a low training:testing ratio with SeqCV�greatly reduced computational

expense with a good chance of better sparsity at comparable holdout error levels�are illustrated on

real data in the Million Song Dataset example of Section 6.2.2.

• In seeking to weaken our strong su�cient condition on p for FS with SeqCV (where we conjecture

it is not necessary), we proved that this condition is actually sharp for �Wrapper Forward Search� in

Section 4.2. This appears to be the �rst consistency result for any wrapper algorithm and serves as a

warning about the method's limitations in high-dimensional settings.

1.2 Related work

Forward Selection Barron et al. (2008) have studied FS under risk consistency : whether the risk of

our estimator (selecting a model and then �tting it) converges to the oracle risk (of just �tting the best

model). Also, An et al. (2008); Wang (2009) have studied FS in terms of screening consistency : convergence

to probability 1 of choosing at least all the true predictors, but possibly also some spurious ones. Risk-

consistent procedures tend to pick too-large models, while selection-consistent procedures sometimes pick

too-small models (which in�ates the risk), so that neither kind of consistency implies the other. To our

knowledge, we provide the �rst conditions for model-selection consistency (convergence to probability 1 of

exactly recovering the true predictor set) under standard FS in the high-dimensional setting.

Orthogonal Matching Pursuit Tropp (2004); Zhang (2009); Davenport and Wakin (2010); Cai and

Wang (2011), and others have studied various conditions for model-selection consistency of OMP. However,

OMP is not exactly the same as FS, and we illustrate the di�erence between them in Section 1.4.1.

Also, the arguments used for OMP selection consistency are not applicable to FS due to the additional

orthogonalization step. We have found that FS requires a di�erent argument to reach the strongest possible

conclusions.

Other variable selection methods Although we do not study these in detail, some connections are

worth mentioning:

Both FS and OMP are greedy approximations to All-Subsets or Best Subset Regression. Foster and

George (1994) show that Best Subset selection has optimal risk in�ation, compared to the risk of least

squares on the oracle subset if it were known. Although computing all possible subsets is combinatorially

di�cult for large p, recent advances in Mixed Integer Optimization have made Best Subset selection practical

for much larger problems than before (Bertsimas et al., 2016). Hastie et al. (2017) run a simulation study

comparing the behavior of Best Subset selection to FS and variants of the Lasso, although their focus is on

prediction accuracy rather than variable selection.
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Similar methods include Backward Elimination (consistency has been studied e.g. by An and Gu (1985),

but it cannot be used when p > n) and back-and-forth Stepwise variants. An et al. (2008) show selection

consistency of a complete forward path followed by a complete backward path; and Zhang (2011) shows

selection consistency of a �FoBa� procedure which allows multiple backward steps after each forward addition.

Even simpler are Marginal Regression, choosing the predictors with highest marginal correlation with

the response, e.g. Genovese et al. (2012); and the backwards algorithm of Zheng and Loh (1995), choosing

the �most signi�cant� predictors from a full model �t (which, again, cannot be used with p > n).

L1-regularized variable selection methods such as Lasso are motivated quite di�erently from FS and OMP,

although Efron et al. (2004) draw a chain of connections between Lasso, Least Angle Regression (LARS),

Forward Stagewise, and FS. In essence, FS takes several �large� steps: it chooses one variable at each step

to maximize a correlation, then adds this variable and re�ts the whole model by least squares. Forward

Stagewise takes many �tiny� steps, moving the selected variable only a small fraction of the way towards its

least squares estimate. LARS takes intermediate steps: by going exactly the distance that Stagewise could

go before another variable has larger correlation with the residuals, it is a �less greedy� variant of FS and

incorporates shrinkage into our coe�cient estimates. Finally, if we modify LARS to remove variables whose

path passes through 0, this modi�ed algorithm is one way to implement the Lasso. Donoho and Tsaig (2008)

also show a similar chain of links between Lasso, LARS, Homotopy, and OMP. Although Lasso and LARS

have theoretical and practical bene�ts over FS and OMP�and advances in convex optimization have made

it possible to compute the Lasso path much more quickly than the FS path in many settings�it still appears

that FS is more common in practice.

Meinshausen and Bühlmann (2010) introduce a concept of stability selection based on repeated

subsampling and show its selection consistency in combination with the Lasso, though the method can also

be applied to most of the greedy algorithms above including FS and OMP. However, they advise running

around 100 subsamples, which can add considerably more computational burden than the 5 or 10 folds

typical of CV.

In addition to the (continuous) variable selection problem, there is a related problem of partitioning

categorical predictors with many levels. See for example the DMR algorithm of Maj-Ka«ska et al. (2015).

Stopping rules Practical variable-selection methods generally also require a stopping rule, which

determines the �nal model size. Cai and Wang (2011) provide a stopping rule for OMP based on thresholding

the criterion optimized in (1.1) below. Other stopping rules for FS, OMP, and Lasso have been proposed

based on (adjusted) hypothesis tests and p-values, for instance Tibshirani et al. (2016); Fithian et al. (2015);

or on information criteria such as AIC and BIC, e.g. Shao (1997); and on other frameworks such as minimizing

the false discovery rate (FDR), e.g. Lin et al. (2012). However, all of these rules require strong distributional

assumptions. Some are valid only for a �xed model set, not the random paths of FS, OMP, and Lasso.
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Instead, we consider sample-splitting and cross-validation (CV), highly practical and popular methods which

are valid without assuming a particular likelihood for the data or a pre-chosen model set. In an alternative

to CV, Wasserman and Roeder (2009) study model selection consistency of FS, MR, and Lasso under a

three-stage variant of data-splitting.

The most popular CV variants appear to be leave-one-out CV (LOOCV), V -fold CV, and Monte Carlo CV

(MCCV). For V -fold CV, we partition the cases randomly into V equal-sized �folds� and cycle through them:

use each fold to evaluate the model(s) trained on the remaining V −1 folds, then average the prediction errors

across folds. LOOCV is equivalent to V -fold with V = n. MCCV is also similar to V -fold but uses several

random splits, not a partition, so di�erent splits' test sets may overlap. All three variants are commonly

used for FullCV (choose the global minimizer of test error), which is prone to over�tting compared with our

proposed SeqCV (choose the sparsest local minimizer of test error).

For model selection from a �xed model set, these CV variants have been studied for linear models by

Burman (1989, 1990); Zhang (1993); Shao (1993), etc., who show that model-selection consistency requires

nc/nv → 0. This can be done straightforwardly for MCCV, but is impossible for LOOCV. To achieve

this for V -fold, we must �invert� the algorithm to train on one fold and test on the others. More recently,

Yang (2007) showed that the training ratio need not go to 0 if we are comparing nonparametric regression

models which converge more slowly than the linear models considered earlier. Yang also distinguishes

between cross-validation with averaging (as above), �CV-a,� and cross-validation with voting, �CV-v.� In

both approaches, the prediction error for each model (or for each value of a tuning parameter such as k̂) is

computed separately on many di�erent test splits after �tting models on the corresponding training splits.

CV-a is the more common case, where the vector of test errors is averaged across splits, and we select the

model (or tuning parameter) with lowest average estimated loss. Alternately, in CV-v, we pick one model

(or tuning parameter value) separately on each data split; then we vote across splits, selecting the winner

which had the most votes. See also the survey paper by Arlot and Celisse (2010).

Wrapper Forward Search We use FS to �t the model path and CV to choose the model size k. As

an alternative, at each step, we could use the training data to �t every model with one additional variable,

then evaluate them all on the test data. Such an algorithm uses CV not only as a stopping rule but also

as the path-selection criterion. In the machine learning literature, this algorithm is known as Wrapper

Forward Search, following terminology introduced by John et al. (1994) who distinguish between �wrapper�

and ��lter� methods for variable selection. Filter methods screen out variables at the start, for instance

dropping predictors which have low correlation with the outcome, before training a model on the remaining

predictors. In contrast, wrapper methods train models on candidate feature-subsets, then rely on holdout or

cross-validation error estimates to decide which features to include. Although we focus on forward search,

wrapper approaches can also be applied to backwards or back-and-forth searches.
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To the best of our knowledge, we provide the �rst statistical model-selection consistency results for a

wrapper method. Our Propositions 4.6 and 4.7 apply to Wrapper FS as well, not only to FS+SeqCV. Our

Theorem 4.4 establishes a set of su�cient and (almost) necessary conditions for Wrapper FS model selection

consistency.

1.3 Notation and de�nitions

Subscript i refers to a single observation, while c and v refer respectively to the construction (training)

and validation (testing) sets. Subscripts j or h refer to a single predictor variable, while ∗, J∗, or Jh refer

respectively to all columns in the true model J∗ ≡ {1, . . . , k} or in the spurious model Jh. Unless otherwise

speci�ed, Jh = J∗ ∪ h for some h /∈ J∗. We use X for the full design matrix; Xi for row i; Xj for column j;

and Xij for the element in row i, column j. X is the vector formed by taking the sample mean within each

Xj . We use β for the full coe�cient vector and βj for element j. In the context of split data, β̂ is always

estimated on the training subset.

Let S = n−1
(
X−X

)T (
X−X

)
denote the sample covariance matrix, and C denote the corresponding

sample correlation matrix, with entries Cj` ≡ Sj`√
SjjS``

.

We use vector notation for inner products and norms: 〈a, b〉 = aT b and ‖a‖2 = 〈a, a〉.

Generic constants such as c, c′, c1, c2, . . . do not necessarily have �xed values throughout the thesis nor

even across lines within a proof.

1.4 Background

1.4.1 Model and algorithms

We assume iid data (X, Y ) = (Xi, Yi)
n
i=1 satisfying Yi = XT

i β+εi where observations are denoted as Xi ∈ Rp

and εi is independent noise with mean 0 and variance σ2, while predictor variables are denoted as Xj ∈ Rn.

Let J∗ = {1 ≤ j ≤ p : βj 6= 0} and k = |J∗|.

To select the next variable to enter, FS �nds the additional predictor that will minimize the residual sum

of squares (RSS). At step t, let Ĵt be the index set of predictors already selected up to this step, with Ĵ0 = ∅.

Let Res(Y |XĴt
) be the residuals of the response Y on the chosen predictors XĴt

. Then

ĵt,FS = arg max
j /∈Ĵt

∣∣∣〈Res(Y |XĴt
), Res(Xj |XĴt

)〉
∣∣∣

‖Res(Y |XĴt
)‖ · ‖Res(Xj |XĴt

)‖
= arg min

j /∈Ĵt
‖Res(Y |XĴt∪j)‖

2 ,

where the second equality follows from a short calculation. We set Ĵt+1 = Ĵt ∪ ĵt,FS and repeat, until the

model size reaches a preset threshold or some other stopping rule is met.
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OMP approximates FS by merely �nding the predictor most correlated with the current response

residuals, as if all predictors were orthogonal:

ĵt,OMP = arg max
j /∈Ĵt

∣∣∣〈Res(Y |XĴt
), Xj〉

∣∣∣
‖Res(Y |XĴt

)‖ · ‖Xj‖
. (1.1)

The two algorithms will take identical �rst steps but can di�er at any later step. If we center and scale Y

and all columns of X before the algorithm starts, OMP only needs to compute inner products and update

the response residuals at each step. Meanwhile, FS must also update every unchosen predictor's residuals

and rescale them at each step.

The algorithmic di�erence between FS and OMP can lead to practical di�erences. For instance, let the

true model be Y = 2X1 + X2, with no noise. Let there be three predictors (X1, X2, X3) to choose from,

with correlations ρ1,2 = 0.5, ρ1,3 = 0.25, and ρ2,3 = 0.9. Both models correctly choose X1 �rst. Then in the

second step, FS correctly chooses X2, while OMP incorrectly chooses X3. One can also construct examples

where OMP works correctly but FS does not. Since neither method strictly outperforms the other, it is

worthwhile to study both.

1.4.2 Model selection consistency when k is known

When k, the number of nonzero coe�cients, is known, su�cient conditions for OMP to select the correct

subset of variables have been developed in Tropp (2004); Cai and Wang (2011). The main condition in these

works is that the maximum pairwise correlation among the columns of X is smaller than 1/(2k − 1).

The bound of 1/(2k − 1) cannot be improved in general. To see this, consider the case where p = k + 1,

ε ≡ 0 (noise-free), and β = (1, ..., 1, 0)T , with the �rst k entries being 1 and the last one being 0. Let X be

such that

XT
j X` =


1 if j = ` ,

−µ if j 6= ` and j, ` 6= p ,

µ if j 6= ` and j = p or ` = p .

Then if µ > 1/(2k − 1), OMP will pick the last coordinate in the �rst step. Since FS and OMP choose the

same variable in the �rst step, this example also works for FS, suggesting that the condition on µ for FS to

choose the model correctly is at least as strong as that for OMP. In Chapter 3 we will show that the same

condition is also su�cient for FS.

1.4.3 Stopping rules

FS+SeqCV In practice, the performance of FS crucially depends on the stopping rule. In fact, the number

of steps taken in FS can be viewed as a regularization parameter (Efron et al., 2004). For sample-splitting,
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we partition the dataset at random into two parts: a training or construction set sc of size nc, and a test or

validation set sv of size nv, with nc + nv = n. Begin to �t the FS model path
{
Ĵt : 1 ≤ t ≤ min{nc, p}

}
to

the training set, and record the estimated coe�cient vectors {β̂Ĵt}. After each training step t, estimate the

test-set mean squared error:

M̂SE
(
Ĵt

)
= n−1

v

∑
i∈sv

(
Yi −XT

i β̂Ĵt

)2

.

Choose the �rst model size which is a local minimizer of test MSE,

k̂Seq = min
{

1 ≤ t ≤ min{nc, p} : M̂SE
(
Ĵt

)
≤ M̂SE

(
Ĵt+1

)}
,

and select the model Ĵk̂Seq . We call this stopping rule sequential cross-validation (SeqCV), whether we use

a single split as above, V -fold CV, or MCCV. If using V -fold CV or V splits of MCCV, we compute a

separate M̂SE`

(
Ĵt

)
on each split ` ∈ {1, . . . , V }, then choose the �nal model size based on M̂SE

(
Ĵt

)
=

V −1
∑V
`=1 M̂SE`

(
Ĵt

)
. Our key result in Theorem 4.1 applies to both the single-split version and to MCCV

with a �xed number of splits, although not to V -fold whose training ratio cannot shrink to 0.

This local-minimizer rule is similar in spirit to the �IC selection rules� of Hyun et al. (2018), who use

e.g. AIC or BIC instead of test MSE to select a stopping point and then are able to condition on k̂ in

post-selection inference.

WrapperFS Several of our results below also apply to another model selection algorithm, Wrapper

Forward Search (WrapperFS). With FS+SeqCV, variable selection happens on the training data alone,

and CV is only used as a stopping rule. However, in WrapperFS, CV itself is used as both the variable

selection mechanism and the stopping rule.

At training step t, �t all models containing one more variable than before:
{
Ĵt,j = Ĵt−1 ∪ j : j /∈ Ĵt−1

}
,

and record the estimated coe�cient vectors {β̂Ĵt,j}. Estimate each of the corresponding test-set mean squared

errors M̂SE
(
Ĵt,j

)
as above. If any of these models improves on the previous MSE, choose it at this step,

and otherwise stop:

Ĵt = arg min
j /∈Ĵt−1

M̂SE
(
Ĵt,j

)
, k̂wrap = min

{
1 ≤ t ≤ min{nc, p} : M̂SE

(
Ĵt

)
≤ M̂SE

(
Ĵt+1

)}
,

and select the model Ĵk̂wrap . Again, the de�nition above is for sample-splitting. To perform V -fold CV or

MCCV instead, compute a separate M̂SE`

(
Ĵt,j

)
on each split ` ∈ {1, . . . , V }, then use their average across

splits M̂SE
(
Ĵt,j

)
to choose each Ĵt and k̂wrap.

Such wrapper search methods do not give e�ective test error estimates for model evaluation. However,

they are reportedly quite commonly used for model selection in the data mining community because the
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�induction algorithm� (linear regression, neural network, decision tree, etc.) can be treated as a black

box, without analytically deriving a stepwise variable-selection criterion tailored to the induction algorithm

(Kohavi and John, 1997; Chrysostomou, 2009).
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Chapter 2

A submodularity-based condition for

exact recovery by FS

Inspired by Das and Kempe (2011), we initially attempted to study the model-selection properties of FS

using the concept of submodularity.

Let f be a nonnegative set function. First, we say f is separable or modular with respect to a set U

if, for any two disjoint sets S and L that are subsets of U , we have

∑
x∈S

[f(L ∪ {x})− f(L)] = f(L ∪ S)− f(L)

It does not matter whether we add the elements of S piecemeal or all at once. The increase in f will be the

same either way, no matter which (disjoint) S and L we use. However, if the equality = is always ≥ instead,

then we say f is submodular. If we choose elements to add by considering their marginal contributions,

their joint improvement in f is never better than the sum of their marginal improvements.

For intuition in a statistical context, we quote Johnson et al. (2015). Submodularity implies that:

for a set of variables A to be in�uential in context of another set of variables B, either A or

B must be in�uential in isolation. Signal that is present in a complex interaction cannot be

completely hidden when considering smaller sets of variables.

In our setting, let the coe�cient of determination R2 play the role of this set function f on the predictors

included in our linear regression. We may wish to choose the best subset of k variables J∗(k) to maximize the

R2 on our dataset, but this is often too computationally expensive in practice. However, if R2 is submodular

on our dataset, then greedy FS should give a decent approximation Ĵk to the combinatorial problem of

�nding J∗(k).
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In particular, a classic result from Nemhauser et al. (1978) proves that greedy algorithms cannot do too

badly in the submodular case:

f(Ĵk) ≥ (1− e−1)f(J∗(k)) .

We use this approach to seek su�cient conditions on (noise-free, �xed) datasets for FS to �nd the optimal

model of size k. When these conditions are met, the gap between the optimal R2 and the FS-selected model's

R2 is 0, so FS must have found an optimal model of that size.

Theorem 2.1. Assume a �xed, noise-free dataset for which a k-sparse linear model holds exactly: Yi = XT
i β

for i ∈ 1, . . . , n, with Xi ∈ Rp centered and standardized. Assume that β is k-sparse and that there is no

sparser possible β which recovers Y exactly from X. WLOG, let β's nonzero entries be its �rst k entries.

Also assume that R2 is submodular on this dataset.

De�ne λmax(k + m) and λmin(k + m) to be the largest and smallest eigenvalues, respectively, of any

(k + m) × (k + m) principal submatrix of XTX which contains the �rst k columns of X and any m other

columns, for 0 ≤ m ≤ (p − k). Assume all λmin(k + m) are bounded from below by some positive constant

for 1 ≤ m ≤ k (sparse eigenvalue condition). Let κ(XTX) = λmax(p)/λmin(p) be the condition number of

XTX. Let βmin be the smallest (in absolute value) of the k nonzero elements of β.

Then FS will exactly recover the correct model if

k

k − 1
· β2

min

‖β1:k‖22/k
>

λmax(k)

λmin(k + 1)
.

In particular, if κ(XTX) is �nite (which can happen only if n ≥ p and rank(X) = p), then a su�cient

condition for FS to exactly recover the correct model is

k

k − 1
· β2

min

‖β1:k‖22/k
> κ(XTX) . (2.1)

Proof. The true model is J∗ = {1, . . . , k}. WLOG, we compare this against models J = {1 +m, . . . , k+m},

where 1 ≤ m ≤ k is the number of missing true variables.

Maximizing R2 is exactly equivalent to minimizing the residual sum of squares: RSS(J) =
∑n
i=1(Yi −

XT
i β̂J)2. Let us frame the problem as maximizing the di�erence between the RSS for a particular model

J and for the null model ∅. That is, we wish to maximize f(J) = RSS(∅) − RSS(J) over sets J of size k.

(By assumption, no set smaller than k can be optimal.) Because R2 is a submodular set function, f is also
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submodular. The minimum of f is f(∅) = 0 and its maximum is

f(J∗) = RSS(∅)−RSS(J∗)

= ‖X1:kβ1:k‖22

≤ λmax(k) · ‖β1:k‖22 (2.2)

Recall that Res(x|U) is the residual vector after projecting x onto the linear subspace spanned by the

columns of U . We can lower-bound

f(J∗)− f(J) = RSS(J)−RSS(J∗)

= ‖Res(X1:mβ1:m|X1+m:k+m)‖22

≥ λmin(k +m) · ‖β1:m‖22 (2.3)

because

Res(X1:mβ1:m|X1+m:k+m) = X1:mβ1:m −X1+m:k+m(XT
1+m:k+mX1+m:k+m)−1XT

1+m:k+mX1:mβ1:m

= X1:k+m

 Im

B

β1:m

where B = −X1+m:k+m(XT
1+m:k+mX1+m:k+m)−1XT

1+m:k+mX1:m and

∥∥∥∥∥∥
 Im

B

β1:m

∥∥∥∥∥∥
2

≥ ‖β1:m‖2.

Now, let Jt be the variable set chosen by FS by step t, with J0 = ∅. By de�nition, at each step greedy

FS chooses the variable with the �best� marginal contribution, maximizing f(Jt+1)− f(Jt).

By submodularity of f , at least one marginal contribution at the �rst step t = 0 must be at least

(f(J∗)−f(J0))/k. There are still k unchosen correct variables before the �rst step, so if all of their marginal

contributions were smaller than this, then they would not sum up to the optimality gap and f would not

be submodular. Thus, the �rst variable chosen by greedy FS (whether or not it is a correct variable) must

increase f by at least 1/k of the original optimality gap f(J∗)− f(J0), and so the optimality gap shrinks at

least by a factor of (1− 1/k) during the �rst step:

f(J∗)− f(J1) ≤ (1− 1/k) · (f(J∗)− f(J0)) .

By the same argument, during the second step, the remaining optimality gap must shrink at least by a

factor of (1−1/k) if the �rst variable chosen was incorrect (so there are still k correct variables to be chosen)
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or a factor of (1− 1/(k− 1)) if the �rst variable was correct (so there are only k− 1 correct variables left to

be chosen).

Assume that after k steps, k − m of the variables selected by FS were correct and the other m were

incorrect, for 1 ≤ m ≤ k. In the worst case, all of the incorrect variables were chosen �rst, so the optimality

gap shrank by a (1− 1/k) factor m+ 1 times, and then by progressively changing factors:

f(J∗)− f(Jk) ≤
(

1− 1

k

)m
·
k−m−1∏
`=0

(
1− 1

k − `

)
(f(J∗)− f(J0))

=

(
k − 1

k

)m
· m
k
· f(J∗) .

