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Abstract

This dissertation presents an architecture to accelerate sparse matrix linear algebra,

which is among the most important numerical methods for numerous science and engi-

neering domains, such as graph analytics, in current big data driven era. Sparse matrix

operations, especially for unstructured and large matrices with very few nonzeros, are

devoid of guaranteed temporal and/or spatial locality making them inherently unsuit-

able for cache based general purpose commercial off-the-shelf (COTS) architectures.

Lack of locality causes data dependent high latency memory accesses and eventually

exhausts limited load buffer in COTS architectures. These render sparse kernels to run

at a small fraction of peak machine speed and yield poor off-chip bandwidth saturation

despite finely tuned software libraries/frameworks and optimized code. The poor

utilization of compute and memory resources on COTS structures indicates significant

room for improvement using existing technology. However, a computation paradigm

that is not dependent on data locality is essential for sparse operations to achieve

same level of performance that BLAS-like standards on COTS have delivered for dense

matrix linear algebra.

An algorithm/hardware co-optimized architecture that provides a data locality

independent platform for sparse matrix operations is developed in this work. The

proposed architecture is founded on a fundamental principle of trading streaming

bandwidth and compute to avoid high latency accesses. This principle stems from

a counterintuitive insight that minimally required number of irregular memory ac-

cesses for sparse operations generally incur high traffic that is transferred at slow

speed, whereas, more regular accesses can provide reduced traffic overall and faster

transfer through better usage of block level data. This work finds that a scalable,
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high performance and parallelizable multi-way merge network, which is absent in

current literature, is the core hardware primitive required in developing our proposed

architecture. Through both algorithmic and circuit level techniques, this work develops

a novel multi-way merge hardware primitive that meaningfully eliminates high latency

accesses for sparse operations. This work also demonstrates methodologies to avoid

strong dependency on fast random access on-chip memory for scaling, which is a major

limiting factor of current custom hardware solutions in handling very large problems.

Using a common custom platform, this work shows implementations of Sparse

Matrix dense Vector multiplication (SpMV), iterative SpMV and Sparse General

Matrix-Matrix multiplication (SpGEMM), which are core kernels for a broad range of

graph analytic applications. A number of architecture and circuit level optimization

techniques for reducing off-chip traffic and improving computation throughput to

saturate extreme off-chip steaming bandwidth, provided by state of the art 3D stacking

technology, are developed. Our proposed custom hardware is demonstrated on ASIC

(fabricated in 16nm FinFET) and FPGA platforms and evaluated against state of the

art COTS and custom hardware solutions. Experimental results show more than an

order of magnitude improvement over current custom hardware solutions and more than

two orders of magnitude improvement over COTS architectures for both performance

and energy efficiency. This work is intended to contribute through a software stack

provided by GraphBLAS-like [1] standards where broadest possible audience can utilize

this architecture using a well-defined and concise set of matrix-based graph operations.
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Chapter 1

Introduction

1.1 Motivation

Sparse matrix algebra has proven to be an essential tool in graph analytics of various

domains, such as social networks, machine learning, bioinformatics, data mining,

etc. Widespread necessity for improved performance of sparse operations has led

to a proliferation of software frameworks/libraries, such as OSKI [2], GraphMat [3],

SuperLU [4], GraphLab [5, 6], Giraph [7], CombBLAS [8], Pregel [9], SociaLite [10],

which reduces the “ninja performance gap” [11] between hand-optimized fine-tuned

graph code and naively written code by researchers and developers from vastly different

backgrounds. The expectation of user community is to have same level of benefits

that Basic Linear Algebra Subprograms (BLAS) provided for the dense matrix algebra.

However, while the high actual to peak performance ratio of dense operations on

COTS platforms has been possible by BLAS like standards, it is largely due to the

fact that the conceptual work horse for underlying traditional memory hierarchy of

general purpose COTS platforms, i.e. temporal and spatial locality in data, is strongly
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Figure 1.1: a) Traditional memory hierarchy used in general purpose architectures that
is not suitable for sparse operations, b) Low peak to actual performance ratio, and
c) Redundant traffic and inefficient DRAM access of SpMV on traditional architecture.

possessed by dense matrices. On the other hand, neither temporal nor spatial locality is

guaranteed in sparse data. Even though locality to some extent is present in structured

graphs, detection and exploitation of it often cause significant overhead, which also

becomes increasingly difficult as graphs become larger and sparser. Hence, due to

traditional memory hierarchy based COTS architectures not being inherently suitable

for sparse operations, there is a large gap in performance between sparse matrix algebra

and their dense counterpart.

Key Problem. The root cause of sparse matrix operation difficulties is data

dependent random access to a huge address space. This translates to high latency

load requests to DRAM. Moreover, general purpose architectures have limited depth
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of load buffer that becomes filled with parallel load requests due to high latency in

serving pending loads. Therefore, high enough outstanding load requests cannot be

generated to hide latency despite parallel operations. Additionally, these load requests

may not always be independent. As a result, sparse kernels experience low actual to

peak performance ratio and poor off-chip bandwidth usage. For example, conventional

implementation of Sparse Matrix dense Vector multiplication (SpMV) yields less than

10% of the peak performance on cache based COTS architectures [12–16]. Additionally,

absence of locality causes redundant off-chip traffic and inefficient DRAM access due

to block level data transfer. Figure 1.1(c) shows that an example SpMV incurs 63%

redundant off-chip traffic that never takes part in actual computation. Furthermore, it

wastes 84% costly DRAM page openings due to this redundant traffic.

From the above metrics it is evident that current CMOS and memory technology

are under-utilized for sparse operations. However, it requires an architecture where

efficient synergy between compute and memory access is independent of data locality

and fine grained parallelism is ensured. Such architecture is absent in current literature

and warrants research effort given its potential to contribute in sparse matrix algebra.

1.2 Thesis Contributions

This thesis attempts to work out a computation paradigm to replace data dependent

high latency random accesses for sparse operations with sequential/streaming accesses.

Our work is founded on a central counterintuitive insight that is -

Minimum number of memory accesses result in higher amount of traffic and latency

bound computation, whereas more memory accesses incur less overall traffic and

computation can run at much faster streaming bandwidth speed.
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This insight is depicted in Figure 1.2 for an example SpMV operation, where the bars

show total off-chip main memory traffic for latency bound and streaming algorithms.

Orange, blue and green colored portions of the bars together represent payload, i.e.

data that takes part in actual computation. The red portion represents the wasted data

due to cache line level block transfers from DRAM. Latency bound SpMV requires

least number of load requests, hence minimum payload. On the other hand, with

streaming algorithm, where all random accesses are converted to sequential accesses,

SpMV generates more load requests. However, full streaming algorithm performs

better because of the following reasons.

1. Despite total payload is higher than what it is for latency bound algorithm,

overall traffic is less in streaming SpMV due to elimination of excess portion of

cache line transfers, which gets evicted before any use.

2. As modern DRAM offers significantly greater streaming bandwidth than high

latency random access bandwidth, the overall reduced traffic is transferred at

significantly higher speed and computation runs much faster than latency bound

SpMV. This trend in DRAM is also likely to continue as memory technology
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trend over past two decades has shown improvement in streaming bandwidth at

a rate that is at least square of the improvement rate in latency [17].

Therefore, ideal solution for sparse operation acceleration is to eliminate latency

bounded accesses and pay with streaming bandwidth and more compute. However,

turning this solution into practical implementation is not trivial. While it is theoretically

possible to implement full streaming algorithms on traditional COTS architectures,

advantages of eliminating latency boundedness are generally offset by one of these two

reasons - a) fine grained parallelism requirement introduces computational complexity

and eventually renders the entire operation to become compute bound, and b) off-chip

traffic overhead of COTS compatible streaming algorithm becomes prohibitively large

diminishing benefits of sequential access over random access.

This works presents an algorithm/hardware co-optimized architecture that can

practically eliminate all off-chip high latency random accesses while being able to

harness the benefits. A major finding of this dissertation is that a scalable and high

throughput multi-way merge hardware primitive is the key in building such architecture.

By developing a novel set of methodologies for implementing such multi-way merge

network, this work provides a common platform that is co-optimized for off-chip traffic

aware streaming algorithms for fundamental sparse matrix operations. This work

demonstrates implementations of these following core kernels.

1. SpMV. We primarily focus on Sparse Matrix dense Vector multiplication

(SpMV) as it is a dominant and versatile component used in numerous operations,

such as large-scale linear solvers, and possibly the most notorious bottleneck causing

very low fractions of peak processor performance. SpMV is also a difficult kernel to

accelerate due to huge dense address space of dense vectors and required random access.
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This work demonstrates how our developed multi-way merge primitive can be leveraged

to implement a SpMV algorithm possessing efficient data transfer characteristics, which

is otherwise compute bound on COTS architectures and, hence, commonly discarded.

2. Iterative SpMV - PageRank. A large class of SpMV applications, such

as PageRank, conjugate gradient, are conducted in iterative manner. This works

demonstrates how iterative SpMV can be practically implemented yielding higher

performance and efficiency than a single run using our proposed custom architecture.

This work elaborates iterative SpMV implementation using PageRank as an example.

3. SpGEMM. Another class of graph analytics require sparse matrix multipli-

cation with another sparse matrix or a set of sparse vectors, such as Betweenness

6



Centrality [19], All Pairs Shortest Path [20], Breath-First Search [21], which require

Sparse General Matrix-Matrix multiplication (SpGEMM) as key operation. This

work further demonstrates how off-chip traffic aware streaming SpGEMM can be

implemented using a sparse accumulator requiring only sequential access, which is

implemented using the multi-way merge hardware primitive developed in this work.

Our developed architecture is intended to contribute in the lower part of software-

hardware stack within the ecosystem provided by GraphBLAS-like standards, as

shown in Figure 1.3, where wide array of applications can be mapped using few

fundamental sparse kernels. This solution has shown orders of magnitude improvement

in performance and efficiency over state of the art solutions, an example of which is

shown in Figure 1.4. For practical demonstration, our proposed architecture has been

implemented on ASIC, which is currently under fabrication in 16nm technology and

shown in Figure 1.5, and FPGA custom platforms.

1.2.1 Approach and Scope

In this dissertation we have taken a top-down approach, i.e architecture last, unlike

most approaches in the literature that first assumes a given architecture characteristics

and develop accelerator on top of it, which is a bottom-up approach. Our approach is

to start with investigating the algorithmic properties that are required to yield high

performance and efficiency. Later we have developed custom hardware to precisely

address the requirements derived from the algorithm. Hence, this accelerator is termed

as a ‘co-optimized’ solution. While developing these hardware primitives our priority

is on scalability, technology trends and highest utilization of critical resources, such as

off-chip bandwidth and on-chip storage.
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Figure 1.4: Example of performance and energy efficiency improvement of proposed
ASIC architecture.
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Figure 1.5: Custom ASIC for proposed accelerator.

We have focused on shared memory architecture in this work. It is because of

the observation in memory technology trend that DRAM industry has been able

to dramatically lower the cost [22] while storage capacity of single main memory
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sub-system has increased substantially. Main memory system with storage capability

in the order of tera-bytes is common now a days, which can easily store working data

set for very large (multiple billion node) graphs. Hence, shared memory architecture

should be able to handle very large sparse matrix kernels if computational core can

support data set of this scale.

In this work we have exclusively considered large graphs (∼ billion nodes) for which

working data set is too large to fit on the fast on-chip memory, such as last level

cache (LLC), Block RAM (BRAM) and scratchpad. We have assumed no structure

in the data pattern, i.e. data is devoid of both temporal and spatial locality. In this

study our focus is on graphs with high sparsity, e.g. average degree < 10. Furthermore,

we have actively avoided costly preconditioning of the input data and complicated

sparse formats in an effort to eliminate related overheads.

1.2.2 Effort vs Benefit

A practical concern in developing custom architecture is that often the impact is too

narrow to justify the effort and cost. As there is no consensus on what the “building

blocks” of graph processing should be [23], standard graph libraries provide hundreds

of functions. It would be impractical to design custom hardware for all of them from

the perspective of both usability and cost. However, a wide range of graph algorithms

can be represented with sparse matrix algebra using just a handful of routines [24]

and GraphBLAS [1] standard has been developed on this principle. GraphBLAS uses

sparse matrix as the primary data structure and defines a concise set of sparse matrix

routines that has been found to be useful for wide range of graph algorithms. These

routines are defined on sparse matrices and, hence, work regardless of the complexity of
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the underlying graph. Standardization of data structure and narrow set of operations

allow wide range of audience to leverage decades of developed knowledge in linear

algebra. While GraphBLAS provides the programming environment for a broadest

possible audience, this work facilitates the underlying implementation by a single

hardware platform that accelerates the fundamental sparse matrix kernels.

Additionally, there are issues over CMOS technology trend that has made custom

hardware even more relevant for data intensive operations such as large sparse matrix

kernels. With slowing down of Moore’s Law, i.e. doubling of transistors in every

18 months, the free ride of achieving higher performance with new generation of

technology node is not true anymore. On the other hand, non-Dennard technology

scaling [25] has imposed a severe constraint on power budget for the entire gamut of

system design. This has led to the “Dark Silicon” phenomenon, that allows to utilize

only a fraction of the transistors available on-chip. Specialized hardware can mitigate

these problems and provide both performance and energy benefits.

Thus the effort in development of custom architecture for sparse matrix operation

is worth the possible impact both in terms timeliness and broad range of audience.

1.2.3 Key Developments

The key developments of this work are as following.

1. We present a study on SpMV streaming algorithms and identify an algorithm

that conducts in two separate phases and has the potential to achieve significant

performance and efficiency improvement for large problems. We demonstrate

that despite having superior data communication characteristics, this algorithm

is abandoned in literature due to computational requirements, which is not well
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suited for general purpose processors. This work elaborates on how the proposed

SpMV algorithm can be exploited by invoking various architecture and circuit

level techniques enabled by custom hardware.

2. This work makes a finding that a scalable and high throughput multi-way merge

network is a fundamental hardware primitive for both SpMV and SpGEMM

operations. However, multi-way merge hardware scheme with these required

properties is not available in current literature. We present a thorough inves-

tigation on the improvement of multi-way merge operation both at hardware

implementation and algorithmic level. This work demonstrates novel circuit level

techniques and parallelization scheme particularly suitable for sparse matrix

operations that achieve scalability and high performance. As multi-way merge is

a core operation in various other applications, our developed multi-way merge

merge network scheme can have broader impact.

3. As off-chip communication directly affects performance and efficiency of sparse

kernels, this work emphasizes on developing various techniques that reduce off-

chip data transfers for both SpMV and SpGEMM. We demonstrate effective

meta-data compression scheme that significantly reduces main memory traffic.

Furthermore, we present a new block traversal scheme for 2D partitioned data for

SpGEMM that becomes increasingly more beneficial in terms of main memory

traffic as matrix becomes larger and sparser.

4. This thesis demonstrates practical methodologies in properly utilizing extreme

off-chip bandwidth for sparse operations that is offered by state of the art 3D

stacked main memory technology. Keeping various computational constraints
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and limited power budget in mind, this work makes a comprehensive effort in

optimizing traffic and achieving high sustained throughput.

5. We show methods to enhance performance for a number of common cases in

sparse kernel applications. One of these cases is SpMV operation for iterative

applications, such as PageRank. We demonstrate a technique that reduces off-

chip traffic and almost doubles the computation throughput of iterative SpMV.

Another case is when the input graph contains nodes with disproportionately

large number of neighbors that are commonly found in power-law graphs. This

work shows that by detecting these nodes and processing them using specially

designed pipeline provide additional benefits. This work makes active effort in

ensuring that these optimization techniques do not cause considerable overhead

in terms of either hardware resource or data structure.

6. In this work we thoroughly demonstrate a streaming sparse accumulator as the

computation engine for efficient SpGEMM, which uses the same hardware primar-

ily designed for SpMV. We show that streaming sparse accumulator eliminates

the requirements of complex data structure and expensive hardwares that are

otherwise required for sparse accumulation. Furthermore, we demonstrate that

streaming sparse accumulator enables off-chip traffic reduction opportunities.

7. A key contribution of this work is to demonstrate scalable acceleration method-

ologies that can handle large problems. One of the major constraints of state of

the art sparse kernel accelerators is strong dependence on the on-chip fast mem-

ory to scale. This work presents computation methodologies that are resource

aware and can handle significantly larger matrices (∼ billion nodes vs few million
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nodes) with considerably less on-chip memory relative to custom accelerators in

literature.

8. The proposed custom hardware solution in this work is suitable for implementa-

tion in both ASIC and FPGA platforms. We have fabricated a 16nm FinFET

based ASIC chip as a practical demonstration of our proposed accelerator. We

further ported the ASIC design to Intel® Stratix® 10 FPGA. Our proposed

accelerator in both ASIC and FPGA platforms demonstrates multiple orders

of magnitude improvement over general purpose architectures in terms of both

performance and energy efficiency. Comparison results with recent custom acceler-

ators also demonstrate significant improvement in these metrics and considerably

higher scalability.

1.3 Background

Matrix algebra has been a part of graph analytics since its inception due to the

duality between canonical representation of graphs as a set of edges and vertices and

a matrix [1]. However, it is until recently that sparse matrix operations based on

already existing mature knowledge-base of linear algebra are found highly productive

by graph analytics community [24, 26]. This renewed interest in sparse matrix algebra,

substantially triggered by the success of Google PageRank algorithm [27], is attributed

to recent advancements in sparse matrix data structures and algorithms along with

numerous high-impact applications.
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We will discuss the general difficulties related to sparse matrix operations next.

Later in this section, we will also discuss relevant research efforts in literature for

accelerating these operations

1.3.1 Sparse Matrix Kernel Acceleration Challenges

Fundamental challenges in achieving scalability, performance and efficiency for sparse

matrix primitives in general are detailed below.

Low FLOP to memory access ratio. Fundamental sparse matrix kernels, such

as SpMV and SpGEMM, are data intensive and have low flop to memory access ratio

in general. This means for few computations it requires a relatively large quantity

of data transfers. In modern architectures, data access is much more expensive than

compute in terms of both energy and performance. For example, a double precision

FP operation requires 0.5-50pJ, while reading the operands from cache memory at

20mm distance consumes 500pJ. Energy consumption is ever higher (6000pJ) if data

is randomly accessed from off-chip main memory [28–31]. In terms of performance,

modern microprocessors require around 200 cycles to randomly access main memory

whereas FP multiplier takes only four cycles [32].

Inefficient Computation. Sparsity implies meta-data, huge address space and

complicated load-store, which cause inefficiency in general purpose computing. As

found by the authors of [33], among all the instructions of sparse matrix operation

more than 94% are responsible for traversing the graph, e.g. finding relevant neighbors

of a node, and loading arguments for computation. This also incurs a high energy

overhead. While an arithmetic operation requires 0.5-50pJ, scheduling instructions in

modern core consumes 2000pJ [29,34].
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Poor Bandwidth Usage. Off-chip memory bandwidth is one of the most impor-

tant resources of modern systems and sparse operations on general purpose processors

generally render bandwidth utilization to be poor. For latency bound sparse operations

data is transferred from off-chip memory in large blocks, most of which remain unused.

On the other hand, off-chip bandwidth bound sparse kernels often cause repetitive

transfers of same traffic as the working data set is too large for on-chip memory. This

incurs redundant traffic and negatively affects both performance and energy efficiency.

On-chip Memory Dependency for Scaling. This is possibly the most im-

portant constraint in handling large graphs for both general purpose and custom

architectures. Data structure of sparse matrix requires additional vectors as meta-data

and random accesses to these are required for fast traversal. Hence, it is a common

technique for custom accelerators to store large portion of meta-data, such as vertex

and edge properties, in the fast on-chip random access memory. This severely limits

scaling capability as larger problem requires larger on-chip memory. Modern SOCs

and micro-processors already use around 90% of available silicon area for on-chip

memory [35]. With Moore’s law currently hitting physical limits, radical increase in

on-chip memory capacity is not likely in foreseeable future. Hence, state of the art

shared memory custom accelerators have reported to only handle graphs with few

million nodes [16,33,36], whereas multi-billion node graphs are now commonplace.

1.3.2 Related Work in Literature

Majority of the research efforts to improve sparse matrix operations has been dedicated

in the software paradigm targeted for general purpose architectures. A commonality

among many of these efforts is the focus in trying to extract and exploit temporal/spatial

15



locality and execute by fine grained parallelism. Using sophisticated sparse formats to

capture and to provide ease of access to neighboring data is one approach in exploiting

locality. Another approach is to preprocess or precondition the matrix to induce

locality using techniques such as register blocking and matrix reordering, which are

expensive operations in general.

General Purpose Architecture

Authors of [37] have proposed to use blocked column-major and blocked row-major

Compressed Sparse Row (CSR) formats, namely BCM-CSR and BRM-CSR. These

formats improve SpMV performance of structured sparse matrices as long as the data

set fits in LLC. However, the authors reported sharp decline in performance when the

data set becomes larger than LLC. Authors of [13] used register, cache and TLB level

blocking to accelerate SpMV for multi-core environments. Recently, GPUs got much

attention of researchers where they have explored many sophisticated approaches,

such as fine grained parallel decomposition [38], model based auto-tuning [39] and

transformation of matrix representation and tiling to increase temporal locality [40].

In [40], authors have utilized column re-ordering according to column length to

accelerate SpMV based PageRank application on GPU. Researchers of [39] have

proposed to blocked ELLPACK format for GPUs. In Blocked ELLPACK nonzeros

are stored in blocks and ELL format is used to index the blocks, which introduces

high memory overhead. Authors of [41] also proposed several complicated data

formats, such as hybrid ELL/COO and packet (PKT) format, for SpMV on GPU.

One-warp-one-row (1W1R) method is used in [41] where it was reported to improve

performance by reducing the divergence among rows. In an IBM technical report [42],

the authors have shown how compile-time and run-time optimizations on GPU can
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accelerate SpMV. In [43], SpMV has been implemented using one-thread-one-row

(1T1R) method on GPU. However, this method suffers from the variable length of the

rows, i.e. different number of nonzeros per row. The authors have explored scan-based

method to overcome the inefficiency of this work. Cell processors have been used

to accelerate SpGEMM and SpMV in [44] by SIMD style implementation on eight

synergistic processing elements (SPEs). Even though SPEs have neither caches nor

efficient word-granularity gather/scatter support, the authors reported that the task

parallelism afforded by the SPEs, the eight independent load store units, and the

ability to stream nonzeros via direct memory access units overcame the limitations.

This work uses blocked compressed sparse row (BCSR) format and register blocking

to exploit locality.

Custom Architecture - FPGA

Among custom hardware platforms, FPGAs are more popularly pursued due to more

accessibility and cost effectiveness. For example, researchers of the works [45–48]

have implemented custom SpMV acceleration hardware using FPGAs. The maximum

reported performance improvement in [45] is 29x over CPU. While graph dimension of

most FPGA implementations in literature are limited to fractions of a million nodes due

to full vector storage requirement in on-chip Static Random Access Memory (SRAM),

authors of [45] reported to handle 9M node graph by using multiple off-chip SRAM

blocks. FPGA accelerator in [36] takes an edge centric graph processing approach for

PageRank acceleration, which can be implemented using SpMV, where the authors

reported maximum 2.3M node graph using 8.4MB SRAM. The work in [48] and [47]

report maximum performance of 1.4giga floating point operations per second (GFLOPS)

and 4GFLOPS accordingly. These performances are very much comparable to those
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for GPUs. GraphOps, a FPGA based modular hardware library for accelerating graph

analytics presented in [49], focuses on optimizing graph layout for efficient layout in

off-chip main memory and reported to operate on 16M node graph for SpMV and

PageRank. However, the authors reported a poor throughput of 37 Million Edges

Per Second (MEPS) and only 16% off-chip bandwidth utilization. In general, FPGAs

are reported to have better efficiency than general purpose architecture, however,

considerable performance improvement with FPGA for large scale SpMV is absent in

the literature.

Custom Architecture - ASIC

A handful of ASIC accelerators are available in literature for sparse kernel acceleration,

such as [16,18,33,50]. Authors of [16] has implemented SpMV and Sparse Matrix Sparse

Vector multiplication (SpMSpV) kernels on 14nm simulated ASIC for accelerating

machine learning workloads, such as classification, regression, recommendation and

clustering. This work reported highest graph of 1.6M nodes, 117x improvement in

performance per watt against multi-threaded software implementation on CPU and

60GB/s aggregated throughput using 4 independent accelerator blocks. Authors

of [18] accelerated SpMV operation for support vectors machine (SVM) using an 14nm

simulated ASIC similar to [16]. This work reported 14.7x and 22.9x performance

improvement against baseline SpMV software running on Intel® Atom and Xeon core

respectively. Energy efficiency improvement against Atom and Xeon core is 9x and 20x

respectively. The authors of [33] presented another ASIC simulated using sub-28nm

technology node for graph analytics. This work reported to achieve 1.7x-6.5x speedup

and 50x-100x energy efficiency in comparison with software graph analytics frame

work on 16-core Haswell Xeon CPU for applications such as PageRank, breadth-first
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search (BFS), single source shortest path (SSSP) and collaborative filtering (CF). This

work uses a large 32MB Embedded DRAM (eDRAM) scratchpad that is also very

energy inefficient. The authors reported the eDRAM energy consumption to be 90%

of what is consumed by the entire system. Despite using a large scratchpad, this work

efficiently supports only 8M node graph. It is because this accelerator stores multiple

tables related to all vertex and edge properties in the scratchpad for fast random

access. The work in [50] presents a simulated 32nm ASIC along with 3D stacked

architecture for SpGEMM acceleration. This work uses multiple Content Addressable

Memory (CAM) blocks for random sparse accumulation during blocked SpGEMM

computation. However, CAM is very expensive in terms of both silicon space and

power. Furthermore, resultant output matrix of this work is not sorted.

