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Abstract

Clustering, the problem of grouping similar data, has been extensively
studied since at least the 1950’s. As machine learning becomes more
prominent, clustering has evolved from primarily a data analysis tool
into an integrated component of complex robotic and machine learning
systems, including those involving dimensionality reduction, anomaly
detection, network analysis, image segmentation and classifying groups of
data.

With this integration into multi-stage systems comes a need to better
understand interactions between pipeline components. Changing parame-
ters of the clustering algorithm will impact downstream components and,
quite unfortunately, it is usually not possible to simply backpropagate
through the entire system. Instead, it is common practice to take the
output of the clustering algorithm as ground truth at the next module of
the pipeline. We show this false assumption causes subtle and dangerous
behavior for even the simplest systems – empirically biasing results by
upwards of 25%.

We address this gap by developing scalable estimators and methods to both
quantify and compensate the impact of clustering errors on downstream
learners. Our work is agnostic to the choice of other components of the
machine learning systems, and requires few assumptions on the clustering
algorithm. Theoretical and empirical results demonstrate our methods
and estimators are superior to the current naive approaches, which do not
account for clustering errors.

We also develop several new clustering algorithms and prove theoretical
bounds for existing algorithms, to be used as inputs to our error-correction
methods. Not surprisingly, we find that learning on clusters of data is
both theoretically and empirically easier as the number of clustering
errors decreases. Thus, our work is two-fold. We attempt to provide the
best clustering possible as well as establish how to effectively learn on
inevitably noisy clusters.
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Chapter 1

Introduction

Broadly speaking, clustering is the problem of grouping similar data, for some notion

of similarity. Unlike supervised classification or regression problems, where the

objective is well defined (e.g. minimizing mean-squared-error or classification error),

clustering objectives are often less clear. The vast number of clustering objective

functions and algorithms is testament to the number of goals one may have when

clustering. Usually, clustering is framed as an unsupervised learning problem, though

we also explore cases where semi-supervised information is available.

Clustering plays a role in many applications and machine learning systems,

including but not limited to:

Anomaly detection: Clusters of similar data are “normal”, whereas outliers are

dissimilar to other data and do not clearly belong to any cluster. Removing

anomalies is useful in reducing classification or regression error.

Dimensionality reduction: For example, a simple approach would be to cluster

high-dimensional data into k clusters, and compute new k-dimensional features

based on the distance to each cluster center. The lower-dimensional featurization

could improve downstream classification or regression performance, in terms of

error or computational speed.

Network analysis: Social networks exhibit well-known community structures. Clus-

tering is often used to discover these groups, which can then be used to better

target advertisements, trace the spread of information and infer population
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1. Introduction

statistics.

Medical: Patient records across multiple hospitals and databases are matched and

merged together to some a single, holistic view of each patient’s medical history

for better predicting patient diagnostics and care.

Online shopping: eBay, Google Shopping, and other online shopping websites wish

to match all unique products, so that comparing prices of the same product

from different sellers is straightforward. Here, we usually wish to know who is

the cheapest seller of a particular product.

Counter-human-trafficking: Our original motivation for studying clustering orig-

inated from the counter-human-trafficking domain. Here, we have billions of

advertisements for escorts scraped from websites such as Craigslist or Back-

page.com and wish to cluster ads according to the person they describe. Much

like the medical domain, forming a holistic view of each escort’s behavior (e.g.

posting frequency, travel pattern, acquaintances) to improve prostitution esti-

mates and ultimately better classify potential human trafficking victims (defined

as those who are underage or being coerced into such activities).

Image segmentation: Grouping image pixels or LIDAR points according to the

object it belongs to is a critical step in self-driving car perception and other

computer vision systems, where this is usually a precursor to then localizing,

tracking and classifying each object.

With the exception of exploratory data analysis, the output of clustering is rarely

useful in its own right, and is instead usually used as a component of a larger machine

learning or data mining system. In each of the applications above, we have identified

exactly how the clustering output could be used.

1.1 Thesis Problem

The key problem in using clustering as a component of machine learning systems,

and the primary focus of this thesis, is that clustering outputs are essentially never

perfect and these errors can have unintended consequences for the larger system.

Consider the medical domain problem of first (a) clustering patient records across

hospitals and medical databases such that each cluster corresponds to a set of records

2



1. Introduction

of an individual patient and then (b) predicting whether each patient (i.e. a single

cluster of records) has cancer. For now, let’s näıvely assume we are able to infer a

perfect clustering in part (a). In part (b), the proper approach to cross-validating a

lung cancer classifier is to train on one set of clusters (e.g. patients) and then validate

of a different, disjoint set of clusters. Thus, the error measured on the validation

set is an unbiased estimate of the classifier error on new, previously unseen patients,

or in other words the out-of-cluster loss. Training and validating on different sets

of patients prevents the learner from overfitting to patient-specific features such as

social security number, name and date-of-birth, which are not useful for prediction

on new patients. Better predictors generalize across patients, e.g. unexplained weight

loss, fatigue, and tumor image features.

The problem here is we are essentially never able to infer a perfect clustering in

part (a). Instead, we are only able to find an approximation through some clustering

or record linkage algorithm. Until now, the approach has been to proceed as if the

clustering was perfect, even if it is not. There are subtle, and potentially significant,

consequences of this false assumption.

Mistakes in the clustering algorithm are equivalent to samples flipping between the

train and test sets. Instead of training and testing of a disjoint set of patients, we are

now training and validating on records from some of the same patients – a major faux

pas in machine learning. Our observed validation set error will now be optimistically

biased by the learner overfitting to the patient-specific features previously mentioned,

or worse yet, to less blatant overfitting such as an image classifier learning the shapes

of each patient’s bone structure to predict whether they have lung cancer. Clearly,

this is not useful for new patients. We term this phenomenon dependency leakage

and show that even at small clustering errors, it can cause significant bias in cross-

validation results. This thesis addresses these challenging issues, summarized in the

following problem:

Thesis Problem: Clustering algorithms are inevitably imperfect, and ex-

isting machine learning systems are unable to account for these errors.

Outside of the medical domain, we are familiar with similar problems in the census

and counter-human-trafficking communities. At the US Census Bureau, matching

persons across censuses is a challenging, imperfect process and the impact of using

3



1. Introduction

a noisy clustering for demographic, socioeconomic, and other statistical analysis is

unclear. Similarly, imperfect clustering results are used to estimate death counts

in Syria and to both estimate and predict human trafficking in the United States.

A major concern in these domains is that dependency leakage can bias a learner

against certain sub-populations (i.e. clusters). Later, we empirically demonstrate

how dependency leakage causes bias against certain demographics in US Census data.

This is increasingly relevant as data science plays a greater role in credit and policy

decisions.

1.2 Summary of Thesis Approach

To that end, this thesis will address the issue of clustering errors in machine learning

systems by (Part I) bounding and improving clustering performance on complex

datasets involving categorical, string and numerical data and (Part II) learning on

imperfect clusterings. Part I is a classically studied problem in machine learning, and

many of our results extend previous work to new settings or provide better theoretical

bounds. Part II, on the other hand, is a previously unaddressed problem within

the domain of learning on noisy data, and most of the work here is relatively novel,

including many of the mathematical tools.

1.2.1 Technical Formulation

Part I Given a set of nx samples X = x1, . . . , xnx , the goal of clustering is to find

a cluster partition function ĉ : {1, . . . , nx} → {1, . . . , k} which maps each sample to

one of k clusters. For example, each sample xi may correspond to a hospital visit

record and each of the k clusters corresponds to a patient. Samples are not necessarily

limited to the numerical domain, they may also include categorical (e.g. blood type)

and string data (e.g. name, city). As previously mentioned, the exact mathematical

objective which measures the quality of ĉ is somewhat subjective – it depends on

our model and measure of similarity. However, we do assume that a true partition

function c does exist, though it is likely unknown. In this thesis, we only consider

hard partition functions, i.e. each sample belongs to exactly one cluster.

We consider several approaches, including correlation clustering, stochastic block

4



1. Introduction

models and Bayesian models. We leave the formulations of each these methods for

their respective chapters, as they are too complex to fully describe here, but emphasize

that in each case they provide a clustering approximation ĉ.

Part II In the second part, we wish to utilize the clustering approximation ĉ from

Part I to perform some useful task, such as predicting whether the hospital patient

has heart disease. To illustrate, consider samples generated according to the simple

k-mixture model

φj
iid∼ H(γ) for j = 1, . . . , k

ci
iid∼ Categorical(π)

xi, yi
iid∼ G(φci)

for i = 1, . . . , nx
(1.1)

where φ are latent cluster parameters; c are (potentially latent) cluster assignments;

X = x1, . . . , xnx are nx samples; y are the corresponding labels; H is some distribution

over cluster parameters; γ, π, k, nx are model parameters and π is in the k-dimensional

probability simplex. This includes, for example, many mixture models and topic

models. Note that without conditioning on the latents φ, samples within the same

cluster are dependent while samples in different clusters are independent.

Specifically, our goal in this setting is to find a learner f : X → Y which performs

well on new clusters, i.e. has small out-of-cluster loss Ex′,y′`(y′, f(x′ | X1:nx , y1:nx)),

where ` is a continuous loss function, x′, y′ ∼ G(φ′) and φ′ ∼ H(γ).

Recall we are only given a clustering approximation ĉ and do not observe c – thus

even measuring the out-of-cluster loss remains a difficult proposition, for reasons

mentioned previously in Section 1.1.

1.2.2 Thesis Statement

Together, improved clustering performance and learning on imperfect clustering allows

clustering to be integrated into more complex machine learning systems, where the

clustering output is utilized to perform some task. These two essential objectives are

summarized in our thesis statement:

5



1. Introduction

Thesis Statement: Clustering errors cause subtle and adverse behavior

in machine learning systems. These errors can be theoretically bounded,

characterized, and corrected for using novel estimators.

This thesis, though not the first to tackle the problem of improving clustering

performance, is the first to study the problem of how to learn on imperfect clusterings.

We argue that since it is unrealistic to expect perfect clustering performance, knowing

how to learn on imperfect clusterings is an equally essential component for practical

machine learning systems.

1.3 Thesis outline

This thesis is broken in two parts. For chronological reasons, we first address the

problem of clustering performance through new theoretical bounds and algorithms

in Part I, and then proceed to how to learn on the clustering output in Part II. We

emphasize that although Part I may require some clustering background, Part II is

accessible to most audiences with some statistical background. Furthermore, we have

made every attempt to make each part as general as possible, such that although

Part II will benefit from the results of Part I, it is in fact agnostic to the particular

clustering algorithm. In fact, for most readers, we recommend reading Part II first as

it addresses a completely novel problem, and returning to the chapters of interest in

Part I.

In Part I, we study the classical problem of clustering from several perspectives.

Each chapter is self-contained, and provides as an output some clustering approxima-

tion ĉ. In Chapter 2, we consider graphical clustering approaches where edges between

samples X are assumed to be generated according to a planted partition or stochastic

block model. In these models, edges between samples are generated according to

some unknown probability which depends on which clusters the samples belong to.

We expect there to be a much higher probability of observing within-cluster edges

than between-cluster edges, and can formulate the problem as a maximum-likelihood

objective. Our key contribution here is leveraging semi-supervised information in the

form of some labeled edges, which are more straightforward for humans to label than

the daunting task of manually clustering a large dataset. We can then reduce the

6



1. Introduction

maximum-likelihood estimation problem into an instance of a known approximation

algorithm.

In Chapter 3, we prove error bounds for the popular Swoosh algorithm, which is

widely used in record linkage applications such as with hospital patient databases.

Swoosh is unique compared to other clustering algorithms in that it allows both the

matching of records (i.e. ‘Do these two records belong in the same cluster?’) and the

merging of records (i.e. ‘If the name in one record is Jane D. and the name in another

is J. Doe, then their full name must be Jane Doe’). Our bounds are again empirically

tight, and allow us to derive lower-bound optimal merge functions for the clustering

algorithm.

In Chapter 4 we consider a Bayesian model for how the samples X are generated,

which allows us to both infer the clustering approximation ĉ and latent cluster

parameters (such as φ in Eq. (1.1)) using MCMC. Our contribution here are novel

bounds, which we show are empirically tight, characterizing exactly how clustering

performance degrades with respect to key parameters.

We then proceed to Part II, which addresses the interaction between clustering

errors and downstream prediction algorithms. It takes as an input a clustering

approximation ĉ from Chapter 2, Chapter 3, Chapter 4 or any other clustering

algorithm. In Chapter 5, we characterize the behavior of the interaction effects

between clustering and prediction algorithms. Specifically, we prove certain adverse

properties hold under various reasonable conditions. Fortunately, we are able to

leverage these same properties to develop a simple hypothesis test for whether

interaction effects are present in a machine learning system. From a practitioner’s

standpoint, this may be one of the most powerful takeaways of this thesis.

In Chapter 6, we propose the key algorithm to correcting for interactions between

clustering and prediction algorithms: the Binomial Block Bootstrap (B3) estimator.

For any predictor f , the B3 estimator provides an unbiased and asymptotically

consistent estimate of the out-of-cluster loss for f on the true clustering c, given only

an approximate clustering ĉ. In other words, the B3 estimator allows proper cross-

validation on noisy clusters, for any learner, a somewhat surprising result. We provide

empirical evidence that cross-validating on noisy clusters can bias cross-validation

results by upwards of 25%, and that the B3 estimator is able to provide much better

estimates even in the finite sample setting.
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Finally, we scale the B3 estimator to larger datasets in Section 6.3 by basis function

and matrix sketching approximation techniques. These tools make it possible to

reduce the computational complexity from O(n′3) to O(1), where n′ is the size of

the training dataset. In practice, this allows the B3 estimator to scale to previously

intractable problem classes and reduces solution times by multiple orders-of-magnitude

on smaller datasets.

8
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New theory and

algorithms for clustering
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Chapter 2

Stochastic block models and

correlation clustering

Graphical approaches to clustering are appealing because they offer a natural way

to compare samples, in the form of edge information. However, which graph to

use for clustering remains an open question [100]. Previous work has considered

edges to be the output of a similarity function1 (e.g. spectral clustering), a Bernoulli

random variable (e.g. stochastic block models), or some more general measure of

similarity/dissimilarity (e.g. correlation clustering).

In reality, edge information can take a variety of forms. Edges in social graphs

correspond to communication exchanges, mutual interests and types of relationships.

In biology, protein-protein interaction networks involve complex underlying mech-

anisms and conditions under which an event may occur. And in economics, trades

constitute numerous goods, prices and transaction types.

We are inspired by the complex interactions happening around us. Our relation-

ships are more complicated than friend/not-friend, and our transactions are about

more than the monetary value. The motivation of this chapter is to cluster with

the additional information provided by multivariate edge features. This is partly

supported by Thomas and Blitzstein’s [97] recent results showing that converting to a

binary graph makes recovering a partition more difficult. We are also interested in how

to choose similarity functions which better capture the relationship between nodes,

1A similarity function is a function of two nodes’ features, e.g. the RBF kernel
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2. Stochastic block models and correlation clustering

one of the challenges of spectral clustering [100]. Choosing a scalar similarity function

(e.g. the RBF kernel) may be overly restrictive and underutilize useful information.

This is partly the cause of scale issues in spectral clustering [112]. Our approach

allows more complex similarity functions, such as the absolute vector difference.

We believe these results will be particularly useful for image segmentation, com-

munity discovery and entity resolution. These are all applications (a) with a large

number of clusters and (b) where we have access to some labeled edges. With a

large number of clusters, it is unlikely we have training samples from every class, let

alone enough samples to train a multi-class supervised classifier. However, the small

number of labeled edges will enable us to learn the typical cluster structure.

In this chapter, we extend the planted partition model to general edge features.

We also show how to partially recover a maximum likelihood estimator which is

O(log(n))-close to the log likelihood of the true MLE by using an LP-rounding

technique. Much of the analysis in planted partition models consider the probability

of exactly recovering the partition. Depending on the cluster sizes and number of

samples, this is often improbable. Our analysis addresses how good the result will be,

regardless if it is exactly correct. Further, our theoretical results provide some insights

on how to perform edge feature selection or, likewise, how to choose a similarity

function for clustering. Experimental results show interesting clustering capabilities

when leveraging edge feature vectors.

2.1 Prior Work

Two areas of research are closely related to our work. Our graphical model is an

extension of the stochastic block model from the mathematics and statistics literature.

We also use some key results from correlation clustering in our algorithm and analysis.

2.1.1 Stochastic Block Model

The stochastic block model (SBM) was first studied by Holland et al. [39] and

Wang and Wong [102] for understanding structure in networks. In its simplest form,

every edge in the graph corresponds to a Bernoulli random variable, with probability
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2. Stochastic block models and correlation clustering

depending on the two endpoints’ clusters. In planted partition models2 there are

two Bernoulli probabilities p and q corresponding to if the endpoints are in the same

or different clusters, respectively. These models are actually generalizations of the

Erdős-Rényi random graph, where p = q. Random graph models have a storied

history and include famous studies such as the small-world experiment (popularized

as “six-degrees of separation”) by Milgram [64] and Zachary’s Karate Club network

[111]. For a more complete overview, we refer the interested reader to the review by

Goldenberg et al. [34].

More recently, planted partition models have gained popularity in the machine

learning community for clustering. McSherry [61] and Condon & Karp [22] provided

early spectral solutions to exactly recovering the correct partition, with probability

depending on a subset of the parameters p, q, the number of samples n, the number

of clusters k, and the smallest cluster size. Most results show recovering the partition

is more difficult when p and q are close, n is small, k is large, and the smallest cluster

size is small. Intuitively, if there are a high proportion of singleton clusters (i.e.

“dust”), mistaking at least one of them for noise is likely.

Some of the numerous alternative approaches to recovering the partition include

variational EM [3, 24, 72], MCMC [72], and variational Bayes EM [1, 38]. Some of

these approaches may also be applicable to the model in this chapter, though we

found our approach simple to theoretically analyze.

The work most closely related to ours extends the stochastic block model edge

weights to other parametric distributions. Motivated by observations that Bernoulli

random variables often do not capture the degree complexity in social networks,

Karrer & Newman [41], Mariadassou et al. [59] and Ball et al. [6] each used Poisson

distributed edge weights. This may also be a good choice because the Bernoulli degree

distribution is asymptotically Poisson [110]. Aicher et al. considered an SBM with

edge weights drawn from the exponential family distribution [1]. Like Thomas &

Blitzstein [97], he also showed better results than thresholding to binary edges. Lastly,

Balakrishnan et al. [5] consider Normally distributed edge weights as a method of

analyzing spectral clustering recovery with noise.

Other interesting extensions of the SBM include mixed membership (i.e. soft

2There is some inconsistency in the literature regarding the distinction between planted partition
and stochastic block models. Occasionally the terms are used interchangeably
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2. Stochastic block models and correlation clustering

clustering) [3], hierarchical clustering [5, 21] and cases where the number of clusters

k grows with the number of data points n [19, 76]. Combining our ideas on general

edge features with these interesting extensions should be possible.

2.1.2 Correlation Clustering

Correlation clustering was introduced by Bansal et al. [8] in the computer science

and machine learning literature. Given a complete graph with ±1 edge weights, the

problem is to find a clustering that agrees as much as possible with this graph. There

are two ‘symmetric’ approaches to solving the problem. MinimizeDisagreements

aims to minimize the number of mistakes (i.e. +1 inter-cluster and −1 intra-cluster

edges), while MaximizeAgreements aims to maximize the number of correctly

classified edges (i.e. −1 inter-cluster and +1 intra-cluster edges). While the solutions

are identical at optimality, the algorithms and approximations are different.

The original results by Bansal et al. [8] showed a constant factor approximation

for MinimizeDisagreements. The current state-of-the-art for binary edges is a

3-approximation [2], which Pan et al. [70] recently parallelized to cluster one billion

samples in 5 seconds. Ailon et al. [2] also showed a linear-time 5-approximation

on weighted probability graphs and a 2-approximation on weighted probability

graphs obeying the triangle inequality. Demaine et al. [26] showed an O(log(n))-

approximation for arbitrarily weighted graphs using the results of Leighton & Rao [50].

Solving MinimizeDisagreements is equivalent to APX-hard minimum multi-cut

[17, 26].

For MaximizeAgreements, the original results by Bansal et al. [8] showed a

polynomial-time approximation scheme (PTAS) on binary graphs. State-of-the-art

results for non-negative weighted graphs are a 0.7664-approximation by Charikar et

al. [17] and similar 0.7666-approximation by Swamy [94]. Both results are based on

Goemans and Williamson [33] using multiple random hyperplane projections.

Later, we will use correlation clustering to partially recover the maximum likelihood

estimator of our planted partition model. Kollios et al. [44] consider a similar problem

of using correlation clustering on probabilistic graphs, although their algorithm does

not actually solve for the MLE.
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2.2 Problem Statement

Consider observing an undirected graph G = (V , E) with n = |V | vertices. Let

ψ : {1, . . . , n} → {1, . . . , k} be a partition of the n vertices into k classes. We use

the notation ψij = 1 if nodes i and j belong to the same partition, and ψij = 0

else. Edges eij ∈ Rd are d-dimensional feature vectors. Note we say that graph G

is ‘observed,’ though the edges E may also be the result of a symmetric similarity

function s, where eij = s(vi, vj).

We assume a planted partition model, eij ∼ P (e|ψij). From now on, we will use

the shorthand P0(·) = P (·|ψij = 0) and P1(·) = P (·|ψij = 1). In the conventional

planted partition model, P0 and P1 are Bernoulli distributions with parameter q and

p, respectively. However, in this work we make no assumptions about the probability

density functions P0 and P1. We will make the key assumption that all stochastic

block models make – that the edges are independent and identically distributed,

conditioned on ψ. Note if the edges E are generated by a similarity function then it

is unlikely the edges are actually independent, but we proceed with this assumption

regardless.

In most planted partition models, the goal is to either partially or exactly recover

ψ after observing G. We aim to find the most likely partition, and bound our

performance in terms of the likelihood. There is a subtle distinction between the two

goals. Even if the maximum likelihood estimator is consistent, the non-asymptotic

MLE may be different than the true partition ψ.

