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Abstract 

Distributed energy resources (DER), such as rooftop solar and combined heat and 

power (CHP), create a unique opportunity to reduce transmission and distribution network 

capacity requirements, decrease electrical losses, and potentially improve reliability, resiliency, 

and other operating metrics.  This dissertation examines how DER benefit different stakeholders 

in the electric power sector: DER owners, ratepayers, utilities, and society. In Chapter 2, we 

investigate how increasing commercial CHP system peak penetrations may affect net 

emissions, the distribution network, and total system energy costs.  We find that small 

commercial CHP, due to low and inconsistent heat loads, can increase emissions relative to the 

bulk grid. We suggest policy options to encourage CHP operation during times of high heat 

loads.  In Chapter 3, we develop metrics based on existing best utility practices that 

characterize how much solar can reduce peak demand on distribution network feeders.  We 

conclude that solar can act as a capacity resource, but the size of the resource depends on the 

geographic region. Energy storage or an allowance for occasional overloading within a 

transformer’s tolerance can increase the capacity resource of solar.  Chapter 4 is a value of 

solar and rate impact study for the Pennsylvania Public Utility Commission (PUC). The 

Pennsylvania PUC can use it to decide whether the environmental benefits of solar are worth 

the relatively small rate impact caused by rooftop solar. In Chapter 5, we assess the ability of 

rooftop solar and storage to reduce peak loads and defer distribution capacity projects in the 

PECO service territory. We find that targeted placement of solar can increase the total deferral 

value up to fourfold, but capacity deferral opportunities are rare and large administrative efforts 

to manage deferral projects, such as markets, are probably not warranted. 
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Chapter 1: Overview and Motivation 

In the United States, there are a variety of pathways-permutations of electrical grid 

configurations and generation options-available to generate cleaner power, reduce health 

damaging emissions, and decrease our carbon footprint. In one pathway, renewable energy is 

concentrated in resource rich locations; the transmission network is reinforced and expanded to 

smooth variability and bring power from remote locations to end-use consumption. Another 

pathway and the focus of this dissertation is the development of high quantities of distributed 

energy resources (DER) on electrical distribution networks, close to end-use consumption. DER 

can be any technology on electrical distribution networks that generate power (e.g. solar 

photovoltaics, combined heat and power, diesel generation) or that manage power (e.g. energy 

storage, energy efficiency, demand response). DER create a unique opportunity. They bypass 

the transmission network, reduce the use of the distribution network, lowers electrical losses, 

and with the right configuration, could improve reliability, resiliency, and other operating metrics.  

In this dissertation we focus on the benefits and challenges of rooftop solar photovoltaics, 

combined heat and power owned by small commercial businesses, and energy storage. The 

dissertation is motivated by challenges today and in the next 5-10 years, and two themes are 

present throughout. First, distribution networks are complicated and heterogenous and 

generally, were not designed for DER. Second, many people rely on distribution networks.  DER 

owners, utility shareholders, ratepayers, and society will pay different costs and receive different 

benefits from any changes to the distribution network.   

The Rocky Mountain Institute (RMI) is an organization dedicated to sustainable and 

profitable energy innovations. It describes a “significant methodological gap” in solar benefit cost 

analyses due to the inherent complexity and heterogeneity of distribution networks (Rocky 

Mountain Institute 2013). Distribution networks vary in topology, voltage level, protection system 

configuration, capacity, and control equipment options, such as tap changing transformers and 
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capacitors. Poorly developed utility feeder models and a dearth of high quality, publicly available 

models are a fundamental barrier for anybody trying to develop generalized conclusions and 

strategies for DER on distribution networks. We attempt to overcome this challenge with two 

data sets: a set of representative distribution networks feeders developed by the Department of 

Energy’s Pacific Northwest National Lab (PNNL), and four distribution networks from 

Philadelphia’s electric utility (PECO).   

A lack of data, lack of high quality models, and conflicting motivations have led to 

dramatically different assessments of the value of DER. For example, literature reviews of the 

value of solar by the New York State Energy Research & Development Authority (2015) and 

Rocky Mountain Institute (2013) cover more than an order of magnitude, from $0.03/kWh to 

$0.35/kWh. While some of this variability is caused by heterogeneity in the US electric grid, 

some of these value of solar studies suffer from imprecise engineering estimates and the 

incorrect characterization of wealth transfers as savings or costs. In this dissertation we explore 

pragmatic methods for valuing combined heat and power, rooftop solar photovoltaics and 

energy storage.  

In Chapter 2, we investigate how increasing commercial CHP peak penetrations1 may affect 

net emissions, the distribution network, and total system energy costs.  We constructed an 

integrated planning and operations model that maximizes owner profit through sizing and 

operation of CHP on a realistic distribution feeder in the Northeast.  We find that a greater peak 

                                                

1 Throughout this dissertation, we use energy penetration and peak penetration to describe DER quantities.  Energy 

penetration is the amount of DER energy produced relative to the total energy consumption.  We define, peak 

penetration as the DER system nominal capacity relative to peak load.  Generally, we follow the convention that 

energy penetration is more appropriate for describing DER on the bulk electric grid, while peak penetration is more 

appropriate when describing DER on distribution network feeders.   
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penetration of CHP reduces both total system energy costs and network congestion. 

Commercial buildings often have low and inconsistent heat loads. In the Northeast, power 

transmitted over transmission networks is relatively clean, and a 5% peak penetration of small 

commercially owned CHP would increase CO2 emissions by 2%.  Low emission CHP 

installations can be encouraged with incentives that promote CHP operation only during times of 

high heat loads.  In contrast, natural gas rate discounts, a common incentive for industrial CHP 

in some states, can encourage CHP operation during low heat loads and thus increase 

emissions.   

In Chapter 3, we examine whether rooftop solar can reliably reduce loading on distribution 

network feeders and define this load reduction as the Distribution-Effective Load Carrying 

Capability (D-ELCC). The D-ELCC is a fundamental metric for estimating the value that solar 

has for reducing load and avoiding capacity investments on distribution networks. Denholm et 

al. of the National Renewable Energy Lab (NREL) write that “utilities may be reluctant to reduce 

feeder capacity with PV because of concerns about high loads during periods of low solar 

output” (2014). Our analysis includes several features designed to quantify the D-ELCC and 

overcome utility reluctance. First, we use 23 prototypical feeders (the PNNL taxonomy) in 6 

locations in the United States, two real PECO feeders, and 19 years of weather data to simulate 

load and solar profiles. Second, we develop two D-ELCC metrics that are based on utility 

standards and practices. Our “worst-case D-ELCC” is based on the worst-case loading over all 

years and solar penetrations. We find the worst-case D-ELCC is above 40% at low penetrations 

for 19 of the 23 feeders examined. Utility engineers often use statistical weather normalization 

and transformer aging criteria to plan for capacity, both of which allow a small amount of 

overloading risk. When these planning criteria are used with solar and transformer aging is fixed 

at pre-solar levels, we find that the effective capacity of solar is consistently higher than found 

under worst-case load conditions. We call this the transformer aging D-ELCC. Alternatively, 
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relatively small amounts of energy storage used with solar can achieve high effective capacities 

without any overloading events. We find that pairing PV with a one hour duration battery rated at 

5% of the feeder peak loads could achieve an effective capacity of 50% or more for all feeders 

when the peak load penetration of solar is at or below 20%. As a point of comparison, we found 

that New York Feeder R2-12.47-3 at a 20% solar peak penetration of its 1 MW peak, had a 

worst-case D-ELCC of only 10%, due to cloudy conditions in the region, but had a transformer 

aging D-ELCC of 56% because some overloading was allowed, and could achieve a 50% D-

ELCC without any overloading with 50 kWh of energy storage.   

Chapter 4 is a value of solar and rate impact study in for the Pennsylvania Public Utility 

Commission. Central to the study is a utility financial model that estimates how the average 

customer ‘all-in-rate’ (i.e. the volumetric rate based on the total revenue requirement and kWh 

sales of all customer classes), will change for different energy penetrations of solar in the PECO 

service territory if Pennsylvania continues offering net energy metering (NEM) rates.  

We estimate the value of solar (VOS) in the PECO service territory to be $0.086±0.006/kWh 

for a 5% penetration of solar rolled out from 2020-2030 with random placement on distribution 

feeders.  This estimate for the VOS is below our estimate of $0.118/kWh for PECO’s all-in-rate2 

so if Pennsylvania continues with net energy metering, lost revenue will exceed avoided costs 

and there will likely be a small, 0.9%, increase in rates over a time horizon from 2020-2040. We 

find that solar’s effect on PECO’s business is small due to recent Pennsylvania policies, such as 

the Fully Projected Future Test Year and Revenue per Customer decoupling.  

In chapter 4, we also estimate avoided T&D capacity expenses assuming that solar is not 

targeted at overloaded sections of the T&D network. The combination of solar’s slow rollout, the 

relative infrequency of overloaded networks, and the untargeted placement of solar results in a 

                                                

2 The all-in-rate is different than the rate paid for by residential customers.  It is the total revenue requirement for all 

customers divided by the kWh sales for all customers.  
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low T&D VOS, a small effect on rates, and minimal impact on PECO’s business model.  

 By displacing fossil fuel generation and reducing criteria pollutant emissions, solar avoids 

health damages and premature loss of life.  These environmental benefits of solar are not 

included in our model because they do not affect rates, but from a societal perspective have a 

high value in Pennsylvania due to the state’s relatively high proportion of coal and natural gas 

fired power.  Perez et al. (2012) estimate the value of solar at $0.05-0.12/kWh in Pennsylvania. 

This chapter can be used by the Pennsylvania PUC to decide whether these large 

environmental benefits are worth the small rate impact caused by solar.   

In Chapter 5, we assess the ability of rooftop solar and storage to reduce peak loads and 

defer distribution capacity projects in the PECO service territory. We find that solar may 

modestly reduce rates and that the value of solar at 5% energy penetration can be increased up 

to fourfold if solar is targeted at overloaded locations. Targeted placement of solar, a higher 

effective capacity using energy storage, a 30% hosting capacity and 10% growth-related capex 

could reduce the rate increase (described in Chapter 4) to 0.4% and generate $55MM of 

deferral value over the same 20-year time horizon.  We conclude that capacity deferral with 

solar should be included in PECO’s planning process but that large administrative efforts to 

manage deferral projects, such as markets, are probably not warranted.  
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Chapter 2: Are high penetrations of commercial cogeneration 
good for society?3 

 

Abstract 

Low natural gas prices, market reports and evidence from New York State suggest that 

the number of commercial combined heat and power (CHP) installations in the United States 

will increase by 2-9% annually over the next decade. We investigate how increasing commercial 

CHP penetrations may affect net emissions, the distribution network, and total system energy 

costs.  We constructed an integrated planning and operations model that maximizes owner 

profit through sizing and operation of CHP on a realistic distribution feeder in New York.  We 

find that a greater penetration of CHP reduces both total system energy costs and network 

congestion. Commercial buildings often have low and inconsistent heat loads, which can cause 

low fuel utilization efficiencies, low CHP rates-of-return and diminishing avoided emissions as 

CHP penetration increases.  In the northeast, without policy intervention, a 5% penetration of 

small commercially owned CHP would increase CO2 emissions by 2% relative to the bulk power 

grid.  Low emission CHP installations can be encouraged with incentives that promote CHP 

operation only during times of high heat loads.  Time-varying rates, such as time-of-day and 

seasonal rates, are one option and were shown to reduce customer emissions without reducing 

profits.  In contrast, natural gas rate discounts, a common incentive for industrial CHP in some 

states, can encourage CHP operation during low heat loads and thus increase emissions.   

