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Abstract
A grand vision in robotics is that of a future wherein robots are integrated in

daily human life just as smart phones and computers are today. Such pervasive inte-
gration of robots would require faster design and manufacturing of robots that cater
to individual needs. For instance, people would be able to obtain customized smart
assistant devices such as a home monitor personalized with their child’s favorite
fantasy character, a helping hand robot for their specific art project, or a cleaning
robot that can clean hard to access spaces of their homes. However, robots of to-
day take years to be created by experts, and are often not customizable. To enable
widespread integration of robots, we wish to democratize the robot design process
in order to support rapid creation of custom robots for the people and by the people.

In recent years, advances in digital fabrication technologies and the availability
of affordable electronics such as Rasberry Pi, Arduino etc. is enabling rapid creation
of smart devices. Unfortunately, currently these technologies are only accessible
to experts because of the skills and domain knowledge needed to build with them.
To change this status quo, we present a suite of easy-to-use computational tools for
enabling the design of a broad class of robotic devices that casual users might want
to create.

In particular, we develop tools for designing physical structure and task-specific
behavior of robotic devices with various form factors and functionalities. The key
strengths of our tools include intuitive visual interfaces that can support user-in-the-
loop interactive design, parameterized domain-specific models and physics-based
simulation that can encode complex design aspects, and efficient algorithms that can
search high-dimensional design spaces at interactive rates for user-preferred solu-
tions. Our tools also automate tedious design steps allowing users to focus on the
creative aspects of the design process. Finally, we show how simulation-based feed-
back and data-driven design can be used to lower the barriers to entry for casual
users. We validate our tools by fabricating various prototypes and by conducting
user-studies with novices.

In the past, design tools such as those offered by Adobe creative suite and Au-
todesk have revolutionized the creation of diverse digital content ranging from im-
ages to animation. The tools presented in this thesis take a step towards enabling the
same for the domain of robotics.
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Chapter 1

Introduction

1.1 Why make robotics accessible?

Roboticists envision a future where robots would be integrated in daily human life just as smart
phones are today [144, 152] (Figure 1.1a). Such a future of ubiquitous robots is further high-
lighted in the 2018 call for academic research proposals by the National Science Foundation
(NSF) under the National Robotics Initiative (NRI) 1. This initiative envisages robots to be part
of our homes and offices; assisting in hospitals, classrooms, and factories; helping to run farms
and mines; and exploring in air, on land, under water, and in space. However, robots of to-
day take years to produce. For example, engineers took five years to create the industrial robot
Baxter [170], while Anki took three years to design entertaining personal robot Cozmo [14]. A
pervasive integration of robotics in everyday life therefore demands design and fabrication tools
that will speed up the creation of robots. Apart from a faster design cycle, the NRI proposal
emphasizes on customizability of robots with respect to specific tasks, environments, or people;
for widespread adoption of robots. The progression towards enabling customization in robotic
systems has already started developing in industry, as evident in the recent commercial robotic
systems from HEBI Robotics, and Modbots [94, 145]. However, true ubiquity of robots may
not be possible without democratizing the robot design process wherein common people can
customize robots based on their unique needs and preferences.

Why is such a democratization of the robot design process essential? The democratization
of digital content design powered by Adobe creative suite [8], Autodesk tools [21] etc. has
already led to a new generation of creators and designers. Beyond the digital realm, the Do-it-
yourself (DIY) community [211] has been a source of many creative solutions such as on demand
disaster relief [75], and customizable 3D printed prosthetics [70]. The DIY revolution is thus a
testimony that allowing casual people – artists, tinkerers, and designers to build personalized
robotic devices empowers them to solve their own problems. Bringing in the creativity and
diversity of these casual makers into the design process is therefore important for creating truly
novel and out-of-the-box robotic systems of tomorrow.

1National Robotics Initiative 2.0: Ubiquitous Collaborative Robots (NRI-2.0) – https://www.nsf.gov/
pubs/2018/nsf18518/nsf18518.htm

1
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Figure 1.1: Thesis motivation – (a) In not so distant future, robots would be an integral part
of our daily life. (b) In particular, people would be able to obtain personalized robotic devices
fabricated either locally or online. To enable such a revolution, we need design tools that allow
common people to create highly customized robots rapidly. In this thesis, we develop a suite of
tools that enable such democratization of robot design.

1.2 The need for design tools
The rapid creation of custom robots for ubiquitous robotics demands the advancement of both
hardware and software tools. Fortunately, the recent development of digital fabrication tech-
nologies such as 3D printing, laser-cutting, and affordable electronics such as Rasberry Pi [169],
Arduino [2], Google’s AIY kits [86] is already paving way for fast, on-demand manufacturing.
From kinetic art to prototypes for academic research, makers have also been trying to embrace
these recent technologies for creating novel robotic devices [3, 98]. While the hardware tools
are becoming available, their use remains inaccessible and challenging for casual users because
of the required skills and domain knowledge. With intuitive and powerful software design tools,
we can change that. In this thesis, we think about what should these tools look like, and what
should they do, in order to reduce the entry barrier of robotics (Figure 1.1b).

The goal of this thesis is thus to develop design tools that support casual users in building
robots of different form-factors and functionalities.

We next provide an elaborate overview of the difficulties faced by casual users in designing
custom robotic devices to motivate the constitution of the design tools in this thesis.

1.2.1 Challenges in the robot design process
We broadly define a robotic device as a functional object composed of various mechanical and
electronic components that interact with each other to achieve higher level task goals. Designing
such robotic devices is highly skill-intensive, tedious, and time-consuming. One needs to design
the device’s mechanical structure, as well as decide its functional capabilities and correspond-
ing electro-mechanical components. One must then integrate these design elements together,
and control them coherently to achieve a task. Each step in such a design process demands the
knowledge of multiple disciplines and design principles. Furthermore, it is highly challenging
to gauge how different elements of the design will behave together, and where will they fail.
Therefore, designers typically iterate multiple times before converging onto their desired device
design. Apart from being cost and time intensive, these iterations on hardware involve repeating
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many tedious design steps such as adjusting physical dimensions, processing collisions, gener-
ating connectors for components, re-assembly, tuning behavior control parameters and so on.
Together, these challenges render the robot design and creation process to be highly daunting,
and de-motivating especially for novices.

1.2.2 Barriers faced by casual users
Along with the challenges inherent to the design process, casual users such as artists, designers,
students face additional challenges owing to the lack of technical skills, and the limitations of the
environment they are building things in. Typically, these users operate in volunteer-run maker
and hacker spaces, or classrooms, and are working intermittently on one-off projects. As a result,
their learning is staggered, and unstructured. Further, failures are often, and hard to rectify. In
particular, the following aspects amplify the barriers that casual users face:

1. Limited resources: Existing design tools have steep learning curves (ranging in weeks,
even for simple designs) [91]. Further, hardware resources are either shared as in class-
rooms and maker-spaces, or are expensive. Furthermore, many of the casual users have
limited ability to invest time in learning design tools, or invest monetary capital for multi-
ple hardware iterations [35].

2. Difficulty in asking for help owing to lack of context, and technical vocabulary: When
failures happen, casual users struggle with conveying their issues, and seeking relevant
help [129].

3. Dependence on peers for problem solving: Finally, more often than not, these users have
to rely on peers who might have similar technical backgrounds for rectifying failures [98].

1.3 Requirements for design tools
The design tools that can deal with the challenges discussed in Sec. 1.2, would therefore require
the following:

1. encode multi-disciplinary domain knowledge

2. detect design failures, and reduce hardware iterations

3. automate tedious design aspects

4. enable intuitive usability so as to ensure smaller learning curve

5. aid user creativity
We achieve these requirements for our tools by adopting a set of design methodologies de-

scribed next.

1.3.1 User-in-the-loop design
One approach to allow novices to build robotic devices is to develop fully automated tools, that
work with minimal user inputs. Rather than such fully automated tools that allow for no control
over the design process, we aspire to build user-in-the-loop tools, in order to truly encourage
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creativity in the design process. Apart from aiding creativity, such an approach eliminates the
need for modeling complex user preferences such as aesthetics. Therefore, our tools automate
tasks that are knowledge and skill-intensive as well as tedious, while letting users to be in charge
of the overall process, and the creative decisions. In broader context, our approach is inspired by
mixed-initiative interaction – wherein users and systems (e.g., an interface) take on complemen-
tary roles in a task, leading to an optimal collaboration with each being able to do what they do
best [97].

To enable this, all our tools have an intuitive visual interface that allow users to specify their
needs, and to be an integral part of the design process. We ensure that our interfaces have very
small learning curves by using simple and familiar control operations such as drag and drop.
We provide interaction modalities for users to interact with the automated algorithms running
underneath our tools, and to guide these algorithms towards their desired outcomes by providing
constant or intermittent feedback during the design process. Allowing users to play an active role
in creating robotic devices for personal use has been shown to be essential for not only their sense
of self-agency, but also for enhancing the quality of their interactions with these devices [203].

1.3.2 Feedback during design
Instead of having only one-way feedback that goes from the user to the design tool, we aim to es-
tablish a two-way feedback mechanism wherein the tool also provides the user with useful feed-
back about their designs. We achieve this using either relevant physical simulations, or through
parametric or data-driven models. By leveraging simulations and models our tools approximate
and show to the users, the real-world behavior of their designs. We also take advantage of intu-
itive visual highlighting to convey design failures. Such feedback from the system not only aids
user creativity and learning about the design process, but it also directly helps users in validating
the function of their designs and understanding possible failures prior to any hardware assembly.
This, in turn, reduces the hardware iterations needed to get the design right. Such feedback has
been found to be highly essential for increasing the accessibility of digital fabrication tools in
previous studies [35, 129].

1.3.3 Customizability and fabricability
Empowering people to build personalized robotic devices inherently demands for customization.
Towards this, we leverage both digital fabrication and traditional mass-manufacturing. Digital
fabrication allows necessary customization capability, while mass-manufactured, affordable and
durable off-the-shelf components can support diverse needs of robotic devices. Our tools thus
enable easy design with customized parts as well as off-the-shelf electromechanical components.
As a testament of the variety of devices that can be created using such an approach, we design
and build many diverse artifacts ranging from walking robots, to Internet-of-Things (IoT) devices
using the tools in this thesis (see Figure 1.2).

To ease the transition from a design in software, to a fabricated prototype, our tools export 3D
printable geometries of custom parts of the design for fabrication, when relevant. The underlying
algorithms of our tools that generate these geometries further respect the constraints necessary
for valid functioning of individual device components as well as the feasibility of hardware and
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a. b. c.

Figure 1.2: Various robotic devices fabricated using tools presented in this thesis (a) Robo-
calligrapher: a robot car with a manipulator arm that draws, (b) Puppy: a quadrupedal robot,
and (c) Chripy: a smart crib monitoring owl toy.

fabrication processes. For instance, we can account for fasteners holes, inter-connection between
components, assembly constraints, 3D printer tolerances etc. Together, these steps ensure that the
users are able to fabricate a robotic device with desired functionality in fewer hardware iterations.

1.3.4 User intent encapsulation

Our visual design interface allows users to specify their design requirements and preferences,
as well as to provide and obtain feedback about their designs at runtime. Unfortunately, the
ability of casual users to specify their needs for the device functionality, as well as to translate
the feedback provided by the system into relevant design changes may be limited. Consequently,
we explore the ideas of semantic design as well as inverse design for some of our tools. Defining
the design requirements at high-level, using relevant context based semantics has been proven to
be a powerful approach for image, and 3D model editing tools [43, 114, 163, 239]. We wish to
bring these inspiring ideas to the domain of robot design.

1.3.5 Design space exploration

Exploring the space of possibilities and alternative courses of action for a task at hand has been
found to be particularly important during the early, formative stages of design [55]. Computa-
tional tools can make available a large variety of appropriate solutions to the users at no additional
cost. This ability has therefore been a key component in many computational creativity support
tools [192]. Most of these tools either provide data-driven suggestions [42], or they present sev-
eral alternative design suggestions generated using pre-defined rules [212, 213]. Towards our
goal of aiding user creativity, we also explore both these approaches for enabling design space
exploration in some of our tools. For instance, our semantic function design tool (Chapter 7)
uses pre-computed dataset of designs to show alternatives to the users. On the other hand, our
modular structure design tool (Chapter 4) generates alternative structure designs on the fly based
on valid rules and user preferences.
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1.4 Key contributions
Towards the requirements defined in Sec. 1.3, we present various tools for designing robotic de-
vices – two structure design tools for articulated and non-articulated robots, a semantic function
design tool for exploring and editing diverse behaviors for articulated robots intuitively, and two
co-design tools that simultaneously accounts for an articulated robot’s structure and behavior
given a task. We define non-articulated robots as those with less than two joints in their structure
such as the Internet of things (IoT) devices, while articulated robots such as manipulators and
legged robots typically consist of more than or equal to two joints.

Robot design tools

Structure design Function design

task-specific design  
of structure and  

behavior

optimize behavior and 
improve structure for a task

< 2 joints 
many components 

  (sensors, controller etc.)

>= 2 joints 
chain of  

components

design non-
articulated robots

design 
articulated robots

Figure 2-12: Fabricated prototypes: The “robo-calligrapher” and “puppy” robot are
shown here with their fabricated counterparts. We designed a special purpose end
e↵ector that served as a pen-holder for the robo-calligrapher. Our video shows these
robots in action.

up the design process. However, our auto-completion approach does not currently ac-

count for dynamics, external loads, or desired motion profiles that may be important

for professional design of articulated robots.

Open loop forward design: Our tool relies completely on the users to modify

their designs in case of failures or undesirable design outcomes, highlighted in simula-

tion. While such simulation-based feedback immensely helps in iteratively improving

the design, translating a negative outcome observed in simulation to an appropriate

change in the design may be di�cult for novices.

Tools in the future will therefore need to account for wider design requirements

appropriate for experts as well. Further, they would ideally need to automatically

translate functional and behavioral specifications into co-designed hardware, sensing

and control software systems. Other researchers in the field have also highlighted this

vision for the future tools [102].

Towards a powerful inverse design setup, we also present some of our explorations

in helping users improve their inadequate designs automatically later in the thesis
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Assembly-aware Design of 3D Printable Devices

RUTA DESAI, Carnegie Mellon University

STELIAN COROS, Carnegie Mellon University

Fig. 1. Our computational design system allows casual users to make complex 3D printed devices with integrated o↵-the-shelf electromechanical
components. Chirpy – a smart crib monitoring toy made with our system is shown here.

From smart toys and household appliances to personal robots,

electromechanical devices play an increasingly important role in our

daily lives. Rather than relying on gadgets that are mass-produced,
the goal of our work is to enable casual users to custom-design

such devices based on their own needs and preferences. To this

end, we present a computational design method that leverages
the power of digital fabrication and the emergence of a wealth

of accessible, a↵ordable electronic components such as actuators,

sensors and embedded microcontrollers. The input to our system
consists of a 3D representation of the desired device’s shape, and

a set of o↵-the-shelf components that are user-specified. Based

on this input, our method generates an optimized, 3D printable
enclosure that can house the required components. To create these

designs automatically, we formalize a new spatio-temporal model
that captures the entire assembly process, including the placement

of the components within the device, mounting structures and

attachment strategies, the order in which components must be
inserted, and collision-free assembly paths. Using this model as

a technical core, we develop an e↵ective optimization strategy

that interleaves Markov Chain Monte Carlo and gradient-based
methods. The optimization process itself is guided by engineering

design principles. We demonstrate the versatility of our approach

by designing and fabricating three devices with advanced functional
capabilities.
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1 INTRODUCTION

The Maker movement is revolutionizing the accessibility and
appeal of engineering. Key to the growing popularity of
this Do-It-Yourself culture is the emergence of easy-to-use
computer-aided design (CAD) software, such as Google’s
SketchUp and Autodesk’s 123D suite, that allows the general
public to create content for digital fabrication. To a large
extent, today’s CAD tools focus on supporting the design
of static objects. The goal of our work is to make equally
accessible the creation of 3D printed devices capable of rich
interactions with the world around them.

Since 3D printers remain limited in the types of physi-
cal artifacts they can create, we aim to achieve our goal by
integrating o↵-the-shelf electromechanical components (e.g.
sensors, actuators, control boards, etc) into digitally fabri-
cated objects. Our work is inspired by Voxel8, a recently
introduced 3D electronics printer [Voxel8 2015]. Voxel8 em-
ploys a print-in-place strategy where external components
are completely encased into 3D printed objects during the
fabrication process. While very promising for certain appli-
cation domains, this approach does not allow the embedded
components to be accessed for repair or upgrades after the
device is created. This limitation highlights the importance of
assembly-based approaches, where o↵-the-shelf components
are mounted within a 3D printed enclosure as a post process.

To design a physical device according to a desired function-
ality, one must first choose a suitable set of electromechanical

ACM Transactions on Graphics, Vol. 9, No. 4, Article 39. Publication date: March 2010.

collision 
during walking

optimized 
design

Co-design

design multiple 
behaviors

Figure 1.3: Overview of tools – This thesis presents a set of tools for structure and function design
of robots. The structure design tools allow designing fabricable structures of non-articulated
robots such as IoT devices and articulated robots such as manipulators and legged robots. We
also devise function design and co-design tools for articulated robots. The function design tool
allow users to explore and edit multiple behaviors for a given robot. While the co-design tools
account for structure and function together.

Figure 1.3 gives an overview of these tools. Together these tools focus on design and editing
of two major aspects of robotic devices – structure and function. Structure design entails the de-
sign of device’s physical form, while function design focuses on achieving the resultant behavior
or functionality of the device. For instance, designing the walking gait of a quadruped would per-
tain to function design, while structure design would involve the design of its articulated limbs.
Our tools for function design only edit the device’s function, assuming a fixed device structure.
Similarly, structure design tools focus solely on the device’s physical composition. To account
for the inherent coupling between the device’s structure and function, we also explore co-design
approaches.

The tools developed in this thesis can be further categorized based on the level of details
that the users need to provide to the tool for defining their design requirements (Table 1.1).
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Table 1.1: Key contributions of this thesis

Input from the user

Low-level Mid-level High-level

Tools in

Structure design Semantic motion design

this thesis

of articulated robots of articulated robots
Co-optimize structure and

motion of articulated robots
Structure design Task-specific design

of non-articulated robots of robotic arms

Even though we encode many nitty-gritty details of the design process, our structure design
tools require certain low-level design details as inputs from the user such as electromechanical
components needed in the robot, number and location of actuators, or the articulated structure
morphology. As we developed more of our tools, we placed emphasis on on reducing the need
of such low-level inputs from the user so as to make the design process even more accessible.
For instance, our co-design tool only requires the number of actuators in a robot and not their
locations. Moving further, our task-specific robot arm design system even eliminates this need
of obtaining the number of actuators (degrees of freedom) in a robot from the users. Instead,
the users can define the task using a motion trajectory, while our system automatically creates a
corresponding robotic arm and its behavior. We also explore ways for the users to subjectively
specify their desired designs with the help of semantic attributes in our semantic motion design
tool. Note that, while in general fewer lower-level user-inputs ensure more accessibility, the type
of inputs needed from the user are very dependent on the target audience as well as the intended
application. For instance, in applications where aesthetics are important, its always preferable to
let users be in charge of the creative decisions. Next, we give a brief overview of our tools.

1.5 Overview of devised tools

1.5.1 Structure design tools
Our structure design tools for articulated and non-articulated robots are built upon the observa-
tions about the inherent characteristics of these robots.

Assembly-aware design for non-articulated robots: Non-articulated robots typically con-
sist of a physical casing or an enclosure that houses all the electro-mechanical components such
as sensors, controllers, actuators, and batteries. Creating such devices therefore requires packing
and assembly of all components within the enclosure, and involves the use of expert computer-
aided design (CAD) tools such as Solidworks. Instead, our tool allow users without any CAD
experience to create assembly-aware design of custom enclosures that would contain their de-
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sired components. Our tool is based upon a novel spatio-temporal model that captures the entire
assembly process, including the placement of the components within the device, appropriate
mounting structures and attachment strategies for these components, as well as a valid plan for
assembling everything together.

Modular structure design for articulated robots: Articulated robots could also have var-
ious electromechanical components such as sensors, controllers etc. but their distinguishing
feature is the chains of interconnected components with more than two joints. Based on this
observation, we propose a generic computational abstraction that formalizes the creation of such
articulated structures from diverse modular components. Further, unlike non-articulated robots,
the resultant function of the robot is highly dependent on the structural arrangement of compo-
nents, and is unintuitive. For instance, an improper arrangement of motors in a legged robot’s
limb may render the robot incapable of walking in a desired manner. We therefore integrate a
physics simulation within the design tool. By leveraging continuous feedback from the simula-
tion, users can iteratively improve their designs until individual needs and preferences are met.

1.5.2 Co-design of structure and function
Our structure design tools enable forward design of a robotic device wherein a user designs a
device and then tests to see if it is desirable. Instead, inverse design systems start with user-
specified design requirements, and can thus be very powerful tools for casual users. To enable
such inverse design, we develop two co-design tools for articulated robots. Apart from inverse
design, these tools also enable users to better explore the coupling between structure and func-
tion of the articulated robot, given a task. Both of our co-design tools focus on two different
fabrication modalities and corresponding constraints.

Task-specific co-design of modular robotic arms: This tool focuses on co-design of struc-
ture and function of articulated robots with discrete off-the-shelf components with fixed-sizes
such as brackets, connectors etc. In particular, we extend our modular articulated robot structure
design tool to enable task-specific design of such robots, and demonstrate it for robotic arms.

Co-design of 3D printed legged robots: We also explore how co-design can be supported
for articulated robots consisting of custom 3D printed parts, whose physical dimensions can be
tailored to one’s need. Specifically, we formulate a mathematical model that maps the morpho-
logical parameters of a robot to its motor capabilities. We then leverage this model to automati-
cally improve user-designs for a given task.

1.5.3 Function design tools
Finally, we experiment with a semantic design tool to capture the user-intent about design func-
tionality in an intuitive manner. We focus entirely on exploring the design space of a given
robot’s functionality, without modifying its structure.

Semantic motion design for articulated robots: We propose a functionality design tool for
the domain of motion behavior design of articulated robots such as walking robots and robotic
arms. We choose this domain because motion design of articulated robots is highly unintuitive
and challenging for novices, and has a very high-dimensional parameter space effecting the re-
sultant behavior. In particular, instead of using low-level and unintuitive parameters such as
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speed, pose etc. to describe the desired motion, an intuitive way would be to define the desired
motion behavior characteristics through perceptual attributes. For instance, using attributes such
as happy and angry one could easily describe two different variations of a robot’s behavior. We
thus enable the users to explore the design space of robot motions using the semantic space of
expressions such as emotions. To this end, we present a data-driven framework that maps the se-
mantic expression space and the robot motion parameter space. Using this mapping, we develop
an intuitive user interface (UI) that supports easy editing and visual exploration of the space of
diverse robot motions.

1.6 Thesis outline
We begin with a discussion on existing tools for robot design in Chapter 2. Following this,
Chapters 3 and 4 describe the structure design tools – assembly-aware design of non-articulated
robots and modular structure design for articulated robots respectively. Chapter 5 discusses task-
specific design of robotic arms, while Chapter 6 explains our co-design approach for 3D printed
legged robots. Finally, Chapter 7 discusses our work on semantic functionality design, before
diving into the future work in Chapter 8. Apart from describing the model and the computational
approach, each chapter also discusses relevant related work, corresponding evaluation strategy,
and limitations in detail. Further, we clarify some of our design decisions, assumptions, and use
cases for these tools within a frequently asked questions (FAQ) section in each chapter.
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Chapter 2

Background

Designing robots involves the design of mechanical structure, electrical subsystems as well as
that of robot’s behavior or control. For the robots that we built, we used off-the-shelf electronic
subsystems such as Arduino [2], owing to their affordability and accessibility. Thus, the tools de-
veloped in this thesis primarily focus on structure and behavior design (Figure 2.1). We therefore
provide a brief overview of existing expert and novice design tools for structure and behavior of
robots in this chapter. Since there is a plethora of available commercial, open-source as well as
academically developed tools for robot design, our overview is by no means exhaustive. Instead,
we provide a flavor of most relevant tools out there to emphasize the need for tools in this thesis.
Related work specific to each tool is further discussed in individual chapters.

Figure 2.1: Robot design consists of mechanical structure, electrical subsystem, and behavior
control design. Tools in this thesis focus on mechanical structure and behavior design of robots.

Figure 2.2 gives an overview of existing commercial and open-source structure and behavior
design tools. We also discuss tools from academia at the end of the chapter.
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2.1 Robot design tools for experts
The field of computer-aided design offers many tools to experts for mechanical structure design.
Some of the prominent examples of these tools include Solidworks [196], Autodesk’s Inven-
tor [100] and Fusion 360 [7], PRO-E [74], Rhinoceros [173] etc. In order to be generic and to
support structure design of a wide range of objects, these tools consist of a lot of features that are
necessary from engineering design perspective such as 3D modeling, 3D assembly design, struc-
ture analysis etc. As a result, these tools typically have a steep learning curve [91]. Furthermore,
many of them require an expensive license for use. While companies have started offering free
license to students (e.g., [76]), hobbyists and artists still face challenges in accessing them. In-
stead, our goal is to create freely accessible and specialized tools that focus on particular design
tasks and audience, and their corresponding needs.
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Figure 2.2: Prominent commercial and open-source tools for structure and behavior design of
robots are shown here. Expert tools tend to have many features for a variety of design scenarios,
while novice tools are more specialized for certain tasks. Intuitive visual design is also a critical
component of novice tools.

Similar to structure design tools, robot function/behavior design tools for experts such as
Robot Operating Systems (ROS) together with OpenRAVE and Gazebo [81, 157, 178], Mi-
crosoft’s robotics developer studio [202], Matlab and Simulink [132], Labview’s robotic simula-
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tor [194], V-REP [220], Webots [229] and many more1 provide a lot of features. These features
include dynamic modeling of robots, simulation of robot behaviors, interfacing and monitor-
ing of robot hardware, analysis and testing of robot behaviors in realistic scenarios etc. These
tools are spread over a wide spectrum of usage scenarios. For instance, Matlab and Simulink
are preferred for quick prototyping and analysis of control, while ROS and Microsoft’s robotic
developers studio are mostly used for system integration and transfer to hardware. Apart from
these generic tools that support a variety of robotic systems, platform specific tools are also avail-
able. Examples include design tools for ABB robots [201] and NAO robots [77] tools for ground
robots [15] etc. Proper use of these tools demands a lot of domain knowledge. Further, many of
them require the use of programming languages such as C++, Python, Java, making them less
accessible to casual users. Our function design tool instead enables users to interact with a robot
simulation visually. Further, it allows users to design behaviors based on high-level/semantic
intent without worrying about robot’s dynamics or low-level control parameters.

Finally, tools that enable co-design of robot structure and behavior have been developed in
the cyber-physical systems community such as the OpenMETA [156]. OpenMETA integrates
modeling tools such as Solidworks, Pro-E, and control design tools such as ROS, Matlab and
Simulink, along with optimization tools for trade-off studies and design synthesis. Our co-design
tools are motivated by the ability of such tools to optimize robot designs, structurally and func-
tionally, for a given task.

2.2 Robot design tools for novices
Existing design tools for novices try to overcome the accessibility issues corresponding to the
expert tools. To do so, first, these tools enable visual design and programming of robots. For
instance, Scratch for Arduino [48], NETLab Toolkit (NTK) [217] allow programming behaviors
of IoT robotic devices using visual drag-and-drop blocks. Visual block based programming is
combined with simulation for LEGO and VEX robots by the Virtual Robotics Toolkit [218]
and for NAO robots by Choreographe [45]. Likewise, Microsoft’s robotic developers studio
enables behavior design of more generic robotic systems using its visual programming language
(VPL) [120]. For 3D design, Rhinoceros features a visual block-based graphical algorithm editor
called Grasshoper, which is popular among artists and architects [88]. Grasshopper also features
plugins for visual parametric control and simulation of industrial robots such as KUKA [166].

Secondly, tools for casual users try to encode the domain knowledge and simplify user in-
teractions. For example, structure design tools such as Tinkercad and Autodesk’s 123D De-
sign [19, 22] use 3D primitives for design, instead of engineering sketching followed by extru-
sion operations in expert CAD tools2. Similarly, Sketchup leverages existing templates to aid
the design [5]. Tools such as Leopoly and morphi combine such easy design with other modal-
ities such as VR to enhance understanding of casual users [123, 147]. Finally, accessibility is
further achieved by developing specialized tools that focus on particular tasks. For instance,

1A good overview of robot simulation based tools is available at – https://www.smashingrobotics.
com/most-advanced-and-used-robotics-simulation-software/

2A list of 3D modeling tools for novice users can be found here – https://www.3dnatives.com/en/
3d-software-beginners100420174/
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CAD tools such as SnapCAD, LDraw, Lego Digital Designer etc. have been developed spe-
cially for LEGO robots so as to encode all the necessary design constraints and capabilities of
LEGOS [62, 102, 225]. We built upon these ideas put forth by existing tools for novices, for
developing tools in this thesis.

2.3 Design tools for novices from academia
Robotics research community has also started emphasizing on design tools that support on-
demand generation of robotic devices by the people [6, 28]. Similar to existing commercial
and open-source tools, researchers have developed tools for structure design [136, 138], function
design [33, 54], as well as co-design of robots [67, 134, 135, 137, 188, 199]. In particular, many
of the structure and co-design tools have focused on print-and-fold origami robots [135, 136, 137,
199]. Other than origami-based robots, design tools for multicopters and quadcopters [67, 138],
and walking creatures [134] have also been developed. Apart from tools that focus on behavior
and structure design of specific types of robots, application and audience specific tools have also
been developed. Examples include visual behavior design tools such as CREATE Lab Visual
programmer for Art bots [54] and Ruru for ground robots [63] that are focused on students and
education. Likewise, a specialized visual programming tool focused on the needs of artists and
creative tasks has also been devised [33]. Finally, tools that increase accessibility of existing
frameworks have also been developed. For example, Bezzo et al. developed a visual environ-
ment called RosLab based on ROS to enable simplified and intuitive programming and hardware
design of robots [27, 180].

We take inspiration from this plethora of academic tools for enabling design of more generic
robots with different form factors and functionalities, which can be built using custom digitally
fabricated parts and off-the-shelf electromechanical components. We note that many of these ex-
isting tools leverage expert-designed building blocks or design templates [136, 188]. Our tools
refrain from using such expert-created domain knowledge in order to be more scalable. Fur-
ther, some of the design tools use custom scripting language [136, 138], while others leverage
visual design [67, 134, 188]. We prefer to use visual interfaces for our tools inspired by the suc-
cess of visual programming paradigm for novices [41], and the prevalence of visual interaction
in existing tools for novices. We are also motivated by co-design tools to leverage integrated
simulation-based feedback for design [134]. Finally, our vision of moving towards tools that
enable design based on high-level user specifications is also shared by other researchers in the
community [137, 139, 199].
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Part I

Structure design tools
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Chapter 3

Assembly-aware design for non-articulated
robotic devices

3.1 Preamble
This chapter describes our first structure design tool meant to enable the creation of non-articulated
robots. This tool enables casual users to create a wide class of functional and customized 3D
printed gadgets such as smart home appliances, toys, interactive art, and so on. In particular, our
tool empowers novices to build personalized gadgets with any 3D shape, and electromechanical
components. Figure 3.1 shows one such example of a smart crib monitoring toy shaped as an
owl.

3.2 Introduction
The emergence of easy-to-use computer-aided design (CAD) software, such as SketchUp and
Autodesks 123D suite, has enabled the general public to create content for digital fabrication [5,
19]. The goal of this work is to make equally accessible the creation of 3D printed devices capa-
ble of rich interactions with the world around them. Our work is inspired by Voxel8, a recently
introduced 3D electronics printer [227]. Voxel8 employs a print-in-place strategy where external
components are completely encased into 3D printed objects during the fabrication process. Such

Figure 3.1: Our design tool allows casual users to make complex 3D printed devices with inte-
grated off-the-shelf electromechanical components. Chirpy – a smart crib monitoring toy made
with our system is shown here.
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embedding of interactive elements during the printing process have also been explored for optical
and pneumatic 3D printed interactive devices [223, 233]. While very promising for certain appli-
cation domains, this approach does not allow the embedded components to be accessed for repair
or upgrades after the device is created. This limitation highlights the importance of assembly-
based approaches, more prevalent in traditional manufacturing wherein complex artifacts are
designed to be put together, and take apart as needed. Inspired by this, we therefore advocate a
complementary approach that we call assembly-aware design in our work, where off-the-shelf
components are mounted within a 3D printed enclosure as a post process (see Fig. 3.2).

A. B.

Image courtesy: Voxel8 Image courtesy: Chip-E robot, MAKI robot, Pololu robotics

Figure 3.2: Assembly-based vs. print-in-place design approach – (A) Voxel8 uses a print-in-place
design strategy for creating functional 3D printed devices with integrated electronics. (B) Instead,
we propose to design devices that allow integrating electronics via assembly, so as to enable
creation of much wider category of artifacts.