2.3 Approximating the Maximum Likelihood

Estimator

Let θ : {1, . . . , n} → {1, . . . , k} be a partition under consideration. In exact recovery,

our goal would be to find a θ such that θ = ψ. However, our goal is to find a partition

θ̂ which is close to the likelihood of the maximum likelihood estimator θMLE. Using

the edge independence assumption, the likelihood L is

L(θ) =
∏
i<j

P (eij|θij)1(θ ∈ Θ) (2.1)
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2. Stochastic block models and correlation clustering

where Θ is the space of all disjoint partitions.

The trick to finding an approximation θ̂ to the MLE θMLE is to reduce the problem

to a correlation clustering instance. Consider forming a graph GO = (V,E0) with

binary edges defined by the sign of the log-odds e0;ij = sign (log (P1(eij)/P0(eij))). Let

the cost of mislabeling each edge be the absolute log-odds Cij = |log (P1(eij)/P0(eij))|.
Then we can rewrite the log-likelihood ` as3

`(θ) = `(G0)−
∑

θij 6=e0;ij

∣∣∣∣log

(
P1(e)

P0(e)

)∣∣∣∣
= `(G0)−

∑
θij 6=e0;ij

Cij (2.2)

Maximizing `(θ) is equivalent to minimizing
∑

θij 6=e0;ij
Cij, which is exactly Mini-

mizeDisagreements where edges are labeled according to E0 and have weighted

costs C ≥ 0. Intuitively, we consider the most likely graph G0 (which is not a valid

partition) and try to find the minimum number of weighted edge flips required to

create a valid partition.

Unfortunately, we only have non-negativity bounds on the weights C. Thus we

believe the only appropriate MinimizeDisagreements algorithm to solve Eq 2.2 is

the LP-rounding technique by Demaine et al. [26].

Theorem 1. The above estimated clustering θ̂ is c1DIS log(n)-close to the log-

likelihood of the true maximum likelihood estimator θ̂MLE. This is an exp(−DIS (c1 log(n)−
1))-approximation algorithm for the likelihood.

The constant c1 = 2 + 1/ log(n+ 1) is just slightly larger than 2. DIS is a measure

of disagreement between the graph G0 and the optimal clustering, to be discussed

shortly.

Proof. The results follow directly from Leighton & Rao [50] and Demaine et al. [26].

Let DIS be the optimal solution to MinimizeDisagreements on graph G0 with

weighs C. Then the log likelihood of the true MLE θMLE is

`(θMLE) = `(G0)− DIS (2.3)

3G0 is not required to be a valid partition and thus the 1(G0 ∈ Θ) term is not included in `(G0).
However, θ is still required to be a valid partition.
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Demaine et al. [26] showed an c1 log(n)-approximation to MinimizeDisagreements

on general weighted graphs. Thus the approximated MLE using this algorithm will

yield

`(θ̂) ≥ `(G0)− c1 log(n)DIS (2.4)

The approximation ratio result follows likewise.

L(θ̂) ≥ L(G) exp(−c1 log(n)DIS )

L(θMLE) = L(G) exp(−DIS )

L(θ̂)

L(θMLE)
≥ exp(−DIS (c1 log(n)− 1))

2.3.1 Choosing Edge Features or Similarity Functions

How to choose a similarity function remains a fundamental question in spectral

clustering [100]. A “meaningful” similarity function should have high similarity for

samples belonging to the same cluster and low similarity for samples in different

clusters, but how to judge that remains unclear. In practice, the radial basis function

is commonly used and often provides favorable results. More precisely, we want to

know which similarity functions make clustering easier and understand why they do.

This same question applies when doing edge feature selection. We want to choose

features which are most informative for clustering and ignore the others. We can

provide a more scientific answer to these questions by analyzing the DIS coefficient.

Theorem 2. Let n0 and n1 be the number of inter and intra-cluster edges in ψ,

respectively. Then

E[DIS ] = −n1DKL(P1||P0)
∣∣∣
P1≤P0

− n0DKL(P0||P1)
∣∣∣
P0≤P1

(2.5)

where we use the notation D(·||·)
∣∣∣
S

to denote the divergence evaluated only over the

closed set S.
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Proof.

E[DIS ] = (n1 + n2)Eψij 6=e0;i,j
[C]

= n1Eψij=1,e0;i,j=0[C] + n2Eψij=1,e0;i,j=0[C]

= n1

∫
P1(e)≤P0(e)

P1(e) log

(
P0(e)

P1(e)

)
de

+ n2

∫
P0(e)≤P1(e)

P0(e) log

(
P1(e)

P0(e)

)
de

= −n1DKL(P1||P0)
∣∣∣
P1≤P0

− n0DKL(P0||P1)
∣∣∣
P0≤P1

Notice these restricted Kullback-Leibler divergences are always negative, and thus

E[DIS ] ≥ 0.

The intuition here is to choose edge features or similarity functions which are

unlikely to create edges in the disagreement regions (i.e. edges which contribute to

DIS ). If P0 and P1 are completely divergent, then exactly recovering the partition is

trivial because G0 will be the set of disconnected cliques induced by ψ. Additionally,

when mistakes are made, we want the KL divergence to be small (i.e. the mistake is

not too ‘bad’).

Along these lines, choosing higher dimensional edge features and similarity func-

tions (e.g. the absolute vector difference instead of the Euclidean distance) makes

clustering easier, by decreasing the disagreement region between P0 and P1. This

confirms our earlier motivation that useful clustering information may be lost by only

considering binary or scalar edge features and functions.

Considering only this approximation ratio when choosing a similarity function

or edge features does not quite capture the complete picture. A trivial solution is

select for P0 = P1 (a type of an Erdős-Rényi random graph), which results in an

approximation ratio of 1. Since every partition is equally likely in this scenario,

finding an approximation to the MLE is trivial. However, exactly recovering ψ is

unlikely.
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2. Stochastic block models and correlation clustering

Sparsity

In many situations it is advantageous to induce sparsity into the graph G. Spectral

clustering employs this trick to cluster large graphs, by only considering the most

similar nodes when performing eigen decompositions. In the proposed approach,

sparsity will also reduce the number of variables and constraints in the LP used to

maximize Eq 2.2.

By the previous analysis, we want to choose a similarity function or edge features

which achieve the desired sparsity while maintaining a small DIS coefficient. In the

MinimizeDisagreements problem, sparse edges will have cost Cij = 0. This occurs

when P0(eij) = P1(eij). Intuitively, the best edges to sparsify are the ones which we

do not have strong evidence for whether they should be labeled positive or negative.

For these edges, the probabilities P0 and P1 will be close. Unlike spectral clustering,

which only considers the most similar edges, this sparsification considers the most

similar and the most dissimilar edges.

2.4 Experiments

We experimentally demonstrate the performance of the proposed model and algorithm

on several synthetic and real world datasets. Specifically, we show studying edge

features enables learning the structure of clusters. When compared to k-means

and spectral clustering, the planted partition model with general edge features can

correctly cluster some rather interesting examples which are not attainable with scalar

similarity functions. And more importantly, it seems to outperform existing methods

on real world datasets.

In practice, it is unlikely we have access to P0 and P1. By assuming a prior

parametric distribution, previous approaches have inferred these distributions while

simultaneously learning the clustering. To remain as general as possible, we do not

make any prior assumptions on P0 and P1. Our focus here is different. In datasets

where the number of classes is very large or when new previously unseen classes are

introduced, it is unlikely we can perform traditional supervised classification. This is

especially true in the entity resolution and record linkage domains, where clusters

correspond to millions or billions of entities (e.g. people, businesses, items) and new
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Figure 2.1: Results on synthetic 2D datasets. The true number of clusters k is given
as an input to k-means and spectral clustering, while our model naturally learns the
correct number of clusters. P̂0 and P̂1 are the learned edge densities.
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Figure 2.2: Results on the UCI Skin Segmentation dataset. Pink represents skin
samples and blue represents non-skin samples. The axes correspond to RGB pixel
values. The associated normalized mutual information scores are (b) 0.0042, (c)
0.1016 and (d) 0.6804.

entities are frequently introduced. Statistical networks and image segmentation also

exhibit this property.

In these problems, we frequently have access to labeled pairs. Manually labeling

whether two samples describe the same person is a straightforward task for human

adjudicators, compared to manually clustering a large number of samples. This is the

information we use to learn the cluster structure. Thus we assume we have access to

some labeled pairs in order to learn P0 and P1. Standard dimensionality reduction

techniques can be employed to perform analysis in a reasonable space. We show this

is still more powerful than using conventional scalar similarity functions. For all of

our experiments, we use kernel density estimation to estimate P0 and P1. To improve

the dimensional scalability, we could also perform a single estimation of P1/P0 using
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Figure 2.3: Structured clustering with PCA (SC + PCA) outperforms competitors
on the 11 class, 48 dimensional UCI Sensorless Drive dataset. 1D SC is the same
structured clustering model, except using the simpler Euclidean similarity function
(eij = ||vi − vj||2). Boxes correspond to the 25th and 75th percentile of 17 trials.
Whiskers are the most extreme values.

direct density ratio estimation [40].

To compare performance we evaluate against k-means and spectral clustering [82].

Per the recommendations of Luxburg [100], we use the Gaussian similarity function, a

mutual k-nearest neighbor graph where k = 20 and the random walk graph Laplacian.

Unless otherwise noted, the edge features used for our method are from the absolute

vector difference function eij = |vi − vj| and thus not independent. However, the

results indicate that it may be an acceptable assumption.

Lastly, our model consistently and naturally learns the correct number of clusters

k. We found it occasionally labeled outlier samples as singleton clusters, though this

would have a very small impact on the normalized mutual information score. For

k-means and spectral clustering we do provide k as an input. There are certainly

methods of estimating k for these competitors (e.g. analyzing the spectral gap),

although they are not intrinsic to the methods.
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2.4.1 Results on Synthetic Data

We consider the two interesting synthetic examples shown in Figure 2.1. Traditional

clustering algorithms such as k-means and spectral clustering are unable to correctly

label these examples because the clusters occasionally cross each other. Our method

is able to capture the unidirectional cluster structure, and thus correctly label the

samples. This is not an occasional event, in fact we have yet to see our method fail

on these examples.

For all the synthetic experiments, we estimated P0 and P1 using 5,000 labeled

pairs and clustered 100 hold-out samples. We use the absolute vector difference as

our similarity function, which is able to capture the distance and direction, unlike

the Gaussian similarity function. There may be other excellent choices for similarity

function, this is the only one we have tried so far.

We have achieved comparable results on the classic Gaussian, two moons, concen-

tric circles and swiss roll examples. There was little distinction between our method

and spectral clustering on these problems, so they were omitted from this chapter.

2.4.2 Results on Real World Data

The first real world data we consider is the UCI Skin Segmentation dataset4, shown in

Figure 2.2. Samples are RGB values and labeled according to whether they are skin

or non-skin image pixels. Again, we estimated P0 and P1 using 5,000 labeled pairs

and clustered 100 hold-out samples, and use the absolute vector difference similarity

function.

Visually, this seems much easier than the previous synthetic examples. However,

k-means and spectral clustering are still unsuccessful due to the data scale issue intro-

duced by the oblong cluster nature. Feature whitening did not help the competitors,

though we believe some extensions to the standard spectral clustering may be able to

handle this type of data [112].

The second realistic example we consider is the UCI Sensorless Drive Diagnosis

dataset5. Features are derived from current and frequency measurements in defective

electric motors, including the statistical mean, standard deviation, skewness and

4https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
5https://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis
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kurtosis of intrinsic mode function subsequences. In total, there are 48 features and

11 classes.

We repeat the same previous procedures, except we additionally perform principal

component analysis on the training and hold-out edge features prior to estimating P0

and P1 (SC + PCA). We also consider one dimensional features using the Euclidean

distance similarity function (1D SC). The results from 17 trials are shown in Figure

2.3. The strong performance on the PCA reduced edge features leads us to believe

that even if the original vertices have high dimensional structure, the distinguishing

edge features in clusters have a lower dimensional representation.

2.5 Conclusions

Overall, incorporating multivariate edge features and more powerful similarity func-

tions improves performance in all the experiments we have conducted. And even

when the edges are clearly not independently generated, our structured clustering

model still outperforms competitors.

The key insight from our approach is that multidimensional edge features can be

used to effectively learn structure in clusters. Relationships in real world data are

more complex than a simple scalar similarity function, and our methods can benefit

from capturing that additional complexity. Then we can use the learned cluster

structure to both determine the correct number of clusters and to handle situations

where we are given new, previously unseen clusters, by assuming similar structure.

Applications which may especially benefit from structured clustering usually (a)

have some labeled edges to learn P0 and P1 and (b) have a large number of clusters

which make training a supervised classifier impractical. For example, in community

detection and entity resolution, we have many examples of communities or entities to

learn P0 and P1, though we certainly do not have examples of every community and

entity to perform classification. Intuitively, we expect communities and entities to

exhibit some common behavior, and we can leverage this structure while clustering.

In image segmentation we usually have many images with human labeled segments,

but the segments (i.e. classes) in new images are likely of a different object. However,

it is not unreasonable to assume the structure of these new segments is similar to the

previously seen segments.
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We used the approximation algorithm by Demaine et al. [26] for MinimizeDis-

agreements. The solution for this sub-problem is not the main focus of this

chapter, and unfortunately this particular algorithm requires solving a large linear

program which limited the scalability of our experiments. Pan et al. recently clus-

tered 1 billion samples in 5 seconds using a parallelizable, linear time algorithm for

MinimizeDisagreements, but only with edge weight restrictions [70].

Other interesting extensions include applying the same method to stochastic block

models, which would require estimating a separate P0 and P1 for every pair of blocks.

In record linkage problems the same technique could be used to cluster vertices with

different feature types. For example, clustering across multiple social networks is of

particular interest for advertising and law enforcement.

We have independently provided similar analysis for MaximizeAgreements by

extending the results of Swamy [94] and Charikar et al. [17] to graphs with negative

edge weights, though the theoretical and experimental results were not as convincing

as MinimizeDisagreements.
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Chapter 3

Match-and-merge for record

linkage

In addition to having access to a pairwise match function, as studied in Chapter 2,

we now consider the additional availability of a merge function 〈·, ·〉 : X ×X → X . In

many domains such as census or medical records, we have a priori knowledge about

the structure of the data that naturally lends itself to a merge function. For example,

consider two records x1 and x2 with name features “B Obama” and “Barack O,”

respectively. Clearly, if these two records match, i.e. m(x1, x2) = 1, then 〈x1, x2〉 =

“Barack Obama.”

In this chapter, we prove the first known theoretical performance bounds for a class

of clustering algorithms known match-and-merge record linkage 1 and demonstrate

their practical usage on multiple real world datasets. We also propose a record linkage

algorithm which is optimal with respect to the lower bounds and show its connection

to graph clustering techniques. In the traditionally algorithm driven domain of record

linkage, our bounds not only provide a more formal understanding of record linkage,

but also enable better performance in practice.

1There are conflicting distinctions between the terms clustering and record linkage [89]. Here, we
default to the term more common in the respective area of research, which in this chapter is record
linkage.
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3.1 Prior Work

Fellegi and Sunter’s seminal work [29] created a formal statistical foundation for

record linkage based on the earlier work by Newcombe [68, 69]. For fixed bounds on

certain error rates, they proved an algorithm which minimized the number of records

sent for clerical review (i.e. human adjudication). The original Fellegi-Sunter model,

which many modern approaches are built upon, only considers linking two ‘clean’

sets of records. A record set is ‘clean’ if there are no intra-set links. For example,

Zagat’s review website is ‘clean’ because it does not have multiple listings for the

same restaurant. Attempting to merge the Zagat’s listings with another ‘clean’ set

(i.e. Yelp) would be a Fellegi-Sunter record linkage problem.

Recently there has been an effort to extend the Fellegi-Sunter model to more

general settings. Sadinle and Fienberg generalized the model to linking multiple

‘clean’ sets of records [78]. McCallum and Wellner formalized the concept of transitive

closure, but do not provide any theoretical guarantees [60, 84]. In this chapter, we

consider the most general record linkage problem: a single set of records with no

restrictions on links, informally referred to as a ‘dirty’ record set. For example, the

set of all listings on eBay is a dirty set. Any two listings could potentially describe

the same product, and cluster sizes are unrestricted.

Note our approach also applies to the ‘clean’ setting, because the union of clean sets

is a dirty set. The more general ‘dirty’ setting is interesting because it encompasses a

broad set of problems not considered by the original Fellegi-Sunter model, including

co-reference resolution in natural language processing, near duplicate detection in

search engines and image segmentation in computer vision.

Perhaps the work most closely related to ours is on estimating the error rates

associated with the Fellegi-Sunter model. Belin et al. [10] and Winkler [107] used

unsupervised methods, which apply when the match and mismatch classes are

separable. With small amounts of training data, Larsen [49] and Winkler [106] are

able to more accurately estimate the error rates. Our work builds on the latter

approaches, by considering performance on the general record linkage problem. In

continuation with trends towards learning-based approaches, we do not send any

records to clerical review. Besides reducing the human adjudication cost, Newcombe

and Smith noted that fully automated record linkage often outperformed combinations
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of computers and highly trained clerks [85].

One of the best frameworks for the general record linkage setting was presented

by Benjelloun et al. [11]. They outlined a theoretically disciplined approach, wherein

certain properties of the record linkage match and merge functions guarantee a

deterministic output in the optimal number of record comparisons. We exploit the

use of some of these properties in the derivation of our performance bounds.

3.2 Problem Statement

We consider the record linkage problem where we are given a large set of unla-

beled records X = (x1, . . . , xn)
iid∼ P (x) (e.g. medical records, noun phrases, prod-

uct descriptions) and need to infer the entity label y for each record x ∈ X. In

the semi-supervised setting, we also have access to a small set of pairs of sam-

ples which belong to the same cluster VT = (xn+1, xn+2), . . . (xn+2nT−1, xn+2nT
)

iid∼
P (xi, xj|yi = yj) and another set of pairs which belong to different clusters VF =

(xn+2nT +1, xn+2nT +2), . . . (xn+2nT +2nF−1, xn+2nT +2nF
)

iid∼ P (xi, xj|yi 6= yj). Collectively,

these labeled pairs form a validation set V = VT ∪ VF with corresponding class

balance CV = |VT |/|V |. Forming such a pairwise validation set is a natural form of

semi-supervision. Pairs of samples are randomly sampled from validation set and

then sent to human adjudicators to decide whether the two samples describe the same

latent entity. This follows the same type of human adjuciation as described in [29].

We note that good pairwise performance of m on V does not imply similar clustering

performance on X because the complexity of the clustering problem increases as the

number of entities increases and depends on the record linkage algorithm itself.

Our goal is to bound the performance of a record linkage algorithm A on the

unlabeled records X, where A(X) produces predicted cluster labels Ŷ . Specifically,

we make the following assumption about A.

A1) Record linkage algorithm A is composed of a binary match function m(xi, xj)

and merge function 〈xi, xj〉. A merges any two matching records and terminates

only when no matching records remain.

The binary match function m(xi, xj) predicts whether two records xi, xj ∈ X

describe the same latent entity (i.e. whether yi = yj) and outputs True or False.
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In learning-based record linkage, the match function is usually trained on some of

the records in X ′. The match function may be any classifier that satisfies several

assumptions to be discussed later.

If the binary match function m determines two records describe the same latent

entity (i.e. m(xi, xj) = True), then the records are merged into a new record xnew =

〈xi, xj〉. The merge function 〈xi, xj〉 may include domain specific knowledge on how

to best merge specific features (e.g. phone numbers 377-8328 and 412-377-8328 should

resolve to the latter, as the former is likely missing an area code) or it may be

something more general, such as the set union operator for each feature.

We consider the class of all match functions m(xi, xj) and merge functions 〈xi, xj〉
that satisfy the following assumptions:

A2) Idempotence: ∀x ∈ X , m(x, x) = True and 〈x, x〉 = x. A record always matches

itself and merging a record with itself yields the same record.

A3) Commutativity: ∀xi, xj ∈ X , m(xi, xj) = True iff m(xj, xi) = True, and if

m(xi, xj) = True, then 〈xi, xj〉 = 〈xj, xi〉. The match and merge functions are

symmetric.

A4) Associativity: ∀xi, xj, xk ∈ X such that 〈xi, 〈xj, xk〉〉 and 〈〈xi, xj〉 , xk〉 exist,

〈xi, 〈xj, xk〉〉 = 〈〈xi, xj〉 , xk〉. In other words, the ordering of merges does not

matter.

A5) Representativity: If xk = 〈xi, xj〉 then for any xl such that m(xi, xl) = True,

we also have m(xk, xl) = True. An important consequence of representativity is

that merging any two records can only monotonically increase their probability

of matching with other records. This is sometimes referred to as the ‘no negative

evidence’ clause.

Collectively, Assumptions A2-A5 are referred to by their acronym ICAR. A

convenient property of record linkage algorithms satisfying the ICAR assumptions is

that when run until no matches remain, the output is deterministic [11]. The first

three properties are straightforward and reasonable to assume for most record linkage

systems. The crux of determinism falls on the final property, representativity. This

assumption may seem strong, but a deterministic record linkage algorithm derived

from these properties is popular for database applications [11].
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3.3 Lower Bounds of Performance

Our approach to bounding the performance of A(X) is to use the empirical perfor-

mance of the match function on validation pairs V . We note that due to the small

clustering property [89], A may perform poorly on X even if its match function

performs well on a small validation set. We can bound performance of A(X) by

deriving a particular relationship between the two performances.

We use the validation set of labeled pairs V to empirically estimate the performance

of the match function m (we assume m is trained a priori on a disjoint set of

training samples). Let VM denote the pairs of records in V that m predicts are

matches, VM = {(xi, xj) : (xi, xj) ∈ V,m(xi, xj) = True}. Then the estimated

precision and recall of the match function are Prec(VM , VT ) = |VM ∩ VT |/|VM | and

Recall(VM , VT ) = |VM ∩ VT |/|VT |, respectively.

Note the validation set is used to estimate performance of the match function

m and we want to bound performance of A(X). The former is a measure of binary

classification performance, whereas the latter is a measure of clustering quality.