 

2.1 Introduction 

Combined heat and power (CHP) systems can achieve higher fuel utilization efficiencies 

                                                

3 Published as Keen, J. F., and J. Apt. 2016. "Are high penetrations of commercial cogeneration good for society?"   

Environmental Research Letters 11. 
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than conventional power plants.  CHP contributes approximately 7% of US generation capacity 

with 97% of this capacity found in the electrical power and industrial sectors (EIA 2012). Low 

natural gas prices may encourage more commercial CHP in commercial and institutional 

settings.  Schools, hospitals, nursing homes, laundromats (i.e. a self-service laundry), prisons, 

swimming pools and other buildings with hot water needs are likely to benefit from commercial 

CHP (Flin 2010) (U.S. EPA 2014).  Already, the majority of CHP sizes in New York are less than 

1 MWe (U.S. Department of Energy 2019)  (Supporting Material, Figure 2-16) and US market 

forecasts predict annual growth rates of between 2-9% or about 15-70 GWe over the next five 

years (Technavio 2015) (Navigant Resarch 2015) (EIA 2016).  If these forecasts are accurate, 

CHP may have a large effect on the environment and on electric distribution grids.   

 Research on high penetrations of CHP in commercial buildings is limited.  There is 

considerable research examining the economic feasibility and optimal sizing of CHP (King and 

Morgan 2006) (Siler-Evans, Morgan and Azevedo 2011) (Flores, Brendan and Brouwer 2014), 

but this work often focuses on universities and hospitals rather than on small commercial 

buildings such as strip malls.  Studying these smaller commercial buildings is important because 

they tend to have large daytime heat loads only in the winter and low heat loads during other 

times, but CHP could still be attractive for these customers at low natural gas prices.  Variable 

commercial building heat loads may lead to wasted heat and low fuel utilization efficiencies if 

the CHP is operated during times of low heat loads (Barbieri, Melino and Morini 2012) (Smith, 

Mago and Fumo 2013) (Mago, Chamra and Hueffed 2009).   

 To mitigate the problem of wasted heat, Smith et al. (2013) recommend oversizing water 

tanks (where space permits) to allow more heat storage and consequent emission reductions. 

Mago et al. (2009) suggest operating CHP at small offices only during office hours.  These 

authors did not, however, assess the capability of commercial CHP to reduce regional 

emissions in high penetration scenarios.  Lane Clark & Peacock (2014), for example, have 
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shown that industrial cogeneration may produce higher emissions than the bulk grid in Great 

Britain by 2030.  Even though the overall fuel efficiency for heat and power can be high, small 

CHP have electrical efficiencies as low as 25%, so CHP placed at buildings with low heat loads 

could produce higher emissions than the bulk power grid.  Finally, we are not aware of any 

research that examines the effect of commercial CHP on the local distribution network. 

Commercial CHP operation is dependent on building heat loads and will have a unique effect on 

the network losses, congestion and power flows.  We examine stakeholder costs and benefits, 

emissions, and network effects of high penetrations of commercial CHP. Because the details 

and emission consequences of how commercial CHP is operated may also be dependent on 

who owns the CHP, we compare utility and customer ownership.   

 We have constructed an integrated planning and operations model that maximizes 

owner profit through sizing and operation of commercial CHP on a realistic distribution feeder in 

New York.  In the following section we describe our model. Customer and utility ownership 

models are used to explore how the benefits of CHP vary.  We then discuss results that show 

that CHP in commercial buildings reduces electric distribution system costs but that policies 

aimed at reducing emissions should encourage CHP operation only during times of high heat 

loads.  Finally, time varying rates, such as time-of-day and season rates, are demonstrated as 

one option for reducing emissions.    

 

2.2 Combined heat and power model 

Our model compares the CHP benefits accrued when operated by a utility and by a 

customer.  These ownership models reflect current opposing viewpoints on who should own 

distributed energy resources (DER).  For example, the American Council for an Energy Efficient 

Economy (ACEEE) has recently reported on the benefits of utility owned CHP (Chittum and 

Farley 2013) while the New York Reforming Energy Vision (REV) process currently prohibits 
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utility ownership of DER (Opalka and Heidorn 2015). 

An overview of the model is shown in Figure 2-1 and details are in the modeling section 

of the Supplementary Materials. A radial distribution feeder is modeled with hourly time-varying 

electrical and heat loads; these are derived from the GridLab-D feeder taxonomy (K. P. 

Schneider, et al. 2008) and the US Department of Energy (DOE) commercial reference building 

model (DOE Office of Energy Efficiency and Renewable Energy 2016) (EERE 2015) 

respectively. CHP that are installed at commercial buildings on the feeder can be used to 

supplement grid power and heat from pre-existing boilers (Supplementary Materials Figure 2-9) 

and thus avoid energy costs, but at the expense of additional capital and operations & 

maintenance (O&M) costs.  So, the model places CHP in commercial buildings only if the 

resulting cash flow yields a rate-of-return greater than 10%. The units are sized to maximize the 

net present value (Supplementary Materials Figure 2-10).  Next, the CHP are operated for one 

year (using observed heat loads and power prices) and the economic, environmental, and 

network benefits are computed.  The primary difference between the owners is that customer 

owners are subject to retail tariffs and a demand charge.  The utility is modeled as an investor 

owned deregulated utility that buys power on the wholesale market at time-varying locational 

marginal prices (LMPs), but the model could also be generalized to vertically integrated utilities.  

Additionally, the utility must offer the customer a power purchase agreement (PPA) to 

compensate for the opportunity cost foregone by not renting the space the CHP occupies; the 

utility can afford to do this because CHP reduces the utility’s wholesale power purchase costs.  

We define a PPA similarly to the SolarCity PPA, where the customer earns a fixed rate for each 

kWh produced by the CHP.  All modeling parameters were based on representative values from 

the northeastern United States (Supplementary Materials, Input Section).    
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Figure 2-1: A simplified version of the integrated planning and operations model is shown.  Economically attractive 
CHP are placed on a distribution feeder with time varying electrical and heating loads. The CHP are operated by a 
customer, subject to a flat tariff, and a utility subject to time varying locational marginal prices. The effect of each 
owner’s planning and operating strategy on the CHP economics, environmental benefits and network benefits are 
recorded and compared.  Statistics for the full model are shown in Table 2-8 of the Supplementary Materials. The full 

model has over 700 nodes and a lower penetration of CHP than shown here. 

Annual metrics for the distribution network effects, relative CHP emissions, and 

allocation of economic benefits were collected.  Distribution network effects were examined 

through the loading on all the network components such as transformers.  We used regional 

marginal emission factors (MEFs) for the bulk power generation grid to compare the CHP 

emissions with marginal emissions on the bulk power grid.  The MEFs estimate the emissions of 

the power plants that the CHP are most likely to replace at the time of day and year the CHP is 

producing power.  We used three metrics for the allocation of economic benefits: System 

savings compare the cost of energy (i.e. LMP) and transmission & distribution (T&D) costs 

needed to deliver power to the loads against the cost of delivering that power with CHP 

(including fuel, O&M, and capital expenses). Customer savings depend on the ownership model 

and describes the final reduction in the customers’ bills accounting for tariff structure (e.g. the 

energy charge and demand charges), capital costs, O&M costs, and power purchase 

agreement. Utility savings also depend on the ownership model, and compares avoided LMP 

costs, with loss of revenue through PPA costs, reduced demand charges, capital costs, O&M 

costs, and lost sales.  Details are in Metrics Section of the Supplementary Materials. 
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2.3 Results 

We find that the benefits of commercial CHP depend on the penetration level and how the 

CHP fleets are operated.  Customer ownership leads to a higher CHP penetration, which has 

benefits for the grid.  However, lower CHP penetration and less CHP operation at night and in 

the summer leads to lower relative CO2 and NOx emissions in the utility ownership scenario.  

We first discuss in what kinds of buildings CHP is profitable under the two ownership 

models. In our model, customer CHP owners install more CHP than utility owners on a greater 

variety of buildings (Table 2-1).  The reason for the difference is that customers benefit from 

reduced demand charges under both ownership models and utilities must share revenue 

through a PPA.  

Table 2-1: Planning Results.  Customer CHP owners install more CHP on a greater number and variety of buildings. 

 

In many cases it is not necessary for the utility to offer a PPA, because the customer’s 

avoided demand charges are greater than the opportunity cost foregone by not renting the 

space the CHP occupies.  Figure 2-22 of the Supplementary Materials shows the range of PPAs 

that the utility could offer to the host customer of each load.   

We next discuss network energy losses, thermal violations (i.e. equipment overloading) 

and voltage violations (e.g. over voltages) for each ownership model (Supplementary Materials, 

Metrics Section).  Resistive energy losses in the distribution network equipment account for 

approximately 1% of network demand without CHP and were reduced to 0.9% and 0.8% under 

utility and customer ownership, respectively.  If these losses are monetized using the New York 

2014 LMPs, savings would be $6-8/kWe-year, a small amount relative to CHP capital costs 
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(~2%).  The distribution network in this analysis is representative of many Northeastern feeders 

and is loaded to 60% of its capacity.  It is likely that greater value could be obtained from 

reduced losses through CHP placed on more heavily loaded feeders.   

System benefits can also be produced by CHP that defers capital investments needed 

for the distribution network infrastructure.  On networks with more congestion or high load 

growth, customer ownership would be more effective than utility ownership in deferring capacity 

investments (Supplementary Materials Figure 2-23).  We did not observe thermal violations or 

voltage violations that were caused or reduced by the commercial CHP.   

A potential challenge with using commercial CHP to defer capacity investments for 

electrical distribution networks is that congestion will be shifted from the electricity network to 

the gas distribution network.  Commercial CHP increased the yearly natural gas consumption 

for the sum of the buildings by 46% and 400% under the utility and customer ownership 

scenario, respectively.  Thus, high penetration commercial CHP scenarios are likely to require 

capacity investments in natural gas distribution infrastructure. These new capacity investments, 

however, may not raise customer natural gas distribution rates since the CHP fleets increased 

natural gas load factors from 11% to 15% and 36% under customer and utility ownership, 

respectively.   

2.4 Emissions 

The relative CO2, SO2 and NOx emissions of each CHP owner compared to the NPCC 

bulk power grid are shown in Figure 2-2.  CHP decreases CO2 and SO2 emissions, but NOx 

emissions increase. We find that utility owned CHP CO2 and NOx emissions are lower than 

those of customer owned CHP, despite having less installed CHP capacity.  There are two 

reasons that the customer owned fleet of CHP has higher emissions.  First, the customer owner 

is subject to a flat electricity tariff and operates the CHP more than the utility owner does during 

the night when heat loads are low and excess heat is wasted.  This behavior is illustrated in 
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Figure 2-3 for a supermarket.  The utility sees lower LMPs at night, so will turn the CHP off at 

night and waste less heat.  For similar reasons, the customer owner will operate the CHP more 

during the summer when heat loads are low.  Buildings that have consistent heat loads, like 

hospitals, are less sensitive to time-varying rates and show less variation in emissions between 

owners.   

 

Figure 2-2. Utility and customer CHP emissions relative to the NPCC bulk power grid.  Utility owned CHP reduces 
CO2 and NOx emissions more than customer owned CHP despite having less installed CHP capacity.  Customer 
owned CHP emissions are higher because the customer’s flat rate incentivizes continuous operation even when heat 
loads are low, and because the customer fleet contains more CHP with higher emissions. Time-varying rates, shown 
in the Time-of-Day (TOD) and Seasonal Rate scenario, reduce customer emissions by incentivizing the owner to 
reduce CHP operation during times of high heat loads.  In contrast, a natural gas discount will encourage more 
operation of the CHP and increases emissions 
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Figure 2-3. Utility and customer CHP dispatch. A supermarket has large heat loads in the day and very low heat 
loads during the night.  The customer owner will continue to operate the CHP at night, but the utility which sees lower 
LMPs at night, will turn the CHP off.  This results in lower overall emissions from the utility.  Generally, dispatch is 
very sensitive to the heat load and price.  Because time-varying rates tend to be small when loads are small, the 
utility dispatches CHP in a manner that follows the heat load more often.   

