
Finding and Exploiting Parallelism with Data-Structure-Aware Static and

Dynamic Analysis

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Christopher Ian Fallin

B.S. Computer Engineering, May 2009, University of Notre Dame
M.S. Electrical and Computer Engineering, Dec 2011, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May 2019

c© 2019 Christopher Ian Fallin.
All rights reserved.

iii

Acknowledgments

Having been at CMU nearly a decade, worked on multiple projects in multiple research groups, and seen

many friends and fellow researchers come and go, I have many more acknowledgments to give than these

few pages will allow. Nevertheless, as I have learned, when one faces an impossible problem, sometimes with

enough effort a reasonable solution can appear. So here’s an attempt.

First, my advisors, Profs. Todd Mowry and Phil Gibbons, have been extraordinarily helpful and sup-

portive in various and complimentary ways. Through their experience, they helped to chart a path for this

research, focus on the most interesting questions, and refine the concepts and abstractions we invented into

what I present here. They both granted significant hands-off freedom to me as I tried various approaches to

the autoparallelization problem and struggled through some false starts before discovering the foundations

of what eventually worked. At the same time, our weekly meetings consistently kept me on my toes with

incisive questions and genuinely helpful technical insights. I thank Todd in particular for being willing to

take on a “slightly used” graduate student when I first considered returning to CMU in 2014 and finally

arrived in 2015, and for setting the direction and tone of the “semantic lifting” project. And I thank Phil for

being willing to join our weeklies in my first year and consistently surprising me with the detail-orientedness

of his questions and insights, suggestions based on his systems and algorithms experience, and for connecting

us more closely with the PDL community. Both have influenced my taste for interesting problems and have

provided an encouraging, trouble-free environment in which to solve them; for that, I am very thankful.

My thesis committee members Prof. Jonathan Aldrich, Prof. Kayvon Fatahalian and Prof. Luis Ceze all

contributed useful feedback and interesting discussions, insights and alternative perspectives on my work,

and at each stage were eager to help. I thank them all for taking the time to review this thesis and providing

their very valuable input.

My fellow research-group members were essential to my success, and good friends as well. Pratik Fegade

arrived on this project in 2016 and very quickly began making valuable technical contributions; since then

he has been right in the trenches with me, providing a sounding board, rapidly grasping new ideas, turning

over gnarly technical issues and inventing solutions, and pushing the analysis and evaluation infrastructure

forward, one paper-submission sprint at a time. He has an impressive ability to zero in on edge-case

correctness bugs; if you want a correct analysis implementation, first build a slightly wrong version, and

then wait for Pratik’s inevitable pull request. Dominic Chen joined weekly meetings with the two of us and

provided excellent feedback as well. I appreciate very much the support that our group has provided over

the last several years.

I thank the Parallel Data Lab (PDL) community, both faculty/students and industry members, who

iv

welcomed our group at the annual PDL retreats in beautiful Bedford Springs and provided interesting and

insightful perspective on our work from a systems point of view. Thanks also to the weekly CIC reading

group, which has been a fruitful source of interesting discussion and research stimulus.

The work in this thesis was built on the shoulders of some particularly capable giants: the Doop Java

points-to analysis, the Soot Java compiler framework, and the Soufflé Datalog compiler. Thanks to the

respective research teams for building these useful tools, and in particular to George Kastrinis and Prof.

Yanniss Smaragdakis for answering a few questions about Doop.

Other students served to keep me sane over the ups and downs of the past four years. I am particularly

grateful to the denizens of GHC 6207, who became good friends. Ryan Kavanagh, Costin Bădescu, and

Anson Kahng happily engaged in mutual time wastage, Wikipedia rabbit-hole traversal, and various other

schenanigans that were nevertheless the most enjoyable parts of my time in the office. Thanks for the

camaraderie and the free-food-table alerts too. Thanks also to former inhabitants Thomas Kim, Vaishnavh

Nagarajan, Kartik Gupta, and recent arrival Brian Schwedock, for tolerating and/or tuning out our banter.

(Thanks also to the CS Department for graciously allowing me to occupy one of the most strategically-located

CS grad student offices in Gates, despite my status as an ECE student.)

My past life in “PhD version one,” as well as my full-time stint in industry, also heavily influenced my

interests and orientation toward research. I acknowledge my former advisor, Prof. Onur Mutlu, for originally

bringing me to CMU and providing opportunities for me to gain experience and explore up and down the

systems stack. He influenced my taste for interesting and fundamental research questions, and taught me

how to distill often complex and subtle ideas down to key insights with clear descriptions. These skills have

proved immensely useful throughout the years. Prof. James Hoe provided valuable advice at several key

points, and helped me work out my return to CMU as well.

Chris Wilkerson at Intel was a willing mentor who was generous with his time and encouragement from

my first Intel internship onward, and especially in my core microarchitecture work. Brian Hirano of Oracle

was always happy to provide interesting insights and observations in weekly phone calls. Eugene Gorbatov

enthusiastically mentored my work during my first internship. During my time on the Intel Oregon core

microarchitecture team, Mark Dechene brought me up to speed as an intern, and Rob Chappell was the

most fair-minded, decent, and helpful manager one could imagine during my full-time work. Jared Stark

taught me all I know about branch predictors and then some, and gave me a new level of appreciation for

the power of clever engineering tricks. At Google, Jayant Kolhe was an unfailingly helpful manager who

took my desire to return to CMU in stride and made my transition as easy as possible. Josh Haberman was

happy to engage in researchy discussions, keeping life interesting among a sea of low-level implementation

work, and Rohan Anil’s relentless optimization grind reinforced the lesson that one sometimes finds good

v

numbers by simply doing the work in a thousand needed places. All of these industry experiences prepared

me in some way or another to build more than I thought possible in this thesis work.

Fellow SAFARI group members during my first CMU epoch became lifelong friends, and I owe much of

my “growing up” to this odd research family of sorts.

Yoongu Kim was the pioneer and wise older brother, the first student of the group and a year above

my cohort, whose constant good humor and easy-going nature kept us all sane. Chris Craik was my early

research partner and good friend in our first year, before he left for the (metaphorically) greener pastures of

California. Vivek Seshadri, the squash player with a grad-student habit, was a brilliant bubbling fountain

of ideas, each of them a potential thesis unto itself, who inspired us all. Lavanya Subramanian was an

excellent fellow TA and quals cohort-mate whose diligence and willingness to help were inspiring. Justin

Meza’s research brilliance and superb presentation aesthetics and writing skills were surpassed only by his

friendly welcome to all in our group (and his willingness to help me consume my homebrew). Rachata

Ausavarungnirun was an extraordinarily talented cook and good friend who fed us on many occasions, and

his research persistence and willingness to assist any project were invaluable. Kevin Chang worked well

with Rachata to take over some of my earlier interconnects work, and was an excellent collaborator and

friend. Jamie Liu is probably the smartest person I’ve met, and his ability to produce two ISCA papers in

three semesters and then escape to the good life is still mind-boggling. Ben Jaiyen was likewise a friendly

and brilliant addition to our group before he too found the good life out west. The fact that I accidentally

became Jamie and Ben’s literal next-door neighbor in Mountain View was simply an added bonus.

Gennady Pekhimenko was a brilliant researcher, with time for a conversation with anyone despite having

a hand in many projects. I thank Gena in particular for convincing me to consider returning to CMU.

HanBin Yoon brought a lot of good humor to our group, and somehow survived his time with us despite

several nearby electric fans. Donghyuk Lee knew more than any mortal about DRAM internals, and was

always willing to make use of his experience to help everyone around him. Hongyi Xin did inspiring work

in DNA sequencing, which taught me to always appreciate the real-world impact our research can have. I

also thank him for the fascinating lessons on Chinese history and politics. Yixin Luo was a friendly and

helpful addition to our group during my last year in SAFARI. Samira Khan was a skilled post-doc with much

wisdom and experience to share who thankfully was not too cool to become “one of us.” Greg Nazario and

Xiangyao Yu were two wonderful undergraduate interns who helped significantly with my research in summer

2011. Ross Daly and Tyler Huberty were incredibly talented bachelors/masters students who contributed

significantly to work in our group (I thank Tyler especially for sharing my passion for hikes in the Santa

Cruz Mountains). Rachael Harding likewise was a very skilled undergraduate student who contributed to

an early project with Yoongu and me, and added to our late-night camaraderie in the lab.

vi

In the extended CMU/CALCM family, Michael Papamichael and Eric Chung of Prof. James Hoe’s group

went out of their way to welcome SAFARI as we grew into their space, and both of them provided guidance

to me in my early years. George Nychis was an excellent mentor, collaborator and friend who took me under

his wing in my first semester, leading to a few interesting publications and easing my transition to CMU

significantly. Gabe Weisz was also welcoming and friendly, and was an excellent partner on our compilers

course project. Michelle Goodstein and Tunji Ruwase, fellow students of Todd’s, were both a friendly and

encouraging presence when we moved to CIC. Brendan Meeder, fellow PhD student and housemate along

with Chris Craik, was always willing to commiserate. Finally, outside of CMU but within the academic

family, Rustam Miftakhutdinov, Eiman Ebrahimi, Khubaib, and Carlos Villavieja of Prof. Yale Patt’s group

at UT-Austin were always eager to talk research and provide encouragement to their academic relatives,

both remotely and whenever we both found ourselves at Intel.

Many staff members in ECE, and several in CSD as well, worked hard to help keep my work running

smoothly. I thank the three generations of ECE PhD program advisors I have witnessed: Elaine Lawrence,

Samantha Goldstein, and Nathan Snizaski. Thanks too to Marilyn Patete and Jennifer Gabig formerly of

ECE, and Deb Cavlovich, Diana Hyde, Angela Miller, Angela Luck, and Anthony Moreino in CSD.

During my undergraduate days, Profs. Peter Kogge and Jay Brockman (a fellow CMU-ECE PhD!) were

happy to take me as far as I wanted to go in computer architecture and strongly encouraged my graduate-

school ambitions. I am grateful for their help. Prof. Pat Flynn provided me with the opportunity to do

undergrad research as well, which was very valuable experience.

I am particularly grateful for the influence of Dr. John Gorman of Jesuit High School in Portland,

Oregon, my high-school math teacher for four years who is likely one of the few such instructors to eagerly

go into number theory and combinatorics, group theory and abstract algebra, public-key cryptography, and

myriad other topics, all with painstakingly prepared course notes in LATEX, plus extra time after school

and at the local Starbucks. He taught me how to think mathematically, develop proofs, pursue research

ideas, and to appreciate what can be done with careful, hard thought. Thank you! Other friends were also

influential early on; in particular, thanks go to Keshav Kini, who introduced me to Microsoft QBASIC in

1997 and condemned me irreedemably to this path.

I am eternally thankful for the environment and the encouragement my parents John and Nancy Fallin

provided from as early as I can remember – from the soldering iron and first spool of wire (22 AWG, stranded),

to the proximity to computing equipment of all sorts and free rein to install GNU/Linux, to tolerating

my monopolization of the 56k dialup, and providing probably too much leeway whenever I preferred an

interesting debugging problem over a prompt response to the dinner call, they provided a world where I was

encouraged to think and learn, with all the opportunities I could have ever wanted. Thanks to my brother

vii

Brian for tolerating an excessively nerdy brother. Finally, I am grateful to my girlfriend Ann Shue, whom

I met soon after my return to CMU and whose constant encouragement has made all the difference as we

both work to complete our training and start “real life.”

The work in this thesis was funded by NSF, Intel, and the Parallel Data Lab (PDL) at CMU. My earlier

time at CMU was funded by an NSF Graduate Research Fellowship, an SRC Fellowship, a Qualcomm

Innovation Fellowship honorable mention, and the Bertucci Fellowship.

I thank Coffee Tree Roasters (Squirrel Hill and Shadyside), Commonplace Coffee, and Tazza d’Oro for

the essential task of keeping my caffeine receptors caffeinated during this work.

Chris Fallin And so, his thesis completed,
February 7, 2019 His data and code he deleted.
(graduate school day 3468) ’Til along came advisor

And said ’twould be wiser
If results could again be repeated!

viii

Abstract

Maximizing performance on modern multicore hardware demands aggressive optimizations. Large amounts

of legacy code are written for sequential hardware, and parallelization of this code is an important goal. Some

programs are written for one parallel platform, but must be periodically updated for other platforms, or

updated with the existing platform’s changing characteristics – for example, by splitting work at a different

granularity or tiling work to fit in a cache. A programmer tasked with this work will likely refactor the code

in ways that diverge from its original implementation’s step-by-step operation, but nevertheless computes

correct results.

Unfortunately, because modern compilers are unaware of the higher-level structure of a program, they

are largely unable to perform this work automatically. First, they generally preserve the operation of the

original program at the language-semantics level, down to implementation details. Thus parallelization

transforms are often hindered by false dependencies between data-structure operations that are semantically

commutative. For example, reordering (e.g.) two tree insertions would produce a different program heap even

though the tree elements are identical. Second, by analyzing the program at this low level, they are generally

unable to derive invariants at a higher level, such as that no two pointers in a particular list alias each other.

Both of these shortcomings hinder modern parallelization analyses from reaching the performance that a

human programmer can achieve by refactoring.

In this thesis, we introduce an enhanced compiler and runtime system that can parallelize sequential loops

in a program by reasoning about a program’s high-level semantics. We make three contributions. First, we

enhance the compiler to reason about data structures as first-class values: operations on maps and lists, and

traversals over them, are encoded directly. Semantic models map library data types that implement these

standard containers to the IR intrinsics. This enables the compiler to reason about commutativity of various

operations, and provides a basis for deriving data-structure invariants. Second, we present distinctness

analysis, a type of static alias analysis that is specially designed to derive results for parallelization that are

just as precise as needed, while remaining simple and widely applicable. This analysis discovers non-aliasing

across loop iterations, which is a form of flow-sensitivity that nevertheless is much simpler than past work’s

closed-form analysis of linear indexing of data structures. Finally, for cases when infrequent occurrences rule

out a loop parallelization, or when static analysis cannot prove the parallelization to be safe, we leverage

dynamic checks. Our hybrid static-dynamic approach extends the logic of our static alias analysis to find a

set of checks to perform at runtime, and then uses the implications of these checks in its static reasoning.

With the proper runtime techniques, these dynamic checks can be used to parallelize many loops without

any speculation or rollback overhead.

ix

This system, which we have proven sound, performs significantly better than prior standard loop-

parallelization techniques. We argue that a compiler and runtime system with built-in data-structure primi-

tives, simple but effective alias-analysis extensions, and some carefully-placed dynamic checks is a promising

platform for macro-scale program transforms such as loop parallelization, and potentially many other lines

of future work.

Contents

Contents x

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 The Problem: Levels of Program Understanding . 1

1.2 The Problem Illustrated: Loop Parallelization . 2

1.3 A Potential Approach: Domain-Specific Languages . 4

1.4 Our Approach: High-Level Understanding from General-Purpose Languages 6

1.5 Overview of Related Work . 8

1.6 Thesis Statement and Contributions . 9

1.7 Structure of the Thesis . 10

2 Background: Loop Parallelization and Alias Analysis 13

2.1 Loop Parallelization . 13

2.2 Parallelizing a Loop Nest with Linear Array Accesses . 15

2.3 Alias Analysis . 17

2.4 Andersen Points-to Analysis . 18

2.5 Interprocedural Analysis . 19

2.6 Program Analysis Definitions . 21

2.7 Other Related Work: Alternate Approaches . 23

2.8 Chapter Summary . 25

3 Data-Structure Awareness with Semantic Models 27

3.1 The Problem: Analysis of Common Data Structures is Imprecise 27

x

CONTENTS xi

3.2 Our Approach: First-Class Data Structures . 29

3.3 Improving Points-to Precision with First-Class Data Structures 30

3.4 Mapping Libraries to Intrinsics: Semantic Models . 39

3.5 Evaluation: Points-to Precision . 40

3.6 Discussion: First-Class Primitives vs. DSLs . 42

3.7 Related Work . 43

3.8 Chapter Summary . 47

4 Daedalus: Enhanced Alias Analysis with Distinctness 49

4.1 Alias Analysis for Loop Parallelization . 49

4.2 Distinctness Analysis: Definitions and Analysis Rules . 52

4.3 Distinctness in Maps, Sets and Lists . 62

4.4 Which Distinct Value?: Must-Alias Analysis Inside Loops . 66

4.5 Parallelizing Loops Using Distinctness . 69

4.6 Evaluation . 71

4.7 Related Work . 76

4.8 Chapter Summary . 77

5 Icarus: Extending Static Loop Parallelization Analysis with Dynamic Checks 79

5.1 Motivation: Almost-Provable Analysis Facts . 80

5.2 One Solution: Fully-Dynamic Version of a Static Analysis . 82

5.3 Our Approach: Hybrid Static-Dynamic System . 84

5.4 Executing with Dynamic Checks . 96

5.5 Evaluation . 103

5.6 Discussion . 110

5.7 Related Work . 112

5.8 Chapter Summary . 113

6 Future Work and Conclusions 115

6.1 Future Research Directions . 115

6.2 Conclusion . 119

A Definitions and Proofs for Daedalus 121

A.1 Definitions . 121

A.2 Loops and Loop Contexts . 122

xii CONTENTS

A.3 Tag-based Pseudo-flow-sensitive Must-Alias Analysis . 124

A.4 Distinctness Analysis . 127

A.5 Loop Parallelization (Iteration Non-Aliasing) . 133

A.6 Analysis Termination . 135

B Definitions and Proofs for Icarus 137

B.1 First Pass: Possible Distinctness . 137

B.2 Loop Parallelization Rules . 138

B.3 Needed Distinctness . 139

B.4 Dynamic Check Mechanisms at Runtime . 142

Bibliography 147

List of Tables

3.1 Points-to set sizes: precision with semantic models . 41

4.1 Simulator parameters for performance evaluation . 72

5.1 Parallelizable loop count in Icarus . 105

5.2 Dynamic check and loop-parallelization success rates . 106

xiii

List of Figures

1.1 Example program to demonstrate difficulties of parallelization . 2

1.2 Compiler view of example program . 4

1.3 DSL approach to parallelization of example program . 4

1.4 Distinctness analysis view of example program . 7

2.1 Two forms of loop parallelism . 14

2.2 Example program featuring loop nest to parallelize . 16

2.3 Andersen points-to analysis rules and example application . 19

2.4 Extending an analysis with interprocedural support . 20

2.5 Context-sensitive analysis . 22

2.6 Intermediate Representation (IR) definitions . 22

3.1 Naïve points-to analysis of data structure operations . 28

3.2 Summary of IR operations for data structures . 30

3.3 First-class maps in IR: operations and points-to rules . 31

3.4 Points-to graph with new map abstractions . 32

3.5 Equivalence class IR operator: mapping user-level equality to IR maps 33

3.6 IR operators on lists: pseudocode and equivalent map operations 35

3.7 IR operators on iterators: pseudocode and points-to analysis rules 37

3.8 Implied memory dependencies: scalar and indexed heap accesses and virtual values 38

3.9 Excerpt of semantic model for java.util.HashMap . 39

4.1 Comparison of array-based and alias-based parallelization . 50

4.2 Issues with conventional aliasing analysis for loop parallelization 51

4.3 Four types of distinctness . 53

4.4 Loop context definitions . 57

xiv

List of Figures xv

4.5 Inferring field distinctness from stores. 61

4.6 Example of distinctness analysis. 65

4.7 The need for must-alias analysis in addition to distinctness . 67

4.8 Main results: coverage (parallelizable instructions) and parallel speedup. 73

5.1 A program on which static analysis can almost prove the needed facts 81

5.2 A hybrid static-dynamic analysis . 85

5.3 Two passes of the hybrid analysis has two passes: possibility and need 86

5.4 A full cut across the provenance graph, filled in by dynamic checks 91

5.5 Transforms to derive needed-distinctness rules from distinctness rules 92

5.6 Static distinctness vs. dynamic backward-looking distinctness . 97

5.7 The need for synchronization between distinctness checks . 98

5.8 Analysis to determine check-completion points . 99

5.9 Example of parallel execution with dynamic checks . 100

5.10 Illustration of dynamic field distinctness . 102

5.11 Parallelization coverage for Icarus . 107

5.12 Parallelization speedup for Icarus, ideal configuration . 108

5.13 Average loop iteration length (in dynamic instructions) and iteration count per dynamic instance

for all parallelized loops under Icarus. These results quantify the remaining difficulty in obtain-

ing good speedup with real-world runtime parameters. 109

A.1 Rules for must-alias analysis . 124

A.2 Rules for assignment statements . 126

A.3 Miscellaneous inference rules . 127

A.4 Rules for variable constantness . 127

A.5 Rule for object allocations . 129

A.6 Rules for field stores . 129

A.7 Rules for field loads . 130

A.8 Rules for map stores. 131

A.9 Rules for map loads. 131

A.10 Rules for loop parallelization. 133

Chapter 1

Introduction

There once was a domain-spec’fic language
Whose use often caused painful anguish:
Though structures, parallel,
Were done fairly well,
Its expressive powers had languished.

Modern software often does not make use of the available parallelism on ubiquitous multicore and other

recently-introduced parallel hardware platforms. This is due to at least three reasons. First, refactoring

existing code in imperative languages to take advantage of parallelism is difficult, because these languages

often allow arbitrary side-effects and encourage low-level heap object manipulation. Second, adapting code

to compute in parallel can be difficult if the available concurrency-control abstractions are too primitive.

On many platforms, only OS-level threads are available, and there are few built-in language features for

expressing data parallelism, for example. Finally, tuning parallel performance for a particular platform is

difficult because the best performance may arise from very different settings, or design choices, on each

platform.

1.1 The Problem: Levels of Program Understanding

A human programmer approaching the task of refactoring a program generally works to understand the

program’s algorithm or task at a high level first – for example, to sort a list, to multiply two arrays, or to

process independent work-items with the results merged into a key-value map – and then to make various

implementation decisions to accomplish that task. The programmer may choose data structures, control

flow and parallelization strategies, etc., in order to enable certain goals, such as spreading work across

cores. The high-level specification is separate from, and constant across, the large design space of possible

implementations.

1

2 CHAPTER 1. INTRODUCTION

for (int i = 0; i < 100; i++)
 list.add(i);

for (Integer i : list)
 map.put(i, new Parent());

for (Integer i : map.keySet())
 map.get(i).childPtr = new Child();

for (Integer i : list)
 map.get(i).childPtr.field = i;

HashMap map;
ArrayList list;

(i)

(ii)

(iii)

(iv)

Figure 1.1: Example program: we consider whether the four loops are parallelizable.

When refactoring existing code, in particular, a human programmer first reverse-engineers the program

to recover this high-level understanding. The program as written specifies many details that are not essential

to the core algorithm. For example, it may contain data-structure implementations and intricate code to

maintain invariants on those data structures. It may also contain traversals over that data or particular

control-flow idioms such as a work-queue loop or structural recursion over a tree. It may use ad-hoc interme-

diate data structures. Programmers often have a library of idioms that they understand through experience,

including all of the above. Additionally, when developing the code, the programmer establishes and adheres

to high-level invariants. For example, the object pointers in a list may all refer to separate objects. Au-

tomatic analysis of such patterns might be even more difficult due to corner-case bugs: an invariant may

not technically be true, though the programmer understands the intent anyway. The programmer then has

the ability to synthesize these facts into a high-level summary. For example, a loop may traverse over a list

of objects, each of them separate, and perform independent work for each object. This particular example

is the common map() functional-programming idiom, and if recognized as such, its iterations can easily be

parallelized.

1.2 The Problem Illustrated: Loop Parallelization

To illustrate the problem concretely, let us focus now on loop parallelization. By loop parallelization, we

mean the problem of transforming a loop in a program so that its iterations operate completely in parallel:

they may be spawned in an arbitrary order and may execute concurrently, on multiple cores, with a barrier

at the loop exit that awaits completion of all iterations. We say that a loop is parallelizable if program state

after the exit of the loop is identical1 whether or not the loop has been parallelized.

Consider the small Java program in Fig. 1.1. The program consists of four loops: it (i) iterates over the

1Note that a definition of “identical” state is required here, and a stricter definition may restrict some parallelization. For
example, identical may mean observationally identical as viewed through the data structure’s query API. Or, more strongly, it
may require a byte-for-byte identical memory image.

1.2. THE PROBLEM ILLUSTRATED: LOOP PARALLELIZATION 3

integers from 0 to 99, adding them to a list; (ii) iterates over this list, inserting key-value pairs into a map;

(iii) iterates over the values in the map, setting a field; and (iv) iterates over the values again, setting a field

of a child object.

In considering whether each of the four loops is parallelizable, we can quickly make several observations.

First, all four loops mutate a shared data structure, so a simple definition of parallelizability that requires

non-aliasing memory accesses will disqualify all four loops. However, if we consider API-level equivalence,

which in this program means that the map and list have the same contents as viewed through the API, then

every loop except the first is parallelizable, as long as we insert appropriate locking to ensure thread-safe

accesses to the list and map. This can be seen by observing that the second, third, and fourth loops operate

only on objects keyed by a different integer i each iteration. Finally, if only map is live at the end of the

four loops, and not list, then the first loop is parallelizable as well: it does not matter in which order we

process keys in the second and fourth loops, thus the program output is equivalent for any order of elements

in list, and the append operations in the first loop can complete out of order (in parallel iterations).

Consider, now, how a static compiler analysis is likely to analyze this program. Fig. 1.2 illustrates this

view for the second loop of Fig. 1.1, showing both the code as seen by the compiler and its likely model of the

program heap. First, due to the separation of concerns between the compiler and the standard library, the

compiler does not have any concept of a data structure such as HashMap. Rather, it analyzes the standard

library like any other code. In particular, it sees the data structure as just another type of heap object, and

it analyzes the data-structure methods as ordinary methods. (We have shown simplified versions of these

details in the figure.)

This separation is generally a sound design decision, because it requires the compiler to consider fewer

primitive operations, which simplifies its analysis and code-generation. However, in this case, it obscures

the intent of the code in a way that hinders useful results. For example, in this case, it will almost certainly

judge the loop to be non-parallelizable because it cannot prove that the hash-table array accesses in each

iteration do not collide. Indeed, they may have a true conflict if two keys hash to the same hash-table slot.

This is a true data dependency between loop iterations, and an analysis that deduces this dependency would

inhibit parallelization because of it.

To conclude that the above loop is parallelizable, the compiler needs to understand two things. First,

it must understand that map insertions are commutative as long as the keys for each insert are different.

In other words, inserting k1 ⇒ v1 and k2 ⇒ v2 into map in either order should yield an equivalent state

when k1 6= k2. If the compiler does not have this level of understanding, it will not be able to get past the

true data dependency described above. Second, it must understand in this particular program that the keys

for each insertion are distinct. These keys arrive via the list data structure, whose elements are produced

4 CHAPTER 1. INTRODUCTION

for (Integer i : list)
 map.put(i, new Parent());

Original Code Heap Model

map slots

Analyzed Code

for (Iterator it = list.iterator();
 it.hasNext();) {
 Integer i = it.next();
 int hashcode = i.hash();
 Parent p = new Parent();
 Entry e = new Entry(i, p);
 e.next = map.slots[hashcode];
 map.slots[hashcode] = e;
}

Compiler sees data-structure implementation
and low-level heap objects

Programmer sees "insert a new object at each
distinct key"

Problem:

Entry[]

key
value

Figure 1.2: Compiler view of example program: the compiler does not understand map-insert operations,
but instead puzzles through the details of the hash-table update code.

Figure 1.3: The first two loops of Fig. 1.1 rewritten using a DSL (here, Java’s streaming collections frame-
work). Because operations are expressed at a higher level, a DSL compiler could plausibly analyze the
data-structure operations as shown, enabling high-level parallelization optimizations.

by the first loop. The analysis must somehow understand that (i) the data structure at list is a list of

objects, (ii) the first loop builds the list by appending one element per iteration, and (iii) the same element

is never added twice. Then it must use this knowledge when analyzing the map insertion. This level of

understanding and analysis is beyond what compilers today are capable of performing.

1.3 A Potential Approach: Domain-Specific Languages

A promising approach today to this specific problem is the domain-specific language, or DSL. These languages

or programming frameworks enable the programmer to directly write a specification-like description of

the problem. This specification occurs at a high level with primitives that are designed for a particular

problem domain. DSLs have been designed for many domains and underlying data structures: for example,

graphs [69], meshes [39, 22], matrices [86, 9], machine-learning models [105, 111], compiler IR [48], distributed

1.3. A POTENTIAL APPROACH: DOMAIN-SPECIFIC LANGUAGES 5

data sets [76, 29, 80], and maps, sets and lists [63]. A closely related approach is to provide a framework in a

general-purpose language with DSL-like primitives. One common example is MapReduce [38]: the user fills

in behavior while the framework has top-level control and mandates certain restrictions on user-provided

functions. These restrictions may place limits on how provided code can depend on or alter global state, for

example. Because the domain-level specification in the DSL disallows program behavior outside the bounds

of the given primitives, the DSL compiler has significant freedom to choose an optimal implementation

strategy.

In the running example of Fig. 1.1, a suitable DSL for expressing the program’s computation might

contain primitives for key-value map and list data structures, and then primitives to traverse data structures

and produce new ones. Fig. 1.3 shows the first two loops of our example expressed with primitives from

Java’s streaming collections framework [4], which is representative of the constructions that such DSL might

allow.2 A compiler for such a DSL would explicitly understand these primitives, and so could plausibly

analyze the operations as follows. First, the stream of keys from the first loop contains no duplicated values,

because it is a range of integers. Next, the function provided to the Build Key-Value Map operator has no

side-effects. Therefore, the Build Key-Value Map operator can parallelize its work, choosing data-structure

and work-scheduling implementation details as necessary.

DSLs work well when a programmer is developing new code because there is no need to reverse-engineer

the meaning of low-level details. Instead, the overall structure of the algorithm can be expressed directly

as it is initially designed. This often results in less programmer effort on implementation and debugging by

abstracting away irrelevant details. DSLs also work well when an application relies on a small kernel of hot

code, because the effort to port or rewrite the kernel into the DSL is relatively minor compared to the large

potential benefits.

However, a DSL-based approach suffers from three main drawbacks. The first is that significant effort

is often required to port an existing application’s logic into a DSL. Furthermore, in such a retrofit, there is

significant risk that the new program might not exactly correspond to the original. The programmer has

to work carefully to verify that their high-level understanding of the program’s operation is correct: for

example, the programmer must verify that there is no hidden dependency between parts of the program

thought to be independent and self-contained.

The second drawback is that the limited expressive range of a DSL can prevent its use in applications

that require an occasional exception to a semantic restriction. For example, a loop that almost never has

loop-carried dependencies, except for an uncommon invariant-maintenance code path, might be awkward or

2The actual Java framework requires the user to explicitly indicate when a stream operator is parallelizable, and is an
ordinary library that does not make use of any special compiler intrinsics or support. We merely use its API here as an example
of the sort of primitive that a DSL might provide.

6 CHAPTER 1. INTRODUCTION

inefficient to express. There may be ways to adapt a parallelization strategy to accommodate the exception,

but the DSL often prevents the algorithm from being expressed at all. There is evidence that programmers

sometimes work around limitations in DSLs, or else simply under-utilize the DSLs, by wrapping DSL kernels

with pre- or post-processing code. For example, Cheung et al. [30] find that some program logic surrounding

SQL queries can be moved into the SQL itself, but this requires careful analysis, and not all program logic

is eligible.

The third drawback is that the DSL is specific to one domain, yet some problems require abstractions

from two or more domains. Purpose-built systems exist at these domain intersections. For example, a recent

database system, BlazingDB [1], explicitly supports both SQL queries and machine-learning operations

directly on in-memory database contents. This combination works particularly well because the in-memory

database exposes database contents as numeric data that a machine-learning toolkit’s operators can use

directly. While it is fortunate that such systems exist for some use-cases, it is significant work to build

integrated systems for every possible pairing of domains. Instead, it would be better to have a system that

can represent primitives from both domains and compile them into a high-performance transformed program

on a shared runtime.

1.4 Our Approach: High-Level Understanding from General-Purpose

Languages

For all of the above reasons, we believe that programmers are better-served by a compiler that finds perfor-

mance in high-level optimizations yet allows them to write code in a general-purpose language. Programmers

then could perhaps employ libraries where needed for productivity, but would not be limited by the seman-

tic constraints of a DSL-based approach. Ideally, the system would run an analysis that can identify some

high-level structures, such as parallelizable loops, among an otherwise low-level “sea of operations.” This

should yield good performance in many cases yet remain applicable to many more applications and use-cases

than the current state of the art.

Our goal in this thesis is to build such a system, bringing the benefits of DSL-like program understanding

and optimization to general-purpose languages. In particular, in this thesis, we focus on optimizing for

parallel hardware by parallelizing loops in sequential programs. The primitives that our system recognizes,

and the analyses that it performs, will be tuned with this initial goal in mind. However, the framework is

general, and could serve as the basis of many further code transforms beyond loop parallelization.

Our approach to bridging the gap between general-purpose languages and high-level understanding is

twofold. First, we introduce a few first-class data structures whose operations are understood by the compiler

as intrinsics at the same level as object field or array accesses. The relevant portions of the program and

1.4. OUR APPROACH: HIGH-LEVEL UNDERSTANDING FROM GENERAL-PURPOSE
LANGUAGES 7

for (int i = 0; i < 100; i++)
 list.add(i);

for (Integer i : list)
 map.put(i, new Parent());

for (Integer i : map.keySet())
 map.get(i).childPtr = new Child();

for (Integer i : list)
 map.get(i).childPtr.field = i;

- List elements are distinct

- Map values are globally distinct

- i is distinct (from map key iter)

- map.get(i) is distinct

- childPtr is field-distinct

- store to field is parallelizable

- map.get(i) is distinct

- map.get(i).childPtr is distinct

- Parent instance is distinct

- Integer induction variable distinct

- Child instance is distinct

Figure 1.4: Conclusions derived by distinctness analysis on the example program (Fig. 1.1): the analysis can
prove that the second, third, and fourth loops are parallelizable by showing that stored-to heap locations
are distinct, i.e., different every iteration.

standard library are mapped to these intrinsics. This program representation provides a basis for all further

analysis. We find that incorporating just a few data structure types, such as lists and maps, enables native

representation of many diverse benchmarks’ core data structures. This is because programmers tend to

build higher-level data structures and application logic compositionally using these lower-level primitive

data structures. Reasoning about these intrinsics rather than their pointer-level implementations grants the

compiler significantly enhanced precision that makes our later analyses possible.

Next, we introduce a static analysis, and later a hybrid static-dynamic analysis, to augment alias analysis

by using this new information. This new type of analysis, which we call distinctness analysis, can derive

invariants on data structures such as “each value slot in this key-value map points to a different object.”

It could then propagate this invariant into a loop that iterates over the map, and as a result, conclude

that the map value seen at each iteration does not alias across iterations. This analysis is designed to have

enough precision to allow loop parallelization and to enable discovery of other patterns that map to high-level

DSL operators: the common thread is to recognize dependencies between different loop iterations or other

program elements. Distinctness analysis attains wider applicability than past loop parallelization systems

because it does not try to derive too much information: for example, it does not compute a closed-form

indexing expression that symbolically describes an array access within a loop nest. Rather, it only computes

simple loop-relative non-aliasing facts, because parallelization only needs to prove non-aliasing.

Fig. 1.4 shows a series of conclusions by which distinctness analysis may conclude that the last three loops

of the example program may be parallelized. The analysis proceeds by deriving a number of invariants on

data structures in memory. First, it determines that list elements in list are distinct, and then that values

in map are distinct. It can carry this latter invariant through the heap to the third loop, concluding that the

visited Parent object is different each iteration. From this and the fresh Child allocation, it can infer that

8 CHAPTER 1. INTRODUCTION

childPtr is distinct: in other words, no two Parent fields point to the same Child. This finally enables it to

conclude that the stored-to object in the fourth loop is also distinct every iteration. By observing that the

destinations of stores are different each iteration, the analysis can determine that the loops are parallelizable.

1.5 Overview of Related Work

Significant past work addresses the loop parallelization problem. A large body of work also aims to enhance

compiler knowledge of program behavior to enable better optimization. We summarize various approaches

here, and then later discuss these and other areas of related work in more detail in the relevant Chapters

that introduce our system.

1.5.1 Parallelization of Regular Loop-nests with Array Accesses

Prior work on the loop parallelization has mainly focused on regular scientific or numeric code (e.g., [59, 66,

36, 18, 45, 78, 84]). Such programs normally consist of loop nests over one or more dimensions, and these

loops contain loads and stores to arrays with indices that are linear functions of loop indices. Because the

accessed memory locations can be described as simple linear functions, the system can check for potential

loop-carried dependencies with precise tests. Such a dependency inhibits parallelization; conversely, if no

dependency exist, then every iteration performs independent work, and so iterations may be spread across

parallel hardware using a variety of runtime strategies.

Though these previous systems are often effective for scientific and numerical programs, the opportunity

for speedup quickly degrades when moving to other application domains. Many programs use data struc-

tures other than simple arrays, store data in these data structures in complex patterns without closed-form

descriptions, and access and mutate the data in non-linear ways. Thus the past array-based systems are not

a complete solution to the auto-parallelization problem. In contrast, our system is able to parallelize some

of these difficult-to-analyze loops that nevertheless perform independent work per iteration by incorporating

knowledge of data structures and their invariants and the ways in which programs traverse them.

1.5.2 Parallelization using Alias Analysis

Johnson et al. [53] approach the loop parallelization problem by directly resolving the cross-iteration memory

aliasing question. Their system contains an ensemble of small, single-purpose analyses, each of which can

perform a particular type of deduction. This approach, similarly to ours, recognizes that ordinary compiler

alias analysis, which is unaware of loop iterations, is insufficient for parallelization. It thus directly encodes

cross-iteration aliasing as a first-class analysis result, as we do. However, their analysis operates at a

lower level than ours because it does not recognize first-class data structure values. Rather, it analyzes

heap accesses in both the user program and in standard-library data structures at the memory-word level.

1.6. THESIS STATEMENT AND CONTRIBUTIONS 9

Furthermore, their system approaches loop parallelization by posing the aliasing questions needed for loop

parallelization directly, in a bottom-up fashion, while our analysis systematically derives distinctness across

the program and then evaluates the parallelizability of all loops at once.

1.5.3 Data-Structure Awareness

A number of systems enhance compiler analyses to reason about container data structures in order to enable

parallelization. A common use-case is to profile usage patterns and pick an appropriate data structure, or

appropriate implementation of a given data structure (e.g., [35, 99, 57, 40, 20, 37, 51]). Two prior lines

of work explicitly address parallelization. The Galois system [63, 62] is a framework that provides explicit

container data structures for the programmer to use that track operations in order to detect conflicts during

speculative parallelization. Like our work, the Galois project observes that knowledge of data-structure

API semantics enables greater parallelization flexibility by permitting loop parallelizations that result in

different but equivalent final states. In particular, this system is designed to recognize and take advantage

of commutative updates. However, the Galois runtime is a library that requires the user to develop the

program with library-specific primitives, similar to a DSL. In contrast, we analyze unmodified programs in

a general-purpose language, specifically focusing on Java. Wu et al. [115, 114] build a system that reasons

about parallelizability of loops that mutate data structures such as hash-tables. While their compiler is

aware of the data structure operations and their semantics, as ours is, their system requires insertion of

dynamic checks to validate, e.g., that keys inserted into a hash-table do not overlap. In contrast, our system

performs static distinctness analysis to derive the needed invariants.3

1.6 Thesis Statement and Contributions

In this dissertation, we provide evidence for the following thesis:

Many programs that were not parallelizable under prior auto-parallelization systems can be safely,
efficiently, and effectively parallelized by encoding program operations on data structures as first-
class primitives and then analyzing the program’s behavior with respect to the heap and those
operations on the heap.

We substantiate this thesis by making the following contributions:

Data-Structure Primitives: First, we introduce a set of compiler primitives, or intrinsics, that enable

operation on the fundamental container data structures of lists, maps and sets as first-class values in

the compiler’s intermediate representation (IR). We show how a small set of semantic models using

these primitives can be used to map standard-library implementations of data structures to these
3Our Icarus extension also performs dynamic checks, but these strictly improve precision and are not necessary for cor-

rectness.

10 CHAPTER 1. INTRODUCTION

intrinsics during static analysis. We demonstrate that this use of first-class built-in data structures

yields significantly increased precision in standard static analyses, and in particular a may-point-to

(alias) analysis, compared to a naïve analysis of the original standard library at the implementation

level.