Specifically, we use pairwise precision and pairwise recall, which are the same as

precision and recall in binary classification, except operating on the space of record

pairs. For more information on record linkage metrics, we refer the interested reader

to the review by Menestrina et al. [62].

Lemma 3. For record linkage algorithms A(X) = Ŷ satisfying the representativity

property (Assumption A5), every record pair that directly matches will resolve to the

same entity.

XM ⊆ XŶ . (3.1)

where XM is the set of record pairs in X that directly match and XŶ is the set of

record pairs that belong to the same predicted cluster. Formally, XM = {(xi, xj) :

xi, xj ∈ X, i < j,m(xi, xj) = True} and XŶ = {(xi, xj) : xi, xj ∈ X, i < j, ŷi = ŷj}.

Intuitively, additional pairs in XŶ can occur from chains of matches. For example,

consider the case where m(xi, xj) = True, m(xj, xk) = True, but m(xi, xk) = False.

The record pair (r1, r3) 6∈ XM , but (r1, r3) ∈ XŶ . However, we are unable to make

strong claims about the additional matches in XŶ since chains of records do not occur
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in the validation set (which only had pairs of unmerged samples).

Proof. Suppose on the contrary there exists a pair of records (xi, xj), such that

(xi, xj) ∈ XM but (xi, xj) 6∈ XŶ . In other words, m(xi, xj) = True and they are

resolved to separate entities 〈xi, ....〉 and 〈xj, ....〉. Since these clusters were not merged

in the record linkage process, m(〈xi, ....〉 , 〈xj, ....〉) = False, which contradicts the

representativity property.

Theorem 4. The pairwise precision of a record linkage result can be lower bounded

by:

E [Prec(XŶ , XY )] ≥ |XM |
|XŶ |

E
[

CX(1− CV )Prec(VM , VT )

CV (1− CX) + (CX − CV )EPrec(VM , VT )

]
(3.2)

where CX is the true match/non-match class balance of all pairs in X, i.e. CX =

2|{{(xi, xj) : xi, xj ∈ X, yi = yj, i < j}}|/(n(n− 1)).

Intuitively, the bound is composed of two parts. |XM |/|XŶ | is the fraction of

record pairs in A(X) that directly match. We can make strong guarantees about

these pairs using the measured performance of the validation set. Prec(VM , VT ) is

the precision of these direct matches, adjusted for the change in class balance.

Proof. From Lemma 1 and applying the definitions of pairwise precision for XŶ and

VM :

E [Prec(XŶ , XY )] = E
[
|XŶ ∩XY |
|XŶ |

]
,

≥ E
[
|XM ∩XY |
|XŶ |

]
,

=
|XM |
|XŶ |

E [Prec(XM , XY )] ,

≥ |XM |
|XŶ |

E
[

CX(1− CV )Prec(VM , VT )

CV (1− CX) + (CX − CV )EPrec(VM , VT )

]
,

where the last step follows from equating the match function validation set performance

to the expected match function test set performance using change in match/nonmatch

class balance.
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All the necessary quantities to compute the bound are easy to measure from the

predicted clustering. |XŶ | is the number of pairs in the clustering output. |XM |
is the number of records that directly match, which by Lemma 1 can be efficiently

computed as
∑

(xi,xj)∈XŶ
m(xi, xj).

The class balance of the validation set CV is known, but we must estimate CX .

We refer the reader to state-of-the-art results for class prior estimation [28].

Theorem 5. The pairwise recall of a record linkage result can be lower bounded by:

E [Recall(XŶ , XY )] ≥ E [Recall(VM , VT )] . (3.3)

In other words, the recall on the validation set already forms a lower bound for

the pairwise recall on the test resolution.

Proof. From the definitions of pairwise recall for XM and XŶ and then applying

Lemma 1:

E [Recall(XŶ , XY )] = E
[
|XŶ ∩XY |
|XY |

]
,

≥ E
[
|XM ∩XY |
|XY |

]
,

= E [Recall(XM , XY )] ,

= E [Recall(VM , VT )] ,

where the last step does not require class rebalancing because recall is not a function

of class balance (unlike precision, recall is function of only the positive pairs).

A lower bound on pairwise F1 (the harmonic mean of pairwise precision and recall)

can be computed with the two former lower bounds. We will focus more on measuring

both pairwise precision and recall as they are more informative than the aggregated

F1 metric.

Theorems 1 and 2 demonstrate interesting differences between pairwise precision

and recall. For instance, pairwise precision is more susceptible to changes in dataset

size, whereas the estimated lower bound for pairwise recall is consistent across all test

sets. If anything, the true recall will improve on larger datasets due to increasing

feature space density. Indeed, optimizing a record linkage algorithm for recall on a
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validation set is statistically well motivated, but the same is not true when considering

precision.

These implications can partly be explained by the representativity property. As

the size of the test dataset increases, both the feature space density and number of false

positives increase. Especially with noisy data, as in the case of the counter-human-

trafficking domain, this increases the probability of entities ‘snowballing’ together, a

phenomenon we have seen in practice. Multiple options exist to combat this problem,

including improving the match function and running at a more conservative threshold.

3.3.1 A Note on Blocking

We do not explicitly consider the use of blocking, which improves scalability of record

linkage algorithms [71]. Though blocking will violate Lemma 1, if we redefine TM

and VM as:

T ∗M Set of record pairs in TM also in the blocking scheme

V ∗M Set of record pairs in VM also in the blocking scheme

then Lemma 1, Theorem 1, and Theorem 2 again hold. Notice blocking may increase or

decrease pairwise precision, but it can only hurt pairwise recall (because |V ∗M | ≤ |VM |).

3.4 An Optimal Algorithm

We wish to design an algorithm A∗ that is optimal in terms of the performance

lower bounds. Algorithm A∗ will be a conservative strategy, which provides several

advantages over a less theoretically driven approach. Most importantly, we can

provide the best possible performance guarantees without knowing labels Y . In

practice, this means deploying a record linkage algorithm which will provide an

acceptable level of performance with high probability.

We assume we are given a trained match function m, and condition the optimality

of A∗ on m. In practice, m should be a match function that performs well on the

validation set V . The only restrictions we make on match function m are Assumptions

A2 and A3, which are both extremely mild. Even if m does not inherently possess

these properties, it is trivial to satisfy Assumption A2 by checking both directions
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m(xi, xj) ∨m(xj, xi) and Assumption A3 by forcing m(x, x) = True ∀x ∈ X . Thus,

the guarantees for our algorithm A∗ hold for essentially all match functions.

Our approach to maximizing the performance lower bounds is to make just enough

matches to satisfy Assumptions A4 and A5 while avoiding extraneous matches that

decrease the performance bounds. We propose a specific merge function and ‘wrapper’

for the match function m that achieve optimality.

Consider a new type of record z ∈ Z that is defined as a subset of the original

records X (e.g. z1 = {x2, x9, x11}). Our new algorithm A∗ operates on the space of

records Z.

Theorem 6. For any match function m, the pairwise precision and recall estimated

lower bounds are optimal for the merge function:

〈z1, z2〉 =
⋃

xi∈z1,z2

xi (3.4)

and the match function ‘wrapper’ for the new record types z1 and z2:

m∗(z1, z2) = max
xi∈z1,xj∈z2

m(xi, xj). (3.5)

Proof. For our bounds to hold, we must first show A∗ satisfies Assumptions A2-

A5. Then by recognizing that the recall lower bound in Theorem 5 only depends

on the match function performance on the validation set and Recall(VM∗ , VT ) =

Recall(VM , VT ), we can show the recall lower bound is already optimal. Thus, we are

primarily concerned with showing A∗ achieves the optimal precision lower bound.

A∗ satisfies Assumptions A2-A5 : By the definition of the set union operator, the

merge function satisfies Assumptions A2-A4. We assumed the match function m

satisfied Assumptions A2-A3, and A4 does not apply to the match function. Then

Assumption A5 holds by the definition of the max function.

To show A∗ maximizes the precision lower bound in Theorem 4, notice that the

only parameter of the precision lower bound that depends on A∗ is 1/|XŶ |. Consider

comparing A∗ against any other algorithm Ã(X) = Ỹ satisfying Assumptions A2-A5.

In other words, could A∗ have made fewer matches? Formally, we want to show

|X̃Ỹ | ≥ |X∗Ŷ | for all X̃. Assume on the contrary there exist two records z1 and z2,

such that m∗(z1, z2) = False but one pair of their constituent records match, i.e.
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m(xi, xj) = True, for some xi ∈ z1, xj ∈ z2. By definition, this contradicts the

representativity property.

The simplicity of this approach is due to only assuming knowledge about direct

pairwise matches, learned from the labeled pairs in the validation set. Interestingly,

this record linkage system is equivalent to finding all connected components in an

undirected graph with adjacency matrix Adjij = m(xi, xj). We stress that though

this may optimize the estimated lower bound performances, it does not necessarily

guarantee better performance. However, if ground truth is not available for a dataset

of comparable size to the deployed system, then this is now a theoretically well

motivated approach.

A significant benefit of Theorem 6 is the provided match function need not

satisfy the restrictive representativity property (Assumption A5). Further, since

Assumptions A2 and A3 are trivial to satisfy (A4 only applies to the merge function),

m can essentially be any match function. For example, one could use more complex

machine learning based match functions (e.g. kernelized SVM, random forests) and

featurizations which may not have intuitive merge operations (e.g. word2vec [63],

Brown clustering [15]). Using less restrictive match functions undoubtedly enables

better Prec(VM , VT ) and Recall(VM , VT ), further improving the lower bounds.

3.5 Experiments

We conducted experiments on multiple datasets with known ground truth to em-

pirically demonstrate the tightness of the estimated lower bounds. We also show

the true performance and estimated lower bound curves have similar shapes over

parameters of A. Thus, choosing model parameters using the lower bounds is a good

approximation to choosing model parameters using the true (unknown) performance.

3.5.1 Datasets

We used one synthetic and three real world record linkage datasets with known ground

truth for our experiments, as described in Table 3.1. Not surprisingly, human labeled

datasets rarely number beyond several thousand records [62] – a relatively easy record

36



3. Match-and-merge for record linkage

Table 3.1: Datasets used in the experiments

Dataset # dim # records # matches

Synthetic 100 100000 4500

Restaurant1 4 864 112

Abt-Buy2 3 2173 1118

Escort (subset) 20 10000 10596
1 cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz
2 http://dbs.uni-leipzig.de/file/Abt-Buy.zip

linkage problem. The lack of large, publicly available general record linkage datasets

with ground truth is an unfortunate obstacle to advancing the field. The authors

were unsuccessful in obtaining a large, open-source record linkage dataset, so the only

large-scale results in this chapter are on synthetic and proprietary datasets.

For the synthetic dataset, we created approximately 10,000 latent entities with

100 unique strings as features. Then we created records from the latent entities by

replicating their features, such that the true cluster sizes were drawn i.i.d. from

N (100, 25). In total, this resulted in exactly 100,000 records. At this point, there is

no feature overlap between latent entities because records describing the same latent

entity are identical. Then we randomly corrupted features according to a Bernoulli

probability of 0.3, and replaced these features with the corresponding feature from a

common ‘corrupt’ record. A corruption probability of 0.0 is a trivial problem and a

probability of 1.0 is an impossible problem because all the 1 million records would be

identical.

The restaurant dataset is one of the earliest record linkage tasks discussed in

literature [96], and still used today [45, 101]. It consists of conflicting restaurant

information from Zagat and Fodor’s, including name, phone number, street address,

city and cuisine. Unfortunately, the dataset is also relatively small – numbering only

864 records. We threw away the phone number feature because it made the problem

too simple. The Abt-Buy dataset is more recent, larger at 2173 records, and used

extensively in current research [46, 101]. It consists of product information from two

retailers, including product name, description, and price.

Both the Restaurant and Abt-Buy datasets are in the class of ‘clean-clean’ record

linkage problems, where we know a priori that matches only occur between disjoint
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(a) Synthetic precision
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(b) Synthetic recall
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(c) Restaurant precision
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(d) Restaurant recall
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(e) Abt-Buy precision
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(f) Abt-Buy recall
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(g) Escort precision

0.0 0.2 0.4 0.6 0.8 1.0
Match Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir
w

is
e
 R

e
ca

ll

True Recall

Estimated Lower Bound

95% CI

(h) Escort recall

Figure 3.1: Experimental results demonstrate the estimated lower bound is tight to
the true performance. Pairwise F1 is not shown because it is the harmonic mean of
the two former metrics, and is thus less informative. See in-line comments regarding
exceptions to the 95% confidence interval.
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databases, and no matches occur within databases. Note this additional information

makes the problem strictly easier [71]. To formulate these datasets in a more general

context, we merged them together into a single dataset and ignored the advantageous

contextual ‘clean-clean’ information.

Lastly, we evaluated the bounds on a subset of an escort advertisements dataset

scraped from several websites over the past few years [35]. We used natural-language-

processing algorithms to extract 20 features, such as name, age, location, and hair

color of the person being advertised. For ground truth, we used a subset of the data

containing phone number matches as a proxy cluster label.

3.5.2 Algorithms

We used two different record linkage algorithms, depending on the dataset. For the

larger synthetic experiment, we used the lower bound optimal algorithm in Theorem

6 with an approximated Jaccard similarity coefficient match function. For two records

x1 and x2 with sets of string n-gram features f1 and f2, respectively, the Jaccard

similarity coefficient is defined as J(f1, f2) = |f1 ∩ f2|/|f1 ∪ f2|. Then the match

function m(x1, x2) = 1(J(f1, f2) ≥ t), where 1 is the indicator function and t is

some cut-off threshold. Computing the full O(n2) record comparisons is prohibitively

expensive with 100,000 records, so we used the locality sensitive hashing technique

MinHash, an unbiased approximation to the Jaccard coefficient [14]. Finding all

matching record pairs with a Jaccard similar coefficient above the cut-off threshold

can be found with high probability without making the full O(n2) comparisons by

indexing on the hash function outputs. We refer the interested reader to the seminal

works on locality sensitive hashing by Broder and Charikar [14, 18].

For the smaller experiments, we used the general record linkage framework R-

Swoosh by Benjelloun et al. [11]. For the match function, we trained a binary logistic

regression classifier using known matches and nonmatches in the training dataset.

Like all pairwise record linkage algorithms, it operates on pairwise features, which

we computed from two records’ features using either a binary match (e.g. state, hair

color), numerical difference (e.g. ages, weights), or Levenshtein string edit distance

(e.g. name) of each feature pair. If a record had multiple of a particular feature from

a merge operation, we used the closest feature match. For the merge function, we

39



3. Match-and-merge for record linkage

simply used the set union of the respective features.

A significant and subtle caveat of using logistic regression is the need for no

negative evidence (i.e. the representativity property). This restricts each logistic

weight to either the positive or negative domain, depending if a larger or smaller

pairwise feature is indicative of a match, respectively (a convex inequality constraint).

For both record linkage algorithms, the parameter choices are reduced to a single

value: the cut-off threshold. The choice of cut-off threshold is a classic trade-off

between precision and recall – an ideal setting to examine the results of our bounds.

Lastly, estimating the class balance ratio CX is outside the scope of this chapter.

State-of-the-art results for this task have been achieved using direct density ratio

estimation [28]. For this purposes of verifying the bound, we used a gold standard of

this ratio.

3.5.3 Results

To examine the tightness of the estimated lower bound, which may be used to optimize

a record linkage system, we evaluated the true and lower bound performances across

finely spaced intervals of match cut-off thresholds, as shown in Figure 3.1. The

tightness of the bounds demonstrate two important qualities. First, they enable using

the lower bounds as an approximation of the true performance when choosing model

parameters (e.g. cut-off threshold). Though this may not necessarily result in the

true (unknown) optimal parameters, it will result in the best estimated lower bound.

Second, it enables enforcing a level of acceptable quality for any record linkage results.

The 95% confidence intervals are obtained via the propagation of validation

set Wilson scores for Prec(VM , VS) and Recall(VM , VS) [104]. In the combined

240 trials across the two metrics, four datasets, and 30 match thresholds, this

occurred on precisely 10 occasions (4.2% of the trials). This falls well within our

statistical confidence bounds, especially because experiments across match threshold

are correlated, effectively decreasing the number of independent trials.

The confidence interval widens as the gap between validation set and test set

sizes widen. For very small datasets such as Restaurant, we were restricted to using

minimal validation samples due to the small number of labels. However, for larger

experiments such as Abt-Buy and Escort, we could afford hundreds or thousands
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of validation samples, significantly reducing uncertainty. This is also theoretically

motivated by the shift in class balance in Theorem 1.

The four experiments demonstrate different record linkage behavior. The synthetic

experiment has a narrow range of model parameters with perfect precision and

recall, where performance degrades dramatically outside this range. The Restaurant

experiment has a more gradual tradeoff between precision and recall, though there

is a significant uncertainty in the lower bound estimate due to the limited number

of validation samples. Precision in Abt-Buy quickly degrades, though recall is much

more gradual. Our bounds correctly capture the need to improve the underlying

record linkage systems for the Abt-Buy and Escort datasets. Without this lower

bound, the poor performance on larger datasets would not be evident from smaller

validation experiments.

3.6 Conclusions

In this chapter, we proved the first known performance bounds for a wide class of

match-and-merge record linkage algorithms. The bounds are simple yet effective and

feasible to compute in practice. We experimentally demonstrated the bounds are

tight to the true performance and can be used to optimize parameter choices.

Further, we showed the optimal lower bound strategy for any match function is

the connected components problem from graph theory – a relatively conservative

clustering approach compared to many record linkage systems. We understand that

this does not necessarily guarantee better performance, but it does provide a better

lower-bound guarantee. However, when labeled datasets of comparable size to the

deployed system are not available, this is now a theoretically well motivated approach.

Our bounds specifically addressed performance of pairwise record linkage al-

gorithms satisfying the ICAR properties in Assumptions A2 - A5 [11]. Pairwise

algorithms are intuitive, easy to implement, and thus not surprisingly, popular. How-

ever, they are also only a subset of record linkage approaches [13, 32, 84, 101]. Further,

we only considered pairwise precision, recall and F1 metrics due to their popularity,

intuitive interpretation and mathematical convenience, though other existing metrics

have been shown to produce conflicting rankings [62].

Estimating the lower bounds relies on accurate estimations of several other
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quantities, including recall and precision on the validation set and class prevalence

estimation in the test set. Especially as datasets scale to much larger sizes, our

bounds rely on these estimates. Our theory and experiments show we are able to say

more regarding performance guarantees as the gap between validation and testing set

sizes narrows.
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Chapter 4

A Bayesian perspective on record

linkage

In this chapter, we consider a specific clustering task known as record linkage (i.e.

entity resolution, deduplication). Record linkage usually involves identifying records

(i.e. samples) containing numerical, categorical and/or string data from one or

multiple databases which describe the same latent entity. The distinction between

the terms record linkage and clustering is often ambigious in the literature, so we

default the term more common in the respective area of research.

Traditional linkage methods that directly link records to one another become

computationally infeasible as the number of records grows [20, 105], and thus, it is

increasingly common for researchers to treat linkage as a clustering task, in which

latent entities are associated with one or more noisy database records, and the

inferential goal is to identify the latent entity underlying each observed database

record [86, 87, 88]. Although there are many probabilistic, generative models for

clustering — of which several have been used for record linkage — the theoretical

properties, such as performance bounds, have such not been critically assessed.

The work of [86, 87, 88] attempted to deconstruct distorted data by latent

variable mixture models. The authors achieved this by clustering similar records to

a hypothesized latent entity for each observed record, where their linkage structure

kept track of which latent entity belongs to the same observed records. This is

modeled through a latent variable mixture model with a distortion process on the
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data (sections 4.2.1 and 4.2.3). Thus, the main goal is to be able to take distorted

data and uncover the underlying structure in the presence of noise. This is similar to

signal processing, where a signal is received in the presence of some noise and often

the goal is to understand if the underlying true (latent) signal can be recovered. We

develop performance bounds under the framework proposed by [86, 87, 88].

We provide an upper bound on the Kullback-Leibler (KL) divergence between

models with different linkage structures and use it to provide a lower bound on the

minimum probability of associating a record (i.e. sample) with an incorrect latent

entity (i.e. cluster). More precisely, under the categorical model of [87, 88] and string

model of [86], we find the minimum probability of getting a latent entity incorrect.

Finally, we explore how our bounds perform in practice and describe their user

practicality.

4.1 Prior work

Bayesian methods and latent variable modeling have become recently popularized

in record linkage models. A major advantage of Bayesian methods is their natural

handling of uncertainty quantification for the resulting estimates. The first notion of

understanding a distortion process for record linkage is the hit-miss-model, which

uses a binary distortion process on the data [23]. Within the Bayesian paradigm,

most work has focused on specialized approaches related to linking two files [36, 95].

These contributions, while valuable, do not easily generalize to more than two files or

to de-duplication within a single file. For a review of recent development in Bayesian

methods, see [53].

The work of [87, 88] recently introduced a Bayesian model that simultaneously

handled record linkage and de-duplication for categorical data. Their approach

allowed for natural uncertainty quantification during analysis and post-processing.

Finally, [77] recently extended the work of [88] to both categorical and string valued

data using a coreference matrix or a partitioning approach. In the later paper, it was

shown that the coreference matrix is a special case of the linkage structure, thus, we

work with the linkage structure. Another advantage of [88] and similar approaches is

that their linkage structure is amenable to an efficient MCMC inference algorithm.

These models have become practically relevant as they have been shown to perform
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well on a variety of applications, including official statistics and medical data.

Given the noted distortion process, deriving performance bounds seems natural

to recover the underlying structure. For example, much work has been done in

information theory for subset selection in graphical model selection, signal de-noising,

compressive sensing, and others. In compressed sensing, one question recently ad-

dressed in [27], was directly measuring the part of the data from sounds and images

that will not be thrown away. We make a connection here, as in record linkage we wish

to take noisy, distorted data and recover this under the KL divergence. Divergence

functions by [47, 81] are useful in many applications including recent statistical appli-

cations of clustering, as done in [7] for hard clustering to obtain optimal quantization

by minimizing the Bregman divergence (motivated by rate distortion theory).

