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Abstract

This work involves the modeling and understanding of mechanical behavior of crystalline

materials using finite deformation Mesoscale Field Dislocation Mechanics (MFDM). MFDM

is a Partial Differential Equation (pde) based model to understand meso-macroscale plasticity

in solids as it arises from dislocation motion, interaction, and nucleation within the material.

Specifically, the work is divided into the following two parts:

• The first part of the work deals with the development of a novel, parallel computational

framework for finite deformation MFDM. Beyond the development, implementation,

and verification of novel algorithms for the stated purpose, the computational frame-

work involves the use of various state-of-the-art open source libraries such as Deal.ii,

PetSc, P4est, MUMPS, ParMetis, and MPI. This accomplishment stands as a first

computational implementation of a partial differential equation based model of the

mechanics of dislocations at finite deformations in the whole literature, including time-

dependent behavior.

• The second part involves the verification and qualitative validation of the developed

MFDM framework by applying it to study problems of significant scientific and tech-

nological interest. We compare the stress fields obtained from finite deformation FDM

with the small deformation analytical result for fields of screw and edge dislocations em-

bedded in an infinite medium. The code is also verified against the sharply contrasting

predictions of geometrically linear and nonlinear theories for the stress field of a spa-

tially homogeneous dislocation distribution in the body. This ability to calculate stress
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fields for an arbitrary distribution of dislocation density in the geometrically nonlinear

setting is then used to quantify the change in volume of the body upon introduction

of dislocations, and to study the stress-field path followed in a body corresponding to

the presence of a sequence of dislocation configurations comprising a single dislocation

to a stress-free dislocation wall (or a grain boundary). Stringent verification tests of

the time-dependent numerics are also undertaken such as i) studying the evolution of

a prescribed dislocation density in the absence of a flux of dislocations ii) accurately

reproducing classical hyperelastic response, including the prediction of no hysteresis in

a loading-unloading cycle, all up to finite (≈ 100%) strains. The model is also used to

predict size effects, dislocation patterning, and the occurrence of stressed dislocation

microstructures both under applied loads and in unloaded bodies using crystal and

J2 plasticity MFDM. Finally, we demonstrate the potential of the computational tool

by modeling the longitudinal propagation of localized bands of plastic deformation in

metals, in particular, shear bands.

This research presents results of a first computational framework of (mesoscale) plasticity

of unrestricted geometric and material nonlinearities with the following features:

1. Computation of finite deformation stress fields of arbitrary (evolving) dislocation dis-

tributions in finite bodies of arbitrary shape and elastic anisotropy, under general

statically admissible traction boundary conditions;

2. Prediction of size effect and stressed dislocation pattern formation including dipolar

dislocation walls under load;

3. Prediction of stress-free dislocation microstructures and unloaded stressed metastable

dislocation microstructures;

4. Modeling of longitudinal propagation of plastic wavefront as a fundamental kinematical

feature of plastic flow;

x



5. No involvement of a multiplicative decomposition of the deformation gradient, a plastic

distortion tensor, or a choice of a reference configuration to describe the micromechanics

of plasticity arising from dislocation motion and predicts plastic spin with isotropic J2

plasticity assumptions.
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Chapter 1

Motivation and outline
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This chapter presents a brief introduction and the motivation for undertaking the present

research. Section 1.2 reviews the notation and terminology used in the document. The

outline of the document and a brief summary of each chapter are discussed in Sec. 1.3.

1.1 Introduction

Plastic deformation in many metals takes place due to the motion of dislocations under

applied stresses. It can be shown on dimensional grounds that no material length scale

enters the equations of conventional plasticity theories. Therefore, predictions of the elasto

plastic response of homogeneous bodies based on any conventional theory is size independent.

However, it is now well-established in the literature, e.g. [FMAH94, LHT+12, SWBM93,

EA66, MC95, SE98], that metals exhibit strong size effects at micron to submicron length

scales. For example, there is a strong size effect in the measured indentation hardness of

single crystals when the indenter size goes below 10 microns [MC95, SWBM93]. It was

observed [EA66, KN63] that for a given volume fraction of hard particles, the strengthening

of the metal is greater for smaller particle size. Another example is that under torsional

loading of copper wires the scaled shear strength, as a function of average shear strain, has

been shown to increase by a factor of around 3 as the wire diameter goes down from 100

microns to 10 microns [FMAH94, LHT+12]. However, these wires showed negligible size

effect under tensile load. These examples demonstrate that the size effect strongly depends

on the gradients of plastic strain.

The underlying idea is that the material flow strength is dependent upon the total stored

dislocation density. Dislocations are stored for two reasons:

1. When a single crystal is strained uniformly, dislocations mostly accumulate by random

trapping. They are referred to as statistically stored dislocations or geometrically

redundant dislocations [Ash70]. There is no simple theory to predict the density of

SSDs but they have been investigated experimentally by various researchers like [BB66]
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and the references therein.

2. When the crystal is subjected to any gradient of (inverse) elastic distortion that gives a

non-zero curl, the dislocations that are stored in the body are referred to as geometri-

cally necessary dislocations (GNDs). The density of GNDs can be estimated from the

curl of the (inverse) elastic distortion tensor, which can be experimentally measured.

Direct support for the notion that GNDs lead to enhanced hardening comes from the

experiments performed in [RA70]. Therefore, when the characteristic length scale of defor-

mation is large, strain gradients are small resulting in small density of GNDs and conven-

tional theories suffice to model material response. However, as the length scale associated

with deformation becomes smaller, it becomes necessary to incorporate strain gradients for

an accurate prediction of the mechanical response of the material.

Dislocations in the material are also found to arrange themselves in different patterns,

e.g. cells [MW76], labyrinths [JW84], or walls [Mur89]. The presence of this dislocation

microstructure along with cell size and its orientation can have a strong influence on the

macroscopic response of materials. An example is the formation of subgrain boundaries in

high temperature nickel alloys, which triggers recrystallization and causes microstructural

degradation, leading to decrease in the life of turbine blades [HH12, Ree06]. The ability to

synthesize new materials with desired microstructure distribution using laser powder-bed-

fusion technique for additive manufacturing enables such materials to exhibit a combina-

tion of yield strength and tensile ductility which surpasses those of conventional materials

[WVM+18].

It is currently impossible to model elastic-plastic material response and microstructure

development at realistic time scales and mesoscopic length scales with Discrete Dislocation

Dynamics and Molecular Dynamics due to computational expense. Conventional elasto-

plastic theory does not explicitly account for the motion of GNDs in the domain along with

corresponding boundary conditions and therefore cannot predict realistic microstructure.

Hence, developing a continuum scale model that can overcome the limitations of conventional
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theories, which include modeling size effects and predicting microstructure development in

the material is an actively pursued research area. This research elaborates on the devel-

opment of one such model by developing a mechanics based, novel parallel computational

tool to make finite element method based computational predictions of finite deformation

dislocation plasticity. This framework has the ability to model the properties of materials

with complicated microstructural features, thereby providing a tool to help in the design of

new state-of-the-art materials developed using additive manufacturing [WVM+18].

1.2 Notation and terminology

Vectors and tensors are represented by bold face lower and upper-case letters, respectively.

The action of a second order tensor A on a vector b is denoted by Ab. The inner product

of two vectors is denoted by a · b and the inner product of two second order tensors is

denoted by A : B. A superposed dot denotes a material time derivative. A rectangular

Cartesian coordinate system is invoked for ambient space and all (vector) tensor components

are expressed with respect to the basis of this coordinate system. (·),i denotes the partial

derivative of the quantity (·) w.r.t. the xi coordinate direction of this coordinate system.

ei denotes the unit vector in the xi direction. Einstein’s summation convention is always

implied unless mentioned otherwise. All indices span the range 1-3 unless stated otherwise.

The condition that any quantity (scalar, vector, or tensor) a is defined to be b is indicated by

the statement a := b (or b =: a). The symbol |(·)| represents the magnitude of the quantity

(·). E, µ, and ν will always denote the Young’s Modulus, Shear Modulus, and Poisson’s

ratio of the material under consideration, respectively. det(A) denotes the determinant of

the second order tensor A.

The current configuration and its external boundary is denoted byΩ and ∂Ω, respectively.

n denotes the unit outward normal field on ∂Ω. The symbols grad, div, and curl denote

the gradient, divergence, and curl on the current configuration. For a second order tensor
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A, vectors v, a, and c, and a spatially constant vector field b, the operations of div, curl,

and cross product of a tensor (×) with a vector are defined as follows:

(divA) · b = div(ATb), ∀ b

b · (curlA)c =
[
curl(ATb)

]
· c, ∀ b, c

c · (A× v)a =
[
(ATc)× v

]
· a ∀ a, c.

In rectangular Cartesian coordinates, these are denoted by

(divA)i = Aij,j,

(curlA)ri = εijkArk,j,

(A× v)ri = εijkArjvk,

where εijk are the components of the third order alternating tensor X. The corresponding

operations on the reference configuration are denoted by the symbols Grad, Div, and Curl.

I is the second order Identity tensor whose components w.r.t. any orthonormal basis are

denoted by δij. The vector X(AB) is defined by

[X(AB)]i = εijkAjrBrk.

In this document, we qualitatively define patterning as the appearance of inhomogeneous

distributions of dislocation density, more or less in the entire domain.

1.3 Dissertation outline

This research aims at developing a theoretical-computational continuum framework for mod-

eling dislocation-mediated plastic deformation in ductile materials. Specifically, this docu-

ment is organized as follows:
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• Related literature on implementations of some gradient plasticity models involving

dislocation density transport in some form is briefly reviewed in Chapter 2.

• Chapter 3 presents a self-contained introduction to the governing equations of finite

deformation (Mesoscale) Field Dislocation Mechanics (M)FDM theory. Constitutive

statements for the Cauchy stress T , the plastic distortion rate Lp, and the dislocation

velocity V that are consistent with the requirement of non-negative dissipation are

then discussed in Sec. 3.3. The boundary and the initial conditions for the theory are

then discussed in Sections 3.4 and 3.5, respectively.

• The details of the finite element discretization of the equations of finite deformation

(M)FDM are then presented in Chapter 4. The staggered computational algorithm

for the problems within the quasi-static and dynamic (with inertia) settings and the

criteria for choosing time increments for discretely evolving the system in time are de-

scribed in Section 4.2. The details of the developed framework framework are presented

in Sec. 4.3. The present parallel implementation has been written chronologically by

Dr. X. Zhang [Zha15] and I (R. Arora), utilizing prior work of Dr. S. Puri [Pur09]

(related to the purely static elastic case) and a (serial) algorithmic modification in-

corporating the rate equilibrium equation suggested by Prof. Acharya. I (Arora) am

responsible for the development to the current state, including all debugging and ver-

ification done to date.

• Chapter 5 presents results for various problems studied using the developed framework.

These results include: i) accurately predicting homogeneous hyperelastic response with

no hysteresis in an elastic loading-unloading cycle (Sec. 5.1), ii) comparing small de-

formation analytical stress field solutions for edge and screw dislocations to the finite

deformation stress fields (Sec. 5.2) computed from FDM, iii) testing for Burgers vector

conservation and evolution of corresponding dislocation density in the absence of any

flux of dislocations (Sec. 5.3), iv) calculating stress fields of homogeneous dislocation
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distribution (Sec. 5.4) and grain boundary walls (Sec. 5.6) for geometrically linear

and nonlinear FDM theories, v) quantifying the change in volume of the body upon

introduction of dislocations (Sec. 5.5), and vi) modeling dynamics (with inertia) of

dislocations moving with prescribed velocity in the domain (Sec. 5.7). These results

are stringent test of numerics that verify the computational framework.

• Chapter 6 studies the effect of the inclusion size on the strength of the material. We

present these results for the J2 plasticity MFDM and demonstrate that for a given vol-

ume fraction of inclusions, the material strength is enhanced more for smaller inclusion

sizes.

• Chapter 7 presents results for modeling size-effect, and dislocation patterning in mate-

rials using crystal plasticity MFDM theory. Sec. 7.1 focuses on the case when multiple

slip systems are present in the body. The occurrence of stressed dislocation microstruc-

ture both under applied loads and in unloaded bodies is demonstrated. We also study

the effect of orientation on the microstructural patterns and the macroscopic stress-

strain response of the material. In Sec. 7.2 we look at the microstructural pattern-

ing and effect of orientation for the special case when only one slip system is present.

Sec. 7.3 briefly discusses the convergence of microstructural patterns and overall stress-

strain response with respect to mesh refinement. Sec. 7.4 presents a necessary condition

for pattern formation in the model. Finally, Sec. 7.5 focuses on the effect of the length

scale l (a material constant) on microstructural patterns.

• Chapter 8 demonstrates modeling longitudinally propagating shear bands in the ma-

terial under quasi-static loading using FDM and small deformations. A novel scheme

is developed in Sec. 8.2 to evolve the plastic distortion field in the domain. The work

presented in this chapter was developed jointly with Prof. Acharya.

• Concluding remarks and future work are presented in chapter 9.
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Chapter 7 and parts of Chapters 2, 3, and 9 are written jointly with Prof. Acharya for

a paper that has been accepted for publication in the International Journal of Solids and

Structures.

For the entire work reported in this thesis, all numerical implementations, verifications

and validations were carried out by me. All scientific explorations were done by me with

guidance, when necessary, from Prof. Amit Acharya.
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Chapter 2

Literature review
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In this chapter, we briefly review some of the vast literature on strain gradient plasticity

theories. An exhaustive review of the subject is beyond the scope of this document.

Given the significance of an accurate prediction of size-effect for industries involved in the

manufacturing of small scale electro-mechanical systems, and the need for a continuum scale

model that enables a predictive study of dislocation mediated plastic deformation, several

extensions of conventional continuum models have been proposed that incorporate one or

many in-built length scales [FMAH94], [AB96, AB00a], [Gur02], and [APBB04].

One class of continuum models produce size-effects by modifying the hardening law to

take into account hardening due to the presence of incompatibility in elastic distortion

[AB00a, BNVdG01, Bas01, ABB03, ATSB04, AB96]. These elastic incompatibilities cor-

respond to ‘Geometrically Necessary Dislocations’ (GNDs) [Ash70]. The advantage of these

‘lower order gradient’ theories is that the classical structure of the underlying incremental

boundary-value-problem (bvp) remains unchanged, retaining all associated results on the

uniqueness of solutions to the bvp of incremental equilibrium for the rate-independent (and

rate-dependent) material [AS95] as obtained by Hill [Hil58].

The second class of models incorporates a dependence on length scale (or plastic strain

gradients) through measures of the effective plastic strain [FMAH94, FH01, NH03]. Some

formulations [KT08, APBB04, GBB06, YGVdG04] may involve additional differential equa-

tions for modeling of dislocation density evolution in the domain. These higher-order exten-

sions of the conventional theories formulation may or may not involve higher order stresses

and may require additional boundary conditions on appropriate variables.

The key ingredient in theories based on the framework of Gurtin [Gur02, Gur08, GR14]

is that the classical force balance is supplemented with a statement of microforce balance

based on the belief that working is associated with each kinematical process. The internal

energy of the system is augmented with an additional term based on some measure of GNDs

and appropriate constitutive equations are postulated for microforce fields that ensure non-

negative dissipation.
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All the models presented above model plastic flow through constitutive assumptions

without explicitly characterizing dislocation motion. The fourth class of models [APBB04,

GBB06, YGVdG04] augment the conventional elasto-plastic theories with additional equa-

tions that explicitly model dislocation motion and evolution in the domain, resulting in

plastic flow. However, none of the formulations mentioned above take into account the

stress field of signed dislocation density exactly under finite deformation. We now briefly

discuss some of the above mentioned models.

Arsenlis et. al [APBB04] developed a micromechanical model of single crystal plasticity

that incorporates a material length scale dependence in its framework. The authors devel-

oped a set of pdes for the evolution of slip system dislocation densities, one for each system.

This requires constitutive assumptions for dislocation velocity, cut-off radii for annihilation,

segment-length interaction matrices for each component and slip system. Although notable

is the fact that these evolution equations include SSDs evolution, such a description requir-

ing 4 pdes in 2d for each slip system for modeling dislocation density evolution can become

intractable for a full 3D FCC material. The framework is applied to predict size effects

in simple shear for thin films using constrained and quasi-free boundary conditions for an

idealized crystalline geometry.

Geers et. al [GBB06] present another strain-gradient crystal plasticity theory which does

not deviate much from conventional elasto-plastic theory. Additional equations govern the

evolution of GNDs and SSDs in the domain and the back stresses due to the presence of

dislocations are accounted for by using analytical integral expressions for stress fields in an

infinite medium. However, such an approach results in accuracies because of finite medium

approximation in the integrals, small deformations integral expression, and invalidity of

integral expressions for dislocations near the boundary. Another important point to note

is that satisfying equilibrium in the domain with any standard elastic-plastic constitutive

statement for the stress accounts for the stress field due to the presence of any dislocations

which are consistent with the elastic and the plastic plastic distortion fields. Therefore,
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using additional ingredients to model the effect of the back-stress of GNDs in any model is

superfluous [Ach08].

Kuroda et. al [KT08] present a finite deformation higher order strain gradient crystal

plasticity formulation without introducing higher order stresses. The conventional theory is

supplemented by a length scale dependent back-stress which in-turn depends on the gradients

of scalar edge and screw GND densities whose evolution is governed by their respective pdes.

A finite strain generalization of the strain gradient plasticity formulation of Fleck et

al. [FH01] is proposed and implemented in a finite element framework by Niordson et. al

[NR04, NT05]. Numerically, the formulation requires equivalent plastic strain rate to be

taken as one of the nodal variables which requires additional boundary conditions to be

applied at the boundary separating parts of body loading elastically and plastically, along

with boundary conditions in higher order stresses. The model is used to study necking under

plane strain tension and compression [NT05], and size effects in plane strain necking of thin

sheets [NR04].

[YVdGG04] propose a nonlocal version of crystal plasticity based on the statistical-

mechanics description of collective behavior of dislocations [GB99, Gro97] wherein 2 coupled

pdes govern the evolution of full scalar dislocation density and GNDs. The model is applied

to study the shearing of a model composite material in single slip with constrained bound-

ary conditions [YVdGG04] and bending of a single-crystal strip in plane strain [YVdGG04].

The model and computational implementation is limited to single slip deformations in 2-d

problems.

Gurtin [Gur08] develops a finite deformation gradient theory of crystal plasticity involving

configurational microforce balances for each slipsystem [Gur02]. A central ingredient of the

theory involves inclusion of an additional term based on GND density in the free energy that

characterizes work hardening associated with the accumulation of GNDs.

All these models [APBB04, GBB06, KT08, Gur08] suffer from the serious theoretical

impediment which involves prescribing conditions on the scalar dislocation densities on the
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boundary of grains in a multi/poly-crystal as slip system dislocation densities in different

grains have different physical meanings due to the change in lattice orientation between

grains.

Wang et. al [RVdVG14] presented stress field of dislocations using Toupin’s gradient

elasticity theory [Tou62] at finite strains wherein the defects are represented by force dipole

distributions. The theory involves 4th order derivatives of displacement and therefore requires

the use of Isogeometric analysis [HCB05, CHB09] for its implementation. The representation

of a complex network of line defects can be onerous by dipole forces. Moreover, it is not

very straightforward to postulate evolution of defects coupled to the underlying stress field,

given its representation in the form of dipole forces.

A hybrid method to model dislocation core widths and their mutual interactions under

quasi-static and dynamics loadings was developed in [Den04, Den07]. The approach involves

a combination of Pierls-Nabarro model and Galerkin methods. However, finite deformation

frameworks for these approaches have not been demonstrated.

Not only does the presence of dislocations cause additional work hardening in the mate-

rial, they have also been observed to develop intricate dislocation structures such as dislo-

cation cells [MW76, MAH79, MHS81, HH00] and labyrinths [JW84], often with dipolar dis-

location walls, and mosaics [TCDH95]. These microstructures appear at mesoscopic length

scales in between the atomic and macroscopic scales. It is also one of the fundamental chal-

lenges of theories and models of plasticity to predict such microstructure, with the attendant,

often large, deformation and internal stress fields.

Different approaches have been used in the literature to model the development of dis-

location microstructures such as [OR99, LS06, CCPS10, XEA15], and other references men-

tioned therein. In the work of Ortiz and Repetto [OR99], dislocation structures at finite

deformation have been shown to be compatible with deformation fields that are minimizers

of a pseudoelastic energy functional for a discrete time step of a rate independent crystal

plasticity formulation. The predicted dislocation microstructures are necessarily stress-free
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by construction with non-dipolar walls (i.e., walls with non-zero net Burgers vector), and

are accompanied by slip-band deformation microstructures. A key ingredient for obtaining

both the deformation and dislocation microstructures is the non-convex nature of the incre-

mental energy functional, which in turn is the outcome of the use of strong latent hardening

promoting local single-slip in their model.

Sethna and co-workers [LS06, CCPS10] demonstrate (non-dipolar) dislocation walls with

and without the presence of dislocation climb, showing the formation of self-similar disloca-

tion microstructure starting from smooth random initial conditions. Their model is ‘minimal’

in nature, involving geometrically linear kinematics for the displacement field, and a trans-

port equation for the Nye tensor density [Nye53] field arising from a conservation statement

for the Burgers vector. On the other hand, Xia and El-Azab [XEA15] demonstrate disloca-

tion microstructure as an outcome of a model that assumes geometrically linear kinematics

for the total deformation coupled to a system of stress-dependent, nonlinear transport equa-

tions for vector-valued slip-system dislocation densities. These slip system density transport

equations involve complicated constitutive assumptions related to cross-slip, and the authors

promote the point of view that dislocation patterning is necessarily related to the modeling

of dislocation density transport at the level of slip system densities and the modeling of

cross-slip.

In closing this brief review of related approaches we mention the Continuum Disloca-

tion Dynamics framework of Hochrainer and collaborators; [HZG07, Hoc16, SZ15] are some

representative works. These models are developed based on a kinetic theory like frame-

work, starting from the assumption that a fundamental statement for the evolution of a

number density function on the space of dislocation segment positions and orientations is

available (which is in itself a non-closed statement even if one knows completely the rules

of physical evolution of individual dislocations segments of connected lines). Also, what a

number density of dislocations is supposed to mean for a tangled web of dislocation curves

in a 3-d volume is not clarified. On making various assumptions for tractability, the theory
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produces (non-closed) statements of evolution for the averaged dislocation density (akin to

the mesoscale Nye tensor field), the total dislocation density (similar to an appropriate sum

of the averaged Nye tensor density and the Statistical density) and, these densities being

defined as physical scalars, an associated curvature density field. Closure assumptions are

made to cut off infinite hierarchies, which is standard for averaging based on nonlinear ‘mi-

croscopic equations’, and further closure assumptions for constitutive statements are made

based on standard thermodynamic arguments [Hoc16]. The basic framework does not ac-

count for exact geometrically nonlinear continuum mechanics of deformation and stresses

appropriate for large deformation plasticity. The models have been primarily exercised in

situations involving a single slip plane. The work in [SZ15] demonstrates some ‘patterning’

in a simplified 2-d setting where total density concentrates (by approximately 4 times) in

‘blobs’ (terminology of the authors) covering most of the domain, with low densities restricted

to narrow ‘walls’, which is an inversion of what is observed in dislocation cells where high

dipolar densities concentrate in narrow walls, with low densities (by orders of magnitude)

arising in cell interiors.

We also note the finite deformation discrete dislocation plasticity formulation presented

in the works of [DNVdG03, IRD15]. The latter work attempts to address the violation of

the hypoelastic constitutive equation for stress of the dislocation fields in the computational

implementation of the model proposed in [DNVdG03]. Both formulations rely heavily on the

superposition of linear elastic stress fields of individual dislocations (which seems counter-

intuitive in the nonlinear setting, even for small elastic strain). Unfortunately, we have found

the formulation in [IRD15] to be not entirely transparent, thus hindering our understanding

of the basic theory that is computationally implemented (compounded with typographical

errors, e.g. equations (16) and (17) therein that are important to understanding the compu-

tation of their F e tensor). For example, to what extent a constitutive statement like equation

(32a) therein is an appropriate representation of frame-indifferent hyperelastic response, and

better than the criticism leveled by the authors against the use of the (Jaumann rate-based)
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hypoelastic stress response proposed in [DNVdG03], is not clear to us. Clearly, the form of

the strain measure utilized in equation (32a) suggests the use of linearised elasticity out of

the current configuration, and then why the classical elastic solutions for dislocations from

linear elasticity should be correct for linearised elasticity out of a configuration with stress is

not clarified - as is well-understood, the equations for linear elasticity and linearised elasticity

differ when the configuration on which the problems are solved is under stress, leading to

important nonlinear geometric effects like buckling instabilities.