Distinctness, an Enhanced Alias Analysis: Next, we introduce distinctness analysis, a special type of

alias analysis that enhances the results of the baseline may-point-to analysis to enable loop paral-

lelization. Distinctness indicates whether particular variables may alias themselves across iterations

of a given loop, whether particular object fields may alias themselves across instances of the object

represented by a given heap abstraction, or whether particular map values may alias themselves within

a map. We show that distinctness analysis, when combined with use of the data-structure intrinsics

introduced above, is able to derive useful non-aliasing invariants on loops in many programs beyond the

traditional scientific/numeric realm of auto-parallelization. Our system achieves significant speedup as

a result of parallelizing these loops.

Hybrid Static/Dynamic Distinctness Analysis: Finally, we introduce a hybrid static analysis / dy-

namic check framework. This framework extends a static analysis such as distinctness analysis with

the ability to use dynamically-verified program properties in its reasoning. The resulting transformed

program verifies these properties and falls back to non-transformed code when a check fails. We ap-

ply these principles to distinctness analysis, and we show that the result enables parallelization of

additional loops with only a few dynamic checks. We describe a runtime scheme to execute these par-

allelized loops while accounting for possible dynamic-check failure. Unlike most prior parallelization

systems that rely on dynamic checks of program invariants, our system is not speculative, hence does

not require any buffering or rollback capability. It is also able to take advantage of partial paralleliz-

ability, wherein a loop’s iterations are mostly parallelizable except for a few true dependencies, handled

via dynamically-inserted serializations.

1.7 Structure of the Thesis

This thesis will proceed as follows. First, Chapter 2 provides background on several analysis topics on which

our contributions rely. The chapter covers the current state of loop parallelization, including approaches

for scientific/numeric code with linearly-indexed arrays and generalized approaches based on alias analysis,

as well as background on Andersen points-to analysis [12], which is the baseline alias/points-to analysis on

which our system is built. It also includes descriptions of techniques for interprocedural and context-sensitive

analysis that are used in our system. Chapter 3 demonstrates the need for first-class data-structure values

1.7. STRUCTURE OF THE THESIS 11

at the compiler IR level by describing how current alias analyses fail to understand code that uses com-

mon container data structures, and then introduces our compiler data-structure intrinsics that address this

problem. It shows how to extend points-to analysis to account for these data structures, and demonstrates

that precision is greatly enhanced as a result. Chapter 4 first describes how a standard alias analysis, even

with enhancements for first-class data structures, does not answer the questions necessary to enable loop

parallelization because it does not derive aliasing invariants relative to loop iterations. It introduces distinct-

ness, a type of aliasing that addresses this need, and describes how distinctness invariants are propagated

into the heap (as invariants on heap object fields and map value slots) and back into program variables. It

then describes a set of inference rules that determine which loops are parallelizable based on distinctness-

analysis results, comprising our system Daedalus, and evaluates this system on a number of benchmarks.

Chapter 5 introduces Icarus, our extension of Daedalus designed to include dynamic invariant checks

to increase analysis precision. It describes how to modify, in a systematic way, the inference rules of the

static distinctness analysis in order to propagate “possibility” forward to the parallelization logic and “need”

backward to the distinctness analysis, so that only an approximately-minimal number of dynamic checks are

inserted to enable the desired loop parallelization. The chapter describes the subtleties of tracking dynamic

distinctness and the mechanisms that handle the checks in the parallelization runtime, and evaluates the

performance of Icarus against Daedalus and the baseline array-based loop-parallelization system. Chap-

ter 6 describes several promising future research directions and concludes. Finally, Appendices A and B

include full definitions and soundness proofs for Daedalus and Icarus, respectively.

Chapter 2

Background: Loop Parallelization and Alias

Analysis

There once was a static analysis
That suffered from painful paralysis.
It traversed all the loops
And jumped through some hoops
But failed to prove lack of an alias!

Before we can introduce the key aspects of our system, we must provide some background relevant both

to the loop parallelization problem specifically and to alias analysis more generally. This chapter serves as

background useful to understand the context and assumed baseline of later chapters. We first describe loop-

nest parallelization analysis (§2.1) and a standard approach that works by analyzing linearly-indexed array

accesses (§2.2). We then provide an introduction to alias analysis (§2.3). We describe Andersen points-to

analysis, a standard alias-analysis approach (§2.4). We extend this analysis beyond single procedures to

whole-program, or interprocedural, analysis (§2.5), in a context-sensitive way. We then provide a foundation

for the analysis descriptions in the rest of this dissertation by providing notation for inference rules and

program representations and giving a simple formalization of Andersen points-to analysis in this notation

(§2.6). Finally, we discuss some additional related work (§2.7).

2.1 Loop Parallelization

In this thesis, we work toward a solution to the loop parallelization problem. Loop parallelization, generally

speaking, aims to execute the iterations of a loop in a sequential program using parallel hardware in some

way. We say that a loop is parallelizable if this modified version of the program, executing on the parallel

hardware, produces identical output (for some definition of identical) to the original. The loop iterations may

13

14 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

Figure 2.1: Two ways of extracting parallelism from a program loop: executing iterations independently on
separate cores (DOALL parallelism) or splitting each iteration into multiple pieces, running each section of
the loop body on a different core (staged parallelism).

be distributed across CPU cores to run independently, in classical DOALL parallelism [66], or the iteration

body may be split into pieces lengthwise along the execution of a single iteration to form a “pipeline” of stages,

attaining parallelism in another dimension [89]. These two forms of parallelism can be combined as well [88].

Other means of parallel work scheduling can be used, too: for example, the dependency structure between

iterations may be a partial order because some particular iterations use results from particular previous

iterations, but parallelization of such a loop is still possible if the scheduler can respect this dependency.

These forms of available loop-related parallelism are summarized in Fig. 2.1.

In this dissertation, we initially focus on cross-iteration DOALL parallelism, and later extend our ap-

proach to schedule around true dependencies dynamically. However, fundamentally, the analyses that we

introduce will derive general invariants about the program and its heap accesses, and these results could be

used to explore other forms of parallelism (on other types of loops, on recursive programs, etc.). We leave

such explorations to future work.

2.1.1 Basic Parallelization Requirements

What must be true about a loop for it to be parallelizable? In general, this question reduces to the Halting

Problem: we cannot analytically or symbolically determine a program’s output in general, and so cannot

prove a correspondence between serial and parallel versions in general. As a concrete example of this

difficulty, program execution may include arbitrary pointer computations, hence even the basic dataflow

between program operations and the dependencies between them are undecidable in general. However, one

can define sufficient conditions that will allow us to answer this analysis question for many programs in

practice.

The simplest condition that is sufficient to show parallelizability is complete independence: if an iteration

2.2. PARALLELIZING A LOOP NEST WITH LINEAR ARRAY ACCESSES 15

of the loop body does not interact in any way with any other iteration, then its execution will not be affected

by the relative timing of its own execution and other iterations’ executions. Then, if iterations can mutate

their own separate portions of program state in any order relative to each other, they can be executed in

parallel.

Showing this complete independence of each iteration’s computation requires proving three properties.

The first is simple: the loop body must have no loop-carried dependencies among local variable accesses.

This can be tested in a straightforward way if the compiler IR is SSA (static single assignment) [93]: the

only way for a definition in the loop body to be used in a subsequent iteration is for it to flow through a

φ-node in the loop header. This can be directly tested by the analysis.

The second condition is likewise fairly simple: the set of iterations to be executed by the loop must be

enumerable prior to the execution of any iteration. In other words, a loop should not have an exit condition

that depends on calculations in the loop body. This, too, is straightforward to verify by pattern-matching

known loop patterns for consideration. For example, the standard idiom in C-like languages for a loop over

a range of integers, namely for(i = 0; i < N; i++), can be easily recognized. As long as the analysis

ensures that no other mutations to i or N occur inside the loop, then it has successfully recognized the

pattern and can provide a closed-form description of the iteration indices. Likewise, loops over collection

data structures using iterators usually occur in a standard, recognizable form.

The third condition is the most complex, and in fact, is the problem addressed by the bulk of this

dissertation: iterations can have no dataflow dependencies through the heap. The analysis shows this by

showing that the set of memory addresses accessed by each iteration is disjoint from that of any other, except

for addresses that are only read and never written. If this were not the case, i.e., if there were a memory

address A that were written by one iteration and read by another later iteration in the original sequential

program, then running the iterations out-of-order in parallel could result in a different program output. This

would violate our definition of parallelizability.

Systems that parallelize loops have proposed various ways to analyze program memory accesses. We

cover two of them here: first, the loop-nest model, and second, a model that formulates explicit aliasing

questions.

2.2 Parallelizing a Loop Nest with Linear Array Accesses

The simplest type of loop, or nested set of loops, for an auto-parallelization system to analyze is that of

a scientific or numerical kernel whose only memory accesses are to arrays, such that those accesses are

linear or affine functions of the loop indices of the various nested loops. Such a program can be readily

analyzed for overlapping iteration memory-access sets because the set of memory locations to be accessed

16 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

Figure 2.2: Simple example program to illustrate parallelization of loops that access arrays with linear
indices.

can be summarized with a set of simple linear functions, one per access. An overlap between iterations then

corresponds to a solution to an integer linear program formulated in a particular way. Although integer

linear programming (ILP) is NP-complete in general, many works have proposed simple tests or frameworks

that can solve this problem for common cases.

To make this analysis concrete, consider the program in Fig. 2.2. The loop in this program traverses a

one-dimensional space with index variable i. It stores values to two elements of the array a, at indices 2i and

2i + 1 respectively. If we wish to prove that this loop is parallelizable by showing that different iterations’

memory accesses cannot overlap, then we need to show that given two iterations i and i′ s.t. i 6= i′, no pair

of two index expressions on a can be equal: that is, that 2i 6= 2i′, 2i + 1 6= 2i′ + 1, and 2i 6= 2i′ + 1. This

particular case is trivial to see, but other cases become much more complex.

In general, the loop iteration space can be characterized as an n-dimensional vector space~i = 〈i1, i2, . . . , in〉

where each dimension corresponds to one loop in the loop nest. Then, if the loop accesses an m-dimensional

array, we can describe the accessed array element ~a in terms of loop iteration ~i as:

~a = M~i+ ~c

where M is a matrix representing coefficients of loop index variables in each dimension of the accessed array

index, and where ~c is a vector representing the constant offsets. If we have k array accesses to a given array,

characterized by M1, . . . ,Mk and ~c1, . . . ,~ck, we can say that the loop is not parallelizable if there is any

integer solution to:

Mk
~i+ ~ck = Mk′~i′ + ~ck′

for any ~i 6= ~i′, and for any pair of accesses k and k′ (same or different) such that at least one access is a

write.

This type of analysis is often called polyhedral analysis. This is because the visited loop iteration indices

can be seen as defining a polyhedron in n-dimensional space; likewise, the set of visited array elements for

each array is a polyhedron in m-dimensional space.

2.3. ALIAS ANALYSIS 17

The first systematic test to take a linear indexing function-based approach to the loop dependency

analysis problem was in Lamport [66]. The Lamport test works only for single-dimensional iteration spaces

and arrays where coefficients are equal among all accesses, but the test itself is very simple: there is a

dependency if the difference in constant offsets is divisible by the coefficient. This is sufficient to allow

parallelization of the loop in Fig. 2.2. The GCD test, proposed by Banerjee [19], is more powerful as it

allows differing coefficients. Many subsequent tests have been proposed [36, 18, 45, 49, 83, 78, 84], including

the Delta test [49] and the Omega test [83]. Loop-nest-based reasoning is currently used in production

compilers such as LLVM’s Polly [50]. We will not describe the details of these works here other than to note

that all works in this category are fundamentally based on an analysis of array accesses within loops that

have numeric index variables.

The loop-nest model’s simplicity affords significant flexibility in tuning. A fruitful line of work leverages

the flexibility of the model to enable high-level optimizations. These include loop interchange [113], which

rearranges loop nest ordering, as well as tiling or blocking for better cache locality [65], or inserting prefetch

operations to hide memory latency [75]. Some works also apply machine learning to explore all of the above

dimensions for the best performance [106, 16, 15]. However, while this restricted domain covers a large

number of numerical loop kernels, providing high performance on supercomputer-class parallel hardware

executing these programs, it is not sufficient to address the increasing need for parallelism in other sorts of

programs that use heap data structures other than arrays. To parallelize loops in such programs, we need

to adopt a more general framework to the memory-access analysis problem.

2.3 Alias Analysis

We next provide a brief overview of alias analysis and the closely related points-to analysis. Alias analysis is

the basis of another approach to the loop parallelization problem, more general than loop-nest array-indexing

analysis but also more computationally expensive.

The analysis question that is answered by an alias analysis is: given pointer variables x and y in a program,

can any value assigned to x have the same pointer value as any value assigned to y in some execution?1 It is

clear that this kind of analysis can be used to determine whether loop iterations are independent: an overlap

of memory accesses across iterations is a pointer alias, and so answering some set of aliasing questions in

the negative should be sufficient to show parallelizability.

Points-to analysis is closely related to alias analysis: it computes essentially the same information, only

represented in a different way. A points-to analysis categorizes all objects that might exist at runtime into

heap abstractions and then computes the set of heap abstractions to which each pointer variable might refer.
1This is a may-analysis, i.e., it computes may-alias relations. There are also must-analyses that compute when a particular

value assigned to x must be the same as a particular value assigned to y in all executions.

18 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

(Heap abstractions are frequently defined to represent all objects allocated by a particular statement, or

a particular statement in a particular runtime context, but this design choice is arbitrary and affects only

analysis precision, not correctness.) Each heap abstraction, representing an object of a certain type, also

has a points-to set for each pointer-typed object field. The resulting information is sometimes called the

points-to graph: program variables and heap abstractions are nodes and points-to relations are edges. One

can answer an aliasing question using a points-to analysis result simply by testing whether the points-to sets

of the variables in question have a non-empty intersection.

Several prior works have used this general alias-analysis framing to address the loop parallelization

problem. Recently, Johnson et al. [53] proposed an ensemble of several smaller alias analyses that formulate

and collaborate on dependency queries, with an explicit notion of cross-iteration dependencies. Earlier, Wu

et al. [114] based their approach on a refined points-to analysis, though with aspects of the array-based

approach as well: their analysis qualifies points-to conclusions further by indicating which concrete object

is pointed-to, if this can be derived. While we take a similar approach with respect to an aliasing-based

problem framing, our work in this dissertation (i) incorporates data-structure awareness and (ii) introduces

a novel form of aliasing that is derived by a systematic, whole-program analysis, unlike these earlier works.

2.4 Andersen Points-to Analysis

We now briefly describe a standard points-to analysis that serves as the basis of many other analyses,

including our own analysis introduced in Chapter 4.

There are two efficient, practical forms of alias analysis in frequent use: Andersen analysis [12] and

Steensgaard analysis [103]. Of the two, Andersen analysis is more precise, at the cost of some additional

computation. We build our system on Andersen analysis, which we now describe.

The key idea of Andersen analysis is to create set constraints among points-to sets based on program

statements, without regard to the statements’ order, and then solve these constraints. Because the constraints

always specify that one points-to set is included in another, the analysis problem must have a solution. In

fact, it is monotonic: adding another program statement can only ever grow points-to sets.

Fig. 2.3 shows the rules by which Andersen analysis generates set constraints and an application of this

analysis to a simple program. The rules can be understood with a simple intuition: the analysis propagates

heap abstractions along program dataflow just as the rules of the original language semantics propagate

concrete pointer values. Thus, an assignment propagates the contents of the source’s points-to set to that

of the destination. (SSA φ-nodes are analyzed as multiple assignments, one per source). A load propagates

abstractions from the given field in all possible referenced objects to the destination. Finally, a store

propagates abstractions to the given field in all possible referenced objects. The points-to sets are initially

2.5. INTERPROCEDURAL ANALYSIS 19

Figure 2.3: Andersen points-to analysis definition and example. Here we show (a) the rules that generate
set constraints, (b) a simple example program to analyze, and (c) the resulting points-to sets and a graph
representation of them.

populated with abstractions at their points of origin: here, abstractions categorize objects by allocation site,

so allocation statements each populate their destination points-to set with one abstraction.

We will describe a common inference-rule notation for these rules in §2.6.2 below. First, we enhance the

analysis with some necessary features.

2.5 Interprocedural Analysis

Analyses are commonly described in a simplified form relative to the implementations of real program static

analysis frameworks. One such simplification is the assumption that the whole program is one sequence of

statements, with no function or method calls or returns. To analyze a program in any programming language

with function or method calls, it is necessary to extend the analysis. All of the techniques that we describe

below are well-known; we simply provide a summary here for the reader’s benefit and to explicitly specify

the baseline analysis.

Extension of an analysis to a program of multiple functions or methods requires several steps. First, the

analysis must be able to name the program points and variables in different functions. This is just a matter

of prefixing all identifiers with method names. The analysis must then reason about interprocedural control

flow edges (calls and returns) in the same way that it reasons about intraprocedural control flow edges.

This requires the callgraph to be available: the callgraph contains an edge from each invocation site (call

statement) to each method that could be called. Finally, the analysis is usually extended with contexts: a

single method may be called from multiple locations, with very different program states and very different

parameter values at each callsite. If all invocations were analyzed as one merged problem, the analysis would

lose significant precision. Hence every method, statement and variable name is augmented with a context,

20 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

Figure 2.4: Extending an analysis to support programs with multiple functions or methods (interprocedural
analysis) requires construction of a callgraph simultaneously with points-to analysis: (i) points-to resolution
creates new possible callgraph edges, and (ii) dataflow across callgraph edges can grow points-to sets.

and a callgraph edge links to a clone of the called method with a particular context.

2.5.1 Call-Graph Construction and Analysis Extension

In order to analyze a program with multiple functions or methods,2 the points-to analysis constructs a

callgraph describing invocations from call statements to invoked functions or methods. Callgraph edges are

added initially for any method call that can be resolved directly (for example, calls to static methods).

Then, for virtual method calls, the callgraph is constructed with the help of the points-to graph using a

straightforward rule: a callgraph edge is added from an invocation statement to the invoked method on each

class (type) to which the method call’s object variable may point.

Now, as the callgraph is built, it implies dataflow connections between methods: whenever a call state-

ment might invoke a method, there is a potential assignment from the call arguments passed to that statement

to the formal parameters of the method. Likewise, there is a potential assignment from the return value

of the method to the returned value of the call statement. As a call statement might be linked to multiple

potential target method implementations, and a method might be linked to multiple potential callers, these

call-dataflow assignments are analyzed as virtual φ-nodes, merging all possible values.

Because the callgraph construction depends on the points-to graph, and the points-to graph will grow as

a result of the additional assignments created by callgraph edges, these two analyses are mutually dependent,

2In this thesis, as we focus on programs in an object-oriented language, Java, we will say method. However, nothing in
interprocedural analysis requires an object-oriented framework. In fact, in a simpler language such as C, very few calls need
the help of a points-to analysis to resolve, as most calls are direct. Only calls through function pointers need points-to analysis
to resolve.

2.6. PROGRAM ANALYSIS DEFINITIONS 21

and must be run simultaneously until both converge. Fig. 2.4 demonstrates this dependence in more detail

using an example program in Java. For the given example, (i) the fact that t in method f() on class Main

can point to either a T or U instance (the analysis has one heap abstraction of each type) implies that the call

to the run() method on this variable might resolve to the implementation either on class T or class U. Going

in the other direction, the fact that g() on class Main calls f() implies that all contents of the points-to set

for the argument variable passed to this call are propagated to the points-to set of the formal parameter on

f().

2.5.2 Context Sensitivity

Note that in the analysis of the example program in Fig. 2.4, the points-to set of t in method f() contains

both the heap abstraction of type T for allocations at line 10, and the heap abstraction of type U for allocations

at line 15. From this point forward, all analysis of f() is reasoning about a merged version of the method,

combining possibilities that occur only when called from the callsite at line 11 or line 16, respectively. This

imprecise merging can propagate further as well: for example, when f() then calls run(), which is resolved

to the method on either class T or U, both possible abstractions will be passed as the this parameter to

both run() implementations. Of course, this does not happen in practice: in this program, T.run() is never

invoked with an instance of U as this, or vice versa.

The solution to this problem is to analyze two different versions of the method, one embodying each

possible scenario. This is known as context-sensitive analysis, and can take many forms. The simplest is

to analyze the method separately for each callsite in the program: thus, in our example, we would analyze

f() called from line 11 and f() called from line 16 as separate methods, with separate variables having

separate points-to sets, and so on. This would be sufficient to resolve the imprecision described above. More

precision can be attained by using a call-string instead, i.e., the caller of the caller, and so on, up to a fixed

depth. Fig. 2.5 illustrates this example concretely.

Later in this thesis, we make use of 1-object sensitivity [73], which uses the heap abstraction of the this

object (method receiver) as a context instead. Past work has shown that this is quite effective at achieving

high precision with relatively low cost when analyzing object-oriented programs.

2.6 Program Analysis Definitions

Finally, before proceeding to our contributions, we must introduce some notation. So far, we have described

points-to analyses and context sensitivity somewhat informally, using examples in Java and textual descrip-

tions of analysis rules. Here, we define our notation for program statements, provide an overview of the

common inference-rule notation, and define Andersen points-to analysis in this notation.

22 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

Figure 2.5: Context-sensitive interprocedural analysis computes its results separately for each instance of a
method with context. Here, callsite context sensitivity (depth 1) is sufficient to resolve the imprecision seen
in Fig. 2.4.

Figure 2.6: Basic program intermediate representation (IR) on which analyses in this dissertation will
operate, slightly simplified, and a formalization of the Andersen points-to analysis, demonstrating inference-
rule notation and the analysis of this IR. Note that the IR here excludes array operations and exception
handling for simplicity, and the analysis excludes interprocedural and context-sensitive details.

2.7. OTHER RELATED WORK: ALTERNATE APPROACHES 23

2.6.1 Program Intermediate Representation (IR)

Fig. 2.6 defines a number of statement types in a simple intermediate representation.3 The IR is in static

single assignment (SSA) form [93] and provides field loads and stores, object allocation, operators on primitive

data types, conditional and unconditional control flow, and method invocation.

Our analysis definitions assume object-oriented programs.4 These programs have classes with methods

and with fields. The program heap consists of objects, each either a scalar instance of a class or an array of

primitives or object pointers. Object pointers may be held in local variables, fields, or array slots.

2.6.2 Inference Rules and Andersen Points-to Analysis

We provide a more formal definition of Andersen points-to analysis on the right side of Fig. 2.6 in a standard

inference-rule notation. An inference rule, consisting of antecedents above a horizontal line and consequents

below it, and usually a label for the rule to the side of the line, indicates that when the conditions above the

rule are true, the fact or facts below the rule can be inferred. Analyses can be written as a set of inference

rules that are applied in turn, gradually building up a body of facts or judgments that describe the program.

The rules for the points-to analysis correspond more or less directly to the specification earlier in Fig. 2.3:

each set inclusion constraint is implemented with a rule that transfers a single element from a source points-to

set to a destination points-to set under some additional conditions.

In this dissertation, we will specify our analyses using inference rules of this form. This formalization is

convenient for soundness proofs and also translates directly to our implementation, which is developed in

the Datalog logic programming language.

2.7 Other Related Work: Alternate Approaches

Above, we introduced the loop-nest-based approach to loop parallelization, and then the aliasing-based

approach, setting the stage for our contributions on top of the latter. However, for completeness, we will

now briefly describe several other approaches to static analysis for loop parallelization before returning to a

description of our analysis.

2.7.1 Program Dependence Graphs

Many static-analysis works use Program Dependence Graphs (PDGs) [61, 77], which enable reasoning about

dependencies across the program. The key idea in a PDG-based system is to represent the entire program’s

dataflow, interprocedurally as well as intraprocedurally, as a graph so that program transform conditions

3This IR is simplified for expository purposes; the true IR also contains operations on arrays, operations for throwing and
handling exceptions, and static and non-virtual method invocations, which we omit.

4Note, however, that nothing in our analyses is fundamentally dependent on this assumption; they could easily be adapted
to other language models.

24 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

can be expressed more simply. Loop parallelization simply requires finding strongly-connected components

(SCCs) in a loop body, whose cycles represent loop-carried dependencies, and ensuring that dynamic in-

stances of these SCCs in loop iterations are serialized. (If no cycle exists in the loop body’s PDG, then the

entire body can be parallelized.) For example, Decoupled Software Pipelining (DSWP) [89, 88] leverages a

PDG to decompose loops into “stages,” some of which are fully parallelizable and others of which execute

sequentially due to loop-carried dependencies. Parallelism is thus found in two different dimensions: across

iterations and along each iteration. The Paralax compiler [110] likewise uses a PDG: by requesting some

programmer help where the static analysis cannot resolve aliasing, the compiler resolves the PDG accurately

enough to parallelize arbitrary C programs.

PDG-based approaches simplify various aspects of program transforms, such as the decoupling of cyclically-

dependent subsets of loop iterations as performed by DSWP. However, the representation is somewhat more

explicit than the set of loop iteration-relative aliasing invariants that we derive, and hence could be costlier

to compute and/or lose precision on more complex programs.

2.7.2 Shape Analysis

A large body of shape analysis work exists to compute summaries or symbolic descriptions of a program’s

heap [55, 46, 112, 21]. In a closely related vein, many works attempt to find program invariants, either

explicitly relating to heap-based data structures, or in general on program state. This work ranges in

analysis effort and precision from coarse-grained, quickly-computed summaries, such as whether a data

structure is cyclic, all the way to systems that use SMT solvers or theorem provers to derive and verify

invariants.

Ghiya et al. [46], in a representative early work on shape analysis, specify an interprocedural dataflow

analysis that tracks relations between heap pointers. This analysis determines whether access paths may

exist between objects at local variables, and then categorizes the sorts of data structures that may exist by

shape: an acyclic tree, an acyclic DAG, or a cyclic graph. This information can then be used for further

analyses. For example, Ghiya et al. in a later work [47] describe in detail how to use points-to analysis to

find parallelizable program regions and assume an analysis like the above to improve precision of aliasing

information. Because shape analysis can resolve, e.g., that two linked lists are disjoint, as shown in one

example in [47], it can help to find additional parallelism. Other works use shape analysis as part of the

overall toolkit that constitutes a well-engineered dependence analysis: for example, the Paralax compiler [110]

uses Data Structure Analysis [67], a simplified form of shape analysis that improves aliasing precision.

As an example of a more sophisticated and more expensive approach, Berdine et al. [21] describe a system

that constructs possibly recursive predicates describing pointer relationships of data structures. The recursive

2.8. CHAPTER SUMMARY 25

aspect of this system enables repeating data structures such as linked lists to be concisely described. The

predicate language is powerful enough to describe many different data structures; however, the derivation

requires sophisticated heuristics to correctly derive useful predicates.

Though powerful, using shape analysis to derive precise-enough conclusions for useful loop parallelization

is usually too costly. This is because the analysis attempts to derive precise invariants, and these invariants

are generally more specific than is needed just to show that loop iterations are commutative.

2.7.3 Separation Logic

A large number of heap-analysis systems are built on Separation Logic [91], a type of logic that enables

expression of surprisingly powerful heap predicates. The key idea is to describe pieces of the heap that must

not alias, and join these pieces with an operator (∗) indicating this separation. This allows local or modular

reasoning about particular heap objects with the guarantee that no other part of the program will interfere,

which is the approach that most human programmers intuitively take.

While all of these heap-analysis systems are capable of deriving useful heap descriptions of some form,

they expend effort to reverse-engineer the implementations of data structures such as lists and trees. As

we argue in this thesis, this effort may be better spent on analyzing the user program’s semantics by

incorporating these low-level building blocks directly into the program representation.

2.7.4 Program Invariants

A number of systems derive program invariants more generally, such as relationships between integer variables

that can be described with a formula, or relationships between pointer variables. A representative example

is the Daikon system [43, 42], which makes dynamic observations of program execution and then proposes

possible static invariants. Such a system can be powerful as a complement to a heap-specific analysis.

However, these systems are usually more general than our focused approach to deriving particular forms of

heap invariants on data structures and pointer variables. Deriving the needed invariants by observation or

by proof from first principles would be significantly less efficient than our parallelization-specific analysis.

2.8 Chapter Summary

In this chapter, we described the loop parallelization problem in more detail, defining what it means to

parallelize a loop and exploring how a program analysis might prove the necessary conditions for such

parallelization. We provided a brief overview of the standard loop-nest approach, in which the analysis

proves a loop to be parallelizable by showing that a linear equation has no integer solutions. Because this

analysis is not widely applicable outside the domain of scientific or numerical programs that operate on

arrays, we then described how a more general alias analysis may be used to show parallelizability. We

26 CHAPTER 2. BACKGROUND: LOOP PARALLELIZATION AND ALIAS ANALYSIS

described in some detail the standard Andersen alias analysis. Finally, we provided necessary notation for

program IR and inference rules, both necessary to understand the remainder of this dissertation.

Chapter 3

Data-Structure Awareness with Semantic

Models

A List, a Set and a Map
Once had here a bit of a flap
Said List: order matters –
Which left Set a-scatters
Said he, "best get sorted, old chap!"

In this chapter, we describe the first contribution of this dissertation in detail: the application of first-

class semantic data structure knowledge in the compiler to enable more precise points-to analysis of non-

numeric/scientific programs, i.e., those with heap data structures aside from arrays.

3.1 The Problem: Analysis of Common Data Structures is Imprecise

The fundamental problem that first-class data structure operations address is the imprecision that arises

when points-to analysis and loop parallelization analysis encounter data-structure implementations. There

are two aspects to this imprecision: (i) pointer values may be unnecessarily merged, so that points-to

sets are larger than they might otherwise be, and (ii) the dependencies between the operations and their

commutativity when operating on a common data structure cannot be directly analyzed, which ultimately

prevents parallelization of many loops. We now study these problems further.

3.1.1 Problem 1: Imprecise Pointer Dataflow Through Data Structures

The first major issue with a data-structure-unaware approach is that a points-to analysis produces unnec-

essarily imprecise results when analyzing many common data structures. Let us consider the program in

Fig. 3.1. The program inserts two different types of objects into map, a HashMap, which is a hashtable-based

27

28 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

Figure 3.1: Points-to analysis of data structure operations at the implementation level, without awareness
of the higher-level data structure semantics, can lead to imprecision through undesired merging of heap
abstractions.

key-value map, indexed by keys from two different lists. It then fetches the object at one particular key.

(Assume that key1 is an object from the keys1 list.) We make several observations. First, as we noted in

Chapter 1, the analysis must consider the implementation of data structure methods, which contributes to

analysis cost, as compared to a hypothetical analysis that directly understands the notion of a key-value

map insertion. Second, and more importantly, the points-to graph has undesirable merging : any access to

the hash-table traverses abstraction A2 for the Entry[] array, indicating only that the array points to two

key-value entry abstractions (A3 and A4) overall. Thus, for example, the Map.get() call assigning its result

to val will produce a points-to set for val containing both A7 and A8. Ideally, instead, we would like the

analysis to conclude that val can only point to abstraction A7, i.e., an Obj1 instance.

The imprecision in this analysis arises from the inability of the heap representation to describe the

indexing relationship between keys and particular objects. This relationship manifests itself concretely both

in the hash-code computation and indexing, and in the hash-table bucket search loop (not shown) that

compares keys until it finds a match.

3.1.2 Problem 2: Semantic Dependencies and Commutativity

The other major imprecision that occurs when analyzing a program in a data-structure-unaware way is that

the analysis has no knowledge of the dependencies or the allowable reordering, or commutativity, of the

operations.

3.2. OUR APPROACH: FIRST-CLASS DATA STRUCTURES 29

Consider again the program in Fig. 3.1. Assume for a moment that no key appears more than once in

the keys1 or keys2 list. If this is the case, then both of the loops in the program are parallelizable w.r.t. the

definition requiring only an equivalent final API-visible state, as long as the Map.put() calls are wrapped in

a lock: it does not matter in what order these operations occur, because no operation overwrites the result

of another operation.

However, a simple analysis that observes the hash-table implementation will have a very difficult time

coming to this conclusion. The primary issue is that there may actually be a true dependency at the memory

word level: two keys may hash to the same hash-table slot, in which case the second insertion will read and

then overwrite the bucket-chain head pointer in slots[hash]. In order to disregard this, the analysis has

two options. It could prove from first principles that performing the insertions in either order will place both

key-value pairs in the hash bucket, and that the hash-table lookup will return the same value irrespective

of this order. However, this is unlikely to be possible in an analysis with reasonable cost. (Some past work

has taken this approach [92, 10], and Aleen and Clark address analysis cost with a randomized approach to

symbolic execution [10], but the approach remains limited.) Instead, the analysis could reason about built-

in intrinsics for key-value map operations, designed to leverage this commutativity by modeling API-level

semantics directly.

3.2 Our Approach: First-Class Data Structures

To address both of the problems described above, we encode data-structure operations and their semantics

in the IR itself. Thus, rather than invoking an ordinary method that implements, e.g., hash-table insertion,

the program can use a mapput IR statement directly, passing a first-class map value as an operand.

We choose to represent two basic container data types as first-class values: key-value maps and lists. A

third type, a set of elements, can be built from the key-value map. These few basic container types compose

to represent a surprisingly large number of common program data structures, because programmers often

use container data types to build hierarchical heap structures in application-specific ways.

In order to enable use of these primitives where appropriate in existing programs, we build support in

our system for semantic models that override standard-library classes with implementations that use the

built-in types. These models are not meant to be compiled or executed, but rather, are replacements with

equivalent semantics that can be used for static analysis. Our system’s goal is to provide the building blocks

that are useful to these models in specifying the behavior of library APIs, while simultaneously designing

the abstractions so that tractable levels of static analysis can produce useful results.

The new data-structure operations are summarized in Fig. 3.2 and are described in more detail in the

following sections. The two new types of object, map and list, live alongside ordinary class instances, and

30 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

Figure 3.2: Summary of IR operations for first-class data structure support.

are held by reference just as ordinary objects are. Their contents are accessible with the operations defined

here, but they are otherwise opaque. When first-class data structure support is enabled, our system also

rewrites arrays as lists, for analysis purposes.

Support for these container data types in analyses follows a basic insight: these containers are closely

analogous to ordinary heap objects with fields, except that the definition of field depends on the type. An

ordinary object has field values that are uniquely identified by a static set of constant field names. In

contrast, a key-value map has value fields that are identified by keys that are themselves objects. Finally, a

list has value fields that are identified by integer indices. A points-to or alias analysis can handle all three

types of heap objects with this insight simply by replacing the use of the static field identifier with the

appropriate key-object abstraction, as we will describe in §3.3.1 below.

3.3 Improving Points-to Precision with First-Class Data Structures

We now introduce the primitives for first-class data structures alongside the extensions to points-to analysis

that make use of this additional semantic information to more precisely analyze the program. This analysis

extension addresses Problem 1, imprecise points-to analysis of data structures, described in §3.1.1 above.

3.3.1 Key-Value Maps

The most important first-class data structure is the key-value map. This primitive enables implementation

of higher-level key-value map APIs, but can also be used to implement the semantics of lists and sets for

analysis purposes, as we will see later.

A map contains key-value pairs consisting of arbitrary objects. The map supports access to the value

slot indexed by a given key. The supplied primitives are minimal, but sufficient: the program can insert and

remove key-value pairs, test for the presence of a key, look up the value at a key, and fetch the total key-value

pair count. A summary of these IR operators and pseudocode representing their semantics is presented in

the left half of Fig. 3.3.

3.3. IMPROVING POINTS-TO PRECISION WITH FIRST-CLASS DATA STRUCTURES 31

Figure 3.3: Summary of IR operations for first-class maps, including inference rules for extension to Andersen
points-to analysis.

Points-to Analysis of Maps

We next extend points-to analysis to support maps as well as ordinary heap objects. Map allocations create

map heap abstractions, analogous to ordinary object heap abstractions. While the latter contain one points-

to set per object field, map abstractions contain one points-to set per key abstraction: i.e., fields are replaced

by abstractions that represent keys. This follows the basic insight described above: points-to sets are tracked

for “fields” indexed by heap abstractions as keys as well as constant field names, and the new inference rules

are straightforward extensions of the existing rules for loads and stores.

The right side of Fig. 3.3 provides these inference rules. The rules extend the basic Andersen points-to

analysis [12] as specified in Fig. 2.3. In brief, a store to a map adds elements to the points-to set identified by

every relevant map abstraction and every relevant key abstraction, and a load from a map transfers elements

from these same points-to sets to the load result.

The immediate result of this extension is enhanced points-to precision when a map is indexed by multiple

heap abstractions: the analysis can distinguish such keys. This contrasts with the analysis that perceives

the hash-table implementation as a black box, indexing an array by some unknown integer and performing

32 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

Figure 3.4: Example program and points-to graph of Fig. 3.1, revised with first-class map operators and
map heap abstractions.

some control flow. One could understand the former from the latter by seeing that the array index is a hash

value, and that the control flow is branching on the result of a key comparison, but existing analyses do not

do this.

Returning to the example program of Fig. 3.1, we show an updated points-to graph in Fig. 3.4. Note first

of all that the points-to graph and the IR are both much simpler: the map abstraction and its operations

are both built-in concepts. Importantly, this analysis extension is able to resolve the value in val, fetched

from the map via a particular key, to have a more precise points-to set than before.

Object Equality and Map Indexing Semantics

So far, we have described a map that indexes its value slots by pointer value, i.e., object identity, rather than

by any notion of user-defined key equality. This differs from, e.g., the semantics of standard map containers

in the Java and C++ standard libraries.

In order to build semantic models for the standard libraries, we must model the usage of these higher-level

equality operators, such as the .equals() method on Java objects. However, incorporating such semantics

directly into the points-to analysis produces significant unnecessary complexity by blending multiple layers of

abstraction. Rather, it is much more natural for a points-to analysis, whose sole concern is object identity, to

analyze maps that are indexed by object identity. We thus provide another operator that enables modeling

of the higher-level equality.

3.3. IMPROVING POINTS-TO PRECISION WITH FIRST-CLASS DATA STRUCTURES 33

Figure 3.5: The equivclass (equivalence class) IR operator maps user (language)-level equality, such as the
Java .equals() method, to heap abstractions during static analysis so that IR maps indexed with object
identity can be used.

Equivalence Class Objects

In order to provide equality testing according to common higher-level language semantics (such as the

.equals() method in Java or operator== in C++), we provide the equivclass operator. This operator

takes a value and, conceptually, returns an object that represents its equivalence class, as defined by its

language-level equality. The operator guarantees that if it returns different equivalence classes for two

objects, then those objects must not compare equal according to their equality semantics. (However, it

does not guarantee the converse: false-positive aliasing is acceptable in our analysis, and not every custom

.equals() implementation can be analyzed precisely.)

In practice, these equivalence classes are well-defined for a few object types whose equality definitions we

have explicitly understood and modeled, and reduce to a default fallback equivalence class for every other

object type. Our system, which analyzes Java and thus obeys Java’s equality semantics w.r.t. .equals()

methods, currently models equivalence explicitly for integer and string objects, and for objects whose classes

have no .equals() overrides.

The semantics of equivclass, and several inference rules that return appropriate abstractions, are shown

in Fig. 3.5. The inference rules in this figure rely on the program’s types: the predicate Γ ` A : String means

that the typing context Γ (assumed to have been provided by the compiler frontend) specifies that abstraction

A has type String. We also use a function Resolve(τ,m) that resolves which concrete method implementation

34 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

is the target of a given invoked method signature m on a given type τ . (This could be the implementation

provided by that type, or by a parent class if not overridden.) For example, if a type τ does not override

the .equals() method, then Resolve(τ, .equals()) = Object.equals().

Note that when using integers or strings as map indices, only a single abstraction is returned: any string

could be equal to any other string, no matter its allocation site, and likewise for Integer objects (boxed

integers). Nevertheless, some useful additional precision will still be possible in these cases when we introduce

distinctness (Chapter 4).

3.3.2 Modeling Sets: A Special Case of Maps

Given support for key-value maps, support for sets, or order-independent collections of unique objects, is

straightforward: a set is just a map where set elements become map keys, and values are unused. The

semantic model(s) for higher-level set container data types can therefore use the existing map abstraction

at the IR level.

3.3.3 Lists: First-Class Sequences

Next, we include first-class list values. A list is an ordered sequence of object references. This definition

covers implementations with O(1) indexed element access, such as fixed or dynamically-sized arrays (e.g.,

Java’s ArrayList or C++’s std::vector) and those with O(n) indexed element access, such as linked lists:

the API-level behavior is the same. An IR-level list object always contains a sequence of object references

(pointers), which can in turn refer to any type of object.

