
Learning for and with Efficient Computing Systems

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Zhuo Chen

B.S., Electronics Engineering and Computer Science, Peking University

Carnegie Mellon University
Pittsburgh, PA

May 2019

c© Zhuo Chen, 2019.
All Rights Reserved.

iii

Acknowledgements

The past few years at CMU have been an invaluable life journey to me, and I sincerely

appreciate all the support, patience and motivation from these brilliant and sincere peo-

ple.

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.

Diana Marculescu, for her mentoring and support over the entire course of my pursuit of

PhD. She encourages me to work on important problems, explore new ideas, collaborate

with brilliant students, and can always point me in the right direction with her insightful

mind and broad knowledge. I have been incredibly lucky to have such a wise and caring

advisor to guide me over the years.

I would like to thank Prof. Radu Marculescu, Prof. Shawn Blanton and Dr. Jinwon

Lee for being my thesis committee members and for their insightful comments and

encouragement through this process.

My sincere thanks also goes to my collaborators: Prof. Radu Marculescu, Prof. Partha

Pande, Dr. Ryan Kim, Mr. Dimitrios Stamoulis, Mr. Ruizhou Ding and Mr. Ting-Wu

Chin for their outstanding research work and inspiring thoughts and ideas.

I would also like to thank my internship mentors: Dr. Jinwon Lee, Dr. Shankar

Sadasivam, Dr. John Dorsey and Mr. Bryan Hinch, for having me on their teams and

teaching me how to apply my knowledge to solve real-world problems.

Besides academic life, I do want to thank my friends who made my personal life full

of sunshine. They are: Dr. Da-Cheng Juan, Dr. Ermao Cai, Mr. Guangshuo Liu and Mr.

Ahmet Fatih Inci from EnyAC; Dr. Xuanle Ren, Dr. Shaolong Liu, Dr. Huang-Kai Peng,

Mr. Zeye Liu, Ms. Qicheng Huang, Ms. Chenglei Fang, Mr. Chao Rong.

Thank you, Dr. Chieh Luo, Mr. Xiaoliang Li and Mr. Vincent Chung for being my

great basketball teammates.

Thank you, Dr. Renzhi Liu, Dr. Liang Tang and Mr. Xi He for cooking and hosting

parties during holidays.

iv

Thank you, Dr. Yanfei Chen for being an incredible roommate for five years.

I would like to acknowledge the funding support from National Science Foundation

(Grants CNS1564022, CCF1514206, CCF1314876), Samsung Electronics, Qualcomm In-

novation Fellowship and Carnegie Mellon University for making my pursuit of research

possible.

Last but not least, I sincerely thank my family, especially my then girlfriend and now

wife, Dr. Nan Bi, for their unconditional love and support. All of these will not be

possible without them.

v

Abstract

Machine learning approaches have been widely adopted in recent years due to their ca-

pability of learning from data rather than hand-tuning features manually. We investigate

two important aspects of machine learning methods, i.e., (i) applying machine learning

in computing system optimization and (ii) optimizing machine learning algorithms, es-

pecially deep convolutional neural networks, so they can train and infer efficiently.

As power emerges as the main constraint for computing systems, controlling power

consumption under a given Thermal Design Power (TDP) while maximizing the per-

formance becomes increasingly critical. Meanwhile, systems have certain performance

constraints that the applications should satisfy to ensure Quality of Service (QoS). Learn-

ing approaches have drawn significant attention recently due to the ability to adapt to

the ever-increasing complexity of the system and applications. In this thesis, we propose

On-line Distributed Reinforcement Learning (OD-RL) based algorithms for many-core

system performance improvement under both power and performance constraints. The

experiments show that compared to the state-of-the-art algorithms, our approach: 1)

produces up to 98% less budget overshoot, 2) up to 23% higher energy efficiency, and

3) two orders of magnitude speedup over state-of-the-art techniques for systems with

hundreds of cores, while an improved version can better satisfy performance constraints.

To further improve the sample-efficiency of RL algorithms, we propose a novel Bayesian

Optimization approach to speed up reinforcement learning-based DVFS control by 37.4x

while maintaining the performance of the best rule-based DVFS algorithm.

Convolutional Neural Networks (CNNs) have shown unprecedented capability in vi-

sual learning tasks. While accuracy-wise CNNs provide unprecedented performance,

they are also known to be computationally intensive and energy demanding for modern

computer systems. We propose Virtual Pooling (ViP), a model-level approach to improve

inference speed and energy consumption of CNN-based image classification and object

detection tasks, with provable error bound. We show the efficacy of ViP through exten-

vi

sive experiments. For example, ViP delivers 2.1x speedup with less than 1.5% accuracy

degradation in ImageNet classification on VGG-16, and 1.8x speedup with 0.025 mAP

degradation in PASCAL VOC object detection with Faster-RCNN. ViP also reduces mo-

bile GPU and CPU energy consumption by up to 55% and 70%, respectively. We further

propose to train CNNs with fine-grain labels, which not only improves testing accuracy

but also the training data efficiency. For example, a CNN trained with fine-grain labels

and only 40% of the total training data can achieve higher accuracy than a CNN trained

with the full training dataset and coarse-grain labels.

Contents

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Challenges . 1

1.2 Thesis contributions . 3

1.3 Thesis organization . 4

2 Background 5

2.1 Reinforcement learning . 5

2.2 Bayesian optimization . 7

2.3 Deep convolutional neural networks . 8

3 Learning for efficient many-core systems 10

3.1 Chapter overview . 10

3.1.1 Chapter contributions . 11

3.2 Methodology . 13

3.2.1 Fine temporal granularity: reinforcement learning local agents . . . 15

3.2.2 Coarse temporal granularity: power budget reallocation 17

3.2.3 Priority based performance requirements 18

vii

CONTENTS viii

3.2.4 Power-performance model . 19

3.3 Experimental results . 21

3.3.1 Experiment setup . 21

3.3.2 Budget overshoot control . 23

3.3.3 Power and performance constraints 27

3.3.4 Overhead and scalability . 30

3.4 Discussion . 35

4 Speeding up training of RL-based DVFS algorithms 38

4.1 Chapter overview . 38

4.1.1 Chapter contributions . 39

4.2 Methodology . 40

4.2.1 RL-based DVFS . 40

4.2.2 Cross-entropy method . 40

4.2.3 Iterative-BO . 41

4.3 Experimental results . 43

4.3.1 Experiment setup . 43

4.3.2 Experimental results . 43

4.4 Discussion . 45

5 Convolutional neural networks: efficient inference 46

5.1 Chapter overview . 46

5.1.1 Chapter contributions . 47

5.2 Methodology . 48

5.2.1 ViP layer . 49

5.2.2 ViP algorithm . 52

5.3 Experimental results . 55

5.3.1 Experimental setup . 56

5.3.2 Image classification . 57

Accuracy and speed . 57

Power and energy . 62

5.3.3 Object detection . 64

5.4 Discussion . 66

6 Convolutional neural networks: efficient training 68

6.1 Chapter overview . 68

6.1.1 Chapter contributions . 70

6.2 Label granularity and training data . 71

6.3 Optimization and generalization . 78

6.3.1 Optimization . 78

6.3.2 Generalization . 82

6.4 Exploration . 84

6.4.1 Customized coarse-grain classes . 85

6.4.2 Noisy fine-grain classes . 86

6.4.3 Varying number of coarse-grain classes 87

6.5 Discussion . 88

7 Related work 90

7.1 Learning for efficient many-core systems . 90

7.2 Speeding up training of RL-based DVFS algorithms 92

7.3 Convolutional neural networks: efficient inference 92

7.4 Convolutional neural networks: efficient training 94

8 Conclusion and future work 96

Bibliography 99

ix

List of Tables x

A Proof 114

List of Tables

3.1 Validation of learned α’s and β’s: NRMSE error. 21

3.2 Architectural parameters . 22

3.3 Metrics ratio of pa-OD-RL over OD-RL. 29

5.1 System Configurations for desktop and mobile platforms. 56

6.1 Training and testing accuracy of five datasets when trained with fine-grain

labeling (bottom row for each dataset) vs. coarse-grain labeling (top row for

each dataset), and tested on coarse-grain labels. 70

6.2 Coarse-grain and fine-grain classes of five datasets. 73

6.3 Configuration of CNNs used in the experiments. 74

6.4 Coarse-, fine- and finer-grain classes of ImageNet subset. 75

6.5 Experiments on increasing CNN non-linearity and capacity under coarse-

grain training. In "CNN Arch": ’Extra layer’ means that we add the fully-

connected layer to the baseline CNN to increase network non-linearity and

capacity as described in Section 6.3.1. In "Train Label": "F" and "C" indicate

fine-grain and coarse-grain labels, respectively. In the training and testing

accuracy columns, the values indicated in the parentheses are the improve-

ment/degradation with respect to the training and testing accuracy of a base-

line CNN trained with coarse-grain labels, respectively. 81

6.6 Experiments on increasing CNN dropout rate. Values in “Dropout" column

indicates dropout rates used. In “Train Label" column: “F" and “C" indicate

fine-grain and coarse-grain labels, respectively. 85

6.7 Testing accuracy, trained with coarse-grain vs. fine-grain labels, of customized

coarse-grain classes of CIFAR-10 dataset. Zero and one indicates which coarse-

grain class each fine-grain class belongs to. 86

6.8 Testing accuracy trained with noisy fine-grain labels of CIFAR-10 dataset. . . . 87

6.9 Testing accuracy, trained with coarse-grain vs. fine-grain labels, when varying

number of coarse-grain classes in CIFAR-100 dataset. The coarse-grain class

index follows the same order as in Table 6.2. The values inside the parenthesis

in column Atest
FC is ∆Atest, the calculated improvement of fine-grain training

over coarse-grain training. 88

List of Figures

2.1 Agent-system interaction in RL. The systems is characterized by state s. The action

a is taken by an agent to change the state, with resulting outcomes r or p and new

state s′. 5

2.2 Illustration of Bayesian optimization [1] . 7

2.3 Illustration of convolutional neural networks. 8

3.1 Structure of the algorithm. Spatial hierarchy: budget reallocation does global coordi-

nation while RL is distributed to each core. Temporal hierarchy: budget reallocation

works at coarser gain while RL executes at finer grain. 15

xi

List of Figures xii

3.2 Simulation infrastructure: Sniper for timing simulation and our proposed power-

performance model for power estimation. Distributed RL and budget reallocator are

implemented as Python scripts to make the VF level decisions and interact with Sniper. 22

3.3 Budget overshoot quickly satures when Penalty Factor (PF) is larger than 5. 23

3.4 Comparison among five algorithms on budget overshoot control (Lower is better).

Results normalized with respect to MaxBIPS. 25

3.5 Comparison among five algorithms on system throughput (Lower is better). Results

normalized with respect to MaxBIPS. 25

3.6 Comparison among five algorithms on power consumption (Lower is better). Results

normalized with respect to MaxBIPS. 26

3.7 Comparison among three algorithms on energy efficiency (Higher is better). Results

normalized with respect to MaxBIPS. 27

3.8 Comparison between OD-RL and pa-OD-RL for the number of epochs satisfying both

performance constraints in a 16 core system running two 8-thread applications. . . . 31

3.9 Comparison between OD-RL and pa-OD-RL for the AOT metric in a 16 core system

running two 8-thread applications. 32

3.10 Comparison between OD-RL and pa-OD-RL for the AOB metric in a 16 core system

running two 8-thread applications. 33

3.11 Comparison of power (left) and throughput (right) in a system of 16 cores. 34

3.12 Comparison of power (left) and throughput (right) in a system of 32 cores. 34

3.13 Comparison of power (left) and throughput (right) in a system of 64 cores. 35

3.14 Comparison of budget overshoot (left) and energy efficiency (right) in a system of 16

cores. 35

3.15 Comparison of budget overshoot (left) and energy efficiency (right) in a system of 32

cores. 36

3.16 Comparison of budget overshoot (left) and energy efficiency (right) in a system of 64

cores. 36

List of Figures xiii

3.17 Log-log plot of approaches overhead in a system up to 1024 cores. Execution time is

averaged over 100 runs. 37

4.1 Sample efficiency of various RL DVFS training methodologies. 44

5.1 Illustration of virtual pooling [2]. By using a larger stride, we save compu-

tation in convolution layers and, to recover the output feature map, we use

linear interpolation which is fast to compute. 47

5.2 An example of applying ViP to the mobile phone camera face detector. ViP

progressively generates new models with higher speedup until we obtain the

model that best satisfy the requirement on speedup-accuracy trade-off. 55

5.3 ViP sensitivity analysis of VGG-16 model under ImageNet dataset. For each

of the convolution layers, we insert ViP immediately after it, and evaluate

the network accuracy without fine-tuning. The sensitivity is measured as the

accuracy drop with respect to the original accuracy. 58

5.4 Four rounds of grouped finetuning of VGG-16 network using ImageNet dataset. 59

5.5 Speedup-Accuracy trade-off obtained by applying ViP on VGG-16 model with

ImageNet dataset. 60

5.6 ViP sensitivity analysis of ResNet-50 model under ImageNet dataset. For each

of the convolution layers, we insert ViP immediately after it, and evaluate the

network accuracy without fine-tuning. The sensitivity is measured as the

accuracy drop with respect to the original accuracy. 61

5.7 Speedup-Accuracy trade-off obtained by applying ViP on ResNet-50 model

with ImageNet dataset. 62

5.8 Speedup-Accuracy trade-off obtained by applying ViP on All-CNN model

with CIFAR-10 dataset. 62

5.9 Powe/Energy-Accuracy trade-off obtained by applying ViP on All-CNN model

with CIFAR-10 dataset. 63

List of Figures xiv

5.10 Powe/Energy-Accuracy trade-off obtained by applying ViP on VGG-16 model

with ImageNet dataset. 63

5.11 Powe/Energy-Accuracy trade-off obtained by applying ViP on ResNet-50 model

with ImageNet dataset. 64

5.12 ViP sensitivity analysis of faster-rcnn with VGG-16 backbone under PASCAL

VOC 2007 dataset. For each of the convolution layers, we insert ViP imme-

diately after it, and evaluate the network accuracy without fine-tuning. The

sensitivity is measured as the accuracy drop with respect to the original ac-

curacy. 65

5.13 Speedup-Accuracy trade-off obtained by applying ViP on faster-rcnn with

VGG-16 backbone under PASCAL VOC 2007 dataset. 66

6.1 An example of label granularity (label hierarchy). For example, an image of

a dog can be labeled “animal" or “carnivore" or “dog", and it is the target

application that determines which label to use. This paper explores whether

one should use the targeted coarse-grain labels or finer-grain labels for CNN

training. 71

6.2 Training (dotted) and testing (solid) accuracy curves with increasing amount

of training data. CNNs trained with fine-grain labels are shown in red and

those trained with coarse-grain labels are shown in blue. Experiments are

conducted using five datasets: (a) CIFAR-10, (b) CIFAR-100, (c) CIFAR-100-

animal, and two subsets of ImageNet datasets (d) dog vs. cat, (e) fruit vs.

vegetable. 77

6.3 Training (dotted) and testing (solid) accuracy curves for five datasets. CNNs

trained with fine-grain labels are shown in red and those trained with coarse-

grain labels are shown in blue. Experiments are conducted using five datasets:

(a) CIFAR-10, (b) CIFAR-100, (c) CIFAR-100 animals, and two subsets of Ima-

geNet datasets (d) dog vs. cat and (e) fruit vs. vegetable. 79

List of Figures xv

6.4 t-SNE visualization of CIFAR-10 test set trained with coarse-grain labels vs.

fine-grain labels. Data points shown in the same color belong to the same

coarse-grain class. 83

Chapter 1

Introduction

1.1 Challenges

While historically the major goal of processor designers was to gain better performance

by continuously shrinking device size, adding more pipeline stages, and speeding up

the clock frequency, the power wall was eventually reached and energy is now the main

design constraint. The ever growing power consumption increases the burden of heat

dissipation, lowers the chip reliability, and decreases battery life of mobile devices. As

Dennard scaling breaks down, multi-core systems have become the solution to mitigate

the high power problem. For highly parallel applications, multiple small cores with

lower voltage and frequency can offer similar throughput as one large core at a much

higher voltage and frequency. Indeed, a multi-core system consumes less power ac-

cording to the V2 f Scale Law [3]. While multi-core systems are now mainstream market

products, the desire for higher performance is again pushing the envelope toward higher

power consumption. In order to ensure the safety and reliability of multi-core systems,

a Thermal Design Power (TDP) constraint is imposed on the system power consump-

tion. As a result, improving performance under the TDP constraint has become one of

the main directions in power/performance optimization. In addition to increasing the

number of cores at design time, Dynamic Voltage Frequency Scaling (DVFS) is devel-

1

CHAPTER 1. INTRODUCTION 2

oped to save power at runtime. By being smart in tuning the Voltage and Frequency

(VF) levels of the cores, on-chip computation can be performed in a more energy ef-

ficient manner. However, finding the optimal VF level assignment can be formulated

as an integer linear programming problem which is NP hard [4]. Therefore, the exact

solution cannot be implemented as an on-line algorithm, especially when the number of

cores increases. Many algorithms have been proposed to find near-optimal solutions in

polynomial time, however, they did not take the budget overshoot problem into consid-

eration and may only be efficient for moderately sized multi-core systems rather than

systems with hundreds of cores. Therefore, Reinforcement Learning (RL) methods may

become an effective tool for solving this online problem, as they are able to learn and

adapt to the changing workload running on the system and successfully suppress power

budget overshoot while maximizing performance.

Although RL-based DVFS methods are effective, they may require several thousands

of iterations or more to train the model before being deployed. Data collection in real

world can be expensive due to physical limitations, e.g., power meters are used for

measuring device power, but are limited by measuring speed and quantity. For instance,

measuring ten thousand iterations for a five-minute application takes one month. Hence,

reducing training iterations is critical for learning the model in reasonable amount of

time to make RL-DVFS practical and reduce time to market.

The dual problem of applying machine learning for improving system efficiency is

enhancing the efficiency of machine learning algorithms themselves. Deep Convolu-

tional Neural Networks (CNNs) have become increasingly important due to their un-

precedented effectiveness on tasks such as image classification, object detection, image

segmentation, etc. However, CNNs usually require millions of data samples during

training and high-end GPUs during inference due to the high computation and stor-

age cost. As a result, CNNs are often considered very computationally intensive and

energy demanding [5, 6, 7]. With the prevalence of mobile devices, being able to run

CNN-based visual tasks efficiently, in terms of both speed and energy, becomes a critical

CHAPTER 1. INTRODUCTION 3

enabling factor of various important applications, e.g., augmented reality, self-driving

cars, Internet-of-Things, etc, which all heavily rely on fast and low energy CNN compu-

tation.

1.2 Thesis contributions

In light of the aforementioned challenges, this thesis investigates two important aspects

of machine learning algorithms.

The first aspect is on applying machine learning, especially Reinforcement Learning

(RL), in many-core system optimization. By using RL, we are able to learn and adapt

to the changing workload in the system and hence successfully suppress power budget

overshooting while maximizing system performance with very low runtime overhead.

Furthermore, to improve the training efficiency of RL-based Dynamic Voltage Frequency

Scaling (DVFS) algorithms, we propose to use Bayesian Optimization (BO) which is very

sample-efficient and achieve significant speedup over conventional approaches.

The second aspect is on optimizing machine learning algorithms, specifically deep

Convolutional Neural Networks (CNNs), for efficient training and inference. For any

CNN approach, there are usually two phases involved: training and inference. CNN

often requires millions of data samples during training in order to achieve high accuracy

and avoid overfitting, and is very computing intensive and energy demanding during the

testing phase. In this thesis, we first propose the virtual pooling method to siginificantly

reduce the CNN inference energy and latency, and then introduce the method of training

with fine-grain labels which drastically reduces the number of training data samples

required to achieve high testing accuracy.

A detailed list of contributions of each work is included in the following chapters.

CHAPTER 1. INTRODUCTION 4

1.3 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents the background knowl-

edge required for this thesis. In Chapter 3, we introduce the reinforcement learning-

based approach for performance optimization for power and performance constrained

many-core systems. Chapter 4 presents our approach for speeding up training of RL-

based DVFS control algorithms through Bayesian optimization. In Chapter 5 and 6,

we detail our methods of efficient CNN inference and training, respectively. Chapter 7

describes and discusses related works, and we conclude this thesis in Chapter 8.

Chapter 2

Background

2.1 Reinforcement learning

Reinforcement Learning (RL) [8] is inspired by the trial-and-error method humans used

for making decisions for millions of years. In RL, the agent interacts with the system

(Fig. 2.1), e.g., committing actions based on the state of the system and also observing

the new state of the system. The goal of RL is to find the best actions under different

states such that by following those best actions, the agent can optimize the long-term

reward. The probability of selecting an action a under a state s is called a policy π(s, a).

RL determines how the agent should change its policy by experiencing the states. As

Figure 2.1: Agent-system interaction in RL. The systems is characterized by state s. The action
a is taken by an agent to change the state, with resulting outcomes r or p and new state s′.

5

CHAPTER 2. BACKGROUND 6

the problem is sequential, the long-term reward starting from time t is defined as Rt =

rt + γrt+1 + γ2rt+2 + ... = ∑∞
k=0 γkrt+k, where ri is the immediate reward at time i. The

discount factor γ determines how important the future reward is. If γ = 1, future reward

is as important as the immediate reward rt. If γ = 0, the agent is oblivious to future

rewards. Qπ(s, a) is the expected value of Rt when starting from state s, taking action a

and then following the policy π: Qπ(s, a) = E{Rt|st = s, at = a}. The optimal Q value

is defined as Q∗(s, a) = max
π

Qπ(s, a) which is the maximum long-term reward. More

formally,

Q∗(s, a) = E{r + γ ·max
a′

Q∗(s′, a′)|st = s, at = a}

= ∑
s′

Pa
ss′ · [R

a
ss′ + γ ·max

a′
Q∗(s′, a′)]

(2.1)

where Pa
ss′ is the transition probablity (probability of transitioning to state s′ by taking

action a at state s), and Ra
ss′ is the expected reward of reaching state s′ by taking action a

at state s. This equation is known as Bellman optimality equation for Q∗ [8] which finds

the action a′ that can maximize the Q∗ value of the next state while averaging over all

the possible next states. However, one usually does not know the value of Pa
ss′ and Ra

ss′ .