1.4 Dissertation Outline

In this dissertation we will initially present the discussion of off-chip traffic aware

algorithm and custom architecture development for SpMV kernel. In the later part

of this thesis we will demonstrate how the developed architecture enables traffic

aware algorithm implementation for SpGEMM, which can also be construed as sparse

matrix multiplication with a set of sparse vectors, i.e. SpMSpV. The chapters of this

dissertation are organized as following.

Chapter 2 will provide a study on streaming and non-streaming SpMV algorithms.

We will elaborate our proposed off-chip traffic aware two phased algorithm, namely

Two-Step SpMV, which can efficiently eliminate high latency accesses for SpMV. We

will also present the comparative benefits and challenges related to Two-Step SpMV

and demonstrate why a scalable multi-way merge hardware is essential for SpMV.
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Chapter 3 will thoroughly demonstrate the development of scalable multi-way merge

hardware which is essential for sparse matrix operation acceleration. We will drive the

discussion using SpMV kernel as it poses more difficulties in achieving performance.

This chapter will elaborate circuit level details and techniques that have been devised

to improve performance and scalability of multi-way merge tree. Furthermore, a

parallelization method will be illustrated that does not require more on-chip memory

to scale. We will explain how this parallelization method dictates the partitioning

scheme of the matrix. This chapter also progressively discusses available multi-way

merge implementation techniques in literature and why those are not suitable for

sparse matrix kernel acceleration.

Chapter 4 will detail the implementation of Two-Step SpMV kernel on custom

hardware. We will present accumulation techniques to avoid bubbles in pipelined

adders in case of large number of consecutive collisions. Furthermore, this chapter

will demonstrate our proposed meta-data compression scheme and special hardware to

efficiently process high degree nodes in power-law graphs. We will also show efficient

technique for this accelerator implementation where the main memory sub-system has

multiple channels.

Chapter 5 will present an optimization technique by iteration overlap for iterative

SpMV operation using an example of PageRank application. We will demonstrate how

throughput is increased and traffic is reduced by iteration overlap optimization. The

second half of this chapter will elaborate on-chip fast memory usage of our accelerator

and the effects of memory management on custom hardware solutions’ scalability

and efficiency. This discussion will show how our proposed architecture is capable of

handling significantly larger graphs than what is possible with present architectures

despite using less or similar fast memory.
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Chapter 6 will present experimental results for SpMV kernel with our proposed

accelerator implemented on both ASIC and FPGA platforms. We will show comparison

against multiple general purpose architectures as benchmarks, which are CPU, co-

processor (Xeon Phi) and GPU. Furthermore, we will compare against other custom

hardware solutions available in literature. We will use Intel® MKL for implementation

on CPU and co-processor. For the rest of benchmarks, we will use the reported metrics

from relevant publications. As performance metrics we will use speedup in execution

time and GTEPS. As energy efficiency metric, we will use energy per edge traversal.

Chapter 7 will describe how the developed accelerator can be used for SpGEMM

operation. We will demonstrate how an efficient streaming sparse accumulator can be

implemented using the multi-way merge network primarily developed for Two-Step

SpMV implementation. We will further discuss the advantage of streaming sparse accu-

mulator over current SpGEMM acceleration techniques using both custom and general

purpose hardware. Additionally, we will present a new block traversal scheme for 2D

partitioned matrix that significantly reduces off-chip traffic for SpGEMM computation.

Lastly, we will present experimental results and compare with general purpose and

custom hardware benchmarks in terms of performance and energy efficiency.

Chapter 8 will discuss possible directions of future work and present concluding

remarks.
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Chapter 2

Two-Step SpMV Algorithm
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In this chapter, streaming algorithms for Sparse Matrix dense Vector multiplication

(SpMV) operation on shared memory system are explored. We will elaborate our

proposed streaming algorithm, namely Two-Step SpMV, that enables full main memory

streaming by efficiently eliminating high latency accesses and reduces off-chip traffic

for large problems. This algorithm also serves as an exemplary rationale behind the

22



Carnegie Mellon

1

A

SpMVx

y

spmv

x

Sparse Dense Dense

Figure 2.1: Sparse Matrix dense Vector multiplication (SpMV) operation.

development of scalable multi-way merge as a core hardware primitive for our proposed

architecture in this work.

This chapter will also demonstrate comparative analysis of Two-Step algorithm

against other bandwidth bound and latency bound algorithms. For evaluation and

demonstration, we assume the Disk Access Machine (DAM) model [51] with two levels

of memory hierarchy, on-chip storage (fast access) and off-chip main memory (slow

access with block transfer). In this work we have focused on sparse matrices that

are significantly larger than system’s fast on-chip storage, e.g. last level cache (LLC),

scratchpad, etc. Furthermore, we assume matrices with high sparsity where exploitation

of temporal/spatial locality or any structure in the nonzero pattern is difficult.

2.1 SpMV Operation on Large Matrices

SpMV operation can be represented as y = Ax + y, where A is a sparse matrix and x

and y are respectively the source and resultant vectors as shown in Figure 2.1. SpMV

operation has low floating point operation (FLOP) to memory access ratio, i.e. for
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few computations we require a relatively large number of memory accesses. This is

because for only two floating point operations, i.e. the multiplication and addition,

three memory accesses to A, x and y are required. Given current technologies, our

compute capability significantly exceeds memory access speed, which is termed as

memory-wall [52, 53]. Hence, resource requirement for SpMV operation is intrinsically

imbalanced with respect to available system resources.

More importantly, SpMV requires random access to a large address space cor-

responding to either source vector x or reslutsnat vector y. When SpMV problem

set become significantly bigger than fast memory, which is true for numerous real

world problems, these random accesses are translated to high latency main-memory

random accesses. As will be explained in detail later, random access to main memory

makes SpMV latency bound for large problems that is substantially inefficient for both

performance and energy. Matrix partitioning can help in overcoming this, however, at

the cost of increased computational complexity and payload (data that actually takes

part in computation).

Due to sequential main memory access, streaming SpMV algorithms are generally

main memory bandwidth bound. Since off-chip main memory bandwidth is one of

the most scarce resources of current architectures, performance and energy efficiency

of SpMV operation critically depend on proper usage of it. Proper usage of off-chip

memory bandwidth implies full streaming access and minimization of off-chip traffic.

In this work, we propose a streaming SpMV algorithm that guarantees streaming main

memory access and incurs relatively less off-chip traffic. This algorithm is named as

Two-Step SpMV. We remain oblivious to computation related micro-architectural

constraints in developing Two-Step SpMV and exclusively focus on data transfer

characteristics.
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Figure 2.2: Two-Step SpMV algorithm.

2.2 Proposed Two-Step SpMV

As the name suggests, Two-Step SpMV is conducted in two separate steps, which

is depicted in Figure 4.1. This algorithm is fundamentally depended on matrix

partitioning into 1D column-blocks and multi-way merge operation. For Two-Step

SpMV, initially the source vector x is first divided into multiple segments and matrix

A is partitioned into vertical stripes, i.e. column blocks, as shown in Figure 4.1. The

stripes of A is stored in a row major sparse format, e.g. Row Major Coordinate

(RM-COO) or CSR as are depicted in Figure 2.3. Depending on the sparsity of matrix

stripes one row-major format might be preferable to other. A detail discussion on

preferable sparse formats is given in Chapter 4. Dimensional width of the stripes of A

is same as the source vector segment length, which is directly proportional to the fast

storage that can be randomly accessed in constant time. This means, segment width of

x is determined such that fast memory storage is capable of holding the entirety of it.
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A pseudocode of Two-Step SpMV algorithm is given in Pseudocode 1. We discuss

the separate steps of Two-Step SpMV below. At the beginning of SpMV operation, we

assume that matrix stripes and source vector segments are resided in main memory.

Step 1

In this step of Two-Step algorithm, partial SpMV is conducted between the stripes

of matrix (Ak) and the corresponding vector segments (xk). At first, one vector

segment is streamed out from main memory and stored in the fast storage. Afterwards,

pertinent matrix stripe is streamed out from main memory to the computation core.

Each nonzero in the matrix stripe is multiplied with the corresponding source vector

element and accumulated with any existing partial results within the same matrix

stripe of A. As the matrix blocks are is stored in row major format, they are also

sequentially traversed in increasing order of row indices of the nonzeros. Hence this

partial SpMV operation on sparse matrix block produces a sparse vector that have

nonzero elements sorted in ascending row indices of the matrix nonzeros, which are the

26



Pseudocode 1: Two-Step algorithm for large SpMV.

1 STEP 1
2 for k = 0 to n − 1 do
3 Stream in Matrix Column Block Ak

4 u ← 0

5 for All rows Ak
i,: with nnz > 0 do

6 for Each non-zero Ak
i,j in Ak

i,: do

7 Random access to vector segment xk

8 ui ← Ak
i,j · x

k
j + ui

9 end

10 end

11 Sparsify u to vk

12 Stream out vk

13 end

14 STEP 2
15 for i = 0 to N − 1 do
16 for k = 0 to n − 1 do
17 Stream in vk

18 yi ← yi + v
k
i [Multiway Merge]

19 end

20 end
21 Stream out y

meta-data (index) for the sparse vector nonzero elements. Thus, each sparse vector is

effectively a sorted list and each nonzero in the sparse vector is a key-value pair where

the key is the position index, i.e. the meta-data.

Since during the partial SpMV of Ak and xk the intermediate sparse vector vk is

generated sequentially, it can be streamed out to main memory. In the first step, this

process is conducted for all n matrix stripes. Therefore, after step 1 we end up with n

intermediate sparse vectors residing in main memory. These intermediate vectors are

stored in main memory as they are too large to fit in the fast on-chip storage.
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Step 2

The second step of Two-Step SpMV is essentially a large multi-way merge operation

among all the sorted lists, i.e. n intermediate sparse vectors. For this multi-way

merge operation, vk for any value of k is accessed sequentially. Hence, in step 2 all

the intermediate vectors are streamed out from main memory to the computational

core and merged to form the final resultant dense vector y. As y is also generated in

sequential manner, it can streamed to main memory.

2.2.1 Advantages of Two-Step SpMV

The main advantage of Two-Step SpMV is that it guarantees full main memory stream-

ing access and incurs less off-chip traffic than other streaming and non-streaming

algorithms for large problems. Therefore, Two-Step SpMV facilitate proper use of

main memory bandwidth. We will elaborate on why this algorithm causes less traffic

in later part of this chapter. Additionally, Two-Step enables various optimization op-

portunities such as meta-data compression for off-chip traffic reduction and throughput

augmentation in iterative applications, which will be discussed in detail in Chap-

ter 4 and Chapter 5. Furthermore, Two-Step SpMV does not require preconditioning

(preprocessing) of the matrix and is not dependent on any exploitation of nonzero

locality pattern. Hence, for large problems with high sparsity that are devoid of spatial

and temporal locality or when preconditioning is expensive, Two-Step algorithm is

especially advantageous.

In the following sections, we will evaluate Two-Step SpMV with other non-streaming

and streaming SpMV algorithms and demonstrate the benefits of this algorithm in

terms of off-chip data transfer characteristics.
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2.3 Evaluation of Two-Step SpMV

As mentioned before, SpMV has a low FLOP to memory access ratio and, hence, its

performance and efficiency are primarily dictated by memory access behavior. In

this section, we evaluate our proposed Two-Step SpMV by exploring the fundamental

differences in memory access characteristics for various families of SpMV algorithms

while remaining oblivious to the compute requirements. We assume the DAM model [51]

with two levels of memory hierarchy, fast on-chip storage and main memory (DRAM)

with slow access and transfer in large blocks. Furthermore, we assume high sparsity

where there is no exploitable spatial or temporal locality in the matrix data.

2.3.1 Non-Streaming SpMV

SpMV can be conducted by random access to either the source vector x or the

resultant vector y. Without any loss of generality, we assume random access to

x for non-streaming SpMV. In this algorithm, the matrix is not partitioned and

resultant vector elements are computed by direct inner product using the formulation

y(i) =
∑N−1

j=0 A(i, j)x( j). Here, i and j are the row and column indices of matrix A

and N is the dimension of x. For large problems, x is significanly larger than the

on-chip fast memory, e.g. LLC of CPU. As there is no locality in data, for every matrix

element multiplication a cache miss is almost always unavoidable and request for x( j)

is forwarded to off-chip main memory. This phenomenon for an architecture with LLC

and DRAM main memory is depicted in Figure 2.4.

In non-streaming SpMV every access to DRAM for x( j) is random and causes a

new page (row buffer) to be opened every time due to large address space of x. This

causes high latency for almost every access and makes this algorithm main memory
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Figure 2.4: Redundant data transfer and random access in non-streaming SpMV.

latency bound. More importantly, data from main memory is transferred to LLC in

cache line size blocks. As there is no locality in the data request, most of the cache line

remains unused and eventually gets evicted. Thus a large amount of off-chip traffic that

is transferred between DRAM and LLC using the scarce main memory bandwidth is

wasted. An example off-chip traffic volume between DRAM and LLC for non-streaming

and Two-Step SpMV is shown in Figure 2.5 for a randomly generated Erdos Rényi

sparse matrix of size 80M×80M, average degree of 3 and 64B cache line. The fast

storage size is varied to demonstrate its insignificance on the overall off-chip data

transfer. It can be noticed that the redundant data (gray region) of non-streaming

SpMV makes the overall data transfer significantly greater than Two-Step. This

redundant data is due to the portions of cache line size blocks of x that are transferred
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to LLC and get evicted without ever being used. On the other hand, the blue and

red colored regions represent the payload, i.e. the data that actually take part in

computation.

A noteworthy observation in Figure 2.5 is that the payload for Two-Step SpMV is

consistently greater than the latency bound non-streaming algorithm, despite incurring

overall less traffic. This is because the intermediate sparse vectors (vks) of Two-Step

SpMV have to make a full round trip to and from main memory. Nevertheless, Two-

Step SpMV provides several optimization opportunities to reduce the payload, which

will be discussed in detail in Chapter 4.

2.3.2 Streaming SpMV

In this section we will compare the off-chip data transfer characteristics of two fun-

damental ways of conducting streaming SpMV. A high level mathematical model

for off-chip traffic between the fast and slow memory levels in a single core scenario
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in presented. However, this analysis is also applicable to multi-core shared memory

scenarios.

An efficient SpMV kernel should be memory bandwidth bound [38] and, generally,

the measure of success for a streaming SpMV algorithm is the fraction of peak

bandwidth that can be achieved. Here, we consider the algorithms that achieves full

main memory streaming access (i.e. utilizes peak bandwidth). Therefore, our measure

of success would be the execution time, which is inversely proportional to the volume

of off-chip data that is transferred between the memory hierarchy levels.

For streaming SpMV algorithms, large sparse matrices are commonly partitioned

into blocks for which working data set fits in the fast memory. This avoids random

access to main memory and facilitates parallelization. Figure 2.6 depicts a N × N

matrix that is 2D partitioned into m × n blocks. A square matrix is considered to

simplify the calculation without any loss of generality. Sparse matrix A has in the

order of hN nonzeros, where h is the average degree. We denote Sm as the size of

matrix element (including meta-data) and Sv as the size of source and resultant vector

elements.

Independent of the sparse matrix block storage format and computation method,

there are basically two ways to traverse the matrix blocks for conducting streaming

SpMV. As Figure 2.6 shows, one of the ways is to traverse the blocks in row-major

direction, while the another is to traverse in column-major direction. We name the

family of algorithms following former as Row-major Block traversed Algorithms (RBA)

and later as Column-major Block traversed Algorithms (CBA). Our proposed Two-Step

SpMV falls under the family of CBA.
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Row-major Block traversed Algorithms (RBA)

For RBA, as used in [54], the matrix block and relevant segment of the source vector

(x) can be streamed to the fast memory from DRAM. Block level SpMV can be

conducted by sequential access to segment of x. The partial resultant vector for each

block is accumulated with the existing results from previous blocks as we traverse

a row of blocks in the the 2D partitioned matrix. Thus, the entire source vector

has to be streamed from DRAM for traversal of one row of the matrix blocks. As

mentioned before, source vector x is significantly larger than fast memory storage and,

hence, cannot be re-used for following block row traversal. On the other hand, the

resultant vector portion needs to be stored in fast storage for random access since it is

updated while a row of matrix blocks is traversed. Therefore, resultant vector segment
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dimension (N/m) is dictated by the on-chip storage size. The off-chip traffic for RBA

is shown in Table 2.1. For example, to compute on each block row of the matrix we

need to stream hNSm/m amount of matrix data from DRAM to computation core. For

the entire computation on matrix A, hNSm amount of matrix data is streamed into

the core from DRAM. Using the information of Table 2.1, we can calculate the total

off-chip traffic for RBA (Dr) from the formulation given in Equation 2.1.

Table 2.1: Off-chip traffic volume between DRAM and on-chip memory for RBA
(row-major block access)

Data source Traffic per Total
(direction w.r.t. chip) block row data

Matrix (in) hNSm/m hNSm
Source vector (in) NSv mNSv

Resultant vector (out) NSv/m NSv

Dr = hNSm + NSv + mNSv (2.1)

Column-major Block traversed Algorithms (CBA)

In CBA, matrix blocks can be streamed from DRAM to computation core similar

to RBA. However, in this case segment of source vector x is randomly accessed as

the m matrix blocks in column-major direction are traversed. Therefore, the fast

storage is occupied by the source vector segment. Another important difference of

CBA from RBA is that each column of matrix blocks will produce an intermediate

resultant vector. In the worst case (when there is no reduction), an intermediate vector

will have the same number of elements as the total Number of Non-Zeros (NNZs)

in all the matrix blocks in that column. The intermediate resultant vector needs to
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be updated/accumulated as we move to the next column of matrix blocks. As the

intermediate resultant vector becomes more dense each time it is updated, storing it

on chip does not remain feasible. There are multiple ways this intermediate result

can be updated. One way is to store the intermediate vector in DRAM and update

its elements by randomly accessing DRAM, but this will cause inefficient bandwidth

usage and make SpMV CBA a latency bound non-streaming algorithm. Another way

is to stream the entire intermediate result from DRAM to computation core every

time a new column of matrix blocks is traversed and conduct accumulation. Despite

guaranteed DRAM streaming, this method will incur redundant off-chip traffic as

most nonzeros in the intermediate result is not required to be updated. From the

perspective of off-chip traffic entirely, a better way is to stream out the n intermediate

vectors (one for each column block of A) to DRAM as they are produced. Afterwards,

stream back all the n intermediate vectors from DRAM to chip and apply reduction

operations on them to get the final resultant vector y. Table 2.2 presents the off-chip

traffic for the operations in CBA. Further, we can deduce the total data transfer for

CBA (Dc) as shown in Equation 2.2.

Table 2.2: Off-chip traffic volume between DRAM and on-chip memory for CBA
(column-major block access).

Data source Traffic per Total
(direction w.r.t. chip) block column data

Matrix (in) hNSm/n hNSm
Source vector (in) NSv/n NSv

Intermediate vec. (out & in) 2hNSv/n 2hNSv
(assuming no reduction)
Resultant vector (out) - NSv
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Dc = hNSm + NSv + (2h + 1)NSv (2.2)

Comparison: RBA vs CBA

From Equation 2.1 and Equation 2.2 we see that the first two terms (hNSm and

NSv) are identical. The third terms in the equations make these algorithms distinct

from each other. For RBA, mNSv appears due to reading the entire source vector

from DRAM m times. On the other hand, (2h + 1)NSv represents the intermediate

results of CBA that make a round-trip from computation core to and from DRAM.

By investigating further, we can see that the key factors are m and (2h + 1) for RBA

and CBA respectively. If m < (2h + 1), then RBA is preferable as it will have less data

transfer than CBA. Otherwise, CBA is preferable when m > (2h + 1).

Table 2.3: Speedup of CBA over RBA on typical systems.

System On-chip/DRAM N m Execution time (s) Gain
(MB/GB) RBA CBA with CBA

GPU (Tesla GP100 w/ HBM2) 4/16 250M 500 2.76 0.05 50x
FPGA (Stratix 10 w/ HBM2) 16/32 500M 250 2.00 0.08 26x

Desktop (Skylake Core i7) 8/64 1B 1e3 236.7 2.35 100x
Server (Haswell Xeon E7) 45/1500 23B 4.2e3 7.7e3 12.6 417x

We can derive m from system configuration, matrix dimension (N) and sparsity

(h). For any system with DRAM capacity of CDRAM , the largest matrix dimension N

that it is able to handle, given h, can be calculated from Equation 2.3. We assume
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that the matrix, source vector and resultant vector occupy the main memory entirely.

CDRAM =
matrix
hNSm +

source vector
NSv +

resultant vector
NSv

⇒ N =
CDRAM

(hSm + 2Sv)
(2.3)

RBA needs to store 1
mth portion of the resultant vector in the fast on-chip storage.

Therefore, we can express the capacity of the on-chip memory Cchip as the following.

Cchip =
NSv
m

. (2.4)

Replacing N from Equation 2.3 to Equation 2.4 gives us closed form expression for m

as shown in Equation 2.5.

m =
CDRAM

Cchip

Sv
(hSm + 2Sv)

(2.5)

From the above equation we see that m is directly proportional to the ratio of

slow(DRAM) and fast(on-chip) memory storage size. This ratio for typical systems

is generally much greater than the pertinent sparsity parameter, i.e. average degree

h, of matrices for large SpMV problems. This means m is generally much larger than

2h + 1. For example, h can be in the order of 1→ 10 for large sparse matrices (e.g.

social network graphs such as Twitter lists, YouTube from KONECT library [55]). On

the other hand, m is in the order of thousands for systems capable of handling large

SpMV problems.

For a number of practical systems, we have explored the value of m, largest matrix

dimension N and execution time of both the algorithms (assuming off-chip data is
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transferred at peak bandwidth) for h = 3. Table 2.3 summarizes our findings. We

see that m is in the order of hundreds for systems with relatively small DRAM size.

For systems with large DRAM capacity, m is in the order of thousands, which is

significantly larger than (2h+ 1) = 7. Therefore, RBA incurs much more off-chip traffic

than CBA, specially for large SpMV problems. For example, a Haswell server with

1.5 TB DRAM can operate on 23B× 23B matrix with average degree of 3. If RBA is

used, the source vector of 23B elements is transferred from DRAM to chip m = 4200

times (600x larger than 2h + 1), whereas for CBA the source vector is transferred only

once. As the overhead for CBA, due to intermediate results, is considerably less than

transferring source vector m times, we get 417x improvement in execution time with

CBA. Furthermore, m is directly proportional to matrix dimension N, which makes

RBA less scalable than CBA. Therefore, our analysis shows that column-major matrix

block traversal based streaming SpMV algorithms, such as our proposed Two-Step

algorithm, are preferable for large SpMV problems as it can meaningfully eliminate

high latency random accesses without incurring prohibitively large off-chip traffic

overhead.

2.4 Challenges

2.4.1 Multi-way Merge for Two-Step SpMV

Thus far we remained oblivious to the computation requirement of Two-Step SpMV

algorithm. While our proposed Two-Step can be theoretically be implemented on

COTS architectures like CPU or GPU, it may be very inefficient. This is because

of the second step of the algorithm where thousands of sorted lists with millions of
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elements have to be merged to produce one resultant dense vector. Multi-way merge of

this extent is essentially compute-bound [45,56] and difficult to accomplish with COTS

architectures efficiently due to bad scaling behavior. Difficulties in implementation of

high performance/throughput multi-way merge operation is one of the key reasons

for discarding algorithms similar to Two-Step SpMV despite having efficient memory

access behavior. Additionally, when the matrix gets larger multi-way merge operations

becomes exponentially resource intensive. One of the key contributions of this work

is the development of a scalable and large multi-way merge custom hardware that is

essential for efficient implementation of Two-Step SpMV for large problems.

2.4.2 Multi-way Merge for other Sparse Matrix Operations

The second phase of Two-Step SpMV is essentially a sparse accumulation, which is also

a fundamental operation for Sparse General Matrix-Matrix multiplication (SpGEMM).