Supported operations are shown in the left half of Fig. 3.6. The operations can be broadly classified into

two categories: indexed operations, i.e. those that operate on a particular index in the list, and non-indexed

operations, i.e. those that operate on some variable location depending on list state, such as a list append.

Analysis via Decomposition to Map Operations

We can begin our analysis of programs that use list operations by noting that a list is simply a map indexed

by sequential integers. Thus, operations that are indexed, such as listget and listput, directly correspond

to the analogous map operations. In fact, this is exactly how we extend our analysis to handle lists as well as

maps. A list allocation is directly translated to a map allocation, and indexed list operations are translated

as shown in Fig. 3.6.

In order for this decomposition to work properly, we need to extend the points-to analysis to create heap

abstractions for integer indices as well as ordinary heap objects. This is straightforward: we simply create a

single heap abstraction representing all integers and enter it into the points-to set of every integer-typed IR

variable. By itself, this will result in a fairly imprecise analysis, because a map that models a list will have

3.3. IMPROVING POINTS-TO PRECISION WITH FIRST-CLASS DATA STRUCTURES 35

Figure 3.6: IR operators provided to manipulate first-class lists. Lists are analyzed as maps, and all list
operations are lowered to map operations, with the help of virtual indices (§3.3.3) for non-indexed operations.

only one heap abstraction as key, namely this single integer abstraction. However, as we will see in the next

chapter, additional annotations can describe the distinctness of individual instances of this abstraction, and

so enable distinctness of objects in lists to be inferred.

The main difficulty in translating list operations to map operations arises with non-indexed operations,

namely list append, prepend, pop-front and pop-back. All four of these operations fundamentally operate

on an index that depends on the list state: append and pop-back operations depend on list length, and

prepend and pop-front write to every index because they shift list contents to the right or left.

We could simply model non-indexed operations as an access to every index in the list. However, this

results in undesired imprecision: in particular, when the analysis encounters a loop that appends elements

to a list once per iteration, the analysis should somehow be able to conclude that each iteration writes to a

36 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

different index in the list.

In order to properly model this behavior, we introduce the concept of a virtual index. The virtual-index

operator takes a list instance as an argument and returns an integer. This integer is guaranteed to be unique

for each invocation of the operator on a particular list instance as long as the only element accesses are to the

latest index returned by this operator. However, if these conditions are not met, the virtual index is allowed

to reset to zero, or some other reused value. (Exactly which value is not specified.) These semantics are

designed such that an append operation can be written as a list write to the index returned by the virtual-

index operator. As we noted above, we do not expect to compile the IR with data-structure operations

directly to executable code, so we do not need a more precise definition that deterministically fixes the value

returned. We will see in the next chapter how this definition is sufficient to analyze the behavior of a loop

of append operations, as described above, with the desired precision.

3.3.4 Iterators and Traversals

Finally, our IR includes iterators, which represent the current position in a sequence traversal. Iterators

traverse over map keys and set elements when returned from mapkeyiter and list elements when returned

from listiter. The supported operations are shown in Fig. 3.7, along with the corresponding rules for

points-to analysis. The program can use the iterhasnext and iternext operators to loop over all values

in a sequence.

The analysis explicitly recognizes such loops over the values returned by an iterator and marks them for

additional analysis: these loops become candidates for parallelization at a later stage of program analysis.

One can think of such a loop over iterator values as another built-in operator, though it is not written

explicitly as such.

At analysis time, an iterator is simply represented as a list, and the elements of the iterated-over data

structure are copied from the map points-to set of the source list to the map points-to set of the iterator,

indexed by the integer abstraction. An iternext operator is then just a pop-front operator.

3.3.5 Semantic Dependencies and Commutativity

We now turn to Problem 2 identified in §3.1.2 above: an analyis that is not aware of data-structure operations

usually does not have enough information to determine the semantic dependencies and possibilities for

reordering allowed by the API-level specifications of data structure implementations.

One may define a dependency order over dynamic occurrences of IR statements that is implied by their

execution semantics such that a reordering of their execution that respects this partial order will result in

the same program output. The simplest dependency order is the one that has an edge between any two

3.3. IMPROVING POINTS-TO PRECISION WITH FIRST-CLASS DATA STRUCTURES 37

Figure 3.7: IR operators provided to manipulate first-class iterators. Iterator operators are lowered to list
operators for analysis, and elements are simply copied to the iterator (list) points-to sets from the appropriate
sources.

operations, at least one of which is a write, to the same heap location. Respecting this dependency order

while parallelizing a loop is equivalent to respecting the no-heap-overlap condition described in the prior

chapter that is sufficient for sound parallelization.

We wish to account for data structures with commutative operations, however. By modeling commu-

tativity explicitly in the dependency order, we can address Problem 2 directly. Our system does exactly

this, in two stages: first, it models logical heap locations such as map value slots explicitly, so that the

commutativity of logically-unrelated operations to different keys is exposed; and second, it enables semantic

models to define virtual values, which are opaque abstractions of data-structure state and can have explicitly

commutative state updates.

Modeling a Map: Specific Keys and Set-of-all-Keys

The first step to exposing semantic commutativity of map operations is to name memory locations in maps

semantically rather than by low-level address. This is possible because first-class map objects abstract away

implementation-level details that may cause conflicts. We call this map read indexed by a logical key a

logically-indexed memory access. Fig. 3.8 illustrates the side-effects of normal memory accesses to object

fields and logically-indexed memory accesses to maps, and the dependency partial ordering between them.

The above definitions model dependencies on fields and on particular map value slots, which cover the

majority of necessary ordering dependencies. However, we are not yet done. Consider the case where a

program performs a number of writes to a map that insert new key-value pairs. It then iterates over the keys

in the map, performing some computation on those keys (not necessarily reading the values at those keys).

This map iteration is logically dependent on, i.e., cannot be reordered with, each individual key-value pair

38 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

Figure 3.8: The IR operations defined in this chapter have an implicit partial ordering describing the
dependencies between heap accesses. The left half of this figure shows the side-effects of each operation,
“natural” and synthesized by virtual values employed by models. The right half shows how these operations
are ordered, defined by the relative commutativity of different operation types. Note that the points-to
analysis itself does not use the dependency edges; they become relevant later, e.g. when analyzing loop
parallelizability.

insertion, because each of the insertions adds to the iterated-over keys. However, the insertions themselves

are logically independent of each other, as long as the written-to keys do not overlap. Our solution above

will not capture this dependency because, if the iteration itself never reads the value at any key, it will

never access the logical memory location determined by the map and key abstraction. We could encode the

iteration as a read of every indexed location, but this is imprecise: it does not make the distinction between

dependence on the presence of a key and dependence on the value at that key.

Fundamentally, this behavior can be captured by describing the set of all keys as an element of data-

structure state that is independent of the value indexed by each key. A key-value insertion then performs a

write to this state, and an iteration performs a read. Furthermore, the writes to this state are commutative:

they can be reordered with respect to each other, but a read cannot be reordered with any of the writes.

We now describe how we model this concept in the analysis.

Virtual Values for Additional Semantics

In order to capture this map-key commutativity, and to enable semantic models to encode arbitrary de-

pendencies in data structures that they model, we introduce the concept of a virtual value. This value is a

black-box abstraction that describes some aspect of data structure state. The model can issue three funda-

mental operations on such values: reads, writes, and commutative writes. The side-effect analysis on maps

automatically creates one virtual value, the keys field, for every map to model the commutative dependency

on the “set of all keys” described above. This analysis inserts the appropriate read and commutative-write

operations to this virtual value alongside any map intrinsic that depends on, or updates, the presence of any

key, respectively. We also provide these operators as IR intrinsics, alongside other first-class data types, for

3.4. MAPPING LIBRARIES TO INTRINSICS: SEMANTIC MODELS 39

Figure 3.9: An excerpt of the semantic model for java.util.HashMap, showing the use of IR-level maps.

the use of semantic models that require them to model other state. The operations and their commutativity

with respect to the others are shown in Fig. 3.8.

3.4 Mapping Libraries to Intrinsics: Semantic Models

So far, we have described a number of data-structure operators that grant additional information to analyses

when used by a program. However, existing programs were not written with these operators in mind, and

will instead continue to use data structures implemented in the standard library or by the programmer. We

thus need to translate some of the operations in the original program into first-class data-structure operators.

To enable this, we define a semantic model DSL. The user or library author writes semantic models that

substitute for specific named classes, such as Java’s HashMap, and provides method implementations that

operate on built-in IR types with the appropriate primitives.

These semantic models are compiled to the same IR as the rest of the program, and merged with it.

The model compiler also includes metadata that binds the models to their target classes. As the analysis

resolves the callgraph, it takes this metadata into account, preferring a model’s method implementation over

the original standard library implementation where one exists.

A sample excerpt of the model for the java.util.HashMap class is shown in Fig. 3.9. The syntax used

here resembles Java.1 The operators such as mapput and mapget correspond directly to the underlying IR

operations. The semantic model may be arbitrarily complex, and thus can model many other data structures

besides lists, maps, and sets.

Note that in its current form, our system performs this translation only in one direction, from the original

program to one that uses data-structure operators in place of concrete data-structure implementations. This

representation is never converted back into one with concrete implementations. The high-level view is

sufficient for static analysis, and analysis results that are computed on this view will hold for the original

program as well as long as the translation to data-structure operators is correct. However, recompilation

from this IR is interesting future work, and is likely a useful foundation for a system that chooses optimal

1Due to a simplistic parser, our implementation’s actual semantic-model language is somewhat lower-level than what is
shown here, though no less powerful.

40 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

data structure implementations based on some analysis.

3.5 Evaluation: Points-to Precision

In order to evaluate the effect of semantic models on program analysis, we analyze programs with an existing

whole-program points-to analysis, both with and without semantic models. We demonstrate increased

precision in many cases, and increased analysis scalability as well.

3.5.1 Methodology

Wemake use of the Doop [25] static-analysis framework for Java. We chose to evaluate Java programs because

the heap model is simpler than lower-level languages such as C/C++, and the binary representation, JVM

bytecode, retains more type information, easing analysis. However, nothing in our approach is fundamentally

dependent on Java: similar first-class data types, semantic models, and an extended points-to analysis could

be built for any language with pointers or object references.

Static Analysis: The Doop analysis framework includes a whole-program Andersen points-to analysis. This

analysis creates a call-graph and calculates points-to sets as we described in Chapter 2, and has configurable

context-sensitivity. We run a points-to analysis with 1-object-sensitivity [73], which works well in practice

with object-oriented programs. In addition, because for some benchmarks, the context-sensitive analysis

without semantic models cannot complete (due to memory exhaustion), we perform context-insensitive

variants of the same analyses for all benchmarks.

Doop is written declaratively as a series of inference rules in the Datalog language. We extend the

inference-rule set with rules of our own to calculate map points-to sets and integrate semantic model method

overrides into the call-graph resolution logic.

Semantic Models: Semantic models are combined with the analyzed program to form one unified collection

of program IR as analysis input. We have developed our own simple compiler modelc that generates Doop-

compatible IR from our semantic models, along with some metadata that ties semantic model methods to

the modeled class and method names.

We include semantic models for the Java standard library classes HashMap and TreeMap, WeakHashMap,

ConcurrentHashMap, ConcurrentSkipListMap, ArrayList, LinkedList, HashSet, TreeSet, Vector, Hashtable

and Enumeration, and the boxed integer types. More models could easily be added, but these were sufficient

for our studies.

Benchmarks: We evaluate semantic-model-enhanced analysis on 29 benchmarks from several suites: Da-

Capo [23], JOlden [11] (a Java translation of Olden [27]), a Java implementation of portions of the Problem-

Based Benchmark Suite [100], as well our cpu suite, a set of CPU-intensive programs individually chosen

3.5. EVALUATION: POINTS-TO PRECISION 41

With 1-Object-Sensitive Contexts Context-Insensitive
Baseline With Models Baseline With Models

Benchmark # Sets Elts. / Set Elts. / Set # Sets Elts. / Set Elts. / Set
dacapo.batik 91021 3244737 35.6 1311486 14.4 36825 1093113 29.7 838786 22.8
dacapo.luindex 14127 48027 3.4 34591 2.4 11230 96183 8.6 99165 8.8
dacapo.pmd 88367 — — 1357041 15.4 20240 314334 15.5 341091 16.9
dacapo.xalan 20054 — — 90773 4.5 1858 21035 11.3 21883 11.8
cpu.csim 40545 — — 147969 3.6 8180 205568 25.1 167733 20.5
cpu.djbdd 15057 110074 7.3 60809 4.0 6096 128144 21.0 120602 19.8
cpu.jacc 27420 — — 102973 3.8 6019 34109 5.7 31369 5.2
cpu.jgrapht 2750 67875 24.7 11623 4.2 2163 123596 57.1 44786 20.7
cpu.jltxmath 1778 6224 3.5 6938 3.9 1263 17022 13.5 14337 11.4
cpu.jscheme 21147 — — 96882 4.6 2390 35824 15.0 25718 10.8
cpu.jtidy 18143 94011 5.2 79552 4.4 13061 86592 6.6 110947 8.5
cpu.sblbdd 9820 56544 5.8 62230 6.3 4156 32708 7.9 30650 7.4
cpu.sat4j 6881 16129 2.3 15628 2.3 5157 31154 6.0 41842 8.1
olden.bh 2756 7561 2.7 8320 3.0 1793 18156 10.1 15424 8.6
olden.bisort 19527 — — 88861 4.6 1387 17101 12.3 14418 10.4
olden.em3d 19738 — — 89168 4.5 1514 17357 11.5 14673 9.7
olden.health 2159 6819 3.2 7533 3.5 1523 17307 11.4 14624 9.6
olden.mst 2013 6480 3.2 7195 3.6 1498 17272 11.5 14588 9.7
olden.perim 2246 7191 3.2 7905 3.5 1537 17689 11.5 15004 9.8
olden.power 2137 6550 3.1 7266 3.4 1537 17348 11.3 14663 9.5
olden.treeadd 19492 — — 88800 4.6 1329 17110 12.9 14425 10.9
olden.tsp 1995 6525 3.3 7240 3.6 1480 17317 11.7 14633 9.9
olden.voronoi 3246 16596 5.1 17258 5.3 1917 19929 10.4 16591 8.7
pbbs.compsort 1792 6192 3.5 6907 3.9 1277 16986 13.3 14302 11.2
pbbs.convhull 2038 6484 3.2 7158 3.5 1450 35471 24.5 28056 19.3
pbbs.intsort 1801 6255 3.5 6969 3.9 1281 16989 13.3 14305 11.2
pbbs.nn 19828 — — 89215 4.5 1535 25489 16.6 26089 17.0
pbbs.raycast 2925 8394 2.9 8531 2.9 2147 33506 15.6 26593 12.4
pbbs.remdup 19678 — — 88977 4.5 1381 23846 17.3 18330 13.3
Average 9720.3 196245.7 6.6 88165.2 4.3 5125.8 96656.9 15.5 78415.7 12.0
(no timeouts)

For fair comparison, averages do not include benchmarks that timed out in any of the four runs.

Table 3.1: Relative sizes of points-to sets for a whole-program points-to analysis, with and without semantic
models. Results are provided as total number of elements, or heap abstractions, in all points-to sets (left
column of each pair), and the average number of elements per set (right column of each pair). Analyses with
missing data in the baseline column did not complete due to memory exhaustion.

for complex control flow and data structures (in particular, compilers, parsers, and simulators). The cpu

suite contains: circuit [44], CloudSim [26], DJBDD [68], Jacc [54], Janino [3], JGraphT [5] JLaTeXMath [6],

JScheme [13], and raytracer [74].

3.5.2 Results

In order to compare points-to analyses, we use points-to set size as an objective measure that is a reasonable

proxy for analysis precision. Intuitively, if the analysis produces smaller points-to sets while remaining sound,

it is likely more precise, as long as it is not shrinking the points-to set sizes by simply aggregating objects into

fewer abstractions. Because both the baseline and model-enhanced analyses use the same context sensitivity,

42 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

this is not the case: the same context-qualified heap abstractions will exist in both cases. Thus, smaller

points-to sets truly indicate better precision.

To compare points-to set sizes, we select variables that are present in the main program only, rather

than standard-library classes, and then we compute the average number of heap-abstraction elements per

set, where each (method context, variable) tuple has its own set.

Table 3.1 provides this data for both context-sensitive and -insensitive analysis variants, with semantic

models in use and without. Note first of all that the original context-sensitive analysis without semantic

models did not complete in many cases. We found that this was due to memory exhaustion. In general,

analysis without semantic models is much more expensive, because the analysis has to work to understand

library implementations of the data-structure classes. Common data structures such as sets, maps and lists

tend to be used widely, so their analysis is either replicated, if context sensitivity is effective at separating

each use, or objects from different use-cases blend together, if not.

The second conclusion that we draw is that on average, benchmarks analyzed with a semantic-models-

enhanced points-to analysis had more precise results: an average of 4.3 elements per points-to set (context-

sensitive variant), compared with 6.6 elements per set in the baseline without models. This effect is par-

ticularly significant in benchmarks that make heavier use of standard-library data structures, such as those

in the dacapo and cpu suites. For example, in batik, an SVG (Scalable Vector Graphics) rendering library

and the benchmark with the most points-to set elements overall, the average points-to set size is more than

halved. These improvements both directly enhance alias-analysis precision and feed into other later analyses.

For example, the analyses that we build in the following chapters can do less work because the points-to

analysis produces a smaller points-to graph.

We note that in some benchmarks, the points-to sets grew slightly when semantic models were used.

This is an implementation artifact: when IR-level data structures and models are enabled, the analysis

maps built-in array operations to list operations as well. (This generally increases precision.) The points-to

analysis for list operations must ensure that a heap abstraction exists for the key, namely, the abstraction

representing all integers. We examined all cases where points-to set sizes increased in Table 3.1 and found

that the integer abstractions entirely account for the increase.

3.6 Discussion: First-Class Primitives vs. DSLs

We have introduced an extension to the compiler that enables it to natively understand certain higher-

level primitives, and a means to map library code to these primitives. This extension could be seen as an

embedded DSL for data-structure operations, and the analyses that we perform in later chapters are able

to reason about programs’ data-structure-related operations just as DSL compilers can reason about the

3.7. RELATED WORK 43

primitives in domain-specific programs. If future work extends the set of first-class data-structure types and

primitives available, this data-structure-aware system converges further toward high-level DSLs.

There is an apparent conflict between this view of our contributions and our motivation for avoiding the

use of DSLs in Chapter 1. However, our approach differs from that of a data-structure DSL in the use of

semantic models to effectively map the explicit, lower-level standard library implementations to higher-level

first-class constructs while permitting the code that uses the library to remain in a general-purpose language.

In other words, our work can be seen in two parts: first, a translation from a general-purpose program to

one that contains code in an embedded data-structure DSL, and second, a compiler that can analyze and

optimize this DSL.

Based on this view, we suggest furthermore that there is significant room to optimize the system in several

dimensions. First, between the extremes of fully-automatic semantic-model-based mapping and fully-manual

use of hints or new DSL primitives, there are many other approaches to analyzing a programmer’s intent.

For example, a developer tool could implement an interactive loop with the programmer whereby it uses

semantic models and other forms of pattern-matching to map as much of the program as possible to higher-

level constructs, and then show a view of this mapping (potentially enriched with other analysis results) to

the programmer while highlighting program operations that were not mapped successfully. The programmer

could then add minimal annotations as necessary to gradually raise the level of the system’s understanding

until it is able to transform the program as desired.

Next, while we have proposed to analyze general-purpose code, the analyses in the following chapters of

this thesis could just as well operate on, and benefit from, a program written in a DSL of some form. Our

essential insight is that we must simply understand the program at the level of its data structure operations

before we can analyze those operations and perform transforms; the way in which we obtain that program

understanding is flexible. In general, the mapping portion of this work could consist of some combination of

semantic models (pattern-matching on general-purpose code) and explicit DSL compilation stages that all

map onto a shared, general set of primitives in the enhanced IR that we analyze.

3.7 Related Work

We have presented a compiler IR extension and analysis that enables direct specification of, and reasoning

about, programs that manipulate common data structures such as maps, sets, and lists. A number of

related approaches exist that add data-structure awareness to the compiler. However, our work is the first

to explicitly provide first-class abstractions, with built-in operators for container data types in an otherwise

general-purpose language and to analyze these intrinsics appropriately in heap-related analyses.

44 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

3.7.1 Explicit Semantics with DSLs

Many domain-specific languages (DSLs) have been proposed and developed to enable programmers to express

high-level specifications of algorithms in various domains. The common aspect of all of these systems is that

they provide high-level primitives (such as graph traversals or per-node operators, matrix multiplications,

etc.) but impose semantic restrictions on their use (e.g., a graph node operator can only access neighbor

nodes). In exchange, the backend can freely choose among implementations.

Among the domains with DSLs are graphs (GraphLab [69]), meshes (Liszt [39], Ebb [22]), matrices and

numerical computations (Halide [86], TensorFlow [9], SPIRAL [85]), machine-learning models (OptiML [105],

ScalOps [111]), compiler IR [48], distributed data sets (PigLatin [76], Scope [29], Sawzall [80]), database

queries (SQL, GraphQL [2]) and general algorithms over maps, lists and sets (Galois [63]). In each of these

systems, the user writes their program either in a completely custom language (e.g., SPIRAL’s mathematical

notation for FFT-like transforms), or using building blocks provided as a library or framework embedded in

an existing general-purpose language (Halide in C++, Galois in C++ or Java, etc.).

In many cases, a DSL is built around a central data structure (such as an in-memory graph), and a

key design aspect is that of inversion of control : the DSL runtime or library manages an entire high-level

operation, such as a graph traversal, and the user only provides small, configurable pieces of the computation,

such as a computation to run at every graph node. These functions or code blocks must stay within certain

bounds in order to operate correctly: for example, they must access only certain subsets of the traversed

data structure. (All major graph and mesh computation DSLs have restrictions in this spirit, possibly with

mechanisms to permit controlled and specially managed exceptions.) In exchange, this bounded behavior

provides the runtime with certain freedoms: for example, it can reorder operations more freely, because

fewer dependency edges exist between individual computations.

In other cases, a DSL is built as a set of operations on data structures but top-level control remains

with the user. However, a sequence of operations may be visible at once to the DSL compiler or runtime,

allowing for optimization scopes across individual operations. For example, a SQL query planner typically

sees an entire top-level SELECT statement at once, and is able to rearrange scan, filter and join steps in the

overall query plan. Similarly, Halide views an entire computation pipeline (producing a matrix of pixels, for

example) at once, and is able to fuse loops and eliminate intermediate storage when it is profitable to do so.

The PetaBricks system, introduced by Ansel et al. [14], is explicitly built around the central DSL idea

to provide implementation choice to a backend. In particular, it provides a general framework in which a

library author can describe several possible implementations of a data structure operation (such as a matrix

multiplication), including tiling and decomposition strategies, enabling the compiler to make performance-

3.7. RELATED WORK 45

based choices.

The Delite framework [28] introduces a meta-framework to construct DSLs based on a small number of

fundamental primitives: a dependency graph of operators to enable scheduling, and support for collections

(such as vectors and matrices) portable across different backends.

As we described above, all of these systems provide powerful optimization opportunities to an execution

backend. However, fundamentally, this power comes at the cost of explicit user effort to specify higher-level

semantics, and to conform to operator usage restrictions that may limit the range of applications that can

be expressed.

3.7.2 Data-Structure or API Semantics in the Compiler

A number of works introduce data structures, and in particular collection data structures (such as maps,

lists, and sets), as compiler intrinsics in order to provide the compiler a deeper view into program behavior.

In contrast to our system, the most common application of this idea in prior work is to enable optimization

of data-structure choice: i.e., if the compiler or runtime system knows the requirements (e.g., types of

traversals, queries, and updates), the access patterns, and perhaps the distribution or other characteristics

of the average data-structure contents, then it can make informed choices about the implementation both

at the macro-scale (which data structure to use) and micro-scale (how to tune parameters or build indices).

Several systems approach this problem by inserting the new functionality behind the API boundary: e.g.,

CollectionSwitch [35] includes a runtime that implements common Java data structure classes and profiles

usage of data structures. Chameleon [99] works similarly, and can then suggest implementation options to

the programmer interactively. This work can also be done offline: the Brainy system [57] collects a log

(trace) of activity and then analyzes it offline to make an informed decision. Smart Data Structures [40]

collects statistics and makes decisions based on a machine-learning model. Darwinian Data Structures [20]

instead pits competing data structures against each other in a performance competition, using a genetic

algorithm to evolve the best choices.

Another line of work requests more explicit information from the programmer, making the best choices

using this explicit semantic guidance. This can take the form of a DSL-like framework: for example,

Just-in-Time Data Structures [37] gives the programmer facilities to describe multiple forms of a data

structure and conversion functions between them, along with heuristics that guide runtime shifts between

these representations. This process can also begin with high-level descriptions of data-structure needs or

behavior. For example, Idreos et al. [51] introduce a novel description of common data structures from first

principles, with simple building blocks. Given this high-level description and reasoning at the level of the

basic building blocks, the system can compute costs of various options and choose the best ones.

46 CHAPTER 3. DATA-STRUCTURE AWARENESS WITH SEMANTIC MODELS

Both of the above lines of work share our insight (and that of DSLs) that a high-level description of

the required data-structure behavior, i.e., at the API level, provides implementation freedom leading to

higher performance. However, as noted above, the goal fundamentally differs. This prior work and ours

are compatible, and potentially symbiotic: if the programmer has used high-level data structure operators,

and semantic models map many parts of the program’s heap to these data structures, then the problem

of data-structure choice and replacement becomes much easier. Conversely, choosing an appropriate data

structure based on actual requirements (updates and queries performed) may remove artificial constraints

that were hindering e.g. loop parallelization from transforming the program as desired.

A number of works enable the programmer to describe the semantics of an API directly (whether for a

data structure or for some other interface, such as a set of system calls). Kulkarni et al. [63, 62] introduce

a means of annotating commutativity on APIs of data structures in the Galois framework, enabling the

system to reason about operation reorderings while executing loop iterations in a parallel framework. This

commutativity model permits the system to avoid aborts of optimistic concurrency when a reordering is

safe. Clements et al. [33] annotate commutativity of the system call interface, reasoning about operation

reorderings as a means to evaluate multicore scalability (an interface whose semantics grant commutativity

of more operations leads to a more scalable system). Both of these works share our insight (and that of

many past works, such as Rinard and Diniz [92] and Aleen and Clark [10]) that recognizing commutativity

is important for parallelization or otherwise finding scalability.

Wu and Padua [115] introduce data structure models in the context of loop parallelization. Their proposal

is mostly static, but requires insertion of some runtime checks to determine whether (e.g.) hash-table keys

might alias. Our analysis as presented in this chapter differs from theirs in that it provides greater flexibility

to model arbitrary data structures with semantic models, and provides a number of useful primitives beyond

hash-tables (maps) provided by this prior work. We will also see in later chapters that our system can

statically prove parallelizability in a systematic way (using distinctness) where Wu and Padua’s system

required dynamic checks.

3.7.3 Mapping Programs to DSLs

Some work has been done to express general-purpose programs that solve problems in a domain into primi-

tives in an appropriate domain-specific language (DSL): e.g., Kamil et al. [58] automatically extract regular

numerical kernels from Fortran programs into the Halide DSL [86, 87]. This system operates by pattern-

matching: it identifies particular data structures in memory as well as strings of instructions that produce

the contents of those data structures. For a limited domain, such as loop-based numeric computations with

regular structure, this can work well, though it is difficult to extend to more irregular programs. Our ap-

3.8. CHAPTER SUMMARY 47

proach differs in that it relies on some programmer, usually the standard library or other library author,

to provide explicit models. This shifts work from the analysis author (who builds pattern recognizers) to

the library author, but provides much greater flexibility, and reduces complexity by avoiding the need to

reverse-engineer behavior from low-level implementation details.

3.7.4 Program Analysis with Data-Structure Awareness

One aspect of semantic models that appears in past work to some degree is the use of data-structure awareness

to enhance analysis precision. Though no work explicitly provides built-in maps and lists with first-class

points-to analysis understanding as we do, others either automatically derive data-structure invariants and

high-level shape descriptions, or else enable the user to do so. Shape analysis [55, 46, 112, 21] attempts to

find descriptions of heap-object connectivity, such as linked-list or tree patterns, to enhance other analyses’

precision. This differs from our work in that it expends effort to derive what we ask the user or library

author to tell us directly with semantic models. In addition, the shape descriptions carry no meaning or

other semantic implication other than the invariants that comprise them. In other words, one cannot directly

understand that an operation on a tree is a binary-tree insertion and understand its commutativity from

shape analysis alone.

Other systems enable the user to specify data-structure invariants with a logic of some sort, such as the

Jahob [64] system. This approach is similar to that of semantic models in that it has first-class notions of

data structures. The main difference is that these data structures exist for modeling invariants only, and

so may not completely describe the behavior of the program. In contrast, if a program uses the first-class

primitives provided by our system, then an analysis built on our system can understand the program’s

dataflow from end to end.

3.8 Chapter Summary

In this chapter, we introduced first-class data structure values, enabling the compiler to reason about maps,

lists, iterators, and several other objects on which programs operate with built-in operators. We have shown

how our system enables the user to map standard library classes to these operators with semantic models

in an extensible way. Finally, we demonstrated via empirical evaluation that these techniques significantly

enhance the precision of a points-to analysis framework on Java programs.

Chapter 4

Daedalus: Enhanced Alias Analysis with

Distinctness

A pointer once pointed, distinctly
To objects summarized succinctly
As bits of the heap
Quickly built and quite cheap
And rapidly deref’d quite unlinked-ly.

So far, we have described an enhanced points-to analysis that achieves its improved precision by analyzing

data structure operations directly as first-class compiler intrinsics rather than by analyzing the implementa-

tions of these operations. While we have shown this system to be effective at its stated goal, we have not yet

applied it to the loop-parallelization problem. We now do so by refining the points-to results with respect

to loops using an intuitive concept that we call distinctness.

4.1 Alias Analysis for Loop Parallelization

Recall from §2.3 that non-aliasing across iterations of a loop is sufficient for that loop to be parallelizable.

Fundamentally, a loop parallelization analysis is a specialized alias analysis, focusing (beyond ordinary

analysis such as that of Andersen [12]) on aliasing between loop iterations. We must first answer the

question: why are standard alias analyses insufficient to resolve this aliasing?

Most loop parallelization-focused analyses today can be seen as an alias analysis that reasons about arrays

and indexing of those arrays, as we covered in §2.1. These analyses often cannot describe the behavior of

programs that use other data structures because the abstraction is insufficient : simply, there is no closed-

form description of which object is accessed in a given loop iteration, so the access cannot be modeled by

the analysis.

49

50 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

Figure 4.1: Comparison of array-based reasoning and alias-based reasoning on two example loops. Array-
based reasoning is able to prove parallelizability for loops with regular indexing patterns, as in Example 1.
However, it encounters two issues on Example 2: non-array data structures, and inability to express which
object is mutated by each iteration. Alias analysis as in Chapter 3 can address the former but not the latter.

4.1.1 Array-Based Reasoning Has Limited Scope

To see a concrete example of this, consider the two examples in Fig. 4.1. We illustrate the heap objects

used by each program and the target loop’s access pattern on each. Note that both loops are parallelizable,

because each iteration has a non-overlapping set of accessed memory locations. In particular, in the second

example, the loop accesses each allocated V instance exactly once, and never visits any instance twice.

The first program is a straightforward loop nest with linear array accesses. Traditional array-based

reasoning can succinctly represent this access pattern and prove that each array write does not alias any

other array access in other loop iterations. However, it encounters two issues when analyzing the second

example. First, it cannot understand that the key-value map data structure is an indexed access, so even if

the key were a linear function of an index variable, it would not be represented and analyzed as such. Our

contribution in Chapter 3 addresses this problem by adding first-class key-value map support. In principle,

a linear array access analysis could be adapted to analyze map accesses too.

However, another problem, less easily solved, also occurs: the array-based analysis has no way of rep-

resenting the access pattern of the second example’s loop. The invariant (the loop visits each object once)

does not lead to a closed-form expression describing which object is visited.

Our observation is that such invariants are often important. In particular, this invariant in the target

loop arises from an invariant in the map: the first loop in Example 2 inserts a set of distinct V objects into

the map, so the map has unique values at each key by construction. Programs often maintain such aliasing

invariants that are relevant to parallelization. In addition, the second loop in Example 2 never visits a key

more than once. This property arises through the combination of the .keySet() method (which returns a

4.1. ALIAS ANALYSIS FOR LOOP PARALLELIZATION 51

Figure 4.2: Attempting to compute loop parallelizability via aliasing or points-to analysis: a conventional
points-to analysis provides enough information to conclude that the store at line 4 does not alias the store
at line 5 (and vice-versa), but not that it doesn’t alias itself across iterations.

set, guaranteeing no duplicates) and the traversal loop over its returned value. Combining these facts lets

us conclude that m.get(k) in the second loop returns a different value every iteration.

4.1.2 Aliasing Analysis Is Loop-Agnostic

One could apply a more general alias analysis, such as one based on points-to analysis, to the problem

instead: for example, an analysis that had an understanding of data structures might make more progress

analyzing a program that uses a key-value map. As we address loop parallelization, we are particularly

interested in aliasing across iterations of the same loop. Let us consider how we might analyze the loop in

Fig. 4.2. The points-to sets produced by Andersen points-to analysis are shown.

The relevant aliasing question is: do either of the stores (at lines 4 and 5) alias with any stores or loads in

a different iteration? The answer is intuitively no, because new Data instances are allocated each iteration,

and are not carried across iterations. Using a conventional points-to analysis, however, we cannot arrive at

this answer. The analysis can disambiguate d1 and d2, proving that one never aliases the other, because

they have disjoint points-to sets. However, the analysis is not flow- or loop-sensitive, so any non-empty

points-to set for a variable describes its value in all iterations. Thus, according to the analysis, any store

could alias itself across iterations.

At least one past work addresses this problem by adding some notion of indexing to the heap abstraction,

analogous to the conventional array-access analysis [114]. However, this quickly becomes untenable as

program complexity grows: in many programs, there is no closed-form expression for which object is visited

each iteration. However, we can often prove that each iteration visits a different object than all the others.

This is the fundamental insight of Daedalus.

52 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

4.1.3 Our Approach: Distinctness, a Form of Non-Aliasing

To address this shortcoming, we extend a general alias analysis (with data-structure awareness, as described

in the prior chapter) in the direction of the array-based aliasing analysis for parallelization (i.e., to answer

cross-iteration aliasing questions). Our key insight is that the array-based analysis tries to prove too much.

A closed-form description of all accesses is unnecessary: we only need to know that iterations access different

memory locations.

We thus define distinctness analysis, a principled extension of may-point-to analysis that annotates the

points-to graph with loop-relative information. Each such annotation states, essentially, “this reference will

be to a different object each iteration of loop L.” Such an annotation on a pointer is exactly what is

necessary in order to parallelize a loop that writes through this pointer, because it ensures that the pointer

will not alias itself in other iterations. (It may alias other pointers in other iterations; we address this with

a must-alias analysis, as described in §4.4.)

Returning to the second example program in Fig. 4.1, we see that in the first loop, we can immediately

establish that the value inserted into the map is distinct every iteration, because it is freshly allocated. Next,

we can observe that the key-value map is mutated only by this first loop, and that at each iteration, it inserts

a unique value. Thus the system can derive the invariant that the values in the map have no duplicates,

because a duplicate would require the insertion of the same value more than once. Finally, in the second

loop, we can observe that the key k is distinct each iteration. We can combine the map invariant and this

latest distinctness fact to derive a new distinctness fact regarding the value m.get(k).

4.2 Distinctness Analysis: Definitions and Analysis Rules

In this section, we formally define distinctness analysis and provide a set of simplified analysis rules. A formal

description of the entire analysis and a soundness proof can be found in an appendix to this dissertation

(Appendix A).

Distinctness analysis, which is the main contribution of this chapter, is a specific type of alias analysis

that computes, in a low-cost way, the necessary information for program parallelization. It takes as input

the results of a points-to analysis, and augments program variables and heap abstraction fields with analysis

results that further refine the results of the points-to analysis.

4.2.1 Distinctness: Non-Aliasing Within a Scope

Our analysis derives several types of distinctness: distinctness on local variables, on object fields for a

given heap abstraction, and two types of distinctness on map values for a given pair of map and key heap

abstractions. Fig. 4.3 illustrates these four types of distinctness, which we now define formally.

4.2. DISTINCTNESS ANALYSIS: DEFINITIONS AND ANALYSIS RULES 53

Figure 4.3: Definitions of four types of distinctness: local variable, object field, global-map, and within-map
distinctness.

54 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

Variable Distinctness

First, in order to capture this notion of “different object every iteration,” we define variable distinctness. We

say that a variable v is distinct with respect to a loop L if, within a given instance of L, v never takes on the

same value in two different iterations.

A variable distinctness judgment, Distinct(v, L), is defined more precisely as follows:

Definition 1. Consider any two iterations i, i′ of one execution of loop L. Given variable v, take any pointer

values vi, vi′ from iterations i and i′. (A particular variable may have multiple values in one iteration if

defined in a nested loop.)

Distinct(v, L) Must not alias self across iterations in same instance: i 6= i′ → vi 6= vi′

We also define a related property, constantness, derived alongside distinctness. Denoted Constant(v, L),

this is more specific than constantness in a traditional constant-propagation pass: it does not indicate that

v is statically constant, but rather constant over one instance of loop L. This is defined precisely as follows:

Definition 2. Consider any two iterations i, i′ of one execution of loop L. Given variable v, take any

pointer values vi, vi′ from iterations i and i′.

Constant(v, L) Must alias self across iterations in same instance: i 6= i′ → vi = vi′

Because distinctness and constantness facts will meet at control-flow merges with an intersection meet

function, for simplicity in the implementation we actually compute the negation of these judgments. This

allows our rules to avoid ∀-quantifications, and works correctly in the presence of cycles in the dataflow

graph.

Definition 3. Given the method M containing v, and the relation LoopInMethod(M,L) that holds for every

loop in the body of M :

NotDistinct(v, L) LoopInMethod(M,L) ∧ ¬Distinct(v, L)

NotConstant(v, L) LoopInMethod(M,L) ∧ ¬Constant(v, L)

Using Variable Distinctness for Parallelization

Distinctness is directly motivated by the loop parallelization problem: given a distinctness fact stating that

v takes on a different value in iterations of L, we can safely parallelize a loop with a store to v. In general,

for a loop to be parallelizable, all pointers to which the loop body performs a store must be distinct with

respect to the loop. (We will return to the parallelization problem at the end of this chapter (§4.5) after

developing the inference rules for distinctness itself.)

4.2. DISTINCTNESS ANALYSIS: DEFINITIONS AND ANALYSIS RULES 55

Note, however, that distinctness alone is not sufficient to parallelize loops with more than one pointer

variable that points to a given abstraction. In such a case, even if each pointer variable is individually

distinct with respect to the loop, one pointer in one iteration may alias the other pointer in another iteration

(distinctness makes no claims about aliasing between different variables). We return to this problem in §4.4

and resolve it with careful application of a must-alias analysis.

Field Distinctness

So far, we have considered only variables. However, in most programs, pointers are stored on the heap as

well. A pointer may refer to an object with a tree of sub-objects; if we know that particular heap invariants

hold, we should be able to transfer a distinctness fact on that root pointer to distinctness facts on derived

pointers to sub-objects accessed via fields.

Field distinctness differs from variable distinctness in one fundamental way. Variable distinctness is

relative to a loop L, because variables are defined at a program point within the loop. However, data

structures can outlive any particular loop: they are frequently built by one loop and traversed by another,

often much later. We thus need a domain aside from the iterations of a single loop instance over which we

can reason about distinctness. We choose the simplest option: all objects represented by a heap abstraction.

A heap abstraction’s field is field-distinct if, for every represented object, the field has a different value

(see Fig. 4.3). This is useful because it propagates distinctness through a load: if a pointer p is distinct

w.r.t. loop L, then the result of field load p.f (given a distinct field) is distinct, too.

We define field distinctness as follows:

Definition 4. Let X be a may-alias heap abstraction. We say that x ∈ X if object instance x is represented

by X.