To design a physical device according to a desired functionality, one must first choose a suit-
able set of electromechanical components. The layout of the components within the device has to
then be generated. For designing functional devices, the problem of choosing right components
for a functionality and layout design are both important, but complementary. Many solutions
have started to emerge for the former task. In particular, Censi proposed an approach to select
discrete robot components, including batteries and actuators, based on constraints operating on
mixed discrete and continuous variables [39]. Likewise, Ramesh et al. use constraint solvers
to generate circuit level block diagrams, starting from user-specified requirements and a library
of available components [168]. A system to automate component selection given robot function
in natural language has also been proposed [139]. Therefore, we focus on the latter problem of
device layout design in this paper.

Layout design for physical devices is a highly challenging task. The placement of the com-
ponents within the enclosure, the configuration of mounting structures and the assembly pro-
cess itself (e.g., assembly order, collision-free assembly paths, attachment strategies, etc) are all
highly coupled and have to be concurrently considered. The difficulty of this problem led to the
emergence of the Design for Assembly (DFA) sub-field of engineering, where product design is
studied from the point of view of ‘ease of assembly’ [32]. However, within the computer-aided
design and manufacturing community (CAD-CAM), product design is an iterative but sequential
process. A product’s layout design (parts and their connections) using DFA guidelines is first
created by hand. For this manually created layout design, automatic assembly sequence gener-
ators [103], and industrial DFA softwares are used to evaluate the assembly process based on
metrics such as time and cost [32], which allow the input design to be refined. However, creating
an initial design or adapting an existing one remains a time-consuming, manually intensive task
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that is well beyond the capabilities of non-experts.
Overview and contributions: We develop a novel design system that allows users with no

prior computer-aided design (CAD) experience to create physical devices that cater to their indi-
vidual needs and preferences. In order to provide ample room for control over the functional and
aesthetic form of the devices, our system lets the users specify a virtual object corresponding to
the desired physical device, as well as a list of electromechanical components. Along with an
easy to use user-interface, our system consists of a powerful computational method for automat-
ically optimizing the integration of components into the final 3D printed device. In particular,
we encode the design and assembly process using a spatio-temporal model. This model captures
the layout of the components within the device, the paths traveled to reach their final placement,
the support structures that they will be mounted on, and the relative order in which they are to
be assembled. To the best of our knowledge, our model is the first to approach the layout and
assembly of 3D printable devices in a coupled manner. Furthermore, our formulation is rooted in
engineering design principles. By encapsulating domain knowledge, our model can better serve
the needs of DIY makers, and artists (our target audience) for creating one-off designs.

Apart from modeling the spatio-temporal assembly process, we also develop an efficient
algorithm to concurrently optimize all aspects of this model. The algorithm we propose couples
a Markov Chain Monte Carlo based optimization strategy [83] with a gradient-based method,
while utilizing heuristics that encode insights from the CAD community. The resulting scheme
handles both continuous and discrete model parameters, and features increased robustness to
local minima. We demonstrate the effectiveness of our computational approach by designing and
fabricating an assortment of electromechanical devices. Our examples are representative of the
types of devices available in online-community driven repositories. Each device features unique
form factors and functional capabilities, and employs standard off-the-shelf electromechanical
components embedded into 3D printed enclosure. We also show that such devices are time
consuming and difficult to design, especially by non-experts, through a user-study. While many
participants failed to design certain devices in 45 minutes, our computational approach created
valid designs for those devices within 4 minutes.

3.3 Related work
Design for fabrication: The research community has contributed heavily to the development
of powerful computational tools that fuel the personal fabrication revolution. Examples include
methods to generate 3D printable objects that are lightweight yet strong [128, 200], objects whose
optimized mass distribution allows them to stand, spin or float stably [23, 148], and mechanical
automata capable of creating compelling motions [40, 51]. These tools share the same high-level
goal as ours: empowering casual users in creating complex physical artifacts without requiring
domain specific knowledge. However, these artifacts are limited by the abilities of 3D printers.
To create objects with diverse functionalities, we aim to develop a computational framework to
seamlessly integrates off-the-shelf components and 3D printed structures.

Combining off-the-shelf components with 3D printed parts allows us to harness the best of
both worlds – traditionally manufactured parts offer cost-effectiveness, durability, and advanced
functionality while 3D printing allows customization. Motivated by this, other researchers have
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also recently proposed tools for fabricating 3D printed artifacts with sensors and motors such as
walking creatures [60, 134], and multicopters [67]. Our system intends to provide similar ease
of design for making generic smart devices with a wide range of functional repertoires.

3D printed smart objects: Researchers in the HCI community have also been interested in
enabling users to build 3D printed objects with embedded electronics [16, 105, 184, 226]. Savage
et al. [184] and Jones et al. [105] present a fabrication pipeline using tangible means, while
Ashbrook et al. [16] use an augmented fabrication system to enable fabrication of functional
and assemblable objects with embedded components. Tools for tangibly designing laser-cut
custom enclosures for prototyping interactive objects [186], and retrofitting existing devices with
sensors and actuators [167] have also been proposed. Some of these systems also automatically
create mounting structures for the components. However, the onus of deciding component layout
such that the design is assemblable lies on the end user in their systems. Our system offloads
many of the decisions requiring engineering knowledge from the user, while involving them in
the creative aspects of the design process. In a complementary approach, Weichel et.al [230]
propose to design an enclosure that ‘fits’ all the desired components. Instead, we assume a fixed,
pre-defined enclosure considering applications where the users might care about functionality or
aesthetics, such as a bunny-shaped table lamp.

Layout design and Stochastic optimization: Computational layout design has been addressed
for a wide range of applications such as webpage and document designs [153], VLSI design [110],
city and architectural layouts [140], furniture layout for interior design [141, 237], and for the
design of simulated worlds [78, 236]. Many of these approaches apply Markov Chain Monte
Carlo (MCMC) based techniques to optimize the layouts, owing to the highly multimodal nature
of the layout cost function. Motivated by their success, we also apply MCMC based optimiza-
tion for our problem. We are also inspired by other stochastic optimization approaches that uti-
lize gradient information for efficient sampling such as Hamiltonian Monte Carlo (HMC) [150],
Latin Complement Sampling (LCS) [29], and Sequential Monte Carlo mixed with gradient de-
scent [124]. While HMC and LCS are more suitable for continuous domains, our cost function
has both discrete and continuous parameters. To handle the additional assembly and fabrication
constraints that our problem poses, we propose an interleaved optimization strategy.

Assembly planning: Assembly planning is a well-studied problem in automated manufacturing
and robotics [103, 177, 234, 235]. Traditionally, an assembly planner computes all geometrically
feasible sequences of assembly operations, given a known layout. However, a design’s layout and
assembly plan generation are highly coupled. Therefore, our solution concurrently optimizes
with the help of a new model that captures spatio-temporal aspects of the assembly process.

3.4 Designing smart 3D printed devices: Overview
We present a comprehensive system for designing functional 3D printable devices. As illus-
trated in Fig. 3.3, our interactive design system allows users to incorporate different types of
off-the-shelf components into the device of their choice. It then computationally generates a 3D
layout for the user-selected components, as well as an assembly plan. The resulting design is
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guided by engineering design principles and promotes ease of assembly. In this section, we give
an overview of the design process that our computational approach enables, and describe the
engineering design principles that we incorporate, in detail.

library of 
electromechanical 

components

+ user input:
 device enclosure, 

component selection

optimization of spatio-temporal
assembly process

fabricated result

Figure 3.3: Overview of assembly-aware design system – Given a user-defined device enclosure,
and a set of components selected from a library, our system optimizes an assembly-aware design
of the device.

3.4.1 Design process
In creating a functional electromechanical device, informed decisions must be made with respect
to four highly intertwined aspects of the design:

Conceptual design: The off-the-shelf components that are added to a design depend on
cost and availability, and they directly shape the functional capabilities of the resulting device.
Our graphical design system allows users to select electromechanical components from a library
through familiar drag-and-drop operations. While adding and removing components is made
effortless by our design system, the decision of which components to employ is left entirely to
the user.

Layout design: The spatial arrangement of components into a device constitutes the layout
design. Given the geometric description of a device’s internal enclosure and a set of components
to incorporate, many collision-free layout designs might exist. From this space of feasible so-
lutions, our optimization-based approach aims to find a layout plan that simplifies the assembly
process as much as possible.

Mounting structures: While users explicitly provide the list of electromechanical compo-
nents they wish to employ, our design system generates appropriate mounting structures automat-
ically. The configuration of these mounts is directly governed by the layout design. Conversely,
the design layout needs to be aware of mounting structures and assembly strategies. For exam-
ple, if fasteners are needed to secure a component to its corresponding support, then care must
be taken to ensure that nothing is placed in their path. We assume that mounting structures will
be seamlessly assimilated into the 3D printed enclosure of the final design. Therefore, to gener-
ate mount geometry while optimizing the entire assembly process, each off-the-shelf component
stores auxiliary data about compatible fastener configuration and mounting structures.

Assembly planning: The assembly plan stores the sequence of operations needed to integrate
all off-the-shelf components into the 3D printed enclosure of a device. To ensure that components
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can be assembled, their layout, the order in which they are added to the design, and the collision-
free path they must travel to reach their final placement need to be concurrently considered. The
simple scenarios shown in the inset figure illustrate this challenge. In the example on the left,
only one possible layout exists due to the shape of the enclosure and the shape of the components.

A

B A

B

This layout dictates that component A should be
assembled after component B. In the example
shown on the right, component A can be placed
either on top of or below B. However, this lay-
out choice is dependent on the order in which the
components are to be integrated into the device.
Imposing any specific ordering ahead of time re-
stricts the space of feasible component layouts once the entire assembly process is considered.
Unfortunately, this can all-too-easily lead to design choices that admit no feasible solutions. To
make matters worse, as the number of components in a design increases, it becomes impossible
to predict which assembly orderings will lead to good designs and which ones will not.

The highly coupled nature of these different design aspects leads to a technically challenging
problem that exhibits both continuous and discrete parameters. Our system (Fig. 3.3) simplifies
the design process by providing tools to visualize conflicts during manual design, as well as
providing the option to automatically and simultaneously determine a layout, mounting design,
and assembly plan from a set of components and an enclosure. To model the design process in a
manner that is amenable for manual assembly by novices, we incorporate Design for Assembly
(DFA) guidelines, described next.

3.4.2 Ease of assembly

Design for Assembly (DFA) guidelines are a result of extensive research in mechanical design
and manufacturing community. These guidelines are aimed at improving product designs for
easy and low-cost assembly [32, 159]. In particular, the DFA guidelines for positioning and
handling components recommend the following for easy manual assembly [12, 159]:

• Simple linear path for component assembly
• Translational movements along assembly paths
• Assembly of one component at a time directly into component’s final configuration

The first two guidelines are based on the observation that multiple orientations, and complex
paths during manual assembly can be confusing, and prone to errors. The final guideline aims at
reducing the complexity of the assembly sequence by assuming that the assembly can be done
using only two hands in a monotonic manner (without the need of intermediate placement of
components). Similar guidelines are also used for designing assembly instructions for existing
products [9], and for IKEA furniture.
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3.5 User Interface

Figure 3.4(A) illustrates our graphical user interface (GUI). It consists of a workspace window
in the center, a palette displaying various electromechanical components on the right, and a
menu bar with various editing options on the left. A design session typically begins with users
dragging a desired 3D enclosure for their device into the workspace (for instance, a car enclosure
in Fig. 3.4(A)). Users can then add components of their choice from the palette using drag and
drop operations. Mounting structures and fasteners are automatically added along with each
component, and are updated whenever the component is moved. The layout of the components
within the device as well as corresponding assembly plan can be designed using either manual
or automatic design modes.

components palette

workspace windowmenu bar

A.

B. C.

Figure 3.4: (A) Our user interface is shown here with its three main elements – components
palette, main workspace window, and editing menu bar. (B) Translation and rotation widgets can
be used to manually configure a component. (C) In order to provide guidance to the user, our
system highlights components that lead to infeasible designs in red.
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In manual design mode, the user uses translation and rotation widgets to place each compo-
nent (Fig. 3.4(B)); and sets the assembly plan using options in the menu bar. Our system provides
assistance by highlighting components that lead to design infeasibility (Fig. 3.4(C)). Such infea-
sibility may occur when components are colliding with each-other, or when a component or its
fasteners’ assembly is blocked by other components in the device. In contrast, automatic design
mode determines a valid layout and assembly plan using optimization. As it optimizes, our sys-
tem displays the current best configuration, and allows users to pause and modify the design if
desired.

Once the device is designed, users can export the enclosure (including synthesized mounting
structures) for 3D printing, and the assembly plan can be animated for guidance during fabri-
cation. Figures. 3.1, 3.9 show some custom enclosures generated in this manner. Our video1

illustrates various capabilities of our system, along with automatic design.

Enclosure e

c1

c2

c3

A. B.

Mount m

Fasteners f

Electromechanical 
component c

Figure 3.5: Component and device definitions – (A) An electromechanical component c is shown
with its fasteners f and mount m. The configurations of f and m are defined with respect to c’s
local coordinate system. (B) A device D consisting of electromechanical components c1, c2, c3
bounded within an enclosure e. ci can be supported by a single or multiple mounts and their
unique set of fasteners attach to ci in a specific manner. ci’s mounts get extended to rigidly attach
to e’s walls.

3.6 Modeling electromechanical devices
Formally, our system represents an electromechanical device (Fig. 3.5B) and its assembly plan
as an ordered tuple D of parts. Each part di has a configuration φi = (xi, Ri) consisting of 3D
position xi and a 3D rotation Ri, shape attribute Si at φi, and an assembly path Pi(t) that defines
configuration for the part at every time t during its assembly:

1Video illustrating our assembly-aware design system for 3D printable electromechanical devices is available at
– https://youtu.be/DrIXD5Fpg0I
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D ≡ (d1, . . . , dn) ,

di ≡ (Si, φi, Pi(t)) . (3.1)

Notice that this representation stores both the layout of the device – each di ends up assembled
at configuration φi – and the assembly plan – start with all components at Pi(0), then in order
from 1 to n move each part i along path Pi to its final configuration Pi(1) = φi. We therefore
call this a spatio-temporal model of device assembly. Note that assembly plans represented in
this model always assemble parts into their final configuration one at a time as suggested by the
Design For Assembly (DFA) guidelines [32, 159] (Sec. 3.4). DFA guidelines also suggest that
multiple rotations and complex paths during assembly can be confusing. Therefore, we only
allow piece-wise linear assembly paths Pi, and translational motions along Pi (Ri is kept fixed).

The shape attributes S encode the space occupied by components, fasteners, and mounts
within D. S enables collision detection between these parts and forms the basis of our opti-
mization process. The shape attribute of the enclosure Se represents the total space in which all
components of D need to fit.

B.A.

bc
1
bc
2

c

Figure 3.6: Shape attributes – (A) An electromechanical component c is shown with its shape
attribute – a set of bounding boxes (Sc =

⋃
bi). Fasteners are encoded with capsule shapes

(shown by black mesh). These shapes are defined in the component’s local coordinate frame
shown at its center with a triad. (B) The swept shape S̃c of c along a piecewise linear path P and
that of its fasteners (S̃f ) along their default paths are shown.

3.6.1 Validity
Now that we have given a description of a electromechanical device, we can explicitly define the
notions of a valid layout and assembly plan.
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For a device to have a valid layout, it must be the case that none of its parts have overlapping
shapes in their assembled positions:

∀i 6= j : Si ∩ Sj = ∅. (3.2)

While for a device to have a valid assembly plan, the volume swept out by moving a part’s
shape along its assembly path must not intersect any previously-assembled part:

∀i < j : Si ∩ S̃j = ∅. (3.3)

where the “swept path” S̃j of a component is the union of its shape Sj over all positions along its
assembly path Pj . (Fig. 3.6B):

S̃j =
⋃
Pj

Sj. (3.4)

3.6.2 Parts
The values and degrees of freedom in Si, φi, and Pi are determined by the type of part being
represented:

The enclosure represents the case surrounding the device. Every device contains exactly
one enclosure e. The enclosure is always configured at world’s origin O with identity rotation
φe = (O, I). It does not move during assembly:

e ≡ (Se, φe, 0) . (3.5)

In our system, enclosures are always convex polytopes (Se) with one or more solid faces and
one or more lids (which are assumed to be assembled last). When checking that the layout is
valid (eq. 3.2), collision checks are performed against the exterior of the polytope; while when
checking for valid assembly paths (eq. 3.3) collision checks are performed against only the solid
faces of the polytope.

Components are electromechanical components (e.g., microcontrollers, sensors, motors,
batteries). Every component c has a shape given by a union of axis-aligned boxes (Fig. 3.6A), a
configuration φc, and an assembly path Pc:

c ≡ (Sc, φc, Pc) ,

Sc ≡
⋃

bi, (3.6)

Pc(t) ≡
{
x− ~x2 − (1− 2t) ~x1 if t < 0.5
x− (2− 2t) ~x2 otherwise (3.7)

Assembly paths Pc are piece-wise linear (as per DFA) and can be precisely represented as
functions of time. In our implementation, Pc are defined by at most two linear segments –
~x1 and ~x2. Note that, x denotes the component’s final position as in φc, while rotation of the
component along Pc is assumed to be unchanged from its value in φc. The first assembly step,
~x1, is parameterized by two spherical angles, α, β, and a radius, r:

~x1 ≡ r [cosα · cos β, cosα · sin β, sinα]t (3.8)
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This parameterization is used because fixing r to a sufficiently large value ensures that compo-
nents always start outside the enclosure during assembly, leaving only α and β to be optimized
over (or set by hand).

The second assembly step in the path, ~x2, is used for components that need to be slid into
mounts or through holes in the enclosure, like motors (e.g., Fig. 3.6B). The direction and length
of this vector is set based on a fixed value stored in the component library, so it does not contribute
any degrees of freedom to the optimization. For components that do not need to be slid into
mounting structures, ~x2 is set to zero.

Components have associated mounts and fasteners (Fig. 3.5A), which are also represented as
parts in the device.

Mounts, m, are structures added to the enclosure to give components something to attach
to. Each mount is associated with a component c. The mount’s shape Sm and configuration φm
depend on c. Sm is a convex hull and is determined by extending a convex polytope spanning c’s
fastener sockets to the closest wall of the enclosure. Because mounts are printed as a part of the
enclosure, their assembly path are the same as that of the enclosure (i.e. Pc = 0).

m ≡ (Scm, φ
c
m, 0) , (3.9)

where superscript c shows the dependence on c.
Fasteners (e.g., rivets, screws) are small parts used to affix components to their mounts. Each

fastener f has shape Sf given by a bounding capsule, while its configuration φf depend on the
sockets on c, and can thus be determined using fixed orientation (Rf ) and position offsets (x)
from the orientation and position of its associated component c (Fig. 3.5A).

f ≡
(
Sf , φ

c
f , P

c
f

)
, (3.10)

φcf ≡ (Pc(1) +Rcx,Rc ·Rf ) , (3.11)

Pf (t) ≡ Pc(1) +Rc (x− (1− t)( ~x1)) , (3.12)

where superscript c shows the dependence on c. As with components, the assembly path ~x1 is
set to be sufficiently long that the fastener must start outside the enclosure. Unlike components,
however, the path’s direction is fixed based on sockets on c (Fig. 3.6B).

Our model does not represent wires or account for their routing during design. Instead, the
availability of wires in desired lengths, and their flexibility enable users to insert them as per
choice during assembly.

3.6.3 Degrees of freedom

Components in our model have six layout degrees of freedom for configuration φ (a 3D position
x and a 3D orientation R). These are the only degrees of freedom (DOF) in the device – the
enclosure is fixed, and the fasteners and mounts are computed based on the layout of the com-
ponent. Our interface also allows the user to further lock particular layout DOF of components.
For example, a range sensor or a light emitting diode (LED) may need to be fixed to a specific
location or in a plane for aesthetic or functional requirements, and thereby may expose only two
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layout DOF. On the other hand, a controller or a battery that can be configured without restric-
tions may expose all six layout DOF. For ease of use, we represent the exposed layout DOF as
pli ⊆ φi for each component in a device. The overall device layout L(D) then becomes:

L(D) =
{
pli | ∀ci ∈ D

}
(3.13)

Components also have two assembly DOF (the spherical angles α and β used to define the
assembly path P ). Further, all parts in our model have an assembly order given by their index
in the device tuple (eq. 3.1). Because mounts and the enclosure don’t move during assembly,
our system always places them first in the tuple; similarly, fasteners always appear immediately
after their associated components in the assembly order (see Fig. 3.7). Thus, the order of the
components determines the overall assembly order of the device. Similar to L(D), we succinctly
define the device assembly plan L(D) as:

A(D) = {i, pai | ∀ci ∈ D} . (3.14)

where pai = (αi, βi) are the assembly path P ’s parameters, and i is the index of component ci
in the device tuple. (eq. 3.1)

In summary, when designing a device with C components, our optimizer must determine
values for up to 8C continuous variables, and select a discrete ordering among theC components.

c1

c2

c3

c4 c5

Figure 3.7: Assembly process – The assembly of a device with 5 components is shown. Each
component ci is assembled one at a time by translating along its assembly path Pi. The assembly
process is parameterized by component’s assembly order (i in D), and the parameters of Pi.
After assembly, ci is affixed by assembling its fasteners. The fasteners need to be assembled
along a specific path. There is a strong interplay between the layout of the components, and their
assembly order and paths. This can be seen during the assembly of c4. Owing to its configuration,
c4 can only be assembled along P4 before c5.

3.7 Assembly-aware device optimization
Our optimization aims to find a device design D with valid layout (eq. 3.2), and a valid assembly
plan (eq. 3.3), by simultaneously searching over both layout and assembly degrees of freedom
(eq. 3.13, 3.14).
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This simultaneous optimization stands in contrast to previous work which either optimizes
layout for applications of furniture, and virtual world layout design [78, 141, 237] or optimizes
assembly given layout for various manufacturing and engineering design applications [103, 234].

3.7.1 Cost function
We define a cost J for a device D to characterize how assemblable it is.

minimize
L(D),A(D)

J(D) ,

J(D) ≡ Jc + Jb . (3.15)

J(D) is the summation of collision penalty Jc, and bounding penalty Jb defined over all
elements di in D. Jc penalizes the collisions during assembly, while Jb constrains all the elements
to stay within the enclosure. In order to define these penalties, we need to quantify overlap
between shapes, which we do with a smoothed signed distance overlap cost.

Signed distance measure δ

A signed distance measure δ between a pair of shape attributes Si and Sj is defined as follows:

δ(Si, Sj) =

{
−PD(Si, Sj) , if Si ∩ Sj 6= ∅
∆ , otherwise

(3.16)

where Si and Sj are defined for each part as explained in Sec. 3.6, and ∆ is the shortest
distance between them using Euclidean norm ‖·‖. ∆ can be defined as min(‖xi − xj‖, | xi ∈
Si, xj ∈ Sj). Penetration depth (PD) is a natural extension of Euclidean distance when di and dj
are overlapping and is defined as the minimum translation distance that one of them undergoes
to make the interiors of their shape attributes Si and Sj disjoint [108] (see Fig. 3.8A). Mathe-
matically, PD(Si, Sj) = min(∆ | interior(Si + ∆) ∩ Sj = ∅). We use a publicly available
implementation based on the Expanding Polytope Algorithm (EPA) [1, 221] to compute δ(·).

Smooth overlap cost o(δ)

Our signed distance measure δ is not amenable to gradient-based methods. We therefore define
a smooth overlap cost o(δ) to penalize overlapping elements in D. The overlap cost o(δ) is
a function which is quadratic when distance between shapes (δ) is less than zero, and is zero
when shapes are sufficiently far from each other (see Fig. 3.8B). To ensure smoothness, a cubic
function is defined over the intermediate distance range 0 ≤ δ < ε, where ε > 0 determines the
minimum separation between the elements in a device. ε allows us to define a safety distance
margin between elements, which further aids easy assembly. We set it empirically.

o(δ) =


a1δ

2 + b1δ + c1, if δ < 0

a2δ
3 + b2δ

2 + b1δ + c1, if 0 ≤ δ < ε

0 , otherwise
(3.17)
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Figure 3.8: Measuring component collisions – (A) Signed distance measure δ defines distances
between overlapping and non-overlapping shapes. When two shapes S1 and S2 overlap each
other, δ is computed using the minimum translational length that will separate them (called pen-
etration depth (PD)). Otherwise, δ is calculated as the Euclidean distance between the closest
points of S1 and S2. (B) We use a C2 continuous cost o(δ) to penalize overlapping shapes.

where a1 corresponds to the stiffness of the quadratic cost. b1 = −a1ε
2

, c1 = a1ε2

6
, a2 = −a1

6ε
,

and b2 = a1
2

are constant weights that are determined such that the resultant overlap cost function
is C2 continuous. a1 and ε are empirically set. Such a construct allows us to define a safety
distance margin between elements using ε, which further aids easy assembly. The cubic function
in o can also be interpreted as a C2 continuous interpolation between the quadratic cost at δ < 0
and the zero cost for δ ≥ ε.

Collision and bounding penalties

Equipped with the concept of overlap cost, we are now able to define the collision penalty Jc,
and the bounding penalty Jb. Driving these two penalties to zero will result in a valid layout and
assembly plan.

The collision penalty, Jc, penalizes collisions between assembly paths of parts and those parts
assembled earlier:

Jc ≡
∑
i<j

overlap(Si, S̃j) (3.18)

where overlap(Sa, Sb) ≡ o(δ(Sa, Sb)) penalizes collisions between shapes Sa and Sb using the
overlap cost o(·) and signed distance δ(·).

The bounding penalty, Jb, forces component-type parts to remain inside the enclosure:

Jb ≡
∑
c

overlap(Se, Sc) (3.19)

The bounding penalty only considers component-type parts in order to save some computational
cost – by construction, both mounts and fasteners will lie within the enclosure if their associated
components are within.
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Note that the enclosure shape used in the collision penalty is the shape without lids (as used
in assembly validity), while the enclosure shape used in the bounding penalty is the shape with
lids (as used in layout validity). While our cost function J(D) only accounts for collisions within
a device, other cost terms that capture desired properties of the device design can be easily added
to J(D). For example, in order to achieve material minimzation during 3D printing, one could
include a cost term corresponding to volume of mounts to J(D), thereby reducing the size of
resultant mounts.

3.7.2 Numerical optimization
To optimize the cost function J(D) as defined in eq. (3.15), we develop an efficient algorithm
that combines heuristics inspired by the CAD design community, and powerful optimization
strategies.

Heuristics

We interviewed an expert with five years of CAD experience in designing mechanical assem-
blies to understand the design practices in the community (see sec. 3.9 for more details). The
expert supported simultaneous reasoning for assembly and layout of components during design.
However, the expert highlighted that the expert would approach such concurrent assembly-layout
design in an incremental manner. Instead of adding all components in a device at once, the expert
would add one component at a time and focus on finding valid layout and assembly for this latest
addition, before adding any more components. Similar incremental approaches have also been
applied for automatic computer-aided design of VLSI [49, 52], architectural floor plans [53],
specifically to deal with high design complexity, and to improve algorithm run times. Inspired by
these, we adopt an incremental approach to ensure interactivity during design. Instead of search-
ing for valid configurations (layout and assembly) of all components at once, we incrementally
create partial device designs by adding and properly configuring one component at a time to
the device. Incrementally adding components to the device optimization ensures that the search
space complexity increases gradually, aiding interactivity. Finally, an additional component may
be accommodated in a partial design with small reconfigurations of its existing components, if
the component makes the best use of available empty space. We therefore reward the use of
empty space during our incremental optimization.

Choice of optimization strategy

Our cost function J(D) as defined in eq. (3.15), is highly multimodal with a null space. Further
it has a mixture of discrete and continuous optimization variables. Determining the assembly
ordering is a combinatorial problem while layout optimization is continuous. Markov Chain
Monte Carlo (MCMC) based stochastic optimization methods have been successfully used in the
past for combinatorial problems [101, 110]. However, standard MCMC methods tend to get stuck
in a single mode while sampling from a multimodal probability distribution. Approaches based
on multiple markov chains such as Parallel Tempering have been proposed to overcome this
issue [17, 83]. These approaches however, do not offer a mechanism to exploit the availability of
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gradient information for continuous optimization variables. Recent approaches have shown the
benefit of combining gradient based optimization with sampling for both continuous and mixed
optimization problems [29, 124]. Using gradient information increases the efficiency of sampling
by ensuring less-random walks of the markov chains in the parameter space. Inspired by these
approaches, we combine gradient-based methods with Parallel Tempering for our problem.

MCMC algorithms

Typical MCMC methods perform a memoryless, random walk in the space of parameters φ by
simulating a markov chain that generates samples from a function f(φ). These samples can be
generated using a Boltzmann-like probability distribution such as:

P (φ) =
1

Z
e−f(φ)β , (3.20)

where Z normalizes the distribution, and β ≤ 1 is known as an inverse-temperature constant.
Even though computing Z is generally intractable, the Metropolis-Hastings (MH) MCMC algo-
rithm [93, 142] allows exploring distributions without computing Z, in the following manner.
Starting with a random configuration in the parameter space φ1, a sample φ′ is proposed at each
time step, from an easy to sample proposal distribution Q(φ | φt). φ′ is accepted in the chain
with a probability:

α(φ′) = min

(
1,
P (φ′)

P (φt)

Q(φt | φ′)
Q(φ′ | φt)

)
, (3.21)

where α is called the MH acceptance probability. If φ′ is accepted, φt+1 = φ′. We refer to
this as the MH-update step.

Parallel Tempering (PT)

The amount of exploration is a function of a temperature parameter β. At higher temperatures
(lower β values), the distribution P (in eq. (3.20)) is “flattened”. This increases the accep-
tance of samples φ′ with f(φ′) > f(φt), thereby ensuring exploration. In PT, independent
markov chains are run in parallel on a set of N distributions with inverse temperatures defined
as 0 ≤ βN < βN−1 < · · · < β1 < β0 = 1. Periodically, the configurations of these chains are
swapped probabilistically. This allows chains at higher temperature that tend to explore more, to
pass information about better configurations to exploitative chains at lower temperatures, thereby
allowing colder chains to escape local minima. A proposed swap at time step t, between chains
k1 and k2 is accepted with a swap acceptance probability:

αswap(k1 ↔ k2) = min

(
1,
Pk1(φ

k2
t )

Pk1(φ
k1
t )

Pk2(φ
k1
t )

Pk2(φ
k2
t )

)
, (3.22)

where Pk1(·), Pk2(·) are distributions, and φk1t , φk2t are the tth time-step configurations corre-
sponding to chains k1 and k2 respectively. The swap probability αswap(k1 ↔ k2) between chains
k1 and k2 is a function of overlap between their distributions. Therefore we swap configurations
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only between a pair of neighboring chains that is chosen randomly. Such a swap proposal is done
after each iteration, where in each of N chains undergoes MH-update using eq. (3.21).

The performance of PT is dependent on the proposal distributions Q of the chains and se-
quence of their inverse-temperatures. We next describe our proposal distributions, and rationale
behind selection of chain temperatures.

Proposal distribution Q

For exploring the space of possible layouts and assembly plans effectively, we define proposal
distributions that generate proposed samples by perturbing the layout and assembly parameters.
These perturbations allow local adjustments around the current values of these parameters as
well as create global design changes. For each MH-update of a chain (eq. 3.21), one of these
perturbation is executed.

Layout perturbation: The layout parameters pli of components ci ∈ D (as defined in
eq. (3.1)) consisting of 3D position xi and orientation Ri of c are perturbed in 4 ways:
• xi of each component ci is perturbed by adding a Gaussian term N (0, σx) to each co-

ordinate.
• Ri of each component ci is uniformly sampled from a set of valid orientations. We found

this to work better empirically than perturbing Ri with a Gaussian term N (0, σR). This
also results in more feasible designs since arbitrary orientations may result in unstable and
hard to assemble configurations.

• Swap positions of 2 randomly selected components.
• Swap orientations of 2 randomly selected components.

The first two perturbations are ‘local’, while the last two perturbations allow the markov chains
to jump to different parts of the parameter space. We employ rejection sampling from N (0, σx)
to ensure that the resultant component configuration is within the bounds of the enclosure. σx is
auto-tuned to achieve 23% acceptance rate during MH-updates of each chain (eq. (3.21)). This
is based on the theoretical evidence that suggests this rate to be a good general setting [175].

Assembly plan perturbation: Based on our early experiments, we develop a set of heuristics
to perturb the assembly parameters pai corresponding to the assembly path, and the assembly
order i (defined in eq. (3.14)).
• Instead of sampling the assembly path parameters pai according to a Gaussian distribution,

we uniformly sample these parameters for each component ci ∈ D around a set of main
directions that correspond to removable panels (lids) of the enclosure. Such biased sam-
pling of assembly paths allows us to filter out paths that are blocked by enclosure walls,
and speed up computation considerably.