The rest of this chapter proceeds as follows. Two recent record linkage models are

given in Section 4.2; Section 4.2.1 and Section 4.2.3 review these models. Section 4.3

derives the respective performance bounds, and Section 4.4 shows performance of the

bounds in practice, discusses our findings and user practicality. Section Section 4.5

discusses future directions along this line of Bayesian clustering and record linkage.

4.2 Bayesian Models

We assume two Bayesian record linkage models, one dealing with categorical data

and the other dealing with both categorical and noisy string data, such as names,

addresses, etc. The first is that of [87, 88], and the second is that of [86].

4.2.1 Categorical Model

We review common notation to both models.1 Let X = (x1, . . . , xn) represent the

data indexed by i. Each record corresponds to one of N latent entities, indexed by j.

Assume N = ni without loss of generality. Each record or latent entity has values on

p fields, indexed by `, and are assumed be categorical and the same across all records

and entities [87, 88]. M` denotes the number of possible categorical values for the `th

field.

1For a toy example of the record linkage process, see the Supplementary Material 4.2.2.
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In both models, xi` denotes the observed value of the `th field for the ith record,

and yj` denotes the true value of the `th field for the jth latent entity. Then Λi

denotes the latent entity to which the jth record in the ith list corresponds, i.e.,

xi` and yj` represent the same entity if and only if Λi = j. Then Λ denotes the

Λi collectively. Distortion is denoted by zi` = I(xi` 6= yΛi`), where I(·) denotes the

indicator function. As usual, I represents the indicator function (e.g., I(xi` = m) is 1

when the `th field in record i has the value m), and let δa denote the distribution of

a point mass at a (e.g., δyΛi`
). The model of [87, 88] is:

xi` | Λi, yΛi`, zi`,θ`
ind∼

δyΛi`
if zi` = 0

MN(1,θ`) if zi` = 1

zi`
ind∼ Bernoulli(β`)

yj` | θ`
ind∼ MN(1,θ`)

θ`
ind∼ Dirichlet(µ`) and β`

ind∼ Beta(a`, b`)

Λi
ind∼ Uniform (1, . . . , N) , (4.1)

where MN denotes the Multinomial distribution and a`, b`,µ` are all known. Guidance

for the hyper-parameters and a justification of the (discrete) uniform prior are given

in [86, 87, 88]. Eq. (4.1) assumes that different records are independent conditional

on the deeper variables of the model. Moreover, it assumes the same conditional

independence of different fields for the same record.

4.2.2 Example of the Linkage Process

We provide a toy illustration of the general record linkage process in figure 4.1.

Consider three databases D1, D2, D3 and the notation already introduced, where

here k = 3. Suppose the “population” entities have four members, where name and

address are stripped for anonymity and they are listed by state, age, and sex, as is

often the case with de-identified data.
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For instance, assume the true latent entity vector y is known:

y =


NC, 72, F

SC, 73, F

PA, 91, M

VA, 94, M

 .

The observed records X are given in three separate databases (k=3), which would

combine into a three-dimensional array. We write this here as three two-dimensional

arrays for notational simplicity:

D1 =

NC, 72, F

SC, 70, F

PA, 91, M

 , D2 =

SC, 37 , F

VA, 93, M

PA, 92, M

 ,

D3 =


NC, 72 , F

NC, 72, F

SC, 72, F

VA, 94, M

 .
Here, for the sake of keeping the illustration simple, only age is distorted. Comparing

X to y, the intended linkage and distortions are

Λ =

1 2 3

2 4 3

1 1 2 4

 ,

z1 =

0 0 0

0 1 0

0 0 0

 , z2 =

0 1 0

0 1 0

0 1 0

 , z3 =


0 0 0

0 0 0

0 1 0

0 0 0

 .
In this linkage structure, every entry of Λ with a value of 2 means that some

record from X refers to the latent entity with attributes “SC, 73, F.” Here, the age

of this entity is distorted in all three databases, as can be seen from z. (Note that z,

like X, is also really a three-dimensional array.) Looking at z1 and z3, we see that
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there is only a single record in either list that is distorted, and it is only distorted in

one field. In list 2, however, every record is distorted, though only in one field.

Figure 4.1 illustrates the interpretation of the linkage structure as a bipartite

graph in which each edge links a record to a latent entity. For clarity, figure 4.1 shows

that X11 and X22 are the same entity and shows that X13, X21, and X34 correspond

to the same entity. The rest are non-matches (or singleton entities).

Figure 4.1: A general illustration of the record linkage process. We assume databases
D1, . . . Dk. We assume records X that we cluster to latent entities Y . Records that
belong to the same same latent entity are kept track of using the data structure or
linkage structure Λ.

4.2.3 Empirical Bayesian Model

The work of [86] assumes fields 1, . . . , ps are string-valued, while fields ps+1, . . . , ps+pc

are categorical, where ps + pc = p is the total number of fields. They assume an

empirical Bayesian distribution on the latent parameter. For each ` ∈ {1, . . . , ps+pc},
let S` denote the set of all values for the `th field that occur anywhere in the data,

i.e., S` = {xi` : 1 ≤ i ≤ k, 1 ≤ j ≤ ni}, and let α`(w) equal the empirical frequency

of value w in field `. Let G` denote the empirical distribution of the data in the `th

field from all records in all databases combined. So, if a random variable W has
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distribution G`, then for every w ∈ S`, P (W = w) = α`(w). Hence, let G` be the

prior for each latent entity yj`. The distortion process changes such that

P (xi` = w | Λi, yΛi`, zi`) =
α`(w) exp[−c d(w, yΛi`)]∑
w∈S`

α`(w) exp[−c d(w, yΛi`)]
,

where c > 0 is a fixed normalizing constant corresponding to an arbitary distance

metric d(·, ·). Denote this distribution by F`(yΛi`). The model becomes

xi` | Λi, yΛi`, zi`
ind∼


δ(yΛi`) if zi` = 0

F`(yΛi`) if zi` = 1, ` ≤ ps

G` if zi` = 1, ` > ps

yj`
ind∼ G`

zi` | βi`
ind∼ Bernoulli(βi`)

βi`
ind∼ Beta(a, b)

Λi
ind∼ Uniform (1, . . . , N) , (4.2)

where all distributions are also independent of each other; assume that a, b,N are

assumed known. This framework was shown to work well in applications and simu-

lation studies, however, it was quite sensitive to the choice of the hyperparameters.

This method beat supervised methods, such as random forests when the amount of

training data input into the supervised methods was < 10%.

Figure 4.2 contains a graphical representation of models 4.1-4.2.

Figure 4.2: Graphical representation of models 4.1-4.2.
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4.3 Performance Bounds

Recall the connection to KL divergence in the sense that for any two distributions P

and Q, the maximum power for testing P versus Q is exp{−nDKL(P ||Q)}. Hence,

a low value of DKL means that we need many samples to distinguish P from Q.

A natural question is how does changing Y (latent entity) or Λ (linkage structure)

change the distribution of X (observed records)? We search for both meaningful

upper and lower bounds, since an upper bound will say that P and Q are never more

than so far apart, whereas a lower bound says how easy it is to tell P and Q apart.

Moreover, we investigate how well can we recover Y (latent entity) and Λ (linkage

structure) from X (data).

Assuming the conditions of [86, 87], let P = {f(X | Y,Λi,θ,β) : ∀Λi ∈ {1, . . . , N}.}
We know that X1, X2, . . . , XN are all independent given (Y,Λ,θ,β) under both

P,Q ∈ P . This implies that DX1,X2,...,XN
(P‖Q) =

∑
iDXi

(P‖Q). We first provide a

theorem under the model of [87], which assumes categorical data and a hierarchical

model. In Theorem 7, we find the minimum probability of getting a latent entity

wrong. Moreover, we are able to say that with growing distortion of the data, there

is no difference between two latent entities and the bound becomes infinite and

non-informative in this case. Next, under the model of [86] we provide a general

theorem, which assumes both categorical and noisy text data. This theorem provides

an upper bound on the KL divergence of arbitrary distributions P and Q.

4.3.1 Kullback-Leibler Divergence under Categorical Data

We use Fano’s inequality [73] to bound the probability of misclassification, as a

function of the KL divergence between P and Q, as defined in the previous section.

Assume that Λ and Λ̂ are two distinct linkage structures that correspond to the same

latent entity (y). Let r + 1 be the cardinality of P , i.e. r + 1 = N .

Theorem 7. This result finds an upper bound on the KL divergence and a lower

bound for the probability that model 4.1 gets the linkage structure incorrect. Let

γ = maxΛi 6=Λ′ij
2
∑

ij` I(yΛi` 6= yΛ′ij`
)(1− β`) ln

{
1

minm θ`mβ`

}
.

i) The KL divergence is bounded above by γ. That is, DX(P ||Q) ≤ γ ∀P,Q ∈ P.
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ii) The minimum probability of getting a latent entity wrong is Pr(Λij 6= Λ′i) ≥

1− γ + ln 2

ln r
, ∀i, j

That is, as the latent entities become more distinct, γ increases. On the other

hand, as the latent entities become more similar, γ → 0.

Remark. Consider Theorem 7 (i). Suppose β` → 1. Then DX ≥ 0. If instead β` → 0,

then DX ≥ 1. The lower bound is only informative when β` → 0. We have more

information when the latent entities are separated.

Proof. To show this, we simply apply Pinsker’s inequality, where for all P,Q ∈ P :

D(P‖Q) ≥ 2||P −Q||21 =⇒

D(P‖Q) ≥ I(yΛi` 6= yΛ′i`
)(1− β`)2 =⇒

DX(P‖Q) ≥
∑
ij`

I(yΛi` 6= yΛ′i`
)(1− β`)2. (4.3)

Proof. We assume the model of [87, 88], which assumes that data is categorical. We

assume model 4.1 holds in section 4.2.1. We first prove (i). Consider f(X | Y,Λ,θ,β).

Then

Pr(xi` = m | Y,Λ,θ,β) = 1(yΛi` = m)(1− β`) + θ`mβ`.

It follows from equation 4.4 that

Dxi`(P‖Q) =

M∑̀
m=1

I(yΛi` = m)(1−β`) + θ`mβ`}× log

[
I(yΛi` = m)(1− β`) + θ`mβ`
I(yΛ′i`

= m)(1− β`) + θ`mβ`

]
.

It directly follows that

DX(P‖Q) =
∑
ij`m

{I(yΛi` = m)(1− β`) + θ`mβ`} log

[
I(yΛi` = m)(1− β`) + θ`mβ`
I(yΛ′i`

= m)(1− β`) + θ`mβ`

]}
.
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If yΛi` 6= yΛ′i`
, then

‖P −Q‖1 =
∑
m

|I(yΛi` = m)(1− β`) + θ`mβ` −I(yΛ′i`
= m)(1− β`)− θ`mβ`

∣∣ (4.4)

= 2(1− β`). (4.5)

Eq. (4.5) holds since P (m) = Q(m) unless m = yΛi` or m = yΛ′i`
. If yΛi` = yΛ′i`

, then

P = Q and ‖P − Q‖1 = 0. The reverse Pinsker inequality of [12] relates the KL

divergence to the L1 norm in the following way: D(P‖Q) ≤ ‖P −Q‖1 ln{(minQ)−1}.
Using this, we find that (if yΛi` 6= yΛ′i`

), then

D(P‖Q) ≤ 2(1− β`) ln

{
1

minm I(yΛ′i`
= m)(1− β`) + θ`mβ`

}
≤ 2(1− β`) ln

{
1

minm θ`mβ`

}
.

Hence,

max
P,Q∈P

DX(P‖Q) ≤ max
Λi 6=Λ′i

2
∑
ij`

I(yΛi` 6= yΛ′i`
)(1− β`) ln

{
1

minm θ`mβ`

}
:= γ.

This proves (i). We now prove (ii). Using Fano’s inequality [73], the minimum

probability of getting a latent entity wrong is Pr(Λi 6= Λ′i) ≥ 1− γ+ln 2
ln r

, where r + 1

is the cardinality of P , i.e. r + 1 = N . As the latent entities become more distinct, γ

increases. On the other hand, as the latent entities become more similar, γ → 0.

4.3.2 KL Divergence Bounds for String and Categorical

Data

We now consider P and Q under [86] for both categorical and noisy string data.

Recall that β` tunes the amount of distortion as defined in Eq. (4.2). Recall that

d(·, ·) denotes any arbitrary distance metric between an observed string and a latent

string as seen in Eq. (4.2), and c > 0 is a fixed normalizing constant corresponding

to the distance metric d.
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In Theorem 8, for any distinct linkage structures, the minimum probability of

getting a latent entity wrong is governed by a lower bound, which is growing at a

rate c→∞ that is determined by the moment generating function of the distances

between an observed string in data and a latent string.

Theorem 8. Assume data X, and distributions P,Q ∈ P defined in section 4.3.

Assume two distinct linkage structures, denoted by yΛi`, yΛ′i`
.

i) There is an upper bound on the KL divergence between any P,Q ∈ P given by

κ, that is DX(P ||Q) ≤ κ.

ii) Pr(Λi 6= Λ′i) ≥ 1− κ+ ln 2

ln r
, where

κ = max
Λi 6=Λ′i

[
2
∑
`

(1− β`)I(yΛi` 6= yΛ′i`
) +

∑
`m

I(yΛi` 6= yΛ′i`
)
(

1− e−cd(yΛi`
,yΛ′

i
`)
)

× E[e−cd(m,yΛi`
)]

]
ln{(minQ)−1}

and r + 1 is the cardinality of P.

Proof. We first prove (i). Consider

Pr(xi` = m | Y,Λ,θ,β) = Pr(xi` = m | Y,Λ,θ,β, zi` = 1)× Pr(zi` = 1 | Y,Λ,θ,β)

+ Pr(xi` = m | Y,Λ,θ,β, zi` = 0)× Pr(zi` = 0 | Y,Λ,θ,β)

∝ I(yΛi` = m)(1− β`) + α`(xi`)β` ×
[

exp{−c d(xi`, yΛi`)}
]
.

(4.6)

Suppose that yΛi` 6= yΛ′i`
. Equation 4.6 implies that

Dxi`(P‖Q) ∝
M∑̀
m=1

I(yΛi` = m)(1− β`) + α`(m)β` ×
[
e−c d(xi`,yΛi`

) × φ
]
, (4.7)

where

φ = log

 I(yΛi` = m)(1− β`) + α`(m)β`

[
e−c d(m,yΛi`

)

]
I(yΛ′i`

= m)(1− β`) + α`(m)β`

[
e
−c d(m,Y ′

Λ′
i
`
)
]
 .
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We now consider ‖P −Q‖1 and by equation 4.7, we find

‖P −Q‖1 =
∑
m∈M`

∣∣I(yΛi` = m)(1− β`) + α`(m)β` exp{−c d(m, yΛi`
)}

−I(yΛ′i`
= m)(1− β`)− α`(m)β` exp{−c d(m, yΛ′i`

)}
∣∣ . (4.8)

Then by equation 4.8, it is clear that

‖P −Q‖1 ≤
∑
m

(1− β`)
∣∣[I(yΛi` = m)− I(yΛ′i`

= m)
]∣∣

+
∑
m

α`(m)β` ×
∣∣exp{−c d(m, yΛi`)− exp{−c d(m, yΛ′i`

)}
∣∣

≤ 2(1− β`) + β`
∑
m

α`(m) |exp{−c d(m, yΛi`) − exp{−c d(m, yΛ′i`
)}
∣∣ .

Now assume that two field attributes are different. That is, suppose there exists an

m 6= m′. Then we assume that there exists a δ > 0 such that d(m,m′) ≥ δ. By the

reverse triangle inequality, for any m,m′,m′′,

|d(m,m′)− d(m,m′′)| ≤ d(m′,m′′) =⇒ e−c[d(m,m′)−d(m,m′′)] ≥ e−cd(m′,m′′). (4.9)

Equation 4.9 in turn implies that∑
m

[(
1− e−c[d(m,m′)−d(m,m′′)]

)
e−cd(m′,m′′)α`(m)

]
≥
∑
m

(
1− e−c[d(m′,m′′)]

)
e−cd(m′,m′′)α`(m).

Then
∑

m α`(m)
[
e−cd(m,m′) − e−cd(m,m′′]

]
=
∑

m α`(m)e−cd(m,m′)
(
1− e−cd(m′,m′′)

)
=(

1− e−cd(m′,m′′)
)∑

m α`(m)e−cd(m,m′) =
(
1− e−cd(m′,m′′)

)
E[e−cd(m,m′)] where M ∼ α`.

That is,
∑

m α`(m)e−cd(m,m′) is the moment generating function of d(M,m′)

(evaluated at c), where M ∼ α`. This implies that ‖P − Q‖1 ≤ 2(1 − β`) +

β`
∑

m

(
1− e−cd(yΛi`

,yΛ′
i
`)
)
E[e−cd(m,yΛi`

)]. Then by reverse Pinker’s inequality [12],
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we can write

max
P,Q∈P

DX(P ||Q) ≤ max
Λi 6=Λ′i

[
2
∑
ij`

(1− β`)I(yΛi` 6= y′Λi`
)

+
∑
ij`m

I(yΛi` 6= y′Λi`
)
(

1− e−cd(yΛi`
,yΛ′

i
`)
)

×
[
E[e−cd(m,yΛi`

)]

]
× ln{(minQ)−1}

]
=: κ,

where Q = I(yΛ′i`
= m)(1−β`)−α`(m)β` exp{−c d(m, yΛ′i`

)}. Thus, (i) is established.

Using Fano’s inequality, we find that Pr(Λ̂i 6= Λi) ≥ 1− κ+ln 2
ln r

.

We have established that for any yΛi` 6= yΛ′i`
, the minimum probability of getting

a latent entity wrong is governed by the constant c. That is, the lower bound grows as

c goes to ∞, and its rate of growth is determined by the moment generating function

of the distances. We have now established (ii).

4.4 Simulation Study and Discussion

We consider how the bounds in Sections 4.3.1 and 4.3.2 hold for two simulated exper-

iments. In our experiments Experiment I and Experiment II, synthetic categorical

data are generated according to either model 4.1 or 4.2 using the parameters shown

in Table 4.1 and 4.2, respectively. In order to consider a realistic set of strings for

S, we consider the set of 20 most popular female baby names from 2014, according

to the United States Census. Then for the distance d, we consider the generalized

Levenshtein edit distance.

We then generate both categorical and string records according to either model 4.1

or 4.2. For each experiment, we vary exactly one of the parameters to demonstrate its

impact of the linkage error rate Pr((Λ̂ij, Y ) 6= (Λi, Y )). We choose the other values

such that the performance is neither extremely low nor extremely high. We set the

distortion parameter β` to the same value for each `, i.e. β` = 0.6 denotes a distortion

probability of 0.6 for every field. β` = 0.0 to 1.0 means we started with β` = 0 for all

` and swept the values until β` = 1 for all `. Recall p is the number of fields, and
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Experiment N β` p = pc θ`m
Fig. 1(a) 10 to 500 0.6 3 0.1
Fig. 1(b) 100 0 to 1 3 0.1
Fig. 1(c) 100 0.6 1 to 8 0.25
Fig. 1(d) 100 0.8 5 1

46
to 1

Table 4.1: Categorical Experiments

Experiment N β` p = ps c
Fig. 2(a) 100 to 500 0.6 1 1.0
Fig. 2(b) 100 0.2 to 1 1 1.0
Fig. 2(c) 100 0.6 1 to 10 1.0
Fig. 2(d) 100 0.6 1 0 to 2

Table 4.2: String Experiments

thus the maximum value of `. We also set each θ`m to the same value, i.e. θ`m = 0.1

denotes θ`m = 0.1 for all ` and all m. This further implies each field ` takes on exactly

M` = 1/θ`m values in order for θ` to be a valid probability distribution.

We compare the bound in Theorem 7 to two record linkage algorithms [86, 87, 88].

The first is an exact sampler, which samples directly from Pr(Λi|xi, Y, z). The second

is a more realistic Gibbs sampler with empirically motivated priors proposed by

[86]. We run the Gibbs sampler for 10,000 iterations on all experiments to ensure

proper mixing. There is some difficulty in comparing Λ to Λ̂, as there are multiple

equally correct modes due to arbitrary re-orderings of the latent individuals Ŷ and

corresponding linkage structure Λ̂. Even though the Gibbs sampler may infer the

correct latent individuals Y and linkage structure, because the ordering is arbitrary,

it is unlikely that Λ = Λ̂. To avoid such an issue of label switching, we fix Ŷ during

the sampling process.

Specifically, we compare the bound to the empirical error rate of the Gibbs sampler

proposed by [86]. In order to compute the empirical probability Pr(Λ̂ij 6= Λi), we

hold Y fixed during Gibbs sampling to ensure errors in Λ̂ are not due to arbitrary

changes in the ordering of the labels of Y . In addition, we compare the linkage error

rate to an exact sampler, which samples directly from Pr(Λ|X, Y, z).
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Results of Experiment I In Figures 4.3 (a)-(d) we vary the number of records N ,

distortion parameter β, number of fields p and number of values each field takes M`,

respectively. The empirical results demonstrate Theorem 7 captures the dependence

between the error rate and the all relevant latent parameters θ, N and β. Specifically,

linking records becomes more difficult as N increases, the distortion parameter β

increases, the number of fields p decreases or the number of values each field can

take M` decreases. The bound nicely captures the logarithmic increase in error with

respect to N in Figure 4.3 (a), which gives hope for linking records in very large

databases. Other terms appear to be Ō(n) when not near extreme error values,

implying low noise and a larger feature space are essential to performing high quality

record linkage.

Results of Experiment II Figures 4.4 (a)-(d) show Theorem 8 is tight to the

true performances on string data when varying N , β, number of string fields ps and

c, respectively. As expected, and similarly to the categorical results, linking records

becomes more difficult as N increases, the distortion parameter β increases and the

parameter c decreases. The effects of parameter variation is less noticeable in the

string experiments due to the fact that linking string fields is easier than ones that

have been anonymized, i.e., categorical fields.