Therefore, by (2.2) and (2.3), it will be impossible to choose exactly m incorrect variables if

λmin(k +m) · ‖β1:m‖22 >
(
k − 1

k

)m
· m
k
· λmax(k) · ‖β1:k‖22

or equivalently (
k

k − 1

)m
· min
U⊂{1,...,k}
|U |=m

‖βU‖22/m
‖β1:k‖22/k

>
λmax(k)

λmin(k +m)
.

The tightest case is at m = 1: if it is impossible to make one mistake, it also becomes impossible to make

any other number of mistakes. Therefore, a su�cient condition for FS to recover the correct model is

k

k − 1
· β2

min

‖β1:k‖22/k
>

λmax(k)

λmin(k + 1)

Since λmax(k)/λmin(k + 1) ≤ λmax(k + 1)/λmin(k + 1) ≤ κ(XTX), also su�cient is

k

k − 1
· β2

min

‖β1:k‖22/k
> κ(XTX)

when X has full column rank.

However, the condition above is too limited to be of much use, for two reasons:

a. Even after assuming submodularity, our su�cient condition for success of FS is very restrictive. By

de�nition, κ(XTX) ≥ 1, and β2
min ≤ ‖β1:k‖22/k. Thus, even if κ(XTX) = 1, the elements of β1:k must

be all close in magnitude: β2
min ∈

(
k−1
k , 1

)
· ‖β1:k‖22/k. Alternately, even if β1:k has constant entries,

the condition number must be small: κ(XTX) ∈
(

1, k
k−1

)
.

b. The known conditions for R2 to be submodular are also very restrictive. Das and Kempe (2011)'s

condition for R2 to be submodular is equivalent to requiring the smallest eigenvalue of XTX to be 1,
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for X with normalized columns. In other words, this condition requires orthogonal X, in which case

the success of FS is trivial anyway.

We could ease concern (b) by using Das and Kempe (2011)'s concept of �weak� or �approximate

submodularity.� The authors de�ne a concept they call the submodularity ratio, γ, such that submodularity

holds i� γ ≥ 1. The situation where γ ∈ (0, 1) is called weak submodularity. In this setting, Das and

Kempe use γ to bound the optimality gap after running FS, OMP, or Marginal Regression for k steps,

�nding conditions where the greedy solution is not much worse than the (combinatorially-di�cult-to-�nd)

optimal solution. Additionally, Elenberg et al. (2017) extend the work of Das and Kempe by de�ning a new

concept of �restricted strong convexity� which implies weak submodularity. They show that by running FS

for r > k steps, we can achieve R2 arbitrarily close to that of the optimal solution of size k (and, under

further assumptions, the `2 norm of the error in estimating β goes to 0) if r is of order log(n) and weak

submodularity holds.

However, this merely shows that if weak submodularity holds, FS can �nd some too-large model that

approximates the truth well. In the context of correct support recovery, using weak submodularity to deal

with concern (b) would make concern (a) even worse, as would extending our results to allow for non-zero

noise and/or random X. We did not pursue these directions further.

Finally, we use the su�cient condition in (2.1) to derive an incoherence condition, for comparison with

our other results below. De�ne the coherence µ as the greatest absolute correlation between any two columns

of X. Then the condition number is bounded by κ(XTX) ≤ 1+(k−1)µ
1−µ . Meanwhile, the loosest bound for the

left-hand side of (2.1) is when the nonzero elements of β are all equal. Then a su�cient condition would be

k

k − 1
>

1 + (k − 1)µ

1− µ
⇒ 1

(k − 1)2 + k
> µ .

This requires µ on the order of k−2 or smaller, which is much stricter than the incoherence condition of

µ < (2k − 1)−1 that we derive in Chapter 3. Again, submodularity is not as fruitful as other approaches to

tackling this problem.
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Chapter 3

Path consistency of FS

Throughout this chapter, we study conditions for the path-consistency of FS�equivalently, the model-

selection consistency of oracle FS with known k. First, Section 3.1 summarizes our main conclusions and

proof approach for the case of �xed predictors and noise. Next, Section 3.2 states our results for the random

case, along with discussion of related conditions for OMP and the Lasso. Finally, Section 3.3 contains the

formal statements of our �xed-data claims, along with supporting results and extensions for both the �xed-

and random-data cases. Non-trivial proofs are deferred to Chapter 8.

3.1 Fixed data

For now, assume the k-sparse linear model from Section 1.4 holds with �xed design matrix and noise vector.

Let every predictor column Xj be standardized to zero mean and unit variance: ‖Xj‖2/n = 1. De�ne the

coherence among predictors as µ = maxj 6=`∈{1,...,p} n
−1|XT

j X`|.

First, if the true model is noiseless so that ε ≡ 0, then by Corollary 3.6, a su�cient condition for correct

model selection at each step t ≥ 2 is

√
1− tµ

1− (t− 1)µ
> (2k − 2t− 1)

µ

1− (t+ 1)µ

which is implied by µ < (2k−1)−1 with k ≥ t+2. To derive this condition, we consider the QR decomposition

of the design matrix: n−1/2X = ZA, where Z has orthonormal columns and A is an upper triangular

matrix with entries aj`. We also note that ATA is the Cholesky decomposition of n−1XTX. Using matrix

perturbation results from a theorem of Sun (1992), we derive lower and upper bounds on |aj`| in terms of the

coherence µ. If we assume FS has made correct choices so far up to step t, the conditions for FS' next step
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to be correct can be written in terms of Z and aj`, and plugging in the bounds on |aj`| gives the su�cient

condition above.

Next, for a �xed but nonzero noise vector ε, de�ne the coherence between noise and predictors as γ =

maxj∈{1,...,p} n
−1/2|XT

j (ε/‖ε‖)|. Proposition 3.3 repeats the argument above but now also accounting for γ,

and Corollary 3.4 summarizes the results in a �beta min� condition: If µ, γ < (2k−1)−1, then FS will choose

the correct model if

min
j∈1 ...,k

|βj |
‖ε‖
≥ 16.8kγ√

n
.

Since kγ is at most constant, this lower bound on the signal-to-noise ratio (SNR) is at most of order n−1/2.

Finally, if the design is orthogonal, we can drop the dependence on k. By Corollary 3.5, if µ = 0, then

FS will choose the correct model if

min
j∈1 ...,k

|βj |
‖ε‖
≥ 2.28γ√

n
.

3.2 Random data

From now on, we will assume that the data are random and come from a sub-Gaussian distribution, i.e. one

whose tails decay at least as fast as Gaussian tails. We say the random vector V ∈ Rp has a sub-Gaussian

distribution if there is a constant c > 0 such that, for all u ∈ Rp with ‖u‖2 = 1, ‖uTV ‖ψ2 ≤ c <∞.

This de�nition uses the Orlicz ψ-norm: For a univariate random variable Z,

‖Z‖ψ = inf

{
C > 0 : Eψ

(
|Z|
C

)
≤ 1

}
.

Speci�cally, we use ψ2(x) = ex
2 − 1. See van der Vaart and Wellner (1996); van de Geer and Lederer (2013)

for some important properties of sub-Gaussian random variables.

Assumption 1. Xn×p and εn×1 are independent random sequences (in n) with iid sub-Gaussian rows, with

all means 0 and variances V(Xi) = Σ and V(εi) = σ2. Σ is positive de�nite. Without loss of generality, Σ

is a correlation matrix (has 1s along the diagonal).

Throughout Chapter 3 we can weaken Assumption 1 to allow only uncorrelated X and ε. Their

independence will be required in Chapter 4. Also, if Σ is not a correlation matrix, then by rescaling X and

β appropriately, we can still apply these results to predictors whose covariance matrix has other diagonals,

as long as the diagonal entries are uniformly bounded in n by some �nite positive constant.

Assumption 2. The true model (denoted J∗) is k-sparse, and the signal is contained in the �rst k covariates,

so that Y = β1X1 + . . .+ βkXk + ε with |β1| ≥ . . . ≥ |βk| > 0.
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If Σ is scaled to be a correlation matrix with entries ρj`, then let µ = maxj 6=` |ρj`|. We call µ the

population coherence among predictors.

Assumption 3. Let p and k grow∗ with n. As n, p, k →∞, we require that:

1. the population coherence must shrink as k grows: µ < (2k − 1)−1;

2. the signal may shrink but not too quickly: |βmin| ≥ c · kσ
√

log(p)
n for some constant c > 0;

3. the dimension cannot grow too much faster than sample size: n−1 · σ2k2 log(p)→ 0.

Theorem 3.1. Assume 1, 2, and 3. Then oracle FS is model-selection consistent:

P
(
Ĵk = J∗

)
→ 1 .

In particular, under these conditions and with k known, FS chooses the correct model J∗ with probability at

least 1− c′p−η for some c′ > 0 and our choice of η > 0.

The proof of Theorem 3.1 is a direct consequence of Proposition 3.10 and Corollary 3.4, which are given

in Section 3.3 and proven in Chapter 8. Our proof proceeds from the �xed-noise, �xed-design case to random

noise and designs.

Previously, others have derived comparable su�cient conditions for correct model selection by OMP.

In the noise-free �xed-design setting, Tropp (2004) de�nes an Exact Recovery Condition (ERC) for OMP,

namely maxj>k ‖(XT
1:kX1:k)−1XT

1:kXj‖1 < 1, if the columns of X have unit norm and the �rst k variables

are the true ones. Tropp also shows that the �incoherence condition� µ < (2k − 1)−1 implies the ERC.

In the random-noise �xed-design case, Cai and Wang (2011) assume the columns of X have unit norm

and ε ∼ N(0, σ2In). They derive model-selection consistency of OMP if µ < (2k − 1)−1 and, for any η ≥ 0,

min
i∈1,...,k

|βi| ≥
2σ
√

2(1 + η) log p

1− (2k − 1)µ
. (3.1)

If we assume the columns of X have unit variance instead of unit norm, we can replace |βi| with
√
n|βi| in

(3.1) in order to make the condition comparable with our own Assumptions 1, 2, and 3. However, Cai and

Wang's stopping rule depends on the normality of the noise and requires σ to be known.

Besides OMP, similar conditions have been derived for the Lasso. Zhao and Yu (2006) and Meinshausen

and Bühlmann (2006) independently derived an Irrepresentable Condition (IC) or Neighborhood Stability

Condition, very similar to Tropp's ERC and also implied by µ < (2k − 1)−1, that is su�cient and �almost

necessary� for model-selection consistency. As summarized in Section 2.6 of Bühlmann and van de Geer

∗In the easier case where p and/or k are �xed, de�ne N = max{n, p}. Then in every bound, we can replace factors of the
form log(p) with log(N), and we can replace probabilities of the form 1− cp−η with 1− cN−η .
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(2011), if we have this condition and also su�ciently strong signal |βmin| �
√
k log(p)/n, then there exists

a sequence of Lasso regularization parameters λn for which the Lasso is model-selection consistent.

Recall from Section 1.4.2 that the incoherence condition µ < (2k− 1)−1 is sharp among conditions based

only on coherence: there exist cases where the condition is not just su�cient but necessary. Disappointingly,

incoherence�which calls for a nearly orthogonal design�is considerably stronger than the ERC or IC,

especially at large k. The latter conditions only depend on each spurious predictor's correlation structure

with the set of true variables, while incoherence also restricts all correlations among spurious variables.

On the other hand, our simulations in Section 6.1 suggest that this condition is not usually necessary

unless Σ has a particularly disadvantageous structure. Besides, incoherence can be approximately checked

in practice with good estimates of µ and k. The ERC or IC cannot be checked without knowing the true

support J∗, even though our goal in model selection is to learn J∗. Finally, we can relax the incoherence

condition a little if we assume that Σ is row-sparse.

Corollary 3.2. Assume that each row of Σ is s-sparse o� of the diagonals, i.e. has s nonzero o�-diagonal

entries. Let 1 ≤ s < k. Assume 1, 2, and a modi�cation of 3, replacing µ < (2k − 1)−1 by µ < (3.4s)−1.

Then oracle FS is model-selection consistent.

The result follows directly from Proposition 3.10 with Corollary 3.7. If s � k, the new condition that

µ < (3.4s)−1 can be much less restrictive than the original requirement that µ < (2k − 1)−1.

3.3 Supporting results

A comment on notation: in Sections 3.3.1 and 3.3.2, we assume the columns of x are �xed and standardized

to unit norm: xj ≡ Xj−Xj
‖Xj−Xj‖

. In Section 3.3.3, we will return to random X with columns of unit variance.

3.3.1 Fixed design and noise

Assumption 4. Let x be a �xed n × p matrix, with each column normalized to zero mean and unit norm,

and de�ne Σ = xTx. Let e be a �xed n-vector, not necessarily normalized, and let the true model be

k-sparse. WLOG assume that the �rst k covariates are the nonzeros, and the coe�cients are ordered:

y = β1x1 + . . .+ βkxk + e, with |β1| ≥ . . . ≥ |βk| > 0.

De�ne the coherence among predictors as µ = maxj 6=`∈{1,...,p} |xTj x`|. De�ne the coherence between noise

and predictors as γ = maxj∈{1,...,p} |xTj (e/‖e‖)|.

Proposition 3.3. Assume 4 and let µ < (2k− 1)−1. Then these are su�cient conditions for FS to select a

correct term at each given step, if all previous steps have also been correct. For t = 0,

|β1|
‖e‖

>
2γ

1− (2k − 1)µ
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then for t = 1,
|β2|
‖e‖

>
2γ

1− (2k − 2)µ

and for t = 2, . . . , k − 1,

|βt+1|
‖e‖

>

2γ
1−tµ−(t+1)γ2√

1−tµ
1−(t−1)µ −

(2k−2t−1)µ
1−(t+1)µ

.

The following corollary gives a general �beta min� condition for all steps of FS to succeed:

Corollary 3.4. Assume 4. If we have both γ, µ < (2k − 1)−1, then FS will choose the correct model if the

signal-to-noise ratio is at least

min
i∈1,...,k

|βi|
‖e‖
≥ 16.8kγ .

Also, an equivalent result clearly holds if we rescale the data and noise (but not the coe�cients) by
√
n. Let

(Y,X, ε) =
√
n(y,x,e), so that each column Xj has unit variance: ‖Xj‖2/n = 1, so Y = Xβ + ε, with β as

before. Then FS will choose the correct model if

min
j∈1,...,k

|βj | ≥ 16.8kγ‖ε‖/
√
n .

We follow up with several extensions to special cases.

First, if the design is orthogonal, we can drop the dependence on k:

Corollary 3.5. Assume 4. If µ = 0, FS will choose the correct model if the signal-to-noise ratio is at least

min
j∈1,...,k

|βj |
‖e‖
≥ 25

11
γ ≈ 2.28γ .

Proof. Directly from Proposition 3.3, we have the su�cient condition

min
j∈1,...,k

|βj |
‖e‖
≥ 2γ

1− kγ2
.

The result follows from assuming γ < (2k− 1)−1 and maximizing the denominator above at the �worst case�

of k = 3. (If k ≤ 2, then 2γ is a su�cient lower bound.)

Next, if there is no noise term, we can drop the |βmin| lower-bound altogether:

Corollary 3.6. Assume 4. If the true model is noiseless, a su�cient condition at each step t ≥ 2 is

√
1− tµ

1− (t− 1)µ
> (2k − 2t− 1)

µ

1− (t+ 1)µ

which is implied by µ < (2k − 1)−1 with k ≥ t+ 2.
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Proof. Follow the same argument as in the proofs of Proposition 3.3 and Corollary 3.4, i.e. Cholesky

decomposition and correlation matrix inversion, but with noise vector e ≡ 0.

Finally, if we assume that Σ is not orthogonal but row-sparse, we may be able to allow larger coherence

values µ:

Corollary 3.7. Assume 4. Additionally, assume that each row of Σ is s-sparse o� of the diagonals, i.e. has

s nonzero o�-diagonal entries. Let 1 ≤ s < k.

If µ < (3.4s)−1 and γ <
√

12
17k , then FS chooses the correct model if the signal-to-noise ratio is at least

min
j∈1,...,k

|βj |
‖e‖
≥ γ · q(s)

12
17 − kγ2

where q(s) ≡ 2 ·
(√

2.4s
2.4s+1 −

2
2.4

)−1

is greatest at q(1) ≈ 293 but asymptotes towards q(s) ≈ 12 as s→∞.

The coherence condition of Corollary 3.7 is less restrictive than that of Corollary 3.4 only if s� k.

3.3.2 Fixed design, random noise

Assumption 5. De�ne x, {β1, . . . , βk}, and y = β1x1 + . . .+βkxk +e as in Assumption 4, but now assume

that each element of e has variance σ2/n and is i.i.d. from some sub-Gaussian distribution.

Let γ̂ denote the observed coherence between the sample noise and predictors.

Proposition 3.8. Assume 5. For any choice of η > 0, γ̂‖e‖ ≡ maxj∈1,...,p |xTj e| = O(σ
√

log(p)/n) with

high probability (at least 1− c′p−η for some c′ > 0).

Corollary 3.9. Assume 5. If µ < (2k − 1)−1 and σ2k2 log(p)/n → 0, then ∃ c > 0 s.t. FS chooses the

correct model with high probability (at least 1− c′p−η for some c′ > 0) if the signal-to-noise ratio is at least

min
j∈1,...,k

|βj |
σ
≥ ck

√
log(p)/n

where c depends on our choice of η, and both c, c′ depend on the particular sub-Gaussian distribution of e.

Also, the same result clearly holds if we rescale the data and noise (but not the coe�cients) by
√
n. Let

(Y,X, ε) =
√
n(y,x,e), so that each element of ε has variance σ2, and each column Xj has unit variance:

‖Xj‖2/n = 1. Then γ̂‖ε‖ ≡ maxj∈1,...,p |(Xj/‖Xj‖)T ε| =
√
nγ̂‖e‖, so that γ̂‖ε‖/

√
n = O(σ

√
log(p)/n).

Proof. The result follows directly from Proposition 3.8 and Corollary 3.4. The condition that σ2k2 log(p)/n→

0 ensures that γ̂ < (2k − 1)−1 with high probability for Corollary 3.4.
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3.3.3 Random design and noise

Now use the assumptions and setup of Section 3.2, where the columns of X have unit variance. Let µ̂ denote

the observed sample coherence among the predictors.

Proposition 3.10. Assume 1 and 2. Let µ < (2k − 1)−1 and σ2k2 log(p)/n→ 0.

For any choice of η > 0 and su�ciently large n, with high probability (at least 1− cp−η for some c > 0)

we have jointly that γ̂‖ε‖/
√
n ≡ maxj∈1,...,p

∣∣∣ (Xj−Xj)T ε‖Xj−Xj‖

∣∣∣ = O(σ
√

log(p)/n) and that both γ̂, µ̂ < (2k − 1)−1.
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Chapter 4

Model-selection consistency of

FS+SeqCV

In Chapter 3 we assumed that the correct model size k is known. Here, we assume more realistically that

k must be estimated instead. Consider estimating k by FS with sequential data-splitting, or FS+SeqCV, as

de�ned in Section 1.4. In Section 4.1 we show that this procedure is also model-selection consistent, under

the additional conditions below. Next, Section 4.2 explores one of these conditions�a restrictive requirement

that the dimension grows less quickly than the square root of the training sample size. We conjecture that

this condition is not necessary for FS+SeqCV, but we prove that it is sharp for the closely-related Wrapper

FS algorithm. Finally, Section 4.3 contains the formal statements of our supporting results, whose proofs

are deferred to Chapter 8.

4.1 Su�cient conditions

Assumption 6. As n, p, k →∞, we require that:

1. the conditions of Assumption 3 hold on the training sample, with n replaced by nc;

2. the coe�cients must not be too unbalanced:
β2
min

β2
max
≥ c ·max

{
k
√

log(k)
nc

, k
2 log(k)/nv
β2
min/σ

2

}
for some constant

c > 0;

3. the dimension cannot grow as quickly as the training sample size or the test-train ratio: min
{
k
nc
, ncnv

}
·

kp2 log(p)→ 0.

The balanced-coe�cients condition prevents under�tting by ensuring that estimation error in large

coe�cients does not cause us to stop before the smallest coe�cients are selected.
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Next, the condition p2 � nc is much stronger than what we needed for Theorem 3.1, where p > n was

possible at every n. For a particular spurious variable h, consider the over�tting model Jh = J∗ ∪ h and

let Bh ≡ Ev
(
M̂SE(Jh)− M̂SE(J∗)

)
be the di�erence in risks between this incrementally-larger model and

the true model. We say we make a training mistake if Bh < 0. The condition nc → ∞ ensures that a

given Bh has the correct sign, while the p2 term comes from a union-bound argument over all h.

Proposition 4.6 shows that Bh ≈ β̃2
Jh

+ Op

(
n
−3/2
c

)
, where β̃Jh is the regression coe�cient for the

noise regressed on Xh after projecting out X∗. Our required rate of p2/nc → 0 comes from a careful

analysis of the expansion of Bh which exploits a cancellation between the β̃2
Jh

and the Op(n
−3/2) terms.

In contrast, a straightforward argument directly using rates of convergence for β̃2
Jh

would lead to a much

stricter requirement of p4/nc → 0 after the union bound.

Similarly, the condition p2 � nv
nc

comes from a union-bound argument applied to the conditions for

avoiding a di�erent mistake. We say we make a model-selection mistake if we observe M̂SE(Jh) <

M̂SE(J∗) in our combined training and testing samples. By requiring nc
nv
→ 0, we can prevent over�tting by

ensuring that the worst-case di�erence in risks is larger than the test-set error in estimating this di�erence.

Roughly speaking, Proposition 4.7 shows that the additional condition |β̃Jh | > n
−1/2
v prevents a model-

selection mistake if we have already avoided a training mistake:

P(selection mistake for h) . P
(
|β̃Jh | < n−1/2

v

)
= P

(√
nc|β̃Jh | <

√
nc/nv

)
�
√
nc/nv .

By a union bound argument, p
√
nc/nv = o(1) is su�cient.

Note that Assumptions 1, 2, 6 together satisfy the conditions of Theorem 3.1 on the training sample, so

that FS is path-consistent under these conditions.

Theorem 4.1. Assume 1, 2, 6. Then sample-splitting with FS+SeqCV is model-selection consistent:

P
(
Ĵk̂Seq = J∗

)
→ 1.

Proof. By Proposition 4.5, with probability approaching 1, FS+SeqCV will select a correct model path and

will not stop before �nding model J∗.