Despite the success of conventional and strain gradient plasticity theories, a field theory

that allows for the calculation of stress fields of evolutionary 3-d dislocation distribution in fi-

nite bodies under unrestricted geometric and material nonlinearity is still elusive. Moreover,

rigorous homogenization of such a fine-scale model can result in a physically and kinemat-

ically faithful mesoscopic model of inelasticity tied to fundamental defect motion physics,

with a desirable consistency property that when the spatial averaging length scale tends

to zero, the model reduces to a theory of the collective behavior of individual dislocations.

Such a mesocopic model will overcome the limitations of the conventional theories by en-

abling a gamut of relevant predictions like modeling size-effects, dislocation patterning, or

longitudinal shear band propagation, all at finite deformation. The goal of the present re-

search is to bridge the above gap (but without any rigorous homogenization) and present a

first mesoscale model of J2 and crystal plasticity theories with unrestricted geometric and

material nonlinearities. The capabilities of such a model are demonstrated.

This work presents a broad numerical framework based on the Field Dislocation Mechan-

ics (FDM) theory [Ach01, Ach03, Ach04]. Built on the pioneering works of Kroner [Krö81],

Willis [Wil67], Mura [Mur63], and Fox [Fox66], FDM is an extension of conventional plas-

ticity that takes into account exactly the finite deformation stress fields of dislocations and

their spatio-temporal evolution, for solving general boundary value problems in finite strain

dislocation based mechanics at microscopic scales. As for kinetics, the theory has Nye’s

dislocation density tensor [Nye53] as one of its field variables and its transport equation
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is derived from the conservation of Burgers vector in a crystal with evolving dislocations.

The driving force for the evolution of dislocation density is an analogue the Peach-Koehler

force of classical dislocation theory [Ach04]. The equation has been shown to model salient

features of dislocation transport like annihilation of dislocations, expansion of a polygonal

dislocation loop and simulation of a Frank-Read source [VBAF06]. A geometrically linear

version of the theory has been numerically implemented in [RA05] and is shown to suc-

cessfully calculate stress fields of individual dislocations and loops, formation of slip steps

upon exit of dislocations, and development of inhomogeneity from homogeneous initial and

boundary conditions corresponding to homogeneous deformation in conventional plasticity

[RA05].

FDM is a model that roots in the representation of defects in the lattice at the atomic

scale. The theory is applicable to dislocation related phenomena in crystalline solids that

appear well resolved at length scales of 10a − 103a, where a is the lattice spacing in the

crystal. Therefore, for the theory to be applicable to macroscopic scales, a standard space-

time averaging scheme utilized in the study of multiphase flow [Bab97] was used and the

resulting framework was termed as Mesoscale Field Dislocation Mechanics (MFDM) [AR06].

This averaging procedure does not provide closure equations and the resulting structure

can be interpreted, for operational purposes, as the equations of FDM augmented by an

extra term that takes into account the the plastic strain rates due to unresolved dislocations

SSDs which is accounted for phenomenologically. Despite the phenomenology, the averaging

procedure and the fine-scale theory involved impart to the coarse model a rich structure

that enables a gamut of relevant predictions, with only two extra material parameters over

and above conventional macroscopic continuum plasticity. It can be shown on dimensional

grounds that MFDM (and FDM) has an in-built length scales.

A geometrically linear version of MFDM was numerically implemented in a finite ele-

ment framework in [RA06] where it was shown to successfully model size-effect in materials,

dependence of stress-strain response on sense of loading, and initial dislocation density. The
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emergence of spatial inhomogeneity in dislocation density starting from homogeneous initial

and boundary conditions corresponding to homogeneous deformation in conventional plastic-

ity was demonstrated in [RA06] at small strains. An attempt to understand the emergence of

microstructure in MFDM was made in [RA06, DAS16], in drastically simplified 1-d settings.

The conclusion in [RA06] and [DAS16] (further substantiated in this work) was that the na-

ture of the fundamental transport equation for Nye tensor evolution coupled to stress along

with the simplest representations, from conventional plasticity theory, of the plastic strain

rate due to statistical dislocations, is adequate for the emergence of dislocation microstruc-

ture in this model, while being faithful to representing the plastic strain rate of both resolved

and unresolved dislocation populations. Puri et al. [PAR11, PDA11] involve a modification

of the computational framework for MFDM that allows different types of grain boundary

constraints to be modeled based on fundamental jump conditions [Ach07]. [PAR11] ana-

lyzed the effect of different classes of constraints to plastic flow through grain boundaries,

as it relates to dislocation microstructure development and mechanical response of a bicrys-

tal. [PDA11] studied the effect of surface passivation, grain orientation, grain boundary

constraints, and film thickness on the mechanical response of multi-crystalline thin films.

The finite deformation implementation of MFDM was attempted in [Pur09] and the first

static, finite elastic implementation of FDM was developed there. However, the developed

numerical algorithm involved a predictor-corrector approach for the evolution problem and

the formulation was found to be computationally expensive and non-robust.

Here, we present a finite-element based updated Lagrangian formulation for the full fi-

nite deformation MFDM. The formulation generalizes the FEM implementation of small

deformation MFDM theory developed in [RA05, RA06] to finite deformation (without the

implementation of advanced jump conditions in [PAR11, PDA11]). It adopts the static finite

elasticity framework developed in [Pur09]. The implementation for the evolution problem uti-

lizes an additional equation of incremental equilibrium that enables a staggered formulation

akin to the small-deformation formulations [RA05, RA06], thus overcoming the limitations
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of [Pur09]. Since the equations of MFDM are identical to those of FDM except for an addi-

tional term in the plastic strain rate, denoted by Lp, any algorithm and the computational

framework for FDM and MFDM are similar. The formulation presented here consists of

the governing equilibrium equation (and its rate form), a div-curl system for the elastic

incompatibility, an evolution equation for the compatible part of elastic distortion tensor,

and a first-order wave propagation equation for the evolution of the (spatially averaged)

dislocation density. The potential and generality of the model (both FDM and MFDM) are

demonstrated through several illustrative examples.
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Chapter 3

Theoretical framework
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This chapter presents a self-contained description of the governing equations, and ini-

tial and boundary conditions of finite deformation (Mesoscale) Field Dislocation Mechanics

theory.

3.1 Field Dislocation Mechanics (FDM)

The detailed derivation of the governing equations for finite deformation (M)FDM is pre-

sented in [Ach04, Ach11]. For the convenience of the reader, the formulation is briefly

presented.

Field Dislocation Mechanics (FDM) was developed by Acharya in [Ach01, Ach03, Ach04]

building on the pioneering works of Kroner [Krö81], Willis [Wil67], Mura [Mur63], and Fox

[Fox66]. The theory is applicable to dislocation related phenomena in crystalline solids at

scales when each and every dislocation is well resolved. As explained in [Ach01], the Elastic

Theory of Continuously Distributed Dislocations (ECDD) theory developed by [Wil67] and

[Krö81] has to be extended beyond a statement of evolution equation of dislocation density

tensor to obtain unique solutions for the deformation field in the body on application of

external forces. FDM enables the unique determination of such a deformation field by ex-

plicitly giving an evolution statement for the compatible part of the inverse elastic distortion

tensor.

Nye’s dislocation density tensor ([Nye53]) α is used which when integrated over an area

gives the Burgers vector of dislocation lines threading that area patch. The presence of

dislocation density in the domain is related to the incompatibility of the inverse elastic

distortion tensor, F e−1 ≡ W . This is done as follows: Consider a closed curve denoted by

C(t) enclosing an area A(t) in the current configuration. If the curve encloses a dislocation

in the material, then the image of the curve, obtained by mapping with the inverse elastic

distortion tensor W , in the ideal crystal lattice does not close. Instead, the closure failure

gives a resulting Burgers vector of the enclosed dislocation. This closure failure relates the
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incompatibility of W in the current configuration to the presence of defects, commonly

called geometrically necessary dislocations. The Burgers vector content of the area patch

A(t), denoted by bA, is calculated as

bA = −
∫
C(t)

W dx =

∫
A(t)

αn dA, (3.1)

where the right most term in Eq. (3.1) is a representation of the same closure failure using

Nye’s arguments. Thus Eq. (3.1) serves as a fundamental relation connecting an argument

from calculus to a physical one. Using Stokes’ theorem, Eq. (3.1) can be localized to give

curlW = −α. (3.2)

The balance of linear momentum for an elasto-plastic material, in the absence of body

forces, can be written as:

div[T (W )] =


0 quasistatic

ρ v̇ dynamic.

(3.3)

where v is the velocity of the material.

The governing equation for the evolution of dislocation density is derived from a statement

for the conservation of Burgers vector content of any arbitrary area patch. In the absence

of dislocation nucleation, the rate of change of the Burgers vector content of the area patch

A(t) is given by the Burgers vector content brought in/taken out by the dislocation lines

entering/leaving the area patch through the curve C(t). This implies

d

dt

(∫
A(t)

αn dA

)
= ḃA = −

∫
C(t)

(α× V ) dx, (3.4)

where α×V represents the flux of the Burgers vector carried in/out through the curve C(t).

Transforming the integral on the left from the current to the reference configuration, taking
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the material time derivative, and then transferring it back to the current configuration and

making the choice of the current configuration being the reference gives

∫
A(t)

(
α̇+α divv −αLT

)
n dA =

∫
A(t)

−curl(α× V )n dA

=⇒ α̊ ≡ α̇+α divv −αLT = − curl(α× V ).

(3.5)

Equation (3.5) gives the governing equation for the evolution of the dislocation density in

the domain.

Equations (3.1) and (3.4) can be used to give

−
˙∫

A(t)

αn dA =
˙∫

C(t)

W dx∫
C(t)

(α× V ) dx =

∫
C(t)

(
Ẇ +WL

)
dx,

which implies

Ẇ +W L = α× V (3.6)

up to a gradient. Hence, the governing equations of FDM with W ,α and the current

configuration (geometry) as the unknown fields can be written as:

curlW = −α

Ẇ +WL = α× V

div[T (W )] =


0 quasistatic

ρ v̇ dynamic.

(3.7)

Equation (3.7)2 constitutes a system of Hamilton-Jacobi equations and therefore is some-

what daunting to work with numerically. Hence, the theory is re-formulated in terms of other

variables, f and χ, which makes it computationally amenable (although at the expense of
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introducing 3 more unknown fields). This is done by using a Stokes-Helmholtz decomposition

of the field W .

According to the Helmholtz decomposition, W can be written as a sum of a curl free

part gradf , and a divergence free part, χ (with appropriate boundary conditions). This

leads us to rewrite Eq. (3.7)1 as

curlχ = −α

divχ = 0

 on Ω, (3.8)

along with the boundary condition

χ · n = 0 on ∂Ω (3.9)

to ensure vanishing of χ in the absence of dislocations.

To get a governing equation for f , Eq. (3.7)2 can be re-written as

˙χ+ gradf + (χ+ gradf)L = α× V

=⇒ χ̇+ gradḟ − gradf L+ (χ+ gradf)L = α× V

=⇒ gradḟ = α× V − χ̇− χL

=⇒ div(gradḟ) = div(α× V − χ̇− χL), (3.10)

along with the boundary conditions necessary for the existence of solutions given as

(gradḟ)n = (α× V − χ̇− χL)n. (3.11)

Hence, the governing equations of FDM when one chooses to work with the pair (χ, f)
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instead of W , can be written as:

W = χ+ gradf , F e := W−1

α̊ ≡ (div v)α+ α̇−αLT = −curl (α× V )

curlχ = −α

divχ = 0

div
(
grad ḟ

)
= div (α× V − χ̇− χL)

div[T (W )] =


0 quasistatic

ρ v̇ dynamic.

(3.12)

3.2 Mesoscale Field Dislocation Mechanics (MFDM)

FDM is suitable for modeling the response of bodies with structural dimensions of microns

or even smaller. To deal with mechanical response at the mesoscale, a commonly used

space-time averaging filter used in the literature on multiphase flows [Bab97] is applied

to microscopic FDM. The resulting averaged theory is called Mesoscale Field Dislocation

Mechanics (MFDM). Details of the derivations can be found in [AR06, Ach11].

For any microscopic field q, the mesoscopic space-time averaged field q̄ is given as:

q̄ :=
1∫

Ω(x)

∫
I(t)

w(x− x′, t− t′)dx′dt′

∫
Λ

∫
B

w(x− x′, t− t′) q(x′, t′) dx′dt′, (3.13)

where B is the body and Λ is a sufficiently large interval of time. Ω(x) is a bounded region

within the body around the point x with linear dimension of the spatial resolution of the

model to be developed, and I(t) is a bounded interval contained in Λ. The weighting function

w is non-dimensional and assumed to be smooth in the variables x,x′, t, and t′. For fixed x

and t, w is only non-zero in Ω(x)× I(t) when viewed as a function of x′ and t′.

Assuming v = v and that the averages of products are products of averages except for
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α× V , the full set of the governing equations of MFDM can be written as

α̊ ≡ (div v)α+ α̇−αL
T
= −curl

(
α× V +Lp

)
(3.14a)

W = χ+ gradf

curlW = curlχ = −α

divχ = 0

 (3.14b)

div
(
gradḟ

)
= div

(
α× V +Lp − χ̇− χL

)
(3.14c)

div[T (W )] =


0 quasistatic

ρ v̇ dynamic,

(3.14d)

where Lp is defined as

Lp(x, t) := (α−α(x, t))× V (x, t) = α× V (x, t)−α(x, t)× V (x, t). (3.15)

The barred quantities in (3.14) are simply the weighted, space-time, running averages of their

corresponding microscopic fields used in (3.12). The field α is the Excess Dislocation Density

(ED). The microscopic density of Statistical Dislocations (SD) at any point is defined as the

difference between the microscopic dislocation density α and its averaged field α:

β(x,x′, t, t′) = α(x′, t′)−α(x, t),

which implies

ρt =
√
ρ2g + ρ2s

ρt(x, t) :=

√(
|α|
b

)2

(x, t) ; ρg(x, t) :=
|α(x, t)|

b
; ρs(x, t) :=

√(
|β|
b

)2

(x, t),

(3.16)

with b denoting the magnitude of the Burgers vector of a full dislocation in the material, ρt the
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total dislocation density, ρg the magnitude of ED (commonly referred to as the geometrically

necessary dislocation density), and ρs is, up to a scaling constant, the root-mean-squared SD.

We refer to ρs as the scalar statistical dislocation density (ssd). It is important to note that

spatially unresolved dislocation loops below the scale of resolution of the averaged model do

not contribute to the ED (α) on space time averaging of the microscopic dislocation density,

due to sign cancellation. Thus, the magnitude of the ED is an inadequate approximation

of the total dislocation density. Similarly, a consideration of ‘symmetric’ expansion of un-

resolved dislocation loops shows that the plastic strain rate produced by SD, Lp (3.15), is

not accounted for in α × V , and thus the latter is not a good approximation of the total

averaged plastic strain rate α× V .

Similarly, when W is used as the field variable, the governing equations can be written

as:

curlW = −α

Ẇ +W L = α× V +Lp

div [T (W )] =


0 quasistatic

ρ v̇ dynamic.

(3.17)

In MFDM, closure assumptions are made for the field Lp and the evolution of ρs, as

is standard in most, if not all, averaged versions of nonlinear microscopic models, whether

of real-space or kinetic theory type. As such, these closure assumptions can be improved

as necessary (and increasingly larger systems of such a hierarchy of nonlinear pde can be

formally written down for MFDM). In this work, we adopt simple and familiar closure

statements from (almost) classical crystal and J2 plasticity theories and probe the capabilities

of the models that result. As is customary, the FEM formulation and algorithm presented

here is independent of the constitutive choices made for Lp, V , and T . Following the works

of Kocks, Mecking, and co-workers [MK81, EM84] we describe the evolution of ρs through
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a statement, instead, of evolution of material strength g described by (3.33); Lp is defined

by (3.25) (or (3.23)) following standard assumptions of crystal (or J2) plasticity theory and

thermodynamics. A significant part of the tensorial structure of (3.25) can be justified by

elementary averaging considerations of dislocation motion on a family of slip planes under

the action of their Peach-Koehler driving force [AC12].

Henceforth, we drop the overhead bars for convenience in referring to averaged quantities,

and we will only refer to the ‘macroscopic’ fields given in (3.14). Also, α will be simply

referred to as the dislocation density tensor. Since the system in (3.14) is not closed, T , Lp,

and V are to be constitutively specified response functions specific to materials.

As shown in [AZ15], (3.14a) and (3.14b) imply

Ẇ +WL = α× V +Lp (3.18)

up to the gradient of a vector field, which is re-written as

L = Ḟ eF e−1 + F e(α× V +Lp).

This can be interpreted as the decomposition of the velocity gradient into an elastic part,

given by Ḟ eF e−1, and a plastic part given by F e(α×V +Lp). The plastic part is defined by

the motion of dislocations, both resolved and unresolved, on the current configuration and

no notion of any pre-assigned reference configuration is needed. Of significance is also the

fact that MFDM involves no notion of a plastic distortion tensor and yet produces (large)

permanent deformation.

3.3 Constitutive equations for T , Lp, and V

MFDM requires constitutive statements for the stress T , the plastic distortion rate Lp, and

the dislocation velocity V . We make the model consistent with the minimal, but essential,
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requirement of non-negative dissipation through these choices. For this we consider the

mechanical dissipation D which, in the presence of inertia and body forces, is defined as the

difference between the power of the applied forces and the rate of change of the sum of the

kinetic and free energies of the system:

D =

∫
∂Ω

Tn · v dA+

∫
Ω

bf · v dV −
˙∫

Ω

ρ (ψ +
1

2
v · v) dV ,

where ψ is the specific Helmholtz free-energy of the system, and bf is the body force density.

The Helmholtz free energy of the system per unit mass, ψ, is assumed to be the sum of

the elastic energy ϕ(W ) density and a term Υ (α) that is a heuristic representation of the

averaging of a microscopic core energy, up to the mesoscale:

ψ = ϕ(W ) + Υ (α).

Υ (α) is specified as

Υ (α) =
1

2ρ∗
ϵα : α,

where ϵ is a material constant that has dimensions of stress× length2. Using the balances

of mass and linear momentum, the definition of Υ (α), and the evolution equations for W

(3.18) and α (3.14a), the dissipation can be expressed as

D =

∫
Ω

T : L dV −
∫
Ω

ρ
˙

(ϕ(W ) + Υ (α)) dV

=

∫
Ω

[
T + ρW T ∂ϕ

∂W

]
: L dV −

∫
Ω

ρX

[(
∂ϕ

∂W

)T

α

]
· V dV −

∫
Ω

ρ
∂ϕ

∂W
: Lp dV

+
ϵ

ρ∗

[∫
Ω

ρ
(
(α : α)I −αTα

)
: L dV +

∫
Ω

ρX
(
[curlα]T α

)
· V dV

+

∫
Ω

ρ curlα : Lp︸ ︷︷ ︸ dV −
∫
∂Ω

ρα : ((α× V +Lp)× n) dA

]
.

(3.19)
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Motivated by this form of the dissipation, we therefore make the following constitutive

assumptions for T , V , and Lp in MFDM.

3.3.1 Cauchy stress

Ensuring no dissipation in purely elastic processes, the stress is given by

T = −ρW T ∂ϕ

∂W
.

Saint-Venant Kirchhoff material : For a Saint-Venant Kirchhoff material, the elastic en-

ergy per unit mass is specified as

ϕ(W ) =
1

2ρ∗
Ee : C : Ee

Ee =
1

2
(Ce − I); Ce = W−TW−1,

(3.20)

where ρ∗ is the mass density of the pure, unstretched elastic lattice, and C is the fourth order

elasticity tensor, assumed to be positive definite on the space of second order symmetric

tensors. The stress response for this material can be constitutively derived as

T = −ρW T ∂ϕ

∂W
=⇒ T = F e [C : Ee]F eT . (3.21)

Modified Neo-Hookean material : To model an incompressible Neo-Hookean material,

special finite elements need to be employed to ensure incompressibility. Therefore, for the

sake of simplicity, we use a compressible analog of a Neo-Hookean material whose strain

energy density function per unit mass is given by

ϕ(W ) =
µ

2ρ∗
(I1(C

e)− ln(detCe)) ,

where µ is shear modulus, and I1 is the first invariant of the right Cauchy-Green deformation
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tensor. The stress response for this material is given as

T = −ρW T ∂ϕ

∂W
=⇒ T = µ(F eF eT − I). (3.22)

The above expressions for the Cauchy stress tensors ((3.21) and (3.22)) tacitly assume that

ρ
ρ∗

is absorbed in the elastic moduli C (or µ), which is assumed to be spatially constant in

this work.

3.3.2 Plastic strain rate

From the study of solutions to FDM it is known [AT11, ZAWB15] that the core energy

provides a crucial physical regularization and therefore, we want to keep the simplest possible

effect of it in MFDM, in the absence of rigorous information on the averaged structure of

FDM. Based on the above terms in the dissipation Eq. (3.19), if we assume Lp to be in

the direction of its driving force to ensure non-negative dissipation, then it can be observed

that the presence of curlα in the driving force for Lp gives rise to a term, in the evolution

equation (3.14a) for α, of the form −curl(curlα) with a (possibly spatially varying) non-

negative coefficient. This additional term behaves as a diffusive regularization, by a standard

identity of vector calculus and the fact divα = 0.

Standard crystal plasticity or J2 plasticity models assume a certain form of Lp. To

augment these forms with an additive term in ϵ curlα as motivated above requires the

introduction of a mobility coefficient with physical dimensions of (stress× time−1). In the

absence of more detailed knowledge, simplicity demands that all dissipative processes be

linked to a common time scale and we do not proliferate material parameters. Thus, we

assume the stress scale in the mobility to be linked to the initial yield strength g0, and its

time scale to be linked to the reciprocal of the equivalent plastic strain rates of the models.

Using l2 := ϵ
g0
, we define Lp for the two cases of J2 and crystal plasticity:

J2 Plasticity : The plastic strain rate due to SDs is assumed to be a non-negative multiplier
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of the stress deviator tensor T ′ in classical J2 plasticity theory. The assumptions listed above

result in the coefficient of curlα in Lp to be g0
γ̂
(upto a factor ρ

ρ∗
). Lp is assumed to be given

as

L̂p = γ̂W
T

′

|T ′ |

Lp = L̂p + l2γ̂ curlα,

(3.23)

where γ̂ is a non-negative function of state representing the magnitude of the SDs slipping

rate. γ̂ is given by the following power law

γ̂ = γ̂0

(
|T ′|√
2 g

) 1
m

, (3.24)

where γ̂0 is the reference strain rate, m is the rate sensitivity of the material, and g is the

strength of the material whose evolution is given by Eq. (3.33).

Crystal Plasticity : Classical crystal plasticity assumes Lp to be a sum of slipping on pre-

scribed slip systems (cf. [Asa83]). The coefficient of curlα in Lp is taken to be ϵ
g0

1
nsl

∑nsl

k |γ̂k|

(up to a factor ρ
ρ∗
), for the reasons mentioned above, and therefore we assume L̂p to be given

by

L̂p = W

(
nsl∑
k

γ̂k mk ⊗ nk

)
sym

Lp = L̂p +

(
l2

nsl

nsl∑
k

|γ̂k|

)
curlα

(3.25)

where

γ̂k = sgn(τ k) γ̂0
k

(
|τ k|
g

) 1
m

. (3.26)

In the above, (·)sym represents the symmetric part of (·), γ̂k represents the magnitude of

SD slipping rate on the slip system k, nsl is the total number of slip systems, and sgn(τ k)
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denotes the sign of scalar τ k. The vectors mk and nk represent the slip direction and the

slip plane normal for the kth slip system in the current configuration. These are given as

mk = F emk
0

nk = F e−Tnk
0,

where mk
0 and nk

0 are the corresponding unstretched unit vectors. The resolved shear stress

τ k on the kth slip system is defined as

τ k = mk · Tnk.