Multi-way merge primitive offers a way of streaming sparse accumulation using only

sequential memory access instead of random sparse accumulation, which is commonly

practiced in literature. In Chapter 7, we will describe in detail how SpGEMM can

be benefited from streaming sparse accumulation in terms of hardware efficiency and

off-chip traffic reduction of large problems. Furthermore, SpGEMM can be considered

as sparse matrix multiplication with a set of sparse vectors, i.e. Sparse Matrix Sparse

Vector multiplication (SpMSpV). Therefore, an scalable multi-way merge network

can serve as the core hardware primitive for an architecture to accelerate a range of

fundamental sparse matrix operations.
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2.5 Summary

This chapter elaborated our proposed Two-Step SpMV algorithm that possesses full

streaming access behavior and incurs significantly less off-chip traffic than the streaming

algorithm that is generally adopted in literature. We have also shown that Two-Step

SpMV produces overall less off-chip traffic than latency bound algorithm despite

having more payload. Two-Step SpMV also presents several opportunities to further

reduce off-chip traffic, which will be described in Chapter 4. However, to handle large

problems Two-Step SpMV requires a scalable and high performance multi-way merge

network that is difficult to efficiently implement in both general purpose and custom

hardware. This multi-way merge operation requirement is one of the main reasons

for algorithms similar to Two-Step SpMV not being adopted by researchers despite

having better memory access behavior. Furthermore, in Chapter 7 we will demonstrate

how multi-way merge is also the core operation for other fundamental sparse matrix

operations, such as SpGEMM. Next in Chapter 3 we will thoroughly elaborate the

development of a scalable and high performance multi-way merge hardware required

for our proposed custom architecture.
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In Chapter 2 we have seen that a meaningful implementation of the Two-Step SpMV

algorithm largely depends on the hardware design necessary for achieving performance
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and efficiency. The most important hardware kernel required for Two-Step SpMV

implementation is a scalable multi-way merge network. Later in Chapter 7 we will also

see that multi-way merge operation is fundamentally important to accelerate other

sparse matrix operations, such as SpGEMM and SpMSpV.

This chapter will progressively demonstrate the development of our proposed novel

multi-way merge network, namely Hybrid Comparison Look Ahead Merge (HCLAM),

which incurs significantly less resource consumption as scaled to handle larger problems.

We will further demonstrate a parallelization scheme, namely Parallelization by Radix

Pre-sorter (PRaP), which enables streaming throughput increase of the merge network

without prohibitive demand of on-chip memory. This parallelization scheme is the

main contributor is saturating extreme off-chip streaming bandwidth of 3D-stacked

main memory used in the proposed accelerator of this dissertation. We will show circuit

level details of proposed and state of the art multi-way merge schemes to elaborate

fundamental techniques that enable high performance and scalability.

3.1 Scalability

From the perspective of hardware implementation and performance, scalability can be

viewed from two distinct aspects, which are

1. Problem scaling

2. Technology scaling.

Figure 3.1 shows how problem scaling and technology scaling affect a multi-way merge

binary tree implementation. Problem scaling is the phenomenon when the input data

set becomes larger. For example, when the matrix dimension, i.e. number of nodes in
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Figure 3.1: Binary tree implementation of naive multi-way merge network.

graph, become larger for SpMV, more lists are required to be merged in the second

step of the Two-Step algorithm. As a result, required number of sorter cells and FIFOs

grow exponentially. Hence for practical feasibility, hardware design should be able to

handle growing matrix size without prohibitively requiring more hardware resources or

sacrificing performance.

On the other hand, design of any algorithm or hardware is expected to take full

advantage of new technologies with extended capabilities. For example, 3D stacked

HBM technology enables extreme off-chip bandwidth. As many sparse matrix kernels

should ideally be memory bandwidth bound, accelerators in this domain are expected

to properly utilize the extreme bandwidth offered by this new technology. For a single

multi-way merge tree hardware, where the maximum output rate is one element per

cycle, delivering enough throughput to saturate such high bandwidth is another major

challenge. Additionally, maintaining balanced throughput for multiple DRAM channels

pose further challenges.
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Multi-way merge solution that can practically address both of these scalability

issues is absent in the literature. One of the major contributions of this work is to

develop a multi-way merge hardware design that address both problem and technology

scaling, while being practically feasible for custom hardware platforms, such as ASIC

and FPGA. In the following sections, we separately discuss the challenges, implications

and solutions for both problem and technology scaling in developing the multi-way

merge hardware kernel.

3.2 Problem Scaling

3.2.1 Register FIFO based Multi-way Merge

Figure 3.2 depicts a basic hardware binary tree for merging K sorted lists, hence a

K-way merge network. For this particular example, K = 8. Each element of the lists is

a key-value pair, which we will refer as a ‘record’ from now on. By ‘read’ we mean

accessing a certain entry in the FIFO and by ‘dequeue’ we mean updating the counter

of the FIFO that is being read. Data ‘write’ and ‘queue’ both means the same in this

context, that is making an entry in the buffer and updating the counter of a FIFO.

The basic building blocks of this tree are sorter cell (comparator) and FIFO. Each

sorter cell compares the keys from the two connected FIFOs and dequeues the record

(key-value pair) with the smaller key. To improve clock frequency, the merge tree is

further divided into pipelined stages by storing the output of sorter cells in pipeline

registers. Total number of stages can be calculated as S = log K + 1 and stage number

starts from ‘0’ at leaf level. The most straight-forward hardware implementation uses

register based FIFOs and a total of K − 1 sorter cells. For any particular pipeline
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given clock cycle.

stage and at any given clock cycle, only one sorter cell remains active in steady state.

A record is dequeued from a FIFO only if the connected sorter in the next stage is

active and has the smaller key. Similarly, record is queued to a FIFO only if it is

not entirely full. We name this implementation as Independent Register FIFO based

Merge (IRFM).

For IRFM, we define DFIFO as the FIFO depth and Ld as the total number of clock

cycles required beginning from the issuance of read requests to a pair of FIFOs to

when the output record is ready to be queued in the destination FIFO of next pipeline

stage. Additionally, we define the number of clock cycles to generate the read address,

raddri of stage i as La. As raddri is dependent on the output record of stage i + 1,

minimum Ld +La clock cycles are required for a record to travel from one pipeline stage
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to the next. Hence, maximum throughput of this multi-way merge implementation,

Rmax, is 1 element per Ld + La cycles as shown in Equation 3.1. From here on, we will

also refer to the duration of Ld + La clock cycles as a working cycle of period (Tw).

To maintain Rmax in steady state, DFIFO has to be minimum 2. The reason is that

it takes Tw time to dequeue a record from any FIFO and it takes another Tw time

to replenish that FIFO. As a result, for consecutive accesses to any particular FIFO

without introducing bubble, minimum two records have to be queued in all FIFOs

during initialization. Here we are assuming that each FIFO has one read port and one

write port independent from each other.

In IRFM read address generation is trivial as ‘not-full’ status any FIFO in stage

i+1 can be independently propagated to stage i to generate raddri. For many practical

implementations using register FIFOs Ld + La = 1 and throughput of 1 element per

cycle is achievable using DFIFO = 2. However, we are assuming that data stream is

not interrupted at the leaf level of the binary tree (i.e. input stage of the pipeline).

Due to various technical reasons, in practical implementations it is common to have

occasional interruptions in data stream at the leaf level of the tree. In such case, it is

beneficial to have DFIFO > 2 to maintain Rmax.

Rmax =
1

Ld + La
records per clock cycle (3.1)

3.2.2 Block Memory based Multi-way Merge

As k grows, the logic required for the sorter cells and FIFOs grows exponentially. As

hardware resources are limited, this becomes one of the key prohibiting factors in
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implementing large multi-way merge network. As a solution to this, implementation

design as depicted in Figure 3.3 can be used. We name this implementation as Scheme-

1 . As it is required to read from two FIFOs simultaneously in every stage, the FIFOs

in Figure 3.2 are logically mapped to set words in two separate memory blocks. All

the even numbered FIFOs are mapped to a memory block (BID = 0) and all the odd

numbered ones are mapped to the other memory block (BID = 1). Every FIFO in

Figure 3.3 works as a sorted list that can be considered as the input data for that

particular pipeline stage. Stage i handles ki = 2(S−i−1) such sorted lists, where S is

the total number of stages. Among the lists in stage i, the even numbered ki/2 lists

are represented by one memory block (BID
i = 0) and the odd numbered ki/2 lists are

represented by the other memory block (BID
i = 1).

In any given working cycle tw, two records, namely dout0
i, tw and dout1

i, tw , are read from

the same address of both memory blocks in stage i. However, only the record with

smaller key, dmin
i, tw = min{dout0

i, tw , dout1
i, tw }, is stored in the pipeline register. This record

works as the input data din
i+1, tw+1 to stage i + 1 in the next working cycle tw + 1. Hence,

for every pipeline stage Scheme-1 require 2 reads and 1 write in the pertinent memory

blocks. It is important to note that the FIFO that dequeued the record with smaller

key in stage i at working cycle tw needs to be replenished at the working cycle tw + 1

to maintain steady throughput.

Here we are assuming that every block memory has one read port and one write

port for depiction purpose, which is common for SRAM. However, this scheme can be

generalized and the fundamental principles do not depend on the number ports of the

memory blocks.
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Figure 3.3: Block memory based multi-way merge network (Scheme-1 ).

3.2.3 Block Memory based Merge: Advantages and Chal-

lenges

The first advantage of Scheme-1 is that now only log K sorter cells are required instead

of K − 1. Secondly, a single SRAM block can be used instead multiple separate register

based FIFOs. This significantly reduces the silicon area required for buffer storage

needed in multi-way merge network as SRAM cells ( 8 transistors) are much smaller

that registers ( 19 transistors). However, as described below, there are a number of

potential issues that can render Scheme-1 to be inefficient.
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1. Performance: The block memory in each stage, as depicted in Figure 3.3,

can be conceptually conceived as a collection of several logical FIFOs sharing a

common port for data input and output. Due to this shared port, these logical

FIFOs cannot independently enact themselves along the relevant branch of the

multi-way merge binary tree. Hence additional control logic has to be introduced.

As found in the literature [57, 58], this control logic can potentially become the

critical path and reduce throughput by introducing cycle delays (bubbles) in the

pipeline.

2. Scalability: With increasing k, the FIFO buffer requirement grows exponentially

for all multi-way merge binary tree. To make it worse, the depth of each logical

FIFO in Scheme-1 is required to be increased to partially compensate for the

latency and additional control logic delay described above. Hence, efficient

on-chip memory management is imperative to scale multi-way merge network.

3. Latency: Due to monolithic decoder and SRAM technology, the read and write

latency of on-chip block memory is generally much higher than of register based

FIFOs’. This latency significantly reduces the performance of Scheme-1 based

multi-way merge implementations found in the literature.

In the following sections we will discuss how these issues are addressed by the

literature and our proposed techniques.

3.2.4 Block Memory based Merge: Current Solutions

As shown in Figure 3.3, a logical FIFO is a set of words that is part of the block

memory. Simultaneous access to two logical FIFOs at the same address of the memory
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blocks is required at any given working cycle. However, generating this address is not

as trivial as the register FIFO based implementation shown in Figure 3.2. In Figure 3.2,

FIFOs in every branch of the tree can be independently checked for whether data

needs to be replenished. However, in Scheme-1 , it is not possible to independently

check the state of all the logical FIFOs as they are part of a single memory block.

Only a handful of block memory based high performance multi-way merge hardware

are available in the literature. In [57], the authors have proposed a high throughput

merge-sort hardware using a similar implementation as Scheme-1 . To find out the

address of the logical FIFO in each stage that needs to be replenished, the authors of

this work proposed to maintain individual counter for each logical FIFO, as depicted

in Figure 3.4. We name this implementation as Scheme-1a. The counter keeps track of

number of records that is queued in the FIFO. In every working cycle, all the counters

in a pipeline stage is checked for ‘not-full’ status in steady state. For a k-way merge,
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the first and the largest pipeline stage will have k such counters. As k increases,

required time to check all the counters, i.e. raddr generation time La in Equation 3.1,

also increases proportionally. As a result the working cycle duration Tw increases and

performance decreases. The authors reported to be able to implement a 64-way merge

hardware using Scheme-1a until the raddr generation time becomes prohibitively large.

Hence, Scheme-1a is not scalable and performance is bounded by the size of the largest

stage.

Another way to generate the read address of stage i − 1 is using the read address of

the output record of stage i, which we name as Scheme-1b. A practical implementation

of Scheme-1b is depicted in Figure 3.5. The main idea of this scheme is to use the

FIFO address where dmin
i was dequeued from at work cycle tw, i.e. raddri, tw to partially

generate the read address (except Least Significant Bit (LSB)) of stage i − 1 at work

cycle tw + 1, i.e. raddri−1, tw+1. The source block identifier (bID, min
i, tw ) of dmin

i is used

to generate the LSB of raddri−1, tw+1. A read queue is used for each stage to store

the generated read address to handle the scenario when the target FIFO is empty.

The read queue also helps in reducing stalls by storing multiple read addresses. In

Figure 3.5, we have shown all the pipeline registers that are practically used to improve

clock frequency. For example, the numbered registers f 1, f 2, f 3, f 4 and f 5 are

pertinent to stage i and involved in a single work cycle to transfer a record to stage

i + 1. The numbers mentioned in the registers refer to the clock cycle at which (during

rising edge) they are triggered. Register f 1 is read address input and f 2 & f 3 are

data output registers for the block memory that introduce 2 clock cycles delay. Hence,

Ld = 2 for Scheme-1b. On the other hand, raddri is generated using dmin
i+1 that passes

through registers f 4 and f 5. Therefore, it takes two clock cycles to generate the

address, i.e. La = 2. According to Equation 3.1, the maximum steady state throughput
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Rmax
Scheme-1b

is 1/4 record per clock cycle as shown in Equation 3.2. It is possible to omit

register f 4 and decrease increase the throughput to 1/3 records per cycle. However, it

may increase the clock period and decrease the absolute performance.

Rmax
Scheme-1b =

1

2 + 2
=

1

4
records per clock cycle (3.2)

It is important to note that we can parallelly queue and dequeue records in the

block memories as we assume that there are independent read and write ports (one

of each). Hence, queuing data can be overlapped with reading data during LD cycles

52



in Scheme-1b. However, generating read address cannot be overlapped with reading

data as read address for stage i in work cycle tw is directly generated the from the

output of stage i + 1 in working cycle tw − 1, i.e. raddri, tw = {raddri+1, tw−1, bID, min
i+1, tw−1}.

Even though raddri+1, tw−1 is available during the early phase of the work cycle, i.e.

during data read, bID, min
i+1, tw−1 is not achievable until the end of work cycle when dmin

i+1, tw−1

is available. A solution similar to Scheme-1b is proposed in [58]. The authors of this

work used DFIFO = 4 to compensate for the logic and pipeline registers used in their

implementation.

3.3 Comparison Look Ahead Merge (CLAM)

In this work, we have developed a multi-way merge implementation scheme, namely

Comparison Look Ahead Merge (CLAM). CLAM provides better performance (records

per cycle) through efficient address generation scheme and is more scalable due to

less demand of buffer storage. Furthermore, we propose a method, namely Hybrid

Comparison Look Ahead Merge (HCLAM), to hide the block SRAM latency by

pragmatically using both SRAM and registers as merge tree buffers. To the best of

our knowledge, both CLAM and HCLAM implementations are novel and no similar

methods are found in the literature.

Before describing our proposed implementations, we define few terminologies for

clarity of explanations.

� In Figure 3.3, Figure 3.4 and Figure 3.5, FIFO (i, j) sequentially feeds the records

from sorted list l(i, j) to its following stages and, hence, l(i, j) can be thought of

the j th input list w.r.t stage i, where j = 0, ..., ki. The leaf level FIFOs at 0th

stage feeds the original input data set (K lists) to the entire binary tree.
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� The frontier record of list l(i, j) is represented as r(i, j). Frontier record of a list

means the top most record that hasn’t been dequeued from the list yet.

� All sorted lists pertaining to any pipeline stage are numbered starting with ‘0’.

Comparison between the frontier records of two consecutive lists l(i, j) and l(i, j+1)

will always imply that j is an even number. The notation min{r(i, j), r(i, j + 1)}

means the record with smaller key between the frontier records of two consecutive

lists starting with j at stage i. The notation max{r(i, j), r(i, j + 1)} means the

record having larger key with rest being the same.

The main idea of CLAM comes from the observation that in any stage of Scheme-1

records are read from the FIFOs and the read address in the next cycle is generated

form the comparison results of these records. This sequential dependence of the address

on data read in previous cycle is inevitable as this is the fundamental operation of

multi-way merge. However, without violating this data dependency, we can conduct

the following operations.

1. Instead of comparing the keys of records when they are dequeued from the FIFOs,

we can compare the keys while being queued to the FIFOs. As we are comparing

consecutive lists before we actually need the results of this operation, we term

this as ‘comparison look ahead’.

2. We can store this comparison information using a single bit, namely ‘tag’(g), and

use it later to generate address while the pertinent record is actually dequeued.

The above two are the core concept of CLAM. The main benefit of CLAM is

that now we do not have to wait for the reading of records from block memory and

comparison to be completed before we can start generating the address. As the
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Figure 3.6: Conceptual block diagram of advanced comparison based proposed multi-
way merge hardware CLAM.

comparison result is already available, i.e. the tag g is pe-computed, we can start

generating the next cycle read address parallelly with initialing the read of current

cycle. Hence, the working cycle duration Tw in CLAM is max(La, Ld) unlike the case

of Scheme-1 (i.e. La + Ld).

Figure 3.6 shows a simplified and conceptual diagram of CLAM that is derived

from the implementation of Scheme-1 . Instead of directly storing records from the

sorted lists, the memory blocks store the output of a comparator. The input to the

comparator are the frontier of two consecutive lists. Block Bmin stores the records

55



with smaller keys and block Bmax stores the ones with larger keys. Therefore, when a

record is requested from stage i to stage (i + 1), it can be directly dequeued from Bmin

without any further comparison.

3.3.1 CLAM Implementation and Operational Details

Figure 3.7 shows a hardware diagram of CLAM implementation only depicting the

connections related to stage i. For better clarity, the pipeline registers are not shown.

Below we will explain the important aspects of CLAM implementation and operation

in detail.

Data and Address Storage

As depicted in Figure 3.7 and Figure 3.8, the data buffer requirements in CLAM are

different from Scheme-1 . It is understandable from the previous conceptual diagram

in Figure 3.6 that only one record from Bmin needs to be transferred to the next stage

in a work cycle. Hence, to serve consecutive accesses into the same address without

introducing bubble logical FIFOs in Bmin are needed. On the other hand, we don’t

need to have logical FIFOs in Bmax as its records are not directly transferred to the

next stage. A record from Bmax only takes part in the computation for look ahead

comparison when a record is queued in Bmin in any given work cycle. Therefore, Bmax

has single entry words instead of logical FIFOs. It is mentioned earlier that stage i

handles ki = 2(S−i−1) input sorted lists, where S is the total number of stages. Hence,

Bmin is a memory block with ki/2 logical FIFOs and Bmax is a memory block with

simply ki/2 words. If the depth of each logical FIFO is DFIFO, then Bmin has in total

of (DFIFO × ki/2) words.
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Figure 3.7: CLAM hardware diagram (excluding pipeline registers) and initialization
operation at work cycle tw − 1 and tw. The blue and black paths show active paths
during initialization work cycles tw − 1 and tw respectively.

Another important difference of CLAM from Scheme-1 is that in every work cycle

there are two writes in a stage instead of one. In both CLAM and Scheme-1 , one

record moves from one pipeline stage to the next in a work cycle. In Scheme-1 , the

incoming record is queued to one of the memory blocks to replenish one logical FIFO in

one of the memory blocks. Similarly, in CLAM after advanced (look ahead) comparison

with the incoming record we need to queue a min{r(i, j), r(i, j + 1)} in Bmin
i to replenish

a FIFO. Additionally, we also need to write max{r(i, j), r(i, j + 1)} in Bmax
i to conduct

the advanced comparison in future. Thus, in CLAM there are two reads and two

writes of records in every stage at each work cycle.
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Figure 3.8: CLAM hardware diagram (excluding pipeline registers) and initialization
operation at work cycle tw + 1 and tw + 2. The red and black paths show the active
paths during initialization work cycles tw + 1 and tw + 2 respectively.

CLAM also has a read queue to store the read address similar to Scheme-1b. This

read queue serves the same purpose of storing read request addresses from the following

stage and helps to avoid bubbles. A read queue in stage (i − 1) provides the read

address raddri−1 for Bmin
i−1 and Bmax

i . Bmax
i handles half of the number of lists than

Bmin
i−1 does and the LSB of raddri−1 is excluded before using it as read address of Bmax

i .

Hence we define the read address of Bmax
i as rBXi = raddri−1[excluding LSB].

Tag Array

Tag (g) is a single bit that stores the result of advanced (look ahead) comparison. An

additional buffer is required in CLAM to store the tags that is named as ‘Tag Array’.
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Only a single tag bit is required per FIFO of Bmin. Hence, tag array in stage i has ki/2

bits only. As tag array memory requirement is trivial and it can be implemented using

registers instead of SRAM for fast access. In every work cycle, one tag bit is updated

and utilized to generate address per stage using the following rules.

� Tag update rule: We assume r(i, j) and r(i, j + 1) are the inputs to the com-

parator of stage i. If r(i, j) = max{r(i, j), r(i, j + 1)}, the tag bit gz
i is updated to

‘1’. Otherwise, if r(i, j + 1) = max{r(i, j), r(i, j + 1)}, the tag bit gz
i is updated to

‘0’. Here z = j/2 and j is always an even number in this context. The value of z

ranges from 0 to (ki/2 − 1).

� Tag usage rule: Tag gz
i is used to generate the LSB of the read request address

whenever a r(i, j) is dequeued from the zth FIFO of Bmin. This request is stored

in the read queue of stage (i − 1). The entire request address is formed as {z, gz
i },

where z = raddri is the read address for Bmin
i at current working cycle.

Initializing Operation

Figure 3.7 and Figure 3.8 depicts three pipeline stages, where stage (i − 1) is fully

initialized, stage i is being initialized and stage (i + 1) is totally un-initialized. Here,

we have only shown the connections related to stage i for ease of comprehension. In

Figure 3.7, the blue and black lines are the active paths during initialization work

cycles tw − 1 and tw respectively. Similarly in Figure 3.8, the red and black paths shows

the active paths during initialization work cycles tw + 1 and tw + 2 respectively. Below

the initialization process is described step by step.
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1. At the very beginning all the entries in Bmax and Bmin are considered empty.

However, all the bits in the tag array are initialized with ‘0’s. Figure 3.7 shows

the state of all memories at work cycle (tw − 1).

2. We assume that at a given work cycle (tw − 1), the read queue in stage i serves

as read address raddri, tw−1 = 1d. Hence, a record from the last FIFO of Bmin
i is

requested. As this FIFO is empty, a null will be delivered. At the same time,

the initial value of g1i = 0 will be read from the tag array and used to form the

read request address for the read queue in previous stage (i − 1). The tag bit

serves as the LSB and the read address in current work cycle (tw − 1) serves as

the rest. Hence, a read request of address {raddri, tw−1, gi} = (10)b = 2d is sent

to the previous stage (i − 1) to be logged in its read queue at the end of work

cycle (tw − 1).

3. At the beginning of work cycle tw, read queue of stage (i − 1) serves the address

raddri−1, tw = {raddri, tw−1, g
1
i } = 2d. Hence, the record in 2nd FIFO min{r(i −

1,4), r(i − 1,5)} is read from Bmin
i−1 and passed to the next stage i as the incoming

record r(i,2) in work cycle tw. At the same time, raddri−1, tw (excluding LSB)

also works the read address (rBXi, tw) for Bmax
i in tw. Hence, a null value from

the last entry of Bmax
i is read.

4. At tw, the comparator in stage i compares r(i,2) with null value. We define

min{r(i,2), null} = null and max{r(i,2), null} = r(i,2). Hence, at the end of work

cycle tw, r(i,2) is written to Bmax
i and null value is written to Bmin

i . It should be

noted that write address of both Bmax
i and Bmin

i in any work cycle is just a delayed

version of the read address of Bmax
i in previous work cycle excluding the LSB.
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Therefore, write address waddri, tw+1 = rBXi, tw = raddri−1, tw[excluding LSB] =

1d.

5. While data is written in the block memories of stage i, the tag bit at address

waddri, tw+1 is also updated. In this case, waddri, tw+1 = 1d. Hence, g1i is updated

to ‘1’ following the tag bit update rule state above at the beginning of (tw + 1).

6. Figure 3.8 shows the state of all memories at work cycle (tw + 1). As the last

FIFO in Bmin
i is still empty, the read queue in stage i will again serve a read

address raddri, tw+1 = 1d. Operations as described above from step 2 to step 5

will repeat for work cycle (tw+1) and tw+2. However, this time the tag bit read at

tw+1 is g1i = 1. Hence, the 3rd record from Bmin
i−1 and r(i,2) from Bmax

i is read in

(tw + 2). At the beginning of work cycle (tw + 3), max{r(i,2), r(i,3)} is written to

Bmax
i and min{r(i,2), r(i,3)} is written to Bmin

i . The tag bit g1i is also updated

and, thus, stage i is completely initialized after of (tw + 2).