The Gibbs sampler (blue diamonds) performs almost as well as the exact sampler

(grey circles). In fact, due to the conditional entropy version of Fano’s inequality

and the fact that H(X|Y ) ≤ H(X), any Gibbs sampler cannot perform better in

expectation than an exact sampler. Thus, we believe the gap between the bound

(gold squares) and the exact sampler does not necessarily indicate the existence of a

better algorithm, but perhaps only some unnecessary slack due to the application of

Pinsker’s and then reverse Pinsker’s inequalities.

4.4.1 Discussion of Results

As illustrated in Theorems 7 and 8 we have derived an upper bound on the KL

divergence as well as lower bounds for misclassifying a latent entity. In Theorem 7 (i),

we showed that the latent entities become more distinct when γ is increasing. This

is in contrast to when γ gets closer to 0, since then the latent entities become more
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Figure 4.3: Theorem 7 (gold squares) holds on simulated categorical records compared
to exact sampling (grey circles) and Gibbs sampler (blue diamonds).
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Figure 4.4: Theorem 8 (gold squares) holds on simulated noisy string records compared
to exact sampling (grey circles) and Gibbs sampler (blue diamonds).
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similar. In Theorem 7 (ii), we showed that as the distortion parameter β` → 1, then

the upper bound γ is infinite. In practice, as illustrated in [87], the latent entities are

difficult to distinguish when the amount of distortion is more than 5% at every field

value. Thus, this corresponds to when the bound is too loose. On the other hand, as

β` → 0, the latent entities become more separated.

We discuss how separated the latent entities are under choices of β`, θ` and N ,

providing guidance to the user in this setting given our simulation results. As practical

guidance when the distortion is between 0 to 5% at every feature value, the latents

will be more separated and the bound will be be loose. On the other hand, as β`

increases, the bound becomes tighter. The choice of β` can be made using subjective

information about the underlying data and tuned using the hyper-parameters a, b.

(See [86, 87] for choosing such values). On the other hand, we can see that for more

realistic values of the distortion parameter in Figure 4.3 (a), (b), and (d) , the bound

is quite loose when the distortion parameter β` is large. Thus, a loose bound here is

warranted due to the amount of noise or model-misspecification being placed into the

model as well as the fact that all of the fields being used are categorical. Such results

match the intuition given in [87].

In Theorem 8 (ii), we derived a lower bound where the minimum probability of

getting a latent entity wrong is controlled by c, which is determined by the moment

generating function of the distances between an observed string and a latent string.

This bound has the same type of form as the bound in Theorem 7, however, since

we now have string-valued data, we see that the minimum probability of getting

a latent entity wrong is dominated by the string-valued variables and specifically,

the distances functions used and the constants used. In comparison to [86], this

completely matches up with the sensitivity that was seen to the choice of the distance

functions as well as the choice of c as this will completely dominate the posterior,

and hence, the ability to tell latent entities apart under this posterior.

In practice, the driving force of the tightness of the bound is c, the steepness

parameter of the string distribution in equation 2. As c increases, it is less likely

for a string-valued record’s features to be distorted to values that are far from that

of their latent feature values. This is verified in Figure 4.4(c), where linkage error

decreases as c increases. The work of [86] gave practical choices for c, which were

[0,2]. Similarly, we can speak to the tightness of d, which relies on the distortion
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parameter β` not being too small in practice, as verified in Figure 4.4(b). In terms of

the bounds found in Theorem 1 and 2, the empirical Gibbs sampler has tight bounds

in almost all situations, except when the number of features is large, N is too small,

or β` is too small (and similarly for θ`). This coincides with exactly what we would

expect in practice from the real experiments of [86].

For all applications in both categorical and string data, we expect the bounds to

be as loose in practice (corresponding to easier record linkage), when the distortion

parameter is small (0 − 4) and when the the number of fields is large (p ≥ 5) or

the number of values that each field can take, M`, increases (this will be application

specific). Finally, the bounds should be tighter, corresponding to more difficult record

linkage, as the total number of records N increases (see Figure 4.3). These parameter

values match almost exactly with two real data experiments (corresponding ranges of

parameters) as well as a simulation study from [87, 88].

4.5 Conclusions

First, we have derived general performance bounds for record linkage, making con-

nections to KP models and other related Bayesian models. More specifically, we have

drawn connections to a wide class of models from Bayesian record linkage. Second,

our bound for the categorical Bayesian record linkage model is easily interpretable and

matches the intuition of the generative model. Third, our bound for the categorical

and noisy string model, takes a similar form to that of the categorical model. We

are also able to interpret this bound in a way that aligns with the interpretations

[86, 87, 88] as well as show the practicality of our bounds to the aforementioned papers.

More specifically, our bounds are empirically loose for categorical data, which is not

unexpected since there is little information available to match on. This contrasts the

empirical tight bounds for both categorical and noisy string data. As illustrated in

our experiments, with just one string variable, our bounds become much tighter, and

as the number of strings increases, the bound becomes more tighter when compared

to exact and Gibbs sampling.

In addition, there has been early work in Bayesian nonparametrics to push forward

record linkage. The work of [66] pointed out that most clustering tasks assume cluster

sizes grow linearly with the size of the database. Such examples include infinitely
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exchangeable clustering models, including finite mixture models, Dirichlet process

mixture models, and Pitman–Yor process mixture models, which all make this linear

growth assumption. However, in record linkage such an assumption is undesirable

since linkage methods require models that yield clusters whose sizes grow sublinearly

with the total number of data points. This observation led the authors to define the

microclustering property as well as a new model exhibiting such growth. Our work

has been able to provide bounds for the aforementioned work since the prior consider

is a KP model. In future work it would be helpful to try and draw connections

between those proposed in [66] and [86, 87, 88] in order to generalize such bounds

and provide tighter bounds using conditional entropy or other sophisticated bounding

methods.

The contents of this chapter were presented at the 2017 International Conference

on Artificial Intelligence and Statistics (AISTATS) [92].
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Learning on clusters
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Chapter 5

Challenge of Dependency Leakage

Machine learning systems increasingly depend on pipelines of multiple algorithms to

provide high quality and well structured predictions. This chapter argues interaction

effects between machine learning algorithms can cause subtle adverse behaviors that

may not be initially apparent. In particular, we focus on the broad class of prediction

and clustering problems, where clustering algorithm errors impact the predictor’s

performance on these clusters. No previous work has been able to characterize the

conditions under which these effects occur, and if they do, what properties they

have. We precisely answer these questions by providing theoretical properties which

hold in various settings, and prove that expected behavior rapidly decays with even

minor interaction effects. Fortunately, we are able to leverage these same properties

to construct hypothesis tests and scalable estimators necessary for correcting the

problem. Empirical results on benchmark datasets validate our characterizations.

5.1 Introduction

With the increasing prevalence of machine learning solutions, there is a growing

concern over the interactions between algorithms in complex systems [80]. Leveraging

multiple learning algorithms is a common technique to optimize performance and

incorporate structured prior knowledge. For example, most autonomous vehicles

benefit from using separate models for perception of traffic lights, object detection and

tracking, localization, predicting actor behavior and ultimately planning an optimal
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trajectory. Although attempting to directly map from visual inputs to control outputs

is simpler, this approach is known to achieve inferior performance. Breaking the larger

problem into a sequence of smaller problems may be advantageous for many reasons,

but we argue it can create additional challenges which must be addressed. At the

most basic level, the errors or modifications in one component can cause dangerous

and unintended behavior in other components or in the overall system.

In this chapter, we address the broad class of interaction effects between clustering

and prediction algorithms. In the self-driving vehicle example, this encompasses a

significant portion of the autonomy stack, including clustering tasks (e.g. pixel and

LIDAR point segmentation) and prediction tasks (e.g. object type, current and future

states). We observe this is often also a concern in domains including online shopping,

medical systems and census statistics, which are further explored in the experimental

section.

To elucidate the potential behavior induced by interaction effects, consider the

problem of predicting heart disease from a collection of medical records. Each patient

may have several records due to multiple hospital visits but it is unlikely we are able

to collect multiple records for every patient. Thus, we must find a learner which

generalizes well to new patients not in our training set. The typical approach is

to match records belonging to the same individual using some record linkage (i.e.

clustering) algorithm. Then the records are split by patient into a training and

validation sets, such that all records for a single patient end up in either the training

or validation set. This provides an unbiased estimate of the learner’s error on new

patients, i.e. the out-of-cluster (OOC) loss.

The underlying challenge in this example is that we do not have access to the

oracle clustering (i.e. the mapping from medical records to patients), but only a

noisy approximation of it from the record linkage algorithm. Even in relatively low-

noise domains like medical and census, these algorithms are known to be imperfect

[91, 107, 108]. If we instead take the approach of splitting the dataset according to

the approximated patient clustering, this effectively causes samples to spill across the

true training and validation folds. Some samples which should have been grouped

with a validation patient may have ended up with a training patient, and vice versa,

without our knowledge. In other words, the training and validation sets are no longer

conditionally independent, leading to a problem called dependency leakage [9]. This
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allows the learner to overfit to patient-specific features and optimistically biases our

OOC loss estimate. For example, if a patient’s records are incorrectly clustered and

samples are partitioned into both the training and validation sets, the learner is

rewarded for predicting whether a patient has heart disease based on their name –

which clearly will not generalize to new patients. This overfitting need not be so

blatant. The learner may overfit to subtle patterns in a chest x-ray, a form of bias

which may be hard to identify even by experienced radiologists.

This interaction between clustering errors and a prediction algorithm is particularly

dangerous because our learner may appear to be doing well on the validation set,

but does far worse when we deploy it in the real world on new patients. This

is compounded by the fact that some application domains (e.g. medical, census)

involve extreme consequences, including patient misdiagnosis and misguided public

policy decisions. Note that this bias is undetectable during standard cross-validation

procedures unless an explicit attempt is made to estimate and correct for it, which is

the primary focus of this paper. Saeb et al. note that over half of selected medical

studies failed to account for any clustering, allowing records for the same patient to

occur in both the training and validation datasets, a significant statistical mistake

[79].

The contributions and organization of the remainder of this chapter is as follows.

We begin in Section 5.2 by formalizing the problem and notation. In Section 5.3, we

present theoretical properties for interaction effects between clustering and prediction

algorithms which hold under various conditions. In Section 5.4, we demonstrate how

these properties can be used to construct a simple hypothesis test for the presence of

bias in cross-validation results. Finally, we conducted empirical studies on Parkinson’s,

heart disease, 1994 US Census and Dota 2 video game data, and provide results in

Section 5.5 which demonstrate the practical behavior of interaction effects closely

aligns with our theoretical results.

5.2 Problem Statement

More formally, let X = x1, . . . , xnx be the nx observed samples, y be the corresponding

labels, and c : {1, . . . , nx} → {1, . . . , k} be the oracle clustering algorithm which

partitions the data into k clusters (e.g. k is the number of patients, nx is the number
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of medical records). Our high level goal is to train a prediction algorithm f which

generalizes to new clusters, i.e. has low out-of-cluster loss. The the leave-one-cluster-

out (LOCO) estimator

ÊrrLOCO =
1

|c−1
1 |

∑
j∈c−1

1

`(yj, f(xj | xc̄−1
1
, yc̄−1

1
)), (5.1)

is an unbiased estimator of the OOC loss1. Here, T = (Xc̄−1
1
, Yc̄−1

1
) and V =

(Xc−1
1
, Yc−1

1
) denote the training and validation sets, where c−1

i and c̄−1
i denote all

sample indices belonging and not belonging to cluster i, respectively. Without loss of

generality, we have arbitrarily chosen to leave the first cluster out.

The key question here is: how will errors in the clustering algorithm ĉ effect our

ability to train and validate the predictor f? By examining the LOCO estimator used

to train and validate f , we see that errors in ĉ result in noisy training and validation

sets T̂ and V̂ , where some samples have flipped between T and V . For now, consider

the unidirectional leakage scenario where samples move from V to T to create V̂
and T̂ , such that T̂ n∼ MPT ,PV (1 − p0, p0), where Ma,b(wa, wb) denotes the mixture

distribution of a and b with weights wa and wb and p0 is the leakage probability (a

function of ĉ’s error). If the clustering is perfect (i.e. ĉ = c), then p0 = 0. Let ei be

the expected loss at some other p = i/n fraction of corrupted samples (we use the

notational shorthand e(p) to denote epn). The expected OOC loss is equivalent to e0

(i.e. zero dependency leakage, p = 0), but we only observe the empirical loss at some

p0 > 0. Thus, our specific goals are to characterize the behavior of the interaction

effects e and to efficiently estimate e0 in order to train and validate f .

5.3 Theoretical Properties

In this section, we present theoretical results on interaction effects between prediction

and clustering algorithms. First, we prove that under mild conditions, the sequence

of losses e = e0, e1, . . . , en is monotonically decreasing due to dependency leakage.

Second, under slightly stronger conditions, the sequence will be convex with respect

1An unbiased estimate of training on k − 1 clusters. It is slightly biased compared to training on
all k clusters.
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to p. Intuitively, errors in the clustering algorithm allows the prediction algorithm to

‘peak’ at samples in the validation distribution, which will improve its performance

with diminishing returns.

We say a learner f is optimal under its training distribution if

f(·|T ) ∈ argmin
f∈F

Ex,y∼PT `(f(x), y). (5.2)

Generally speaking, this tends to be true for large |T |, small model complexity of F
or sufficient regularization in `. This does not imply f is overfit to the training set,

but in fact that it generalizes well across PT .

Theorem 9. The sequence e0, e1, . . . , en is monotonically decreasing if f is optimal

under its training distribution.

Prior to introducing the full proof, we begin by introducing a key lemma about

the minimization of function mixtures.

Lemma 10. For functions a, b : Θ→ R and α ∈ [0, 1],

a(argmin
θ∈Θ

(αa(θ) + (1− α)b(θ)))

b(argmin
θ∈Θ

(αa(θ) + (1− α)b(θ)))

are monotonically decreasing and increasing, respectively, with respect to α.

Proof. Let ∆(θ) = a(θ)− b(θ), 1 ≥ j > i ≥ 0 and

θi ∈ argmin
θ∈Θ

b(θ) + i∆(θ)

θj ∈ argmin
θ∈Θ

b(θ) + j∆(θ)

Then a is monotonically decreasing with respect to α if and only if a(θi) ≥ a(θj).

Case 1: θi = θj. Then a(θi) = a(θj), b(θi) = b(θj) and the statements holds.

Case 2: θi 6= θj. Then both the following conditions must be true.

b(θj)− b(θi) + i∆(θj)− i∆(θi) > 0 (5.3)

b(θj)− b(θi) + j∆(θj)− j∆(θi) < 0 (5.4)
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If Eq. (5.3) did not hold, then θj would have been optimal at α = i, i.e. θj ∈
argminθ∈Θ b(θ)+ i∆(θ). Likewise, if Eq. (5.4) did not hold, then θi ∈ argminθ∈Θ b(θ)+

j∆(θ).

Together, they imply

b(θj)− b(θi) + i∆(θj)− i∆(θi) > b(θj)− b(θi) + j∆(θj)− j∆(θi)

i∆(θj)− i∆(θi) > j∆(θj)− j∆(θi)

(i− j)(∆(θj)−∆(θi)) > 0

∆(θj)−∆(θi) < 0

since i− j < 0. Plugging this into Eq. (5.3),

b(θj)− b(θi) + i∆(θj)− i∆(θi) > 0

b(θj)− b(θi) > i(∆(θi)−∆(θj))

b(θj)− b(θi) > 0 (5.5)

which proves the second statement. Finally, plugging Eq. (5.5) into Eq. (5.4) concludes

the proof.

(1− j)(b(θj)− b(θi)) + j(a(θj)− a(θi)) < 0

a(θj)− a(θi) < 0

The proof of Theorem 9 follows.

Proof. Direction V to T We say f is optimal under its training distribution if

f(·|T ) ∈ argmin
f∈F

Ex,y∼PT `(f(x), y).

Let f0, f1, . . . , fn be models learned at each level of dependency leakage, such that

each model is optimal under its training distribution, i.e.

fi ∈ argmin
f∈F

Ex,y∼MPT ,PV (1− i
n
, i
n

)`(f(x), y).
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The sequence e0, e1, . . . , en is monotonically decreasing when

ei − ei+1 ≥ 0 ∀i ∈ {0, . . . , n− 1}.

Starting from the definition of e and using the notational shorthand `P (f) =

Ex,y∼P `(f(x), y),

ei = Ex,y∼PV `(fi(x), y)

= `PV (fi)

= `PV (argmin
f∈F

Ex,y∼MPT ,PV (1− i
n
, i
n)`(f(x), y))

= `PV

(
argmin
f∈F

i

n
`PV (f) +

(
1− i

n

)
`PT (f)

)
(5.6)

By Lemma 10, e is monotonically decreasing with respect to i
n
, and thus also with

respect to i since n is a fixed constant.

Direction T to V. In this direction, e will further be linear:

e0 = E
x,y∼PV ,T

n∼PT `(f(x|T ), y)

en = E
x,y∼PT ,T

n∼PT `(f(x|T ), y)

ei = E
x,y∼MPT ,PV ( i

n
,1− i

n),T n∼PT `(f(x|T ), y)

=

(
i

n

)
E
x,y∼PT ,T

n∼PT `(f(x|T ), y) +

(
1− i

n

)
E
x,y∼PV ,T

n∼PT `(f(x|T ), y)

=

(
i

n

)
en +

(
1− i

n

)
e0

and en ≤ e0 by the assumption that f is optimal under its training distribution.

This theorem implies that the interaction will always optimistically bias our

cross-validation results. This is in fact the most dangerous type of bias, as our heart

disease classifier will perform well on the off-line hold-out set, but then perform worse

when we deploy it in the real world on new patients or at new hospitals. If f is not

optimal among F , it is possible to construct counterexamples such that e0, . . . , en is
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not monotonically decreasing.

In our second theoretical result, we show that the expected loss is convex with

respect to the strength of interaction effect p. Let `P (f) = Ex,y∼P `(f(x), y) be the

expected loss of the learner f under distribution P . Then the following theorem

holds.

Theorem 11. The sequence e0, e1, . . . , en is convex if f is optimal under its training

distribution and `PT and `PV are strictly convex and differentiable over f .

Prior to discussing the proof, we begin by introducing a lemma on the minimization

of mixtures of convex functions.

Lemma 12. For α ∈ [0, 1], let a, b : Θ → R be strictly convex and differentiable

(where ȧ denotes ∂a
∂θ

) over

Θ∗ = {θ ∈ argmin
θ∈Θ

(αb(θ) + α∆(θ))} ∀α ∈ [0, 1]

= {θ ∈ g(α)} ∀α ∈ [0, 1] ⊆ Θ.

If ȧ
ḃ

is convex, decreasing over Θ∗, then

a(argmin
θ∈Θ

(αa(θ) + (1− α)b(θ)))

is convex over α.

Proof. If ȧ
ḃ

is convex, decreasing then −ḃ
∆̇

is also convex decreasing.

ȧ

ḃ
convex, decreasing⇔ −∆̇

ḃ
concave, increasing (5.7)

because −∆̇
ḃ

= ḃ−ȧ
ḃ

= 1− ȧ
ḃ
.

Further, we know −∆̇
ḃ
≥ 0 because ȧ ≤ 0 and ḃ ≥ 0 by Lemma 10. Then −ḃ

∆̇
is

convex decreasing by the composition of the convex, decreasing function 1
x

and the

concave increasing −∆̇
ḃ

. Note in the case where ∆̇ = 0, g(α) is constant and the

lemma holds.
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5. Challenge of Dependency Leakage

At the minimum of b(θ) + α∆(θ),

0 = ḃ+ α∆̇

α =
−ḃ
∆̇

Thus, g−1(θ) = −ḃ
∆̇

is convex, decreasing and g(α) is concave, increasing. Finally

a(g(α)) is convex, decreasing by the composition of a convex, non-increasing and

concave function.

The proof for Theorem 11 follows.

Proof. Direction T to V Holds by Theorem 9, as linearity implies convexity.

Direction V to T Starting from the definition of e and using the notational

shorthand `P (f) = Ex,y∼P `(f(x), y),

ei = Ex,y∼PV `(fi(x), y)

= `PV (fi)

= `PV (argmin
f∈F

Ex,y∼MPT ,PV (1− i
n
, i
n

)`(f(x), y))

= `PV

(
argmin
f∈F

i

n
`PV (f) +

(
1− i

n

)
`PT (f)

)
(5.8)

By Lemma 12, e is convex with respect to i
n
, and thus also with respect to i since n

is a fixed constant.

Strictly convex and differentiable loss functions hold for a wide class of problems,

including support vector machines and linear or ridge regression. The convexity of e

compounds the monotonic behavior in Theorem 9, as it implies that even a small

amount of error in our clustering ĉ can cause large amounts of cross-validation bias

in f . In Section 5.5, we empirically demonstrate both these properties hold on all

examined datasets.
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5. Challenge of Dependency Leakage

5.4 Hypothesis Testing

A principal question for data scientists is whether an interaction effect exists between

their clustering and prediction algorithms. Here, we show how to use the theoretical

properties from Section 5.3 to quickly construct a two-sample t-test for dependency

leakage, which avoids the complexity of constructing an estimator for the OOC loss

ê0.

Consider the alternative hypothesis Ha : e0 > e(p0), where p0 > 0 is the unknown

leakage probability and e0 is the OOC loss with zero leakage (i.e. no interaction

effect). By Theorem 9, we can use a one sided test because e(p0) ≥ e(pn). First, form

nT training folds each of size n′ from T̂ . Additionally, form n′T training folds of size

n′ and nT + n′T validation folds of size nV from V̂ .

Train and validate f on the disjoint nT + n′T training folds and corresponding

validation folds. Let z = z1, . . . , znT and z′ = z′1, . . . , z
′
n′T

be the validation loss of f

trained on the folds from T̂ and V̂, respectively. Let z̄ and z̄′ be the mean of these

two sequences. Then

z̄ − z̄′ ∼ N(e(p0)− e(pn), σ2(z̄) + σ2(z̄′))

and the two-sample t-test statistic is

T =
z̄ − z̄′√
s21
nT

+
s22
n′T

(5.9)

where s2
1 and s2

2 are the sample variances of z and z′, respectively.