The use of the symmetrization in the definition of L̂p is not standard, but found to be

necessary, following [PDA11, Sec. 5.5].

We mention here that the length scale l is not responsible for producing enhanced size

effects and microstructure in MFDM. Rather, the ‘smaller is harder’ size effect becomes

more pronounced as l decreases since its presence reduces the magnitude of the α field and

consequently reduces hardening (3.33). Although it is not responsible for the generation of

microstructural pattern, it plays role in in defining the details of the microstructural patterns

as shown in Sec. 7.5.

3.3.3 Dislocation velocity

The direction of the dislocation velocity, d, is given by

d = b−
(
b · a

|a|

)
a

|a|
(3.27)

(for motivation see [AR06, AC12]) with

T ′
ij = Tij −

Tmm

3
δij; bi := εijkT

′
jrF

e
rpαpk; ai :=

1

3
TmmεijkF

e
jpαpk. (3.28)
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The dislocation velocity is then assumed to be

V = ζ
d

|d|
(3.29)

with

ζ =

(
µ

g

)2

η2 b γ̂avg, (3.30)

where b is as in (3.16), µ is the shear modulus, and η = 1
3
is a material parameter. γ̂avg is

defined as

γ̂avg =


γ̂ J2 plasticity

1

nsl

∑nsl

k |γ̂k| Crystal plasticity.

3.3.4 Dissipation

Defining Dsd as

Dsd := −ρ ∂ϕ
∂W

: L̂p = F eTT : L̂p =


γ̂|T ′| J2 plasticity∑nsl

k τ kγ̂k Crystal plasticity,

we note that for these choices of T , V , and Lp

lim
ϵ→0

D =

∫
Ω

ζ
d

|d|
·X[TF eα] dV +

∫
Ω

Dssd dV

≥ 0

(assuming the multiplier of ϵ within the square parenthesis in (3.19) is bounded in the limit).
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3.4 Boundary conditions

The α evolution equation (3.14a), the incompatibility equation for χ (3.14b), the f evolution

equation (3.14c), and the equilibrium equation (3.14d) require specification of boundary

conditions at all times.

The α evolution equation (3.14a) admits a ‘convective’ boundary condition of the form

(α×V +Lp)×n = Φ, where Φ is a second order tensor valued function of time and position

on the boundary characterizing the flux of dislocations at the surface with unit normal field

n and satisfying the constraint Φn = 0. The boundary condition is specified in one of

following two ways:

• Constrained boundary : A constrained boundary condition is modeled by taking Φ to

be identically zero on the boundary at all times i.e. Φ(x, t) = 0. This makes the

boundaries plastically constrained which means the dislocations cannot exit the body

while only being allowed to move in the tangential direction at the external boundary.

It is also referred to as the no-slip or rigid boundary condition.

• Unconstrained boundary : A less restrictive boundary condition where L̂p×n is specified

on the boundary, along with the dislocation flux α(V ·n) specified on the inflow part

of the boundary (where V · n < 0) can also be used. For non-zero l, specification of

l2γ̂ssd(curlα× n) on the boundary is also required, where γ̂ssd is defined in Sec. 3.6.

The incompatibility equation (3.14b) admits a boundary condition of the form

χn = 0

on the external boundary ∂Ω of the domain. Such a boundary condition along with the

system (3.14b) ensures vanishing χ in the absence of any dislocation density α. The f
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evolution equation (3.14c) requires a Neumann boundary condition of the form

(
gradḟ

)
n = (α× V +Lp − χ̇− χL)n

on the external boundary ∂Ω. The equilibrium equation (3.14d) requires specification of

standard displacement and/or statically admissible tractions on complementary parts of the

boundary. Along with these, standard boundary conditions required to eliminate rigid body

deformation mode during solving of equilibrium equation (or its rate form Eq. (4.2)) are

required.

3.5 Initial conditions

The evolution equations for the α and f fields (Eqs. (3.14a) and (3.14c), respectively) require

specification of initial condition on the domain.

For the α equation, an initial condition of the form α(x, t = 0) = α0(x) is required. To

determine the initial the initial condition on f , the problem can be more generally posed

as follows: determine the f and T fields on a given configuration with a known dislocation

density α. This problem can be solved by solving for χ from the incompatibility equation

and then f from the equilibrium equation as described by the system

curlχ = −α

divχ = 0

div [T (f ,χ)] = 0


on Ω (3.31)

χn = 0

Tn = t

 on ∂Ω (3.32)

where t denotes the statically admissible traction field on the boundary. This determination

of χ, f , and T for a given dislocation density α on any known configuration will be referred
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to the ECDD solve on that configuration. Hence, we do the ECDD solve on the ‘as-received’

configuration, i.e. the current configuration at t = 0, to determine the initial value of f

which also determines the stress T distribution at t = 0. For the dynamic case, an initial

condition on material velocity field v(x, t = 0) is required.

An auxiliary condition of ḟ = 0 at a point is needed to uniquely evolve f from Eq. (3.14c)

in time.

3.6 Strength evolution

The strength of the material is evolved according to (cf. [AB00b, BAC+00, AR06])

ġ =

[
µ2η2b

2(g − g0)
k0 |α|+Θ0

(
gs − g

gs − g0

)]
(|F eα× V |+ γ̂ssd) , (3.33)

where Θ0 is the Stage 2 hardening rate, k0 is a material constant, and gs is the saturation

material strength. γ̂ssd is defined as

γ̂ssd =


γ̂ J2 plasticity∑nsl

k |γ̂k| Crystal plasticity.

The material parameters (g0, gs, µ, γ̂0,m,Θ0) mentioned above are part of the constitu-

tive structure of well-accepted models of classical plasticity theory. Our model requires 2

unknown fitting parameters: l, k0, with the latter characterizing the plastic flow resistance

due to ED. The material strength defines the ssd distribution (see (3.16)) as

ρs :=

(
g

ηµb

)2

. (3.34)
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3.7 Heat equation

We currently assume that the time scale of heat diffusion is very small as compared to other

time scales. Hence, under the assumption of locally adiabatic conditions, we evolve the

temperature at each Gauss point according to

θ̇ = χT : (α× V +Lp). (3.35)

χ is a positive scalar parameter that can be fitted from experiments. Eq. (3.35) is a simple

implementation of the idea that plastic working leads to a local increase of temperature

which, in turn, softens the material of that neighborhood.

3.8 Rate independent plasticity

Rate-independent plastic response for the J2 case may be modeled by specifying γ̂ as given

below:

γ̂ =



0 τ < g

0 τ = g and
∂τ

∂T
:
∂T

∂W
: (−WL) < 0 unloading or neutral loading condition

γ̂ri τ = g and
∂τ

∂T
:
∂T

∂W
: (−WL) > 0 loading condition

where

τ =
|T ′|√
2
.

We can obtain γ̂ri by setting τ̇ = ġ:

τ̇ =
∂τ

∂T
:
∂T

∂W
: Ẇ (3.36)
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∂τ

∂T
:
∂T

∂W
: (−WL+α× V +Lp) =

[
µ2η2b

2(g − g0)
k0 |α|+

Θ0

(
gs − g

gs − g0

)]
(|F eα× V |+ γ̂ri) .

(3.37)

We will use the following identities to evaluate the derivatives in Eq. (3.37) to obtain γ̂ri

for a Saint-Venant-Kirchhoff material.

∂T ′
ab

∂Tij
= δaiδbj −

1

3
δabδij

Tij = F e
iaCabcdE

e
cdF

e
jb

∂F e
ia

∂Wpq

= −F e
qaF

e
ip

∂Ee
cd

∂Wpq

= −1

2

(
F e
acF

e
qdF

e
ap + F e

adF
e
qcF

e
ap

)
∂Tij
∂Wpq

=
∂F e

ia

∂Wpq

CabcdE
e
cdF

e
jb

+ F e
iaCabcd

∂Ee
cd

∂Wpq

F e
jb

+ F e
iaCabcdE

e
cd

∂F e
jb

∂Wpq

We define

ς =

[
µ2η2b

2(g − g0)
k0 |α|+Θ0

(
gs − g

gs − g0

)]

and rewrite equation (3.37) as

∂τ

∂Tij

∂Tij
∂Wpq

(−WL+ α× V + Lp)pq = ς(γ̂ri + |F eα× V |).
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Writing V = cγ̂rid̃, Cpq =
∂τ

∂Tij

∂Tij
∂Wpq

, γ̂ri is given by

γ̂ri =
CpqWpaLaq

Cpqϵqabαpacd̃b + CpqWpaT̃ ′
aq − ς

(
1 + ϵipqF e

raαapcd̃q

) , (3.38)

where d̃ =
d

|d|
, c = η2b

(
µ

g

)2

, and T̃ ′ =
T ′

|T ′|
.
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Chapter 4

Numerical implementation of finite

deformation (M)FDM
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In this chapter, we present the weak form of the governing equations of MFDM at finite

deformation for the quasistatic and dynamic (with inertia) cases. The algorithms for solving

the finite deformation (M)FDM equations for both the cases are then described in Sec. 4.2.

Finally, a short description of the developed code is presented in Sec. 4.3.

4.1 Variational formulations

Modeling material behavior through the use of MFDM requires the concurrent solution to

coupled nonlinear system of pdes given by (3.14). To efficiently solve the system for the

quasistatic case, and to be able to update the geometry while simultaneously eliminating

the need for a predictor/corrector approach, we augment the system (3.14) with the rate (or

incremental) form of the equilibrium equation, the derivation of which is presented below.

This rate form can be solved to get the material velocity field v on the domain which can

be used to (discretely) update the geometry of the body.

In the absence of body forces and inertia, the statement of local force balance (on the

current configuration) w.r.t. any choice of reference configuration, can be expressed by

DivP = 0, (4.1)

where P represents the first Piola-Kirchhoff stress w.r.t. that reference. To get the rate form

of the equilibrium equation, we take the material time derivative of Eq. (4.1)

˙DivP = 0 =⇒ Div
˙

JTF−T = 0 (P = JTF−T)

=⇒ Div
[
Jdivv TF−T + JṪ F−T + JT

˙
F−T

]
= 0.

Choosing the reference configuration to be the current configuration i.e. F = I, we write

the rate form as [MR75]

div
[
divv T + Ṫ − TLT

]
= 0. (4.2)
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The system of equations (3.14) is then augmented with Eq. (4.2) for the quasistatic case.

For the dynamic case, the balance of linear momentum can be solved directly to give the

material velocity field on the domain.

The discretization methods and statements for solving the equations for the finite de-

formation MFDM (3.14) are similar to the small deformation case as presented earlier in

[RA05, RA06]. The following numerical schemes are used: the Galerkin FEM for the equi-

librium equation (3.14d) and its rate form (4.2), and evolution equation (3.14c) for the

compatible part of inverse of elastic distortion; the Least-squares FEM [Jia13] for the incom-

patibility equation (3.14b); and the Galerkin-Least-Squares FEM [HFH89] for the disloca-

tion evolution equation (3.14a). Apart from the changes due to finite deformation, primary

changes include the protocols needed to carefully integrate incremental reaction force rates,

corresponding to imposed velocity-Dirichlet b.c.s, to obtain consistent traction b.cs. (in the

weak form) for balance of linear momentum in the quasistatic case. The (finite element)

mesh motion is also taken into account.

We now discuss the numerical schemes to solve the governing equations in a general

case, i.e., without any specific constitutive assumptions for T , Lp, and V . A typical time

increment going from time t to t+∆t is considered.

4.1.1 Weak form for v

The Material velocity field v is required to update the geometry discretely by moving the

finite element mesh. For the quasistatic case, v is obtained by solving the rate form of

equilibrium equation (4.2) while for the dynamic case, it is obtained by solving the balance

of linear momentum equation (3.14d).

4.1.1.1 Quasistatic case

We solve the rate form of the equilibrium equation to obtain the material velocity field v on

the current configuration Ω following the assumed strain formulation of [NPR74]. We define
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δL̄ to be

δL̄(x) := gradδv(x)− 1

3
divδv(x)I +

1

3V (x)

∫
B(x)

I divδv dV,

where B(x) represents the element (in mesh) containing the point x and V (x) is the volume

of the element B. The weak form is then written as

∫
Ω

δL̄ :
[
divv T + Ṫ − T L̄T

]
dV =

∫
∂Ω

δv · ṫ dA.

where

L̄(x) := L(x)− 1

3
div v(x)I +

1

3V (x)

∫
B(x)

I div v(x) dV

and ṫ is the specified Neumann boundary condition of nominal traction rate based on the

current configuration as the reference. Using the evolution equation for W and the identity

F eW = I, we can get the material time derivative of T as

Ḟ eW + F eẆ = 0 =⇒ Ḟ e = (L− (F eα)× V − F eLp)F e

Ṫ =

(
∂T

∂F e

)
: Ḟ e

Ṫ =

(
∂T

∂F e

)
: (L− (F eα)× V − F eLp)F e.

The calculation of ∂T
∂F e for the Saint-Venant Kirchhoff and the Neo-Hookean materials

are shown in Secs. A.1 and A.2, respectively. Using the expression for Ṫ , the weak form is
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finally rewritten as

∫
Ω

δ L̄ :

[
tr(L̄)T − T L̄T +

∂T

∂F e
: (L̄ · F e)

]
dV =

∫
Ω

δ L̄ :

[
∂T

∂F e
: ((F eα)× V )

]
+

∫
Ω

δ L̄ :

[
∂T

∂F e
: Lp

]
+

∫
∂Ω

δL̄ · ṫ dA.

(4.3)

For a given state of the system (T ,F e,Lp,α,x, and V ) at time t, the weak form generates

a system of linear equations which is then solved to get the velocity field vt at time t on

the configuration Ωt at time t. It is important to note that incorporating rate-independent

plasticity makes the velocity solve non-linear in nature. This is because γ̂ is nonlinear in L, as

can be seen from the expression for γ̂ri in Eq. (3.38) and the switch in the loading-unloading

conditions. This is taken care of by solving the v equation by using a quasi-Newton technique

where we do not modify the stiffness for each iteration.

On part of the boundary where Dirichlet conditions are applied, the nodal reaction force

rates at time tn are calculated after solving (4.2) on the configuration at tn. The (reaction)

nodal force rate field is generated by calculating [K]{v} − {R}, where [K] is the stiffness

of the system, {v} is the nodal fem solution array, and {R} is the nodal array formed after

assembly of the first term on the right of (4.2). Physically, {R} is the nodal force array from

the plastic strain rate that contributes to the material velocity v. For each node on this part

of the boundary, this reaction force rate physically corresponds to the spatial integration

of the nominal/First Piola-Kirchhoff traction rate, based on the configuration at time tn as

reference, over the area patch (on the same configuration) that contributes to the node in

question. Since such a nodal force rate, viewed as a discrete function of time, corresponds

to the evolving current configuration of the body (recall the definition of the First Piola-

Kirchhoff stress tensor), we simply (discretely) integrate it in time and accumulate the result

on the known nodal force at time tn to obtain the nodal force (on the velocity-Dirichlet-part

of the boundary) at time tn+1.
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4.1.1.2 Dynamic case

For the dynamic case, the balance of linear momentum equation is directly solved to obtain

the velocity on the given configuration. Assuming the stresses and material velocity on the

current configuration Ω are given, we solve for vt+∆t using first order Forward Euler method

as follows: ∫
Ω

Tij,jδvi dV =

∫
Ω

ρv̇iδvi∫
Ω

(Tijδvi),j dV −
∫
Ω

Tijδvi,j dV =

∫
Ω

1

∆t
ρ
(
vt+∆t
i − vti

)
δvi dV∫

Ω

ρvt+∆t
i δvi dV =

∫
Ω

ρvtiδvi dV +∆t

(∫
∂Ω

tiδvi dA−
∫
Ω

Tijδvi,j dV

) (4.4)

4.1.2 Weak form for χ

For a given dislocation density α and a configuration of the body, χ is evaluated by solving

the system (3.14b) along with the Dirichlet boundary conditions mentioned in Sec. 3.4. We

use the Least-Squares finite element method to solve for χ from the div-curl system (3.14b).

The objective functional J for this system is written as

J =
1

2

∫
Ω

(curlχ+α) : (curlχ+α) dV +
1

2

∫
Ω

divχ · divχ dV,

resulting in the weak form

δJ |δχ = 0∫
Ω

eijkδχrk,j (eimnχrn,m + αri) dV +

∫
Ω

δχij,jχim,m dV = 0. (4.5)

Therefore, solving for χ on a given configuration Ω for a given dislocation density α

gives a system of linear equations which can be easily solved.
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4.1.3 Weak form for α

The transport equation for α (3.14a) exhibits nonlinear wave type solutions and therefore

the solution can develop shocks and discontinuities in the domain. Numerically solving such

an equation without the knowledge of upwind/downwind direction is a daunting task. To

deal with this, we adopt the Galerkin-Least-Squares FEM approach as described in [HFH89]

wherein the Galerkin residual is added to the least squares residual with a non-negative

(may be spatially varying) scalar denoted by c. Writing Lp = L̂p + β curlα, (3.14a) can be

rewritten as

(div v)α+ α̇−αLT = −curl
(
α× V + L̂p + βcurlα

)
. (4.6)

Using the first order forward Euler method (no superscript means αt+∆t), the Galerkin-

Least-Squares residual for Eq. (4.6) can be written as

R =

∫
Ω

δαij (∆t Lppαij −∆t αipLjp) dV +

∫
Ω

δαij

(
αij − αt

ij

)
dV +∆t

∫
Ω

εjqp εjabαiaVbδαip,q dV

+∆t

∫
Ω

L̂p
ijεjqpδαip,q dV +∆t

∫
Ω

βεjabαib,aεjqpδαip,q dV

+∆t

∫
∂Ωi

Bijδαij dV +∆t

∫
∂Ωo

αt
ijVpnpδαij dV −∆t

∫
∂Ω

αiqVjnqδαij dV

−∆t

∫
∂Ω

εjpqL̂
p
ipnqδαij dV −∆t

∫
∂Ω

βεjpqεpbaαia,bnqδαij dV

+ c

[∫
Ω◦
Ariδαri dV +∆t

∫
Ω◦
LppAriδαri dV −∆t

∫
Ω◦
AriδαrpLip dV

+∆t

∫
Ω◦
Ari (δαri,qVq − δαrq,qVi + δαriVq,q − δαrqVi,q) dV

+∆t

∫
Ω◦
Ari(β,pδαri,p + βδαri,pp − β,pδαrp,i − βδαrp,ip) dV

]
,

(4.7)
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where

Ari = αri − αt
ri +∆t

[
αt
riLpp − αt

rpLip + αt
ri,qVq − αt

rq,qVi + αt
riVq,q − αt

rqVi,q + εipqL̂
p
rq,p+

+ β,pα
t
ri,p + βαt

ri,pp − β,pα
t
rp,i − βαt

rp,ip

]
.

∂Ωi and ∂Ωo represent the inflow and outflow parts of the boundary ∂Ω. B is the input

dislocation flux α(V ·n) on ∂Ω. Ω◦ denotes the element interiors. The terms underlined in

blue above are the additional terms that enter the discretization for the dislocation density

evolution in the finite deformation setting.

Following [HFH89], c is a non-negative (possibly spatially varying) scalar that takes

the value 1 in the convection dominated regions and is equal to the grid Péclet number in

diffusion dominated regions. Since we take l to be very small, we choose c = 1 for MFDM

calculations, unless otherwise mentioned.

4.1.4 Weak form for f

For the dynamic and the quasistatic cases, f is determined in the domain at any time t by

evolving equation (3.14c) in time. However for the quasistatic case, we can also determine

f by solving the (nonlinear) equilibrium equation (3.14d), which could be computationally

expensive to do at all increments. However, since we solve the rate form of the equilibrium

equation (4.2) for the quasistatic case, force balance may not be exactly satisfied as the

deformation progresses. Hence to correct for this, we periodically solve equilibrium equation

(3.14d) to satisfy balance of forces which is now posed as a traction boundary value problem.

These tractions are in the form of nodal reaction forces which are obtained by integrating the

nodal reaction force rate array as mentioned in Sec. 4.1.1.1. Solving the equilibrium equation

on a given configuration amounts to adjustment of f . In the following, {F } represents the

known nodal force array on the current configuration at time tn.
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4.1.4.1 Solve from f evolution

The evolution equation for the ‘plastic position vector’ f , given by (3.14c), is solved on the

current configuration at each time step with the natural b.c.s defined in Sec.3.4 imposed on

the external boundary. Letting Y = (α×V +Lp− χ̇−χL) and using a first order forward

Euler scheme to update f , the weak form of the (3.14c) can be given as (Y is treated as

data),

∫
Ω

gradf t+∆t : grad δf dV = ∆t

∫
Ω

Y t : grad δf dV +

∫
Ω

gradf t : grad δf dV.

The weak form implies the satisfaction of the natural boundary conditions. We specify f t+∆t

(equivalent to ḟ = 0) at an arbitrary point at all times to ensure a unique solution, without

loss of generality.

4.1.4.2 Solve from equilibrium equation

At small deformation, the equilibrium equation is linear in f and can be solved in a single

iteration. However, it is nonlinear in f at finite deformation and therefore we use the

Newton-Raphson technique to solve for f at finite deformation. Here, we present the weak

form for both the cases i) small deformation and ii) finite deformation.

4.1.4.3 Small Deformation

At small deformation, the stress becomes a linear function of z which is related to f as

shown below in Eq. (4.8). For the linear theory, W can be written as W ≈ I −U e and U e

can be expressed as U e = gradz − χ which ensures curlW = −curlU e = −α.

W ≈ I −U e

gradf + χ ≈ gradx− gradz + χ

=⇒ f ≈ x− z (upto a constant) (4.8)
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where x represents the current position of the geometry and therefore gradx = I. Once χ

is known, the equilibrium equation in the absence of body forces can be solved for f as

R(z) =

∫
∂Ω

ti δzi dA−
∫
Ω

Tijδzi,j dV. (4.9)

Since the stress is linear in z, we can get the stiffness as

KT = δR(z)|dz = δ

(∫
∂Ω

ti δzi dA−
∫
Ω

Tijδzi,j dV

)
= −

∫
Ω

∂Tij
∂Hab

dHab δzij dV

(4.10)

whereHab = za,b. The calculation of ∂T
∂H

for the Saint-Venant Kirchhoff and the Neo-Hookean

materials is shown in Sections B.1 and B.2 respectively. After solving for z, f can be updated

following the relation from Eq. (4.8).

4.1.4.4 Large Deformation

At large deformation, the governing equation divT = 0 is nonlinear in f . Therefore, we use

the Newton-Raphson scheme to solve for f . Following the scheme outlined in [Pur09], we

write the residual at the iteration k (denoted by superscript on the left) for the non-linear

Newton-Raphson scheme as

R(kf) =

∫
∂Ω

tiδfi dA−
∫
Ω

Tijδfi,j dV.

The guess for this Newton-Raphson solve is crucial for success in solving for the f from the

equilibrium equation. We denote this guess as f0 and it is determined [ZAP18] as follows:

• For ECDD solves (t = 0), f0 is obtained by solving the equilibrium equation on the

current configuration by assuming small deformation as shown above in Sec. 4.1.4.3.

• At all other times, f obtained by solving the evolution equation (3.14c) serves as the

guess f0 for the Newton-Raphson based scheme.
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The Jacobian, denoted by KT , is calculated by taking a variation of the above residual

KT = δR|df =

∫
Ω

∂Tij
∂Gab

dGabδfi,j dV

where Gab = fa,b.

We calculate ∂T
∂G

as:

∂T

∂G
=

∂T

∂F e
:
∂F e

∂W
:
∂W

∂G
.

The calculation of ∂T
∂F e for the Saint-Venant Kirchhoff and the Neo-Hookean materials is

shown in Sections A.1 and A.2, respectively. The other terms on the right hand side of the

above equation are given as

∂F e
mn

∂Wpq

= −F e
qnF

e
mp

∂Wpq

∂Gab

= δpaδqb.

Therefore,

∂Tij
∂Gab

=
∂Tij
∂F e

mn

∂F e
mn

∂Wpq

∂Wpq

∂Gab

= − ∂Tij
∂F e

mn

F e
qnF

e
mpδpaδqb

We then solve the finite element system {KT}{df} = −{R} until the norm of the residual

R is less than a certain tolerance.

4.2 Algorithm

We choose a combination of explicit-implicit schemes to evolve the system (3.14) in time.