• To perturb assembly order, we adopt a greedy strategy that allows for occasional explo-
ration. We swap assembly order i (index in device tuple in eq. 3.1) of two randomly
selected components with a small probability, or generate a heuristic ordering otherwise.
This strategy is based on the observation that out of n! assembly orderings for a set of n
components, many orderings have the same outcome. For example, when a group of small
components is blocked by a larger component, swapping the order between components in
this group is counter-productive. Therefore, instead of resorting to un-informed sampling
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in the assembly order space, our heuristic ordering is generated by considering the lay-
out parameters. It is decided based on the distance of components from the main opening
of the enclosure, with the farthest component getting assembled first. This approach of
sampling a parameter given other parameters is similar to Gibbs sampling [37].

Note that our proposal distributions are symmetric (Q(θt | θ′) = Q(θ′ | θt)), which further
simplifies eq. 3.21.

Tuning PT sampler

The influence of hot chains on the colder chains, can be maximized by increasing the speed
with which the chain values move along in the inverse-temperature domain [17]. To enable
this, previous research suggests selecting the temperature ladder so as to achieve 23% swap
acceptance rate (eq. (3.22)) [17, 113]. Inspired by [187], we adapt the temperature of chains
during sampling to achieve this swap rate of 23% amongst each adjacent pair of chains. For
this adaptation, we first initialize inverse-temperatures with a geometric temperature sequence:
βj+i = ρβj , where ρ is a constant. ρ can be easily determined given the number of chains N
and maximum chain temperature βN . We use N = 10, and βN = 0.001 for all our experiments
(empirically determined).

Interleaving gradient optimization with PT

Since the cost function J(D) is multimodal, we want the chains to quickly explore and find the
modes of J(D). To drive the random walk of these chains towards regions of high probability
(modes) in the manner of a gradient flow, we utilize gradient information for the continuous
parameters in θkt . Keeping the discrete parameters fixed (assembly ordering), θkt is updated using
single step of gradient descent in each iteration t (line 13 in Algorithm 1).

θkt = θkt − γ
∂J(D)

∂θ

∣∣∣
θ=(pl,pa)∈θkt

, (3.23)

where ∂J(D)
∂θ

is a numerically computed gradient, and γ is the gradient step-size determined by
line search. pl and pa are the continuous layout and assembly DOF respectively (eq. 3.13, 3.14).

Incremental interleaved optimization

Since our approach uses incremental design heuristics and interleaves gradient optimization with
PT, we call it an incremental interleaved optimization. Partial designs are created incrementally
by adding one component at a time based on their sizes, starting with larger components first.
Each partial design is then optimized with interleaved gradient-PT optimization, before updating
the partial design by adding the next set of components. In order to make better use of available
empty space while adding a component to a partial design, and to utilize previously found valid
design, we formulate a new initialization procedure for PT chains, as described next.

Starting with a partial design Dpartial, and the current component to add (cadd), the initializa-
tion algorithm sets up N chains for our interleaved optimization. Half of the chains (at lower
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Algorithm 1: Incremental interleaved optimization for layout and assembly design of elec-
tromechanical devices

input : Dpartial, cadd, threshold for convergence
output: Dpartial ∪ cadd | J(Dpartial ∪ cadd) < threshold

1 Initialize N chains with β1, . . . , βN
2 for chain k do
3 if k ¡ N

2
then

4 θ′0 ← Sample 50 configurations for cadd, keeping Dpartial fixed
5 θ0∗ ← Pick the best configuration out of θ′0
6 Intialize chain k at θ0∗
7 else
8 Intialize chain k at random
9 end

10 end

11 while not converged do
12 foreach chain k do
13 gradient step for continuous variables (eq. (3.23))
14 Metropolis-Hastings (MH) update of chain k (eq. 3.21)
15 if J(D) at θkt < threshold then return converged
16 end
17 swap a random pair of adjacent chains
18 update chain’s βk periodically
19 end
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end of temperature spectrum) are initialized to exploit the configuration of cadd around the pre-
viously configured components in Dpartial. In order to increase the probability of adding cadd in
the available empty space, we sample 50 configurations (empirically determined) of cadd without
changing previously configured components in Dpartial, and pick the best one. While there is no
guarantee that cadd’s configurations falls in an empty space in 50 samples (and this probability
goes down with higher number of components and fill ratio), in practice, just being close to an
empty space is helpful enough. This is because if cadd is initialized near an empty space, the per-
turbations during the interleaved optimization will end up pushing it in the empty space. Such
an initialization serves as a hypothesis for possible configurations of cadd, and the corresponding
chain refines it further as the optimization proceeds. On the other hand, the chains at higher
temperatures are initialized randomly. They search for completely different configurations for
all components in Dpartial including that of cadd. They are meant to handle situations that require
major re-configurations of the previous design to accommodate cadd.

The incremental interleaved optimization algorithm is outlined in Algorithm 1 and is used
for adding cadd to Dpartial at each stage in the design. We begin the PT sampling process at
t = 0, with N chains initialized at β1, . . . , βN temperatures. The initial configurations of chains
in the parameter space are obtained using our initialization procedure (line 2-10). Each sample
θkt of chain k at time t, consists of {L(D), A(D)}. Lines 11-19 correspond to our interleaved
gradient-PT approach. In order to maximize the influence of hot chains on the colder chains
for faster convergence, we also update the chain temperatures periodically (line 18) using a
procedure described above for tuning PT sampler. The algorithm converges when any chain’s
sample values correspond to a design with J(Dpartial ∪ cadd) < threshold. This threshold is set
so as to ensure a collision-free design.

Such incremental design enables the overall optimization process to be much more effective.
This is because partial designs have fewer parameters to optimize (smaller design space), and a
less constrained volume available for layout. Further, when the optimization is re-run with the
next set of components, partially optimized designs result in more favorable initial conditions.
Interleaved optimization without our heuristics (incremental design, and use of empty space)
lead to much longer optimization times. For instance, the average design time for one of our
test devices – Clumsy (Fig. 3.9) comes out to be 706.7s over 10 runs using only interleaved
optimization, instead of 214.14s with incremental interleaved optimization.

3.7.3 Role of users in design optimization
When the optimization freezes for more than 5 min (empirically decided), our system asks the
users to make small modifications and rerun. Problematic components are highlighted in red,
and users tend to modify those, helping the escape from minimas.

3.8 Fabricated examples
We designed and fabricated three devices with very different functionalities to demonstrate the
utility of our system – a four wheeled robot called Crusher, a two wheeled balancing robot -
Clumsy, and a smart crib monitoring toy owl – Chirpy (shown in Fig. 3.1, 3.9). Crusher is a
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Figure 3.9: Fabricated devices – (A) Crusher, and (B) Clumsy are shown with their 3D printed
enclosures, and their final assembled design. Each enclosure has custom mounts and fastener
geometries created by our system for their components, based on the optimized layout.

bluetooth controlled recycling robot that can detect and grab soda cans with its gripper arm.
Clumsy freaks out when it detects obstacles and tries to ask for help by waving its hands. Chirpy
can detect and soothe a crying baby. Chirpy also alerts the baby’s parents by sending a message
when the baby starts crying. Our video2 shows these robots in action. Each device has a variety of
components and unique enclosures. While our system is not restricted to any particular type of kit
or modules, we use electromechanical components from Makeblock kits for our examples [130].
Relevant information about fasteners and mounts for each component is pre-processed manually,
but one can envision scanning a catalog to gather this information.

To endow devices with a desired functionality, we selected a set of components for each de-
vice. The configurations of certain components may be limited within an enclosure owing to
the functional and aesthetic requirements of the device. For example, Crusher’s motors need to
be configured so as to connect to its wheels, while the LEDs for Chirpy should be placed near
its eyes. We therefore pre-specify the configurations of such components before generating the
assemblable layout of other components using our interleaved optimization (Sec. 3.7.2). The
optimization process maintains the layout of pre-specified components, and optimizes for their
assembly while concurrently optimizing the layout and assembly parameters for all other compo-
nents. For each layout, our system also generated mounting structures. These are integrated into
the original 3D model of the enclosure using Constructive Solid Geometry (CSG) operations.
The result is a 3D printable enclosure custom-designed for specific functionality. We fabricated
our designs using a Stratasys uPrint SE Plus, a filament based 3D printer using ABSP430 plastic
as the model material and a dissolvable support material. The fabrication time varied from a few

2Available at – https://youtu.be/DrIXD5Fpg0I
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hours to a day, depending on the geometric size of the enclosure. In contrast, the average time
to design a device with our system ranged from 2-15 minutes (more details in Fig. 3.11), and
the assembly time of each device was less than 15 minutes. Each enclosure also had single or
multiple lids that were printed separately and attached to the enclosure after assembly, through
rivets.

While each of the three devices that we fabricate look simple due to small number of com-
ponents, they are representative of the types of electromechanical devices that are found in
community-driven online repositories made by DIY enthusiasts, and hobbyists (our target au-
dience). We base this observation on an informal survey of 3D printable devices that we con-
ducted on two such popular platforms – Instructables and Thingiverse [99, 215]. We found that
these designs used on an average 7 components (average over 70 designs of robots, IoT devices
etc). While these designs may not be from casual makers, they reflect what the maker commu-
nity is interested in building. Further, based on the findings of our user-study, devices with 8
components are already quite difficult, and time-consuming for non-experts to design manually.

3.9 User-studies
We conducted two types of user-studies with different goals in mind – (a) an exploratory inter-
view cum observation-based user-study with an expert to gauge the challenges of the design task,
as well as to gain insights about design strategies, and (b) a detailed user-study with novices to
understand the utility of our system.

3.9.1 Exploratory study with an expert
Solidworks is a CAD tool of choice for creating 3D designs, and assemblies of complex artifacts
such as the ones our system helps to create [196]. To understand how experts design 3D devices
using available tools, we sought help from an expert user with five years of experience with
Solidworks. We not only interviewed the expert about the design process to get an idea about
the expert’s workflow, but also asked the expert to design Crusher and Clumsy using Solidworks,
starting with 3D models of the enclosure and the necessary components. The expert reasoned
about assembly while doing component layout during design, thereby supporting our concurrent
design approach. As discussed in our optimization section (Sec. 3.7.2), we also found that the
expert executed such simultaneous design for components, one at a time. In other words, the
expert dealt designed in an incremental manner, inspiring us to integrate similar heuristics within
our automated approach.

The expert also noted that the hardest part of the design was deciding the layout of certain
components. For instance, the expert specified that the hardest part for Clumsy’s design was
deciding the placement of two of its biggest components. Consequently, the expert explored
multiple layout configurations before finalizing the layout design. Apart from layout configu-
rations, the expert spent a major portion of the design time in designing component mounting
structures, and re-designing them during layout re-configurations. This is because appropriate
mount and fastener geometry design need to done manually in Solidworks. Further, these geome-
tries also need to be updated manually when components are re-configured during layout design.

38



As a result, the expert took 4320 seconds (70 minutes) to design Crusher, and 5400 seconds (90
minutes) to design Clumsy. These design times are even longer than the times taken by casual
users to design these devices manually with our system (see Fig. 3.11).

The expert’s design approach however, also highlighted certain limitations of our system ow-
ing to the assumptions that we impose. Firstly, the expert designed shared or common mounting
structures that could support multiple components at once. This allowed more flexibility for
component layout. Secondly, the expert also reasoned about space for wires, as well as space
needed for hands during manual assembly, which we currently do not account for.

3.9.2 User-study with casual users
For further validating the need and usefulness of our computational framework, we conducted
a user-study with 24 paid novice participants. The user-study had two goals. First, we wanted
to understand and quantify the difficulty that novices face while manually creating assemblable
layouts for electromechanical devices. Secondly, we wanted to determine if our system reduces
the entry barrier they face in creating such devices.

Participants

All participants were undergraduate or 1st year CS graduate students (7F, 17M). We define a
casual user/novice as someone who may be interested in building devices but does not know how
to use a CAD tool, and is unaware of the assembly procedures (e.g., accounting for fasteners)
required for creating a feasible design. To ensure that our participants belonged to our target
user group, we asked the participants 2 questions about their background and interest in building
devices in the user-study survey – 1. Are you interested in building/making things? (Answers:
Yes/No/Maybe), 2. What is your expertise with CAD tools for 3D design? (Answers: 5-pt Likert
scale with score 1 = no expertise). Only 1/24 participant reported about not being interested
in making things, with 70% replying with a definite yes. All 24 reported none or slight CAD
expertise (average: 1.5 likert score).

Study structure

Each user-study session lasted 75 minutes, and consisted of an introduction and training session
(25 minutes), followed by a design task (45 minutes), and concluded with a survey (5 minutes).
Each participant was asked to design assemblable component layouts for one of either Crusher,
Clumsy or Chirpy within 45 minutes in the design task. The introduction and training session
were responsible for familiarizing the participants with the user interface and the overall task.
In order to boot-strap the participants into thinking about the constraints of the design task,
the experimenter and the participant co-designed layout of a set of components within a box
enclosure, during the training session. For the design task, the participants were explained the
functionality of the device they were creating, and were provided with a list of components to
use according to the device’s functionality. We also provided them the device enclosure and the
configurations of the components that need to be pre-fixed (such as motors and LEDs). In other
words, the participants were given the same input as taken by our optimization. We recorded
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whether the participants succeeded in creating a valid design in their alloted time, and the total
time taken by the participants to create such a design in case they succeeded. The survey then
evaluated their perception of the task difficulty, and the capabilities of the system by asking them
to rate various aspects of the design process using a Likert scale. Their feedback on the survey
provided us with a qualitative understanding of their design experience.

1 2 3 4 5

Please rate the difficulty of the task

Based on your design experience, would you like

to automate layout design for such devices?

Please rate the effort required for the task

For the ar�facts that you would like to build, do you

think component selec�on is harder than layout?

Does this system reduce your entry barrier

in making these devices?

Figure 3.10: User design experience – Users feedback about the design task, and our system
are highlighted by their responses to our survey. 1 - strongly disagree/very low, 3 - neutral, 5 -
strongly agree/very high. Error bars indicate standard deviation.

3.9.3 Qualitative analysis

Participants found our highlighted guidance, automatic mount creation, and animation features
highly useful (Fig. 3.4). For instance, a participant P7 reported that “assembly animations were
very useful, without them layout would be hard.”. Aided by these features majority of participants
succeeded in creating device designs (Fig. 3.11). Inspite of this, all 24 participants rated the
design task to be difficult or very difficult, and supported the utility of automatic design mode.
Participants reported that they would either do physical mockups with iterations (4/24), use pen-
paper (2/24), attempt to learn CAD (9/24), or wouldnt know what to do (9/24); for designing
such devices if not for our tool. The use of incremental design strategy was also seen in some
participants. While all participants reasoned well about the space in the device for layout, most
of them struggled to make assembly considerations (e.g., P1: “at first I was only focusing on
layout and only then I realized that I should think about [assembly] order.”). Fig. 3.10 shows
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user responses to our survey questions on Likert scale and provides more insights into the user
experience with our system as well as into their perception of the task complexity.

3.9.4 Quantitative analysis
Figure 3.11 shows the design time and success rate measured during the user-study for each of
the devices (orange bars). These statistics emphasize the difficulty of manual design process,
inspite of our system features. Even for devices with 8-10 components, manual layout is chal-
lenging, especially when assembly considerations are taken into account. The average design
time increases, and the success rate decreases as the complexity of devices increased. Chirpy
and Clumsy were on the lowest and highest end of the perceived complexity spectrum respec-
tively. In particular, only 3 out of 8 participants found a valid design for Clumsy in the allotted
time. In order to compare these statistics with that of the automated design process, we ran our
optimization 10 times for each design (resultant statistics shown with gray bars). Each such
experiment was run for 1000 seconds or until the threshold cost of a valid collision-free design
was achieved (see algo. 1). We ran all our experiments on a standard desktop with a 3.6 GHz i7
CPU and 16 GB RAM. Similar to the user-study, the success rate for the optimization indicates
whether a collision-free layout and assembly plan was found in the allotted time. For the cases
where it failed to find a valid design in 1000s, the optimization process becomes trapped in local
minima. We found our automated approach to be much faster and successful than the manual
design.

3.10 A discussion on device complexity
Even though Clumsy has the same number of components as Crusher, there is a significant dif-
ference in their complexity, as evident in the design time and success rate statistics. We therefore
attempt to quantify the approximate complexity of these devices using a set of features (table 3.1).
In particular, we use – a) the number of parameters, and b) the fill ratio which is defined as the
relative volume occupied by all components and mounting structures. The fill ratio is computed
for each valid design. Note that the number of parameters and the fill ratio capture different
aspects of complexity.

Device | C | | F | Avg. # p # p
fill (discontinuous) (continuous)

Crusher 8 18 30.5% 8 34
Chirpy 10 20 21.9% 10 47
Clumsy 8 19 45.2% 8 33

Table 3.1: Quantifying design complexity of 3D printable devices with embedded electrome-
chanical components - The number of components (| C |), and fasteners (| F |), fill ratio, and
number of discrete and continuous parameters to optimize (# p) indicate approximate com-
plexity of each design. The complexity also depends on the number and configuration of fixed
components since they pose extra constraints.

41



Chirpy Crusher Clumsy

A.

B.

80

60

40

20

Percieved device complexitylow high

CrusherChirpy Clumsy

Success rate (%)

%
 o

f
ex

p
e

ri
m

e
n

ts
 t

h
at

 f
o

u
n

d
 v

al
id

 d
e

si
gn

s

0

0

10

20

30

40

Ti
m

e
 (

m
in

u
te

s)

Average design time
Optimization
Manual

100

Figure 3.11: User-study statistics – A) The average design time in minutes, and (B) the success
rate for each of our 3 devices are shown. The orange bars represent these statistics averaged over
8 participants per device during our study, while the gray bars correspond to those averaged over
10 runs of incremental interleaved optimization. Error bars indicate standard deviation.
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While the features in table 3.1 provide an approximate idea of device complexity, it is hard to
precisely quantify the difficulty of finding an assemblable layouts. This is because the complex-
ity depends upon not just the number of components, volume filled, and parameter count, but is
also a function of many other factors. In particular, the shape of the enclosure dictates possible
layouts and assembly paths for the components. However, the enclosure shape is not character-
ized by its volume. Out of two enclosures with the same volume, the enclosure with a shape that
provides more surface area to mount the components may be more amenable for layout. Further,
when a component is added to an enclosure, the component and its mounts partition the space
available for other components in a non-trivial manner. Fasteners, and configurations of locked
components such as LED further shape the remaining available space. The role of these factors
becomes apparent in the design of Clumsy. Even though Clumsy has only 8 components, 2 of
its components – a battery pack, and a controller board are very large and can be arranged in
only certain configurations so as to fit within the enclosure. If their configurations are badly ini-
tialized, the smaller components may block them from achieving these valid configurations (as
reflected in the less than 100% success rate of our optimization (gray) in Fig. 3.11).

3.11 Validation
We validate our framework in three ways. First, we show examples of device designs with arbi-
trary electronic components and enclosure shapes to demonstrate the versatility of our system.
Next, we validate the advantage of interleaving gradient-based optimization with PT (Sec. 3.7.2)
for our problem, by comparing with other standard sampling and gradient based methods. Fi-
nally, we describe a benchmarking experiment that shows the scalability of our framework with
increasing number of components, and fill ratio.

3.11.1 Virtual device examples
Chirpy, Crusher and Clumsy, have cuboidal enclosures. However our system works for any
convex-shaped enclosure. Fig. 3.12 shows devices with a polygonal enclosure, a trapezoidal
enclosure with slanted walls, and a bunny-shaped enclosure. Each device contains arbitrary
electronic components of varied sizes selected randomly. The trapezoidal enclosure has openings
on the top and the bottom, while the polygonal and bunny-shaped enclosures have one opening on
the top, and one on the sides. While our current implementation only supports convex-enclosures,
our framework will work for concave enclosures as long as we have a way to compute distances
from the enclosure. Note that manual layout design for devices such as our trapezoidal and
polygonal examples is difficult, owing to the large number of components, and corresponding
constraints. This is one of the reasons why the number of components in devices created by
non-experts ranged from 2-20 in our informal survey of such designs.

3.11.2 Comparison with other optimization approaches
In order to validate the advantage of interleaving gradient optimization with Parallel Temper-
ing (PT), we compare against other possible variants – ‘PT only’, ‘PT followed by gradient
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Top view

Bottom view

45 components

34 components 11 components

Figure 3.12: Devices with differently-shaped enclosures and components – (A) A polygonal
device, (B) a trapezoidal device, and (C) a bunny-shaped device, each with arbitrary electronic
components are shown.
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optimization’, and ‘gradient optimization only’. We use the BFGS quasi-Newton method for
gradient optimization in the last two test conditions [151]. ‘PT only’ has been successfully used
for layout problems in the past such as for furniture layout [141], while BFGS is widely used
for continuous optimization problems [151]. ‘PT followed by gradient optimization’ combines
stochastic and gradient based optimization in a naive manner. Table 3.2 shows the comparison
of our interleaved optimization against these variants for the design of Crusher averaged over
10 runs. Considering that the interleaved optimization for Crusher design found a valid solution
in 154s on average, we ran PT for 500s or until the cost threshold of collision-free design was
reached, for ‘PT only’, and ‘PT followed by gradient optimization’ test conditions. This was
followed by 100s of gradient optimization for the latter. In order to replicate the random initial-
izations and N parallel chains of PT, we execute N = 10 parallel gradient optimizations, each
starting with a random configuration for the last test condition. Since the gradient optimization
cannot be used to find a discrete assembly ordering, we set the ordering based on the initial
configuration in a heuristic manner (as described in Sec. 3.7.2).

Optimization Avg. time (s) Success rate
Interleaved optimization (ours) 154.7 100%

PT only - 0%
PT followed by BFGS 539.6 80%

BFGS only 493.7 40%

Table 3.2: Comparing optimization techniques for computing 3D printable device designs - We
base the comparisons on how often the techniques find valid designs, and the time they take to
find them. We ran all our experiments on a standard desktop with a 3.6 GHz i7 CPU and 16 GB
RAM.

The success rate of this experiment is an indicator of the probability of finding an assemblable
layout given a fixed ordering. It reaffirms the need to search for an assembly ordering and layout
concurrently. The interleaved optimization strategy finds valid designs in lesser time with higher
success rate compared to other methods. ‘PT only’ does not manage to find acceptable designs
in 500s for any runs.

3.11.3 Scalability experiments
In Sec. 3.9.4, we described how quantifying complexity of 3D printable electro-mechanical de-
vices is non-trivial. Nevertheless, to study the ability of our proposed algorithm to scale to
complex examples, we focus on two features – fill ratio, and number of components. We select
these features because they are easy to quantify, and control in an experimental set-up.

For each experiment, a virtual device is created with fill ratio m, and n cuboidal compo-
nents of arbitrary sizes. To reduce the affect of enclosure and component shapes on the device
complexity, we use simple cuboidal enclosure and cuboidal components, for all our experiments
(Fig. 3.13(A)). Further, we assume that the enclosure’s size and thereby volume can be appropri-
ately scaled as needed. Scaling the enclosure in this manner allows us to easily control a device’s
fill ratio for our test scenario.
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Figure 3.13: We perform scalability experiments that measure the performance of the algorithm
as the number of components, and fill ratio increases. (A) shows an example virtual device with
arbitrary sized cuboidal components that we create for these experiments. A scalable cuboidal
enclosure is used to easily increase the fill ratio during the experiments. (B) gives an intuition
about the maximum fill ratio of devices with n components for which the algorithm was able to
find a solution in the allotted time.

In order to test the scalability of our framework with increasing fill ratio, we keep the number
of components n in a device constant as we change the device’s fill ratio m. Similarly, to test
how the framework scales with increasing number of components in a device, we keep the fill
ratio fixed as we increase the number of components in the device. During the course of first
experiment, we gradually scale down the enclosure volume to increase the fill ratio for a device
with n components. We run incremental design optimization to find valid assemblable layout
designs, for an hour for each fill ratio. We continue increasing the fill ratio till the optimization
fails to find a valid device design in an hour, and record the maximum fill ratio for which the
optimization succeeded. For testing scalability with number of components, we repeat the above
experiment for different values of n (number of components). Fig. 3.13(B) shows a plot of
maximum fill ratio for which the optimization found a valid design in the allotted time vs. number
of components for our virtual cuboidal device, calculated over set of 3 experiments. As the
number of components or fill ratio increases, the optimization needs more time, and hence finds
fewer valid designs in the allotted time.

3.12 Frequently asked questions (FAQ)
1. What exactly is the target audience for this system?

Our target audience is school students, artists, DIY enthusiasts, and novices. We define
a casual user/novice as someone who may be interested in building devices but does not
know how to use a CAD tool, and is unaware of the assembly procedures (e.g., accounting
for fasteners) required for creating a feasible design.

2. Do novices really need/want such a design system?
During our user-study, we asked the participants about various possible design alternatives
that they would use for designing such devices. Participants reported that they would
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either do physical mockups with iterations (4/24), use pen-paper (2/24), attempt to learn
CAD (9/24), or wouldnt know what to do (9/24); for designing such devices, if not for our
system.

3. Can the system handle concave enclosures?
Our implementation relies on collision detection that operates on convex primitives, but
our framework will work with concave objects if collision computation is available for the
same.

4. Why do we need to create rigid mounts for components?
While one can make-do with loose mounts for some components such as controller or
battery, majority of components – accelerometers, light and range sensors, sliders, panels,
buttons, LEDs, motors work better when mounted properly. Towards this, our goal is to
leverage customization capabilities of 3D printing for creating better devices with rigid
mounts for components.

5. Designing physical devices completely virtually sounds unintuitive. Why not use
physical mockups for designing, instead of this system?
Physical mockups may provide good intuition to the users, but assembly and fastener inte-
gration could still be hard to visualize as evident from participant quotes on assembly an-
imations that were extensively used in manual design. Further, experts also design things
virtually in CAD before making mockups. There is however an interesting opportunity
of assembling digital mockups in virtual reality (VR) for better spatial intuition as a pre-
design step, before creating final fabricable designs using our system.

6. How is this system’s computational approach different than existing layout design
approaches?
Unlike existing layout approaches [78, 141, 237], we are jointly optimizing both layout and
assembly process. The corresponding spatio-temporal model demands a different compu-
tational approach than problems that only consider layout. Specifically, in addition to the
need to model the temporal aspects of the design, most layout problems are continuous,
unlike ours, which has both discrete and continuous parameters. Inclusion of fasteners and
mounts in the optimization also makes it more challenging than standard layout problems.
As a result, we had to leverage both design heuristics based on expert design strategies as
well as efficient numerical techniques such as combined stochastic sampling and gradient-
based optimization for our design problem.

7. What sort of components does the system support?
We are currently targeting hobby-grade components, because of their ease of use, afford-
ability, and accessibility.

8. Isn’t providing components for a desired device functionality as input, hard for novices
to do? How is this accessible?
Choosing the right set of components for a target functionality does require domain knowl-
edge. This challenge is however complementary to the problem we address, and it is ac-
tively being investigated in parallel [168]. Further, as the users indicated in our study,
component selection is perceived to be easier than designing with these components by
our target audience (see Fig. 3.10).
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9. Which assembly tools are supported by the system?
Our system currently accounts for assembly with tools such as screwdrivers and hex keys.

10. Can the system account for assembly order preferences, such as keep the battery to
be most accessible during device assembly?
While we currently enforce no constraints in the assembly ordering of components, our
formulation can easily account for such assembly order constraints by simply discarding
orderings that do not satisfy such constraints during sampling.

11. Does the system account for structural strength during device design?
We currently do not account for structural strengths of mounts generated. Most electronic
components are lightweight. Currently many novice prototypes on Thingiverse and In-
structables have loosely connected components assembled with hot glue or tape, suggest-
ing limited strength requirements. Thus, mounts with a certain thickness (empirically
determined using the yield strength of PLA and the maximum weight of components)
spanning components fastener holes, as in our system, are sufficient. However, it will be
important to perform structural optimization of mounts for making robust designs in the
future.

12. Why not optimize for enclosure design itself instead of optimizing component layout
design for creating such devices?
Approaches that optimize/snap enclosure walls to bound the given components have been
developed in the past specifically for laser-cutting based fabrication methods [230]. Our
approach complements these approaches. In particular, we are interested in design scenar-
ios where the enclosure shape is fixed due to aesthetic or fabrication constraints such as
available volume of 3D printer, which may limit scaling or modification of the enclosure.

13. Are the system generated designs easy to assemble in reality?
The DFA guidelines (Sec. 3.4.2) ensured that the resultant device designs were amenable
to manual assembly. However, since we did not model space for hands/fingers during
assembly, some of our fabricated prototypes were slightly cumbersome to assemble in
our experiments. This could be dealt in a conservative manner by increasing the mini-
mum threshold distance (ε in eq. 3.17) between the components during optimization. A
secondary user-study that purely evaluates assemblability of generated device designs by
asking a group of novices to assemble these devices might also be helpful for qualitatively
measuring device assemblability in the future.

3.13 Limitations
Limiting assumptions: Our system is currently focused on non-articulated devices without
transmission, multiple joints or moving parts. Extending our framework to account for moving
parts that take a range of configurations once assembled will enable the design of more diverse
set of devices. Including other higher level design requirements (such as a desired center of mass
for Clumsy) while optimizing for component layout may further increase the space of designs.
Currently, we also assume separate mounting structure for each component. As shown by our
expert study (Sec. 3.9.1), enabling the design of shared mounting structures between components
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may lead to better use of space, and may be worth exploring for devices with higher complexity
(large number of components or higher fill ratio).

Although we follow DFA guidelines, we do not consider wire routing and insertion or the
space needed for hands during the assembly process. As a result, certain parts of our devices
were a bit cumbersome to assemble. In particular, we found that experts do account for some of
these practical design considerations while designing assemblable devices (see Sec. 3.9.1). In the
future, accounting for these aspects would therefore be essential for enabling novices in creating
even better interactive artifacts.

Finally, our tool currently only provides a single valid device design to the user. Providing
alternate designs might be important to support user-creativity [192]. Alternate solutions may
also be necessary for scenarios wherein valid solutions exist only on a pareto-optimal front. For
instance, when other auxiliary device objectives such as device weight distribution and 3D print
material minimization are added to J(D) (eq. 3.15), different solutions that trade-off 3D print
material and weight distribution through different component layout may exist.

Handling more complex devices: We also found that it is challenging to quantify design com-
plexity of such devices. As a result, guaranteeing a solution for any arbitrary device is non-trivial.
Further, owing to the nature of stochastic optimization, ensuring a valid solution in stipulated
time, which might be important for an interactive design system, is also currently not possi-
ble. While our experiments on incremental design were promising, our scalability experiments
showed that the optimization needed much longer time to find valid designs for devices with
more than 15 components, or higher than 50% fill ratio. The number of components and fill ratio
in devices made by our target audience of makers and artist is well below these bounds. However,
more research is necessary to enable our system to aid experts or other target audiences. To this
end, a promising approach entails putting user-in-the loop during incremental design, as well as
exploring better ways to incorporate user intuition during design.

3.14 Publication and dissemination
This work has been accepted for publication at ACM Symposium on User Interface Software
and Technology (UIST) 2018. Once published, we will also make the files of fabricated devices
publicly available. Yincheng Zhao from Tshingua University helped with the design of Clumsy
as a summer intern in the lab.

An overview video about our system is available at – https://youtu.be/DrIXD5Fpg0I
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Chapter 4

Modular structure design for articulated
robots

4.1 Preamble
We now describe our second structure design tool for articulated robots consisting of series of
interconnected components. It features an intuitive interface, a powerful model encapsulating
necessary domain knowledge, modeling of fabrication constraints, support for design space ex-
ploration, and accessible two-way feedback between users and the system powered by a physics-
based simulation. Aided by these capabilities, our tool enables the creation of a wide variety of
robotic devices (Figure 4.1).

a. b. c.

64 modules 104 modules 53 modules

Fig. 9. The “robo-calligrapher” and “puppy” robot are shown here with
their fabricated counterparts. We designed a special purpose end effector
that served as a pen-holder for the robo-calligrapher. Accompanying video
shows these robots in action.
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Figure 4.1: Preview of robots build with our modular structure design tool – Using a set of only
nine modular components (four off-the-shelf components, and five 3D printed components), we
are able to design a plethora of diverse robots.
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4.2 Introduction

The task of designing an articulated robot amounts to choosing which components to use, how to
combine them into a functional system, and how to control the resulting robot in order to achieve
a desirable set of behaviors. Our modular structure design tool is an interactive computational
system for assisting users with each of these tasks. It enables easy configuration and deployment
of robots using a library of standard building blocks such as actuators, mounting brackets, and
3D printed parts.

Our system is based on a formal design abstraction that models the way in which modular
building blocks can be combined to form complex robotic systems. In particular, our abstraction
presents a way to represent each component in terms of geometric features and virtual pins. The
virtual pins establish compatibilities between different components and define the set of possible
physical connections between them.