Then, the next comparison will be between the true model and one of the p − k spurious models Y =

β1X1 + . . .+βkXk +βhXh + ε, for candidate covariate h ∈ k+ 1, . . . , p. By Proposition 4.7, with probability

approaching 1, model J∗ will have lower test MSE than any of these p − k spurious models, so FS+SeqCV

must stop at model J∗.

For comparing nested under�tting models Jh and Jh′ on a correct model path, Proposition 4.5 decomposes

the di�erence M̂SE(Jh)−M̂SE(Jh′) into signal and noise components, then derives conditions for the signal

to be detectable (so that the smaller model is not chosen and FS+SeqCV does not stop before the true model).
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For comparing the true model J∗ with any one-term-larger spurious model Jh, Proposition 4.6 makes Bh

explicit and derives conditions under which the probability of a training mistake vanishes. Proposition 4.7

extends this argument to cover the probability of an overall model-selection mistake.

Our arguments rely on a union bound to protect against the worst case over all p − k possible spurious

models, not just the single spurious model that FS chooses to train and test. When using FS to determine

the model path, we conjecture in Section 4.2 that the last line of Assumption 6 could be weakened. Even

so, Proposition 4.7 is of independent interest, since its worst-case setup corresponds to the Wrapper FS

algorithm de�ned in Section 1.4. In Section 4.2, we show that Assumption 6.3 is not only su�cient but also

�almost� necessary for Wrapper FS�the condition is sharp in the sense that there are situations where the

Assumption cannot be weakened.

So far we have assumed a single data-split, but it is more common to perform cross-validation by

combining estimates of loss by averaging (CV-a) or voting (CV-v) across many repeated splits of the same

dataset. Our results extend straightforwardly to Monte Carlo CV (MCCV) with a shrinking test-train ratio.

Corollary 4.2. Under the conditions of Theorem 4.1, FS+SeqCV-v is also model-selection consistent. That

is, instead of running FS+SeqCV on a single split, we can run it on all possible splits with the same ratio

nc/nv (or any random subset of MCCV splits), then vote across the estimated model-selections, and choose

the single model with the most votes.

Corollary 4.2 follows from our Theorem 4.1 and the argument in Theorem 2 of Yang (2007). Note that

we still require nc/nv → 0; Yang was able to allow the training set to dominate only when comparing

nonparametric models, which converge at a slower rate than our linear models.

Corollary 4.3. Under the conditions of Theorem 4.1, FS+SeqCV-a is also model-selection consistent for

any �xed number of MCCV splits. That is, instead of running FS+SeqCV on a single split, we can run it

on a random subset of all possible splits with the same ratio nc/nv. Record M̂SE for each model across the

splits, and choose the single model with the lowest average M̂SE across splits.

If FS+SeqCV tends to choose the right model with probability going to 1, it will do so on each of the

CV-a splits. Hence, with high probability, the true model will have lowest MSE on every split, and therefore

lowest average MSE across splits. A union bound takes care of the fact that splits on the same dataset are

not independent.

Yang (2007) gives intuition for why CV-v ought to perform similarly to CV-a for su�ciently high signal-

to-noise ratio, but the di�erences between them appear to be second-order e�ects that are di�cult to analyze

theoretically. However, both CV-a and CV-v intuitively should (and empirically appear to) perform better

at any �nite n than single-split CV does, and CV-a appears to outperform CV-v in moderate-n simulations.

Our own simulations show similar performance no matter whether CV-v or CV-a is used, and no matter

whether Monte Carlo CV or V -fold CV is used. For brevity, Chapter 6 reports simulations and examples
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only for the most commonly taught and used variant: V -fold CV-a (as well as inverted V -fold, to let the

test-train ratio shrink).

4.2 On the e�ect of p

Although we conjecture that p2 � nc is not strictly necessary for FS+SeqCV, it is still a meaningful condition

for CV in high-dimensional regression. This condition appears in Theorem 4.1 through Propositions 4.6 and

4.7, which use a worst-case union-bound as if the algorithm were evaluating all p− k spurious models. This

worst-case setup is stricter than FS requires, but it corresponds exactly to the Wrapper FS algorithm de�ned

in Section 1.4.

To the best of our knowledge, we provide the �rst statistical model-selection consistency results for a

wrapper method. Previous work as summarized in Chrysostomou (2009) has only evaluated performance

using simulations or focused on computational speed-ups. Furthermore, we can show that the condition

p2 � nc is not only su�cient for Wrapper FS but also �almost� necessary, in that breaking this condition

prevents model-selection consistency even under a very simple setup.

Consider the case of independent Gaussian data and noise, orthogonal design matrix, and constant-mean

true model. Theorem 4.4 shows that if p2/nc 6→ 0, then even in this simple case there is a non-vanishing

probability that the trained true model's risk can be beaten by some spurious trained model, which is carried

over to the test-set estimates of risk, resulting in over�tting. So the condition p2

nc
→ 0 in Assumption 6.3 is

necessary for selection consistency of Wrapper FS in this setting.

Assumption 7. The true model J∗ is Y = µ + ε. We compare this against p spurious univariate models:

Y = β0h + β1hXh + ε, for candidate covariate h ∈ 1, . . . , p.

Assumption 8. Xn×p and εn×1 are independent random sequences (in n) with iid Gaussian rows. Each

row has mean 0 and variances V(Xi) = I and V(εi) = 1.

Assumption 9. As n→∞, the number of candidate variables p grows �too quickly�: lim inf p2/nc ≥ Γ for

some constant Γ > 0. It does not matter whether or not the training/testing split ratio nc/nv goes to 0.

Theorem 4.4. Assume 7, 8, 9. Then the probability that Wrapper FS makes a model-selection mistake does

not vanish:

lim infn→∞ P
(

minh M̂SE(Jh) < M̂SE(J∗)
)
≥ 0.16(1− e−

√
Γ/2) > 0 uniformly over all nv.

Theorem 4.4 is proved in Chapter 8. First we prove Proposition 4.8, which shows the non-vanishing

probability of a training mistake. Next, the proof of Theorem 4.4 shows that no choice of testing sample size

can make the probability of a mistake vanish.
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On the other hand, the conditions p2 � nc and p
2 � nv/nc do not appear necessary for FS+SeqCV.

These conditions arise from a union bound applied to Wrapper FS, but FS+SeqCV will rarely require that

same bound in practice. FS will only test the single spurious model with the lowest training-data estimate

of risk, which will have one of the highest true risks if p − k is large; so FS+SeqCV should not over�t

after �nding the true model. Figure 4.1 illustrates this intuition: the top row shows a plausible outcome

with a single spurious variable, while the bottom row shows a typical outcome when FS chooses the best

training-data �t from among many spurious variables.

We also illustrate these arguments with simulations to compare FS+SeqCV and Wrapper FS. We draw n

sample outcomes from a true null model (�xed intercept and constant-variance Normal errors), along with p

spurious predictors from an orthogonal random Normal design (zero mean and identity covariance matrix).

For the Wrapper FS and FS+SeqCV methods, respectively, the top and bottom subplots of Figure 4.2

show heatmaps of P(correctly choose null model) at di�erent combinations of p and nc, estimated from 500

replications at each combination. In order to evaluate both conditions of interest using a single pair of

�gures, we choose nc =
√
n so that nv

nc
=
√
n− 1 ≈ nc.

In the top of Figure 4.2, the estimated contours of constant success probability are roughly shaped like

p =
√
nc ≈

√
nv
nc

when using Wrapper FS. As we expect from Theorem 4.4, model selection is challenging

at high p; becomes easier at high n; and tends towards success probability 1 only if nc and
nv
nc

grow much

faster than p2 does.

However, the bottom of Figure 4.2 shows a completely di�erent pattern when using FS+SeqCV. Success

probability increases with nc at every p, but also with p at every nc. By using FS on the training set to

select the next candidate model, correct selection also gets easier as p grows at every n, as long as nc and

nv
nc

grow. Therefore, it seems reasonable to conjecture that FS+SeqCV is consistent even if the p2 factor is

removed from Assumption 6.3. We leave this as a focus for future work.

4.3 Supporting results

4.3.1 P(underfit)→ 0

Proposition 4.5. Assume 1, 2, 6. Then FS+SeqCV will construct a correct model path on the �rst k steps

and will not stop before step k, with probability at least 1−
(
cp−1 + c′(k−1 + (2/e)k)(1− cp−1)

)
→ 1.

4.3.2 p2/nc → 0 is su�cient for P(overfit)→ 0

For a given training dataset and spurious covariate h, recall from Section 4.1 that Bh is the expectation (over

possible test datasets) of the di�erence in test MSE estimates between the true model J∗ and the spurious
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Figure 4.1: Example simulations from a true null model. Top row: if we have only a few spurious variables
to choose from, the best training-data �t is probably quite �at. By bad luck, it might �t well to the test
data too, leading us to select this over�tting model. Bottom row: if there are many spurious variables to
choose from, the best training-data �t will be quite steep, over�tting to the training data. This will most
likely be rejected by the test data in favor of the null model's �at �t, preventing FS+SeqCV from over�tting
at higher p. However, WrapperFS will choose the spurious variable whose trained slope �ts the test data
best, so over�tting becomes more likely at higher p.
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Figure 4.2: Top �gure: P(correctly choose null model) for Wrapper FS. The contours are generally shaped
roughly like p =

√
nc ≈

√
nv/nc. As per Theorem 4.4, Wrapper FS is model-selection consistent only if

p2/nc → 0 and p2 · nc/nv → 0. Bottom �gure: For FS+SeqCV, the contours are not at all like p =
√
nc ≈√

nv/nc. At every nc and nv/nc, P(correctly choose null model) rises with p, as we conjecture at the end of
Section 4.2. Contour lines estimated from 2D loess �t, based on 500 simulations in each cell of the p × nc
grid.
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model Jh = J∗ ∪ h:

Bh = Ev
(
M̂SE(Jh)− M̂SE(J∗)

)
where Ev is the expectation taken over validation datasets. Cross-validation makes a model-selection mistake

if M̂SE(Jh) < M̂SE(J∗), which depends on both the training and test datasets. We also speak of a �training

mistake� if Bh < 0, which depends only on the training dataset: this is the event when an observed trained-

estimate of the spurious model actually generalizes better than the trained-estimate of the true model.

Let X∗ and Σ∗ refer to only the �rst k covariates in X, while ΣJh =

 Σ∗ Σ∗,h

ΣT∗,h 1

 is the population

covariance matrix for all covariates in J∗ along with covariate h. Let Xh be just the column for covariate h

alone. When we compare the true model against the spurious model Y = β1X1 + . . . + βkXk + βhXh + ε,

we will see that Bh has the form

Bh = (β̂Jh − β)TΣ(β̂Jh − β)− (β̂J∗ − β)TΣ(β̂J∗ − β)

= β̃2
Jh
·
(
γJh + (α̂Xh − αXh)TΣ∗(α̂Xh − αXh)

)
− 2β̃Jh · α̂Tε Σ∗(α̂Xh − αXh)

for some γJh ∈ (0, 1), where β̃Jh =
XTc,hP

⊥
∗ εc

XTc,hP
⊥
∗ Xc,h

and P⊥∗ = I − Xc,∗(X
T
c,∗Xc,∗)

−1XT
c,∗; and α̂Xh =

(XT
c,∗Xc,∗)

−1XT
c,∗Xc,h estimates αXh = Σ−1

∗ Σ∗,h; and α̂ε = (XT
c,∗Xc,∗)

−1XT
c,∗εc.

Proposition 4.6. Assume 1, 2, and 6. Consider comparing the true model against the p−k spurious models

Y = β1X1 + . . .+ βkXk + βhXh + ε, for candidate covariate h ∈ k + 1, . . . , p.

Then, ∃ c > 0 such that, for nc large enough, the probability of a �training mistake� vanishes as n→∞:

Pc(min
h
Bh < 0) ≤ c

kp√ log(p)

nc
+ p−1

→ 0 .

Proposition 4.7. Assume 1, 2, and 6. Consider comparing the true model against the p−k spurious models

Y = β1X1 + . . .+ βkXk + βhXh + ε, for candidate covariate h ∈ k + 1, . . . , p.

Then, ∃ c > 0 such that, for nc large enough, the probability of a model-selection mistake vanishes as

n→∞:

P
(

min
h
M̂SE(Jh) < M̂SE(J∗)

)
≤ c

kp√ log(p)

nc
+
kp log(p)
√
nv

+

√
nckp2 log(p)

nv
+ p−1

→ 0 .
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4.3.3 p2/nc → 0 is necessary for P(overfit)→ 0

Under Assumptions 7 and 8, for a given spurious covariate h and a given training sample (Yc, Xc,h), we will

see that the expected di�erence in test errors is

Bh ≡ Ev
(
M̂SE(Jh)− M̂SE(J∗)

)
= β̂2

h(1 +X
2

c,h)− 2β̂hXc,hεc

where Ev is the expectation taken over validation datasets. (This is a special case of the same Bh as in

Section 4.3.2.)

Proposition 4.8. Assume 7, 8, 9.

Then lim infn→∞ Pc(minhBh < 0) ≥ 0.12 > 0, where Pc is the probability taken over construction

datasets.

In other words, the probability of a training mistake (where at least one estimated model with spurious

structure happens to generalize better than the estimated model with true structure) does not vanish.
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Chapter 5

Practical choice of split ratio at large

sample sizes

5.1 Yang's �CV paradox�

If nc/nv does not go to 0, then our probability of correct model selection is bounded away from 1. In fact,

having more data can actually harm our model-selection performance. Yang (2006) calls this counterintuitive

e�ect the �CV paradox.� To supplement Yang's illustration of this e�ect on a classi�cation problem, our

simulations in Section 6.1 show that the same e�ect can arise with regression model selection.

Consider the top-left subplot of Figure 6.1. As a baseline, take the case of n = 1250 and 5-fold CV, where

the probability of correct model selection is around 0.83. If we quintuple the sample size to n = 6250 and stay

with 5-fold CV, the estimated success probability drops slightly to 0.82. Adding new data helps substantially

only if it is mostly allocated to testing, as for inverse 5-fold CV, whose estimated success probability rises

to 1.00 at n = 6250. Similar e�ects are seen throughout Figure 6.1.

In other words, the standard advice to use 5-fold or 10-fold CV (Breiman and Spector, 1992; Kohavi,

1995) may be adequate for prediction but not necessarily for model selection as n grows. However, in the

next Section we show why practical �nite-sample guidance is rarely possible unless some nontrivial knowledge

about the unknown parameters is available.

5.2 Heuristic choice of nc/nv

Traditional high training ratios, as in 5-fold or 10-fold CV, tend to avoid under�tting models but are prone

to over�tting at any n. However, at large n, the chance of under�tting is low at nearly every training ratio,
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so that it may be safe to reduce nc/nv in order to avoid over�tting as well. We suggest some rules of thumb

for making this tradeo�.

In this Section, let us assume that n is su�ciently large for FS to select a correct path. In this setting,

we build on intermediate results from Zhang (1993), who assumes that the model path is �xed in advance,

the true model is indeed on this path, and p and k are �xed as n grows. Under MCCV, Zhang's Corollary

1 provides an exact asymptotic distribution for the probability of correct model selection, which decreases

monotonically as nc/n and p−k increase. Equivalently, this is the asymptotic probability of avoiding over�t,

since the probability of under�t goes to 0 regardless of nc/n.

However, those probabilities are for Full CV. With Sequential CV on a correct �xed path, we only need

the probability that FS+SeqCV stops at the correct model instead of going one step further. By Zhang's

asymptotic probability for avoiding over�t evaluated at p− k = 1,

P
(
k̂ > k

)
≈ 1− P

(
χ2

1 <

(
1 +

n

nc

))
.

In the neighborhood of nc/n ≤ 1/10, this probability of an over�tting mistake becomes negligible with

P(k̂ > k) < .001. Even with massive n, there is rarely a pragmatic need to reduce the training ratio past

nc/n = 1/10 for SeqCV.

Next, in order to relate n and nc/n to the probability of under�t, we re�ne an intermediate step in

Zhang's proof of his Theorem 1, which derives relevant expressions for M̂SE(Jt).

Corollary 5.1. Let ε ∼ N(0, σ2) and let X be a �xed sequence in n. Assume the model path is �xed and

the predictors are ordered, so that model Jh corresponds to using the �rst h predictors. Assume

A′. nv →∞ and nv/n = λ+ o(1) where λ→ 1 as n→∞;

B. supnv→∞ sups ‖n−1
v XT

s,Jh
Xs,Jh−Vh‖ = o(1), where Vh, h ≤ p is a sequence of positive de�nite matrices,

and sups is taken over all subsets of {1, . . . , n} of size nv;

C ′. For h < k, bJh = lim infn→∞ n−1(Xβ)TP⊥JhXβ > 0 and

cJh = lim supn→∞ n−1(Xβ)TPJhXβ < c for some c <∞;

D. For h ≤ p, maxi≤nH
(h)
ii → 0, where H

(h)
ii are the diagonal elements of PJh .

Consider comparing true model J∗ (of size k) against a particular under�tting model Jh (of size h), where

Jh ( J∗. Then we have

P(correctly choose J∗ over Jh) = P
(
A1 > 2A2 + k

(
1 +

n

nc

)
− bJh
σ2/n

+ op(1)

)

where A1 ∼ χ2
k−h; A2 ∼ N(0, bJhnσ

−2); and A1 and A2 are not independent.
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If we additionally assume that the op(1) term is negligible for n larger than some su�ciently large N ,

then we can ensure the probability above to be at least 1− α by choosing n > N and training ratio at least

nc
n
≥


(√

bJh
σ2/n − Z1−α2

)2

+ χ2
(k−h),α/2 − Z

2
1−α2

k
− 1


−1

. (5.1)

Derivations are in Chapter 8. If n is large enough and the op(1) term is negligible, our argument is conservative

in giving the probability of avoiding under�t along a �xed path.

This Corollary only considers comparing J∗ against a single under�tting model Jh. However, since bJh

and χ2
(k−h),α/2 are both monotonically nonincreasing along the model path (as h rises toward k), the worst

case should be the model with h = k− 1. If we choose n large enough to achieve high success probability on

this worst case, the smaller models on that path should also have high individual probabilities (of successfully

being rejected for ∗). We can control overall probability of under�t with a Bonferroni adjustment of α to

α/k.

Choosing nc/n We argued above that a training ratio around nc/n = 1/10 is more than adequate to

avoid over�t, whereas 10-fold CV's nc/n = 9/10 is commonly used to avoid under�t. We might expect

Corollary 5.1 to help us tune nc/n and balance these competing tendencies. However, Equation 5.1 shows

that this is impractical unless we have fairly good knowledge about bJh and k.

Unless the tolerated probability of failure α or the signal-to-noise ratio (SNR) are miniscule, the Z and

χ2 terms are negligible for large n. Equation 5.1 then implies we need
√

1 + n
nc
≤
√

nbJh
σ2k , or

√
1 + n

nc
≤√

n
k
|βmin|
σ if Σ is close to orthogonal. Hence, there is only a narrow range of |βmin|/

√
kσ2 where it makes

sense to decide between nc/n = 1/10 and nc/n = 9/10:
√

1 + 10
1 /
√

1 + 10
9 ≈ 2.28. The choice of nc/n is so

sensitive that we need to know |βmin|/
√
kσ2 to within a factor of 2, which is implausible in many modern

high-dimensional regression settings (even with a pilot study).

Instead, we propose the following rule of thumb, whose use we illustrate in Section 6.2.2:

• If n is large and we con�dently believe

√
nbJh
σ2k &

√
1 + 10

1 ≈ 3.32, we can safely use a low training

ratio of nc/n = 1/10, avoiding both under- and over�t.

• Otherwise�if n is not large, or our initial guess of

√
nbJh
σ2k is too small or imprecise�a conventional

split ratio such as 8/10 or 9/10 (5-fold or 10-fold CV) is safer. We will be prone to over�t but at least

ought to avoid under�t.

Tradeo�s between under�t and over�t Figure 5.1 illustrates the competing curves of P(under�t) and

P(over�t) vs. nc/n at various values of the signal-to-noise ratio
bJh
σ2/n and true model size k. Across all nc/n
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ratios, the estimated probability of under�t (solid lines) become smaller as the SNR increases, but larger k

makes under�t much more likely.

Finally, in Figure 5.2 we simulate empirical estimates corresponding to the curves from Figure 5.1. Our

simulations used an orthogonal design with n = 500, p = k + 1, σ2 = 1, and β's equal-valued nonzero

coe�cients set to achieve the target SNRs. We conduct 600 simulations at each value of nc/n and SNR. For

each dataset and training ratio, we estimate test MSEs along a �xed model path using Monte Carlo CV with

20 repetitions. Because we found the estimates from Equation 5.1 to be quite conservative, we illustrate a

range of smaller SNRs here.

• P̂(underfit) = P̂
(
∃ h < k : M̂SE(Jh) < M̂SE(Jk)

)
. The simulations indicate that our heuristic

under�t curves from Equation 5.1 are conservative, but the approximate patterns are the same, as

the probability of under�t decreases with training ratio. P̂(underfit) appears to rise very slightly with

k, as expected from Equation 5.1.

• P̂(overfit) = P̂
(
M̂SE(Jk+1) < M̂SE(Jk)

)
. Zhang's asymptotic probability of over�t appears slightly

anti-conservative by our simulations, especially at high training ratios. We estimate separate P̂(overfit)

curves for each SNR and plot all (dashed) lines. As expected, they overlap almost perfectly and are

not a�ected much by SNR or k.

Both �gures con�rm that high training ratios avoid under�t, low ratios avoid over�t, and there is only a

narrow range of
√
bk−1 in which it makes sense to tune nc/n.

Finally, it may also be impossible to make good assumptions about k, σ2, and bmh . In this situation,

instead of hoping to correctly select one model, we may prefer to explicitly acknowledge the uncertainty in

the model selection process. In Chapter 7 we discuss ways to build con�dence sets for model selection with

cross-validation.
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Figure 5.1: For k = 5 (left �gure) and k = 10 (right �gure), we plot the P(overfit) (dashed line) and the
P(underfit) (solid lines at di�erent levels of signal-to-noise ratio), vs. training ratio. Estimated using Zhang
(1993) and Corollary 5.1.
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Figure 5.2: For k = 5 (left �gure) and k = 10 (right �gure), we plot the P̂(overfit) (dashed lines) and

P̂(underfit) (solid lines), at di�erent levels of signal-to-noise ratio, vs. training ratio. Estimated from 600
simulations at each combination of nc/n and SNR, with orthogonal Gaussian design & noise, a �xed correct
path, n = 500, and p = k + 1.
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Chapter 6

Simulation studies and real-data

examples for FS+SeqCV

We use large-scale simulations in Section 6.1 to empirically corroborate the theory from Chapters 3 and

4. We also demonstrate the performance of FS with SeqCV on several real datasets. Section 6.2.1 shows

that FS+SeqCV performs as well as standard methods on two commonly-used benchmark datasets, despite

fairly small sample sizes. In Section 6.2.2, we show that FS+SeqCV with a low train/test ratio outperforms

competitors on the much larger Million Song Dataset of Bertin-Mahieux et al. (2011).