An efficient time stepping criteria based on plastic relaxation, and purely elastic and yield
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strain related physical model parameters has been developed. Furthermore, to ensure robust

and stable evolution of state variables, an intricate cut-back algorithm is used that carefully

controls the magnitude of plastic strain in each increment.

The following notation is used for the description of the algorithm:

1. (·)n means a quantity at time tn. xn represents the coordinates of the finite element

mesh on the configuration Ωn.

2. At any integration point q, the following state variables are stored at any given time

tn: material strength gn, elastic distortion tensor F en, Cauchy stress T n, dislocation

velocity V n, slip distortion rate Lpn. We will collectively refer to them as PHn (short

for point history) of integration points.

3. ∆tn is defined as tn+1 − tn. To evaluate ∆tn we first calculate the following variables

∆t1 =
.1h

max(|V |)

∆t2 =
.002

max(r) + max(s)

∆t3 =
.1 g0

E max(|L|)

∆t4 =
.1h

vs

where max(·) denotes the maximum of the quantity (·) over all integration points in the

domain, h denotes the length of the smallest edge of an element in the finite element

mesh, and vs is the shear wave speed of the material. r and s are the functions of

plastic strain rate (on the current configuration) due to EDs and SDs given by

r = |F eα× V |,
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s =


γ̂ J2 plasticity∑nsl

k |γ̂k| Crystal plasticity.

∆t1 is based on the physical fact that the dislocation density can only move a fraction

of h in any given time interval. ∆t2 ensures that the maximum plastic strain at any

given point in a time step has an upper bound of 0.2%. ∆t3 puts a bound on the

maximum strain that can be attained in a time step at any point in the domain. ∆tn

is then given as

∆tn =


min (∆t1,∆t2,∆t3) Quasistatic case

min (∆t1,∆t2,∆t3,∆t4) Dynamic case

(4.11)

The algorithms for the quasistatic and dynamic cases are shown in Sections 4.1 and 4.2,

respectively.

4.2.1 Quasistatic case

Given: material properties, initial conditions, boundary conditions, and applied loading
conditions.

Step 1: Finding the initial stress field on the body in ‘as-received’ configuration - ECDD
solve.

• ECDD solve, mentioned in Sec. 3.5, is done on the initial configuration, i.e. current
configuration at t = 0.

• This gives us f , χ, and T on the configuration of the body at t = 0.

Step 2: Evolution of the system: Assume that the state at time tn is known: xn, αn,
fn, χn, χ̇n, V n, Lp, ∆tn, PHn

To get the state at time step tn+1 the following is done:
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• The rate form of the equilibrium equation (4.2) is solved on Ωn to get the ma-
terial velocity vn in the interval [tn, tn+1] as described in Sec. 4.1.1.1. vn ≡
v(αn,Lpn,V n,F en,xn).

• α evolution equation (3.14a) is solved on Ωn using Galerkin-Least-Squares FEM as
shown in Sec. 4.1.3 to obtain αn+1 on Ωn+1. αn+1 ≡ α(αn,Lpn,V n,F en,Ln,xn).

• The configuration of the body is discretely updated i.e. xn+1 = xn + vn ∆tn.

• χn+1 on Ωn+1 is obtained by solving Eq. (3.14b) on Ωn+1 as described in Sec. 4.1.2.
χn+1 ≡ χ(αn+1,xn+1).

• fn+1 on Ωn+1 is obtained by doing one of the following:

1. Solve f evolution Eq. (3.14c) on Ωn as described in Sec. 4.1.4.1. fn+1 ≡
f(αn,Lpn,V n, χ̇n,χn,Ln,xn).

2. Equilibrium equation (3.14d) is solved in alternate increments to adjust fn+1

on Ωn+1 as shown in Sec. 4.1.4.4. fn+1 obtained by solving Eq. (3.14c) serves
as the the initial guess for the Newton Raphson scheme.

• χ̇n+1 is calculated as follows: χ̇n+1 =
χn+1 − χn

∆tn
.

• PHn+1 is updated on the configuration Ωn+1.

If (r + s)×∆tn ≥ 0.002 is satisfied at any integration point on the domain:

• Go to state at time tn.

• Use ∆tn half of the previous one.

If no cut back happens, then the state is accepted. ∆tn+1, based on the new state, is
calculated from (4.11) and this algorithm is repeated to get state at increment tn+2.

Table 4.1: Quasi-static MFDM algorithm

4.2.2 Dynamic case

Given: material properties, initial conditions, boundary conditions, and applied loading
conditions.
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Step 1: Finding the initial stress field on the body in ‘as-received’ configuration - ECDD
solve.

• ECDD solve, mentioned in Sec. 3.5, is done on the initial configuration, i.e. current
configuration at t = 0.

• This gives us f , χ, and T on the configuration of the body at t = 0.

Step 2: Evolution of the system: Assume that vn−1 and the state at time tn is known:
xn, αn, fn, χn, χ̇n, V n, Lp, ∆tn, PHn

To get the state at time step tn+1 the following is done:

• The balance of linear momentum Eq. (4.2) is solved on Ωn to get the mate-
rial velocity vn in the interval [tn, tn+1] as described in Sec. 4.1.1.2. vn+1 ≡
v(fn,χn,vn−1,xn).

• α evolution equation (3.14a) is solved on Ωn using Galerkin-Least-Squares FEM as
shown in Sec. 4.1.3 to obtain αn+1 on Ωn+1. αn+1 ≡ α(αn,Lpn,V n,F en,Ln,xn).

• fn+1 on Ωn+1 is obtained by solving f evolution Eq. (3.14c) on Ωn as described
in Sec. 4.1.4.1. fn+1 ≡ f(αn,Lpn,V n, χ̇n,χn,Ln,xn).

• The configuration of the body is discretely updated i.e. xn+1 = xn + vn ∆tn.

• χn+1 on Ωn+1 is obtained by solving Eq. (3.14b) on Ωn+1 as described in Sec. 4.1.2.
χn+1 ≡ χ(αn+1,xn+1).

• χ̇n+1 is calculated as follows: χ̇n+1 =
χn+1 − χn

∆tn
.

• PHn+1 is updated on the configuration Ωn+1.

If (r + s)×∆tn ≥ 0.002 is satisfied at any integration point on the domain:

• Go to state at time tn.

• Use ∆tn half of the previous one.

If no cut back happens, then the state is accepted. ∆tn+1, based on the new state, is
calculated from (4.11) and this algorithm is repeated to get state at increment tn+2.

Table 4.2: MFDM algorithm with inertia

57



4.3 Computational framework

An MPI-accelerated finite element based computational computational framework for the

full finite deformation MFDM is developed using C++. The framework is based on the

algorithms presented in Sec. 4.2 above and is developed using comprehensive state-of-the-

art libraries Deal.ii [ABD+17], P4est [BWG11], MUMPS [ADKL01], and PetSc [BAA+17].

Integration of these libraries along with the judicious use of object oriented design creates a

computational environment that is flexible and powerful enough to meet the specific require-

ments of the current research. The functionality obtained from their combination is suited

for large scale numerical simulations using adaptive mesh refinement. The code is extensively

based on Deal.ii which is an open-source framework for the numerical simulation of partial

differential equations using the Finite Element Method on serial and parallel platforms. We

have coupled it with PetSc for the solution of the discretized system (3.14) and with P4est

for meshing the domain. Using P4est enables us to mesh the body into a collection of adap-

tive octrees and splits the mesh on every processor while dynamically balancing the number

of unknowns on each processor. PetSc is used to efficiently store large sparse matrices and

vectors using high level data structure. It also provides access to several direct and iterative

solvers which are highly efficient and scalable. The code has been optimized to run on the

PSC bridges supercomputer and Mesabi supercomputer of MSI.

A post-processing toolbox has been developed in Python using its Scipy [JOP+ ], Numpy

[Oli ], Pandas [M+10, McK11], Matplotlib [Hun07], and Seaborn [W+18] modules to produce

publication-quality figures. The toolbox has a feature to automatically search for data files

corresponding to required strain levels or iteration numbers out of thousands of output

files and pass it to the ‘plotting’ script, greatly enhancing the efficiency in data-processing

for scientific visualization. The figures presented in this document are obtained using this

developed toolbox.
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Chapter 5

Results and discussion: FDM
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In this chapter, we present results of some selected physically meaningful verification

tests for the developed FDM computational framework. To our knowledge, the results pre-

sented here are also the first fully nonlinear results (in kinematics, elasticity, and dissipation)

involving dislocation mediated plasticity. The organization of the chapter is as follows:

1. In Sec. 5.1, we verify the framework by studying the problem of homogeneous elastic

deformation, under simple shear and extensional loadings (both quasistatic), of a block

of Saint-Venant-Kirchhoff and Neo-Hookean materials. When the velocity boundary

conditions are applied for an assumed homogeneous purely elastic deformation history,

it is expected that the numerics should reproduce the homogeneous deformation with

no numerically induced hysteresis upon unloading. However, given the extensive use

of the incremental equilibrium equation (4.2) in our scheme, it is not a priori clear

that no hysteresis is induced in the numerical approximation. This overall test also

verifies the algorithm for the accumulation of reaction forces due to velocity-Dirichlet

boundary conditions.

2. In Sec. 5.2, we calculate the finite deformation stress fields of a screw dislocation em-

bedded inside a body of finite extent that is assumed to behave as a variant of a

Neo-Hookean material, and verify it with the analytical solution for the same case.

We then calculate the finite deformation stress field of an edge dislocation embedded

in a Saint-Venant Kirchhoff material. We also demonstrate large deviation from small

deformation analytical stress fields in the domain by comparing it with the finite de-

formation solution obtained from FDM for both the screw and the edge dislocations

(embedded in an infinite body).

3. In Sec. 5.3, the framework is then verified against the elastic loading of a Saint-Venant

Kirchhoff material with defect evolution in the special case wherein there is no genera-

tion or motion of the defect relative to the material. The dislocation density evolution

solely takes place because of coupling of the transport equation (3.14a) with the ge-
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ometry and the velocity gradient in the convected derivative of the dislocation density.

In the absence of any flux of dislocations, the Burgers vector content of any arbitrary

area patch has to be conserved. Sec. 5.3 verifies these hypotheses under quasistatic

simple shear and extensional loadings.

4. Section 5.4 presents the stress field in the domain with a spatially homogeneous dis-

location distribution. We show contrasting predictions of the stress field by the linear

and nonlinear FDM theory.

5. Sec. 5.5 uses FDM to calculate the change in the volume of the body with the in-

troduction of dislocations. The linear theory predicts no volume change when the

dislocations are introduced in the body which is not in agreement with experimental

observations. We also calculate the reference configurations of the body with single

or multiple embedded dislocations. The possibility of non-uniqueness in the reference

configurations for both the cases is also demonstrated.

6. Sec. 5.6 presents the stress field in the body for a sequence of dislocation distributions

comprising a single dislocation core to a full dislocation wall which constitutes a grain

boundary. We demonstrate the failure of linear theory to predict the stress field and

the energy in the limiting case, when the cores combine to form the grain boundary.

7. Sec. 5.7 presents results for dislocation core(s) moving in the body modeled with inertial

effects taken into account, along with the geometric nonlinearity. The results are

presented for the case when the dislocation velocity is uncoupled to the underlying

stress field. We show the evolution of the dislocation density and plastic deformation

in the body. This has implications in the phenomenon of shear band formation wherein

a plastic deformation is localized in a narrow band and the band propagates (extends)

longitudinally through the motion of its tip.

For all the results presented in this work, the input flux α(V · n) and curlα × n are

assumed to be 0 on the boundary. Also, L̂p is directly evaluated at the boundary to calculate

61



L̂p×n. All fields are interpolated using bilinear/trilinear elements in 2d/3d, unless otherwise

stated. Following Eq. (3.1), the Burgers vector content of an area patch A with normal n is

given by

bA =

∫
A

αn dA. (5.1)

where α denotes the dislocation density field in the domain. The Burgers vector of a localized

dislocation distribution α is given as

b =

∫
Ac

αn dA, (5.2)

where Ac denotes any area patch fully enclosing the dislocation. It must be noted that b is

independent of the chosen area patch Ac as any Ac encloses the full dislocation field. We refer

to the magnitude of Burgers vector, |b|, as the strength of the dislocation. b is a material

constant which refers to the Burgers vector magnitude of a full dislocation in the material.

h denotes the length of the smallest edge of an element in the finite element mesh.

The conventional plasticity solution for homogeneous deformation shown in the figures

is numerically obtained by integrating the evolution equation (5.3) for the elastic distortion

tensor F e to determine the Cauchy stress response for an imposed spatially homogeneous

velocity gradient history, L, corresponding to the applied homogeneous deformation:

Ḟ e = LF e − F eLpF e =: f̃(F e, g)

ġ = g̃(F e, g)

(5.3)

where Lp is defined from Eq. (3.23) or (3.25) with l = 0, and g̃ is given by (3.33) with k0 = 0.

For purely elastic deformations, Lp is taken as 0 in Eq. (5.3).

A typical schematic of the geometry is shown in Fig. 5.1. The stress-strain behavior of

the body under shear loading is modeled by plotting the averaged T12 component of the
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Figure 5.1: Typical schematic of the geometry.

stress tensor on the top surface, which is denoted by τ in the figures. τ is calculated by

summing the tangential components of the nodal reaction force on the top surface and then

dividing by the current area (line length) of the surface. The stress-strain behavior of the

body under extensional loading is modeled by plotting the averaged T11 component of stress,

on the right surface which is denoted by σ in the figures. σ is calculated by summing the

normal components of the nodal reaction force on the right surface and then dividing by the

current area (line length) of the surface. Γ̂ represents the applied strain rate. The shear

strain at any time t is denoted by Γ and it is calculated as Γ̂ t. The extensional strain is

denoted by ϵ.

5.1 Nonlinear elasticity

Due to our interest in calculating hyperelastic stress fields of dislocations, it is essential

to make sure that our scheme accurately reproduces classical hyperelastic response. This

includes the prediction of no hysteresis in a loading-unloading cycle, despite the extensive

use of the incremental equilibrium equation (4.2) in our algorithm, even for purely elastic

problems.
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Figure 5.2: Typical schematic of the geometry for extensional loading.

A 2-d plane strain problem is set up as follows: a body of size (1mm)2 (the size is

immaterial) is set up for homogeneous extension and simple shear loadings with details

below. Upon reaching 100% strain, the loading is reversed and the body is unloaded to its

original configuration.

To model a purely elastic process, the dislocation velocity and the plastic strain rate due

to SDs are assumed to vanish i.e. Lp = 0 and V = 0. The velocity boundary conditions

for the simple shear loading are as follows: at any point P = (x1, x2) on the boundary, a

velocity of the form v2 = 0 and v1 = Γ̂ y(x2) is imposed, where y(x2) is the height of the

point P from the bottom surface. For the extension case, at the point P = (x1, x2), the

velocity boundary conditions of the form v1 = Γ̂ u(x1) and v2 = 0 are applied, where u(x1)

is the distance of the point from the left face in the reference configuration. The schematic

of the set up for extensional loading is shown in Figure 5.2. Table 5.1 presents the values of

the material parameters used for this simulation.

We plot the stress strain response for the Saint-Venant Kirchhoff and the Neo-Hookean

materials for the extension (σ vs. ϵ) and shear (τ vs. Γ ) loadings in Figures 5.3a and 5.3b,
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Parameter Value

Γ̂ 1s−1

E 62.78 GPa
ν .3647

Table 5.1: Parameter values used for homogeneous elastic deformation.

0.0 0.2 0.4 0.6 0.8 1.0

Γ

0.00.0

0.7

1.4

2.1

2.8

3.5

τ
/
µ Homogeneous SVK

Homogeneous NH

SVK

SVK unloading

NH NH unloadingSVK

SVK unloading

NH NH unloading

(a)

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.00.0

2.0

4.0

6.0

8.0

10.0

σ
/
E Homogeneous SVK

Homogeneous NH

SVK

SVK unloading

NH NH unloadingSVK

SVK unloading

NH NH unloading

(b)

Figure 5.3: Stress strain response for nonlinear elasticity a) Simple shear b) Uniaxial exten-
sion.

respectively. We notice that the stress strain plots overlap with the corresponding homoge-

neous solution. Moreover, the cyclic stress-strain response does not show any hysteresis.

Furthermore, we also study the effect of variation in stress with large homogeneous rigid

rotations for the Saint-Venant Kirchhoff material. We calculate the stress-strain response

for a superposed rigid body motion given by

x∗(X, t) = Q(t)F ss(t)X, (5.4)

where X and x∗ are the coordinates of the body in the reference and the current configura-

tions, respectively. F ss denotes the deformation gradient corresponding to a homogeneous

simple shearing motion with F12 = Γ̂ t and F11 = F22 = F33 = 1. Q(t) is the rotation tensor
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written as

Q(t) =


cos(θ(t)) −sin(θ(t)) 0

sin(θ(t)) cos(θ(t)) 0

0 0 1

 , (5.5)

where θ(t) = ωt denotes the orientation of the body at any time t and ω = 2 rad. s−1 is the

(constant) angular speed of the body about the x3 axis. The deformation gradient of the

rotated motion at any time t is given by F ∗(t) = Q(t)F ss(t) from Eq. (5.4). The velocity

boundary conditions follow from

v∗(X, t) = Q̇(t)F ss(t)X +Q(t) ˙F ss(t)X,

evaluated on the boundary of the reference configuration.

Under the superposed rigid body motion defined by Eq. (5.4), the stress tensor for any

frame-indifferent stress response function is given as T ∗(t) = Q(t)T ss(t)QT (t), where T ss(t)

denotes the stress field for the simple shearing motion defined by F ss. We compare the

maximum error in the stress up to 100% strain defined by max
X

|T (X)−T ∗(X)|
|T ∗(X)| × 100. We find

that the error accumulates at a very slow rate, leading to a maximum error of ≈ 1% at

Γ = 1.

We therefore conclude that the framework is capable of dealing adequately with nonlinear

elasticity, without any (numerically induced) hysteresis/dissipation. Moreover, the protocol

for accumulation of reaction tractions (Sec. 4.1.1.1) discretely in time is sufficiently precise

in dealing with large strains and rotations.

5.2 Stress fields of single dislocations

We calculate the finite deformation stress fields of single dislocations embedded in a body

which requires the solution to the ECDD system (3.31) and (3.32) as explained in Sec. 3.5.
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Although we take the material to be isotropic, it is important to note that the finite defor-

mation stress field of any distribution of dislocations in a general anisotropic material with

arbitrary (but statically admissible) traction boundary conditions can be calculated without

any additional complexity. Table 5.2 shows the values of the material constants used in this

section.

Parameter Value
E 200 GPa
ν .30

Table 5.2: Parameter values used for calculating stress fields of single dislocations.

5.2.1 Screw dislocation

The material is modeled as a compressible Neo-Hookean model whose stress response is given

by Eq. (3.22). A horizontal cylindrical plate, assumed to be thick in the x3 direction and

infinitely extended in the x1-x2 plane, has a screw dislocation embedded in it. The strength

of the dislocation is assumed to be b and its line direction is assumed to be in the positive x3

direction i.e. b = be3. Assuming the dislocation to be present in a cylindrical region centered

on the x3 axis, the dislocation density is modeled by specifying an α field of the form

α33(x1, x2, x3) = φ

(√
x21 + x22

)
, αij = 0 if i ̸= 3 and j ̸= 3, (5.6)

where φ is a positive scalar-valued function of one variable. We also assume that the front

and back ends of the cylinder are capable of providing arbitrary tractions. A complete

exact solution of the ECDD equations for this problem is developed in [Ach01] for the

incompressible Neo-Hookean material. That solution is easily adapted here to develop the

exact solution for the compressible Neo-Hookean material whose elastic response is given

by Eq. (3.22). We outline the exact solution first before using it to verify our code. The

particular solution W satisfying the ECDD equations (3.31) is given by I −Hα, where the
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nonzero components of Hα are

Hα31(x1, x2) =
−x2

x21 + x22

∫ r

0

φ(s)s ds,

Hα32(x1, x2) =
x1

x21 + x22

∫ r

0

φ(s)s ds.

We make the choice

φ(r) =


φ0 r < r0

0 r > r0.

(5.7)

where r =
√
x21 + x22 and φ0 is a constant chosen to make the dislocation Burgers vector

equal to be3 by ensuring
∫
A
α33 dA = b on any cross section A perpendicular to e3 which

encloses the dislocation. Thus, φ0 is calculated as

b =

∫ 2π

0

∫ r0

0

φ(r)r dr dθ

=⇒ φ0 =
b

π r20
.

Hα is then given by

Hα31(r) =


−x2

φ0

2
r < r0

−x2
φ0r

2
0

2r2
r > r0

Hα32(r) =


x1
φ0

2
r < r0

x1
φ0r

2
0

2r2
r > r0.
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The elastic distortion tensor F e is calculated as F e = W−1 = I+Hα. The analytical stress

field T ∗, which satisfies equilibrium (without any further compensating fields) is calculated

as:

Ge = F eF eT =


1 0 Hα31

0 1 Hα32

Hα31 Hα32 1 + (Hα31)
2 + (H2α32)

2


T ∗ = µGe − µI

=⇒ T ∗ = µ


0 0 Hα31

0 0 Hα32

Hα31 Hα32 (Hα31)
2 + (Hα32)

2

 . (5.8)

To compute the stress field, the problem is set up as follows: we specify a dislocation density

of the form given by Eqs. (5.6) and (5.7) in a cylinder of radius 50b extending from z = 0 to

50b. To mimic the infinite domain size, traction boundary conditions corresponding to the

analytical solution are imposed on the outer surface of the cylinder i.e. t = T ∗n is used in

Eq. (3.32) where T ∗ is given by Eq. (5.8).

Figure 5.4a shows the dislocation density distribution in the domain on the z = 0 plane.

Figure 5.4b shows good comparison of the numerically and analytically calculated stress field

component T23 plotted along x2 = 0 on the z = 0 plane.

Figures 5.5a and 5.5b show finite deformation stress fields of the screw dislocation on the

plane z = 0 obtained from FDM.

Figures 5.6a and 5.6b show the relative difference between numerical and analytical stress

fields in the z = 0 plane. The regions where the analytical stress components vanish have

been marked by black lines. Except for the region in the core, the error is less than 2%

everywhere.

Next, for a Saint-Venant-Kirchhoff material, we compare the finite deformation stress
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(a) (b)

Figure 5.4: a) Dislocation density, α33, for the screw dislocation on z = 0 plane in the cylin-
drical body b) Comparison of analytical solution of ECDD equations (3.31) to its numerical
solution for T23 of the screw dislocation along x2 = 0.

(a) (b)

Figure 5.5: Stress field of a screw dislocation embedded in the cylindrical domain behaving
as a compressible Neo-Hookean material a) T13

µ
b) T23

µ
.
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(a) (b)

Figure 5.6: Comparison of the numerical and analytical solutions of stress field of screw

dislocation in the cylindrical domain on the z = 0 plane a)
|T13 − T ∗

13|
|T13|

b)
|T23 − T ∗

23|
|T23|

field of a screw dislocation with the small deformation analytical solution. The analytical

solution is given by [HL82]

T ∗
13 = −µb

2π
· x2
(x21 + x22)

T ∗
23 =

µb

2π
· x1
(x21 + x22)

T ∗
11 = T ∗

22 = T ∗
33 = T ∗

12 = 0.

(5.9)

The problem is set up for a Saint-Venant-Kirchhoff material in the same way as above except

now the tractions imposed on the outer surface of the cylinder are determined by using T ∗

from Eq. (5.9) in Eq. (3.32).

We define a difference measure M of the form

M =
|∆T |
|T ∗|

=
|T − T ∗|

|T ∗|
(5.10)

where T is the stress obtained from the (finite deformation) numerical computations and

T ∗ is the (small deformation) analytical solution. The plot of M in the domain, shown in
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Figure 5.7: Difference between stress field given by the finite deformation FDM theory
and small deformation analytical solution for a screw dislocation embedded in a cylindrical
domain for a Saint-Venant-Kirchhoff material.

Figure 5.10, clearly displays that the stress fields differ in a large region around the core.

Therefore, we establish that up to ≈ 6% error arise as far as 10b from the core.