The second reason that customer CHP ownership produces higher relative emissions is 

that the customer owned fleet has both larger and more CHP at buildings with higher relative 
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emissions.   Large offices with CHP produce more emissions than if powered from the bulk 

power grid (Figure 2-4), and more commercial CHP capacity is profitable at large offices in the 

customer ownership scenario (Table 2-1).  Taken together, this suggests that higher 

penetrations of commercial CHP may yield higher relative emissions as CHP is placed at more 

buildings with variable heat loads.  We examine this possiblity further in the sensitivity analysis.   

 

 

Figure 2-4. Customer owned CHP CO2 emissions for representative buildings.  Seasonal and Time-of-day (TOD) 
rates reduce customer CO2 emissions. CO2, SO2 and NOx building level emissions are shown for the full fleet in the 
Supplementary Materials, Figure 2-24.  The microgrid is composed of one warehouse and one secondary school.   

 

A more general way to assess the potential of CHP to reduce emissions is by directly 

comparing marginal emission factors and CHP emissions (Supplementary Materials Figure 

2-19, where marginal emission factors are shown for the NPCC reliability region in the summer, 

winter, and shoulder months).  CHP emissions are also shown, but have a range that depends 

on how much boiler heating is avoided.  Commercial CHP, for example, can reduce CO2 

emissions if heat is not wasted.  SO2 reductions are certain, because natural gas contains very 

little sulphur.  NOx emissions depend greatly on both the CHP and boiler emission technology.  
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In our analysis, we assume a best-case scenario for CHP with low NOx CHP operation and 

boilers that do not control NOx emissions. Despite this assumption, NOx emissions from 

uncontrolled boilers are still about ¼ the magnitude of low-NOx CHP.  Because boiler NOx 

emissions are relatively low, heat generated from CHP is less effective at reducing NOx 

emissions (Figure 2-2).  

Figure 2-19 of the Supplementary Materials can be used to estimate the ability of CHP to 

reduce emissions in locations other than New York.  Regions with high percentages of coal 

powered generation, such as MRO, will benefit from high penetrations of commercial CHP.   

2.5 Potential emission reduction policies 

As previously discussed, CHP is profitable for some commercial buildings with variable 

heat loads; in such installations some emissions can increase.  Emission controls placed on 

commercial CHP and boilers would have a large effect on the relative NOx emissons.  Selective 

Catalytic Reduction (SCR) can reduce CHP NOx emissions by 95% (EPA 2015) and would 

ensure NOx reductions similar to that of SO2 for commercial CHP.   However, SCR would add 

about $150-$700/kWe to the CHP capital cost (approximately 6-27%, respectively) (EPA 2015).  

On the other hand, improved emission controls can reduce heating system boiler emissions by 

approximately 70% (EPA 1998), but would significantly reduce the ability of commercial CHP to 

avoid NOx emissions.  We find it is unlikely that commercial CHP owners would install these 

emission controls because yearly emissions do not qualify most buildings for EPA regulation 

(e.g. as a ‘major source’ of emissions).    

 We examine the possibility of using time-of-day rates and seasonal rates to reduce CHP 

emissions.  We constructed hypothetic rates centered on the NYSEG commercial customer rate 

and designed the rates to discourage CHP operation during times of low heat loads.  A time-of-

day tariff of $0.121/kWh during the night and $0.165 during the day and a seasonal summer 

rate of $0.128/kWh and a winter rate of $0.158/kWh were used.  Figure 2-2 and Figure 2-4 
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show that emission reductions are achieved for the CHP fleet and for individual buildings when 

customers are subject to time-varying rates.  The emission reductions are achieved because the 

time-of-day rate discourages CHP operation and therefore, wasted heat during the night when 

commercial buildings have low heat loads.  Similarly, the seasonal rate avoids wasted heat 

during the summer.  

We found that time-varying rates can achieve emission reductions without reducing the 

economic value of customer-owned CHP, but customer-owned CHP can also lead to high utility 

losses and possible rate increases for ratepayers.  Figure 2-5 shows that the system, customer, 

and utility savings remain similar if the customer has time-varying rates.  However, utility losses 

are also high under all customer ownership scenarios because the utility loses revenue from 

reduced demand charges and reduced energy sales that embody the sunk costs of the 

distribution system infrastructure.  Macroeconomic demand supply models have been used on 

the bulk power grid to quantify the short-term price reductions and jobs associated with 

industrial cogeneration (Baer, Brown and Kim 2015). Work is needed that expands on Baer, 

Brown and Kim (2015) and compares the value of reduced energy costs and reduced long term 

infrastructure requirements with the short-term cost shifts needed to pay for stranded assets.   
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Figure 2-5. Allocation of CHP Savings for the base case and time-varying rates.  Total system savings are positive 
for both owners indicating that the capital costs and energy costs of delivering power with CHP are cheaper than the 
grid.  The high utility losses reflect lost energy sales and sunk distribution infrastructure costs. Time-varying rates do 
not have a large effect on customer or utility savings suggesting that time-varying rates can achieve emission 
reductions without negatively affecting the CHP payback period.  

 

 Microgrids are sometimes discussed as another option for reducing emissions (DOE 

2012), but we did not observe consistent emission reductions from microgrids.  As shown in 

Figure 2-4 and Figure 2-30 of the Supplementary Materials, microgrids composed of a 

warehouse and secondary school tend to produce lower emissions than if CHP were placed at 

those loads separately.  The opposite is true for microgrids composed of a quick-service 

restaurant and strip mall.  Microgrids may be more effective if emission reductions are included 

in the CHP sizing objective functions.  Also, microgrids composed of many buildings could take 

advantage of the increasing electrical efficiencies and decreasing heat-to-power ratios of larger 

sized CHP (Supplementary Materials Figure 2-14).  However, despite these improvements, 

commercial building microgrids will still tend to produce wasted heat because many commercial 

buildings have highly correlated heat loads (Supplementary Materials Figure 2-31).   
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Hot water absorption chillers use heat energy to cool buildings and are another option to 

use waste heat from CHP.  We believe more research is needed on absorption chillers, but high 

capital costs, maintenance challenges, inconstant cooling loads, and low coefficients of 

performance currently limit their economic feasibility.   

In some states, natural gas discounts are used to encourage CHP.  New Jersey Natural 

Gas, for example, offers natural gas discounts of up to 50% to residential and commercial 

customers that install CHP (New Jersey Natural Gas 2016).  We applied a natural gas discount 

of $2/MCF ($1.9/GJ) to the CHP fleet in Table 2-1 and examined the effect of this discount on 

the CHP fleet emissions, shown in Figure 2-2.  The natural gas discount increases CO2 and NOx 

emissions because it encourages operation of the CHP even during times of low-heat loads.  

This result is further discussed in the following section.   

2.6 Sensitivity analysis 

We examined the robustness of the ability of time-varying rates to reduce emissions.  In 

Figure 2-2 and Figure 2-4, we showed that time-varying rates cause utility owned CHP to turn 

off when heat loads are low, resulting in higher overall fuel utilization efficiencies. An important 

question is to what extent time-varying rates will be effective at reducing emissions in states that 

have different electricity and natural gas prices.  For example, we also showed in Figure 2-2 that 

a natural gas discount would increase both customer and utility CHP fleet emissions, thus 

reducing the ability of time-varying rates to reduce emissions.  Similarly, a greater reliance on 

natural gas fired generation could lead to more closely coupled electricity and natural gas prices 

and make CHP operations less economical.  A simple visual tool is needed to estimate how 

these future scenarios can affect CHP emissions.  

Figure 2-6 can be used to predict how time-varying rates and varying spark spreads will 

affect CHP emissions.  It shows dispatch regions for a 10 kWe and 500 kWe CHP over a range 

of natural gas and electricity prices.  These regions approximate how electricity and gas prices 
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affect CHP dispatch under different loading scenarios.  CHP units are not dispatched in the 

black region.  In the green regions, CHP are dispatched only if a heat and electric load are 

present.  In the yellow region, CHP are dispatched even when only the electric load is present.  

The customer owner’s dispatch behavior, presented earlier for New York State with electricity 

and natural gas at $0.143/kWh (OpenEI 2015) and $8.3/MCF ($7.9/GJ) (EIA 2013), falls in the 

yellow region.  The average utility electricity and natural gas prices also fall within the yellow 

region, but it is subject to a time varying LMP and thus often falls within the green region.  Also, 

low LMPs tend to occur when commercial heat loads are low, so utilities fall within the green 

region when it is possible to achieve higher efficiencies.  In contrast, the customers in the New 

York State have a flat rate, so they are consistently in the yellow dispatch region, and operate 

the CHP less efficiently.  CHP larger than 10kWe have smaller green regions and will be less 

sensitive to time-varying rates, as shown in Figure 6 for a 500 kWe CHP.   

 
Figure 2-6. Sensitivity of dispatch of a 10kWe and 500kWe CHP to natural gas and electricity prices.  CHP are not 
turned on in the black region.  In the green region, CHP are only turned on if a heat and electric load is present.  In 
the yellow region, CHP are dispatched at times even when only electric load is present.  Dispatch in the green zone is 
likely to reduce emissions.  Dispatch in the yellow zone may not reduce emissions if CHP heat production does not 
offset building heat load.  For small CHP the customer owner’s dispatch behavior, presented earlier, with electricity 
and natural gas at $0.143/kWh and $8.3/MCF ($7.9/GJ) falls in the yellow region.  And, the utility is subject to a time 
varying LMP and so, it often falls within the green region, leading to lower utility emissions. Larger CHP becomes less 
sensitive to these effects, so time-varying rates will not be effective at reducing large CHP emissions. 
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 As the penetration of commercial CHP increases, the emission benefits associated with 

CHP diminish.  Figure 2-2 shows that the smaller utility owned fleet of CHP produces fewer 

relative emissions than the larger customer owned fleet.  The larger customer fleet has more 

emissions because it has more CHP at buildings with higher relative emissions.  This 

relationship is further examined in Figure 2-7.  A range of CHP penetration scenarios for small 

CHP (<100 kWe) was created by varying the capital cost and discount rate of the CHP 

investments.  As the economic conditions became more favorable to commercial CHP, 

penetrations increased, but the relative emissions also increased.  Time-varying locational 

marginal prices caused the utility owned fleet to produce lower emissions than the customer 

owned fleet for similar penetration levels.  In contrast, the owner emissions of larger CHP 

(>100kWe) are unaffected by penetration level and time-varying rates (see Figure 2-7, where 

the CHP fleet penetration correspond to the following scenarios moving from left to right: 30% 

Increase in CHP Capital Costs, 30% Increase in Discount Rate, Base Case, 30% Decrease in 

Discount Rate, 30% Decrease in CHP Capital Costs, 50% Decrease in Capital Costs and 

Discount Rate). 
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Figure 2-7. Comparison of utility-owned CHP (subject to locational marginal prices) with customer-owned CHP (a 
non-varying flat rate). Utility locational marginal prices cause lower emissions than customer owned CHP subject to a 
non-varying retail rate.  Emissions increase as the penetration of small CHP (< 100 kWe) increase but time-varying 
locational marginal prices are effective at reducing these emissions for the utility.  Emissions do not increase for large 
CHP (>100 kWe) and time-varying rates are ineffective at reducing emissions.   

 

The emission and economic benefits of CHP were simulated for the years 2010 through 

2014 to determine if the corresponding natural gas prices, electricity prices and marginal 

emission factors would affect the relative emissions or economic benefits of CHP fleets.  The 

results are shown in Figure 2-25 and Figure 2-29 of the Supplementary Materials and are 
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consistent with the 2014 results.  Customer CHP fleet emissions are generally higher than utility 

emissions, and the economic benefits are allocated similarly for most years.    