FieldDistinct(X.f) ∀x, x′ ∈ X x 6= x′ → x.f 6= x′.f

No two objects in abstraction can have aliasing field f

Similarly to variable distinctness, we actually compute the negative judgment FieldNotDistinct(X.f),

but we will use both forms below for simplicity.

Map Distinctness

Finally, we consider key-value maps, and by extension, lists (implemented by reducing their operations

to map operations as described in §3.3.3) and sets (implemented by storing set elements as map keys as

described in §3.3.2). Supporting distinctness for values stored in maps, lists, and sets is very important to

analysis precision because programs often use these heap data structures to maintain collections of distinct

objects. By inferring that the objects stored into a container data type are distinct, and then using this when

56 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

the program iterates over the container to produce variable distinctness facts, we can accurately analyze such

programs.

One can consider a map value slot to be, fundamentally, a two-dimensional memory location identifier :

both the particular map object, and the key used to index that map, identify the value to be accessed. We

can thus define, for each (map, key) tuple of heap abstractions, several types of value distinctness, using

different definitions of the domain over which the values must be distinct. First, global map distinctness

indicates that the value is different across all concrete (map, key) tuples of a map object and a key object

represented by the map and key heap abstractions. In contrast, within-map distinctness indicates that the

value is different for every key in a single map (but the same value may appear in another map in this

abstraction). The latter is more limited, but is often possible to derive where global map distinctness is not,

and it can still produce many distinctness facts in practice. Fig. 4.3 illustrates both.

We define the two types of map distinctness as follows:

Definition 5. Let M be a may-alias heap abstraction for a map, and K be a heap abstraction for a key in

that map. We say that x ∈ X if object instance x is represented by X.

MapGlobalDistinct(M.K) ∀m,m′ ∈M ∀k, k′ ∈ K (m, k) 6= (m′, k′)→ m[k] 6= m′[k′]

No two value slots in any map m ∈M indexed by any key k ∈ K

can have aliasing values.

MapWithinDistinct(M.K) ∀m ∈M ∀k, k′ ∈ K k 6= k′ → m[k] 6= m[k′]

No two value slots in a particular map m ∈ M indexed by any

key k ∈ K can have aliasing values.

For completeness, we note that a third type of distinctness, symmetric to within-map distinctness, also

exists: within-key distinctness describes the situation where the value is different for every map (correspond-

ing to an abstraction) indexed by a given key. However, this type of distinctness is less frequently seen, and

for simplicity in analysis implementation, we do not attempt to derive or use it.

4.2.2 Loop Nests: Reasoning About Repetition

Before we can derive any distinctness facts, we need to reason about repetition of program statements during

execution, because repeating a statement’s side-effects (e.g., appending to a list) may result in a duplicate

pointer, hence non-distinctness, in a heap data structure. The reader may refer to Fig. 4.4 as an illustration

of the definitions below.

Fundamentally, we reason about repetition in terms of loops. Every statement S has a loop context L(S)

which is a set of loops. The loop context is initialized with all natural loops in the statement’s method

4.2. DISTINCTNESS ANALYSIS: DEFINITIONS AND ANALYSIS RULES 57

Figure 4.4: Loop-context definitions. A statement’s loop context captures all repetition: that is, any two
dynamic instances of a statement during some execution must be in different iterations of the same instance
of some loop in the statement’s loop context.

that contain that statement, and also includes any loops that are in the method loop context, i.e., define the

repetition of the method itself. We say that the loop context captures all repetition: any particular dynamic

instance of a statement must be in a different iteration of the same instance of at least one of the loops in

its context. We thus define:

Definition 6. We define L(S) to be the loop context of statement S. A loop L that contains S is in its

loop context: S ∈ LoopBody(L) ⇒ L ∈ L(S). Furthermore, all loops in the method loop context L(M) of

the method M containing S are in the context: L(M) ⊆ L(S).

We initialize the method loop contexts to maintain the invariant as follows: if a method has only one

callsite in the callgraph, its method loop context inherits all loops from the caller’s call statement loop

context. Otherwise, if it has more than one callsite in the callgraph, it inherits all loops in the intersection

58 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

of the loop contexts of all callers’ call statements, as well as a new synthetic method repeat loop. The method

repeat loop does not actually exist in the program. Rather, it is an analysis fiction that virtually has one

instance, and one iteration within that instance for every time the method is called. It is necessary because

with more than one callsite, even the loops in all callers’ loop contexts do not capture all possible repetition.

(Recursive and co-recursive methods will also have a method repeat loop in context because a co-recursive

cycle must have at least one method with more than one caller, or else the cycle is unreachable.)

Appendix A contains a proof of the above “captures all repetition” invariant.

4.2.3 Inferring Variable Distinctness

We now describe several of the inference rules that compute distinctness for program variables. We first

develop some analysis rules to prove distinctness in cases of object allocation and variable assignment. We

will assume for now that the program is a single procedure (i.e., we will give an intraprocedural analysis),

and extend this to the interprocedural case in §4.2.6. We assume the program is in an imperative SSA (static

single assignment) IR (intermediate representation), with heap objects that have named fields.

Loop Nest: First, we can immediately introduce some Constant and NotDistinct facts for any variable

relative to loops that are below the variable definition point in the loop nest. We define InnerLoop(Si) to be

the innermost natural loop surrounding statement Si, and we write L′ ⊂ L to indicate that L′ is a subloop

of L: that is, the body of L′ is completely contained within the body of L.

Rule 1. All variables are not distinct w.r.t. any subloop of their definition point.

[x := . . .]i L = InnerLoop(Si) L′ ⊂ L
[SubLoopNotDistinct]

NotDistinct(x, L′)

Rule 2. All variables are not constant w.r.t. any loop that is not a subloop of their definition point, unless

produced by a statement type explicitly handled elsewhere.

[x := . . .]i

¬Si = [x := y]

¬Si = [x := φ(. . .)]

¬Si = [x := y.f]

Si ∈M

L = InnerLoop(Si)

LoopInMethod(M,L′)

L′ * L
[SubLoopNotConstant]

NotConstant(x, L′)

Object Allocation: The first inference rule, [Alloc] in Rule 3 below, instantiates a distinctness judgment

for the result of an object allocation (new operator) for every loop in the statement’s loop context. This

follows because the allocation returns a new object, different from all others. We write the rule first in terms

of a positive-polarity judgment Distinct(x, L):

4.2. DISTINCTNESS ANALYSIS: DEFINITIONS AND ANALYSIS RULES 59

Rule 3. A newly allocated object is distinct per iteration in all containing loops.

[x := new T]i L ∈ L(Si)[Alloc]
Distinct(x, L)

but it actually exists as an exception in a fallback rule that creates NotDistinct facts for all other variables

and loops in the method:

Rule 4. Any variable not produced by some other statement type handled with an explicit rule is not distinct

w.r.t. all loops in the method.

[x := . . .]i

Si 6= [x := new T]

Si 6= [x := φ(. . .)]

Si 6= [x := y.f]

Si 6= [x := mapget m, k]

Si 6= [x := mapput m, k, v]

Si 6= [x := equivclass y]

Si 6= [x := virtualindex l]

Si ∈M

LoopInMethod(L,M)
[Fallback]

NotDistinct(x, L)

Variable Assignment: Because we analyze SSA IR, all single- and multiple-input assignment is captured

by φ-nodes. We thus write a rule in Rule 5 that merges distinctness at φ-nodes. In fact, expressed in the

negative (NotDistinct) sense, assignment is very simple: if any input to the φ-node is not distinct with

respect to L, then the result is not, either. Note that we only propagate not-distinct judgments for loops

that remain in context at the φ-node.

Rule 5. If any assignment source is not distinct w.r.t. L, then the result is not, either.

[x := φ(x1, . . . , xn)]i NotDistinct(xi, L) L ∈ L(Si)[AssignDistinct]
NotDistinct(x, L)

Loop Induction Variables: We also introduce distinctness on loop induction variables over an arithmetic

sequence. This is implemented as a simple pattern recognition (a loop-carried recurrence on a variable

through a single add of an integer constant) that then injects the appropriate distinctness fact.

4.2.4 Variable Constantness

We derive variable constantness facts for program variables in a simple way based on program structure.

The [SubLoopNotConstant] rule in Rule 2 above produces a NotConstant(v, L) judgment for a variable

relative to every loop that is not a subloop of L, unless that variable’s constantness is handled explicitly by

another rule, i.e., for assignments and loads. In other words, an SSA variable defined outside the scope of a

60 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

loop remains constant across iterations of that loop, but not relative to other loops. Then, not-constantness

propagates across assignments in the same way that not-distinctness does:

Rule 6. If any assignment source is not constant w.r.t. L, then the result is not, either.

[x := φ(x1, . . . , xn)]i NotConstant(xi, L) L ∈ L(Si)[AssignConstant]
NotConstant(x, L)

4.2.5 Field Distinctness

Proving Field Distinctness at Stores

In order to prove field distinctness, we must examine all stores that could create a pointer-pointee edge by

assigning to f , and reason about the pointer and value variables provided to the store. If, when a store

writes to the same abstraction and field, either the stored value is distinct for each dynamic store instance,

or a possibly non-distinct value overwrites the same location, then the field is distinct.

The rules [StoreOverlap] (Rule 7) and [Store] (Rule 8) implement this. First, [StoreOverlap] finds

any abstraction and field written by more than one store. We disqualify these fields because it is difficult

to reason about aliasing between values from different stores. (For example, two different store statements

may individually create a distinct pointer-pointee relationship by storing unique pointer values into a list of

fields, but intermixing these two pointer value sequences results in repetition and thus non-distinctness.)

Next, the [Store] rule encodes the intuition above: if for any loop in context of a store (i.e., that may

result in a repetition of the statement), the pointer has not been proven constant (so could differ between

instances) and the pointee has not been proven distinct (so could alias between instances), then two different

object instances’ fields could point to the same pointee. This would result in a non-distinct field. Conversely,

if either the pointer is constant or the pointee is distinct over all store instances, then the field is distinct.

Rule 7. More than one store to the same field on the same abstraction results in field non-distinctness:

we cannot reason about how two sequences of stores will overlap.

[x.f := y]i

[x′.f := y′]i′

i 6= i′

X ∈ pts(x)

X ∈ pts(x′)
[StoreOverlap]

FieldNotDistinct(X.f)

4.2. DISTINCTNESS ANALYSIS: DEFINITIONS AND ANALYSIS RULES 61

Figure 4.5: Inferring field distinctness from stores.

Rule 8. For all stores to a particular abstraction and field, if no store overlaps with another store to that

abstraction and field, and if for each store, for each loop in that store’s context, either the pointee

is distinct or the pointer is constant, then the field is distinct. Thus, if w.r.t. some loop in context,

the pointer is not constant and the pointee is not distinct, then the field is not distinct.

[x.f := y]i L ∈ L(Si)

NotConstant(x, L)

NotDistinct(y, L) X ∈ pts(x)
[Store]

FieldNotDistinct(X.f)

Together with the fact that by definition, the loop context captures all possible repetition of a statement,

this condition ensures distinctness of the field f . We illustrate this with the help of Fig. 4.5. Consider

how non-distinctness could arise: two different pointer objects (x variable in figure) must refer to the same

pointee object (y variable). This would require y to vary (be non-constant) while x repeats a value (is non-

distinct). Seen another way, the field will be distinct if we either write a new value every time we perform

a store (Case 1 in the figure), or if, when we may repeat a stored value (non-distinct y), we ensure that we

overwrite the old value via the constant x pointer (Case 2).

Using Field Distinctness at Loads

We can now use field distinctness at loads: if a field is distinct on all heap abstractions in the pointer’s

points-to set, and the pointer itself is distinct w.r.t. a given loop, then the loaded value becomes distinct as

well. The [LoadBasePtr] and [LoadField] rules (Rules 9 and 10 below) formalize this. In addition, we

require the [LoadConflict] rule (Rule 11) to handle the case where two different heap abstractions’ fields

can point to the same object: in this case, even if each field were individually found to be distinct, the same

pointee object might be reachable from two different objects, one represented by each heap abstraction.

Rule 9. If a pointer is not distinct in L, a value loaded through that pointer is not distinct in L either.

[x := y.f]i NotDistinct(y, L)
[LoadBasePtr]

NotDistinct(x, L)

62 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

Rule 10. If a field is not distinct, any value loaded from that field is not distinct w.r.t. any loop in context,

regardless of the base pointer.

[x := y.f]i Y ∈ pts(y) FieldNotDistinct(Y.f) L ∈ L(Si)[LoadField]
NotDistinct(x, L)

Rule 11. If two different heap abstractions can point to the same pointee, we cannot conclude distinctness

even if each field is individually distinct.

[x := y.f]i

Y1 ∈ pts(y)

Y2 ∈ pts(y)

Y1 6= Y2

pts(Y1.f) ∩ pts(Y2.f) 6= ∅

L ∈ L(Si)[LoadConflict]
NotDistinct(x, L)

4.2.6 Interprocedural Support

As noted above, we have simplified some aspects of the Daedalus system so far for clarity. We now describe

several details related to the context-sensitive interprocedural aspect of the analysis.

First, Daedalus supports context sensitivity (for our configuration, 1-object sensitivity [73] as imple-

mented in Doop [25]), with Daedalus’s contexts matching those of the points-to analysis. To do so, we

(i) parameterize every variable distinctness fact on method context, and (ii) parameterize every heap object

reference with heap context. This follows the standard approach described in §2.5.2.

Next, Daedalus supports interprocedural analysis. This builds on the callgraph provided by the points-

to analysis, as described in §2.5.1, and relies upon the interprocedurally-derived loop contexts described in

§4.2.2. Once loop contexts are properly established for all methods, the only remaining glue to tie together

each method’s analysis is to generate synthetic assignment statements that connect call arguments to formal

method parameters, and method return values to callsite result variables. When multiple callsites can call a

single (context-qualified) callee, the multiple inputs are merged with φ-nodes on each parameter. Likewise,

when a single callsite can call multiple callees, the return value is merged from all callees with a φ-node.

4.3 Distinctness in Maps, Sets and Lists

4.3.1 Inferring and Using Map Distinctness

We derive map distinctness in an analogous way to stores. Because there is an additional “dimension” to

the stored location (a map and a key, rather than solely a pointer), the required combination of distinctness

and constantness facts is slightly more complex.

Recall that there are two forms of map distinctness: global map distinctness and within-map distinctness.

First, consider global map distinctness. This property implies that a given value in a map is not repeated

4.3. DISTINCTNESS IN MAPS, SETS AND LISTS 63

in any other map, at any other key, for all maps and keys represented by the map abstraction and key

abstraction in question. To derive such a fact, analogously to the store inference rule, we have:

Rule 12. More than one map store to the same map and key abstraction results in global and within-map

non-distinctness.

[mapput x1, y1, z1]i

[mapput x2, y2, z2]j
i 6= j

X ∈ (pts(x1) ∩ pts(x2))

Y ∈ (pts(y1) ∩ pts(y2))
[MapStoreOverlap]

MapNotDistinct(X[Y]) MapNotDistinctWithinMap(X.Y)

Rule 13. For all maps and keys represented by a given map and key abstraction, a map is globally distinct

if the sole mapput to operate on that (map, key) tuple either stores a distinct value, or stores

to a constant map and key, for every loop in context. Thus, if for some loop in context, the

mapput stores a non-distinct value and either the map pointer or key is not distinct, then the

map’s contents are not globally distinct.

[mapput x1, y1, z1]i

NotDistinct(z1, L)

NotConstant(x1, L)∨

NotConstant(y1, L)

X ∈ pts(x1)

Y ∈ pts(y1)

[MapStoreNotDistinct]
MapNotDistinct(X.Y)

We can derive within-map distinctness similarly. The key difference is that the analysis does not need

to prove that the stored-to map is constant if the value is not distinct (so the requirements are weaker than

for global distinctness: every within-map-distinct map is globally distinct, but not vice versa).

Rule 14. For all maps and keys represented by a given map and key abstraction, a map is within-map

distinct if the sole mapput to operate on that (map, key) tuple either stores a distinct value, or

stores to a constant key, for every loop in context. Thus, if for some loop in context, the mapput

stores a non-distinct value to a non-constant key, then the map’s contents are not within-map

distinct.

[mapput x1, y1, z1]i

NotDistinct(z1, L)

NotConstant(y1, L)

X ∈ pts(x1)

Y ∈ pts(y1)

[MapStoreNotDistinctWithinMap]
MapNotDistinctWithinMap(X.Y)

4.3.2 List Support: Distinctness of Virtual Indices

As we described in §3.3.3, lists are reduced to maps using virtual indices for non-indexed operations such

as appends. This virtual index represents an arbitrary index that is unique per dynamic use, so that an

64 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

append writes a new slot each time, but resets for each new concrete instance of the indexed object (e.g.,

list). We thus create a distinctness fact for a virtual index w.r.t. any loop in the local loop context for which

the indexed list is constant :

Rule 15. A virtual-index variable is distinct exactly when the indexed object (e.g., list) is constant. Thus,

it is not distinct whenever the indexed object is not constant.

[x := virtualindex l]i NotConstant(l, L)
[VirtualIndexDistinct]

NotDistinct(x, L)

4.3.3 Iterations over Sets, Map Keys, and Lists

We can derive distinctness of the iterator value in an iterator loop by tracking distinctness of an iterator

sequence itself. The iterator is reduced to a list (and thus, in turn, a map), and distinctness facts are

transferred as appropriate.

An iterator over map keys (and thus also over set elements, modeled as map keys, as noted in §3.3.2)

is always a distinct sequence. In contrast, an iterator over list elements has a distinct sequence (distinct-

within-map on the underlying map) exactly when the source list does.

4.3.4 Equivalence Classes: Distinctness of Map Keys

Recall from §3.3.1 that the IR includes an operation to map key-value map indexing semantics, which are

object identity-based (i.e., keyed on the pointer value itself), to other language semantics that define equality

using other (value-based) semantics. This operation, equivclass, returns a virtual object, synthesized for

static analysis only, that represents an equivalence class for a key. The IR-level map can then be indexed

using this equivalence class. Because many IR-level maps will be indexed in this way, we must derive the

distinctness of map keys produced by equivclass in order to have useful precision in real programs.

Daedalus can derive distinctness facts in three cases. First, the operator passes through distinctness

facts on any integer abstraction to describe the result as well. Conceptually, there is a single abstraction for

equivalence class objects for integers, and the result of the operator is a different object in this abstraction

for each different integer input.

Rule 16. If the argument to equivclass is always an integer and is distinct, then the resulting equivalence

class is distinct as well. Thus, if the argument is always an integer and is not distinct, then the

result is not distinct.

[x := equivclass y]i
∀A ∈ pts(y).(Γ ` A : Integer)

NotDistinct(y, L)
[EquivClassInt]

NotDistinct(x, L)

4.3. DISTINCTNESS IN MAPS, SETS AND LISTS 65

Figure 4.6: Example of distinctness analysis.

Next, we pass through distinctness facts when the types of all objects that could be arguments to the

equivclass operator are identity objects – that is, objects without overridden equality methods, so that

the high-level equality semantics are also object-identity-based.

Rule 17. If an object’s type has no overridden equality semantics (so is object-identity-based by default),

non-distinctness facts on the object pass through to its equivalence-class object.

[x := equivclass y]i

NotDistinct(y, L)

∀A ∈ pts(y).

(Γ ` A : τ ∧ Resolve(A, .equals()) =

Object.equals())
[EquivClassIdentity]

NotDistinct(x, L)

Finally, all other equivalence class objects are non-distinct.

Rule 18. All arguments to equivclass that are not captured by either of the above two rules lead to non-

distinct equivclass results.

[x := equivclass y]i

L ∈ L(Si)

A ∈ pts(y)

Γ ` y : τ

τ 6= Integer ∧

Resolve(A, .equals()) 6= Object.equals())
[EquivClassOther]

NotDistinct(x, L)

66 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

4.3.5 Example: Distinctness in Data Structures

We demonstrate the power of the proposed analysis with an example. Fig. 4.6 shows a program fragment with

four loops. Consider the first loop: We know that i is distinct w.r.t. the loop because it is an incremented

induction variable. We can propagate this distinctness through the list append (which decomposes to a

virtual index and a map store). We then examine the second loop, an iterator loop over the list, and use this

list’s key-distinctness to note that i is distinct. The newly allocated Parent is also distinct, as all allocations

are. Thus, we also infer key-distinctness for map. Next, the third loop fetches the key-set and iterates over

its elements. Map keys in the key-set are always distinct, so i is distinct here. As we access the key-distinct

map with distinct keys, the values (Parent objects) are also distinct. Hence, when we store the Child to its

field, we can infer a distinctness implication on this field. Then finally, when we iterate again over distinct

Parent objects in the fourth loop, we know that the fetched Child is distinct, so the store to its field is

parallelizable (each store will go to a different object).

This conclusion is beyond the reach of conventional array-based analyses because the map and list

data-structures are not represented in the model. Furthermore, the goal of such an analysis – to precisely

determine which object or array element is accessed each iteration – would be difficult to attain: the iteration

over the map may visit keys in an arbitrary order. Only by deriving distinctness do we attain a feasible

analysis, and this is sufficient for parallelization.

4.4 Which Distinct Value?: Must-Alias Analysis Inside Loops

So far, we have given an analysis that can prove that a variable does not alias itself across loop iterations.

Thus, a loop whose body consists of a store through a pointer variable that is distinct (with respect to

that loop) will be parallelizable. However, as we briefly described in §4.2.3, distinctness alone does not

suffice when more than one store to a particular heap abstraction occurs within a loop body: in this case,

distinctness can tell us that each store does not alias itself across iterations, but not that one store in one

iteration does not alias another store in another iteration.

To see this concretely, consider the example program in Fig. 4.7. This example resembles Fig. 4.2, except

that both pointers d1 and d2 point to the same object in each iteration. Distinctness analysis will be able

to prove that each of these variables is distinct with respect to the loop at line 1: d1 directly, because it is

a new allocation, and d2 by assignment from d1. Thus, each variable will not alias itself across iterations.

However, this is not enough to safely parallelize the loop. In particular, d1 in one iteration may alias d2

in another iteration. Note that we have no invariants relating the specific object pointed to by d1 to the

specific object pointed to by d2, only that they refer to the same heap abstraction. Intuitively, each variable

4.4. WHICH DISTINCT VALUE?: MUST-ALIAS ANALYSIS INSIDE LOOPS 67

Figure 4.7: Modified version of Fig. 4.2 demonstrating the need for must-alias analysis. Distinctness analysis
alone will be able to prove that d1 does not alias itself across iterations, and likewise for d2, but not that
d1 in one iteration does not alias d2 in another iteration.

could point to the same series of distinct objects in the loop’s iterations, but in permuted orders. We need

to somehow identify that the two variables traverse the distinct object sequence in the same order so that

we know this cross-iteration aliasing is not possible.

In order to address this need, we apply a simple must-alias analysis based on tag propagation. This

analysis produces conclusions that differ from may-alias facts, such as that provided by Andersen points-to

analysis, because they refer to specific objects. Whereas a may-alias analysis can soundly make claims as

coarsely as it likes (in the limit, claiming that every variable in the program may alias), a must-alias analysis

errs in the direction of claiming nothing : we don’t know for sure that any two variables must alias. By

employing such an analysis, when the analysis claims that (e.g.) d1 and d2 must alias, we know for sure

that the above cross-iteration aliasing cannot occur.

The analysis works on a simple principle: it propagates tags describing particular program values along

the dataflow (variable assignments). Each SSA variable has a set of one or more tags. When two different

tags meet as inputs to a merge-point (e.g., a φ-node), a new tag is generated instead, except for one case

that we describe below. It is always safe to generate a new tag: it simply discards some information. Slightly

simplified versions of the inference rules for our must-analysis are given below. The rules generate results

that uphold the following invariant: if two variables have the same tag, and only that tag, and the may-alias

analysis indicates that they may alias (they have at least one heap abstraction in common), then they must

hold the same value. (A full description with all details, including an additional refinement to the rules to

handle field loads and a precise specification of the upheld invariant and corresponding soundness proof, can

be found in Appendix A.)

68 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

Rule 19. A newly allocated object receives a new tag.

[vi := new T]i[TagAlloc]
Tag[vi] = {Alloci}

Orig[Alloci] = Si

Rule 20. An assignment from a single source simply propagates the tag from source to destination.

[vi := vj][TagAssignSingle]
Tag[vi] = Tag[vj]

Rule 21. An assignment from multiple sources, such as a φ − node, that may not alias (according to a

may-alias analysis) generates a new tag.

[vi := φ(vj1 , vj2 , . . . , vjn)]i

∀k, l.pts(vjk) ∪ pts(vjl) = ∅
[TagAssignMultiNonOverlap]

Tag[vi] = {Assigni} Orig[Assigni] = Si

Rule 22. An assignment from multiple sources where at least two sources may alias propagates tags from

all inputs.

[vi := φ(vj1 , vj2 , . . . , vjn)]i

∃k, l.pts(vjk) ∪ pts(vjl) 6= ∅[TagAssignMultiOverlap]
Tag[vi] = ∪nm=1Tag[vjm]

The rules encode the above-described behavior for allocations and single-input assignments. The one

notable detail is the handling of multiple-input assignments (φ-nodes). There are two strategies that could

be employed at these assignments to generate tag sets for the assignment results. The assignment could

propagate all tags from inputs to outputs. Then either all inputs have one tag, so they must all alias, so

we can propagate the tag to the output because it will alias all inputs, or else there is more than one tag

among the inputs, in which case we propagate more than one tag and the tag-aliasing invariant does not

apply (it applies only to variables with one tag). Or, instead of this always-propagate strategy, the analysis

could always generate a new tag, which is trivially correct (it makes no claims about aliasing). We use a

heuristic to choose between these options to maximize precision on common program idioms: we generate a

new tag when inputs with all separate heap abstractions join (these will certainly have more than one tag

among inputs, reducing precision otherwise), and propagate all tags when possibly-aliasing inputs join (this

pattern occurs sometimes when pointers are passed through recursive methods, creating cyclic assignment

graphs).

Now that we have distinctness results that indicate when a pointer must not alias itself across iterations,

and must-alias results that indicate when two pointers must be the same distinct value in an iteration, we

are ready to reason about cross-iteration aliasing in general to find parallelizable loops.

4.5. PARALLELIZING LOOPS USING DISTINCTNESS 69

4.5 Parallelizing Loops Using Distinctness

We now define conditions necessary to parallelize a loop. We provide a full set of inference rules and

a soundness proof in Appendix A. This section is a high-level summary of the parallelizability analysis,

providing five conditions that must be met for a loop to be parallelizable.

4.5.1 Heap Non-Interference: Distinct Stores

The first condition for loop parallelization is that no loop-carried dependencies exist through the heap.

Daedalus examines distinctness facts on pointer and index variables in order to determine whether this

condition holds. (Distinctness is actually a more general property, but only distinctness facts on pointers

and indices matter for the loop-parallelization problem.) If for every abstraction accessed by a load or store

within the loop body, either (i) no store accesses this abstraction, or (ii) all loaded and stored pointers to

this abstraction are distinct w.r.t. this loop, and they must alias according to the must-alias analysis, then

no dependencies exist. This applies to both scalar (object field) and indexed (map with key) accesses. In

the latter case, distinctness of either the map or the key is sufficient.

4.5.2 Aggregate Data Structure State

The second condition is that no dependencies exist through properties of built-in data structures (maps

and lists): e.g., a map key iteration depends on all prior insertions, because they may insert new keys. As

described in §3.3.5, we explicitly capture data-structure-level fields, such as “all keys in the map,” and effects

on them: e.g., a mapput writes “all keys,” while a mapkeyiter reads it. Note, however, that two map inserts

usually commute (as long as their keys are distinct). To model this, we add a new effect type used by

mapput : a commutative store reorders with other commutative stores, but not with loads or regular stores.

(Likewise, loads reorder with loads, but not with other operations.) Note that any stronger ordering of

mapput operations on the same key is already handled above as a dependence between two indexed accesses.

The first and second conditions together can be seen as a side-effect analysis: we can summarize the

effects of every IR statement as a load, store, or commutative store to either a scalar location, i.e., field

on a particular heap abstraction, or an indexed location, i.e., map heap abstraction indexed by key heap

abstraction. These side-effects are described in more detail in §3.3.5. The analysis can then examine all

side-effects acting on each scalar or indexed location and detect parallelization-inhibiting combinations.

Note that in our implementation, this side-effect analysis also uses a conventional array-indexing-based

parallelization analysis to augment results. Specifically, if the indexing analysis can prove that array accesses

are parallelization-safe (w.r.t. themselves and other array accesses), then these array accesses are excluded

from consideration by the distinctness-based rules. This enhancement improves precision but is not strictly

70 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

necessary, as it is orthogonal to the core analysis.

4.5.3 Local Variables, Arrays, and Parallelizability

The third condition is that no loop-carried local variable dependencies can exist, except for reduction

patterns [81]: a commutative operator (addition, multiplication, bitwise-AND/OR, min/max) and no use of

the intermediate value.

We also analyze array indices using a simple analysis that propagates affine function descriptions of

integers in terms of a loop integer induction variable: e.g., if i = 0 . . . n in a loop, we understand distinctness

of array indices like 3i+ 5.

The fourth condition for parallelization is that the iteration space can be computed prior to the loop:

this is true for integer-increment and iterator loops.

4.5.4 Global Side-Effects

Finally, the fifth condition is that the loop body should not have any global side-effects. We define a

global side-effect as any effect not accounted for by the usual heap-access rules. In our system, this category

consists only of calls that are not resolved in the callgraph, because the callee does not exist within the

analysis input IR: for example, calls to native JVM code. In particular, this condition will exclude all loops

that perform IO because IO requires system call(s) through native code.

Once all five conditions are satisfied, Daedalus produces a directive that describes the parallelizable

loop. The compiler backend can then use this directive to extract the loop body and parallelize the loop.

4.5.5 Locking

In the above side-effect analysis, we have reasoned with respect to the program as seen by static analysis,

with semantic models replacing the actual data structures for maps, lists, sets, etc. in the standard library. In

practice, many of these data structures will not be thread-safe by default. To ensure that the parallelization

semantics of the model and the actual implementation match, we insert fine-grained locking around any

callsite reachable from a parallelized loop body that invokes a method covered by a semantic model. This

ensures that its effect occurs atomically, as the analysis assumes of built-in IR instructions that operate

on data structures. This locking insertion, together with accurate models and side-effect modeling of IR

instructions, permits commutative API semantics (e.g., those of set or map inserts) to be leveraged when

parallelizing loops.

4.6. EVALUATION 71

4.6 Evaluation

4.6.1 Methodology

To demonstrate that Daedalus finds useful parallelism, we evaluate the analysis by measuring speedup

with simulation on a set of Java benchmarks. Our implementation is built on the Doop [25] static-analysis

framework, and is (like Doop) written in Datalog. There are 532 inference rules on 292 relations specific to

Daedalus. We use an in-house microarchitectural simulator on instruction traces derived from a modified

OpenJDK, with a loop parallelization transform on the trace, to evaluate runtime performance. We also

evaluate real-system speedup of one benchmark (§4.6.4).

Performance evaluation: In this work, the Daedalus analysis, a form of pointer alias analysis, is our

primary contribution. However, unlike many other alias-analysis works, because our analysis has a special

emphasis on the loop parallelization problem, we choose to evaluate end-to-end performance on parallelized

programs. To do so, we report two main statistics: parallelizable coverage, or the fraction of dynamic

instructions that are in the body of any parallelizable loop, and parallelized speedup, the result of actually

parallelizing the loop. Coverage is measured simply by using the results of our analysis to count instructions

in a dynamic instruction trace. To measure performance, we use a microarchitectural simulator. This grants

us increased ability to experiment (e.g., to measure the effect of iteration spawn latency), and enables us to

avoid several real-world engineering challenges that are orthogonal to (and outside the scope of) this work.

For example, in Java, a loop-iteration closure needs to allocate an object to hold captured state, which

has overhead. This could be avoided by implementing a parallel loop primitive at the JVM bytecode level,

likely the right choice for a production implementation of Daedalus’s backend. However, we can model

the performance without this engineering effort by assuming a configurable iteration spawn latency for the

runtime.

In this simulation methodology, once we run Daedalus to identify parallelizable loops (using the analysis

workflow described below), we (i) collect an instruction trace from the interpreter loop of a modified JVM,

(ii) demultiplex the trace by chopping it into one work-chunk per loop iteration of a parallelizable loop, and

(iii) schedule these work-chunks onto cores of the simulator at runtime according to their dependencies (and

respecting locks). The simulator models a detailed microarchitecture, and translates JVM bytecodes to µops

with renaming of JVM operand stack slots to virtual registers, producing execution similar to that of JITted

machine code. Core and memory hierarchy parameters are given in Table 4.1.

Parallel Runtime: Our simulation is agnostic to the parallel runtime, simply modeling a fixed per-iteration

“task spawn” latency of 10 cycles by default. We evaluate sensitivity in §4.6.3. The runtime could use low-

latency distributed software workqueues with job-stealing, as in Cilk [24], hardware-assisted scheduling, as

72 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

Cores 1 – 16 cores, out-of-order, respects dependencies,
256-entry ROB, 4-wide dispatch/retire, 4 int/3
FP ALUs

L1 64 KB, 4-way, 64B blocks, MESI, 3-cycle latency
LLC 8 MB, 8-way, 15-cycle latency
DRAM 256 banks, 100/200-cycle (8KB row hit/miss) la-

tency

Table 4.1: Simulator parameters for performance evaluation.

in, e.g., Sanchez et al. [95], or other optimization techniques such as iteration batching.

Profiling: To improve performance (in both Daedalus and baseline), we record serial and parallelized cycle

counts for each loop, and parallelize only loops with ≥ 1% speedup. Our simulation involves two passes:

one to collect timing and another with only chosen loops parallelized. This is a proxy for more advanced

compiler/runtime tuning heuristics (which are orthogonal to our work).

Baseline: We evaluate Daedalus against an affine-indexing-based array access analysis. This analysis can

understand, e.g., that the array reference array[i] is distinct w.r.t. the loop with induction variable i, and

that array[2*i] and array[2*i + 1] do not alias.

Analysis Workflow: We run Doop’s fact generator on the benchmark, and our semantic-model compiler

modelc on the models, encoding both into Datalog facts. We run a points-to analysis (with 1-object-

sensitivity [73]). Then we run Daedalus, finding parallelizable loops. Datalog analyses are compiled with

Soufflé [97, 56], with several optimizations.

Although semantic models usually improve precision, in a few cases an analysis without models performs

better because our models are sometimes too conservative. We thus took the union of parallelizable loops

from analyses with and without models enabled. (This is sound because one can prove a loop parallelizable

by analyzing either the original code or the code with models substituted.)

Benchmarks: We evaluate Daedalus on the same 29 benchmarks as the previous chapter: DaCapo [23],

JOlden [11] (a Java translation of Olden [27]), a Java implementation of portions of the Problem-Based

Benchmark Suite [100], as well our cpu suite, a set of CPU-intensive programs individually chosen for

complex control flow and data structures (in particular, compilers, parsers, and simulators). The cpu suite

contains: circuit [44], CloudSim [26], DJBDD [68], Jacc [54], Janino [3], JGraphT [5] JLaTeXMath [6],

JScheme [13], and raytracer [74].

4.6.2 Loop-Parallelization Speedup

We first evaluate the effectiveness of Daedalus at finding and exploiting parallelizable loops to improve

performance. Fig. 4.8 shows a measure of coverage, or fraction of all dynamic instructions that are within

any parallelizable loop (top), and the resulting speedup when these parallelizable loops are parallelized on

4.6. EVALUATION 73

 0
 20
 40
 60
 80

 100

Excluded (< 5% coverage): dacapo.luindex,

cpu.{cloudsim,jgrapht,jtidy},olden.{bisort,

health,perimeter,treeadd,tsp,voronoi},

pbbs.{comparisonsort,convexhull,raycast}

A
V

G%
 o

f
D

y
n
.
In

s
n
s
.

Dynamic Instructions in Parallelized Loops

Affine-Indexing
Daedalus

 0

 1

 2

 3

d
a
c
a
p
o
.b

a
ti

k
d
a
c
a
p
o
.p

m
d

d
a
c
a
p
o
.x

a
la

n
c
p
u
.d

jb
d
d

c
p
u
.j
a
c
c

c
p
u
.j
la

te
x
m

a
th

c
p
u
.j
s
c
h
e
m

e
c
p
u
.s

a
b
le

b
d
d

c
p
u
.s

a
t4

j
o
ld

e
n
.b

h
o
ld

e
n
.e

m
3
d

o
ld

e
n
.m

s
t

o
ld

e
n
.p

o
w

e
r

p
b
b
s
.i
n
ts

o
rt

p
b
b
s
.n

n
p
b
b
s
.r

m
d
u
p

G
E
O

M
E
A

N

S
p
e
e
d
u
p

Parallelized Speedup (4 Cores)

Figure 4.8: Main results: coverage (parallelizable instructions) and parallel speedup.

4 cores (bottom), as measured via simulation (§4.6.1). This figure selects the high-coverage subset of our

benchmarks: the 16 of 29 benchmarks total that have ≥ 5% coverage under Daedalus. The low-coverage

benchmarks are listed at the bottom of the figure.

Among these 16 benchmarks, 60.2% of all dynamic instructions occur within a parallelizable loop. In

contrast, the baseline affine-indexing-based analysis finds parallelizable loops covering only 21.8% of instruc-

tions. Daedalus is more effective because it is able to derive distinctness facts, including for pointers that

are stored in high-level data structures, and use these to resolve store aliasing questions.

As a result, Daedalus achieves a geomean speedup of 27.4% on 4 cores, compared to the baseline’s

7.6%. While many array-based loops are parallelizable under both analyses, in 14 of the 16 benchmarks,

additional speedup occurs because of increased loop coverage. The two best cases, pbbs.intsort (integer

sort) and pbbs.nn (nearest-neighbors), achieve 2.8× and 2.5× speedup respectively, compared to no or very

little baseline speedup. This is due to additional inferences made: e.g., in pbbs.nn, Daedalus is able to

prove the independence of temporary objects in main loop iterations, including in nested and recursive calls,

and of commutative stores into a shared results HashMap.

We evaluate scalability as well: on 16 cores, geomean speedup is 44.6%, compared to 8.3% in the baseline,

74 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

with a best case of 6.3× in pbbs.nn. Thus although the discovered parallelism is often not perfectly scalable,

as a regular scientific computation would be, there is still significant available speedup despite accesses to

shared data structures.

4.6.3 Parameter Studies

Locking

With all locking removed, geomean performance on the benchmarks in Fig. 4.8, on a 16-core system (to

stress locking), improves from 44.6% to 45.0%, an improvement of 0.4%. We thus conclude that though the

inserted locking has some overhead, this overhead does not negate the benefits of parallelization. (Note that

while this would not be sound in an actual program transform evaluation, we can simulate this and see the

effects because the instruction trace pre-determines correct behavior.)

Workqueue Latency

So far, we have assumed a 10-cycle latency to distribute parallelized iterations, as we discussed in §4.6.1. By

reducing this latency to 1 cycle (an unrealistic upper bound), we see a geomean speedup on a 16-core system

of 51.7%, an improvement of 7.1%. On the other hand, increasing this latency to 100 cycles, speedup reduces

to 7.6%. We thus conclude that job-spawn latency is an important metric to optimize in a high-performance

parallel runtime.

4.6.4 Real-System Speedup

To provide confidence in the feasibility of achieving the simulated speedups, we parallelize pbbs.nn using a

simple parallel runtime with an ordinary centralized workqueue. Averaged over 5 runs on a 4-core, 8-thread

Haswell machine, we measured a speedup of 3.08×. This falls between our simulated 2.5× speedup on 4

cores and 4.0× on 8 cores.

4.6.5 Analysis Complexity and Runtime

Finally, we measured the runtime of Daedalus. Andersen points-to analysis has a worst-case complex-

ity of O(n3), but often closer to O(n2) for realistic Java programs [102]. Map support makes complexity

O(n4) in the worst case, because we also quantify over the key points-to set, but again in practice runtimes

are reasonable because maps are not indexed by every abstraction in the program. Distinctness analysis

inherits this complexity, with an additional factor for loop-nest size, which is usually shallow in practice.

Over all benchmarks, a combined points-to and Daedalus analysis took an average of 0:23:26 (HH:MM:SS,

geomean) on a 32-core machine (two-socket AMD Opteron 6272 at 2.1GHz), with a minimum of 0:12:10

(pbbs.comparisonsort) and maximum of 9:30:47 (dacapo.batik). (Analyses on two benchmarks, cpu.cx3d

4.6. EVALUATION 75

and dacapo.fop, timed out after 12 hours. These were excluded from results.) We believe further optimiza-

tion opportunities are possible by tuning Datalog execution plans.