Addressing this, Q-learning [9] has become one of the most important breakthroughs

in RL [8], because (1) it converges to the Bellman optimal solution in an on-line and in-

cremental manner; and (2) it does not require the model of system, e.g., prior knowledge

of Pa
ss′ and Ra

ss′ . The following equation gives the updating rule of Q-learning:

Q(s, a) = Q(s, a)

+ θ · {r + γ ·max
a′

[Q(s′, a′)]−Q(s, a)}
(2.2)

The agent starts from state s and chooses action a. By observing the reward r and

the next state s′, the sum r + γ ·max
a′

[Q(s′, a′)] provides the expected long-term reward

of the state-action pair (s, a). Q-learning updates the Q value incrementally (suitable

when the agent experiences the state-action pairs sequentially) by using the difference

{r + γ ·max
a′

[Q(s′, a′)]−Q(s, a)}. Repeating this procedure, Q-learning is guaranteed to

converge to the Bellman optimal solution [9], i.e., solution to equation 2.1.

CHAPTER 2. BACKGROUND 7

2.2 Bayesian optimization

Bayesian Optimization (BO) is a well-known sample-efficient optimization method for

black-box functions, and has been extensively studied [10, 11, 12, 13, 14, 15, 16]. Figure

2.2 [1] shows an illustration of how BO works, in which the blue solid curve is the true

(and unknown) target function from which we want to find the maximum value. Figure

2.2 (a) illustrates how BO finds the maximum value through exploring various input

values x and Figure 2.2 (b) shows the utility function BO uses to determine which input

values to choose.

Figure 2.2: Illustration of Bayesian optimization [1] .

BO first constructs a prior distribution of functions, usually a Gaussian process f (x) ∼

GP(m(x), k(x, x′)) with mean and co-variance as functions of x (and x′). This means that

at each input point x, our belief of the output function f (x) follows a Gaussian distri-

bution, and its mean and variance (95% confidence interval) are illustrated as the dotted

curve and the cyan-colored area in Figure 2.2 (a). Then BO determines the next point

to observe based on an acquisition function (shown in Figure 2.2 (b)), the intuitive pur-

pose of which is to "guess" a good candidate to probe by balancing the prediction (mean

of Gaussian) and uncertianty (variance of Gaussian). For example, Upper Confidence

Bound (UCB) uses a combination of mean and variance: UCB(x) = µ(x) + κσ(x). When

κ = 2, it is the upper bound of the cyan-colored area. With this new point probed,

CHAPTER 2. BACKGROUND 8

we observe the real output from the experiments without uncertainty, shown as the red

points in Figure 2.2 and the cyan-colored area collapses to none at those points. Then we

update the posterior distribution, i.e., mean and co-variance functions of the Gaussian

process, following Bayes’ Theorem.

The procedure described above is repeated. As the number of observations grows,

the posterior distribution improves, and the algorithm becomes more certain of which

regions in the input space are more likely to be the global maximum and hence worth

exploring.

2.3 Deep convolutional neural networks

Deep Convolutional Neural Networks (CNNs), as illustrated in Figure 2.3, have seen

great success in computer vision tasks, e.g., image classification, object detection and

image segmentation.

Figure 2.3: Illustration of convolutional neural networks.

A CNN usually consists of multiple convolution layers, in which 2D convolution is

performed over the input, and (max-)pooling layers, in which input is downsampled

through max operation over a small sliding window. Each convolution layer is followed

by a non-linear ReLu (Rectified Linear unit: ReLu(x) = max(0, x)) layer to avoid col-

lapsing into a linear system. In the application of image classification, the output of

above layers are usually converted into a one-dimensional vector O = [O1, O2, ..., On].

CHAPTER 2. BACKGROUND 9

O then goes through a Softmax layer and is transformed into a probability distribu-

tion as pi =
exp(Oi)

∑n
i=1 exp(Oi)

. The element with the highest probability is chosen as the final

prediction of the image class.

The parameters w in CNN models, e.g., filters in the convolution layers, are deter-

mined through a training process and they decide how CNN may eventually perform.

In order to learn these parameters, in supervised learning, a loss function, which shall

be minimized through tuning w, is defined as the distance between the prediction and

the ground-truth. Cross entropy loss L = −log(pc), where c is the true class, is often

used as the loss function for classification problems. Loss minimization, i.e., training or

learning, is typically done by using Stochastic Gradient Descent (SGD). SGD randomly

selects a batch of training data samples, calculates the gradient of loss of this batch with

respect to each trainable parameter, i.e., OwL = ∂Avgbatch(L)
∂w , and then updates each of the

parameters through gradient descent: w← w− α ·OwL, where α is learning step size.

Chapter 3

Learning for efficient many-core systems

3.1 Chapter overview

Historically the major goal of processor designers was to achieve better performance by

continuously shrinking device size, adding more pipeline stages, and speeding up the

clock speed. However, all these performance increasing mechanisms have pushed most

designs over the power wall and energy is now the de facto main design constraint.

The ever growing power consumption directly impacts heat dissipation, lowers chip

reliability, and decreases battery life of mobile devices. As Dennard scaling breaks down,

multi-core systems have become the solution to mitigate the issue of increased power

density. For highly parallel applications, multiple small cores with lower voltage and

frequency can provide a similar throughput as a single large core at a much higher volt-

age and frequency, while they consume less energy according to the V2 f Scale Law [3].

While multi-core systems are now used in mainstream consumer products, the desire for

higher performance is again pushing the envelope toward higher power consumption.

In order to ensure the safety and reliability of multi-core systems, a Thermal Design

Power (TDP) constraint for the system power consumption is imposed. It is known that

high performance usually leads to high power consumption and lower performance

consumes less power, therefore there is a clear trade-off between system power con-

10

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 11

sumption and performance. While reducing power to avoid TDP overshoot, we still

need to ensure that a certain Quality-of-Service (QoS) level is maintained. In such a

case, per performance constraints must be satisfied. As a result, maximizing perfor-

mance while satisfying required minimum per-application performance and maximum

system power constraint becomes one of the main directions in power/performance op-

timization. In addition to increasing the number of cores, Dynamic Voltage Frequency

Scaling (DVFS) has been extensively used to adapt performance and power based on

application requirements. By being smart in tuning the Voltage and Frequency (VF)

levels of the cores, on-chip computation can be performed in a more energy efficient

manner. However, prior work mostly focuses on DVFS control under either power or

performance constraints. Finding the optimal VF level assignment can be formulated

as an integer linear programming problem which is NP hard [4]. Therefore, an exact

solution cannot be found using an on-line algorithm, especially when the number of

cores increases. Several algorithms have been proposed to find near-optimal solutions in

polynomial time, however, they either did not take the budget overshoot problem into

consideration or were not considering performance constraints for all applications. They

also may only be efficient for small-scale multi-core systems rather than systems with

hundreds of cores. By exploiting both spatial and temporal hierarchy, we propose On-

line Distributed Reinforcement Learning (OD-RL) and its priority-aware counterpart,

pa-OD-RL [17] that are able to improve performance under power constraints and per-

formance requirements with significantly smaller TDP overshoot and runtime overhead.

3.1.1 Chapter contributions

To the best of our knowledge, the work presented in this chapter makes the following

contributions:

• The proposed method for multi-core power budget overshoot control overcomes

the scalability issues of RL while maintaining its powerful aspect of learning the

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 12

optimal action without building a full model of the system. The RL method is

known to not scale, since the number of states increases exponentially with the

number of cores. In this work, we exploit the spatial and temporal hierarchical struc-

ture, and propose the OD-RL method that combines RL and an efficient power

budget reallocation algorithm. The number of states of OD-RL therefore no longer

depends on the number of cores, and the algorithm complexity is reduced dramat-

ically to O(N · log(N)) which is also independent of the number of VF levels.

• Indeed, power constrained performance improvement is usually solved by pushing

the average power close to the TDP constraint, regardless of the resulting TDP

overshoot. Many methods do exceed the budget quite often especially because

they rely on the V2 f Scale Law or modeling methods that introduce inaccuracies

leading to incorrect decisions. Our approach is able to adapt to the workload,

mitigate the inaccuracy problem and minimize the likelihood of overshooting TDP.

• Our approach is efficient and accurate when compared to state-of-the-art ap-

proaches. We evaluate our proposed method, MaxBIPS [3], and Steepest Drop

[18] on a wide spectrum of parallel, multi-threaded applications in systems with

as many as 64 cores. The experimental results show up to 98% less budget over-

shoot, 23% energy efficiency improvement and 100x speedup in a 512-core system

when compared to Steepest Drop [18].

• We further proposepriority-aware OD-RL (pa-OD-RL) for the case of applications

with stringent performance requirements. Compared with OD-RL, pa-OD-RL

can better satisfy performance constraints and provide an advantageous trade-off

(20.0x better) when trying to satisfy power and performance requirements.

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 13

3.2 Methodology

RL algorithms have traditionally been used to find the optimal solution for sequential

decision problem, and have been proved effective in a variety of problems from different

areas [8]. However, RL often suffers from state space explosion and thus is too expen-

sive for large scale problems. Our proposed OD-RL method [19] assigns V/F levels to

each core to improve the global performance under a given power budget in a scalable

manner. To address the scalability issue of RL, our approach uses a distributed RL agent

working at a finer grain on each cluster of cores and a course grain efficient power bud-

get reallocation algorithm.

When applied to power or performance optimization for large scale computing sys-

tems, one must define the machine states and actions globally, and therefore the state

space grows exponentially. Therefore, if a centralized RL-based approach is used, the

overall number of states and actions grows exponentially with the number of cores. To

illustrate this exponential growth, let us assume that the system has N cores, K features

per core (e.g., instructions committed per cycle or IPC, misses per kilo-instructions or

MPKI, etc.) and at most D different values per feature (e.g., high/low IPC or MPKI).

The kth feature of core i is denoted as fik and the global state is therefore defined

as Sglobal = { f11, f12, .. f1K... fN1, ... fNK}. Thus, the number of global states of a N-core

system becomes |Sglobal| ∝ DKN. The action for the N-core system will be a vector

Aglobal = (a1, a2, ...aN) where ai is the action of the ith core. Without loss of generality, if

we assume at most α possible actions for each core, then the number of possible actions

is |Aglobal| ∝ αN. As a consequence, in a centralized RL-based method, the total number

of state-action pairs would be |Sglobal| · |Aglobal| ∝ DKN · αN which is indeed exponential

in the number of cores N. One way to mitigate this exponential growth is to distribute

the actions to different cores, in which case each core makes its own independent de-

cision. While the number of states is the same as before, the cardinality of the action

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 14

state space is reduced to αN. Therefore, for each core, the number of state-action pairs

would be |Sglobal| · |ai| ∝ DKN · α, which is much smaller than the previous case, but still

exponential in the number of cores. The required training time and memory overhead

will render both this and the centralized RL approach impractical in real applications.

We note, however, that a globally defined state space contains more information than

necessary. One way to reduce the complexity is to retain only the features of the current

core. By doing so, the state kept by each core i is Si = { fi1, fi2, .. fiK}. The number of

state-action pairs per core is further reduced to |Si| · |ai| ∝ DK · α or N · DK · α for the

entire system which is no longer exponential in the number of cores. Consequently, a

distributed RL algorithm allows every core to run independently and learn the optimal

DVFS control policy on its own. Since each RL agent can run independently, the time

complexity of this method is only proportional to the number of actions O(α). On the

downside, we achieve this high scalability at the cost of missing information on the other

core states. To address this problem, we propose to allow local agents to run at a finer

granularity and reallocate the power budget at a coarser granularity. In the latter reallo-

cation step, all cores receive new power budget constraints from a global power budget

reallocator.

Therefore, the problem of RL-based power constrained performance improvement is

decomposed into two sub-problems.

1. At finer time granularity, when given a fraction of total power budget, each core

learns the best policy that maximizes its performance under that budget, locally.

2. At coarser time granularity, a global power budget reallocator redistributes power

across cores to better satisfy the performance constraints and ensure a better utilization

of the total budget, globally.

Fig. 3.1 depicts the overall structure of our approach. Distributed RL agents work

on each core locally and independently, while the global budget reallocator redistributes

the budget among all the cores. The temporal granularity is also different: distributed

RL agents operate at every control epoch, while the budget reallocator executes every

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 15

Figure 3.1: Structure of the algorithm. Spatial hierarchy: budget reallocation does global coor-
dination while RL is distributed to each core. Temporal hierarchy: budget reallocation works at
coarser gain while RL executes at finer grain.

M epochs. The best M value is typically found through experimentation. For the multi-

threaded parallel benchmarks and the platforms we have considered herein, a suitable

value was M = 15.

3.2.1 Fine temporal granularity: reinforcement learning local agents

Each core will run Q-learning once per control epoch so as to learn the best policy that

maximizes its performance under a given power budget. We define the state of each core

as S={Instruction Per Cycle (IPC), Million L2-cache-misses Per Kilo-Instructions (MPKI),

current power value (Power), current VF level (VF level)}. Traditionally, the features are

discretized uniformly across their value range. Instead, we discretize IPC by its sta-

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 16

tistical distribution to minimize inter-interval oscillation due to a poor discretization

threshold. We define the reward r as the core throughput, which quantifies the prefer-

ence for an action that leads to higher performance. The budget-overshoot penalty is

−PF · |power value− power budget| where PF is the penalty factor. The penalty is pro-

portional to the power budget overshoot, following the intuition that it is more desirable

to eliminate a high power budget overshoot. We discuss the choice of the PF value in

section IV.B.

To accelerate the convergence of Q-learning, we propose a batch-update method. For

any state s0 and s1, we define s1 > s0, when all features part of s1 have larger values than

those of s0. By analyzing the program trace, we observe that, if a core exceeds the power

budget for state-action pair (s, a), it will also exceed for any (S, a), ∀S > s. Therefore, we

penalize all state-action pairs (S, a), ∀S > s, when the budget is exceeded for (s, a). This

way, unnecessary budget overshoots are eliminated by taking advantage of the ordering

between the states.

The proposed RL algorithm is able to suppress the budget overshoot by learning the

transition probability of the workload. However, these actions can sometimes be con-

servative due to volatility of dynamic workload behavior. We observe that for some

workloads a high frequency state selection is sometimes penalized due to bursty spike

in power. However, overshooting the power budget for a short time (typically less than

a few milliseconds) will not produce any thermal emergencies. To account for this, we

develop a memory mechanism to quantify the presence and frequency of these short

power bursts in a similar fashion to branch predictors [20]. In more detail, we maintain

an m-bit memory queue for each state-action pair. If a state-action pair choice results

in the core being under the power budget, the memory receives a 1, otherwise it gets a

0. When a state-action pair receives a 0, which means a budget overshoot, it will check

its m-bit memory: (1) it will not penalize the pair (Q value not changed) when all the

bits in current memory are 1s. (2) it will penalize the pair (change the Q value based on

Q-learning algorithm) when at least one bit in the m-bit memory is 0. We experimentally

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 17

determine the best value for m as 3. This proposed memory mechanism can accommo-

date short power budget violations and mitigate performance degradation due to bursty

spikes while still being able to learn the periodic benchmark behaviors, e.g., loops.

3.2.2 Coarse temporal granularity: power budget reallocation

As distributed RL maximizes the performance under a given budget per core, power

budget reallocation algorithm serves as a global coordinator to further maximize the

performance and power utilization at a coarser granularity. Following the same intuition

as MaxBIPS [3] which favors CPU-intensive threads, we propose the Maximize-the-Max

(MM) method which always maximizes the VF level of the busiest cores. Algorithm

1 gives the pseudocode of MM method. Let’s associate a tuple (core number, IPC) =

(i, IPCi) to each core i. We can define a "core number-IPC” profile: CORE− IPC =

{(0, IPC0), (1, IPC1), . . . , (n − 1, IPCn−1)}. Power of core i at VF level VFi is denoted

as Pow(i, VFi). At every power reallocation step, MM first estimates the power con-

sumption of all the cores at their lowest VF level, and subtracts this value from the total

budget. Then MM builds a max-heap out of CORE− IPC sorted by the IPC value,

and pops out the core with the highest utilization. The power budget required to boost

this core to the highest feasible (i.e., still within the remaining power budget) VF level

is calculated and subtracted from the total power budget while the highest VF level is

assigned to the core. If there is still residual budget after the first allocation, MM will

pick the new top of the heap and will again allocate the budget to allow the highest

possible VF level selection. MM repeats this process until no budget value is left. In

the case of unbalanced workload, e.g., when there is a critical thread running and the

others are waiting for it, the other threads may stay in lower performance state, e.g.,

stalling or spinning. The global budget re-allocator will then assign most of the power

budget to the core running the most critical thread and the RL agent will hence boost

its performance under the higher power cap, though our algorithm does not explicitly

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 18

balance the load. To implement this algorithm, we used the max-heap to sort the cores

in the order of their utilization, with a time complexity of N · log(N). To estimate the

power consumption of core i at a different VF level VFi = q, we use the V2 f Scale Law

[3] which states that dynamic power is proportional to V2 f where V is voltage and f is

frequency. Assuming core i is originally at VFi = p, we estimate

Pow(i, q) = Pow(i, p) · Volt2(q) · f req(q)
Volt2(p) · f req(p)

· κ(i) (3.1)

where κ(i) is the discount factor of core i accounting for the transition cost of VF level

[3], and Volt(p) and f req(p) are the voltage and frequency of VF level p, respectively. We

determine κ(i) = 0.9 f or ∀i experimentally. Since subthreshold leakage power usually

remains stable for a specific voltage, to further increase the power estimation accuracy,

we subtract it from the total power first, then do the V2 f scale on dynamic power, and

finally add the leakage power of the new voltage back to the total power. The subthresh-

old leakage power of different voltages are obtained during machine idle period.

3.2.3 Priority based performance requirements

We further consider required performance constraints that the applications should sat-

isfy. We define the performance requirement for each application as a percentage out

of the maximum possible throughput achieved when the application runs at the high-

est VF level. For example, if the maximum possible throughput of an application at

time t is Tmax(t), then to satisfy a performance requirement of 95% , the application

should maintain a throughput of 95% · Tmax(t). In a system with multiple applications,

we may have several performance requirements χ1 > χ2 > χ3 > ... > χn. We say that

an application has higher priority if its performance requirement χ is larger. To satisfy

these performance constraints as well as better utilize the power budget, we propose a

priority-aware MM (pa-MM) variant. The intuition behind pa-MM is as follows:

1. Application performance is boosted in descending order of priorities. In order

words, the applications with highest priority is sped up first.

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 19

2. Within each application, threads are boosted based on core utilization by greedily

assigning high VF levels.

Similar to MM, pa-MM first estimates the power consumption of all cores at the lowest

VF level and subtracts the sum from the total power budget. Then, for each application,

pa-MM builds a max-heap of elements in CORE− IPC based on the IPC values. The

core part of the algorithm consists of two loops. The outer loop (Line: 10) iterates over

the applications that are part of the workload, from the highest priority to the lowest

priority. The inner loop (Line: 11), assigns the highest VF level to the threads of each

application in descending order of core utilization until the total application throughput

satisfies its performance constraint. The aforementioned max-heap is used to pop out

the core with the highest utilization among the remaining cores. If there is still power

budget left (Line: 9) after iterating over these two loops, the algorithm will go through

the two loops again to boost up threads that are not considered in the first round. This

process terminates when there is no power budget left (Line: 19).

3.2.4 Power-performance model

As shown above, we use the V2 f Scale Law [3] to estimate the power of a core i at a

different VF level VFi = q as a function of the core power in its original VFi = p level.

To this end, to compute the current power value per core, we develop a multivariable

polynomial regression model. As shown in [21], power consumption can be written as:

P = Pdyn · u + Psta (3.2)

where Pdyn and Psta correspond to the peak dynamic and static power consumption from

the design specifications, and u encapsulates the processor utilization. As prior art has

shown [21], this activity rate can be effectively approximated as a linear function of the

total number of instruction per cycle (IPC). Hence, for the current VF level VFi = p, we

can write [22]:

Pp = Pdynp · (µp · IPC + νp) + Pstap (3.3)

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 20

Algorithm 1 Pseudocode of priority-aware MM method

1: Input: CORE− IPC, Global Budget, N, Napp, Priority
2: Output: Budgeti for a core i, 1 ≤ i ≤ N
3: Variable: Residual Budget (Res_B).
4: for i← 1; i ≤ N; i← i + 1 do
5: Budgeti ← Pow(i, VFi = lowest)
6: end for
7: Res_B← Global Budget−∑N

i=1 Pow(i, VFi = lowest)
8: For each application, build a max-heap of CORE− IPC based on the IPC value
9: while Res_B > 0 do

10: for App← 1; App ≤ Napp; App← App + 1 do
11: while Thoughput o f App < PriorityApp ∗MaxThroughput do
12: Pop the max-heap of application App and get the tuple (i, IPCi)
13: ∆← Pow(i, VFi = highest)− Pow(i, VFi = lowest)
14: if ∆ ≤ Res_B then
15: Budgeti ← Budgeti + ∆
16: Res_B← Res_B− ∆
17: else
18: Budgeti ← Budgeti + Res_B
19: return
20: end if
21: end while
22: end for
23: end while

That is, given the design specifications for the peak dynamic and static power consump-

tion per VF level, and the IPC values from the performance counters of the system,

we can learn the µ’s and ν’s parameters across all the different VF levels from empirical

data. Note that our approach is general and other (nonlinear or polynomial) approxi-

mations can be used to link utilization with performance counters like IPC. Moreover,

the model is flexibly extendable to including process variations [21, 23] and aging phe-

nomena [24, 22], whose integration we leave for future work.