2.7 Conclusion and policy implications 

We constructed an integrated planning and operations model that maximizes owner profit 

through optimal sizing and operation of commercial CHP on a realistic distribution feeder in New 

York.  Using customer and utility ownership models we found that a greater penetration of CHP 

reduces network congestion and total system costs.  Our results agree with previous findings 

that large CHP will reduce emissions and that policies encouraging large CHP will reduce 

system wide emissions (Brown, Cox and Baer 2013).  Commercial CHP, however, will not 

always reduce emissions if large amounts of wasted heat are produced, as summarized in 

Figure 2-8 for the New York Clean Power Plan targets.  Both commercial buildings produce 

emissions much higher than their technical potential, and only the outpatient facility is able to 

help New York meet its emission target.   

 

 

Figure 2-8. Commercial CHP produce higher emissions because the heat they produce cannot always be used.  In 
some cases, this wasted heat will prevent commercial CHP installations from helping New York meet their Clean 
Power Plan Target.  Outpatient medical facilities have more consistent heat loads than secondary schools, and their 
emissions are lower than current northeast emissions and the clean power plan target.  Secondary school emissions 
are low relative to the current bulk grid but would not help New York meet the clean power plan target.  Both 
commercial buildings produce emissions much higher than their technical potential.       

 

Based on our results, we offer the following considerations to help policy makers maximize the 

benefits of CHP in commercial buildings.  
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Commercial CHP will reduce system costs.  The capital, O&M, and energy costs of 

commercial CHP the lower than the capital, O&M, and energy costs of the grid.  Overall, this will 

produce system savings, but there is likely to be a debate over who should be able to own 

commercial CHP and benefit from these savings. In particular, customer ownership has higher 

system savings but causes the utility to lose revenue.  This loss of revenue will likely cause 

higher rates.   

There are advantages of utility owned CHP.  In addition to the benefits reported by 

the ACEEE (Chittum and Farley 2013), utility owned CHP avoids customer cost shifts.  It may 

also be easier to regulate utility owned CHP emissions and to encourage operation that does 

not waste heat.  Giving these findings, New York may want to reconsider its policy on utility 

CHP ownership. 

Commercial CHP will reduce distribution network congestion and losses.  On 

highly congested networks, commercial CHP may be an effective way to defer capacity 

investments.    

Commercial CHP will reduce emissions less as penetrations increase.  Commercial 

buildings vary in the quantity and consistency of their heat loads.  Favorable economic 

conditions, such as a natural gas discount or a high electricity price relative to that of natural 

gas, may result in CHP at these buildings. SO2 emissions decrease when CHP is installed, but 

CO2 emission rates depend on the head load of the building.  Local emissions could also violate 

limits in nonattainment regions, despite regional emission improvements (Brown, Cox and Baer 

2013). In our New York model, we found large emission reductions for some buildings that have 

consistent heat loads, such as large hotels.  However, the emission of some other building 

types, such as large offices, are sometimes larger than the bulk power grid emissions in the 

northeast because their inconsistent heat loads do not take advantage of the potential 

reductions due to CHP.  A consequence of this finding is that high incentives for commercial 



26 

 

CHP can have diminishing environmental benefits.  In short, while commercial CHP are likely to 

be effective at reducing emissions in emission intensive regions, such as the Midwest where 

marginal emissions range from 600-1000 kg/MWh, high penetrations of commercial CHP may 

not be effective at reducing emission in the northeast.    

Policies aimed at reducing emissions should encourage small commercial CHP 

operation only during times of high heat loads.  Time varying rates can be used to 

encourage CHP dispatch only when heat loads are high.  We showed that time-of-day rates and 

seasonal rates reduce customer owned CHP emissions and do not reduce customer rates-of-

return.  A carbon price would also be effective, but the costs of monitoring may be prohibitive for 

small CHP.  Incentives that reduce capital costs such as accelerated depreciation or an 

investment tax credit, are also an option where regional grid emissions are high.  Reduced 

capital costs will neither encourage nor discourage CHP dispatch during times of high heat 

loads.  In contrast, natural gas rate discounts, a common incentive for industrial CHP in some 

states, can encourage CHP operation during low heat loads and increase relative emissions.  

Similarly, as with industrial cogeneration (Lane Clark & Peacock 2014) a production tax credit 

may cause small commercial CHP to produce higher relative emissions.   
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2.9 Supporting Materials 

 

2.9.1 Modeling 

Network Model 

We used Pacific Northwest National Laboratory’s (PNNL) GridLab-D solver and 

distribution feeder taxonomy for representative distribution feeder models and for all distribution 

powerflow simulations.  GridLab-D is a distribution time-series AC powerflow solver produced by 

PNNL (PNNL 2015). The feeder taxonomy, created by Schneider et al., (2008) is a set of 24 

prototype non-urban, radial feeder models from varying climate and demographic regions with 
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residential and commercial static loads.  To develop the feeder taxonomy, hierarchical 

clustering was performed by Schneider et al. on a set of 575 feeders4 to determine common 

feeder features. (2008)  The feeder taxonomy prototypes were based on these common 

features (2008). 

In our model, the static load sources in the feeder taxonomy models were replaced with 

time-varying heat and electric loads. Time-varying electrical loads were first produced by Hoke 

et al. (Hoke, et al. 2013) 5 to study the maximum penetration of solar photovoltaics on 

distribution feeders6.  To include heating loads, some time-varying electrical loads were 

replaced with commercial building electrical and heat loads.  The electrical and heat loads were 

originally created as part of the Commercial Reference Building Model of National Building 

Stock for different regions in the United States (NREL 2011)7.  These heat loads are shown for 

each building type in the summer and winter in Figure 2-11 and Figure 2-12.  The commercial 

building loads were scaled to ensure that peak loading conditions remained the same as the 

GridLab-D feeder taxonomy.  These buildings represent approximately two-third of the US 

commercial building stock.  The percentage of each building type is based on the 2003 

Commercial Building Energy Consumption survey (EIA 2003). 

 

 

 

                                                

4 The feeders were provided by 17 investor owned (IOU), rural electric authority (REA), public utility 
districts (PUD) and municipality utilities.   
5 To create the dynamic load dataset, a commercial and residential load dataset was acquired from a 
utility in geographic regions corresponding to the taxonomy regions.  These were then scaled by 
transformer capacity and a feeder wide factor that kept power flows within violation ranges.  Finally, some 
guassian noise was added to the loads.  
6 The electrical loads are available at https://catalog.data.gov/dataset/randomized-hourly-load-data-for-
use-with-taxonomy-distribution-feeders-88065 
7 The commercial building loads are available at https://catalog.data.gov/dataset/commercial-and-
residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-state-1d21c 
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Table 2-2 shows each commercial building type and the approximate proportion 

assumed to be on each feeder. Building loads were placed on pre-existing loads that minimized 

the norm of the difference between the electrical peak load, minimum load, and load factor.  The 

final heat and electrical power load are scaled so that the total electrical energy consumption 

over the year remains the same. Figure 2-13 shows one example of each building’s matched 

load, the scaled load, and the original time varying GridLab-D taxonomy load.  The American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) climate region 6 

was used.  Climate region 6 has a cold climate and is typical of the northeastern and north 

central portions of the US (AHRAE 2004). 

CHP Model 

We use natural gas fired reciprocating engine CHP in our model.  According to Flin (2010) CHP 

systems are generally cost effective when there is a need to upgrade an existing heating system 

and can be used to supplement a boiler.  Diesel-fired CHP are not used in our model because 

diesel’s higher emissions typically limit its operating hours to backup applications (U.S. EPA 

2015) and because natural gas is the most common form of fuel for CHP (EIA 2012).  The full 

combined heat and power system is shown in Figure 2-2.  The commercial building can 

purchase power from the distribution network or can produce its own power.  Heat can be 

produced by the boiler or the CHP. 

 

Figure 2-9: Energy options for the commercial building.  Electrical power comes from the grid or from the CHP.  Heat 
can come from the boiler or the CHP. The lowest cost source of heat and electrical power is used to meet demand at 
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each hour. CHP dispatch decisions also have environmental and network consequences, but these are not 
considered in the dispatch objective function.  

 

 

CHP Type, Sizing and Placement 

Natural gas, reciprocating engine CHP are placed on a load if they earn a rate-of-return greater 

than 10% and if their payback period is less than the equipment lifetime.  If multiple CHP sizes 

meet these criteria, the CHP size with the maximum NPV is used.  Revenues are based on one 

year of loading conditions and each owner’s tariff structure.  The CHP selection objective 

function is shown in Figure 2-10.   

 

CHP Selection Objective Function 

For all commercial loads, select the size that will,  

Minimize: 
                 NPV (Grid Costs +  
                           Boiler Energy Costs + 
                           CHP Energy Costs + 
                           CHP capital costs +  
                           Annual O&M costs) 
Subject to:  
                     Energy purchased, generated = demand 
                     CHP stays within operational limits 
                     Rate of return > 10%  
                     Payback period is within CHP lifetime   

Figure 2-10: CHP selection objective function.  The CHP size with the lowest capital costs, O&M costs, and energy 

costs is used.  CHP are not placed on the commercial load if the rates-of-return are less than 10%.  

CHP are considered in sizes of 1 kW and higher. According to the EPA (U.S. EPA 2015) 

CHP are available in sizes ranging from 10kW to over 18 MW, but we have found CHP as low 

as 1 kW (Lempereur and Tesoriero 2008).  Reciprocating engines are used because they are 

well suited for optimized dispatch.  In comparison to microturbines and fuel cells, they are better 

at following load, have faster startup capabilities and have been used for peak shaving (Flin 

2010) (U.S. EPA 2015). CHP parameters were extrapolated from DER-CAM, a software tool 

produced by Lawrence Berkeley National Lab and from the EPA’s 2015 CHP Characterization 
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(U.S. EPA 2015).  Both sets of parameters are determined with an industry expert survey.  

Capital costs include engineering fees and labor.  A fixed linear efficiency is used for each CHP.  

The DER-CAM CHP parameters are shown in Table 2-3 for a 1121 kW, 250 kW and 75 kW 

CHP.  The extrapolated CHP capital costs, O&M, efficiencies, and heat-to-power ratios are 

shown in Figure 2-14.   

The CHP sizes used in our model range from 1kW to 1000kW, but the most common 

size was less than 75 kW, and less than the CHP sizes characterized by DER-CAM or the EPA.  

Our main concern was that we were underestimating the capital costs for small commercial 

CHP and overestimating penetration levels.  To the best of our knowledge, industry surveys do 

not exist for small CHP, but we were able to obtain a quote on the internet site Alibaba.  The 

quote was for a 10kW natural gas CHP generator.  The capital cost quoted was $1000/kW, and 

slightly less than the capital cost for a 100kW given by the EPA (U.S. EPA 2015) at $1400/kW.  

From this, we conclude that our linear extrapolating capital costs for small CHP is reasonable. 

Ownership Model 

In recent years, a debate has emerged over who should own distributed energy 

resources (DER), such as CHP, and profit from their benefits.   Utilities argue that market 

participation will allow them to fulfill their traditional obligations in serving unserved customers 

(Lacey 2015).  NYSERDA (2010) adds that utility ownership may be beneficial because utilities 

can readily access customer information and technical information, avoid duplicative services, 

and improve customer service quality through differentiated service options associated with 

DER. The Edison Electric Institute (EEI, the trade group for investor-owned electric utilities)  has 

argued for a “level playing field” for utilities and new DER market entrants, and it warns of 

potential grid safety, reliability, and customer cross-subsidies-to the disadvantage of low-income 

customers- without sufficient involvement from utilities (Craver 2013). In a series of white 

papers, the American Council for an Energy-Efficient Economy (ACEEE) argues that there are 
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societal benefits of utility CHP ownership (Chittum and Farley 2013).  They say that utilities may 

be better equipped to capture the environmental benefits of CHP, to participate in ancillary 

markets, and to manage long term investments (Chittum and Farley 2013).  However, third 

parties, fearful of utility market advantages, argue that utility involvement will inhibit competition, 

(NYSERDA 2010) (Lacey 2015), and we will lose an opportunity to invigorate a stagnate 

industry (King and Morgan 2003). 