4.6.6 Case Studies

nn: Nearest-Neighbors Computation

The pbbs.nn benchmark performs a nearest-neighbors computation: given a list of points, for each point,

it performs lookups in an octree (an efficient spatially-indexed tree) to find the k nearest points. Then, the

list of nearest neighbors is inserted into a results map, indexed by the point itself.

Daedalus is able to determine that the outer loop over points is parallelizable: the points in the list

are distinct, the octree lookup accesses only read-only data, and the write into the results map is safe

because it is indexed by the distinct point. Only Daedalus, not the baseline array-based system, is able

to deduce this parallelizability. This is for a few reasons: first, the per-point computation allocates some

storage for intermediate results, and the baseline analysis is not able to determine that writes to this storage

are iteration-local, because the storage is accessed through several levels of indirection (via fields on an

object passed down through a recursive call-graph). Second, the writeback of the result to the map can

only be seen as safe by combining (i) knowledge that each point in the iterated-over list is distinct, which

we know by analyzing the loop that creates the list; and (ii) knowledge that the method call is a key-value

map insertion, and such insertions are commutative if the keys are distinct. Thus, distinctness analysis on

data-structure-aware IR is key to discovering nn’s potential for speedup.

djbdd: BDD Simplifier

The cpu.djbdd benchmark builds and then simplifies BDDs (binary decision diagrams), which are graphs

that represent Boolean functions. To do this, it holds BDD nodes in a map, indexed by vertex ID. The main

loop (by runtime) iterates over keys, fetching each node and performing some update. In order to parallelize

this, an analysis would need to determine that each node in the map is distinct.

Unfortunately, Daedalus in its present state cannot derive this fact, and the reason illustrates a general

difficulty with static analysis. The benchmark contains a loop that builds the BDD, allocating nodes one

at a time, and Daedalus is able to infer that each node inserted at this point is distinct. However, the

benchmark also implements logic operators on BDDs that may insert additional nodes. Each operator, when

creating a new node, first checks if that node (uniquely identified by its content) is already present in the

graph; if so, the operator re-uses the existing node, in order to de-duplicate the BDD. This logic foils the

analysis because the analysis is not flow-sensitive: it must assume that a node could be added twice. In such

cases, however, a runtime check could be inserted into transformed code so that the parallelized version is

76 CHAPTER 4. DAEDALUS: ENHANCED ALIAS ANALYSIS WITH DISTINCTNESS

executed only if no duplicates exist. The following chapter describes one approach to inserting such runtime

checks.

4.7 Related Work

Several other works have proposed variants of alias analysis to address the loop parallelization problem.

Most recently, work by Johnson et al. [53] builds an alias analysis that derives conclusions of the form “x

aliases y in an earlier/later iteration of loop L.” This system works from the bottom up, resolving particular

questions by posing sub-questions and attempting to prove them. In this way, they can combine many small,

independent alias analyses, each encapsulating one particular rule, to form a robust ensemble of analyses

capable of understanding many real programs. However, the core of their contribution is fundamentally the

framework, and there is no high-level property of the program that they derive in a systematic way. In

contrast, Daedalus is a principled top-down extension of Andersen points-to analysis and the points-to

graph, refining its information for the whole program. In addition, we explicitly derive and make use of

data-structure invariants such as the unique-value invariant in the key-value map described above.

At least one past work also refines the points-to graph by adding indexing to the abstraction: Wu et

al. [114] propose an analysis analogous to the conventional array-access analysis for the purpose of loop

parallelization. Though their analysis addresses its intended problem well, the approach quickly becomes

untenable as program complexity grows. This is because in many programs, there is no closed-form expression

for which object is visited each iteration, as we motivated earlier. Unlike this work’s approach, we can often

prove that each iteration visits a different object than all the others, even though we cannot express which

one. The fact that this is sufficient for loop parallelization is the fundamental insight of Daedalus.

Earlier work by Wu and Padua [115] proposes a loop-parallelization system that explicitly understands

arrays and hash-tables, as Daedalus does. In addition to the similarities to semantic models, which we

noted already in §3.7, this system has some relevance to distinctness analysis because it also must resolve

accesses to indexed data structures each iteration. However, unlike Daedalus, this system does not appear

to have a general means of doing so, instead analyzing indexing and access conflicts directly and explicitly.

Additionally, it must perform runtime checks to determine whether hash-table keys collide.

Past work has observed that understanding commutativity is key to uncovering additional parallelism [92,

82, 10, 62, 33]. This past work finds commutative loop iterations either by static analysis [92, 10] or by

requiring explicit annotations over APIs [82, 109]. The use of commutativity is similar to Daedalus’

modeling of commutative side-effects when analyzing parallelizable loops. The main difference between

these past works and ours is simply the extent to which commutativity is the central contribution: in

Daedalus, recognizing commutative side-effects helps to find more parallelizable loops, but it is orthogonal

4.8. CHAPTER SUMMARY 77

to our core contribution of distinctness analysis.

4.8 Chapter Summary

In this chapter, we introduced Daedalus, an analysis that computes distinctness. Distinctness is a specific

type of (non-)aliasing between particular instances of pointers: for local variables, pointers in different

iterations of a loop; for object fields, pointers in different instances of an object represented by one heap

abstraction; for map values, pointers at different keys in the same map, or in all maps represented by a

heap abstraction. We provided a set of inference rules that define a whole-program analysis to derive these

distinctness facts. We then provided a set of conditions by which to evaluate loops in a program to verify

whether they are parallelizable, using distinctness as the key means of resolving cross-iteration aliasing.

Using this analysis, we demonstrated significant speedup in simulation on a number of real Java programs.

Chapter 5

Icarus: Extending Static Loop Parallelization

Analysis with Dynamic Checks

A program was once in existence
Its instances remarkably consistent
Yet those few exceptions
Were utter deceptions
To static analysis, resistant.

So far, we have presented static analyses: these reason about the program in the abstract, producing

conclusions that are true for all possible executions of the program. We have shown that the Daedalus

static analysis discovers many parallelizable loops, and that parallelizing these loops results in significant

speedup in the programs that contain them. However, a static analysis may not always be able to prove the

facts that are needed to perform a desirable program transformation such as loop parallelization.

In this chapter, we describe a new system, Icarus (Integrated Compiler and Runtime with User-level

Semantics), that improves the precision of the loop-parallelization analysis by using dynamic checks of

necessary program invariants in addition to static reasoning. This hybrid system is able to verify that, for

example, all items in a list are distinct just before iterating over that list with a parallel loop. Having verified

that one dynamic fact, it can then make use of other facts that it has statically proven to be implied by

the verified fact. When dynamic checks fail, the system resorts to a fully sound fallback strategy, preserving

semantics in the uncommon case while enabling significant speedup overall. Importantly, this system is

derived from the inference rules of Daedalus in a principled way: the original logic can be transformed

into two additional analysis passes that interact with a client analysis (such as loop parallelization) in such

a way that only the necessary dynamic checks are inserted. This approach serves as a template for future

79

80
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

hybrid static/dynamic systems.

We introduce Icarus in this chapter, including inference rules, but we do not include all details of the

soundness proof; that proof is included in Appendix B.

5.1 Motivation: Almost-Provable Analysis Facts

Though static analyses can be engineered to be remarkably precise, they sometimes fall short of proving

what is needed. This can occur for two main reasons.

The first reason is that the analysis is imprecise: while the conclusions that it produces are always true,

it may not necessarily derive all conclusions that are true. This is due to the undecidability of the Halting

Problem [108], and thus values during program execution in general. For example, a loop may contain

pointers, array indices or map keys computed by an arbitrarily complex function, and its parallelizability

may depend on whether or not the resulting memory accesses overlap. No analysis can provide an answer

to this question in all cases.

The second reason is that analysis results must be true for all possible program executions. For example,

Daedalus must only claim that a local variable is distinct with respect to a loop if this is true for all

program inputs. However, there are programs where distinctness is usually true, but this is not necessarily

guaranteed by the program itself. For example, a program might read a data structure from a file and iterate

through its elements. If the loop iterations are always independent for a “well-constructed” input, it might

be desirable to parallelize this loop: otherwise, the system is missing a significant opportunity for speedup.

But it would actually be unsound to parallelize the loop statically. The decision to perform work in parallel

can only be made at runtime, once the program has observed the input file.

To see an example of this, consider the program in Fig. 5.1. This program processes Item objects, storing

them into a list then performing some sort of computation over them. Assume that some external caller

calls add() multiple times with different arguments, possibly passing the same Item instance more than

once. The logic in add() ensures that each item is added to the list only once. (The logic here is somewhat

simplistic, but similar deduplication logic occurs in real programs; for example, in DJBDD [68], BDD nodes

are deduplicated on insertion.) Thus, the loop at line 12 sees each Item exactly once: it is distinct with

respect to this loop. The computation in compute() is thus completely independent per iteration, and the

loop at line 12 should be parallelizable.

Unfortunately, Daedalus as posed cannot deduce this distinctness fact. In principle, it is possible to

develop an inference rule that pattern-matches the deduplication conditional at line 5 and manually injects a

distinctness fact for the list. However, such an approach is ultimately as futile as any other pattern-matching

approach to the Halting Problem: we cannot chase every possible program design with a new inference rule.

5.1. MOTIVATION: ALMOST-PROVABLE ANALYSIS FACTS 81

Figure 5.1: Example of a program where a static analysis, Daedalus, can almost but not quite prove the
facts needed to parallelize the loop. The analysis cannot prove that the items in list are distinct because
it does not understand the deduplication logic on list insertion at lines 5–8. Thus, the loop at line 12 is not
parallelizable, even though it should be.

Let us reconsider Fig. 5.1 in light of other possible approaches. If we take for granted that the contents

of list are a black box – they may or may not be distinct, as far as the analysis knows – then a natural

approach is to check for the properties that we need, and then behave as appropriate for this situation. If

a program can dynamically determine whether the elements in list are distinct for any particular call to

process(), then for that particular instance, it can branch to either a parallelized version of the loop at line

12 (if distinct) or the original serial version (if not).

A naïve approach to extending precision with dynamic checks might be to insert a check wherever a

distinctness fact is needed for parallelization. However, this quickly becomes impractical. In this example,

there are several writes to the heap within the loop iteration. The write at line 13, directly to a field of it,

is clearly parallelization-safe if it is checked to be distinct. However, consider the access at line 18 to the

metadata key-value map. Assuming that the contents of metadata are within-map distinct, then m should

also be distinct, allowing the mutation inside m.update() to be parallelization-safe. But the analysis will

not have this distinctness fact, so the naïve approach inserts a distinctness check on m too. This check is,

however, redundant: if we have already checked that it is distinct, then we know m is too. In other words,

we can statically derive conditional distinctness facts, and use these to cascade one dynamic check into a

large number of useful conclusions.

We observe that dynamic checks for distinctness in particular can be relatively cheap: simply a hash-table

82
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

lookup in a hash table keyed on values that have already been seen in this loop instance, and then insertion

if the lookup fails. Thus, if these checks enable sufficiently beneficial program transforms, then the use of

dynamic checks could yield significant benefit for a relatively small cost. In the remainder of this chapter,

we outline a general approach to extend a static analysis with such dynamic checks.

5.2 One Solution: Fully-Dynamic Version of a Static Analysis

One initial plausible approach to this problem is to convert the static analysis directly to a dynamic analysis.

This can be done via a direct correspondence between static abstractions of values (program variables and

heap objects) and dynamic instances of these values, evaluating rules in real time where applicable. Then,

the program would have available, at runtime, a precise set of facts tailored to the particular execution so

far.

5.2.1 Building a Dynamic Analysis

In order to perform such a transform, let us begin with the static analysis and categorize the relations,

or logic predicates, such as NotDistinct(v, L), into value-attached predicates and other predicates. The

value-attached predicates describe a particular value (dynamically), or some abstraction for a set of values

(statically). The other predicates describe the program in some way that is usually truly static and inde-

pendent of its particular execution: for example, the loop structure. (Some predicates may differ in various

executions but not be directly value-attached; we consider them to be in the other category in this case.)

We must design a way for predicates to be dynamically attached to values in the program dataflow. Such

a system is often known as a Dynamic Information-Flow Tracking (DIFT) analysis, and is commonly used

for applications such as security-related taint tracking. Efficient design of such a system is beyond the scope

of this work (as we are merely posing a hypothetical design point).

Then, for all inference rules, we find those that generate a value-related predicate (in the consequent, i.e.,

under the horizontal line), and for these, insert code into the transformed program that, at the appropriate

points, determines whether the rule applies. Usually, rules are written in a way that corresponds directly to

program structure and dataflow, so that properties of the output of a particular statement depend only on the

properties of that statement’s input(s), or perhaps a heap object on which the statement acts. Adaptation

of an inference rule to such a case is straightforward.

Such a system could indeed generate distinctness facts dynamically, and these facts would be potentially

much more precise than those produced by the purely static system in Chapter 4. However, it suffers from

two major problems, which we now describe.

5.2. ONE SOLUTION: FULLY-DYNAMIC VERSION OF A STATIC ANALYSIS 83

5.2.2 Problem 1: Performance

The first major problem with a purely dynamic system is performance. As we motivated in §5.1 above, it is

often the case that a single dynamic observation can lead to a number of additional facts statically. In other

words, if we can statically determine that distinctness of variable a implies distinctness of variable b, then

we need only check a; we do not need to separately check b. But the purely dynamic system works only by

dynamic application of inference rules, and so performs significantly more work than an analysis that could

do some pre-computation statically.

5.2.3 Problem 2: Correctness

The second major problem with a dynamic system is that a dynamic fact about the program does not carry

the same meaning as a static program fact, as we describe below. As a result, it is not immediately clear

how the compiler can use a dynamic fact to, e.g., justify a loop parallelization decision.

Limited Scope of Dynamic Fact

A dynamically-checked fact differs from a statically-derived fact in several ways. First, while a statically-

derived fact must apply to all executions, a dynamically-checked fact necessarily only applies to the current

execution. Fortunately, this limitation is not a problem as long as the dynamically-checked fact is only used

to justify decisions for the current execution.

Second, however, and more critically, while a statically-derived fact generally applies to a variable or

program point for all time during the execution, a dynamically-checked fact is only necessarily true at the

moment that it is checked. If a fact that has been verified in the present was not true in the past, we might

erroneously rely on assumptions that depend on the fact having always been true. For example, say that

we rely on a non-aliasing fact that shows a particular value in memory has not changed under a certain

pointer. A dynamically-checked aliasing fact may show that another stored-to pointer does not alias this

pointer now, but the other pointer may have aliased this one in a prior iteration of some loop, and so the

value may already have been overwritten. Likewise, if the presently-verified fact may not be true in the

future, then the program might make a decision (such as branching to a parallelized version of a loop) that

will later lead to unsoundness when the dynamically-checked invariant is violated.

Possibility of Check Failure

Finally, unlike statically-derived facts, dynamically-checked facts may not be true in any given execution.

Unless it is valid for the program to simply abort (i.e., the user allows “correct answer or explicit failure”

semantics), the program must have some fallback path that will also perform the correct computation. This

is not difficult if a check can be performed prior to any execution of transformed code: the program can

84
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

simply branch to the original version of the code (e.g., the non-parallelized loop) if the check fails. However,

failure paths become significantly more complex when failures are detected partway through transformed

code’s execution, after side-effects have occurred.

As a result of these downsides to a purely-dynamic analysis, and these challenges posed by dynamic facts,

we propose a hybrid static-dynamic system, and we reason carefully about the dynamic scope of facts that

are derived dynamically. We now describe this approach.

5.3 Our Approach: Hybrid Static-Dynamic System

In order to combine the precision of dynamic analysis with the low overhead of static analysis, we propose

a hybrid static-dynamic system, Icarus. This system extends Daedalus in a principled way with dynamic

checks of variable distinctness (§5.4.1) and propagation of not-distinct taints through object fields (§5.4.2)

where necessary in order to parallelize many more loops.

The hybrid scheme’s key goal is to perform dynamic checks that are at the root of potentially several

needed conclusions: for example, by showing that the pointer loaded at the start of loop iteration is distinct,

many other distinctness facts follow through the normal application of static-analysis inference rules, leading

to many static facts that are conditionally true based on a particular check. The analysis is capable of finding

these conditional implications during static analysis.

Fig. 5.2 illustrates this hybrid scheme in more detail. For the same example program as in Fig. 5.1, we

illustrate the system’s reasoning using provenance graphs. A provenance graph is simply a representation

of the chain of reasoning to arrive at a fact or facts with inference rules. The static provenance graph on

the upper-right shows the series of rule applications that would allow us to infer several essential facts, such

as the distinctness of it at line 12 in process() and m at line 18 in compute(), that would allow us to

parallelize the loop at line 12. However, as we discussed earlier, the existing Daedalus system cannot infer

that the add() method adds a distinct it to list on each call, so this chain of inferences fails at the first

step.

However, if the system is able to decide to check certain facts at runtime instead, then it can simply

designate some fact along this chain as dynamically-checked, and then use the rest of the series of inference

steps to arrive at the needed facts, contingent on a successful dynamic check. The dynamic provenance

graph in the lower-right shows how a series of dynamic facts, which are particular instances of the desired

static facts, are inferred with the dynamic application of rules. The key aspect of the hybrid system that

differentiates it from a purely dynamic system is that the intermediate reasoning remains static: only the

dynamic check is needed, and this directly implies (at runtime) the distinctness of m. We will see how this

is actually implemented later in §5.3.3.

5.3. OUR APPROACH: HYBRID STATIC-DYNAMIC SYSTEM 85

Figure 5.2: Example operation of a hybrid static-dynamic analysis, at a high level. The provenance graphs
on the right represent the chain of reasoning to obtain certain distinctness facts. When some of these facts
cannot be proven statically, the system might choose to dynamically check (e.g.) the distinctness of it in
the loop at line 12. The remainder of the inference chain is still statically valid, so this dynamic check leads
directly to a needed conclusion, the distinctness of m at line 18, without going through the intermediate rule
applications for each dynamic instance. In this case, the compiler could parallelize the loop at line 12 (with
stores at lines 13, 19, and 20) with just this one dynamic check.

A key insight to our approach is that the analysis that determines which dynamic checks are needed, and

that performs the static analysis that is based on the hypothetical success of these checks, can actually be a

derivative of the original inference rules: we can follow potential inference chains (i.e., proof trees) backward

statically, and fill in the missing pieces with dynamic checks, using inference rules that are themselves

constructed in a mechanical way from the originals. We must be careful in this process, however, to (i) only

perform transforms based on facts that can actually be checked, and (ii) minimize the configuration-space

search overhead in determining where to place checks. The key step to achieve this efficiency is the use of a

two-pass design where (i) all possible dynamically-checked facts are derived at once, without any information

about how to prove them (so that the many different proof options are merged, reducing overhead at this

stage), and then (ii) the client analysis indicates which facts are actually needed, and only at this point do

we perform the backward traversal to insert checks. This two-pass approach is illustrated in Fig. 5.3.

86
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Figure 5.3: The hybrid static-dynamic analysis is derived from the original static analysis by mechani-
cally constructing two new phases: (i) possible facts, which are propagated forward (conceptually, in the
provenance graph) through inference rules in the same way as static facts; and (ii) needed facts, which are
propagated backward until they are satisfied by actually inserted dynamic checks.

5.3.1 Computing Possible Distinctness

The first analysis pass in the hybrid static-dynamic system computes all possible distinctness facts that

could be dynamically proven. This is necessary to compute first in order to constrain the later solution-

space search: otherwise, a client analysis such as loop parallelization may decide to parallelize a loop and

then request a dynamic check for some variable’s distinctness that either (i) can be statically shown to never

succeed or (ii) cannot be done in the transformed code for some technical reason, such as that the variable

is a synthetic temporary or the program point is inside a synthetic model.

The possible-distinctness facts are represented as negations (to simplify the rules, due to the way that

they join at meet-points), just as static distinctness facts are. The facts are represented by the judgments

NotPossibleDistinct(x, L) and FieldNotPossibleDistinct(A.f).

In order to determine this set of possible facts, the analysis begins by annotating every variable whose

5.3. OUR APPROACH: HYBRID STATIC-DYNAMIC SYSTEM 87

distinctness it can directly check. While we will cover the detailed design of a runtime distinctness check

in §5.4.1, it suffices for now to assume that any value whose machine-code (or JVM bytecode)-level register

allocation is known can be checked directly. In Icarus, this corresponds to every SSA variable (language-

level local or temporary) in every method that is not part of a semantic model. The analysis thus initializes

the set of possible facts with distinctness facts containing these variables and all loops in context at the

variable definition site, as shown in Rule 23.

Note, in addition, that only variable distinctness is directly checked in the Icarus system. In contrast,

field distinctness and map distinctness cannot be checked directly. This is due to a key difference in defini-

tions: variable distinctness is defined in terms of values in iterations of a loop, which we can directly observe

at the location of the inserted check as execution proceeds, while field distinctness is defined in terms of all

objects represented by a given heap abstraction. The only way to check this property, from first principles,

would be to dynamically track the corresponding heap abstraction for every concrete object, and iterate over

all such objects to check field values. This would impose a large runtime cost both due to object tracking

and the check itself. Thus, only variable checks are “possible” at this stage of the analysis.

Rule 23. It is possible to check the distinctness of any variable for which we have a JVM bytecode offset

and stack slot number or local variable slot number.

[xi := . . .]i BytecodeOffset(Si,_) StackSlot(xi,_) ∨ LocalVar(xi,_)
[PossibleCheck]

CheckPossible(xi)

Rule 24. If a check is possible at a local variable definition, or else if the local variable has been statically

proven distinct, then that variable is possibly distinct. Possible-distinctness of assignments and

loads is handled separately. Thus, a variable is not possibly distinct if no check is possible, it is

statically distinct, and it is not the result of an assignment or load.

[xi := . . .]i

¬[xi := φ(. . .)]i

¬[xi := yi.f]

¬CheckPossible(xi)

NotDistinct(xi, L)
[PossibleCheckDistinct]

NotPossibleDistinct(xi, L)

The analysis also immediately rules out distinctness checks on any variables known to be constant

(Rule 25). This avoids needless effort attempting to prove parallelizability and then dynamically check

it at runtime when it will never succeed.

88
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Rule 25. Any variable statically proven to be constant w.r.t. a loop is not a possibly-distinct variable, because

no dynamic check will ever succeed.

[xi := . . .]i L ∈ L(Si) ¬NotConstant(xi, L)
[NotPossibleConstant]

NotPossibleDistinct(xi, L)

Next, the analysis propagates possible-distinctness facts in the same way that it propagates ordinary

distinctness facts. The rules to perform this analysis are mechanically derived from the original rules by

replacing NotDistinct(v, L) with NotPossibleDistinct(v, L) in the consequent (or the conjunction of the

two in the antecedent) and FieldNotDistinct(A.f) with FieldNotPossibleDistinct(A.f) in the consequent

(likewise the conjunction if in the antecedent).

To demonstrate this simple transform, we show the rules for possible-distinctness propagation for assign-

ment, loads and stores here.

The rule to propagate possible-distinctness through assignments (single or multiple input) is shown in

Rule 26. This rule is as simple as the one for ordinary static distinctness: not-possible facts are propagated

from sources to destinations (or equivalently, the output is possible-distinct if all inputs are possible-distinct).

A local check also results in possible distinctness.

Rule 26. If all inputs to an assignment are possibly-distinct, then the output is possibly-distinct too. Thus,

if any input to an assignment is not possibly distinct or statically proven distinct, and if no local

check is possible, then the assignment result is not possibly distinct.

[x := φ(x1, . . . , xn)]i

NotDistinct(xi, L)

NotPossibleDistinct(xi, L)

¬CheckPossible(x)
[PossibleAssign]

NotPossibleDistinct(x, L)

Next, the rules to propagate possible-distinctness through loads are shown in Rules 27 and 28. The rules

propagate possible-distinctness as long as both the base pointer is possibly (or statically) distinct, and the

field in all pointed-to abstractions is possibly (or statically) distinct.

Rule 27. If a load’s base pointer is not statically distinct, and not possibly distinct, then the result is not

possibly distinct.

[x := y.f]i NotDistinct(y, L) NotPossibleDistinct(y, L)
[PossibleLoadBase]

NotPossibleDistinct(x, L)

5.3. OUR APPROACH: HYBRID STATIC-DYNAMIC SYSTEM 89

Rule 28. If the field in a load’s pointed-to abstraction is not statically distinct, and not possibly distinct,

then the load result is not possibly distinct.

[x := y.f]i

A ∈ pts(y)

FieldNotDistinct(A.f)

FieldNotPossibleDistinct(A.f)
[PossibleLoadField]

NotPossibleDistinct(x, L)

The possible-distinctness rules for field stores are given in Rules 29 and 30. These rules mark a field

possibly-distinct as long as no store overlap occurs (if it does, even our dynamic-tracking approach described

later in this chapter cannot dynamically prove the field to be distinct), and as long as the stored value is

statically or possibly distinct if the pointer is not constant w.r.t. a given loop.

Rule 29. If a store overlaps with another store to a particular abstraction and field, then the field is not

possibly distinct.

[x.f := y]i

[x′.f := y′]i′

i 6= i′

X ∈ pts(x)

X ∈ pts(x′)
[PossibleStoreOverlap]

FieldNotPossibleDistinct(A.f)

Rule 30. If for the one store to an abstraction and field, every stored value is statically or possibly distinct

w.r.t. every loop in which the corresponding pointer is not constant, then the field is possibly

distinct. Thus, if for this abstraction and for any loop, the pointer is not constant and the stored

value is not statically distinct or possibly distinct, then the field is not possibly distinct.

[x.f := y]i

NotConstant(y, L)

A ∈ pts(y)

NotDistinct(y, L)

NotPossibleDistinct(y, L)
[PossibleStoreValue]

FieldNotPossibleDistinct(A.f)

Importantly, at this stage of the analysis, only a single bit indicating possible distinctness is computed

per variable per loop. The possible-distinctness information does not contain any provenance information,

or in other words, it does not indicate how a particular value could be proven distinct or what checks would

be necessary to do so. Computing this information upfront would both be prohibitively expensive, because

a particular value might be proven distinct in many different ways, and unnecessary, because the use of

possible-distinctness (as we will see in §5.3.2 below) is simply to allow parallelization logic (or other client

analysis) to make decisions and select which distinctness facts it actually needs. The client analysis will likely

need only a small fraction of all possible distinctness facts, so the specific check strategies are computed only

then.

90
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Finally, because the client analysis relies upon possible-distinct facts to make its decisions, the analysis

must be able to actually prove what it says it can prove, with an appropriate set of checks. In other words,

the word “possible” in this predicate should not be interpreted as meaning that a distinctness fact might be

provable, and later stages might look into it further; rather, we know that we can prove it with a dynamic

check, so we can commit to (e.g.) a loop parallelization based on this possible fact, with the knowledge that

it will be possible to wrap this transformed loop with checks of some sort to retain soundness.

5.3.2 Loop Parallelization and Needed Distinctness Facts

Next, given that we have a set of possible distinctness facts that includes both the static distinctness facts

and also the dynamic distinctness facts, we adapt the client analysis (the analysis that uses distinctness

facts: in Icarus, the loop parallelization logic) to make use of these facts as if they were always true, and

then determine which facts it actually needed to come to its final conclusions.

In the case of loop parallelization, this is a relatively simple adaptation. As described in §4.5, the main

function of loop parallelizability logic is to detect conflicting accesses: any write within a loop body to

a pointer that is not distinct with respect to that loop, or any pair of accesses (at least one of them a

write) that are both distinct but are not proven to alias by the must-alias analysis. The changes to the

parallelization logic in Icarus, as compared to Daedalus, consist of (i) using possible-distinctness facts

instead of ordinary distinctness facts, (ii) ignoring tag conflicts, because these will result in static non-

distinctness and thus dynamic checks, ensuring dynamic-check coverage in any case; and (iii) a second stage,

after the final determination of which loops to parallelize, in which all distinctness facts for all written-to

pointers in a loop body are gathered again, and those for which no static distinctness fact exists are noted to

be required dynamically-checked facts. These are then fed back into the distinctness analysis for its second

need phase.

5.3.3 Satisfying Needed Distinctness Facts

Finally, with the needed distinctness facts outlined by the client analysis, the needed distinctness pass

operates, working backward over the provenance graph to determine where dynamic checks must occur.

Like possible-distinctness, needed-distinctness is propagated by a set of rules that are mechanically de-

rived from the original static analysis’s inference rules. Unlike possible-distinctness, this transform involves

some choice by the analysis designer at several points to pin certain decisions and avoid backtracking, as we

will see.

It is easiest to think of each needed-distinctness rule as following a general pattern: for an original

distinctness rule that infers distinctness of a particular output (e.g., variable or field) from a set of input(s),

5.3. OUR APPROACH: HYBRID STATIC-DYNAMIC SYSTEM 91

Figure 5.4: One way of seeing the hybrid static-dynamic approach is that dynamic checks are inserted to fill
in gaps in a full cut across the static provenance graph from root facts to a desired fact F (needed for, say,
loop parallelization).

the derived rule translates needed-distinctness on the output to one of (i) nothing, if the output is already

statically proven distinct, (ii) a set of needed distinctness facts on the input(s), if those inputs have possible-

distinctness facts, or (iii) if the need cannot be propagated backward, and a local check is possible, then

a local check. One of these three options must apply as long as the client analysis only asserts needed

distinctness on entities that have possible-distinctness facts, by construction: a possible-distinctness fact can

only be injected by Rule 23 when a local check is possible (case (iii)) or by a possible-distinctness derived

directly from an original distinctness rule and possible-distinctness on all required inputs (case (ii)).

Another way of seeing this principle is that the need-propagation ensures that a cut across the static

provenance graph exists, covering all paths from root facts (those with no inbound edges) to the desired fact,

where the cut consists of both statically-proven distinctness facts and dynamically-checked facts. Fig. 5.4

illustrates this view.

One notable aspect of needed-distinctness rules is that, unlike the static distinctness rules and possible-

distinctness rules, the needed-distinctness rules operate with positive distinctness (i.e., they are not negated

as the first two are), in order to match with the positive sense of dynamic checks and of requests from

the client analysis. Thus, when we say that the needed-distinctness rules are derived from the original

distinctness rules, we mean that they are derived from inverted versions of the original rules. This, too, is a

mechanical transform using DeMorgan’s Law.

Deriving Needed-Distinctness Rules

Before describing concrete needed-distinctness rules, we briefly discuss a set of general transforms shown

in Fig. 5.5. These transforms demonstrate how to translate a distinctness rule that is composed of smaller

predicates joined by AND- and OR-conjunctions into the corresponding needed-distinctness rule.

92
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Original Distinctness Rule Transformed Needed-Distinctness Rule
Conjunction rule, propagating:

A B [Orig]
C

Need(C) ¬C Possible(A) Possible(B)
[Transformed]

Need(A) Need(B)

When the output of a rule is needed-distinct, and showing distinctness of that output ordi-
narily requires two other distinctness facts, then propagate need backward to both if both are
possible-distinct.

Conjunction rule, local check:

A B [Orig]
C

Need(C)
CheckPossible(C)

¬C
¬((Possible(A) ∨A)∧

(Possible(B) ∨B))
[Transformed]

Check(C)

When the output of a rule is needed-distinct, and showing distinctness of that output ordi-
narily requires two other distinctness facts, but one or both of those facts cannot be statically
or dynamically checked distinct, then insert a local check.

Disjunction rule, propagating to first:

A ∨B [Orig]
C

Need(C) ¬C
Possible(A)
(Prefer(A)∨¬Possible(B))

[Transformed]
Need(A)

When the output of a rule is needed-distinct, and showing distinctness of that output ordi-
narily requires one of two other distinctness facts, and either only the first is possible or both
are possible but the first is preferred, then propagate need to the first. The preference logic
is arbitrary and is used to choose a proof path so that no backtracking is needed.

Disjunction rule, propagating to second:

A ∨B [Orig]
C

Need(C) ¬C
Possible(B)
(Prefer(B)∨¬Possible(A))

[Transformed]
Need(B)

Symmetric to the above. Separate rules for the first-input and second-input propagation cases
are needed.

Disjunction rule, local check:

A ∨B [Orig]
C

Need(C)
CheckPossible(C)

¬C
¬(Possible(A) ∨A)∨
¬(Possible(B) ∨B)

[Transformed]
Check(C)

When the output of a rule is needed-distinct, and showing distinctness of that output or-
dinarily requires one of two other distinctness facts, but neither fact can be statically or
dynamically checked distinct, then insert a local check.

Negation rule:
¬A [Orig]
B

(never occurs)

Negations never occur in the corecursive core rules of a monotonic analysis; thus, there is
no need to specify a transform for negation operators in rules here.

Figure 5.5: Transforms to derive needed-distinctness rules from the original static-analysis distinctness
rules. These needed-distinctness rules propagate needed-distinctness backward from requested dynamic-
distinctness facts to determine where checks are necessary.

5.3. OUR APPROACH: HYBRID STATIC-DYNAMIC SYSTEM 93

One notable detail in Fig. 5.5 is the handling of disjunctions (OR-rules). It is sometimes the case that

proving a distinctness fact can be done in multiple ways, any of which suffices. For example, to show that the

result of a mapget1 instruction is distinct, it suffices either to show that the map abstraction is within-map

distinct and the key variable is distinct (given that the map variable is constant) in the given loop, or to show

the map abstraction is globally distinct and at least one of the key or map variable is distinct in the given

loop. In order to avoid the need to backtrack in our search for an appropriate check strategy, we transform

rules to statically prefer one option over the other. (The preference logic may be arbitrarily complex, but

it must depend only on static attributes of the instruction and inputs to the needed-distinctness phase.) In

the mapget case, a sensible heuristic is to disambiguate on the constantness of the map argument: if it is

constant in the given loop, then one could propagate need only to within-map distinctness on the map/key

combination (because within-map distinctness is weaker than global distinctness, thus likely cheaper to

check) and distinctness on the key. Otherwise, one could propagate need to global-map distinctness and the

key, unless the key has no possible-distinct fact, then to the map.

Note that if any means of dynamically proving distinctness is possible for the result, the needed-

distinctness rules will find a way to prove it. The preference logic merely steers the choice of where to

place checks in a likely-cheaper direction. The alternative, backtracking-based search, would be consider-

ably more expensive, and would likely need an accurate dynamic-check cost heuristic in any case to succeed

at optimizing overhead.

In addition, the propagate-before-local-check heuristic is designed to reduce check overheads, because it

prefers pushing checks as far “up” (toward roots of value fan-out) as possible, so that one check on an initial

value can be shared by many derived distinctness facts.

Needed-Distinctness Rules

We now describe several inference rules that form the core of the needed-distinctness analysis. These rules

propagate needed-distinctness across assignment, load, and store statements.

First, Rules 31, 32 and 33 implement the backward propagation of needed-distinctness, or local check

insertion if appropriate, for multiple-input assignments (φ-nodes). These rules implement three cases. First,

if all inputs to an assignment can be proven distinct upstream (possible-distinctness facts), and there is no

tag conflict producing a non-distinctness fact (see Fig. A.2 in the appendix describing Daedalus’ inference

rules), then we can propagate the needed-distinctness upstream, pushing checks as early as possible. However,

if either some input cannot be checked at an earlier point, or else a tag conflict is causing non-distinctness

1Note that in the evaluated version of Icarus, we disabled the map dynamic-distinctness logic to reduce analysis overhead.
However, in principle, there is nothing preventing dynamic distinctness from extending to any data structure or set of inference
rules.

94
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

at this point no matter what values arrive on the inputs, then we must perform the check locally.

Rule 31. If any input to an assignment is not statically distinct and not possible-distinct, then we will not

be able to propagate needed-distinctness upstream.

[v := φ(v1, v2, . . . , vk)]

1 ≤ i ≤ k NotPossibleDistinct(vi, L)
[AssignInputNotPossible]

AssignInputNotPossible(v, L)

Rule 32. If distinctness is needed on the output of the assignment, and it is not statically distinct already,

and if no input is not statically or possibly distinct, and there is no tag-conflict-induced non-

distinctness (§A.3), then propagate the need to inputs.

[v := φ(v1, v2, . . . , vk)]

1 ≤ i ≤ k

NeedDistinct(v, L)

NotDistinct(v, L)

|Tag(v)| = 1

¬AssignInputNotPossible(v, L)
[AssignNeedDistinctPropagate]

NeedDistinct(vi, L)

Rule 33. If distinctness is needed on the output of the assignment, and it is not statically distinct already,

but if either some input has no possible distinctness fact or else there is a local tag conflict, then

insert a check on the assignment result.

[v := φ(v1, v2, . . . , vk)]

NeedDistinct(v, L)

NotDistinct(v, L)

|Tag(v)| > 1 ∨

AssignInputNotPossible(v, L)
[AssignDistinctCheck]

CheckDistinct(v, L)

The derivation of rules from the static distinctness analysis rules can be understood as follows: the result

is distinct if all inputs are distinct (conjunction), and there is no tag conflict (another conjunction). Hence,

we apply the conjunction rules from Fig. 5.5: if all inputs to the conjunction can be checked upstream, do

so, otherwise perform a local check.

Next, we handle loads with Rules 34, 35, 36 and 37. These rules implement the following logic: if a load

either has a base pointer that is not statically or possibly distinct, or else accesses a field on an abstraction

that is not statically or possibly distinct, then needed-distinctness must be satisfied with a local check.

Otherwise, we can propagate the needed-distinctness upstream to both the base pointer and the field.

5.3. OUR APPROACH: HYBRID STATIC-DYNAMIC SYSTEM 95

Rule 34. If a load’s pointed-to field is not possibly distinct, then it must do a local check if requested.

[x := y.f]i

A ∈ pts(y)

FieldNotDistinct(A.f)

FieldNotPossibleDistinct(A.f)
[LoadMustCheckLocally1]

LoadMustCheckLocally1(Si)

Rule 35. If a load’s pointer is not possibly distinct, then the load must do a local check if requested.

[x := y.f]i NotDistinct(y, L)

NotPossibleDistinct(y, L)
[LoadMustCheckLocally2]

LoadMustCheckLocally2(Si, L)

Rule 36. If the result of a field load has a needed-distinctness fact and is not statically distinct, and the

load must use a local check by Rule 34 or 35, then perform a local check.

[x := y.f]i

NeedDistinct(x, L)

NotDistinct(x, L)

LoadMustCheckLocally1(Si)∨

LoadMustCheckLocally2(Si, L)
[LoadLocalCheck]

CheckDistinct(x, L)

Rule 37. If the result of a field load has a needed-distinctness fact and is not statically distinct, and the

load does not need to use a local check, then propagate the needed-distinctness upstream to both

the field (on all abstractions) and the pointer.

[x := y.f]i

NeedDistinct(x, L)

NotDistinct(x, L)

A ∈ pts(y)

¬LoadMustCheckLocally1(Si)

¬LoadMustCheckLocally2(Si, L)
[LoadPropagate]

NeedDistinct(y) NeedFieldDistinct(A.f)

Finally, we handle stores with Rule 38. There is only one case here, namely propagation from a field’s

needed-distinctness to needed-distinctness on all values stored into this field w.r.t. loops for which the pointer

is not constant. There is no local-check case because we cannot directly check fields for distinctness, as noted

above. The possible-distinctness rules will ensure that a field is only possibly-distinct if needed-distinctness

can be satisfied by propagation upstream, so there is no need to check for possible-distinctness of the stored

values here.

96
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Rule 38. If a field has a needed-distinctness fact, always propagate a needed-distinctness fact to all stored

values passed to store instructions operating on this field without a constant pointer.

[x.f := y]i

A ∈ pts(x)

NeedFieldDistinct(A.f)

NotFieldDistinct(A.f)

L ∈ L(Si)

NotConstant(x, L)

NotDistinct(y, L)
[StorePropagate]

NeedDistinct(y, L)

5.4 Executing with Dynamic Checks

Now that we have determined where to insert dynamic distinctness checks, we need to reason about the

runtime aspect of this transform. First, we must actually perform the checks, and propagate distinctness

facts dynamically where required. The design of this propagation is key to achieving good performance.

Then, we must ensure that we retain soundness in light of the dynamic nature of the check results. If all

checks complete successfully, then nothing needs to be done: the parallelization transform was performed

based on assumptions that ultimately held, and so execution is sound. However, any failed check suddenly

implies a number of derived facts are also now false. We must reason about the lingering effects of such

a violation, and introduce fallback mechanisms of some sort to prevent unsound execution. To do so, we

introduce a form of synchronization in parallelized loops to avoid the effects of a violated variable distinctness

fact.