To assess the accuracy of our power-performance model, we simulate a multi-core

system with four cores for all the VF levels considered later in our experimental setup

(i.e., Table 3.2). At runtime, we collect the power traces, both dynamic and static power,

from McPAT [25], and IPC traces from Sniper [26]. Based on the collected power data per

application and per VF level, we train our model and we learn the α and β parameters

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 21

(Equation 3.3). Table 3.1 shows the normalized root-mean-square error (NRMSE) of

the fitted models per benchmark, averaged across all the considered VF levels. Indeed,

the error margins are consistent with the accuracy reported in similar learning-based

methods [21].

Table 3.1: Validation of learned α’s and β’s: NRMSE error.
Benchmark NRMSE Benchmark NRMSE

fft 8.29% lu-ncont 11.95%
canneal 3.75% cholesky 11.48%

radiosity 5.00% fluidanimate 4.17%
ocean-ncont 10.13% radix 1.83%
swaptions 3.65% vips 18.93%

barnes 3.71% ocean-cont 9.81%
lu-cont 12.81% blackscholes 6.83%

mean 8.02 %

3.3 Experimental results

3.3.1 Experiment setup

We verify the effectiveness of the proposed method by using Sniper v5.3 simulator [26]

with its natively supported PARSEC and SPLASH-2 multi-threaded benchmark suites. The

simulation infrastructure is shown in Fig. 3.2.

Sniper is able to perform timing simulations for multi-threaded, shared-memory

applications with tens to 100+ cores, and it has been validated against Intel Core2 and

Nehalem systems. Sniper normally uses McPAT [25] for system power estimation. How-

ever, since we use 16nm technology and McPAT supports down to 22nm, we use the

proposed power-performance model for power estimation. The system configuration is

shown in Table 3.2. The architecture we considered has one DRAM controller for every

four processing cores. In Sniper simulator, both RL agent and MM/pa-MM are imple-

mented as Python scripts. In every control epoch, this script will be invoked by Sniper

and executed to select the VF level of all the cores. We vary the epoch size from 500µs to

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 22

Figure 3.2: Simulation infrastructure: Sniper for timing simulation and our proposed power-
performance model for power estimation. Distributed RL and budget reallocator are imple-
mented as Python scripts to make the VF level decisions and interact with Sniper.

Table 3.2: Architectural parameters

Number of cores 16
Architecture Intel Gainestown
L1-I/D cache 32KB, 4-way, LRU

L2 cache 512KB, 8-way, LRU
L3 cache 8MB, 16-way, LRU

VF levels (GHz/V) 2.2/0.65, 2.4/0.75, 2.6/0.85, 2.8/0.95
Nominal VF level 2.6/0.85

Control epoch 500µs to 10ms
Budget reallocation period every 15 epochs

Technology node 16 nm

10ms across different benchmarks, because (i) we would like to explore the effectiveness

of our approach across different epoch lengths; and (ii) we are using the large input set

for each benchmark and therefore we require hundreds of epochs to demonstrate the

effectiveness of the algorithm in a statistically significant manner.

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 23

Figure 3.3: Budget overshoot quickly satures when Penalty Factor (PF) is larger than 5.

3.3.2 Budget overshoot control

The penalty term in each RL agent plays an important role in determining the algorithm

behavior [8]. Higher penalty offers better overshoot suppression, but can also negatively

impact the performance. Lower penalty is able to give better performance at the cost

of larger budget overshoot. In order to find the best Penalty Factor (PF) value, we an-

alyzed the impact of penalty value on budget overshoot for different benchmarks and

core counts. The results in Fig. 3.3 show that the budget overshoot quickly saturates

when PF ≥ 5, therefore we select PF = 5 as it offers the best trade-off between penalty

and performance.

We first evaluate our OD-RL together with four state-of-the-art algorithms: MaxBIPS,

PullHighPushLow, Priority from [3], and Steepest Drop from [18] in terms of their

budget overshoot control, relative performance improvement, and runtime overhead.

MaxBIPS does combinatorial optimization according to core utilizations, while Pull-

HighPushLow and Priority boost core processing speed greedily based on core utiliza-

tion and priority, respectively. Steepest Drop uses the per-core energy efficiency as the

heuristic to quickly optimize for system energy and performance with lower runtime

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 24

overhead. For MaxBIPS, we use Equation 3 for budget control as mentioned in the

original paper [3]. Budget overshoot is defined as the total energy consumption over

the TDP. This extra energy increases the risk of thermal emergencies and subsequent

throttling, negatively impacts the chip reliability, and puts heavier burden on the cool-

ing system. Fig. 3.4 shows the budget overshoot control of five algorithms (including

OD-RL). Our algorithm is able to better suppress the budget overshoot in most cases, by

a margin of several orders of magnitude. In swaptions, we see that our approach does

not perform as well as Steepest Drop and is close to MaxBIPS. The reason for this be-

havior is that swaptions is a very balanced multi-threaded application in which all cores

have the same utilization across chip and in time. The exception is core 0 which does

nothing (IPC0 = 0). In this case, the inevitable on-line learning overhead of OD-RL

increases the relative budget overshoot. For canneal and blackscholes, OD-RL is slightly

worse than Priority in budget overshoot control, while it has much better performance

(almost double in blackscholes in Figure 3.5) under similar or less power consumption.

In Radiosity, OD-RL saves 98% budget overshoot due to its capability of adapting to the

workload change and hence reducing the over-the-budget energy to a much lower value

0.06J compared to the other approaches. Our method achieves the lowest budget over-

shoot with an average budget overshoot reduction of 73.4% comparing to the baseline

MaxBIPS. OD-RL outperforms the state-of-the-art approaches because it is able to learn

the workload transition probability and therefore suppress the budget overshoot.

In Figure 3.5 and 3.6, we show performance and power results of the five algorithms

mentioned before. We point out that the lower budget overshoot our method provides

may lead to lower average power, as well as lower performance. As we can see in Figures

3.5 and 3.6, the average performance and power are lower than prior work. However,

compared to MaxBIPS, given a 7.2% power reduction and 73.4% budget overshoot reduc-

tion, we only sacrifice performance by 2.8% considering that MaxBIPS is near-optimal

in terms of performance. Therefore, we not only achieve better energy efficiency, but

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 25

Figure 3.4: Comparison among five algorithms on budget overshoot control (Lower is better).
Results normalized with respect to MaxBIPS.

Figure 3.5: Comparison among five algorithms on system throughput (Lower is better). Results
normalized with respect to MaxBIPS.

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 26

Figure 3.6: Comparison among five algorithms on power consumption (Lower is better). Results
normalized with respect to MaxBIPS.

also much better budget overshoot control than prior work. We want to emphasize that,

although both prior work and ours are maximizing performance under power budget,

the former only consider that the average power across the entire run should be lower

than the budget, while we also consider the budget overshoot within each run. We

also point out that although prior work approaches try to control power at each epoch,

inaccurate models make the decision inaccurate and this leads to temporary budget

overshoot. Budget overshoot leads to extra heat generation and hence reliability issues.

Budget overshoot is also linked to thermal emergencies which increase aging effects and

decrease the mean time to failure (MTTF)[27]. We will explain why our method achieves

better results, though we are using a similar modeling (we consider the leakage power

as well).

As MaxBIPS and Steepest Drop are actually pushing the average power close to the

budget line to achieve high performance regardless of the budget overshoot, we will also

calculate Throughput2

Average Power (∝
1

Energy−Delay Product) to evaluate the energy efficiency of all five

methods. Fig. 3.7 compares the energy efficiency of all five approaches under different

benchmarks, respectively. An 8-core system is used here because MaxBIPS (which uses

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 27

Figure 3.7: Comparison among three algorithms on energy efficiency (Higher is better). Results
normalized with respect to MaxBIPS.

exhaustive search) is not scalable and thus becomes too slow for systems with more

cores. We can see that OD-RL provides up to 23% higher energy efficiency, and is slightly

better than MaxBIPS and Steepest Drop, while much better than PullHighPushLow and

Priority approaches on average, because MaxBIPS is already near optimal on average

[3].

3.3.3 Power and performance constraints

In the following we consider both power and performance constraints. Since we have

already shown that OD-RL outperforms Steepest Drop, MaxBIPS, Priority and PullHi-

PushLow in [3], we compare our pa-OD-RL with the priority-unaware OD-RL. Though

our algorithm works for systems running any number of applications with arbitrary

number of threads and priorities, we cannot experiment with all the possible combina-

tions as they become prohibitively expensive to simulate. In the experiments, we sim-

ulate a 16 core system with two 8-thread applications randomly picked from SPLASH-2

benchmark suites. Each of the applications has its performance requirement bounds,

more specifically phigh and plow for high priority and low priority applications, respec-

tively. We set non-trivial performance bounds for both applications based on the VF set-

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 28

ting from Table 3.2. On one hand, the maximum throughput is obtained when running

under 2.8GHz while the nominal frequency is 2.6GHz, so the high priority performance

bound phigh should be set larger than 2.6/2.8 = 92.8%. Otherwise, running at the nomi-

nal frequency will automatically satisfy both high and low priority performance bounds.

On the other hand, phigh should not be too close to 100%, because it will lead to most

of the high priority application threads running at the highest VF level which is very

likely to exceed the power budget and therefore be infeasible under both power and

performance constraints. For the low priority application, the ratio of lowest frequency

over highest frequency is set to 2.2/2.8 = 78.5%. Any bounds plow below 78.5% mean

that the application will always be able to satisfy the constraint. However, setting plow

too high means that there is little slack to give to the high priority application which

may also yield no solutions. Based on the discussion above, we chose 95% performance

bound for high priority applications and 80% for low priority applications.

As we have certain performance requirements, we define three additional metrics to

provide a more comprehensive comparison involving both power and performance:

1. The number of epochs that both applications satisfy their prescribed performance

constraints. We do not count the epochs during which at least one application

does not satisfy the performance bound because in such cases, we consider that

the system fails to satisfy the overall performance requirements.

2. Accumulated Over-required-Throughput (AOT). This is an integral of the through-

put values that are over the performance requirement, but only during epochs that

both applications satisfy their performance requirements. This metric captures not

only how well the algorithm satisfies the performance requirements, but also its

ability to maximize throughput.

3. Ratio of AOT over Budget overshoot (AOB). Since we have both power constraints

and performance requirements, we use AOB as the metric characterizing the effec-

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 29

Table 3.3: Metrics ratio of pa-OD-RL over OD-RL.

mix benchmarks Budget
overshoot

Energy
efficiency

fft barnes 0.664 1.010
barnes radiosity 0.790 1.022

oceancont oceancont 0.041 1.063
lucont barnes 0.566 1.024

fft fft 0.693 0.954
radiosity barnes 0.464 1.126
lucont oceancont 0.389 1.006

fft lucont 0.138 1.037
cholesky lucont 1.241 0.797

radiosity oceancont 0.198 1.249
oceancont fft 0.530 1.003
barnes lucont 0.255 0.989

barnes oceancont 0.380 0.894
barnes radix 0.452 0.957

radiosity lucont 0.031 0.963
lucont lucont 0.371 0.935
fft oceancont 0.095 0.971

radix radiosity 0.824 0.635
fft radiosity 1.089 0.996

lucont cholesky 0.769 0.926
Average 0.500 0.978

tiveness of the algorithm in satisfying both. We note that higher AOT and lower

budget overshoot both lead to higher AOB values.

Table 3.3 shows the results of pa-OD-RL in terms of the budget overshoot and energy

efficiency. All metrics are normalized with respect to the values of priority-unaware OD-

RL. We can see that pa-OD-RL can achieve better budget overshoot control for workloads

involving multiple applications with different priorities. Priority-unaware OD-RL can-

not distinguish threads from different applications and hence is more likely to unbalance

the threads within the same application. Pa-OD-RL achieves similar energy efficiency

as the priority-unaware OD-RL on average while satisfying prescribed performance re-

quirements.

Figures 3.8, 3.9 and 3.10 show log scale comparison between priority-unaware OD-RL

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 30

and pa-OD-RL in terms of the new three metrics, i.e., number of epochs during which

performance requirements are met, AOT and AOB. All bars are normalized with re-

spect to the value of the priority-unaware OD-RL. In Figure 3.8, we see that in almost all

cases, pa-OD-RL is better in satisfying both application performance requirements than

the priority-unaware OD-RL version. This is expected since OD-RL is unaware of any

performance requirements and prefers boosting up threads with the highest utilization.

Figure 3.9 shows that pa-OD-RL achieves better AOT values which indicates better over-

all system performance under given per-application performance requirements. We see

that for radiosity and ocean.cont mixed benchmark, pa-OD-RL has similar number

of epochs satisfying both application performance requirements but much lower AOT.

The reason behind this behavior is lower power budget overshoot (0.198x smaller) which

leads to a lower throughput value. Figure 3.10 shows that pa-OD-RL is almost always

better than OD-RL in terms of the combined power and performance requirements.

3.3.4 Overhead and scalability

To show how pa-OD-RL performs when the number of cores scales up, we compare

Steepest Drop and OD-RL for a system of 16, 32 and 64 cores. We only compare Steepest

Drop and OD-RL here because (i) pa-OD-RL has a similar scalability and runtime as OD-

RL as we analyze and demonstrate below and (ii) MaxBIPS is unable to run for more

than 8 cores. Waternsq, bodytrack, ferret and fluidanimate are used here because

they are the most representative for our work. Figures 3.14, 3.15 and 3.16 show that

OD-RL is constantly better when the number of cores scales up. OD-RL, on average,

achieves around 70% less budget overshoot and 3% better energy efficiency. The average

improvement for both metrics over different number of cores is relatively stable. Figures

3.11, 3.12 and 3.13 show the power and performance for the two approaches. OD-RL

achieves around 13% reduction in power consumption, while only sacrifices around

4% of the performance. The consistent improvement across different number of cores

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 31

Figure 3.8: Comparison between OD-RL and pa-OD-RL for the number of epochs satisfying
both performance constraints in a 16 core system running two 8-thread applications.

demonstrates that OD-RL method is highly scalable and largely independent on the

number of cores.

Analyzing the time series of the performance and power values, we make the follow-

ing observations: (i) MaxBIPS and Steepest Drop heavily rely on the accuracy of the V2 f

Scale Law. Inaccurate power estimation will make them choose actions that result in

budget overshoot. Although OD-RL also suffers from that inaccuracy during the bud-

get reallocation step. RL automatically adapts to the new budget and suppresses the

budget overshoot. (ii) Even with perfect power estimation, MaxBIPS and Steepest Drop

still suffer from making decisions based on the current machine state regardless of the

next machine state. For example, let’s assume a machine state s0 at time t0 and s1 at

time t1 with s1 > s0. Here, a larger s means a higher machine utilization. At time t0,

MaxBIPS and Steepest Drop will calculate the best actions based on s0 which should

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 32

Figure 3.9: Comparison between OD-RL and pa-OD-RL for the AOT metric in a 16 core system
running two 8-thread applications.

not exceed the budget. Unfortunately, s0 quickly changes to s1 under which the chosen

actions cause a higher power consumption which actually exceeds the budget. The rea-

son why RL performs better than MaxBIPS is because it has the capability of learning

the transition probability of the machine state, and therefore, is able to predict the next

machine state and choose the best action based on both current and future state.

We further analyze and test the overhead of the three approaches. MaxBIPS uses

exhaustive search and its complexity is O(N · αN) where α is the number of VF levels.

Steepest Drop is much more scalable with a complexity of O(α · N · log(N)). In OD-RL,

the distributed RL method is highly parallel and the only phase requiring global coor-

dination is the power budget reallocation. MM actually does a heapsort with respect

to the IPC value, and its worst case complexity is O(N · log(N)) [28]. The priority-

aware MM version does heapsort on the threads for each application, and the two

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 33

Figure 3.10: Comparison between OD-RL and pa-OD-RL for the AOB metric in a 16 core system
running two 8-thread applications.

loops assigning power budget require N operations at most. Assuming applications

have similar number of threads (NApp), we can obtain the complexity of pa-MM as

O(NApp · N
NApp
· log(N

NApp
) + N) = O(N · log(N

NApp
)). Therefore, if we have fixed number

of applications, priority-aware MM and priority-unaware MM both have better scala-

bility than MaxBIPS and Steepest Drop. In addition, since both OD-RL and pa-OD-RL

invoke the power reallocation algorithm on a coarser temporal granularity, it has further

smaller runtime overhead by a constant factor. Fig. 3.17 shows the execution time (log

scale) of the Steepest Drop method, OD-RL and pa-OD-RL as a function of core count.

The trend indeed follows the O(N · log(N)) complexity. The execution time is averaged

over 100 runs to account for the variation due to different algorithm inputs, i.e., different

values of IPC, MPKI, etc. The results show that OD-RL can achieve 100x speedup in

a 512-core system when compared to Steepest Drop. Pa-OD-RL is slightly slower than

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 34

Figure 3.11: Comparison of power (left) and throughput (right) in a system of 16 cores.

Figure 3.12: Comparison of power (left) and throughput (right) in a system of 32 cores.

OD-RL, because it needs to compute the total estimated throughput of each application

after each budget assignment. Although the CO method [29] achieves a similar speedup,

it is considering a different objective, which is the sum of frequencies, while we, similar

to MaxBIPS and Steepest Drop, are optimizing the throughput defined as Instructions

Per Second (IPS) = frequency * Instructions Per Cycle (IPC). Due to this fundamental

difference in objective, we do not compare with CO in terms of speedup.

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 35

Figure 3.13: Comparison of power (left) and throughput (right) in a system of 64 cores.

Figure 3.14: Comparison of budget overshoot (left) and energy efficiency (right) in a system of
16 cores.

3.4 Discussion

In this chapter, we propose an On-line Distributed Reinforcement Learning-based ap-

proach which decomposes the original power constrained, performance optimization

problem into two sub-problems at different spatial and temporal granularities. The RL

at finer grain is able to improve the performance while mitigating possible budget over-

shoot by learning and adapting to workload changes. The proposed Maximize-the-Max

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 36

Figure 3.15: Comparison of budget overshoot (left) and energy efficiency (right) in a system of
32 cores.

Figure 3.16: Comparison of budget overshoot (left) and energy efficiency (right) in a system of
64 cores.

(MM) method and its priority-aware variant run at a coarser granularity and are more

scalable with respect to the number of VF levels compared to Steepest Drop, and thus,

can be asymptotically faster since they are run less frequently. OD-RL is 100x faster on

a 512-core system comparing to Steepest Drop. Our approach achieves up to 98% sav-

ing on budget overshoot, 23% higher energy efficiency, and is consistently better than

Steepest Drop when the number of cores scales up. Considering both global power con-

CHAPTER 3. LEARNING FOR EFFICIENT MANY-CORE SYSTEMS 37

Figure 3.17: Log-log plot of approaches overhead in a system up to 1024 cores. Execution time
is averaged over 100 runs.

straints and per application performance requirements, pa-OD-RL delivers, on average,

(i) 17.8x more epochs satisfying prescribed performance requirements, (ii) 5.6x perfor-

mance gain, and (iii) 20.0x better performance-power trade-off (AOB metric) than the

priority-unaware OD-RL, while both have similar runtime and scalability to thousand of

cores.

Chapter 4

Speeding up training of RL-based DVFS

algorithms

4.1 Chapter overview

In the age of mobile computing, reducing power consumption is in fact a major design

goal as it extends battery life, improves thermal profile, increases device stability, etc. Dy-

namic Voltage Frequency Scaling (DVFS) is an effective technique for improving system

energy efficiency and is widely available commercially [3, 19, 21, 30, 31, 32]. By strate-

gically changing the Voltage and Frequency (VF) levels of the processing cores (CPUs)

and/or main memory (DDR) as a function of the system state, one can save considerable

amount of energy without sacrificing system performance, e.g., a simple DVFS algo-

rithm may lower the voltage and frequency of the cores when they process lightweight

workloads to save energy. However, finding the optimal VF levels is NP hard [4]. Tra-

ditionally, engineers manually tune a rule-based DVFS (rule-DVFS) algorithm for each

system platform and a set of benchmark applications, which requires long experimen-

tation time and extensive human labor. The situation is compounded by the continual

emergence of new and diverse applications, and more complex computing systems. In

order to adapt to the ever changing world of computing, Reinforcement Learning-based

38

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 39

DVFS (RL-DVFS) algorithms have been proposed as they can learn the DVFS model and

its parameters systematically through data [19, 33, 34]. RL-DVFS methods have been

proven successful, however, they often require several thousands of iterations or more to

train the model [35, 36]. Data collection in real world can be expensive due to physical

limitations, e.g., power meters are used for measuring device power, but are limited by

measuring speed and quantity. For instance, measuring ten thousand iterations of one

five-minute application takes one month. Hence, reducing training iterations is critical

for learning the model in reasonable amount of time to make RL-DVFS practical, i.e.,

reduce time to market.

Bayesian Optimization (BO) is a well-known method for sample-efficient optimiza-

tion and has been extensively studied [10, 37]. In this chapter, we propose iterative-BO

methods [38] for RL-DVFS algorithm training, resulting in a speedup in training time

up to 37.4x, relative to direct RL-DVFS training.

4.1.1 Chapter contributions

To the best of our knowledge, the work presented this chapter makes the following

contributions:

• In BO-based approach for speeding up training, we compress a traditional RL-

based DVFS model to fewer parameters, which not only speeds up RL training,

but also enables the application of BO.

• We then propose an iterative-BO method and an improved version of the same.

The iterative-BO method uses a dimensionality reduction strategy to enable better

BO convergence properties. The improved version of iterative-BO method, which

we call iterative-BO with restart, additionally leverages a novel history forgetting

strategy to achieve an increased speedup of 37.4x in RL-based DVFS training.

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 40

4.2 Methodology

4.2.1 RL-based DVFS

Dynamic tuning of the VF levels of CPU and DDR (also extensible to other parts of the

mobile device) to maximize the system energy efficiency can be modeled as a Markovian

Decision Process [19] [33] that traditionally admits solutions via RL [8]. The goal of

RL is to find the best actions under different states such that a long-term reward R

is optimized. In our problem, since we care about both performance and power of

the system, we define R as the product of a performance reward and a power reward.