Rejecting the null hypothesis H ′0 : e(p0) ≤ e(pn) when T > t1−α,v is a level α

test, where t1−α,v is the critical value of the t-distribution with v degrees of freedom.

Further, by Theorem 9 and Theorem 11, e(p0) 6= e(pn)⇒ e0 6= e(p0) so long as p0 > 0.

Thus, rejecting the null hypothesis H0 : e0 6= e(p0) when T > t1−α,v is also a level α

test.

There are two takeaways to consider when using this test. The first powerful

property is that it does not require actually knowing the clustering error or leakage

probability p0 a priori, only that it is not perfect (a very weak assumption). Second,

the Type II error rate of this test largely depends on the convexity of e. If p0 < 0.5
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5. Challenge of Dependency Leakage

and e is linear, then e(p0)− e(pn) > e0− e(p0) and the Type II error rate will actually

be lower than if we could directly test e0 6= e(p0). Conversely, the Type II error rate

becomes larger as e becomes more strongly convex.

5.5 Empirical study

Finally, we conducted an empirical, finite-sample study which validates the theoretical

properties in Section 5.3. In all experiments, we used either a linear SVM classifier

or linear regression as the predictor f . This is a best-case scenario, as interaction

effects depend on the predictor f ’s ability to overfit to mistakes from the clustering

algorithm ĉ. Thus, as the complexity of the predictor class increases, the interaction

effect worsens.

Note that in order to compute the true interaction effects, we are required to use a

dataset where the oracle clustering is indeed available. For many of these experiments,

we used data collected in very controlled settings to guarantee no clustering error

in the ground truth. In more practical scenarios, this information would not be

available.

Synthetic Experiment For the synthetic simulation study, we use a partition

model with k = 2 parts and n sufficiently large such that duplicate resamples are

improbable, a subsample of which is depicted in Fig. 6.1. For f , we use a linear

regression model and set the loss ` as the mean squared error. To simulate the effects

of noisy clusters ĉ, we move samples between the two parts T and V with uniform

probability between p = 0 and p = 1.

1994 US Census Experiment In the second experiment, we use data from the

1994 US Census to validate our claim that conventional cross-validation introduce bias

against sub-populations due to dependency leakage [52]. Here, we consider the task of

predicting a person’s income given their demographic, educational and occupational

2https://archive.ics.uci.edu/ml/datasets/heart+Disease
3https://archive.ics.uci.edu/ml/datasets/adult
4https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with+

+Multiple+Types+of+Sound+Recordings
5https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results
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(a) Synthetic
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(b) 1994 US Census
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(c) Heart Disease
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(d) Dota 2
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(e) Parkinson’s

Figure 5.1: Empirical results show the loss is indeed convex and monotonically
decreasing, validating our theoretical results in Section 5.3.

.
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information. Our training set consists of samples from certain origin countries and

we wish to train a learner which performs well for people of all countries. In other

words, we minimize the LOCO generalization loss, where clusters correspond to origin

countries. For this experiment, we use 30368 persons from the United States, El

Salvador, Germany, Mexico, Philippines and Puerto Rico for training set T and

validate with V on 221 immigrants from India and Canada. For features, we consider

their age, years of education, work hours per week, race, and occupation. We trained

an SVM classifier to predict whether their yearly income is greater than US$50k per

year (finer resolution income was unavailable due to privacy reasons).

The results demonstrate interaction effects causes the learner to be biased against

Indian and Canadian immigrants, due to dependency leakage. In other words, the

classifier is rewarded for learning attributes specific to the training countries, even

though they do not generalize across all countries.

Heart Disease Experiment In the third experiment, we use heart disease data

collected from Cleveland, USA; VA Long Beach, USA; Switzerland and Hungary [52].

The task is to predict whether a patient has heart disease, given their demographic

information and vital signs. We need to train a classifier which performs well at

new hospitals – given data from only these 4 locations. Thus, clusters correspond to

hospital location and we use LOCO to estimate the generalization error. Training

clusters correspond to 479 patients in Cleveland, Long Beach and Switzerland, testing

clusters correspond to 262 patients in Hungary. All other experimental details are

the same as Experiment II. The results are shown in Fig. 6.2c.

Parkinson’s Experiment In the first experiment, we attempted to predict whether

a patient has Parkinson’s disease based on multiple voice recordings featurized

according to doctor specifications [52]. Here, each cluster corresponds to an individual,

and each cluster contains multiple voice recordings. The OOC error corresponds to

the ability to predict Parkinson’s on new individuals not in the training set.

Dota 2 Experiment In the final experiment, we attempt to predict the winner

of a Dota 2 video game based on the heroes each team selects at the beginning of

the game. This is equivalent to learning an undiscounted value function for a binary,
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5. Challenge of Dependency Leakage

sparse reward function in reinforcement learning. Here, clusters correspond to the

type of game played, and we wish to learn a predictor f which generalizes across new

game types.

5.5.1 Results

Fig. 5.1 demonstrates that interaction effects between the clustering and prediction

algorithm cause the cross-validation error e to decay monotonically and convexly, as

predicted by Theorem 9 and Theorem 11. This visually demonstrates the expected

adverse behavior – if our clustering algorithm makes even a few mistakes, we may

think our predictor has a low error rate, but when we deploy it in the real world on new

clusters, it will perform far worse. Empirically, the interaction biases cross-validation

results by upwards of 25%.

5.6 Conclusions

We argued that interaction effects between clustering and prediction algorithms can

cause dangerous and elusive behavior in machine learning systems. We theoretically

characterized when and how this interaction behavior is exhibited, and demonstrated

these properties hold in practice on all examined datasets. An important practical

takeaway from the analysis of the discussed properties is the introduction of a

statistical hypothesis test to detect the bias. In the next chapter, we introduce

scalable estimators for the magnitude of the dependency leakage bias, a necessary

step in correcting for interaction effects.

The interaction between clustering and prediction algorithms is one common

instance of an interaction effect. [80] discussed several other issues in complex

machine learning systems, including hidden feedback loops and undeclared data

dependencies, which may warrant further exploration.
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Chapter 6

The Binomial Block Bootstrap

estimator

In Chapter 5, we empirically and theoretically demonstrated that clustering errors

cause subtle yet significant adverse behavior in downstream prediction algorithms.

Ultimately, our goal is to train and validate a prediction algorithm which is robust

under these conditions. Thus, this chapter focuses on precisely estimating the

interaction effects, allowing us to correct for the cross-validation bias introduced by

the dependency leakage. In other words, we wish to estimate the predictor’s loss on

new clusters (an extension of the out-of-bag error), given a noisy approximation of

the true clustering (the result of the clustering algorithm.)

To this end, we present a novel bootstrap technique for learning on blocks of

dependent data, which both estimates and corrects for dependency leakage. This

enables learning on clusters of dependent data, where we only observe a noisy

approximation of the true clustering. The key insight is to increase dependency by

further corrupting ĉ, in order to extrapolate an unbiased and consistent estimator

for the true c. Simulation studies in the non-asymptotic case show our method

significantly outperforms standard cross-validation techniques.
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6. The Binomial Block Bootstrap estimator

6.1 Prior work

There are two largely independent research threads related to our problem of depen-

dency leakage. First, and perhaps most relevant, is the problem of learning with

dependent data. Second, previous work has considered the widespread problem of

learning with noisy labels, although this has primarily been restricted to standard

supervised settings where the ground truth class labels are noisy due to human

annotation errors. In our setting, dependency between the training and validation

sets is caused by noisy clustering labels.

6.1.1 Learning with dependent data

The problem of constructing estimators for dependent data has been studied since

Singh [83], who provided the first theoretical confirmation of the naive bootstrap’s

performance with IID data, and also showed its inadequacy for dependent data.

Since then, the bootstrap has been extended to both time-series and cluster data. In

time-series data, blocks of data are dependent according to some stochastic process

[37, 54]. By varying the size and separation of the blocks, these block bootstrap

methods can limit the dependency and thus control the bias and variance of the

estimator, while sometimes achieving consistency. We refer the reader to [48] for a

more thorough overview of the subject.

In cluster data, within-cluster samples are dependent while inter-cluster samples

are typically assumed to be independent. This is the same formulation as Eq. (1.1).

Many bootstrap methods have been proposed for variance estimation in the clustering

setting, as classical bootstrap estimators will typically be downward biased [16]. Model-

based methods assume a parametric model for the within-cluster error correlation.

Model-free methods perform post-estimation bias-correction, such as the cluster-

robust variance estimator (CRVE) for ordinary least squares [103] and non-linear

settings [51]. CRVE suffers from having unbalanced or a small number of clusters,

which is addressed in [57]. Field and Welsh [30] provide theoretical asymptotic

analysis for several cluster bootstrap techniques, including the randomized cluster

bootstrap, two-stage bootstrap [25] and residual bootstrap [4]. Multi-way bootstrap

clustering is slightly more general, but still assumes samples belonging to none of the

82



6. The Binomial Block Bootstrap estimator

same clusters are independent [65]. Neither these bootstrap techniques nor LOCO

cross-validation account for inter-cluster dependency, and will be inadequate for ĉ

and non-trivial f , `, X and y.

In practice, when the clustering c is latent, researchers choose a coarse clustering

ĉ to ensure intra-cluster samples are as independent as possible [16]. A coarser

clustering decreases bias and increases variance. This approach both lacks guarantees

and requires choosing an appropriate clustering coarseness, which is an open problem.

The key differentiation of our work is we directly address the issue of inter-cluster

dependency due to ĉ.

6.1.2 Learning with noisy labels

Previous work has considered the related problem of learning with noisy classification

labels, unlike our setting where the clustering labels which define the cross-validation

split are corrupted. Schlimer et al. proposed one of the first procedures for predicting

class labels which are noisy and drift over time. Kearns provided an early theoretical

analysis of which model classes can be efficiently learned in the presence of classification

noise [42]. More recent work has focused on constructing estimators of the true loss in

the presence of class dependent label errors [55, 67]. A challenging and open problem

in this domain is how to learn the class dependent noise rate, which often requires an

i.i.d. assumption.

A common source of class label noise is human annotation errors. These have

been partially mitigated by explicitely modeling the annotator quality and labeling

difficulty, and inferring the true latent label from multiple human annotations, instead

of taking a simple majority vote [74]. However, the resulting label will inevitably

still be imperfect. This is especially true in the computer vision community, which

relies on large, manually labeled datasets for training complex learners. A standard

approach is to pretrain a model on noisy data and fine tune on cleaner data, although

more recent approaches have benefited from jointly learning the noise and true label

(e.g. using a graphical model) [99, 109].

The major difference between previous work and our problem formulation is that

cluster labeling errors result in samples being placed in the incorrect cross-validation

fold, thus making these folds dependent. This is conceptually distinct from standard
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classification label noise. We do find that similar assumptions simplify the analysis

in our setting – namely that the labeling errors are i.i.d.

6.2 The Binomial Block Bootstrap estimator

We introduce the binomial block bootstrap (B3) class of estimators for cross-validating

with dependent blocks of data. First, we begin by formalizing notation to simplify

analysis of the core problem. We then proceed with the simplest leakage scenario

and gradually build complexity until arriving at our final result. In Section 6.2.2

we begin with the case where samples are moved with known probability in a single

direction, from the test blocks to the train blocks or vice versa. Then we show how

to solve for the unidirectional dependency leakage in Section 6.2.3 and generalize to

the bidirectional case in Section 6.2.4.

6.2.1 Problem Setup

Broadly, we address the problem of LOCO cross-validation when a noisy approximation

of the true latent partition c. For the remainder of the chapter, we consider some

arbitrary fixed i in Eq. (5.1) (i.e. a single fold). In the LOCO estimator with known

partitioning c, each fold is created such that T and V are sets of training and testing

samples, respectively, split by the partition, i.e. c(i) 6= c(j) ∀xi ∈ T , xj ∈ V . Without

conditioning on the latent cluster parameters in Eq. (1.1), samples within the same

cluster are dependent while samples in different clusters are independent. Thus, T
and V are independent.

Using this notation, we think about the core problem as a learner f trained on

samples T drawn IID from distribution PT and tested on samples V drawn IID from

a related but different distribution PV , a form of transfer learning.

Now, suppose we instead observe noisy datasets T̂ and V̂, where samples have

randomly moved between T and V. This question arises naturally when we only

have ĉ, an approximation of c, likely obtained through clustering. Most importantly,

T̂ and V̂ are dependent — which provides additional information to the learner

and biases our cross-validation estimator. Our goal then is to answer questions

regarding the continuous loss function ` evaluated on new clusters, for example
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Algorithm 1 B3: Unidirectional leakage with known probability

1: procedure KnownUnidirectional(f, T̂ , V̂ , p0, dir, n
′, t)

2: b̄← ~0
3: for pi in {p0, p0 + δ, p0 + 2δ, . . . , 1} do . Choose δ > 0 s.t. |{pi}| > n′

4: p′ ← pi−p0

1−p0

5: for j ← 1 to t do
6: if dir is V to T then
7: T ′j

n′∼MT̂ ,V̂(1− p′, p′) . M is a mixture distribution1

8: V ′j ← V̂ \ T ′j
9: else

10: V ′j
n′∼MT̂ ,V̂(p′, 1− p′)

11: T ′j ← T̂ \ V ′j
12: end if
13: b̂i ← 1

|V ′j |
∑

(x,y)∈V ′j
`(y, f(x | T ′j )) . ` is any continuous loss function

14: b̄i ← b̄i + b̂i
t

15: end for
16: end for
17: Aij ← P(Binomial(n′, pi) = j) ∀pi ∈ p, j ∈ {0, 1, . . . , n′}
18: ê, residual← A(AᵀA)−1Aᵀb̄
19: return ê0, residual
20: end procedure

ET ∼PT E(x,y)∼PV `(f(x | T ), y), given only noisy datasets T̂ and V̂ .

6.2.2 Unidirectional leakage with known probability

First, consider the case where samples move with known uniform probability from

either V to T or vice versa to create V̂ and T̂ . Without loss of generality, we consider

the case where samples move from V to T . In other words, V̂ contains only samples

from PV while T̂ contains samples from both PT and PV . Let p0 be the fraction of

samples in T̂ from V , i.e. p0 = |T̂ ∩V|
|T̂ | . The analysis for the other direction is identical.

The unidirectional B3 estimator (presented in Algorithm 1) is based on the

observation that the number of corrupted samples in a bootstrap sample T ′ from T̂
is binomially distributed according to p0 and n′ = |T ′|. The bootstrap sample T ′ is

1MS1,S2
(w1, w2) is a mixture distribution of sets S1 and S2, where the probability of sampling

from the sets are w1 + w2 = 1, respectively. Within set samples are drawn uniformly.
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Algorithm 2 B3: Unidirectional leakage with unknown probability

1: procedure UnknownUnidir(f, T̂ , V̂ , dir, n′, t)
2: residual∗ ←∞
3: n← |T̂ |
4: for p̂0 in

{
0
n
, 1
n
, . . . , n−1

n

}
do

5: ê0, residual← KnownUnidir(f, T̂ , V̂ , p̂0, dir, n
′, t)

6: if residual < residual∗ then
7: ê∗0 ← ê0

8: p̂∗0 ← p̂0

9: residual∗ ← residual
10: end if
11: end for
12: return ê∗0, p̂

∗
0

13: end procedure

formed by resampling with replacement n′ times from T̂ , which we notate as T ′ n
′
∼ T̂ .

Let b0 be the expected bootstrap loss estimate, b0 = E
(x,y)∼V̂

E
T ′n
′
∼T̂
`(f(x|T ′), y).

We can express b0 as a binomial weighting of the expected error at all numbers of

corrupted samples in T ′. Formally,

b0 = 〈a0, e〉 (6.1)

where a0 is the probability mass function (pmf) of Binomial(n′, p0), ei is the expected

loss with i corrupted samples in T ′ and 〈·, ·〉 denotes the inner product operation.

Our goal is to recover e0, the loss with zero corruption.

At first, this may seem difficult as b0 = 〈a0, e〉 is a very underdetermined system

(even assuming we know p0). To overcome this deficiency, the key insight of our

bootstrap technique is to artificially inject additional leakage by further mixing V
into T̂ to create a fully or over defined system. This increases p, alters the binomial

pmf a0, and generates a new linear equality b1 = 〈a1, e〉 where a1 is the pmf of
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Binomial(n′, p1). Repeating this process many times results in the linear system

0 1 · · n′


p0 ← Binomial pmf→
p1 ·
· ·
· ·
1 ← Binomial pmf→



e
=



b
(6.2)

A(p0) e = b

For any unique choice of p = (p0, p1, . . . , pm) ∈ [0, 1]m, this system will be well-defined

(by Lemma 13) and can be readily solved for e0. A somewhat similar clustering

randomization idea is used in [98] for estimating treatment effects, though their

formulation is quite different than Eq. (6.2).

Lemma 13. Let matrix A be defined such that

Aij = P(Binomial(n′, pi) = j). (6.3)

Then A has full rank for any choice of unique parameters p = (p0, p1, . . . , pm) ∈ [0, 1]m.

Proof. Let Aj denote column j of matrix A. The entries of Aj correspond to polyno-

mial gj(q) =
(
n′

j

)
qj(1− q)(n′−j) evaluated at points q = p0, p1, . . . , pm. First, we show

polynomials g(q) = {g0(q), . . . , gn′(q)} are linearly independent.

We look for a non-trivial solution κ ∈ R(n′+1) to 〈κ, g(q)〉 = 0, ∀q ∈ [0, 1]. The

binomial coefficient is a constant in each polynomial and can be dropped. Expanding

and collecting terms,

0 = κ0(1− q)n′ + κ1q
1(1− q)n′−1 + . . .+ κn′q

n′

=
n′∑
i=0

qi
i∑

j=0

κj

(
n′ − j
i− j

)
(−1)j
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6. The Binomial Block Bootstrap estimator

for all q ∈
[
0, n−1

n

]
which implies

0 =
i∑

j=0

κj

(
n′ − j
i− j

)
(−1)j

for all i ∈ {0, 1, . . . , n′} and all q ∈
[
0, n−1

n

]
. Clearly, κ0 = 0, and the remainder

of the terms follow by induction to κ = ~0. Thus the polynomials {g0, . . . , gn′} are

linearly independent.

Next, the polynomials {g0, . . . , gn′} are unisolvent by the unisolvence theorem,

which implies the vectors
g0(p0)

g0(p1)
...

g0(pm)

 ,

g1(p0)

g1(p1)
...

g1(pm)

 , . . . ,

gn′(p0)

gn′(p1)
...

gn′(pm)

 , (6.4)

are also linearly independent for any unique p0, . . . , pm, m ≥ n′. Thus, matrix A is

full rank.

Roughly speaking, Algorithm 1 is estimating the loss at increasing levels of

dependency leakage, and then extrapolating the loss at zero dependency. It is possible

to achieve reasonable results in practice because we know the true formulation to be a

binomial weighted regression problem and thus know matrix A exactly. Further, the

extrapolation does not extend far beyond the known range for practical clusterings ĉ

with small p0.

The estimator ê0 in Algorithm 1 is consistent, unbiased and has variance decreasing

linearly with respect to the number of bootstrap samples t.

Theorem 14. The estimator ê0 in Algorithm 1 satisfies

1. Consistent: ê0
p→ E

T ′n
′
∼PT

E
(x,y)∼PV

`(y, f(x | T ′)) as t, |T̂ |, |V̂| → ∞

2. Unbiased: E[ê0] = e0 for finite t and infinite |T̂ |, |V̂|.
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6. The Binomial Block Bootstrap estimator

3. Var(ê0) =

n′∑
i=0


∑

0≤m0<···<mn′−1≤n′
m0,...,mn′−1 6=i

pm0 · · · pmn′−1

∏
0≤m≤n′,m 6=i

(pm − pi)


2

σ2
bi

t

where σ2
bi

is the variance of b̂i in Algorithm 1, which is a function of f , ` and

the data.

Proof.

Statement 1 Without loss of generality, we prove the corruption direction from V
to T . The empirical loss of KnownUnidirectional at corruption level pi is b̄i.

b̄i =
1

t|V̂|

∑
T ′∈{T ′0 ,...,T ′t }

∑
(x,y)∈V̂

`(y, f(x | T ′))

=
1

t|V̂|

∑
(x,y)∈V̂

n′∑
j=0

∑
T ′:|T ′∩V|=j,T ′∈{T ′0 ,...,T ′t }

`(y, f(x | T ′))

p→
t→∞

1

|V̂|

∑
(x,y)∈V̂

n′∑
j=0

AijET ′′(j)`(y, f(x | T ′′))

p→
|V|,|T |→∞

E
(x,y)∼PV

n′∑
j=0

AijET ′′′(j)`(y, f(x | T ′′′))

=
n′∑
j=0

Aijej = bi

where Aij is the probability of sampling j samples from V at corruption pi as defined

in Eq. 6.3 and

T ′′(j) =
{
{T ′′′′ n

′−j∼ T } ∪ {V ′′ j∼ V}
}

T ′′′(j) =
{
{T ′′′′ n

′−j∼ PT } ∪ {V ′′
j∼ PV}

}
ej = ET ′′′(j),(x,y)∼PV `(y, f(x | T ′))

The proof can be understood as splitting the t bootstraps into bins j = 0, . . . , n′

89
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each with probability Aij. Then ê = A(AᵀA)−1Aᵀb̄
p→ A(AᵀA)−1Aᵀb = e by the

continuous mapping theorem and Lemma 13. We require |V|, |T | → ∞ sufficiently

faster than t→∞, such that the probability of resampling the same data sample in

Algorithm 1 also goes to 0.

Statement 2 Recall ê = A(AᵀA)−1Aᵀb and ê = A(AᵀA)−1Aᵀb̄. Then

E[ê] = E[A(AᵀA)−1Aᵀb̄]

= A(AᵀA)−1AᵀE[b̄]

= A(AᵀA)−1Aᵀb

= e

for finite t but infinitely large |V̂| and |T̂ |. For finite sample sets, bias may be

introduced due to resampling the same data sample more than once.