This design abstraction is leveraged within the visual design environment to support manual
and semi-automatic design modes. During the manual mode, the virtual pins are used to sug-
gest valid placements for each new component, and thus enable an intuitive exploratory design
process. For semi-automatic design, the design abstraction is used to automatically generate
assemblies of structural components that connect pairs of actuators whose desired relative place-
ment is user-specified. These intermediate designs are obtained by efficiently searching through
the space of possible arrangements of modular components.

Finally, our design system provides a physical simulation environment where users’ robot
designs can be tested before fabrication. In particular, we employ an existing optimal control
method to generate physically-valid motions for legged robots of arbitrary designs [134]. The
resulting motions are tracked in simulation using Proportional-Derivative (PD) control. By pro-
viding feedback at interactive rates, users of our system can therefore iteratively adjust their
design to best meet their individual needs and preferences. Figure 4.2 gives an overview of our
tool, highlighting its capabilities.

To evaluate the scalability of our approach, we employ a library of modular components
consisting of Dynamixel actuators [176], off-the-shelf brackets, and 3D printable connectors.
We demonstrate the effectiveness of our tool by creating an assortment of legged and wheeled
robotic devices. We validate the physical feasibility of our results by fabricating two of the robots
generated with our design system – a wheeled robot with a manipulator arm and a quadruped
robot.

4.3 Related work

We are inspired by the ease of use and flexibility of the Spore Creature Creator [95], which
comes from the computer graphics literature. To date, close to 200 million customized animated
characters have been created with this system by non-expert users from around the world [72].
Our vision is to make the process of creating customized robotic devices equally powerful and
accessible.

Robot design tools: A plethora of commercial as well as academically developed designs tools
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Figure 4.2: Overview of the modular structure design tool – An intuitive visual environment sup-
ports manual and semi-automatic modes for creating articulated robots. Designs can be tested in
physical simulation, and iteratively improved based on simulation feedback, before fabrication.
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are available for robot design (Chapter 2). Relevant to this work are the tools proposed by re-
searchers for custom robots that can be digitally fabricated [135, 136, 137, 155, 205]. These
approaches focus particularly on origami-based robots and rely on a set of expert-designed fold-
able building blocks that are hierarchically chained together using a custom scripting language.
Although we use a similar abstraction to enable modular composition, rather than defining new
robots through a scripting language, we develop an intuitive visual design environment that pro-
vides guiding suggestions and automatic design completion capabilities.

Specialized design systems have also been developed at commercial scale such as Tinker-
play [20], and VEX assembler/SnapCAD [225] (See chapter 2 for more examples). We take
inspiration from these applications, which are developed for specific types of physical artifacts
such as articulated 3d-printable figurines or LEGO robots. The goal of our design system, how-
ever, is to be more general and provide users with the ability to create robotic devices using
different libraries of electromechanical components.

Simulation-based feedback: When experts design robotic systems, simulators such as Gazebo
play a critical role as tools for quick and efficient testing of new concepts, strategies, and algo-
rithms [112]. Simulation-based feedback for design has also proven to be beneficial for other
design domains such as Aerospace, and Architecture [96, 160]. We wish to bring such capability
within robot design tools meant for novices. To this end, we build on the work of Megaro et
al. [134] to provide intuitive understanding of the robot behavior in real world to the users at
design time, using a physical simulation environment. While [134] focused solely on walking
motions for 3D-printable robots, our goal is to enable the design of a much larger variety of
devices leveraging modular, off-the-shelf components.

Automatic robot synthesis: A long-standing goal in robotics is the automatic synthesis of robots
based on specifications. To this end, inspired by Sims’ work on evolving virtual creatures [193],
a variety of evolutionary methods that aim to design a robot’s structure and even control inputs
at times, have been investigated [122, 126], and this effort continues today [18]. However, evo-
lutionary methods rely on stochastic algorithms that are slow, notorious for exploiting unwanted
loopholes in the problem specification, and lead to results that are often not repeatable [122].
Rather than relying on stochastic algorithms, our design system puts the user in the loop and
assists them with suggestions and semi-automatic design completion.

4.4 Design abstraction: A formal model

To efficiently capture the process of creating customized robots, we formalize a design abstrac-
tion. The main elements of our abstraction are the modular components or building blocks, and
the way they connect to each other.

Modules and pins: Each electromechanical component (henceforth called a module) of a robot
is modeled as a rigid body with 6 degrees of freedom (DOF). Each module also has an associated
bounding box and a set of virtual pins (henceforth called pins). Bounding boxes are used during
the design process for collision detection, while pins model physically compatible connections
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between modules. A module m is formally defined as:

m = (tm, xm, qm, bm, {pm1 , . . . , pmn }) , (4.1)

where tm denotes the module type (e.g., motors), xm and the quaternion qm store the module’s
position and orientation in a global coordinate frame, bm represents its axis aligned bounding
box, and {pmi }ni=1 is a set of n pins. Each pin pmi represents a pre-set location on module m
where another module can attach (e.g., the horn of a servomotor). We use local coordinates to
represent the location of each pin. Axis aligned bounding boxes for each module are also defined
in local coordinates.

Fig. 4.3(a) illustrates two hypothetical modules together with their virtual pins.

a. Modules and pins

1

 p1  : (0,0.5,0)

m
a p2   : (-0.5,0,0)

m
a

m
b p1

Module a (ma)

b. Connections

a,b c2,1 [1] 

a,b c1,1 [1]

 a,b c2,1 [2]

Orientation 1 Orientation 2
Module b (mb)

Figure 4.3: Design abstraction example – (a) Two hypothetical modules (a and b) are shown
here. Module a is a block of 1 unit, with two pins (shown in cyan) and module b is a type of
connector with one pin. Their local co-ordinate frames are shown at their center with a triad.
The pin positions and bounding box are defined with respect to this frame. The table enumerates
the parameters that define module a. (b) All possible connections between modules a and b are
shown here. Modules a and b connect with each other at pma

2 and pmb
1 in two different orientations

while they can connect in only one orientation at pins pma
1 and pmb

1 .

We associate with each module a semantic label tm, which can take on a value in the set
{motor , connector , body plate, end effector}. Modules with type motor are used to represent
the actuated degrees of freedom of a robot, while the end effector type indicates that the module
is a foot, wheel or manipulator. Modules labeled as connector denote structural components,
such as mounting brackets, and body plate modules specify locations on the robot’s main body
where motors can be attached to start new kinematic chains (e.g., a new leg). The geometry of
the robot’s body is generated as the convex hull of all body plate modules in a design.
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Connections: Connections encapsulate the conceptual design rules that specify how individual
modules can be combined to form complex robotic systems. A connection between two modules
ma and mb is defined through a pair of compatible pins, as well as a set of physically-valid
relative orientations (e.g., due to screw mounting holes):

ca,bi,j =
(
pma
i , pmb

j , {qma,mb
1 , . . . , qma,mb

n }
)
, (4.2)

where ca,bi,j denotes a connection between modules ma and mb using the ith pin of ma (pma
i )

and jth pin of mb (pmb
j ). We use ca,bi,j [k] to denote the kth feasible relative orientation (i.e. the

quaternion qma,mb

k ) between the two modules. Connecting two modules through ca,bi,j [k] amounts
to positioning them relative to each other such that the world positions of pins pma

i and pmb
j line up

and the relative orientation between them, qma
w
−1qmb

w , is qma,mb

k . As shown in Fig. 4.3(b), modules
can be connected to each other both using different relative orientations, and through different
pairs of pins altogether. We store the library of modules, the virtual pins and all connectivity
information in a configuration file, as exemplified in Fig. 4.4. We note that the configuration file
does not explicitly store the position xm and orientation qm of the modules. These are determined
automatically during the design process.

A complete testbed: To test our computational design approach, we defined a complete li-
brary of modular components consisting of Dynamixel XM430 actuators, off-the-shelf mount-
ing brackets and 3D printable end effectors. As illustrated in Fig. 4.5(a), the library features four
types of connectors: horn bracket, side bracket, bottom bracket, and a custom connector that
can be attached to each type of bracket in multiple ways. The library also includes two types of
end-effectors that can be used as point or area feet for legged robots, as well a wheel for mobile
robotic vehicles.

We note that while we use this testbed, and its modules for all our prototypes, our abstraction
is very general, and can support other modular components, or any user-designed custom parts
equally well. In Chapter 5, we use this framework with completely different library of modular
building blocks from industry for creating robotic arms.

4.5 Interactive and powerful visual design
Our design abstraction enables an interactive process for creating robotic devices. In addition to
a manual mode that leverages a graphical user interface capable of providing meaningful sug-
gestions, we also develop a search-based algorithm for design auto-completion. Once a design
is finished, our system provides a physically-simulated environment where robots can be tested
before being assembled. In particular, for legged robots, we use a previous work to efficiently
generate stable full-body motions [134]. By providing feedback at interactive rates, users of our
system can iteratively adjust their design until it best meets their needs.

4.5.1 System-guided manual design
Using our design abstraction as the technical core, we developed a visual design system for
interactive, on-demand generation of custom robotic devices. As Fig. 4.6(a) illustrates, users of
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Module
Name a
Type Block
BoundingBox
S i z e 0 . 5 0 . 5 0 . 5
P o s i t i o n 0 0 0
Pin
Name a−p in1
P o s i t i o n 0 0 . 5 0
Pin
Name a−p in2
P o s i t i o n −0.5 0 0

Module
Name b
Type Connec to r
BoundingBox
S i z e 0 . 7 5 0 . 3 0 . 1
P o s i t i o n 0 0 0
Pin
Name b−p in1
P o s i t i o n 0 0 0 . 1

ConnectionMap
P i n P a i r a−p in2 b−p in1
R e l a t i v e O r i e n t a t i o n 0 . 7 0 0 . 7 0

P i n P a i r a−p in2 b−p in1
R e l a t i v e O r i e n t a t i o n 0 . 4 9 0 . 4 9 0 . 4 9 −0.49

P i n P a i r a−p in1 b−p in1
R e l a t i v e O r i e n t a t i o n 0 . 4 9 0 . 4 9 0 . 4 9 0 . 4 9

Figure 4.4: Configuration file example – Information about modules and their connection can be
stored in a file for our system to use. This representation allows using any modules, as long as
their geometric information and connections can be defined properly.
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Bracket

Horn Bracket

Plate

Custom
Connector
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b. 

Wheel

Pointed 
foot

Area
foot

Figure 4.5: A design testbed with Dynamixel modules – (a) We use custom designed modules
such as end-effectors, plates and a custom connector (shown in white) as well as commercially
available Dynamixel modules such as motors. Their pins are shown in cyan. (b) Table describes
connection compatibility between these modules. Each shaded entry indicates the total number
of connections between two modules. Wheel can only connect to the motor in one way and hence
end effectors entries refer only to the feet.
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a. b.

new selection

suggestions

Figure 4.6: Visual design system – (a) The design interface consists of two workspaces – the left
workspace allows for designing the robot while the right workspace runs a physics simulation
of the robot designed by the user for its feasibility. The left workspace displays a list of various
modules at the top. The leftmost menu provides various functions that allow users to define
preferences for the search process, visualization as well as for physical simulation. (b) When
the user selects a new module from the list, our system makes visual suggestions (shown in red)
about possible connections for this module, based on the current design.

our system are presented with a design workspace (left) and a simulation workspace (right). The
design workspace allows them to browse through the list of available modules, which can be
dragged and dropped into the scene at any time. Once a specific module is selected, our system
visualizes the ways in which it can be connected to the design the user is currently working on
(see Fig. 4.6(b)). This is achieved by iterating through all unused pins in the current design
and checking if they are compatible with the pins of the new module. As the user positions the
module in the scene sufficiently close to any of the suggested placements, it is automatically
snapped into place. The user can then cycle through the set of possible relative orientations (i.e.,
ca,bi,j [k]) associated with the connection that was selected. Our design system also supports other
editing operations that increase productivity. For example, different parts of a design can be
marked as symmetric (e.g., left and right limbs), with edits made to one part being automatically
propagated to the other. Different parts of an existing design can also be copied, pasted and
mixed with other designs. To further guide the design process, users can load a 3D mesh and
overlay it into the workspace, as seen in Fig. 4.7. We illustrate a representative design session in
this video – https://www.youtube.com/watch?v=PGpTsQtznw4

4.5.2 Design auto-completion

The manual mode described in the previous section affords users with full control over the design.
Nevertheless, this exploratory design process can become somewhat tedious if a large number of
modules is required to create a robotic device. We therefore developed a novel, semi-automatic
mode that allows users to focus primarily on functional characteristics of their design. For ex-
ample, if the goal is to create a robot arm with 3 actuated joints, shoulder, elbow and wrist, the
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a. b. c. d.user input automatic design auto-completion 
with search

adding body plates 
and end-effectors

final result

Figure 4.7: Automatic design with search – (a) Users can start with a guiding mesh for the
robot they want to make. Then, they specify the positions and orientations of motors for this
robot, using the drag and drop interface. (b) Our search process searches for possible designs that
connect a given pair of motors in user-defined locations, according to user-defined preferences.
The user can reject the solution and re-do the search with different preferences any-time. A
proposed search solution connecting the root motor to the target motor (highlighted in dark red)
is shown in light blue. The design is only created if the user accepts the proposed solution. The
process is repeated by the user for each pair of motors. (c) Since the legs are symmetric, the users
only need to use search process for two legs. Our interface allows them to create the other pair of
legs by simple editing operations. Finally, the users can attach end-effectors of their choice and
create a body plate to complete the robot design. (d) shows the final design (with and without
the guiding mesh). The dinosaur head mesh was manually added after the design, for aesthetic
appeal. To do so, a dinosaur head module with appropriate geometry and pins was added to the
library. This further shows how our tool can work with any modular building blocks.

user can simply specify how the joint motors should be positioned relative to each other. Our
system then employs a computational algorithm to auto-complete the design. This is achieved by
searching for a sequence of modules that result in appropriate mechanical structures connecting
the shoulder elbow, and wrist motors.

We use a heuristic-guided tree search algorithm to auto-complete designs. As illustrated in
Fig. 4.8, starting from a root motor, our computational system creates a tree of possible designs
in a recursive manner. Briefly, nodes correspond to modules, edges describe how compatible
modules connect to each other, and the path from each node to the root corresponds to an inter-
mediate robot design. Leaf nodes of the search tree correspond to designs that end with a target
motor. The goal of our design auto-completion algorithm is to find the leaf node corresponding
to a relative placement between the root and target motors that is as close as possible to what the
user specified (e.g., placement of elbow motor relative to shoulder motor, or wrist motor relative
to elbow motor). As described in the remainder of this section, we explore several heuristic func-
tions that guide the search process in order to make it computationally efficient, and therefore
suitable for interactive design.

Search tree: The search tree T is a collection of nodes and edges, T = (N,E). Each node Ni

represents a module mi and is defined as:

Ni = (mi, N
p
i , {1N c

i , . . . , nN
c
i }) , (4.3)

where mi is the module corresponding to node Ni (defined by eq. 4.1), Np
i represents its parent
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node – the node it originated from, and {jN c
i }nj=1 represents a set of n successive nodes called

children nodes. Node Ni has a child node for every way in which module mi can connect to
any other module in the library. The child nodes themselves represent the modules that are to be
connected to mi, while the way in which the two modules are attached to each other is specified
by the edges of the tree. In particular, an edge connecting nodes Na and Nb is defined as:

Ea,b
i,j,k =

(
Na, Nb, c

a,b
i,j , k

)
, (4.4)

where a is the index of the parent node, b is the index of the child node, ca,bi,j references the
connection between their modulesma andmb at virtual pins pma

i and pmb
j respectively (defined by

eq. 4.2), and k indicates the index of a relative orientation from the set of feasible configurations
for ca,bi,j . With the parent node Na’s position and orientation kept fixed, the child node Nb’s
relative placement is automatically determined such that the locations of the connection’s virtual
pins (i.e. pma

i and pmb
j ) coincide in world coordinates, and the relative orientation between the

two is set according to ca,bi,j [k]. We note that nodes of the search tree are expanded as needed
during the search process.
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Figure 4.8: Design space tree – The search tree originates at the root motor and enumerates all
possible structural designs between the root and the target motor. The visualization of physical
designs represented by the search tree and its corresponding schematic representation are shown
in (a) and (b) respectively. Each branch represents a different design that results in a particular
target motor configuration (encoded by its leaf node, highlighted with red oval).

Informed tree search: Since the depth of the search tree is potentially unbounded, and each
node has a large branching factor (see Fig. 4.3(b) and Fig. 4.5(b)), the design space is vast. As a
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result, a brute force traversal of the search tree would be prohibitively expensive. We therefore
propose an informed search process that accounts for the desirability and feasibility of a design.
We leverage existing informed search methods in graph theory, namely the A* algorithm, and
adapt it for interactive, user-driven design [182].

Informed search methods use problem specific knowledge to decide which nodes to expand
while traversing the search tree. Heuristic functions that embed the target information are the
most common form of domain knowledge used during the search. We define a heuristic function
h that measures the promise of each branch in reaching the target motor:

h(Ni) = |xmi − xmt | , (4.5)

where Ni represents current node of a branch, module mi represents Ni’s module, mi’s position
xmi
w is defined in eq. 4.1, and mt is the target motor. h refers to the euclidean or straight-line

distance between mi and mt. Note that h is an admissible heuristic because the shortest path
between any two points is a straight line, so it cannot be an overestimate [182]. Apart from
heuristics, other cost functions can be used to bias the search in finding designs with desired
properties.

Desirability cost: We define a desirability cost that encodes user preferences regarding aesthet-
ics and resource economy. The desirability of a design is measured in terms of the total number
of modules used and the compactness of the resulting structure. A design that uses a lower num-
ber of modules may be more economical (and it is trivial to associate different costs to different
types of modules). Similarly, a design that connects the root motor and target motor using an
approximately straight structure might be more compact, and therefore more aesthetically pleas-
ing. The desirability cost D of a branch in the search tree measures these two characteristics of
its design, at its current node Ni.

D(Ni) = wc ∗ δ(Ni) +

∑δ(Ni)
j=1 dist(Nj, RT )

δ(Ni)
, (4.6)

where wc is a scaling weight and δ(Ni) is the depth of node Ni in the branch (with root node at
depth 0). The first term therefore represents the total number of nodes (modules) between the
root and the node. RT represents a line segment in 3D joining the root and the target nodes,
and dist(Nj, RT ) measures the distance between the node Nj and RT . This distance is zero if
the position of Nj’s module (xmi

w ) lies on RT , thereby implying a straight structure. The second
term thus measures the average deviation of branch’s module positions from RT . The nodes
with lower D are more desirable. D’s role in the search is comparable to that of path cost g in
A* search [182]. However, defining D allows us to present the users with intuitive handles to
control the search output.

The total cost f of a node Ni is then determined as:

f(Ni) = h(Ni) + wdD(Ni) , (4.7)

where wd is a user-defined weight, h(Ni) is defined by eq. 4.5, and D(Ni) is defined by eq. 4.6.
h, D and f are calculated and stored for each node during the expansion process. The definition
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of node Ni is extended to store them.

Ni = (mi, N
p
i , {1N c

i , . . . , nN
c
i } , h,D, f) , (4.8)

where mi, N
p
i , {jN c

i } are defined as in eq. 4.3. h, D and f are defined as in eq. 4.5, 4.6, 4.7
respectively. Algorithm 24 describes our search process that uses f to determine which node to
expand. The node with lowest f is expanded first. The openset keeps track of all the nodes yet
to be expanded. Upon expansion, only the nodes free of collision are added to the openset, to
ensure physical validity of the design. We use bullet collision engine [1] to compute collisions
between modules. Expanding nodes with lowest f ensures that the branches whose structures
extend towards the target motor position are expanded and traversed first in the tree. However,
the function of an articulated link with multiple motors depends not only on the position of the
motors, but also on their rotation axis. Hence, not all the designs that extend to the target motor
position might function as desired. We therefore define an additional functionality cost.

Functionality cost: The functionality of each branch in the search tree is measured using the er-
ror between the position and orientation of the motor’s axis at its leaf node and the user-specified
target values. This error term determines whether the proposed design is acceptable. F is com-
parable to a termination criteria of conventional search methods.

F (Ni) = |xmi − xmt|+ (1− |−→a mi · −→a mt |) , (4.9)

where Ni is a leaf node, mi represents the motor module associated with Ni, and mt is the
target motor which is placed in the design by the user. xmi and xmt denote positions of mi

and mt respectively (eq. 4.1). −→a is a vector denoting the motor’s axis of rotation. For certain
applications, users might also care about the rotation of the target motor about it’s rotation axis.
This degree of freedom does not interfere with the functionality of a design, but it may affect its
form factor. In such cases, F can be extended to account for this error in the orientation of the
target motor:

F (Ni) = |xmi − xmt |+ (1− |−→a mi · −→a mt|) + ∆(qmi , qmt) , (4.10)

where qmi and qmt are quaternions representing orientations of modules mi and target motor
mt respectively (eq. 4.1). Their orientation difference ∆(qmi , qmt) = cos−1 (scalar(qd)), where
qd = (qmi)∗qmt and q∗ represents quaternion conjugate. F is defined by eq. 4.9 by default. In
algorithm 1, as soon as a motor module node is encountered in the expansion process, instead
of adding it to the openset, it is compared to the target motor using F to determine whether its
branch represents a valid functional design. If the design is valid, the search displays it to the
user and discards it otherwise.

Comparison to conventional search: When wd > 0 in eq. 4.7, our search process (algorithm 1)
becomes an A* algorithm that determines which nodes should be expanded by summing up the
heuristic cost-to-goal estimate and the cost of intermediate designs [182]. Setting wd = 0 con-
verts the search into a greedy best-first search that only uses the heuristics for node expansion.
Throughout the search process, we use our functionality metric F to keep track of the current
best node. Instead of waiting for the search to find an optimal mechanical assembly, the design
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corresponding to the current best node is displayed and updated as the search progresses. This
strategy produces various alternative designs for users to choose from as they are found, and it
leads to lowers wait times that promote interactive design. Users can accept any of the designs
produced by the system at any point in the search process. Keeping users in the loop in this
manner allows us to also account for aesthetic preferences that may not be captured by the de-
sirability cost. If users do not choose any design, we exit the search when the number nodes
in openset exceeds a threshold, returning the design with minimum F . Inspired by the various
alternative designs proposed during the search, users are free to change the placement of the root
or target motors at anytime. The search process will account for this change and will be updated
immediately. Users can further influence the search process by specifying different weights for
the orientation or desirability objectives (eq. 4.7,4.10).

4.6 Evaluation
Our design system allows casual and expert users alike to easily design customized robotic de-
vices that range from wheeled vehicles to legged robots (Figures 4.9, 4.10 and 4.12). In this
section, we evaluate our system by analyzing the abilities of the manual and automatic design
modes. Further, we verify the feasibility of the designs made with our system by fabricating
two very different robots – a wheeled robot with a manipulator arm that draws called “robo-
calligrapher”’, and a quadruped robot which we call “puppy”.

a. b. c.

64 modules 104 modules 53 modules

Figure 4.9: Various robots designed with our system – (a) a centaur, (b) a hexapod with arms,
and (c) a pentapod. (a) was designed in the manual mode, (b) was designed using the search,
and (c) was designed using both modes. Its short legs were designed in manual mode while
the longer limb was designed with the search process. Each design is composed of off-the-shelf
modules and custom 3D printed modules (shown in white). The total number of modules used
in each design (mentioned below) indicate their complexities.

Guided by visual suggestions provided by our system, the manual mode we developed is a
powerful tool that allows users to explore the design space. Fig. 4.10 shows several different
designs for two types of quadrupeds. Each of these designs took a matter of minutes to create.
When considering the number of motors that can be used for each limb, their placement and
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Algorithm 2: Interactive search for modular robot structure
input : Root motor (r), target motor (t), maxN , wd
output: Designs connecting r and t.

// start with root node
1 calculateCost (Nr); openset← Nr

// keep track of the best design
2 Nbest = Nr

3 while 0 < size(openset) < maxN do

// select node for expansion
4 Ncurrent = N in openset with lowest f

// node expansion
5 Nnew ← {jN c

current}zj=1

6 for i← 1 to z do
// check feasibility

7 if Nnew(i) is free of collision then
8 calculateCost (Nnew(i))

// compare leaf node to target
9 if Nnew(i)→ m = motor then

10 if F (Nnew(i)) <= F (Nbest) then
11 Nbest = Nnew(i)
12 end
13 end

// add to openset
14 else
15 openset← Nnew(i)
16 end
17 end
18 end
19 end

// output best node
20 return Nbest

21 Function calculateCost(N )
22 calculate N → h, N → D, N → f
23 end
24
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direction of rotation axes, configurations of the legs and how they attach to the body, the design
space is very rich. The ability to quickly create or alter designs is therefore very important in
exploring the relationship between the form and function of the robot. To further speed up design
processes, our computational system allows users to copy-and-paste different parts of a design
in order to mix and match features from different robots. This functionality is demonstrated with
the top-left design in Fig. 4.10, where the robot employs two legs from the spider design, and
two from the mammal design. Upper bodies with an arbitrary arrangement of manipulators can
also be easily designed, as demonstrated by the robots presented in Fig. 4.9.

9 modules
per leg

12 modules
per leg

a. c.

b.

9 modules
per leg

8 modules
per leg

edit

mix

Figure 4.10: Design editing and mixing – Two types of quadrupeds inspired by spider-like legs
and mammal-like legs are shown in (a) and (b) respectively. Each design uses 3 motors per leg,
but uses different number of modules per leg (mentioned below each design). These modules are
also used in different configurations resulting in diverse looks and motion behaviors. Designs in
(c) were made by editing and mixing designs from (a) and (b).

Fig. 4.7 illustrates the process of creating a dinosaur robot using our design auto-completion
mode. For designs such as this, the large number of required components can make the manual
mode too tedious and time consuming. Our semi-automatic mode proposes designs that attach
motors to each other through a series of modular connectors. Each design is generated to ensure
that the final placement and orientation of the motors is as close as possible to user-specified con-
figurations. Fig. 4.11(a), for example, shows various design alternatives suggested by our search
algorithm. By specifying preferences regarding the number of modules, aesthetics (eq. 4.7), and
motor orientations about their rotation axes (eq. 4.10), users can intuitively influence the result
of the search process.

Fig. 4.12 shows two fabricated prototypes of robots designed with our system. The body
plates, wheels and feet were 3D-printed, while all connecting brackets are off-the-shelf, alu-
minum parts. The robo-calligrapher robot was designed to take high-level commands from a
blue-tooth device. By controlling the velocity of the motors that are attached to the wheels, it can
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a. b.

wd = 1
Align to target 
position and axis
(Eq. 9)

Align to target 
position, axis and
orientation (Eq. 10)

c.

wd = 0

Figure 4.11: Tree-search analysis – (a) The search proposes various design alternatives (shown
in light blue) that connect the root motor (in gray) to the target motor (in dark red) in desired
configuration as closely as possible. The motor axis alignment for the target motor (red axis) and
the proposed structure (blue axis) is also illustrated. (b) The resultant designs vary based on F
cost used for comparing the resultant motor configurations of the proposed designs to the target
motor. (c) The importance of desirability cost is shown here. When wd in eq. 4.7 is set to zero,
the resultant designs end up using more number of modules and are aesthetically less appealing.
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easily be commanded to move forward, backward and to turn. We further developed an applica-
tion that translates a user sketch to a sequence of motor commands for its arm. We used inverse
kinematics for this purpose. Our design system allowed us to experiment with the number of
actuators used in the arm. We found that with 3 motors and off-the-shelf mounting brackets, its
range of motion was too limited, and therefore it was not able to reproduce a significant number
of sketches we provided to it. Based on this diagnostic, we decided to add two additional motors
to the design.

The puppy robot was designed to walk forward and sideways. For this robot, the feedback
obtained from the simulation environment and the efficient iterative design process enabled by
our system were particularly useful. As shown in the video1, our system makes it easy to ex-
periment with different body proportions, types of end effectors and motor configurations. In
addition to affecting the perceived motion style, these choices also affect the robot’s ability to
perform different motor tasks. For example, before converging to our final design, we created
a few robots that were only able to walk forward, and not sideways (e.g., bottom left design in
Fig. 4.10). As our video shows, the motions of the physical prototype match well the simulated
results. We therefore find the outcome of this experiment very encouraging, since performing an
equivalent exploration of the design space directly in hardware is tedious and much more time
consuming.

Robo-calligrapher

Puppy

Figure 4.12: Fabricated prototypes – The “robo-calligrapher” and “puppy” robot are shown here
with their fabricated counterparts. We designed a special purpose end effector that served as a
pen-holder for the robo-calligrapher. Our video shows these robots in action.

1Available at – https://www.youtube.com/watch?v=PGpTsQtznw4
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4.7 Frequently asked questions (FAQ)
1. How does the search ensure that the resultant structure does not interfere with the

movement of motors?
The required motion of the motor only depends on motor axis orientation and its position.
Since the search uses this as target in the heuristics (eq. 4.9), the resultant designs will
have the user-specified motor axis position and orientation. This will in turn ensure that
the motor movements are as desired. We also ensure that the resultant structures are not
self-colliding with the help of a Bullet physics-powered collision check during the search
(line 7 in Algorithm 24).

2. Isn’t it difficult for the users to specify number of motors and their configurations for
achieving a desired robot function?
It can indeed be hard for novice users to specify the right number of motors and their
configurations to achieve desired robot functionality. We currently allow dealing with this
in an iterative manner through feedback provided from the simulation. In Chapter 6, we
will present an automatic design improvement approach that corrects user provided motor
configurations to achieve a desired task.

3. Aren’t the alternatives provided during the search sub-optimal, since the search hasn’t
converged yet? Why should the users be allowed to select them then?
The design alternatives provided to the users as the search progresses are indeed not opti-
mal with respect to achieving the desired motor configurations and thereby motions. How-
ever, most times user-specified configurations are approximate and users typically iterate
over their designs. Further, we have found that many times the users perform a trade-off
between their design performance and design aesthetics. Since we do not know whether
the users prefer a straight line, curved, or zig-zag structure for their designs, the provided
alternatives allow them to perform this trade off implicitly. This eliminates the challenging
task of explicitly modeling such subjective user preferences about aesthetics.

4.8 Limitations
Limited automatic design support: Our system allows users to efficiently create customized
robots through design space exploration and simulation-based feedback, both of which result in
faster design iterations. User design is supported through a manual mode that allows forward
design, and an auto-completion mode that further speeds up the design process. However, our
auto-completion approach does not currently account for dynamics, external loads, or desired
motion profiles that may be important for a broader class of articulated robots.

Open loop forward design: Our tool relies completely on the users to modify their designs in
case of failures or undesirable design outcomes, highlighted in simulation. While such simulation-
based feedback immensely helps in iteratively improving the design, translating a negative out-
come observed in simulation to an appropriate change in the design may be difficult for novices.
To aid casual users in improving their inadequate designs automatically, we explore inverse de-
sign approaches in our co-design tools (Chapter 6).
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4.9 Publication and dissemination
This work was undertaken along with a fellow masters student Ye Yuan, and was published in
International Conference on Robotics and Automation (ICRA) 2017 [60]. The tool and cor-
responding code, which is deployable on Windows, can be downloaded from here – www.
cs.cmu.edu/˜rutad/files/articulated_robot_design.zip. Fabrication in-
formation and relevant part files for Robo-calligrapher and Puppy robots are hosted publicly
on MyMiniFactory [4]. Accessible at:
• Robo-calligrapher –

https://www.myminifactory.com/object/robo-calligrapher-45664

• Puppy –

https://www.myminifactory.com/object/puppy-45663
An overview video about the tool is also available – https://www.youtube.com/

watch?v=PGpTsQtznw4
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Part II

Tools for structure and function co-design
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Chapter 5

Automatic design of task-specific robotic
arms

5.1 Preamble
With our modular structure design tool (Chapter 4) users design a custom robot, test it within
a physical simulation, and iterate between design and testing till a desired robot that functions
as needed is created. Such a paradigm is called forward design. While forward design helps
when users are exploring the design space and are unclear about what they exactly want, a com-
plementary approach of starting with the task in mind may be more efficient in other scenarios
(Figure 5.1). We call this an inverse design approach. Such an approach is also essential for
applications wherein target casual users may not be able to provide the system with low-level
inputs necessary for the design such as degrees of freedom, thereby leading to inaccessibility.

Figure 5.1: Forward vs. inverse design – Inverse design enables users to start with the task
requirements, instead of iteratively improving their design till requirements are met. We propose
an inverse design system that allows users to obtain robotic arm designs that will execute the
user-specified motions.

In this chapter, we extend our modular design abstraction and framework for inverse design,
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and demonstrate it for the case of robotic arm design. We enable users to define the task require-
ments of a robotic arm in form of a motion trajectory. Given this task requirements, our system
automatically synthesizes an appropriate arm as well as its motion to achieve the task. Since
we concurrently design robotic arm’s structure and motion, this work falls under the category of
co-design tools.