We define the application execution time (a proxy for performance) and average power

consumption (directly related to mobile device battery life) under our method as TRL

and PRL, respectively, and the execution time and power under a rule-DVFS as Trule and

Prule. Performance reward Rper f = 1 when TRL <= Trule and Rper f = Trule − TRL, which

is a negative value, when TRL > Trule. Power reward Rpower is defined as max(0, 1−
PRL

2Prule
) which indicates a lower power preference. Accordingly, rule-DVFS has a reward

of 0.5, and any algorithm with a reward higher than 0.5 achieves better energy efficiency

than rule-DVFS. We further define the state of the system in RL as S = [s, f], where s

is a feature vector containing values of various counters measuring different attributes

in the system and f is the index of current VF level [19]. We model the next VF level

decision f as a function of S .

4.2.2 Cross-entropy method

Cross-Entropy Method (CEM) is a well-known RL algorithm [39], and we use it as the

baseline RL-DVFS method for our problem. We model the CPU and DDR control poli-

cies separately as they are distinct components in the mobile device, and this also helps

dealing with the BO curse of dimensionality later: fcmpt = argmax(Wcmpt · S ′), where f

is the index of selected VF level, cmpt is device component (CPU or DDR), Wcmpt is a

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 41

2D parameter matrix. S ′ = [S , 1] includes a bias term and seven system state counter

values, e.g., communication on the bus connecting CPU and DDR, and the system cache

miss rate (indicating how often the DDR got accessed). We call this the CEM-LC model,

characterized by 184 parameters, with N f cpu = 13 CPU frequencies and N f ddr = 10 DDR

frequencies. In our experiments, the CEM-LC model takes 4,000 iterations of training to

surpass a rule-DVFS method. In order to speed up training, we first propose a simplified

model: fcmpt = round[(N f cmpt − 1) · Sigmoid(Vcmpt · S ′)], where Vcmpt is a 1D parameter

vector. We use (N f cmpt − 1) to scale up the sigmoid output because the frequency index

starts from zero. We call this the CEM-LR model, characterized by only 16 parame-

ters. Our experimental results show that CEM-LC and CEM-LR deliver similar energy

efficiency as will be shown in Figure 4.1.

4.2.3 Iterative-BO

We apply BO to speed up the training of our DVFS algorithm, that uses the CEM-LR

model described above. Although CEM-LR drastically reduces the number of parame-

ters from 184 to 16, it is still not small enough in dimensionality for BO to be effective

[40, 15]. To tackle this problem, we propose the iterative-BO method (see Algorithm 2

with Method set to iterative-BO) to decouple CPU and DDR model optimization steps, so

that we effectively only optimize eight parameters at a time, i.e., while the CPU model

parameters are being optimized using BO, the DDR model parameters are held fixed

to the optimal values from the previous iteration (and vice versa). In each iteration, we

optimize each component using M = 50 iterations, which is determined by experiments.

This is different from simply converting to low dimensional subspace by picking a sub-

set of variables, because by iterating, we maintain all variables and still optimize both

components in the system as they have interactions between them. We use a Gaussian

Process (GP) as the prior for our BO algorithm. Since the choice of acquisition function,

covariance kernel and their hyperparameters are problem dependent and may highly

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 42

affect the effectiveness of BO method, we do grid search to find the best choices for

them.

Algorithm 2 Pseudocode of iterative-BO method (with restart)

1: Input: MaxIter, N f cpu, N f ddr, Method, M
2: Output: VCPUbest, VDDRbest, MaxReward
3:
4: //Randomize parameters for CPU and DDR models at iteration zero
5: VCPUbest ← random(); VDDRbest ← random();
6: cmpt← [CPU, DDR]; MaxReward← 0;
7: Initiate BOCPU, BODDR
8: for i← 1; i ≤ MaxIter; i← i + 1 do
9: for j← 0; j ≤ 1; j← j + 1 do

10: if Method == iterative-BO then
11: reward, Vcmpt[j] ← resume BOcmpt[j] on System(Vcmpt[j], Vcmpt[1−j] ←

Vcmpt[1−j]best) for M iterations . //Resume BOcmpt[j], i.e., keep previous observations
12: else if Method == iterative-BO with restart then
13: reward, Vcmpt[j] ← restart BOcmpt[j] on System(Vcmpt[j], Vcmpt[1−j] ←

Vcmpt[1−j]best) for M iterations . //Restart BOcmpt[j], i.e., clear previous observations
14: end if
15: if reward > MaxReward then
16: MaxReward← reward; Vcmpt[j]best ← Vcmpt[j];
17: end if
18: end for
19: end for

When iterating between BOCPU and BODDR, note that we retain the observations

from previous iterations as they may help guide the learning of the target function.

However, our later experiments showed that because at the beginning of iterative-BO,

parameters are close to random, they change drastically after a few iterations. Those

early observations therefore quickly become wrong estimations of the reward function

and hinder the optimization process. Accordingly, we propose iterative-BO with restart,

which restarts BO at the beginning of each iteration (see Algorithm 2 with Method set

to iterative-BO with restart). With restart, results show greatly improved speedup of RL-

DVFS training (see Figure 4.1), confirming that our intuition to forget the historical BO

context is helping significantly.

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 43

4.3 Experimental results

4.3.1 Experiment setup

We show the effectiveness of our proposed methods by testing on extensive combina-

tions of smartphone workloads. Our training and testing datasets comprise of several

diverse real-world workload snippets. We concatenate workloads randomly to produce

a test benchmark. The power and performance values of the rule-DVFS algorithm as

well as the features of all benchmark snippets are measured on real mobile chipsets. We

implement CEM-LC and CEM-LR following [39], and use the BO package: BayesianOp-

timization [1] for BO optimization. We modify the source code to experiment with

different kernel hyperparameters and implement our iterative-BO methods.

4.3.2 Experimental results

CEM has two hyperparameters: batch size and noise. We performed grid search to find

the best value of batch size = 200 and noise = 0.01 that surpasses the rule-based method

with fewest iterations. As we pointed out before, the choice of acquisition functions, ker-

nels and their parameters may highly affect the results of BO [10]. We experiment with

various choices to determine the best values for them. For the acquisition function, we

tried Expected Improvement (EI) and Upper Confidence Bound (UCB), both of which

have been widely used [11]. EI has no hyperparameters, while UCB has one hyperpa-

rameter κ that trades off between exploitation and exploration. Squared Exponential

kernel is often used in BO, however it is considered unrealistically smooth for many

engineering problems [11]. As a result, we pick Matern kernel and experiment with

hyperparameter ν = 0.5, 1.0, 2.5 as suggested by [10]. Also, these values compute con-

siderably faster due to the modified Bessel function in Matern [41][10]. Our results show

that a GP prior with Matern kernel ν = 2.5 and unit scale length, and UCB with κ = 0.5

as the acquisition function gives the best results.

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 44

Figure 4.1: Sample efficiency of various RL DVFS training methodologies.

CEM and BO solve for the model parameters to maximize the reward R, the indicator

of system energy efficiency. Rule-DVFS method has a reward value of 0.5, and this is the

value our methods aim to surpass with fewer iterations. Figure 4.1 shows the reward vs.

iteration (in log scale) for all four methods under the best parameters chosen above. We

can see that all methods surpass rule-DVFS (horizontal line at 0.5). CEM methods start

from 200 iterations because the reward values are evaluated after each batch which has

a size of 200.

When compared to CEM-LC, model reduction (CEM-LR) gives a 1.2x speedup (blue

curve in Figure 4.1), while iterative-BO delivers a 9.1x speedup (green curve in Figure

4.1) based on the reduced model. The benefits of iterative-BO come from two sources:

1) the reduced model size from CEM-LR; indeed the number of parameters is now re-

duced to 16 from 184 and hence the searching space of BO is much smaller; and 2)

decomposition of the system into two devices: CPU and DDR, each with eight param-

eters. This is a critical step because BO typically handles problems with less than ten

parameters due to the scalability issue [15, 37]. By iterating between two devices, each

with fewer parameters, BO can successfully and quickly find the solution that is better

than rule-DVFS. We also experimented with BO on the joint CPU+DDR system (without

splitting the 16-parameter search space into two 8-parameter search space). BO on the

CHAPTER 4. SPEEDING UP TRAINING OF RL-BASED DVFS ALGORITHMS 45

joint system does not even reach the rule-DVFS method in the experiment time horizon

considered here. We believe this is due to the curse of dimensionality problem for BO.

Iterative-BO with restart is able to further boost the speedup to 37.4x (red curve in

Figure 4.1), which demonstrates that discarding incorrect history helps learn the target

function much faster. Initial values do not matter much for Iterative-BO with restart as its

reward value improves much faster than Iterative-BO.

4.4 Discussion

Dynamic Voltage and Frequency Scaling (DVFS) is an important technique widely avail-

able in improving modern computing system energy efficiency. Although RL-based

DVFS methods are effective in system efficiency optimization, they can be sample in-

efficient. In this chapter, we proposed a hybrid method combining model complexity

reduction and iterative-Bayesian Optimization method to overcome the curse of dimen-

sionality of BO methods and speed up training of RL-based DVFS control algorithms.

Based on deeper investigation of the iterative-BO method, we propose iterative-BO with

restart which further boosts speedup to 37.4x.

Chapter 5

Convolutional neural networks: efficient

inference

5.1 Chapter overview

Deep Convolutional Neural Networks (CNNs) have gained tremendous traction in re-

cent years thanks to their outstanding performance in visual learning tasks, e.g., image

classification and object detection. However, CNNs are often considered very computa-

tionally intensive and energy demanding [5, 6, 7, 42, 43]. With the prevalence of mobile

devices, being able to run CNN-based visual tasks efficiently, in terms of both speed

and energy, becomes a critical enabling factor of various important applications, e.g.,

augmented reality, self-driving cars, Internet-of-Things, etc, all of which heavily rely on

fast and low energy CNN computation. To alleviate the problem, engineers and scien-

tists proposed various solutions, including sparsity regularization, connection pruning,

model quantization, low rank approximation, etc. In this work, we propose a comple-

mentary approach, called Virtual Pooling (ViP), which takes advantage of pixel locality

and redundancy to reduce the computation cost originating from the most computation-

ally expensive part of CNN: convolution layers. As illustrated in Figure 5.1, ViP reduces

computation cost by computing convolution with a larger (2x) stride size. While natu-

46

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 47

rally this operation quickly shrinks the output feature map, and thus can only be done

a few times before the image vanishes, we overcome this problem by recovering the fea-

ture map via linear interpolation with provable error bound. The succeeding layer hence

observes the same size of input with or without ViP, and no architectural change is

needed. Our experimental results on different CNN models and tasks show that we can

achieve 2.1x speedup with 1.5% accuracy degradation in image classification, compared

to the 1.9x speedup with 2.5% degradation from prior work [44], and 1.8x speedup with

0.025 mAP degradation in object detection.

Figure 5.1: Illustration of virtual pooling [2]. By using a larger stride, we save com-
putation in convolution layers and, to recover the output feature map, we use linear
interpolation which is fast to compute.

5.1.1 Chapter contributions

To the best of our knowledge, the work presented this chapter makes the following

contributions:

• We are the first to propose and implement the Virtual Pooling (ViP) method with

provable error bound. ViP is independent of the dataset and can be applied to

accelerate any convolution layer.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 48

• Plug-and-play: ViP is a self-contained custom layer. Without modifying the deep

learning framework, it works simply by doubling the stride of the convolution

layer and inserting the ViP layer after it.

• Rather than providing a single CNN configuration, ViP is able to generate a set

of CNN models with varying speedup/energy-accuracy trade-offs that a machine

learning practitioner can select the right model for the task at hand.

• Most CNN acceleration techniques consider only the image classification task,

while they lack evidence on how their performance may translate to the object

detection task, which has its own unique properties. In this work, we conduct ex-

periments to show that ViP also works well under the state-of-the-art faster-rcnn

object detection framework.

5.2 Methodology

Virtual Pooling (ViP) relies on the idea of reducing CNN computation cost by taking ad-

vantage of pixel spatial locality and redundancy. CNNs are often comprised of multiple

convolution layers (accompanied by non-linear ReLU functions) interleaved with pool-

ing layers. Pooling layers are considered essential for reducing spatial resolution such

that computation cost is reduced and robustness to small distortions in images is en-

hanced. However, the widely-used stride-two non-overlapping pooling method [45, 46]

reduces image size by half in each of the two dimensions, and thus quickly shrinks the

image. As a result, the maximum number of pooling operations that can be done in

a CNN is limited by the size of the input image. For example, an input image of size

224 ∗ 224 is shrunk to size 7 ∗ 7 after only five pooling layers [45], while the current

state-of-the-art CNNs usually have several tens to hundreds of layers [45, 46]. There

is an opportunity to reduce computation further if we can bridge the gap between the

number of pooling-like operations we can do and the number of layers in the network.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 49

5.2.1 ViP layer

To this end, we propose ViP, a method that can maintain the size of output of each layer,

while using a non-unit-stride sliding-window operation, e.g., a stride-two convolution.

Consequently, we can have as many ViP layers as possible while not encountering the

problem of diminishing image size in the real pooling operation. While it is possible to

increase the stride of an early layer and remove a later pooling layer (without interpola-

tion) to achieve a similar effect, our experiments show that ViP is constantly better than

pooling removal with 1.42% higher accuracy on average. Furthermore, this method can

only reduce computation in consecutive convolutional layers prior to pooling, while ViP

works in any order (as we will show later, accuracy sensitivity is non-monotonic with

the network layer) which gives a better accuracy-speedup curve. As illustrated in Figure

5.1, the idea of ViP is that we save computation by performing a larger stride convolution

in the layer before ViP, and then recover the output size by simple linear interpolation

which can be computed very efficiently. For example, VGG-16 uses stride-one convo-

lution for all convolution layers. By applying ViP after each convolution layer, we can

increase the stride of the preceding convolution layer to two for reduced computation,

and recover the image size by linear interpolation, so the succeeding layer observes an

input feature map of exactly the same size. With a stride-two convolution, we have a

theoretical speedup of 4x because we reduce the number of convolution operations by

half in each of the two dimensions of the input. Though it is possible to increase the

stride to a large number for higher latency improvement, we expect a bigger accuracy

drop, and as a result, the stride-to-use should be determined based on the requirements

of the application.

To be more specific, let’s use I to denote the input to the convolution layer and O

to denote the output. Without loss of generality, although I and O are often four-

dimensional, we omit the first dimension of batch index because ViP is applied to all

images in the batch independently, and therefore, Ic,h,w and Oc,h,w both have three di-

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 50

mensions: channel c ∈ [1, C], height h ∈ [1, H], and width w ∈ [1, W]. We consider

convolution filters, Wc′,c,m,n, with the same height and width with odd values M as are

commonly used in CNNs [45, 46], and with c′ representing the index of the filter. For the

purpose of simplicity, we further assume H and W are even numbers, e.g., input image

size of ImageNet is usually 224 ∗ 224, and in the case of odd numbers, we have special

cases only on the boundaries of the image that are easy to deal with. Furthermore, we

use OOrig
c′,h,w to represent the output of the original stride-s convolution without ViP, and

OViP
c′,h,w to denote the output of using ViP method, i.e., the output of stride-2s convolution

plus linear interpolation. A smaller ||OOrig
c′,h,w −O

ViP
c′,h,w||2 indicates a smaller perturbation

of the truth output and hence, less accuracy degradation for the ViP method. According

to the definition of convolution:

OOrig
c′,h,w =

C

∑
c=1

bM
2 c

∑
m,n=−bM

2 c
Ic,s·h−m,s·w−n ∗Wc′,c,m,n (5.1)

If we double the stride, we have an output with reduced size:

ORed
c′,h,w =

C

∑
c=1

bM
2 c

∑
m,n=−bM

2 c
Ic,2s·h−m,2s·w−n ∗Wc′,c,m,n (5.2)

For ease of explanation, we use an auxiliary function OZero
c′,h,w which is zero-spaced to

enlarge ORed
c′,h,w to the same size of OOrig

c′,h,w in the following way:

OZero
c′,h,w =


ORed

c′,h/2,w/2 h, w are even numbers

0 Otherwise
(5.3)

We approximate the output with the ViP method OViP
c′,h,w by using the mean of its non-

zero immediate neighbors (including itself, if computed exactly) in OZero
c′,h,w:

OViP
c′,h,w =

∑1
m,n=−1OZero

c′,h+m,w+n

∑1
m,n=−1 1(OZero

c′,h+m,w+n 6= 0)
(5.4)

This is actually a convolution with 3 ∗ 3 filters, however with variable weight values de-

pending on the number of non-zero neighbors. We can simplify the above computation

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 51

by considering four different cases similar to Equation 5.3:

OViP
c′,h,w =



ORed
c′,h/2,w/2 h even, w even

1
2 (ORed

c′,bh/2c,w/2 +O
Red
c′,dh/2e,w/2) h odd, w even

1
2 (ORed

c′,h/2,bw/2c +O
Red
c′,h/2,dw/2e) h even, w odd

1
4 (∑ h=bh/2c or dh/2e

w=bw/2c or dw/2e
ORed

c′,h,w) h odd, w odd

(5.5)

The above equations are embarrassingly parallel and hence fast to compute on GPU. We

implemented our custom ViP layer based on Equation 5.5.

Based on the definition of ViP operation above, we can further provide an error

bound, considering the case where we apply ViP to layer ls.

Proposition 1. Assume the output of layer ls (hence input to layer ls+1), O(ls), is L-Lipschitz

continuous [47] on height and width dimensions (h, w), i.e.,

|O(ls)
c,h1,w1

−O(ls)
c,h2,w2

| ≤ L||(h1, w1)− (h2, w2)||2, for ∀h1, h2 ∈ [1, H], w1, w2 ∈ [1, W].

Assume that ∀c′, l, the c′-th convolutional filter of the l-th layer, denoted asW (l)
c′ , has a bounded

l2-norm: ||W (l)
c′ ||2 =

√
mean2(W (l)

c′) + std2(W (l)
c′) ≤ B(l). Then, the l2-norm of the output

error is bounded by:

||O(le)ViP −O(le)Orig||2

≤
√

2L
√

C′(le)H(le)W(le)
le

∏
l=ls+1

√
C(l)M(l)B(l),

(5.6)

where C(l) and M(l) are the number of input channels and kernel size of the l-th layer, respectively,

and C′(le) is the number of output channels of the le-th layer.

Proof. Deferred to Appendix.

If ∀l > ls,
√

C(l)M(l)B(l) > 1, the upper-bound will keep increasing when the output

goes through multiple layers. This indicates that earlier ViP layers with more succeeding

layers may have a higher impact on the final output of the network and hence higher

accuracy drop without finetuning. This actually reflects the intuition that perturbations

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 52

Algorithm 3 Virtual Pooling (ViP)

1: Input: model Net
2: Output: ViP model ViPNET, Accuracy ViPA, Runtime ViPR
3:
4: // Sensitivity analysis
5: i = 0
6: ViPLayers =[]
7: for c in Net.ConvLayers do
8: Ac = evaluate(Net.ViP(c))
9: ViPLayers.append((c, Ac))

10: end for
11: ViPLayers.sorted(key = Ac,′ descending′)
12:
13: //Progressively interpolate and finetune
14: ViPA = [], ViPR = []
15: for j = 0 : len(ViPLayers) do
16: Net = Finetune(Net.ViP(0 : j))
17: ViPA.append(evaluate(Net))
18: ViPR.append(time(Net))
19: end for
20: Return ViPNET = Net, ViPA, ViPR

from early layers will lead to higher error on the output as they propagate through the

network. We will see this effect in both VGG-16 (Figure 5.3) and ResNet-50 (Figure 5.6).

5.2.2 ViP algorithm

While speeding up CNNs can be achieved with ViP, it may also lead to some accuracy

drop since interpolation is a method of approximation. Therefore, we propose the fol-

lowing procedure, as shown in Algorithm 3, as part of the ViP method to reduce the

accuracy degradation while maximizing the speedup we can achieve via ViP. Though

our major target is speeding up the inference, ViP accelerates training as well as a result

of the larger stride convolution. In Algorithm 3, we first do sensitivity analysis to de-

tect which layers are less sensitive, in terms of the accuracy of the network, to the ViP

operation (Line 7-10). For each of the convolution layers c, we insert ViP immediately

after it, and evaluate the network accuracy Ac without fine-tuning. The sensitivity is

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 53

measured as the accuracy drop with respect to the original accuracy. A larger accuracy

drop means that the layer is more sensitive to the ViP operation, while a lower accuracy

drop means that the layer is robust to ViP. This is equivalent to sorting the sensitivity

array Ai in descending order as shown in Line 11. There is one implementation detail

on where to insert the ViP layer, as it can either be inserted after the convolution layer

and before the ReLU layer, or after ReLU layer following the convolution layer. Both

our experiments and prior work [44] show that inserting after ReLU gives better results.

Our intuition is that by applying ViP before ReLU, we obtain less activations than the

original without ViP and the network becomes less likely to identify smaller activation

regions. Therefore, throughout the chapter, whenever we mention inserting ViP after

a certain convolution layer, we mean inserting it after the ReLU layer that immediately

follows it.

Based on the sorted per-layer sensitivity ViPLayers, we insert ViP layers progressively,

and fine-tune the network after each interpolation to achieve a set of CNN models with

different speedup-accuracy trade-offs (Line 15-19). For example, in the case of adding

one ViP layer at a time, we add ViP after the ViPLayers[0], fine-tune the model and

obtain the first model, and then we add ViP after both ViPLayers[0] and ViPLayers[1],

fine-tune the model and obtain the second model, and so on so forth. In this fashion,

we will eventually generate len(ViPLayers) models (len(ViPLayers) is the total number

of convolution layers that we apply ViP to), all with different accuracy and runtime.