6.1 Simulation design and results

We study stopping-rule procedures chosen for comparison with 5-fold CV, one of the most common CV

variants. We contrast standard V -fold vs. an �inverted� variant designed for small training ratios: train on

one fold and test on the remaining V − 1 folds. We also contrast our Sequential CV vs. standard Full CV.

We simulated a range of true model sizes k ∈ {5, 25, 125}, dimensions p ∈ {10, 50, 250, 1250}, and sample

sizes n ∈ {50, 250, 1250, 6250} (omitting the impossible settings where k > p or k > n). We found that this

n range, together with a small βmin = 0.2, adequately contrasts the low-signal and high-signal cases. The

k nonzero coe�cients were drawn from a Uniform distribution, then shifted and scaled to have the range

[βmin = 0.2, βmax = 2]. The design matrix X was drawn from a Normal distribution with 0 mean and

covariance matrix Σ, using one of two correlation structures:

• Setting 1: Σ1(µ) = (1− µ)I + µ11T is a constant-correlation matrix with all o�-diagonal elements set

to µ ∈ {1/(2k), 5/(2k)}, allowing us to compare results based on whether the coherence was just below

or far above the theoretical threshold of µ < (2k − 1)−1.
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• Setting 2: Σ2(µ) has the following correlation matrix structure:

Σj` =


1 if j = ` ,

−µ if j 6= ` and j, ` ≤ k ,

µ if j 6= ` and j or ` ∈ k + 1, . . . , p .

Here, the coherence condition is not only su�cient but also necessary to recover the simple model where

ε = 0 and βj = 1 for j ≤ k. This structure is not always positive de�nite for certain combinations of k,

p, and µ, but we report results for k = 10, p = 11, and µ ∈ {1/19, 1/10} = {1/(2k − 1), 1.9/(2k − 1)},

where Σ is positive de�nite.

The noise ε was drawn independently from one of two distributions: either a sub-Gaussian ε ∼ N(0, 1),

or a heavy-tailed ε ∼ t(df = 2) which has no �nite second moment. (The simulations with t2 noise or with

covariance structure Σ2 use a range of smaller p and k values, which we found to adequately illustrate the

di�culty of model selection at these settings.)

We run at least 400 replicate simulations at every combination of data-generation settings, independently

generating new datasets and running every estimation procedure on each dataset. In Figures 6.1-6.5, error

bars show ±2 · SE as approximate marginal 95% con�dence intervals.

For Theorem 3.1, the black lines in Figure 6.1 illustrate the path-consistency of FS, plotting the

probability of correct model selection for oracle FS with known k. As expected, the problem becomes

easier in each sub-plot with increasing signal-to-noise ratio (SNR). Higher µ makes the problem a little

harder but not impossible, as we see by comparing the left and right halves of the �gure. As expected from

our beta-min condition, higher p and higher k both make the problem harder, causing ever-higher values

of n to count as �low SNR� conditions. (Note that larger k implies smaller p − k so there are fewer ways

to under�t, and our simulations also use smaller µ at larger k. However, these bene�ts of larger k do not

appear to outweigh the harms, at least on the scale of k simulated here.)

For Theorem 4.1, Figure 6.1 also shows results for FS with V -fold CV-based stopping rules, at two

training ratios: 5-fold (dashed lines) and inverted 5-fold (dotted lines). We see similar patterns as for oracle

FS, but with lower success rates when the stopping rule is only an estimate. As expected, the low training-

ratio performs the worst at low n, due to substantial chance of under�t (despite low chance of over�t).

However, the same low training-ratio performs best at high n, due to negligible chance of under�t when SNR

is high. Inverted 5-fold CV approaches success probabilities of 1 at very high n, in all but the highest p, k, µ

condition. Still, the values of n that correspond to �low SNR� get larger with higher p, k, and µ. Meanwhile,

over�t never becomes negligible for high training-ratios even at high SNR. Standard 5-fold CV is better

than inverted 5-fold for small and moderate n but its success probability tends to plateau beyond n = 1250.

On the other hand, as we conjecture in Section 4.2, this plateau does get better at higher p, although the
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bene�ts of high p for CV happen only at high SNRs. When starting from moderate SNRs, raising p merely

decreases the SNR and causes under�t instead of preventing over�t.

In addition to the e�ects of high vs. low training ratio, Figure 6.1 also contrasts between SeqCV vs.

FullCV (dark vs. light colors). In several low-k cases, 5-fold FullCV (light) over�ts more than 5-fold SeqCV

(dark) does at high SNRs, while in a few high-k cases, 5-fold SeqCV stops too early more often than 5-fold

FullCV does. However, the di�erences between SeqCV and FullCV are otherwise negligible. (Not shown: we

also simulated single-split vs. V -fold CV, �nding that that a single data-split tends to underperform V -fold

CV at the same training ratio, as expected.)

Next, Figures 6.2 and 6.3 use the same layout as Figure 6.1, but instead report the average numbers

of false negatives (under�tting) and false positives (over�tting) on the vertical axes. As expected, each

algorithm generally improves with higher n but su�ers at higher p, k, and µ. In both �gures, oracle FS

performs poorly at low SNRs because it can neither stop early (to avoid adding spurious variables) nor

continue late (to collect all true variables after some spurious variables were added early). All of the CV

methods tend to stop too early at low SNRs, having more false negatives and fewer false positives than oracle

FS. Likewise, SeqCV has more false negatives but fewer false positives than FullCV, and inverted 5-fold CV

has more false negatives but fewer false positives than regular 5-fold. However, the CV methods have fewer

false positives with higher p, as we conjecture in Section 4.2, at least until the high-µ and p = 1250 case.

Even this favorable Σ1 correlation structure can su�er from high µ > (2k − 1)−1 if p is too large.

Across the three �gures, the transition between �low� and �high� SNR can di�er for each algorithm. For

instance, n = 1250 and k = 125 appears to be a borderline SNR at some p, µ: both SeqCV methods under�t

dramatically, and inverted 5-fold FullCV over�ts substantially, but regular 5-fold FullCV only over�ts a little.

Returning to success probabilities, Figure 6.4 illustrates the e�ect of heavy-tailed noise, using a similar

layout to Figure 6.1 but drawing super-Gaussian ε ∼ t(df = 2) instead. Model-selection becomes uniformly

more di�cult when the noise has no �nite second moment. Nonetheless, consistency is not ruled out: several

of the subplots in Figure 6.4 do show success probabilities approaching 1 for oracle FS, and none of the

FS+CV variants have plateaued yet at the largest sample size shown. In fact, the same simulations with t3

noise rescaled to unit variance (not shown) look identical to the Gaussian noise, despite the heavy tails.

Finally, Figure 6.5 shows the e�ect of the �worst-case� correlation structure Σ2(µ). This simulation setup

was similar to selected subplots of Figure 6.1, except with a di�erent Σ. The µ < (2k − 1)−1 case is similar

in both �gures, but the high-µ case is dramatically worse in Figure 6.5. Here, the success probability is stuck

at around 0.5 for oracle FS and even lower for FS+CV, since the structure of Σ2(µ) is designed to cause a

mistake when µ ≥ (2k−1)−1. This simulation illustrates that our coherence condition is sharp, even though

it may not be necessary under other Σ structures as seen in Figures 6.1 and 6.4.

Several other simulation settings (Toeplitz correlation matrix; deterministic β vector with decreasing

nonzero entries; higher βmax; lower µ; repeated V -fold CV, MC CV, and CV-v variants) did not lead to
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Figure 6.1: Simulations to illustrate selection-consistency of FS, as per Theorems 3.1 and 4.1. Oracle FS (solid black line) approaches success
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Figure 6.3: Simulated average counts of false positives when using FS, illustrating the role of over�t in Theorems 3.1 and 4.1. Oracle FS
(solid black line) approaches 0 false positives as n increases in every setting, but the problem is harder at larger µ, p, and k, since oracle FS
is not allowed to stop early even if it cannot detect the remaining true variables. High training ratios (5-fold CV, dashed line) over�t at every
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FullCV (light colors). Based on 400 simulations at each data point. Error bars show ±2 · SE.
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Figure 6.5: Simulations to illustrate failure of selection-consistency of FS under a �worst case� correlation
structure. Similar setup as subplots of Figure 6.1, but with di�erent levels of µ and using design structure
Σ2(µ), for which the coherence condition µ < (2k − 1)−1 is necessary. When the condition is not met (right
subplot), the probability of success remains around 0.5 for oracle FS (solid black line) and much lower for
FS+CV variants, even as n rises. Based on 1000 simulations at each data point. Error bars show ±2 · SE.

substantially di�erent results. We did �nd that V -fold outperforms single-split CV, but our plots omit the

unsurprising single-split results to avoid visual clutter.

Simulations were conducted in R (R Core Team, 2018), using the packages leaps to implement FS

(Lumley and Miller, 2017), doParallel to run simulations in parallel (Revolution Analytics and Weston,

2015), and ggplot2 to plot results (Wickham, 2009). R code to reproduce our simulations and data analyses

is available online at: https://github.com/civilstat/wieczorek-thesis-code
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6.2 Real-data examples

6.2.1 Benchmark datasets

We illustrate the use of FS+SeqCV on two classic datasets: the prostate cancer and Boston housing data.

In replicating previous analyses, we �nd that FS+SeqCV performs as well as competing methods.

Prostate cancer data

Hastie et al. (2009) illustrate several approaches to linear regression selection or shrinkage on the classic

prostate cancer dataset of Stamey et al. (1989). The task is to predict the logarithm of prostate-speci�c

antigen levels, using p = 8 predictor variables including patient age and several clinical measures. Data are

available at the patient level for n = 97 male patients. Hastie et al. have split the data into a learning set

of 67 cases and a holdout set of 30 cases, so cross-validation is applied only to the 67 learning cases. Our

Figure 6.6 mimics the top-left subplot in Hastie et al.'s Figure 3.7, which plotted estimated prediction error

against model size, using 10-fold CV with All Subsets regression. With so few cases, we agree that 10-fold

CV's high training ratio is appropriate.

The model paths chosen by FS and by All Subsets regression tend to match, and our CV error estimates

match Hastie et al.'s Figure 3.7 using FS instead of All Subsets. Furthermore, they do not use FullCV, but

rather the �1 standard error rule.� They choose the smallest model whose mean CV error was within 1 SE

of the global minimizer's mean CV error. Although FullCV would keep 7 of the 8 variables in the model,

the 1SE rule chooses a model size of only 2 variables, which happens to coincide with SeqCV.

Finally, we �t a FS path to the full learning set, stop at the chosen subset size k̂, and evaluate this

model's predictions on the holdout set. The holdout error for the full OLS model (k̂ = p = 8) is 0.521, and

FullCV (k̂ = 7) has holdout error of 0.517, while the holdout error for the FS+SeqCV model (k̂ = 2, also

the AllSubsets+1SE model) is only 0.492. In other words, for 10-fold CV, FS+SeqCV performs identically

to All Subsets with the 1SE rule on the classic prostate dataset. By holdout error, FS+SeqCV outperforms

FullCV or the full OLS model.

Boston housing data

Zhang (2011) evalutes OMP and his own proposed �FoBa� algorithm on the Boston housing dataset of

Harrison and Rubinfeld (1978). The task is to predict median housing value (in thousands of dollars) from

p = 13 other variables related to housing, pollution, and demographic and economic measures. Data are

measured at the Census tract level, using n = 506 Boston-area tracts from the 1970 Census. In our Figure 6.6,

we mimic Zhang's Figure 5, which plots training and test estimates of prediction error against model size.
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Figure 6.6: Left �gure: Our replication of Figure 3.7 of Hastie et al. (2009), but replacing All Subsets with
FS. We use their learning subset (67 cases) of the prostate cancer dataset and make one random partition
into 10 folds. For each fold, train a full model path using FS on the data outside that fold, and record the
test MSE at each subset size. The plots show average MSEs and their standard errors over the 10 folds.
Right two �gures: Our replication of Figure 5 of Zhang (2011), but replacing the Lasso with FS. We partition
the Boston housing dataset into splits with nc = 50 and nv = 456; train a full model path using each of FS,
FoBa, and �forward-greedy� (OMP); record their training and test MSEs at each sparsity level; and average
both MSEs over 500 random partitions.

We explicitly compare FS to Zhang's FoBa and to OMP (which he calls �forward-greedy�). FoBa is a

special forward-backward stepwise variant of OMP that is allowed to take many backward steps (if needed)

after every forward step. We use Zhang's R implementation of FoBa and OMP, available online at:

http://tongzhang-ml.org/software.html

Following Zhang, we do not set aside a holdout set, but simply use repeated MC CV with a training ratio

of nc/n = 1/10 on the entire sample. We repeatedly partition the data 500 times into 50 training and 456

testing cases; train a full model path using each algorithm; and report training and test estimates of MSE

for each sparsity level from 1 to 10. Finally, to be comparable with Zhang's results, we do not include an

intercept in the model by default, but treat it as a separate feature which may be added (or dropped, by

FoBa) at any time.

For each algorithm, the CV test error curve has only one local minimum, so SeqCV and FullCV both

choose the same sparsity levels. FS chooses a model with 2 predictors, compared to FoBa's choice of 3

predictors and OMP's choice of 5. Of the three models, FS is sparsest and has lowest test error.

Conclusions from benchmarks

For both of these exemplar datasets, there is no substantial di�erence in performance between FS+SeqCV

and other methods used in common practice. Of course, examples can exist where a small early uptick in
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estimated CV error causes FS+SeqCV to choose a model which is far too small�but these are most probable

in low-signal settings, where correct model-selection is hopeless for any algorithm.

At the other extreme, when both n and p are huge, SeqCV can provide substantial savings in

computational cost or runtime compared to standard FullCV. In these settings, we can also cut costs and

improve performance by choosing a low training ratio, as the next example demonstrates.

6.2.2 Million Song Dataset

We illustrate FS+SeqCV on a large dataset, where a small train/test ratio can be expected to improve

both run-time and probability of correct model selection. We use the year-prediction problem extract of the

Million Song Dataset (MSD) assembled by Bertin-Mahieux et al. (2011). At n = 515,345 and p = 90, this is

one of the largest regression datasets currently on the UCI Machine Learning Repository, Lichman (2017).

All of the predictors are continuous and have no missing values.

Other authors have previously used this dataset to illustrate regression methods for large-scale data.

Zhang et al. (2015) used the MSD to illustrate a scalable variant of Kernel Ridge Regression (KRR), while

Ho and Lin (2012) used the MSD as a test case for linear Support Vector Regression (SVR) vs. kernel SVR.

Task and data description

Our task is to predict the �continuous� release year (between 1922 and 2011) of each song in the dataset,

using 90 continuous predictors all based on the acoustic property of �timbre.� According to Jehan (2010),

the documentation for The Echo Nest �Analyze� API used to preprocess the MSD, �timbre is the quality of

a musical note or sound that distinguishes di�erent types of musical instruments . . . and is derived from the

shape of a segment's spectro-temporal surface, independently of pitch and loudness.�

Each record in the MSD is one song. That song is partitioned into short time segments, and 12

timbre coe�cients are computed on each segment to approximate the segment's spectral surface as a linear

combination of 12 basis functions. Finally, the 12 averages, 12 variances, and 66 covariances of these

coe�cients (across time segments within a song) are computed to create the 90 features in the MSD.

Relating release year linearly to timbre may not be an ideal scienti�c model, but we have not found

nonlinear methods to be substantially better. A linear regression with all p = 90 variables achieves a holdout

Root Mean Squared Error (RMSE) of 9.5 years, with R2 ≈ 0.24. Zhang et al. (2015) report their nonlinear

kernel ridge regression achieves holdout pseudo-R2 ≈ 0.31, the same as our own best attempt at nonlinear

regression using random forests. Hence, linear regression has little room for improvement and appears to be

an adequate predictive model for this dataset.

Finally, Figure 6.7 shows several high correlations between pairs of predictors, but not many. Although

we do not meet our theorems' coherence threshold, we are not too concerned in light of the simulation results
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Figure 6.7: Histograms of correlations in the MSD dataset.

in Section 6.1. Also, the condition number of our predictors' correlation matrix is around 13.3, below the

conventional multicollinearity cuto� of 30.

Model selection and evaluation

We illustrate the use of our proposed method, FS+SeqCV with a low train:test ratio, compared against

several alternatives. The MSD is published with a pre-determined 90:10 split of 463,715 learning cases

and 51,630 holdout cases. We perform CV by splitting the 463,715 learning cases further, and we report

performance on the 51,630 holdout cases.

Following our heuristic advice in Section 5.2, we believe that a 10:90 split is reasonable here. The learning

set has a large n = 463,715, so we can safely use a training ratio of nc/n = 1/10 if we also believe that√
nbJh
σ2k &

√
1 + 10

1 ≈ 3.32. Let us decide that it does not make sense to estimate a sparse model here

unless it has at most k ≤ p/3 = 30 nonzero coe�cients. For the full OLS model, σ̂ ≈ 9.6, and the top

35 |β̂j | in the full model are all above 0.30, so it seems reasonable to assume |βmin| & 0.3. This leads to√
nbJh
σ2k ≈

√
463,715

30 × 0.3
9.6 ≈ 3.9 > 3.32, so it appears reasonably safe to use nc/n = 1/10. However, for

the sake of comparison, we also run FS+SeqCV with a high train:test ratio, as well as FS+FullCV at both

train:test ratios. Finally, we also report results for the null (intercept-only) model and the full OLS model

(all 90 predictors).

For the null and full models, we train directly on all 463,715 learning cases and report performance on

the 51,630 holdout cases. For each CV-based stopping rule and split ratio, we �t a model path on the �rst

nc learning cases, then use the next nv learning cases to select one model from that path. We �nally re�t

the chosen model on the full learning set and report its performance on the holdout set.

Training an intercept-only model (guessing every song's release year as 1998.4) has a test-data RMSE

of 10.85, while the full OLS model has a test-data RMSE of 9.51 (R2 = 0.24). This di�erence in RMSEs

translates to 1 year and 4 months, so even the full linear model does not improve predictions dramatically
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Stopping rule k̂ RMSE (years) Time (minutes)
Null model 0 10.85 <1
FS+SeqCV, 10:90 23 9.61 1
FS+SeqCV, 90:10 29 9.57 14
FS+FullCV, 10:90 60 9.52 10
FS+FullCV, 90:10 76 9.51 93
Full model 90 9.51 <1

Table 6.1: Selected model sizes, holdout RMSEs, and computation times for the MSD, under di�erent
stopping rules.

on average. Hence, we merely hope to �nd a sparser linear model whose holdout RMSE is nearly as good as

the full model's, for the usual bene�ts of model selection: better interpretability, fewer predictors to collect,

etc.

For each approach, Table 6.1 reports the size of the selected model, holdout RMSE estimates (in years),

and computation time (in minutes). As we move down the table's rows, we modestly reduce RMSE but

dramatically increase model size and computation time.

First, we note in Table 6.1 that a lower training ratio (10:90 vs. 90:10) does not substantially change

the selected model's RMSE, but it does choose a sparser model, as we expect for such large-n situations.

Second, the SeqCV stopping rule tends to choose a substantially sparser model than FullCV. These sparser

models do tend to have slightly higher holdout RMSE, but by no more than 0.1 on the Year scale, which

corresponds to 1.2 months�a negligible di�erence, especially with data recorded to the nearest year.

In the sparsest case, FS+SeqCV at the 10:90 split ratio selects a model with 23 variables, around a

quarter of the original 90 predictors. This is a considerable reduction in model size and computational

resources required, with negligible e�ect on predictive performance.

There is also considerable overlap among the predictors selected by the sparse models. For instance, both

the Means and Variances of timbre coe�cients 1, 2, 6, and 11 are selected in every sparse model, so these

four basis functions appear to be among the most informative summaries of a song's content as it relates to

Year.

Table 6.1 also reports the approximate runtime for each selection algorithm. Using a small 10:90 split

is substantially faster than a large 90:10 split, because the computationally-expensive training is run on far

less data. Likewise, using SeqCV can be substantially faster than FullCV, because it is possible to stop quite

early without building a full model path up to all 90 variables.

In short, our suggested algorithm selects a model which performs almost identically with the largest model

in our scope, but which requires far fewer predictor variables and speeds up computation considerably. If

we are using a linear model and we have massive n, the combination of SeqCV and low training ratio can

improve sparsity and computation speed dramatically, with minimal impact on predictive performance.
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Chapter 7

Conclusions

7.1 Summary and discussion

We have derived and illustrated conditions under which FS is model-selection consistent, either assuming

that the model size k is known or using a data-driven stopping rule based on Sequential CV. We have also

argued for the bene�ts of using a low training ratio for CV when conditions are suitable.

However, previous authors such as Harrell (2015) have argued that automatic regression model selection,

such as FS, is almost never a good idea. Not only do the naive estimated inferences (p-values, CIs, etc.)

fail to account for the selection process, but the choice of model itself is noisy and less interpretable than

it appears. They point to decades of literature with con�icting advice as another reason not to trust such

methods.

We agree with Harrell in the noisy small-sample setting where FS has traditionally been applied. As our

theorems and simulations demonstrate, there are no guarantees that FS will do a good job of selection when

we have low signal, high noise, small samples, and high correlations. In this setting, we recommend using

subject-matter expertise instead of selection algorithms. Dawes (1979) goes even further, arguing that in

these settings we should not even try to estimate a linear model. Instead, devise an �improper linear model�

which simply assigns equal weights to each predictor that experts agree is �relevant,� with signs also chosen

by the experts; and report its performance on the data.