5.2 Introduction

Many complex manufacturing scenarios require manipulation in confined spaces, while avoiding
obstacles. In particular, specialized domains such as airplane manufacturing involve many such
intricate motions, and therefore demand substantial manual labor. Commercially available 6
degrees of freedom (DOF) robotic arm systems such as KUKA [117], Universal robots [219] etc.
cater to a large variety of manipulation tasks. However, these robotic arms cannot be modified
for specialized tasks, nor can they be reconfigured when the task requirements change. Instead,
robotic arms designed using reconfigurable, modular parts can be adapted as per one’s need.
Therefore, recent commercial robotic systems such as HEBI robotics [94], Modbot [145] have
started promoting the use of customizable designs by providing modular building parts. Given
such a modular part library, our goal is to enable designers and engineers to quickly create valid
robotic arm designs for the task at hand. Towards this goal, we present a computational approach
that automatically generates valid designs given user-specified task requirements.

We formulate the automatic robot design as a search problem through the space of all possible
arrangements of the modular parts, similar to our design auto-completion method in modular
structure design tool (Sec. 4.5 in Chapter 4). To find valid design solutions that achieve a desired
task efficiently, we encode the task requirements with a heuristics so as to guide the search
towards appropriate designs. An integrated physics simulation environment is also available
within the system, which can be used to test the final auto-generated designs. Although our
current focus is on synthesizing robotic arms, our automatic design approach is generic, and can
be applied to a variety of robotic systems.

5.3 Related work

Task-specific manipulator design based on high-level descriptions has received considerable at-
tention in robotics community. For instance, methods to design manipulators that reach de-
sired configurations in a specified workspace while avoiding joint singularities have been pro-
posed [38, 107, 162]. However, most prior methods focus on optimizing continuous parameters,
such as limb lengths, for a given robot arm with fixed number of joints. In contrast, our method
creates robotic arms entirely from scratch using discrete modular components. To create custom
designs with such discrete parts, we build upon our previous work that defines an abstraction
for modeling modular components and their connections in a robotic device [60] (Chapter 4).
Using this abstraction, we also previously developed a search-based design approach that auto-
completed structures of user created partial robot designs [60]. In this work, we extend this
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framework to automatically create complete designs while accounting for high-level task re-
quirements such as a desired motion for the robot arm’s end-effector.

5.4 Graphical design system
This work was done in collaboration with National Robotics and Engineering Center (NREC)
and was motivated by the needs defined by an airplane manufacturing industry partner based
on their design and manufacturing challenges. The industry partner therefore provided with a
library of modular parts for building robotic arms, which can be used in manufacturing setting.
These library parts include a robot base, actuators, connecting links, and manufacturing specific
end-effectors such as sealing gun, welding machine etc. These end-effectors allow further cus-
tomization of robotic arms based on the task. The base part denotes the robot’s supporting base
and can be used to define the robot arm’s position in the world with respect to the environment.

To enable visual design, we extend our previously developed interactive modular structure
design system in two ways (Sec. 4.5). First, we enable users to define their task requirements in
terms of a desired motion for the robotic arm easily – either directly within the interface through
mouse, or with the help of a text file that can be dragged and dropped in the interface. Secondly,
we extend our physical simulation environment so that users can define virtual obstacles within
the environment to depict real-world scenarios corresponding to the task (see fig. 5.2). It is
therefore referred as task designer, henceforth.

Manual editing is available if needed, and is enabled using intuitive drag-and-drop of parts
from the library menu on the top. This is adapted from our previous work [60]. For automatic
design, users provide a robot base position in the real world, and a desired trajectory for the arm
to follow. Users can also specify a desired end-effector such as sealing gun or a welding machine,
according to their task requirements. Based on these specifications, our algorithm automatically
generates a valid arm design.

5.5 Automatic design using informed tree-search
Given a library of modular building parts and a user-specified robot arm end-effector motion
corresponding to a task, our design synthesis method aims to generate the simplest robot that can
execute this motion (see fig. 5.3(a)). Towards this, we leverage our design abstraction and tree-
based search in a manner similar to our design auto-completion approach for structure design
(Sec. 4.5). However, unlike before, we define a new heuristics to encode the task requirements.

Our design abstraction (Sec. 4.4), which models modular parts and their connections, allows
us to map the input part library to a space of possible robot designs. Briefly, the library parts p
are modeled as rigid bodies, and their compatibilities are defined using connection rules c1. A
robot design D = {P , C} can now be represented by a collection of interconnected parts P and
their connections C. Combinatorially many such robot designs consisting of different collections
of parts P can be constructed even with a small-sized part library. To find the simplest valid

1A connection rule c for two compatible parts p1 and p2 is defined as c = {p1, p2, 1T2}, where 1T2 represents a
rigid transformation of p2 relative to p1 at the time of connection (see eq. 4.2)
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Figure 5.2: Our graphical interface shown here is based on our modular structure design sys-
tem. Users can manually or automatically design robots in the design window on the left, using
the modular parts displayed in a menu on the top. Actuators are shown in blue, while the con-
necting parts are highlighted in gray. We used the NREC Modular Actuator (Nugget) for our
designs. The task designer on the right is powered by a physics simulation, and allows users to
define real-world task scenarios using obstacles (gray) and target trajectories (red). Apart from
enabling task-specific user inputs, the simulation also allows users to test the auto-generated
designs before assembling the robotic arm hardware.
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Figure 5.3: (a) Given a library of modular parts and a desired robot motion, our system auto-
matically synthesizes valid robotic arm designs. (b) Automatic design is formulated as a search
problem over recursively created tree of all possible designs.
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robot design out of all such possible robot designs, we start with a robot base, and recursively
construct new designs with increasing number of components till a valid design is found (see
fig. 5.3(b)).

5.5.1 Tree of designs
The recursive approach for synthesizing new designs is motivated by the following observation.
Consider a robot design D composed of part collections P . One can create new children designs
of D, each with potentially different motor capabilities, by appending compatible parts from the
library to D, as defined by the connection rules. As a result, even if a design D is not well-suited
for a user-specified motion, one of its children designs might be. This synthesis approach can
be well-represented with an acyclic graph (tree), where each node in the graph corresponds to
a design D. The edge between a parent node D1 and a child node D2 describe the addition of
a single part to D1, using corresponding connection rules, for creating D2. The root of the tree
corresponds to a base that supports the robotic arm, and the tree terminates at goal nodes that
correspond to valid designs, capable of executing user-specified motions (see fig. 5.3(b)). Since
the design space is combinatorial, and the depth of the tree is potentially unbounded (one can
keep adding more components), brute force construction and traversal of such a tree of designs
is very expensive. Instead, we leverage an existing informed search method that accounts for the
desirability and validity of designs during the search, called the A* algorithm [182].

5.5.2 A* search
A* is a widely used algorithm for search-based problems. It works in a best-first search manner
by constructing and traversing the nodes in the tree that are most promising. Specifically, A*
chooses nodes that minimize the cost function –

f(N) = g(N) + h(N) , (5.1)

where g(N) represents the current cost of the design DN at node N , and h(N) corresponds
to a heuristics that estimates the cost of parts that are required to be added to DN for generating
desired designs (corresponding to goal nodes), which can execute the user-specified motion. In
other words, heuristics encapsulate the deviation of DN from the goal design. Since a design
with fewer number of components is economical and simpler to control and fabricate, we define
g(N) to be proportional to the number of parts in DN .

g(N) = δ(DN) ,

h(N) = EIK(DN , T ) , (5.2)

where δ(DN) computes the number of parts such as actuators and links in the design DN at
nodeN . One can customize δ(DN) to penalize parts individually by using weights corresponding
to a metric of choice. For instance, by using weights corresponding to the cost of components,
one can drive the search to generate designs with fewer number of costly components such as
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actuators. To compute the heuristics h(N), we evaluate the design’s ability in executing a user-
specified motion trajectory T ∈ SE(3) using Inverse-Kinematics (IK). We use IK to compute
the required poses of the robot design so that the robot’s end-effector can follow T as closely as
possible. A higher IK error EIK relates to the need of adding more parts to the current designDN ,
and thereby shows the deviation of DN from desired designs. Since our heuristic computation
involves solving for the robot’s motion, we are able to find both the robot’s structure and motion
for a task simultaneously.

For computing EIK , we first discretize T in time to obtain a set of n target frames. Let q
represent an arbitrary pose of the robot. A robot design D is able to achieve the user-specified
motion if there exists a set of poses qi(1 ≤ i ≤ n) of the robot arm that enable the arm’s
end-effector e to achieve the target pose defined by Ti at ith frame without collisions. This
Inverse-Kinematics (IK) computation is thus solved as an optimization over robot arm’s poses q.

EIK(D, T ) = min
qi

n∑
i

∆(Ti, ei)2 (5.3)

where ∆(Ti, ei) represent the error between the pose of robot arm’s end-effector ei and the target
pose specified by Ti at ith frame. qi represents the pose of the robot design D at ith frame.
EIK is the net IK error of the design D while following the trajectory T . A video showing
the A* performing such a search for robot arm structures is available here2. Prevention of self
collisions and collisions with user-specified obstacles in the environment is achieved through
Bullet physics [1]. If the user-specified path passes through obstacles, the IK computation will
not find a valid motion. We currently do not perform feasibility check of the trajectory T for
avoiding such scenarios. In the future, a motion planner could be integrated within our system to
create the trajectories based on even higher-level inputs from the users to prevent such scenarios.

5.5.3 Admissibility of the heuristics

Our IK error-based heuristic function (eq. 5.2, 5.3) requires careful execution with regards to
two issues. First, the IK error requires each design D to have an end-effector attached at the
rear end of the robot. End-effectors are special parts in the library such as welding machine,
sealing gun etc. that are user-specified and serve a specific purpose in the task. They may not
be compatible with all the other parts in the library. As a result, a design DN at an intermediate
node in the tree may be composed of parts that do not allow end-effector connection. Secondly,
for the efficiency of A* search process, the heuristics h(N) needs to be admissible. Without an
admissible heuristic, which underestimates the actual cost of a node N , the search might traverse
more nodes resulting in sub-optimal performance.

To deal with these issues, we define a virtual end-effector part in the library that is compatible
and can attach with all other parts in the library. This not only allows computation of IK error
for any intermediate designs in the tree, but also ensures admissibility. Any intermediate designs
with a virtual end-effector is not feasible in the real world, and thereby its cost is an underestimate
of the actual design’s cost. The search termination criteria ensures that the goal nodes, which

2A* in action – https://youtu.be/MOrijZu47EA
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correspond to the desired designs, consist of the user-specified end-effector instead of the virtual
end-effector.

5.6 Results

We demonstrate the capability of our automatic design approach by synthesizing robotic arms
with different degrees of freedom (DOF) corresponding to various trajectory following scenarios.
Figure 5.4 shows some of these designs generated by our system, given a robot base position and
a motion trajectory to follow in an unconstrained environment. The time taken to generate these
designs depend upon the complexity of target motion trajectories (length, required DOF). Apart
from complexity of the target trajectory, environmental constraints also increase the design time.

Figure 5.4: Various robotic arms with different DOF synthesized automatically with our system
are shown here, along with the time taken to generate them. Corresponding user-specified tar-
get motion trajectories are shown in black. Each design is composed of modular parts such as
actuators, links and end-effector. The actuators and end-effector are highlighted in blue.

In order to validate the designs generated by our system, we manually created various robotic
arm designs and corresponding motion trajectories. We then used these trajectories as targets for
our automatic design generation. Comparison of the automatically generated designs with the
original designs further highlight the strengths of our approach. We find that our system is able
to find simpler designs (with fewer DOF) as compared to the original in some cases, especially
when the environment is unconstrained (see fig. 5.5(b)).
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Figure 5.5: (a) To validate our approach, we synthesize arm designs to follow trajectories that
correspond to manually created designs (denoted as original designs). Our approach not only
generates valid designs in all cases, but also finds simpler designs (with lower DOF) to follow
trajectories that were originally generated using robotic arms with higher DOF in some cases, as
shown in (b). Actuators and end-effector are highlighted in blue.
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5.7 Frequently asked questions (FAQ)

1. Is it easy to specify target trajectories as input? Aren’t there better alternatives to
specify a robot’s desired function?
Specifying target motion trajectories is most suitable for tasks that are purely characterized
by motion. Examples include pick and place tasks, tasks involving motion along a path etc.
Defining these trajectories may or may not be easy to do, depending upon the complexity
of the task. Integration of a motion planner within our system will help with this in the
future. We discuss this in detail in the next section (Sec. 5.8). We will also present a
complementary approach that allows users to specify desired robot functionality using
relevant context-specific attributes in Chapter 7.

2. Can such an approach be extended to other types of robots?
Our approach can be extended for designing articulated robots beyond robotic arms, if one
can define their desired robot functionality using a motion trajectory. Depending upon
the type of the robot, additional physical constraints (e.g., stability for walking robots)
may need to be embedded within the system. Recently, a similar approach was applied to
the design of walking robots [90]. In the future, it will be essential to apply our automatic
design framework to a wide class of robotic systems for testing the framework’s scalability
and generality.

5.8 Limitations

Limited scalability of input provided by the user: Currently, our system enables users to de-
fine the task using appropriate motion trajectories. This might be very challenging to do and
might not scale in complex scenarios with large number of obstacles. One could instead ob-
tain the necessary trajectories using a motion planner. Integration of motion planner within our
framework will also eliminate other failure cases of our current framework that arise due to in-
feasible user-specified trajectories such as trajectories passing through obstacles. Users can then
just define targets for the motion planner such as obstacles to avoid, task goals etc. Intuitively en-
abling users to define task-specific requirements for motion planning or general design problems
is an exciting area of future research.

Limited user-in-the-loop interaction: Unlike the design auto-completion in modular structure
design tool (Sec. 4.5), search for task-specific designs does not allow user-in-the-loop interac-
tivity, owing to the higher design space complexity as well as expensive heuristics computation
involving IK. Consequently, the user is unable to interact with the search for specifying less
quantifiable user-preferences such as aesthetics in our current framework. Instead of synthe-
sizing designs from scratch, one can ask users to provide an initial design along with the task
description. Starting with such a design that the user prefers, one can then make only the nec-
essary design modifications for the task. We explore such an approach in the context of legged
robots in the next chapter (Chapter 6).

Limited scalability of search-based approach for complex designs: The experiments reported
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in this chapter are very preliminary. Our ongoing experiments with complex designs with more
than 4 DOF and more than 12 modules suggest that the design time exponentially increases
with design complexity, owing to the really large design space. For instance, some of our 6 DOF
designs took more than 12 hours to create in these experiments. Approaches that prune the design
space by injecting intuitions about the user-preferred designs therefore need to be explored in the
future. Hierarchical approaches that iteratively search for designs are also worth exploring, since
they could enable both user interaction and faster design times.

5.9 Publication and dissemination
This work was undertaken in collaboration with Katharina Muelling and Margarita Safanova
from National Robotics and Engineering Center (NREC). As mentioned before, it was motivated
by the challenges in aerospace manufacturing. It was presented in a workshop on Autonomous
Robot Design at International Conference on Robotics and Automation (ICRA) 2018. Corre-
sponding publication is available on arXiv [61]. A video showing the automatic search-based
design is available at – https://youtu.be/MOrijZu47EA.
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Chapter 6

Co-design of structure and function for
legged robots

6.1 Preamble
Our task-specific robot arm design tool described in Chapter 5 allows users to obtain designs
based on high-level task requirements. In particular, with a search-based automatic design ap-
proach we enable users to find valid designs that satisfy their desired task requirements, from
scratch. Unfortunately, the ability of the search-based framework to enable user-in-the-loop de-
sign or account for less quantifiable user preferences such as aesthetics is limited.
For instance, given a high-level user intent of making
a quadruped that walks sideways, it is unclear whether
the user prefers a spider-like quadruped or a puppy-
like quadruped (see inset figure). In this chapter, we
therefore present a complementary task-specific co-
design framework that starts with a user-defined ini-
tial design and task descriptions, and makes appropri-
ate design modifications to achieve the user-specified
task. Starting with a user preferred design (for example, a puppy-like quadruped instead of a
spider-like quadruped) ensures that the resultant design matches user’s intent better.

Note that, similar to modular structure design tool, the users have to specify preferred robot
morphology in this framework. However, unlike modular structure design tool, users do not
have to iterate over their designs themselves when their designs do not behave as desired (see
Figure 6.1). Since this may be especially hard for novices to do, our approach increases accessi-
bility of design process while accounting for complex user preferences.

6.2 Introduction
To increase the accessibility of designing complex legged robots, we present a design system
that concurrently optimizes a user-specified legged robot’s motion and structure to achieve a
user-defined task. Since our system enables co-design based on specific task requirements, its

85



Figure 6.1: The need for co-design optimization – When user designs do not perform as expected,
it might be hard for the novice users to modify their designs appropriately. We present a method
for automatically updating robot design as per user-specifications. An illustrative example is
shown here, wherein a robot design incapable of walking sideways is automatically updated to
achieve sideways walking.

design approach can be broadly thought of as inverse design. To accomplish such design, we
ask the question: can we develop mathematically-rigorous models with the predictive power to
inform the design of effective legged robots?

Addressing this question, we present a mathematical model that maps the morphological pa-
rameters of a robot to its motor capabilities. Using this model as a core, we then develop a
computationally efficient interactive design system that enables users to design legged robots
with desired morphologies and behaviors by specifying higher level descriptions. Our frame-
work leverages the sensitivity of robot’s motion on its morphology captured by our model, to
hierarchically update a robot’s structure and motion to achieve a specified behavior or task per-
formance. In particular, we focus on periodic locomotion-based tasks that are characterized by
footfall patterns, walking/turning speed, and direction of motion. Our approach is therefore a
departure from conventional, largely manual trial and error approaches that iteratively improve
task-based robot designs. To deal with the computational complexity, and to enable user interac-
tivity throughout the design process, we integrate the highly scalable Adjoint method [84] within
our framework.

We validate our system in simulation through various task-based robot design scenarios that
are challenging for casual users. We demonstrate how our system is able to aid users in dealing
with a variety of such issues ranging from physical in-feasibility of the design to sub-optimality
in task performance, while maintaining preferred morphology as much as possible.

86



6.3 Related work

Assisted robot design improvement: Recently, various approaches have been proposed to either
provide feedback to the users about improving their designs [36], or for automatically changing
them based on a desired outcome [89, 199]. We are highly inspired by these approaches that
leverage the coupling between the robot’s morphology and behavior. In particular, Canaday et
al. and Ha et al. update the robot’s morphology for a given behavior such that kinematic and
actuator constraints are satisfied [36, 89]. On the contrary, we co-optimize the morphology and
motion of a robot without assuming a predefined motion or control policy for improving the
robot’s performance in locomotion-based tasks, similar to [199]. However, our formulation is
much more efficient than [199], making it well-suited for user-in-the-loop optimization. Un-
like [199]’s approach of directly weaving in the robot’s physical parameters within the robot’s
motion optimization framework, we establish a mapping between the robot’s physical and mo-
tion parameters using the sensitivity analysis or implicit function theorem [104]. Ha et al. also
use such a mapping between robot’s form and function for optimizing robot designs that use
minimal actuator forces [89]. However, they rely on the users to provide a change direction
for modifying their designs. Instead, we enable our users to define their design requirements at
task level using much wider variety of specifications such as desired speeds, desired directions
of motion etc. We also allow the users to optimize their designs for multiple tasks, thereby au-
tomating the painstaking process of achieving optimal trade-off between possibly contradicting
task requirements.

Task-specific robot co-design: Robotics community has long been interested in task-specific
robot co-design from high-level descriptions. In particular, a large number of approaches based
on evolutionary algorithms have been successfully used for synthesizing morphologies and con-
trollers for a variety of robots such as virtual creatures, manipulators etc. [18, 122, 193]. Unfortu-
nately, despite promising early results and significant increases in computing power, the field of
evolutionary robotics has shown a limited ability to go beyond Sims’ initial work [193] in terms
of complexity and behavioral sophistication [44]. Stochastic approaches also provide limited
theoretical guarantees, and are susceptible to produce designs that are often not reproducible.
On the other hand, our gradient based approach is locally optimal. Furthermore, rather than
synthesizing designs from scratch, which may not produce designs that appeal to the users, we
enable the users to specify initial designs as well as to modify their designs at any point during
the design process.

6.4 Design system overview

We build upon our previous work on modular structure design tool described in Chapter 4 that
enables users to design customized articulated robots, and test them in simulation. In particular,
as illustrated in Fig. 6.2(a), we adopt the GUI from our previous system because we have found
it to be effective for specifying initial robot morphology, and design. The GUI consists of a
design workspace (left) and a simulation workspace (right). The design workspace allows users
to browse through the list of available modules such as actuators and 3D printed parts, which can
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be dragged and dropped into the scene, to construct and modify a robot design.

a. b.

updated
connector

connector 
module

Figure 6.2: (a) Our design interface is adopted from our previous work (see Chapter 4). It
allows users to design robots using modular 3D printed, and off-the-shelf parts, as well as test
them using physical simulation. (b) We use a parameterized 3D printable connector module to
automatically create connections between actuators. The configuration, and size of the original
connector (shown in orange) gets updated based on the configuration of two actuators that it
connects.

We introduce some design features within this design interface to better suit our current
application. First, to enable the design of more organic looking robots that are optimized for a
specific task, and are less cumbersome to assemble, we take a departure from using off-the-shelf
brackets for connecting actuators. Instead, we assume that all parts of the robot’s articulated
structure (other than actuators for joints) are 3D printed. Second, we automatically create these
3D printable connectors between actuators. We are inspired by the robots created in [134] that
create convex hull geometries between actuators. However, while [134] create these geometries
as a final processing step, we enable the connector geometry update during interactive design.
With every drag-and-drop user operation that changes the robot morphology, as well as during
automatic design optimization, the corresponding connector geometries are updated as well.

To enable this, we define a parameterized 3D printable connector module (see fig. 6.2(b)).
Parameterizing the connecting structure as a module allows us to update its position and orien-
tation interactively with changes in the design. Each connector module is also endowed with
‘virtual’ attachment points on the connector’s face, that get updated based on its position as well
as that of the actuators it connects to. These attachment points are used to update the shape
and size of the module’s convex hull structure as needed. Our video1 demonstrates how the
3D printable connecting structures of a robot’s legs change as the design optimization updates
the robot’s design for a specific task. This allows the users to visualize the design changes as
the optimization progresses. If the users disapprove of the aesthetic appearance of the robot at
any point in the optimization, they can pause the optimization, and make the necessary changes,
before continuing the optimization.

1Available at – https://youtu.be/zrMZBgTbJho
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While the process of manually specifying the robot’s initial morphology is similar to manual
design in our modular structure design tool (Sec. 4.5), users no longer have to iterate over their
designs to achieve desired behavior. We next present our design optimization framework, which
automatically optimizes the robot’s form and behavior for performing a desired task. In scenarios
where the users are not satisfied with the behavior of their initial designs, they can use such an
optimization to improve their designs. Fig. 6.3 illustrates this design process for creating a fast
walking quadruped.

create initial design in 
the graphical user interface

improve the behavior
using design optimization

optimized design
with desired behavior

test behavior using
motion optimization

deficient 
behavior?

Figure 6.3: Overview of the design process – A design session with our system typically begins
with users creating initial robot morphologies using our interactive GUI. The behavior of their
initial designs can be tested in the physical simulation using our motion optimization frame-
work (Sec. 6.5.5.) If the robot behavior is not as desired or deficient, instead of manually chang-
ing the design, users can use our automatic design optimization (Sec. 6.5.2) that improves their
initial designs for the task at hand. In the example shown, the initial robot couldn’t walk as fast
as desired. The design optimization lengthens the robot limbs to enable this.

6.5 Automatic co-design optimization
The robot’s structure has a huge effect on the tasks it can perform. Therefore, while design-
ing robots for a particular task, engineers typically iterate back and forth between the robot’s
physical and motion design. To capture this coupling between the robot’s form and function, we
parameterize a robot with a set of structure parameters s, and motion parameters m. However,
instead of treating m and s independently, our goal is to represent robot motions as a function
of its structure m(s). Apart from being intuitive, such a representation allows us to solve for an
optimal task-specific behavior and design hierarchically, in a computationally efficient manner.
This, in turn, allows us to generate results much faster, enabling interactivity during design. We
explain our formulation in detail in this section.

6.5.1 Parameterization
A larger variety of robots including manipulators, and walking robots are composed of articu-
lated chain like structures, in particular, of serially connected and actuated links. Such robot
morphologies can be well described as kinematic trees starting at the root of the robot. The
design parameters s is used to specify the robot morphology, which is given by

s = (l1, . . . , lg, a1, . . . , an, bw, bl) , (6.1)
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where g is the number of links, li ∈ R is the length of each link, n is the number of actuators,
and ai ∈ R3 is the actuator parameters. For linear actuators, ai defines the 3D attachment points,
while for rotary actuators, it corresponds to orientation of axis of rotation. Apart from these
parameters that represent the kinematic tree morphology of the robot, we use two additional
parameters bw and bl to represent the physical dimensions of the robot’s body (width and length
respectively).

Likewise, the motion parameters m = (P1, . . . ,PT ) are defined by a time-indexed sequence
of vectors Pi, where T denotes the time for each motion cycle. Pi is defined as:

Pi =
(
qi,xi, e

1
i , . . . , e

k
i , f

1
i , . . . , f

k
i , c

1
i , . . . , c

k
i ,
)
, (6.2)

where qi defines the pose of the robot, i.e., the position, and orientation of the root as well as joint
information such as angle values, xi ∈ R3 is the position of the robot’s center of mass (COM),
and k is the number of end-effectors. For each end-effector j, we use eji ∈ R3 to represent its
position and f ji ∈ R3 to denote the ground reaction force acting on it. We also use a contact flag
cji to indicate whether it should be grounded (cji = 1) or not (cji = 0). We note that s remains
invariant over the entire motion optimization horizon.

6.5.2 Method overview
Given an initial robot design, and a task specification, our goal is to change s and m (as defined
in eq. 6.1, 6.2) to obtain a design better suited for a task. Users typically define the initial
design using our graphical interface. Various task descriptions such as preferred direction of
motion/action, desired movement speed, movement styles (walking, trotting, turning) etc. can
also be easily specified using our interface. These task specifications can then be encoded into an
evaluation criteria or cost function F (s,m). Assuming p to be the parameter vector containing
both structure and motion parameters p = [s,m], one can search for an optimal p along the
direction of F (p)’s gradient ∂F

∂p
. However, s and m are inherently coupled. Therefore, instead

of searching s and m independently, we adopt a hierarchical approach, wherein we first update
s, and then update m within a constrained manifold that maintains the validity and optimality of
m’s update, given s.

By constructing a manifold of structure and motion parameters of a robot design, we can
explore the sensitivity of robot’s motion m to its structure s. Starting with an initial design
(s0,m0) on the manifold, one can search for s, and corresponding m(s) on this manifold, such
that F (s,m) is minimized. This dependency of m on s is captured by the Jacobian dm

ds
(more

details in Sec. 6.5.3). This Jacobian is used to compute the search direction dF
ds

for updating
s within the manifold. However, dm

ds
is expensive to compute. Therefore, we further simplify

this computation by using the Adjoint method (see Sec. 6.5.4). Algorithm 3 succinctly describes
these steps. Note that δ1 and δ2 are the step sizes of the update of s and m respectively, in the
desired search directions. The update(∆s) function essentially describes the line-search proce-
dure for δ1 along the search direction ∆s, and the corresponding update of si at each iteration
i. ∆s represents the updated search direction for s obtained using the Limited-memory BFGS
algorithm [127], given the gradient direction dF

ds
. N represents the number of maximum line

search iterations. δ2 is also computed using similar back-tracking line-search [151]. For each
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update of si, multiple updates of m are executed to obtain the corresponding optimal mi. m is
updated in the search direction defined by Newton’s method wherein ∂2F

∂m2 , and ∂F
∂m

represent the
Hessian and gradient of F with respect to m respectively.

Algorithm 3: Automatic motion and structure design optimization for legged robots
input : Initial robot design R defined with s0, and m0; Task specification F (s,m)
output: (s∗,m∗) | F (s∗,m∗) < threshold

1 while F (si,mi) > threshold do
2 compute dF

ds

∣∣∣
(si,mi)

using the Adjoint method

3 update ∆s withdF
ds

using L-BFGS algorithm
4 update (si,mi) using update (∆s)
5 end
6 Function update(∆s)
7 δ1 = 1
8 for N do
9 s′ = si − δ1∆s

10 m′ = mi − δ2
(
∂2F
∂m2

)−1
∂F
∂m

(Newton’s method)

11 if F (s′,m′) < F (si,mi) then
12 mi = m′, si = s′

13 return (si,mi)

14 else
15 δ1 = δ1

2

16 end
17 end
18 return (si,mi)

19 end

6.5.3 Coupling form and function for robot design

It is hard to analytically represent the dependency or sensitivity of robot’s motion on its structure.
Instead, we assume a manifold that relates robot’s structure and behavior capabilities, given a
specific task.

G(s,m) = 0, (6.3)

where G(s,m) : Rns × Rnm → Rnm . It allows us to understand the effect of design parameters
on the motion/behavior of the robot. Such an implicit manifold between structure and function
can be converted into an explicit relation between the two within a small region around a point
P0(s0,m0) on the manifold, using the Implicit function theorem [104]. The theorem states that
when we change s0 and m0 by ∆s and ∆m, the change in the function ∆G should be zero
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to remain on the manifold. Using chain rule to compute ∆G, we obtain the following explicit
relation between ∆s and ∆m.

∆G =
∂G

∂s
∆s +

∂G

∂m
∆m = 0

∆m = −
(
∂G

∂m

)−1
∂G

∂s
∆s (6.4)

where
(
∂G
∂m

)
, and

(
∂G
∂s

)
represents the Jacobian of G(s,m) with respect to m, and s respectively.

In order to compute such a manifold, we start with a task-specific cost function F (s,m).
For each robot morphology defined by s, there exists an optimal m∗ that minimizes F (s,m).
Therefore, the gradient of F with respect to m at point (s,m∗) should be zero. One can then
search for an optimal s∗ along the manifold defined by this gradient G(s,m) = ∂F (s,m)

∂m
. An

optimal s∗ on such a G(s,m) would automatically ensure a corresponding valid and optimal m∗

for the task.
For searching such an optimal s∗, we therefore need to solve the following optimization

problem:

min
s
F (s,m)

s.t. G(s,m) = 0 (6.5)

where F (s,m) : Rns × Rnm → R is the energy function; G(s,m) : Rns × Rnm → Rnm

denotes the gradient of energy function with respect to motion parameters m and thus G = ∂F
∂m

.
Empowered by the Jacobian dm

ds
that essentially encodes m(s) (defined by eq. 6.4), we can define

the search direction for s as follows:

dF

ds
=
∂F

∂m

dm

ds
+
∂F

∂s

= − ∂F
∂m

(
∂G

∂m

)−1
∂G

∂s
+
∂F

∂s
. (6.6)

6.5.4 The Adjoint method
Computing dF

ds
requires the calculation of the Jacobian dm

ds
which is computationally very expen-

sive. It requires solving ns linear equations (for each column in Jacobian matrix ∂G
∂s

), and the
procedure gets very costly for large ns. Instead, we use the Adjoint method to efficiently com-
pute the gradient dF

ds
. This method formulates the computation of the gradient as a constrained

optimization problem, and then uses the dual form of this optimization problem for faster com-
putation [84]. Other applications have also sought out the Adjoint method for similar purposes
in the past [133].

In particular, the expression − ∂F
∂m

(
∂G
∂m

)−1 in eq. 6.6 can be interpreted as the solution to the
linear equation (

∂G

∂m

)ᵀ

λ = −
(
∂F

∂m

)ᵀ

, (6.7)
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where ᵀ is the matrix transpose operator. The vector λ is called the vector of adjoint variables
and the linear equation is called the adjoint equation. Finally, dF

ds
takes on the following form

dF

ds
= λᵀ

∂G

∂s
+
∂F

∂s
. (6.8)

Such a computation of dF
ds

now involves solving only one linear equation (eq. 6.7), followed
by one matrix-vector multiplication and one vector addition (eq. 6.8). This is much more efficient
as compared to solving ns linear equations for dm

ds
computation earlier.

6.5.5 Motion optimization
So far, we have described our framework to optimize the structure and motion of a robot, given
a task. We used a cost function F (s,m) to encode the task specifications. We now describe how
F (s,m) is constructed. To this end, we use a set of objectives that capture users’ requirements,
and constraints that ensure task feasibility.