However, repetitively fine-tuning the model len(ViPLayers) times can be quite time-

consuming, especially for large CNN models. To alleviate this problem, we conduct

grouped fine-tuning, in which rather than progressively inserting ViP one layer at a

time, we insert several ViP layers at a time (still based on sensitivity values). This results

in fewer rounds of fine-tuning, and hence less time, and both per-layer and grouped

fine-tuning methods can generate different accuracy-speedup trade-offs for the baseline

CNN model. While we show in the experiments that this accuracy sensitivity-based

heurisitic delivers good results, applying Reinforcement Learning (RL) [48] to learn after

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 54

which convolution layer to insert ViP may lead to high speedup with minimal accuracy

drop. However, RL-based approaches take an extremely long time to learn the optimal

solution, as they require fine-tuning of the entire CNN for each training sample of RL,

which could offset the simplicity and ease-to-use of the method of virtual pooling.

Figure 5.2 further illustrates how the ViP method can be applied to applications, such

as a face detector in a mobile camera system. In mobile phone cameras, a face detector

cannot only show where the faces are, but also help camera auto-focus for taking bet-

ter pictures with people in sharp imaging. Therefore, in this case lower accuracy can be

tolerated as long as some of the faces, if not all, are detected, while there is also speed re-

quirement for camera to focus as fast as possible. For such applications, we can generate

a set of models using the ViP method. We start from a pre-defined or pre-trained model,

e.g., Faster-RCNN, and a pre-collected dataset for human faces. Then we perform Per-

layer Sensitivity Analysis (PSA) to determine the sensitivity of each convolution layer

in the network. Based on the sensitivity, we can perform either grouped or per-layer

finetuning to generate new models with higher speedup until we obtain the model that

best satisfy the requirement on speedup-accuracy trade-off.

As it will be shown in Section 5.3, through the ViP method, we can speed up CNNs

with minor accuracy drop. Furthermore, we can obtain a set of models with different

speedup-accuracy trade-offs by applying ViP to various number of layers. As a result,

our ViP method provides a knob for CNN practitioners to make trade-offs between

accuracy and speedup based on the need of their applications. In addition, one can apply

ViP on top of existing model acceleration methods, e.g., model compression [6, 49], CNN

binarization [50, 51], low rank approximation [52, 5], etc., to squeeze more performance

out of the CNN models.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 55

Figure 5.2: An example of applying ViP to the mobile phone camera face detector. ViP
progressively generates new models with higher speedup until we obtain the model that
best satisfy the requirement on speedup-accuracy trade-off.

5.3 Experimental results

In this section, we first describe the hardware and software setup of our experiments,

and then present results to show the effectiveness of ViP method under:

1. Four CNN models: VGG-16 [45], ResNet-50 [46], All-CNN [53], Faster-RCNN with

VGG-16 backbone [54] .

2. Three datasets: ImageNet [55], CIFAR-10 [56], PASCAL-VOC [57].

3. Two hardware platforms: Desktop and Mobile.

4. Two visual learning tasks: Image classification and object detection.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 56

Table 5.1: System Configurations for desktop and mobile platforms.

Desktop

CPU/Main memory Intel Core-i7 / 32GB
GPU/Memory Nvidia Titan X / 12GB
DL platform Caffe on Ubuntu 14

Mobile (Nvidia Jetson TX1)

CPU/Main memory Quad ARM A57 / 4GB
GPU Nvidia Maxwell Arch
DL platform Caffe on Ubuntu 14

5.3.1 Experimental setup

Throughout the experiments, we use Caffe [58] as our deep learning platform since

its correctness has been validated by numerous research works. For fast training and

inference, we implement a self-contained custom ViP layer in CUDA and integrate it

into Caffe. The ViP layer inserts interpolated points between both columns and rows.

The row and column size is doubled after interpolation and the resultant image size is

enlarged four times. Interpolation is performed independently on points. This process

is therefore embarrassingly parallel and can be easily accelerated by GPU. Each thread

launched by the CUDA kernel processes one interpolated element. The thread block

dimension order from fastest- to slowest-changing are column, row, channel, and batch

to match the data layout in Caffe. Based on their position in the interpolated image, the

points to be interpolated are classified into four types and estimated using Equation 5.5.

CNNs are now widely deployed and used in both cloud services and mobile phones,

therefore we experiment with both a high-end desktop machine and a mobile platform

with low power and energy profile. The detailed configurations are shown in Table 5.1.

The desktop computer is equipped with high-end Intel Core-i7 CPU and Nvidia Titan

X GPU, while the mobile platform is the Jetson TX1 comprised of efficient Quad-core

ARM A57 CPU and Nvidia GPU with Maxwell architecture and 256 CUDA cores.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 57

5.3.2 Image classification

We first apply the ViP method to speedup and reduce the energy consumption of the

image classification task.

Accuracy and speed

We experiment with state-of-the-art VGG-16 and ResNet-50 models using the ImageNet

dataset. We first apply the ViP method on VGG-16 as described in Algorithm 3 in Sec-

tion 5.2. We conduct sensitivity analysis to determine the per-layer sensitivity as shown

in Figure 5.3. The x-axis labels provide the names of the layers being interpolated and

we explicitly append “pool" in the name of the layers that are immediately preceding

a pooling layer. As we can see, (1) after ViP insertion, different accuracy degradations

without fine-tuning are obtained (shown on y-axis in Figure 5.3), (2) all layers immedi-

ately preceding a pooling layer exhibit the least sensitivity to ViP operation, which was

also discovered by [44]. The reason for this is that, although ViP loses information due

to interpolation, many of those interpolated values are discarded by the pooling layer,

and as a result, ViP has less impact on the final output of the network. And (3) besides

the pooling layers, we can see a general trend of decreasing sensitivity when we insert

ViP in later-stage layers. This follows the intuition that early perturbations lead to high

error on the output when propagating through multiple layers, which is mathematically

shown in Equation 5.6.

The next step is to do model fine-tuning with progressively inserted ViP layers. We

use grouped fine-tuning in the case of VGG-16 to save training time. Specifically, we

have four rounds of fine-tuning according to the sensitivity of the layers: (1) in round

one, we insert ViP after convolution layers 13, 12, 10, 7, 2 and 4; (2) in round two, we

further insert ViP after convolution layers 11, 9 and 8; (3) in round three, we further

insert ViP after convolution layer 1; (4) in the final round four, we insert ViP layers after

the remaining convolution layers. Each round is initialized with the trained model from

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 58

Figure 5.3: ViP sensitivity analysis of VGG-16 model under ImageNet dataset. For each
of the convolution layers, we insert ViP immediately after it, and evaluate the network
accuracy without fine-tuning. The sensitivity is measured as the accuracy drop with
respect to the original accuracy.

the previous round, because such an approach (1) gives slightly higher accuracy than

fine-tuning from the baseline model and (2) saves training time. The number of rounds

is determined by the number of convolution layers one wants to accelerate and the

granularity of the speedup-accuracy trade-off the application may require. It is possible

to have as many fine-tuning rounds as the number of convolution layers, if the machine

learning practitioner is looking for a model with very specific speedup-accuracy trade-

off due to the nature of the target application.

Furthermore, we plot the training curve to illustrate how test accuracy recovers dur-

ing grouped fine-tuning across four rounds, as shown in Figure 5.4. The zero line indi-

cates the accuracy of the baseline network, and the y-axis is the accuracy improvement

(degradation if negative) during fine-tuning. For fair comparison, we use top-5 accuracy

for ImageNet throughout the chapter as also reported in [44]. The x-axis is the number

of training iterations. We can see that after the initial insertion of ViP layers, there is a

huge drop in accuracy. However, this gradually recovers during the fine-tuning step and

even surpasses the original accuracy in round one. We conjecture that this is similar to

the effect observed in [59], where linear interpolation serves as a type of regularization

that improves network generalization.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 59

Figure 5.4: Four rounds of grouped finetuning of VGG-16 network using ImageNet
dataset.

After four rounds of grouped fine-tuning, we obtain four models of different speedup-

accuracy trade-offs. A positive value for accuracy change means improvement, while a

negative value means accuracy drop. Speedup is measured as the ratio of the inference

time of the original model over the inference time of the model with ViP. We fine-tune

the model with ViP on the desktop machine, because (1) storage of the mobile platform

is insufficient for holding the entire ImageNet dataset, (2) training on desktop machine is

significantly faster and the trained model can be evaluated on both desktop and mobile

platforms for runtime analysis, and (3) model accuracy is platform-independent, which

means once a model is obtained, its test accuracy remains the same on any platform. Ac-

cordingly, we can report accuracy and speedup on both desktop and mobile platforms,

while we only train the model on the desktop machine once.

We plot the results in Figure 5.5 along with the result of the previous state-of-the-

art PerforatedCNNs [44]. Our method can achieve 2.1x speedup with less than 1.5%

accuracy degradation, while PerforatedCNNs can theoretically achieve 1.9x speedup

with 2.5% accuracy degradation. The measured speedup of PerforatedCNNs is 2x when

considering the reduced memory cost through implicit interpolation under Matlab im-

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 60

Figure 5.5: Speedup-Accuracy trade-off obtained by applying ViP on VGG-16 model
with ImageNet dataset.

plementation [44]. In the same way, ViP can also reduce memory transfer cost between

layers thanks to the smaller-sized intermediate outputs by using larger-stride convolu-

tion. Unfortunately, Caffe does not support implicit interpolation and hence no memory

saving of intermediate outputs as pointed out by PerforatedCNNs [60]. Therefore, for

fair comparison, we eliminate the effect of memory saving in both implementations

and use the theoretical upper-limit for PerforatedCNNs speedup since they did not re-

port speedup on Caffe implementation. We expect ViP method to achieve even higher

speedup in implementations that support implicit interpolation which saves memory

transfer cost. In the case of mobile CPU, ViP is able to speed up the CNN by 3.16x with

less than 1.5% accuracy drop. Besides, what ViP can obtain is a set of models with dif-

ferent speedup-accuracy trade-offs rather than a single configuration, CNN practitioners

can pick any of the models in Figure 5.5 that meets their need.

Similarly, we apply ViP on ResNet-50 under ImageNet dataset. Figure 5.6 shows the

results on sensitivity analysis and again we see the trend of decreasing sensitivity in

later-stage layers. We have in total 53 convolution layers because there are 49 convolu-

tion layers on the primary branch and four on the bypass branches. Initially, we apply

three rounds of grouped fine-tuning on ResNet-50. However, the final round, consist-

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 61

ing of layers with the highest sensitivity, results in a steep accuracy drop, from −0.7%

to −3.94%, we decide to use per-layer fine-tuning for the 12 layers in the last round to

demonstrate the fine-grained progressive change in both accuracy and speed. Figure

5.7 shows the results. As expected, there is a clear trend of increasing speedup with

higher accuracy drop when we insert more ViP layers. The speedup of mobile GPU and

desktop GPU almost overlaps, and they both achieve 1.53x speedup with less than 4%

accuracy degradation. Meanwhile, mobile CPU obtains 2.3x speedup at the same level

of accuracy.

Figure 5.6: ViP sensitivity analysis of ResNet-50 model under ImageNet dataset. For
each of the convolution layers, we insert ViP immediately after it, and evaluate the
network accuracy without fine-tuning. The sensitivity is measured as the accuracy drop
with respect to the original accuracy.

We also tried out our ViP method on the All-CNN network (Network All-CNN-C

from [53]) which consists of nine convolution layers without a fully-connected layer and

delivers high accuracy on CIFAR-10 dataset. With three rounds of ViP insertion and fine-

tuning, we obtain three models with different speedup-accuracy trade-offs, as illustrated

in Figure 5.8. We are able to achieve 1.77x speedup on the Titan X GPU and up to 3.03x

speedup on the mobile CPU, with desktop CPU and mobile GPU in between, while the

top-1 accuracy drop is within 4%. Also, with less than 1% accuracy degradation, we

obtain a 1.36x speedup on Titan X GPU and 1.54x speedup on mobile CPU.

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 62

Figure 5.7: Speedup-Accuracy trade-off obtained by applying ViP on ResNet-50 model
with ImageNet dataset.

Figure 5.8: Speedup-Accuracy trade-off obtained by applying ViP on All-CNN model
with CIFAR-10 dataset.

Power and energy

Mobile smart phones have dramatically changed human lives in the recent decade, and

with the advent of convolutional neural networks, more and more mobile apps start to

integrate visual tasks like image classification and object detection that heavily rely on

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 63

CNNs. Other than speed, power and energy are the most critical constraints on mobile

platforms. Therefore, we further conduct experiments to see how ViP improves the

power and energy profile on the mobile platform running CNN.

Figure 5.9: Powe/Energy-Accuracy trade-off obtained by applying ViP on All-CNN
model with CIFAR-10 dataset.

Figure 5.10: Powe/Energy-Accuracy trade-off obtained by applying ViP on VGG-16
model with ImageNet dataset.

We first port both Caffe and our custom ViP layer to Jetson TX1. We use the on-board

sensor to measure the power consumption of CNNs with and without ViP technique,

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 64

Figure 5.11: Powe/Energy-Accuracy trade-off obtained by applying ViP on ResNet-50
model with ImageNet dataset.

and obtain the energy consumption by multiplying power by CNN latency. We test

on all CNNs used previously, i.e., ALL-CNN, VGG-16 and ResNet-50, and report their

power/energy-accuracy trade-off curves in Figures 5.9, 5.10 and 5.11, respectively. In

each of the figures, we show four curves for power and energy consumption of either

running CNN on mobile CPU or mobile GPU. We can see that, in terms of power, ALL-

CNN has almost the same power on both CPU and GPU across all different ViP config-

urations, ResNet-50 has slightly lower power consumption on mobile GPU when using

ViP and VGG-16 shows the highest power reduction of 21% in mobile GPU power with

ViP layers. In terms of energy consumption, VGG-16, ALL-CNN and ResNet-50 achieve

up to 55%, 46% and 38% mobile GPU energy reduction, respectively. Furthermore, All-

CNN and VGG-16 can achieve up to 70% CPU energy reduction while ResNet-50 tops

at around 60%.

5.3.3 Object detection

In real-world applications, people may more often seek the functionality of object de-

tection than image classification. However, much of the prior work on CNN model

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 65

acceleration and compression only shows results on image classification [49, 50, 5]. Al-

though image classification and object detection tasks share some common features like

the early-stage convolutional layers, object detection has its unique components and

challenges, e.g., region proposal, bounding box regression, etc. Therefore, without ex-

perimental results, it is hardly convincing to infer that methods excel on image classi-

fication can also work well on object detection tasks. Accordingly, in this section, we

further test the ViP method on object detection task to show that it works across both

important tasks.

Figure 5.12: ViP sensitivity analysis of faster-rcnn with VGG-16 backbone under PAS-
CAL VOC 2007 dataset. For each of the convolution layers, we insert ViP immediately
after it, and evaluate the network accuracy without fine-tuning. The sensitivity is mea-
sured as the accuracy drop with respect to the original accuracy.

We use the Caffe implementation of the state-of-the-art object detection framework

faster-rcnn [54] with PASCAL VOC 2007 dataset, and integrate it with our custom ViP

layer. We use VGG-16 as the backbone network of faster-rcnn as in [54]. Similar to

image classification task, we first analyze the sensitivity of each layers to ViP and the

results are shown in Figure 5.12. Notice that, other than the convolution layers from

VGG-16, we also have one layer from the region proposal network, and this layer turns

out to be among the least sensitive layers that we need to insert ViP in early fine-tuning

rounds. The mAP degradation from per-layer ViP ranges from −0.23 ∼ −0.27, however,

the recovered mAP degradation after fine-tuning is only down to −0.024. Besides, we

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 66

again observe that layers immediately followed by pooling are the most robust to ViP

operation, as already discussed in the section of image classication. In the order of

per-layer sensitivity, we conduct four rounds of grouped fine-tuning. As expected, with

more layers followed by ViP operation, we are able to achieve higher speedup but with

higher mAP degradation. In the end, we apply ViP to all convolution layers and achieve

1.8x speedup with 0.025 mAP degradation.

Figure 5.13: Speedup-Accuracy trade-off obtained by applying ViP on faster-rcnn with
VGG-16 backbone under PASCAL VOC 2007 dataset.

5.4 Discussion

In this chapter, we propose the Virtual Pooling(ViP) method that exploits the spatial

redundancy of the input and reduces CNN computation by using a larger stride convo-

lution and then recovering the output with linear interpolation (which is very efficient).

We test and validate our method extensively on four CNN models, three representative

datasets, both desktop and mobile platforms, and two primary learning tasks, i.e., image

classification and object detection. When running on Nvidia Titan X GPU, ViP is able to

speedup VGG-16 by 2.1x with less than 1.5% accuracy degradation in the image classifi-

CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT INFERENCE 67

cation task, and speedup faster-rcnn by 1.8x with 0.025 mAP degradation. Furthermore,

we show that ViP is able to generate a set of models with different speedup-accuracy

trade-offs. This provides CNN practitioners a tool for finding the model best suiting

their needs.

Chapter 6

Convolutional neural networks: efficient

training

6.1 Chapter overview

We have witnessed tremendous improvement in image classification tasks in recent years

thanks to the use of supervised learning combined with the powerful model of Convo-

lutional Neural Networks (CNNs) [61]. At the same time, the use of large-scale labeled

datasets is one of the key elements that has led to this breakthrough [62] [63]. How-

ever, the definition of a label varies from application to application, and there is hardly

a universal definition of what a “correct" label is for an image. One such example is

how detailed the label should be, i.e., label granularity (or label hierarchy), as illustrated

in Figure 6.1. For example, in the case of animal image classification, it may be suffi-

cient to label all images of carnivores as “carnivore", while in an application of carnivore

classification, we may label different images as “dog", “cat", etc., which are fine-grain

labels of the coarse-grain label “carnivore". Therefore, it is equally correct to label the

image of a dog as “carnivore" or “dog", yet deciding on which label of the two should

be used depends on the task. We denote a fine-grain (coarse-grain) class as a class of

images that are labeled with the respective fine-grain (coarse-grain) label, and fine-grain

68

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 69

(coarse-grain) training as the training process of CNNs using fine-grain (coarse-grain)

labels. If the task at hand is classifying coarse-grain classes, e.g., “carnivore" vs. “her-

bivore", the following question arises: should we directly train and test a CNN using

coarse-grain labels as it has usually been done, or would it be beneficial if we trained a

CNN with fine-grain labels, e.g., “dog", “cat", “horse", “deer", etc. and map them back

to coarse-grain labels during testing phase? The first approach is a method commonly

used in image classification tasks [64], however, in our experiments, we find that train-

ing CNNs with fine-grain labels can achieve higher accuracy than using coarse-grain

labels in most of the datasets considered. Table 6.1 shows both training and testing

accuracy of coarse-grain classification using either coarse-grain or fine-grain labeling.

We can see that fine-grain labeling helps improve both training accuracy (network op-

timization), and testing accuracy (network generalization) across representative image

datasets: CIFAR-10 [63], CIFAR-100 [63], and ImageNet [62]. Moreover, helped by fine-

grain labeling, the training process converges faster and requires less amount of training

data to achieve the same level of testing accuracy, i.e., becomes more data efficient. More

specifically, for the CIFAR-10 dataset and two ImageNet subsets, a CNN trained with

fine-grain labels and only 40% of the total training data can achieve even higher accuracy

than a CNN trained with full training dataset but coarse-grain labels.

In this chapter, we design and conduct extensive experiments on various datasets to

investigate this interesting phenomenon, and analyze and shed some light on how and

why fine-grain label helps enhance coarse-grain image classification [65]. Our results

show two potential practical use of this work: (i) when human resources are abundant,

we can increase CNN accuracy by re-labeling the dataset with fine-grain labels and train

the CNN using these new labels, and (ii) when human resources are limited and training

data is hard to obtain, rather than relying on collecting more training data to improve

CNN accuracy, we may instead re-label the dataset with fine-grain labels.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 70

Table 6.1: Training and testing accuracy of five datasets when trained with fine-grain la-
beling (bottom row for each dataset) vs. coarse-grain labeling (top row for each dataset),
and tested on coarse-grain labels.

Dataset
of

training
classes

of
testing
classes

Training
accuracy (%)

Testing
accuracy (%)

CIFAR-10 2 2 99.9 98.42
10 2 100.0 99.20

CIFAR-100 20 20 100.0 85.04
100 20 100.0 85.05

CIFAR-100
animals

10 10 100.0 81.42
50 10 100.0 83.44

ImageNet dog
vs. cat

2 2 94.1 92.68
10 2 95.3 94.67

ImageNet fruit
vs. vege.

2 2 91.8 89.65
17 2 95.4 93.15

6.1.1 Chapter contributions

To the best of our knowledge, the work presented in this chapter makes the following

contributions:

• This is the first work to analyze the use of finer-gain labeling for improving accu-

racy and training data efficiency for CNN-based image classification tasks.

• We show that through fine-grain labels, we can almost always improve CNN clas-

sification accuracy without changing network architecture.

• By using fine-grain labels, we can improve training data efficiency by a large mar-

gin, e.g., only 40% of the total training data is needed to achieve even higher testing

accuracy.

• We design and conduct experiments to understand why fine-grain labels help in

this scenario.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 71

Figure 6.1: An example of label granularity (label hierarchy). For example, an image of a
dog can be labeled “animal" or “carnivore" or “dog", and it is the target application that
determines which label to use. This paper explores whether one should use the targeted
coarse-grain labels or finer-grain labels for CNN training.

6.2 Label granularity and training data

In this section, we demonstrate the effects of fine-grain labels on improving image clas-

sification accuracy and further show its capability of enhancing training efficiency.

We define Atrain
FC and Atest

FC as the training and testing accuracy of a CNN trained on

fine-grain labels and evaluated on coarse-grain labels, respectively. In detail, we first

train a network with fine-grain labels and output the predicted fine-grain labels of all

input images. Then we map the predicted fine-grain labels to their respective coarse-

grain labels via the predefined mapping as shown in table 6.2. This mapping follows

the WordNet hierarchy [66] that is grouped by means of conceptual-semantic and lexical

relations. Finally, the accuracy is computed by comparing the predicted coarse-grain

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 72

labels with the ground-truth labels. Similarly, we define Atrain
CC and Atest

CC as the training

and testing accuracy of a CNN trained on coarse-grain labels and evaluated on the same

labels. To do this, we directly train a network with coarse-grain labels and compute

accuracy by comparing the predicted labels, which are already coarse-grain labels, of

the input images with their ground-truth labels.