Private customer and utility owned CHP operating strategies are both modeled.  In the 

private customer ownership model, the owner is assumed to be a customer of the utility with a 

flat rate that does not vary hourly or seasonally8.  The customer operators attempt to minimize 

their costs over the year by producing power when grid costs exceed generation costs.  In this 

model, it is assumed that each customer operates independently.  The objective function for the 

private customer ownership model is shown in Table 2-4.  The first term describes customer 

payments to the utility for power demand less generated power.  The second term describes the 

cost of power production less the reduced heating bill from offset boiler demand. The objective 

function is constrained by the generation operational limits. Scenarios were created where 

power exports are not permitted and where power is exported and compensated at the retail 

rate. 

In the utility ownership model, the utility attempts to maximize its profit. The objective 

function is shown in Table 2-5.  The first term describes revenue earned by the utility from 

dispatching CHP at customer sites.  The revenue is based on the standard utility tariff less the 

value of the customer’s PPA when CHP is dispatched.  In the second term, heat revenue is 

earned at the customer’s avoided heating cost.  The third term describes the utility’s cost of 

                                                

8 Generally, small residential and commercial customers prefer static rates.  Discussions between the 
authors and industry stakeholders have suggested that this also appears to be true for commercial 
customers with CHP.  
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buying power from the wholesale market and of generating power. Scenarios were created 

where power exports are not permitted and where power is exported and compensated at the 

wholesale rate (including transmission costs).  Demand charges are not included in the 

objective function but are considered indirectly during the planning stage.  Additionally, the utility 

must offer a power purchase agreement (PPA) to the customer to compensate for the 

opportunity cost foregone by not renting the space the CHP occupies.  We assume that the PPA 

will be different and based on the economics of each CHP location.  Each customer is offered 

the smallest PPA that overcomes their opportunity cost.    

 

 



35 

 



36 

 

 
Figure 2-11: Building heat (red) and electric (blue) loads during the winter.  One week in February is shown.   
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Figure 2-12: Building heat (red) and electric (blue) loads during the summer.  One week in July is shown. 
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Table 2-2: Commercial building types and quantity.  The commercial buildings shown represent approximately two-
thirds of the US commercial building stock and are used to determine heat and electrical loads for the feeder, as 
provided by NREL (NREL 2011). The percent quantity found on each feeder is based on of the DOE’s 2003 

commercial building energy survey (EIA 2003).   

Commercial Building Type Feeder Quantity (%) 

Small Office 9 

Warehouse 9 

Stand-Alone Retail 7 

Strip Mall 7 

Medium Office 6 

Primary School 6 

Large Office 4 

Hospital 4 

Outpatient Healthcare 3 

Secondary School 2 

Full Service Restaurant 2 

Small Hotel 2 

Large Hotel 2 

Midrise Apartment 1 

Quick Service Restaurant 1 

Supermarket 1 
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Figure 2-13: Matched electrical loads are shown for the three days in July.  The electrical commercial building loads 
are matched to the GridLab-D loads and used to replace these GridLab-D loads so that commercial building heat 
loads can be introduced to the model. The matching algorithm uses the set of loads with the minimum norm of the 
difference between peak load, minimum load, and load factor.  The building loads were then scaled so that the total 
yearly energy consumption was the same as the GridLab-D load.  Large discrepancies between the scaled 
commercial load and GridLab-D load are caused by seasonal differences in the load profiles and the limited number 
of commercial GridLab-D loads to match. 

Table 2-3: DER-CAM CHP Technology Options LBNL (Lawrence Berkeley National Laboratory 2015) and the 
EPA. (U.S. EPA 2015)  Internal Combustion Engines with Heat Exchangers for collecting hot water are considered for 
placement on the commercial loads. CHP parameters are extrapolated from these values.   

CHP Technology Options 

Max Power 

(kW) 

Lifetime 

(years) 

Capital Cost 

($/kW) 

Variable O&M 

($/kWh) 

Full Load 

Efficiency 

Heat to Power 

Ratio 

75 15 2880 0.0255 0.26 2.0 

250 15 2614 0.025 0.27 1.82 

1121 15 2366 0.019 0.368 1.12 
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Figure 2-14: CHP Capital prices, O&M prices, and efficiency as a function of CHP Size.   
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Table 2-4: Private Customer Ownership Hourly Dispatch Model. The first term describes customer payments to the utility for power demand less generated power 
and shed load.  The second term describes the cost of power production less the reduced heating bill from offset boiler demand. The objective function is 
constrained by the generation operational limits.  Demand charges are not included in the objective function but are considered indirectly during the planning 

stage. 

Objective Owner Market Input Control Variable 

Minimize Cost 

over all hours(t)  

Private Operation 

Prosumer with one 

generator  

 

Deregulated α=heat to power ratio of CHP plant 

ηboiler = efficiency of the boiler 

ηe(Se,t)=efficiency of fuel conversion to electrical power as a 

function of the electrical power delivered 

Dmax = Customer’s maximum demand in a month 

Le,t = Hourly Metered Electrical Load 

Lh,t = Hourly Metered Heat Load 

Pd = The utility demand charge 

Pe,retail = Retail utility price per kWh.   

Png=price of natural gas in $/ MMBtu 

Sh,t = The heat power delivered by the generator (depends on Se,t) 

Se,t = The complex 
electrical power 
delivered by the 
generator 
 
 

 

 

min
∀ ℎ𝑜𝑢𝑟𝑠,𝑡

[𝑃𝑒,𝑟𝑒𝑡𝑎𝑖𝑙 ∗ (𝐿𝑒,𝑡 − 𝑆𝑒,𝑡)]                                                              

+

[
 
 
 
 
 

𝑆𝑒,𝑡

η
𝑒
(𝑆𝑒,𝑡)

∗ 𝑃𝑛𝑔 −min

{
 
 

 
 𝑆𝑒,𝑡 ∗ 𝛼 ∗

𝑃𝑛𝑔

η
𝑏𝑜𝑖𝑙𝑒𝑟

,   𝑆𝑒,𝑡 ∗ 𝛼 ≤ 𝐿ℎ,𝑡  

𝐿ℎ,𝑡 ∗
𝑃𝑛𝑔

η
𝑏𝑜𝑖𝑙𝑒𝑟

,   𝑆𝑒,𝑡 ∗ 𝛼 > 𝐿ℎ,𝑡

  

 ]
 
 
 
 
 

                                                            
𝑠. 𝑡.     𝑆𝑒,𝑚𝑖𝑛 ≤ 𝑆𝑒,𝑡 ≤ 𝑆𝑒,𝑚𝑎𝑥

 

 

 

 

Minimize the cost of buying power from the utility.

Minimize the cost of natural gas needed to run 
the CHP and the boiler.    The CHP does not 
offset natural gas costs if heat demand is already 
met. 
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Table 2-5: Utility Ownership hourly dispatch Model. The first term describes revenue earned by the utility from dispatching CHP at customer sites.  The revenue is 
based on the standard utility tariff less the value of the customer’s PPA when CHP is dispatched.  The second term describes heat revenue earned at the 
customer’s avoided heating cost.  The third term describes the utility’s cost of buying power from the wholesale market and of generating power. Power exports at 
the customer level are not permitted.  Demand charges are not included in the objective function but are considered indirectly during the planning stage.  
Additionally, the utility must offer a power purchase to agreement to compensate for the opportunity cost foregone by not renting the space the CHP occupies.   

Objective Owner Market Input Control Variable 

Maximize  

profit over 

all 

hours(t)  

Utility Operation 

i Customers with CHP  

 

Deregulated Pe,retail = Utility retail price per kWh of electricity/heat.   

Pe,PPA = the agreed PPA  for electricity/heat 

Png=price of natural gas in $/ MMBtu 

Pm,t = locational marginal price (modified) 

Le/h,i,t = Hourly metered electrical/heat Load 

Pd = The utility demand charge 

Dmax = Customer’s maximum demand in a month 

ηe(Se,t)=efficiency of fuel conversion to electrical power as a 

function of the electrical power delivered 

Sh,t = The heat power delivered by the generator (depends 
on Se,t) 

Se,t = The complex electrical 
power delivered by the 
generator 
 

 

max
∀ ℎ𝑜𝑢𝑟𝑠,𝑡

      [∑((𝑃𝑒,𝑟𝑒𝑡𝑎𝑖𝑙 − 𝑃𝑒,𝑃𝑃𝐴) ∗ (𝑆𝑒,𝑖,𝑡) + 𝑃𝑒,𝑟𝑒𝑡𝑎𝑖𝑙 ∗ (𝐿𝑒,𝑖,𝑡 − 𝑆𝑒,𝑖,𝑡))

𝑖

]  

+

[
 
 
 
 
 

∑min

{
 
 

 
 𝑆𝑒,𝑖,𝑡 ∗ 𝛼 ∗

𝑃𝑛𝑔

η
𝑏𝑜𝑖𝑙𝑒𝑟

,   𝑆𝑒,𝑖,𝑡 ∗ 𝛼 ≤ 𝐿ℎ,𝑖,𝑡 

𝐿ℎ,𝑖,𝑡 ∗
𝑃𝑛𝑔

η
𝑏𝑜𝑖𝑙𝑒𝑟

,   𝑆𝑒,𝑡 ∗ 𝛼 > 𝐿ℎ,𝑡
𝑖

]
 
 
 
 
 

                           

− [∑((𝐿𝑖,𝑡 − 𝑆𝑒,𝑡) ∗ 𝑃𝑚,𝑡 +
𝑆𝑒,𝑡

η
𝑒
(𝑆𝑒,𝑡)

∗ 𝑃𝑛𝑔)

𝑖

]                                      

                                                                                                              
𝑠. 𝑡.      𝑆𝑒,𝑚𝑖𝑛 ≤ 𝑆𝑒,𝑡 ≤ 𝑆𝑒,𝑚𝑎𝑥             

                      ∑S𝑖,𝑡 ≤

𝑖

𝑓𝑒𝑒𝑑𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑             

  

 

 The CHP does not offset natural 
gas costs if heat demand is already met.  
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2.9.2 Metrics 

The operational strategy of each owner affects when the CHP are dispatched and 

therefore, will affect the network, economic, and environmental benefits associated with the 

CHP.   

Network Metrics 

The metrics used for quantifying the network benefits are network losses, equipment 

capacity utilization, and network violations.  Network losses are the I2R losses and are multiplied 

by the wholesale cost to determine the network system costs.  Capacity utilization is the ratio of 

the maximum observed electrical power (or electrical current) to the equipment rating.  

Reductions in capacity utilization can be quantified in terms of their potential for capital 

expenditure deferrals.  Similarly, a reduction in network violations also has value to the utility. 

Voltage violations, which we define as any deviation in voltages outside the ANSI standard 

(114-126 volts) (Short 2004), may require adjustments to under load tap changing transformers 

(ULTCs), investments in capacitors, or reconductoring distribution lines.  Thermal violations (i.e. 

equipment overloading) may require investments in new transformers or new distribution lines.  

The cost of capacity for different distribution components are shown in Table 2-6. 

Table 2-6: Cost of distribution components.  Each ownership operating strategy will affect the network differently and 
may increase or reduce future network investment costs.  Figure adapted from Knapp et al. (Knapp, et al. 2000)  
Original data is from Willis et al. (Willis and Scott, Distributed Power Generation 2000) and Burke. (Burke 2002)  
The number of significant figures have been preserved from the original sources. 