Statement 3 We consider the case where A is square for analysis simplicity. Let σ2
bi

be the variance of b̂i in line 13 of Algorithm 1. Then

Var(ê0) =
n′∑
i=0

(A−1)2
0iVar(b̂i)

=
n′∑
i=0

(A−1)2
0i

σ2
bi

t

=
1

t
uᵀ(A−1)ᵀΣA−1u

where Σ is the diagonal matrix with entires Σii = σ2
bi

and u denotes a standard unit

vector, such that u0 = 1. Let z = A−1u. Now solving for z

Az = u(
n′

j

) n′∑
i=0

pji (1− pi)n
′−jei =

1 j = 0

0 j = 1, . . . , n′
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For j = n′, note
∑n′

i=0 p
n′
i zi = 0. Then expanding terms for j = n′ − 1

n′∑
i=0

pn
′−1
i (1− pi)zi = 0

n′∑
i=0

pn
′−1
i zi − pn

′

i zi = 0

n′∑
i=0

pn
′−1
i zi = 0

Continuing these expansion and substitution steps for j = n′ − 1, n′ − 2, . . . , 1, 0

results in
n′∑
i=0

pki zi = uk for k = 0, . . . , n′

which is a transposed Vandermonde system

1 1 1 · · · 1

p0 p1 p2 · · · pn′

p2
0 p2

1 p2
2 · · · p2

n′

...
...

...
. . .

...

pn
′

0 pn
′

1 pn
′

2 · · · pn
′

n′





z0

z1

z2

...

zn′


=



1

0

0
...

0


W ᵀz = u

z = (W−1)ᵀu

Thus, Var(ê0) = 1
t
uᵀW−1Σ(W−1)ᵀu and the inverse of the Vandermonde matrix is

known [58]

(W−1)ij =


(−1)i

(∑
0≤m0<···<mn′−1≤n′,m0,...,mn′−i 6=j pm0 ···pmn′−i∏

0≤m≤n′,m 6=j(pm−pj)

)
for 0 ≤ i ≤ n′

1∏
0≤m≤n′,m 6=j(pm−pj)

for k = n′

which gives the result.

Remark. For classification error `, note σ2
bj
≤ 1

4
by Popoviciu’s inequality. Generally

speaking, there exists a variance tradeoff when choosing p0, . . . , pn′ — we can expect
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lower variance as the values are spaced further apart (larger denominator) and when

they are closer to p0 (smaller numerator), which are competing choices.

Remark. The quality of the clustering ĉ plays an important role in the performance

of our estimator. As p0 increases, the estimator remains unbiased but the variance

increases according to Statement 3.

6.2.3 Unidirectional leakage with unknown probability

We now extend the unidirectional leakage scenario from Section 6.2.2 to the situation

where p0 is unknown a priori. The general strategy is to minimize the residual

||A(p̂0)e− b̄|| over p̂0 and show that a unique minimum exists and it is always the true

leakage probability p0. The most basic optimization procedure detailed in Algorithm 2

searches over the discrete set of possible solutions, though one can imagine other

optimization procedures. The search space will be, at most, the one dimensional line

defined by
[
0, n−1

n

]
where n = |T̂ |.

Our optimization routine in Algorithm 2 converges to the true leakage probability

p0 if the following assumption holds

Assumption 1. b is independent of the columns of A(p̂0) (except, obviously, at

p̂0 = p0).

Remark. This is a weak assumption when choosing m >> n′: it is unlikely the loss

vector b happens to fall in the column space of A.

Theorem 15. If Assumption 1 holds, then the estimators p̂∗0 and ê∗0 in Algorithm 2

are consistent, i.e. p̂∗0
p→ p0 and ê∗0

p→ e0 as t, |T |, |V| → ∞ and for p0 < 1.

Proof. Without loss of generality, we prove the case where samples move in the

direction from V to T . We begin by proving the convergence of p∗0. Let n = |T̂ |.
In Algorithm 2, p

∗(t)
0 = argminp0∈{ 0

n
, 1
n
,...,n−1

n } g
(t)(p0), where the function g(i)(p0) =

||A(p0)(A
ᵀ(p0)A(p0))

−1Aᵀ(p0)b̄
(i) − b̄(i)||22 if p0 ∈

[
0, n−1

n

]
and else infinity. We use

b̄(i) to denote the mean estimator b̄ in Algorithm 1 after t = i samples. Let g(p0) =

||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b− b||22 if p0 ∈
[
0, n−1

n

]
and else infinity.

Both g and the sequence of functions {g(0), g(1), . . . } are level-bounded, lower

semi-continuous and proper. By Lemma 16, g(i) e→ g where
e→ denotes convergence

in epigraph. Thus, residual = minp0∈[0,n−1
n ] g

(t)(p0)
p→ minp0 g(p0) [75]. We know
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at least one perfect solution g(p0) = 0 exists, that this solution is unique (by

Assumption 1) and that this solution is in
{

0, 1
n
, . . . , n−1

n

}
. Thus, p∗0

p→ p0 and

residual
p→ 0.

Lemma 16. Let

g(i)(p0) =


||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b̄(i) − b̄(i)||22

if p0 ∈
[
0, n−1

n

]
∞ else

g(p0) =


||A(p0)(Aᵀ(p0)A(p0))−1Aᵀ(p0)b− b||22

if p0 ∈
[
0, n−1

n

]
∞ else

Then g(i) e→ g, where we use
e→ to denote convergence in epigraph.

Proof. Recall, g(i) e→ g if and only if at each point e

lim inf
i
g(i)(e(i)) ≥ g(e), for every e(i) → e (6.5a)

lim sup
i
g(i)(e(i)) ≤ g(e), for some e(i) → e (6.5b)

Let N#
∞ = {N ∈ N|N is infinite} be all infinite sets of natural numbers, which we

require for cases of periodicity. To establish Eq. (6.5a), it is sufficient to show

that whenever e(i) →
N

e and f (i)(e(i)) →
N

α, then f(e) ≤ α. We consider three

cases, when e ∈
(
0, n−1

n

)
, when e 6∈

[
0, n−1

n

]
and when e ∈

{
0, n−1

n

}
. The first

case is readily established from the proof of Theorem 14, where we showed that

b̄(i) →
N

b ∀N ∈ N#
∞, A(e(i))(Aᵀ(e(i))A(e(i)))−1Aᵀ(e(i)) →

N
A(e)(Aᵀ(e)A(e))−1Aᵀ(e),

and thus f (i)(e(i)) →
N
f(e) ∀N ∈ N#

∞. In the case where e 6∈
[
0, n−1

n

]
, g(i)(e) = ∞

readily establishes the inequality. In the boundary cases e ∈
{

0, n−1
n

}
, note either

g(i)(e(i))→
N
∞ or g(i)(e(i))→

N
g(e), respectively. To establish Eq. (6.5b), choose the

sequence {e(i)} = e ∀i ∈ N.
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6.2.4 Bidirectional leakage with unknown probabilities

Lastly, we extend the unidirectional leakage results in Section 6.2.2 and Section 6.2.3 to

the full bidirectional setting, where samples move with unknown uniform probability

between T and V. More specifically, let pT ,0 = |T̂ ∩V|
|T̂ | and pV,0 = |V̂∩T |

|V̂| be the

probabilities a sample in T̂ and V̂ do not belong in that set, respectively. Similar

to the unidirectional case, we independently resample with replacement n′T and n′V
samples from T and V to form the bootstrap sample sets T ′ and V ′, respectively.

Thus, the number of corrupted samples in T ′ and V ′ is drawn according to a joint

distribution of two independent binomials. We then formulate a regression problem

analogous to Eq. (6.2),

0 1 · · n′


pT ,0, pV,0 ← Joint Bin pmf→
· ·
· ·
· ·

pT ,nT , pV,nV ← Joint Bin pmf→



e
=



b

A(pT ,0, pV,0) e = b

where n′ = (n′T +1)(n′V+1)−1. Note since the joint pmf is defined for (n′T +1)(n′V+1)

values, we must bootstrap at (n′T + 1)(n′V + 1) levels of leakage.

In the case where the leakage probabilities pT ,0 and pV,0 are unknown, we again

minimize the residual. The resulting methods for the bidirectional leakage scenario

with known and unknown probabilities are presented in Algorithm 3 and Algorithm 4,

respectively.

Here, we show the full rank and consistency results for Algorithm 1 and Algorithm 2

extend to Algorithm 3 and Algorithm 4. The main difference is we consider the joint

binomial matrix A, which is also full rank and thus the regression problem is well

defined.

Lemma 17. Joint binomial matrix A has full rank for any choice of unique parameters

pT = (pT ,0, pT ,1, . . . , pT ,m) ∈ [0, 1]m and pV = (pV,0, pV,1, . . . , pV,m′) ∈ [0, 1]m
′
.
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Algorithm 3 B3: Bidirectional leakage with known probabilities

1: procedure KnownBidirectional(f, T̂ , V̂ , pT ,0, pV,0, n′T , n′V , t)
2: b̄← 0(nT ′+1)×(nV′+1)

3: for pi in {pT ,0, pT ,0 + δT , pT ,0 + 2δT , . . . , 1} do . Choose δT > 0 s.t.
|{pi}| > nT

4: p′T ←
pi+pV,0−1

pT ,0+pV,0−1

5: for pj in {pV,0, pV,0 + δV , pV,0 + 2δV , . . . , 1} do . Choose δV > 0 s.t.
|{pj}| > nV

6: p′V ←
pj+pT ,0−1

pV,0+pT ,0−1

7: for k ← 1 to t do

8: T ′k
n′T∼ MT̂ ,V̂(p′T , 1− p′T ) . M is a mixture distribution2

9: V ′k
n′V∼ MV̂,T̂ (p′V , 1− p′V)

10: b̂ij ← 1
|V ′k|
∑

(x,y)∈V ′k
`(y, f(x | T ′k )) . ` is any continuous loss

function
11: b̄ij ← b̄ij +

b̂ij
t

12: end for
13: end for
14: end for
15: b̄← flatten(b̄)
16: Aijkl ← P(Bin(n′T , pi) = k)P(Bin(n′V , pj) = l) ∀pi, pj, k ∈ {0, 1, . . . , n′T }, l ∈
{0, 1, . . . , n′V}

17: A← reshape(A ∈ R|{pi}||{pj}|×(n′T +1)(n′V+1)) . Each row of A is a joint
binomial pmf

18: ê, residual← A(AᵀA)−1Aᵀb̄
19: return ê0, residual
20: end procedure

Proof. Let Ak+n′T l
denote column k + n′T l of matrix A. The entries of Ak+n′T l

corre-

spond to polynomial gk+n′T l
(q1, q2) =

(
n′T
k

)
qk1(1−q1)(n′T −k)

(
n′V
l

)
ql2(1−q2)(n′V−l) evaluated

at points q1 = pT ,0, pT ,1, . . . , pT ,m and q2 = pV,0, pV,1, . . . , pV,n. First, we show polyno-

mials g = {g0, . . . , g(n′T +1)(n′V+1)−1} are linearly independent.

We look for a non-trivial solution K ∈ R(n′T +1,n′V+1) to 〈c, g(q1, q2)〉 = 0,∀q1, q2 ∈
[0, 1] where κ is a flattened version of K. The binomial coefficient is a constant in
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Algorithm 4 B3: Bidirectional leakage with unknown probabilities

1: procedure UnknownBidirectional(f, T̂ , V̂ , n′T , n′V , t)
2: residual∗ ←∞
3: nT ← |T̂ |, nV ← |V̂|
4: for pT ,0 in

{
0
nT
, 1
nT
, . . . , nT −1

nT

}
do

5: for pV,0 in
{

0
nV
, 1
nV
, . . . , nV−1

nV

}
do

6: e, residual← KnownBidirectional(f, T̂ , V̂ , pT ,0, pV,0, n′T , n′V , t)
7: if residual < residual∗ then
8: e∗ ← x
9: p∗T ,0 ← pT ,0

10: p∗V,0 ← pV,0
11: residual∗ ← residual
12: end if
13: end for
14: end for
15: return e∗, p∗T ,0, p

∗
V,0

16: end procedure

each polynomial and can be dropped. Expanding and collecting terms,

0 =

n′T∑
i=0

n′V∑
j=0

Kijq
i
1(1− q1)n

′
T −iqj2(1− q2)n

′
V−j

=

n′V∑
j=0

qj2(1− q2)n
′
V−j

n′T∑
i=0

qi1

i∑
k=0

Kkj

(
n′T − k
i− k

)
(−1)k

=

n′T∑
i=0

qi1

i∑
k=0

(
n′T − k
i− k

)
(−1)k

n′V∑
j=0

Kkjq
j
2(1− q2)n

′
V−j

=

n′T∑
i=0

qi1

i∑
k=0

(
n′T − k
i− k

) n′V∑
j=0

qj2

j∑
l=0

Kkl

(
n′V − l
j − l

)
(−1)k+l

which implies,

0 =
i∑

k=0

j∑
l=0

Kkl

(
n′T − k
i− k

)(
n′V − l
j − l

)
(−1)k+l

for all i ∈ {0, 1, . . . , n′T } and j ∈ {0, 1, . . . , n′V}. When i = 0, j = 0 ⇒ K00 = 0 and
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the remainder of the terms follow by induction to K = 0(n′T +1)×(n′T +1). Thus the

polynomials {g0, . . . , g(n′T +1)(n′V+1)−1} are linearly independent and A is full rank by

the unisolvence theorem.

Likewise, the consistency results in Theorems 14 and 15 extend to the bidirectional

leakage scenario.

Theorem 18. For pT ,0, pV,0 < 1 in Algorithm 3, e0 converges to the expected error

on uncorrupted distributions T and V, ê0 → E
T ′

n′T∼ PT
E(x,y)∼PV `(y, f(x | T ′)) as

t, |T |, |V| → ∞.

Proof. The empirical loss at corruption levels (pT ,i, pV,j) is b̄ij in Algorithm 3.

b̄ij =
1

tn′V

∑
T ′∈{T ′0 ,...,T ′t }

∑
V ′∈{V ′0,...,V ′t}

∑
(x,y)∈V ′

`(y, f(x | T ′))

=
1

tn′V

n′V∑
l=0

∑
V ′:|V ′∩T |=l,V ′∈{V ′0,...,V ′t}

∑
(x,y)∈V ′

n′T∑
k=0

∑
T ′:|T ′∩V|=k,T ′∈{T ′0 ,...,T ′t }

`(y, f(x | T ′))

p→
t→∞

n′V∑
l=0

n′T∑
k=0

AijklET ′′(k),(x,y)∈V ′′(l)`(y, f(x | T ′′))

p→
|V|,|T |→∞

n′V∑
l=0

n′T∑
k=0

AijklET ′′′(k),(x,y)∈V ′′′(l)`(y, f(x | T ′′′))

=

n′V∑
l=0

n′T∑
k=0

Aijklxkl (6.6)

where Aijkl is the probability of k corrupted samples in T ′ and l corrupted samples

in V ′ at corruption levels pT ,i and pV,j, i.e.

Aijkl = P(Binomial(n′T , pT ,i) = k)P(Binomial(n′V , pV,j) = l)
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and

T ′′(k) =

{
{T ′′′′

n′T −k∼ T } ∪ {V ′′′′ k∼ V}
}

V ′′(l) =

{
{T ′′′′ l∼ T } ∪ {V ′′′′

n′V−l∼ V}
}

T ′′′(k) =

{
{T ′′′′

n′T −k∼ PT } ∪ {V ′′′′
k∼ PV}

}
V ′′′(l) =

{
{T ′′′′ l∼ PT } ∪ {V ′′′′

n′V−l∼ PV}
}

xkl = ET ′′′(k),(x,y)∈V ′′′(l)`(y, f(x | T ′′′))

We flatten x, b and appropriately reshape the tensor A into a matrix such that Eq.

6.6 is always satisfied in the linear system Ax = b. Then, ê = A(AᵀA)−1Aᵀb̄
p→

A(AᵀA)−1Aᵀb = x by the continuous mapping theorem and Lemma 13.

Theorem 19. For pT ,0, pV,0 < 1 in Algorithm 4, p∗T ,0
p→ pT ,0, p∗V,0

p→ pV,0 and

ê∗
p→ e∗ as t, |T |, |V| → ∞.

Proof. We begin by proving the convergence of p∗T ,0 and p∗V,0. Let nT = |T̂ | and nV =

|V̂|. In Algorithm 4, (p∗T ,0, p
∗
V,0) = argmin

pT ,0∈
{

0
nT

, 1
nT

,...,
nT −1

nT

}
,pV,0∈

{
0

nV
, 1
nV

,...,
nV−1

nV

}
g(t)(pT ,0, pV,0), where the function g(i) is defined as

g(i)(pT ,0, pV,0) =


||A(pT ,0, pV,0)(Aᵀ(pT ,0, pV,0)A(pT ,0, pV,0))−1Aᵀ(pT ,0, pV,0)b̄(i) − b̄(i)||22

if pT ,0 ∈
[
0, nT −1

nT

]
, pV,0 ∈

[
0, nV−1

nV

]
∞ else

g(pT ,0, pV,0) =


||A(pT ,0, pV,0)(Aᵀ(pT ,0, pV,0)A(pT ,0, pV,0))−1Aᵀ(pT ,0, pV,0)b− b||22

if pT ,0 ∈
[
0, nT −1

nT

]
, pV,0 ∈

[
0, nV−1

nV

]
∞ else

Both g and the sequence of functions {g(0), g(1), . . . } are level-bounded, lower

semi-continuous and proper. By Lemma 20, g(i) e→ g where
e→ denotes conver-

gence in epigraph. Thus, residual = min
pT ,0∈

[
0,

nT −1

nT

]
,pV,0∈

[
0,

nV−1

nV

] g(t)(pT ,0, pV,0)
p→

minpT ,0,pV,0 g(pT ,0, pV,0) [75]. We know at least one perfect solution g(pT ,0, pV,0) = 0
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exists, that this solution is unique (by Assumption 2) and that this solution is

in
{

0, 1
nT
, . . . , nT −1

nT

}
X
{

0, 1
nV
, . . . , nV−1

nV

}
. Thus, p∗T ,0

p→ pT ,0, p
∗
V,0

p→ pV,0 and

residual
p→ 0.

Assumption 2. b is independent of the columns of A(pT̂ ,0, pV̂,0) (except, obviously,

at pT̂ ,0, pV̂,0 = pT ,0, pV,0). This is a very weak assumption when choosing m >> nT nV .

It is unlikely the loss vector b happens to fall in the column space of A.

Lemma 20. g(i) e→ g, where we use
e→ to denote convergence in epigraph.

Proof. Let x = (pT ,0, pV,0). Then the proof follows exactly from the proof of Lemma

16.

6.2.5 Connection to Bézier curves and Bernstein

polynomials

The B3 estimator in Eq. (6.2) has close ties to the Bernstein basis and Bézier curves.

Notice that each column of A corresponds to a Bernstein basis function evaluated

at at p0, . . . , 1. Thus, the B3 estimator is equivalent to solving for the Bernstein

coefficients or Bézier control points e, where the system is constructed through the

B3’s bootstrapping process.

To clearly define the connection, recall that a Bernstein basis of degree n is defined

as

bj,n(x) =

(
n

j

)
xj(1− x)n−j j = 0, . . . , n (6.7)

and that this forms a basis for polynomials at most degree n. Then the Bernstein

polynomial is defined as

Bn(x) =
n∑
j=0

βjbj,n(x) (6.8)

whereBj are the Bernstein coefficients. The B3 estimator bi =
∑n

j=0 ejAij is equivalent

to solving for the Bernstein coefficients ej = βj, where the Berstein basis is Aij =

bj,n(pi).

Bézier curves are closely related to Bernstein polynomials, using slightly different
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notation

B(t) =
n∑
j=0

(
n

j

)
tj(1− t)n−jPj (6.9)

=
n∑
j=0

bj,n(t)Pj (6.10)

where Pj are the Bézier control points. Once again, Aij from the B3 estimator is

equivalent to the Bernstein basis function bj,n(pi), and we solve for the Bézier control

points P0, . . . ,Pn

6.3 Scalability techniques

The B3 estimator is limited by its need to solve a linear system of n variables, where

n is the size of the bootstrap training set [9]. Solving the linear system has O(n3)

cost, and forming the loss estimate b has O(n) computational cost. If the prediction

algorithm f has an expensive training procedure (e.g. deep neural networks), the

latter term may outweigh the former due to a large fixed constant. In this section,

we present two approaches for dramatically improving the computational efficiency of

these estimators.

6.3.1 Basis Function Approximation

Perhaps the most straightforward approach to scaling these estimators is through func-

tion approximation, which also conveniently provides a natural form of regularization.

We parameterize e by a set of s basis functions ψ1, . . . , ψs, such that

ei = ξ1ψ1(i) + ξ2ψ2(i) + . . .+ ξsψs(i) (6.11)

where ξ1, . . . , ξs = ξ ∈ Rs are the s parameters. Then e = Ψξ where Ψ ∈ R(n+1)×s is

the matrix of basis values.

Instead of solving the linear system Ae = b, where A ∈ Rm×(n+1) and we choose

m ≥ n, we can now solve

A′Ψξ = b′ (6.12)
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where A′ ∈ Rm′×(s+1) and we choose m′ ≥ s. Note the size of this system no longer

depends on the number of samples n. Instead, it depends on the number of parameters

in our approximation of e, which will be a fixed constant. This new linear system is

well behaved, depending on the choice of basis function ψ.

Theorem 21. Let ψ0, . . . , ψs be a set of s unisolvent, bounded and continuous func-

tions over [0, 1] and let

ei = ξ0ψ0

(
i

n

)
+ . . .+ ξsψs

(
i

n

)
.

Then AΨ is invertible as n→∞.

Proof.

(AΨ)ij = E
kn∼Binomial(n,pi)

ψj

(
kn
n

)
By the weak law of large numbers, kn

n

p→ pi. Further, ψj
(
kn
n

) p→ ψj(pi) by the contin-

uous mapping theorem. Finally, Eψj
(
kn
n

)
 Eψj(pi) = ψj(pi) by the Portmanteau

lemma. The matrix formed by ψj(pi) is invertible by the Unisolvence theorem when

p0, . . . , ps are unique.