Steady State Operation

Figure 3.9 and Figure 3.10 depict detailed diagram of CLAM implementation including

all the pipeline registers and all connections. All the memory buffers and tag array

are in steady state. We have used pipeline registers at the same depth that we have

used for Scheme-1 in Figure 3.5.

In Figure 3.9, the blue and red paths show the active connections during data read

and address generation respectively at tw. Registers f 1, f 2 & f 3 participate in the

data read process and f 4 & f 5 participate in the address generation process. The

numbers mentioned in the registers represent the clock cycle within a work cycle that

triggers them (at rising edge). At the rising edge of clock cycle 1, f 1 latches the read
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Figure 3.9: CLAM hardware diagram (including all pipeline registers) and steady state
read and address generation operations. The blue and red paths show the active paths
for read and address generation respectively during tw.

address raddri, tw from the read queue. Hence, Bmin
i and Bmin

i+1 is read during clock

cycle 1. At the rising edge of clock cycle 2, f 2 and f 3 latch these read data and

advanced comparison of the keys are conducted during this clock cycle. Thus for data

read and look ahead comparison the number of required clock cycles Ld is 2.
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Figure 3.10: CLAM hardware diagram (including all pipeline registers) and steady
state read and write operations. The green and orange paths show the active paths
for read at tw − 1 and write at tw respectively.

During clock cycle 1 raddri, tw is also used to read the previously computed com-

parison result gout
i, tw from the tag array. At the rising edge of clock cycle 1 f 4 also

latches advanced comparison result gin
i, tw that is latched into the tag array at the

rising edge clock cycle 2 at address waddri, tw = rBXi, tw−1. During clock cycle 1 if

raddri, tw happens to be the same as waddri, tw, then gin
i, tw is used as gout

i, tw instead of
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what is actually read from the tag array. This is because the tag value pertaining

to the latest record queued to the FIFOs in Bmin
i must be used for the read request

address generation. In any case, at the rising edge of clock cycle 2, request address

{raddri, tw, g
out
i, tw} is stored in the read queue of stage (i−1) through register f 5. Hence,

the overall address generation process also takes 2 clock cycles, i.e. La = 2.

For efficient implementation of CLAM, data write must be overlapped with read or

address generation and finished within min{Ld, La} clock cycles so that no extra time

is spent for write. In Figure 3.10, we have depicted the active paths during data write

at tw (orange paths) besides the ones during data read at (tw − 1) (blue paths). In fact,

the data write process only takes one cycle as the write address generation is trivial

and already available from the data read operation in work cycle (tw − 1). At the rising

edge of clock cycle 1 in (tw − 1), raddri−1, tw−1 is latched by f 6. This address is used to

read records from Bmin
i−1 and Bmax

i , which are latched by f 7 and f 8 at the rising edge

of clock cycle 2 in (tw − 1). Hence, at the rising edge of clock cycle 1 in tw both the

output records after comparison is latched by f 5 and f 4. These stored records at f 5

and f 4 are written to Bmax
i and Bmin

i memory blocks during the first clock cycle of tw,

which is overlapped with the data read from these memory blocks. For both Bmax
i and

Bmin
i write address is waddri, tw = rBXi, tw−1, which is available from the previous work

cycle (tw − 1).

Advantages of CLAM

Performance. Since the data read and address generation is parallelly conducted

in CLAM, duration of a work cycle Tw can be derived by max{Ld, La}. As both Ld

and Ld is 2, duration of Tw is also 2 cycles. Opposed to Equation 3.1, the maximum

throughput of CLAM can be calculated as Equation 3.3. We can see that due to the
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overlap of data read and address generation Rmax
CL AM is two times faster than Rmax

Scheme-1b
,

which is, to the best of our knowledge, the highest throughput possible by block

memory based multi-way merge implementations available in the literature.

Rmax
CL AM =

1

max{Ld, La}
=

1

2
records per clock cycle (3.3)

Scalability. Scarcity in fast on-chip memory is one of main reasons that multi-way

merge implementations cannot scale. We have seen that in Scheme-1b, both the

memory blocks in a pipeline stage comprise of logical FIFOs. However, in CLAM, only

one of the memory blocks comprise logical FIFOs. Hence, if the FIFO depth increases

only by 50% of the memories in CLAM increase, whereas in Scheme-1b 100% of the

memories increase in size. Furthermore, as CLAM work cycle is half of the work cycle

for Scheme-1b, relatively less FIFO depth is required in CLAM to avoid bubbles. The

additional resources that CLAM needs is the storage for tag array. However, only

single bit per logical FIFO is required, which is trivial.

From the above discussion, we can see that CLAM provides higher performance

and more scalable solution than Scheme-1 based multi-way merge implementations as

problem size increases. However, for practical implementations of K-way merge, as K

increases we expect clock frequency to decrease due to additional routing. We have

designed a parameterized hardware using Verilog and synthesized using commercial

16nm FinFET library for ASIC for various problem sizes. Figure 3.11 shows the

achievable clock frequency of CLAM for increasing number of input lists. We have

increased K 64 times, from 128-way to 8192-way. We can see that the clock frequency

drops around 30%, which is not prohibitively significant for such a large size multi-way
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Figure 3.11: Problem size scaling of CLAM vs achievable clock frequency in 16nm
FinFET ASIC.

merge network. Nevertheless, in the following sections we will see how we can improve

performance further by parallelization and other techniques to address technology

scaling.

3.4 Technology Scaling

In our discussion so far in this chapter we have mainly focused on problem scaling

of multi-way merge and proposed CLAM as a solution to that. However, from a

system performance point of view the throughput of the multi-way merge network

should saturate the full off-chip communication streaming bandwidth. With the advent

of modern technologies such as 3D stacked main memory, the DRAM streaming

bandwidth of a system can be in the order of hundreds of giga bytes. However, for a
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Technology Scaling: Saturate DRAM Bandwidth
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Figure 3.12: Single CLAM multi-way merge network streaming bandwidth consumption
on ASIC (2048-way) and FGPA (64-way) platforms.

single multi-way merge implementation on ASIC it is difficult to saturate such extreme

bandwidth. Same is true for high end FPGA platforms with DDR4 main memory.

Figure 3.12 shows the streaming bandwidth consumptions of a single multi-way

merge network implemented using CLAM on different custom hardware platform. First

is an 16nm ASIC architecture with HBM stacks providing an aggregated streaming

bandwidth of 512GB/s. Second is a 22nm Arria10 FPGA based acceleration card [59]

with four DDR4 channels providing 64GB/s off-chip bandwidth in total. We have

implemented a 2018-way and a 64-way CLAM on the ASIC and FPGA platforms

respectively. We can see that a single CLAM network is far from utilizing the system

bandwidth properly. Hence, real applications using CLAM multi-way merge kernel,

such as SpMV, SpGEMM, will not cope up in terms of performance as technology scales.

In this section, we will describe a technique to improve multi-way merge performance

and a scalable parallelization technique that can effectively address technology scaling.
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3.5 Hybrid CLAM (HCLAM)

One of the main drawbacks of using SRAM blocks instead of registers for multi-

way merge tree is that SRAM read latency is significantly larger. In both CLAM

and Scheme-1b we have utilized deeply pipelined design to improve clock frequency.

However, the clock period is bounded by the SRAM block read latency. Furthermore,

throughput of deeply pipelined CLAM is one element in two cycles, whereas register

FIFO based merge, as shown in Figure 3.2, can provide a throughput of one element

per cycle. In this work, we propose a pragmatic way of utilizing both SRAM and

register based implementation, which is named as HCLAM.

Figure 3.13 elaborates the hardware implementation of HCLAM. Here, the large,

in terms of memory usage, stages of the multi-way merge network are implemented

using SRAM memory based CLAM. The last few stages, i.e. those close to the final
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output, are implemented using independent register FIFO based merge tree, i.e. IRFM

as shown in Figure 3.2. We name this as a hybrid implementation because of the mix

between two different types of multi-way merge schemes. Previously, we discarded

IRFM as a scalable multi-way merge network because it is not feasible to implement

for large values of K due its high resource requirement of memory and logic. However,

the last few stages of IRFM require only a trivial number of buffers and sorter cells.

Hence, for any multi-way merge binary tree implementing the last few, e.g. 3 or 4,

stages using IRFM doesn’t have any considerable effect on the scalability of overall

implementation. However, integrating these few stages with the CLAM network as

shown in Figure 3.13 helps to hide the SRAM latency of CLAM. The idea is that

multiple CLAM network will queue their output records in multiple asynchronous

FIFOs at their peak throughput. At the same time, these asynchronous FIFOs will

work as the input lists for a small IRFM network that has higher throughput. If the

absolute rates of input and output of these asynchronous FIFOs are matched, then the

overall HCLAM implementation will achieve the higher throughput of IRFM, while

having the better scalability of CLAM.

The two different multi-way merge schemes in HCLAM are implemented using

two independent clocks as shown in Figure 3.13. The clock periods of clkCL AM and

clkIRFM are defined as TCL AM and TIRFM . In practical implementations clkCL AM is

slower than clkIRFM as the SRAM read latency falls in the critical path of CLAM,

i.e. TCL AM > TIRFM . Furthermore, the maximum throughput of CLAM Rmax
CL AM is

1/2TCL AM , which is less than the maximum throughput of the register FIFO based merge

Rmax
IRFM = 1/TIRFM . The goal of HCLAM is to provide the same throughput as Rmax

IRFM

for the entire multi-way merge network. It is easily achievable by integrating multiple

CLAM networks with a IRFM network at proper ratio (RatioHCL AM). Equation 3.4
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provides a formula to calculated this ratio.

RatioHCL AM =
Rmax

IRFM

Rmax
CL AM

=
2 × TCL AM

TIRFM
(3.4)

For our ASIC implementation we have found that clkIRFM is almost twice faster than

clkCL AM . In that case, RatioHCL AM is 4 as computed by Equation 3.4. Furthermore,

we can calculate the number of stages required for IRFM as log2(RatioHCL AM) + 1 = 3.

It is also important to have enough depth in the RatioHCL AM number of asynchronous

FIFOs that interfaces the two different networks. If the data set is not heavily skewed

towards any particular set of input lists, FIFO depth of 8 to 32 works reasonably

well in our experience. Even if data is heavily skewed, we can afford to increase this

depth without considerably affecting overall scalability as RatioHCL AM is expected to

be small (in the order of 2 to 8).

3.6 Parallel Multi-way Merge

As depicted in Figure 3.14, even though HCLAM itself increases the performance of a

single multi-way merge network almost 3 times, it still not enough to saturate the

system streaming bandwidth properly. Therefore, we need a parallel implementation of

the merge network that can output multiple records to match the available streaming

bandwidth. In this work, we have developed a scalable parallelization method that

can effectively address technology scaling. We name this as Parallelization by Radix

Pre-sorter (PRaP). Before describing PRaP, we will discuss a more natural way of

parallelization of multi-way merge network by partitioning input lists.
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Figure 3.14: Single HCLAM multi-way merge network streaming bandwidth consump-
tion on ASIC (2048-way) and FGPA (64-way) platforms.

3.6.1 Parallelization by Input List Partitioning

We will describe this parallelization method in the context of Two-Step algorithm for

SpMV. As depicted in Figure 3.15, the matrix can be 2D blocked that will eventually

generate segmented intermediate vectors. The segmented intermediate vectors can be

considered as horizontally partitioned input lists for multi-way merge networks (cores).

We assume that there are m such partitions. Hence, we can deploy m HCLAM cores

that independently merges the lists in a particular partition and ultimately produce

a single segment of the resultant vector. In this way, we can achieve a throughput

of m records per cycle instead of one. This parallelization method works well when

the entire problem set, i.e. all the input lists, fit in the on-chip memory. However,

when the problem set is too large to fit in the on-chip storage, this method becomes

unscalable. The reason is explained below.

During multi-way merge operation, the records in any particular list is accessed

sequentially. However, in every cycle only one list dequeues a record and the selection

of that list is practically random. For large problem set the data set will reside in the

off-chip main memory and these random accesses will cause poor utilization of off-chip

bandwidth. One practical way to ensure full utilization of the off-chip streaming
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Figure 3.15: multi-way merge parallelization by partitioning input lists for Two-Step
SpMV. This method becomes unscalable when the problem is larger than on-chip
memory.

bandwidth is to prefetch DRAM page (row buffer) size data block from memory

whenever a list is accessed off-chip and store the block on chip for a guaranteed later

reuse. We name this as on-chip prefetched page buffer. For K input lists we will need

K such page buffers. For example, as shown in Figure 3.15, if we prefetch dpage = 2KB

page size data block for every list, overall 2MB on-chip buffer for all the lists in a single

partition is required. If there are 4 partitions, we require m×K × dpage = 8MB on-chip

memory just for the prefetched page buffers itself. It is noticeable that the on-chip

memory requirement grows linearly with increasing number of partitions m. Hence

partitioning the input lists for parallel multi-way merge operation is not scalable.

3.6.2 Parallelization by Radix Pre-sorter (PRaP)

From the discussion above it is apparent that we need a parallelization scheme that

doesn’t require increasing prefetch buffer with more parallel multi-way merge networks.

In this work, we propose PRaP as a solution to this problem, which is depicted in

Figure 3.16. The idea is to implement p independent multi-way merge networks where
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each will only work on records with certain radix within the keys. For that purpose,

each record streamed from DRAM is passed through a radix based pre-sorter and

directed to its destination merge network. We denote each such merge network as a

Merge Core (MC) that is implemented using HCLAM. We also define q as the number

of LSBs from the key of a record that is used as the radix for pre-sorting as shown in

Figure 3.17. Hence, the number of MCs is p = 2q and, thus, a multi-way merge network

with total output width of p records can be achieved. The main benefit of PRaP is that

irrespective of p, the on-chip prefetch buffer size is K × dpage, which is only 2MB given

the example in previous section. Since p can be incremented without requiring more

on-chip storage, PRaP is significantly scalable and effective in addressing technology

scaling. It is important to note that PRaP method of parallelization only works when

it is guaranteed that the sorted output list is a dense vector, as in the case for output

vector y in SpMV. We will elaborate this in detail in later part of this section.

Radix Pre-Sorter Implementation

Without any loss of generality, we assume that the DRAM interface width is also

p records. Hence, whenever the ith list l(i) is streamed from DRAM, records r(i, j)

to r(i, j + p) is transferred in a single clock cycle as a part of the prefetched data.

These p records are then passed through pipelined radix based pre-sorter as shown

in Figure 3.18. The pre-soter is implemented using a Bitonic sorting network [60]

as p output per cycle is required to match the input rate. In Figure 3.18, we have

depicted the Bitonic network in simplistic manner. The horizontal lines show the data

path of the record. The downward and upward arrows represent comparison and swap

operation in the ascending and descending order respectively. It is important to note

that only q bits of the keys take part in the comparison operation of the pre-sorter.
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Figure 3.16: HCLAM PRaP unit. Wide output multi-way merge implementation using
radix pre-sorter and multiple parallel HCLAM cores.

Carnegie Mellon

23

{x x x x x x x x ,  x x x x x x x x x}. . . . . .
key value 

record 

radix used for PRaP pre-sort (q LSBs) 

Figure 3.17: Radix selection for pre-sort in PRaP.

Hence the logic resource requirement of PRaP pre-sorter is significantly less than what

is required for a one with full key comparison.

During the pre-sort, it is mandatory to maintain the original sequence of the

records that possess the same radix. For example, as shown in Figure 3.18, if r(i, j)
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Figure 3.18: Radix pre-sorter implementation using Bitonic sorter and prefetch buffer.
We assume that r(i, j) and r(i, j + x) has the same radix.

and r(i, j + x) both have the same radix bits then r(i, j) should precede r(i, j + x). This

is imperative because for any given merge core the input records of any list must be

sorted w.r.t. the rest of the bits other than the radix within key. After pre-sorting,

the outputs are stored in the prefetch buffer at the allocated location for list li. The

prefetch buffer allocates dpage size storage for each list. Internally within the buffer for

each list, the radix sorted records are kept in separate slots for the ease of feeding to

the appropriate MC. For example, if the radix of record r(i, j), rad(i, j), is (100)b then

record r(i, j) is stored in the page buffer only for consumption of MC 4.

Load Balancing and Synchronization

It is possible for the incoming lists to have keys that are imbalanced in terms of the

radices. In such case, the data are unevenly distributed among the MCs and potential

load imbalance will occur. More importantly, as the independent MCs work only on a

particular radix, further sorting and synchronization among the output of cores should

have been required to generate a single sorted final output. Both of these issues can be
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effectively resolved from the observation that final output list is a dense vector. Hence

it is guaranteed that each MC will sequentially deliver records with monotonously

increasing keys (assuming sort in ascending order). Additionally, is also mandatory

that each possible key, which is the row index of the sparse intermediate vector in

Two-Step SpMV, is present in the resultant dense vector. For example, as shown in

Figure 3.19, we assume that the input data set with radix (010)b = 2 doesn’t have any

record with key 10. For that reason, the MC 2 sequentially delivers records {2, va2}

(key 2 and value va2) and {18, va18}. Hence an expected record with key 10 is missing

at the output stream of MC 2. To handle this scenario, we have included missing key

check logic in MC design. Whenever a missing key is detected at the output, that key

is artificially injected in between the original outputs along with a value of ‘0’ and the

following records are delayed. Thus, for the given example, an artificial record {10,0}

is injected after {2, va2} and {18, va18} & {26, va26} are delayed.
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Insertion of missing keys, necessitated by the dense output vector, solves both the

load imbalance and synchronization problem. Firstly, even though data are unevenly

distributed among the cores, at the output each MC produces same number of records

at similar rate. Hence, effect of load imbalance is practically hidden even if it occurs.

Secondly, output from the p cores, y(cp + 0) to y(cp + p − 1), can be independently

queued in a store queue and synchronously streamed out (dequeued) to DRAM. The

records y(cp + 0) to y(cp + p − 1) are consecutive elements of the dense output vector.

Furthermore, records dequeued at cycle c and (c+1) are also consecutive segments of the

dense vector. Thus, we don’t require any more sorting logic to synchronize the outputs

from p independent multi-way merge cores. Therefore, in our proposed parallelization

method PRaP we can scale the design to multiple cores without increasing on-chip

buffer requirement and achieve required throughput to match the streaming main

memory bandwidth. We will see later that only q = 4 bit radix pre-sorting, i.e. 24 = 16

cores, is enough to saturate the extreme HBM bandwidth that is in the order of

hundreds of GBs.

3.7 Summary

In this chapter we have demonstrated a scalable multi-way merge merge scheme that can

effectively and practically handle large problem size (thousands of lists) at extremely

high throughput (hundreds of GBs or several TBs). The entire proposed method can

be termed as HCLAM with PRaP parallelization. HCLAM mainly handles problem

scaling and PRaP parallelization handles technology scaling. Our proposed method

is scalable because it doesn’t prohibitively require more on-chip memory or logic as

the problem size grows. Because of PRaP, we can also increase the throughput by
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incrementing the number of merge cores without increasing on-chip memory, which is

the most critical resource for scaling. Chapter 4 will demonstrate how HCLAM PRaP

multi-way merge is integrated with the other parts of the sparse kernel accelerator

proposed in this dissertation for SpMV acceleration. Furthermore, Chapter 7 we will

elaborate how this developed multi-way merge hardware primitive is used as streaming

sparse accumulator to accelerate SpGEMM and SpMSpV operations.
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Implementation of Two-Step
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This chapter will elaborate implementation details of the separate steps of our proposed

SpMV algorithm. We will also describe a meta-data compression technique enabled by

our proposed algorithm. Furthermore, this chapter will demonstrate special hardware
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techniques to efficiently handle high degree nodes in power-law graphs. Additionally,

we will discuss implementation details for systems with multiple DRAM channels.

4.1 Design Goals and Challenges

Scalable, high performance and energy efficient acceleration of memory bound SpMV

for very large (∼billion nodes) and highly sparse (avg. degree <10) warrants a

number of algorithmic and architectural goals to be achieved. These goals are - a)

proper utilization of main memory bandwidth, b) reduction of off-chip traffic, c) less

dependence on fast memory to scale, and d) data locality unaided computational

scheme and avoidance of costly pre-processing. Proper utilization of main memory

bandwidth implies full streaming DRAM access and minimization of the off-chip

traffic. Two-Step algorithm described in Chapter 2, as shown in Figure 4.1, provides an

algorithmic solution to ensure full streaming access to DRAM and reduce off-chip traffic.

Furthermore, implementation of Two-Step does not depend on spatial/temporal data

locality or costly pre-processing of the matrix. However, there are several challenges

related to implementation of Two-Step algorithm implementation and accelerator

development for sparse kernels in general.

� On-chip Memory: To achieve decent performance and efficiency, many SpMV

computations proposed in the literature heavily depend on the availability of

large on-chip fast storage. This dependency constraints these solutions to scale

effectively as the graph gets larger and sparser. It is because fast on-chip memory

is limited and cannot be scaled easily in shared memory architectures. SpMV

solutions using custom hardware in the literature have reported only a few

million nodes. For example, FPGA solution in [36] reported a maximum graph
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Figure 4.1: Two-Step SpMV algorithm.

dimension of 2.3M nodes using 8.4MB on-chip SRAM. The largest dimension

efficiently handled by the ASIC solution in [33] is only 8M nodes despite using a

huge 32MB eDRAM scratchpad. Hence, even tens of million, let alone billion,

node graphs are difficult to accelerate with shared memory custom hardware

architecture.

� Off-chip Traffic: Another challenge in accelerating SpMV using streaming

algorithm is large amount of off-chip traffic. Reduction of off-chip can lead to

significant improvement in performance and efficiency. However, it is difficult

to find effective techniques to reduce SpMV off-chip traffic for large graphs in

literature.

� Multi-way Merge: Two-Step algorithm requires a high throughput and large

(∼ several hundred or thousands of ways) multi-way merge network to handle

large graphs. Methodology to design such multi-way merge hardware is absent

in the literature. High throughput multi-way merge hardware solutions found in
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the literature are generally not scalable due to high resource consumption. For

example, FPGA based custom merge hardwares in [57] and [61] are only 64-way

and 32-way respectively, while saturating only a tiny fraction of the bandwidth

that modern 3D main memory can provide. On the other hand, large multi-way

merge hardware in literature, such as [62], are generally slower. Hence, the

multi-way merge methodology required for Two-Step algorithm that can handle

large problems is nonexistent in current literature.

� Special Nodes: Power-law graphs comprise special vertices, namely High Degree

Node (HDN), that pose separate class of challenges. For example, HDNs have a

large number of collisions that render the accumulation to be more difficult than

regular nodes.

4.2 Proposed Architecture

In this work, we have developed an algorithm co-optimized custom hardware accelerator

to address the above mentioned challenges. As mentioned in previous chapters, the

main reason for adopting custom hardware is the requirement of high throughput and

scalable multi-way merge merge network by Two-Step SpMV algorithm. A conceptual

diagram of the entire accelerator system is given in Figure 4.2. The computational core,

is based on custom hardware. We have designed an 16nm FinFET based ASIC chip to

serve as the computational core, which is currently under fabrication. An actual image

of the ASIC and key specifications are given in Figure 4.3. As the chip is currently

being fabricated, these specifications are from post physical synthesis (after place and

route) layout of the design. One important aspect of our developed ASIC is that it
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Figure 4.2: Custom hardware based sparse matrix kernel acceleration system including
HBM and interposer.

uses synthesized SRAM blocks, also known as Logic in Memory (LiM) technology,

instead of compiled SRAM. These synthesized SRAM blocks are distributed all over

the chip to facilitate fine grain data access during computation. Details of LiM

technology is available in [63–65]. This ASIC is designed to work with two 3D-stacked

2nd generation High Bandwidth Memories (HBM2s) [66,67] as main memory, which are

connected through interposer [68] as depicted in Figure 4.2. We also have ported the

ASIC accelerator core design to FPGA platform. In this work, we have used Intel®

Stratix® 10 [69], shown in Figure 6.3, to implement the FPGA version of our proposed

accelerator’s computation core.

In this chapter we will demonstrate the implementation details of Two-Step SpMV

on our proposed architecture along with a number of additional optimization techniques

for better performance, efficiency and scalability. Key contributions of this co-optimized

accelerator for SpMV kernel are given below.

83



Carnegie Mellon

ASIC specifications
Frequency: 1.4 GHz
Occupied area: 7.5 mm2

Leakage power: 0.10 W
Dynamic power: 3.01 W
Total power: 3.11 W

Figure 4.3: 16nm FinFET ASIC (currently under fabrication) for sparse matrix kernel
acceleration.

Figure 4.4: Intel® Stratix® 10 FPGA platform [69].