5.4.1 Variable Distinctness

Performing the Check

The first and most basic type of dynamic check in Icarus is the variable distinctness check. The check

replaces a statically-proven distinctness fact with a real-time determination, just as a value (for one dynamic

instance of the variable-defining statement) is produced, whether that value is indeed distinct.

In order to enable this, we must first modify the definition of variable distinctness slightly.

Recall that variable distinctness was defined in Definition 1 of Chapter 4 as a non-aliasing property: a

variable is distinct if it does not alias itself across iterations of a single instance of a loop. This definition

is suitable for static analysis such as Daedalus, but suffers one critical flaw as a potentially dynamically-

checked property: it refers to the future as well as the past. In other words, if we evaluate the dynamic

analogue of static variable distinctness, namely the variable-distinctness of particular values assigned to that

variable at runtime, we cannot ever be sure that a variable value is distinct because it might alias a value to

occur in the future.

5.4. EXECUTING WITH DYNAMIC CHECKS 97

Figure 5.6: The difference between static distinctness, as derived by Daedalus, and dynamic backward-
looking distinctness, as checked by the dynamic checks in Icarus.

Fortunately, a simpler definition is possible to dynamically check, and remains sufficient for paralleliza-

tion. We define backward-looking distinctness in Definition 7 and illustrate its difference from static variable

distinctness in Fig. 5.6.

Definition 7. Consider a particular iteration i of one execution of loop L. Also consider some prior

iteration i′ < i, some value assigned to variable v in iteration i called vi, and some value assigned to variable

v in iteration i′ called vi′ . (A particular variable may have multiple values in one iteration if defined in a

nested loop.)

Distinct(vi, L) Must not alias a value in a prior iteration: i′ < i → vi 6= vi′

Importantly, for our application of loop parallelization, backward-looking variable distinctness on all

written-to pointers is completely sufficient to show that no cross-iteration dependencies occur. This is for

the simple reason that for any pair of aliasing pointer values in different iterations, one must come after the

other; hence, the conflict will be detected. (We will see below how this conflict is handled in a sound way.)

In order to determine backward-looking variable distinctness for each particular value, we track the set

of values that have occurred so far for this variable in this dynamic instance of the loop (since entry into the

first iteration), and in which iteration each value occurred. When a new value is produced, the dynamic-

check logic probes the hash table for the value; if found, and if the value was produced in a prior iteration,

then this is a violation of the backward-looking distinctness check. Otherwise, we insert the value into the

hash table.

Check Synchronization

Note that to return the correct result, the check must have seen all prior values w.r.t. the original sequential

execution order of the loop. However, if a loop is parallelized, this may not be the same as the order in

which values are actually encountered. Consider the loop in Fig. 5.7 and the execution timeline portrayed

to its right. Iterations produce the values of p out of order, and if the check is simply performed in a given

iteration as soon as the value is produced, the check might incorrectly conclude that there is no conflict.

98
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Figure 5.7: Variable distinctness checks require cross-iteration synchronization. The first instance of the
dynamic check on p in iteration i = 1 cannot execute until the last instance of the check for i = 0, because
the check must determine whether p aliases any value in a previous iteration.

Instead, the check must wait until all prior values of p have been produced in previous iterations of the loop.

(This is analogous to the memory-disambiguation problem in an out-of-order processor’s load/store queue:

unless the core speculates otherwise and can roll back on a misspeculation, a load must wait for addresses of

prior stores to be generated in case they alias.) This synchronization is implemented by finding point(s) in

the loop body at which no further instances of a given check occur, which we call the check-complete points,

and then enforcing a synchronization between the check-complete point in iteration i− 1 and the first check

in iteration i. This is portrayed on the right side of Fig. 5.7.

In order to find these check-complete points, the static analysis that inserts the checks computes a

backward-dataflow problem that could be described as a “remaining checks” analysis. The analysis is per-

formed with respect to a particular loop L over its body, intra- and inter-procedurally. The analysis value is

the set of checks that might still occur (once or more) before a backedge of L. A check adds itself to the set

as it propagates backward. The analysis values meet with the set-union operator at backward merge points.

No checks propagate backward from the loop header, because the predecessors to the loop header are either

in a previous iteration or not in the loop at all. Finally, once the analysis reaches a fix-point, check-complete

points are inserted at the completion boundary, where a check leaves the remaining-checks set. Ordinarily,

for a simple loop with no nested loops, this will be immediately after the check in question. However, if the

check occurs inside a nested loop of L, for example, the check-complete point might be after the exit from

the nested loop. This analysis is illustrated in Fig. 5.8.

5.4. EXECUTING WITH DYNAMIC CHECKS 99

Figure 5.8: Examples of check completion points for (i) a simple check in a single-level loop, (ii) a check
in a nested loop, and (iii) a check in a function with multiple call sites. The analysis is a simple backward
dataflow analysis illustrated on the right.

Handling Check Failures

Now that we have inserted checks where needed, we must actually make use of their results in order to retain

sound execution of the transformed program. As noted earlier, if checks always succeed, then nothing further

needs to be done, because the assumptions made during program transformation were unconditionally true

(for this execution). However, this is not guaranteed to be the case – otherwise, the checks would not be

necessary.

The key insight to our approach is that the execution of a parallelized loop can actually tolerate writes

to non-distinct pointers with the appropriate synchronization. Specifically, non-distinct pointers only lead to

unsound execution if two different iterations with aliasing pointers execute concurrently and interleave their

accesses out-of-order relative to the original (sequential) program execution. Thus, if we could synchronize

appropriately when a non-distinct pointer is discovered, sound execution would be maintained.

To implement this synchronization, when distinctness check discovers a non-distinct value, it simply

waits for all prior iterations to complete (serializes on past iterations). This synchronization is illustrated

in Fig. 5.9. When the check finally allows execution to proceed, the pointer may be freely used. To see why

this is sound, simply consider the loop starting at the serializing iteration to be a new loop instance: the

100
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Figure 5.9: Parallel execution with dynamic checks: an example of a parallelized loop with one dynamic
check failure, showing distinctness-check synchronization at every check instance (green edges) and failing
check loop-serialization synchronization (red edges).

partial ordering of instructions is exactly the same as if this were the case. Then the pointer is, virtually,

distinct again with respect to the current loop instance.

As a result, when we serialize the loop, we can also clear all distinctness-checking hash tables, because

no conflicts with prior values (existing in iterations that have already completed) are possible. This can lead

to significantly fewer serializations. Consider, for example, a list with two copies of a sequence of objects,

i.e., [x1, x2, x3, . . . , xn, x1, x2, x3, . . . , xn]: only one serialization, between the first xn and the second x1, is

necessary, rather than one for each second occurrence of an object.

Note also that this runtime scheme avoids the need to individually track non-distinct of pointers through

program dataflow, because it serializes as soon as it discovers a non-distinct pointer. In effect, the serialization

immediately converts the pointer into a distinct pointer (by waiting for the previous copy to disappear) and

then continues the program.

There is one unaddressed issue with this approach: although the serialization on previous iterations

eliminates any local-variable copies of the non-distinct value, thus rendering the checked value virtually

distinct again, it does not erase any heap effects of the previous iterations. In particular, consider a loop

that stores the checked value in a field on distinct heap objects. We cannot simply proceed with the field

store with the assumption that the stored value is distinct, because the multiple copies of the non-distinct

5.4. EXECUTING WITH DYNAMIC CHECKS 101

value will all be preserved on the heap, and the field will in fact be non-distinct. Seen another way, if we

consider the loop to have a new instance after each serialization, then any single store in the original loop will

be equivalent to multiple stores, one per virtual instance, which (as we address with the [StoreOverlap]

rule in Daedalus) can produce non-distinctness.

In order to properly track such non-distinctness, we actually need to dynamically track the non-distinct

state of the particular object field, and handle this appropriately when loading the field value later. We now

address this issue in more detail.

5.4.2 Field Distinctness

So far, we have described how the runtime system discovers non-distinct variable values and synchronizes

on previous iterations of the containing loop in order to maintain soundness. However, our analysis allows

fields to carry dynamic distinctness facts and be dynamically checked as well. We thus need to (i) detect

when a field value is non-distinct, and (ii) perform some fallback action to maintain soundness.

Field distinctness cannot be tested directly, because the check would require enumerating all objects for

a heap abstraction at runtime, and the runtime does not keep the metadata necessary to do this (nor would

the check be efficient). Rather, field possible-distinctness arises from possible-distinctness of the value stored

to the field.

Analogous to dynamic variable distinctness above, we first define a dynamic version of field distinctness.

We will take a unidirectional approach here, just as we took a backward-looking approach for variables,

because of the insight that an aliasing pair of fields only needs to be detected on one side of the conflict. In

particular: for two different objects x1 and x2 represented by the same heap abstraction X with dynamically-

distinct field X.f , whenever x1.f = x2.f , either x1.f is dynamically field-non-distinct or x2.f is.

This dynamic, field-specific notion of distinctness must be tracked at runtime, and we do so as follows

(illustrated in Fig. 5.10). First, we keep a 1-bit flag alongside the field to track its dynamic (non-)distinctness.

Because the field is a pointer, and pointers must be aligned to some alignment > 1 (on typical architectures

and runtime platforms, including the JVM that we target), we employ the common “tagged pointer” trick

and store this not-distinct flag in the lowest bit of the pointer.

The most precise implementation of a field-distinctness check would carry a non-distinct taint from a

variable that is determined to be non-distinct, and then add this taint to any field to which the value is

stored. However, this would likely impose too much runtime overhead, and is an invasive change to the

program. Instead, we keep a single “tainted” flag for the current iteration of a given loop. This flag is set by

variable dynamic-distinctness checks. Importantly, the check for the taint-bit is slightly different: it probes

a different hash-table that is not cleared on loop serialization, instead growing for the duration of the loop

102
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Figure 5.10: Illustration of dynamic field distinctness propagation with the use of “not-distinct” bits on
pointer fields.

instance. Or, equivalently, a single hash table records the iteration number that last produced a value, and

this is compared against the last serialization point. (The intuition here is that although the serialization

flushes the iterations with conflicting pointers out of the system, it does not flush their side-effects on the

heap, so we must remember the pointer-set for the duration of the loop instance.) Then, on a store to a

field that is dynamically distinctness-checked, if the tainted-iteration flag for any loop in context is set, the

not-distinct bit is set on the stored pointer value.

Finally, when a pointer is loaded from a dynamically-checked object field, the load checks the not-distinct

bit before masking it off the loaded value. If the bit is set, then the transformed program immediately

serializes the loop, waiting for all older loop iterations to complete. In addition, all newer iterations must

wait for the current iteration to complete. (The reasons for this become clear in our soundness argument in

Appendix B.)

5.4.3 Must-Alias Checks

One final type of check is necessary for soundness. Recall that the loop parallelization rules of Daedalus

require not only that written-to pointers are distinct, but that pointers that may alias, i.e., write to the

same heap abstraction, must alias (§4.4). Otherwise, two distinct pointers might traverse the same distinct

5.5. EVALUATION 103

objects in different orders, thus aliasing across iterations.

Rather than disqualify such loops, Icarus simply inserts additional checks. The fundamental condition

to verify is not that the pointers must alias, but rather that among all pointers that access the same may-

alias heap abstraction, there is distinctness. In other words, no two of these possibly-aliasing pointers can

have the same value across iterations.

In particular, Icarus inserts variable-distinctness checks on all such pointers when multiple written-to

pointers in the loop may alias. However, unlike above, these checks all have the same check identifier, hence

check against the same duplicate-detection hash-table. Additionally, the check-completion point is calculated

with respect to all of these checks.

5.5 Evaluation

In order to evaluate the effectiveness of a hybrid dynamic-static system, we must answer two fundamen-

tal questions. First, do the dynamic checks reveal additional opportunity for optimizations, such as loop

parallelization? Second, what is the overhead of performing the dynamic checks at runtime?

We answer these questions with several experiments using an implementation of Icarus based on the

Daedalus infrastructure. We will first simply report the number of additional parallelizable loops (counting

statically) and the number of inserted dynamic checks required to parallelize these loops. Then, we measure

improvement in coverage: the fraction of all dynamic instructions in a trace that are within the body of a

parallelizable loop. We finally show execution speedups under several configurations.

This evaluation is designed mainly as an opportunity study: because our primary contribution is the

analysis itself, the parallelization opportunity that it uncovers is a more fundamental measure of its effec-

tiveness than the simulated speedup of a particular configuration. In addition, as we will discuss further

below, we find that further work is required to tune the heuristics (e.g., loop selection) and perhaps optimize

the dynamic checks further. We wish to decouple the potential that the analysis itself provides, and more

generally that the hybrid static-dynamic approach provides, from our particular implementation.

5.5.1 Methodology

We implement Icarus on top of the Daedalus system in several parts. We first implement the analysis

itself. As before, the analysis is constructed as a set of inference rules in Datalog. The result of the analysis

is a set of annotations on program points indicating parallelizable loops and locking-insertion directives (as

in Daedalus) as well as dynamic check sites.

We then evaluate the system in simulation. We first propagate program values through the dynamic

instruction traces so that the simulation infrastructure can actually evaluate the dynamic checks. This

104
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

requires emitting additional metadata in the traces and tracking the current state of JVM local variables

and operand-stack slots. The dynamic checks are actually evaluated in the trace demultiplexer, rather than

in the simulator itself, because all of the needed values are present in the trace, and the check results will

not change because loop parallelization retains original program semantics. As the demultiplexer evaluates

dynamic checks, it emits the appropriate synchronization edges between program points in the trace chunks

in order to enforce the necessary loop serializations and dynamic check ordering.

We initially performed system simulations with the same configuration as that used for Daedalus (see

Table 4.1). As we will describe in more detail in §5.5.5, we found that the backend loop-choice heuristics

and dynamic-check implementation are not yet well-suited to the large number of loop iterations that are

dynamically parallelized (and often serialized). We thus perform another set of simulations as an ideal limit

study, showing potential with workqueue iteration-spawn latency and cross-core cache-miss latency removed.

Note that the coverage and simulation speedup results for a given benchmark in this chapter are not

directly comparable to those for Daedalus in Chapter 4 because we needed to re-trace benchmarks in order

to capture program values and other additional metadata. Because capturing these values enlarged traces

significantly, the traces have somewhat lower instruction counts, and so spend less time in the main loops of

benchmarks; coverage is thus slightly lower than it would be in a real system evaluation with longer runs. In

order to allow direct comparison with Daedalus, we re-run all Daedalus evaluations here using the same

traces and configurations as for Icarus. The benchmarks themselves are exactly the same, so the static

analysis results (e.g., number of parallelizable loops) are directly comparable.

5.5.2 Parallelizable Loops

We first evaluate the simplest metric of success: how many additional loops can be parallelized with the

help of dynamic checks? Table 5.1 shows, for each benchmark, the number of loops that are parallelizable

under the rules of the baseline affine-indexing analysis, Daedalus, and Icarus. In addition, for Icarus, the

table shows the number of each type of dynamic check required: variable-distinctness checks, tag-mismatch

checks, load not-distinct-bit checks, and store not-distinct-bit updates. As shown by this data, Icarus is

able to discover a significant number of additional loops, and the number of required checks is modest. If

a fully-dynamic scheme were used that checked every address for a conflict (e.g., TLS), many more checks

would be required. Instead, Icarus is able to statically propagate the implications of a few checks and use

these facts in many places.

5.5. EVALUATION 105

Parallelizable Loops Dynamic Checks
Benchmark Stat. Dyn. Var Tag Load Store
dacapo.batik 62 68 3 196 0 0
dacapo.luindex 0 0 0 0 0 0
dacapo.pmd 36 46 22 14 2 38
dacapo.xalan 0 1 0 6 0 0
cpu.cloudsim 15 20 98 24 8 7
cpu.djbdd 9 21 29 34 0 0
cpu.jacc 42 62 43 18 0 0
cpu.jgrapht 5 5 0 0 0 0
cpu.jlatexmath 0 0 0 0 0 0
cpu.jscheme 0 0 0 0 0 0
cpu.jtidy 5 9 533 78 545 73
cpu.sablebdd 10 11 1 0 0 0
cpu.sat4j 9 11 2 6 0 0
olden.bh 10 10 0 0 0 0
olden.bisort 0 0 0 0 0 0
olden.em3d 1 2 6 4 1 6
olden.health 0 0 0 0 0 0
olden.mst 2 2 0 0 0 0
olden.perimeter 0 0 0 0 0 0
olden.power 12 14 1 45 0 0
olden.treeadd 0 0 0 0 0 0
olden.tsp 0 0 0 0 0 0
olden.voronoi 0 0 0 0 0 0
pbbs.comparisonsort 0 1 0 6 0 0
pbbs.convexhull 0 0 0 0 0 0
pbbs.integersort 0 3 2 6 0 0
pbbs.nn 2 5 13 0 0 0
pbbs.raycast 3 6 1 29 0 0
pbbs.removeduplicates 0 0 0 0 0 0
Average 7.7 10.2 26.0 16.1 19.2 4.3

Table 5.1: Parallelizable loop and dynamic-check counts under Icarus compared to Daedalus.

5.5.3 Dynamic-Check and Loop Parallelization Success Rates

Next, we count the number of dynamic checks, and the number of dynamically-checked parallelized loop

iterations, in each benchmark. We report the fraction of each that are successful: checks that verify the

dynamically-checked fact (hence require no corrective action), and loop iterations that do not experience any

check failures (hence do not need to serialize on previous iterations). Table 5.2 presents this data: for each

benchmark with at least one executed dynamically-parallelized loop, it provides the number of successful and

failed checks, the number of successful and serialized dynamically-parallelized loop iterations, and success

ratios for each.

Overall, check success rates and the resulting loop-iteration success rates vary widely by benchmark.

The analysis has no heuristics for which distinctness checks might be likely to succeed or fail, other than the

106
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

Dynamic Checks Loop Iterations
Benchmark All Success Succ. Rate All Success Succ. Rate
dacapo.pmd 728 651 89.4% 40 29 72.5%
cpu.cloudsim 1241 684 55.1% 339310 339151 99.9%
cpu.djbdd 223 200 89.7% 227 204 89.9%
cpu.jacc 749 661 88.3% 1008 943 93.6%
cpu.jtidy 2342 2071 88.4% 2348 2077 88.5%
olden.em3d 35000 26336 75.2% 5200 344 6.6%
olden.power 56008 54999 98.2% 78692 39683 50.4%
pbbs.comparisonsort 0 0 — 10002 10002 100.0%
pbbs.intsort 200090 100060 50.0% 110132 10102 9.2%
pbbs.nn 1017 777 76.4% 82669 82429 99.7%
pbbs.raycast 81088 81038 99.9% 2510 2491 99.2%

Table 5.2: Success rates for dynamic checks (left half) and dynamically-parallelized loop iterations (right
half) for benchmarks that have at least one dynamically-parallelized loop under Icarus.

very simple rule that a variable proven to be constant with respect to L will never be distinct with respect

to L. Thus, it is not surprising that by maximizing the number of parallelizable loops, Icarus has also

chosen to perform a number of checks that are unlikely to succeed. Nevertheless, the fact that in a number

of cases, a large fraction of loop iterations succeed (execute in parallel without serializing), is encouraging.

Our observations here – simply that many actually-parallelizable iterations exist when observed dynamically

– are in line with previous observations by speculative-parallelization works. (The key difference between

Icarus and those systems, aside from fewer required checks, is that our system is able to parallelize these

loops without any speculation.)

One additional interesting observation is that in several benchmarks (pbbs.comparisonsort, pbbs.nn,

and pbbs.raycast), no dynamic check ever actually executes, despite the dynamic parallelization of at least

one executed loop. This means simply that the path on which the check was placed was never reached. (The

runtime still has slight overhead in this case: when execution reaches a point in the loop iteration that can

no longer reach any check in that iteration, the check-completion point will execute to allow future iterations

to check against the distinctness hash-table.) This is the best case for a dynamic check: it is inserted for

soundness, but is not actually reached under real inputs, so has as little overhead as possible.

5.5.4 Parallelization Coverage

We next evaluate parallelization coverage, using the same definition as in §4.6.2: fraction of dynamic in-

structions in an execution trace that are within an iteration of a parallelized loop. Fig. 5.11 shows this

data for all benchmarks with nonzero coverage. We break down coverage for each benchmark into several

portions: instructions in loop iterations that are statically parallelizable under the affine-indexing array-

based baseline analysis, then instructions in parallelizable loops under Daedalus, then those in iterations

5.5. EVALUATION 107

 0

 20

 40

 60

 80

 100

d
a

c
a

p
o
.p

m
d

c
p

u
.c

lo
u

d
s
im

c
p

u
.d

jb
d

d

c
p

u
.j
a

c
c

c
p

u
.s

a
b

le
b

d
d

o
ld

e
n

.b
h

o
ld

e
n

.e
m

3
d

o
ld

e
n

.m
s
t

o
ld

e
n

.p
o

w
e

r

p
b

b
s
.c

o
m

p
a

ri
s
o

n
s
o

rt

p
b

b
s
.i
n

ts
o

rt

p
b

b
s
.n

n

p
b

b
s
.r

a
y
c
a

s
t

A
V

G

%
 D

y
n

a
m

ic
 I

n
s
n

s
.

Dynamic Insns. in Parallelized Loops

In Affine-Indexing Parallelizable Iter.
In Stat. Parallelizable (Daedalus) Iter.

In Dyn. Parallelizable (Icarus) Iter., Fully Parallelized
In Dyn. Parallelizable (Icarus) Iter., Partially Serialized

Figure 5.11: Parallelization coverage, or fraction of all dynamic instructions in the evaluated trace that occur
within a parallelizable loop instance, for benchmarks with nonzero coverage under any analysis. This plot
breaks down coverage by (bottom to top) parallelizable loops under the baseline affine-indexing/array-based
system, then statically-parallelizable loops under Daedalus, then iterations of dynamically-parallelizable
loops under Icarus that did not serialize due to a failed check, and finally iterations of dynamically-
parallelizable loops under Icarus that did serialize.

that are dynamically paralellizable under Icarus and had no failed checks, and those in iterations that are

dynamically parallelizable but had at least one failed check. Note that the last category may still expose

parallelism during execution because the serialization only occurs at the point that the non-distinct value

is actually generated. For example, if a non-distinct pointer value is computed and then accessed near the

end of a loop iteration, most of the iteration may still execute concurrently with other iterations.

As above, the effects vary widely by benchmark, but in a number of cases, Icarus is able to substantially

increase coverage. Overall, coverage on this set of benchmarks increases from 24.3% in the baseline affine

indexing system and 38.4% using Daedalus to 42.2% using Icarus, counting only iterations with all-

successful dynamic checks, up to an upper bound of 47.0% in serialized (but still potentially partially-parallel)

iterations.

5.5.5 Execution Speedup

We next simulate execution of the parallelized loops discovered by Icarus to measure program speedup.

We first evaluated Icarus on the same system configuration that was used to evaluate Daedalus, and

quickly found that speedup was not optimal: on average (geomean), Icarus was actually 0.3% slower than

108
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

 0

 1

 2

 3

 4

 5

 6

d
a

c
a

p
o
.p

m
d

c
p

u
.c

lo
u

d
s
im

c
p

u
.d

jb
d

d

c
p

u
.j
a

c
c

c
p

u
.s

a
b

le
b

d
d

o
ld

e
n

.b
h

o
ld

e
n

.e
m

3
d

o
ld

e
n

.m
s
t

o
ld

e
n

.p
o

w
e

r

p
b

b
s
.c

o
m

p
a

ri
s
o

n
s
o

rt

p
b

b
s
.i
n

ts
o

rt

p
b

b
s
.n

n

p
b

b
s
.r

a
y
c
a

s
t

G
E

O
M

E
A

N

15.8x 16.0x
S

p
e

e
d

u
p

Parallelized Speedup (16 Cores), 1-cycle WQ, Perf. Caches

Affine
Daedalus

Icarus

Figure 5.12: Parallelization speedup for Icarus as compared to Daedalus and the affine-indexing system
on an ideal configuration removing the overhead of suboptimal loop-choice heuristics.

Daedalus, with significant losses in some benchmarks.

The immediate conclusion from this simulation result is that despite the promise shown by lower-level

metrics such as successful dynamic checks and dynamically-parallelizable loop iterations, Icarus has little

effect over Daedalus. However, given that many loop iterations are successfully parallelized, and did

not require any serializations to maintain soundness, we expect that there should be some non-negligible

speedup. In particular, in an idealized analysis, a loop that is parallelized with dynamic checks should at

worst perform the same as the original sequential loop: serializations simply force one iteration to begin

or resume after the previous iterations complete. However, we found that this expected speedup is largely

masked by the overhead of two factors: workqueue latency and cross-core cache misses. Both of these aspects

of the system become relevant because Icarus (i) finds many small loop iterations, magnifying the cost of

the necessary inter-chunk synchronization, and (ii) parallelizes many more loop instances in general, which

allows execution to migrate arbitrarily across cores. (Our system does not have a core affinity policy – ready

chunks are assigned to the first available core.)

To measure the potential, given sufficient backend engineering, we ran one more round of simulations.

Fig. 5.12 shows an evaluation of nonzero-coverage benchmarks with two changes: (i) the workqueue latency

is reduced to 1 cycle, which eliminates the overhead of the additional synchronization from many small

iterations; and (ii) the cache system is disabled completely, so that all memory accesses are cache hits,

thus eliminating the cache penalty when work migrates across cores. This evaluation shows somewhat more

5.5. EVALUATION 109

 1

 10

 100

 1000

 10000

 100000

d
a

c
a

p
o
.p

m
d

c
p

u
.c

lo
u

d
s
im

c
p

u
.d

jb
d

d
c
p

u
.j
a

c
c

c
p

u
.s

a
b

le
b

d
d

o
ld

e
n

.b
h

o
ld

e
n

.e
m

3
d

o
ld

e
n

.m
s
t

o
ld

e
n

.p
o

w
e

r
p

b
b

s
.c

o
m

p
a

ri
s
o

n
s
o

rt
p

b
b

s
.i
n

ts
o

rt
p

b
b

s
.n

n
p

b
b

s
.r

a
y
c
a

s
t

A
V

G

(L
o

g
 S

c
a

le
)

Dynamic Instructions/Iteration

d
a

c
a

p
o
.p

m
d

c
p

u
.c

lo
u

d
s
im

c
p

u
.d

jb
d

d
c
p

u
.j
a

c
c

c
p

u
.s

a
b

le
b

d
d

o
ld

e
n

.b
h

o
ld

e
n

.e
m

3
d

o
ld

e
n

.m
s
t

o
ld

e
n

.p
o

w
e

r
p

b
b

s
.c

o
m

p
a

ri
s
o

n
s
o

rt
p

b
b

s
.i
n

ts
o

rt
p

b
b

s
.n

n
p

b
b

s
.r

a
y
c
a

s
t

A
V

G

Iterations/Dynamic Instance

Figure 5.13: Average loop iteration length (in dynamic instructions) and iteration count per dynamic instance
for all parallelized loops under Icarus. These results quantify the remaining difficulty in obtaining good
speedup with real-world runtime parameters.

promise, at least on a few benchmarks: on average (geomean), Icarus achieves a geomean speedup of

1.94× on 16 cores, relative to 1.73× for Daedalus and 1.23× for the affine-indexing-based system.2 With

more work, the potential could likely be extended further. Though this is strictly an upper bound, with

important overheads eliminated, it demonstrates that a sufficiently well-engineered parallel loop runtime

could likely achieve speedup by using dynamic checks. We therefore suggest that Icarus, as an analysis,

points toward and enables further work in program parallelization by soundly proving many loop iterations

to be parallelizable.

5.5.6 Loop Iteration Length and Count

Finally, we present data that quantifies the average length (in dynamic instructions) of parallelized loop

iterations, and the average number of loop iterations per dynamic loop instance, in the programs parallelized

by Icarus. Fig. 5.13 shows these results.

Overall, these measurements demonstrate the main challenge to practical loop parallelization with a

system such as Icarus: though programs contain quite a few parallelizable loops on average, these loops

2Note that these evaluations do not profile for optimal loop choices in the affine-indexing and Daedalus systems as the
evaluation in Chapter 4 did, and even on this nearly-ideal system there are still some overheads for parallel loop synchronization,
so the results are not directly comparable to the previous chapter.

110
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

tend to be dynamically quite small. Iterations tend to be short, and iteration batching cannot amortize

per-iteration overhead effectively because there are also relatively few iterations in many loop instances.

Thus, both coordination/scheduling work per iteration and per dynamic instance must be lightweight in

order for speedup to result.

5.6 Discussion

5.6.1 Practical Application to Loop Parallelization

We have presented Icarus with a focus on the analysis itself, simply demonstrating that a sound means exists

to extend a static analysis with a few well-placed dynamic checks. Our proof-of-concept implementation of

the execution mechanisms, though able to expose opportunity in available parallelism, highlighted the need

for more backend engineering to obtain better real-world speedups. In this section, we discuss a few directions

for future work along this line.

Perhaps the largest payoff exists in correctly choosing which loops to parallelize. We have adopted the

simplest possible heuristic: we parallelize all loops that can be parallelized. As a proof-of-concept, this

exposes maximal potential parallelism. It works well to provide an upper bound, as we have done in our

evaluation (§5.5.5). However, many static and dynamic techniques could be used to improve this choice. For

example, the system could statically profile the parallelization of each loop to determine which is actually

beneficial. A more sophisticated dynamic adjustment could be made using traditional feedback-controller

techniques or machine learning. More detailed cost models and other heuristics might improve the choice

at compile time. Such a choice could even be made dynamically: any parallelizable loop can compute its

trip-count before it begins executing (this is among the parallelizability requirements), so the program could

branch to a parallelized version of the loop or the original code separately for each instance. Though this

work is orthogonal to our analysis-focused exploration, it is likely necessary for Icarus to be beneficial in a

real compiler/runtime implementation.

It might also be possible to harness the opportunity in smaller loop instances with the assistance of a

very high-performance parallel loop runtime, or perhaps some hardware for managing the loop iteration

workqueue. While such an approach is interesting, it extends beyond the scope of this thesis, and we leave

it for future work.

We observe that there is a continuum between Icarus, which is fully non-speculative, and speculative

parallelism systems such as TLS (Thread-Level Speculation). We believe that there is significant opportunity

to be found by exploring hybrids of the two. Icarus is carefully designed to check every dynamic fact before

executing code that relies on it; if it instead performed some judiciously-applied speculation, limited in

5.6. DISCUSSION 111

scope by the static analysis, it could avoid the check-ordering synchronization in many or most cases. The

speculate/block choice could be made individually for each memory access or pointer variable based on an

estimate of the likelihood of the check to succeed. (Note that this is analogous to the decision to speculate

or block a store-to-load forward in an out-of-order CPU microarchitecture, and there are predictors to make

this decision as well [32].)

There are also program transforms that could be applied on top of loop parallelization to reduce the

impact of the synchronization. Most notably, Zhai et al. [116] propose altering a compiler’s instruction

scheduler to take TLS loop iteration critical-path length into account. A similar transform could ensure

that, in effect, all or most potentially non-distinct addresses are generated early in the loop iteration so that

younger iterations can quickly check and continue.

5.6.2 Limits of Sequential-Program Auto-Parallelization

Finally, we briefly discuss our interpretation of the implications of our results on the broader problem of auto-

parallelization. While we saw significant parallelization potential in many programs, the opportunity was

far from universal. In many other programs, important loops remain serialized because of true dependencies

that are either fundamental to the particular algorithm, or else are avoidable but only with truly deep

changes to the program.

For an example of an incidental dependency that could be removed, consider the benchmark cpu.janino,

which is a Java compiler. In this program, a loop processes input files one at a time for compilation. As each

file is compiled, the name-resolution logic looks up and processes referred-to classes (e.g., in the standard

library or in other portions of the program not currently being compiled). The first time a class is referenced,

it is processed in certain ways and inserted into a symbol table. Subsequently, this cached data is simply

fetched from the symbol table. This pattern is fundamentally parallelizable, but with some complexity: the

program could perform the processing work in whichever loop iteration first finds that the results are not

cached. Then, to avoid redundant work, the thread that computes the result would likely insert a placeholder

value of some sort to indicate that other threads should block until the result is computed. Such an analysis

and transform is currently beyond the scope of our system’s capabilities.

Many programs, unfortunately, have examples of fundamental dependencies: many algorithms are in-

herently serial. For some of these algorithms, alternative algorithms exist that solve the same problem in a

parallel way. However, replacing the former with the latter is a pattern-matching problem that is unlikely

to be easily generalized.

Overall, engineering the parallelizability analysis and set of transforms is a tradeoff between general

applicability and success in specific applications. At one extreme, the system pattern-matches all algorithms

112
CHAPTER 5. ICARUS: EXTENDING STATIC LOOP PARALLELIZATION ANALYSIS WITH

DYNAMIC CHECKS

or main loops that we are interested in parallelizing, and replaces them with their parallel equivalents that

have been hand-selected by the tool author. At the other extreme, the system analyzes all program code

at the language level and performs only transforms that retain the same computed result with respect

to language-level semantics. While no system can solve all parallelization problems (due to the Halting

Problem), there several useful design points along this spectrum. Daedalus and Icarus lie closer to

the latter end of this spectrum, i.e., general analysis, and fundamentally improve on the state of the art

by enhancing the heap analysis, allowing the compiler to prove that more parallelizations will preserve

original behavior. By adding better recognition of particular patterns and idioms that have parallel, or

parallelization-friendly, equivalents, the system could be made to parallelize more code.

5.7 Related Work

As far as we are aware, no prior work provides a principled means of converting a static analysis to a hybrid

static-dynamic analysis as we have. However, previous work has suggested several ways to use dynamic

checks to enhance or replace static analysis.

As cited earlier, Wu and Padua [114] introduce a loop-parallelization system that uses dynamic checks

on hash-table keys to verify that the keys do not overlap between loop iterations. It appears that this design

choice was motivated out of necessity, however, rather than as a means to improve precision. Nevertheless,

the system demonstrates a hybrid between static and dynamic analysis.

Ernst [41] discusses the tradeoff between static and dynamic analysis. This prior work notes that static

analysis is sound but often limited in precision; in contrast, dynamic analysis is perfectly precise, but

unsound. Ernst suggests harnessing the best of both approaches by creating hybrid analyses.

Several analyses make practical use of this insight. For example, Sengupta et al. [98] build a system

that enforces a strong memory model with a combination of a static compiler analysis and dynamic instru-

mentation. In general, compiler analyses combined with particular runtime techniques can work together

to provide useful guarantees to the programmer: for example, a series of works on intermittent-computing

programming models [70, 34, 71, 72] use a combination of static compiler transforms and transaction-like

runtime system support to provide coherent program state on a system that fails and restarts frequently.

Rus et al. [94] introduce a hybrid static-dynamic analysis framework that can incorporate multiple loop-

parallelization analyses, though it is specialized for numeric/scientific-type loop nests with array accesses.

Specialization is another compiler optimization that involves both static and dynamic elements. A

specialization transform takes a portion of the program and hypothesizes certain assumptions, such as the

types of variables or the aliasing or non-aliasing of pointers. Then, given these assumptions, it can often

perform much more powerful optimizations because edge-case scenarios are no longer possible. For example,

5.8. CHAPTER SUMMARY 113

many high-performance JIT compilers for dynamic languages, such as Chromium’s V8 [8] and Firefox’s

SpiderMonkey [7], specialize on variable types. Chevalier-Boisvert and Feeley [31] introduce Basic Block

Versioning, in which assumptions about variable types are checked once dynamically (e.g., by a branch)

then propagated statically along control-flow edges from this branch, similarly to how Icarus statically

propagates checked assumptions from an earlier dynamic distinctness check to later direct and indirect uses

of the value.

Motivated by conservative static analysis results for loop parallelization, many purely-dynamic depen-

dency tracking techniques (e.g., profiling read and write sets) have also been used in an effort to measure

loop dependencies more precisely [17, 79, 90, 60, 52, 96, 106]. The main disadvantage of such systems is

that purely-dynamic analyses cannot be sound: some new program behavior could always occur that did not

occur during the analysis phase. In addition, these analyses typically have high overhead during profiling

because they must instrument every memory access. In contrast, Icarus uses static analysis to make best

use of a dynamically-checked fact by following all of its direct and indirect implications.

Finally, our approach to executing parallelized loop iterations resembles Thread-Level Speculation [104]

and other speculative parallelization systems such as Multiscalar [101], though only superficially. The main

similarity between these approaches and ours is in the use of dynamic checks across concurrently-executing

loop iterations to ensure that memory accesses do not conflict. The primary difference is that these ap-

proaches are speculative, resolving conflicts by rolling back state, while our approach avoids speculation by

pausing loop iterations until no conflict exists.

5.8 Chapter Summary

In this chapter, we introduced Icarus, a system that extends the static loop-parallelization analysis of

the Daedalus system to allow for dynamic checks of certain required program properties. The hybrid

static/dynamic approach used by Icarus determines which dynamic checks are necessary to prove that

a loop is parallelizable, propagating the analysis conclusions that are conditionally true (given a successful

check) and thus allowing a single dynamic check to unlock many additional static-analysis facts and resulting

program transforms. We described how to transform inference rules from Daedalus to produce the two-

pass analysis of Icarus that computes (i) possible dynamically-verified facts, and (ii) needed checks. We

outlined a runtime system that performs dynamic variable distinctness checks, and propagates not-distinct

flags on object fields. This system inserts synchronization between loop iterations as necessary to preserve

sound execution without any speculation or rollback of side-effects. Finally, we measured the parallelization

coverage of this analysis and its effectiveness in simulation, showing that there is significant potential to

improve performance if the backend execution challenges are overcome.

Chapter 6

Future Work and Conclusions

There once was a quite large compiler
That with many tools did conspire.
It became soon aware
That it could not stand to bear
More code, and promptly retired!

6.1 Future Research Directions

In this thesis, we began with a vision of high-level program transforms by a compiler that understands the

programmer’s intent. We have introduced several analyses that provide a technical underpinning to enable

a small step toward this goal, specifically by enabling better loop parallelization. However, there are many

more steps that a compiler could take to recognize and take advantage of common patterns and idioms in

programs. We outline several directions for future work here.

6.1.1 IR with Additional Primitives

Our built-in data structure primitives introduced in Chapter 3 enabled increased precision in points-to

analysis, and thus also distinctness analysis, by encoding program operations on some fundamental data

structures explicitly rather than as a black-box implementation. However, there are two shortcomings to

this approach that could be addressed with future work.

First, the set of primitives (maps and lists), while very useful and general, does not cover the full range of

interesting data structures in use today. The user may build (e.g.) a graph out of lower-level data structures

such as lists, but by analyzing the code only at the level of the constituent lists, the compiler is missing the

bigger picture: for example, it would not be able to recognize a BFS traversal over the graph.

115

116 CHAPTER 6. FUTURE WORK AND CONCLUSIONS

Thus, we suggest incorporating additional built-in operations, but in a principled way. In particular, we

envision a hierarchical IR, where a set of operations could be represented by a new, higher-level operation,

but the original operations would remain as well. In essence, this involves (i) an open-ended definition of

IR statement types, and (ii) a combinator that joins alternative but equivalent implementations. (This is

somewhat similar to PetaBricks [14], though the alternative views are provided to the compiler rather than

chosen by the compiler, and the analysis tends to raise the level of abstraction rather than lower it to a

concrete implementation.)

In addition to the existing built-in data-structure operators, which are fundamentally data-manipulation

statements, we suggest adding higher-level control-flow primitives as well. For example, a traversal loop

over an iterable sequence, which we recognized manually in Daedalus for the purposes of loop paralleliza-

tion, could be its own primitive. Its fallback representation is the ordinary loop using the iterator-related

operators, but it would serve many analyses well to see the higher-level pattern, too.

The advantage of such a representation is that it would enable additional high-level understanding to

be incorporated into the compiler’s model of the program, while retaining the original operations, so that

analyses need not be extended to understand every new high-level primitive. In other words, if an analysis

directly understands (e.g.) a BFS graph-traversal control-flow operator, it can use this view, but otherwise,

an analysis that understands only the lower-level list and map operations will work too.

Once this hierarchical, extensible representation exists, there are multiple ways to lift a program into the

higher-level representation. The extended primitives could be used directly by a library that provides both

the direct high-level operation and a fallback lower-level equivalent implementation. Or, the creator of the

new IR primitives could develop pattern matchers to lift the program into this representation automatically.