Objectives

We allow the users to define various high-level goals to be achieved by their robot designs such
as moving in desired direction with specific speeds, different motion styles, etc. To capture the
desired direction and speed of motion, we define the following objectives:

ETravel =
1

2
||xT − x1 − dD||2 ,

ETurn =
1

2
||τ(qT )− τ(q1)− τD||2 , (6.9)

where xi is the robot’s COM as defined in eq. 6.2, τ(qi) is the turning angle computed from pose
qi, while dD and τD are desired travel distance and turning angles respectively. ETravel ensures
that the robot travels a specific distance in desired time, while ETurn can be used to make a robot
move on arbitrary shaped paths.

Motion style is highly effected by gait or foot-fall patterns that define the order and timings
of individual limbs of a robot. We internally define various foot-fall patterns for different motion
styles such as trotting, pacing, and galloping. When users select a specific motion style, our
system automatically loads the necessary foot-fall patterns, thereby allowing novice users to
create many expressive robot motions. Motion style is also effected by robot poses. For expert
users, we allow the capability to specify and achieve desired poses, if needed, using the following
objectives:

EStyleCOM =
1

2

T∑
i

||xi − xDi ||2 ,

EStyleEE =
1

2

T∑
i

k∑
j

||eji − eji
D||2 , (6.10)
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where k is the number of end-effectors, xDi and eDi represent desired robot COM, and end-
effector positions respectively. Apart from these, motion smoothness is often desired by the
users, which is encoded by the following objective:

ESmooth =
1

2

T−1∑
i=2

||qi−1 − 2qi + qi+1||2 . (6.11)

Constraints

We next define various constraints to ensure that the generated motion is stable.
Kinematic constraints: The first set of constraints ask the position of COM, and end-

effectors to match with the pose of the robot. For every time step i, and end-effector j:

ϕCOM(qi)− xi = 0 ,

ϕEE(qi)
j − eji = 0 , ∀j, (6.12)

where ϕCOM and ϕEE are forward kinematics functions outputting the position of COM and
end-effectors respectively.

We also have a set of constraints that relate the net force and torque to the acceleration and
angular acceleration of the robot’s COM:

k∑
j=1

cji f
j
i = M ẍi ,

k∑
j=1

cji (e
j
i − xji )× f ji = Iöi , (6.13)

where M is the total mass of the robot, and I is the moment of inertia tensor. The acceleration ẍi
can be evaluated using finite differences: ẍi = (xi−1− 2xi + xi+1)/h

2, where h is the time step.
Similarly, the angular acceleration öi can be expressed as öi = (oi−1− 2oi + oi+1)/h

2. We note
that the orientation of the root oi is part of the pose qi, and it uses axis-angle representation.

Friction constraints: To avoid foot-slipping, we also have the following constraints for each
end-effector j:

cji (e
j
i−1 − eji ) = 0, cji (e

j
i − eji+1) = 0 , (6.14)

for all 2 ≤ i ≤ T − 1, which implies that the end-effectors are only allowed to move when they
are not in contact with the ground. Further, to account for different ground surfaces, we enforce
the friction cone constraints:

f ji ‖ ≤ µf ji ⊥ , (6.15)

where f ji ‖ and f ji ⊥ denote the tangential and normal component of f ji respectively, and µ is the
coefficient of friction of the ground surface.
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Limb collisions: For physical feasibility, we propose a collision constraint that ensures a safe
minimum distance between the limb segments of robot over the entire duration of the motion.

d(Vk1
i ,V

k2
i ) ≥ δ , (6.16)

where Vk
i represents a 3D segment representing the position and orientation of kth limb, d(·)

computes the distance between k1 and k2 limbs, and δ is the threshold distance beyond which
collisions may happen.

Motion periodicity: If the users prefer a periodic motion, we can add an additional constraint
that relates the start pose q1 and the end pose qT of the robot:

J(qT )− J(q1) = 0 , (6.17)

where J(qi) extract the orientation of the root and joint parameters from pose qi.
Finally, F (s,m) is computed as the sum of the objectives in eq. 6.9, 6.10, 6.11. Quadratic

penalty costs for violation of constraints in eq. 6.12, 6.13, 6.14, and 6.17 are also added to F .
Note that, while these objective terms are defined using the motion parameters m, F is indirectly
affected by the structural parameters s as discussed in Sec. 6.5.3.

6.6 Evaluation
We explore three simulated examples to study the utility and effectiveness of our approach. Al-
though, we only show our current findings in simulation, we have confirmed that the simulation
environment matches physical results, in our past work (see Sec. 4.6 in Chapter 4). The first
example is aimed to show how our design optimization can change an initial robot design that is
inadequate to perform a user-specified task. The second example shows how our system modifies
design to ensure feasibility while maintaining task performance. Finally, we show how our sys-
tem can be used to optimize designs for multiple tasks. We also demonstrate how different tasks
may require varied design changes, and how our optimization can automatically generate these
design changes in matters of minutes, thereby illustrating its computational efficiency. Note that
all the initial designs for these examples were manually designed with our interface. Our video2

demonstrates this process for the robot in fig. 6.4(a).

Improving inadequate designs: When novices design robots, it can be hard for them to decide
where the actuators should be located and how they should be oriented for achieving a specific
behavior. Figure 6.4(a) shows one such example of a ‘puppy’ robot with three motors per leg.
Even with enough number of actuators, the robot can only walk in one direction (forward) owing
to its actuator placements. In particular, all actuators rotate about the same axis thereby reducing
the effective degrees of freedom (DOF) of each limb. By parameterizing the actuator orientations
ai in eq. 6.1, we enable our design optimization to change them for equipping the robot to walk
in any specific direction. Without the optimization of such structural parameters, it may be
impossible to achieve such tasks. For instance, the optimization of only motion parameters for
the initial ‘puppy’ design fails to produce the desired behavior of walking sideways at a specific
speed (see fig. 6.4(b)).

2Available at – https://youtu.be/zrMZBgTbJho
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Figure 6.4: Design optimization for achieving desired behavior – (a) Initial and optimized de-
signs of a ‘puppy’ robot are shown. The initial design can only walk forward (in Z direction)
owing to the deficient placement of actuators at its joints. Our design optimization changes the
actuator orientations to enable the robot to walk sideways (in X direction). (b) Optimizing motion
parameters is not enough for overcoming such design deficiencies as seen in the initial iterations
of the plot. On the other hand, optimization of the structure parameters modifies the design
to walk sideways with desired speed. Figure 6.1 shows the original, and optimized designs in
action.

Achieving desired task performance, while ensuring feasibility: Even when a design can
theoretically achieve the desired behavior, it may be rendered infeasible due to real world con-
straints such as collisions. Fig. 6.5(a) shows a robot that can walk in the user-specified direction
at desired speeds. However, when walking speeds increase above 0.1 ms−1, the robot’s limbs
start colliding. It is hard to anticipate such issues apriori. Along with helping the user to test
such scenarios in simulation, our system can also automatically prevent them by using feasibility
constraints during motion optimization as discussed in Sec. 6.5.5. However, these constraints
prevent the required range of limb motions needed for fast walking, limiting the ability of the
robot to perform the intended task (see fig. 6.5(b)). On the other hand, design optimization is able
to change the design to achieve both these contradicting tasks successfully as seen in fig. 6.5(c).

Designing for multiple behaviors: Finally, designing robots for multiple tasks is also highly
challenging, especially if the tasks ask for opposing design characteristics. Consider the task of
walking and pacing for a quadruped robot shown in fig. 6.6(a). The original design can only
walk forward owing to its actuator placements (similar to the ‘puppy’ robot in fig. 6.4(a)). Its
wider body and shorter limbs prevent it from pacing in stable manner. The tasks are further
challenging because of limited number of actuators. While three actuators may enable sufficient
DOF for 3D movements without careful placement of individual actuators, same may not be true
for designs with lower number of actuators. Individually optimizing the design for pacing and
walking may not be sufficient for enabling the robot to perform both tasks. Pace based design
optimization generates a slim bodied robot, while walk based design optimization produces a
wider body size to increase stability during fast walking (see fig. 6.6(a)). Such a wider body in
turn, negatively affects the pacing behavior (fig. 6.6(b)). To achieve reasonable performance for
both these tasks, a trade-off is thus required. Our system allows users to jointly optimize their
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Figure 6.5: Achieving feasible behavior, and desired task performance simultaneously with de-
sign optimization – (a) A hexapod robot’s limbs start colliding at higher speed. Accounting
for collisions during motion optimization prevents this, but also restricts the robot from walking
faster as seen in the plots in (a), and (b). (c) Design optimization is able to deal with this trade-off
by increasing the spacing between limbs, and their lengths. This enables the robot to walk faster
without any collisions. Our video illustrates this example in detail.
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designs for multiple tasks, to handle such scenarios. The individual requirements for each task
Fi(s,mi) can be combined in weighted manner into Fjoint(s,m) =

∑
wiFi(s,mi). Weights

wi representing the importance of each task can be set by the users. Such joint optimization of
walking and pacing (with w1 = w2 = 0.5) for quadruped in fig. 6.6(a) succeeds in achieving
the necessary trade-off as illustrated in the resultant medium bodied optimized design, and the
corresponding task performance.
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Figure 6.6: Designing for multiple behaviors – (a) An initial quadruped robot design that can
only walk forward, is optimized to pace and walk sideways respectively. A design that was
jointly optimized for both these behaviors simultaneously is also shown. Note that the body
aesthetics was manually added to each design (b) Unlike designs generated by optimization
that considered the tasks of walking and pacing separately, jointly optimized design achieves a
reasonable trade-off between the performance of both tasks.

Example statistics: Table 6.1 shows the design times for optimizing the designs of robots in
fig. 6.4, 6.5, 6.6. For quadruped in fig. 6.6 these statistics are reported for the joint optimization
scenario. Note that, even when its number of optimization parameters are roughly similar to that
of the hexapod, there is a significant difference in the number of optimization iterations, and the
time required. This is because of the contradicting requirements that the two tasks demand, mak-
ing the problem more challenging. Also note that for each iteration of design optimization, mul-
tiple iterations of motion optimization are executed (see Algorithm 3). However, as illustrated
in the statistics, the large number of these iterations needed to update the designs are executed
in matter of minutes. Such computational efficiency is at the core of interactivity in our system.
Apart from an efficient implementation in C++ , a scalable approach using the Adjoint method
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Robot Number of Motion Opt. Design Opt. Time
Parameters Iterations Iterations (s)

Puppy (Fig. 6.4) 614 6207 32 107.66
Hexapod (Fig. 6.5) 1044 5013 53 97.47

Quadruped (Fig. 6.6) 1050 14873 100 124.47

Table 6.1: Design optimization statistics for example robots. All experiments were run on a
standard desktop with a 3.6 GHz i7 CPU and 16 GB RAM.

allows us to achieve the same. While it is hard to make a direct comparison owing to differences
in parameterization and implementation, our design times are significantly faster than the current
state-of-the-art that co-optimizes form and function for many such similar robots [199]. For in-
stance, their system took on an average 685 seconds to optimize a biped robot design for the task
of walking on flat ground (750 optimization parameters) [199].

6.7 Frequently asked questions (FAQ)

1. Why are there no hardware experiments to support the system?
We used the same simulation framework as in our modular design system (Chapter 4),
which was validated with hardware prototypes. While the design optimization will benefit
from a hardware evaluation, it is unclear how to perform such an evaluation owing to the
diversity of design failures as seen in the Section 6.6.

2. What about local minima? Can the system get stuck in one?
Like any gradient-based approach, our system will only find locally optimal solutions.
In practice, if such a solution does not satisfy user requirements, users can either make
small modifications in their designs, or change the threshold in Algorithm 3 and rerun
the optimization. However, none of our experiments described in Sec. 6.6 required such
random restarts.

3. Does the system consider robot dynamics?
We do not account for dynamic factors such as inertial and Coriolis forces on the limbs in
our system. Our current focus is on kinematic design of robots. A purely kinematic ap-
proach may not be sufficient for supporting expert designers in robot development, owing
to the load and performance requirements of designs for their applications. However, our
kinematic design approach can cater to a wide variety of robot design needs of novices as
highlighted in various design scenarios in Sec. 6.6 as well as by our modular design system
in Chapter 4.

6.8 Limitations

Limited behavior support: Our motion optimization framework currently only supports peri-
odic locomotion-based tasks. A generic system would need to account for a much broader class
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of motions and behaviors, including climbing, carrying weights or avoiding obstacles. Like with
the task-specific design tool in Chapter 5, testing out this framework on other types of robots
would be important for its scalability and generality.

Limiting assumptions: Our system also currently does not perceive the mass or the number of
motors as design parameters. However, our approach is generic, in that the adjoint method can
be applied to any trajectory optimization scheme that provides analytical gradients and Hessians.
Therefore, although our motion optimization currently does not account for the mass of the limbs,
we believe that this limitation can be eliminated in the future.

Limited transparency in user control: The optimization processes are relatively invisible to
the user in our system, which provides little room of manipulation for experts and specialists
who may desire finer control over the design process. We therefore believe that it is important to
find the right balance between automation and user control during design. A detailed study may
be required towards better understanding this balance for novice, intermediate, and experienced
robot designers, for well-informed design of future tools.

6.9 Publication and dissemination
This is joint work with Beichen Li (Tshingua University), and Ye Yuan (Carnegie Mellon Uni-
versity). A short version of this paper was published in International Conference on Climb-
ing and Walking Robots and Support Technologies for Mobile Machines (CLAWAR) 2018. At
CLAWAR, it was awarded second place in the best technical paper award category. A video
showing various design optimization examples, as well as an illustrative design session can be
found here – https://youtu.be/zrMZBgTbJho. The design optimization approach was
also integrated into another system developed in the lab for designing skating robots, published
in SIGGRAPH 2018 [82].
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Chapter 7

Geppetto: Semantic design of expressive
robot behaviors

7.1 Preamble
We now describe our functionality editing tool for designing expressive behaviors of articulated
robots. Unlike our previous tools, this tool doesn’t change the structure of the robot. Instead, it
focuses on enabling users to edit the motion behavior of the robots intuitively. The two major
features of this tool, towards developing accessible robotics tools for novices, are: (a) semantic
design for capturing high-level user intent, and (b) visual design space exploration of a high-
dimensional, complex, and non-intuitive design space.

To enable robot behavior design using high-level and semantic descriptions of behavior prop-
erties such as the desired emotional expression, we devise a data-driven and simulation-powered
framework. In particular, our system combines a physics-based simulation that captures the
robots motion capabilities, and a crowd-powered framework that extracts relationships between
the robots motion parameters and the desired semantic behavior. By leveraging these relation-
ships for a mixed-initiative design, the system guides users to explore the space of possible robot
motions. Our design system breathes life into robots by endowing them with expressive behav-
iors, and hence is named after the fictional character Mister Geppetto, who similarly brought the
inanimate character Pinocchio to life [65].

7.2 Introduction
As robots become more prevalent in social environments, from factory floors to personal homes,
endowing robots to express themselves can enhance and enrich our experience of interactions
with them. The paradigm of enabling robots to express intent and emotions via movements is
extremely generic and powerful [69, 125, 146, 174]. Instead of relying on anthropomorphic
features or morphology, this paradigm leverages the human ability of identifying emotions and
intent from mere behavior for establishing meaningful communication during interactions [10,
79, 224]. For instance, a robotic arm that collaborates with human workers on a factory floor
could communicate its confusion about a task, or alert human workers if needed, by moving in a
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specific manner.
However, creating such expressive movement behaviors for robots is highly challenging [34].

Similar to digital character animation, creating behaviors for robotic characters requires tremen-
dous skill and effort [59]. Apart from the inherent task complexity and domain knowledge re-
quirements, robot behavior design also suffers from the lack of suitable design tools. Existing
animation tools such as Blender [31], or Maya [21], enable design with absolute human control
but offer limited options for integration with physical hardware. On the other hand, conventional
robot control tools (e.g., ROS [178]) have extensive support for robot’s physical simulation and
control, but do not allow for mixed-initiative expressive behavior design. In comparison, our
goal is to facilitate easy and intuitive design of expressive movements for robotic systems over a
wide variety of applications ranging from art to social interactions.

Figure 7.1: Overview of our semantic motion design framework – Our framework consists of
four main building blocks: (a) a dataset of parameterized expressive robot motions, (b) a crowd-
sourcing set-up for estimating the emotional perception of motions in the dataset, (c) regression
analysis for establishing relationships between motion parameters and the emotional perception
of the resultant motion, and (d) an intuitive design tool backed by these data-driven parameter-
emotion relationships.

Guided by feedback from a systematic survey of experts from animation, art, and robotics,
we attempt to fill in this gap present in existing robot behavior design tools. We present Geppetto,
a simulation-driven robot motion design system that enables the design of expressive behaviors
using high-level and semantic descriptions of behavior properties. Geppetto currently explores
the creation of behaviors that convey emotions, which is an important and challenging problem
within Human-Robot Interaction (HRI) [106, 197]. Beyond emotional expression, Geppetto’s
framework could easily be extended to support other semantic descriptions related to how a robot
behaves, or what its movements should look like. Apart from physics-based motion simulation,
Geppetto builds upon two recent advances in HCI and graphics research - Crowd- powered Pa-
rameter Analysis [116] and Semantic Editing [239]. These techniques are combined into a novel
data-driven framework for the domain of robot behavior design.

Inspired by the work of Koyama et al. [116], crowdsourcing is used to obtain subjective
scores pertaining to the perceptual quality of emotional expression for a generated dataset of
parameterized robot motions. Using regression analysis, functional relationships are inferred
between robot motion parameters and the corresponding emotional expressions. Using these
relationships, a semantic interface is developed to enable gently guided intuitive editing, and
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visual exploration of the space of possible robot motions (Figure 7.1, right). A mixed-initiative
approach is used for handling the unique properties of our data, such as the noise from crowd-
sourcing, and the inherent subjectivity of emotional behaviors.

a. b.

Figure 7.2: We enable casual users to design expressive motions for two very different types
of robots – (a) a quadruped, and (b) a robotic arm. We consider periodic walking motions for
the quadruped, while for the robotic arm, we consider the task of moving towards a target point
(shown in blue). Each of these motions can be performed with different styles and expressions.
Our tool enables the users to explore the space of these motions.

To the best of our knowledge, this is the first system that enables casual users, without any
domain knowledge of animation or robotics, to design semantically meaningful robotic behav-
iors. The systems utility is shown with a user-study, which indicated that users were able to
create high-quality expressive robot motions. The generalizability of the presented framework is
demonstrated by using it for two distinct robotic systems: walking robots, and manipulator arms
(Figure 7.2).

7.3 Related work
This work is inspired and builds upon prior work on semantic editing, crowd-powered editing,
and robot motion design.

Semantic editing and design space exploration Editing using semantic or context-specific at-
tributes has been explored for many complex design domains such as 3D models [43, 239], im-
ages [114, 119, 163], fonts [154], and garments [118]. Each of these approaches extract relevant
and human-understandable attributes for their design domain, and learn a mapping between the
design parameters and these attributes. With this mapping, they enable intuitive, attribute based
editing at design time. We wish to extend this methodology to the domain of robotics. Unlike the
domain of 3D models and images, there is no existing large dataset of expressive robot motions.
We therefore parameterize and synthesize a wide variety of such motions using a physics-based
simulation.

Along with semantic editing, visual design space exploration is another useful approach.
Researchers have proposed intuitive low-dimensional control spaces for predictable editing, and
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design space exploration of complex design problems such as editing material appearance [190],
or 3D models [43, 239]. Instead of finding a low-dimensional control space, we expose the
current parameter space in a more visual and meaningful manner.

This work builds on Koyama et al., which enables intuitive editing of continuous parame-
ters corresponding to digital content such as images, visually, using a crowd-powered frame-
work [116]. Parameter sliders with heat-map visualizations are used to gently guide the users
to a relevant region in the design space. Geppetto deals with design spaces that consist of both
continuous and discrete parameters and is particularly suited to design spaces represented by
low fidelity or noisy data. We leverage mixed-initiative design for scenarios where the available
datasets capture the design space in a limited manner, or when the data is relatively noisy. This is
achieved by providing relevant guidance in a transparent manner. Specifically, parameter sliders
are annotated with curves that indicate both parameter-semantic attribute relationships, and the
degrees of uncertainty within those relationships. Finally, unlike most crowd-powered systems,
Geppetto provide user interface features that enable users to combine their individual preferences
with crowds preferences at design time.

Designing expressive robotic motion: Many data-driven, or model based approaches have been
explored for motion synthesis. In particular, motion capture and video data have been extensively
used for increasing the style and expressiveness of anthropomorphic characters [13, 161, 191].
However, it is unclear how to obtain or use such data for more generic and non-anthropomorphic
robots such as robotic arms. A complementary user-driven approach is to animate toy robots, or
virtual characters using puppeteering [24, 47, 85, 195]. However, it is hard to pose highly articu-
lated robots or characters so as to create natural looking feasible motions using puppets. There-
fore, in spite of being simple and amiable to casual users, most puppeteering based approaches
are either limited to very simple characters or robots [24, 195], or they fail to account for physical
feasibility [47, 85]. Similar to puppeteering are Programming by Demonstration (PbD) based ap-
proaches that enable novices to design robot motions by simple demonstrations [30]. While PbD
enables easy creation of natural motions, designing semantically meaningful and expressive mo-
tions remain challenging with PbD. Finally, models that encode animation principles [216, 228]
have been leveraged to improve expressiveness of robotic systems for enhanced human-robot in-
teraction [174, 206, 209]. Unfortunately, many of these principles are abstract and generic. They
are therefore typically used either as add-on primitives for pre-existing motions [206], or as high-
level guides for manual design, similar to how animators would use them [174]. The principles
do not provide any guidance about synthesizing distinct emotive motions from scratch. Instead,
our system enables users to design motions by editing parameterized robot motions in simulation.

Researchers have shown a strong relation between motion parameters and attribution of af-
fect, for robots with different embodiments [92, 183]. In particular, speed and robot pose [92,
111, 210], acceleration, and motion path curvature [25, 111, 183], and motion timing [111, 240]
have been found to affect perceptions of motions. We therefore parameterize the walking robots
motion using features such as pose, speed, and motion timing. The robot arms motion is pa-
rameterized in the task space1 instead of the joint space, inspired by how abstract trajectories
could convey different emotions [25]. The systems semantically-guided parameter editing ap-

1Task space is the lower-dimensional subspace of motion directly relevant for the task.
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proach complements recent research on optimization-guided and keyframe-based motion editing
for animated characters [115].

Crowd-sourcing in robotics and design: Crowdsourcing is used to understand the coupled
effect of various motion parameters on the overall emotional perception. Crowdsourcing en-
ables the use of human expertise for tasks that are complex for computers, and has been widely
used for a variety of tasks ranging from labeling, to gathering common-sense knowledge and
opinions [238]. In robotics, crowdsourcing has been used to enable robots to recognize ob-
jects or actions [73, 204], as well as for robot control [46, 158]. Our work is closer to the
research on understanding visual perception, and enabling better design through crowdsourc-
ing [68, 116, 149, 239]. We build on these approaches and use a crowd-powered pairwise com-
parison approach for evaluating motions. The crowdsourcing pipeline is customized to deal with
the greater difficulty and cost associated with evaluating our motion designs, which results from
the length of the animation needing to be judged, and uncertainty due to the high subjectivity
of the task. Notably, we use a modified Swiss-system tournament [56] approach with an added
elimination step, and use TrueSkill [143] to efficiently compute the perceptual quality scores for
the synthesized motions.

7.4 Survey of current design approaches
To understand the current challenges of robotic motion design, a survey of experts who design
expressive behaviors for applications ranging from art and entertainment to Human-Robot Inter-
action (HRI) was conducted.

7.4.1 Survey instrument
HRI and robotics researchers, artists, and animators participated in a survey. In addition to
background questions, the survey consisted of 5-point Likert-scale and free-form questions. All
Likert scales used the following anchors: 5 = extremely, 1 = not at all. The questions elicited
information about the types of behaviors they designed, how and why they designed them, as
well as the time taken and tools used in design. We also asked their opinion about the tools they
used, in terms of ease of use, learnability, and suitability for various robot behavior design tasks.

7.4.2 Responses
Eight experts (4 HRI researchers, 4 artists/animators) with design experience ranging from 0.5
years 27 years (average 11.3 years) participated in the survey. The experience of these experts
covered a diverse range of contexts such as 2D/3D character behavior design, industrial and
social robot design, and kinetic art sculpture.

Despite the diversity in applications, a common motivation behind designing expressive be-
haviors was to improve the communication, involvement, and interaction of the technology they
were developing (e.g., P3: “I want my robots to be more human-readable.”, P4: “[I want] to
turn viewers into involved, emotionally invested participants.”). In response to why would they
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design expressive robot behaviors, experts provided further insights (P3: “Being expressive is
part of being communicative, which is critical for functional and fluent human-robot interac-
tions. Emotion can be useful for communicating a robot’s goal.”, P7: “I see a robot’s bodily
motion as a lower-level means of broadcasting complex information to surrounding people.”), to
tell a story and develop relationships with users (P6: “Many engineering ‘stories’ do not show
realistic motion which allows the viewer to dismiss the concepts.”, P2: “To develop relationships
with users through tangible actions.”).

A common theme highlighting the effort required to design behaviors also emerged. Experts
who designed short-length behaviors of less than a minute (50% of our participants) reported a
design time of greater than one hour. Likewise, experts who designed longer behaviors (lasting
multiple minutes or hours) spent several days and sometimes several weeks for their design.

Another common theme was the lack of tools for designing robotic behaviors. Researchers
as well as artists emphasized that the existing tools were not well suited for robot behavior design
(5-pt Likert score, where 5 = extremely unsuitable: M = 4.0, SD = 0.92). Experts typically relied
on animation tools or ended up developing their own software. Several experts reported on the
difficulty of obtaining robot simulation models (P3: “Putting kinematic robot models into simu-
lation takes a long time.”), pre-visualization of robot capabilities (P4: “Pre-visualization can be
quite difficult. One needs to have the actual robot working in a realistic setting in order to test
it.”), and manual behavior editing (P2: “Manually creating gestures through motor positions is
tedious, unintuitive.”, P5: “My chief problem is the lack of software tools for authoring dynamic
performances with shared autonomy; I end up having to write too much software.”). Experts
further reported that the tools they used were difficult to learn and use (5-pt Likert score, where 5
= extremely difficult: M = 4.12, SD = 0.64). They also emphasized the consequential challenges
faced by novices in such design applications (e.g., P1: “Having to learn lots of different, chang-
ing software and then figuring out how to connect them is difficult for people just starting out.”,
P3: “The toolchain is complicated and tedious.”).

Overall, the survey validated the need for improved systems for the design of expressive robot
behaviors. It revealed interesting use cases and current challenges, pointing to a need for new,
more intuitive and efficient tools.

7.5 Geppetto – Semantic editing for robotics: Overview

Inspired by the challenges and desires found through the survey and in the literature, Geppetto
enables robot motion design with the help of a physics-based simulation. Parameters affecting
the robot motion are presented to the user, and the system aims to reduce the domain knowledge
required when modifying these parameters to create desirable motions. In particular, the system
supports editing based on semantic user intent, such as designing a “happy-looking” robot. The
system currently supports such semantic design for six basic emotion categories happy, sad,
angry, scared, surprised, and disgusted, , though it could be applied to other semantic aspects
beyond emotions (e.g., expressing that a robot is busy, awaiting instruction, or friendly). The
emotion categories are derived from Ekmans model of emotions [71], though we anticipate this
approach can extend to other emotion models.
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7.5.1 Interface design
The UI (Figure 7.3)) consists of three main elements a 3D preview window, motion gallery, and
guided-editing pane. The 3D preview window renders the main robot and animates its simulated
motion in real-time. The sliders in the editing pane allow users to specify the robots motion
parameters. The motion gallery displays various expressive motions of different styles for a
user-specified emotion category. This gallery is populated using the emotion specific top-ranking
motions from our dataset, obtained using sampling and crowdsourcing analysis.

Figure 7.3: User interface overview – The 3D preview window renders the robot’s motion. The
gallery and annotated sliders provide semantically relevant information at design time.

7.5.2 Design process overview
The design process for creating an emotive robot behavior using Geppetto begins with users
a user selecting a desired emotional expression (happy, sad, etc.) for the behavior from the
editing pane. They can either start with a neutral default motion, or they can take advantage of
the example motions in the gallery by browsing through the samples to get a sense of different
motion alternatives, and then load a preferred example for further editing. Such an approach of
using example-based inspiration has been found to support creativity in designers [121]. Gallery-
based initialization is especially useful for novices who may not know what an expressive robot
motion looks like. Once a motion is initialized, users can edit motion’s expressiveness as desired
using two guided editing modes – manual, and automatic. Each mode focuses on two different,
and critical requirements of casual users – fast prototyping customization, and learning. The
automatic mode enables users to quickly customize the robot’s motion without worrying about
low-level parameter editing. The manual mode, on the other hand, exposes users to parameter
level editing such that they develop an inherent understanding of which parameters create the
necessary expressiveness, as well as how to edit them. With every user edit, the simulation
updates the robots motion in the preview to reflect the corresponding change.
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Figure 7.4: An example workflow of designing an angry robot.
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To design an angry robot, the user starts with the default motion, and proceeds to manually
edit it using parameter sliders (Figure 7.4). To understand which parameters to change and
how to change them, the user takes advantage of parameter-emotion perception relationship
curves visualized on each slider (Figure 7.5b). Based on these curves, the user increases the
speed and tilts the robots torso downwards to make it look angrier (Figure 7.4a). The user
then leverages the example motions in the gallery for further editing. The user hovers over the
preferred gallery motion to understand which parameters created it, with the help of parameter
comparison cursors (Figure 7.5c). Inspired by the feet stomping of second gallery example, the
user edits the current motions feet height to achieve the same (Figure 7.4b). Finally, the user can
also explore angrier motions automatically by dragging the automatic editing slider. In response,
the system changes multiple parameters simultaneously to increase the motions expressiveness.
To further explore preferred motions, e.g., angrier motions with similar speed, feet stomping, and
torso tilt, the user activates locking of these parameters, before dragging the automatic editing
slider (Figure 7.4c). The system now auto- updates multiple parameters except the locked ones,
to change the motions expressiveness.

7.5.3 Interface editing features
As highlighted by the workflow, manual editing leads to user understanding of parameters, and is
enabled by parameter-emotion perception relationship curves and parameter comparison cursors.
On the other hand, automatic editing allows quick updates of the users motion design, based on
users high-level intent of increasing or decreasing the intensity of robots emotional expression.
It is powered by automatic slider and parameter locking feature.

Parameter-emotion perception relationship curves: These curves, which are accompanied
with each slider, show the effect of changing the sliders parameter on the robots resultant emo-
tional expression. Since these relationships are extracted from subjective crowd-sourced data,
the UI also shows the systems confidence in these relationships visualized as non-linear error
bands around the predicted score (see Figure 7.5b). This allows users to determine the extent
to which they may want to follow the curves during parameter editing. The inclusion of these
error bands brings transparency to the mixed-initiative editing process, allowing the user to better
collaborate with the system to achieve their goals.

Parameter comparison cursors with motion gallery: Different sets of parameter values result
in widely diverse motions; each corresponding to a different style or intensity of an emotion.
To enable users in understanding how different parameter values result in motion diversity, we
leverage the diverse examples in the motion gallery. Users can visualize parameter values corre-
sponding to any motion in the gallery on the sliders, by hovering over that motion (Figure 7.4b).
This enables the users to make parameter-level comparisons between the motions in the gallery
and their design, and copy the preferred individual parameter values.

Automatic slider: By dragging the automatic slider, users can update multiple parameters simul-
taneously, rather than adjusting them individually. When the position of the slider is changed,
the system automatically modifies multiple parameters to achieve the corresponding change in
the robots emotional expression. This feature can be used in combination with parameter locking
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Figure 7.5: UI features – (a) Parameter information is displayed as tooltips, and highlighted di-
rectly on the robot. (b) Parameter-emotion perception curve (in red) is visualized with an uncer-
tainty band (shaded red) on each slider. The dotted line corresponds to current motions estimated
emotional perception. (c) When a user hovers over a gallery motion, the gallery motion’s param-
eter values are highlighted on the sliders (in light gray) alongside the current motions parameters
(shown in blue).

(explained next) to achieve the desired behavior.

Parameter locking: As the automatic slider updates multiple parameters at a time, changing the
automatic slider by a small amount may drastically modify the resulting motion. As a result, the
nuanced features of the robots motion achieved by a users earlier edits may be lost when using
the automatic slider. To preserve the desirable features of their current motion during automatic
editing, users can lock parameters. For instance, in the example scenario of angry motion design,
the user may want to maintain the speed, torso tilt, and feet stomping achieved through manual
editing, while exploring better limb poses. To achieve this, the user can lock all but the pose
parameters through the editing panel, and then use the automatic slider to obtain an angrier
robot motion with similar speed, feet stomping, and torso tilt (Figure 7.4c). Note that this is
much quicker than the alternative of manually editing 6 pose parameters. Parameter locking thus
allows users to combine their design preferences with crowd-powered guidance during automatic
editing of designs.