Contributions

1. Our proposed ASIC architecture is able to operate on very large graphs (∼2

billion nodes) despite using significantly less amount of fast on-chip memory

(11MB). It leaves significant room for possible expansion of on-chip memory and

the proposed solution is scalable to handle even larger graphs. This design is

portable to FPGA due to reasonable hardware resource requirements.
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2. We have developed a novel multi-way merge hardware kernel that is both scalable

and provides high throughput. This enables effective implementation of our

proposed Two-Step SpMV algorithm.

3. This architecture guarantees 100% DRAM streaming and is capable of utilizing

extreme bandwidth delivered by 3D DRAM.

4. A meta-data compression scheme, namely VLDI, that significantly reduces the

off-chip traffic is also proposed. This compression scheme strictly is enabled by

the adoption of Two-Step algorithm.

5. To properly handle the computation for HDNs in power-law graphs, a Bloom

Filter based HDN technique is proposed. This eliminates the cycle delays in

accumulation due to numerous conflicts of HDN and helps in identification of

HDNs using standard sparse formats.

6. The proposed solution is independent of data (nonzero) locality and only requires

basic matrix partitioning.

4.3 Implementation of Step 1

As depicted in Figure 4.1, Two-Step algorithm operates in two distinct steps. In the

first step partial SpMV is conducted among the matrix blocks and vector segments.

Two-Step requires 1D column blocking of the matrix A and segmentation of x according

to the same width of column blocks of A. The matrix column blocks or stripes are

required to be stored in a row major sparse format. CSR, as depicted in Figure 2.3,

is a commonly used row major sparse format. However, it is important to note that
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for large matrices with high sparsity, the matrix stripes might become hyper sparse.

A matrix is considered hypersparse if nnz < N [70], where nnz is total number of

nonzeros and N is the dimension. For hypersparse matrix stripes, CSR might become

wasteful as the space complexity of the row pointer JR array, as shown in Figure 2.3,

is O(N) due to the repetitions for completely empty rows. In such cases we choose to

use RM-COO for matrix blocks as is has space complexity of O(nnz), which is more

efficient for hypersparsity.

The computational unit to conduct the partial SpMV between Ak and xk , namely

Partial SpMV Unit (PSU), can be implemented in hardware as shown in Figure 4.5.

PSU mainly comprises of multiple sets of a FP multiplier and a FP adder chain

connected in series. The vector segment xk is streamed from DRAM and stored in the

on-chip fast scratchpad memory that consists of multiple smaller banks. Matrix stripe

is streamed from DRAM and directed to the PSU. Each nonzero has a value (valmat),

a column index (col) and a row index (row). The multiplier multiplies valmat with the
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vector element at location col. We denote output of the multiplier as a record, which

is a key-value pair. Here, key is row and value is the multiplier output val.

The P sets of FP multiplier and adder chain can parallelly work on separate rows of

Ak . As the data is sparse and the scratchpad is separated into banks, it is expected that

P independent accesses will not cause significant bank conflict that may introduce stalls

in the computation pipeline. However, the number of banks needs to be several times

higher than P and a large cross-bar hardware is required for all multiplier-adder set to

all bank accesses. This causes implementation inefficiency. A better implementation

scheme is to divide Ak into sub-stripes, as shown in Figure 4.6, and xk into sub-

segments. Then each sub-stripe, Ak
s ,can be processed by a single multiplier-adder set

that independently access xk
s from dedicated banks of the scratchpad. In this way, we

completely eliminate any possibility of bank conflicts and stalls in the computation

pipeline. However, at the end of processing P sub-stripes we need to merge the results

into one final intermediate vector vk . For this merge operation, we have implemented

an Insertion based Merge Network (IMN) as depicted in Figure 4.7.

Details of IMN is available in [61]. A P-way IMN is capable of delivering P records,

i.e. key-value pairs, per cycle. As shown in Figure 4.7, the main idea of sorting by

insertion is to compare keys of P sorted incoming records from a list parallelly with

another key of a previously stored record in a single sorter pipeline stage. This stored

record is inserted in the appropriate position among the incoming records and a new

set of (P + 1) sorted records is constructed. The last among these (P + 1) records

replaces the stored record in the following cycle. Such (P − 1) sorter stages can be

pipelined to construct a P record 2-way IMN. At the very first stage, P incoming

sorted records are sourced from one of two input lists l0 and l1. The top records of l0

and l1 are compared and the list with smaller key (assuming ascending order) delivers
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Figure 4.6: Partial SpMV Unit (PSU) to conduct step 1 of Two-Step algorithm using
IMN and independent scratchpad bank access.

the P sorted incoming records for the IMN at any given cycle. All stored records at

each pipeline stage are initialized with zero.

Figure 4.8 depicts how several smaller 2-way IMNs can be connected together to

build a larger IMN with more ways. The coupler consists of FIFOs and simply appends

stream of records to double the stream width. IMN is not easily scalable due to high

resource usage as P increments. However, for the purpose of PSU, with small P it

is possible to maintain high throughput to utilize 3D DRAM streaming bandwidth.

For example, P = 16 is adequate enough for the HBM2 based ASIC proposed in this

work. Hence, we prefer IMN based scheme for PSU rather than the shared scratchpad

based one as it provides more computational efficiency with same level of hardware

complexity.
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4.3.1 Adder Chain

One of the important aspect of the PSU computation pipeline is FP adder chain.

Accumulation is required for collisions, i.e. when row-indices of two consecutive records

match. However, a pipelined FP adder cannot handle more than one collision without

introducing stalls in the entire PSU pipeline. These stalls are due to internal pipelines

of the adder. We denote F as the number of internal pipelines of an FP adder. An

entire addition, which takes F cycles, has to be completed before start resolving the

next if another collision is found for the same row index. To overcome this we use a

chain of q adders, as shown in Figure 4.9, that can resolve 2q collisions for any given

row index without introducing any stalls. The internal logic of each adder is also
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elaborated in Figure 4.9. An adder intakes one record per cycle and compares the

row index (row) of current record, record(t), with the row of record(t − 1). Here t

represents the sequence of records as they appear at the input of the adder. If row(t)

and row(t − 1) match, the values are added and a new record, sum(t), is delivered that

has a key row(t) and a value val(t) + val(t − 1). If no collision is found, record(t − 1)

is delivered and record(t) is temporarily stored to check collision with record(t + 1).

4.3.2 Shift-Reduction Chain

While the adder chain resolves all collisions within a sub-stripe of the matrix, there

can still be collisions among the P sub-stripes. Therefore, the sorted outputs are

required to be checked for collisions and resolved when needed. To achieve this in a

pipelined manner, we have implemented a P-way shift-reduction chain as depicted

in Figure 4.10. The main idea is to sequentially check two neighboring records for
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collision. This process starts from one end of the sorted outputs of the IMN. If starting

from bottom, when the indices of the records match the upper output stream delivers

the accumulated result and the lower output stream delivers an artificial 0 (or null)

value. When this process continues to the next pipeline stage of the chain, the next

two recorded are checked for collision as shown in Figure 4.10. We name this process

as shift-reduction as in every stage of the chain selection of the records shifts by one.

Thus at the end of shift-reduction chain, all collisions are resolved for P-wide sorted

output list. For a P-way shift-reduction chain, P − 1 pipeline stages are required.

4.3.3 Challenges with Power-law Graphs

Power-law graphs, commonly found in social networks, have a relationship between

node distribution and degree where former varies as power of the later as shown in

Figure 4.11. In such graphs, there are a number of special type nodes that we denote

as High Degree Node (HDN). A HDN is a vertex with a disproportionately large

number of incident edges. For implementation of PSU HDN poses a separate type

of challenge. There will be numerous collisions for each HDN and the adder chain

depicted in Figure 4.9 will cause stalls if a large number of adders are not present

in the chain. To address this inefficiency, we propose to use a different computation

pipeline design to handle HDNs, which is depicted in Figure 4.12. We have introduced

an additional FP adder that adds an incoming record with the adder output if they

collide. In the case of this special adder for HDN, we don’t wait for an addition

operation to be completed before another addition is issued to resolve collision for the

same row index. As there are F cycles delay between when an addition is issued and

the result, sum, is delivered, continuous additions are issued between record(t + F)
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Figure 4.11: Power-law graph and degree distribution.

and sum(t). Here, sum(t) represents the accumulated result for all the collisions at F

interval comprising record(t). For any HDN, e.g. with row index rowx when no more

collision is found between the incoming record and sum, the output is then released to

the FP adder chain. It should be noted that at most F number of records with rowx

will be released to adder chain. Hence, we need log2(F) adders in the chain at most to

resolve these remaining collisions without any stalls.

HDN Detection

While we can efficiently handle HDN collisions, this special node is required to be

detected first to pass it through the proper computation pipeline. One way of HDN

detection is to add one more bit in the standard format, e.g. RM-COO or CSR, and

set the bit as a flag for HDN. However, it will require change in widely used standard

matrix formats for one specific task only. To avoid this, we propose to use Bloom

Filter based detection scheme. Bloom Filter [71, 72] is a compact data structure that

enables membership check for large data sets. As shown in Figure 4.13a, Bloom Filter

is a bit array that encodes membership information of an element in a set through a
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Figure 4.12: Multiplier-adder set for the computation of HDNs in power-law graph.

number of hash functions. Each member from the set is hashed to g random locations

in the Bloom Filter array and the corresponding bits are asserted to ‘1’. To check the

membership, the key of an element is similarly hashed to g bits. Only if all of the bits

are found to be ‘1’s, the element is deemed to be a member of the set.

The idea of using Bloom Filter for power law graphs is that all the HDNs can

be considered as a set. By streaming the meta-data once from DRAM and using a

threshold for the number of neighbors (degree) of a node, the bit array of Bloom Filter

can be populated with the membership information of the HDNs. Row index of each

node is considered as the key for hashing. Later during the computation, each node

can be checked if it is considered as a HDN or not. Depending on the result, we can

select the proper computation pipeline for partial SpMV during the step 1 of Two-Step

algorithm. A block diagram of this scheme is given in Figure 4.13b. It should be noted

that, Bloom Filter can provide false positives, but never false negatives. That means,
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it is possible that we treat a regular, i.e. not having high degree, node as HDN. This

doesn’t cause any considerable inefficiency as a regular node will not cause significant

stalls in the HDN pipeline. Furthermore, the pipeline for HDN also has FP adder

chain that can efficiently handle collisions of regular nodes.

Bloom Filter implementation

There are three important factors for Bloom Filter implementation, which are false

positive ratio, processing complexity and space overhead. Let m and q be the number

of bits in Bloom Filter array and maximum number of members in the HDN set

respectively. The ratio q/m is named as the load factor. We denote g as the number of

hash functions. Given these parameters, according to [73], the probability of treating

a non-member as a member can be given as the following.

fB = {1 − (1 −
1

m
)qg}g (4.1)

To encode and check membership, we need the hash functions to produce g log2 m

hash bits for the g random locations in the entire array. If a SRAM block is used to

store these m bits, this will mean g accesses to the memory block. In this works we

have implemented one memory access method proposed in [73]. In this case, the hash

functions need to produce log2 d + g log2 w hash bits, where d and w are the number

of words and word width of the SRAM block respectively.

We consider an example graph ‘Twitter www’ from KONECT [55] graph collection.

Degree distribution of this graph is given in Figure 4.14. This graph has 52 million

nodes and 1.9 billion edges with average degree of 74. Maximum degree of this graph,

i.e. highest number neighbors of a HDN, is 3 million. As shown in Figure 4.14, we

95



Carnegie Mellon

6

0 0 0 1 0 1 0 0 1 0

Hash func. 1 Hash func. 2 Hash func. 3

Row index of HDN

Checking or 
recording 

membership

m bit array (stores membership information of n HDNs)

(a) Bloom Filter membership recording and checking using multiple
hash functions.

Carnegie Mellon

7

Intermediate sparse vectorsMatrix 
stripeVector

Scratchpad (SRAM/eDRAM/BRAM)

PSU

MAU
(Merge 

Accumulation
Unit)

ASIC/FPGA Fabric

Main Memory

HDN
detection
by Bloom 

filter

HDN Pipeline

General Pipeline

(b) Separate pipeline for HDN computation in the fisrt step of Two-Step algorithm.

Figure 4.13: Bloom Filter filter based method to process HDNs of power-law graphs
efficiently for Two-Step SpMV implementation.

consider any node with more than thousand neighbors as HDN. There are less than

0.1% such nodes. However, to design conservatively we consider a Bloom Filter design

to encode 100K HDNs (q), i.e. ∼ 0.2% of the nodes for this example. From the analysis
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Figure 4.14: Degree distribution of example graph ‘Twitter www’ [55].

in [73], for 2% false positive ratio, g = 4 and q = 1e5 the load factor is 0.1. Hence we can

calculate the number of bits required for Bloom Filter as m = q/0.1 = 1Mbits = 128KB.

If we use a SRAM block with word width of w = 64 bits and d = 16384 words, the

total number of hash bits required is log2 16384 + 3 log2 64 = 14 + 18 = 32 bits. In

our implementation, we use simple XOR based hardware hash functions to generate

these hash bits. Thus, overall the space and processing overhead for the detection of

HDNs with a low false positive ratio is is reasonable and does not require significant

resources.

4.4 Implementation of Step 2

In the second step Two-Step SpMV the task is to merge all the n number of intermediate

sparse vectors, v0 to vn−1, into the final resultant vector y. This is the most critical
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Figure 4.15: HCLAM PRaP unit.

part of Two-Step SpMV implementation as the multi-way merge network required for it

needs to handle a large number (∼ multiple thousands) of sorted lists that are very long

(∼ hundreds of million or billion elements). Additionally, the multi-way merge hardware

has to be both scalable and high performance at the same time. In this work, we

have implemented Hybrid Comparison Look Ahead Merge (HCLAM) based multi-way

merge network along with Parallelization by Radix Pre-sorter (PRaP) parallelization,

namely HCLAM PRaP unit as shown in Figure 4.15, which are explained in detail in

Chapter 3.

Figure 4.16 depicts Merge Accumulation Unit (MAU) that is the computation

logic for implementation of the 2nd step of Two-Step algorithm. It is important to

note that for shared memory system with multiple DRAM channels, the address
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space and main memory ports are divided among the channels. In such case, to fully

utilize the streaming bandwidth and memory space of the entire main memory system,

the intermediate vectors are equally distributed among all the channels. The custom

hardware accelerator developed in this work is designed for four main memory channels,

as shown in Figure 4.16. Hence, we have used four HCLAM PRaP units for MAU

implementation. Each HCLAM PRaP unit merges K lists that are streamed from one

DRAM channel. Thus the total number of intermediate sparse vectors is n = 4K.

Each HCLAM PRaP unit has 2q wide output, i.e. delivers 2q records per cycle,

where q is the number of radix bits for the pre-sorting. At the output of HCLAM

PRaP units, there are 2q adder chains, as shown in Figure 4.9, per channel to resolve

collisions for records with same indices. There are 4×2q adder chains in total. To merge

the outputs for all DRAM channels while keeping the aggregated throughput the same,

we have implemented 2q number of 4 record 4-way IMNs at the output end of the adder

chains. Each 4 record 4-way IMN merges the records from all four DRAM channels

that have indices with the same radix bits used for pre-sorting. At the output of these

IMNs 2q 4-way shift-reduction chains, as depicted in Figure 4.10, are implemented to

resolve collisions among records from all the DRAM channels. Thus, the 4 independent

HCLAM PRaP network along with a number of small IMNs construct the Merge

Accumulation Unit (MAU) required to fully conduct the multi-way merge for the

second step of Two-Step SpMV algorithm. Since there is only a few number of main

memory channels, the implementation cost of the IMNs is not significant.
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Figure 4.16: Merge Accumulation Unit (MAU) implementing 2nd step of Two-Step
SpMV using 4 DRAM channels.

4.5 Meta-Data Compression

Delta Index

In Two-Step SpMV, the round trip of intermediate vectors (vks) in sparse format

to/from DRAM incurs off-chip traffic overhead. Each nonzero of these vectors is repre-

sented by a position index, i.e. meta-data, and a value. All these intermediate vectors

are both generated and accessed sequentially for Two-Step SpMV implementation

and there is an opportunity to exploit this access pattern to achieve off-chip traffic

reduction. Generally, meta-data is represented using 32 or 64 bit integers. However,

instead of using absolute index within entire vector address space as meta-data for a

nonzero, it is possible to only use the distance from its previous nonzero. As shown in
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Figure 4.17: Delta index vs absolute index as meta-data.

Figure 4.17, bits required to represent distance between two nonzeros, namely ‘delta

index’, can be significantly smaller than absolute index.

Variable Length Delta Index (VLDI)

Minimum number of bits required to represent delta index varies since the distances

among nonzeros vary. To render delta index to be practically usable we propose to

use a method, namely Variable Length Delta Index (VLDI), that enables allocation of

variable bit width for meta-data. This process is explained in Figure 4.18 using an

example. The original delta index of a nonzero requires 17 bits to express the distance

from its previous nonzero. We first divide the original delta index into multiple ‘VLDI

blocks’ of predefined width. In this example, the block size is 7 bits. If required, VLDI

block comprising the most significant bits is padded with extra zeros to encompass

the entire block as shown in Figure 4.18. Afterwards, each block is appended with
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Figure 4.18: Construction of VLDI strings from delta index

an extra leading bit to construct a ‘VLDI string’. This extra bit helps in determining

propagation of the original delta index. A ‘1’ indicates continuation to the next string

while a ‘0’ confirms the termination of the original delta index. This way of segmenting

the delta index into multiple VLDI strings provides a practical way of exploiting

this data compression opportunity. It should be noted that VLDI is only feasible for

sequential generation and access of a stream of elements. As the matrix stripes are

stored in RM-COO format and only read from DRAM by streaming access, it is also

possible to apply VLDI to compress the matrix stripes. In this case, the meta-data

compressed by VLDI is the row index of each nonzero.

VLDI String Length

The optimum VLDI string length, besides the sparsity of the matrix itself, directly

correlates to the number of nonzeros in the matrix stripes (Ak) and sparse vectors(vk)

that indirectly depends on the on-chip memory size. With smaller on-chip memory the

matrix stripe that can be stored becomes narrow and renders more distance among

nonzeros of Ak and vk on average. Hence, a larger fixed length for the VLDI block

is expected to be more efficient as it will reduce the one bit overhead of each VLDI

string. However, making the overall string length too wide will cause wastage. Hence,
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it is important to select the proper VLDI string length given an hardware platform’s

on-chip fast memory size and sparsity of the problem to achieve efficient compression.

For example, Figure 4.19 shows probability distribution of delta index width for

two different on-chip memory sizes, 5MB and 35MB. A randomly generated Erdos

Rényi [74] matrix with dimension of 80M×80M and average degree of 3 is used for this

example. We have computed the total off-chip traffic for both on-chip storage sizes

for a range of VLDI string lengths. Minimum traffic occurs for VLDI string length

of 9 bits and 5 bits, i.e. VLDI block length of 8 bits and 4 bits, for 5MB and 35MB

on-chip memory sizes accordingly for this problem. Hence, we can tune hardware

design parameters for a given memory resource and problem characteristics. FPGA

based custom platforms have advantage over ASIC in this regard as it is easier to fine

tune VLDI parameters for problems with different sparsity.

Advantage

To elaborate the VLDI meta-data compression benefit we have shown the total off-chip

traffic for the example problem of 80M×80M random sparse matrix given above using

20MB on-chip memory in Figure 4.20. Here we have separately shown the compression

capability when only vk (intermediate sparse vector) is compressed and when both

Ak (matrix stripe) and vk are compressed. Several data precision for the value of

nonzeros are used for comparison. Since only meta-data is compressed by VLDI, the

compression ratio increases as data precision is decreased. In many real life graphs, the

edges of sparse matrix is unweighted, i.e. binary matrix, where we only have meta-data

for each nonzero. In such cases VLDI can provide maximum compression benefit.

It should be noted that when the computation throughput, i.e. number of nonzeros

processed per cycle, of PSU and MAU is less than the streaming bandwidth of main
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Figure 4.19: Probability distribution of delta index widths for two different on-chip
memory sizes and a randomly generated Erdos Rényi graph with dimension 80M×80M
and average degree of 3.

memory VLDI only improves energy efficiency, but does not provide any performance

improvement. This is because no matter how much the data is compressed, computation

throughput remains unaltered. However, as shown in Chapter 6, when the computation
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Figure 4.20: off-chip traffic reduction using VLDI meta-data compression.

throughput is higher than the streaming bandwidth of DRAM, VLDI provides both

performance and energy efficiency improvement. This is because VLDI can actually

provide more data to the computation unit to process and eliminate the stalls due to

relatively slower off-chip data transfer speed.

4.6 Summary

In this chapter we have elaborated the implementation of step 1 and 2 of our proposed

SpMV algorithm. We have shown that besides main hardware primitive, i.e. HCLAM

PRaP merge, we need few small IMN networks for parallelization. Efficient reduction

hardware to handle collisions in various scenarios have also been presented. We

have demonstrated how Bloom Filter can be used to efficiently process HDNs in

power-law graphs. We have presented VLDI meta-data compression technique that is

particularly enabled by Two-Step algorithm. These techniques enhances Two-Step
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SpMV implementation by improving computation efficiency and reducing off-chip

traffic volume.
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Iterative Two-Step SpMV and

On-chip Memory Requirement
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Many applications that use SpMV kernel conducts in iterative manner where the

resultant vector y of one iteration serves as the source vector x in the following

iteration. In this chapter we will demonstrate an optimization for Two-Step algorithm

implementation that decreases off-chip traffic and significantly improves computation

throughput when SpMV kernel runs for multiple iterations. This optimization technique
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overlaps the different computation steps of Two-Step SpMV. In this work, we have

chosen widely prevalent PageRank algorithm to demonstrate this SpMV optimization

for iterative applications.

In the second part of this chapter, we will elaborate the on-chip memory requirement

of our proposed architecture and current state of the art solutions. We will explain

in detail how strong dependence on fast on-chip memory adversely affects accelerator

scalability and efficiency. As mentioned before, one of the main intents of this work

is to handle very large graphs (∼ billion nodes) in shared memory environment and

efficient on-chip memory management is imperative in achieving this goal.

5.1 PageRank

PageRank is an iterative ranking algorithm that computes relative importances of the

nodes in a graph. One application of PageRank is in World Wide Web, where it ranks

the web pages for a particular keyword search according to the probability of anyone

randomly surfing landing on that specific web page. Mathematical representation for

an iteration of PageRank algorithm on a static graph can be given as following.

xT
(i+1) = αx

T
i A︸︷︷︸

SpMV

+ (1 − α)xT
i
eeT

N︸           ︷︷           ︸
constant addition

(5.1)

In Equation 5.1, xT
(i+1) is the resultant vector at iteration i that is also known as the

PageRank vector. A is the sparse matrix of dimension (N × N) and α is a constant

damping factor. The teleportation matrix, eeT/N , models the random probability of a

surfer to jump to any page with uniform distribution, where e is a column vector with
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Figure 5.1: Two-Step SpMV driven PageRank with independent iterations (PR TS ).

constant 1 for each element. The second term of Equation 5.1 is effectively a constant

addition, whereas the first term is SpMV operation that dictates PageRank algorithm’s

performance and efficiency. Generally, SpMV operation is conducted multiple times in

an iterative manner until PageRank vector converges.

5.1.1 SpMV Optimization by Iteration Overlap

PageRank implementation using iterative Two-Step SpMV in a straightforward way is

depicted in Figure 5.1. At iteration i the entire Two-Step SpMV operation is conducted

and at the end of step 2 the resultant dense PageRank vector, yi = xi+1, is streamed

out to DRAM since it is too large to be stored in on-chip memory. In the next iteration

i + 1, source vector xi+1 is streamed back to the computation core from DRAM for

step 1 of Two-Step SpMV. We name this implementation of PageRank as PR TS .

In PR TS each iteration is completely independent and the SpMV steps are

sequential among the iterations. However, we can parallelize the steps of SpMV among

iterations as depicted in Figure 5.2. Effectively, computations of two consecutive

iterations are overlapped that eliminates the round trip of xi+1 to/from DRAM at the

109



Carnegie Mellon

1

Overlapped in timeiteration i iteration i+1

Step 1 Step 2 Step 1 Step 2

xi+1xi xi+1 xi+2

Two source vector segment storages in fast memory are required:
1) for computation of Step1 in iteration i+1 and 2) for storing output of Step 2 in iteration i.

1st 2nd

Figure 5.2: Off-chip traffic optimized PageRank with iteration overlap (PR ITS ).

transition of iterations. The main enabler of this optimization by iteration overlap is

the fact that resultant vector of iteration i, xi+1, is generated sequentially in Two-Step

algorithm and despite not being able to store the entirety of it on chip, it is possible to

store a segment similar to the source vector xi. Once a segment of xi+1 is completely

generated and stored in the on-chip memory, it is possible to initiate computation of

step 1 in the next iteration i + 1. While step 1 of iteration i + 1 is conducted using the

1st segment of the source vector xi+1, step 2 of iteration i continues concurrently and

stores the 2nd segment of the resultant vector xi+1 in another on-chip buffer. Thus,

computation of step 2 in iteration i and step 1 in iteration i + 1 are overlapped in time.