Equipment Type Cost Example 

Lines ▪ $50k/mile (46 kV wooden pole subtransmission) 

Feeder ▪ $10-15 per kW-mile (12.47 kV overhead) 
▪ $30-50 per kW-mile (12.47 kV underground) 

Laterals ▪ $5-15 per kW-mile (low voltage overhead) 
▪ $5-15 per kW-mile (low voltage underground-direct buried) 
▪ $30-100 per kW-mile (low voltage underground-ducted) 

Single Phase Pad 
Mount Transformers 

Capacity 12.5 kV 34.5 kV 

20 kVA $2552 $3119 

50 kVA $2986 $3931 

75 kVA $3591 $4725 

100 kVA $4972 $5728 

Three Phase Pad Capacity 12.5 kV 34.5 kV 
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Mount Transformers 75 kVA $7,749 $10,584 

150 kVA $9,450 $11,605 

300 kVA $11,718 $15,574 

500 kVA $13,608 $20,034 

750 kVA $21,357 $21,377 

1000 kVA $25,515 $28,824 

1500 kVA - $40,824 

2500 kVA - $50,841  

Substation ▪ $3,348,000 (115/13.2 kV, 20/37.3 MVA, 4 feeder) 
▪ $1,026,000 (35/12.5kV, 12/16/20 MVA, 2 feeder) 
▪ $4,050,000 (115/35kV,60/112 MVA, 5 feeder) 
▪ $23/kW (rural 69 kV 5MVA single transformer) 
▪ $25-33/kW (138/12.47kV 80 MVA) 

 

Economic Metrics 

The system savings, private customer savings, and utility savings were assessed for one 

year of operation.  They are summarized below and in Figure 2-15.  The system savings is 

identically defined for all ownership models.  The private customer and utility savings change for 

each ownership model.   

System Savings 

The system savings include all savings associated with meeting end-user heat and 

electrical energy demand, but excludes any costs associated with reselling power.  Savings 

include, the wholesale power purchase reductions, generation cost reductions, heating cost 

reductions, and T&D cost reductions.  The system savings is, 

 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐶𝐻𝑃 − 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡𝑠 𝑤𝑖𝑡ℎ 𝐶𝐻𝑃 

 

𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑠𝑡 =  ∑ ∑

          𝑁𝑒𝑡 𝐿𝑜𝑎𝑑𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑀𝑃ℎ𝑜𝑢𝑟
        +𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝐶𝐻𝑃,ℎ𝑜𝑢𝑟  

+𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝐶𝐻𝑃,ℎ𝑜𝑢𝑟∀𝐻𝑜𝑢𝑟𝑠 ∀𝐶𝐻𝑃

 

 

The LMP is increased (modified) to equal the average commercial price of electricity, as given 

by the EIA, so it includes transmission and distribution costs.  The net load is the original load 

less generation and the generation cost is defined by,  
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𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =
𝑅𝑒𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
∗ 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐺𝑎𝑠 + 𝑂&𝑀 𝐶𝑜𝑠𝑡𝑠 + 𝐶𝑎𝑝𝑒𝑥 

 

Private Customer Ownership Model 

When the CHP are operated by a private customer, the utility sells less power, so 

savings are negative.  The utility loses revenue for each unit of CHP energy (less the pass-

through transmission and energy costs) that is produced.   Customer savings are created from 

avoided retail power costs less the generation cost.  The customer saves money if the retail 

value of this power is greater than the generation cost.   

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =   (−∑ ∑ 𝑃𝑜𝑤𝑒𝑟𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ (𝑅𝑒𝑡𝑎𝑖𝑙 𝑃𝑟𝑖𝑐𝑒ℎ𝑜𝑢𝑟 −∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃

                                                                          𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 − 𝐿𝑀𝑃ℎ𝑜𝑢𝑟)) −

                                       ∑ (𝑀𝑎𝑥 𝐿𝑜𝑎𝑑 −𝑀𝑎𝑥 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑) ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶ℎ𝑎𝑟𝑔𝑒∀𝐶𝐻𝑃   

 

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑆𝑎𝑣𝑖𝑛𝑔𝑠

=  ∑ ∑
           𝑃𝑜𝑤𝑒𝑟𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ 𝑅𝑒𝑡𝑎𝑖𝑙 𝑃𝑟𝑖𝑐𝑒ℎ𝑜𝑢𝑟

−𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝐶𝐻𝑃,ℎ𝑜𝑢𝑟
∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃

+∑ (𝑀𝑎𝑥 𝐿𝑜𝑎𝑑 −𝑀𝑎𝑥 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑) ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶ℎ𝑎𝑟𝑔𝑒
∀𝐶𝐻𝑃

 

 

Utility Ownership Model 

When the utility operates the CHP, customer and utility savings are dependent on the 

PPA.   The PPA is the $/kWh rate paid to customers by the utility to compensate for the 

opportunity cost foregone by not renting the space the CHP occupies. The utility savings are 

defined as the difference between load acquired entirely through the wholesale market (i.e. LMP 

and transmission costs) and load acquired through a combination of market purchases, PPA 
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purchases, and generation costs.  The customer savings increase according to the PPA for 

each unit of CHP power produced and for demand charge reductions. 

Utility savings are defined with a modified LMP that includes transmission costs as,    

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠

= ∑ ∑ 𝐿𝑜𝑎𝑑𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑀𝑃ℎ𝑜𝑢𝑟
∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃

− [ ∑ ∑ 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑀𝑃ℎ𝑜𝑢𝑟
∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃

+ ∑ ∑ 𝑃𝑜𝑤𝑒𝑟𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ 𝑃𝑃𝐴

∀𝐻𝑜𝑢𝑟𝑠

+ ∑ ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝐶𝐻𝑃,ℎ𝑜𝑢𝑟
∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃∀𝐶𝐻𝑃

− ∑ ∑ 𝐻𝑒𝑎𝑡 𝐶𝑜𝑠𝑡𝑠 𝐶𝐻𝑃,ℎ𝑜𝑢𝑟
∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃

−∑ (𝑀𝑎𝑥 𝐿𝑜𝑎𝑑 −𝑀𝑎𝑥 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑) ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶ℎ𝑎𝑟𝑔𝑒
∀𝐶𝐻𝑃

] 

 

The customer savings are defined as,  

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑆𝑎𝑣𝑖𝑛𝑔𝑠

= ∑ ∑ 𝑃𝑜𝑤𝑒𝑟𝐶𝐻𝑃,ℎ𝑜𝑢𝑟 ∗ 𝑃𝑃𝐴

∀𝐻𝑜𝑢𝑟𝑠∀𝐶𝐻𝑃

+∑ (𝑀𝑎𝑥 𝐿𝑜𝑎𝑑 −𝑀𝑎𝑥 𝑁𝑒𝑡 𝐿𝑜𝑎𝑑) ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶ℎ𝑎𝑟𝑔𝑒
∀𝐶𝐻𝑃
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Figure 2-15: System, customer and utility costs and revenues associated with CHP. For example, under customer ownership, the utility will see reduced revenue 
from energy charges and demand charges.  Wholesale and transmission costs will be reduced but will still remain.  Revenue will still come from remaining energy 
sales and demand charges not met by the CHP.  The utility will also see lower wholesale and transmission costs.  Overall, the utility will experience losses from 
this arrangement, but it is possible that the utility will benefit on occasion when wholesales costs are above the retail electricity price.  Utility losses will also be 
mitigated if the utility sells natural gas.   
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Environmental Metrics 

The avoided CO2, SO2 and NOx emissions are used to evaluate the environmental impact of 

each model.  Avoided emissions are aggregated over one year of operation for each owner.  To 

calculate the avoided emissions, the emissions of each owner are compared with and without 

the CHP. Marginal emissions were used for the bulk power grid from Siler-Evans et al. (2012), 

but was updated by the authors (2012) for more recent years.  Low NOx CHP emissions and 

uncontrolled boiler emissions were assumed.   

 

2.9.3 Input 

The benefits of CHP for each ownership model were based on New York and Northeastern 

input parameters.  Tariffs were taken from NYSEG and NYISO.  Heat loads are based on 

ASHRAE climate region 6.  Otherwise, data is from the northeast.  All data input and their 

sources are summarized in Table 2-7.  The distribution network statistics are shown in Table 2-8 

and the network feeder is shown in Figure 2-20.  Emissions produced by the bulk power system 

and CHP are shown in Figure 2-19 and Table 2-9, respectively.  The distribution of utility bulk 

power prices is shown in Figure 2-20.  The distribution of these prices for the years 2010-2014 

are shown in Figure 2-21. 
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Figure 2-16: Distribution of CHP Sizes in New York (DOE 2019).  The majority of CHP in New York are less than 1 
MW. 

 
Table 2-7: Model input values.   

Data Description Value Source(s) 

Building Heating 

and Electric 

Loads  

Loads are based on the 

DOE Commercial 

Reference Building 

Models and EnergyPlus 

simulation software 

See  Figure 2-11and 

Figure 2-12 

(EERE 2015), (NREL 

2011) 

NYISO 

Wholesale Prices 

 

Day-Ahead Locational 

Marginal Prices 

Average $0.143/kWh 

See Figure 2-20for 

distribution. 

(NYISO 2015) 

Commercial 

Electricity Prices 

Flat Energy Charge and 

Demand Charge 

$0.143/kWh 

$8/kW 

(OpenEI 2015) 

US State EIA 

Commercial 

Electricity Prices 

Average Commercial 

rate 

$0.162/kWh (EIA 2014) 

Commercial 

Natural Gas 

Prices 

Monthly $/MCF cost of 

Natural Gas in New 

York for commercial 

customers 

$6-12/MCF (EIA 2016) 

Time Varying 

Electrical Loads 

Hourly electric loads 

matched to PNNL 

Feeder Taxonomy 

Figure 2-13 (Hoke, et al. 2013) 

Number of each 

building type 

Proportion of each 

building type that are 

placed on the network. 

See Table 2-2 
 

 

(EIA 2003) 
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CHP Parameters Capex, O&M, linear 

efficiencies for 75, 250, 

and 1121 kW natural 

gas reciprocating 

engines.   

See Table 2-3 (Lawrence Berkeley 

National Laboratory 

2015) *Sandbox 

Version 

(U.S. EPA 2015) 

Marginal 

Emission Factors 

NPCC marginal 

emission for CO2, 

NOx, and SO2 

Figure 2-19 (Siler-Evans, Azevedo 

and Morgan 2012) 

CHP Emissions NOx, CO2 and SO2 

emissions 

Table 2-9 (U.S. EPA 2015) 

 

Cost of Building 

Space 

The value of building 

space is needed to 

calculate CHP host 

opportunity cost. 

$25.4/ft2 per year 

Class A suburban 

(Cross 2015) 

 

 

Boiler Efficiency The Annual Fuel 

Utilization Efficiency 

(AFUE) minimum 

requirement stated by 

ASHRAE 90.1-2004.  

This the highest 

efficiency used by der-

cam.  Decade old, but 

probably more 

representative of actual 

boiler stock.   

0.8 (AHRAE 2004) 

Boiler Emissions CO2, SO2, and NOx 

emission of 

uncontrolled boilers 

Table 2-9 (EPA 1998) 

Effective Tax 

Rate 

The effective tax rate is 

used to calculate 

20% (Small Business 

Administration 2009) 

Depreciation MACRS 15 Year (IRS 2014) 
 

 

Table 2-8: Feeder Statistics for Feeder R2-25.00-1. 

Feeder Statistics 

Description Representative north eastern feeder situated in a 
moderately populated suburban area with light and 
moderate loading. 

Components Number of Components 

Nodes 728 

Loads 274 

Regulator 1 

Transformer 274 
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Switch 39 

Capacitor 5 

Fuse 57 

Overhead Line 146 

Triplex Line 202 

Underground Line 81 

Loading Condition Min Mean Max 

Coincident Load (kW) 5.7 10.1 16.2 

Losses 0.7% 1.0% 1.1% 

Load Factor - 64% - 
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Figure 2-17: Minimum, mean, and maximum heat and electrical loads.  The minimum and mean electrical loads are 
generally larger than the minimum and mean heat loads.  CHP sizing will be constrained by the heat loads.   
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Figure 2-18: Distribution Network Feeder Model.  Feeder R2-25.00-1 
is shown from the PNNL feeder taxonomy.  The feeder is 
representative of Northeastern feeders with light and moderate 
loading. 
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Figure 2-19: Comparison of Bulk Power Grid Marginal Emission Factors (Siler-Evans, Azevedo and Morgan 2012) 
with the range of potential CHP emissions.  The marginal emission factors are shown for each reliability region, 
season and hour of the day.  The range of CHP CO2, SO2, and NOx emissions is shown in the grey boxes (SO2 
emission are zero).  The CHP emissions depends on how much heat load is offset.  If all of the CHP heat is wasted it 
produces the equivalent of 600 kg CO2/MWh, 0 kg SO2/MWh, and 0.6 kg NOx/MWh.  If all of the CHP heat is used it 
produces the equivalent of 150 kg CO2/MWh, 0 kg SO2/MWh, and 0.3 kg NOx/MWh.  CHP emission are based on a 
30% electrical efficiency, heat-to-power ratio of 2, and a boiler without NOx controls.  
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Table 2-9: CHP and Boiler Emissions.   