We design and conduct experiments on well-known image classification datasets:

CIFAR-10 [63], CIFAR-100 [63] and ImageNet [62], and we list their coarse- and fine-

grain classes in Table 6.2. CIFAR-10 dataset is a great fit for applications similar to

the one shown in Figure 6.1, i.e., classifying whether an image contains an animal or

a vehicle. CIFAR-10 has six animals: “bird", “cat", “deer", “dog", “frog", “horse", and

four vehicles: “plane",“car", “ship", “truck". CIFAR-100 provides 20 coarse-grain classes

and five fine-grain classes per coarse-grain class, resulting in 100 fine-grain classes in

total. We also select all ten animal coarse-grain classes from CIFAR-100 to form another

dataset serving applications like animal classification, and we call this dataset: CIFAR-

100 animals. ImageNet dataset is collected and organized according to the WordNet

hierarchy [62, 66] and therefore it naturally follows the coarse-to-fine-grain label hierar-

chy. We use subsets of ImageNet dataset to better visualize and demonstrate the benefits

of training CNN with fine-grain labels. The first ImageNet subset task is to classify dog

vs. cat, with a total of ten fine-grain classes of random breeds of dogs and cats. The

second task is classifying fruit vs. vegetable with a total of 17 fine-grain classes.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 73

Table 6.2: Coarse-grain and fine-grain classes of five datasets.

Dataset Coarse-grain classes Fine-grain classes

CIFAR-10 animal bird, cat, deer, dog, frog, horse
vehicle plane, car, ship, truck

CIFAR-100

aquatic mammals* beaver, dolphin, otter, seal, whale
fish* aquarium fish, flatfish, ray, shark, trout

flowers orchid, poppy, rose, sunflower, tulip
food containers bottle, bowl, can, cup, plate

fruit and vegetables apple, mushroom, orange, pear, sweet
pepper

household electrical
devices

clock, keyboard, lamp, telephone,
television

household furniture bed, chair, couch, table, wardrobe

insects* bee, beetle, butterfly, caterpillar,
cockroach

large carnivores* bear, leopard, lion, tiger, wolf
large man-made
outdoor things bridge, castle, house, road, skyscraper

large natural
outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and
herbivores*

camel, cattle, chimpanzee, elephant,
kangaroo

medium mammals* fox, porcupine, possum, raccoon, skunk
non-insect

invertebrates* crab, lobster, snail, spider, worm

people* baby, boy, girl, man, woman
reptiles* crocodile, dinosaur, lizard, snake, turtle

small mammals* hamster, mouse, rabbit, shrew, squirrel

trees maple tree, oak tree, palm tree, pine
tree, willow tree

vehicles 1 bicycle, bus, motorcycle, pickup truck,
train

vehicles 2 lawn mower, rocket, streetcar, tank,
tractor

CIFAR-100
animals

(10 coarse-grain
classes above

marked with *)
(50 corresponding fine-grain classes)

ImageNet dog
vs. cat

dog basset, chihuahua, maltese, papillon,
pekinese,

cat tabby, tiger cat, Persian, Siamese,
Egyptian

ImageNet fruit
vs. vege

fruit
strawberry, orange, lemon, fig,

pineapple, banana, jackfruit, custard
apple

vege
head cabbage, broccoli, cauliflower,

zucchini, butternut squash, cucumber,
artichoke, pepper, mushroom

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 74

Table 6.3 shows the network configurations used for different datasets. For CIFAR-

10, we use the full pre-activation residual network with 512 filters for the widest layer

similar to the one in [67]. We use wide residual network [68] for CIFAR-100 dataset,

which achieves 81.15% accuracy on 100 classes. We use “thinner" networks for ImageNet

subsets to avoid overfitting because ImageNet subsets have fewer training images (22K

images for fruit vs. vegetable, and 13K images for dog vs. cat) than CIFAR-10 (50K

images) and CIFAR-100 (50K images). The network configuration for ImageNet subsets

is similar to CIFAR-10, but with 75% fewer filters per convolution layer. We use random

cropping and random flipping data augmentation [69] for all datasets. For the training

configuration, we use momentum 0.9 and weight decay 5e-4. The learning rate starts

at 0.1 for CIFAR-10 and CIFAR-100, and 0.01 for ImageNet subsets, and decays when

the loss plateaus. We train CIFAR-10 and CIFAR-100 for 200 epochs, and ImageNet

subsets for 225 epochs. If the CNN models are too small, we may run into higher risk of

underfitting the fine-grain classes, as we have more classes with fewer samples in each.

Table 6.3: Configuration of CNNs used in the experiments.

Dataset # of layers # of filters in
widest layer # of parameters

CIFAR-10 18 512 11.1M
CIFAR-100

CIFAR-100 animals 26 640 36.5M

ImageNet subsets 18 128 0.7M

Table 6.1 shows the results. The second column gives the number of classes CNN is

trained on and the third column shows the number of classes the CNN is tested on. If

these two numbers are the same, it means training and testing are both using the same

coarse-grain labels. If they are different, it means that CNN is trained first with fine-

grain labels and then tested on the coarse-grain labels. We can see that training using

fine-grain labels almost always improves testing accuracy compared to training using

coarse-grain labels. In the case of CIFAR-100, fine-grain training provides negligible

improvement on testing accuracy. We conjecture that this is due to the diminishing

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 75

return when more coarse-grain labels are, and we verify this hypothesis in Section 6.4.3.

We further experiment with more than two levels of hierarchy. For example, in the

case of ImageNet Fruit vs. Vegetable, we have two coarse-grain, four fine-grain and

17 finer-grain classes as described in Table 6.4. We obtain testing accuracy on coarse-

grain classes of 89.65%, 91.53% and 93.15%, respectively. This shows that with deeper

hierarchy, we expect higher testing accuracy from fine-grain training. However, under

limited amount of training data, when we use extremely deep levels of the hierarchy,

the number of samples of that level may not be sufficient for training, and hence lead

to overfitting. We also observe that CNN training accuracy gets better when using fine-

grain labels. Above results indicate that fine-grain labels help improve both network

optimization and generalization, and we will analyze the reasons in Sections 6.3.1 and

6.3.2, respectively.

Table 6.4: Coarse-, fine- and finer-grain classes of ImageNet subset.

Coarse-grain classes Fine-grain classes Finer-grain classes

ImageNet fruit
vs. vege

fruit

yellowish
orange, lemon,

pineapple, banana,
jackfruit

non-yellowish strawberry, fig, custard
apple

vege

round-shaped
head cabbage, broccoli,
cauliflower,artichoke,
pepper, mushroom

long-shaped zucchini, butternut
squash, cucumber

Testing
Accuracy (%)

89.65 91.53 93.15

We further investigate how fine-grain labels affect training data efficiency. High train-

ing data efficiency means that (i) with the same amount of data, CNNs are able to learn

and perform better, i.e., achieve higher testing accuracy, and (ii) to achieve the same

testing accuracy, CNNs require fewer training data.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 76

To this end, we randomly chose 20%, 40%, 60% or 80% of the entire training dataset

to form four new training sets with increasing data amount (same proportion in each

class so that the number of images within each class is still balanced), use the full testing

dataset for testing, and compare the accuracy of fine-grain and coarse-grain training.

Since we find that keeping the same number of epochs for reduced data amounts leads

to fewer weight updates, we use proportionally more training epochs for less training

data to keep the number of weight updates the same. In other words, when 20% of

training data is used, we train for 5X epochs.

The results are depicted in Fig 6.2, where we show training and testing accuracy for

both fine-grain and coarse-grain training, i.e., Atrain
FC , Atest

FC , Atrain
CC and Atest

CC . We observe

that training with fine-grain labels almost always improves testing accuracy. Especially

in the case of (a), (d) and (e) of Figure 6.2 (CIFAR-10, ImageNet dog vs. cat, and Ima-

geNet fruit vs. vegetable, respectively), we observe a significant improvement from the

use of fine-grain labels: with less than 40% of the total training data, training with fine-

grain labels is able to achieve even higher accuracy than using the full training dataset

with coarse-grain labels. For CIFAR-100 animals (c), with only 80% of the total data

amount, training with fine-grain labels is able to achieve comparable accuracy as using

coarse-grain labels and full training dataset. Although fine-grain training has negligible

improvement on testing accuracy with full dataset in case of CIFAR-100, when using

fewer than 40% of the full dataset, fine-grain training still exhibits a clear advantage.

This indicates that when availability of data is limited, having fine-grain labels can be

helpful.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 77

(a) CIFAR-10 (b) CIFAR-100

(c) CIFAR-100-animal (d) Dog vs. cat

(e) Fruit vs. vegetable

Figure 6.2: Training (dotted) and testing (solid) accuracy curves with increasing amount
of training data. CNNs trained with fine-grain labels are shown in red and those
trained with coarse-grain labels are shown in blue. Experiments are conducted using
five datasets: (a) CIFAR-10, (b) CIFAR-100, (c) CIFAR-100-animal, and two subsets of
ImageNet datasets (d) dog vs. cat, (e) fruit vs. vegetable.

These experimental results show that training with fine-grain labels can help CNNs

better utilize the available training data and can almost always improve CNN accuracy.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 78

This indicates two potential practical usage of this work: i) if we have sufficient human

resources, we can improve CNN performance by re-labeling data with fine-grain labels,

and ii) if we have limited human resources, in order to improve CNN performance, it can

be more advantageous to re-labeling images with fine-grain labels rather than collecting

more data.

6.3 Optimization and generalization

As we have discussed in Section 6.2, training with fine-grain labels can improve not

only testing but also training accuracy. This means that fine-grain labels help with

both network optimization and generalization. In this section, we design and conduct

extensive experiments on all datasets showing how both optimization and generalization

are improved.

6.3.1 Optimization

In Figure 6.3, the dotted curves show the training accuracy of both fine-grain training,

Atrain
FC , and coarse-grain training, Atrain

CC , for all datasets. The training accuracy is evalu-

ated at the end of every epoch during the training phase by using the training dataset.

We can see that training with fine-grain labels not only achieves higher training accuracy,

but also converges faster as the red curve is always above the blue curve. The accuracy

jumps are the results of reduced learning rate and are common phenomena in training

neural networks [69].

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 79

(a) CIFAR-10 (b) CIFAR-100

(c) CIFAR-100 animals (d) Dog vs. cat

(e) Fruit vs. vegetable

Figure 6.3: Training (dotted) and testing (solid) accuracy curves for five datasets. CNNs
trained with fine-grain labels are shown in red and those trained with coarse-grain labels
are shown in blue. Experiments are conducted using five datasets: (a) CIFAR-10, (b)
CIFAR-100, (c) CIFAR-100 animals, and two subsets of ImageNet datasets (d) dog vs. cat
and (e) fruit vs. vegetable.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 80

Prior art investigating fine-grain labels on simple linear classifiers argues that the

reason fine-grain labeling helps is the ability to learn piece-wise linear decision bound-

aries that can better approximate the true non-linear decision boundary [70]. That is,

fine-grain training can have higher non-linearity compared to coarse-grain training due

to increased parameters in the model. However, a further study [71] shows that in the

case of non-linear classifiers, e.g., RBF-kernel Support Vector Machine (SVM), fine-grain

training no longer improves accuracy compared to using coarse-grain labels because

the network itself has sufficient non-linearity to learn the non-linear decision bound-

ary without the help of fine-grain labels. In the case of CNNs, we ask the question: is

this piece-wise linear nature the reason for better training accuracy for fine-grain labels

compared to coarse-grain training?

CNNs are already highly non-linear, so we conjecture that the answer is no. To

evaluate this, we insert another fully-connected layer to a coarse-grain trained network

right after the global pooling layer, so that compared to the original network, it can

also achieve a piece-wise linear boundary on the high-level features. We train the new

network end to end from scratch instead of pre-loading and freezing the weights of the

preceeding layers, such that it fully utilizes all the degrees of freedoms of the model,

possibly achieving higher training accuracy. We train this new network structure with

coarse-grain labels, and compare the results with the baseline network trained with

coarse- or fine-grain labels. We keep the training scheme for the slightly deeper network

the same as the baseline network.

Table 6.5 shows our results. In the "CNN Arch" column, ’Extra layer’ means that we

add the fully-connected layer to the baseline CNN as described above. In the "Train

Label" column, "F" and "C" indicate fine-grain and coarse-grain labels, respectively. The

values in parentheses following each training and testing accuracy value are the im-

provement/degradation with respect to the training and testing accuracy of a baseline

CNN trained with coarse-grain labels, respectively.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 81

We can see that, compared to the baseline CNN trained with coarse-grain labels,

adding one extra layer does not bring significant improvement in either optimization or

generalization. In certain cases, the testing accuracy is degraded, in CIFAR-100 animals

and ImageNet subset dog vs. cat, possibly due to the difficulty in optimizing a larger

network.

This means that simply adding non-linearity to coarse-grain training cannot match

the training accuracy brought by fine-grain training. That is, the slightly higher non-

linearity brought by fine-grain training is not the only reason for achieving higher train-

ing accuracy. Rather, it is more likely that fine-grain labels give more hints to the network

about which features to learn. This is also supported by the experimental results in Sec-

tion 6.4.2, where we randomly generate fine-grain labels for each coarse-grain class, and

find out that fine-grain training does not optimize better than coarse-grain training.

Table 6.5: Experiments on increasing CNN non-linearity and capacity under coarse-
grain training. In "CNN Arch": ’Extra layer’ means that we add the fully-connected
layer to the baseline CNN to increase network non-linearity and capacity as described
in Section 6.3.1. In "Train Label": "F" and "C" indicate fine-grain and coarse-grain labels,
respectively. In the training and testing accuracy columns, the values indicated in the
parentheses are the improvement/degradation with respect to the training and testing
accuracy of a baseline CNN trained with coarse-grain labels, respectively.

Dataset CNN Arch Train
Label

Training
accuracy (%)

Testing
accuracy (%)

CIFAR-10 Baseline CNN F 100.0 (+0.1) 99.20 (+0.78)
Extra layer C 99.9 (+0.0) 98.50 (+0.08)

CIFAR-100 Baseline CNN F 100.0 (+0.0) 85.05 (+0.01)
Extra layer C 100.0 (+0.0) 86.33 (+1.29)

CIFAR-100
animals

Baseline CNN F 100.0 (+0.0) 83.44 (+2.02)
Extra layer C 100.0 (+0.0) 80.73 (-0.69)

ImageNet dog
vs. cat

Baseline CNN F 95.3 (+1.2) 94.87 (+2.19)
Extra layer C 93.8 (-0.3) 92.2 (-0.48)

ImageNet fruit
vs. vege

Baseline CNN F 95.4 (+3.6) 93.15 (+3.5)
Extra layer C 91.7 (-0.1) 89.67 (+0.02)

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 82

6.3.2 Generalization

As shown in both Table 6.1 and Figure 6.3, training with fine-grain labels (vs. coarse-

grain) achieves higher testing accuracy. This may partially be due to better network

optimization, because under ImageNet subsets, fine-grain training improves both train-

ing and testing accuracy. However, in the cases of CIFAR-10, CIFAR-100 animals and

CIFAR-100, even for the same training accuracy, testing accuracy for fine-grain trained

CNNs is still higher than coarse-grain training. This indicates that fine-grain training

delivers higher generalization capability.

Our intuition is that with fine-grain labels, the CNN is able to learn more features

than training with coarse-grain labels. For example, suppose that all cat images in the

training set have whiskers, while none of the dogs has whiskers. Then, as long as the

network trained with coarse-grain labels learns this feature, it can produce 100% training

accuracy with no need to learn any other features. This is a well known phenomenon in

weakly-supervised learning, in which the network only learns the most discriminative

features [72]. Then, in the testing set, if a cat image does not include whiskers, the

network will make an incorrect prediction. However, with fine-grain labels, the network

needs to learn more features (e.g., ears, tails, etc.) to distinguish among different breeds

of dogs and cats. These extra features learned through fine-grain labeling may help the

network’s performance on coarse-grain class classification on the testing set, e.g., it now

can tell if it is a cat through ears, tails, etc, even though it does not have whiskers.

Figure 6.4 shows the t-distributed Stochastic Neighbor Embedding (t-SNE) visualiza-

tion [73] of all CIFAR-10 testing images with coarse-grain (a) and fine-grain training

(b).

Image features used for t-SNE visualization are the outputs of the second-to-last fully-

connected layer, which is a technique commonly used to extract compact semantic repre-

sentation of the raw input images [73]. These feature vectors are then transformed by the

t-SNE technique [73] to a two-dimensional space for visualization. All data points are

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 83

(a) t-SNE visualization of two coarse-grain
classes in CIFAR-10 trained with two coarse-
grain labels

(b) t-SNE visualization of two coarse-grain
classes in CIFAR-10 trained with ten fine-grain
labels

Figure 6.4: t-SNE visualization of CIFAR-10 test set trained with coarse-grain labels vs.
fine-grain labels. Data points shown in the same color belong to the same coarse-grain
class.

colored according to their ground-truth coarse-grain labels. We also show the position

of means of each coarse-grain class as red triangles in the figures. We can see that, for

both coarse-grain training, Figure 6.4a, and fine-grain training, Figure 6.4b, there is a no-

ticeable margin between coarse-grain classes, and a decision boundary can be drawn to

separate them. However, the network has to learn extra features to further separate the

fine-grain classes within each coarse-grain class when trained with fine-grain labels (as

shown in Figure 6.4b), while when trained with only coarse-grain labels, the data points

are merged together as there is no need to separate them (as being visualized in Figure

6.4a). This also explains why a similar phenomenon is not present in non-linear shal-

low classifiers, e.g., kernel SVM and kernel logistic regression [70]: traditional classifiers

use human-defined features that are always fixed, while CNNs are able to learn these

features during training [74] (feature points moved in Figure 6.4a and Figure 6.4b). The

learning of features turns out to be critical in improving the accuracy under fine-grain

training as described above.

An orthogonal method used for enhancing the variety of learned features and thereby

increasing generalization ability is dropout [75]. Dropout randomly drops some of the

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 84

features to encourage CNN to learn more various features. A possible question arises:

by adding dropout to the network, will coarse-grain training reach the same testing

accuracy as fine-grain training?

In cases of CIFAR-100 and CIFAR-100 animals, the original network already has

dropout layers within each residual block with the optimal dropout rate 0.3 determined

by experiments [68]. Therefore, Table 6.1 has already shown that adding dropout in

these two datasets is still unable to reach the accuracy trained with fine-grain labels. We

further conduct experiments on CIFAR-10 and ImageNet subsets, by adding a dropout

layer between the global pooling layer and the fully-connected layer. The dropout rate

is set as 0.3 in our following experiments.

Table 6.6 shows the experimental results of using the dropout technique. We ob-

serve that adding the dropout layer provides limited improvement in testing accuracy

for coarse-grain training, and dropout for coarse-grain training still generates a notice-

able margin when compared to the fine-grain training with or without dropout. This

indicates that fine-grain labels can further improve CNN learning beyond what the tra-

ditional dropout technique can do. Actually, since fine-grain training and dropout are

two orthogonal techniques, one can use both to further improve CNN performance. For

example, in ImageNet subsets dog vs.cat and fruit vs. vegetable, combining the two

techniques can push the testing accuracy to 95% and 93.86% from 92.68% and 89.65%,

respectively.

6.4 Exploration

In this section, we further explore several scenarios in which the setting of coarse-grain

and fine-grain labels change. More specifically, coarse-grain classes may vary due to

the requirement of the application and the fine-grain labels may be noisy if they are

generated via automatic unsupervised clustering algorithms. We also investigate how

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 85

Table 6.6: Experiments on increasing CNN dropout rate. Values in “Dropout" column
indicates dropout rates used. In “Train Label" column: “F" and “C" indicate fine-grain
and coarse-grain labels, respectively.

Dataset Dropout Train
Label

Training
accuracy (%)

Testing
accuracy (%)

CIFAR-10

0.3 F 100.0 99.10
0.3 C 99.9 98.48
0 F 100.0 99.20
0 C 99.9 98.42

ImageNet dog
vs. cat

0.3 F 94.8 95.00
0.3 C 94.3 92.80
0 F 95.3 94.87
0 C 94.1 92.68

ImageNet fruit
vs. vege

0.3 F 95.0 93.86
0.3 C 91.7 89.93
0 F 95.4 93.15
0 C 91.8 89.65

increasing the number of coarse-grain classes impacts the improvement from using fine-

grain labels, i.e., ∆Atest.

6.4.1 Customized coarse-grain classes

As mentioned, coarse-grain classes are the classification target, and as a result, the def-

inition of coarse-grain classes is application dependent. For example, given an animal

dataset, a task can be identifying cat vs. dog. vs horse, while another task can be sep-

arating standing animals from sitting and/or lying animals. Because of the diversity of

applications, this mapping from fine-grain classes to coarse-grain classes can be dras-

tically different. In this section, we conduct experiments to see how these customized

coarse-grain classes affect the effectiveness of fine-grain labels.

A natural partition of CIFAR-10 dataset is the “animal" coarse-grain class vs. the

“vehicle" coarse-grain class, where “animal" has six fine-grain classes and “vehicle" has

four as depicted in Table 6.2. To simulate various applications, we keep the 6:4 ratio

of the two coarse-grain classes and randomly switch their fine-grain classes to create

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 86

new coarse-grain classes. Rows (1) through (5) in Table 6.7 show five experiments with

different coarse-grain class definitions. We use two coarse-grain classes in this case

(denoted by 0 and 1), and values in the table indicate which coarse-grain class (0 vs. 1)

each fine-grain class (plane, car, etc.) belongs to. The last three columns of Table 6.7

give the testing accuracy of the CNN trained with coarse-grain and fine-grain labels,

respectively as well as the relative improvement of fine-grain training. We observe that

fine-grain training achieves up to 2.78% improvement and always outperforms coarse-

grain training under various customized coarse-grain classes.