6.3.2 Matrix Sketching

Second, we propose a new matrix sketching technique which reduces the number

of columns in the structured matrix A. Unlike typical matrix sketching techniques,

which reduce the number of rows, we are able to reduce the number of columns

and thus the dimensionality of the solution e by leveraging the structure in A and

properties of e from Theorem 9. After reducing the number of columns, one could

further apply standard matrix sketching techniques to also reduce the number of rows.

Our algorithm guarantees recovering e0 within a linear factor of the true value.

Consider the setting where m ≤ n and the system Ae = b is underdetermined.

This is especially relevant for large datasets, where it is computationally infeasible

to sample at m > n levels of leakage or perhaps even solve for n unknowns. Let

S ∈ Rm×(k+1), m > k be our sketching matrix, where S is formed such that the first

column of S equals the first column of A, i.e. S0 = A0. Partition the remaining n

columns of A into k sets, for example using k-medoids or simply grouping adjacent
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columns together (since by the definition of A, these will be close together). Let

r : {0, . . . , n} → {0, . . . , k} be the resulting partition, where r(0) = 0 is the singleton

partition of the first column. Finally, form the remaining columns of S from the

medoids of the k+ 1 sets. Each column in A is within an ε-ball of at least one column

in S, i.e.

ε = max
i∈{0,...,n}

‖Ai − Sr(i)‖

Theorem 22. Let e′ be the solution to the sketched system Se′ = b and s be the first

row of s−1. The error between the true and sketched solution is bounded by

|e′0 − e0| ≤ εn‖s′‖e0. (6.13)

Proof. Let e′ be the solution to the sketched system Se′ = b. Then

Se′ = Ae = b

e′ = S−1Ae

e′0 = (S−1A)00e0 +
n∑
i=1

(S−1A)0iei

e′0 − e0 =
n∑
i=1

(S−1A)0iei.

Let s′ be the first row of S−1. By the Cauchy-Schwarz inequality, for all i ≥ 1

|(S−1A)0i| = |s′ · Ai|

= |s′ · Ai − s′ · Sr(i)|

≤ ‖s′‖‖Ai − Sr(i))‖

= ε‖s′‖.
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Finally, by Theorem 9

|e′o − e0| ≤
n∑
i=1

|(S−1A)0i|ei

≤
n∑
i=1

ε‖s′‖ei

≤ εn‖s′‖e0.

6.4 Simulation study

Thus far, we have appealed to asymptotic theory and bias-variance analysis. This is

not uncommon for bootstrap and cross-validation analysis, and like others, we now

turn to empirical arguments. In this section, we present simulation study results which

demonstrate our core method in Algorithm 1 significantly outperforms conventional

methods. For all experiments, we consider the more difficult direction where samples

move from V to T .

For comparison, we consider two benchmark estimators for the OOC loss – IID

and LOCO. IID is the typical cross-validation split, where samples are uniformly

randomly split into training and validation sets, which does not account for the latent

clustering. LOCO is the leave-one-cluster-out estimator described in Eq. (5.1) using

an approximated clustering ĉ with an error of p0 = 0.1.

Our estimators are unbiased and consistent, but they may have large variance

(see Theorem 14). When practically implementing these estimators, it is beneficial

to add a small amount of regularization to achieve a better bias–variance tradeoff.

Although we know from Lemma 13 and Lemma 17 that matrix A is full rank, it may

be ill-conditioned. Adding regularization helps to improve the condition number of

matrix A. Evidence suggests this is a tradeoff worth making. Specifically, in the

linear system objective function within Algorithm 1 and Algorithm 4 we instead solve
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some variation of

minimize
ê

||Aê− b̄||22 + λR(ê)

subject to êj−1 ≥ êj ≥ 0 for all j = 1, . . . , n′.
(6.14)

where λ is a regularization constant and R is some regularization function. We

choose the trend filter regularizer R(ê) = ||Dê||22 to ensure ê is smooth [43]. For a

second-order filter, which regularizes the second derivative of ê, D is the difference

matrix

D =



1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2 1


where unshown entries are zero. Matrices D for higher order trend filters follow

similarly. From Theorem 9, the estimator error to degrade both monotonically (the

constraint) and we expect it to also degrade somewhat smoothly (the regularizer).

Methods with various order trend filters and constraints are denoted as second, third

or fourth-order trend filter (T2, T3, T4) with or without a monotonic constraint

(+mono).

Experimental details are the same as Section 5.5, with the following additional

parameter choices for the estimators. In the sketching approximation, we formed k

nearly equally sized groups of adjacent columns from A when forming the sketched

matrix S. Even after sketching, we found it beneficial to add some regularization

comparable to T4+mono, referred to as λs (the regularization used in T4+mono is

referred to as λT4). We found that other approaches, including using k-medoids to

group the columns of A, did not provide any benefits and were more complicated. In

all experiments we set k = 7.

In the basis function approximation, we found that using simple, low-order

polynomials was sufficient. Higher order polynomials tended to be unstable. After

observing b, we chose to use either a 2nd or 7th order polynomial, depending on the

curvature of b.

The complete set of experimental parameters are shown in Table 6.1. We made an
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Table 6.1: Parameters used in all experiments. n is the number of samples in the
training set, |V| is the number of samples in the validation set, t is the number of
resamples in Algorithm 1, λ’s are the regularization strengths in the T4+mono and
sketching method, m is the number of corruption levels (i.e. the number of rows in A),
k is the number of sketching groups and d is the number of features in the dataset.

Dataset

Parameter Synthetic Heart2 1994 US Census3 Parkinson4 Dota 25

n ∞ 100 100 100 100
|T | 15 100 100 100 1000
|V| 1000 100 100 100 100
t 1000 1000 10000 1000 1000
λT4 0.1 10 10 1000 1000
λs 0.01 0.1 0.1 0.1 0.1
s 7 7 7 2 2
m 30 200 200 20 20
k 10 20 20 20 20
d 2 12 5 26 114

effort to limit fitting to a specific dataset, and kept most parameters the same across

all experiments. In the Dota 2 experiments, the availability of sufficient training data

allowed us to increase |T | to 1000. Further, after completing the Heart and 1994 US

Census experiments, we reduced the number of rows m in A by an order of magnitude

to speed up experimentation, and correspondingly increased the regularization λ.

6.4.1 Results

First, we demonstrate the proposed methods with various forms of regularization are

significantly less biased than the baseline IID and LOCO methods. Our main results,

presented in Fig. 6.2, are generated over 10 independent trials, where the whiskers

correspond to most extreme values over those trials (i.e. no outliers removed).

LOCO outperforms traditional IID cross-validation, which suggests blocking on

2https://archive.ics.uci.edu/ml/datasets/heart+Disease
3https://archive.ics.uci.edu/ml/datasets/adult
4https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with+

+Multiple+Types+of+Sound+Recordings
5https://archive.ics.uci.edu/ml/datasets/Dota2+Games+Results
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Figure 6.1: Subsample of data used in the synthetic Experiment I.

the corrupted clusters ĉ partially limits the effects of dependency leakage. However,

even at p0 = 0.1, LOCO is still unacceptably biased. Our methods, with various forms

of regularization, all significantly outperform both existing estimators. Fig. 6.2a also

suggests a bias-variance trade-off among all the tested methods. IID cross-validation

has high bias and low variance, whereas our methods have low bias and higher

variance. Ultimately, this tradeoff allows our methods to achieve lower MSE by

choosing an appropriate form and strength of regularization.

An interesting consequence of our method is that in addition to recovering the

independent partition performance e0, we also recover the performance e1, e2, . . . at

all levels of dependency leakage, as depicted in Fig. 6.2a. The true loss e (dashed

black line) decays monotonically and smoothly, which justifies our regularization

choices.

6.4.2 Computational Scalability

The proposed approximation techniques, and especially the basis function approxima-

tion technique, are faster than existing OOC estimators and are tractable on larger

problem classes. To compare performance across a large range of dataset sizes, we

generated increasingly large synthetic training sets and compared solution times in

Section 6.4.1. All methods used only 10 corruption levels (i.e. the number of rows

in A), the bare minimum required to find a reasonable solution. We observed that

increasing the number of rows in A exponentially increased solution times. Thus, these
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(a) Synthetic simulation study results.
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(b) Experimental study results on the 1994 Census dataset.
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(c) Experimental study results on the heart disease dataset.

Figure 6.2: Left Estimating the generalization loss e0. Our class of B3 estimators,
with various forms of regularization (monotonic; second, third or fourth-order trend
filter) outperform existing estimators. Baseline cross-validation methods are biased
against the sub-populations we studied, and our class of B3 estimators help correct
this bias. Right The B3 estimator recovers the full loss vector e. Empirically, the
true loss decays monotonically and smoothly in practice, justifying our regularization
choices.
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Figure 6.3: Estimating the OOC loss e0. Our function approximation and novel
matrix sketching techniques perform comparably to existing methods at significantly
reduced computational cost.
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Figure 6.4: Computational scalability results on synthetically generated datasets.
Our methods (Sketch, and in particular, Basis) are significantly faster than existing
methods (T4+mono). “Failed” indicates the SDPT3 solver failed to find an accurate
solution.

results are likely the largest datasets appropriate for existing methods. In particular,

notice that the solver failed to find accurate solutions on the largest problem class for

all methods except for with the basis approximation technique.

Timing results on real world datasets (described in the following sections) are

reported in Table 6.2. Similarly, we find the basis approximation technique is the

fastest by several orders of magnitude.

Constrained linear programs (e.g. T4+mono, sketching) were solved using

SDPT3’s infeasible path-following algorithm, for unconstrained linear systems we took

advantage of fast QR solvers (a major reason the basis method is so efficient). All

optimizations were performed using an Xeon Gold 6152 CPU @ 2.10GHz and 754 GB

RAM. We found that T4+mono, and to a lesser extent, the sketching approximation,

required the majority of this memory for the largest problem classes.
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Table 6.2: Computational timing results demonstrate our methods, and in particular
the basis function approximation technique, are significantly faster than the previous
state-of-the-art B3 estimator with fourth order trend filter and monotonicity constraint
(T4+mono). Results shown in seconds.

Method

Dataset T4+mono Sketching Basis

1994 US Census 0.5662 0.4059 7.822e-5
Heart 0.5847 0.4105 6.582e-5
Parkinson’s 0.6194 0.4338 2.043e-5
Dota 2 1.0965 0.4678 1.946e-5

6.4.3 Statistical Scalability

The need for regularization, either in the form of a trend filter (Eq. (6.14)) or basis

function approximation (Eq. (6.12)), is obvious upon investigating the condition

number of the regression coefficient matrix (either A or AΨ). Fig. 6.5 shows that the

condition number of matrix A (B3 estimator) degrades as the number of training

samples n increases. On the other hand, the basis function approximation AΨ

dramatically improves the condition number, which in fact decreases with respect to

n.

A visual representation of the two matrices A and AΨ in Section 6.4.3 and

Section 6.4.3, respectively, show that A is an off-diagonal band matrix, where the top

is shifted according to p0. The matrix AΨ is relatively constant with respect to n.

6.5 Extensions

This work poses several additional questions, some of which we briefly address now.

For example, we have extended these methods from estimating the expected loss e to

estimating an expected loss histogram E in Eq. (6.2). To do so, one can simply store

the empirical bootstrap histogram B̄ in lieu of the empirical bootstrap mean b̄. The

downside is estimating the additional information in E increases the variance by a

linear factor according to the number of histogram bins.

To improve the numerical solution in Algorithm 1 in the direction where samples
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Figure 6.5: Condition number of matrix A (B3 estimator) degrades as the number
of training samples n increases. The basis function approximation AΨ dramatically
improves the condition number, which in fact improves with respect to n.

move from T to V, note that e will be a linear vector, i.e. ei+1 − ei = β ∀i ∈
{0, . . . , n′ − 1}. This is because the training set T ′ has zero corruption, the expected

number of corrupted samples in V̂ varies linearly with pi for fixed δ, and the empirical

loss is a mean loss of the samples in V̂ . Enforcing this constraint on ê would improve

the solution quality for the direction where samples move from T to V. We always

considered the more difficult V to T leakage direction, where we have no prior

knowledge of e.

The question of unbalanced clusters for CRVE was addressed in [57]. In our

cross-validation method, small Var(|T̂ |) and Var(|V̂|) across the cross-validation folds

improves convergence. With unbalanced clusters, instead of leaving one cluster out,

we could leave multiple clusters out such that |T̂ | and |V̂| have lower variance even

with high variance cluster sizes. CRVE also suffers from having a small number of

clusters k [16]. Our estimator will be nearly unbiased but have high variance with a

small number of clusters, due to the same properties as LOCO (see Eq. (5.1)).

Though we have shown asymptotic convergence of our methods, there are several

open questions. Notably, we use a naive discrete optimization routine in Algorithm 2
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(a) n = 10 (b) n = 100 (c) n = 1000

Figure 6.6: Visualization of matrix A. B3 estimator matrix A resembles an off-diagonal
band matrix, where the top is shifted according to p0

(a) n = 10 (b) n = 100 (c) n = 1000

Figure 6.7: Visualization of matrix AΨ. Applying the basis function matrix Ψ changes
the structure of regression coefficient matrix.

and Algorithm 4 to solve for pT ,0 and pV,0. The functions g(i)(p0) are non-convex,

but they are smooth with finite support and faster convergence may be possible.

6.6 Conclusions

In this chapter, we addressed the issue of evaluating a learner on blocks of dependent

data. Unlike existing bootstrap methods, which assume a perfect clustering, we

allow for imperfect clusterings ĉ such that inter-cluster samples may be dependent.

Real world applications ranging from medical diagnostics to computer vision fall

into this class of problems. Empirical evidence on synthetic data, the 1994 US

Census and heart disease data shows dependency leakage biases cross-validation

results and thus affects model selection. We presented the B3 class of estimators,
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which significantly outperform existing cross-validation methods in this setting. The

key insight of our bootstrapping methods is that by injecting additional dependency,

we can extrapolate an unbiased and asymptotically consistent estimator of the

performance on independent clusters.

The contents of this chapter were presented at the 2017 Conference on Uncertainty

in Artificial Intelligence (UAI) [9].
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Chapter 7

Conclusions

The two primary questions this thesis attempted to answer were:

1. When do clustering algorithms perform poorly?

2. How can we incorporate imperfect clustering results into machine learning

systems?

To that end, we derived lower and upper error bounds to answer the first question,

across varied methodologies and data distributions. Perhaps more excitingly, we were

able to provide conclusive properties and solutions to the second question, which had

previously been entirely unaddressed. Together, we found that addressing the first

question (Part I) eased the difficulty of solving the second (Part II).

Understanding clustering performance is a long standing challenge in the machine

learning community, because unlike standard supervised learning problems, clustering

is a difficult problem to clearly articulate a “correct” objective function and equally

difficult to evaluate. In Part I, three different approaches to clustering were theoreti-

cally analyzed. In Chapter 2, clustering was formulated as a maximum likelihood

estimator over a stochastic block model, and shown to be reducible to a correlation

clustering algorithm with error upper bounds. For small problems with access to a

small set of labeled pairs, this approach is computational feasible and outperforms

baselines in empirical analysis. In Chapter 4, we took a Bayesian perspective on

clustering, allowing us to construct tight error lower bounds for both categorical and

string data. This approach is particular useful for record linkage problems, where we
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understand the data generation process and require uncertainty estimates. Finally,

we provided error upper bounds for the class of match-and-merge algorithms such as

Swoosh [11], demonstrating that the most conservative merge function successfully

minimizes the worst-case. This attempted to address a dangerous aspect of the

no-negative-evidence clause (required to guarantee determinism) – match mistakes

compound and quickly cause massive clusters. Thus, this approach remains best

suited for low-noise settings with few records.

In Part II of this thesis, we formalized the problem of clustering errors which

propagate through downstream machine learning components and cross-validation

estimators. This is a serious concern in medical, census, shopping and the counter-

human-trafficking domains, where clustering is used as a preprocessing step to merge

samples or records corresponding to the same person or product. Our empirical

results illustrate these errors can have dangerous, unforeseen impacts on the overall

system performance. Theorems 9 and 11 tell us that the largest interaction effect is

always caused by the first clustering error, and that additional clustering errors only

continue to degrade performance. These effects are particularly dangerous because

they are undetectable by standard cross-validation techniques, and not realizable until

deploying the system into an online environment with potentially serious consequences.

To alleviate these concerns, we introduced the Binomial Block Bootstrap (B3)

estimator in Chapter 6, which estimates the cross-validation bias caused by clustering

errors. In practical medical diagnostics (including heart disease and Parkinson’s

disease), US Census and Dota2 game data, the B3 estimator consistently provides

better generalization error estimates than standard cross-validation techniques with

clustering errors. Scalability techniques using basis function approximation and

matrix sketching techniques enable deploying our estimator to training datasets with

millions of samples.

7.1 Practical suggestions

Thus far, we’ve provided an array of tools for clustering and learning on clusters of

data. Based on the analysis of these tools and our anecdotal experiences, we suggest

a series of actionable steps when confronted with a new dataset and initial clustering.

Depending on the problem context (e.g. dataset size, labeling cost and budget), these
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suggestions may be more or less feasible, but in rough order of priority we recommend:

1. Conducting a simple hypothesis test for whether dependency leakage is an

issue in your problem, as described in Section 5.4. This requires training and

validating your prediction algorithm a handful of times, and computing the two

sample t-test statistic.

2. Using feature selection and any relevant domain knowledge to remove features

which do not generalize to new clusters (e.g. a person’s name or phone number).

3. Investing in computing a more accurate clustering, e.g. using the methods

described in Part I. In particular, consider collecting labeled pairs of samples

for use in a supervised clustering method. It is a common misconception that

clustering is strictly an unsupervised method.

4. Collecting additional data in the form of more clusters, which may be able to

prevent the prediction algorithm from overfitting to cluster-specific features.

5. Using simpler or more strongly regularized models which are not able to overfit

to cluster-specific features.

6. Tending to undersegment your data. This effectively reduces the value of p0,

although it may introduce additional forms of bias since the train/validation

split is no longer random among the true latent clusters.

7. Using the basis function approximation estimator and visualize the solution

curve e to qualitatively measure overfitting, choose an appropriate basis (e.g.

polynomial order) and regularizer.

Some domains, including robotics and lab based scientific studies, are condusive to

conducting new experiments which may guarantee a disjoint set of clusters. For

example, image instance segmentation datasets collected at different times and

locations will certainly contain new object instances.

7.2 Future Directions

There are several interesting directions which this work opens for exploration. In Part I,

we introduced well-founded clustering methods with strong empirical performance.

Improving the computational scalability would significantly lower the barrier to more
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widespread adoption of these methods. Bayesian inference, (Chapter 4) including

MCMC and variational inference, struggle with the massive space of linkage structures.

Recent work on distributed Bayesian inference for record linkage problems has

leveraged assumptions on the linkage structure (e.g. a blocking scheme) to allow

distribution across multiple machines and reduce the computational complexity [90].

Likewise, the stochastic block model in Chapter 2 used an LP-rounding technique

to solve MinimizeDisagreements, which requires a large number of constraints

due to the number of pairwise edges. General purpose approximate LP solvers may

partially address this problem, although we believe it is possible to leverage additional

structure in the graph in a similar fashion to the scalable Bayesian record linkage

approaches.

In Part II, we assumed that clustering errors were uniformly random – as many

clustering algorithms do not provide a measure of uncertainty. However, if a clustering

algorithm is able to provide an estimate of its assignment uncertainty (e.g. Bayesian

methods), then this uncertainty may be properly incorporated into the B3 estimator.

We believe this is possible to do using a form of importance sampling. Second,

although we were able to improve the computational scalability in Section 6.3, some

of these approximations invalidate many of our theoretical guarantees.

Finally, we demonstrated the ability to estimate cross-validation bias due to

clustering errors. In Section 7.1, we alluded to adjusting the dataset via feature

selection to reduce this bias. We pose the question, “Is it possible to learn which

samples were incorrectly clustered?” This would complete a feedback loop between

the clustering algorithm and an error correction mechanism. Some recent work

has attempted to learn a mapping from related but different distributions to a

common feature space which has low divergence for each distribution, yet maintains

predictive performance [31, 56, 93]. It may be possible to extend these results to our

setting, where samples have flipped between each distribution due to clustering errors.

This would be equivalent to learning dataset transformations with zero resulting

dependency leakage.

In conclusion, we theoretically and empirically demonstrated that the current

practice of incorporating clustering algorithms into systems without explicit regard

for how their errors propagate through downstream pipeline components can quickly

cause dangerous and initially undetectable consequences. This is a growing concern as
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the complexity of machine learning systems and the problems they address increases.

Here, we made contributions towards both understanding when clustering algorithms

perform poorly, and perhaps more novelly, characterizing and correcting for the

interaction effects between clustering errors and the larger system.
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Appendix A

Open source B3 implementation

An open source Matlab implementation of the methods described in Chapter 5 and

Chapter 6 is provided at https://github.com/mbarnes1/B3. All processed datasets

and links to the original UCI downloads are provided in the repository. Details for

reproducing the results in this thesis are provided in the corresponding README.md

file, and included below.

This repository includes an implementation of the B3 estimator with various

approximation techniques, example datasets and reproducible results. Below is a

walk-through on the Dota2, Parkinson, Census Income, Synthetic, and Heart Disease

datasets.

A.0.1 Finite sample estimates

In practice, the most computational expensive step is often computing a finite sample

approximation to vector b. This requires repeatedly repeatedly resampling the training

dataset, training and validating the learner, and injecting additional leakage from the

validation set. Script sample_real.m performs this resampling procedure and saves

the resulting estimates.

All required datasets are included in the data/ folder. We also include example

results in bootstraps/.
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A. Open source B3 implementation

A.0.2 Solving the linear system

Once the resampling procedure is complete, we turn to computing the solution vector

e (of which, the first entry e0 is our desired out-of-cluster loss). The key choices here

are using

• An appropriate form of regularization (monotonic constraint, and/or a trend

filter)

• An approximation technique (basis function or sketching).

Note the basis function approximation serves as a natural form of regularization, and

does not require additional regularizers. The script example_boxplot.m reproduces

the results in Fig. 6.3a, demonstrating the B3 estimator outperforms baseline methods

using various forms of approximation techniques. Other results can be reproduced by

using the appropriate bootstrap results in bootstraps/.
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