5.2.2 Edge dislocation

The material is modeled as a Saint-Venant Kirchhoff material with E and ν as specified in

Table 5.2. We calculate the finite deformation stress field of a single edge dislocation in a

body and compare it with the closed-form classical (small deformation) linear elastic solution

for the corresponding problem. The small deformation analytical stress field T ∗ for a single

edge dislocation at the center of an infinite cylindrical solid is given by [HL82]:

T ∗
11 = −Dx2

(
− 2x22
(x21 + x22)

2
+

3

(x21 + x22)

)
T ∗
22 = −Dx2

(
− 2x21
(x21 + x22)

2
+

1

(x21 + x22)

)
T ∗
12 = Dx1

(
− 2x22
(x21 + x22)

2
+

1

(x21 + x22)

)
T ∗
33 = ν(T11 + T22), T ∗

13 = T ∗
23 = 0.

(5.11)
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where D = µb(2π(1 − ν))−1. x1 and x2 are the in-plane coordinates, measured from the

center of the dislocation. The computational problem is set up in a 2d plane strain setting

as follows: an edge dislocation with a Burgers vector be1 and line direction e3 is assumed

to be present in a domain of dimensions [−50b, 50b] × [−50b, 50b]. The edge dislocation is

modeled by prescribing a dislocation density α at any x = (x1, x2) of the form

α13(x1, x2) =


φ0 |x1|≤ b and |x2|≤ b

0 otherwise,

αij = 0 if i ̸= 1 and j ̸= 3. (5.12)

In the above, the core width is assumed to be 2b. The constant φ0 is evaluated by making

the Burgers vector of the dislocation equal to be1, i.e.
∫
A
α13 dA = be1, where A is any area

patch in Ω that encloses the dislocation. Tractions t on the external boundary are applied

such that t = T ∗n where T ∗ is given by Eq. (5.11). The stress field of the dislocation in the

finite deformation setting is then calculated by solving the system (3.31) and (3.32) in the

rectangular domain along with the above-mentioned traction boundary conditions.

Figure 5.8a shows the prescribed dislocation density with a Burgers vector of be1 in

the domain. Figure 5.8b compares T12 obtained from FDM and the closed form solution T ∗
12

along the line x2 = 0 for three different mesh sizes: h = 1b, 0.5b, 0.25b. We see that the stress

fields do not rely on the mesh sizes and a mesh size of 1b is adequate for stresses outside the

core. The two vertical lines in Fig. 5.8b bound the small region where the analytical solution

becomes large, as it is singular at the origin.

Figures 5.9a and 5.9b show the plots of T11 and T12 in the domain obtained by computing

solution to the ECDD system (Eqs. (3.31) and (3.32)) for the mesh size h = 0.25b. It may

be noted that the field plot of T11 is not symmetric about y = 0 which is in contrast with the

small deformation case. We conjecture that this is because at finite deformation the elastic

modulus depends on F e as T = F e(C : Ee)F eT , and therefore the effective elastic moduli in

a compressed region differ from those in a tensile region, states applicable to the dislocation
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(a) (b)

Figure 5.8: a) Dislocation density, α13, for an edge dislocation embedded in the body b) T12,
calculated from finite deformation FDM, plotted along x2 = 0.

above and below y = 0.

We now compare the difference between stress obtained by FDM and the closed form

solution for small deformation by calculating the difference measure M defined in Eq. (5.10)

where T is the stress obtained from numerical computations and T ∗ is small deformation

stress field given by Eq. (5.11). The plot of M in the domain, shown in Figure 5.10, clearly

displays that the stress fields differ in a large region around the core with errors ≈ 10%

for up to 10b from the core. This is qualitatively consistent with DFT results of [IRG15]

wherein they show that the energy contribution from the electronic-structure perturbations

are significant up to a distance of 10b from the edge dislocation line where the strength

of the dislocation is b. Therefore, given the large differences we see, our results suggest

careful examination of the accuracy of the classical, linear elastic and our computed finite

deformation stress fields of dislocations by comparison with predictions of lattice-statics

calculations based on well-characterized interatomic potentials.

Given the large differences in the stress field calculated from finite deformation FDM

and the classical small deformation solution, we explore the domain of validity of classical

dislocation fields by varying the strength of the dislocation. To do so, we repeat the above

numerical experiment for different strengths |b| of the dislocation while keeping the domain
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(a) (b)

Figure 5.9: Finite deformation stress field of a single edge dislocation computed from FDM
a) T11 b) T12.

Figure 5.10: Difference in stress fields obtained from FDM and small deformation linear
closed form solution given by Eq. (5.11) |T−T ∗|

|T ∗|
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size fixed and the problem set up the same as above. We show in Figure 5.11 that the error

between the finite deformation FDM stress field and small deformation analytical solution

becomes small as the strength of the dislocation |b| decreases, and the error is below 3%

in most of the domain when |b|= b
50
. The error goes to zero only in the limit |b|→ 0.

This exercise also serves as a verification of our code in that the correct limiting trends are

produced for small forcing.

5.3 Burgers vector constancy with dislocation density

evolution in nonlinear elastic motions

Several measures have been proposed to appropriately define the dislocation content in a

body as function of the elastic or plastic distortion tensor [BBS55, Esh56, Fox66, Wil67,

AB00a, CG01]. Cermelli and Gurtin [CG01] advocate a single measure of GNDs based on

‘physically motivated requirements’. However, as is customary in continuum mechanics,

relations should always exist between any two physically meaningful measures of GNDs, it is

such ‘transformation rules’ that are physically significant rather than superficial differences

in form [Ach08].

The dislocation density tensor α in (M)FDM is a two point tensor that measures the

local, undeformed Burgers vector of the dislocation distribution, per unit area of the current

configuration. For a given dislocation density α in the domain, the Burgers vector content

of an area patch A(t) at any time t is given by

bA(t) =

∫
A(t)

αn dA. (5.13)

So, in the special case when there is no flux of dislocations into the material area patch,

the dislocation density field α has to evolve in such a way that the total Burgers vector of

that material patch (given by (5.13)) remains constant. Hence, under the conditions V = 0,
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(a) (b)

(c)

Figure 5.11: Difference in magnitude of stress fields obtained from FDM and small defor-
mation linear closed form solution for different strength of the dislocation |b| a) b

2
b) b

10
c)

b
50
.
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Lp = 0, the Burgers vector of any arbitrary area patch should not change in time regardless

of the total deformation magnitude i.e. at all times t,

ḃA(t) =
d

dt

∫
A(t)

αn dA = 0, ∀ A ∈ Ω

=⇒ α̇ = αLT − divv α (from Eq. 3.14a).

Furthermore, under deformations that are locally area-preserving (e.g. simple shear of a

plane), the dislocation density field itself has to remain constant in time when convected

with the material. We illustrate these results under large tensile and simple shear loadings

below. These are stringent tests of the numerics since the dislocation density evolution is

coupled to the evolving deformation through the velocity gradient by an adapted convected

derivative of a 2-point tensor as shown in Eq. (3.14a). Table 5.3 presents the values of the

material constants used for this verification example.

Parameter Value

Γ̂ 1s−1

E 200 GPa
ν .30

Table 5.3: Parameter values used for the simulations.

5.3.1 Extensional loading

The problem is set up as follows: An edge dislocation is embedded in a rectangular body of

dimensions [−50b, 50b]× [−50b, 50b]. The dislocation line direction is assumed to be in the x3

direction and the Burgers vector is taken as be1. The dislocation is modeled by prescribing

an initial dislocation density α0 at any point x = (x1, x2) following Eq. (5.12). The velocity

boundary conditions on the left and right faces are assumed to be v1 = Γ̂L0 and v2 = 0,

where L0 is the length of the body. On the top and bottom surfaces, v2 = 0 is imposed. A

uniform mesh of 50× 50 elements is used to mesh the domain. The schematic of the set up

78



𝑥"

𝑥#

Right		surfaceLeft		surface

Bottom	surface,	𝑣# = 0

𝑣" = 𝛤(𝐿*

Top	surface,	𝑣# = 0

𝑣" = 0

𝐿*

Figure 5.12: Typical schematic of the geometry.

is shown in Fig. 5.12.

Figure 5.13a shows the undeformed configuration of the body. The deformed configura-

tion of the body at a stretch Λ = 2.5 under tensile loading is shown in 5.13b. The dislocation

density is Burgers vector content per unit area and since the current area changes in the ten-

sile loading case, the dislocation density evolves as well, as shown in Figure 5.14a. However,

the change in dislocation density is such that the Burgers vector content remains constant.

Figure 5.14b shows the variation of the strength of dislocation with stretch. We observe that

there is virtually no change in the strength of the dislocation even at such large strains.

5.3.2 Shear loading

For shear loading, the problem is set up as follows: An edge dislocation of the form (5.12) is

embedded in a body of dimensions [−50b, 50b] × [−50b, 50b]. Velocity boundary conditions

corresponding to overall simple shear are imposed for a plane strain problem as described in

Sec. 5.1. A uniform mesh of 50× 50 elements is used to mesh the domain.

Figure 5.15a shows the undeformed configuration of the body. The deformed configura-
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(a) (b)

Figure 5.13: Configurations (not to same scale) during tensile loading a) undeformed b)
deformed

(a) (b)

Figure 5.14: Variation of a) dislocation density, α13 b) dislocation strength |b| along y = 0
with strain.
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(a) (b)

Figure 5.15: Configurations (not to same scale) during shear loading a) undeformed b)
deformed

tion of the body at a strain Γ = 1.5 under simple shear loading is shown in 5.15b. Since

the current area does not change in simple shear loading, the dislocation density should not

change as well and this is shown in Figure 5.16a. The corresponding change in the disloca-

tion strength is shown in Figure 5.16b. We observe that there is virtually no change in the

strength of the dislocation with progress of deformation over such large strains.

These examples demonstrate the robust performance of our code in stringent tests of

finite deformation dislocation kinematics and also demonstrate the physical characteristics

of our dislocation density measure (3.14a) [Wil67, Ach08].

5.4 Stress field of spatially homogeneous dislocation

distribution

The presence of dislocations often produces long range stress field in the body even in the

absence of any external loads. However, there are many dislocation distributions that pro-

duce no stress fields [Mur89, HHOT93, YG12], at least in the continuum limit wherein the

dislocations are described by a continuous distribution. These stress-free dislocation distri-

butions are physically important in the far-field description of grain boundaries, and play an

important role during patterning and microstructure formation in plastic deformation.
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(a) (b)

Figure 5.16: Variation of a) dislocation density, α13 b) dislocation strength along y = 0 with
strain.

The dislocation density tensor α is related to the curl of the inverse-elastic distortion

tensor. Therefore, F e being equal to any (inhomogeneous) rotation field in the domain gives

a stress free configuration with non-zero dislocation density. Correspondingly, for the linear

case, the stress free dislocation distributions belong to the class such that the linearised

elastic distortion tensor (U e ≈ F e − I) is skew-symmetric. However, it can also be shown

[Mur89, HHOT93, Ach18] that any uniform distribution of dislocation density in the domain

is stress free in the linear theory. This is because a spatially constant dislocation density

distribution has vanishing incompatibility (η := (curl((curlU e)T ))sym) and therefore the

strain field is compatible and the body is stress free in the absence of any external forces.

However, in a two-dimensional setting, such distributions are not stress free when geometric

nonlinearity is taken into account [Ach18].

Here, we demonstrate this sharp contrast in the predictions for stress fields based on

the linear and the (geometrically) nonlinear ECDD theories. The problem is set up in a 2d

plane strain setting as follows: A spatially homogeneous distribution of edge dislocations

α13 is specified in a domain with dimensions [−50b, 50b]× [−50b, 50b] as shown in Fig. 5.17.
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Figure 5.17: Spatially uniform α13 distribution.

The total Burgers vector of the dislocation distribution is b =
∫
Ω
α13 e1 dA = 100be1. The

external boundary of the domain is considered to be traction free. In the linear setting, the

stress field is calculated by solving for f (or z) as described in Sec. 4.1.4.3. The stress field

in the nonlinear setting is obtained by solving the ECDD system (Eqs. (3.31) and (3.32)).

Figures 5.18a and 5.18b show the stress field T12 obtained from the geometrically linear

theory for the Saint-Venant-Kirchhoff and the Neo-Hookean materials, respectively. It can

be seen that the stress fields vanish in the entire domain. Figures 5.19a and 5.19b show

the magnitude of the stress field in the domain for the Saint-Venant-Kirchhoff and the Neo-

Hookean materials, respectively. Hence, the linear calculation predicts vanishing stress field

for a spatially homogeneous dislocation distribution in the domain.

Figures 5.20a and 5.20b show the stress field T12 obtained from the geometrically nonlin-

ear FDM theory for the Saint-Venant-Kirchhoff and the Neo-Hookean materials, respectively.

The stress field is non-zero in the domain for both the materials in the nonlinear setting. A

stress free dislocation distribution for the finite deformation case is presented in Section 5.6.

We remark here that although we demonstrated the contrasting predictions of linear

and nonlinear theory for isotropic materials, the result holds true for any material with
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(a) (b)

Figure 5.18: Stress field for spatially uniform distribution of α13 in the linear setting for a)
Saint-Venant-Kirchhoff material b) Neo-Hookean material.

(a) (b)

Figure 5.19: Cauchy stress norm for spatially uniform distribution of α13 in the linear setting
for a) Saint-Venant-Kirchhoff material b) Neo-Hookean material.
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(a) (b)

Figure 5.20: Finite deformation stress field for spatially uniform distribution of α13 for a)
Saint-Venant-Kirchhoff material b) Neo-Hookean material.

non-homogeneous and/or anisotropic elastic modulus C.

5.5 Volume change due to dislocations

A fundamental question that was asked by Toupin and Rivlin [TR60] concerns the change in

volume of a body when dislocations are introduced; linear elastic theory is not capable of cap-

turing this volume change, due to the fact that the average value of each of the infinitesimal

strain components of a self-equilibrated stress field in a body vanishes. However, it has been

observed experimentally that the volume of the body changes upon the introduction of dis-

locations [Zen42] and the prediction by linear elastic theory (of no volume change) does not

seem to be in agreement with experimental observations. Toupin and Rivlin [TR60] used a

second-order approximation of nonlinear elasticity to give explicit expressions for the changes

in average dimensions of elastic bodies resulting from the introduction of dislocations.

Here, we use FDM to capture this volume change. The problem is set up in a two

dimensional plane strain setting as follows: A body Ω of dimensions [−10b, 10b]× [−10b, 10b]

is discretized with a uniform mesh of 200×200 elements. The boundaries are assumed to be
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traction free. Table 5.4 presents the values of material constants used for the simulation.

Parameter Value
E 200 GPa
ν .30

Table 5.4: Parameter values used for calculating volume change.

The % volume change (per unit length along the axis of body) is then calculated as

Vcurr =

∫
Ω

dV (5.14a)

Vref = =

∫
Ω

det(W ) dV (5.14b)

∆V = Vref − Vcurr; %∆V =
|∆V |
Vcurr

× 100. (5.14c)

Vref and Vcurr denote the volume of the reference and the current configurations, respectively.

The volume change is calculated from Eq. (5.14) as follows: The ECDD system (Eqs. (3.31)

and (3.32)) is solved on the current configuration to obtain the inverse elastic distortion

field for a given distribution of dislocations in the domain. The % change in volume is then

quantified from Eq. (5.14c).

Number of Cores %∆V
1 .1019
2 .2064
4 .3013
6 .3902
8 .6025

(a)

Number of Cores %∆V
2 .1793
4 .2938
6 .3523
8 .5873

(b)

Table 5.5: Volume change in body when the resultant strength of all the dislocations is a)
positive b) zero.

Table 5.5a shows the % change in the area of the body consequent upon the introduction

of multiple dislocations of the same sign, distributed in the body as shown in figures 5.21.

Table 5.5b shows the % change in the area of the body due to the introduction of multiple

pairs of dislocations such that the total Burgers vector of all dislocations is 0, distributed

86



(a) (b)

(c) (d)

(e)

Figure 5.21: Dislocation density α distribution for the case when the total strength of all
dislocations is positive a) 1 core b) 2 cores c) 4 cores d) 6 cores e) 8 cores.
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(a) (b)

(c) (d)

Figure 5.22: Dislocation density α distribution for the case when the total Burgers vector is
zero a) 2 cores b) 4 cores c) 6 cores d) 8 cores.
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in the body as shown in figure 5.22. Each pair in figure 5.22 utilizes positive and negative

straight edge dislocation.

Tables 5.5a and 5.5b demonstrate that the change in volume upon introduction of dislo-

cations as quantified by finite deformation FDM is very small for both the cases. Moreover,

we see that this volume change is not linear w.r.t the number of cores i.e. for the first case,

the change in area in the presence of 6 dislocations is not the same as 6 times the change in

area when only a single dislocation is present. The nonlinearity of the ECDD system and

interaction among the dislocations cause the deviation from linear response to give smaller

values.

This study suggests that for an isotropic Saint-Venant-Kirchhoff material, the volume

change calculated with nonlinear theory is very small and therefore the linear theory predic-

tion of no volume change is a very good approximation.

5.5.1 Reference configurations

Consider a case when a single dislocation is assumed to be present in the body resulting

in the development of an elastic distortion tensor field F e in the domain. It can be shown

analytically that if the dislocation core is removed from the body and a cut made that runs

from the boundary of the core to the external boundary to produce a simply connected

body, then there exists a deformation y of this simply connected configuration such that

grady = W holds, where W =: F e−1. The reference configuration can then be obtained by

mapping this ‘hollowed and cut’ current configuration by the field y. Moreover, the field y

has two important properties: i) the jump in the value of y along the cut surface is equal to

the Burgers vector of the embedded dislocation in the original body and, ii) the jump in y

is independent of the cut surface chosen [ZA18].

We now show that this topological property is preserved in the framework of (compu-

tational) FDM. More interestingly, we are easily able to do similar calculations for a body

containing multiple dislocations when the current configuration cannot be rendered simply-
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Figure 5.23: Dislocation density α13 on the current configuration Ω

connected by a single cut - in this case we show that the jump in y is not constant along

the boundary, corresponding to the cuts, of the simply-connected domain, in contrast to the

single dislocation single-cut case.

The calculations of this section also highlight an important feature of the ECDD for-

mulation. If the dislocation stress problem for specified dislocation density is formulated

classically, i.e., involving only an (inverse) deformation field, it is clear that there is massive

non-uniqueness of solutions for the same stress field; ECDD suffers from no such ambiguity

and lends itself to robust computation.

5.5.1.1 Burgers vector along e1

Consider a case when a single dislocation with Burgers vector, b = be1 is assumed to be

present in the body Ω as shown in Figure 5.23. We now solve the ECDD Eq. (3.31) and

(3.32) on this current configuration to determine the distribution of W in the domain. We

then remove the core from the body and make it simply connected by making a horizontal

cut that runs from the core to the boundary as shown in Figure 5.24a. Next, the field y

is obtained on this simply connected configuration such that grady = W holds. We map

the simply connected configuration by the field y to get the reference configuration for the

horizontal cut which is shown in Figure 5.24b.
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(a) (b)

Figure 5.24: a) Ω is made simply connected- core is removed and a horizontal cut is made
b) reference configuration when the chosen cut surface is horizontal.

(a) (b)

Figure 5.25: a) Ω made simply connected- core is removed and a vertical cut (from top) is
made b) Corresponding reference configuration.
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Figure 5.26: Jump in y1 and y2 across horizontal and vertical cut surface for the config-
urations shown in Figs. 5.24a and 5.25a. HC: Horizontal cut surface & VC: Vertical cut
surface.

We now repeat the same procedure to get the reference configuration when a vertical

cut is made from the bottom as shown in Figure 5.25a. The reference configuration for this

case is shown in Figure 5.25b. It can be clearly seen that although the configurations 5.24a

and 5.25a are related by a rigid rotation of 90◦ about e3 axis, the corresponding reference

configurations are totally different. The cut surface slides in the tangential direction in the

former case where as it opens up in the latter case. This is actually a consequence of the

constraint that the (vectorial) jump has to remain constant along the cut surface.

Fig. 5.26 shows the plot of the jump in the value of the function y along the cut surface.

As can be seen, the jump is constant along the cut surface and it is same for both the cuts

(independent of cut surface). Moreover, this jump is exactly equal to the Burgers vector of

the dislocation in the original body Ω.

As pointed out above, when the simply connected configurations were related by rigid

rotations, the corresponding reference configurations are not related in the same way. In

fact, they were entirely different. We demonstrate this non-uniqueness in the reference

configurations in the presence of a single dislocation with Burgers vector b = be1 in the

body in Fig. 5.27 for different cut surfaces.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.27: Reference configurations when the cut surface is drawn at varying angles from
the x1 axis a) 0◦ b) 30◦ c) 45◦ d) 120◦ e) 135◦ f) 150◦ g) 180◦ h) 210◦ i) 225◦ j) 300◦ k) 315◦

l) 330◦.
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Figure 5.27 shows the reference configurations for 12 different cuts chosen to make the

body simply connected. However, we can see that none of the reference configurations are

related by rigid rotations. It should be noted that the reference configurations are overlapping

when the cut makes an angle between 0◦ and 180◦ with the axis. For other cases, the reference

configuration opens up. However, the jump in the function y along each of the cut surface is

same and constant. Moreover, it is equal to the Burgers vector of the dislocation involved.

5.5.1.2 Burgers vector in a general direction

We now consider a case wherein the Burgers vector of the dislocation density in the body

is b = b(e1 − e2). Such a field requires the presence of two components of α, (α13 and

α23) as shown in Figures 5.28a and 5.28b, respectively. After solving for W on this current

configuration from the ECDD equations, we remove the core from the body and make it

simply connected by making a horizontal (vertical) cut (as shown earlier in figures 5.24a and

5.25a) that runs from the core to the boundary. We then solve for the field y on this simply

connected configuration and map the simply connected configuration by the obtained field

y to get the reference configuration1. Figures 5.29a and 5.29b show the obtained reference

configuration when the cut is horizontal and vertical, respectively. We also plot the the

jump in the value of the function y along the cut surface in Figure 5.30. As can be seen,

the jump is again constant along the cut surface and it is independent of the cut surface.

Moreover, the jump in each component is exactly equal to the Burgers vector component of

the underlying dislocation density field.

5.5.1.3 Inverse deformations for multiple dislocations

The non-uniqueness in the reference configurations was demonstrated in the presence of a

single dislocation earlier in 5.5.1.1. This section explores the possibility of obtaining non-

unique reference configurations of a body with multiple dislocations. Figure 5.31 shows such

1The vector field y should be considered as one possible candidate inverse deformation consistent with
the inverse elastic distortion W .
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(a) (b)

Figure 5.28: Dislocation density on the current configuration a) α13 b) α23

(a) (b)

Figure 5.29: Reference configuration when a) Horizontal cut is made from the left surface
to the core as shown in Fig. 5.24a. b) Vertical cut is made from the bottom surface to the
core as shown in Fig. 5.25a.
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Figure 5.30: Jump in y1 and y2 across horizontal and vertical cut surface for the configura-
tions shown in Figs. 5.24a and 5.25a. HC: Horizontal cut & VC: Vertical cut.

a scenario when 4 dislocations are assumed to be present in the body and multiple reference

configurations, corresponding to different cuts, are obtained.

On the left panels of Figure 5.322, we show the simply connected configuration obtained

by making several cuts (shown in red) on the ‘hollowed’ configuration shown in 5.31b. The

corresponding reference configurations obtained by mapping by the field y are shown on the

right in Figure 5.32.

As can be seen from these figures, the reference configuration is non-unique as it de-

pends on the cut made inside the body to make it simply connected. Moreover, even when

the cut-configurations differ by rigid rotations (for example 5.32a and 5.32i, and 5.32c and

5.32g), the corresponding reference configurations (5.32b and 5.32j, and 5.32d and 5.32h,)

are totally different. Another important thing to note here is that unlike the case of the

single dislocation, the jump in y is not constant along the cut in the presence of multiple

dislocations, but constant along the cut between any two cores, in accord with the analytical

values they should take in these examples of configurations with multiple cuts.

2Please note that Fig. 5.32 runs into two pages
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(a) (b)

Figure 5.31: a) Dislocation density distribution α13 for multiple cores b) configuration with
cores removed.