Pollutant CHP Emissions (kg/MWh-e) Boiler Emissions (kg/MWh-th) 

CO2 600 225 

SO2 0.0 0.0 

NOX 0.628 0.15 

 

 

Figure 2-20: Utility cost of electricity.  The time varying costs and cost histogram are shown for the year 2014.   
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Figure 2-21: New York LMPs 2010-2015. 
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2.9.4 Results 

Planning 

The utility must offer the customer a power purchase agreement (PPA) to compensate 

for the opportunity cost foregone by not renting the space the CHP occupies; the utility can 

afford to do this because CHP reduces the utility’s wholesale power purchase costs.  We define 

a PPA similarly to the SolarCity PPA, where the customer earns a fixed rate for each kWh 

produced by the CHP.  In many cases it is not necessary for the utility to offer a PPA, because 

the customer’s avoided demand charges are greater than the opportunity cost foregone by not 

renting the space the CHP occupies.  Figure 2-22 shows the range of PPAs that the utility could 

offer to the host customer of each load.   
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Figure 2-22: Feasible power purchase agreement range for each commercial load.  Utilities could offer individual 
PPAs ranging from $0.0/kWh to $0.02/kWh to compensate for the opportunity cost foregone by not renting the space 
the CHP occupies. $0.0/kWh PPAs are possible when the CHP reduces customer demand charges enough to 
compensate for the opportunity cost.   

 

Network 

The capacity utilization histograms are shown in Figure 2-23. The distribution 

transformers, underground lines, and overhead lines all show reduced congestion when CHP 

are placed on the network.  The commercial CHP installations do not reduce congestion on the 

triplex lines, which only feed residential customers.  
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Figure 2-23: Network equipment capacity utilization histograms.  The capacity utilization (the ratio of a components 
maximum observed load to its rating) of overhead lines, and underground lines are similar for both CHP ownership 
scenarios.  The larger number of customer owned CHP shifts the transformer capacity utilization histogram further to 
the left, suggesting that the higher quantity of customer owned CHP is more effective at deferring network capacity 
investments.  

 

Emissions 

Figure 2-24 shows the annual relative CO2, SO2 and NOx for the fleet of CHP.  Each 

building displays different relative emissions, and Figure 2-6 shows that higher emitting 

buildings will be installed more as penetrations increase.  The higher penetration of higher 

emitting buildings and time-varying rates leads to large differences in emission between 

customer and utility owned CHP fleets, as shown in Figure 2 (main text) and Figure 2-25.  

Figure 2-25 also shows this relationship is consistent for different years with different LMPs and 

natural gas prices.  
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Figure 2-24: Relative CO2, SO2, and NOx building level emissions. Each building type has identical heat and electrical load shapes, but the magnitudes of the loads 
vary. This causes the optimal CHP size and relative emissions to vary. For buildings with small CHP, seasonal and time-of-day rates are effective at reducing CO2 
and NOx emissions.   
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Figure 2-25: Relative CO2, SO2, and NOx CHP Fleet emissions 2010-2014.  The relative emissions are generally 
consistent with 2014.  The year 2010 is an exception.  High natural gas prices reduced customer owned CHP 

emissions but also led to unprofitable operating conditions.  
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Figure 2-26: Sensitivity of dispatch of a 10kW, 100kw, 200kW and 500kW CHP to natural gas and electricity prices.  
CHP are not turned on in the black region.  In the green region, CHP are only turned on if a heat and electric load is 
present.  In the yellow region, CHP are dispatched at times even when only electric load is present.  Dispatch in the 
green zone is likely to reduce emissions.  Dispatch in the yellow zone may not reduce emissions if CHP heat 
production does not offset building heat load.  For small CHP the customer owner’s dispatch behavior, presented 
earlier, with electricity and natural gas at $0.143/kWh and $8.3/MCF falls in the yellow region.  And, the utility is 
subject to a time varying LMP and so, it often falls within the green region, leading to lower utility emissions. Larger 
CHP becomes less sensitive to these effects, so time-varying rates will not be effective at reducing large CHP 
emissions.  
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Figure 2-27: Emissions as the penetration of small CHP (<100 kW) and large CHP (>100kW) increases.  Emissions 
increase as the penetration of small CHP increase but time-varying rates are effective at reducing these emissions.  
Emissions do not increase for large CHP and time-varying rates are ineffective at reducing emissions.  The CHP fleet 
penetration correspond to the following scenarios moving from left to right: 30% Increase in CHP Capital Costs, 30% 
Increase in Discount Rate, Base Case, 30% Decrease in Discount Rate, 30% Decrease in CHP Capital Costs, 50% 
Decrease in Capital Costs and Discount Rate.   
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Economics 

Total system savings are positive for both ownership scenarios indicating that the capital 

costs and energy costs of delivering power with CHP are lower than the alternative grid and 

wholesale energy costs (Figure 2-28).  System savings are higher under the customer 

ownership scenario because customers installed more CHP capacity.  Customer savings are 

low under the utility ownership scenario because the customer benefits only from PPA revenue 

and a reduced demand charge.  Utility losses are also consistently high under customer 

ownership because the utility loses revenue from reduced demand charges and reduced energy 

sales that embody the sunk costs of the distribution system infrastructure.  These utility losses 

would be reduced by about 30% if the utility sold natural gas.   

 

Figure 2-28: Allocation of CHP Savings for the base case and time-varying rates.  Total system savings are positive 
for both owners indicating that the capital costs and energy costs of delivering power with CHP are cheaper than the 
grid.  The high utility losses reflect lost energy sales and sunk distribution infrastructure costs. Time-varying rates do 
not have a large effect on customer or utility savings suggesting that time-varying rates can achieve emission 
reductions without negatively affecting the CHP payback period.  
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Figure 2-29: CHP Economic Benefits 2010-2014.  System savings, customer savings, and utility savings were calculated for the years 2010-2014.  Some variation 
is caused by high natural gas prices in 2010 and 2011.    
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Options for Reducing Wasted Heat 

Although commercial CHP installations have the potential to have high fuel utilization 

efficiencies, inconstant heat loads and wasted heat can limit these efficiencies and result in 

higher emissions than the bulk electric grid. In our section on Emissions, we suggested using 

time-varying rates to limit heat production during times of low heat loads, but other options exist.   

Microgrids 

Microgrids are an electrical power system that connect multiple loads and can operate 

independently of the local distribution network.  By connecting multiple heat loads, they may 

create more uniform heating and reduce wasted heat.  Additionally, larger CHP sizes have 

higher electrical efficiencies and lower heat-to-power ratios, which will also reduce wasted heat. 

Despite the apparent advantages of microgrids, we did not observe consistent emission 

reductions from microgrids, as shown in Figure 2-20.  Microgrids composed of a warehouse and 

secondary school tend to produce lower emissions than if CHP were placed at those loads 

separately.  The opposite is true for microgrids composed of a quick-service restaurant and strip 

mall.   

There are two factors reducing the ability of microgrids to reduce emissions.  First, the 

microgrid CHP sizes in our analysis were found by maximizing net present value (NPV), and do 

not account for emissions. Second, the heat loads of many commercial buildings are highly 

correlated.  This correlation is apparent in Figure 2-9 and it is calculated in Figure 2-31. Most 

commercial buildings are service oriented, and their heat loads are highest during regular 

business hours. Thus, any combination of commercial buildings will still have low heat loads at 

night and the CHP will waste heat.   
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Figure 2-30: Microgrid emission effects for different sets of commercial buildings.  Microgrids created from primary 
and secondary schools reduce overall emissions.  Microgrids created quick-service restaurants and strip malls tend 
to increase emissions.  Microgrids may reduce emissions because larger CHP have higher electrical efficiencies and 
lower heat-to-power ratios.  Combining loads may also even out the heat load and reduce wasted heat.  However, 
optimally sizing CHP by maximizing net present value (NPV) may eliminate these effects.   
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Figure 2-31: Commercial building heat load correlation matrix.  Commercial building heating loads are highly 
correlated.   

 

   

Heat Storage 

Heat storage can act to smooth daily fluctuations in a buildings heat load.  This option is 

best described by Barbieri et al. (2012).  Higher capacity hot water tanks are a relatively low-

cost storage option and were shown to reduce emissions (Smith, Mago and Fumo 2013).  Their 

main limitation occurs during times of consistently low heat loads, such as during the summer 

months.  During these times, heat storage may be most effective when used with seasonal rates 

or absorption chillers.   

 

Absorption Chiller 

Hot water absorption chillers use heat energy to cool buildings.  During summer months, 
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they could use heat from CHP generation to cool commercial buildings and reduce emissions.  

We believe more research is needed on absorption chillers but were skeptical that they are 

ready for widespread adoption now.  Although, large absorptions chillers are commonly found in 

industry, academic interest in commercial building sized chillers (e.g. about 10kW) are relatively 

recent. (Yin 2006)  Also, hot water absorption chillers are on the market, but options and sizes 

are limited.  Our own economic assessment is preliminary, but several challenges exist: 

• The only quote we were able to receive was on the internet site Alibaba.  An 11.5kW-th 

hot water absorption chiller was quoted at $1,300/kW-th.  Thus, the capital cost is only 

slightly less than a CHP generator but is more limited in its ability to avoid energy costs. 

• Hot water absorption chillers, like CHP, will be most economical in buildings with 

consistent cooling loads.  Unfortunately, these buildings are also likely to have 

consistent heat loads and are less likely to have excess heat to use in an absorption 

chiller.  

• Absorption chillers have relatively low coefficients of performance, around 0.6, 

(Prasartkaew 2014) whereas electric chillers have coefficients of performance of 3 or 

higher.  Both factors limit the ability of hot water absorption chillers to reduce energy 

costs.   

CHP Generation that Produce Less Heat 

In our analysis we focus on reciprocating engine CHP because it has the low capital 

costs and load following capabilities.  However, we have also considered the possibility that 

different CHP generation type may have higher electrical efficiencies and produce less heat.  

Unfortunately, microturbines are more expensive and would similar heat output than 

reciprocating engines.  Fuel cells would reduce heat production but are currently uneconomical 

in most commercial settings.     
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Table 2-10: Comparison of CHP Generation Types and Operating Characteristics (U.S. EPA 2015).    

CHP Type Size  

(kW) 

Capital Cost 

($/kW) 

Electrical Efficiency 

(HHV) 

Heat to Power 

Ratio 

Reciprocating 

Engine 

100 $2,900 27.0% 1.96 

Microturbine 65  $3,220 23.8% 1.96 

200 $3,150 26.7% 1.36 

Fuel Cell 300 $10,000* 47% 1.0 
*The Fuel Cell capital cost includes only the package cost and not additional installation and 

engineering fees. 
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2.10 Commentary on Chapter 2 and Future Research 

An important finding in chapter 2 is that small CHP on some types of commercial buildings 

can increase CO2 emissions relative to the bulk electric grid. Further, we demonstrate that time 

varying rates can encourage more efficient operation of these CHP and reduce emissions. 