The gallery motions are also updated to show more relevant examples after parameters are
locked. To update the gallery, we sort the motions in the dataset based on the similarity of
parameters to the values locked by the user, and the quality of emotion expression. This gives
users alternate motions satisfying the preferences indicated by the locked features.

Our system thus supports various workflows for motion editing. An optimal workflow could
combine both manual and automatic editing as needed. Our video2 shows such workflows in
action.

2An overview video about Geppetto is available here – https://youtu.be/DXbnwodJ2Ks
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7.6 Robotic platforms and their motion synthesis

7.6.1 Robotic platforms
We use two diverse robotic platforms as testbed for our design system. The robotic arm is an
industrial grade, six degrees of freedom (DOF) KUKA arm [117]. Similar robotic arms have
been used for applications requiring expressive motions such as collaborative building [222],
and interactive art [214], making it an ideal choice as our testbed. Another class of robotic
systems – walking robots have also been used in interactive settings such as in animatronics [64],
and consumer products [198]. As a representative from this class of robotic systems, we design a
small-sized custom quadrupedal robot with three DOF per leg. Figure 7.2 illustrates these robots.

7.6.2 Motion synthesis for quadruped using physics simulation
Physics simulation and motion optimization framework

For generating motion dataset for the walking robot (in Fig. 7.2(a)), we use our physics sim-
ulation and motion optimization framework described in Sec. 6.5.5. Briefly, the quadruped
robot’s motion m consisting of periodic coordinated limb movements that repeat in cycles of
time T (henceforth referred as gait cycle), is defined by time-indexed sequence of vectors Pi, as
m = (P1, . . . , PT ). Pi represents joint and limb end-effector positions at ith time-step (robot
pose), as well as information about whether a limb is on the ground or moving in the air at
that instant. We obtain such a robot motion m by solving a constrained trajectory optimization
problem described below (see Sec. 6.5.5 for more details):

min
m

∑
i

Ei(m)

s.t. C(m) = 0 , (7.1)

where Ei(m) represent quadratic penalty terms for achieving desired speed and motion style,
while C(m) = 0 are various constraints necessary for a valid motion. These constraints include
kinematic and limb collision avoidance constraints that ensure motion’s physical validity, friction
constraints to avoid foot slipping, and joint and torque limits. The goal of motion optimization
is thus to make the robot move forward with a desired speed and motion style, while satisfying
various physics-based and feasibility constraints. We use gradient-based solvers to find such a
valid and desired motion [134].

Parameterization

Based on prior research, we expose 11 parameters affecting the robots motion style for generating
a dataset of diverse motions [92, 111, 210]. In particular, various motion styles can be created
by using different robot poses and gait patterns (e.g., galloping, trotting, walking etc.). Gait
patterns are defined for a gait cycle, and are characterized by the order of limb movements,
relative phase of limb swing, and stance [50]. Pose is defined using relative joint angles of
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Figure 7.6: The quadruped’s motion is parameterized using joint poses, walking speed, foot
height, gait time, and gait patterns. An example gait pattern graph is shown here with corre-
sponding robot limb phases (red bar corresponds to a leg in swing).

Table 7.1: Walking robot motion parameters

Parameter name Parameter type Parameter dimension

Gait pattern Discrete 1
Gait time Continuous 1

Speed Continuous 1
Foot height Continuous 1
Robot pose Continuous 7

robot’s limbs, as well as its global torso orientation angle defined relative to the ground plane.
Pose consists of 7 angular values – torso angle, front and rear hip angles, front and rear knee
angles, and front and rear ankle angles (Figure 6a). Apart from speed (1DOF), pose (7DOF),
gait time (1DOF) and pattern (1DOF), we also parameterize foot height (1DOF) to create the
effect of feet “stomping”. The gait pattern corresponding to each gait style is discretely encoded
using a graph (see Figure 7.6), while all other parameters are continuous. More gait patterns used
for our dataset generation can be seen in Figure 7.7. Table 7.1 summarizes these parameters.

7.6.3 Motion synthesis for robotic arm using Boids flocking simulation
Expressiveness of robotic arms moving towards a goal can be affected by many features, such
as the curvature of its path [25], the variability of its speed [240], and path smoothness. Instead
of directly prescribing the robot arms path and speed, we empirically choose to use a Boids
simulation to drive its motion similar to the approach used in Mimus [80].

The Boids framework uses virtual agents called boids, and a set of simple interactions be-
tween them to create smooth, complex and natural emergent behaviors 3 [172]. We define a flock
of number of boids in the 3D task space, and then use the resultant average path of the flock
as the target path for the robotic arm’s end-effector, to be achieved through Inverse Kinematics
(IK) (see Figure 7.8). The resultant motion and the path of the flock depend upon the interaction

3Emergence phenomenon is where larger entities arise through interactions among smaller or simpler entities
such that the larger entities exhibit properties the smaller/simpler entities do not exhibit (Courtesy: Wikipedia [232]).
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Figure 7.7: Some of the gait patterns used to create motion variations while generating walking
motion dataset for the quadruped robot are shown using their gait graphs. Each is described over
a single gait cycle of time T after which the motion repeats. Gait pattern describe the order,
and timing of each leg in swing and stance phases (swing phase is highlighted in red). Trotting,
galloping, and two kinds of walking gaits are shown.

rules that decide each boids movement, as a reaction to its nearby flock-mates within a small
neighborhood around itself. We next elaborate on the framework, various interaction rules used
in our implementation, and corresponding parameters.

Boids simulation framework

Each boid bi is represented by a position #»p i, and velocity #»v i that are typically initialized ran-
domly in the beginning of simulation. As simulation progresses, each boid is subjected to a
steering force

#»

F i that updates its velocity and position (see eq. 7.2). For each bi,

#»v it = #»v it−1 +
#»

F i
t

#»p it = #»p it−1 + #»v it , (7.2)

where t denotes the simulation time. Steering force represents a boid’s reaction to its flock-
mates within a certain small neighborhood around itself, based on the interaction rules. The
neighborhood is thus a region within which flock-mates influence a boid’s movement, and is
characterized by a distance around each boid. Flock-mates beyond this distance are ignored.
Emergence of different flocking behaviors thus depends on the neighborhood, and the interaction
rules. Each rule produces a unique steering force on every boid. The net steering force

#»

F i on
each boid is defined as a weighted sum of steering forces from all rules (we mathematically define
it later in eq. 7.8). A weight parameter corresponding to each rule determines the strength of its
steering force. Using different weight combinations, one can create a wide variety of flocking
behavior variations. Since each rule is applicable based on flock-mates within a neighborhood n
around a boid, we first mathematically define flock-mates F in for each boid bi as follows:
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F in =

{
m⋃
j=1

bj

∣∣∣∣∣‖ #»p j − #»p i‖ <= n

}
, (7.3)

where n is the neighborhood, m is the number of boids in the flock, #»p i represents the position of
a boid bi, and ‖·‖ denotes the Euclidean norm. F in is thus the set of all boids bj within n distance
of a boid bi.

We use five interaction rules – three rules from the basic boids model [171]: separation, align-
ment, and cohesion; and two other custom rules: goal-seeking, and exploration (see Figure 7.8).

separation cohesion

alignment seeking
goal
steering force
boid with heading

neighborhood

flock of 
boids

Figure 7.8: The robotic arm is driven by a Boids flocking simulation. Each boid reacts to its
neighboring boids based on simple interaction rules such as separation, cohesion, alignment,
seeking etc. to move in the space. The resultant emergent path of the boids flock is followed by
the arm. The boids within the dotted circle, corresponding to a boid’s neighborhood n, are called
its neighboring flock-mates (F in). Steering force created by each rule is shown by a red arrow.

Separation rule: steers the boid to avoid crowding local flock-mates (see Fig. 7.8). The steering
force, and weight parameter for separation rule are represented by

#»

F s, and ws respectively. For
each boid bi,

#»

F i
s is proportional to crowding #»c i, computed as follows:

#»c i =
∑
bj∈Fi

n

#»p i − #»p j

#»

F i
s =

#»c i
| F in |

− #»v i , (7.4)

where #»p i and #»v i represent the position and velocity of boid bi respectively, F in is the set
containing flock-mates of bi within a neighborhood n (defined by eq. 7.3), and | F in | denotes its
cardinality4.

Alignment rule: steers the boid towards the average heading
#»

h of local flock-mates (see Fig. 7.8).
The steering force, and weight parameter for alignment rule are represented by

#»

F a, and wa re-
spectively. For each boid bi, the average flock heading

#»

h i, and
#»

F i
a are defined as:

4Cardinality represents the number of elements in a set (Courtesy: Wikipedia [232]).
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#»

h i =
∑
bj∈Fi

n

#»v j

#»

F i
a =

#»

h i
| F in |

− #»v i , (7.5)

where #»v i represent the velocity of boid bi, and F in is defined by eq. 7.3.

Cohesion rule: steers the boid to move toward the average position #»a of local flock-mates (see
Fig. 7.8). The steering force, and weight parameter for alignment rule are represented by

#»

F c,
and wc respectively. For each boid bi, the average flock position #»a i, and

#»

F i
c are defined as:

#»a i =
∑
bj∈Fi

n

#»p j

#»

F i
c =

#»a i
| F in |

− #»v i , (7.6)

where variables are defined as in eq. 7.5, and 7.4. Unlike separation, cohesion, and alignment
rules, seeking and exploring do not require a set of neighboring flock-mates (Fn).

Seek rule: steers the boid to move towards a pre-defined goal #»p g in space (for instance, the blue
goal point in Fig. 7.2(b)). We add this to our framework to ensure that the emergent motion of
the flock eventually moves towards the goal for our application. This goal could also be defined
by the user. Steering force for the goal-seeking behavior

#»

F g is qualitatively equivalent to that of
a virtual spring with unit stiffness, and is thus proportional to the distance of the boid from the
goal. It is defined as follows:

#»v ig =
#»p g − #»p i

‖ #»p g − #»p i‖
#»

F i
g = #»v ig − #»v i , (7.7)

where #»v ig is the desired velocity for boid bi to reach the goal #»p g, and #»v i is its current
velocity. Heuristics to dampen out

#»

F i
g as the boid bi nears the goal can be used to prevent bi

from oscillating around the goal. The rule’s weight parameter is denoted as wg.

Explore rule: steers the boid towards a random goal intermittently to enforce randomness in the
flock behavior. This ensures interesting non-straight paths for the robot that eventually converge
at the desired goal in our case. Apart from a weight parameterwe, this rule also has two additional
parameters – exploration radius re, and exploration frequency fe. These parameters are used to
decide where and when to set a new random goal #»p e for the flock. #»p e is sampled at random
from within a sphere with radius re centered at the average position, at every f the time-step of
the simulation. Explore rule then steers each boid to move towards #»p e using seeking behavior.
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This rule is thus an extension of the seeking rule for random goals along the flocks path. We
denote the corresponding steering force as

#»

F e for clarity, even though it is calculated in the same
manner as

#»

F g in eq. 7.7.

Using the weight parameters, and the steering forces defined for these rules, we can now define
the net force

#»

F i on each boid bi as follows:

#»

F i = ws
#»

F i
s + wa

#»

F i
a + wc

#»

F i
c + wg

#»

F i
g + we

#»

F i
e . (7.8)

Parameterization

We can now summarize the parameters for the Boids simulation. It is parameterized by interac-
tion rules specific parameters such as the weights ws, wa, wc, wg, we corresponding to our five
interaction rules (separation, alignment, cohesion, goal-seeking, and exploration), and the neigh-
borhood n. A maximum speed vmax is also defined for the overall motion of the boids. vmax
serves two purposes. First, it enables us to create flock motions (and thereby robot arm motions)
with different overall speeds ranging from very slow to fast motions. Secondly, it ensures that
the simulation doesn’t become unstable by applying an unreasonably high steering force on the
boids. Other additional parameters include – parameters for exploration rule (exploration radius
re and frequency fe), and those corresponding to flock initialization procedure (explained later).
These parameters are also summarized in Table 7.2. Together, they form at 11-dimensional pa-
rameter space.

Table 7.2: Boids simulation parameters

Parameter name Parameter type
Neighborhood n Continuous

Separation rule weight ws Continuous
Alignment rule weight wa Continuous
Cohesion rule weight wc Continuous

Seek rule weight wg Continuous
Explore rule weight we Continuous

Explore radius re Continuous
Explore frequency fe Continuous

Maximum flock speed vmax Continuous
Initial boid velocity direction #»v init Discrete

Initialization time tinit Continuous

Apart from integrating two custom interaction rules (goal-seeking and exploration), we ex-
tend the basic Boids simulation framework in two more ways. First, we define an initialization
procedure for the boids to increase the diversity of flock behavior. Secondly, we develop a heuris-
tics to smoothly blend the exploration rule with other interaction rules of the basic boids model.
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Boid flock initialization procedure: This procedure was added to increase the variations of
generated paths such as paths that go backwards or sideways before converging on the desired
goal. We use two parameters for this purpose – an initialization time tinit, and an initialization
direction #»v init. Each boid’s velocity is initialized to be in #»v init direction before the simulation.
To create paths that go backwards, sideways etc., #»v init is chosen from a set of six direction
basis corresponding to +X, -X, +Y, -Y, +Z, -Z axis in the task space. The initialization time tinit,
which is typically less than the overall motion time, represents a buffer time in the beginning of
simulation when the flocking behavior is dominated in the #»v init direction. This is to ensure that
the initialization procedure effects the flock’s behavior, and is achieved by gradual ramping of
certain interaction rule weights.
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Figure 7.9: Ramping and damping of various boids parameters over the course of the motion
– (a) Strength of various behaviors is controlled by ramping and damping their corresponding
weights from their sampled values represented by s superscript. Explore behavior parameters
(weight we, and explore radius re) are color-coded with red, and those of seeking behavior
(weight wg) are color-coded with blue. (b) We also ramp and damp other parameters such as
explore radius re, and the boid neighborhood n. tinit is the initialization time.

Ramping-damping strategy for rule blending: Seeking behavior that aims to steer the boids
towards a goal contradicts the other flocking behaviors that typically steer the boids locally,
towards more random movements. To prevent these opposing behaviors from fighting against
each other, which may create jerky flock movements, we adopt a ramping-damping strategy. We
ramp up some parameters gradually over the course of the motion, while we damp down some
parameters as the flock nears the goal. In particular, we linearly ramp up the seeking behavior
weight wg, and damp explore behavior parameters (weight we, and explore radius re), as well as
boid neighborhood n. Damping of neighborhood ensures that boids converge at the goal without
locally reacting to each other due to flocking behaviors such as separation and alignment. We
use an initial buffer time tinit to ramp up the explore behavior parameters before damping damp
down. This is to ensure that explore behavior doesn’t interfere with the velocity initialization,
and that the flock moves in the direction of initial velocity #»v init in the beginning. Figure 7.9
outlines our ramping-damping strategy.
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7.7 Semantic mapping framework
The semantic information about the robot motions is obtained through our mapping framework
that relates the robots motion parameter space to emotional expression space. Our framework
leverages the simulation to generate a dataset of diverse motions, evaluates the emotional expres-
sion of the dataset motions using crowdsourcing, and then uses regression to obtain the mapping
between motion parameters and emotional expression (Figure 7.1).

Figure 7.10: Motion samples from our quadruped walking dataset are shown here. Our motion
parameters enable us to create various motion styles.

7.7.1 Motion dataset generation
We generate a dataset of diverse motions for the quadruped and the robotic arm using sampling of
motion parameters. The sampling process captures the design space of possible motion styles that
can be created by changing various motion parameters. We empirically choose a sampling range
for all the continuous variables to generate sufficient motion variations while ensuring physical
feasibility. The discrete parameters such as gait pattern for the quadruped, and initial direction of
boids motion for the robotic arm are uniformly sampled from a fixed set of possible values. For
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each sampled motion parameter set, we record an animation of the corresponding robot motion
for crowdsourcing evaluation. For the quadruped, 2,000 motion parameter sets were sampled,
resulting in 2,000 unique motions. 1,230 motions were physically infeasible due to collisions or
instability, resulting in 670 motions for the final dataset. Similarly, 1,000 motions were sampled
for the robotic arm, all of which were physically feasible and retained. Figures 7.10 and 7.11
show some of the motions from our dataset that we generated in this manner for quadruped and
robotic arm respectively.

Figure 7.11: Motion samples from our robotic arm behaviors dataset are shown here.

7.7.2 Crowdsourcing evaluation of perceived emotion

By crowdsourcing emotion perception, the system can give a relative scoring to each motion, per
emotion, such that a higher score reflects a better expression of an emotion.

While there is often consensus about the particular emotion that is expressed by a motion,
the degree of expressiveness is highly subjective and its perception varies between individuals.
Given this, we model the score as a Gaussian distributionN (µ, σ) with mean µ, and uncertainty
σ. To compute the score, we create a modified Swiss-system style tournament [56] where each
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motion sample in the dataset is treated as a competitor, and competes with others to obtain the
highest score per emotion category. We use the TrueSkill rating system [143] to convert the
results of the tournament into Gaussian score estimates for individual samples.

Figure 7.12: Crowdsourcing task for evaluating emotion perception of motion samples – Our
interface for crowdsourcing that enables pairwise comparison between motion samples is shown
here. A turker is shown videos of motion sample pairs, and is asked to choose the motion
that better conveys an emotion relatively (selection is shown in green). Turkers can also mark
motions to be equally expressive. Such pairwise comparison is then converted into a Gaussian
score estimate for each motion sample.

To efficiently compute emotion ratings of motion samples of our dataset using TrueSkill,
we use an elimination-based tournament set-up instead of exhaustively competing each sample
against every other. This enables us to efficiently deal with a large number of samples, and
the inherent subjectivity in the data, to get the top designs for each emotion. After one round
of comparisons, wherein each sample is compared five times (against 5 different designs, by 5
different people), the designs ranked in the bottom half are eliminated. This process is repeated
over three rounds (with five, five, and ten comparisons), until we obtain the top motion samples
for a given emotion. Elimination of ambiguous, low-ranking samples in earlier rounds allows
expressive, high-ranking samples to have a higher number of comparisons against other highly-
ranked designs, which improves the quality of their score estimate (reducing the corresponding
uncertainty of the estimate). This strategy provides more accuracy for the high-ranking samples,
while minimizing resources spent on ambiguous or low-ranking samples. For the quadruped
motion dataset there were a total of 3,355 comparisons to arrive at quality rankings for the top
25% of the samples. A more naive approach of a pure round-robin without elimination would
require twice the number of comparisons (6,700), and the quality of the comparisons would be
lower as there would be more comparisons to low-ranking designs.
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To conduct the tournament, crowd workers on Amazon Mechanical Turk [11] serve as judges
for each comparison between motion samples. For each comparison, a worker is shown a pair
of robot motion videos, and asked “Please identify which of the two robot motions seems ,
or, if they are equivalent”, where is one of: happier, sadder, angrier, more surprised,
more scared, or more disgusted. (Figure 7.12). Such a pairwise comparison approach has been
preferred in the literature over asking the workers to provide an absolute score for individual
samples [239]. To ensure the quality of the ratings from crowdsourcing, we devise a filtering
pipeline, described next. Inspite of such careful filtering, emotion perception is subjective leading
to noisy data. The developed interface therefore accommodates uncertain data.

Filtering during crowdsourcing

Each worker is employed with a task of doing 50 comparisons (as in Figure 7.12). We also allow
turkers to complete only one such task every 24 hours, in order to prevent a single turker from
biasing the results. To further ensure the quality of the ratings, we filter out unreliable turkers.
In particular, we use two methods for such filtering, inspired by [239]. First, we expect most
turkers to complete a task within a similar period of time. We therefore filter out turkers who do
not spend sufficient time on the task, and use less than half of the median task completion time.
Secondly, to ensure consistency, we also filter out responses from turkers who either choose the
same answer option, or swap their answer choices too frequently over multiple tasks. Specifi-
cally, we keep an account of the answer swapping frequency between tasks, and filter out turkers
if their swapping frequency is below 35%, or above 75%.

7.7.3 Mapping parameters to emotion
After the data is collected, a mapping between movement and perceived emotion is computed.
Specifically, given an n-dimensional motion parameter set φn and a corresponding real-valued
emotion perception score µ, our goal is to learn a function f : φn → µ, that predicts the score
for any seen or unseen motion represented by its parameter set. Obtaining such a function f
that can estimate the perceptual quality of any emotion for a motion allows us to (a) gauge the
perceptual quality of a user’s motion design at a given time – on the fly, and (b) help the user
understand which parameters to edit and how to edit them for achieving the desired effect. The
predictor function (f ) thus powers our parameter-perception curves for manual editing, as well
as our automatic slider.

Regression is used to compute such predictor functions for each emotion category. Various
regression techniques including linear regression, random forest regression, kernel and nearest
neighbor-based regression as well as Artificial Neural Networks (ANN) were explored to obtain
these functions. ANN provided the best results on average. However, linear regression also
produced results with accuracy similar to ANN, and was much faster to execute (more details
are provided later in this section). We therefore used linear regression within Geppetto. For the
quadruped, the best-fit emotion (happy) had R2 score of 0.50, and the worst-fit (surprise) had
R2 = 0.12 using linear regression (Figure 7.13). The variation in the fit quality for different
emotion categories is an indication of the subjective nature of emotion ratings, and the inherent
difficulty in expressing nuanced emotions in a parameterized quadruped walking robot motion.
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To account for this, we deemphasize ambiguous and noisy samples during regression. We further
elaborate on this aspect as well as other details about the regression experiments next.

Figure 7.13: Comparison of predicted emotion values (orange) using linear regression with their
crowdsourced values (gray) for the test samples of the quadruped motion dataset. The best
(happy) and worst (surprised) fitting emotion categories are displayed.

Regression experiments

We now explain our regression experiments in detail for computing the predictor functions. We
also elaborate on data preprocessing for these experiments. ANN-based fit was obtained using
Tensorflow(r1.3) [87], while all other regression techniques including linear regression were
implemented using Python’s scikit-learn library [165].

Pre-processing: We convert the discrete parameters in a n dimensional motion parameter set
φn using one-hot encoding, and standardize the continuous parameters to be amicable to the re-
gression analysis [165]. Further, to prevent over-fitting of functions and to enable generalization
beyond our sampled dataset, we fit the functions using 80% of the dataset (train set), and with-
held the remaining data for testing the accuracy of the fitted functions. Finally, to deal with the
noise in emotional score estimates µ (represented by σ, and obtained from Trueskill), we down-
weight the ambiguous samples with higher uncertainty σ, while computing the mean squared
error cost for function fitting. Thus, a weighted mean squared error (MSE) is used for training.
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Using weights that are inversely proportional to σ in error computation allows us to focus on
fitting the well-expressive samples better.

Regression using ANN: We use separate fully-connected neural networks to fit individual func-
tion f for each of our emotion categories. Tensorflow’s built-in Adam optimizer is used for
training [109]. To find the best network for each emotion category, we tune various parameters
for the network’s architecture such as number of hidden layers, activation functions etc. using
standard grid-search [165]. We also use recommended techniques such as drop-out to regularize
our networks and to prevent over-fitting.

To evaluate the goodness of fit, we use a statistical measure called R-squared (R2) or coef-
ficient of determination. R2 is the proportion of the variance in the dependent variable that is
predictable from the independent variable(s) [232]. The weighted R2 scores for all the predictor
functions using the held out 20% of our dataset (test set) are summarized in Table 7.3 for both
the walking robot and robotic arm dataset. We used the best found ANN architecture through
grid-search in each case for this purpose. Corresponding values for a Linear Regression (LR) fit
are also provided for comparison.

Predictor ANN R2 LR R2 ANN R2 LR R2

name (Quadruped) (Quadruped) (Arm) (Arm)
Happy 0.512 0.499 0.327 0.325

Sad 0.40 0.396 0.363 0.358
Angry 0.268 0.244 0.397 0.408
Scared 0.245 0.252 0.408 0.405

Disgusted 0.206 0.177 0.225 0.204
Surprised 0.10 0.124 0.20 0.207

Table 7.3: Accuracies of various perception predictor functions f that are learned as artificial
neural networks or with linear regression, for the quadruped and robotic arm dataset are shown
using the weighted R2 score on test data.

As seen in Table 7.3 linear regression provided a similar fit and was much faster to execute.
So we used linear regression to support design within our system.

Experiments with other regression techniques: Apart from ANN and linear regression, we
also experimented with other regression techniques to see if we could get function fits with better
accuracy. In particular, we tried out tree-based regressors called random forest regressors, kernel
regressors with a variety of kernels (e.g., polynomial kernels, Sigmoid kernels), and nearest
neighbor regressors. Similar to ANN regression, relevant hyperparameters were tuned for each
regressor using grid-search methods available within the scikit-learn library [165]. Table 7.4
shows the accuracies of these regressors with weighted R2 scores on quadruped test data for
the happy emotion class. ANN and LR accuracies are also shown for comparison. No other
regression technique outperformed ANN regression in terms of prediction accuracy on test data.
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Regression technique R2 for happy emotion (Quadruped)
Random forest regression 0.469

K-nearest neighbor (KNN) regression 0.384
Polynomial kernel regression 0.509

Sigmoid kernel regression 0.472
Linear regression (LR) 0.499

Artificial neural networks (ANN) 0.512

Table 7.4: Accuracies of various regression techniques are shown using the weighted R2 score
on quadruped test data for predicting happy emotion scores.

7.8 Design using predictor functions

The predictor functions f obtained using our data-driven semantic mapping framework serve
as oracles during the design process. Specifically, we use f to compute the parameter-emotion
perception curves that are displayed with each parameter slider-control for informing the users
about the effect of editing that parameter on the resultant expression of user-specified robot
emotion. We also use f to drive the automatic emotion update slider.

7.8.1 Computation of parameter-emotion perception curve

Given a motion parameter set, a predictor function f for an emotion outputs the corresponding
perception score. Let the motion parameter set corresponding to current robot motion be φn, such
that it consists of n parameters pi: φn = p1, . . . , pn. To compute the parameter-perception curve
for the slider corresponding to p1, we vary p1 linearly over a range: [p1− δ, p1 + δ], and construct
correspondingmmotion parameter sets: φ1

n = {p1−δ, p2, . . . , pn}, . . . , φmn = {p1 + δ, p2, . . . , pn}.
the values of other parameters p2, . . . , pn in φ1

n, . . . , φ
m
n remain unchanged from their values in

φn. The corresponding perception scores that capture the effect of varying p1 in φn can then be
computed using f . The slider curve for a parameter p1 is thus the plot of f(φ1

n), . . . , f(φmn ). With
every manual (or automatic) user-initiated operation that changes the current motion parameter
set φn, we dynamically update all the slider curves. The slider curves also get updated when users
change the target emotion for their motion design. Our system re-computes the curves using the
appropriate predictor function corresponding to the user-specified emotion selection. Since the
predictor functions are obtained from noisy data, the predicted scores are accurate only upto a
degree. To illustrate the corresponding uncertainty, we compute and plot the 95% confidence
interval (CI) [231] for the predicted score at each point along the parameter-emotion perception
curve. The interval highlights the region within which the predicted values will fall with 95%
probability. Thus, a wider interval represents higher uncertainty. We compute CI using Python’s
Statsmodels package [189].
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7.8.2 Automatic emotion update
The predictor functions not only predict the perceptual quality of an emotion for a motion pa-
rameter set, but also provide information about regions in the parameter space that correspond
to better emotional expression. Starting from a point in the parameter space φ, such regions can
be reached by moving along the direction of predictor function f ’s gradient (∂f

∂φ
). The automatic

emotion update slider leverages this to update the robot motion. Unfortunately, since φ consists
of both discrete and continuous parameters, we cannot compute the gradient ∂f

∂φ
with respect

to all parameters. Consequently, when the automatic slider is used, we update the discrete and
continuous parameters one by one. We first update the discrete parameter to achieve the user
requested change as best as possible. Given the discrete parameter’s value, we then change the
continuous parameters using the gradient-based update. Specifically, for a given motion param-
eter set φ with continuous parameters set φc, the updated parameter set φ′c is φ′c = φc + δ ∂f

∂φc
,

where δ is the step-size along the gradient. The step-size is proportional to the change in the
slider cursor position (∆), which consequently reflects the desired change in robot’s emotional
expression (∆f ). The step-size δ required to achieve the desired ∆f is computed using back-
tracking line-search [151]. δ is positive if the user moves the automatic slider to increase the
emotional expression (towards the green end of the slider’s heat map), and is negative otherwise.

7.9 Evaluation with user-study
To evaluate Geppetto’s efficacy and features, we conducted a user-study with participants who
had no prior experience in character animation, or HRI.

7.9.1 Participants
12 participants (9 males, 20-35 years of age) were recruited. Participants were reimbursed $25
USD for their time.

7.9.2 Study design
The study had a within subject design, with participants creating expressive motions for the
quadruped using two versions of the system (Figure 7.14). The parameter control UI allowed
editing robot motion parameters with sliders but did not provide informative curves, automatic
sliders, or the gallery. The semantic control UI was the full interface as described above. Since
the quality of guidance provided by the semantic control UI depends upon the predictor func-
tion accuracy for an emotion, the emotion categories with highest (happy, sad), and the lowest
(surprised) predictor function accuracy were used. The order of the UI conditions and emotions
were counterbalanced.

7.9.3 Procedure
The study began with an overview of the design task for 5 minutes, followed by participant train-
ing and motion design sessions for 50 minutes, concluding with a 5-minute survey. The survey
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parameter control semantic control

Figure 7.14: Interfaces used in the study – participants designed expressive robot behaviors with
two UI versions: parameter control (left) and semantic control (right). Each version used the
same underlying physics simulation and motion synthesis, but provided different controls for
editing the motion.

consisted of 5-pt Likert-scale questions (anchors: 1= not at all; 5 = extremely) to understand user
perception of various UI features and overall design experience. We discuss the survey questions
and corresponding participant responses later in the chapter. For each condition, the participants
were given the UIs demo and training for up to 10 minutes. Post training, participants were given
up to 5 minutes each for designing happy, sad, and surprised robot motions. Thus, each partic-
ipant designed 6 robot motions in total. Participants’ motion designs were automatically saved
every 30 seconds as well as when they indicated they were complete.

7.9.4 Results

Quantitative results

We compare the parameter control and semantic control UI using two quantitative measures – de-
sign time, and design quality. The perceptual quality of emotional expression in the user-created
motion designs are evaluated using crowdsourcing, with the top and bottom 5 synthesized de-
signs for each category included in the tournament. The tournament structure and crowdsourcing
pipeline are similar to our earlier experiments. We analyze corresponding scores using confi-
dence intervals and effect sizes, instead of null hypothesis significance testing [58]. This choice
is inspired by increasing concerns over such hypothesis testing for experimental results in various
research fields [57, 66, 185].

The resultant scores show that users were able to create better expressive motions on average
using the semantic UI, across all emotions (Figure 7.15). Effect sizes help quantify how much
more effective is semantic UI over parameter control UI in enabling expressive behavior design.
Table 7.5 shows these effect sizes computed using Cohen’s d parameter5 for happy, sad, and
surprised design conditions. Cohen’s effect size value (d = .6 and higher) suggest a moderate
to high practical significance or effectiveness, specifically for the happy and sad categories. Al-
though surprised motions from the semantic control UI scored higher on average than motions
from the parameter control UI (Figure 7.15),the lower effectiveness (0.35) can be attributed to

5Cohen’s d is an effect size used to indicate the standardized difference between two means.
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the limited data-driven guidance available, highlighting the effect of data certainty on semantic
UIs performance.

Parameter vs. Semantic UI Cohen’s d
(emotion category)

Happy 0.79
Sad 0.64

Surprised 0.35

Table 7.5: We quantify the effectiveness of semantic UI over parameter control UI using effect
sizes computed using Cohen’s d parameter. The d values of 0.6 and higher suggest a moderate
to high practical effectiveness of semantic UI over parameter control UI.

We also find that the designs created using the semantic UI outperform the best motions from
our original dataset in expression of various emotions (Figure 7.15, Semantic vs. Synthesized).
This points towards both the strengths and drawbacks of our system. The dataset synthesized
using sparse random sampling may not be capturing the design space with high fidelity. Subjec-
tive crowdsourcing analysis of the dataset adds further ambiguity and noise to the data. Despite
this, Geppetto allows users to explore beyond the synthesized dataset, by enabling and leveraging
their intuition of parameters at design time, guided by the emotion predictor functions.

Along with obtaining more emotive final outcomes, the participants also tended to take less
design time on average with the semantic UI (Figure 7.16).

Overall, the semantic UI enables users to start with better designs and to explore higher
quality designs during their session (Figure 7.17). The higher initial scores of designs from the
semantic UI in Figure 7.17 can be attributed to the use of motion gallery. After this initial boost,
however, the semantic UI enables users to further improve the quality of their designs through
features such as the annotated sliders and parameter comparison cursors. This is evident in the
upward slope of the orange line representing semantic UI in Figure 7.17. Thus, the gallery, the
annotated sliders, and parameter comparison cursors together provide a powerful workflow that
allows users to achieve more optimal designs.