5.6 Grain-boundary wall

A recent mathematically rigorous work [MSZ15] deduces, assuming certain total energy scal-

ings and using Γ -convergence arguments, that the macroscopic limiting energy density of

a nonlinear elastic body with dislocations is a sum of the linear elastic energy density and

an additional term representing, roughly, a grain boundary energy. Thus, the limiting en-

ergy density is not rotationally invariant, and this cannot be physically appropriate as the

observed phenomenon of polygonization shows [Nab67]. For example, dislocation cores can

stack up to form a grain boundary giving rise to the presence of a piecewise-uniform finite

rotation field and zero-stresses in the domain. To demonstrate that the energy density de-

rived in [MSZ15] is not physically appropriate, we study the stress field of a special sequence

of dislocations, wherein the dislocation cores stack up to form a dislocation wall in the limit.

We first study the stress field in the presence of a full dislocation wall in the polygonized

domain. The problem is set up in a two dimensional plane strain setting as follows: Simula-

tions are performed on a polygonized body as shown in Fig. 5.33. The body is assumed to

behave as an isotropic Saint-Venant-Kirchhoff elastic material. A non-uniform mesh, highly
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 5.32: Non unique reference configurations (on the right) obtained for different simply
connected configurations (on the left).
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Figure 5.33: Schematic layout of a typical model geometry.

refined closer to the dislocation walls, with a total of 1 million elements is used to discretize

the domain. Table 5.6 presents the values of the material constants used in the numerical

simulation.

Parameter Value
E 200 GPa
ν .30

Table 5.6: Parameter values used for calculating stress field of a sequence of dislocation
distributions.

In the limiting case, when the dislocation cores stack up to form a continuous grain

boundary wall, the lattice on one side of the wall differs from the other side by a rigid

rotation. We refer to this relative rigid rotation as the misorientation angle θ0. Now, to

construct the dislocation density for a given θ0, we first write the inverse elastic distortion

as a rotation field dependent on θ(x), defined in the full domain. We choose the following

functional form of θ to generate two dislocation walls inside the polygonized domain with

walls centered at x1 = −L0 and x1 = L0, respectively.

θ(x) =
θ0
2
(1− tanh(a x1 + aL0))−

θ0
2
(1 + tanh(a x1 − aL0)) (5.15)

The value of a = 4.2 is chosen to ensure that the grain boundary wall width is less than

b. Figure 5.34 shows a typical variation of theta in the domain for the polygonized domain
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Figure 5.34: Variation of theta in the polygonized domain for dislocation walls centered at
x1 = −L0 and x1 = L0.

shown in Fig. 5.33.

F e =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (5.16)

The dislocation density is then calculated from the curl of this inverse elastic distortion

field, α = −curl(F e−1). These localized gradients in θ over a small region give rise to

localized dislocation density which corresponds to the presence of a full dislocation wall in

the body. The α13 and α23 profiles on the polygonized domain for misorientation θ0 = 5◦ is

shown in figure 5.35a and 5.35b, respectively. For the case when θ0 = 45◦, the α13 and α23

profiles are shown in figure 5.36a and 5.36b, respectively.

Since θ does not vary in the x2 direction, α is calculated as

α13 = −ϵ312
(
F e−1

)
12,1

= cos(θ)
dθ

dx

α23 = −ϵ312
(
F e−1

)
22,1

= sin(θ)
dθ

dx
.
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(a)

(b)

Figure 5.35: a) α13 b) α23 in the polygonized domain when misorientation θ0 = 5◦.

(a)

(b)

Figure 5.36: a) α13 b) α23 in the polygonized domain when misorientation θ0 = 45◦.
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Therefore, we notice that for small misorientations, α23 ≈ θ dθ
dx
, which would be very small

as compared to its evaluation at larger misorientations. It can also be seen from Figures

5.35b and 5.36b that α23 is large for the case when θ0 = 45◦.

Once the dislocation density is prescribed, the ECDD system comprising Eqs. (3.31) and

(3.32) is solved on the domain to determine the stress field. For this problem, the guess

obtained from the linear theory is found to be inadequate to obtain a solution satisfying

Eq. (3.14d). Therefore, we solve the problem by giving a guess which is closer to the exact

solution. This guess is obtained by solving for f by using the Least-Squares finite element

method, the objective functional for which is

J =
1

2

∫
Ω

||gradf + χ− F e−1||2dV,

wherein F e is the rotation matrix corresponding to the prescribed misorientation, and χ is

known by solving the div-curl system (3.14b). The weak form is then given by

δJδf = 0

⇒
∫
Ω

gradf : gradδf =

∫
Ω

(F e−1 − χ) : gradδfdV. (5.17)

f is fixed at one point in the domain to uniquely solve for it. Solving for f from the least

squares method means (F e−1 − χ)n = gradf n holds on the external boundary weakly.

Figures 5.37a and 5.37b show the distribution of T12 in the domain for the cases θ0 = 5◦

and θ0 = 45◦ with the dislocation density fields corresponding to full walls, respectively. As

can be seen, the shear stresses almost vanish in the entire domain for both the cases. To

further verify vanishing of all the components of stress tensor T , we define two measures of

strain energy density in the domain as follows
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(a)

(b)

Figure 5.37: T12 in the polygonized domain. a) θ0 = 5◦ b) θ0 = 45◦.

ψ̄fd =
1

2µ
Ee : C : Ee (5.18)

ψ̄sd =
1

2µ
U e : C : U e (5.19)

U e = F e − I.

In the above, U e denotes the small deformation elastic distortion field, ψ̄fd and ψ̄sd denote

the finite and small deformation strain energy density, respectively.

Figures 5.38a and 5.38b show the distribution of finite deformation strain energy density

ψ̄fd in the domain for the cases θ0 = 5◦ and θ0 = 45◦, respectively. For both the cases, it

can be seen that the negligible magnitude of ψ̄fd distribution in the body demonstrate that

the body is stress-free.

Figures 5.39a and 5.39b demonstrate that the small deformation theory predicts non-zero
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(a)

(b)

Figure 5.38: Finite deformation strain energy density ψ̄fd in the polygonized domain a)
θ0 = 5◦ b) θ0 = 45◦.

strain energy distribution even when the elastic distortion F e is a rigid rotation. Therefore,

we conclude that the finite deformation theory accurately predicts zero strain energy fields

while the small deformation theory fails to do so, with the approximation being better for

small misorientation.

We now demonstrate the stress and energy density field paths induced by a sequence of

dislocation distributions, going from one core to a full wall. We calculate the stress fields in

a rectangular domain of size 100b × 50b. A uniform mesh of (0.1b)2 sized elements is used

to discretize the domain. The θ(x) resulting in the presence of a wall of single dislocations

stacked vertically centered at x1 = 0 is given by

θ(x) =
θ0
2
(1− tanh(a x1)) (5.20)

where θ0 is the relative misorientation of the lattice across the wall. The curl of the inverse
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(a)

(b)

Figure 5.39: Small deformation strain energy density ψ̄sd in the polygonized domain a)
θ0 = 5◦ b) θ0 = 45◦. In (b), for the region where ψsd > 5× 10−4, the value is 0.4.

elastic distortion field as given in Eq. (5.16) gives the dislocation density corresponding to

the full wall. The dislocation density corresponding to a single core amounts to prescribing

this dislocation density only in a region of height b. The dislocation density corresponding

to multiple cores in the body can then be prescribed by taking the dislocation density

corresponding to a single core and aligning it vertically with the previous ones. For this

particular problem, when the number of cores is less than 40, we obtain the initial guess

to the Newton-Raphson method from the small deformation equilibrium problem which is

solved on the current configuration for the given dislocation density field as discussed in

Sec. 4.1.4.3. However, for the number of cores beyond 40, the initial guess is obtained by

solving Eq. (5.17) (corresponding to a full dislocation wall). The number of cores in the

body is denoted by nc.

The chosen sequence of positions and number (of cores) for the α13 component of dislo-

cation density is shown in Figure 5.40. α23 is similarly placed and its values are assigned
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accordingly.

The same sequence (both position and number) is chosen when the misorientation is 45◦.

However, the magnitude of components of dislocation density of individual cores change.

Figures 5.41 and 5.42 show the variation of the T12 shear stress field with the number of

cores when the misorientation is 5◦ and 45◦, respectively. The stress distribution is significant

when the cores do not form a full wall. In the limit, the stress field is again zero as already

shown in Figs. 5.37a and 5.37b. The stress, in most parts of the body, is very small when the

cores form a continuous wall, except for a boundary effect where the wall meets the exterior

boundary. This small boundary effect can further be shown to reduce with mesh refinement

as shown in Figures 5.43a and 5.43b for θ0 = 5◦ and θ0 = 45◦, respectively.

Figures 5.44 and 5.45 show the finite deformation strain energy density ψ̄fd in the body

when the misorientation is 5◦ and 45◦, respectively. Similar to the Figures 5.38a and 5.38b

presented earlier, we notice that ψ̄fd again becomes negligible for the case when the disloca-

tions arrange to form a full grain boundary wall.

Figures 5.46a and 5.46b show the effect of mesh refinement on the finite deformation

strain energy density ψ̄fd in the presence of grain boundary walls for misorientations 5◦ and

45◦, respectively. We can see that the strain energy density in the domain decreases further

on refinement.

For θ0 = 45◦, an important thing to note from Figures 5.42 and 5.45 is that there is a

drastic change in the stress and the strain energy distributions when the number of cores nc

exceed 40. The variation (for both T12 and ψfd) which was spreadout in the entire domain

suddenly becomes localized near the core and the boundary when nc > 40. It is clear that

when the number of (same sign) dislocations in the body increases from 0 the stress and

energy have to increase. It is also clear that the full wall must represent a stress and energy

free configuration. Whether the transition between these behaviors has to be an abrupt

‘phase transition’, as indicated by our calculations, is an interesting question for further

study.
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Figure 5.40: Position of dislocation cores α13 field in the body when misorientation is 5◦ for
different number of dislocation cores.
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Figure 5.41: T12 distribution in the body when θ0 = 5◦ for different number of dislocation
cores, all plotted on the same scale.
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Figure 5.42: T12 distribution in the body when θ0 = 45◦ for different number of dislocation
cores, all plotted on the same scale.
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(a) (b)

Figure 5.43: T12 on a refined mesh when dislocations arrange to form a full grain boundary
wall a) θ0 = 5◦ b) θ0 = 45◦.

Figures 5.47a and 5.47b show the mapped e1 vectors by the elastic distortion field on

the current configuration. We can see that the lattice on the left of the dislocation wall is

rigidly rotated w.r.t. the lattice on the right by the prescribed misorientation angle.

Also, we calculate the change in volume as described in Sec. 5.5. For the cases when the

cores combine to form a full grain boundary wall, the % change in volume comes out to be

0 to a very high precision (10 decimal places), further ensuring that the deformation is just

a rigid rotation in the domain.
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Figure 5.44: ψ̄fd distribution when θ0 = 5◦ for different number of dislocation cores, all
plotted on the same scale.
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Figure 5.45: ψ̄fd distribution when θ0 = 45◦ for different number of dislocation cores, all
plotted on the same scale.
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(a) (b)

Figure 5.46: ψ̄fd on a refined mesh when dislocations arrange to form a full grain boundary
wall a) 5◦ b) 45◦.

(a) (b)

Figure 5.47: Mapping of e1 vectors by elastic distortion field F e.
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Figure 5.48: Mesh with 23, 000 elements for dynamic problems

5.7 (Stress-uncoupled) FDM with inertia

In this section, we present some results of calculations where inertia is accounted for in the

numerical formulation. The full algorithm for the dynamic case appears in Table 4.2. The

results presented here are for the case when the dislocation velocity is uncoupled to the

underlying stress field. We study two problems:

• A single edge dislocation dynamically moving in the e1 direction at constant veloc-

ity. The solution reflects similarities to the longitudinal propagation of dynamic shear

bands.

• Two dislocations of opposite sign moving towards each other with prescribed speeds

and annihilate.

Although the dislocation velocity is uncoupled to the underlying stress field, the dislo-

cation density evolution is coupled to the evolving deformation of the body through the
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gradient of the material velocity field v which makes the problem nonlinear.

In the formulation, b is a fundamental length scale that correlates with the core size. At

the atomistic scale, b denotes the Burgers vector of the full dislocation in the material. At

the mesoscale, it could be a length scale related to the core-size of a shear band, a measurable

quantity.

A non-uniform mesh, shown in figure 5.48, that is highly refined in a layer where the

dislocation density will evolve is chosen for both the problems. Table 5.7 presents the values

of the material constants used for the simulations presented in this section.

Parameter Value
E 200GPa
ν .30

Table 5.7: Parameter values used for modeling dynamics of single dislocation.

5.7.1 Single dislocation

The problem is set up as follows: a single edge dislocation with a Burgers vector b = be1

is considered in a domain of dimensions [−20b, 20b] × [−20b, 20b]. The edge dislocation is

modeled by prescribing an initial dislocation density tensor α of the form

α13(x1, x2, t = 0) = φ0

(
1− tanh2

(
|x− p|

b

))
αij(x1, x2, t = 0) = 0 if i ̸= 1 and j ̸= 3.

(5.21)

φ0 is a constant chosen to give a dislocation of strength b by ensuring
∫
A0
α13 dA = b, where

A0 is any area patch in the domain at t = 0 that encloses the dislocation. x1 and x2 are the

in-plane coordinates of any point x in the domain and p denotes the initial position of the

dislocation. At all times, the dislocation is assumed to be moving with a constant velocity

V = vs
2.0

e1, where vs is the shear wave speed of the body. For the computation presented

below, p is taken to be 0. The system is then evolved by following the algorithm given in

Table 4.2.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 5.49: Position of dislocation core at different times t∗ a) 0 b) 3 c) 6 d) 9 e) 12 f) 15
g) 18 h) 21 i) 24 j) 30
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Figure 5.49 shows the dislocation position at various non-dimensional times t∗ = t vs
b
,

where t is the dimensional time. We can see the formation of a slip step when the dislocation

exits the body in 5.49j. Another interesting feature to note here is that as the evolution

progresses, the dislocation density is not radially symmetric anymore, and tilts towards the

right. The distribution is almost elliptical with major axis along the direction of tilting. The

tight coupling of the dislocation transport equation Eq. (3.14a) to the underlying material

velocity field v through its gradient L in the finite deformation case gives rise to such a

distribution.

Furthermore, the tilt towards the right is because of the positive (α × V )12 component

of the plastic strain rate generated by the motion of the dislocation. Therefore, a negative

dislocation (b = −be1) moving in the −e1 direction also tilts towards the right as the plastic

strain rate component is still positive which can be seen in Fig. 5.51.

Figure 5.50 shows the evolution of the F12 component of the deformation gradient F in

the domain at the corresponding times. There is an accumulation of shear deformation in

the wake of the moving dislocation. The body is permanently deformed when the dislocation

exits the body with a clear region where slip occurred, mimicking a shear band.

5.7.2 Multiple dislocations

The problem is set up as follows: Two edge dislocations with Burgers vectors b1 = be1 and

b2 = −be1 are considered in a domain of dimensions [−20b, 20b] × [−20b, 20b]. The edge

dislocations are modeled by prescribing an initial dislocation density tensor α of the form

α13(x1, x2, t = 0) = φ0

(
tanh2

(
|x− p|

b

)
− tanh2

(
|x− q|

b

))
αij(x1, x2, t = 0) = 0 if i ̸= 1 and j ̸= 3.

The value of φ0 is assumed to be the same as in Eq. (5.21) which ensures the strength of

each dislocation to be b. p and q are the initial position vectors of the two dislocations. In
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 5.50: F12 in the domain at different times, t∗ a) 0 b) 3 c) 6 d) 9 e) 12 f) 15 g) 18 h)
21 i) 24 j) 30.
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the computed example below, p and q are taken as −5be1 and 5be1, respectively. At all

times, each dislocation is assumed to be moving with a prescribed velocity given by

V i =
vs
2.0

e2 × li (5.22)

where li = 1
|bi|(b

i ⊗ e3)
Te1 is the line direction of the ith dislocation. Therefore, the positive

and negative dislocations move in the e1 and −e1 directions, respectively, at the same

constant speed. The system is then evolved by following the algorithm given in Table 4.2.

Figure 5.51 shows the dislocation positions at various non-dimensional times, t∗. It can

be seen that the two dislocations of opposite sign annihilate each other leaving behind a

slipped embryo along the path of the dislocations in the domain. This is demonstrated in

Figure 5.52 which shows the evolution of the F12 component of the deformation gradient in

the domain at the corresponding times.

As noted in [VBAF06], for a 1d small deformation case (dislocation evolution is uncou-

pled to stress field and material velocity gradient), when dislocation densities of opposite

sign meet, a discontinuity (shock) develops, grows, and finally disappears. Here, we have

presented a full finite deformation scheme that is able to qualitatively resolve the shock and

model the result of the interaction, which is that the dislocations are annihilated.
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(a) (b)

(c) (d)

(e) (f)

123



(g) (h)

Figure 5.51: Position of dislocation core at different times, t∗ a) 0 b) 1.5 c) 3 d) 4.5 e) 6 f)
12 g) 18 h) 24.

124



(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 5.52: F12 in the domain at different times, t∗ a) 0 b) 1.5 c) 3 d) 4.5 e) 6 f) 12 g) 18
h) 24.
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Chapter 6

Influence of inclusion size on material

strength: MFDM
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In this section, we present the results for an elastoplastic problem where we demonstrate

that, for a given volume fraction of hard inclusions, the strengthening of the metal is greater

for smaller particle size.

The experiments performed in Ebeling et. al [EA66] used a copper-silicon alloy for dif-

ferent particle sizes and volume fractions of SiO2. The samples were then oriented for single

slip and subjected to tensile loading. Their experimental results demonstrated that the

strength of these alloys was greater than that of copper single crystals and this enhancement

in strength depended on the size, spacing, and volume fraction of the inclusions. Moreover,

for a given volume fraction of inclusion particles, the strength was enhanced much more

when the inclusion sizes were small as compared to large inclusion sizes.

Several studies have qualitatively modeled the same phenomena under simple shearing

motion using different continuum models [YGVdG04, BNVdG01, RWF11]. Here, we use the

MFDM formulation to demonstrate this effect with elastic inclusions in a rate-dependent

elastic-plastic material. Table 5.3 presents the material parameters for this simulation.

Parameter Value
E 70 GPa
ν .17

(a)

Parameter Value

Γ̂ 1s−1

γ̂0 1s−1

m 20
b 2.05Å
g0 .050 GPa
gs .210 GPa
Θ0 .3925 GPa
k0 20
l 0.1µm
E 200 GPa
ν .30

(b)

Table 6.1: Parameter values used for the simulations a) Inclusion b) Matrix.

The problem set up and boundary conditions for the overall simple shearing motion are

similar to the description already given in Sec. 5.1. Simulations are performed on domain

sizes of (5µm)2 and (50µm)2. A uniform grid of 128 × 128 elements is taken to mesh the
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Figure 6.1: Schematic layout of the geometry with a) 4 inclusions b) 16 inclusions.

domain. The volume fraction of the inclusion is taken to be around 14%. Two cases are

considered as shown in Fig. 6.1: i) 4 large inclusions and ii) 16 small inclusions. We use the

J2 plasticity model (3.23) for the plastic strain rate due to SSDs.

Figure 6.2 show the stress-strain response (τ vs. Γ ) of the body. MFDM is able to model

the dependence of the mechanical response of the material on the size of the reinforcing

particles.

Figures 6.3 and 6.4 show the distribution of the dislocation density for the (5µm)2 and

(50µm)2 domain sizes, respectively. It can be seen that for the (5µm)2 sample size, the

average dislocation density norm in the domain is greater when the inclusions are smaller in

size. For the larger sample size, we see that the magnitude of dislocation density is smaller

as compared to the (5µm)2 domain size and therefore not much hardening is produced.
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Conventional - 16 I

Figure 6.2: Size effect using J2 MFDM due to the presence of inclusions. I: Inclusion.

(a) (b)

Figure 6.3: Dislocation density at 10% strain when the size of inclusions is decreased keeping
the volume fraction same for (5µm)2 domain size a) 4 inclusions b)16 inclusions.
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(a) (b)

Figure 6.4: Dislocation density at 10% strain when the size of inclusions is decreased keeping
the volume fraction same for (50µm)2 domain size a) 4 inclusions b)16 inclusions.
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Chapter 7

Size effect & dislocation patterning in

crystal plasticity MFDM
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In this chapter, we demonstrate size effects and the emergence of dislocation patterns

and dipolar dislocation walls using crystal plasticity MFDM. Stressed dislocation pattern

formation in crystal plasticity at finite deformation is also demonstrated. The dislocation

microstructures emerge without any consideration of latent hardening or constitutive as-

sumptions related to cross-slip. Crystal orientation effects on the pattern formation and

mechanical response are also demonstrated.

Simulations are performed on square domains of sizes (1µm)2, (5µm)2, and (100µm)2.

The details of the meshes employed are given in Table 7.1 with rationale presented in Sec. 7.3.

Velocity b.c.s corresponding to overall simple shear are imposed for a plane strain problem.

At any point P = (x1, x2) on the boundary a velocity of v2 = 0 and v1 = Γ̂ y(x2) is imposed,

where y(x2) is the height of the point P from the bottom surface as shown in the schematic

of the problem in Figure 7.1. Γ̂ is the applied shear strain rate. The initial (t = 0) slip

system orientation will be denoted by the parameter θ0.

𝑣" = Γ̇𝑦	

𝒗 = 𝟎

𝑦

𝑃 = (𝑥", 𝑥.)

−𝜃2
𝜃2 𝑥"

𝑥.

Top	Surface

Right	
Surface

Left	
Surface

Bottom	Surface

𝑣. = 0

Figure 7.1: Schematic layout of a typical model geometry.
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Sample Size Mesh
(1µm)2 70× 70
(5µm)2 70× 70
(100µm)2 70× 70

Table 7.1: Details of finite element mesh used in computations.

Parameter Value

b 4.05Å
g0 17.3 MPa
gs 161 MPa
Θ0 392.5 MPa
m .03
E 62.78 GPa
ν .3647

Γ̂ 1 s−1

γ̂0 1 s−1

k0 20

l
√
3× 0.1µm

Table 7.2: Default parameter values used in computations.

The strain Γ at any time t is given as Γ = Γ̂ t. All material parameters used in the

simulations are presented in Table 7.2.

7.1 Dislocation microstructure and size effect in mul-

tiple slip

For multiple slip, we assume that there are 3 slip systems present in the crystal, oriented at

θ0
◦,−θ0◦, and 0◦ from the x axis as shown above in Fig. 7.1. The slip directions and normals

for the 3 slip systems are given as

m1
0 = (cos(θ0), sin(θ0)) n1

0 = (− sin(θ0), cos(θ0))

m2
0 = (cos(0), sin(0)) n2

0 = (− sin(0), cos(0))

m3
0 = (cos(θ0),− sin(θ0)) n3

0 = (sin(θ0), cos(θ0)).
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Thus, θ0 characterizes the orientation of all the slip systems at t = 0.

7.1.1 Size effect

We demonstrate size effects in elastic-plastic material behavior up to large strains for both

the plastically constrained and unconstrained cases defined in Section 3.4.

Figure 7.2 shows the averaged stress-strain (τ vs. Γ ) response for all the domain sizes and

both boundary conditions (plastically constrained and unconstrained), demonstrating the

‘smaller is harder’ size effect under simple shear. These results are in qualitative agreement

with experimental observations [FMAH94, LHT+12, SWBM93, EA66].

0.0 0.08 0.16 0.24 0.32 0.4

Γ

0.00.0

2.5

5.0

7.5

10.0

12.5

τ
/
g

0

conventional plasticity

(1µm)2 C

(1µm)2 U

(5µm)2 C

(5µm)2 U

(100µm)2 C

(100µm)2 U

(1µm)2 C

(1µm)2 U

(5µm)2 C

(5µm)2 U

(100µm)2 C

(100µm)2 U

Figure 7.2: Size effect under simple shear. C: Constrained Boundaries U: Unconstrained
Boundaries.

For the unconstrained case, the response of the larger domain size of (100µm)2 overlaps

the conventional plasticity solution. This is expected as the larger sample develops no

inhomogeneities in deformation and therefore |α|≈ 0. However, the smaller domain sizes

(1µm)2 and (5µm)2 develop inhomogeneity at small strains of (approximately) 0.5% and

1.7%, respectively. This (controlled) instability leads to deviation from the homogeneous

solution, which in turn increases the local hardening, resulting in harder response than the
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conventional solution. This instability of the time-dependent spatially homogeneous simple

shearing solution for the MFDM theory is discussed in [RA06, DAS16] at small deformation.