We further experiment with balanced coarse-grain classes. In the previous experi-

ments, we have a 6:4 ratio for the number of fine-grain classes within each coarse-grain

class. Now, we balance it to a 5:5 ratio, and similarly, we randomly switch fine-grain

classes across the two coarse-grain classes. Rows (6) through (10) in Table 6.7 show five

experiments with different coarse-grain class definitions and a 5:5 ratio. Again, we can

see that fine-grain training always produces higher testing accuracy than coarse-grain

training.

Table 6.7: Testing accuracy, trained with coarse-grain vs. fine-grain labels, of customized
coarse-grain classes of CIFAR-10 dataset. Zero and one indicates which coarse-grain
class each fine-grain class belongs to.

ID Ratio Classes Atest
CC (%) Atest

FC (%) ∆Atest (%)
plane car bird cat deer dog frog horse ship truck

(1)

6:4

0 0 1 1 1 1 1 1 0 0 98.42 99.20 +0.78
(2) 1 0 1 1 1 1 0 1 0 0 97.68 98.64 +0.96
(3) 0 0 0 1 1 1 1 1 1 0 96.95 98.02 +1.07
(4) 0 0 1 0 1 0 1 1 1 1 95.26 97.20 +1.94
(5) 0 0 1 0 0 1 1 1 1 1 93.44 96.22 +2.78
(6)

5:5

0 0 0 1 1 1 1 1 0 0 97.60 98.51 +0.91
(7) 0 0 1 0 1 1 1 1 0 0 95.90 97.59 +1.69
(8) 0 1 0 1 0 1 1 1 0 0 96.17 97.54 +1.37
(9) 0 0 1 0 0 1 0 1 1 1 94.15 96.28 +2.13

(10) 1 0 0 0 0 1 1 1 0 1 94.19 96.16 +1.97

6.4.2 Noisy fine-grain classes

By using fine-grain labels, we are able to improve CNN performance. To obtain fine-

grain labels, we can either have humans label the images, or automatically cluster every

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 87

coarse-grain class into multiple fine-grain classes. The first approach is human-labor

intensive but it is usually denoted as the ground-truth, while the second approach is

relatively cheap, but error-prone. In this part, we investigate how a noisy fine-grain label,

e.g., generated from a coarse-grain class by using unsupervised clustering methods, may

affect effectiveness of training with fine-grain labels.

To this end, we keep the coarse-grain labels fixed and randomly change the fine-grain

labels within each coarse-grain class to simulate the effect of noisy labeling. We tune

the probability of randomizing the fine-grain labels, i.e., randomness factor, to control

the amount of noise in the experiments. Table 6.8 shows the results under different

randomness factors for CIFAR-10 dataset. We can see that with increased randomness

factor, both Atest
FC and the improvement brought by fine-grain training, ∆Atest = Atest

FC −

Atest
CC , keep decreasing. This means that training with highly incorrect fine-grain labels

may actually hurt CNN performance. Therefore, how to automatically cluster each

coarse-grain class into less-noisy fine-grain classes is an important direction to explore.

We leave it for future work.

Table 6.8: Testing accuracy trained with noisy fine-grain labels of CIFAR-10 dataset.

Randomness factor Atest
FC (%) ∆Atest (%)

0 99.20 0.78
0.01 98.94 0.52
0.03 98.55 0.13
0.1 98.12 -0.30
0.3 97.72 -0.70

6.4.3 Varying number of coarse-grain classes

We further investigate how the number of coarse-grain classes affects the effectiveness

of fine-grain labels. With fine-grain labels, the neural network is encouraged to learn

more features than it needs when trained with only coarse-grain labels, and these ex-

tra features help in network generalization, i.e., improving the testing accuracy. We

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 88

conjecture that, to achieve high testing accuracy, a certain number of features needs to

be learned by the network. Fine-grain labels help learn more features, however, with

more coarse-grain classes, more features will be learned from only coarse-grain labels

and hence it may be sufficient for classifying the test set, even without fine-grain la-

bels. In other words, fine-grain labels bring diminishing returns when the number of

coarse-grain classes increases.

To verify this, we experiment by varying the number of coarse-grain classes in the

CIFAR-100 dataset and the results are shown in Table 6.9. We can see that with increasing

number of coarse-grain classes, i.e., from 5, 10, 15 to 20, the benefit from fine-grain

training, i.e., ∆Atest, decreases, which is consistent with our expectation. In the case

of CIFAR-100 dataset, when the number of coarse-grain classes goes beyond 15, the

improvement brought by fine-grain labeling is negligible. However, this threshold is

application and dataset dependent and should be determined experimentally in a case-

by-case fashion.

Table 6.9: Testing accuracy, trained with coarse-grain vs. fine-grain labels, when varying
number of coarse-grain classes in CIFAR-100 dataset. The coarse-grain class index fol-
lows the same order as in Table 6.2. The values inside the parenthesis in column Atest

FC is
∆Atest, the calculated improvement of fine-grain training over coarse-grain training.

Coarse-grain class index Total Atest
CC (%) Atest

FC (%)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
X X X X X 5 80.53 83.22 (+2.69)
X X X X X X X X X X 10 81.42 83.44 (+2.02)
X X X X X X X X X X X X X X X 15 85.14 85.30 (+0.16)
X 20 85.04 85.05 (+0.01)

6.5 Discussion

In this chapter, we investigate the intriguing problem of how label granularity impacts

CNN-based image classification. Our extensive experimentation shows that using fine-

grain labels, rather than the target coarse-grain labels, can lead to higher accuracy and

training data efficiency by improving both network optimization and generalization.

CHAPTER 6. CONVOLUTIONAL NEURAL NETWORKS: EFFICIENT TRAINING 89

For example, trained with fine-grain labels, only 40% of the traininig data samples is

needed to achieve even higher testing accuracy. Our results further suggest two practical

applications: (i) with sufficient human resources, one can improve CNN accuracy by re-

labeling the dataset with fine-grain labels, and (ii) with limited human resources, to

improve CNN performance, rather than collecting more training data, one may instead

collect fine-grain labels for the existing data.

Chapter 7

Related work

7.1 Learning for efficient many-core systems

DVFS control for multi-core systems has been widely studied [3, 18, 76, 77, 78, 79, 80, 81,

82, 83]. Reinforcement Learning (RL) [33, 84, 36, 85] and supervised learning methods

[86, 87, 35, 34] have recently been applied for single core systems or systems with a mod-

est numbers of cores. While both have shown to be effective, no scalability study exists.

Targeting a limit study of DVFS scaling for performance improvement, Isci et al. [3] have

proposed MaxBIPS which exhaustively searches for the best combination of V/F levels

that maximizes performance under a given power constraint. However, MaxBIPS is not

a scalable approach given that it relies on exhaustive space state search. Winter et al. [18]

consider the previously proposed algorithm LinOpt [88] and determine its complexity to

be polynomial in N (number of cores), which is unsuitable for many-core systems [18].

They further propose the Steepest Drop method with a complexity of O(α · N · log(N))

where α is the number of VF levels. [29] proposed a fast approach that uses a MaxBIPS-

based [3] formulation, however, with a different objective: aggregated frequency rather

than system throughput. Although aforementioned prior works have targeted power-

constrained performance optimization, they do not consider TDP overshoot as an ad-

ditional metric. Note that exceeding TDP is tied to thermal emergencies, which may

90

CHAPTER 7. RELATED WORK 91

affect overall system reliability. Authors of [35] propose to perform multiple resource

management, including power in addition to performance. Yet, their approach requires

off-line profiling and training of an Artificial Neural Network. Reinforcement Learning

(RL) [33, 84, 36] is able to adapt workload changes and deliver better energy/power

savings or performance improvement under power constraints than conventional meth-

ods. Although a RL-based approach has the strength of learning the model of both the

system and the workload, none of the aforementioned contributions address the scala-

bility of RL in many-core systems. In order to mitigate the scalability problem, Juan et

al. [36] propose to group cores into clusters, each managed by supervisors which moves

each cluster back to nominal V/F level whenever the budget is exceeded. Nevertheless,

the proposed recovery mechanism, the under-investigated importance of granularity of

the clusters and the use of a uniform power budget across clusters renders this method

suboptimal.

Prior work has also addressed thermal constrained performance optimization [89, 90,

79]. However, such approaches need separate procedures for model learning and action

decision. In contrast, RL learns the optimal actions in a model-free manner. Further-

more, thermal constraints are usually local (per-core), different from the global power

constraint we consider. Since the problem scope is different, we cannot provide a direct

comparison with these approaches.

To be able to assess the benefit of any performance improvement approach, one needs

to rely on simple, yet accurate enough models that can be used in taking online decisions.

Prior art has proposed periodic migration of threads across different core types to sample

the power and performance statistics [91]. Such an approach can be costly, given the

migration cost for increased core count. Therefore, it becomes necessary to predict the

power of a thread running on a given core based on performance counters customarily

available in modern architectures. In this thesis, we employ the power-performance

modeling methodology proposed by Juan et al. [34, 92, 21], to predict power as a function

of the operating frequency under given workload behaviors.

CHAPTER 7. RELATED WORK 92

7.2 Speeding up training of RL-based DVFS algorithms

Bayesian Optimization (BO) is a well-known sample-efficient optimization method for

black-box functions [10, 12, 11], and has achieved successes in various domains, e.g.,

robotics, vehicle control, model selection, etc [93, 37]. Recently, BO has been applied to

hyperparameter tuning for deep neural networks [11, 94] and proven effective in finding

better solutions with fewer training samples.

To the best of our knowledge, no prior art has applied BO to speeding up RL training,

and in this thesis, we explore this in the context of RL-DVFS. One of the major challenges

in BO is the curse of dimensionality [15, 37]. Several researchers have tried to alleviate

this issue, but with strong assumptions, e.g., the target function varies only along a low

dimensional subspace [95, 40, 96] or it is an additive function of multiple subspaces

[97, 15]. Unfortunately, the target function in DVFS cannot be modeled as an additive

function of subspaces, nor can it be shrunk to one lower dimensional subspace.

7.3 Convolutional neural networks: efficient inference

There are several prior works targeting CNN acceleration [6, 49, 44, 50]. Model com-

pression [6, 49, 98, 48] is a popular approach of reducing CNN memory requirement

and runtime via weight pruning. [6] proposed to prune connections and fine-tune the

network progressively which results in high compression rate. However, due to the

non-structured sparsity generated by this method, it also needs specialized hardware to

realize high speedup [99]. In light of this, [49] used group lasso to generate structured

sparsity and speed up CNNs on general-purpose processors, e.g., CPU and GPU.

CNN model binarization or quantization methods [100, 101, 50, 102, 103, 104] quan-

tize CNN weights and/or activations into low-precision fewer-bit representations. There-

after, they are able to both reduce memory cost and speedup computation by using effi-

cient hardware units. [100] uses binary weights rather than continuous-valued weights

CHAPTER 7. RELATED WORK 93

in CNN models, which is not only able to save memory space, but also greatly speedup

convolution via replacing multiply-accumulate operations by simple accumulations. Ding

et al., [50] reduces the number of bits of CNN weights through its binary representation,

which can be sped up by using shift-add operation rather than expensive multipliers on

hardware. [101, 51] further quantize the CNN intermediate activations, resulting in both

binary weight and input, which can be further accelerated via efficient XNOR operation.

Low rank approximation methods [52, 5, 105] speed up convolution computation by

exploiting the redundancies of the convolutional kernel using low-rank tensor decom-

positions. The original convolution layer is then replaced by a sequence of convolution

layers with low-rank filters, which have a much lower total computational cost. [52] ex-

ploit cross-channel or filter redundancy to construct rank-one basis of filters in the spatial

domain. [5] use non-linear least squares to compute a low-rank CP-decomposition of

the filters into fewer rank-one tensors and then fine-tune the entire network.

The closest work to ours is PerforatedCNNs [44] which, inspired by the idea of loop

perforation [106], reduces the computation cost in convolution layers by exploiting the

spatial redundancy. Nevertheless, PerforatedCNNs use a dataset dependent method to

generate an irregular output mask that determines which neuron should be computed

exactly. In addition, PerforatedCNNs need a mask, and hence loading overhead, at run-

time to determine the value for interpolation, while ViP only depends on the interme-

diate activations of the CNN layer without extra parameters. Finally, PerforatedCNNs

also considered the use of a pooling-structured mask, but it can only be applied to the

layers immediately preceding a pooling layer and the associated interpolation method

is nearest neighbor. In contrast, our method can be applied to any convolution layer in

the network. Furthermore, we are able to show that the ViP method is able to achieve

higher speedup with lower accuracy degradation.

CHAPTER 7. RELATED WORK 94

7.4 Convolutional neural networks: efficient training

To the best of our knowledge, this is the first work to analyze the use of finer-gain

labeling for improving accuracy and training data efficiency for CNN-based image clas-

sification tasks. Though there has been significant prior work looking into the hierarchy

of classes/categories [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118], our work

has a distinct objective compared to prior art. Some of the prior work [115, 108, 113]

aim to utilize the hierarchical label information to improve classification accuracy for

the finest categories. On the theory side, Dekel et al. [108] propose a learning frame-

work using large margin kernel methods and Bayesian analysis to deal with the clas-

sification problem with hierarchical label structures. Cesa-Bianchi et al. [115] propose

a new loss function and use Support Vector Machine (SVM) as well as a probabilistic

data model so that higher accuracy can be achieved with exponentially fast convergence

speed. From a more practical viewpoint, Zhao et al. [113] leverage hierarchical infor-

mation of the class structure and select different feature subsets for super-classes. Other

work [116][109][112] aim to predict either coarse- or fine-grain labels conditioning on the

confidence level. Deng et al. [116] optimize the trade-off between specificity (how fine-

grain the predicted label is) and accuracy, while Bi et al. [109] develop a Bayes-optimal

classifier to minimize the Bayesian risk. More recently, Wang et al. propose to stop the

prediction process for a coarse-grain label so as to avoid an incorrect prediction. In

addition, other prior work [110][117][111] focuses on the understanding of hierarchical

labels. For example, Song et al. [110] study dataless hierarchical text classification with

unsupervised methods. Hoyoux et al. [117] show some counter-examples where using

hierarchical methods degrades the accuracy, and explore the reasons for such results.

Oh [111] studies the combination of hierarchical classification and top-k accuracy.

However, all these studies aim to increase the classification accuracy of fine-grain

classes. Instead, we focus on the case of coarse-grain classes being the target of classifi-

cation task, and we explore whether directly training with finer-grain labels can achieve

CHAPTER 7. RELATED WORK 95

higher classification accuracy on coarse-grain classes than training with coarse-grain la-

bels.

A work close to ours come from Mo et al. [119], who propose active over-labeling to

generate finer-grain labels than the target coarse-grain labels, and demonstrate that fine-

grained label data can improve precision of a classifier for the coarse-grained concept.

Similar ideas were also studied by other prior work [70, 120, 71, 121, 122]. However,

none of them explores deep learning models which are very different from conventional

machine learning models, e.g., Support Vector Machine (SVM), logistic regression, etc.

Fradkin [71] performs experiments on linear and non-linear SVM, and finds that fine-

grain training can improve accuracy for linear SVM since fine-grain labeling can learn a

piece-wise linear decision boundary that better approximate the true non-linear bound-

ary. However, fine-grain training does not help non-linear (RBF-kernel) SVM due to their

inherent non-linearity. CNNs are highly non-linear models and relatively more difficult

to optimize [123]. No results using CNNs have yet been shown on this topic.

Chapter 8

Conclusion and future work

In this thesis, we propose several approaches on both learning for and with efficient

computing systems. The first angle we take is applying reinforcement learning to im-

prove many-core system performance while satisfying both power and performance con-

straints. Our results show that OD-RL is 100x faster on a 512-core system comparing to

Steepest Drop. Our approach achieves up to 98% saving on budget overshoot, 23%

higher energy efficiency, and is consistently better than Steepest Drop when the number

of cores scales up. Considering both global power constraints and per application per-

formance requirements, pa-OD-RL delivers, on average, (i) 17.8x more epochs satisfying

prescribed performance requirements, (ii) 5.6x performance gain, and (iii) 20.0x bet-

ter performance-power trade-off (AOB metric) than the priority-unaware OD-RL, while

both have similar runtime and scalability to thousand of cores. We then proceed to accel-

erate training of RL-based DVFS algorithoms by using Bayesian optimization. We intro-

duce an hybrid method combining model complexity reduction and iterative-Bayesian

Optimization method to overcome the curse of dimensionality of BO methods and speed

up training of RL-based DVFS control algorithms. Based on deeper investigation of the

iterative-BO method, we propose iterative-BO with restart which further boosts speedup

to 37.4x.

96

CHAPTER 8. CONCLUSION AND FUTURE WORK 97

With the advent of deep learning, we focus on convolutional neural networks, which

have achieved great success in visual tasks. We propose methods to improve the effi-

ciency for both inference and training phases of CNN. (1) To improve CNN inference

efficiency, we propose the Virtual Pooling (ViP) method that exploits the spatial redun-

dancy of the input and reduces CNN computation by using a larger stride convolution

and then recovering the output with linear interpolation (which is very efficient). We test

and validate our method extensively on four CNN models, three representative datasets,

both desktop and mobile platforms, and two primary learning tasks, i.e., image classi-

fication and object detection. When running on Nvidia Titan X GPU, ViP is able to

speedup VGG-16 by 2.1x with less than 1.5% accuracy degradation in the image classifi-

cation task, and speedup faster-rcnn by 1.8x with 0.025 mAP degradation. Furthermore,

we show that ViP is able to generate a set of models with different speedup-accuracy

trade-offs. This provides CNN practitioners a tool for finding the model most suitable

for their needs. (2) To improve CNN training efficiency, we introduce the intriguing

property of how label granularity impacts CNN-based image classification. Our exten-

sive experimentation shows that using fine-grain labels, rather than the target coarse-

grain labels, can lead to higher accuracy and training data efficiency by improving both

network optimization and generalization. For example, trained with fine-grain labels,

only 40% of the traininig data samples is needed to achieve even higher testing accu-

racy. Our results further suggest two practical applications: (i) with sufficient human

resources, one can improve CNN accuracy by re-labeling the dataset with fine-grain la-

bels, and (ii) with limited human resources, to improve CNN performance, rather than

collecting more training data, one may instead collect fine-grain labels for the existing

data.

Future work in learning for efficient computing systems can explore advanced end-to-

end learning frameworks, e.g., convolutional neural networks, to directly learn coherent

and efficient resource management and scheduling policies for operating systems and

even new computer architectures. To further improve CNN inference efficiency, rather

CHAPTER 8. CONCLUSION AND FUTURE WORK 98

than simple fixed-weight linear interpolation, we may extend ViP method to include

trainable weight during interpolation and larger stride in convolution, which leads to

weighted-average interpolation and may improve both efficiency and accuracy. In terms

of CNN training efficiency, rather than human labeling, we may explore unsupervised

clustering methods to automatically split existing coarse-grain classes into fine-grain

classes, and we shall investigate and understand the theory behind this phenomenon

and the limit of fine-grain labeling, e.g., to which level shall we stop splitting the class

due to diminishing returns.

Bibliography

[1] “https://github.com/fmfn/bayesianoptimization.” xi, 7, 43

[2] LinkViz, “https://www.mathworks.com/help/deeplearning

/examples/visualize-activations-of-a-convolutional-neural-network.html.” xiii, 47

[3] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An analysis of

efficient multi-core global power management policies: Maximizing performance

for a given power budget,” in MICRO. IEEE Computer Society, 2006, pp. 347–358.

1, 10, 12, 17, 18, 19, 23, 24, 27, 38, 90

[4] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for high-

performance, power-efficient heterogeneous many-core systems,” in ICCD. IEEE,

2013, pp. 54–61. 2, 11, 38

[5] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up

convolutional neural networks using fine-tuned cp-decomposition,” arXiv preprint

arXiv:1412.6553, 2014. 2, 46, 54, 65, 93

[6] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for

efficient neural network,” in Advances in neural information processing systems, 2015,

pp. 1135–1143. 2, 46, 54, 92

[7] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “Neuralpower: Predict and

deploy energy-efficient convolutional neural networks,” in Asian Conference on Ma-

chine Learning, 2017, pp. 622–637. 2, 46

99

BIBLIOGRAPHY 100

[8] A. G. Barto, Reinforcement learning: An introduction. MIT press, 1998. 5, 6, 13, 23,

40

[9] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.

279–292, 1992. 6

[10] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning. MIT

press Cambridge, 2006, vol. 1. 7, 39, 43, 92

[11] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of ma-

chine learning algorithms,” in Advances in neural information processing systems,

2012, pp. 2951–2959. 7, 43, 92

[12] P. Hennig and C. J. Schuler, “Entropy search for information-efficient global op-

timization,” Journal of Machine Learning Research, vol. 13, no. Jun, pp. 1809–1837,

2012. 7, 92

[13] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani, “Predictive entropy

search for efficient global optimization of black-box functions,” in Advances in neu-

ral information processing systems, 2014, pp. 918–926. 7

[14] Z. Wang and S. Jegelka, “Max-value entropy search for efficient bayesian optimiza-

tion,” arXiv preprint arXiv:1703.01968, 2017. 7

[15] K. Kandasamy, J. Schneider, and B. Póczos, “High dimensional bayesian optimi-

sation and bandits via additive models,” in International Conference on Machine

Learning, 2015, pp. 295–304. 7, 41, 44, 92

[16] D. J. MacKay, “Probable networks and plausible predictionsâĂŤa review of prac-

tical bayesian methods for supervised neural networks,” Network: Computation in

Neural Systems, vol. 6, no. 3, pp. 469–505, 1995. 7

[17] Z. Chen, D. Stamoulis, and D. Marculescu, “Profit: priority and

power/performance optimization for many-core systems,” IEEE Transactions on

BIBLIOGRAPHY 101

Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 10, pp. 2064–

2075, 2018. 11

[18] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread scheduling and

global power management for heterogeneous many-core architectures,” in PACT.