A pseudocode of iteration overlapped Two-Step SpMV driven PageRank, named as

PR ITS , is given in Pseudocode 2.

The cost of iteration overlapped Two-Step SpMV is that now it is required to

buffer two source vector segments in on-chip fast memory instead of one. Hence, for a

given amount of on-chip memory the maximum matrix dimension that PR ITS can

handle is roughly half of what PR TS can handle. Therefore, optimization by iteration
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Pseudocode 2: Two-Step SpMV driven PageRank with off-chip communica-
tion optimization by iteration overlap.

1 T = Total number of iterations
2 for i = 0 to T − 1 do
3 STEP 1
4 for k = 0 to n − 1 do
5 Stream in Matrix Column Block Ak

6 u ← 0

7 for All rows Ak
p,: with nnz > 0 do

8 for Each non-zero Ak
p,q in Ak

p,: do

9 Random access to vector segment xk
[i+1]

10 up ← α · Ak
p,q · x

k
q[i+1] + up

11 end

12 end

13 Sparsify u to vk
[i+1]

14 Stream out vk
[i+1] to main memory

15 end

16 STEP 2
17 for p = 0 to N − 1 do
18 for k = 0 to n − 1 do
19 Stream in vk

[i]
20 xp[i+1] ← xp[i+1] + v

k
p[i] [Multiway merge]

21 end
22 c[i+1] ← c[i+1] + xp[i+1]

23 xp[i+1] ← xp[i+1] +
1−α

N c[i] [Constant addition]

24 end
25 Buffer x[i+1] on chip

26 end
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overlap offers a trade off between maximum problem dimension vs performance and

energy efficiency.

5.1.2 Advantages of Iteration Overlapped Two-Step SpMV

Higher Throughput

The most important benefit of iteration overlap is that it significantly increases the

computation throughput of the overall SpMV operation. This is because both the

computation units for step 1 and 2, i.e. PSU and MAU, operates concurrently, whereas

for a single run of Two-Step SpMV one of the computation units remains idle. Thus,

PR ITS enables the entire silicon area to be active for all the iterations (except

the very first and very last one), which helps to properly utilize extreme off-chip

streaming bandwidth offered by 3D stacked HBM. The sustained throughput of

PR ITS vs PR TS using our ASIC implementation of Two-Step SpMV is shown in

Figure 5.3. For PR TS , loading of source vector segment, partial SpMV and multi-

way merge are conducted in sequential manner at sustained throughput pertaining

to their computation units, which are less than system’s main memory bandwidth.

For PR ITS , all operations in step 1 and 2 runs parallelly that almost doubles the

maximum possible computation throughput overall. In this way, using the same

silicon area and resources performance of the accelerator can be increased significantly

and full utilization of HBM bandwidth becomes possible. In fact, the computation

throughput of our developed ASIC is well over the system’s 512GB/s and can saturate

the bandwidth of almost three HBM2s (768GB/s).
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Figure 5.3: Sustained computation throughput/streaming speed of PR ITS vs PR TS
implemented in ASIC platform.

Off-Chip Traffic Reduction by Iteration Overlap

There is an additional benefit of reduced off-chip traffic in iteration overlapped Two-

Step SpMV. This is due to elimination of the round trip of resultant and source vector

to/form main memory. This reduction becomes more impactful when the matrix

gets sparser. This is because with more sparsity, i.e. less average degree, the overall

off-chip traffic caused by matrix decreases while the off-chip traffic due to source and

resultant vector remains constant. To demonstrate this, we generated five Erdos Rényi

random graphs of dimension 1B×1B with different sparsity. Figure 5.4 shows the total

off-chip traffic for 20 iteration PageRank on these graphs for both unoptimized and

optimized Two-Step SpMV, which are termed as TS and ITS (Iteration-overlapped

TS ) accordingly. We can see that the ratio of reduction in traffic using iteration overlap

optimization becomes larger as average degree decreases. For example, with a highly

sparse graph of average degree 1.2, 26% more DRAM traffic would incur if iteration

overlapped Two-Step SpMV is not implemented.
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Figure 5.4: Off-chip communication of PageRank using TS vs ITS (Iteration-overlapped
TS ).

5.2 On-chip Memory Requirement

Dependence on scarce on-chip fast memory is the biggest constraint in handling large

problems for most of the hardware accelerators developed for sparse kernels in the

literature. One of the key contribution of this work is that our developed accelerator

can handle much larger problems while requiring significantly less on-chip fast memory

(such as SRAM or eDRAM based cache, scratchpad, etc.) relative to the solutions

found in literature. This is due to less dependence on fast memory to scale. Figure 5.5

shows the on-chip memory requirement for Two-Step SpMV implementation. The

majority of fast memory is required for the storage of source vector segment. Rest of

the on-chip memory is mainly required for the prefetch buffer to store DRAM page

size blocks for n intermediate sparse vectors to ensure DRAM streaming. Even though

each intermediate sparse vector is accessed sequentially, selection of the vector during

the merge process is random. Hence to guarantee full DRAM streaming and total

amortization of DRAM page opening cost, we prefetch the entire DRAM page size data
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Figure 5.5: On-chip storage requirement for proposed Two-Step SpMV.

block once any sparse vector is accessed in DRAM. This prefetch buffer is explained in

more detail in Sec. 3.6 of Chapter 3.

5.2.1 Comparison with Current Solutions

For the developed ASIC in this work, the overall computation core requires 0.5MB of

on-chip memory. For the source vector we have allocated 8MB scratchpad. Page (row

buffer) size of HBM2 is 1KB and we have allocated 1.25KB for prefetched data (instead

of 1KB) for each sparse vector. The extra memory is allocated so that new load request

can be issued before completely depleting the prefetched block and the load latency

can be hidden. For this given design point, we have implemented a 2048-way multi-way

merge network. Hence, n = 2048 and we require 2048 × 1.25KB = 2.5MB on-chip

fast memory for prefetch buffer overall. The total on-chip fast memory requirement

for our proposed ASIC based accelerator is (0.5MB + 8MB + 2.5MB) = 11MB. To
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place this into perspective, we have listed the on-chip memory requirement and the

largest problem size reported for a number of custom hardware and COTS solutions of

current literature in Table 5.1. We compared these shared memory solutions against

our proposed Two-Step SpMV without and with optimization by iteration overlap,

which are named as TS and ITS (Iteration-overlapped TS ) accordingly. As mentioned

before, ITS causes the maximum problem size to be half of what is possible with TS .

Nevertheless, we can see our proposed solution requires relatively less on-chip memory

while being able to handle graphs with significantly larger dimension. For example,

despite using a huge 32MB eDRAM scratchpad the ASIC based solution in [33] can

efficiently handle a maximum graph size of 8 million nodes only. On the other hand,

our proposed ASIC can handle graph with multiple billion nodes using only 11MB fast

memory.

Table 5.1: Fast on-chip memory requirement and largest graph dimension comparison
of current and proposed solutions.

Solution Fast on-chip Max. vertices
memory size (MB) (Million)

FPGA [36] 8.4 2.3
ASIC [33] 32.0 8.0

CPU (single socket) [75] 20.0 95.0
CPU (dual socket) [76] 50.0 118.0
ITS (proposed ASIC) 11.0 2000.0
TS (proposed ASIC) 11.0 4000.0

It is should be noted that, since there is a lot of room to expand on-chip memory

using existing technology, our proposed solution can be scaled easily for significantly

larger problems. For example, if the source vector buffer is expanded from 8MB to

16MB, we will be able to handle graphs with twice larger dimension, i.e graphs with 4B

and 8B vertices using ITS and TS accordingly. This ability to scale is imperative for
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FPGA based implementation in handling large graphs. This is because FPGA has very

limited amount on-chip Block RAM (BRAM) and efficiency of FPGA implementation

largely depends on the proper utilization of Block RAM (BRAM). FPGA solutions in

current literature have reported to handle only small graphs, such 2.3 million nodes

in [36]. It should be noted that the total number of edges in a graph is not relevant in

determining on-chip memory size for Two-Step SpMV implementation. Total edges

only dictates the requirement for main memory storage for our developed accelerator.

5.2.2 Energy Efficiency

One issue which is often overlooked in custom accelerator design using large on-chip

memory is the energy usage by large memory blocks. For implementation of large

on-chip storage, eDRAM is often used as it is more compact than SRAM. However,

eDRAM accounts for significantly large portion of the total energy consumed by

the system. For example, Figure 5.6 depicts the normalized energy consumed by a

accelerator system using 16MB eDRAM scratchpad and ASIC computation core with

HBM main memory system. We have simulated a full SpMV run on the example

graph of dimension 80M×80M mentioned in Sec. 4.5. Destiny [77] memory modeling

tool is used to calculate eDRAM energy consumption. As shown in Figure 5.6, due to

high leakage power, eDRAM consumes almost 70% of the entire energy required for

SpMV computation. Leakage power of eDRAM is directly proportional to the memory

block size and, hence, smaller eDRAM block achieves higher energy efficiency. Authors

of [33] also reported 90% of the entire system energy to be consumed by a 64MB

eDRAM scratchpad. Thus less dependence on fast on-chip memory also provides

advantage in energy efficiency besides scalability.
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Figure 5.6: Energy consumption by different parts of the system for Two-Step SpMV
acceleration.

5.2.3 Fast Storage vs Compute

An interesting observation in the implementation of Two-Step SpMV for large and

highly sparse graphs is that the off-chip traffic is not significantly impacted by on-chip

storage size. Figure 5.7 elaborates this phenomenon. It shows total off-chip traffic of

Two-Step SpMV operation on the random graph mentioned in Sec. 4.5 (80M nodes

and average degree 3) for different sizes of on-chip storage. Despite increasing the fast

memory from 5MB to 50MB, the overall off-chip traffic reduction is only 5.4%. This is

very insignificant given the 10x increase on-chip memory. This is because large sparse

matrices have only a few reductions per row and even very wide matrix stripes fail

to have any meaningful effect on it. Hence on-chip memory size parameter for our

accelerator design is mainly dictated by compute capability of our system.

For any target maximum matrix dimension, there is a trade-off between on-chip

storage and merge network size in MAU. If the merge network can handle more lists,

it is possible to decrease the on-chip storage. This is because less fast storage renders

source vector segment smaller, which eventually causes higher number of matrix stripes
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Figure 5.8: Trade-off between on-chip storage and computation in designing Two-Step
SpMV accelerator.

and intermediate vectors. If eDRAM is used, smaller on-chip may result in higher

energy efficiency. This design trade-off is illustrated in Figure 5.8. Thus for a given

silicon area, as in ASIC design, and target problem size design parameters should be
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chosen by factoring in this trade-off between memory vs compute while implementing

Two-Step SpMV.

5.3 Summary

With the example of PageRank application, we have demonstrated a technique by

overlapping the SpMV steps in consecutive iterations that significantly increases the

streaming computational throughput and reduces off-chip traffic. Furthermore, we

have shown that our proposed solution uses significantly less on-chip memory to handle

large graphs in comparison to existing solutions in literature. As on-chip memory is a

critical resource for scaling, it is essential to ensure efficient utilization of it in custom

hardware design for being able to handle large problems.
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Chapter 6

Evaluation of Performance &

Energy Efficiency of SpMV
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In this chapter we will evaluate the performance and energy efficiency of our proposed

SpMV accelerator. As mentioned in previous chapter, we have designed an ASIC chip

for the implementation of Two-Step SpMV that is currently being fabricated. We

have also ported this ASIC design to FPGA platform and implemented the proposed

accelerator to a relatively smaller design point. To demonstrate the performance and

efficiency benefit of our proposed accelerator on both ASIC and FPGA platforms we
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Figure 6.1: 16nm FinFET ASIC (currently under fabrication) for sparse matrix kernel
acceleration.

have compared experimental results with various benchmarks. A number of custom

hardware and GPU SpMV accelerators from recent literature are used benchmarks.

Additionally, we have also used Intel® Math Kernel Library (MKL) SpMV routine on

CPU and co-processor (Xeon Phi) as another set of benchmarks.

6.1 Implementation Platform & Design Points

We have implemented the proposed SpMV accelerator and optimizations techniques in

multiple design points in several custom hardware platforms. A basic block diagram

of the proposed accelerator is depicted in Figure 6.1 and a list of implementations for

various design points is Table 6.1 that also includes the maximum problem dimension

and maximum computation throughout of each implementation.
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Table 6.1: Maximum graph dimension and throughput for different design point and
implementation variations of proposed SpMV accelerator.

Platform/ Implementation Maximum Sustained computation
Design point ID nodes (M) throughput (GB/s)

TS ASIC 4000 432
ASIC ITS ASIC 2000 729

ITS VC ASIC 2000 656

TS FPGA1 134.2 96
FPGA1

ITS FPGA1 67.1 178

TS FPGA2 67.1 190
FPGA2

ITS FPGA2 33.6 357

6.1.1 ASIC based Implementation

The accelerator computation unit for ASIC is done using System Verilog and currently

being fabricated in 16nm FinFET technology. An actual image (from Cadence® tool)

of the ASIC and key specifications are given in Figure 6.2. As the chip is currently being

fabricated, these specifications are from post physical synthesis (after place and route)

layout of the design. Cadence® Innovus� is used for area and frequency measurement

and Cadence® Voltus� is used for power measurement. One noteworthy aspect of this

chip is that it uses synthesized SRAM blocks, also known as LiM technology [63–65],

distributed all over the chip to facilitate fine grain data access during computation.

For Partial SpMV Unit (PSU) implementation in ASIC, sixteen parallel single

precision FP multiplier and adder chains are implemented. For implementation of MAU,

sixteen parallel HCLAM PRaP 512-way merge cores are used per DRAM channel,

which means 4 LSB radix bits are used for pre-sorting. The system is designed to work

with four HBM channels and, hence, MAU contains a 2048-way multi-way merge merge

network that has a overall maximum throughput of 64 resultant vector elements per
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Figure 6.2: 16nm FinFET ASIC (currently under fabrication) for sparse matrix kernel
acceleration.

cycle. The two other parts of ASIC based accelerator, i.e. HBM main memory and the

eDRAM scratchpad, are emulated using Cacti [78] and Destiny [77] tools. This ASIC

is designed to work with two 3D-stacked 2nd generation High Bandwidth Memories

(HBM2s) [66,67] as main memory, which are connected through interposer [68]. One

single HBM2 provides 256GB/s aggregated bandwidth. Hence, this chip is designed to

saturate the extreme off-chip bandwidth of total 512GB/s offered by state of the art 3D

stacked DRAM technology. On the other hand, we have simulated 10.5MB eDRAM

scratchpad as fast memory for vector storage (2MB) and prefetch buffer (2.5MB).

For the design point of ASIC described above, we test the accelerator for three

different implementation variation as mentioned in Table 6.1. TS ASIC represents

straightforward Two-Step SpMV along with optimization techniques described in

Chapter 4 except iteration overlap and VLDI compression. ITS ASIC indicates

TS ASIC implementation along with the optimization using iteration overlap. Lastly,

ITS VC ASIC means ITS ASIC implementation including VLDI data compression

for intermediate sparse vectors. As TS ASIC only stores one source vector segment

in fast memory, the maximum matrix dimension it can handle is 4 billion. This is
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twice as large what ITS ASIC and ITS VC ASIC can handle, i.e. 2 billion, since

these variations include iteration overlap optimization. However, ITS ASIC and

ITS VC ASIC has relatively higher computational throughput than ITS ASIC as both

PSU and MAU is active due to iteration overlap. ITS VC ASIC has relatively slower

sustained throughput than ITS ASIC in terms of DRAM bandwidth saturation, i.e.

GB/s, due to meta-data compression. However, ITS VC ASIC and ITS ASIC both

have the same throughput in terms of number of elements processed per unit time.

6.1.2 FPGA based Implementation

To demonstrate portability of the custom hardware design of our proposed acceler-

ator, we have implemented two design points in Intel® Stratix® 10 FPGA (device

1SG280HU1F50E1VGS3), namely FPGA1 and FPGA2 as shown in Table 6.1. While

the PSU configuration and memory requirement for source vector segment and prefetch

buffer are the same as ASIC, FPGA1 and FPGA2 have different configuration for

the MAU implementation. FPGA1 is implements an 64-way multi-way merge merge

network overall with 4 LSB radix pre-sorter. On the other hand, FPGA2 implements

smaller 32-way merge with 5 LSB radix pre-sorter, i.e. more parallel merge cores.

Therefore, FPGA1 can handle relatively larger problems than FPGA2 , but at the

cost of less computational throughput. For both FPGA1 and FPGA2 , scratchpad

memory is synthesized using Block RAM (BRAM). The HBM main memory system

is simulated in the same way as ASIC considering four channels.

For each design point FPGA1 and FPGA2 , there are two different implementations.

One version of the design points implement straightforward Two-Step SpMV without

iteration overlap optimization, which are named as TS FPGA1 and TS FPGA2 for
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Figure 6.3: Intel® Stratix® 10 FPGA platform [69].

the corresponding design points. The other version of the design points incorporate

optimization by iteration overlap that are named as ITS FPGA1 and ITS FPGA2 .

Hence, we have four implementations in total of on Stratix® 10 FPGA as listed in

Table 6.1.

6.2 Comparison against Custom Hardware and

GPU

We have compared the performance and energy efficiency of our developed accelerator

against a number of custom hardware solutions, including both ASIC and FPGA from

recent literature. Another set of GPU based SpMV accelerator is also considered from

current literature to serve as benchmarks for comparison. A short description of these

benchmarks and reference are given in Table 6.2. For the ease of description, we have

assigned an ID with each of the benchmarks. It is noteworthy that the ASIC solution

in BM1 ASIC [33] uses a huge eDRAM scratchpad of 64MB. The set of graphs that

are used for comparison against custom hardware and GPU solutions are given in
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page 127 and Table 6.4 accordingly. We have considered all relatively large graphs

results on which are reported by the related work. It is also noteworthy that most

of the reported graphs by these custom hardware and GPU solutions are small (only

have few million nodes), whereas our solutions can operate on much larger graphs as

shown in Table 6.1. Iterative SpMV application PageRank is run on these graphs using

20 iterations. Reported results for the same operation are collected from pertinent

literature for comparison purpose.

Table 6.2: Graph data sets used for comparison with custom hardware (ASIC/FPGA)
benchmarks.

Architecture ID Description

BM1 ASIC 28-nm ASIC, 64 MB eDRAM scratchpad [33]
Custom

BM1 FPGA Virtex UltraScale+, 25 Mb BRAM & 90 Mb UltraRAM [79]
Hardware

BM2 FPGA Virtex-7, 67 Mb BRAM [36]

BM1 GPU 8 nodes, Tesla M2050 GPU per node [80]
GPU

BM2 GPU Single Radeon 5870(RV870) [81]

Table 6.3: Graph data sets used for comparison with custom hardware (ASIC/FPGA)
benchmarks.

ID Description # Nodes (M) Avg. Degree # Edges (M)

FR Flickr [33] 0.82 12.00 9.84
FB Facebook [33] 2.93 14.31 41.92

Wiki Wikipedia [33] 3.56 23.81 84.75
RMAT RMATScale23 [33] 8.38 16.02 134.22

LJ LiveJournal [79] 7.80 14.38 69.00
WK WK [79] 2.40 2.08 5.00
TW TW [79] 41.6 35.30 1468.40

web-ND web-NotreDame [36] 0.33 4.61 1.45
web-Go web-Google [36] 0.88 5.83 5.11
web-Be web-Berkstan [36] 0.69 11.09 7.60
web-Ta wiki-Talk [36] 2.39 2.10 5.02
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Table 6.4: Graph data sets used for comparison with GPU benchmarks.

ID Description # Nodes (M) Avg. Degree # Edges (M)

ara-05 arabic-2005 [80] 22.70 28.19 640.00
it-04 it-2004 [80] 41.30 27.85 1150.10
sk-05 sk-2005 [80] 50.60 38.53 1949.40
wiki51 wikipedia-20051105 [81] 1.63 12.08 19.75
wiki60 wikipedia-20060925 [81] 2.98 12.49 37.27
wiki61 wikipedia-20061104 [81] 3.15 15.50 39.38
wiki70 wikipedia-20070206 [81] 3.56 12.62 45.03
edu-01 edu-2001 [81] 9.84 5.81 57.15

6.2.1 Performance against Custom Hardware Solutions

Figure 6.5 shows the speedup of execution time for 20 iteration PageRank using

iterative SpMV using our ASIC implementations. In the plot, comparison results

for different benchmarks are separated. Our ASIC implementations achieve order of

magnitude improvement over the FPGA benchmarks and several times faster than the

ASIC benchmark despite significantly less on-chip memory. As expected, solutions

with iteration overlap optimization technique, i.e. ITS ASIC and ITS VC ASIC , has

better speedup than TS ASIC . ITS VC ASIC achieves highest performance as the

sustained computation throughput is higher than system’s streaming bandwidth of

512GB/s and VLDI compression reduces off-chip traffic.

Figure 6.5 shows speedup with our four FPGA implementations against the cus-

tom hardware solutions. These are expected to achieve less performance than our

ASIC implementation. However, the overall speedup against these benchmarks are

significant. We have used another metric for performance comparison that is Giga

Traversed Edges Per Second (GTEPS). Figure 6.6 and Figure 6.7 report GTEPS for
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our proposed implementations and the custom hardware benchmarks. We also notice

similar significant improvement for GTEPS.
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Figure 6.4: Speedup of proposed ASIC over custom hardware benchmarks.
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Figure 6.5: Speedup of proposed FPGA implementations over custom hardware
benchmarks.

6.2.2 Performance & Efficiency against GPU Solutions

Figure 6.8 and Figure 6.9 show the speedup in execution time for 20 iteration SpMV over

GPU benchmarks with our ASIC and FPGA implementations. Using ITS VC ASIC ,
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Figure 6.7: Comparison of GTEPS for proposed FPGA implementations against
custom hardware benchmarks.

we can achieve multiple orders of magnitude improvement in the execution time against

BM1 GPU. Comparisons of GTEPS metric are given in Figure 6.10 and Figure 6.11,

where we can notice orders of magnitude improvement in performance over GPU

benchmarks.
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Figure 6.8: Speedup of proposed ASIC over GPU benchmarks.
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Figure 6.9: Speedup of proposed FPGA implementations over GPU benchmarks.

To demonstrate the improvement in energy efficiency, we have compared the

energy per edge traversal for 20 iteration PageRank operation. Comparison results are

presented in Figure 6.12 and Figure 6.13. Energy efficiency improvement for proposed

ASIC implementations are multiple orders of magnitude for almost every graph. FPGA

implementations also achieve significant energy efficiency. This is expected because

131



100

1000

10000

100000

ara-05 it-04 sk-05 wiki51 wiki60 wiki61 wiki70 edu-01

GPU Benchmark TS_ASIC ITS_ASIC ITS_VC_ASIC

BM1_GPU BM2_GPU

1

100

10

0.1

GPU

G
TE

P
S

Figure 6.10: Comparison of GTEPS for proposed ASIC against GPU benchmarks.
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GPU benchmarks for SpMV.

GPUs commonly consume high energy due to large number of parallel cores and

arithmetic units.
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Figure 6.12: Comparison of energy per edge traversal of proposed ASIC against GPU
benchmarks.
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Figure 6.13: Comparison of energy per edge traversal of proposed FPGA implementa-
tions against GPU benchmarks.

6.3 Comparison against CPU and Co-Processor

For comparison with CPU and many-core co-processor we have used Intel® MKL

routine ‘mkl scoogemv’ to run single precision iterative SpMV on dual socket Xeon

E5-2620 (22nm, 12 threads) CPU and Xeon Phi 5110P (22nm, 60 cores) co-processor.
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Both of the COTS architectures have 30MB LLC. The peak bandwidth is 102GB/s

for the CPU and 352GB/s for the co-processor. Data used for comparison with these

architectures are listed in Table 6.5. All these graphs (except last six) are collected

from University of Floria sparse matrix collection [82]. We also have used a number

of random Erdos Rényi [74] graphs for the demonstration purpose of our proposed

accelerator’s capability in handling large problems. These synthetically generated

graphs have names with prefix ‘Sy’.

Table 6.5: Graph data sets used for comparison with CPU and many-core co-processor
benchmarks.