We now discuss this idea in more detail.

6.1.2 Higher-Level Pattern Recognition and Transforms

A compiler analysis generally falls into one of two categories: it could be a general analysis that applies to

all code (e.g., constant propagation, common-subexpression elimination, points-to analysis, as well as our

distinctness analysis), or it could consist of a set of pattern-matching rules that transform certain idioms into

better implementations (e.g., strength reduction and other peephole optimizations). This thesis has focused

on introducing general analyses that provide useful information to enable desired program transforms. In

particular, semantic models, distinctness analysis and dynamic checks refine the aliasing information that is

available to improve loop parallelization. In addition to this work, many different types of pattern-matching

could be employed.

We suggest considering the use of pattern-matching to find (at least) (i) functional-programming idioms

6.1. FUTURE RESEARCH DIRECTIONS 117

(such as maps, filters, and reduces over sequences) that have been written imperatively, and to encode

them directly as data-structure operators in a sort of data-streaming DSL representation; and (ii) well-

known sorts of traversals over data structures, such as DFS and BFS over graphs, and encode them as

control-flow operators. These patterns could naturally compose as well: for example, a functional map

pattern-matcher could be expressed in terms of an iterable-sequence loop pattern. The map pattern also

requires a loop parallelization-like analysis to ensure each item’s computation is independent, so it could

match on results provided by distinctness and parallelizability analysis, as could many other patterns. The

“output by appending to a list” portion of the imperative map-over-list implementation could be factored

out and reused by (e.g.) the filter pattern as well.

The ultimate goal of this pattern matching is to encapsulate as much of the program as possible in

higher-level descriptions to enable more powerful transforms to be done. Remaining behavior that cannot

be analyzed either becomes a black box inside a higher-level control-flow operator (e.g., a traversal loop that

is marked as not parallelizable because of arbitrary data dependencies), or else arbitrary glue code at the

top level, between islands of high-level understanding.

6.1.3 Automated Transform of Analyses to Use Dynamic Checks

We believe that many other program analyses could benefit from the use of dynamic information. To that

end, the techniques that we developed for Icarus are reasonably general, and could likely be applied to many

other analyses. The principles to create the inference rules for the two-pass dynamic-fact possibility/need

analysis from the original inference rules (Fig. 5.5) apply to the inference rules for any monotonic analysis.

Many such analyses exist (the dataflow-problem abstraction is the canonical means of describing a compiler

analysis), and many of these analyses compute program properties that can also be checked and propagated

at runtime. The main challenge is to determine how to perform checks, track check results, and recover from

check failures.

This line of work could be seen as a type of specialization, in which a compiler transforms code in a

way that applies to a subset of all possible inputs and dynamically chooses this code. The advantage of our

approach is that it outlines a mechanical way of deriving such an analysis, easing its wider adoption.

6.1.4 General Cost/Benefit Compiler-Experiment Framework

In the course of developing both Daedalus and Icarus, we made several heuristic decisions that have a

potentially large hand in performance: in particular, which loops to parallelize, and which dynamic checks

to insert. The heuristics that we used were simple (for Daedalus, profiling-based; for Icarus, parallelize

as many loops as possible, and push checks as early as possible). However, many more complex types

118 CHAPTER 6. FUTURE WORK AND CONCLUSIONS

of reasoning are possible. The conventional approach of developing cost and benefit functions (such as is

commonly used for function-inlining decisions) might work well, although the benefit of loop parallelization

can be somewhat hard to predict in the presence of inserted locking and without profiling information about

loop trip counts and iteration-length distributions.

We envision a more general framework that can make hypotheses and backtrack at multiple levels, both in

analysis and potentially during runtime (using a JIT-like framework that permits transforms during program

execution). At static-analysis time, the use of backtracking could enable better placement of dynamic checks,

for example. During runtime, the system could hypothesize a certain benefit, perform a transform, and revert

this decision and take a different path if dynamic checks fail too often or performance is not as expected.

In general, the combination of dynamic experimentation and profiling with the use of dynamic checks and

hybrid static-dynamic analysis appears to be a very fruitful ground for the development of new ideas and

techniques.

6.1.5 Full Compiler Backend for Loop Parallelization

We evaluated loop parallelization in this work using simulation in order to enable the study of varying param-

eters, and to avoid the significant engineering overhead of building and optimizing a real compiler-transform

backend. We believe this was a prudent decision given the time and resources available and the relative pay-

offs of different approaches in terms of research conclusions and new ideas. However, the Daedalus/Icarus

system should be extended with a robust, well-optimized backend that actually parallelizes programs in or-

der to complete the toolchain. In fact, we prototyped such a backend in earlier loop-parallelization work

(based on data-structure-aware dynamic analysis), but it needs significant optimization in order to produce

satisfactory results, due to many of the same overheads described in Chapter 5.

6.1.6 Analysis of Systems Languages Such As C/C++

Although our system is not fundamentally tied to Java as an input language (its principles apply to any

imperative language), Java does allow for some simplifying assumptions w.r.t. heap behavior in particular

that are not present in all languages. For example, in common systems programming languages such as C

and C++, pointers can alias the internals of a data structure (individual fields or sub-structs), and arbitrary

aliasing and type-punning can occur via the use of unions or arbitrary pointer casting. Points-to analyses

exist for C/C++, so solving these issues at a basic level is not new ground. However, some thought would

be required to add the data-structure primitives and to model standard library types such as the C++

STL with them. Finally, on a practical level, lower-level languages such as C do not have standard-library

facilities for common data structures, leading to the existence of many third-party libraries and many one-off

6.2. CONCLUSION 119

implementations of lists, hash-tables, and other types. Additional work, or perhaps a new type of analysis,

might be necessary to enable semantic models to capture the behavior of these data types in such a language

in a practical way.

6.1.7 Applications of Distinctness to Type Systems

We believe that the distinctness concept could be applied to enhance a type system’s description of the

program’s heap in ways that would be helpful both in ensuring program correctness and in enabling paral-

lelization. This could be similar in concept to the region/partition-based system in Legion [107], in that it

describes a partitioning of the heap that is based on the program’s data structure. However, the analysis

abilities of Daedalus extend beyond those of Legion by virtue of its first-class high-level data structures.

The analysis performed by Daedalus then becomes akin to type inference, and the programmer can help

the system along by explicitly annotating distinctness on pointer types as necessary. Furthermore, distinct-

ness could become part of an API contract: for example, a library-level parallel-loop construct that takes

user code as a first-class function could specify distinctness requirements on all pointers passed into that

function.

6.2 Conclusion

In this thesis, we first introduced IR (intermediate representation) primitives in the compiler for the common

map, list, and set data structures, and semantic models that map portions of the program or standard library

to use these primitives directly. We showed that this change enables the compiler to analyze program heap

behavior and aliasing with significant additional precision. We then described Daedalus (Data-structure-

aware Distinctness Analysis), a new type of alias analysis that discovers distinctness, or non-aliasing across

loop iterations, in local program variables and related non-aliasing invariants on the program heap. We

provided a set of rules to determine when a loop is parallelizable based on distinctness, and we demonstrated

that this loop-parallelization system achieves significantly better speedup on a set of Java benchmarks than

prior array-indexing-based systems. Finally, we addressed analysis limitations of Daedalus by introducing

Icarus (Integrated Compiler and Runtime with User-level Semantics), a system that incorporates dynamic

checks to augment the static conclusions of Daedalus in a principled way. We first developed a set of

general principles to convert the static-analysis rules into rules that reason about hybrid static/dynamic

facts and the best locations to perform dynamic checks. We then described a runtime system that is able to

execute parallelized loops with dynamic checks, without any speculation or rollback upon check failure, in

a sound manner. We showed that Daedalus achieves significant additional loop parallelization and hence

speedup over Icarus and prior work.

120 CHAPTER 6. FUTURE WORK AND CONCLUSIONS

We believe that this system may serve as a foundation for additional work on high-level program anal-

ysis and transformation by providing a means to reason about program behavior more precisely and by

exposing the higher-level operations that are usually not visible to an analysis buried in the details of their

implementations. We hope that work continues on this promising approach.

Appendix A

Definitions and Proofs for Daedalus

In this appendix, we provide a more detailed specification of the inference rules in the Daedalus analysis,

as well as a soundness proof. We will show first that the analysis derives correct distinctness judgments, and

then that if a loop is parallelized according to distinctness-based conditions that we give, then its iterations

will execute correctly.

A.1 Definitions

We analyze a program P consisting of methods in classes. Each method Mi has a control-flow graph (CFG)

of statements Si in basic blocks Bi. We assume the program is in SSA (static single assignment) form. The

two requirements on the program control flow are: (i) no irreducible loops exist (this is true by construction

for JVM bytecode emitted by javac, whose CFG corresponds to the original Java code’s structured control

flow); and (ii) main() does not participate in a corecursive cycle in the call graph.

A given program may produce any trace Ti of a (possibly infinite) family of execution traces T . Each

trace is a sequence of dynamic instances of static statements; each dynamic instance is annotated with the

value(s) produced by that statement. We notate dynamic instance j of statement Si in execution trace T

as T [i, j].

The program operates on a heap consisting of scalar objects with fields, and map objects indexed by

object identity (pointer value). Every field and map slot stores either a primitive value or an object reference

(pointer).

We assume a may-point-to analysis has run, producing a points-to set consisting of heap abstractions

for each variable definition in the (static) program. Each heap object during any execution of the program

corresponds to exactly one heap abstraction.

121

122 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

A.2 Loops and Loop Contexts

We first find the natural loops in each method. For a given basic block Bi, the block is contained in the body

of zero or more loops L(Bi) = L1, L2, Loops are organized into a loop-nest tree. We analyze programs

with no irreducible loops (compiled from Java, which has structured control-flow), hence every backedge in

a method’s CFG must be a backedge of some loop.

A loop that is identified statically has dynamic instances in any given execution trace, and each instance

has iterations. Any given dynamic statement instance T [i, j] in execution trace T that is contained in a loop

Lk has a loop instance number Inst[i, j, k] and loop iteration number within that instance of Iter[i, j, k]. Two

distinct dynamic instances must differ in either instance number or iteration number: if the path between

them crosses the loop backedge but does not exit the loop body, then the iteration number must differ; if

the path exits the loop body, then the instance number must differ.

We define the loop context of a basic block Bi, L(Bi), as a set that is initially its containing loop set

L(Bi). We overload this notation to say that L(Si) is the loop context of Si. Thus, if Si is in basic block

Bi, L(Si) is the same as L(Bi).

Lemma 1. Any two dynamic instances T [i, j] and T [i, j′] of statement Si (j 6= j′) in execution trace T

that occur in the same method invocation of containing method M occur in different iterations of the same

instance of some loop Lk in the loop context of Si: Inst[i, j, k] = Inst[i, j′, k] and Iter[i, j, k] 6= Iter[i, j′, k].

Proof. For two dynamic instances of a single statement to occur in one method invocation, the path between

them must flow across a backedge of at least one loop k within the method. Either Inst[i, j, k] 6= Inst[i, j′, k]

or Iter[i, j, k] 6= Iter[i, j′, k]

Case I. If Inst[i, j, k] = Inst[i, j′, k], then it must be the case that Iter[i, j, k] 6= Iter[i, j′, k], and we are

done.

Case II. If Inst[i, j, k] 6= Inst[i, j′, k], then the path exits and re-enters the body of Lk. This can only

occur by crossing the backedge of some other loop Lk′ (any edge from a block following an exit of Lk to

a block preceding the header of Lk forms another natural loop) which is strictly larger than Lk (contains

the body of Lk plus at least one other block). Then consider this argument where k′ becomes k. Because

every such recursive step of this argument considers a strictly larger loop Lk, we cannot consider a given

loop twice; because there are finitely many loops in a method, we must eventually reach Case I above for

some k, and we are done.

We then augment the loop context set of a block with loop(s) representing any possible repetition of the

method containing that block: the method loop context. There are two cases: first, if a method (qualified with

A.2. LOOPS AND LOOP CONTEXTS 123

static analysis context) is called from only one callsite, its method loop context is simply the loop context

of that callsite. Second, if a method is called from more than one callsite, its method loop context consists

of the intersection of all callsites’ loop contexts as well as a new method repeat loop. The latter loop is a

conceptual entity that exists only during analysis; it is treated as if it has only one instance during execution,

and its iteration number increments with each call to the method. (This is never actually implemented at

runtime; it is only assumed behavior for analysis.)

Lemma 2. Any two dynamic instances T [i, j] and T [i, j′] of statement Si (j 6= j′) in execution trace T

must have differing loop instance numbers Iter[i, j, k] 6= Iter[i, j′, k] for some loop Lk in the loop context of

Si where Inst[i, j, k] = Inst[i, j′, k]. Informally, we say that the loop context captures all repetition.

Proof. We argue this property inductively over strongly-connected components of the callgraph, in a particu-

lar order: from caller SCCs to callee SCCs, and in a given SCC, all methods with multiple callers first (which

must include all methods called by callers outside the SCC), then all methods with only one caller, only

after their callees are visited (every such method must eventually be visited because a chain of single-caller

methods in an SCC must eventually be called by a method with more than one caller, or else they would

form an unreachable cycle). This ensures that any single-caller method can rely on the lemma (inductive

hypothesis) having been proven for its caller, which we use in Case II-a below. No other case makes use of

this inductive hypothesis.

Case I. The two instances are in the same method invocation of method M of statement Si (i.e., the

path P from T [i, j] to T [i, j′] does not pass through a return instruction in M). By Lemma 1, there exists

a k such that Inst[i, j, k] = Inst[i, j′, k] and Iter[i, j, k] 6= Iter[i, j′, k].

Case II. The two instances are in different invocations of method M . Then the path P passes through a

return instruction in M , and subsequently through some callsite of M .

Case II-a. Method M has exactly one callsite. T [i, j] and T [i, j′] must have occurred in invocations

from two dynamic instances of the callsite T [p, q] and T [p, q′]. By the inductive hypothesis, there must be

some loop Lk satisfying the required condition for these two callsite instances. This loop will be in the loop

context of M (by construction) and thus Si, so we are done.

Case II-b. Method M has more than one callsite. Then there is a unique method repeat loop Lk in the

method loop context of M . The two instances T [i, j] and T [i, j′] then have Inst[i, j, k] = Inst[i, j′, k] and

Iter[i, j, k] 6= Iter[i, j′, k]. by construction.

We have thus shown that the loop context of any statement captures all repetition: intuitively, any repeat

execution of this statement must be due to the backedge of some loop in context.

124 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

[vi := new T]i [TagAlloc]
Tag[vi] = {Alloci} Orig[Alloci] = Si

TagDepth[Alloci] = 1

[vi := vj] [TagAssignSingle]
Tag[vi] = Tag[vj]

[vi := φ(vj1 , vj2 , . . . , vjn)]i ∀k, l.pts(vjk) ∪ pts(vjl) = ∅
[TagAssignMultiNonOverlap]

Tag[vi] = {Assigni} Orig[Assigni] = Si

TagDepth[Assigni] = 1

[vi := φ(vj1 , vj2 , . . . , vjn)]i ∃k, l.pts(vjk) ∪ pts(vjl) 6= ∅ [TagAssignMultiOverlap]
Tag[vi] = ∪nm=1Tag[vjm]

[vi := vj .f]i FieldConst(f) t ∈ Tag[vj] TagDepth[t] < DepthLimit
[TagLoadConstField]

Tag[vi] = {t.f} Orig[t.f] = Orig[t]
TagDepth[t.f] = TagDepth[t] + 1

[vi := vj .f]i not otherwise handled by rules above
[TagOther]

Tag[vi] = {Otheri} Orig[Otheri] = Si

TagDepth[Otheri] = 1

(We pre-compute the predicate FieldConst(f) to hold for any field f that is never mutated after object
initialization. This is useful to know because we can rely on the fact that if we have two such objects
v1, v2 such that v1 = v2, then we know v1.f = v2.f .)

Figure A.1: Inference rules for tag-based must-alias analysis.

A.3 Tag-based Pseudo-flow-sensitive Must-Alias Analysis

Next, we define a tag-based must-alias analysis, and show that it provides a useful aliasing property.

We define Tag[vi] to be a set of symbols (tags) associated with the variable vi defined at statement Si.

Intuitively, tags identify data flow of pointers through the program, and become useful in reasoning about

aliasing between different pointers with the help of distinctness facts.

Every tag has an originator statement, Stag, which we define explicitly with tag-propagation rules below

alongside the tag sets for each variable.

Let us define the meaning of tags on variables. First, we consider a slightly simplified single-tag version of

the analysis, where each tag set Tag[vi] has at most one element. We can imagine each originator statement

to be a write to a dynamic storage slot corresponding to that tag, and every other tagged variable as a read

of that particular tag’s slot and then an equality assertion between the read value and the value of the tagged

variable. For example, if S1 defines v1, v1 is tagged with tag t (for which S1 is the originator statement),

and S2 defines v2 also tagged with t, then if in a particular execution S1 executes and assigns values x, y, z

to v1 in turn, then S2 executes, v2 must take on value z (the most recent value produced by the originator

A.3. TAG-BASED PSEUDO-FLOW-SENSITIVE MUST-ALIAS ANALYSIS 125

statement).

Now consider tag sets with multiple elements. In this case, a statement Si assigning variable vi with tags

t1, t2, . . . , tn must assign a value V to vi that is equal to the last assigned value at one of the originator

statements for these tags.

Formally, we say that if a statement Si defines vi with tag set Tag[vi] = {t1, . . . , tn} then for any given

dynamic instance T [i, j] of Si, there must exist some dynamic instance T [t, u] of an originator statement St

assigning to vt with tag tk (1 ≤ k ≤ n) such that vt,u = vi,j , and the dynamic instance T [t, u] is the latest

instance of St prior to T [i, j].

A.3.1 Tag Propagation

We next define a set of inference rules that fill the tag-sets on every variable, with each statement type

treated in its own way. Fig. A.1 shows these rules.

A remark on notation: we will denote a program statement Si as (e.g.) [vi := new T]i, and we will

denote inference rules here with the standard horizontal line.

We will denote the originator of a tag ti as Orig[ti]. Furthermore, we denote the points-to set from a

may-point-to analysis as pts(vi). When two points-to sets have a non-null intersection, this simply means

that some dynamic instance of vi may be equal to some dynamic instance of vj . Conversely, if the points-to

sets do not intersect, then no dynamic instance of vi may ever be equal to a dynamic instance of vj in any

execution.

A.3.2 Tags: Properties and Proofs

Aliasing Implied by Tags:

We next prove that the propagation rules above produce tag sets that are consistent with the definition

above: informally, that tags correspond to program dataflow and certain must-alias relations.

We state the main tag-aliasing lemma as follows:

Lemma 3. Given a variable vi defined at Si, with value vi,p = V at dynamic instance T [i, p], if Tag[vi] = {t}

(exactly one element) and if Si is not the originator of t, then the value V is equal to the value assigned

(not necessarily to vi) by the latest dynamic instance T [j, q] of the tag-originator statement Orig[t] prior to

T [i, p] in T .

Proof. We can proceed inductively along an execution trace T , showing this property holds for each dynamic

statement instance in turn. Setting aside the [TagLoadConstField] rule momentarily, we consider all

statements that propagate (rather than originate) tags: these are assignments with one or more inputs. We

can step backward in the execution trace through tag-propagating statements to find the set of dynamic

126 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

[vi := φ(. . . , vjk , . . .)]i [IntraproceduralAssign]
Assign(Si, vi, vjk)

[vi := call vo.M(va1 , va2 , . . .)]i
CallGraphEdge(Si,Mcallee)

[vj = argk]j
Sj ∈Mcallee [AssignParamValue]

Assign(Si, vj , vak
)

[vi := call vo.M(va1 , va2 , . . .)]i
CallGraphEdge(Si,Mcallee)

[vj = this]
Sj ∈Mcallee [AssignThisValue]

Assign(Si, vj , vo)

[vi := call vo.M(va1 , va2 , . . .)]i
CallGraphEdge(Si,Mcallee)

[return vr]j
Sj ∈Mcallee [AssignReturnValue]

Assign(Si, vi, vr)

Assign(Si, vi, vj) NotDistinct(vj , L) L ∈ L(Si) [AssignNotDistinct]
NotDistinct(vi, L)

L = InnermostLoop[Si] L′ ⊂ L Assign(Si, vi, vj) [AssignNotDistinctInSubLoop]
NotDistinct(vi, L′)

|Tag[vi]| > 1 L ∈ MethodLoops[Si] [NotDistinctIfTagConflict]
NotDistinct(vi, L)

Figure A.2: Distinctness inference rules for assignment statements.

instances of tag-originator statements TOS = {So1 , . . .}. As the lemma applies only to variables with one

tag (Tag[vi] = {t}), and as all tags are propagated to vi, we must have only one tag-originator statement

TOS = {So}. We must simply show that the value vo,q assigned to vo by the last dynamic instance T [o, q]

of So is the one that reaches vi,p. To show this, we can simply see that So must dominate Si for the SSA

to be well-formed, and because vi can trace back only to vo via assignments, any path from So to Si must

carry the value from this instance of So to Si. Hence, in any path from So to Si, any additional instance of

So between the endpoints would have become the instance of So that fed to vi at Si.

Now consider loads from constant-once-constructed fields. Soundness of [LoadConstField] follows in

a straightforward way: because by definition of the FieldConst predicate, x.f always returns the same value

y for a given x, we can conclude that if vj at Sj has tag t implying equality to the last dynamic instance of

vo at originator at So, then it is valid to describe the field vj .f at Sj with tag t.f , equal to vo.f at originator

So.

A.4. DISTINCTNESS ANALYSIS 127

MethodRepeatLoop(L) L ∈ L(Si) [vi := argk]i ∨ [vi := this]i [ParamsRepeatLoop]
NotConstant(vi, L) NotDistinct(vi, L)

L ∈ MethodLoops(Si) L /∈ L(Si) [vi := . . .]i [NotDistinctInLoopsNotInContext]
NotDistinct(vi, L)

L ∈ MethodLoops(Si) [vi := . . .]i NotHandled(Si) [DefaultNotDistinct]
NotDistinct(vi, L)

Figure A.3: Auxiliary rules: handling of method-repeat loops, and production of not-distinct judgments for
all cases not covered by other rules.

¬[vi := vj]i
¬[vi := φ(. . .)]i
¬[vi := Int_Constant]i
¬[vi := vj .f]i

L = InnerLoop[Si]
L ⊆ L′

[DefaultNotConstant]
NotConstant(vi, L′)

Figure A.4: Rules for variable constantness derivations.

A.4 Distinctness Analysis

Finally, we introduce distinctness analysis. Distinctness analysis produces a body of knowledge about

cross-iteration aliasing of variables with respect to loops in a program. We also define the related concept

constantness, useful in deriving invariants on heap objects.

A.4.1 Variable Distinctness

We define a variable vi to be distinct with respect to loop Lk for any two dynamic instances T [i, p] and

T [i, q] of Si where Inst[i, p, k] = Inst[i, q, k] and Iter[i, p, k] 6= Iter[i, q, k], the variable values defined at

these instances are not equal: vi,p 6= vi,q. In other words, vi never aliases across iterations. We write

Distinct(vi, L) to denote the judgment that vi is distinct with respect to L.

We make one further refinement to simplify the system. As we will see below, distinctness analysis

involves many intersections of distinctness properties at meet-points, and so in a monotonic analysis (such

as one written in Datalog), it is more natural to derive non-distinctness facts. We will write inference rules

here to derive non-distinctness, with the understanding that we can recover distinctness as follows: vi is

distinct w.r.t. Lk if Lk is in the loop context of any statement of the method defining vi, and there is no

not-distinct fact for vi w.r.t. Lk. (That is, the universe is the set of all loops in the method, and not-distinct

judgments descend down the lattice from >, the full universe of distinctness facts, toward ⊥, the empty set.)

Fig. A.2 provides the inference rules to produce not-distinct judgments on variable assignment statements

(and implicit assignments of parameter and return values across callgraph edges). We now prove the following

128 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

lemma:

Lemma 4. Distinctness inference rules triggered by assignment statements produce correct distinctness facts

on output variables.

Proof. Follows directly from program semantics. If an assignment source (variable) has a distinctness fact

with respect to a loop L, then it must be defined inside the body of L; because uses of a variable in SSA must

be dominated by the variable definition, this use cannot cross the loop backedge, so it must originate in the

current iteration. There are thus two ways for a variable to alias across iterations of a loop when produced

by this assignment: a single assignment source yields the same value on two different iterations (Case I) or

the assignment has multiple possible sources (a φ-node) and the same value is yielded by two of the sources

in different iterations (Case II). Hence not-distinct judgments are propagated across all assignments by

[AssignNotDistinct], or created by [NotDistinctIfTagConflict] when two different values (identified

by tags) meet at a φ-node, respectively.

We can also now prove a useful lemma that allows us to extend the distinctness invariant from the point

of definition (assignment) to the point of use:

Lemma 5. Given a variable vi defined at Si and used at Sj, for any loop L ∈ (L(Si) ∩ L(Sj)), if

Distinct(vi, L), then the use of vi at Sj reads a distinct value at every iteration of L.

Proof. We can easily see that this is true by creating a virtual assignment of a new variable [vi′ := vi]j at

each use site Sj of vi. By the assignment distinctness-propagation rules and corresponding argument above,

vi′ has exactly the same distinctness facts as vi for all loops in context both at the definition site Si and use

site Sj .

A.4.2 Miscellaneous and Fallback Rules

The rules in Fig. A.3 simply ensure that all values produced by statements not otherwise handled by these

inference rules are marked as not-distinct in all relevant loops. In addition, [ParamsRepeatLoop] ensures

that method parameters are considered not-distinct across multiple invocations of the method, if the creation

of a method-repeat loop is necessary to preserve Lemma 2.

A.4.3 Object Allocation

The rule in Fig. A.5 covers object allocation statements, and simply states that an allocation is not-distinct

in any subloops of the inner loop of the allocation site; hence, by omission, it is distinct in all loops in

context. This follows from the semantics of object allocation: each allocated object does not alias with any

other still-reachable allocation.

A.4. DISTINCTNESS ANALYSIS 129

[vi := new T]i L = InnerLoop[Si] L′ ⊂ L
[AllocNotDistinctInSubLoop]

NotDistinct(vi, L′)

Figure A.5: Rule for object allocations: an allocation is distinct w.r.t. all containing loops of the allocation
site.

[x1.f := y1]i [x2.f := y2]j i 6= j X ∈ (pts(x1) ∩ pts(x2))
[StoreOverlap]

FieldNotDistinct(X.f)

[x1.f := y1]i
L ∈ L(Si)

NotConstant(x1, L)
NotDistinct(y1, L) X ∈ pts(x1)

[FieldNotDistinct]
FieldNotDistinct(X.f)

Figure A.6: Rules for stores to object fields.

A.4.4 Variable Constantness

The inference rules in Fig. A.4 compute the constantness of variables in the program with respect to its

loops. They follow directly from the semantics of the program statements. Variables are not constant with

respect to loops not in their context. Assignments propagate not-constant facts. A load can propagate

constantness (and thus not-constantness) if, as above, we have a FieldConst(f) judgment on the loaded field

f . Finally, as for distinctness above, a tag-conflict forces a not-constant judgment with respect to every loop

in context because merging two value sources at a φ-node eliminates any guarantees we could make about

either one of the sources alone.

A.4.5 Field and Map Distinctness

Next, we define field distinctness and its extension to map objects, map distinctness, so that stores and loads

can propagate distinctness invariants into and out of the heap, respectively.

We say that a field f on a points-to abstraction X – denoted X.f – is distinct if for any two x1, x2 ∈ X,

x1 6= x2 ⇒ x1.f 6= x2.f .

We say that an (M,K)-tuple of heap abstractions, where M represents map heap abstractions and K

represents key abstractions that index those maps, is globally map-distinct if for any m1,m2 ∈M , and any

two k1, k2 ∈ K, m1 6= m2 ∨ k1 6= k2 implies m1[k1] 6= m2[k2]. We say that the (M,K)-tuple is within-map

distinct if instead m1 = m2 ∧ k1 6= k2 implies m1[k1] 6= m2[k2].

Stores: We first infer which fields are distinct. Fig. A.6 shows the rules that apply to all field stores to

derive these judgments.

Lemma 6. If a field f on X is distinct as inferred by the [StoreOverlap] and [FieldNotDistinct]

rules, then for any a, b ∈ X, a 6= b implies a.f 6= b.f .

130 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

[x1 := y1.f]i NotDistinct(y1, L)
[LoadBaseNotDistinct]

NotDistinct(x1, L)

[x1 := y1.f]i Y ∈ pts(y1) FieldNotDistinct(Y.f) L ∈ L(Si) [LoadFieldNotDistinct]
NotDistinct(x1, L)

[x1 := y1.f]i
Y1 6= Y2

Y1 ∈ pts(y1)
Y2 ∈ pts(y1)
X ∈ pts(Y1.f)
X ∈ pts(Y2.f)

L ∈ L(Si)

[LoadConflict]
NotDistinct(x1, L)

Figure A.7: Rules for loads from object fields.

Proof. We first note that only one store instruction stores values to field f of any x ∈ X, because if any other

store also wrote to the same field and abstraction, [StoreOverlap] would produce a FieldNotDistinct(X.f)

judgment. Let us thus consider this one store [x1.f := y1]i.

Let us assume that the store breaks the field-distinctness invariant by storing a single value to the field

on two different instances: a 6= b and a.f = b.f , yet the [FieldNotDistinct] rule does not conclude

FieldNotDistinct(X.f). Then there are two different dynamic instances T [i, p] and T [i, q] of Si, such that

y1 at T [i, p] is equal to y1 at T [i, q] but x1 at T [i, p] is not equal to x1 at T [i, q]. But for the rule not to

apply, we must have either no NotConstant(x1, L) judgment (hence the base pointer x1 is constant) or no

NotDistinct(y1, L) judgment (hence the stored value y1 is distinct) for every L ∈ L(Si). By Lemma 2, any

two dynamic instances of the store are in separate iterations of the same instance of some loop L in the

loop context. Hence for these two instances that cause the field aliasing, either the base pointers x1 must be

equal or the stored values y1 must not be equal. This contradicts the above; thus the rule must apply (and

produce a FieldNotDistinct(X.f) judgment) whenever the field is not distinct, and so the absence of such a

judgment implies field distinctness.

Loads: Next, we introduce the inference rules that use field distinctness to produce variable distinctness

judgments at load statements. These rules are given in Fig. A.7.

Lemma 7. The three rules in Fig. A.7 correctly derive distinctness of the result of an object field load with

respect to all loops in context.

Proof. The rules must produce a NotDistinct(x1, L) judgment whenever two instances of the load in two

separate iterations of one instance of loop L produce the same value. There are two ways in which this could

happen: (i) the same base pointer value in y1 is provided to each instance, thus yielding the same loaded

value if no intervening store has modified the field, or (ii) two different objects hold the same value in their

A.4. DISTINCTNESS ANALYSIS 131

[mapput x1, y1, z1]i
[mapput x2, y2, z2]j

i 6= j
X ∈ (pts(x1) ∩ pts(x2))
Y ∈ (pts(y1) ∩ pts(y2))

[MapStoreOverlap]
MapNotDistinct(X[Y]) MapNotDistinctWithinMap(X[Y])

[mapput x1, y1, z1]i
X ∈ pts(x1)
Y ∈ pts(y1)

NotDistinct(z1, L)
NotConstant(x1, L)∨NotConstant(y1, L)

[MapStoreNotDistinct]
MapNotDistinct(X[Y])

[mapput x1, y1, z1]i
X ∈ pts(x1)
Y ∈ pts(y1)

NotDistinct(z1, L)
NotConstant(y1, L)

[MapStoreNotDistinctWithinMap]
MapNotDistinctWithinMap(X[Y])

Figure A.8: Rules for map stores.

[z1 := mapget x1, y1]i
X ∈ pts(x1)
Y ∈ pts(y1)

MapNotDistinct(X[Y])∨
(NotDistinct(x1, L)∧

NotDistinct(y1, L))
MapNotDistinctWithinMap(X[Y])∨

NotConstant(x1, L)∨
NotDistinct(y1, L)

[MapLoadNotDistinct]
NotDistinct(z1, L)

[z1 := mapget x1, y1]i
X1 ∈ pts(x1)
Y1 ∈ pts(y1)
X2 ∈ pts(x1)
Y2 ∈ pts(y1)

X1 6= X2 ∨ Y1 6= Y2
Z ∈ pts(X1[Y1])
Z ∈ pts(X2[Y2])
L ∈ L(Si)

[MapLoadConflict]
NotDistinct(z1, L)

Figure A.9: Rules for map loads.

instances of field f . In the first case, [LoadBaseNotDistinct] will produce the appropriate not-distinct

result judgment. In the second case, either the field was not distinct (and the [LoadFieldNotDistinct]

rule will produce a not-distinct judgment), or the pointer y1 visited objects represented by two different heap

abstractions, such that even if the field f were distinct on each, it could alias across the different abstractions

(the [LoadConflict] rule will ensure correctness in this case).

Map Stores: We give three rules to derive the two types of map-related distinctness in Fig. A.8. These

rules are analogous too (in fact, a generalized form of) the rules for ordinary field stores.

Lemma 8. The rules in Fig. A.8 correctly derive map distinctness.

Proof. Analogous to the store rules above, with the following extensions. A map value slot on the heap is

identified by two values, the map and the key, rather than one as for object fields (the base pointer).

132 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

Thus, when we show global map-distinctness (no aliasing across any two map slots for any two maps

represented by the map heap abstraction), the constant-base-pointer requirement (if stored value is not

distinct) becomes “constant map and constant key.” In other words, we violate global map distinctness if we

store the same value to the same key in two different maps, or the same map at two different keys, or two

different maps at two different keys. The negation of this is not-constant-map or not-constant-key, as seen

in the rule [MapStoreNotDistinct].

Likewise, when we show within-map distinctness (no aliasing across any two slots in a single map rep-

resented by the map heap abstraction), the constant-base-pointer requirement (if stored value is not dis-

tinct) becomes simply “constant key.” In other words, we only violate within-map distinctness if we store

the same value to different keys. The negation of this is simply not-constant-key, as seen in the rule

[MapStoreNotDistinctWithinMap].

Map Loads: Finally, we provide a rule to derive distinctness judgments on the results of map loads. Fig. A.9

provides this rule.

Lemma 9. The rules in Fig. A.9 correctly derive distinctness of the result of a map load with respect to all

loops in context.

Proof. The result can be shown distinct in two different ways, with the aid of either global map distinctness

or within-map distinctness. A load from a map on which we have shown global map distinctness produces a

distinct value with respect to a loop if either the map or the key (or both) is distinct each iteration: global

map distinctness implies that changing either of the two components of the map-slot address will result in

a different value. Additionally, if the map values have within-map distinctness, then a distinct key and a

constant map together will yield differing values.

The rules above are simply the negation of these conditions. The result will be not-distinct if neither

of the above conditions can show it to be distinct. Hence, either there is no global map distinctness, or

both the map and key are not-distinct; and, either there is no within-map distinctness, or the map is not

constant, or the key is not distinct. If the above conditions do not yield a not-distinct result for any loop in

context, then the result must be distinct.

Finally, in the above we assumed that non-distinctness judgments on map contents applied across all

visited objects, while in actuality they apply only to one (M,K)-tuple of a map and key heap abstraction.

We bridge this gap with the [MapLoadConflict] rule (analogous to the [LoadConflict] rule in the

scalar field load case) that produces a not-distinct judgment whenever two or more (M,K)-tuples can point

to the same heap abstraction.

A.5. LOOP PARALLELIZATION (ITERATION NON-ALIASING) 133

StatementInLoop(Si, L)
HasStoresInLoop(X.f, L)

[xi.f := yi]i ∨ [yi := xi.f]
X ∈ pts(xi)
NotDistinct(xi, L)

[LoopFieldAccessNotDistinct]
NotParallelizable(L)

StatementInLoop(Si, L)
StatementInLoop(Sj , L)
HasStoresInLoop(X.f, L)

[xi.f := yi]i ∨ [yi := xi.f]
[xj .f := yj]j ∨ [yj := xj .f]
X ∈ (pts(xi) ∩ pts(xj)
|Tag[xi] ∪ Tag[xj]| > 1

[LoopFieldAccessTagConflict]
NotParallelizable(L)

StatementInLoop(Si, L)
HasStoresInLoop(X[Y], L)

[xi[yi] := zi]i ∨ [zi := xi[yi]]
X ∈ pts(xi)
Y ∈ pts(yi)
NotDistinct(xi, L)
NotDistinct(yi, L)

[LoopMapAccessNotDistinct]
NotParallelizable(L)

StatementInLoop(Si, L) [xi[yi] := zi]i ∨ [zi := xi[yi]]
StatementInLoop(Sj , L) [xj [yj] := zj]j ∨ [zj := xj [yj]]
HasStoresInLoop(X[Y], L) X ∈ (pts(xi) ∩ pts(xj)

Y ∈ (pts(yi) ∩ pts(yj)
|Tag[xi]∪Tag[xj]| > 1∨NotDistinct(xi, L)∨NotDistinct(xj , L)
|Tag[yi]∪Tag[yj]| > 1∨NotDistinct(yi, L)∨NotDistinct(yj , L)

[LoopMapAccessTagConflict]
NotParallelizable(L)

Figure A.10: Rules for loop parallelization.

A.5 Loop Parallelization (Iteration Non-Aliasing)

We can finally state the conditions under which a loop’s heap accesses are parallelizable. We consider the

effects of each statement Si: a statement can have read- and write-effects to a (heap abstraction, field) tuple

and/or a (map heap abstraction, key abstraction) tuple. Each effect is annotated with the distinctness of

the associated pointers with respect to loops in context, and the tags on these pointers provided by the tag

analysis.

Intuitively, a loop is parallelizable (at least with respect to heap accesses) if there is no heap object field

or map value slot accessed by more than one iteration unless all accesses are reads. In other words, there

can be no RAW, WAW or WAR dependencies on heap locations between loop iterations. (A parallelizable

loop must also have no local-variable dependencies across iterations, but this is trivial to check in SSA: any

such dependency must flow through a φ-node in the loop header.)

This parallelizability condition can be satisfied with the help of distinctness analysis as follows. We

ensure that for every accessed (heap abstraction, field)-tuple with at least one write:

• The pointer to every load and store to this field on this abstraction is distinct with respect to the loop

134 APPENDIX A. DEFINITIONS AND PROOFS FOR DAEDALUS

L, and

• The pointer to every load and store to this field on this abstraction has the same tag t.

Intuitively, the first condition ensures that a given statement’s accesses do not alias across iterations, and

the second condition ensures that two different (static) statements’ accesses do not alias across iterations.

Without this second condition, distinctness of each pointer alone does not suffice: two different distinct

pointers might traverse the same sequence of distinct values in different orders.

Similarly, for map value slot accesses with at least one write:

• The map or key pointer on every access is distinct with respect to L, and

• The distinct pointers (maps or keys) have identical tags.

We prove one final lemma that will assist our main result:

Lemma 10. If N variables v1, . . . , vN , defined in loop L, are distinct with respect to L and all have a tag set

Tag[vk] = {t}, then no dynamic instance of vk in iteration i can alias any dynamic instance vl in iteration

j of a given instance of L: the set of variable values in each iteration is disjoint with every other iteration.

Proof. First, by definition of variable distinctness, the assertion holds when k = l: a distinct variable cannot

alias itself across iterations of an instance of L. Next, consider k 6= l. Let us assume that some instance of

variable vk in iteration i and some instance of vl in iteration j alias; we will show a contradiction.

Both variables have tag t in their tag sets. Either one variable’s definition is the tag-originator statement,

or a third statement is.

Let us take the first case: without loss of generality, assume that vk is the tag originator. Then every

instance of vl in iteration i must alias the latest dynamic instance of vk, and this latest originator instance

must be in the current iteration because otherwise it would not dominate the use-site. Now let us consider

the cross-iteration aliasing pair above: the dynamic instance of vl in iteration j aliases an instance of vk in

iteration j, but also (by the assumption above) an instance of vk in iteration i. But vk is distinct, so this

cross-iteration aliasing cannot occur. Thus, there is a contradiction, and we conclude that vk and vl cannot

alias across iterations in this case.