When, then, are methods like FS valuable? One modern use-case for FS could be A/B testing for

software products with large user bases. Websites or apps often want to evaluate proposed changes to the

user interface (UI), testing the change on a small proportion of their audience before rolling out the change

to all users. They may also be interested in understanding di�erent e�ects for di�erent subgroups of users,

so an interpretable linear model could have value over a pure prediction model. For instance, maybe the

proposed UI update hurts engagement among long-standing users, but helps among newer users.
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With millions of registered users to choose from, and the ability to block or stratify carefully before

randomizing users to the A or B arms of the experiment (current UI vs. updated UI), it can be possible to

achieve a nearly-orthogonal design with high signal-to-noise ratio. Local UI expertise and data from previous

A/B tests can help estimate reasonable values of k, σ2, and bmin and even establish rough power calculations,

based on the heuristics in Section 5.2. If so, we can actually expect FS to perform well at sifting through

the covariates on each user (e.g., device and operating system; approximate geographic location; how long

they have been a registered user, and other usage patterns; perhaps demographic information, if users �ll

out pro�les; etc.) and selecting a good sparse linear model. This is also an instance of the large-n situation

where our two suggestions for reducing computation (SeqCV rather than FullCV; and low rather than high

train:test ratios) are expected to improve our chance of correct model-selection.

7.2 Future work

A di�erent perspective on model selection with cross-validation, not speci�c to Forward Selection or other

greedy path algorithms, is the idea of building a con�dence set of models. Lei (2017) introduced the idea of

�cross-validation with con�dence� (CVC), using the models compared by cross-validation to build a 100(1−

α)% con�dence set which contains the best model with probability at least 1− α. This concept has several

bene�ts over selecting a single model with CV. By building such con�dence sets, data analysts can express the

uncertainty in the model-selection process. Also, choosing α allows statisticians to trade o� higher coverage

vs. larger con�dence set sizes in a familiar way, without tuning the CV training ratio. Finally, subject

matter experts can choose one of the models in the con�dence set based on their own criteria. Alternately,

an automated algorithm can follow the �bet on sparsity� principle and choose the smallest model in the set.

Lei's framework is useful and widely applicable, with a proposed methodology assuming only that the

loss function evaluated on individual test cases follows some distribution with sub-exponential tails. Lei's

simulations also show that CVC's coverage tends to be very close to the nominal con�dence level. However,

the implementation calls for a bootstrap multiplier approach, which can add substantial computational

expense on top of CV as well as a non-trivial layer of complexity to the code.

In future work, we propose to seek simpler and cheaper approximations to CVC that still have reasonable

performance guarantees, as illustrated in the tentative results below. We suggest several approximations to

CVC inspired by di�erent approaches to �ranking with con�dence,� and we demonstrate their empirical

performance in simulations. The in�uential paper of Dietterich (1998) also proposed and compared several

approximate statistical tests for comparing two �tted models, including CV-based approaches. However, the

justi�cations were heuristic and only applied to comparing two models, not to constructing a con�dence set

for the best of many models.
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Additionally, in future work we will explore integrating Lei's CVC into FS+SeqCV using a sequential

testing approach: stop adding variables when the next-larger model is not signi�cantly better than the

current model. Under the conditions for path-consistency of FS, we do not need to worry about information

leaking from the test data back to the training data except on a set of measure approaching 0, until we

reach the correct model. Hence, with su�cient data we should not stop too soon, and we should approach

the nominal coverage level for our test of whether to continue past the true model. Unlike the discredited

traditional signi�cance-test stopping rules for FS, this �FS+SeqCVC� would account for the fact that we

have been testing more than one pair of models.

Ranking with con�dence Klein et al. (2018) propose a simple method to construct con�dence sets

for ranking populations, requiring only a multiple-comparisons-corrected con�dence interval for each

population's point estimate. The rectangular joint con�dence region contains all estimates simultaneously

with the desired probability, and the full procedure of Klein et al. gives a joint con�dence set for all of

the ranks. However, if we are only interested in the top rank, the procedure simpli�es to selecting every

population whose CI overlaps the CI for the top-ranked population. Although quite conservative, this method

is valid whenever the individual CIs are valid.

Inspired by Klein et al. (2018), we propose a simple method �KWW� (Klein-Wright-Wieczorek) for CV

with con�dence. Say that we are comparingM di�erent models using CV. For each model J being compared,

estimate its cross-validation test-set M̂SE(J) and the MSE's standard error ŜE(J). Build a Bonferroni-

corrected 2-sided Gaussian con�dence interval (CI) for each of the M models: M̂SE(J) ± Zα/(2M)ŜE(J).

Finally, let our con�dence set contain the winning model and any model whose CI overlaps the winner's CI.

In a di�erent approach, Hung and Fithian (2016) explore the problem of �rank veri�cation.� They study

the naive procedure of testing whether the highest-ranked entity is signi�cantly di�erent from the runner-

up, and so on down the ranks, stopping when a non-signi�cant di�erence is found. They argue that for

exponential families, an unadjusted two-tailed pairwise test comparing the estimated winner and runner-up

is in fact a valid level-α test (and likewise for the next tests down the line)�even though it seems to ignore the

multiple-comparisons and post-selection issues. Loosely speaking, when the winner is so clearly di�erent from

the runner-up and other candidates, then removing the winner from consideration has negligible statistical

e�ect on our inferences about the rest of the ranking. Admittedly, Hung and Fithian (2016)'s result is

unlikely to apply for CV, because we expect many models to fall in the con�dence set. When the winner

is not signi�cantly di�erent from the runner-up or several others, we cannot ignore the post-selection issues

caused by naively using the winner as our baseline in a sequence of tests.

Nonetheless, for CV with con�dence, we suggest the following simple �HF� (Hung-Fithian) procedure

inspired by their result. For each non-winning model, compute the vector of individual test-case di�erences

in loss between the winner and the other model. Using these di�erence vectors, create Bonferroni-corrected
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2-sided Gaussian con�dence intervals for the di�erences in M̂SE between the winner and every other model.

Let our con�dence set contain the winner and any model whose CI for the di�erence includes 0. We also

propose another variant, �HFnaive�, in which the CIs are uncorrected and 1-sided (as one might naively do

when ignoring the multiple-comparisons and post-selection problems).

The 1SE rule Besides the above ranking-with-con�dence approaches, we also consider variants of the

�one standard error rule� (1SE), introduced in Breiman et al. (1984) as a heuristic regularization method for

model selection. In the original rule, we choose the smallest (or most-regularized) model whose test MSE

falls no more than one winner's-SE away from the winner's MSE: M̂SE(J) ≤ M̂SE(Ĵwinner)+ ŜE(Ĵwinner).

We can turn this into a con�dence set by choosing all such models, not just the smallest.

However, this con�dence set does not allow us to tune α, and it completely ignores the highly-positive

correlations we expect to see between models. Hence, as another approximation to the HF rule above, we

propose a method �ZSEdi�� which requires barely any more computation than the 1SE rule does. The

SE of a di�erence is
√
SE2

1 + SE2
2 − 2Cov1,2. If we make a drastic simplifying assumption in the spirit

of the 1SE rule, and we assume that all models' SEs and pairwise correlations are the same, then we can

approximate the SE of any di�erence between models as SE1 ·
√

2(1− Corr1,2). In this case, we estimate

ŜE(diff) = ŜE(Ĵwinner) ·
√

2(1− Ĉorr(Ĵwinner, Ĵneighbor)), using the estimated correlation of the winning

model's test-case losses with those of the next-smallest or next-largest model�whichever gives the larger

ŜE(diff). We use this ŜE(diff) to form Bonferroni-corrected 2-sided Gaussian CIs for the di�erences between

the winner and each model, and our con�dence set includes any models whose CI for the di�erence includes

0.

Estimating ŜE Each of these �ve proposed methods�KWW, HF, HFnaive, 1SE, and ZSEdi��requires

standard error estimates. The naive SE estimator for sample-splitting takes the standard deviation of

individual test-case losses, then divides by
√
ntest. Likewise, for V -fold CV, the naive SE estimator takes

the standard deviation of average MSEs across folds, then divides by
√
V .

These naive SE estimators are clearly not appropriate. They assume that the test losses are independent

across cases and/or across folds. However, in sample-splitting, every test case is evaluated on model estimates

from the same training set. A more reasonable covariance structure for `im would be Compound Symmetry,

a.k.a. an Exchangeable covariance matrix: σ2
d for every diagonal entry, σo for every o�-diagonal entry.

Likewise, a better covariance structure for V -fold CV would consist of such Exchangeable blocks within each

fold, and a third constant covariance σb between cases in di�erent folds. Nadeau and Bengio (2000) and

Bengio and Grandvalet (2004) study estimation of the variance of MCCV and V -fold generalization error

estimates, respectively. They propose alternate estimators, but show that this is a challenging problem with

no unbiased estimators.
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As a starting point, our initial simulations reported below use sample-splitting and rely on the naive SE

estimator. Future work will explore how sensitive our methods are to the choice of SE estimator.

Simulations For our initial simulations, we chose to use sample-splitting, on a �xed model path, with

orthogonal design. This will make analytical exploration of any interesting empirical �ndings more tractable.

Data are generated from a linear model with orthogonal Gaussian design and iid Gaussian noise of

variance σ2 = 1. The regression coe�cients are k-sparse with βmin = 0.2. We compute mean test MSEs

from a single 80:20 split, on a �xed correct path (the �rst k models are adding correct variables). Any SEs

for the mean test MSE (or the mean di�erence in squared errors) are computed naively, as the standard

deviation divided by
√
ntest. We simulate a range of sample sizes n = 50, 250, 1250, dimensions p = 11, 50,

and true model sizes k = 3, 10. We also use two con�dence levels, 1− α = 0.95 and 0.90, in order to assess

whether each method's properties are sensitive to the target level.

Besides con�dence set coverage and size, we are also interested in model-selection by the �bet on sparsity�

approach of choosing the smallest model in the con�dence set. At each simulation setting, we generate 1000

datasets and run all 5 methods. Figure 7.1 reports each set's coverage (how often does the set contain the

true model?), probability of correct selection (how often is the smallest model in the set actually the true

model?), and size (how many models are in the set?).

Except at the smallest n, 1SE is actually quite conservative. This seemed surprising at �rst�the naive

SEs tend to be too small, and only one SE should not be enough. However, because there are such high

correlations between models, the appropriate margin of error for a di�erence between models is actually

much smaller than 1 naive SE, leading to conservative coverage for the 1SE rule. KWW's coverage is also

very conservative, as expected, but so is HF's. The 2-sided Bonferroni correction appears to be excessive

compared to HFnaive. 1SE, KWW, and HF all have negligible probabilities of correct selection, and their

sets are much too large to be useful.

HFnaive and ZSEdi� perform surprisingly well. Except at the smallest n, their coverage is close to

nominal, and it does change as we adjust the target con�dence level. Their probability of correct selection

is not high, but it is far better than the other methods. They also tend to have the smallest con�dence sets.

Discussion We have illustrated the use of several methods, inspired by approaches to ranking with

con�dence, for approximating Lei's CVC at much lower computational expense. Two of these methods�

HFnaive and ZSEdi��appear to have promising properties in terms of con�dence set coverage, size, and

model selection, at least in this simple setting with orthogonal Gaussian design and a �xed model path. A

better analytical understanding appears to be worth pursuing, along with further simulation under more

diverse data conditions and changes to the methodology. Next steps will also include direct comparison to

CVC in terms of coverage and computation time, as well as the use of better SE estimators.
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Figure 7.1: Coverage, probability of correct model selection, and average con�dence set size for the 5
methods proposed. Based on 1000 simulations at each data point. Error bars show ±2 · SE.
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Chapter 8

Proofs and Lemmas

8.1 Proofs

8.1.1 Proof of Proposition 3.3

For clarity, the derivations below assume a single spurious predictor, so that p− k = 1. For the case where

p− k > 1, apply the same derivations to each spurious variable separately, but using µ and γ computed on

the whole dataset (not just with that one spurious variable). We see that under our su�cient conditions,

which depend on the spurious predictors only through µ and γ, each step of FS must choose a true variable

before any spurious variable. So the proof continues to hold when p− k > 1.

First step: t = 0

Begin with the �rst step, t = 0. Let ρj,` denote the correlation between columns xj and x` for j 6= ` ∈

1, . . . , k + 1. This is equivalent to the coherence or inner product 〈xj , x`〉 since each column has zero mean

and unit norm. Also let ρj,ε = 〈xj ,e/‖e‖〉, the coherence between xj and e (not exactly a correlation because

we do not assume that e has zero sample mean.)

A su�cient correct decision would be for FS to choose x1 over the spurious xk+1, which happens if

|〈x1, y〉| > |〈xk+1, y〉|, where

〈x1, y〉 = β1 +

k∑
j=2

βjρ1,j + ‖e‖ρ1,ε and 〈xk+1, y〉 =

k∑
j=1

βjρk+1,j + ‖e‖ρk+1,ε .

A su�cient condition would be

|β1| > |β1| · |ρk+1,1|+
k∑
j=2

|βj |(|ρ1,j |+ |ρk+1,j |) + ‖e‖(|ρ1,ε|+ |ρk+1,ε|)
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which is implied by

|β1|(1− µ− 2(k − 1)µ) > ‖e‖2γ

itself implied by

|β1|/‖e‖ >
2γ

1− (2k − 1)µ
.

Second step: t = 1

Assuming we chose x1 correctly before, now we will correctly choose x2 over xk+1 if

|〈x2, R(y|x1)〉|
‖R(x2|x1)‖

>
|〈xk+1, R(y|x1)〉|
‖R(xk+1|x1)‖

.

We have

R(y|x1) =

k∑
j=2

βj(xj − ρ1,jx1) + ‖e‖(e− ρ1,εx1)

〈x2, R(y|x1)〉 =

k∑
j=2

βj(ρ2,j − ρ1,jρ1,2) + ‖e‖(ρ2,ε − ρ1,ερ1,2)

‖R(x2|x1)‖ =
√

1− ρ2
1,2

and analogously for the xk+1 terms. So we choose correctly if

∑k
j=2 βj(ρ2,j − ρ1,jρ1,2) + ‖e‖(ρ2,ε − ρ1,ερ1,2)√

1− ρ2
1,2

>

∑k
j=2 βj(ρk+1,j − ρ1,jρ1,k+1) + ‖e‖(ρk+1,ε − ρ1,ερ1,k+1)√

1− ρ2
1,k+1

.

This is implied by

|β2|
‖e‖

>

|ρ2,ε−ρ1,ερ1,2|√
1−ρ21,2

+
|ρk+1,ε−ρ1,ερ1,k+1|√

1−ρ21,k+1√
1− ρ2

1,2 −
∑k
j=3

|ρ2,j−ρ1,jρ1,2|√
1−ρ21,2

−
∑k
j=2

|ρk+1,j−ρ1,jρ1,k+1|√
1−ρ21,k+1

.

We can maximize the right-hand side by plugging in µ for ρ in the square-root terms to get a simpler

su�cient condition:

|β2|
‖e‖

>
|ρ2,ε − ρ1,ερ1,2|+ |ρk+1,ε − ρ1,ερ1,k+1|

1− µ2 − |ρk+1,2 − ρ1,2ρ1,k+1| −
∑k
j=3(|ρ2,j − ρ1,jρ1,2|+ |ρk+1,j − ρ1,jρ1,k+1|)

. (8.1)

The RHS numerator of (8.1) has the bound Num ≤ 2γ(1 + µ), which is increasing with µ. In the RHS

denominator, |ρa − ρbρc| ≤ |µ+ µ2| = µ(1 + µ) gives a bound decreasing in µ:

Den ≥ 1− µ2 − (2(k − 2) + 1)µ(1 + µ) = 1− µ2 − (2k − 3)µ(1 + µ) = (1 + µ)(1− (2k − 2)µ)
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which is strictly positive if µ < (2k − 1)−1.

Combining these numerator and denominator bounds gives a su�cient condition for (8.1):

|β2|
‖e‖

>
2γ(1 + µ)

(1 + µ)(1− (2k − 2)µ)
=

2γ

1− (2k − 2)µ
.

Later steps: t > 1

We introduce new notation for the remaining steps. Imagine adding a rescaled e as the �nal column of the

design matrix: xk+2 = e/‖e‖. FS still cannot choose it as a predictor, but this will help us track it in our

derivations.

Assume that so far FS has correctly added the predictor set Jt = {1, . . . , t} to the model. De�ne the

residuals at step t as yt = R(y|xJt) and xj,t = R(xj |xJt) for j > t. Decompose the response residual into

the sum of a signal residual and noise residual: yt = St + Nt, where St = R(β1x1 + . . . + βkxk|xJt) and

Nt = R(e|xJt) = ‖e‖ ·R(xk+2|xJt).

Now conduct a QR decomposition of this augmented design matrix: (x1, . . . , xk+2) = (Z1, . . . , Zk+2)A,

where the Zi columns are orthonormal and A is an upper triangular matrix with positive diagonal entries.

Thus, the coherence matrix C = xTx can also be written as C = ATA, i.e. the Cholesky decomposition of

C. Let AJ be the principal submatrix using index set J and let ai,j be the entry in A's row i, column j.

Notice that:

St = (Zt+1, . . . , Zk)At+1:kβt+1:k

xt+1,t = Zt+1at+1,t+1

‖xt+1,t‖ = at+1,t+1

xk+1,t = [(Zt+1, . . . , Zk+1)At+1:k+1]k+1

Nt = ‖e‖ · [(Zt+1, . . . , Zk+2)At+1:k+2]k+2 .

For FS to correctly choose t+ 1 next instead of the spurious k + 1, we need

|〈St +Nt, xt+1,t〉|
‖xt+1,t‖

>
|〈St +Nt, xk+1,t〉|

‖xk+1,t‖

for which a su�cient condition is

|〈St, xt+1,t〉|
‖xt+1,t‖

− |〈Nt, xt+1,t〉|
‖xt+1,t‖

>
|〈St, xk+1,t〉|
‖xk+1,t‖

+
|〈Nt, xk+1,t〉|
‖xk+1,t‖

.
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We can rewrite each term as follows:

〈St, xt+1,t〉
‖xt+1,t‖

=

∑k
j=t+1 at+1,jat+1,t+1βj

at+1,t+1
=

k∑
j=t+1

at+1,jβj

〈St, xk+1,t〉
‖xk+1,t‖

=

∑k
j=t+1

(∑j
l=t+1 al,jal,k+1

)
βj

‖xk+1,t‖
=

k∑
j=t+1

〈xk+1,t, xj,t〉
‖xk+1,t‖

βj

〈Nt, xt+1,t〉
‖xt+1,t‖

=
‖e‖

at+1,t+1
· 〈at+1,t+1Zt+1, [Zt+1:k+2At+1:k+2]k+2〉 = ‖e‖at+1,k+2

〈Nt, xk+1,t〉
‖xk+1,t‖

=
‖e‖

‖xk+1,t‖
· 〈[Zt+1:k+2At+1:k+2]k+2, [Zt+1:k+1At+1:k+1]k+1〉 = ‖e‖ · 〈xk+1,t, xk+2,t〉

‖xk+1,t‖
.

This gives the su�cient condition

|βt+1| · |at+1,t+1| > |βt+1|

 k∑
j=t+2

|at+1,j |+
k∑

j=t+1

|〈xk+1,t, xj,t〉|
‖xk+1,t‖

+ ‖e‖
(
|at+1,k+2|+

|〈xk+1,t, xk+2,t〉|
‖xk+1,t‖

)
.

Now we use Lemma 8.1, on subsets and rearrangements of C, to lower-bound at+1,t+1 ≥
√

1−tµ
1−(t−1)µ . We

also upper-bound at+1,j and
〈xk+1,t,xj,t〉
‖xk+1,t‖ by µ

1−(t+1)µ when j ∈ {t + 2, . . . , k}. And we upper-bound these

same two terms by γ
1−tµ−(t+1)γ2 when j = k + 2.

(The reason Lemma 8.1 applies to
〈xk+1,t,xj,t〉
‖xk+1,t‖ is that this is the (t + 1, t + 2) term in the Cholesky

decomposition of (x1:t, xk+1, xj)
T (x1:t, xk+1, xj).)

Plugging in these bounds, we get the su�cient condition

|βt+1|

√
1− tµ

1− (t− 1)µ
> (2k − 2t− 1)|βt+1|

µ

1− (t+ 1)µ
+ 2‖e‖ γ

1− tµ− (t+ 1)γ2
.

Therefore, FS will make a correct choice at each t ≥ 2 if the signal-to-noise ratio is at least

|βt+1|
‖e‖

>

2γ
1−tµ−(t+1)γ2√

1−tµ
1−(t−1)µ −

(2k−2t−1)µ
1−(t+1)µ

. (8.2)

8.1.2 Proof of Corollary 3.4

For t = 1, note that
2γ

1− (2k − 2)µ
<

2γ

1− 2k−2
2k−1

= 2γ(2k − 1) < 4kγ

so that 4kγ is a su�cient lower bound on the signal-to-noise ratio |β2|
‖e‖ . This also holds for t = 0 since we

assume |β1| ≥ |β2|.

64



For t > 1, the RHS of equation (8.2) has a numerator increasing in t. So we can upper-bound the RHS

by plugging in the largest relevant value: t = k − 1.

Meanwhile, Lemma 8.2 shows the RHS denominator is also increasing in t for 0 < µ < (2k− 1)−1, t ≥ 2,

k ≥ 3. So we can upper-bound the RHS by plugging in the smallest relevant value: t = 2.

This gives a su�cient condition in γ, µ, k that holds across all t ∈ 2, . . . , k − 1:

min
j∈1,...,k

|βj |
‖e‖

>
2γ

(1− (k − 1)µ− kγ2)
(√

1−2µ
1−µ −

(2k−5)µ
1−3µ

) .
Note that, in the denominator,

1− (k − 1)µ− kγ2 > 1− k − 1

2k − 1
− k(2k − 1)−2 = k

2k − 2

(2k − 1)2
.

Its inverse is approximately 2, bounded above by 25/12 ≈ 2.1 when k = 3 (and below by 2 as k → ∞). So

our bound becomes

min
j∈1,...,k

|βj |
‖e‖
≥ 4.2γ√

1−2µ
1−µ −

(2k−5)µ
1−3µ

.

Now the denominator is decreasing in µ, so we can plug in the worst case µ = (2k − 1)−1:

min
j∈1,...,k

|βj |
‖e‖
≥ 4.2γ√

2k−3
2k−2 −

2k−5
2k−4

=
4.2γ√

1− 1
2k−2 −

(
1− 1

2k−4

) .
Using a Maclaurin series for (1 − x)1/2 ≈ 1 − x

2 (in fact
√

1− x ≤ 1 − x
2 for 0 < x < 1 since

√
1− x is

monotonically decreasing) and evaluating it at x = (2k − 2)−1, we get

min
j∈1,...,k

|βj |
‖e‖
≥ 4.2γ

1
2k−4 −

1
2(2k−2)

=
8.4γ

1
k−2 −

1
2k−2

≈ 8.4γ
1
k (1− 1

2 )
= 16.8kγ .