Name # Nodes (M) Avg. Degree # Edges (M)

patents 3.77 3.97 14.97
venturiLevel3 4.03 2.00 8.05

rajat31 4.69 4.33 20.32
italy osm 6.69 1.05 7.01
wb-edu 9.85 5.81 57.16

germany osm 11.55 1.07 12.37
asia osm 11.95 1.06 12.71

road central 14.08 1.02 16.93
hugetrace 16.00 1.50 240.00

hugebubbles 19.46 1.50 29.18
europe osm 50.91 1.06 54.05

Sy-60M 60.00 3.00 180.00
Sy-70M 70.00 3.00 210.00
Sy-130M 130.00 2.23 290.00
Sy-.5B 500.00 1.74 870.00
Sy-1B 1000.00 2.58 2580.00
Sy-2B 2000.00 1.14 2270.00

Figure 6.14 demonstrates the speedup in execution time for our proposed ASIC

and FPGA implementations over Intel® MKL on CPU. Figure 6.15 shows the same

against Intel® MKL on Xeon Phi architecture. We have only reported the results that

we were able to run on these architectures. For example, we couldn’t successfully run
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graphs over 70M and 30M nodes on Xeon E5 and Xeon Phi respectively. In both of

these plots, we can see orders of magnitude improvement in execution time for SpMV

operation. Figure 6.16 and Figure 6.17 depict the comparison of GTEPS metric against

both the benchmarks for our ASIC and FPGA implementations respectively. These

plots also show the performance of our proposed solutions on very large (∼ billion

nodes) graphs. It should be noted that due to 2048-way multi-way merge network our

ASIC solution can handle much larger graphs than FPGA implementations, which is

also mentioned in Table 6.1.

1

10

100

1000

Speedup Over CPU

TS_FPGA1 ITS_FPGA1 TS_FPGA2 ITS_FPGA2 TS_ASIC ITS_ASIC ITS_VC_ASIC

Sp
ee

d
u

p
 in

 e
xe

cu
ti

o
n

ti
m

e

Increasing matrix dimension

Figure 6.14: Speedup of proposed ASIC and FPGA implementations over Intel MKL
on dual socket Xeon E5-2620 (12 threads) CPU for SpMV. For MKL SpMV imple-
mentation ‘mkl scoogemv’ routine is used.

Furthermore, Figure 6.18 and Figure 6.19 demonstrate the energy efficiency compar-

ison, in terms of energy per edge traversal, for our ASIC and FPGA implementations

against the CPU and many-core co-processor. It can be seen that our ASIC solu-

tions achieve multiple orders of magnitude improvement in efficiency against both

benchmarks. Our FPGA implementations also achieve multiple orders of magnitude

improvement for relatively larger graphs.
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Figure 6.15: Speedup of proposed ASIC and FPGA implementations over Intel MKL on
Xeon Phi 5110 co-processor for SpMV. For MKL SpMV implementation ‘mkl scoogemv’
routine is used.
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Figure 6.18: Comparison of energy per edge traversal for proposed ASIC against Intel
MKL on dual socket Xeon E5-2620 (12 threads) CPU and Xeon Phi 5110 co-processor
for SpMV. For MKL SpMV implementation ‘mkl scoogemv’ routine is used.
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Figure 6.19: Comparison of energy per edge traversal for proposed FPGA implementa-
tions against Intel MKL on dual socket Xeon E5-2620 (12 threads) CPU and Xeon
Phi 5110 co-processor for SpMV. For MKL SpMV implementation ‘mkl scoogemv’
routine is used.
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There is another fundamental sparse operation where a sparse matrix is multiplied

with itself or a second sparse matrix, which is termed as Sparse General Matrix-

Matrix multiplication (SpGEMM). This can also be construed as sparse matrix

multiplication with a set of sparse vectors, namely Sparse Matrix Sparse Vector
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multiplication (SpMSpV). SpGEMM is an important core kernel used by many graph

analytics applications such as betweenness centrality [19], all pairs shortest path [20]

and breadth-first search [21]. Furthermore, it is used in machine learning and high

performance computing applications such as peer pressure clustering [83], parsing

context-free languages [84], label propagation [85] and multigrid solvers [86].

Similar to SpMV, SpGEMM on COTS architectures has challenges due to low

FLOP to memory access ratio, irregular memory access and lack of spatial and temporal

locality. Moreover, when the working data set becomes large than the on-chip fast

memory, e.g. LLC, scratchpad, rapid increase in off-chip communication traffic takes

a significant toll on performance and energy efficiency.

In this chapter, we demonstrate that the same hardware that we have designed

for Two-Step SpMV can also be used for SpGEMM acceleration in a shared memory

scenario. Similar to SpMV, our SpGEMM implementation utilizes available on-chip

memory efficiently to be more scalable. Using the developed multi-way merge network,

we propose to conduct SpGEMM accumulation by streaming access that enables

better on-chip memory utilization and reduces off-chip traffic. Additionally, we will

demonstrate that our proposed accumulation enables a 2D partitioned data traversal

scheme that significantly reduces off-chip traffic for large problems.

7.1 Background and Challenges

SpGEMM can be defined as C = AB, where A and B are the input sparse matrices

and C is the output sparse matrix. Without any loss of generality, we consider

all the matrices to be square such that A,B,C ∈ RN×N . The number of nonzero

elements in matrix A is denoted by nnz(A). We define the number of columns with
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at least one nonzero in A as nzc(A). Further, the data volume of A is denoted as

vol(A) = nnz(A) × sizemat , where sizemat is the size of every nonzero element of the

matrix including meta-data.

In this work we will discuss the shared memory SpGEMM algorithm and implemen-

tation challenges from two perspectives. Firstly, SpGEMM causes difficulties regarding

the computation of C and access to A & B. Secondly, when the matrices become

large and partitioning is necessary, the off-traffic and traversal of the partitions pose

a separate set of challenges. For our discussions, we assume two levels of memory

hierarchy - fast & small on-chip memory (LLC, scratchpad etc.) and slow & big

off-chip memory (DRAM).

7.1.1 Computation related Challenges

Inner products based formulation of SpGEMM in Equation 7.1, which usually serves

as the definition of matrix multiplication, is probably the most straight-forward way

of SpGEMM computation. Figure 7.1 shows this row-by-column operation where

C(m,n) is computed as the dot product of sparse row vector A(m, :) and sparse column

vector B(:,n). It should be noted in this example that even though these sparse

vectors only intersect at the location k, the entire vector from both the matrices

have to be read. In worst case, there might as well be no intersection among these

vectors. Additionally, logic operations are required to check the existence of the

intersections. Hence, regardless of any presence of intersection or not, inner product

based computation cause unnecessary operations and redundant accesses to A and

B. Hence, this method requires Ω(N2) operations regardless of the sparsity of the
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Figure 7.1: SpGEMM computation using inner product (row-by-column).

matrices [87] and is rarely used.

C(m,n) =
∑

q

A(m,q) · B(q,n) (7.1)

One of the most commonly used SpGEMM algorithm is by Gustavson [88], which

is an outer product based method depicted in Figure 7.2. All the matrices are stored in

row-major format. Let A(m,n) be the element in mth row and nth column of A. A(m, :)

and A(:,n) denote entire mth row and nth column of A respectively. This algorithm

traverses A row-by-row. Rows corresponding to the nonzero elements in A(m, :) are

read and the nonzero elements of C(m, :) are computed. Hence the entire computation

of Gustavson’s algorithm can be given by Equation 7.2.

C(m, :) =
∑

q

A(m,q) · B(q, :) (7.2)

As each row of C can be computed independently, Gustavson’s algorithm is

conceptually highly parallel [89]. However, there exists a number of inherent challenges
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Figure 7.2: SpGEMM computation using Gustavson algorithm (row-by-row).

which are not only relevant to this algorithm, but also to any algorithm that is not

entirely inner product based. These challenges are given below.

1. The memory access to B depends on the nonzero elements of A. Hence, access to

B is indirect and random. This causes high latency accesses if B is not present

in the on-chip memory.

2. Any row of C, C(m, :) is the sum of various sparse vectors obtained from the

product of scaler A(m,q) with the nonzeros of B(q, :). Since these products are

in unknown pattern, accumulating the elements of C, i.e. A(m,q0)B(q0,n1) +

A(m,q1)B(q1,n1) in Figure 7.2, efficiently is difficult.

3. The number of nonzeros in C, nnzC, is unknown beforehand. Hence, memory

allocation of output matrix C is difficult. We need to either pre-calculate the

nnzC or allocate large enough on-chip storage for C. Both of these methods

incur overhead as the former requires extra computation and the later wastes

memory by over allocating.

143



7.1.2 Partition and Off-chip Traffic related Challenges

When the sparse matrices A, B and C grow significantly larger than the on-chip fast

memory, off-chip communication poses another set of challenges. Without partitioned

input matrices outer product based methods cause very high latency random access

to DRAM. On the other hand, complete inner product based computation as shown

in Equation 7.1 can guarantee streaming DRAM access given that A is stored in

row-major format and B is stored in column-major format. However, besides Ω(N2)

operations, full inner product based algorithm streams both input matrices N times,

which is prohibitively inefficient. Additionally, storing the input matrices in different

formats can be inefficient as A2 is often used in SpGEMM applications.

For large matrices, where the problem set is larger than fast on-chip storage, it

is generally beneficial to partition the matrices into blocks and conduct SpGEMM

on the individual blocks using outer product based methods such Equation 7.2. In

this work we consider 2D data decomposition of the matrices based on Shared and

Remote-memory based Universal Matrix Multiplication Algorithm (SRUMMA) [90],

which is depicted in Figure 7.3. The overall sequence of block matrix multiplication of

this algorithm is similar to Canon’s algorithm [91] in principle. However, SRUMMA is

developed for clusters and scalable shared memory systems. SRUMMA is popularly

used for shared memory implementations such as in [50].

Let Ny and Nz be the number of blocks of A in row-major and column-major

direction respectively, as shown in Figure 7.3. Similarly, Nz and Nx are the number of

blocks of B. Thus C is partitioned into Ny × Nx blocks. We denote Ai,j as the block in

ith row and j th column of the 2D partition. Generally, Ci,j is computed by block level

144



Carnegie Mellon

= x

C BA

i

j j 

i

Ny blocks 

Nx blocks 

Ny blocks 

Nz blocks Nx blocks 

Nz blocks 

bip

Figure 7.3: 2D partitioned SpGEMM formulation and Block-level Inner Product (BIP)
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inner product as shown below.

Ci,j =

Nz−1∑
k=0

C
temp,k
i,j =

Nz−1∑
k=0

Ai,k · Bk,j (7.3)

This means that all the blocks of A in row i and all the blocks of B in column j is

traversed sequentially to entirely compute Ci,j . Here, C
temp,k
i,j denotes the partial result

that is computed by the operation Ai,k · Bk,j . Being oblivious to the actual block level

computation Ai,k · Bk,j , we name the inner product based the block traversal scheme

formulated in Equation 7.3 as Block-level Inner Product (BIP). As described below,

there are two key factors that dictate the performance of BIP.

Accumulation

The continuous accumulation of intermediate output matrix Ci,j is particularly critical

as it is stored in sparse format and requires new element insertion & update. Most

solutions in the literature require random access for this accumulation and use special-

ized data structure or hardware to conduct this accumulation efficiently. One approach

of storing and updating the nonzeros of Ci,j is to use a hash table [92]. However, as
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found in [93], this technique has high overheads due to hash key computation and

handling collisions through chaining.

On the other hand, Sparse accumulator (SPA) [94] is popularly used for accumula-

tion. For example, authors of [93] has used blocked SPA to reduce cache miss rate for

partitioned Gustavson’s algorithm. SPA mainly comprises three components - a) a

dense array for storing the running sum, i.e. the real values for the active rows of Ci,j ,

b) a dense boolean vector to work as flags indicating the existence of nonzero element

and c) a sparse list to store the indices of the nonzero elements. It should be noted

that all these data structures have to be stored in the on-chip fast memory for the

ease of random access. We will later see that storage of Ci,j in the on-chip fast storage

may have an indirect but nontrivial effect on the overall performance for certain type

of graphs.

While SPA is popularly used for COTS architectures, custom architecture for

SpGEMM, as the ASIC in [50], has deployed special hardware for the accumulation of

Ci,j . For example, in [50] the authors have used Content Addressable Memory (CAM)

to store Ci,j on chip and the fast random access. CAM enables comparison of all the

indices in a single cycle and allows direct accumulation when intersection is detected.

However, insertion of new element in the sparse format storage cannot be handled

only by CAM and additional hardware is required. More importantly, CAM requires

several times more area and energy than regular SRAM. Hence, for a given silicon

area CAM renders the block dimension of the matrices to be lot smaller than what

is possible with regular SRAM based storage. We will next show that how block

dimension significantly affects off-chip traffic and overall performance.
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Block Dimension

Let DBIP be the total off-chip DRAM traffic for the entire computation of C using

BIP as stated in Equation 7.3 and depicted in Figure 7.3. The formulation of DBIP

can be given as in Equation 7.4.

DBIP =

Nx−1∑
j=0

Ny−1∑
i=0

Nz−1∑
k=0

(vol(Ai,k) + vol(Bk,j)) +

Nx−1∑
j=0

Ny−1∑
i=0

vol(Ci,j)

= Nx · vol(A) + Ny · vol(B) + vol(C) (7.4)

Overall, matrix A and B are read from DRAM Nx and Ny times respectively and

output matrix C is written to DRAM only once. If C is not significantly denser than

the inputs, majority of the off-chip traffic is contributed by multiple transfers of A and

B. Hence, number of horizontal blocks Ny in A and number of vertical blocks Nx in B

play important roles in determining the off-chip traffic. Ny and Nx directly depend on

the storage capacity of the on-chip memory. Among the input matrices, either Ai,k

or Bk,j requires random access and needs to be stored the on chip. Hence, with more

on-chip storage block dimensions of A and B are larger, which eventually reduces DBIP

by decreasing Ny and Nx. Hence, increasing the block size to maximum by efficient

usage of on-chip memory is imperative for SpGEMM performance and efficiency.

In most current SpGEMM implementations, e.g. [50,93,95,96], Ci,j is also stored in

the on-chip fast memory to randomly access intermediate results for accumulation, i.e.

update and new element insertion. This causes limited on-chip to be shared among A

(or B) and C that directly increases Ny and Nx. As we will see later, for large input

matrices (∼ millions of nodes) and/or when C is not significantly denser (∼ multiple

orders of magnitude) than the input matrices, storing Ci,j in on-chip memory adversely
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affects off-chip traffic. Additionally, as the data structure is complicated, e.g. SPA [93]

and CAM [50], and over-allocation is required due to unknown nnz(Ci,j), Ci,j consumes

significantly more on-chip storage than A or B for the same number of nonzeros. Hence,

Ny and Nx are further increased to incur additional off-chip traffic.

7.2 Proposed SpGEMM

From the above discussion it is apparent that efficient SpGEMM for large matrices is

hindered by both computation difficulties and off-chip traffic. In this work we propose

a shared memory SpGEMM hardware accelerator that addresses these issues. The

core hardware kernel is essentially the same as what we have developed for SpMV

acceleration, which is the scalable and high throughput multi-way merge network. The

key contributions of our proposed solution are the following.

1. Random access for Ci,j accumulation, i.e. update and insertion, is replaced by

streaming access. No complicated data structure or expensive CAM is required.

Simpler hardware leads to more scalability and higher energy-efficiency.

2. Entire on-chip memory can be dedicated to store the blocks of input matrix by

storing Ci,j in off-chip DRAM. Hence, off-chip traffic can be reduced by entire

utilization the on-chip memory only for input matrix block and decremented Ny

& Nx as a result. This is especially effective for large input matrices (∼ billions of

nodes) and/or nnz(C) is not significantly higher (∼ multiple orders of magnitude)

than nnz(A) or nnz(B).
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3. Off-chip traffic is further reduced by avoiding full block-level inner product based

traversal of SRUMMA and adopting a 2D block traversal scheme enabled by

streaming accumulation.

We will first discuss the proposed computation technique of input matrix blocks and

later demonstrate our proposed method for decreasing the off-chip traffic of partitioned

SpGEMM.

7.2.1 SpGEMM Computation with SSPA

In this work we use column-by-column SpGEMM computation of matrix blocks. This

is similar to Gustavson’s method shown in Figure 7.2, however, instead of row-by-

row we use column-by-column operation. We propose to use an accumulator, namely

Streaming Sparse Accumulator (SSPA), that doesn’t require any random access. A high

level depiction of the column-by-column SpGEMM using SSPA is given in Figure 7.4.

All the input matrices are stored in column major sparse format. For explanation

purpose, we consider the computation of input matrix blocks Ai,k and Bk,j using the

BIP 2D block traversal method depicted in Figure 7.3.

Block Bk,j is traversed sequentially in column-major direction. Row indices of

the nonzeros in a column of Bk,j , e.g. q0 and q1 of nth column, dictate intersecting

columns of Ai,k . However, for accumulation, instead of using SPA [93] or CAM [50] as

discussed before, we propose to use merge hardware that is already developed for SpMV

operation. This merge hardware is an integral part of SSPA. The intersecting columns

of Ai,k(:,q0) and Ai,k(:,q1) can be considered as sorted lists (according to ascending

row indices). The merge hardware produces a final output list that is sorted along the

row index of Ai,k . This output list is further passed through an adder that conducts
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Figure 7.4: Proposed SpGEMM computation method Streaming Sparse Accumulator
(SSPA).

reduction on the elements with same row indices. Eventually the adder delivers the

elements of column n of output matrix C
temp,k
i,j in a sequential order according to row

indices. Thus, our proposed SSPA comprises of these two fundamental hardware - a)

a multi-way merge network to sort the input columns and b) an adder to conduct

reduction.

In Figure 7.4, as Bk,j is sequentially traversed in column major direction, the

columns of C
temp,k
i,j are also sequentially generated, where each column is sorted along

the row indices. Hence, for the entire computation the output matrix block C
temp,k
i,j

can be updated simply by sequential appending, which is the key enabler of all the

advantages of SSPA. The entire set of operations in SSPA is described next using an

example problem given in Figure 7.5.
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Operational Details of SSPA

For ease of comprehension, let all the nonzeros of Bk,j to have a value of 1 as shown

in Figure 7.5a. Starting from the 0th column, all the columns of Bk,j is sequentially

read. For the 0th column Bk,j(:,0), there are nonzeros at row indices 0, 2 and 3. Hence

the intersecting columns of Ai,k , i.e. Ai,k(:,0), Ai,k(:,2) and Ai,k(:,3), are read. The

values of the nonzero elements of column Ai,k(:,q) are multiplied with the value of the

corresponding element Bk,j(q,0). Let valAB be the result of this multiplication between

the values valA and valB. We represent each result as a tuple (valAB, rowA, colB)

where rowA is the row index from Ai,k and colB is the column index form Bk,j . Thus,

nonzeros of the three columns of Ai,k intersecting with Bk,j(:,0) represent three list of

tuples, where each list is sorted along ascending rowA. These three lists are sequentially

assigned to the inputs of H-way merge network. Similarly, the corresponding lists due

to intersection with Bk,j(:,1), which is a single list with only one tuple(6, 1, 2), are

next sequentially assigned to the rest of the inputs of H-way merge network. Once the

last input of the merge network is reached, next assignment starts from the very first

input and later assignments are continued in the same manner for rest the columns of

Bk,j .

It should be noted that if the number of columns of block Ai,k that intersect with

any particular column q of Bk,j , which is denoted as nci(AB)qi,j,k , is greater than H

then bubbles will be introduced in the pipelines of the merge network. Generally,

nci(AB)qi,j,k is a small number as the matrix blocks are very sparse and H is quite large

(in the order of several hundreds). Hence the possibility of bubbles in the H-way merge

network is trivial.
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Figure 7.5: SpGEMM operational details of SSPA for an example problem.
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The internal logic of the adder and the sorter cell is elaborated in Figure 7.5b.

Two parallel comparisons take place for each sorting operation, where the comparison

of the column indices gets priority and the tuple with smaller column index passes

through first. If the column indices are equal then the tuple with smaller row index

passes through. On the other hand, the adder works on two consecutive tuples in

cycle (t − 1) and t. If either the column indices or the row indices of consecutive tuples

are not equal, then no reduction occurs. If both the column indices and row indices

match in consecutive tuples, then only the values of tuples are added. Thus the adder

delivers all the nonzeros (tuples) of the output matrix block sequentially sorted in

ascending column indices (col) and in ascending row indices (row) for any particular

column index. This format is also known as Column Major Coordinate (CM-COO)

format as depicted in Figure 7.7.

Accumulation of Ci,j Across Partitions

As the elements of temporary resultant matrix block C
temp,k
i,j = Ai,kBk,j is generated

sequentially, it is possible to stream out to on-chip storage or off-chip DRAM. Let’s

consider BIP 2D block traversal, as shown in Figure 7.3, along with SSPA computation.

As k increments, i.e. Ai,: and B:,j are traversed along Nz blocks, we can conduct the

entire accumulation for Ci,j using merge network of SSPA. This accumulation process

is elaborated in Figure 7.6. We denote the resultant matrix block accumulated up

to block k as Ck
i,j = C

temp,k
i,j + Ck−1

i,j . If the merge network has H inputs, i.e. H-way,

then we can use (H −Q) ways only for the computation of C
temp,k
i,j . The rest (Q − 1)

ways can be used for accumulating with previously computed blocks. As mentioned

before, all the previously computed matrix blocks, i.e. C
temp,0
i,j to C

temp,k−1
i,j , are stored

in CM-COO format and treated as a sorted list of tuples. It should be noted that only
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sequential access to the blocks C
temp,0
i,j to C

temp,k−1
i,j is needed and they can be read by

streaming access at peak DRAM bandwidth if stored off-chip. On the other hand,

C
temp,k
i,j is computed and sequentially. Thus, SSPA can conduct the entire accumulation

process using the H-way merge network, while guaranteeing full streaming access to

the output matrix C.

For the accumulation of Ck
i,j across all the previously computed blocks, there can

be two extremes in the design point. One extreme design point is when Q = 2. In this

case, every Ck
i,j is read back from DRAM to be accumulated with C

temp,k+1
i,j . If Ck

i,j is

stored on chip, this is preferable as it maximizes the block size. Other extreme design

point is when Q = H, which is feasible if C
temp,k
i,j is stored off-chip. In this case, while

being computed, C
temp,k
i,j is not accumulated with any previously stored temporary

results. After the computation of the very last temporary resultant block C
temp,Nz−1
i,j ,

all the blocks C
temp,k
i,j , where k = 0 to (Nz − 1), are streamed back from DRAM to be

merged finally to produce Ci,j . However, in this case the number of inputs of the

merge network, i.e. H, has to be at least Nz. Generally, Nz is far less than H. For

example, in our proposed ASIC H = 512 and Nz ≈ 200 for one billion node input
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graphs with average degree 50. In any case, we can always select a value of Q that can

be accommodated properly by any existing merge network.

It should be noted that if C
temp,k
i,j is stored in DRAM, Q = Nz, i.e. inter block

accumulation after C
temp,k
i,j is computed for all k, renders the off-chip traffic to be lowest.

This is because the entire inter block level accumulation of Ci,j can be conducted in

single transfer from DRAM rather than repetitive round trips for incremental streaming

accumulation. The total off-chip traffic for Q = Nz can be formulated as the following.

D(Ci,j, Q = Nz) = 2

Nz−1∑
k=0

vol(C temp,k
i,j ) + vol(Ci,j) (7.5)

Here, the traffic due to block computation, vol(C temp,k
i,j ), is multiplied by 2 because of

streaming out after computation and streaming in for accumulation. After the final

block level accumulation, vol(Ci,j) is streamed out to DRAM.

Storage Formats for Input and Output Matrices

For column-by-column SpGEMM operation using SSPA, as shown in Figure 7.4, we

require all the matrices to be in column major sparse format. Several column major

sparse formats are depicted in Figure 7.7. SSPA can similarly be used with Gustavson’s

row-by row SpGEMM operation in Figure 7.2, where all the matrices would have been

required to be stored in row major sparse format. Hence, the following discussion is

equally applicable row-by-row SpGEMM computation.

Due to accumulation using SSPA, in our proposed method matrix B and C require

only sequential access for both off-chip read/write and on-chip computation. On the

other hand, A requires random column access for on-chip computation and sequential

access for off-chip read/write. Therefore, Compressed Sarse Column (CSC) format,
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as depicted in Figure 7.7, is suitable for all the three matrices for both off-chip and

on-chip storage. CSC has a space complexity of O(N + nnz), where N is the dimension

and nnz is the number of nonzeros in the entire matrix. CSC also provides column-wise

random access for A. However, with 2D partitioning it is common to have matrix

blocks that are hypersparse. A matrix is considered hypersparse if nnz < N [70].

For hypersparse matrix block CSC becomes wasteful as the space complexity for the

column pointer JC array is always O(N) due to the repetitions for completely empty

columns. Since the space complexity of CM-COO is O(nnz), it is preferable format

for both off-chip and on-chip storage of the hypersparse blocks of B and C. CM-COO

is also suitable for off-chip storage of the blocks of A. However, CM-COO doesn’t

provide random column access capability and, therefore, it cannot be used for on-chip

storage of hypersparse block of A.

In [70], the authors have proposed a new sparse matrix storage format, namely

Doubly Compressed Sarse Column (DCSC), which provides random column access

capability and has space complexity of O(nnz). Therefore for on-chip storage of block

Ai,k we use DCSC format. As depicted in Figure 7.7, DCSC replaces the column

pointer array of CSC with 3 vectors. The JC array is devoid of repetitions in DCSC
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We assume Q = 2 for this elaboration.

and is chopped into chunks. The AUX array enables constant time access to the first

non-empty column within a chunk. Detailed description of DCSC is available in [70].