In the second case, the separate tag-originator statement must be in the current iteration by the same

argument, defining variable vt, and each dynamic instance of vk and vl in iteration i must alias some dynamic

instance of vt in iteration i. This variable vt must also be distinct w.r.t. L, or else vl and vk would not be (by

assignment rules for distinctness propagation). Then, similar to the first case above, vl in iteration j aliases

an instance of vt in iteration j, and vl in iteration i aliases an instance of vt in iteration i, so our assumption

A.6. ANALYSIS TERMINATION 135

implies that an instance of vt in iteration i aliases an instance of vt in iteration j. This is a contradiction,

so this cross-iteration aliasing between vk and vl cannot occur.

We are now able to formalize our loop parallelizability condition with the rules in Fig. A.10. We simplify

somewhat by considering only direct heap effects of field load/stores and map load/stores; in actuality,

several other IR operations on maps create side-effects on virtual fields, and commutative-store side-effects

are possible as well. Also, we rely on an opaque predicate StatementInLoop(Si, L) that indicates whether a

statement can occur inside (directly or via method calls) the body of loop L. In actuality, these rules are

split into “stages” of increasing computational cost so that we first look for conflicts in the direct loop body,

then traverse the callgraph to find conflicts in other methods.

We now state our main theorem:

Theorem 1. In any execution T of program P , all instances of loop L have non-conflicting memory accesses

if the four inference rules in Fig. A.10 do not produce a NotParallelizable(L) judgment.

Proof. Follows directly from Lemma 10. For any given accessed location with at least one write, the above

rules ensure that all pointers used to access this location are distinct and have the same tag. By the lemma,

no accesses across iterations may alias. In the case of a map access, heap location is determined by the

combination of map object and key object; hence, ensuring that either of them does not alias is sufficient to

ensure iteration independence. The latter two rules thus require that either tags mismatch or distinctness

judgments are missing for both the map and key accessed in order to determine a conflict has occurred.

A.6 Analysis Termination

Above, we have proven the soundness of Daedalus and the loop-parallelization rules based upon it. We

now argue briefly that the analysis will terminate. The inference rules presented here are monotonic. This

is because they satisfy the requirements of stratified negation: the rules can be split into strongly-connected

components (where graph edges are dependencies), or strata, of co-recursive rules. Within such an SCC,

no negation of other judgments (Datalog relations) produced within that SCC can occur. This ensures

convergence because as judgments are produced, they cannot cause another judgment within that stratum

to be withdrawn; the rules in that stratum can thus be iterated until no new judgments are produced, and

strata can be visited in dependence order.

Note that within our rules as written here, we have used both Distinct and NotDistinct judgments for

convenience. In implementation, however, only the negative forms (NotDistinct, FieldNotDistinct, MapNot-

Distinct, MapNotDistinctWithinMap) exist, and the various positive judgments written here are produced

as exceptions in other rules that would have produced a negative judgment otherwise.

Appendix B

Definitions and Proofs for Icarus

In this appendix, we provide additional details describing the inference rules of Icarus as well as a soundness

proof for the analysis.

B.1 First Pass: Possible Distinctness

As we described earlier in §5.3.1, the first pass of the Icarus analysis computes possible distinctness. This

analysis determines when it is possible to dynamically prove a value to be distinct given the locations where

checks can occur. Because the hybrid static-dynamic system can make a number of static inferences that are

dependent on a single successful dynamic check, the result of this analysis contains more possible-distinctness

facts than just the set of possible checks.

The possible-distinctness inference rules are derived directly from the original Daedalus analysis’ rules,

and because they are derived mechanically, we will not reproduce them all here. The transform that

produces the new inference rules simply replaces the NotDistinct(v, L) facts in the original rules with

NotPossibleDistinct(v, L), and likewise for object fields and map values.

The sole differences to the original static analysis rules have to do with the dynamic checks themselves.

We constrain the default rule that produces NotDistinct facts for program variables not covered by other

parts of the analysis. In particular, this rule excludes all variables for which a dynamic check is possible. This

input to the analysis can be arbitrary, depending on the types of checks that are supported by a particular

transform. In our case the analysis considers it possible to check the distinctness of any IR variable for

which it knows the corresponding JVM local variable number or JVM operand stack location. Essentially

all SSA variables in the Soot-produced IR qualify for checks; only local variables in semantic models do not,

because they do not correspond to real code.

To begin our soundness proof, we assert the following lemma:

137

138 APPENDIX B. DEFINITIONS AND PROOFS FOR ICARUS

Lemma 11. Given a program variable v for which ¬NotPossibleDistinct(v, L), either ¬NotDistinct(v, L),

or else there are dynamic check(s) that can be inserted into the program to prove it distinct at runtime.

Proof. Follows from the design of dynamic-distinctness propagation mechanisms and their correspondence

to distinctness inference rules.

For variables with possible direct checks, the lemma is clearly true. We thus consider variables for which

no direct check is true, but for which the analysis still claims possible-distinctness. This could arise via (i)

assignment from other possibly-distinct variable(s), (ii) a load from a possibly-distinct field via a possibly-

distinct pointer, (iii) a load from a map with possibly-globally-distinct values per key and a possibly-distinct

key, (iv) or a load from a constant map with possibly-within-map-distinct values per key and a possibly-

distinct key. In each of the heap cases, not-distinct bits propagate distinctness through the heap, and these

bits can be updated as long as corresponding stores receive possibly-distinct values. In the assignment case,

either (Case I) both the assignment sources’ definition point and the point of assignment lie within the loop in

question, in which case the original variable can be dynamically checked and the loop-iteration serialization

behavior from the assignment-source’s check have the same effect as a check on the assignment result, or

(Case II) either the source or destination lie outside the loop, in which case no possible-distinctness relative

to this loop will be propagated.

B.2 Loop Parallelization Rules

Next, the analysis evaluates a variant of the loop-parallelization rules that operate using possible-distinctness

rather than static distinctness. These rules assert needed-distinctness facts which later determine where

dynamic checks will occur.

The loop parallelization rules in Icarus are nearly identical to those in Daedalus, except that (i)

parallelization-inhibiting conflicts require the conjunction of NotDistinct and NotPossibleDistinct, and (ii)

an additional step determines which distinctness facts were actually used after parallelizable loops are chosen.

The former change is trivial; the latter change we describe here.

In order to determine which parallelization facts are actually used, we first collect all pointers used to

access written-to heap abstractions within the loop body, as before. Each of these pointers in a parallelized

loop must be distinct with respect to that loop. Thus, for all loops in the final parallelizable set, we determine

which of these pointers is not statically distinct. The rules then assert needed-distinctness on these pointers.

In addition, the original static parallelization rules require that all pointers accessing a given heap ab-

straction must alias according to the must-alias analysis. (If this were not the case, they might refer to

different sequences of the same distinct objects, thus aliasing across iterations.) This is the case if the

B.3. NEEDED DISTINCTNESS 139

must-alias analysis assigns the same tag to all pointers. The rules in the Icarus system can handle this

situation dynamically: for each set of pointers with conflicting tags, the rules assert needed-distinctness on

these pointers, with the same dynamic-check identifier. To the runtime, these checks appear to be instances

of the same check. The checks will thus serialize the loop if any of these accesses is not backward-looking

distinct. Note that this is not the same as showing that all must alias, but the distinctness (among all

potentially-aliasing pointers) is all that is actually required for soundness.

We show one key property now: the analysis will only assert needed-distinctness for variables that are

possibly-distinct.

Lemma 12. Parallelization rules in Icarus will only assert NeedDistinct(v, L) if ¬NotPossibleDistinct(v, L).

Proof. Follows directly from the rules. A loop will only be parallelizable if all pointers by which it writes to

memory are distinct or possibly-distinct. The needed-distinctness logic has identical conditions to specify

which pointers must be distinct. Hence, needed-distinctness, which is not asserted when a variable is

statically distinct, will only by asserted for pointer variables that are possibly-distinct.

We argue that these rules choose loops that are soundly parallelizable given our execution strategy in

Theorem 2 below.

B.3 Needed Distinctness

After the loop parallelization analysis asserts needed-distinctness facts, Icarus propagates this “need” back-

ward through inference rules until it eventually arrives at a subset of the possibly-checked locations, inserting

checks into the program at those points. The rules that perform this computation are also derived mechan-

ically from the original static rules. However, the derivation is slightly more complex. The rules are thus

given explicitly in §5.3.3 as Rule 31 through Rule 38.

In order to show that these rules are sound, we will prove several general properties. First, we show

that if a variable is possibly-distinct, and the loop parallelization rules assert needed-distinctness, then the

inserted checks will provide check coverage for the given variable. What we mean by this is that the inserted

check(s) will catch any non-distinct value in the program that would ultimately cause the needed-distinct

variable to not be distinct. In the trivial case, the check is directly on the needed-distinct variable. However,

checks may also occur long before the needed-distinct variable exists. For the definition of check coverage

here, we only consider the successful-check case. The check-failure case is sound, too; we argue this in the

next section.

Second, we show that the rules will only assert needed-distinctness for variables that are possibly-distinct.

This is an important invariant that begins with the client analysis, loop parallelization, and is preserved

140 APPENDIX B. DEFINITIONS AND PROOFS FOR ICARUS

during the backward propagation of needed-distinctness by the rules in this section. The invariant enables

soundness because it allows the needed-distinctness propagation rules to assume the conditions required for

possible-distinctness have been met. Otherwise, impossible situations may arise where there is no possible

combination of checks to satisfy needed-distinctness.

We first show that the assignment rules satisfy these properties:

Lemma 13. If an assignment-result variable [v := φ(v1, . . . , vk)] has NeedDistinct(v, L), then the needed-

distinctness inference rules will insert a set of dynamic checks to ensure that v is dynamically checked for

distinctness.

Proof. If v has ¬NotDistinct(v, L) (is statically distinct), then we are done, trivially: a statically-distinct

value is also always dynamically distinct.

Otherwise, if no input vi has NotPossibleDistinct(vi, L), it must be that ¬AssignInputNotPossible(v, L)

(by Rule 31). Then for every input, either ¬NotDistinct(v, L) (it is statically distinct), or Rule 32 will create

NeedDistinct(vi, L) facts, propagating the need backward. By the lemmas in this section, this propagated

need will eventually result in the required dynamic checks.

Otherwise, if AssignInputNotPossible(v, L), then Rule 33 will insert a local dynamic check.

Lemma 14. If assignment-related inference rules assert NeedDistinct(v, L), then it must be the case that

¬NotPossibleDistinct(v, L) or else ¬NotDistinct(v, L).

Proof. Follows directly from the rules. Rule 32 will only create a NeedDistinct(v, L) fact if every assignment

input has ¬NotPossibleDistinct(vi, L): otherwise AssignInputNotPossible(v, L) would prevent this rule from

applying.

Next, we demonstrate the same for the rules handling field loads (Rule 34 through Rule 36):

Lemma 15. If a load-result variable [x := y.f] has NeedDistinct(v, L), then the needed-distinctness inference

rules will insert a set of dynamic checks to ensure that v is dynamically checked for distinctness.

Proof. Two cases exist. First, if either LoadMustCheckLocally1(Si) or LoadMustCheckLocally2(Si) is as-

serted for load statement Si, then the rules insert a local variable-distinctness check on the result of the load,

so we are done. Otherwise, if neither of these judgments exists, then the rules assert FieldNeedDistinct(A.f)

for every abstraction A ∈ pts(y) as well as NeedDistinct(y, L). The former ensures that the field’s not-distinct

bit is properly updated (by Lemma 22 below), and the latter ensures that the pointer is also dynamically

checked.

B.3. NEEDED DISTINCTNESS 141

Lemma 16. If load-related inference rules assert NeedDistinct(v, L), then it must be the case that either

¬NotPossibleDistinct(v, L) or ¬NotDistinct(v, L). Likewise, if they assert NeedFieldDistinct(A.f), then it

must be the case that ¬FieldNotPossibleDistinct(A.f) or ¬FieldNotDistinct(A.f).

Proof. If needed-distinctness was asserted, then we may assume possible-distinctness was asserted, by a com-

bination of the lemmas in this section and Lemma 12 above. We show this in two cases. First, consider the

case where either LoadMustCheckLocally1(Si) or LoadMustCheckLocally2(Si) holds for the load statement

Si. Then the rules insert a local check on the result variable. For ¬NotPossibleDistinct(x, L) to be true, it

must have been the case that a local check is possible, so this is sound. Otherwise, if neither of the local-check

predicates is asserted, then it must be that ¬FieldNotDistinct(A.f) or ¬FieldNotPossibleDistinct(A.f) for ev-

ery A ∈ pts(y), because Rule 34 did not apply, and either ¬NotDistinct(y, L) or ¬NotPossibleDistinct(y, L),

because Rule 35 did not apply. So needed-distinctness is only propagated to possible-distinct fields and

variables.

Finally, we consider stores.

Lemma 17. If a store [x.f := y] writes to field A.f , and FieldNeedDistinct(A.f) and FieldNotDistinct(A.f),

then the needed-distinctness inference rules will insert a set of dynamic checks to ensure that the not-distinct

bit on A.f is updated.

Proof. This follows directly from Rule 38. The first set of predicates (in the left-hand column of an-

tecedents) encodes the above conditions. The right-hand column requires some explanation. The antecedents

NotConstant(x, L) and NotDistinct(y, L) together find loops for which (i) the stored-to pointer is not con-

stant, meaning that the stored value must be distinct for the field to be distinct, and (i) the stored value

is not statically shown to be distinct. If there is no such loop, then the field is already statically distinct,

however; because we are considering the case where NotFieldDistinct(A.f), there must exist at least one

such loop in the store statement’s loop context. Then, for each such loop, we need to dynamically prove

distinctness of the stored value with respect to this loop. The rule propagates needed-distinctness to the

stored-value variable for all such loops, ensuring the appropriate dynamic checks.

Lemma 18. If store-related inference rules assert NeedDistinct(y, L), then it must be the case that either

¬NotPossibleDistinct(y, L) or ¬NotDistinct(y, L).

Proof. Follows from possible-distinct rules for stores. A field is only possibly-distinct if for all stores that

store to this field, in all loops in context, either the pointer is constant, the stored value is statically distinct,

142 APPENDIX B. DEFINITIONS AND PROOFS FOR ICARUS

or the stored value is possibly dynamically distinct. Rule 38 only asserts needed-distinctness when the pointer

is not constant; hence, the stored value must be statically distinct or possibly dynamically distinct.

B.4 Dynamic Check Mechanisms at Runtime

We have shown so far that the Icarus analysis will properly insert dynamic checks such that if all checks are

successful, the loop-parallelization transform is sound. However, this is not yet sufficient: the reason that we

have dynamic checks at all is that the checks might fail. (Or, at least, the analysis cannot prove beforehand

that they will not fail.) Furthermore, we adopt a non-speculative approach to running the parallelized

program, meaning that we cannot roll back the in-progress execution of a loop once we allow it to begin in

parallel. We need to ensure soundness in the presence of check failures by some other means.

In this section, we will discuss how dynamic checks are executed at runtime, what synchronization they

impose, and how this synchronization results in correct execution in all cases.

B.4.1 Summary of Operation

Here, we briefly summarize the system’s operation before proving its soundness. First, the runtime system

that parallelizes the loop must keep some state with each loop instance. In particular, for each variable that

is checked, the runtime keeps some check-specific state identified by a unique identifier. This state includes

a hash-table that records the iteration number in which each value was produced. Each time a check occurs,

the runtime probes the hash-table with the value assigned to the variable. If it is present, the runtime fetches

the old iteration number. In all cases, it updates the iteration number to the current iteration.

If the iteration number is less than the current one, this is a backward-looking distinctness violation.

There are two types of violations. The first is relative to the entire loop instance, since the first iteration,

and the second is relative to the set of loop iterations since the last loop serialization.

In either case, the runtime marks the current iteration as tainted for the purposes of updating field

not-distinct bits. In the latter case (violation since last serialization), the runtime immediately synchronizes

on all older iterations, waiting for them to complete before returning to user code and continuing execution

of this iteration.

When a dynamically-checking store occurs, it propagates the taint bit from this iteration to the not-

distinct bit of every field that it writes. When a dynamically-checking load occurs, it reads the not-distinct

bit as well. If the bit is set, it performs a full loop serialization, as a variable distinctness check does, and

taints the iteration as well. In addition, it forces all younger iterations to wait for the current iteration to

complete. (This is a consequence of one-way field distinctness, as we explain below.)

B.4. DYNAMIC CHECK MECHANISMS AT RUNTIME 143

Finally, any particular instance of a dynamic check must wait for all instances of the same check in

older iterations to complete first. In other words, a particular dynamic check must complete in iteration

order. (This is looser than program order, because checks within an iteration may be reordered, for example

when multiple checks in an iteration are in a nested parallelized loop.) This synchronization requirement is

important to ensure soundness, as we describe below.

B.4.2 Soundness

We first show soundness of variable distinctness checks. Recall that Icarus checks backward-looking variable

distinctness as defined in Definition 7 in §5.4.1. This property applies to values assigned to single dynamic

instances of a variable in the program, and asserts that this value does not alias any past value in a different

iteration of the same loop instance.

We first must reason about the state that checks keep and the order in which the state is updated:

Lemma 19. When a variable-distinctness check probes the hash-table, the fetched value is the last iteration

number to produce a given value in original (sequential) program order.

Proof. This follows from the check serialization: no check will proceed to access the hash-table until all

instances of the same check in previous iterations have completed. Hence, checks occur in original program

order, so the distinctness facts implied by the check are correct with respect to sequential execution.

We then establish the main guarantee provided by a variable-distinctness dynamic check with the fol-

lowing lemma:

Lemma 20. A dynamically-checked variable value is backward-looking distinct with respect to currently

in-flight loop iterations once the dynamic check returns.

Proof. The variable-distinctness check chooses to serialize on older iterations of the loop whenever the value

it is checking aliases with a value in some other iteration in flight. To see this, it is sufficient to see that

(i) any iteration that is newer than the last-serialization point could still be in flight, precisely because the

current iteration has not blocked on its completion; and (ii) the dynamic check chooses to serialize whenever

the last iteration to produce this same value is newer than the last-serialization point. By serializing the

loop (waiting for older iterations to complete), the check ensures that no other aliasing values are in flight

when the check returns. Hence, the value is backward-looking distinct with respect to in-flight iterations at

that point, as required.

Lemma 21. A dynamically-checked variable value is backward-looking distinct with respect to all loop iter-

ations in the instance, unless the taint bit is set on the current iteration.

144 APPENDIX B. DEFINITIONS AND PROOFS FOR ICARUS

Proof. This follows directly from the logic that sets the taint bit: it is set exactly when the last-producing

iteration is a prior iteration, irrespective of the last-serialization point.

Given the lemma above, we can now reason about how stores update not-distinct bits. Recall that to

extend dynamic checks to field distinctness, we slightly redefined field distinctness in a way analogous to

backward-looking distinctness above. In particular, a field is one-way distinct if it either does not alias with

the same field on any other object in the same heap abstraction, or else does alias and at least one of this

or the other aliasing field has the not-distinct bit set. We thus argue:

Lemma 22. If a field is dynamically distinctness-checked, every store to that field will correctly set the

not-distinct bit to maintain one-way distinctness.

Proof. First, we establish that there will be at most one store to the field that can affect the one-way

distinctness property. This is ensured by Rule 29, which propagates a not-possible-distinct fact for any

abstraction field under overlapping stores.

Now, this one store can store an aliasing value to the field only by storing a non-distinct value to

different locations. Rule 38 ensures that for every loop in context of the store (capturing all repetition, as

per Lemma 2), either the pointer is constant or the value is statically or dynamically distinct. The first two

conditions ensure the needed property statically. The last one, dynamic distinctness, suffices as well, as we

now argue, despite differing from static distinctness in two ways.

First, a dynamically distinct value is only backward-looking distinct. This nevertheless suffices when

checking for one-way field distinctness, because for any aliasing pair of values in the sequence of stored

values, at least one of the values must be backward-looking non-distinct.

Second, a dynamically distinct value may be non-distinct with respect to the whole loop iteration if the

loop iteration taint bit is set. The store dynamic check handles this case by simply propagating the taint

bit into the not-distinct bit in the stored field value.

Finally, we consider loads:

Lemma 23. Given a field with dynamic one-way field distinctness, a load that performs dynamic checks

will produce a dynamically backward-looking distinct value once the check unblocks.

Proof. The load could produce a dynamically non-distinct value in two ways: by loading from the same

field twice, or by loading the same value from two different fields. The former is prevented by ensuring that

the pointer is dynamically distinct. The load result will thus have the same distinctness guarantees as the

pointer if the field is distinct: namely, it will always be backward-looking distinct with respect to in-flight

B.4. DYNAMIC CHECK MECHANISMS AT RUNTIME 145

iterations, and it will be backward-looking distinct with respect to all iterations unless the iteration taint

bit is set.

The latter case, loading the same value from two different fields, is handled by checking the not-distinct

bit. Because the field is one-way distinct, if the same value is stored twice, one or the other of the aliasing pair

must have the not-distinct bit set. Whichever iteration finds the not-distinct bit set performs a serialization

in both directions: it waits for all older iterations to complete, and all younger iterations wait for this iteration

to complete. Because checks occur in original program order, this ensures that when the field values alias,

their respective iterations proceed one at a time, in original program order, satisfying backward-looking

distinctness.

The careful reader will note that the above-described behavior of a load result is slightly different from a

variable-distinctness check result in one small way: when values alias, the loop iteration taint bit may be set

in either the first or the second iteration of the aliasing pair. However, this difference does not affect any

of our arguments: the iteration taint is only used to set field not-distinct bits, and the one-way distinctness

definition tolerates either bit being set.

Given all of the above, we can summarize the guarantee of dynamic distinctness checks with the following

lemma:

Lemma 24. If a program variable is either statically distinct or possibly-distinct, with an asserted needed-

distinct fact and corresponding checks, the variable is backward-looking distinct when execution reaches its

definition point.

Proof. We have established proper behavior of all of the individual dynamic checks, so we simply need to

establish here that dynamic checks are performed at all of the required locations.

First, if a program variable is statically distinct, then it is necessarily backward-looking distinct, so we

dismiss this case easily.

If a variable is possibly-distinct and there is a needed-distinct fact asserted by the client analysis, the

variable is backward-looking distinct as well. We argue this by cases, considering the statement type that

produces the variable.

If the variable is produced by an assignment, the needed-distinctness propagation logic for assignments

ensures that either a local distinctness check is performed, which satisfies the requirement, or the need is

propagated to all inputs, and we recursively invoke this lemma.

If the variable is produced by a load, the needed-distinctness propagation logic again either performs a

local check or propagates the need backward. If it propagates, it does so both to the pointer variable and

146 APPENDIX B. DEFINITIONS AND PROOFS FOR ICARUS

to the field on all abstractions from which the value may be loaded. The required property is ensured first

by invoking this lemma recursively on the pointer variable, and second by seeing that the not-distinct bit

is properly updated. This occurs because the needed-distinctness fact asserted on the field forces dynamic

checks on all stores to the field.

B.4.3 Parallelized Loop Execution

Finally, putting Lemma 24 to use, we show that loop parallelization is sound in this dynamic system.

Theorem 2. Loop parallelization using dynamic distinctness is sound as long as the loop body performs

writes only to backward-looking-distinct pointers. The above rules choose soundly parallelizable loops by

asserting the appropriate needed-distinctness facts.

Proof. Loop parallelization requires separation of memory writes: if two writes, or a write and a read, access

the same memory from different loop iterations, then the loop cannot be parallelized (modulo semantic

commutativity). Backward-looking distinctness is sufficient to ensure this separation: if a conflict were to

occur, one of the writes would be “backward” with respect to the other, hence backward-looking distinctness

would prevent this situation from occurring. The above loop-parallelization rules assert needed-distinctness

facts on all variables for which the original Daedalus rules required ordinary static distinctness. Hence,

by Lemma 24 above, these variables are backward-looking distinct, and so by the above argument, parallel

execution of the loop is sound.

Bibliography

[1] BlazingDB: Distributed GPU SQL engine. https://blazingdb.com/. 6

[2] GraphQL: Graph query language. https://graphql.org/. 44

[3] Janino: A super-small, super-fast Java compiler. http://janino-compiler.github.io/janino/. 41,

72

[4] The Java tutorials: parallelism. https://docs.oracle.com/javase/tutorial/collections/

streams/parallelism.html. 5

[5] JGraphT. http://jgrapht.org. 41, 72

[6] JLaTeXMath. https://github.com/opencollab/jlatexmath. 41, 72

[7] SpiderMonkey JavaScript engine. https://developer.mozilla.org/en-US/docs/Mozilla/

Projects/SpiderMonkey. 113

[8] V8 JavaScript engine. https://v8.dev/. 113

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Va-

sudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: a system for large-scale machine

learning. OSDI, 2016. 4, 44

[10] F. Aleen and N. Clark. Commutativity analysis for software parallelization: letting program transfor-

mations see the big picture. ASPLOS, 2009. 29, 46, 76

[11] ALI Lab at University of Massachusetts. JOlden benchmarks. ftp://ftp.cs.umass.edu/pub/osl/

benchmarks/jolden.tar.gz. 40, 72

[12] L. O. Andersen. Program analysis and specialization for the C programming language. PhD Thesis,

1994. 10, 18, 31, 49

147

https://blazingdb.com/
https://graphql.org/
http://janino-compiler.github.io/janino/
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
http://jgrapht.org
https://github.com/opencollab/jlatexmath
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://v8.dev/
ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz
ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz

148 BIBLIOGRAPHY

[13] K. Anderson, T. Hickey, and P. Norvig. JScheme. http://jscheme.sourceforge.net/jscheme/

main.html. 41, 72

[14] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe. Petabricks:

A language and compiler for algorithmic choice. PLDI, 2009. 44, 116

[15] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and S. Ama-

rasinghe. Opentuner: An extensible framework for program autotuning. PACT, 2014. 17

[16] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly, and S. Amarasinghe.

SiblingRivalry: Online autotuning through local competitions. CASES, 2012. 17

[17] T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary programs. ISCA, 1992. 113

[18] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in parallelism

enhancing transformations. PLDI, 1989. 8, 17

[19] U. Banerjee. Data dependence in ordinary programs. M.S. thesis, UIUC CS Tech. Report UIUCDCS-

R-76-837, 1976. 17

[20] M. Basios, L. Li, F. Wu, L. Kanthan, and E. T. Barr. Darwinian data structure selection. ESEC/FSE,

2018. 9, 45

[21] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape analysis

for composite data structures. CAV, 2007. 24, 47

[22] G. L. Bernstein, C. Shah, C. Lemire, Z. Devito, M. Fisher, P. Levis, and P. Hanrahan. Ebb: A DSL

for physical simulation on CPUs and GPUs. ACM Trans. Graph., 35(2), May 2016. 4, 44

[23] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan,

D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,

A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo

benchmarks: Java benchmarking development and analysis. OOPSLA, 2006. 40, 72

[24] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: an

efficient multithreaded runtime system. PPoPP, 1995. 71

[25] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisticated points-to anal-

yses. OOPSLA, 2009. 40, 62, 71

http://jscheme.sourceforge.net/jscheme/main.html
http://jscheme.sourceforge.net/jscheme/main.html

BIBLIOGRAPHY 149

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya. Cloudsim: A toolkit

for modeling and simulation of cloud computing environments and evaluation of resource provisioning

algorithms. Softw. Pract. Exper., 41(1):23–50, Jan. 2011. 41, 72

[27] M. C. Carlisle. Olden: parallelizing programs with dynamic data structures on distributed-memory

machines. PhD thesis, 1996. 40, 72

[28] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. A domain-specific

approach to heterogeneous parallelism. PPoPP, 2011. 45

[29] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and

efficient parallel processing of massive data sets. VLDB, 2008. 4, 44

[30] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed applications with query

synthesis. PLDI, 2013. 6

[31] M. Chevalier-Boisvert and M. Feeley. Simple and effective type check removal through lazy basic block

versioning. ECOOP, 2015. 113

[32] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. ISCA, 1998. 111

[33] A. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable commutativity

rule: Designing scalable software for multicore processors. SOSP, 2013. 46, 76

[34] A. Colin and B. Lucia. Chain: tasks and channels for reliable intermittent programs. OOPSLA, 2016.

112

[35] D. Costa and A. Andrzejak. Collectionswitch: A framework for efficient and dynamic collection

selection. CGO, 2018. 9, 45

[36] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.

POPL, 1978. 8, 17

[37] M. De Wael, S. Marr, J. De Koster, J. B. Sartor, and W. De Meuter. Just-in-time data structures.

Onward!, 2015. 9, 45

[38] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. OSDI, 2004. 5

[39] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham, A. Aiken,

K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. Liszt: A domain specific language for building

portable mesh-based PDE solvers. SC, 2011. 4, 44

150 BIBLIOGRAPHY

[40] J. Eastep, D. Wingate, and A. Agarwal. Smart data structures: An online machine learning approach

to multicore data structures. ICAC, 2011. 9, 45

[41] M. Ernst. Static and dynamic analysis: synergy and duality. WODA, 2003. 112

[42] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program

invariants to support program evolution. IEEE Trans. Software Eng., 27(2):99–123, Feb 2001. 25

[43] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting relevant program invari-

ants. ICSE, 2000. 25

[44] P. Falstad and R. Hausen. Circuit simulator. https://github.com/hausen/circuit-simulator,

based on http://www.falstad.com/circuit/. 41, 72

[45] P. Feautrier. Dataflow analysis of array and scalar references. IJPP, 1991. 8, 17

[46] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? a shape analysis for heap-directed

pointers in C. POPL, 1996. 24, 47

[47] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. POPL, 1998. 24

[48] P. Ginsbach, L. Crawford, and M. F. P. O’Boyle. CAnDL: a domain specific language for compiler

analysis. CC, 2018. 4, 44

[49] G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. PLDI, 1991. 17

[50] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L. N. Pouchet. Polly – polyhedral

optimization in LLVM. IMPACT, 2011. 17

[51] S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D. Guo. The data calculator: Data

structure design and cost synthesis from first principles and learned cost models. SIGMOD, 2018. 9,

45

[52] D. Jeon, S. Garcia, C. Louie, S. K. Venkata, and M. B. Taylor. Kremlin: like gprof, but for paral-

lelization. PPoPP, 2011. 113

[53] N. P. Johnson, J. Fix, T. Oh, S. R. Beard, T. B. Jablin, and D. I. August. A collaborative dependence

analysis framework. CGO, 2017. 8, 18, 76

[54] M. P. Jones. Jacc: Just another compiler compiler for Java. http://web.cecs.pdx.edu/~mpj/jacc/.

41, 72

https://github.com/hausen/circuit-simulator
http://www.falstad.com/circuit/
http://web.cecs.pdx.edu/~mpj/jacc/

BIBLIOGRAPHY 151

[55] N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural data flow analysis and programs

with recursive data structures. POPL, 1982. 24, 47

[56] H. Jordan, B. Scholz, and P. Subotic. Soufflé: On synthesis of program analyzers. CAV, 2016. 72

[57] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy: Effective selection of data structures.

PLDI, 2011. 9, 45

[58] S. Kamil, A. Cheung, S. Itzhaky, and A. Solar-Lezama. Verified lifting of stencil computations. PLDI,

2016. 46

[59] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform recurrence

equations. J. ACM, 14(3):563–590, Jul. 1967. 8

[60] M. Kim, H. Kim, and C. K. Luk. SD3: A scalable approach to dynamic data-dependence profiling.

MICRO, 2010. 113

[61] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence graphs and compiler

optimizations. POPL, 1981. 23

[62] M. Kulkarni, D. Nguyen, D. Proutzos, X. Sui, and K. Pingali. Exploiting the commutativity lattice.

PLDI, 2011. 9, 46, 76

[63] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. Optimistic paral-

lelism requires abstractions. PLDI, 2007. 5, 9, 44, 46

[64] V. Kuncak and M. C. Rinard. An overview of the jahob analysis system: project goals and current

status. IPDPS, 2006. 47

[65] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of blocked

algorithms. ASPLOS, 1991. 17

[66] L. Lamport. The parallel execution of DO loops. CACM, 17(2), Feb 1974. 8, 14, 17

[67] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to analysis with heap cloning

practical for the real world. PLDI, 2007. 24

[68] D. J. R. López. DJBDD: Java BDD implementation based on hashmaps.

https://github.com/diegojromerolopez/djbdd. 41, 72, 80

[69] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. GraphLab: A new

framework for parallel machine learning. Conf. Uncertainty in Artificial Intelligence, 2010. 4, 44

152 BIBLIOGRAPHY

[70] B. Lucia and B. Ransford. A simpler, safer programming and execution model for intermittent systems.

PLDI, 2015. 112

[71] K. Maeng, A. Colin, and B. Lucia. Alpaca: intermittent execution without checkpoints. OOPSLA,

2017. 112

[72] K. Maeng and B. Lucia. Adaptive dynamic checkpointing for safe efficient intermittent computing.

OSDI, 2018. 112

[73] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for points-to analysis for

Java. T. Software Eng. and Methodology, 14(1):1–41, Jan. 2005. 21, 40, 62, 72

[74] I. Mokhtarzada. A simple ray tracer written in Java. https://github.com/idris/raytracer. 41, 72

[75] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching.

ASPLOS, 1992. 17

[76] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A not-so-foreign language

for data processing. SIGMOD, 2008. 4, 44

[77] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compilation techniques.

IEEE Trans. on Comp., 29(9), Sep 1980. 23

[78] P. M. Petersen and D. A. Padua. Static and dynamic evaluation of data dependence analysis. ICS,

1993. 8, 17

[79] P. Peterson and D. Padua. Dynamic dependence analysis: a novel method for data dependence

evaluation. LCPC, 1992. 113

[80] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with

Sawzall. Sci Prog J, 13(4):227–298, 2005. 4, 44

[81] B. Pottenger and R. Eigenmann. Idiom recognition in the Polaris parallelizing compiler. SC, 1995. 70

[82] P. Prabhu, S. Ghosh, Y. Zhang, N. P. Johnson, and D. I. August. Commutative set: A language

extension for implicit parallel programming. PLDI, 2011. 76

[83] W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence

analysis. SC, 1991. 17

[84] W. Pugh and D. Wonnacott. Constraint-based array dependence analysis. ACM Trans. Program.

Lang. Syst., 20(3), May 1998. 8, 17

https://github.com/idris/raytracer

BIBLIOGRAPHY 153

[85] M. Püschel, J. M. F. Moura, J. Johnson, M. V. D. Padua, B. Singer, J. Xiong, A. G. F. Franchetti,

Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP transforms.

Proc. IEEE, special issue on “Program Generation, Optimization and Adaptation”, 93, 2005. 44

[86] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand. Decoupling algorithms

from schedules for easy optimization of image processing pipelines. ACM Trans. Graph., 31(4), July

2012. 4, 44, 46

[87] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. Halide: A language

and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.

PLDI, 2013. 46

[88] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. Parallel-stage decoupled software

pipelining. CGO, 2008. 14, 24

[89] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled software pipelining with

the synchronization array. PACT, 2004. 14, 24

[90] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time parallelization of loops with

privatization and reduction parallelization. PLDI, 1995. 113

[91] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. LICS, 2002. 25

[92] M. Rinard and P. Diniz. Commutativity analysis: A new analysis technique for parallelizing compilers.

ACM TOPLAS, 19(6), 1997. 29, 46, 76

[93] B. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations.

POPL, 1988. 15, 23

[94] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: static & dynamic memory reference

analysis. IJPP, 31, Aug. 2003. 112

[95] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible architectural support for fine-grain scheduling.

ASPLOS, 2010. 72

[96] Y. Sato, Y. Inoguchi, and T. Nakamura. Whole program data dependence profiling to unveil parallel

regions in the dynamic execution. IISWC, 2012. 113

[97] B. Scholz, H. Jordan, P. Subotic, and T. Westmann. On fast large-scale program analysis in datalog.

CC, 2016. 72

154 BIBLIOGRAPHY

[98] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni. Hybrid static-dynamic analysis for

statically bounded region serializability. ASPLOS, 2015. 112

[99] O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive selection of collections. PLDI, 2009. 9,

45

[100] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri, and K. Tangwongsan.

Brief announcement: The problem based benchmark suite. SPAA, 2012. 40, 72

[101] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. ISCA, 1995. 113

[102] M. Sridharan and S. J. Fink. The complexity of Andersen’s analysis in practice. SAS, 2009. 74

[103] B. Steensgaard. Points-to analysis in almost linear time. POPL, 1996. 18

[104] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level speculation.

ISCA, 2000. 113

[105] A. K. Sujeeth, K. J. Lee, K. J. Brown, H. Chafi, M. Wu, A. R. Atreya, K. Olukotun, T. Rompf, and

M. Odersky. OptiML: An implicitly parallel domain-specific language for machine learning. ICML,

2011. 4, 44

[106] G. Tournavitis. Profile-driven parallelisation of sequential programs. PhD Thesis, University of Edin-

burgh, 2011. 17, 113

[107] S. Treichler, M. Bauer, and A. Aiken. Language support for dynamic, hierarchical data partitioning.

OOPSLA, 2013. 119

[108] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc.

London Mathematical Society, s2-42, Jan. 1937. 80

[109] A. Udupa, K. Rajan, and W. Thies. ALTER: exploiting breakable dependences for parallelization.

PLDI, 2011. 76

[110] H. Vandierendonck, S. Rul, and K. De Boesschere. The Paralax infrastructure: automatic paralleliza-

tion with a helping hand. PACT, 2010. 24

[111] M. Weimer, T. Condie, and R. Ramakrishnan. Machine learning in ScalOps, a higher order cloud

computing language. NIPS Workshop on Parallel and Large-scale Machine Learning, 2011. 4, 44

[112] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. CC, 2000. 24, 47

BIBLIOGRAPHY 155

[113] M. E. Wolf and M. S. lam. A data locality optimizing algorithm. PLDI, 1991. 17

[114] P. Wu, P. Feautrier, D. Padua, and Z. Sura. Instance-wise points-to analysis for loop-based dependence

testing. ICS, 2002. 9, 18, 51, 76, 112

[115] P. Wu and D. Padua. Containers on the parallelization of general-purpose Java programs. Intl. J

Parallel Prog., 28(589), 2000. 9, 46, 76

[116] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization of scalar value

communication between speculative threads. ASPLOS, 2002. 111

	Contents
	List of Tables
	List of Figures
	Introduction
	The Problem: Levels of Program Understanding
	The Problem Illustrated: Loop Parallelization
	A Potential Approach: Domain-Specific Languages
	Our Approach: High-Level Understanding from General-Purpose Languages
	Overview of Related Work
	Thesis Statement and Contributions
	Structure of the Thesis

	Background: Loop Parallelization and Alias Analysis
	Loop Parallelization
	Parallelizing a Loop Nest with Linear Array Accesses
	Alias Analysis
	Andersen Points-to Analysis
	Interprocedural Analysis
	Program Analysis Definitions
	Other Related Work: Alternate Approaches
	Chapter Summary

	Data-Structure Awareness with Semantic Models
	The Problem: Analysis of Common Data Structures is Imprecise
	Our Approach: First-Class Data Structures
	Improving Points-to Precision with First-Class Data Structures
	Mapping Libraries to Intrinsics: Semantic Models
	Evaluation: Points-to Precision
	Discussion: First-Class Primitives vs. DSLs
	Related Work
	Chapter Summary

	Daedalus: Enhanced Alias Analysis with Distinctness
	Alias Analysis for Loop Parallelization
	Distinctness Analysis: Definitions and Analysis Rules
	Distinctness in Maps, Sets and Lists
	Which Distinct Value?: Must-Alias Analysis Inside Loops
	Parallelizing Loops Using Distinctness
	Evaluation
	Related Work
	Chapter Summary

	Icarus: Extending Static Loop Parallelization Analysis with Dynamic Checks
	Motivation: Almost-Provable Analysis Facts
	One Solution: Fully-Dynamic Version of a Static Analysis
	Our Approach: Hybrid Static-Dynamic System
	Executing with Dynamic Checks
	Evaluation
	Discussion
	Related Work
	Chapter Summary

	Future Work and Conclusions
	Future Research Directions
	Conclusion

	Definitions and Proofs for Daedalus
	Definitions
	Loops and Loop Contexts
	Tag-based Pseudo-flow-sensitive Must-Alias Analysis
	Distinctness Analysis
	Loop Parallelization (Iteration Non-Aliasing)
	Analysis Termination

	Definitions and Proofs for Icarus
	First Pass: Possible Distinctness
	Loop Parallelization Rules
	Needed Distinctness
	Dynamic Check Mechanisms at Runtime

	Bibliography