8.1.3 Proof of Corollary 3.7

Repeat the proof of Proposition 3.3, but use the s-sparse results from Cases 1 and 2 of Lemma 8.1. We get

k∑
j=t+2

|at+1,j | ≤ rowsumj(|A− I|) ≤
sµ

1− sµ

where we have k playing the role of p. Since we already assume that s < k, we can just use s instead of

min{s, k − 1}. The same argument works for the other term:

k∑
j=t+1

|〈xk+1,t, xj,t〉|
‖xk+1,t‖

≤ sµ

1− sµ
.
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All together, our su�cient condition becomes

|βt+1|

√
1−min{s, t}µ

1− (min{s, t} − 1)µ
> |βt+1|

2sµ

1− sµ
+ 2‖e‖ γ

1−min{s, t}µ− (t+ 1)γ2

which avoids the use of k, as desired. Note that for �xed feasible s and µ, the LHS is smallest when t ≥ s,

and the RHS 2nd term is also largest when t ≥ s. So a su�cient condition would be

|βt+1|

√
1− sµ

1− (s− 1)µ
> |βt+1|

2sµ

1− sµ
+ 2‖e‖ γ

1− sµ− (t+ 1)γ2

or equivalently
|βt+1|
‖e‖

>
2γ

(1− sµ− (t+ 1)γ2)
(√

1−sµ
1−(s−1)µ −

2sµ
1−sµ

)
as long as

√
1−sµ

1−(s−1)µ −
2sµ

1−sµ > 0. The condition µ < (3.4s)−1 is su�cient for this to hold for any 1 ≤ s < p:

Plug in µ = (3.4s)−1 to see that even if s = 1,

√
1− sµ

1− (s− 1)µ
− 2sµ

1− sµ
=

√
2.4s

2.4s+ 1
− 2

2.4
≥
√

2.4

3.4
− 2

2.4
≈ 0.0068 > 0 .

(The 3.4 approximates the solution to (x− 1)3 − 4x = 0, whose exact form is not simple.)

Assuming µ < (3.4s)−1, and de�ning q(s) ≡ 2 ·
(√

2.4s
2.4s+1 −

2
2.4

)−1

, we can simplify to the step-by-step

su�cient condition

|βt+1|
‖e‖

>
2γ(

2.4
3.4 − (t+ 1)γ2

) (√
2.4s

2.4s+1 −
2

2.4

) =
γ · q(s)

2.4
3.4 − (t+ 1)γ2

or further to the across-all-steps condition

|βmin|
‖e‖

>
γ · q(s)

2.4
3.4 − kγ2

=
γ · q(s)

12
17 − kγ2

as long as µ < (3.4s)−1 ≈ 0.29
s and γ <

√
12
17k ≈

0.84√
k
.

q(s) is greatest for small s, as q(1) ≈ 293, but asymptotes towards q(s) ≈ 12 as s→∞.

8.1.4 Proof of Proposition 3.8

Assume each element of e has mean 0 and variance σ2/n and is i.i.d. from some sub-Gaussian distribution.

For j = 1, . . . , p, let Wj = 〈xj ,e〉. Then E(Wj) = 0 and V(Wj) = σ2

n · ‖xj‖
2
2 = σ2

n , since the columns of x

have unit norm.
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Thus, each
√
n
σ · Wj is a linear combination of sub-Gaussians and therefore sub-Gaussian itself, with

constant (unit) variance. By the union bound and the sub-Gaussian tail inequality from Lemma 8.3, there

exist constants c1, c2 > 0 such that

P
(

max
j=1,...,p

|〈xj ,e〉| >
δσ√
n

)
= P

(
max

j=1,...,p

√
n

σ
|Wj | > δ

)
≤ p · P

(√
n

σ
|Wj | > δ

)
≤ pc1e−c2δ

2

.

If we choose η > 0 and δ =
√

(1+η) log(p)
c2

, then

P

(
max

j=1,...,p
|〈xj ,e〉| > σ

√
log(p)

n
·
√

1 + η

c2

)
≤ c1
pη
.

So, for large p, we have γ̂‖e‖ = maxj=1,...,p |〈xj ,e〉| = O
(
σ
√

log(p)/n
)
with high probability of at least

1− c1p−η.

8.1.5 Proof of Proposition 3.10

Let S = n−1(X−X)T (X−X) be the sample covariance matrix of X, and let C be the corresponding sample

correlation matrix.

Lemma 8.4 shows that ‖S − Σ‖∞,∞ = O(
√

log(p)/n) with high probability. Lemma 8.5 extends this

to ‖C − Σ‖∞,∞, as well as to versions of these matrices augmented with an extra row & column for the

(unstandardized) noise ε.

First, for a given observed sample, µ̂ is the highest coherence in the dataset, achieved by some pair of

variables. Let µ• denote the entry of Σ corresponding to this same pair of variables. Obviously µ• ≤ µ. By

Lemma 8.5, with high probability, ‖C − Σ‖∞,∞ has an upper bound bn = O

(√
log p
n

)
which shrinks as n

grows. Thus for a large enough n, we have |µ̂− µ•| < bn < (2k− 1)−1 − µ and so µ̂ < (2k− 1)−1, with high

probability.

Second, Lemma 8.5 shows that γ̂‖ε‖/
√
n = O(σ

√
log(p)/n) with high probability.

Each of these �high probabilities� has the form 1− cip−η for some c1, c2 > 0 and our choice of η > 0. By

the union bound, both events occur at once with probability at least 1− (c1 + c2)p−η.

8.1.6 Proof of Proposition 4.5

Here we are primarily working with submodels of the true model J∗ = {1, . . . , k}. In this section, we will

use Jh to denote any one of these 2k possible submodels, and we index these models using h ∈ 1, . . . , 2k.
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Xc and Xv are respectively the full construction and validation sets. Xc,Jh contains just the training

observations for columns in model Jh.

Proof sketch

Under the conditions of Theorem 3.1, we claim that the probability of under�t goes to 0 as n, k grow and

β2
min shrinks, as long as β2

min ≥ g(βmax, k, nc, σ) ≡ c · max

{
β2
max

√
k2 log(k)

nc
, |βmax|σk

√
log(k)
nv

}
for some

c > 0.

For each model Jh (for h ∈ 1, . . . , 2k), we decompose its CV estimate of MSE into signal bJh and noise:

M̂SE(Jh) = bJh + νJh + r, where r does not depend on h. Then we show that:

• By the conditions of Theorem 3.1 and proof of Proposition 3.3, with probability at least 1−γ1(p)→ 1,

FS will choose the next predictor ĵ such that:

� ĵ ∈ J∗, i.e. it is a correct variable;

� the training-estimate of the risk improves over model Jh, that is, R̂iskc(β̂Jh∪ĵ) < R̂iskc(β̂Jh); and

� the di�erence in signals is at least ∆(βmin), that is, bJh∪ĵ < bJh −∆(βmin), uniformly over all Jh

strictly smaller than J∗ .

• With probability at least 1 − γ2(k) → 1, the maximum noise term magnitude maxh |νJh | is less than
1
2∆(βmin), as long as β2

min > g(βmax, k, nc, σ).

Therefore, β2
min > g(βmax, k, nc, σ) implies that the testing-estimate of the risk also improves and therefore

FS does not stop at model Jh, uniformly over h and with high probability:

P
(
R̂iskv(β̂Jh∪ĵ) ≤ bJh∪ĵ + max

h
|νJh |+ r < bJh −max

h
|νJh |+ r ≤ R̂iskv(β̂Jh)

)
→ 1

or

P
(

min
h

(
M̂SE(Jh)− M̂SE(Jh ∪ ĵ)

)
≤ 0

)
≤ P

(
∆(βmin) < 2 max

h
|νJh |

)
→ 0

as n→∞. Speci�cally,

P(CV chooses underfit model) ≤ P(FS chooses incorrect path)

+ γ2(k)P(FS chooses correct path)

≤ γ1(p) + γ2(k)(1− γ1(p))

→ 0 .
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Decompose M̂SE(Jh)

M̂SE(Jh) =(β − β̂Jh)T
XT
vXv

nv
(β − β̂Jh) +

εTv εv
nv

+ 2
εTvXv

nv
(β − β̂Jh)

=(β − β̂Jh)T
XT
c Xc

nc
(β − β̂Jh) +

εTv εv
nv

+

[
(β − β̂Jh)T

(
XT
vXv

nv
− XT

c Xc

nc

)
(β − β̂Jh) + 2

εTvXv

nv
(β − β̂Jh)

]
.

Let Ph = Xc,Jh(XT
c,Jh

Xc,Jh)−1XT
c,Jh

be the construction-set projection onto the columns in model Jh, and

(β − β̂Jh)T
XT
c Xc

nc
(β − β̂Jh) = n−1

c ‖Xcβ − Ph(Xcβ + εc)‖2

= n−1
c

(
‖(I − Ph)Xcβ‖2 + ‖Phεc‖2

)
.

Therefore, M̂SE(Jh) = bJh + νJh + r, where bJh = n−1
c ‖(I −Ph)Xcβ‖2; r =

εTv εv
nv

which cancels out of every

comparison M̂SE(Jh)− M̂SE(Jh′); and

νJh = (β − β̂Jh)T
(
XT
vXv

nv
− XT

c Xc

nc

)
(β − β̂Jh) + 2

εTvXv

nv
(β − β̂Jh) + n−1

c ‖Phεc‖2 .

Lower bound on bJh − bJh∪ĵ

First, if Jh = ∅ (i.e. no variable has been chosen yet) and k = 1, then b∅ − b{ĵ} = n−1
c ‖P{ĵ}Xcβ‖2 =

β2
minσ̂

2
Xĵ
≥ c · β2

min with high probability for any choice of c ∈ (0, 1). Next, assume k > 1.

WLOG, reorder columns 1 : k so that the variables in model Jh are �rst and that ĵ is next, so |Jh|+1 is the

index of variable ĵ. Let ATA be the Cholesky decomposition of n−1
c XT

c Xc (note that here we do not assume

standardized columns of X, which we did in Proposition 3.3 and Lemma 8.1). By the QR decomposition

approach in the proof of Proposition 3.3, with high probability the observed sample coherence is below the

population bound µ < (2k − 1)−1 and also FS chooses ĵ that satis�es

bJh − bJh∪ĵ ≥

 k∑
j=|Jh|+1

βja|Jh|+1,j

2

≥

|β|Jh|+1a|Jh|+1,|Jh|+1| −
k∑

j=|Jh|+2

|βja|Jh|+1,j |

2

≥ β2
|Jh|+1

|a|Jh|+1,|Jh|+1| −
k∑

j=|Jh|+2

|a|Jh|+1,j |

2

.

If Jh = ∅, then a1,1 = 1, and by Lemma 8.1, |a1,j | ≤ µ
1−µ for all other j = 2, . . . , k. Then

b∅ − bĵ ≥ β
2
min

(
1− kµ
1− µ

)2
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This is decreasing in µ, so plug in the upper bound µ = (2k − 1)−1:

b∅ − bĵ ≥ β
2
min

(
k − 1

2k − 2

)2

= β2
min/4

so again, b∅ − bĵ ≥ c · β2
min with high probability with c > 0.

Otherwise, Jh 6= ∅. By Lemma 8.1, |a|Jh|+1,|Jh|+1| ≥
√

1−|Jh|µ
1−(|Jh|−1)µ and |a|Jh|+1,j | ≤ µ

1−(|Jh|+1)µ for all

other j = |Jh|+ 2, . . . , k. So we can lower-bound

bJh − bJh∪ĵ ≥ β
2
min

(√
1− |Jh|µ

1− (|Jh| − 1)µ
− (k − (|Jh|+ 1))µ

1− (|Jh|+ 1)µ

)2

.

As in Lemma 8.2, the RHS is increasing in |Jh| for µ < (2k−1)−1, so we bound it by plugging in the smallest

appropriate |Jh|. The remaining case (not yet addressed) is when |Jh| ≥ 1 and k ≥ 2, so use |Jh| = 1:

bJh − bJh∪ĵ ≥ β
2
min

(√
1− µ− (k − 2)µ

1− 2µ

)2

.

This is decreasing in µ, so plug in the largest µ = (2k − 1)−1:

bJh − bJh∪ĵ ≥ β
2
min

(√
1− 1

2k − 1
− k − 2

2k − 3

)2

.

Applying the argument from Corollary 1, for k ≥ 2 we �nd that this is strictly decreasing in k and asymptotes

towards

bJh − bJh∪ĵ ≥ β
2
min/4 .

Thus, minh bJh − bJh∪ĵ = c · β2
min ≡ ∆(βmin). With high probability, FS will always choose ĵ whose

contribution is at least c · β2
min, for some c > 0.

Upper bound on |νJh | with high probability

Let XJh contain all data rows for the columns in model Jh. Note that every such model's covariance

matrix satis�es ‖ΣJh‖ = O(1) and ‖Σ−1
Jh
‖ = O(1): In the extreme case where Σ∗ has constant o�-diagonal

correlation µ, we have Σ∗ = (1 − µ)Ik + µ1k1
T
k , whose eigenvalues are 1 + µ(k − 1) < 1 + k−1

2k−1 < 1.5 and

1− µ > 1− 1
2k−1 > 0.5, so both ‖Σ∗‖, ‖Σ−1

∗ ‖ = O(1). These upper and lower bounds also hold for ΣJh for

any sub-model Jh ⊂ J∗.

By Vershynin (2011), Theorem 5.39, let AJh = Σ
−1/2
Jh

XJh which is isotropic, and then

P
(
‖AJh‖ <

√
n+ c1

√
|Jh|+ t

)
≥ 1− 2 exp(−c2t2) .
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Choose t =
√
k/c2, so that for any particular h, P (‖AJh‖ ≥

√
n) ≤ 2 exp(−k). Then, union-bounding over

all possible models Jh, the probability that at least one norm is �too big� approaches

P
(

max
h
‖AJh‖ ≥

√
n

)
≤ 2k · 2 exp(−k) = 2 · (2/e)k+1 → 0

as long as k is eventually less than a constant multiple of n (which it must be, since we assume n−1k2 log(p)→

0).

On the other hand, choosing t =
√

log(k)/c2 lets us bound the full matrix with all k columns:

P
(
‖A∗‖ ≥

√
n
)
≤ 2 exp(− log(k)) = 2k−1 → 0 .

Now let Σ̂c =
XT
c Xc

nc
. By the above, we have P(‖Σ̂c − Σ‖ ≥ c1

√
log(k)/nc) ≤ 2k−1, and likewise for Σ̂v,

so

P
(∥∥∥∥XT

vXv

nv
− XT

c Xc

nc

∥∥∥∥ ≥ c1√log(k)/nc

)
≤ 2k−1 .

Additionally, let β̇Jh be the population-version coe�cient vector for the best linear approximation using

only the variables in model Jh. If we order the columns of X so that the covariates in Jh come �rst, then

β̇Jh = Σ−1
1:|Jh|, 1:|Jh| Σ1:|Jh|, 1:k β =

 β1:|Jh|

0

+

 Σ−1
1:|Jh|, 1:|Jh| Σ1:|Jh|, (|Jh|+1):k β(|Jh|+1):k

0


β − β̇Jh =

 −Σ−1
1:|Jh|, 1:|Jh| Σ1:|Jh|, (|Jh|+1):k β(|Jh|+1):k

β(|Jh|+1):k

 .
Then β̇Jh − β̂Jh has |Jh| < k entries that are Op(σ|βmax|

√
log(k)/nc) each, while β − β̇Jh has |Jh| < k

entries which are at most Op(|βmax|) each. Therefore, with probability at least 1− 2k−1,

‖β − β̂Jh‖2 = ‖β − β̇Jh + β̇Jh − β̂Jh‖2 = Op

(
kβ2

max

(
1 + σ

√
log(k)/nc

)2
)

= Op
(
kβ2

max

)
.

Then with probability at least 1− 4k−1, we have

(β − β̂Jh)T
(
XT
vXv

nv
− XT

c Xc

nc

)
(β − β̂Jh) = ‖β − β̂Jh‖2 ·O

(√
log(k)/nc

)
= O

(
kβ2

max

√
log(k)/nc

)
.

Next, by Proposition 3.10, with probability at least 1 − 2k−1 we have maxj∈1:k |XT
v,jεvn

−1
v | =

O(σ
√

log(k)/nv). Therefore, again with probability at least 1− 4k−1,

εTvXv

nv
(β − β̂Jh) = O

(
σ|βmax|k

√
log(k)/nv

)
.
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Finally, with probability at least 1 − 2(2/e)k, we have maxh ‖(XT
c,Jh

Xc,Jh)−1‖ = O(n−1
c ), so with this

probability we also have

εTc Phεc
nc

≤ ‖n−1
c εTc Xc,Jh‖ · ‖nc(XT

c,Jh
Xc,Jh)−1‖ · ‖n−1

c XT
c,Jh

εc‖

= O
(
σ
√
k log(k)/nc

)
·O(1) ·O

(
σ
√
k log(k)/nc

)
= O

(
σ2k log(k)/nc

)
.

Putting it all together, let γ2(k) ≡ 8k−1 + 2(2/e)k. Then with probability at least 1 − γ2(k), we have

that

max
h
|νJh | = O

(
kβ2

max

√
log(k)/nc

)
+O

(
σ|βmax|k

√
log(k)/nv

)
+O

(
σ2k log(k)/nc

)
.

Since β2
min/σ

2 ≥ c · k log(k)/nc, our probability of under�t goes to zero if ∃ c′ > 0 s.t.

β2
min

β2
max

≥ c′ ·max

k
√

log(k)

nc
,
k2 log(k)/nv
β2
min/σ

2

 .

8.1.7 Proof of Proposition 4.6

In this proof we work only with the training data. The subscript c is omitted for brevity.

Recall that Xh contains just the single column for spurious predictor h, not all columns in the spurious

model Jh = J∗ ∪ h.

We make a training mistake if, using the observed construction dataset, a �tted spurious model would do

better in expectation on validation data than the �tted true model, i.e. ifBh ≡ Ev
(
M̂SE(Jh)− M̂SE(J∗)

)
<

0 for some h. Note that

Bh = (β̂Jh − β)TΣ(β̂Jh − β)− (β̂J∗ − β)TΣ(β̂J∗ − β)

=
(

(β̂J∗ − β̂Jh)− 2(β̂J∗ − β)
)T

Σ(β̂J∗ − β̂Jh) .

We can write

β̂Jh = (XT
Jh
XJh)−1XT

Jh
Y =

 XT
∗X∗ XT

∗Xh

XT
hX∗ XT

hXh

−1  XT
∗ Y

XT
h Y


=

 β̂J∗

0

−
 (XT

∗X∗)
−1XT

∗Xh

−1

 · XT
h P
⊥
∗ Y

XT
h P
⊥
∗ Xh

where the last equality is by blockwise matrix inversion, and where P⊥∗ = I −X∗(X
T
∗X∗)

−1XT
∗ .
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Note that P⊥∗ Y = P⊥∗ (X∗β + ε) = P⊥∗ ε, since P
⊥
∗ X∗ = 0. So let us denote the scalar fraction above as

β̃Jh =
XTh P

⊥
∗ ε

XTh P
⊥
∗ Xh

.

Then

Bh =

β̃2
Jh
·

 (XT
∗X∗)

−1XT
∗Xh

−1

− 2β̃Jh ·

 (XT
∗X∗)

−1XT
∗ ε

0

T

Σ

 (XT
∗X∗)

−1XT
∗Xh

−1


=

β̃2
Jh
·

 (XT
∗X∗)

−1XT
∗Xh

−1

− 2β̃Jh ·

 (XT
∗X∗)

−1XT
∗ ε

0

T  Σ∗(X
T
∗X∗)

−1XT
∗Xh − Σ∗,h

−ΣT∗,h(XT
∗X∗)

−1XT
∗Xh + 1


=β̃2

Jh
·
(
XT
hX∗(X

T
∗X∗)

−1Σ∗(X
T
∗X∗)

−1XT
∗Xh − 2XT

hX∗(X
T
∗X∗)

−1Σ∗,h + 1
)

− 2β̃Jh ·
(
εTX∗(X

T
∗X∗)

−1Σ∗(X
T
∗X∗)

−1XT
∗Xh − εTX∗(XT

∗X∗)
−1Σ∗,h

)
.

Now let α̂Xh = (XT
∗X∗)

−1XT
∗Xh and α̂ε = (XT

∗X∗)
−1XT

∗ ε. Let the population versions be αXh =

Σ−1
∗ Σ∗,h and αε = 0 (since we assume the noise is uncorrelated with all predictors).

Then we simplify Bh above:

Bh = β̃2
Jh
· (α̂TXhΣ∗α̂Xh − 2α̂TXhΣ∗,h + 1)− 2β̃Jh ·

(
α̂Tε Σ∗α̂Xh − α̂Tε Σ∗,h

)
= β̃2

Jh
·
(
(1− α̂TXhΣ∗,h) + (α̂TXh(Σ∗α̂Xh − Σ∗,h))

)
− 2β̃Jh · α̂Tε (Σ∗α̂Xh − Σ∗,h) .

Note that 1− α̂TXhΣ∗,h = 1− αTXhΣ∗,h − (α̂Xh − αXh)TΣ∗,h = 1−Σh,∗Σ
−1
∗ Σ∗,h − (α̂Xh − αXh)TΣ∗,h, where

γJh ≡ 1− Σh,∗Σ
−1
∗ Σ∗,h takes on a value between 0 and 1 (by properties of Schur complement).