Figure 7.8 elaborates the SpGEMM computation using DCSC format for Ai,k .

A prefetch buffer for Bk,j amortizes the full cost DRAM page opening while being

sequentially accessed. Read data from Bk,j initiates random access to Ai,k that can be
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efficiently conducted using DCSC data structure. The five arrays of DCSC are stored

in separate memory blocks. A scheduler assigns the tuples corresponding to intersected

columns of Ai,k at the input of the merge network of SSPA. For this elaboration we

assume Q = 2. Hence, for every k C
temp,k
i,j is accumulated with Ck−1

i,j to produce Ck
i,j ,

which is streamed out in CM-COO format. We store all the hypersparse matrix blocks

of A, B and C in CM-COO format in DRAM as it is often advantageous to store all

matrices in same format for operations like A2, A3, etc. When block Ai,k , which is

stored in off-chip DRAM in CM-COO format, is streamed to the computation core, it

is converted to DCSC format on the fly and stored in the on-chip memory.

Parallel SpGEMM using SSPA

To achieve higher performance, it is possible to parallelize the computation of the matrix

blocks. For this purpose, the input matrix block Ai,k and output matrix block C
temp,k
i,j is

further partitioned into p horizontal sub-blocks as depicted in Figure 7.9. Matrix block
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Bk,j doesn’t require any sub-blocking. As the columns of Bk,j are sequentially traversed,

the intersecting columns of all p sub-blocks of Ai,k are fetched. These columns from p

sub-blocks can be independently processed using p independent H-way merge cores.

In previous chapters, we have seen that our ASIC accelerator has sixty four 512-way

HCLAM merge networks. Hence, p = 64 and H = 512 for SpGEMM acceleration with

this ASIC accelerator. After the computation of last temporary resultant sub-blocks

of Ci,j , i.e. sub-C
temp,Nz

i,j, 0→(p−1), a p-way merging process can accumulate the sub-blocks to

construct final Ci,j . As p is generally much smaller than H, this final merging process

can be done easily with existing hardware.

One important issue in this parallel SpGEMM is that the computation load of

the parallel merge networks is determined by the sequential reading speed of Bk,j

and total number of intersecting columns in Ai,k for entire Bk,j , which is denoted as

nci(AB)i,j,k . The number of intersecting columns nci(AB)i,j,k depends on sparsity of

the data. If nci(AB)i,j,k is low due to high sparsity, it might often be the case that the

entire computation speed is bottlenecked by the sequential read speed of Bk,j and not

by the aggregated throughput of the parallel merge networks. One way to overcome

this is to read multiple elements from Bk,j and parallelly check for intersecting columns

in all the sub-blocks of Ai,k . Since the sub-blocks of Ai,k is stored in DCSC format,

as shown in Figure 7.8, additional hardware to check multiple intersecting columns

simultaneously can be demanding. A simpler way is to have dense boolean vector of

N A = N/Nz bits. This vector only stores information of empty columns of Ai,k . After

reading multiple elements from Bk,j , the row indices (rowB) are matched against the

boolean bits to first check whether the intersecting columns actually exist, i.e. not

empty. If any column is found to be empty, it is not considered by the read logic for

sub-blocks of Ai,k . Checking multiple bits of the boolean vector simultaneously is lot
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less resource consuming than the multiple access to the p sub-blocks stored in DCSC

format. Hence, sequential reading speed of Bk,j can be substantially improved by the

use of this dense array.

Advantages of SSPA

It is apparent that, while using SSPA, if matrix block Ci,j is not stored in the on-

chip memory then there will be additional off-chip traffic for SpGEMM accumulation.

Hence it is counterintuitive to store Ci,j in off-chip DRAM. However, as formulated in

Equation 7.3 for BIP block traversal, number of blocks in 2D partitioned matrices also

significantly affect the off-chip traffic. The higher the number of blocks, the more is the

off-chip traffic and matrix block dimension is inversely related to the number of blocks.

For any given system we have a limited amount of on-chip memory and it is important

to efficiently utilize it to fit largest possible matrix blocks. As mentioned before, if

Ci,j is stored in on-chip memory for random access, then Ai,k has to share the fast

storage with it. On the other hand, SSPA enables us to store Ci,j in off-chip DRAM

by eliminating random accesses and allows Ai,k to be significantly larger as it can

consume the entire on-chip fast storage. Thus, storing Ci,j in DRAM can reduce the

overall off-chip traffic with larger block size despite the additional traffic for streaming

accumulation. From now on, whenever SSPA is referred it is implied that Ci,j is stored

in off-chip memory and entire block level accumulation is conducted after C
temp,k
i,j is

computed for all k, i.e. Q = Nz, unless otherwise stated.

For simplicity, let the number of blocks in row and column direction be equal and

denoted as Ny = Nx = Nz = Nblk . We name any accumulator that stores Ci,j in the

on-chip memory as Random Access Accumulator (RAA). Let Nblk for RAA and SSPA

be NRAA
blk and NSSPA

blk respectively. Then the total off-chip traffic for these methods
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using BIP block traversal can be formulated as the followings.

DRAA
BIP = NRAA

blk · vol(A) + NRAA
blk · vol(B) + vol(C) (7.6)

DSSPA
BIP = NSSPA

blk · vol(A) + NSSPA
blk · vol(B) +

NSSPA
blk

−1∑
j=0

NSSPA
blk

−1∑
i=0

vol(Ci,j)

+ 2

NSSPA
blk

−1∑
j=0

NSSPA
blk

−1∑
i=0

NSSPA
blk

−1∑
k=0

vol(C temp,k
i,j )

= NSSPA
blk · vol(A) + NSSPA

blk · vol(B) + vol(C)

+ 2

NSSPA
blk

−1∑
j=0

NSSPA
blk

−1∑
i=0

NSSPA
blk

−1∑
k=0

vol(C temp,k
i,j ) (7.7)

Equation 7.6 is identical to the formulation given in Equation 7.4. On the other hand,

in Equation 7.7 the off-chip traffic related to C is replaced by the formula given in

Equation 7.5. The last term in Equation 7.7 is evidently the additional traffic related

to off-chip streaming accumulation with SSPA. However, for any given size of on-chip

memory NSSPA
blk is smaller than NRAA

blk and, thus, can render DSSPA
BIP to be less than

DRAA
BIP . When input matrices become larger in data volume, the difference between

NRAA
blk and NSSPA

blk increases. Additionally, when C becomes sparser the traffic overhead

of SSPA, i.e. the last term in Equation 7.7, becomes smaller. Hence, in these two

scenarios off-chip streaming accumulation can effectively reduce DRAM traffic for

SpGEMM.

7.2.2 Block Traversal using BPOP

In this work, for SpGEMM in shared memory scenario we have only considered BIP

block traversal so far for 2D partitioned data that is based on SRUMMA [90] algorithm.
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BIP block traversal is useful for accumulation using random access because only one

output matrix block is accumulated uninterruptedly and is streamed out to DRAM

once after final accumulation. That means, Ci,j remains in the on-chip fast memory for

the entire accumulation period without being transferred. This maximizes the matrix

block size for RAA. On the other hand, for SSPA the temporary resultant blocks of

Ci,j , i.e. C(i,j temp, k), are streamed out to DRAM anyway. Hence, for SSPA it is not

mandatory to accumulate Ci,j uninterruptedly. Leveraging is opportunity, we propose

Block-level Partial Outer Product (BPOP) traversal scheme, which further reduces

the off-chip traffic for 2D partitioned SpGEMM. BPOP is elaborated in Figure 7.10.

A pseudocode of SSPA using BPOP also given in Pseudocode 3.

The main idea of BPOP is that once Ai,k is transferred to on-chip storage, all the

required computations related to it can be conducted and results can be stored in

DRAM. For the given example in Figure 7.10, for each k, all the temporary resultant

blocks of C, i.e. C
temp,k
i,j=0:3, can be computed using SSPA by sequentially streaming in

Bk,j for all j. All temporary resultant blocks C
temp,k
i,j=0:3 are streamed out to DRAM.

After k reaches (Nz − 1), all temporary resultant blocks C
temp,k=0:3
i,j for any particular

j are streamed back from DRAM and finally merged using SSPA to construct Ci,j .

This process is continued for all values of j and i to construct all the blocks of C.

Pseudocode 3 elaborates this process.

Advantage of BPOP

The main benefit of BPOP is that matrix A is transferred from DRAM only once

instead of Nx = NSSPA
blk times as formulated in Equation 7.7 for BIP. It should be

noted that BPOP is practically feasible only when the accumulation is conducted using

sequential access such as SSPA. Furthermore, BPOP does not cause any increase in

162



Carnegie Mellon

C (Ny x Nx blocks)

Bpop Q = N_z

= x
iCi, j = 0 : 3

temp, k = 0 i

k = 0

A (Ny x Nz blocks) B (Nz x Nx blocks)

= x
i i

k = 1

Ci, j = 0 : 3
temp, k = 1

= x
iCi, j = 0 : 3 

temp, k = 3

Incrementing k

C (Ny x Nx blocks)

k = 3 = Nz - 1

i

A (Ny x Nz blocks) B (Nz x Nx blocks)

Bk = 0, j = 0 : 3

Bk = 1, j = 0 : 3

Bk = 3, j = 0 : 3

Figure 7.10: 2D partitioned SpGEMM block traversal using Block-level Partial Outer
Product (BPOP). We assumed Q = Nz for inter block accumulation.

traffic related to B or C as the overall number of operations for accumulation remains

the same as BIP. Hence we can modify the total off-chip traffic formulation of SSPA
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Pseudocode 3: Pseudocode for columnbycolumn algorithm using SSPA and
BPOP. We assumed Q = Nz for inter block accumulation.

1 for i = 0 to Ny − 1 do
2 for k = 0 to Nz − 1 do
3 Stream matrix block Ai,k from DRAM
4 for j = 0 to Nx − 1 do
5 Stream matrix block Bk,j from DRAM
6 for all non-empty columns Bk,j(:,n) do
7 for each nonzero in Bk,j(q,n) in Bk,j(:,n) do
8 Random access column Ai,k(:,q)
9 C

temp,k
i,j (:,n) += Ai,k(:,q) · Bk,j(q,n) [intra-block SSPA]

10 end

11 end

12 Stream out C
temp,k
i,j to main memory

13 end

14 end
15 for j = 0 to Nx − 1 do
16 for k = 0 to Nz − 1 do

17 Ci,j += C
temp,k
i,j [inter-block SSPA]

18 end

19 end

20 end

(Q = Nz) in Equation 7.7 to the following when using BPOP 2D traversal scheme.

DSSPA
BPOP = vol(A) + NSSPA

blk · vol(B) + vol(C)

+ 2

NSSPA
blk

−1∑
j=0

NSSPA
blk

−1∑
i=0

NSSPA
blk

−1∑
k=0

vol(C temp,k
i,j ) (7.8)

7.3 Evaluation and Results

To test the effectiveness of our proposed methods and developed accelerator we have

conducted off-chip traffic reduction analysis on a number of real world graphs, except
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the ones named with prefix ‘Syn’, listed in Table 7.1 that are collected from the

sparse matrix collection of [82]. The last two graphs listed in Table 7.1 have uniformly

distributed random nonzeros that are synthetically generated following Erdos Rényi

model [74]. We have further conducted experiments to measure the performance and

energy efficiency of our developed 16nm FinFET ASIC accelerator using the same

specs detailed in Chapter 4. For all experiments, the available on-chip storage for the

block of input matrix A is 8MB. For SSPA, Ci,j is stored in off-chip DRAM and entire

block level accumulation is done after all temporary resultant blocks are computed, i.e.

Q = Nz.

Table 7.1: Graph data sets used for SpGEMM analysis.

Description # Nodes (M) Avg. Degree # Edges (M) nnz(C) (M)

cs4 0.02 3.90 0.09 0.05
wing nodal 0.01 13.80 0.15 0.20
delaunay n18 0.26 6.00 1.57 1.32
coAuthorsCiteseer 0.23 7.16 1.63 2.84
coAuthorsDBLP 0.30 6.54 1.96 4.67
belgium osm 1.44 2.15 3.10 1.47
delaunay n20 1.05 6.00 6.29 5.28
NLR 4.16 5.99 24.98 19.89
rgg n 2 20 s0 1.05 13.14 13.78 17.12
AS365 3.80 5.98 22.74 17.97
venturiLevel3 4.03 4.00 16.11 10.67
road central 14.08 2.41 33.87 87.80
webbase-1M 1.00 3.00 3.00 51.11
delaunay n24 16.78 6.00 100.60 347.32
wb-edu 9.84 5.80 57.07 630.08
cage15 5.16 19.24 99.20 929.02
Syn 50 7.2 50.00 7.20 360.00 2109.00
Syn 100 16 100.00 16.00 1600.00 3416.00
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7.3.1 Off-chip Traffic Reduction

The total off-chip traffic for SpGEMM computation of A2 on the graphs in Table 7.1

using 8MB on-chip memory is show in Figure 7.11. DSSPA
BPOP and DSSPA

BIP represent

off-chip traffic for SSPA using BIP and BPOP 2D block traversal respectively. Both

of these are normalized against the off-chip traffic that would be incurred if we have

stored Ci,j in on-chip memory during accumulation, e.g. using RAA, along with BIP

traversal. Hence, any value lower than 1 indicates traffic reduction and vice versa.

From Table 7.1 we can see that DSSPA
BIP incurs less traffic for most of the graphs.

This is completely attributed to the reduction in number of blocks in 2D partitioned

data due to off-chip storage of Ci,j in SSPA. The number of blocks in one reduction, i.e.

either row-wise or column-wise assuming square blocks, for RAA (NRAA
blk ) and SSPA
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(NSSPA
blk ) are shown in Figure 7.12. For the first two graphs, there are no reduction in

traffic as A entirely fits on chip. For few graphs, DSSPA
BIP in fact increases the off-chip

traffic. This is because the additional overhead of off-chip streaming accumulation is

not compensated by the smaller (NSSPA
blk ). On the other hand, SSPA along with BPOP

significantly reduces off-traffic for all the graphs where entire A doesn’t fit on chip.

The additional reduction of DSSPA
BPOP is attributed to the fact that A is transfered from

DRAM only once instead of NRAA
blk or NSSPA

blk times as in the case for BIP.

7.3.2 Performance and Energy Efficiency

To demonstrate the performance and energy efficiency of our proposed SpGEMM

accelerator, we have used several benchmarks including COTS architectures with

commercial sparse libraries and 3D stacked ASIC architecture. We used Intel MKL

SpGEMM routine on Xeon E5-2430 (32nm, 15MB cache) with 12 threads. Another
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against COTS and ASIC benchmarks.

COTS benchmark used is CUDA Sparse (cuSPARSE) SpGEMM routine on Nvidia

GPU GTX 650 (384 cores). As the custom hardware benchmark we have used the

CAM and 3D stacked memory based ASIC (32nm, 668GB/s off-chip bandwidth) in [50].

For one version of COTS MKL implementation and ASIC benchmark, the row indices

in any given column of the output matrix are unsorted. As the performance and energy

efficiency metric we have used giga floating point operations per second (GFLOPS)

and giga floating point operations per second per watt (GFLOPS/W) respectively.

Figure 7.13 and Figure 7.14 report the experimental results. We have reported results

only for the graphs that we were able to run on or results are available for at least one

of the benchmarks.

We can see that our proposed accelerator deliver orders of magnitude better

performance and efficiency than the COTS benchmarks. Even though our accelerator

uses HBM and smaller technology node, the CPU has twice on-chip storage and the

GPU has much higher number of parallel cores. The CAM ASIC benchmark has more
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Figure 7.14: Energy efficiency comparison of proposed SSPA based SpGEMM using
BPOP against COTS and ASIC benchmarks.

off-chip bandwidth (668GB/s) than our accelerator. However, our proposed solution

performs better mainly due to reduced off-chip traffic and larger block size.
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Chapter 8

Future Directions and Conclusion

8.1 Future Directions

Distributed Memory System. In this work we have only discussed shared memory

architecture for Two-Step SpMV. To address larger graphs, extension of Two-Step

algorithm for distributed memory systems can be explored. A potential distributed

scheme is depicted in Figure 8.1. The matrix and vectors are distributed al shown

in Figure 8.1a. Matrix is two dimensionally partitioned in p2 partitions, where p is

the number of nodes. The source vector is partitioned into p blocks. The matrix

partitions are column blocked within each node as described for shared memory

scenario. Source vector partition assigned to each node is also segmented into multiple

segments according to the on-chip storage limits of each node. Each node possesses

multiple column blocks and corresponding source vector segments during 1st step of

Two-Step algorithm. Every node computes the partial SpMV on local data in the

1st step. The intermediate sparse vectors generated at the completion of 1st step are

transmitted to another node following the scheme depicted in Figure 8.1b. To make

170



Carnegie Mellon

Distributed Memory Scenario

28

0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3

0

1

2

3

A x

0

1

2

3

0

1

2

3

yIntermediate vectors

Step 1 Step 2
column
blocks 

vector
segments 

0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3 0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3 0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3 0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3

Communicating
nodes: None

Communicating
nodes: 0       1, 2       3

Communicating
nodes: 0       2, 1       3

Communicating
nodes: 0       3, 1       2

Matrix block traversal direction for each node

Inter-Node Traffic
GraphPad: N(p - 1) – grows with # of nodes              
Proposed: Nh [worst case] – independent of # of nodes

p – number of nodes
h – average degree
N – matrix dimension

(a) Data ownership among distributed nodes.

Carnegie Mellon

Distributed Memory Scenario

28

0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3

0

1

2

3

A x

0

1

2

3

0

1

2

3

yIntermediate vectors

Step 1 Step 2
column
blocks 

vector
segments 

0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3 0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3 0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3 0

0

0

0 1

1

1

1 2

2

2

2 3

3

3

3

Communicating
nodes: None

Communicating
nodes: 0       1, 2       3

Communicating
nodes: 0       2, 1       3

Communicating
nodes: 0       3, 1       2

Matrix block traversal direction for each node

Inter-Node Traffic
GraphPad: N(p - 1) – grows with # of nodes              
Proposed: Nh [worst case] – independent of # of nodes

p – number of nodes
h – average degree
N – matrix dimension

(b) Inter node communication scheme during 1st step of Two-Step algorithm. Grey box
indicates the block on which the corresponding node is conducting 1st step of Step2 spmv.

Figure 8.1: Implementation of Two-Step algorithm in distributed memory scenario.

the inter-node communication effective, intermediate sparse vectors are segmented and

the same segments from all the intermediate vectors are merged in one node. At any

given moment, each node only communicates with one another node and utilizes the

inter-node link bandwidth entirely. To ensure balanced time sharing of the inter-node

links, we horizontally partition the column blocks and deploy a scheme of sequence to

operate on the column block partitions.

Specialized Sparse Operation Combination. There are graph analytic appli-

cations which can often benefited by special combination sparse matrix operations.
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For example, Triangle Counting is an application for understanding graph structure,

which can be mathematically computed using SpGEMM. However, efficient algorithm

for Triangle Counting boils down to a integrated vector-matrix-vector [97] operation

followed by accumulation, where all the vectors and matrix are sparse. This vector-

matrix-vector multiplication is essentially set of parallel 2-way merge operations that

can efficiently implemented by the multi-way merge network developed in this work.

Therefore, important specialized combination of fundamental kernels can be explored

as a future extension of this research. Furthermore, as multi-way merge merge is an

fundamental primitive for numerous operations, future research should consider the

impact of this accelerator in other fields than graph analytics.

Heterogeneous Architecture. Heterogeneous architectures, such as shared memory

CPU-FPGA, provide a new dimension in accelerating data intensive operations as

it can deliver flexibility and usability of general purpose architecture along with the

capability of custom hardware. This kind of architecture actually poses an interesting

platform for our proposed Two-Step algorithm. It is because, only the multi-way

merge operation in second step requires custom hardware for efficient implementation.

On the other hand, partial SpMV operation in the first step can be implemented

on general purpose architecture relatively more efficiently. Hence, on a CPU-FPGA

heterogeneous system, technically we should be able to run step 1 on CPU and step 2

on FPGA. Exploration in this field deserves attention because such implementation

can potentially save silicon real estate on custom hardware, which can be put to better

use for accelerating multi-way merge operation for larger problems.

New Memory Technology. As fast random access memory is the most crucial

resource for sparse matrix operations, advancements in memory technologies will

directly impact acceleration methodologies. There are a number of emerging fast
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random access memory technologies, such as magnetoresistive RAM (MRAM), spin

transfer torque RAM (STT-RAM), resistive RAM (ReRAM) and phase change memory

(PCM), that present wide range of possibilities in improving sparse matrix kernel

scalability, performance and efficiency. These technologies possess characteristics that

can be exploited to our advantage. For example, MRAM is a non-volatile memory

technology that has higher density and lower leakage power than SRAM. However,

MRAM requires higher dynamic power for writing than to read, which is also higher

than what it is for SRAM write. Additionally, MRAM read speed is higher than its

write speed. Hence, MRAM has more efficient read access than write access of itself

and read access of SRAM [98]. Therefore, combination of MRAM-SRAM memory

technologies can be explored where read and write accesses are prioritized to MRAM

and SRAM respectively. Thus, these new memory technologies open a vast new

research space for sparse matrix acceleration.

8.2 Concluding Remarks

Research on architectural and circuit level opportunities in accelerating sparse matrix

algebra hasn’t received much deserved attention. While software frameworks and

libraries take the burden of writing efficient graph analytic code away from wide

range of users, incoherence between traditional memory hierarchy based compute

engine, where locality is highly expected, and sparsity severely limits performance and

energy efficiency. This work makes an effort to overcome this barrier by developing a

data sparsity aware custom architecture. This is considered as algorithm/hardware

co-optimized approach as algorithm is developed keeping technological limits in mind

and later implemented using finely tuned custom hardware.
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This co-optimization process is guided by a key observation. Since CMOS has

abundant compute capability relative to off-chip bandwidth and DRAM technology

provides significantly better bandwidth characteristics than latency, for data intensive

applications we should trade bandwidth for latency elimination to extract maximum

possible system capabilities. To trade bandwidth for latency elimination, all off-

chip random accesses should be converted to sequential access. As long as the

overhead of this conversion doesn’t surpass the cost of latency bound operation, this

approach is should potentially provide better performance and efficiency. In this work

we have demonstrated a practical way of implementing this conversion mechanism

through algorithm/hardware co-optimization. We have shown that off-chip traffic

aware streaming algorithms for sparse linear algebra are required at software level. As

general purpose architecture are not efficiently capable of implementing these kind of

algorithms due to data locality dependence, we have resorted to custom hardware and

circuit level implementation techniques.

One of the main contributions of this work is to identify and develop an custom

architecture that can implement off-chip traffic aware streaming algorithms for fun-

damentally important sparse kernels without diminishing the benefits of random to

sequential access conversion. The core hardware primitive for this architecture is a

scalable and high performance multi-way merge network. This work devises novel ways

such as HCLAM and PRaP that facilitates scalability and fine grained parallelism. We

have demonstrated how SpMV, PageRank (iterative SpMV) and SpGEMM operations

can be considerably benefited by this common architecture. As these operations are

work horses for a wide array of graph analytic applications, our proposed hardware

promises broad impact. Moreover, as multi-way merge is a fundamental primitive

174



for numerous mathematical operations, the proposed methodologies in this work can

potentially be useful beyond graph analytics.

In this work, we have demonstrated off-chip traffic aware algorithms, such as Two-

Step SpMV, SpGEMM by streaming accumulation and BPOP, that significantly reduce

main memory data accesses for large problems. Furthermore, we have implemented

traffic and throughput optimization techniques such as VLDI meta-data compression

and iteration overlap. A Bloom Filter filter based technique has been proposed to

efficiently resolve collisions for HDNs in power-law graphs. Additional hardware

techniques for efficient accumulation and multi-channel DRAM data distribution have

also been demonstrated.

Another important goal of this work is to handle large problems (∼ billion nodes)

in shared memory architecture as modern DRAM main memory sub-system is capable

of providing the storage for required working data set. We have found that custom

architecture solutions in current literature is severely constrained by on-chip fast

memory storage. Hence, in this work we have emphasized in reducing dependency on

fast memory for scaling both problem size and computation throughput. For example,

Two-Step SpMV is implemented using PRaP and 1D partitioned matrix instead 2D to

eliminate prefetch buffer storage increment during scaling. We also have elaborated a

trade-off technique between compute resource and on-chip fast memory. Therefore, this

architecture has demonstrated large problem handling capability using significantly

less on-chip memory, which is unprecedented in current literature.

Our proposed architecture for sparse matrix algebra acceleration makes a research

effort in exploring the architectural and lower level circuit domain. We envision the

overall solution to contribute in a ecosystem provided by GraphBLAS-like standards,

where versatile user base can have easy access to efficient graph analytic capability
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through a well defined set mathematical operations. We expect that promising results

demonstrated in work will evoke research efforts in this arena to further the impact by

integrating unexplored and emerging technologies.
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