The (1µm)2 domain size for the plastically constrained case displays the hardest re-

sponse. This is because the constrained boundary conditions lead to gradients in the plastic

strain rate, Lp, near the boundaries, as explained below, and these gradients are larger for

the smaller domain sizes (by simple scaling arguments), this resulting in greater hardening

through (3.33), apart from associated internal stress effects. Of course, the presence of α also

gives rise to additional plastic strain rate of the form α×V in MFDM which is a softening

effect, but the net effect is one of hardening in overall response.

We now explain the reason for the development of inhomogeneity in the α field with

the onset of plasticity for the case of constrained boundary conditions. This emergence of

inhomogeneity can be attributed to the fact that the no-flow boundary condition induces

gradients in Lp which lead to the evolution of α in the domain. For example, taking n = e2

on the top boundary with α = 0 instantaneously, a no-flow boundary implies

(Lp × n) = 0 on ∂Ω

=⇒


0 0 Lp

11

0 0 Lp
21

Lp
33 0 0

 = 0 (7.1)

on the top/bottom boundary whereas there is no such constraint on Lp in the interior of the

domain. This induces a gradient in the Lp
21 and L

p
11 components of the plastic strain rateLp in

the x2 direction near the top and bottom boundaries, which contributes to the development of

α23 and α13 in the domain. On the left and right boundaries similar considerations hold, but

weakened with the progress of deformation, as can be seen below. The normal, n = (n1, n2),
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changes direction with deformation and

(Lp × n) = 0 on ∂Ω

=⇒


0 0 Lp

11n2 − Lp
12n1

0 0 Lp
21n2 − Lp

22n1

Lp
33n2 Lp

33n1 0

 = 0 (7.2)

which implies that at small deformation (n1 = ±1, n2 = 0), Lp
12 is constrained at the bound-

ary. This gives rise to a gradient of Lp
12 in the x1 direction which contributes to the develop-

ment of α13. As the normal changes direction, the linear constraints Lp
11n2 − Lp

12n1 = 0 and

Lp
21n2 − Lp

22n1 = 0 have to hold which allow more freedom in accommodating deformation

but, nevertheless, gradients do develop.

Before moving on to presenting the results for the emergence of dislocation patterns

in the presence of external loads, we verify that the solution for the larger domain size is

close to the one obtained from conventional plasticity theories. For the larger domain size

of (100µm)2 with unconstrained boundaries, the dislocation density norm at 40% strain is

small and homogeneous, which is similar to the prediction of conventional plasticity theories.

The stress strain curve therefore also overlaps the conventional plasticity result as shown in

Fig. 7.2.

7.1.2 Dislocation microstructure

We now present results of stressed dislocation patterns in crystal plasticity at finite deforma-

tion using MFDM. Fig. 7.4 shows the norm of the dislocation density, ρg, at various strains

for the (1µm)2 domain size for plastically constrained boundaries. It can be observed that

• Microstructural patterns start developing even before 2% strain for the (1µm)2 domain

size. This is demonstrated in Fig. 7.3 which indicates that the |α| becomes inhomoge-

neous at very early stages of deformation (strains ¡ ≈ 0.4%) and has a variation of an
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order of magnitude in the interior of the domain.

• The distribution at 5% strain seems to resemble the blocky structure as shown in

[JW84].

• The dislocation density magnitude increases in the domain up to 10% strain. However,

ρg diminishes in the interior with increasing strain and becomes quite small at 40%

strain.

• At 60% strain, the sample develops two prominent (dipolar) dislocation walls enclosing

a distinct region of low dislocation density (by nearly two orders of magnitude), forming

a dislocation cell-like structure. The dipolar nature of the walls is confirmed by looking

at the magnitude of the individual dislocation components, α13 and α23 as shown in

Figures 7.5a and 7.5b respectively.

• The Burgers vector, b, content of any area patch A is given by

b =

∫
A

αn dA.

An important point to note here is that in the case of plastically constrained boundaries,

there is no flux of ED or SD from the boundary into the domain. Therefore, in the

absence of any inflow or outflow flux of dislocations, and the α evolution being a

conservation law (3.14a) for Burgers vector, the total Burgers vector content of the

whole body has to remain constant in time. Since, the initial Burgers vector content

was 0 (dislocation free at t = 0), the dislocation microstructure needs to be such that

the Burgers vector (for the whole domain) remains 0 at all times, which makes the

appearance of a distribution with opposite signs inevitable as shown in Figure 7.5. Of

course, that dipolar walls should be produced is not a consequence of the conservation

law and a somewhat realistic outcome of our model.
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Figure 7.3: ρg for the (1µm)2 domain size at different strains with plastically constrained
boundaries and θ0 = 30◦ (nsl = 3).
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Figure 7.4: ρg for the (1µm)2 domain size at different strains with plastically constrained
boundaries and θ0 = 30◦ (nsl = 3).
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(a) (b)

Figure 7.5: a) α13 b) α23 for the (1µm)2 domain size at 60% strain with plastically con-
strained boundaries and θ0 = 30◦ (nsl = 3). The corresponding ρg is shown in Fig. 7.4.

The microstructural patterns for the domain size of (5µm)2 are significantly different

from those of (1µm)2 domain size. Figure 7.6 shows the comparison of the microstructure

obtained for the (1µm)2 and (5µm)2 domain sizes at 40% strain. The dislocation density

is generated because of the constrained boundary conditions (as explained earlier in the

discussion surrounding (7.1) and (7.2)) for both the domain sizes, but for the (5µm)2 domain

the accumulation occurs only near the boundary. The difference can be understood by noting

that the sum of the widths of the two boundary layers in the (5µm)2 domain add up to almost

the entire linear dimension of the (1µm)2 domain. Assuming the patterns have an intrinsic

length scale in the submicron range, as substantiated by the (1µm)2 results, dislocation

patterns are likely to occur within the boundary layers of the (5µm)2 domain.

At finite strains, the accumulation of dislocations develops an asymmetry along the

boundaries for the (5µm)2 domain size. This is because of the change in orientation of

the boundary normal with deformation at the left and right boundaries. This is corrobo-

rated by Figure 7.7 where the dislocation density distribution is symmetric at small applied

strain (the asymmetry in Fig. 7.7 persists at large applied strain).

7.1.3 ssd distribution

A large part of the plastic strain rate at mesoscales comes from expansion of unresolved

dislocation loops that constitute SD. The ssd, ρs, given by Eq. (3.34) in MFDM, is propor-
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(a) (b)

Figure 7.6: Comparison of ρg for the a) (1µm)2 b) (5µm)2 sample sizes with plastically
constrained boundaries at 40% strain and θ0 = 30◦ (nsl = 3).

(a) (b)

Figure 7.7: ρg distribution for the (5µm)2 domain size with plastically constrained bound-
aries at a) 0.5% b) 1% strain and θ0 = 30◦ (nsl = 3).
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tional to the root-mean-square of the SD. Figure 7.8 presents the distribution of ssd in the

domain for the (1µm)2 sample size with plastically constrained boundaries. The distribu-

tion is mildly patterned in the domain, with magnitude increasing with strain. There is a

variation of at least an order of magnitude in the domain at all strain levels.

Figure 7.8: ssd distribution for the (1µm)2 domain size at different strains with plastically
constrained boundaries and θ0 = 30◦ (nsl = 3).
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7.1.4 Unloaded stressed microstructures

The (1µm)2 domain is unloaded from 60% strain by reversing the loading direction. The

boundary conditions for velocity are taken as v2 = 0 and v1 = −Γ̂ y until τ (averaged stress

on the top surface) becomes zero. Then, we decrease the nodal reaction forces steadily

over time until a tolerance of maxj{abs(Fj)} < 10−4 × (g0 h) is reached, where {abs(Fj)}

refers to the absolute value of the jth entry in the nodal reaction force array {F}, defined in

Sec. 4.2, with size equal to number of degrees of freedom where (material) velocity Dirichlet-

boundary conditions are applied, and h is the element size. Thereafter, we let the system

achieve thermodynamic equilibrium by requiring all evolution, i.e., of α, f , g, to become

small. Hence, if at all, these microstructures evolve very slowly.

The ρg distribution on the unloaded configuration is shown in Fig. 7.9a. The α13 and α23

components of the dislocation density tensor are shown in Figures 7.9b and 7.9c, respectively.

(a) (b)

(c)

Figure 7.9: Unloaded, stressed microstructure a) ρg b) α13 c) α23 for the (1µm)2 domain
size with plastically constrained boundaries and θ0 = 30◦ (nsl = 3).
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In Fig. 7.10, we plot the elastic energy density in the domain, given by ρϕ (3.20), before

and after the unloaded equilibration. The energy density variation in the body after unloaded

equilibration is at least an order of magnitude smaller in most of the interior of the domain

than the energy density before unloading.

(a) (b)

Figure 7.10: Elastic energy density for the unloaded (1µm)2 domain size with plastically
constrained boundaries and θ0 = 30◦ (nsl = 3) a) before b) after unloading.

(a) (b)

Figure 7.11: Cauchy stress norm for the (1µm)2 domain size with plastically constrained
boundaries and θ0 = 30◦ (nsl = 3) a) before b) after unloading.

Figure 7.11 shows the non-dimensionalized norm of the stress field in the domain before

and after unloaded equilibration. It can be seen that the body is not stress-free after equi-

libration, and is stressed upto ≈ 6 times the initial yield strength g0. The corresponding

plastic strain rate magnitudes, γ̂k for kth slip system, are found to be negligible, γ̂k

γ̂0
≈ 10−8.

Hence, we conclude that the unloaded stressed microstructures are kinetically trapped,

(computational) metastable equilibrium solutions of the theory.

146



We remark that the entire class of ED distributions arising from spatially heterogeneous

rotation distributions in unloaded bodies constitute exact equilibria of our model, since they

result in vanishing stress fields. This results in vanishing γ̂k on any slip system which implies

V = 0 and Lp = 0 from (3.30) and (3.25), respectively, and consequently α,f , g cease to

evolve from such states.

7.1.5 Microstructure with unconstrained boundary conditions

We demonstrate that the emergence of patterning for the (1µm)2 domain size is not de-

pendent on the condition that the boundaries be plastically constrained. Figure 7.12 shows

the dislocation pattern in the (1µm)2 domain size at different strains with unconstrained

boundaries (θ0 = 30◦, nsl = 3). After an initial burst at relatively small strains, the patterns

again become pronounced at 60% strain as was the case for constrained boundaries presented

Fig. 7.4.

Figure 7.12: ρg at different strains for the (1µm)2 domain size with plastically unconstrained
boundaries and θ0 = 30◦ (nsl = 3).
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7.1.6 Effect of slip system orientation on microstructure and stress

response

We now explore the question of variation in the microstructural patterns when the initial

lattice orientation, θ0, is changed. Keeping all parameters as in Table 7.2 except for setting

θ0 to 45◦, we obtain microstructural patterns for the (1µm)2 domain size shown below in

Fig. 7.13 that are very similar to the microstructure in Fig. 7.4 obtained for θ0 = 30◦. This

is because the applied averaged simple shear deformation can be accommodated by three

independent slip systems regardless of orientation (in fact two suffices for incompressible

velocity fields).

Figure 7.14 presents a comparison of the stress-strain plots for the (1µm)2 domain size

when the orientation of the slip system is changed from θ0 = 30◦ to θ0 = 45◦. This change in

orientation results in a harder stress-strain response which can also be seen in corresponding

responses modeled by conventional theory.

0.0 0.1 0.2 0.3 0.4

Γ
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conventional plasticity 30◦

conventional plasticity 45◦

45◦ 30◦45◦ 30◦

Figure 7.14: Stress-strain response for the (1µm)2 domain size for θ0 = 30◦ and θ0 = 45◦

(nsl = 3).
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Figure 7.13: ρg distribution for the (1µm)2 domain size at different strains with plastically
constrained boundaries and θ0 = 45◦ (nsl = 3).
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7.2 Dislocation microstructure in single slip

Motivated by the approximate invariance of the microstructural patterns with respect to

crystal orientation and our conjecture in Sec. 7.1.6 that the issue is related to the accommo-

dation of the applied average deformation (rate) field by the plastic slip systems available,

we now consider a body with only a single slip system. The hypothesis to be tested is that

in this scenario the applied deformation cannot be accommodated, thus leading to higher

stresses and elastic incompatibilities, the degree of which should depend on the slip system

orientation with respect to the applied simple shear. By ‘accommodation’ here we mean

that the tensorial direction of the simple shearing motion defined by the applied boundary

conditions can be represented as a linear combination of the evolving slip-system dyads of

the material, assuming active slip systems.

As before, the initial orientation of the slip system will be defined by θ0, which is the

angle of the slip direction from the x1 axis. The initial slip direction and normal for the slip

system is given as

m1
0 = (cos(θ0), sin(θ0)) n1

0 = (− sin(θ0), cos(θ0)).

7.2.1 Dislocation microstructure

We plot the microstructure for the (5µm)2 domain size at 5% strain in Figure 7.15 for

θ0 = 30◦. We can see that for the case of a single slip system, the patterns in the (5µm)2

domain size are very different from those for the 3-slip-systems case (shown in Fig. 7.6b).

This can be attributed to the fact the the deformation now is much more constrained due

to the presence of only a single slip system. In contrast to Fig. 7.6b, cell structures form

in the interior of the domain at 5% strain. Therefore, these observations substantiate our

conjecture related to accommodation.

Figure 7.16 shows the individual components of the dislocation density tensor for (5µm)2
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Figure 7.15: ρg for the (5µm)2 domain size at 1% and 7% strain with plastically constrained
boundaries and θ0 = 30◦ (nsl = 1).

domain size at 5% strain. We can notice monopolar walls, of both types (α13 and α23) of

dislocations, forming in the interior of the domain. If we relate these to the norm of the

dislocation density tensor shown in Fig. 7.15, we can see that these monopolar walls are the

boundary of the cell structure formed in the center of the domain. Of note is also the dipolar

wall in kink orientation [Asa83, Sec. IV A] to the primary (and only) slip plane.

(a) (b)

Figure 7.16: a) α13 b) α23 for the (5µm)2 domain size at 7% strain with plastically con-
strained boundaries and θ0 = 30◦ (nsl = 1).
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7.2.2 Effect of slip system orientation on microstructure and stress

response

Here we explore the change in the microstructural pattern for the (5µm)2 domain size when

the orientation of the slip system is changed from 30◦ to 45◦. Figure 7.17 shows the obtained

patterns for θ0 = 45◦. It can be seen that the ρg becomes significant only at strains larger

than 5%. This is because at small deformation, the resolved shear stress on the slip system,

with instantaneous orientation denoted by θ, is given as τ = m · Tn = T12 cos(2θ) which

is small for θ ≈ 45◦ so that the applied deformation has to be elastically accommodated.

As the deformation progresses, the lattice rotation affects the slip system orientation θ.

This change in orientation of the slip system produces a small plastic strain rate on it and

results in the development of ED because of the plastically constrained boundary condition

as explained earlier in the discussion surrounding (7.1) and (7.2). However, even though the

plastic strain gradients are large, the plastic strain itself is small enough to not cause any

noticeable change from elastic behavior in the stress-strain response.

Figure 7.17: ρg for the (5µm)2 domain size at different strains with plastically constrained
boundaries and θ0 = 45◦ (nsl = 1).

A comparison of the stress-strain behavior for the (5µm)2 domain size when the initial

orientation θ0 of the slip system is changed from 30◦ to 45◦ is presented in Fig. 7.18. As

can be seen, the response is almost 50 times harder than the corresponding data shown in
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Fig. 7.2. As already explained above, this is the result of the elastic accommodation of the

initial deformation.
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Figure 7.18: Stress-strain response for the (5µm)2 domain size for plastically constrained
boundaries and θ0 = 30◦ and θ0 = 45◦ (nsl = 1).

7.3 Convergence

This section deals with the study of convergence in stress-strain response and microstructural

patterns obtained in Sec. 7.1 (nsl = 3).

7.3.1 Stress-strain response

We study the convergence of the stress-strain responses for the (1µm)2 and (5µm)2 domain

sizes with plastically constrained boundaries. The details of the meshes used in this section

are as follows. For the (1µm)2 and (5µm)2 domain sizes, we use two uniform meshes of

70× 70 and 140× 140 elements, referred to as the coarse and fine meshes, respectively.

The averaged stress-strain plot for the case when the initial orientation θ0 is 30
◦ is plotted

in Fig. 7.19. The stress strain plots (almost) overlap upto 40% strain for (1µm)2 domain

size. The maximum difference (at 40% strain) in the stress-strain curve is 1.2%, and the

difference at (28%) strain is 1.8% for the smaller sample. For the case when θ0 = 45◦,

the stress-strain plots for the (1µm)2 sample size overlap up to 40% strain and there is no
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Figure 7.20: Convergence in stress-strain response for the (1µm)2 domain size with plasti-
cally constrained boundaries for coarse and fine meshes (θ0 = 45◦, nsl = 3).

discernible difference between the results obtained using coarse and fine meshes as shown in

Fig. 7.20.

The unconstrained cases represent a more conservative simulation scenarios with smaller

gradients than the constrained case, and hence the same mesh sizes suffice for them.
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Figure 7.19: Convergence in stress-strain response for the (1µm)2 and (5µm)2 domain sizes
with plastically constrained boundaries for coarse and fine meshes (θ0 = 30◦, nsl = 3).
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7.3.2 Dislocation microstructure

We discuss convergence of the microstructural patterns for the specific case of Sec. 7.1 wherein

nsl = 3 and θ0 = 30◦ (we believe that the same arguments apply to Sec. 7.2 as well).

The norm of the dislocation density ρg and the components of α (α13 and α23) for the

(1µm)2 domain size at 60% strain for the coarse mesh are shown in Figures 7.21a, 7.21b, and

7.21c, respectively. The localized concentrations are not aligned with the mesh. Moreover,

the signed components are spread over more than 2 elements in the mesh. Similar observation

can also be made for the microstructure on the refined mesh, as shown in Fig. 7.21d.

(a) (b)

(c) (d)

Figure 7.21: Microstructure for the (1µm)2 domain size at 60% strain with plastically con-
strained boundaries and θ0 = 30◦ (nsl = 3): a) ρg b) α13 c) α23 computed with the coarse
mesh, d) α23 computed with the fine mesh.

However, it is also clear, from a comparison of Figs. 7.4 and 7.22, that even though the

stress-strain curves converge for the coarse and the fine meshes, the microstructures are not

converged for the mesh sizes considered. Nevertheless, we show that there are similarities in
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the microstructures obtained for the fine and coarse meshes considered at different levels of

applied strain, as shown in Figure 7.23.

7.4 A necessary condition for microstructural patterns

Our model predicts inhomogeneous distributions of dislocations leading to the formation of

microstructural patterns such as dipolar dislocation walls and cell structures. The discussion

surrounding (7.1) and (7.2) explains the reason for the generation of dislocation density in

the constrained case, but the results of the unconstrained case in Sec. 7.1.5 begs the question

of the real reason for the development of patterns in MFDM.

In [RA06], using the small deformation variant of MFDM, mild patterns were obtained

for the (1µm)2 domain size with constrained and unconstrained boundaries. To understand

the issue, a simplified system in 1 space dimension was analyzed in [RA06, Sec. 4.2.1] and

linearized weak hyperbolicity of the homogeneous state was pointed out as a possible reason

for giving rise to a (controlled) instability making the system sensitive to perturbations

and leading to the formation of patterns. The homogeneous state may be thought of as

a situation where the α and g evolution equations ((3.14a) and (3.33) respectively) are

uncoupled from each other instantaneously, which leads to the hypothesis that k0 = 0 may

lead to the suppression of patterns.

This hypothesis, i.e. k0 = 0 suppresses patterns, was tested in [DAS16] using a simple

1-d ansatz, and it was again observed that the microstructure vanishes in the absence of

any coupling between the dislocation transport (3.14a) and the strength evolution equations

(3.33).

Here, we test the same hypothesis in the finite deformation setting. k0 = 0 is assumed,

with all other parameters taken from Table 7.2 along with θ0 = 30◦ and nsl = 3. Figure 7.24

shows the distribution of ρg at different strains under such a scenario. Comparing Fig. 7.24

with Fig. 7.4, we notice that the dislocation patterns entirely change when k0 = 0; they
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Figure 7.22: ρg for the (1µm)2 domain size at different strains with plastically constrained
boundaries on the fine mesh with θ0 = 30◦ (nsl = 3).
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Figure 7.23: Results from the coarse mesh on left, and the fine mesh on right: Similarity of
patterns for the (1µm)2 domain size with plastically constrained boundaries and θ0 = 30◦

(nsl = 3).
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are mildly patterned with much of the dislocations accumulated near the boundary similar

to the case of the (5µm)2 sample size shown in Fig. 7.6b. Therefore, we conclude that a

necessary condition for patterning in full finite deformation MFDM is the coupling between

equations of dislocation transport and evolution of strength evolution through k0 ̸= 0.

Figure 7.24: Distribution of ρg for the (1µm)2 domain size at different strains with k0 = 0
and plastically constrained boundaries (θ0 = 30◦, nsl = 3).

7.5 Effect of the length scale, l

Here, we look at the effect of l, defined in (3.25), on the microstructure obtained during

simple shearing of the (1µm)2 sample size with constrained boundaries, θ0 = 30◦, and

nsl = 3, with all other parameters as in Table 7.2.

We first look at the variation in stress-strain response for different values of l shown in

Fig. 7.25. A decrease in the value of l results in stronger response. As already explained,

this is due to the fact that a larger l decreases the magnitude of α in the domain and
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consequently leads to smaller hardening (3.33). Next we look at the effect of l on the

microstructural patterns shown in Figure 7.26. It can be seen that increasing the value of

l makes a noticeable difference in the applied strain where qualitatively similar patterns of

dislocations are formed. We notice that for l = 2.5× 0.1µm we get several dislocation cells

in the domain at 65% strain. Similar and even more intense structures can be noticed for

l =
√
2×0.1µm at 53% strains. Therefore, we can conclude that similar microstructures form

at comparatively smaller strains as l is decreased, and the distribution has higher magnitude

on average as well.
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Figure 7.25: Stress strain response for different values of l for the (1µm)2 domain size with
plastically constrained boundaries (θ0 = 30◦, nsl = 3).
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(a) (b)

(c) (d)

Figure 7.26: Distribution of ρg for the (1µm)2 domain size with plastically constrained
boundaries (θ0 = 30◦, nsl = 3) a) l =

√
2 × 0.1µm b) l =

√
3 × 0.1µm c) l = 2.2 × 0.1µm

d) l = 2.5× 0.1µm.
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Chapter 8

Stress-coupled propagation of shear

bands using FDM
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Adiabatic shear bands are narrow, localized zones of large plastic deformation which

are widely observed in metals and metallic alloys under intense dynamic loading. Due to

their impact on materials under extreme conditions, they have been of immense interest to

the scientific and engineering communities, and several experimental programs have been

executed to explore the phenomenon of shear band formation in materials. Conventional

elasto-viscoplastic theories by themselves are incapable of modeling shear band dynamics as

they do not have the kinematical feature necessary for the longitudinal propagation of shear

bands due to plastic flow.

Due to the incapability of conventional theories to model longitudinal shear band propa-

gation, several works [ZRR96, MLL07, LLR+02] involve various ad-hoc extra failure criteria

(critical strain rate or temperature based) that force shear band propagation along with

the further assumption that the solid loses its strength, and a non-Newtonian viscous fluid

constitutive equation is used to model its behavior. Our simple goal is to explore if shear

band propagation can be attained relying on the fundamental kinematics of (averaged) dis-

location motion in a solid. The fact that a dislocation is an observed, often static, boundary

between differently strained regions on a slip plane may be modeled by the energy density

of the body having preferred strained states. We use this realization in our modeling of

the energy density of the theory. Recent observations of Rittel [RLV08] related to dynamic

recrystallization being a precursor to shear band propagation may also be taken as evidence

supporting this hypothesis at the mesoscale. Therefore, our aim is to model shear band

propagation in a material on the basis of the essential kinematics of the model combined

with standard constitutive response rather than ad-hoc criteria that force the longitudinal

propagation of the shear band tip.