Also, Σ∗α̂Xh − Σ∗,h = Σ∗(αXh + α̂Xh − αXh)− Σ∗,h = Σ∗(α̂Xh − αXh). Therefore,

Bh = β̃2
Jh
·
(
γJh − (α̂Xh − αXh)TΣ∗,h + α̂TXhΣ∗(α̂Xh − αXh)

)
− 2β̃Jh · α̂Tε Σ∗(α̂Xh − αXh)

= β̃2
Jh
·
(
γJh + (α̂Xh − αXh)TΣ∗(α̂Xh − αXh)

)
− 2β̃Jh · α̂Tε Σ∗(α̂Xh − αXh)

for some γJh ∈ (0, 1). Also, ncβ̃
2
Jh
≈ χ2

1 if X and ε are Gaussian (or we apply Lemma 8.6 if they are

sub-Gaussian). And let W be the event that the following conditions hold, which happens with probability

at least 1− cp−1:

• maxh(α̂Xh − αXh)TΣ∗(α̂Xh − αXh) = O(k log(p)/nc), and

• maxh α̂
T
ε Σ∗(α̂Xh − αXh) = O(σk

√
log(p)/nc).
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Then for nc large enough,

P(mistake on any h) ≤ P(¬W ) + P(min
h
Bh < 0|W )

≤ cp−1 + p · P
(∣∣∣β̃Jh ∣∣∣ · (c+O(k log(p)/nc)) < 2 · sign

(
β̃Jh

)
·O(σk

√
log(p)/nc)

)
≤ cp−1 + p · P

(√
nc

∣∣∣β̃Jh ∣∣∣ /σ < O(k
√

log(p)/nc)
)

≤ cp−1 + c′kp

√
log(p)

nc
+ c′′

p
√
nc

where the last line is by the anti-concentration result in Lemma 8.6.

(Note that if we did not cancel β̃Jh in the second line above, then the third and fourth lines would be on

the order of p · P
(
χ2

1 < O
(
n
−1/2
c

))
≈ c′pn

−1/4
c . This would require a worse rate of p4/nc → 0 to achieve

consistency, instead of only p2/nc → 0.)

Therefore, P(any mistake across h)→ 0 as long as k2p2 log(p)
nc

→ 0. This su�cient condition is not too far

from the necessary condition that p2/nc → 0 from Proposition 4.8.

8.1.8 Proof of Proposition 4.7

We continue on from the proof of Proposition 4.6, but now we will also account for �nite testing data. We

will use the c and v subscripts for training and testing sets respectively.

We cannot make a mistake unless at least one spurious model Jh gives

0 > M̂SE(Jh)− M̂SE(J∗)

= 2
εTvXv,Jh

nv

(
β̂J∗ − β̂Jh

)
+Bh

+

[(
β̂Jh − β

)T (XT
v,Jh

Xv,Jh

nv
− ΣJh

)(
β̂Jh − β

)
−
(
β̂J∗ − β

)T (XT
v,Jh

Xv,Jh

nv
− ΣJh

)(
β̂J∗ − β

)]

∈ 2
εTvXv,Jh

nv

(
β̂J∗ − β̂Jh

)
+Bh

(
1±

∥∥∥∥∥XT
v,Jh

Xv,Jh

nv
− ΣJh

∥∥∥∥∥ /‖ΣJh‖
)
.

Recall that

β̂J∗ − β̂Jh = β̃Jh ·

 (XT
c,∗Xc,∗)

−1XT
c,∗Xc,h

−1

 .
Then

2
εTXv,Jh

nv

(
β̂J∗ − β̂Jh

)
= 2β̃Jh ·

[
εTvXv,∗

nv
(XT

c,∗Xc,∗)
−1XT

c,∗Xc,h −
εTvXv,h

nv

]
.

Let W ′ be the event that the following conditions hold, as well as the conditions of event W from the

proof of Proposition 4.6; all this happens with probability at least 1− cp−1:
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• maxh

∥∥∥ εTvXv,∗
nv

∥∥∥ = O(σ
√
k log(k)/nv) ,

• maxh
∥∥(XT

c,∗Xc,∗)
−1XT

c,∗Xc,h

∥∥ ≤ maxh
∥∥(XT

c,∗Xc,∗)
−1XT

c,∗Xc,h − Σ−1
∗ Σ∗,h

∥∥+‖Σ−1
∗ Σ∗,h‖ = O

(√
k log(p)
nc

+ 1√
k

)
,

• maxh

∥∥∥ εTvXv,hnv

∥∥∥ = O(σ
√
k log(p)/nv) , and

• maxh ‖n−1
v XT

v,Jh
Xv,Jh − ΣJh‖ = O

(
‖ΣJh‖

√
log(p)/nv

)
.

Then, across all h, for nc large enough,

P(mistake) ≤ P(¬W ′) + P
(

min
h

(
M̂SE(Jh)− M̂SE(J∗)

)
< 0

∣∣∣∣ W ′)

≤ cp−1 + p · P

Bh ·
1−O

√ log(p)

nv

 <

2σβ̃Jh ·O

k log(p)
√
ncnv

+

√
log(k)

nv
+

√
k log(p)

nv


≤ cp−1 + p · P


∣∣∣β̃Jh ∣∣∣
σ

< O

(
k
√

log(p)

nc

)
+O

k log(p)
√
ncnv

+

√
k log(p)

nv


≤ cp−1 + p · P

√nc
∣∣∣β̃Jh ∣∣∣
σ

< O

k√log(p)
√
nc

+
k log(p)
√
nv

+

√
nck log(p)

nv


≤ cp−1 + c′

kp√log(p)
√
nc

+
kp log(p)
√
nv

+

√
nckp2 log(p)

nv

+ c′′
p
√
nc

where the last line is by the anti-concentration result in Lemma 8.6.

Therefore, P(any mistake across h)→ 0 as long as:

• k2p2 log(p)
nc

→ 0, same as in Proposition 4.6;

• nckp
2 log(p)
nv

→ 0, which is stronger than Shao or Zhang's nc/nv → 0 because now that ratio must go to

0 faster than p2 grows, which is the price we pay for using the union bound across a growing model

set; and

• k2p2(log(p))2

nv
→ 0, which is implied by the previous two conditions.

Again, these su�cient conditions are not too far from the necessary conditions that p2/nc → 0 from

Theorem 4.4 and that nc/nv → 0 from Shao or Zhang's �xed-path, �xed-p setting. Compared to Shao

and Zhang, we pay a price for choosing from among p models: analogously to Theorem 4.4, this price is

essentially that p2

nv/nc
→ 0 as nv/nc →∞.
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8.1.9 Proof of Proposition 4.8

Use vector notation. Let 〈x, y〉 =
∑n
i=1 xiyi and ‖x‖2 = 〈x, x〉.

Under Assumptions 7 and 8, we train the true intercept-only model J∗ = ∅ and a given spurious univariate

model Jh = {h}. At a new test-data observation Xi,h, the prediction from the estimated true model is

Y c = µ+εc, and the prediction from the estimated spurious model is β̂0,h+β̂1,hXi,h = Y c+β̂1,h(Xi,h−Xc,h),

where Xc,h, εc, and β̂1,h =
Xεc,h−Xc,hεc
X2

c,h−X
2
c,h

are all estimates from the training data for predictor h. In this

simple case, ε, X, and β̂1 are all mutually independent N(0, n−1
c ).

Then the true model's risk is Ev(Y c − µ)2 = ε2c , and the wrong model's risk is

Ev
(
Y c − µ+ β̂1,h(Xi,h −Xc,h)

)2

= ε2c + β̂2
1,h

(
Ev(X2

i,h) +X
2

c,h − 2Xc,hEv(Xi,h)
)

+ 2εcβ̂1,h

(
Ev(Xi,h)−Xc,h

)
= ε2c + β̂2

1,h

(
1 +X

2

c,h

)
− 2β̂1,hXc,hεc

where Ev is the expectation taken over validation datasets.

We can de�ne the di�erence in risks

Bh ≡ β̂2
1,h(1 +X

2

c,h)− 2β̂1,hXc,hεc

and we will say we make a �training mistake� if Bh < 0 for at least one h.

(Since Bh depends only on the training data, the rest of this proof omits subscripts h and c for succinct

notation, except on Bh as needed. n below actually refers to nc, the number of training records.)

Using conditional independence of Bh given ε, the probability of no training mistake is

P
(

min
h
Bh ≥ 0

)
= E [P (Bh ≥ 0 ∀h | ε)]

= E {[P (B ≥ 0 | ε)]p} .

Now we consider P(B > 0 | ε). For notational simplicity we drop the conditioning on ε and h. That is,

in the following math display we consider �xed ε and h.

Let Z = 〈X, ε−ε〉/
√
n and S =

√
nXε. Then conditional on ε, Z and S are independent with distributions

Z ∼ N
(
0, ‖ε− ε‖2/n

)
, S ∼ N(0, ε2) .

Let 1+X
2

‖X−X‖2/n = 1 + R, where R is a function of X satisfying P (R ≥ c
√

log n/n) ≤ n−1 for some absolute

constant c > 0. Also assume that ε satis�es 1√
n
≤
√
n|ε|
‖ε−ε‖ ≤ 1/2.
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By cancelling a β̂1 out of B, we see that

P (B ≥ 0)

=P
(
|〈X, ε− ε〉|
‖X −X‖2

(1 +X
2
)− 2 sign(〈X, ε− ε〉)Xε ≥ 0

)
=P (|Z|(1 +R)− 2 sign(Z)S ≥ 0)

=
1

2
P (Z(1 +R)− 2S ≥ 0 | Z ≥ 0) +

1

2
P (−Z(1 +R) + 2S ≥ 0 | Z < 0)

=P (Z(1 +R)− 2S ≥ 0 | Z ≥ 0) (the two probabilities are the same by considering X ← −X)

≤P
(
R > c

√
log n/n | Z ≥ 0

)
+ P

(
Z(1 +R)− 2S ≥ 0, R ≤ c

√
log n/n | Z ≥ 0

)
≤P
(
R > c

√
log n/n

)
+ P

(
Z(1 + c

√
log n/n)− 2S ≥ 0 | Z ≥ 0

)
(Z > 0 and R are independent)

≤n−1 +
1

2
+

1

2
P

(
Z ≥ 2

1 + c
√

log n/n
S

∣∣∣∣ S > 0, Z ≥ 0

)

=n−1 +
1

2
+

1

2
P

(
Z/(‖ε− ε‖/

√
n)

S/|ε|
≥ 2

1 + c
√

log n/n

√
n|ε|

‖ε− ε‖

∣∣∣∣ S > 0, Z ≥ 0

)

=n−1 +
1

2
+

1

2
− 1

π
arctan

(
2

1 + c
√

log n/n

√
n|ε|

‖ε− ε‖

)
(Cauchy distribution)

≤1 + n−1 − 1

π
arctan

(
2

(1 + c
√

log n/n)
√
n

)

≤1 + n−1 − 1

π

π

2(1 + c
√

log n/n)
√
n
.

Recalling Assumption 9, we have lim inf p2/n = Γ for some Γ > 0. Thus for such ε we have, for n large

enough,

lim sup
n→∞

[P(B ≥ 0)]p ≤ lim sup
n→∞

[
1−
√

Γ/2

p

]p
≤ e−

√
Γ/2 .

Let

A =

{
ε : 1/

√
n ≤

√
n|ε|

‖ε− ε‖
≤ 1/2

}
.

Then by independence between ε and ε− ε, let Tn−1 be a random variable with student tn−1-distribution.

P(ε ∈ A) = P
(
|Tn−1| ∈ [1,

√
n/2]

)
→ 2(1− Φ(1)) .
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Then

P(min
h
Bh ≥ 0)

=E {[P(B ≥ 0 | ε)]p}

=E {1A(ε) [P(B ≥ 0 | ε)]p}+ E {1Ac(ε) [P(B ≥ 0 | ε)]p}

≤ sup
ε∈A

[P(B ≥ 0 | ε)]p P(ε ∈ A) + P(ε ∈ Ac)

=1− P(ε ∈ A)

{
1− sup

ε∈A
[P(B ≥ 0 | ε)]p

}
.

Taking lim sup we have

lim sup
n→∞

P(min
h
Bh ≥ 0) ≤ 1− 2(1− Φ(1))(1− e−

√
Γ/2) ≤ 1− 0.32(1− e−

√
Γ/2) .

For instance, if p2 ≡ n so that Γ = 1, then

lim sup
n→∞

P(min
h
Bh ≥ 0) ≤ 1− 0.32(1− e−1/2) ≤ 1− 0.12 .

The probability of a training mistake cannot vanish unless Γ = 0.

8.1.10 Proof of Theorem 4.4

We continue on from the proof of Proposition 4.8, still omitting subscript h except as needed. Xc, εc, etc.

are still computed on the training data, while the individual cases Xi and εi will refer to test-data records.

Here n still refers to the training sample size. The argument is uniform over all testing sample sizes nv.

Consider p =
√
n. The argument can be easily extended to p = c

√
n for constants 0 < c < 1. For larger

values of p, just consider the �rst
√
n columns of X. This way we do not need to worry about the di�erence

between
√

log p and
√

log n.

Recall that

β̂ =

 µ

0

+

 εc

0

+ β̂1

 −Xc

1


where

β̂1 =
Xεc −Xcεc

X2
c −X

2

c

is estimated from the training data.
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Then for each test observation i ∈ 1, . . . , nv, the di�erence in squared errors between the correct model

and incorrect model Jh (subscript omitted) is

(µ+ εi − Y c)2 − (µ+ εi − β̂0 − β̂1Xi)
2

= ε2i + 2εi(µ− Y c) + (µ− Y c)2 − ε2i − β̂2
1X

2
i − (µ− β̂0)2 − 2εi(µ− β̂0) + 2β̂1εiXi + 2(µ− β̂0)β̂1Xi

= (µ− Y c)2 −
[
(µ− β̂0)2 + β̂2

1

]
+ 2β̂1εiXi + 2(µ− β̂0)β̂1Xi − β̂2

1(X2
i − 1) + 2εi(β̂0 − Y c)

= −Bh + 2β̂1εiXi + 2(µ− β̂0)β̂1Xi − β̂2
1(X2

i − 1)− 2εiβ̂1Xc

= −Bh + 2β̂1

[
εiXi + (µ− β̂0)Xi − β̂1(X2

i − 1)/2−Xcεi

]
(8.3)

where we make a model-selection mistake if the sum of these di�erences is positive over the test dataset,

so the true model appears to have higher test MSE than the spurious model. Recall Bh from the proof of

Proposition 4.8:

Bh ≡ β̂2
1(1 +X

2

c)− 2β̂1Xcεc = −
(

(µ− Y c)2 −
[
(µ− β̂0)2 + β̂2

1

])
.

We want to show there is a nonvanishing probability that the εiXi term dominates the other terms in the

square brackets in Equation 8.3 while β̂1εiXi > 0 and Bh ≤ 0, which leads to a model-selection mistake.

Let Wi = (X2
i − 1)/2. De�ne X̃ε = 1√

nv

∑nv
i=1Xiεi, and X̃, ε̃, W̃ correspondingly.

Let event Q be such that

sup
h

max
{
|µ− β̂0|, |β̂1|, |Xc|

}
≤ c
√

log n/n

|εc| ≤ c
√

log n/n

sup
h

max
{
|X̃|, |W̃ |

}
≤ c
√

log n

|ε̃| ≤ c
√

log n.

For some absolute constant c, we have P(Q) ≥ 1− n−1.

Let event Lh be such that (note that Lh depends on h)

Bh ≤ 0,
∣∣∣ε̃X∣∣∣ ≥ 3c2 log n√

n
, sign(ε̃X) = sign(β̂1) .

By independence between β̂1 and ε̃X, and the symmetry of ε̃X we have

P(Lh|Bh ≤ 0) =
1

2
P
(
|ε̃X| ≥ 3c2 log n√

n

)
.
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When nv = 1, then ε̃X = εX and

P(|εX| ≥ t) = 1− P(|εX| < t) ≥ 1− P(|ε| <
√
t)− P(|X| <

√
t) ≥ 1− c′

√
t,

where c′ is an absolute constant.

When nv ≥ 2, then we can write ε̃X as 1
2
√
nv

(U − V ) where U, V are independent χ2
nv random variables.

In particular U =
∑nv
i=1(εi +Xi)

2/2, V =
∑nv
i=1(εi −Xi)

2/2.

Using Lemma 8.7, the density of ε̃X is uniformly bounded for all nv ≥ 2, so there exists a constant c′

such that for all nv ≥ 2 and all t > 0.

P(ε̃X ≥ t) = 1− P(|ε̃X| < t) ≥ 1− c′t.

Now let

t = 3c2 log n/
√
n .

For n large enough, we have t ≤ 1, and hence for some c′ and uniformly over nv

P(|ε̃X| ≥ t) ≥ 1− c′
√
t .

Now let L =
⋃
h Lh, and H = {h : Bh ≤ 0}. Then

P(L) = P(L, H 6= ∅) = P(L|H 6= ∅)P(H 6= ∅) ≥ 1

2
(1− c′

√
t)P(H 6= ∅) .

Then

P(mistake) ≥P(L ∩Q) ≥ P(L)− P(¬Q)

≥1

2
(1− c′

√
t)P(H 6= ∅)− n−1 .

So

lim inf
n→∞

P(mistake) ≥ 1

2
lim inf

n→∞
P(H 6= ∅) ≥ 0.16(1− e−

√
Γ/2) .

For instance, if p2 ≡ n so that Γ = 1, then

lim inf
n→∞

P(mistake) ≥ 0.06 .

The probability of an overall model-selection mistake cannot vanish unless Γ = 0.
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8.1.11 Derivation of Corollary 5.1

Under Assumptions A through D of Zhang (1993), for MCV and RLT, Theorems 1 and 4 of Zhang show

that for a correct or over�tting model Jh ⊇ J∗, with size h ≥ k,

M̂SE(Jh) = n−1εTP⊥Jhε+

(
1 +

n

nc

)
· hσ

2

n
+ op(n

−1)

while for under�tting Jh ⊂ J∗, with size h < k,

M̂SE(Jh) = n−1εT ε+ bJh + op(1)

where PJh = XJh(XT
Jh
XJh)−1XT

Jh
and bJh = lim infn→∞ n−1(Xβ)TP⊥JhXβ. Note that b1 ≥ . . . ≥ bk−1 ≥

bk = 0 for a path of nested submodels of J∗. For h < k,
bJh
σ2/n is a kind of signal-to-noise ratio.

These results still hold if we modify parts of Zhang's Assumption's A and C, replacing n−1(Xβ)TPJhXβ →

0 with the following pair of conditions:

λ→ 1, and lim supn→∞ n−1(Xβ)TPJhXβ = cJh < c for some c <∞.

By an intermediate step in Zhang's own proof of Theorem 1, for h < k we have

M̂SE(Jh) = n−1εTP⊥Jhε+ n−1(Xβ)TP⊥JhXβ + 2n−1εTP⊥JhXβ +O

([
nv

(
n

nv

)]−1

op(1)

)
= n−1εTP⊥Jhε+ bJh + 2n−1εTP⊥JhXβ + op(n

−1) .

Since ε is Gaussian, the last lines's 1st term is a scaled Chi-square and the 3rd term is a scaled Gaussian

plus another op(n
−1) term.

Now, the di�erence between the true model and a too-small model of size h < k is

n

σ2
·
(
M̂SE(Jh)− M̂SE(J∗)

)
= σ−2εT (P∗ − PJh)ε+

bJh
σ2/n

+ 2σ−2εTP⊥JhXβ − k
(

1 +
n

nc

)
+ op(1) .

Note that σ−2εT (P∗ − PJh)ε ∼ χ2
k−h; and −σ−2εTP⊥JhXβ ∼ N(0,

bJh
σ2/n ) + op(1).

Then we have

P(correctly choose J∗ over Jh) = P
(
A1 > 2A2 + k

(
1 +

n

nc

)
− bJh
σ2/n

+ op(1)

)

where A1 ∼ χ2
k−h and A2 ∼ N(0,

bJh
σ2/n ) are not independent.
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If we additionally assume that the op(1) term is small enough to ignore (perhaps for sample sizes larger

than some su�ciently large N), this probability becomes approximately

P

(
χ2
k−h > 2

√
bJh
σ2/n

N(0, 1) + k

(
1 +

n

nc

)
− bJh
σ2/n

)
.

Let χ2
(h),α be the lower α quantile of χ2

h, and let Z1−α be the upper α quantile of N(0, 1). Also let r = nc/n.

If we can tolerate a probability of α of making a mistake on this comparison, we can control the chi-square

and Normal terms jointly at level α with a Bonferroni correction by using their α/2 quantiles. We need to

satisfy

χ2
(k−h),α/2 ≥ 2

√
bJh
σ2/n

Z1−α2 + k(1 + r−1)− bJh
σ2/n

which is a quadratic in
√
n:

n · bJh
σ2
−
√
n · 2

√
bJh
σ

Z1−α2 + χ2
(k−h),α/2 − k(1 + r−1) ≥ 0 .

Using the quadratic formula, the smallest n that achieves this must satisfy

√
n ≥ σ√

bJh

(
Z1−α2 +

√
Z2

1−α2
+ k(1 + r−1)− χ2

(k−h),α/2

)
.

(The operation before the radical was ±, but we chose + instead of − to get a positive
√
n, because

k(1 + r−1) > χ2
(k−h),α/2 for any reasonably small α and thus the radical term is greater than Z1−α2 .)

For any n too small to satisfy this inequality at the largest possible r ≈ 1, LOO is the best we can

do. But if n is large enough to satisfy this inequality for r = 1, then we can start to make r smaller while

retaining the same 1− α probability of avoiding under�t. We can choose any

r =
nc
n
≥


(√

bJh
σ2/n − Z1−α2

)2

+ χ2
(k−h),α/2 − Z

2
1−α2

k
− 1


−1

.

8.2 Lemmas

Lemma 8.1. Let C be a coherence matrix: C = xTx for some n × p matrix x whose columns have unit

norm, so C is symmetric with diagonal entries of 1 and o�-diagonal entries' absolute values ≤ 1. Let ATA

be the Cholesky decomposition of C. Let γ, µ > 0.

Case 1: The greatest absolute o�-diagonal entry is µ. Then the o�-diagonal entries of A are upper-

bounded by µ
1−(p−1)µ , and the bottom-right entry is lower-bounded by

√
1−(p−1)µ
1−(p−2)µ .
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If we also assume that each row of C is s-sparse o� of the diagonals (has s nonzero o�-diagonal entries)

with 1 ≤ s < p, then each o�-diagonal row sum is upper-bounded as rowsumj (|A− I|) ≤ sµ
1−sµ for j ∈

1, . . . , p.

Case 2: µ is the greatest absolute o�-diagonal entry except in the last column and row, where γ is

the greatest absolute o�-diagonal entry. Then the o�-diagonal entries in the last column and row of A are

upper-bounded by γ
1−(p−2)µ−(p−1)γ2 .

We can also assume that each row of C1:(p−1),1:(p−1) is s-sparse o� of the diagonals with 1 ≤ s < (p− 1).