ACM, 2010, pp. 29–40. 12, 23, 90

[19] Z. Chen and D. Marculescu, “Distributed reinforcement learning for power limited

many-core system performance optimization,” in Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition. EDA Consortium, 2015, pp.

1521–1526. 13, 38, 39, 40

[20] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.

Elsevier, 2011. 16

[21] E. Cai, D. C. Juan, S. Garg, J. Park, and D. Marculescu, “Learning-based

power/performance optimization for many-core systems with extended-range

voltage/frequency scaling,” IEEE TCAD, vol. 35, no. 8, pp. 1318–1331, Aug 2016.

19, 20, 21, 38, 91

[22] D. Stamoulis and D. Marculescu, “Can we guarantee performance requirements

under workload and process variations?” in Proceedings of the 2016 International

Symposium on Low Power Electronics and Design, ser. ISLPED ’16, 2016, pp. 308–313.

19, 20

[23] D. Stamoulis, D. Rodopoulos, B. H. Meyer, D. Soudris, F. Catthoor, and Z. Zilic,

“Efficient reliability analysis of processor datapath using atomistic bti variability

models,” in GLSVSLI. ACM, 2015, pp. 57–62. 20

[24] E. Cai, D. Stamoulis, and D. Marculescu, “Exploring aging deceleration in finfet-

based multi-core systems,” in 2016 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), Nov 2016, pp. 1–8. 20

BIBLIOGRAPHY 102

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,

“Mcpat: an integrated power, area, and timing modeling framework for multicore

and manycore architectures,” in MICRO-42nd. IEEE, 2009, pp. 469–480. 20, 21

[26] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of ab-

straction for scalable and accurate parallel multi-core simulations,” in International

Conference for High Performance Computing, Networking, Storage and Analysis (SC),

Nov. 2011. 20, 21

[27] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for thermal-aware

power budgeting in many-core architectures,” in CODES+ ISSS, 2011 Proceedings

of the 9th International Conference on. IEEE, 2011, pp. 189–196. 26

[28] J. W. J. Williams, “Algorithm-232-heapsort,” pp. 347–348, 1964. 32

[29] G.-Y. Pan, J. Yang, J.-Y. Jou, and B.-C. C. Lai, “Scalable global power management

policy based on combinatorial optimization for multiprocessors,” ACM Transac-

tions on Embedded Computing Systems (TECS), vol. 14, no. 4, p. 70, 2015. 34, 90

[30] P. P. Pande, R. G. Kim, W. Choi, Z. Chen, D. Marculescu, and R. Marculescu, “The

(low) power of less wiring: Enabling energy efficiency in many-core platforms

through wireless noc,” in Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design. IEEE Press, 2015, pp. 165–169. 38

[31] R. G. Kim, W. Choi, Z. Chen, P. P. Pande, D. Marculescu, and R. Marculescu,

“Wireless noc and dynamic vfi codesign: Energy efficiency without performance

penalty,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,

no. 7, pp. 2488–2501, 2016. 38

[32] R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu, and R. Mar-

culescu, “Imitation learning for dynamic vfi control in large-scale manycore sys-

tems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017. 38

BIBLIOGRAPHY 103

[33] W. Liu, Y. Tan, and Q. Qiu, “Enhanced q-learning algorithm for dynamic power

management with performance constraint,” in DATE. European Design and Au-

tomation Association, 2010, pp. 602–605. 39, 40, 90, 91

[34] D.-C. Juan, S. Garg, J. Park, and D. Marculescu, “Learning the optimal operating

point for many-core systems with extended range voltage/frequency scaling,” in

CODES+ ISSS. IEEE, 2013, pp. 1–10. 39, 90, 91

[35] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of multiple

interacting resources in chip multiprocessors: A machine learning approach,” in

MICRO. IEEE, 2008, pp. 318–329. 39, 90, 91

[36] D.-C. Juan and D. Marculescu, “Power-aware performance increase via

core/uncore reinforcement control for chip-multiprocessors,” in ISLPED. ACM,

2012, pp. 97–102. 39, 90, 91

[37] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian optimization of

expensive cost functions, with application to active user modeling and hierarchical

reinforcement learning,” arXiv preprint arXiv:1012.2599, 2010. 39, 44, 92

[38] S. Sadasivam, J. Lee, Z. Chen, and R. Jain, “Efficient reinforcement learning for

automating human decision-making in soc design,” in 2018 55th ACM/ESDA/IEEE

Design Automation Conference (DAC). IEEE, 2018, pp. 1–6. 39

[39] I. Szita and A. Lörincz, “Learning tetris using the noisy cross-entropy method,”

Learning, vol. 18, no. 12, 2006. 40, 43

[40] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. De Freitas et al., “Bayesian optimiza-

tion in high dimensions via random embeddings.” in IJCAI, 2013, pp. 1778–1784.

41, 92

[41] “http://scikit-learn.org.” 43

BIBLIOGRAPHY 104

[42] D. Stamoulis, E. Cai, D.-C. Juan, and D. Marculescu, “Hyperpower: Power-and

memory-constrained hyper-parameter optimization for neural networks,” in De-

sign, Automation & Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018,

pp. 19–24. 46

[43] D. Marculescu, D. Stamoulis, and E. Cai, “Hardware-aware machine learn-

ing: modeling and optimization,” in Proceedings of the International Conference on

Computer-Aided Design. ACM, 2018, p. 137. 46

[44] M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli, “Perforatedcnns: Accelera-

tion through elimination of redundant convolutions,” in Advances in Neural Infor-

mation Processing Systems, 2016, pp. 947–955. 47, 53, 57, 58, 59, 60, 92, 93

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 48, 50, 55

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778. 48, 50, 55

[47] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training quantized nets:

A deeper understanding,” in Advances in Neural Information Processing Systems,

2017, pp. 5811–5821. 51

[48] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model

compression and acceleration on mobile devices,” in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 784–800. 53, 92

[49] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in

deep neural networks,” in Advances in Neural Information Processing Systems, 2016,

pp. 2074–2082. 54, 65, 92

BIBLIOGRAPHY 105

[50] R. Ding, Z. Liu, R. Shi, D. Marculescu, and R. Blanton, “Lightnn: Filling the gap

between conventional deep neural networks and binarized networks,” in Proceed-

ings of the on Great Lakes Symposium on VLSI 2017. ACM, 2017, pp. 35–40. 54, 65,

92, 93

[51] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-

sification using binary convolutional neural networks,” in European Conference on

Computer Vision. Springer, 2016, pp. 525–542. 54, 93

[52] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural

networks with low rank expansions,” in Proceedings of the British Machine Vision

Conference. BMVA Press, 2014. 54, 93

[53] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for sim-

plicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014. 55, 61

[54] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-

tection with region proposal networks,” in Advances in neural information processing

systems, 2015, pp. 91–99. 55, 65

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255. 55

[56] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online: http://www.

cs. toronto. edu/kriz/cifar. html, 2014. 55

[57] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International journal of computer vision,

vol. 88, no. 2, pp. 303–338, 2010. 55

[58] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in

BIBLIOGRAPHY 106

Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014, pp.

675–678. 56

[59] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda, M. Paluri,

J. Tran et al., “Dsd: Dense-sparse-dense training for deep neural networks,” arXiv

preprint arXiv:1607.04381, 2016. 58

[60] GithubPerf, “https://github.com/mfigurnov/perforated-cnn-caffe.” 60

[61] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.

436, 2015. 68

[62] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255. 68, 69, 72

[63] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009. 68, 69, 72

[64] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 69

[65] Z. Chen, R. Ding, T.-W. Chin, and D. Marculescu, “Understanding the impact

of label granularity on cnn-based image classification,” in 2018 IEEE International

Conference on Data Mining Workshops (ICDMW). IEEE, 2018, pp. 895–904. 69

[66] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM,

vol. 38, no. 11, pp. 39–41, 1995. 71, 72

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-

works,” in European Conference on Computer Vision. Springer, 2016, pp. 630–645.

74

BIBLIOGRAPHY 107

[68] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint

arXiv:1605.07146, 2016. 74, 84

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778. 74, 78

[70] A. Hoffmann, R. Kwok, and P. Compton, “Using subclasses to improve classifi-

cation learning,” in European Conference on Machine Learning. Springer, 2001, pp.

203–213. 80, 83, 95

[71] D. Fradkin, “Clustering inside classes improves performance of linear classifiers,”

in Tools with Artificial Intelligence, 2008. ICTAI’08. 20th IEEE International Conference

on, vol. 2. IEEE, 2008, pp. 439–442. 80, 95

[72] H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

2846–2854. 82

[73] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine

learning research, vol. 9, no. Nov, pp. 2579–2605, 2008. 82

[74] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-

works,” in European conference on computer vision. Springer, 2014, pp. 818–833.

83

[75] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014. 83

[76] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of parallel com-

putation on chip multiprocessors,” in HPCA. IEEE, 2006, pp. 77–87. 90

BIBLIOGRAPHY 108

[77] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap: adaptive dvfs

and thread packing under power caps,” in MICRO. ACM, 2011, pp. 175–185. 90

[78] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in

chip-multiprocessors,” in ISLPED. IEEE, 2007, pp. 38–43. 90

[79] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power control for chip

multiprocessors with online model estimation,” in ACM SIGARCH computer archi-

tecture news, vol. 37, no. 3. ACM, 2009, pp. 314–324. 90, 91

[80] J. Sartori and R. Kumar, “Distributed peak power management for many-core ar-

chitectures,” in DATE. IEEE, 2009, pp. 1556–1559. 90

[81] J. M. Cebrián, J. L. Aragon, and S. Kaxiras, “Power token balancing: Adapting

cmps to power constraints for parallel multithreaded workloads,” in IPDPS. IEEE,

2011, pp. 431–442. 90

[82] E. Cai and D. Marculescu, “Tei-turbo: temperature effect inversion-aware turbo

boost for finfet-based multi-core systems,” in Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design. IEEE Press, 2015, pp. 500–507. 90

[83] ——, “Temperature effect inversion-aware power-performance optimization for

finfet-based multicore systems,” IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, vol. 36, no. 11, pp. 1897–1910, 2017. 90

[84] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using reinforcement

learning,” in ICCAD. ACM, 2009, pp. 461–467. 90, 91

[85] G.-Y. Pan, J.-Y. Jou, and B.-C. Lai, “Scalable power management using multilevel

reinforcement learning for multiprocessors,” ACM TODAES, vol. 19, no. 4, p. 33,

2014. 90

[86] G. Dhiman and T. S. Rosing, “Dynamic power management using machine learn-

ing,” in ICCAD. ACM, 2006, pp. 747–754. 90

BIBLIOGRAPHY 109

[87] H. Jung and P. M., “Improving the efficiency of power management techniques by

using bayesian classification,” in ISQED. IEEE, 2008, pp. 178 – 183. 90

[88] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling and power

management for chip multiprocessors,” in ACM SIGARCH Computer Architecture

News, vol. 36, no. 3. IEEE Computer Society, 2008, pp. 363–374. 90

[89] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries, “A virtual platform envi-

ronment for exploring power, thermal and reliability management control strate-

gies in high-performance multicores,” in Proceedings of the 20th symposium on Great

lakes symposium on VLSI. ACM, 2010, pp. 311–316. 91

[90] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “A distributed and self-

calibrating model-predictive controller for energy and thermal management of

high-performance multicores,” in DATE’11. IEEE, pp. 1–6. 91

[91] F. Wang et al., “Variation-aware task and communication mapping for mpsoc ar-

chitecture,” IEEE TCAD, vol. 30, no. 2, pp. 295–307, Feb 2011. 91

[92] D.-C. Juan, “A learning-based framework incorporating domain knowledge for

performance modeling,” 2014. 91

[93] G. Malkomes, C. Schaff, and R. Garnett, “Bayesian optimization for automated

model selection,” in Advances in Neural Information Processing Systems, 2016, pp.

2900–2908. 92

[94] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary,

M. Prabhat, and R. Adams, “Scalable bayesian optimization using deep neural

networks,” in International Conference on Machine Learning, 2015, pp. 2171–2180. 92

[95] B. Chen, R. Castro, and A. Krause, “Joint optimization and variable selection of

high-dimensional gaussian processes,” arXiv preprint arXiv:1206.6396, 2012. 92

BIBLIOGRAPHY 110

[96] J. Djolonga, A. Krause, and V. Cevher, “High-dimensional gaussian process ban-

dits,” in Advances in Neural Information Processing Systems, 2013, pp. 1025–1033.

92

[97] D. K. Duvenaud, H. Nickisch, and C. E. Rasmussen, “Additive gaussian pro-

cesses,” in Advances in neural information processing systems, 2011, pp. 226–234. 92

[98] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating

deep convolutional neural networks,” arXiv preprint arXiv:1808.06866, 2018. 92

[99] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:

efficient inference engine on compressed deep neural network,” in Computer Ar-

chitecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE,

2016, pp. 243–254. 92

[100] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural

networks with binary weights during propagations,” in Advances in neural informa-

tion processing systems, 2015, pp. 3123–3131. 92

[101] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016. 92, 93

[102] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural

networks for mobile devices,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 4820–4828. 92

[103] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization:

Towards lossless cnns with low-precision weights,” arXiv preprint arXiv:1702.03044,

2017. 92

[104] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv

preprint arXiv:1612.01064, 2016. 92

BIBLIOGRAPHY 111

[105] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear

structure within convolutional networks for efficient evaluation,” in Advances in

neural information processing systems, 2014, pp. 1269–1277. 93

[106] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing

performance vs. accuracy trade-offs with loop perforation,” in Proceedings of the

19th ACM SIGSOFT symposium and the 13th European conference on Foundations of

software engineering. ACM, 2011, pp. 124–134. 93

[107] A. Sun and E.-P. Lim, “Hierarchical text classification and evaluation,” in Data

Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE, 2001,

pp. 521–528. 94

[108] O. Dekel, J. Keshet, and Y. Singer, “Large margin hierarchical classification,” in

Proceedings of the twenty-first international conference on Machine learning. ACM,

2004, p. 27. 94

[109] W. Bi and J. T. Kwok, “Hierarchical multilabel classification with minimum bayes

risk,” in Data Mining (ICDM), 2012 IEEE 12th International Conference on. IEEE,

2012, pp. 101–110. 94

[110] Y. Song and D. Roth, “On dataless hierarchical text classification.” in AAAI, vol. 7,

2014. 94

[111] S. Oh, “Top-k hierarchical classification.” in AAAI, 2017, pp. 2450–2456. 94

[112] Y. Wang, Q. Hu, Y. Zhou, H. Zhao, Y. Qian, and J. Liang, “Local bayes risk min-

imization based stopping strategy for hierarchical classification,” in Data Mining

(ICDM), 2017 IEEE International Conference on. IEEE, 2017, pp. 515–524. 94

[113] H. Zhao, P. Zhu, P. Wang, and Q. Hu, “Hierarchical feature selection with recursive

regularization,” in Proceedings of the 26th International Joint Conference on Artificial

Intelligence. AAAI Press, 2017, pp. 3483–3489. 94

BIBLIOGRAPHY 112

[114] D. Wang, H. Huang, C. Lu, B.-S. Feng, L. Nie, G. Wen, and X.-L. Mao, “Supervised

deep hashing for hierarchical labeled data,” in AAAI, 2018. 94

[115] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Incremental algorithms for hierar-

chical classification,” Journal of Machine Learning Research, vol. 7, no. Jan, pp. 31–54,

2006. 94

[116] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei, “Hedging your bets: Optimizing

accuracy-specificity trade-offs in large scale visual recognition,” in Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3450–

3457. 94

[117] T. Hoyoux, A. J. Rodríguez-Sánchez, and J. H. Piater, “Can computer vision prob-

lems benefit from structured hierarchical classification?” Machine Vision and Appli-

cations, vol. 27, no. 8, pp. 1299–1312, 2016. 94

[118] R. Cerri, R. C. Barros, and A. C. de Carvalho, “Hierarchical classification of

gene ontology-based protein functions with neural networks,” in Neural Networks

(IJCNN), 2015 International Joint Conference on. IEEE, 2015, pp. 1–8. 94

[119] Y. Mo, S. D. Scott, and D. Downey, “Learning hierarchically decomposable con-

cepts with active over-labeling,” in Data Mining (ICDM), 2016 IEEE 16th Interna-

tional Conference on. IEEE, 2016, pp. 340–349. 95

[120] Y. Luo, “Can subclasses help a multiclass learning problem?” in Intelligent Vehicles

Symposium, 2008 IEEE. IEEE, 2008, pp. 214–219. 95

[121] N. Ahmed and M. Campbell, “On estimating simple probabilistic discriminative

models with subclasses,” Expert Systems with Applications, vol. 39, no. 7, pp. 6659–

6664, 2012. 95

[122] M. Ristin, J. Gall, M. Guillaumin, and L. Van Gool, “From categories to subcat-

egories: large-scale image classification with partial class label refinement,” in

BIBLIOGRAPHY 113

Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE,

2015, pp. 231–239. 95

[123] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the thirteenth international conference on

artificial intelligence and statistics, 2010, pp. 249–256. 95

Appendix A

Proof

Proof for Proposition 1 is presented here.

Proof. We prove this bound by first bounding the error of the ViP layer O(ls), and then

bounding the error accumulated to higher layers.

For the ViP layer O(ls), ∀c, h, w, the ViP error of O(ls)
c,h,w can be bounded:

|O(ls)ViP
c,h,w −O(ls)Orig

c,h,w |

=| 1
K

K

∑
k=1

(hk,wk)∈Nh,w

O(ls)ViP
c,hk,wk

−O(ls)Orig
c,h,w |

≤ 1
K

K

∑
k=1

(hk,wk)∈Nh,w

|O(ls)ViP
c,hk,wk

−O(ls)Orig
c,h,w |

≤L ∗ dmax =
√

2L

(A.1)

where Nh,w is the set of neighbor locations of (h, w) that are averaged to compute the

ViP value for pixel (h, w), and dmax is the maximum l2-norm distance of the location

(c, h, w) and a neighbor location (c, hk, wk), which is
√

2 in ViP.

114

APPENDIX A. PROOF 115

Then, we bound the error accumulated from layer l − 1 to l, i.e., |O(l)ViP
c′,h,w −O

(l)Orig
c′,h,w |.

Due to Eq. (1),

O(l)ViP
c′,h,w = (

C(l)

∑
c=1

bM(l)/2c

∑
m,n=−bM(l)/2c

O(l−1)ViP
c,s·h−m,s·w−n ∗W

(l)
c′,c,m,n)+

O(l)Orig
c′,h,w = (

C(l)

∑
c=1

bM(l)/2c

∑
m,n=−bM(l)/2c

O(l−1)Orig
c,s·h−m,s·w−n ∗W

(l)
c′,c,m,n)+

(A.2)

where (.)+ is the ReLU activation function. Due to the fact that ∀x, y ∈ R, |(x)+− (y)+| ≤

|x− y|, we have:

|O(l)ViP
c′,h,w −O

(l)Orig
c′,h,w |

≤|
C(l)

∑
c=1

bM(l)/2c

∑
m,n=−bM(l)/2c

(O(l−1)ViP
c,s·h−m,s·w−n −O

(l−1)Orig
c,s·h−m,s·w−n)W

(l)
c′,c,m,n|

(A.3)

Using Cauchy-Schwarz inequality, we have:

|O(l)ViP
c′,h,w −O

(l)Orig
c′,h,w |

≤

√√√√√C(l)

∑
c=1

bM(l)/2c

∑
m,n=−bM(l)/2c

(O(l−1)ViP
c,s·h−m,s·w−n −O

(l−1)Orig
c,s·h−m,s·w−n)

2

∗

√√√√√C(l)

∑
c=1

bM(l)/2c

∑
m,n=−bM(l)/2c

W (l)
c′,c,m,n

≤
√

C(l)M(l)B(l) max
c′,h,w
|O(l−1)ViP

c,h,w −O(l−1)Orig
c,h,w |

(A.4)

Therefore, accumulating the error from the ViP layer ls to layer le, we have:

|O(le)ViP
c′,h,w −O

(le)Orig
c′,h,w | ≤

√
2L

le

∏
l=ls+1

√
C(l)M(l)B(l), (A.5)

Thus, the l2-norm of the output error is bounded by:

||O(le)ViP −O(le)Orig||2

≤
√

2L
√

C′(le)H(le)W(le)
le

∏
l=ls+1

√
C(l)M(l)B(l).

(A.6)

	Contents
	List of Tables
	List of Figures
	Introduction
	Challenges
	Thesis contributions
	Thesis organization

	Background
	Reinforcement learning
	Bayesian optimization
	Deep convolutional neural networks

	Learning for efficient many-core systems
	Chapter overview
	Chapter contributions

	Methodology
	Fine temporal granularity: reinforcement learning local agents
	Coarse temporal granularity: power budget reallocation
	Priority based performance requirements
	Power-performance model

	Experimental results
	Experiment setup
	Budget overshoot control
	Power and performance constraints
	Overhead and scalability

	Discussion

	Speeding up training of RL-based DVFS algorithms
	Chapter overview
	Chapter contributions

	Methodology
	RL-based DVFS
	Cross-entropy method
	Iterative-BO

	Experimental results
	Experiment setup
	Experimental results

	Discussion

	Convolutional neural networks: efficient inference
	Chapter overview
	Chapter contributions

	Methodology
	ViP layer
	ViP algorithm

	Experimental results
	Experimental setup
	Image classification
	Accuracy and speed
	Power and energy

	Object detection

	Discussion

	Convolutional neural networks: efficient training
	Chapter overview
	Chapter contributions

	Label granularity and training data
	Optimization and generalization
	Optimization
	Generalization

	Exploration
	Customized coarse-grain classes
	Noisy fine-grain classes
	Varying number of coarse-grain classes

	Discussion

	Related work
	Learning for efficient many-core systems
	Speeding up training of RL-based DVFS algorithms
	Convolutional neural networks: efficient inference
	Convolutional neural networks: efficient training

	Conclusion and future work
	Bibliography
	Proof