In our model, there is no role of a coherent global reference configuration. To model

single dislocation non-equilibrium behavior we need to include another tensor valued state

descriptor beyond the fields W , α, and the current positions x on the body, much like

strains related to modeling stacking fault energies, that we denote by the symbol P . This
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state variable is assumed to evolve as

ṖP−1 = (α× V +Lp)F e, (8.1)

which can be justified from the kinematics of locally homogeneous deformations with velocity

gradient given by the right hand side of the expression. We do not invoke the relation

F = F eP needing the definition F from an unknown global reference configuration and

constraining the product F eP to equal the deformation gradient from this reference, with

only the additive decomposition of the velocity gradient (3.18) considered a fundamental

relation.

We model the shear banding process by first getting a dislocation core to come to equi-

librium and then making it propagate longitudinally in the presence of an external force,

leaving a shear band in its wake. The motion of the core under the application of force is

based on the premise that the plastic distortion tensor field has to evolve in a fashion which

is consistent with the dislocation density. The possibility of modeling a shear band in this

manner was demonstrated in [ZAWB15] where a 1-d ansatz for the plastic distortion was

utilized for its evolution in a predetermined layer in an otherwise 2d domain. We generalize

the approach presented therein, without applying any restriction to the evolution of disloca-

tion density or plastic distortion to a layer. This is a significant extension as it now requires

solving a multidimensional nonlinear wave propagative system with a degenerate parabolic

second order singular perturbation for the plastic distortion. The motion of the core under

the application of the force is based on the premise that the plastic distortion tensor field

has to evolve in a fashion which is consistent with the dislocation density.
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8.1 Thermodynamics in terms of free energy or Dissi-

pation

The thermodynamics for MFDM in terms of an entropy function is presented in [Ach11] and

for FDM, but without the state variable P , in [Ach04]. The aim here is to get the driving

force for the dislocation velocity field V by requiring the dissipation in the system to be

non-negative [cf., DAS16, ZAWB15]. The dissipation is calculated as done before in Sec. 3.3,

but here we augment the free energy of the system ψ by an additional term η(P ) as

ψ := ψ(W ,α,P ) = ϕ(W ) + Υ (α) + η(P )︸ ︷︷ ︸
extra term

.

η is a non-convex multi-well function which embodies the fact that certain states are more

preferred than others. A simplified example representing single slip is of the form

η(P ) =
C

ρ∗

{
1− cos

(
2πP12

ω

)}

where C and ω are constants.

In effect, the energy from stresses and the core term tries to smooth out concentration of

dislocation density α, while the driving force from the non-convex η term promotes setting

up sharp gradients in P . Therefore, the balance between these thermodynamic driving forces

will lead to an equilibrium width of the dislocation density, referred to as the core width.

Following the details in Sec. 3.3, the dissipation in the body at any time t is given by

D =

∫
Ω

T : L dV −
∫
Ω

ρ
˙

(ϕ(W ) + η(P ) + Υ (α))dV

=

∫
Ω

T : L dV −
∫
Ω

ρ

(
∂ϕ(W )

∂W
: Ẇ +

∂η(P )

∂P
: Ṗ +

∂Υ (α)

∂α
: α̇

)
dV.

Using the evolution equations for W , α, and P and the energy function definitions, we
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get

D =

∫
Ω

[
T + ρW T ∂ϕ

∂W
+ ρϵ(α : α)I− ρϵαTα

]
dV −

∫
∂Ω

ρϵα : ((α× V +Lp)× n) dA

−
∫
Ω

ρX

[(
∂ϕ

∂W
+
∂η

∂P
P TF eT − ϵ curlα

)T

α

]
· V dV.

Given the above form of the dissipation, the constitutive form of V that render the

dissipation non-negative gives

V ∥ ρX


− ∂ϕ

∂W
+ ϵ curlα− ∂η

∂P
P TF eT︸ ︷︷ ︸

extra term


T

α

, (8.2)

where the symbol ∥ refers to ‘parallel’. At small deformation, this can be written as

V ∥ ρX

[(
T + ϵ curlα− ∂η

∂P

)T

α

]
. (8.3)

Therefore, it can be noted that the addition of the function η in the free energy density adds

an additional term in the driving force for V . In this work, the non-dimensional drag in the

driving force for V is assumed to be 0.0297 which ensures that the speed dislocations in our

model is same as in discrete dislocation methodology [ZAWB15, Sec. 4.2].

Using FDM to model shear band propagation produces a system of coupled nonlinear

equilibrium, transport, and diffusion equations. Having a stable, computationally efficient,

and robust numerical scheme for such a system of coupled equations presented severe, novel,

numerical challenges. We demonstrate our scheme for longitudinal stress coupled shear band

propagation in the context of the small deformation, quasi-static force balance setting. The

adopted scheme (Sec. 8.2) for plastic distortion and dislocation density evolution can be

accommodated with no extensions into a fully dynamic force balance computation. We now

present two numerical formulations that were unsuccessful before going on to explain the

problem set up and the final algorithm used.
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• Locally evolving U p at the integration points: A simple way to evolve U p in time is

to numerically integrate it locally at integration points as an ODE with α and V

treated as known data. The value of the plastic distortion field at any time t + ∆t

is then given as U p,t+∆t = U p,t + ∆t(α × V ). While this approach succeeds in the

stress-uncoupled version of the equation, an inherent problem with such an approach

is that the evolution algorithm may not produce a smooth U p field in the domain,

especially in the core, and, much more importantly, the constraint curlU p = −α may

not hold with time. So, even if an equilibrium of the core is achieved, its motion on

the application of an externally applied stress field is not possible since the evolution

equation of U p, U̇ p = α× V with curlU p ̸= −α loses its nature of a first order wave

equation. Therefore, this way of numerically evolving U p in the domain fails to model

the motion of the dislocation core leaving a localized shear band in its wake.

• Helmholtz decomposition of U p: Using the Helmholtz decomposition, U p can be writ-

ten as U p = χ + gradw, where curlχ = −α. Since χ at any time t + ∆t can be

calculated from the dislocation density αt+∆t, an evolution equation for w can then

be derived as follows:

div U̇ p = div(α× V )

=⇒ div gradẇ = div(α× V ) (using divχ̇ = 0).

(8.4)

U p at time t + ∆t can then be given as U p,t+∆t = χt+∆t + gradwt+∆t. However,

the problem in evolving U p, for this particular problem, by such an evolution scheme

is that, while being a consistent scheme, it nevertheless results in the development

of U p components other than those which correspond to the non-zero plastic strain

rate components of α × V , i.e. the scheme accumulates errors and is not accurate.

For example, with (α× V )12 being the only non zero component of plastic strain rate

consistent with the α evolution, we find that using the Helmholtz decomposition, χ
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always develops a χ11 component and this needs to be negated by the gradw field,

which does not materialize, even when higher order interpolation is used for the w

field.

8.2 Variational formulation

The failure of the two schemes above suggested the following insights:

1. These schemes were able to transport α well, but the U p field, used crucially in the

non-convex function η, could not be discretely transported adequately for its curl to

remain consistent with the dislocation core represented by α.

2. For success, it would be important to firmly impose curlU p,t+∆t = −αt+∆t, using the

computed values ofU p,t, αt, αt+∆t, and V t as data to define the approximationU p,t+∆t

such that the solution for curlU p = −α is not underconstrained.

The equation for the evolution of U p in the small deformation case is

U̇ p = α× V ,

along with the constraint

curl(U p) = −α.

After α has been evolved from its conservation law as explained in Sec. 4.1.3, we need to

evolve U p to get its value at the end of a time increment (t + ∆t) assuming that αt and

V t are known. Appendix C shows that using the Least-Squares formulation (Eq. C.1) to

solve for U p gives a unique solution (in a slightly more general setting) with only the natural

boundary condition enforced by the Least-Squares scheme. With this data we define the

discrete value of U p,t+∆t as U p,t+∆t = U p,t + ∆t Θαt+∆t × V t, where Θ is a scalar field.
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Thus, the exact solution for Θ is 1 in the limit ∆t → 0 and we use the following Least

Squares functional to solve for the field over finite time steps:

J(Θ) =
1

2

∫
Ω

(Θ − 1)2dV +
P

2

∫
Ω

(
curl(U p,t+∆t(Θ)) +αt+∆t) : (curl(U p,t+∆t(Θ)) +αt+∆t

)
dV,

where P >> 1. We rewrite the functional as

J(Θ) =
1

2

∫
Ω

(Θ − 1)2dV +
P

2

∫
Ω

|(curl(U p,t +∆t Θαt+∆t × V t) +αt+∆t)|2 dV.

We again use the Least Squares finite element method and use its Euler-Lagrange equation

to solve for Θ as follows:

δJδΘ = 0

=⇒
∫
Ω

(Θ − 1)δΘ dV + P

∫
Ω

[
(curl(U p,t +∆t Θαt+∆t × V t) +αt+∆t) :

curl(∆t δΘαt+∆t × V t)
]
dV = 0.

Using curl(U p,t) = −αt eliminates the need for involving the evolving approximation of U p

in the solution for Θ. Therefore we get the weak form as

∫
Ω

(Θ − 1) δΘ dV + P

∫
Ω

(
(curl(∆t Θαt+∆t × V t) +αt+∆t −αt) :

curl(∆t δΘαt+∆t × V t)
)
dV = 0.

(8.5)

Once Θ is known, we update the value of U p at the integration points as

U p,t+∆t = U p,t +Θ∆t(αt+∆t × V t).

Next we describe the algorithm that is used to evolve the system for this particular problem.
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8.2.1 Algorithm for quasistatic case with U p evolution for small

deformation

The algorithm for the quasistatic case with U p evolution is presented in Table 8.1.

Given: material properties, initial conditions, boundary conditions, and applied
loading conditions.
Step 1: Finding the initial stress field on the body in as-received configuration.
At small deformation, curlU e = α and curlU p = −α, which implies that U e and
U p differ by a gradient field i.e. U e = U p + gradw.

• Since U p is known, we solve the equilibrium equation div(CU e) = 0 to solve
for the field w in the domain as described in the Sec. 4.1.4.3

• U e can then be calculated as U e = gradw+U p to get stresses in the domain
at t = 0 given by T = C : U e.

• The dislocation density in the domain is initialized by evaluating curlU e in
the domain.

• Solve for χ from the now known dislocation density distribution α as de-
scribed in Sec. 4.1.2.

Step 2: Quasistatic loading analysis: Assume that the state at time-step k is
known: xk, αk, zk, χk, vk, V k, Lp, ∆tk, PHk

To get the state at time step k + 1 the following is done:

• αk+1 is calculated by solving alpha evolution equation using Galerkin-Least-
Squares FEM as shown in Sec. 4.1.3.

• U p,k+1 is obtained as described in Sec. 8.2.

• Solve for χk+1 from the given dislocation density distribution αk+1 as de-
scribed in Sec. 4.1.2.

• Finally, the equilibrium equation is solved on the new configuration to get
gradz as described in Sec. (4.1.4.3). The stresses are then given as T = C : U e

where U e = gradz − χ.

• PHk+1 is updated on the new configuration.

Cutback to step k and use half time-step to come to step k + 1 if following holds
at any Gauss point in the domain. |αk+1 × V k+1 +Lpk+1|∞×∆tk > 0.002
if no cut back happens, then the state is accepted. ∆ tk+1 is calculated as described
in (4.11) and this algorithm is repeated to get state at increment k + 2.
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Table 8.1: Quasistatic (M)FDM algorithm with U p evolution.

The elasticity of the material is modeled as isotropic linear elastic. The problem set up is

as follows: we prescribe the initial condition for U p
12 in a layer of thickness b as a hyperbolic

tangent function given by

U p
12(x, t = 0) =

ω̄

2
(1 + tanh(ax1)) , (8.6)

where we choose ω = 1, and a =
√

µ
4ϵ
. The initial dislocation density in the domain is then

given as α = −curlU p. Table 8.2 presents the values of material constants used in modeling

of shear band propagation. The non-dimensionalized time is given as t∗ = tVs

b
.

Parameter Value
ϵ 1
ω 1

C
µω2

π2

E 200 GPa
ν .30

Table 8.2: Parameter values used for modeling shear bands.

Figure 8.1a shows the α13 prescribed in the domain at t∗ = 0. Figure 8.1b shows its

distribution along x2 = 0. Figures 8.2a and 8.2b show the Up
12 in the domain and along the

x2 = 0 respectively.

We then follow the algorithm outlined in Table 8.1 to let the system evolve until the rate

of evolution of α13 becomes small and the core is then said to have equilibrated. Figures 8.4a

and 8.4b present the equilibrated α13 and the corresponding U p. As can be seen in 8.4c, the

non-dimensional rates for the evolution of α13 are 10−3 or smaller. Figure 8.4d shows the

shear stress component T12 in the domain at equilibrium.

Figures 8.3a and 8.3b show the stress field in the domain at t∗ = 0 and at equilibrium

respectively. As can be seen, there is no noticeable change in the stress field outside the core.
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Figure 8.1: At t = 0. a) α13 in the domain b) α13 along x2 = 0
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Figure 8.2: At t = 0. a) Up
12 in the domain b) Up

12 along x2 = 0

(a) (b)

Figure 8.3: T12 in the domain at a) t∗ = 0 b) equilibrium
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Figure 8.4: a) α13 b) Up
12 c) ˙α13 d) T12 in the domain at equilibrium.
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After equilibrium is attained, we apply a shear traction of magnitude 0.2µ on the outer

boundary of the domain. This corresponds to the superposition of a homogeneous stress

field of T12 = 0.2µ on the body.
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t*=37
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t*=81
t*=103

(a)
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t*=59
t*=81
t*=103

(b)

Figure 8.5: a) α13 b) Up
12 along x2 = 0 at different times during the motion.

Figure 8.5a presents the position of the dislocation core at different times. We can see that

dislocation moves in the e1 direction under the application of external force. The evolution

of plastic distortion along x2 = 0 can be seen from figure 8.5b at different times. We observe

that a localized shear deformation arises along the path as the core moves longitudinally

upon the application of external force. Although, some numerical errors accumulate in

the evolution of U p in the domain, it does not affect the propagation of the core. This

demonstrates the successful modeling of the longitudinal propagation of the shear band in a

fully coupled, multidimensional, and nonlinear setting.

To show that the dislocation density and the plastic distortion are localized along the

path of the shear band, the dislocation density and the plastic distortion fields in the domain

are presented in figure 8.6 at various times during the propagation.

Although, we have presented the results under the quasi-static and small deformation

assumptions, this stands as a first theoretical-computational implementation of the longi-
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Figure 8.6: Left: α13 and Right: Up
12 in the domain at various times t∗ (starting from top)

37, 59, 81, 140
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tudinal propagation of shear bands in the literature that does not involve ad-hoc failure

criteria as well as an invocation of solid and fluid behavior behind the shear band tip

[ZRR96, MLL07, LLR+02]. Moreover, the scheme is robust enough to accommodate the

modeling of shear bands with inertia.
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Chapter 9

Conclusion and future work
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In this chapter, a brief summary of the research work presented in the thesis and possible

avenues of future research using the developed framework are discussed.

9.1 Conclusion

This research presented results of a first model of mesoscale crystal and J2 plasticity of

unrestricted geometric and material nonlinearity where fields of dislocation distributions can

be explicitly calculated and dislocation transport, and its attendant plastic strain rate, is

fundamentally accounted. In the first part of the research, staggered numerical algorithms

for the quasi-static and dynamic cases for finite deformation MFDM theory were devised

and implemented in a finite element framework. The implementation is quite efficient, and

a typical 2-d simulation up to 60% strain on the meshes shown in Table 7.2 takes an average

wall-clock time of 5 hours when running on 1 node comprising 24 processors.

The second part involved the use of the developed computational tool to study problems

of significant scientific interest, after verification of the numerical formulation and algorithm

through stringent numerical tests. The computational tool was used to quantify the change

in the volume in the body upon introduction of dislocations. The sharply contrasting predic-

tions of the geometrically linear and nonlinear FDM theories for the stress field of a spatially

homogeneous dislocation distribution were also demonstrated. We study the stress-field path

followed in a body corresponding to a sequence of dislocation starting from a single disloca-

tion to a stress-free dislocation wall constituting a grain boundary. Furthermore, we show

large differences in the stress field of single edge dislocation obtained from finite deforma-

tion FDM and small deformation analytical solution. The numerical calculations show large

difference for distances upto 10b from the dislocation core and suggest careful calibration of

the analytical result from Molecular Dynamics.

We also demonstrated dislocation patterning in a full-fledged, geometrically nonlinear

model of crystal/J2 plasticity MFDM. Intricate spatial patterning, crystal orientation (only
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for crystal plasticity MFDM) and size effects, the occurrence of stressed dislocation mi-

crostructures both under applied loads and in unloaded bodies were demonstrated in a rate-

dependent setting with the simplest possible isotropic model of work hardening. Interesting

and realistic microstructural features of plastic response have been shown to be within the

qualitative purview of the model, which may be considered a minimal enhancement of classi-

cal crystal/J2 plasticity to account for what are commonly known as geometrically necessary

dislocations. Finally, the potential and generality of MFDM are demonstrated by applying

it to study the phenomenon of longitudinally propagating shear bands in materials which

stands as a first theoretical-computational implementation in the literature that does not

involve any ad-hoc failure criteria to model longitudinal propagation of shear bands.

9.2 Future work

In the future, the framework can be used to model several more problems in computational

plasticity such as strain localization in rate-independent materials as observed in [PAN82,

PAN83, NALP85], response of polycrystal aggregates [HH95], and size effect in torsion of

circular wires [FMAH94, LHT+12], all at finite deformation. Also, the modeling of shear

bands at finite deformation with or without inertia as well as temperature driven changes

of preferred plastic distortion (apart from stress driven changes as shown in Chapter 8)

can be studied. It will also be interesting to study the dislocation patterning in a full 3D

body. The model can also be used to study microstructure development in the body under

fatigue loading. Another interesting study would be to understand the reason why the

standard slipping rate from crystal plasticity (un-symmetrized Eq. 3.25) causes instability

in the model.

Another interesting research area to explore would be the extension of the algorithm

presented for the shear band propagation Sec. 8.2 to include i) dynamics with inertia, ii)

finite deformation, iii) multidimensional shear band motion, and iv) understanding the degree
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of freedom required in the Least-Squares formulation to accurately solve the problem in the

case of multidimensional motion, i.e. is it always true that a scalar field will suffice.

The future work can also focus on modeling dislocation patterning which accompanies de-

formation microstructures like shear bands [AR77, PAN83, Pei83, OR99, AO03] and patchy

slip [PCC55, Cah51] arising from the effects of strong latent hardening [Asa83, Bas93].

Comparison with experiment of the evolving cellular and wall patterns formed can also be

the subject of future work. A comprehensive large-scale computational study of the nature

of convergence of the observed patterns in our work awaits further study, including whether

weaker notions of convergence [FKMT17, FLM17] will be required. Also, the significance

and utility of the work of the French school of Mathematical Morphology [e.g., Jeu13, Ang17]

in understanding and characterizing the intricate patterns displayed by our model appears

to be another interesting area of future research.
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Appendix A

Calculation of ∂T
∂F e

A.1 Saint-Venant Kirchhoff material

For a Saint-Venant Kirchhoff material whose stress response is given by Eq. (3.21), the partial

derivative of T w.r.t. F e can be obtained as

Tij = F e
ikCklrsErsF

eT
lj

∂Tij
∂F e

mn

=
∂F e

ik

∂F e
mn

CklrsErsF
e
jl + F e

ikCklrs
∂Ers

∂F e
mn

F e
jl + F e

ikCklrsErs

∂F e
jl

∂F e
mn

Ee
rs =

1

2

(
F eT
rp F

e
ps − δrs

)
=⇒ ∂Ee

rs

∂F e
mn

=
1

2
(δrnF

e
ms + F e

mrδsn)

∂Tij
∂F e

mn

= δimCnlrsErsF
e
jl +

1

2
F e
ikCklrs [F

e
msδrn + F e

mrδns]F
e
jl + F e

ikCknrsErsδjm.
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A.2 Neo-Hookean material

For the Neo-Hookean Material whose stress is given by Eq. (3.22), the partial derivative of

T w.r.t. F e can be obtained as

Tij = µ(F e
ikF

eT
kj − δij)

∂Tij
∂F e

mn

= µ

(
∂F e

ik

∂F e
mn

F e
jk + F e

ik

∂F e
jk

∂F e
mn

)
= µ

(
δimF

e
jn + F e

inδjm
)
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Appendix B

Calculation of ∂T
∂H

B.1 Saint-Venant Kirchhoff material

At small deformation, writing F e = I +U e, the linearised stress for Saint-Venant Kirchhoff

material is then given as

Tij = F e
ikCklrsErsF

eT
lj

Tij =
1

2
(δik + U e

ik)Cklrs [(δar + U e
ar)(δas + U e

as)− δrs] (δjl + U eT
lj )

≈ 1

2
Cklrs(U

e
rs + U e

sr)

≈ CklrsU
e
rs

wherein the symmetry in the last two indices of C has been used. Writing H = gradz, ∂T
∂H

can then be calculated as

∂Tij
∂Hab

=
∂Tij
∂U e

pq

∂U e
pq

∂Hab

= Cklrsδprδqsδpaδqb

= Cklab.
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B.2 Neo-Hookean material

For Neo-Hookean material whose stress response is given by (3.22), the linearised stress can

be calculated as:

T = µ(F eF eT − I)

Tij = µ(F eT
ip F

e
pj − δij)

= µ((δpi + U e
pi)(δpj + U e

pj)− δij)

≈ µ(U e
ij + U e

ji)

Writing H = gradz, ∂T
∂H

can then be calculated as

∂Tij
∂Hab

=
∂Tij
∂U e

pq

∂U e
pq

∂Hab

= µ(δipδjq + δjpδiq)δpaδqb

= µ(δiaδjb + δjaδib)
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Appendix C

Uniqueness proof

In this section, we show that using the Least-Squares method to solve for U p from the

constraint curlU p = −α along with its evolution equation U̇ p = α × V in one time step

has a unique solution. Using the forward Euler method to denote U̇ p = Up−Up,t

∆t
, the Least-

Squares functional is given by (no superscripts denote fields at time t+∆t)

J =
P

2

∫
Ω

(curlU p +α) : (curlU p +α) dV

+
1

2

∫
Ω

(
U p −U p,t

∆t
−αt × V t

)
:

(
U p −U p,t

∆t
−αt × V t

)2

dV.

(C.1)

where P is a constant with dimensions of length2 × time−2. P is chosen such that the first

term of the objective functional (C.1) is much larger than the second. αt and V t denote the

dislocation density and its velocity at time t. The fields are assumed to be known at time t.

The weak form for the functional (C.1) is given as

R = δJ|δUp = 0

R = P

∫
Ω

(curlU p +α) : curlδU p dV +
1

∆t

∫
Ω

(
U p −U p,t

∆t
−αt × V t

)
: δU p dV = 0.
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To get the strong form, we integrate the weak form by parts to get

P ∗
∫
Ω

curl(curlU p +α) : δU p dV + P ∗
∫
∂Ω

((curlU p +α)× n) : δU p dA

+

∫
Ω

U p : δU p dV −
∫
Ω

(U p,t +∆tαt × V t) : δU p dV = 0,

where P ∗ = P (∆t)2. The strong form of the equations is then given by

P ∗ curl(curlU p +α) +U p = (U p,t +∆tαt × V t), (C.2)

along with the natural boundary conditions

(curlU p +α)× n = 0. (C.3)

We now prove that the system (Eqs. (C.2) and (C.3)) has a unique solution. We assume

that U p
1 and U p

2 are two solutions that satisfy the above system. Then the difference Ũ p =

U p
1 −U p

2 satisfies the equations

P ∗ curl(curlŨ p) + Ũ p = 0 on Ω (C.4)

curlŨ p × n = 0 on ∂Ω.

Multplying equation (C.4) by Ũ p and integrating on the domain we get

∫
Ω

P ∗ curl(curlŨ p) : Ũ p dV +

∫
Ω

Ũ p : Ũ p dV = 0

=⇒ P ∗
∫
Ω

curlŨ p : curlŨ p dV −
∫
∂Ω

curlŨ p × n︸ ︷︷ ︸
0

dA+

∫
Ω

Ũ p : Ũ p dV = 0

=⇒ curlŨ p = 0 and Ũp = 0. □
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