That is, all but the last row and column of C − I are s-sparse. If so, then the o�-diagonal entries in the last

column and row of A are upper-bounded by γ
1−sµ−(p−1)γ2 .

Proof. Let E = C − I, which has zero diagonal and bounded o�-diagonal entries. Apply Theorem 2.1 of

Sun (1992), which tells us that |A − I| is entrywise upper-bounded by (I − |E|)−1|E|, where |E| is taking

absolute values entrywise. Then

(I − |E|)−1|E| = (I − |E|)−1(I − (I − |E|)) = (I − |E|)−1 − I =

∞∑
i=1

|E|i

where the last equality comes from the geometric series for matrices: (I − B)−1 =
∑∞
i=0B

i as long as

‖B‖op < 1.

Case 1: For i = 1, |E| is entrywise bounded by µ. For i = 2, entries of |E|2 are at most

〈(0, µ, . . . , µ), (0, µ, . . . , µ)〉 = (p−1)µ2. For i = 3, entries of |E|3 = |E| |E|2 are at most 〈(0, µ, . . . , µ), (0, (p−

1)µ2, . . . , (p− 1)µ2)〉 = (p− 1)2µ3, and so on.

By induction, |E|i is entrywise upper-bounded by (p− 1)i−1µi, so
∑∞
i=1 |E|i is entrywise upper-bounded

by µ
1−(p−1)µ . Therefore this is an entrywise upper-bound on |A − I|. O�-diagonal entries of A are upper-

bounded by µ
1−(p−1)µ , and diagonal entries of A are upper-bounded by 1 + µ

1−(p−1)µ .

For the bottom-right entry we can also give a lower bound. Note that also

C−1 = (I − (I − C))−1 − I =

∞∑
i=1

(I − C)i ≤
∞∑
i=1

|E|i

where the last inequality is entrywise, so that 1 + µ
1−(p−1)µ upper-bounds the diagonal entries of

C−1 too. Now note that the Schur complement on the bottom-right entry of C is a2
p,p = xTp xp −

xTp x1:p−1(xT1:p−1x1:p−1)−1xT1:p−1xp. So a
−2
p,p equals the correponding entry of C−1, whose diagonals we have

just bounded:

ap,p ≥
√

1

1 + µ
1−(p−1)µ

=

√
1− (p− 1)µ

1− (p− 2)µ
.
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Finally, now assume C − I is s-sparse. Let (e
(i)
j,1, . . . , e

(i)
j,p) be the jth row of |E|i. Each element in this

row is the inner product of the jth row of |E|i−1 with a column of |E| = |C − I|. The rows of |E| are all

s-sparse, so every e
(i−1)
j,k has a nonzero coe�cient at most s times when we form the e

(i)
j,k. This means

rowsumj

(
|E|i

)
≤

p∑
k=1

e
(i−1)
j,k · µ · s = µs · rowsumj(|E|i−1) .

So we can write

rowsumj (|A− I|) ≤ rowsumj

( ∞∑
i=1

|E|i
)

=

∞∑
i=1

rowsumj

(
|E|i

)
=

∞∑
i=1

(sµ)i =
sµ

1− sµ

assuming s ≤ p− 1.

Case 2: For i = 1, the last column of |E| is entrywise bounded by γ.

For i = 2, the last column of |E|2 is at most 〈(0, µ, . . . , µ, γ), (γ, . . . , γ, 0)〉 = (p − 2)µγ, except in the

diagonal position which is at most 〈(γ, . . . , γ, 0), (γ, . . . , γ, 0)〉 = (p− 1)γ2.

For i = 3 with |E|3 = |E| |E|2, and so on, we see that the new o�-diagonal is at most (p− 2)µ times the

previous o�-diagonal plus γ times the previous diagonal; and the new diagonal is at most (p− 1)γ times the

previous o�-diagonal.

Write it as a recurrence relation. For the �nal column of |E|j , let the maximal o�-diagonal entry be Fj−1

and the maximal diagonal entry be Gj−1. We have F0 = γ and G0 = 0, as well as F1 = (p− 2)µγ. Then

Fj+1 = (p− 2)µFj + γGj

Gj+1 = (p− 1)γFj

so we can eliminate Gj and just work with

Fj+2 = (p− 2)µFj+1 + (p− 1)γ2Fj

for j ≥ 0. We don't need a closed-form solution for Fj , just its in�nite sum:

∞∑
j=0

Fj+2 = (p− 2)µ

∞∑
j=0

Fj+1 + (p− 1)γ2
∞∑
j=0

Fj

−γ − (p− 2)µγ +

∞∑
j=0

Fj

 = (p− 2)µ

−γ +

∞∑
j=0

Fj

+ (p− 1)γ2
∞∑
j=0

Fj

∞∑
j=0

Fj =
γ

1− (p− 2)µ− (p− 1)γ2
.
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This upper-bounds the o�-diagonal entries in the last column of |A − I|, so it upper-bounds the absolute

o�-diagonal entries in the last column of A.

Finally, if we also assume the sparsity condition, the desired result follows from the same proof as above

after rede�ning F1 = sµγ in the recurrence relation.

Lemma 8.2.
√

1−tµ
1−(t−1)µ −

(2k−2t−1)µ
1−(t+1)µ is increasing in t for 0 < µ < (2k − 1)−1, t ≥ 2, k ≥ 3.

Proof. We claim that the derivative of this quantity with respect to t is positive:

1

2
·

√
1− (t− 1)µ

1− tµ
· −µ2

(1− (t− 1)µ)2
− −2µ+ (2k + 1)µ2

(1− (t+ 1)µ)2

?
> 0

1

2
·

√
1− (t− 1)µ

1− tµ
· µ

(1− (t− 1)µ)2

?
<

2− (2k + 1)µ

(1− (t+ 1)µ)2
.

Since (1− (t− 1)µ)−2 < (1− (t+ 1)µ)−2, and
√
a < a, the following is su�cient for the above to hold:

1

2
· 1− (t− 1)µ

1− tµ
· µ

?
< 2− (2k + 1)µ .

Since µ < (2k − 1)−1, we have 2− (2k + 1)µ > 2− (2k + 1)/(2k − 1) = (2k − 3)/(2k − 1).

µ

2
· 1− (t− 1)µ

1− tµ
?
<

2k − 3

2k − 1

µ(2k − 1) · 1− (t− 1)µ

1− tµ
<

1− (t− 1)µ

1− tµ
?
< 4k − 6 .

Since k ≥ 3, we have 4k − 6 ≥ 12 > 2, so

1− (t− 1)µ

1− tµ
= 1 +

µ

1− tµ
?
< 2 ⇐⇒ µ

?
< 1− tµ ⇐⇒ µ

?
<

1

1 + t
.

This indeed holds because µ < 1/(2k − 1) < 1/(t + 1). Since we found no contradictions, the original

derivative was positive.

Lemma 8.3. Finite linear combinations of sub-Gaussian RVs are also sub-Gaussian.

Also, let Z be a sub-Gaussian random variable. Then there exist constants c1, c2 > 0 such that ∀ δ > 0,

we have P(|Z| > δ) < c1e
−c2δ2 .

Proof. For the �rst part, use the properties of norms. If ‖Z1‖ψ2
≤ c1 and ‖Z2‖ψ2

≤ c2, then ‖aZ1 +bZ2‖ψ2
≤

ac1 + bc2 <∞.
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For the second part, recall that we de�ned ‖Z‖ψ2 = inf
{
C > 0 : E exp

(
|Z|2/C2

)
− 1 ≤ 1

}
. By this

de�nition, E exp(|Z|2/‖Z‖2ψ2
) ≤ 2. Therefore, by Markov's inequality, ∀ δ > 0,

P(|Z| > δ) = P
[
exp(|Z|2‖Z‖−2

ψ2
) > exp(δ2‖Z‖−2

ψ2
)
]
≤

E exp(|Z|2‖Z‖−2
ψ2

)

exp(δ2‖Z‖−2
ψ2

)
≤ 2 exp(−δ2‖Z‖−2

ψ2
) .

Lemma 8.4. Let X1, . . . ,Xn ∈ Rp be i.i.d. from a sub-Gaussian distribution with mean EXi = 0 and

covariance matrix Σ, where Σ is a correlation matrix (has 1s on the diagonal). Let log p ≤ n.

Let Š(t) = 1
n

∑n
i=1(Xi − t)(Xi − t)T be the sample coherence matrix with columns centered at t. For

instance, the sample covariance matrix is S = Š(X) = 1
n

∑n
i=1(Xi −X)(Xi −X)T .

Then for any choice of η > 0, for some c, c′ > 0 large enough and for n large enough,

P

(
max
t∈T

∥∥Š(t)− Σ
∥∥
∞,∞ ≥ c

√
log p

n

)
≤ c′p−η

where T = {~0, X, (X−p, 0)}. That is, Š(t) may be the uncentered sample coherence; the centered sample

covariance; or a hybrid in which all columns but the last are centered. (The latter will be useful in Lemma 8.5

for handling correlations between X and ε.)

Proof. By assumption, EXiX
T
i = Σ and there exists a constant κ > 0 such that

sup
u∈Sp−1

2

‖〈Xi, u〉‖ψ2
≤ κ .

(If Σ is not a correlation matrix, this still holds as long as its diagonals are bounded over n.)

Recall that for a random variable Z,

‖Z‖ψα =

{
inf
c>0

Ee|Z/c|
α

≤ 2

}

for α ≥ 1. Directly from this de�nition, we see that ‖Z2‖ψ1
= ‖Z‖2ψ2

.

We follow the argument in the proof of Lemma 3.2.2 from Vu and Lei (2012):

For a, b ∈ {1, . . . , p}, let ξi = (Xi)a(Xi)b, so that

(Š(~0)− Σ)ab = Dab =
1

n

n∑
i=1

(Xi)a(Xi)b − Σab =
1

n

n∑
i=1

(ξi − Eξi) .

If we can bound |Dab| with high probability, then we can bound maxa,b |(Š(~0)−Σ)ab| with high probability by

the union bound. That will also let us bound the maximum of (S−Σ)ab = Dab−XaXb and of (Š(
(
X−p, 0

)
)−
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Σ)ab. By standard arguments, maxa,b |XaXb| = O(log(p)/n) � O(
√

log(p)/n) with probability at least

1− cpη for some c > 0.

Let Yi = ξi − Eξi, so that nDab is the sum of n independent variables Yi. We want to apply a version of

Bernstein's inequality based on van der Vaart and Wellner (1996), Lemma 2.2.11:

Sublemma 8.1. Let Y1, . . . , Yn be independent, zero-mean random variables. If we have �nite constants

M,vi > 0 and v ≥
∑
i vi that satisfy

M2E
(
e|Yi|/M − 1

)
−ME|Yi| ≤ vi/2

then we have

P(|Y1 + . . .+ Yn| > x) ≤ 2 exp

(
−1

2

x2

v +Mx

)
.

We can simplify this a little for our purposes:

Sublemma 8.2. Let Y1, . . . , Yn be as above. If we can choose constants M ≥ maxi ‖Yi‖ψ1 and v = 2nM2

such that M,v <∞, the condition of Sublemma 8.1 is satis�ed.

Furthermore, if we choose x = Mny with y =
√

6η log p
n < 1 and η > 0, then

P

(
1

n
|Y1 + . . .+ Yn| > M

√
6η ·

√
log p

n

)
≤ 2p−η .

Proof. If we choose any �niteM ≥ maxi ‖Yi‖ψ1 , then by de�nition of ‖Z‖ψ1 we have that E
(
e|Yi|/M − 1

)
≤ 1.

So if we set vi = 2M2, we see that

M2E
(
e|Yi|/M − 1

)
−ME|Yi| ≤M2 · 1−ME|Yi| ≤M2 = vi/2

so the condition of Sublemma 8.1 is satis�ed.

Also, plug in x = Mny to get

P
(

1

n
|Y1 + . . .+ Yn| > Mx

)
≤ 2e

− 1
2

(Mny)2

2nM2+nM2y = 2e−
1
2
ny2

2+y .

Finally, choose η > 0 and 0 < y =
√

6η log p
n < 1 to see that

P
(

1

n
|Y1 + . . .+ Yn| > My

)
≤ 2p−η

3
2+y ≤ 2p−η .
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Since our Yi = ξi−Eξi are i.i.d., we just need to upper-bound ‖ξi−Eξi‖ψ1 . By van der Vaart and Wellner

(1996), note that E|Z| ≤ ‖Z‖ψ1
and that ‖1‖ψ1

= (log 2)−1.

By these properties, the properties of norms, and Jensen's inequality,

‖ξi − Eξi‖ψ1 ≤ ‖ξi‖ψ1 + ‖Eξi‖ψ1 = ‖ξi‖ψ1 + |Eξi| · ‖1‖ψ1 = ‖ξi‖ψ1 + (log 2)−1|Eξi|

≤ ‖ξi‖ψ1
+ (log 2)−1E|ξi|

≤ ‖ξi‖ψ1
+ (log 2)−1‖ξi‖ψ1

= ‖ξi‖ψ1

(
1 + (log 2)−1

)
≈ 2.443‖ξi‖ψ1

≤ 3‖ξi‖ψ1 .

Finally, we need to con�rm that we can upper-bound 3‖ξi‖ψ1
by a constant. Recall that ‖Z2‖ψ1

= ‖Z‖2ψ2
.

‖ξi‖ψ1
= ‖(Xi)a(Xi)b‖ψ1

≤
∥∥∥∥1

2

(
(Xi)

2
a + (Xi)

2
b

)∥∥∥∥
ψ1

≤ 1

2

(
‖(Xi)

2
a‖ψ1 + ‖(Xi)

2
b‖ψ1

)
=

1

2

(
‖(Xi)a‖2ψ2

+ ‖(Xi)b‖2ψ2

)
≤ max
j∈1,...,p

‖〈Xi, 1j〉‖2ψ2

≤ κ2 .

(In �rst inequality above: For random variables F,G with |F (ω)| ≤ |G(ω)| a.s., we have ‖F‖ψ1 ≤ ‖G‖ψ1 .

This is satis�ed if F = 2AB and G = A2 +B2 for random variables A,B.)

With this bound, we apply Sublemma 8.2 with M = 3κ2 ≥ 3‖ξi‖ψ1
≥ ‖Yi‖ψ1

to say that

P

(
|Dab| > 3κ2

√
6η ·

√
log p

n

)
≤ 2p−η .

Finally, using a union bound,

P

(
max
a,b
|Dab| > 3κ2

√
6(η + 2) ·

√
log p

n

)
≤ p2 · 2p−(η+2) = 2p−η

and so maxt∈T
∥∥Š(t)− Σ

∥∥
∞,∞ = O

(√
log p
n

)
with high probability.

Lemma 8.5. Assume the conditions of Lemma 8.4. Also assume that log p
n → 0. Denote the entries of the

sample and population covariance matrices there (S and Σ) as sjk and σjk, respectively, for j, k ∈ 1, . . . , p.

Let the sample and population correlation matrices (C and, again, Σ) have entries rjk =
sjk√
sjjskk

and

ρjk =
σjk√
σjjσkk

, respectively. (Since we assumed σjj = 1 for all j, we have σjk = ρjk for all j, k.)
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Then we can choose η > 0 such that, for some c, c′ > 0 large enough and for n large enough,

P

(
max

j,k∈1,...,p
|rjk − ρjk| ≥ c

√
log p

n

)
≤ c′p−η .

Next, consider augmenting each observation Xi with one more variable, the noise εi. Assume the noise

is uncorrelated with each predictor, so σj,p+1 = 0 for all j ∈ 1, . . . , p. Then γ̂‖ε‖/
√
n = maxj∈1,...,p

∣∣∣ sj,p+1√
sjj

∣∣∣ =

O(σ
√

log(p)/n) with high probability 1− c′p−η too.

Proof. Let us assume there is a constant s.t. 0 < c < |σjj | for all j ∈ 1, . . . , p, so |σ−1
jj | < c−1 < ∞. Then

with probability at least 1− c′p−η. . .

|sjj − σjj | ≤ c1

√
log p

n
⇒

∣∣∣∣ sjjσjj − 1

∣∣∣∣ ≤ c2j
√

log p

n

so that
sjj
σjj
∈

(
max

{
0, 1− c2j

√
log p

n

}
, 1 + c2j

√
log p

n

)
.

Since log p
n → 0, there is a large enough Nj > 0 such that for all n > Nj ,

1− c2j

√
log p

n
> 1− c2j

√
log p

Nj
> 0

so for n > Nj ,

sjj
σjj

> 1− c2j

√
log p

n
> 0 ⇒

√
σjj
sjj
∈

(
1± c2j

√
log p

n

)−1/2

<∞

and then, for c2 = max{c2j , c2k} and n > max{Nj , Nk},

√
σjjσkk
sjjskk

∈

(
1± c2

√
log p

n

)−1

⊂ (0,∞) .

Further,

∣∣∣∣ sjk√
σjjσkk

− ρjk
∣∣∣∣ =

∣∣∣∣ sjk√
σjjσkk

− σjk√
σjjσkk

∣∣∣∣ ≤ c3
√

log p

n
⇒ sjk√

σjjσkk
∈ ρjk ± c3

√
log p

n

so

rjk =
sjk√
σjjσkk

·
√
σjjσkk
√
sjjskk

∈

min
+,−

ρjk − c3
√

log p
n

1± c2
√

log p
n

, max
+,−

ρjk + c3

√
log p
n

1± c2
√

log p
n


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where the choice of + or − in the denominators (which are positive since n > max{Nj , Nk}) depends on

whether each numerator is positive or negative. So

rjk − ρjk ∈

min
+,−

ρjk − c3
√

log p
n

1± c2
√

log p
n

− ρjk, max
+,−

ρjk + c3

√
log p
n

1± c2
√

log p
n

− ρjk



⊂

min
+,−

ρjk − c3
√

log p
n − ρjk

(
1± c2

√
log p
n

)
1± c2

√
log p
n

, max
+,−

ρjk + c3

√
log p
n − ρjk

(
1± c2

√
log p
n

)
1± c2

√
log p
n


⊂

± (c3 + |ρjk|c2)
√

log p
n

1− c2
√

log p
n

 .

Finally, this gives that for n > max{Nj , Nk}

|rjk − ρjk| ≤
c3 + |ρjk|c2

1− c2
√

log p
max{Nj ,Nk}

√
log p

n
≤ c4

√
log p

n

and so indeed |rjk − ρjk| = O

(√
log p
n

)
, with high probability. This bound holds simultaneously for each

j, k with probability at least 1− c′p−η, and so also for their maximum.

Additionally, we are interested in the sample coherence between standardized predictors and raw

(unstandardized) noise. Let j be the index of a particular predictor, and p + 1 be the index of the noise ε.

We can repeat the argument above, but without dividing by
√
sp+1,p+1 ≡

√
‖ε‖2/n. We assumed that the

noise is uncorrelated with the predictors, so σj,p+1 = ρj,p+1 = 0 for each j ≤ p. Omitting the
√

σkk
skk

factor

from the derivations above, we can bound the needed entries as
∣∣∣ sj,p+1√

sjj

∣∣∣ = O

(
σ
√

log p
n

)
with the same high

probability.

(To justify the extra factor of σ, note that Lemma 8.4 assumes all variances are 1 to give |sj,p+1−σj,p+1| =

O(
√

log(p)/n). But the variance of each εi is σ instead of 1, which is equivalent to multiplying column p+ 1

by a constant factor of σ, which then appears inside the big-O term.)

Lemma 8.6. Assume 1 and 2, and let log(p)/nc → 0. De�ne β̃Jh as in Section 4.3.2.

Then, for a given h and for nc large enough,
√
ncβ̃Jh/σ exhibits anti-concentration: ∀ t > 0, for some

c, c′, c′′ > 0,

P
(√

nc

∣∣∣β̃Jh∣∣∣ /σ ≤ t) ≤ cp−2 + c′t+ c′′/(σ3√nc) .

Proof. We have that

β̃Jh ≡
XT
c,hP

⊥
∗ εc

XT
c,hP

⊥
∗ Xc,h

=
n−1
c XT

c,hεc − n−1
c XT

c,hP∗εc

n−1
c XT

c,hP
⊥
∗ Xc,h

.
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Note that ∀h, Σh,∗Σ
−1
∗ Σ∗,h ≤ k ·

(
(2k − 1)−1

)2 · O(1) = O(1/k). De�ne ah ≡ 1 − Σh,∗Σ
−1
∗ Σ∗,h =

1 +O(1/k), and let A = lim infn→∞minh ah, where ah, A > 0.

Now, β̃Jh ≥ n−1
c |XT

c,hεc| · (ah +R) where with probability at least 1− c1p−2, |R| ≤ c2 · σ
√

log(p)/nc for

some c1, c2 > 0, because

max
h
|n−1
c XT

c,hP∗εc − Σh,∗Σ
−1
∗ ~0| = O(σ

√
log(p)/nc)

max
h
|n−1
c XT

c,hP
⊥
∗ Xc,h − (1− Σh,∗Σ

−1
∗ Σ∗,h)| = O(

√
log(p)/nc) .

Since Xc,h and εc are sub-Gaussian random variables, they have bounded third moments. Let us say

that each is bounded by %. Since each Xc,h is independent of εc, each element of XT
c,hεc also has �nite third

moment, at most %2. Therefore by Berry-Esseen, for all real t,∣∣∣∣∣P
(√

nc
σ
·
XT
c,hεc

nc
≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ c%2

σ3
√
nc

where Φ(t) is the standard Normal CDF. Hence,

P
(
|XT

c,hεc|/(σ
√
nc) ≤ t

)
≤ Φ(t)− Φ(−t) + 2

c%2

σ3
√
nc
≤ ct+ c′/(σ3√nc) .

For large enough nc, we have c2 ·σ
√

log(p)/nc ≤ A/2, so that ah+R > A+R ≥ A/2 with high probability,

and so

P
(√

nc

∣∣∣β̃Jh ∣∣∣ /σ ≤ t) ≤ P(|R| > A/2) + P
(
|XT

c,hεc|/(σ
√
nc) ≤ 2t/A

∣∣ |R| < A/2
)

≤ c1p−2 + ct+ c′/(σ3√nc) .

Lemma 8.7. Let U, V be independent χ2
nv random variables.

The density of U/
√
nv is bounded uniformly for all nv ≥ 2. As a consequence, the density of 1

2
√
nv

(U−V )

is uniformly bounded for all nv ≥ 2.

Proof. The �rst part follows directly from the density function of χ2 distributions. The second part follows

from the fact that the maximum convolution density is bounded by the individual maximum density.
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