Qualitative feedback and observations

The survey provided further insights about designing with our system.All participants reported
that they are extremely likely to prefer semantic control UI to parameter control UI (5-pt Likert
score, with 5 = extremely: M = 4.67, SD = 0.49). Participants also believed that with the seman-
tic control UI, they could create relatively better designs (M = 4.67, SD = 0.49), in less time (M=
4.83, SD = 0.38). Figure 7.18 shows corresponding survey questions that enabled such a com-
parison of the semantic and the parameter control UIs. This feedback further corroborates the
quantitative results. Participants design satisfaction varied across emotions, and was dependent
on the quality of semantic information provided. Consequently, 11 of 12 participants were sat-
isfied with their happy design, while only 2 of 12 participants were satisfied with their surprised
design (Figure 7.19).
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Figure 7.15: Mean emotion perception scores of the top 5 designs from the original dataset (Syn-
thesized) with those created by the study participants. Bars show 95% CIs. Note that the emotion
score ranges were based on the output of Trueskill system, with higher score corresponding to
better quality of expression.

Figure 7.16: Individual and average design times are shown using dots and lines respectively, for
both of our UIs. Shaded regions represent 95% CI.
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Figure 7.17: The evolution of the quality of user-designs (bars represent 95% CIs at each time
step). The dotted lines represent the linear fit of mean scores over all emotions and participants,
and the bands are a 95% CI around the fit.

Were you able to develop an understanding of how and

which parameters affected the emo�on conveyed by the

robot a�er using the seman�c interface?

How likely are you to prefer the seman�c interface

over the parameter control interface for designing

expressive robot behaviors in the future?

Do you agree that you were able to design be�er

emo�onally expressive mo�ons using the seman�c

interface as compared to the parameter control interface?

Do you agree that you were able to design be�er

emo�onally expressive mo�ons using the seman�c

interface as compared to the parameter control interface?

1 2 3 4 5
Not at all Extremely

Slightly Very
Moderately

Figure 7.18: Survey questions and responses highlighting the participants’ reception of the se-
mantic interface. Average scores and standard deviation are shown for 12 participants.
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Figure 7.19: A histogram of number of participants vs. the participants’ amount of satisfaction
for their robot behavior designs is shown.

We also asked the participants for feedback on individual UI features using Likert-scale ques-
tions (Figure 7.20). 10 participants found the motion gallery and slider curves to be extremely
or very useful. The parameter-comparison cursors and the automatic slider were also found to
be extremely or very useful by 6 participants. The gallery catered to participants who were un-
clear about how to express an emotion, as well as to participants who had crude ideas about their
desired design by providing them with design alternatives. Uncertainty information on slider
plots was also found useful. Specifically, two participants commented that since the surprised
emotion parameter-emotion perception curves had high uncertainty (surprise is our worst-fitted
emotion), they trusted the curves less, and explored editing on their own. Parameter locking was
only found to be very useful by 3 participants. Only the participants who had a clearer idea of
what they wanted used parameter locking. Finally, 8 participants reported the semantic UI to be
extremely or very useful in developing an understanding of the effect of parameters on emotional
expressions. Overall, the participants explored more while designing with semantic control UI
owing to the availability of more features and design alternatives.

The feedback and usage patterns points to the diversity of interactions and workflows that
emerged during the study. Participants combined manual and automatic editing features fluidly.
The feature usage also varied across participants. For instance, some subjects only used the mo-
tion gallery for design initialization, while some others leveraged it, with the help of parameter
comparison cursors, to better learn and understand how specific body poses and other subtle mo-
tion features could be achieved. The automatic slider was also used in multiple ways; some used
it to fine-tune their manually edited motions, while others used it to obtain a good starting point
especially when they were dissatisfied with the gallery examples. This highlights the dependence
of workflows on the noise in the data and accuracy of semantic information. Since surprise was
not well captured by our dataset or individual predictor functions, participants used the automatic
slider the most for this emotion.

The participants also provided feedback about the limitations of our design system. Some
participants found the automatic slider to be very aggressive since it made major changes in
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How useful was the automa�c slider in your
workflow?

How useful was the gallery of example
mo�ons in your workflow?

How useful were the parameter-emo�on
plots on the sliders in your workflow?

How useful were the parameter comparison
cursors in your workflow?

How useful was the parameter locking feature
during design?

1 2 4 5
Not at all ExtremelySlightly VeryModerately

3

Figure 7.20: Participants provided feedback about individual UI features using 5-pt Likert scale
questions. Average scores and standard deviation are shown for 12 participants.

the motion, resulting in the loss of nuanced features of the motion. While parameter locking
helps with capturing user intent about desired improvement and preserving nuances, it needs
more understanding of the parameters and desired motion characteristics for effective use. The
majority of participants requested an edit history and better navigation of their design trajec-
tory. Some participants also requested the ability to edit robot structure and aesthetics for more
expressiveness. Finally, participants echoed the need of capturing and enabling motion design
with additional semantic information. Many participants thought about expressive motions in
the space of actions and wanted to understand the mapping between parameters and space of
possible and meaningful actions, so as to combine these actions into a behavior. For instance, a
participant wanted to edit the parameters to make the robot drag its feet for appearing sad, while
another participant wanted the robot to jump in place to express excitement. While our gallery
enables users to map parameters to these desirable actions indirectly, users may or may not find
the action they are looking for in the gallery owing to the sparse sampling of the dataset that
powers the gallery.

7.10 Generalization and scalability

Geppetto’s framework generalizes across different kinds of robots as demonstrated by the quadruped
and robot arm examples. Overall, the most challenging part of making Geppetto work for a new
robot is obtaining a parameterized motion simulation. Once a dataset of motions is created, Gep-
petto requires approximately 4.5 hours and $150 USD for crowdsourcing per expression. While
this may not be a significant amount of effort, re-using semantic information extracted from a
particular robots dataset to enable the design of a robot with different morphology will improve
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Figure 7.21: A happy motion of KUKA robot arm (left) was directly transferred to another robot
arm (right) consisting of different link lengths and DOFs. We also used a different target point
position (shown in blue) for the custom arm. The nature of motion was not effected by change
in the target point position either. The swirling and swinging characteristics of the motion that
led to the perception of excitement/happiness in the KUKA arm manifested in a similar manner
on the custom robot arm. These motions can be found in our video or in the animated version of
this thesis.
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the scalability of Geppetto. Such transfer of the data-driven semantic map between robots, how-
ever, is dependent on the underlying motion behavior parameterization. For the quadruped, since
the motion is parameterized in the joint space, the parameterization and the corresponding se-
mantic map is dependent on the robot’s morphology. To design behaviors of a six-leg hexaped,
for instance, using the quadruped’s semantic map, the joints of the extra pair of hexaped’s legs
will have to be mapped to quadruped’s front or back leg joints. Since this might limit the possible
hexaped behaviors that can be designed with Geppetto, collecting a new hexaped motion dataset
might be more preferable over re-using the quadruped dataset.

On the other hand, the robot arm’s motion is parameterized in task space and is thus inde-
pendent of the robot morphology. The corresponding semantic map might hence transfer well to
different types of robot arms. We conducted a preliminary experiment to validate this. Using the
semantic map of the 6 DOF KUKA arm, we tried to design motions for a 5 DOF custom robot
arm. Apart from the difference in number of joints (DOF), the two robot arms also had very
different link lengths. We were able to directly transfer the example motions of KUKA arm from
the motion gallery to the custom arm, while maintaining the resultant expression perception to a
reasonable extent. Figure. 7.21 shows one such KUKA arm motion for happy emotion that was
well transferred to the custom arm.

Figure 7.22: By re-using the parameter-emotion relationships of KUKA arm, we were able to
design emotional expressions for a very different robot arm. These motions can be found in our
video or in the animated version of this thesis.

The parameter-emotion relationships derived for the KUKA arm were also applicable to the
motions of custom arm. This allowed direct editing of custom arm’s motion using the annotated
sliders in Geppetto. To enable such editing we updated the ranges of speed parameter, as the
custom arm consisted of servo motors that are much less powerful than KUKA’s actuators. Apart
from speed, no other parameter needed such range re-scaling (see Table 7.2 for list of robot arm
motion parameters). Figure 7.22 shows a sad and a scared motion of the custom arm designed
manually using the sliders annotated with parameter-emotion curves, which were derived based
on the KUKA arm’s dataset. Further work is needed to validate these experiments explicitly.
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7.11 Frequently asked questions (FAQ)
1. Why does Geppetto focus on emotional robot behavior design?

Geppetto explores emotional expressions as they are important to HRI [26], and they are
a challenging problem to tackle. However, Geppetto’s framework can likely extend to
aspects beyond emotion (e.g., expressing that a robot is busy, awaiting instruction, or
friendly).

2. How were the emotion categories decided for Geppetto?
Various emotion classification models have been developed by researchers in the past.
Prominent among them are Russell’s circumplex model [181] and Ekman’s model of basic
emotions [71]. Russell’s model uses the axes of arousal and valence for defining a variety
of emotions. Instead, we grounded our emotion selection using Ekman’s classification of
six basic emotions, as we believed it to be more easily understood by crowdworkers (who
may struggle with the concepts of arousal and valence).

3. How much effort is needed to set up Geppetto for a new robot or a new expression?
The effort needed to set up Geppetto for a new robot or expression is dependent on the
complexity of robot and expression, and robot’s parameterization. Usually, given a good
parameterization and a dataset, as mentioned earlier, the only effort needed to add an ex-
pression is crowdsourcing + regression, which in our experience was approximately 4.5
hours and $150 USD. For a new robot, obtaining a parameterized dataset is most chal-
lenging in our experience. For quadruped, once a parameterization was understood based
on literature, it took two days to obtain our current dataset. For the robotic arm, multiple
parameterizations were tried e.g., spline-based, animation principles-based etc., before fi-
nalizing on Boids. Once parameterization was finalized, it took six hours to generate the
dataset. The quadruped’s simulation had more feasibility constraints than the robot arm’s
simulation, which resulted in longer times for the dataset generation.

4. Why did you encode emotions using sampling + crowdsourcing approach, in-spite of
the noise inherent in crowdsourcing?
The high dimensionality of the motion design space makes it hard to encode expressions
with high fidelity using any approach. Encoding expressions using experts is a possibility
but is less accessible as compared to our sampling + crowdsourcing approach. To ensure
quality of crowdsourcing the data, we perform various checks, such as enforcing a mini-
mum time requirement for each comparison, and excluding data from workers who choose
the same response (i.e., left, right, or equal) repeatedly. The subjectiveness of evaluating
emotions still results in a inherently noisy dataset. Thus, one of our goals is to enable
design with noisy data. Specifically, we take extra steps to deal with noise during regres-
sion. We also show how mixed-initiative design can work when the noise is high, by using
uncertainty band annotations on the sliders.

5. Why does Geppetto struggle with creation of surprised expression for quadruped?
Why was surprise emotion included in Geppetto?
Surprise is a difficult emotion to convey well for the quadruped, in part, because of the pe-
riodic gait parameterization. We included, and highlighted this result in the paper to show
how choice of parameterization may limit the achievable expressions. That said, some par-
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ticipants created designs that were better than the synthesized ones for surprise (Fig. 7.15),
highlighting the benefits of our mixed-initiative approach for situations wherein limitations
of parameterization are not known apriori.

6. Why was the robot arm motion synthesized using Boids?
Using Boids flocking simulation to generate robot arm motions was purely an empirical
choice. We consulted an animator and previous research for identifying relevant motion
trajectory properties for expressiveness such as smoothness, curvature, variable speed, and
timing. We initially experimented with spline-based parameterization and modeling of
animation principles such as “anticipation” in the beginning of the motion and “settling”
at the goal [216], for obtaining such trajectories. However, achieving natural looking yet
variable speed and arm orientation over the trajectory turned out to be non-trivial. We
then experimented with Boids, inspired by an artist created interactive arm exhibit called
Mimus [214]. Boids resulted in relatively better motions on average and so we used it for
our final system.

7. Why were the low-level parameter editing sliders provided in Geppetto? Isn’t it suffi-
cient to use the automatic slider that can directly edit the motions semantically?
The automatic slider complements the low-level parameter sliders, instead of replacing
them. Specifically, the low-level sliders provide users with control to edit “preferred” pa-
rameters.

8. How well will the motions designed with Geppetto work on real robot hardware?
Our simulation accounts for collisions, friction, gravity, joint limits, and motor torque lim-
its necessary for physical feasibility using constraints. This greatly helps the transfer of
motions from Geppetto to real hardware. Previously, Megaro et al. have tested motions
generated using this simulation framework on three types of walking robot hardware pro-
totypes [134]. However, such a transfer is most times impeded by extreme user edits,
which may drive the robot motion parameters to infeasible regions at design time (e.g., an
extreme user-commanded pose for the quadruped could result in the robot dragging its feet
in the ground – an infeasible motion for a real robot). Geppetto currently warns the users
when such infeasibility occurs, but doesnt provide feedback to the user in correcting such
issues. Users themselves have to reverse some of their extreme edits to do so. We hope to
provide more support to the users for the same in the future.

9. It seems that the higher quality of participant designs created with semantic UI can
be attributed to the use of motion-gallery. Doesn’t this mean that people are better
at evaluating expressive motions rather than creating them? Isn’t this a crippling co-
found of the user-study?
The motion gallery is a valuable part of the interface, and because it is one of the contribu-
tions of our system, including it doesn’t cripple the study. The study is indeed measuring
behavior creation rather than behavior evaluation. None of the participants merely selected
from the gallery and finished without modifying their designs - all utilized the automatic
slider or the comparison cursors and curves to understand and tweak the low-level pa-
rameters. Additionally, participant designs on average outperformed the gallery designs
(Fig. 7.15), demonstrating that they were in fact creating new/better designs rather than
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simply evaluating existing motions. This is further shown by the upwards slope of the
orange line in Fig. 7.17, which remains roughly parallel to the gray (parameter UI) line.
The semantic UI line starts higher, indicating that the gallery may provide an initial boot-
strapping effect, while the other interface elements enable users to create new and better
motions.

7.12 Limitations

Limited encoding of user-intent: Currently, our system allows design space exploration and
editing given a single high-level semantic goal. Enabling concurrent design for multiple seman-
tic design goals such as to express a mixture of emotions will provide the users with greater flex-
ibility of design. The user-design experience may be further improved by capturing user-intent
in more detail. Instead of using only high-level semantics to capture user-intent, high-level se-
mantics could be further coupled with mid-level semantics relevant to the task. For instance,
mid-level semantics corresponding to emotionally expressive motion design may correspond to
actions such as dragging feet, jumping, or appearing crouched. Such a representation could also
enable users to gain a better understanding of the design space.

Limitations of the dataset generation: Our system will also benefit from better dataset gener-
ation techniques. In particular, adaptive sampling which focuses on regions with better designs
would allow the system to capture the design space with more fidelity. Additionally, on-demand
sampling and dataset generation at design time may further enable the system to provide cus-
tomized guidance and design alternatives based on user-preferences.

Limited generalization: Re-using semantic information extracted from a particular robot’s
dataset to enable behavior design for a different robot will also be very essential for the scal-
ability of Geppetto. Our preliminary generalization experiments showed how parameterization
was a bottleneck for the same (Sec. 7.10). Principled approaches that can map the motion param-
eters of different robots or their underlying controllers systematically will therefore be important
in the future.

Limitations of motion synthesis: Finally, a simulation-driven design system like ours can only
be as good as the underlying simulation. Our current motion parameterization and simulation
doesn’t produce motions suitable for conveying subtle emotions such as disgust and surprise.
Parameterizing and synthesizing emotionally expressive robotic behaviors is an exciting future
area of research. We also currently limit ourselves to the creation of robotic expressions and per-
sonality through motions only. However, aesthetics and physical structure are equally important
for visual appeal. Parameterization and intuitive editing of aesthetics is thus an interesting open
problem. In particular, we envision a semantic design system that exposes the coupling of physi-
cal structure and motion towards creating appealing robots. Such a system will not only support
the design of next generation of social and collaborative robots, but will be equally valuable for
consumer robotics.
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7.13 Publication and dissemination
This work is under review for ACM CHI Conference on Human Factors in Computing Systems
2019. It was done in collaboration with Fraser Anderson, Justin Matejka, and Tovi Grossman
from the User Interface research group at Autodesk Research, Toronto.

An overview video about Geppetto is available at – https://youtu.be/DXbnwodJ2Ks
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Part IV

The road ahead
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Chapter 8

Summary and future work

8.1 Summary of contributions

This thesis explored a relatively less-treaded research area in robotics – tools for creating robots.
A lot of current research in robotics focuses on making a given robot smarter and intelligent,
rather than on the design and creation of a robot (for instance, the top 3 keywords in the most
recent and largest robotics conference, ICRA 2018, were deep learning, planning, and system
adaptation1). In contrast, our goal was to draw attention to the equally important area of robot
design. We specifically focused on supporting novices that are interested in building robots, and
leveraged prior work in computational design, graphics, human-computer interaction (HCI), and
robotics for the same.

To aid novice users in designing and building robots, this thesis presented software design
tools that enable accessible mixed-initiative design. Accessibility was achieved in particular, by
encoding relevant domain knowledge about the design task. Algorithms and numerical optimiza-
tion techniques were leveraged for automating tedious and difficult parts of the design. The tools
still kept the user in the loop of the design process through visual interfaces and necessary design
feedback. Specifically, simulation-driven, data-driven, and model-driven feedback modalities
were explored for allowing users to be an active part of the design process. We also explored
how user-intent and preferences can be captured with limited inputs from the users. Table 8.1
summarizes these fundamental characteristics of the tools presented in this thesis.

Our work also highlighted many fundamental challenges in grounding the design tools for
target users as well as in evaluating such tools. While user-studies and surveys are under-
represented in robotics community, we found them to be immensely useful for understanding
the needs and struggles of target users, as well as for evaluation (as in assembly-aware design
system (Chapter 3) and in Geppetto (Chapter 7)). These studies and surveys also exposed us to
the many variations that exist in possible interactions and design workflows for creative design
applications. There is a fine line between too much automation and too little automation that
needs to be treaded with care in such applications. This fine balance can only be found through
experimentation as per our experience. Finally, hardware prototypes are equally important to

1as per statistics shown by ICRA 2018 program chair Peter Corke. More information can be found here:https:
//danieltakeshi.github.io/2018/05/23/icra-day1/
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Table 8.1: Summary of contributed tool features

Principle features of the tools

Domain knowledge User-in User
encapsulation -the-loop support

Non-articulated Spatio-temporal Model-driven feasibility Automation of tedious,
structure design tool device design model and fabricability feedback difficult design steps

Modular, articulated Model of components Feedback on possible Design iterations
structure design tool and connections robot structure & motion in software

Co-design tools for
Model of coupling Simulation-driven Automatic design

articulated robots
between robot’s feedback on robot’s generation/improvement

structure & function task-specific function for user-specified task

Semantic design tool Data-driven model Data-driven feedback on Design space
for robot behaviors of robot behaviors robot’s motion properties exploration

support the capabilities of robot design tools, since enabling real world designs is the ultimate
goal of these tools. We therefore used the combination of user-studies and fabricated proto-
types as our core evaluation strategy. We would also highly recommend such a combination for
validation of robot design tools in the future.

8.2 Directions for future work

8.2.1 Towards more accessible design
While this thesis took steps towards democratizing the robot design process, there is yet a lot to
be done for enabling accessible holistic development of robotic systems in the real world. Truly
accessible robot development will require capturing user-intent at different granularities, while
still allowing users to provide inputs at higher-level. Enabling users to develop robots based on
high-level, semantic descriptions such as ‘I want to create a robot for task X with size Y and
Z power requirements’ is indeed the holy grail of accessible robotics (Fig 8.1). However, our
efforts also showed how a single tool might not be able to cater to the needs of a wide variety of
robots out there. Thus, tools tailored to specific classes of robots that account for all necessary
design aspects in a holistic manner might be a more plausible future for robot design tools.

Towards increasing accessibility, immediate directions to explore include leveraging multiple
modalities for capturing user-intent, and taking advantage of existing robot designs. Next, we
briefly discuss relevant opportunities for the same.
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III. GRAPHICAL DESIGN SYSTEM

To support user design of custom task-specific robots with
a library of modular parts, we develop an intuitive graphical
user interface. Along with providing a visual way to interact
with our automatic design synthesis algorithm, our interface
also enables users to define their task requirements easily. To
enable task and robot design simultaneously, our interface is
divided into two windows – a robot design window on the
left, and a physics simulation powered task designer on the
right (see fig. 1).

The robot design window displays the components from
the part library at the top, and supports manual and automatic
design of robotic arms using these parts. The parts include
a robot base, actuators, connecting links, and end-effectors.
The base part denotes the robot’s supporting base and can
be used to define the robot arm’s position in the world with
respect to the environment. Various end-effectors such as
sealing gun, welding machine etc. are provided to create
robotic arms that cater to a variety of desired tasks. The task
designer allows users to specify target paths for the robot arm
to follow, as well as to create an environment with obstacle
corresponding to a real-world scenario. Finally, users can test
their designs using the physics-based simulation in the task
designer before assembling a real design.

Manual editing is enabled using intuitive drag-and-drop
of parts from the menu, and is adapted from our previous
work [8]. For automatic design, users provide a robot base
position in the real world, and a desired trajectory for the arm
to follow. Users can also specify a desired end-effector such
as sealing gun or a welding machine, according to their task
requirements. Based on these specifications, our algorithm
automatically generates a valid arm design.

IV. AUTOMATIC DESIGN USING INFORMED TREE-SEARCH

Given a library of modular building parts and a user-
specified robot arm end-effector motion corresponding to
a task, our design synthesis method aims to generate the
simplest robot that can execute this motion (see fig. 2(a)).
Our design abstraction, which models modular parts and their
connections, allows us to map the input part library to a space
of possible robot designs. Specifically, the library parts p are
modeled as rigid bodies, and their compatibilities are defined
using connection rules c1 [8]. A robot design D = {P, C}
can now be represented by a collection of interconnected
parts P and their connections C. Combinatorially many such
robot designs consisting of different collections of parts P
can be constructed even with a small-sized part library. To
find the simplest valid robot design out of all such possible
robot designs, we start with a robot base, and recursively
construct new designs with increasing number of components
till a valid design is found (see fig. 2(b)).

1A connection rule c for two compatible parts p1 and p2 is defined as
c = {p1, p2, 1T2}, where 1T2 represents a rigid transformation of p2

relative to p1 at the time of connection.

Fig. 2. (a) Given a library of modular parts and a desired robot motion, our
system automatically synthesizes valid robotic arm designs. (b) Automatic
design is formulated as a search problem over recursively created tree of
all possible designs.

A. Tree of designs

The recursive approach for synthesizing new designs is
motivated by the following observation. Consider a robot
design D composed of part collections P . One can create
new children designs of D, each with potentially different
motor capabilities, by appending compatible parts from the
library to D, as defined by the connection rules. As a
result, even if a design D is not well-suited for a user-
specified motion, one of its children designs might be. This
synthesis approach can be well-represented with an acyclic
graph (tree), where each node in the graph corresponds to a
design D. The edge between a parent node D1 and a child
node D2 describe the addition of a single part to D1, using
corresponding connection rules, for creating D2. The root
of the tree corresponds to a base that supports the robotic
arm, and the tree terminates at goal nodes that correspond
to valid designs, capable of executing user-specified motions
(see fig. 2(b)). Since the design space is combinatorial, and
the depth of the tree is potentially unbounded (one can
keep adding more components), brute force construction
and traversal of such a tree of designs is very expensive.
Instead, we leverage an existing informed search method that
accounts for the desirability and validity of designs during
the search, called the A* algorithm [9].

B. A* search

A* is a widely used algorithm for search-based problems.
It works in a best-first search manner by constructing and
traversing the nodes in the tree that are most promising.
Specifically, A* chooses nodes that minimize the cost func-
tion –

f(N) = g(N) + h(N) , (1)

where g(N) represents the current cost of the design
DN at node N , and h(N) corresponds to a heuristics that
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Co-design
?

Figure 8.1: Future vision for accessible holistic robot development – Allowing users to design
and build robots based on high-level descriptions is a powerful approach for democratizing the
robot design process. This thesis showed such an approach specifically for robot behaviors in
Geppetto, and for co-design of robot’s structure and behavior. Other approaches such as gener-
ative design have similarly shown design of mechanical structures that satisfy high-level user-
specified constraints. In the future, enabling design of all aspects necessary for a robot based
on high-level user-provided descriptions will be essential for truly accessible and holistic robot
design.
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Exploring and fusing multiple modalities for capturing user-intent

Along with semantic, high-level user inputs, multi-modal inputs have immense potential in cap-
turing and conveying user-intent. For a given design application, users might be able to specify
what they desire better using either example images and sketches, or even through natural lan-
guage. As a more concrete example, consider the scenario of using a generative design tool for
designing an artistic monitor stand. Typically, users have to specify localized weight/loading for
their desired design, boundary conditions etc. as inputs to a generative design tool, for obtain-
ing relevant design alternatives [131]. Instead, sketches can be leveraged to capture aesthetic
requirements. Combining them with inputs in natural/text-based language that specify intended
use of their desired design might lead to a much accessible design system (Figure 8.2).

3 

 

To create a collection of design variations, we used Project 
Dreamcatcher [36], an internally developed experimental 
platform for producing generative design solutions to 
engineering design problems. The system inverts the 
traditional Computer Aided Design workflow, allowing a 
user to input the requirements and constraints on the form 
and structural loads of their design, rather than designing the 
solution manually. Multiple shape and topology optimization 
algorithms are then employed to synthesize model 
geometries that optimally satisfy these criteria [2, 6, 32]. 
Specifically, the system embeds physical simulation into an 
iterative procedure whereby evolving geometries are updated 
in the direction of improved performance based on the 
simulation results. Since complex physical simulations can 
be computationally very expensive, a large-scale, distributed 
computing environment is utilized to perform a multitude of 
GPU-accelerated simulations and geometry manipulations. 

Problem Definition 
The design task used to generate our sample dataset is to 
create a 3D printed “monitor stand” to raise a monitor off the 
surface of a desk (Figure 2). Specifically, the stand is 
customized for the base of a Dell UltraSharp 2407 monitor 
and should support a lift of 80mm above the tabletop. 
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Figure 1. Conceptual illustration of a collection of design variations for a single task: lifting a computer monitor 80mm off a desk.

ABSTRACT 
This paper presents Dream Lens, an interactive visual 
analysis tool for exploring and visualizing large-scale 
generative design datasets. Unlike traditional computer aided 
design, where users draw a single model in 3D, perhaps with 
a few variations, with generative design, users specify high-
level goals and constraints, and the system is able to 
automatically generate hundreds or thousands of candidates, 
all meeting the design criteria. Once the large collection of 
design variations is created, the designer is left with the task 
of navigating through the designs to find the design, or set of 
designs, which best meets their requirements. This is a 
complicated task which could require analyzing the 
structural characteristics of the designs, as well as their visual 
aesthetics. Two studies are conducted which demonstrate the 
usability and usefulness of the Dream Lens system, and a 
generatively designed dataset of 16,800 designs for a sample 
design problem is described and publicly released to 
encourage advancement in this area. 

INTRODUCTION 
Over the past 20 years, 3D modelling and CAD tools have 
seen major advancements in the functionality which they 
offer and the complexity of designs which they can create. 
Despite these advancements, the overall approach and 
interactive workflow used to create design geometry has 
undergone little change: users leverage a set of primary 
creation and editing tools to build towards a single candidate 
design – a somewhat bottom-up approach. 

However, with ever increasing computing power and new 
simulation methods, a relatively new technique of 
“generative design” has been introduced [25]. With this top-
down approach, the designer specifies high-level goals and 
constraints to the system, and allows the system to 
automatically generate geometry meeting those goals. 

Using this emerging computational workflow, a designer is 
no longer constrained to creating a single design solution. By 
varying the goals, constraints, or algorithm parameters, a 
generative design system can create multiple solutions. With 
the availability of high-performance computing and cloud 
services, this process can be massively parallelized, allowing 
such systems to generate thousands of design alternatives.  

With this additional power and capability, comes the 
daunting task for the user to navigate through the candidate 
designs and find a single or set of suitable designs for their 
needs. This is a complicated task as it could require analyzing 
structural characteristics of the designs, as well as examining 
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in the direction of improved performance based on the 
simulation results. Since complex physical simulations can 
be computationally very expensive, a large-scale, distributed 
computing environment is utilized to perform a multitude of 
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where the algorithm converges to a single solution. But 
rather than looking at a single option, we are interested in 
design difficulties when the computer is able to generate 
thousands of variations to choose from. We refer to this as 
divergent generative design. In many parametric design 
systems [3, 13, 34, 35], variations are created by varying 
some combination of the parameters used for describing the 
geometry. In our case, rather than varying parameters of the 
geometry directly, we vary the parameters of the problem 
definition which is fed to the simulation engine, which in turn 
results in a rich variety of design outputs. 
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Figure 8.2: Multimodal inputs may be immensely useful for capturing user-intent, and may
simplify the use of complex design tools. (a) For instance, current generative design tools require
loading, boundary conditions etc. as inputs from the users. (b) Instead, a combination of natural
language and sketch-based inputs may be leveraged to not only enable users to provide inputs
easily, but also for providing users with more relevant design alternatives that better match their
needs.

Universal format for robot design

Re-use of existing and relevant artifacts has greatly benefited varied communities ranging from
digital art and media designers to programmers. Existing designs can not only serve as inspi-
ration, but can also bootstrap the design process. Currently, existing robot designs are hard to
re-use because of multiple formats involved in storing electrical, mechanical, and behavioral
components. Formats such as Unified Robot Design Format (URDF) used by ROS [179] attempt
to store a bulk of information about kinematics, environment obstacles etc., but they do not con-
tain fabrication level information about CAD files or components. A universal format that stores
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information about all of these aspects together will support interoperability, and will enable the
creation of large scale datasets of re-usable robot designs. Such datasets could then support the
next generation of designers as well as future data-driven and accessible design tools.

Beyond accessibility, the development of next generation robot design tools will benefit by –
(a) taking inspiration from the software and cyber-physical systems (CPS) design communities,
and (b) by thinking beyond automation for supporting the users.

8.2.2 Leveraging ideas from software and cyber-physical systems design
communities

Software development shares many challenges of robotic system development in terms of re-
quired scalability and complexity of design approaches. Further, similar to robot development,
software development also requires one to deal with a multitude of design aspects. Modular
frameworks, version control, continuous integration, unit testing etc. have tremendously helped
the software development community in dealing with these challenges (Figure 8.3). Creating
a robot development ecosystem that embeds these capabilities is an exciting direction of future
work. Such an ecosystem will be able to support not only novices but also experts in efficiently
designing robots.

modular, scalable, 
open-source

continuous integration, 
version control

design space exploration, unit 
tests, ability to talk to existing tools

Figure 8.3: Essential features for a future robot development ecosystem – Robot development
ecosystems in the future will have to embed ideas from software and CPS design communities
such as modularity, version control, ability to talk to existing tools etc. to efficiently support
expert and novice designers.

Future robot development ecosystems should also be capable of reusing existing commer-
cial and open source tools as identified by another relevant design community – the CPS design
community [208]. Integration of the best available design platforms such as CAD tools for me-
chanical design, Matlab for behavior design etc. within a single framework will allow designers
to holistically look at robot designs. Designers will be able to perform design space exploration
and unit-testing at the scale of diverse design aspects. They would be able to ask questions such
as “What would happen if I change my robot body material from steel to aluminum?”, and ob-
tain relevant automatically generated statistics about the same. Towards this goal, OpenMETA
– a tool from the CPS community can serve as a good starting point [156, 207]. Specifically,
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OpenMETA allows talking to existing design tools, and to perform design space exploration at
multiple scales.

8.2.3 Beyond automation: Intelligent tools that also enable learning
Tools presented in this thesis as well as existing design tools out there (see Chapter 2) focus
only on how to make it easy for people to perform a complex design task. These tools do not
enable people to learn over time so as to become better at the respective design tasks. However,
development of tools that can make complex design tasks easier for people while enabling them
to be smarter over time will be essential for truly supporting the next generation of designers.
For instance, wouldn’t it be great if a photo-editing tool that currently only supports color and
sharpness editing, also teaches users about better photo compositions along the way?

For robot design tasks, Geppetto took tiny steps towards aiding user learning by explicitly
teaching people about the effect of various design parameters on the resultant designs. We also
found value in using simulation and model-driven feedback for implicitly teaching people about
intrinsic design characteristics as in our structure design tools. In the future however, upcom-
ing immersive technologies such as augmented, virtual, and mixed reality may be leveraged to
provide a wide variety of feedback to the users, ultimately supporting the development of de-
sign intuition in the users. Finally, there is also value in exploring and developing hardware
testbeds that could complement design tools in systematically teaching people about robotic sys-
tem development. Recent work in the robotics community on developing one such testbed called
Duckietown for the design of ground robots is an encouraging step in this direction [164].
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