Since the publication of chapter 2 in Environmental Research Letters in 2016, we have received 

valuable feedback. This feedback has revealed nuances about our assumptions and results that 

may offer opportunities for further research. These include how CHP is sized, how CHP is 

operated to avoid short term costs, and how CHP penetrations may grow based on expected 

electricity and natural gas prices.   

Studies often assume that CHP is sized to heat loads. However, as we explain in Chapter 

2, heats loads are not constant on some commercial buildings and changing policies and 

economic conditions may make it more profitable to size larger CHP even if heat is wasted. This 

behavior has been observed in New York city, which has high electricity prices, and in the peer 

reviewed literature (Barbieri, Melino and Morini 2012) (Smith, Mago and Fumo 2013) (Mago, 

Chamra and Hueffed 2009).   

A low tolerance for long pay back periods in the industry can lead to smaller CHP sizes 

than we modeled.  In our paper, we chose a size that maximized the rate of return and required 

payback periods to be within the equipment lifetime. This resulted in larger CHP sizes, and it 

would be useful to study how shorter payback periods would affect CHP size and the quantity of 

wasted heat. Regardless of industry practice today, different payback periods should be 

included in the sensitivity analysis for CHP sizing. Long payback periods are typical for 

residential rooftop solar installations. In Pennsylvania, Governor Wolf recently signed a bill 

allowing property assessed clean energy (PACE) financing that makes it easier to pay for clean 

energy projects (including CHP) over long periods of time (Vaughn 2018). Thus, it seems 

possible that a future with high penetrations of commercial CHP could include larger CHP with 



 

 

83 

 

longer payback periods, more wasted heat, and less efficient operation.   

Studies often assume that CHP is operated constantly. While this assumption is 

reasonable for CHP with constant heat loads, it may not be true for CHP on commercial 

buildings with time varying heat loads. In our paper, we assumed that CHP could turn off if the 

CHP operation did not reduce energy costs. However, this assumption would increase O&M 

costs. We did not include these costs because we are unaware of any estimates that describe 

the increased costs of O&M associated with turning CHP off or costs associated with variable 

operation. Research on these costs would be beneficial.   

In our paper, we examined how utility owned CHP might differ from customer owned CHP.   

We found that customer owned CHP led to more CHP, primarily due to increased revenue from 

avoiding demand charges. Several factors could change this finding. First, customer owned 

CHP could lose revenue through a combination of standby charges and CHP forced outages 

that prevent CHP from reducing monthly demand charges. Both factors would lead to fewer 

customer-owned CHP. Future analysis of customer owned CHP would also benefit from 

incorporating a more granular representation of the different supply charges and delivery 

charges to commercial customers of different sizes.  

Second, in our analysis we implicitly assumed high short term avoided costs associated 

with utility-owned CHP operation. Our avoided costs combined New York’s locational marginal 

prices with all additional costs in NYSEG’s cost of service. For a typical deregulated investor 

owned utility, short term avoided costs would be better represented by locational marginal 

prices, generation capacity demand charges, ancillary services and possibly transmission 

access charges.  For traditionally regulated utilities, short term avoided costs may only include 

avoided fuel costs and it is unlikely that an investor owned utility would consider avoided 

generation, transmission and distribution capacity as a form of avoided costs unless the CHP 
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clearly deferred capital investments to later years. These factors would lead to fewer utility-

owned CHP. We also assumed in our analysis that utilities could not include CHP in their rate 

base.  Including CHP in the rate base would likely lead to more utility owned CHP. It would be 

useful to study how the combination of these factors could affect the relative emissions of utility 

owned CHP. 

Finally, the high CHP penetrations in our analysis were based on CHP scenarios with 

varying capital costs and energy costs. We did not explicitly link these costs to future cost 

projections. Future research that incorporates actual cost projections with different sizing 

assumptions, and operating practices, as discussed above would be valuable. This research 

should also include policies that affect CHP adoption, such as PACE financing, natural gas 

discounts, standby tariffs, and tax credits.   
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Chapter 3: Can solar PV reliably reduce loading on distribution 
networks? 

 

Abstract 

Utility managers and solar photovoltaic (PV) advocates often disagree about whether 

rooftop solar can reliably reduce loading on distribution network feeders. We examined 23 

prototypical feeders for 6 locations in the United States and two real feeders in eastern 

Pennsylvania.  Using 19 years of weather data, we simulated 30 minute resolution substation 

loading and solar output for hypothetical solar peak penetrations9.  A positive correlation 

between peak loading and solar generation improves the effective capacity of solar (i.e. the net 

load reduction relative to solar system AC capacity). In our quantitative analysis, the effective 

PV capacity under worst-case loading conditions was above 40% at low penetrations for 19 of 

the 23 feeders examined. For all feeders, the effective capacity of solar decreases with 

penetration. Utility engineers often use statistical weather normalization and transformer aging 

criteria to plan for capacity, both of which allow a small amount of overloading risk. When these 

planning criteria are used with solar and transformer aging is fixed at pre-solar levels, we find 

that the effective capacity of solar is consistently higher than found under worst-case load 

conditions. Alternatively, relatively small amounts of energy storage used with solar can achieve 

high effective capacities without any overloading events. We found that pairing solar PV with a 

one hour duration battery rated at 5% of the feeder peak loads could achieve an effective 

capacity of 50% or more for all feeders when the peak load penetration of solar is at or below 

20%.  

                                                

9 In Chapter 3, we use solar peak penetration to describe how much rooftop solar is on a feeder.  It is defined as the 

nominal AC rooftop solar capacity divided by the feeder peak load. 
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3.1 Introduction 

Rooftop solar capacity has been growing rapidly in the United States, leading 

policymakers to reevaluate net energy metering (NEM) and other regulatory policies.  Many 

states have studied Value of Solar (VOS) tariffs as an alternative to NEM (Rocky Mountain 

Institute 2013).  VOS studies are avoided cost studies for rooftop solar. Typical avoided cost 

categories are energy, transmission capacity, generation capacity, and environmental damages.  

Despite solar often being located on distribution networks, the value of solar on distribution 

networks has been treated with less rigor than transmission and generation value of solar 

components or omitted altogether. The Rocky Mountain Institute (RMI) describes the distribution 

value of solar as a “significant methodological gap” due to the inherent complexity and 

heterogeneity of distribution networks (2013). In a review of VOS methods for the National 

Renewable Energy Lab (NREL), Denholm et al. write “Further research is required to develop 

and validate such ELCC [Transmission Effective Load Carrying Capability]-like approaches to 

distribution capacity value. Until such calculation approaches are validated, utilities may be 

reluctant to reduce feeder capacity with solar PV because of concerns about high loads during 

period of low solar output” (2014). 

In this chapter, we focus on characterizing a fundamental metric for estimating the 

capacity value of solar on distribution networks.  To be consistent with power systems 

standards, we call this metric the Distribution Effective Load Carrying Capability (D-ELCC), 

which we define generally as the net load reduction relative to solar PV AC capacity. The D-

ELCC values in this chapter can be used by policy makers to understand how solar might 

reduce large capital investments on distribution networks and produce value for all ratepayers.  

ELCC estimates for the bulk electric grid may differ from the D-ELCC because: 
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1. Distribution feeders may be more vulnerable to variability in loading and solar 

generation.  The small geographic footprint of distribution feeders means that solar will 

not benefit much from geographic smoothing of the effects of intermittent cloud cover.   

2. The risk of overloading is managed differently on distribution feeders than on the 

bulk power grid.  While both sectors of the electric grid are risk averse, the bulk power 

grid manages risk through a combination of planning (e.g. a 1-in-10 year loss of load 

expectation) and operational (e.g. demand response, spinning reserve, under frequency 

load shedding) standards.  On distribution feeders, engineers may be highly risk-averse 

and plan for capacity based on worst-case scenarios.  Or, depending on the feeder and 

utility, engineers may allow some risk of overloads.  Transformers, for example, are 

designed to operate above their nameplate capacity for short durations.  

We next review analogous Effective Load Carrying Capability (ELCC) studies for the bulk 

power grid and D-ELCC estimates in consultant reports since there appears to be no peer-

reviewed literature.  

3.2 Comparison with Previous Research 

Perez et al. estimated the Effective Load Carrying Capability (ELCC) of solar for 39 

utilities and all states excluding Alaska using 2 years of hourly weather and loading data.  They 

found ELCCs on the transmission network from 11%-60% at low solar PV energy penetrations 

and 4-40% at a 20% solar energy penetration for fixed axis solar installations with a 30° tilt 

(Perez, et al. 2006). Furthermore, they found that ELCCs could be increased to 100% with small 

amounts of storage. They did not account for the contingency analysis typically included in 

ELCC studies, which ensure that the loss of load expectation (i.e. the risk of shedding load) 

remains constant under different grid constraints and generator failures (e.g. (Denholm, et al. 

2014) and (Madaeni, Sioshansi and Denholm 2013)).  We also exclude any form of contingency 
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analysis from our estimates.  We assume that the highly distributed nature of solar will make 

individual solar system failures and distribution line outages unimportant, or that solar will be 

placed directly at substations. 

The Peak Capacity Allocation Factor (PCAF) is another method used to estimate the 

effective capacity of solar on distribution networks.  In the PCAF method, hours with load within 

one standard deviation of the maximums peak are estimated, and distributed energy resources 

are compensated if they generate energy during those hours. The PCAF method is described in 

many value of solar studies by the consulting firm E3 (Energy and Environmental Economics), 

such as for New York (E3 2016). The PCAF method is similar to the D-ELCC metric we 

describe in this chapter, and it could probably be adapted to include the utility planning practices 

that we use in our Method section to define the D-ELCC.  Current implementations could 

equally benefit from more years of weather, solar, and loading data, which are a key part of our 

analysis. Overall, the PCAF method is useful for estimating the hourly capacity value of solar.  

The D-ELCC is better for visualizing the effect of varying solar penetrations on solar PV’s 

capacity value.  

Distribution network utilities have also published estimates of the effective capacity of 

solar. In their 2016 Preferred Resources Pilot Portfolio Design Report, Southern California 

Edison (2017) define a “dependable” output curve for solar that is approximately 20% of nominal 

solar AC capacity at noon and rapidly declining for their commercial, residential, and system 

peak.  Southern California Edison’s method appears to base this “dependable” output only on 

the performance of solar during a cloudy day.  They do not appear to account for any possible 

relationship between peak load conditions and better solar performance.  

EPRI (2017) performed a study on several distribution feeders in Spain and despite 

using a fairly high “probable” D-ELCC for solar (around 60% in the early afternoon) they found 
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that late peaking feeders in the region made solar’s effective capacity negligible.  A low D-ELCC 

for evening peaking feeders is an undeniable short-coming of solar.  While most of our analysis 

is on prototypical feeders that tend to peak in the afternoon, we also estimate the D-ELCC for 

two real feeders from an eastern Pennsylvania utility that peak in the evening.    

In the remainder of the chapter, we describe our method, results, and policy conclusions. 

We first describe our load, feeder, and solar modeling; these primarily use GridLab-D (PNNL 

2018) and the NREL Physical Solar Model (PSM) dataset (NREL 2018). Next, we define two D-

ELCC metrics based on typical utility planning practices. Our first estimate, D-ELCCworst is based 

on the worst-case loading associated with several solar penetrations and aims to prevent any 

overloading associated with solar.  Our second estimate, D-ELCCage, does allow overloading 

associated with solar but the aggregate deterioration of the transformer insulation condition 

(commonly referred to as transformer aging) cannot exceed the deterioration caused by weather 

normalization. Each method is based on 19 years of weather and loading data to reflect the long 

investment horizons faced by utility engineers. Overall, we find that a positive correlation 

between peak loading days and solar generation appears to improve solar’s D-ELCCworst. It is 

typically above 40% at low penetrations but decreases with penetration. When small amounts of 

overloading are allowed, D-ELCCage is consistently above 50%. Alternatively, small amounts of 

energy storage can be used to achieve a 50% D-ELCC if solar peak penetrations are at or 

below 20%. 

3.3 Method 

3.3.1 Feeder and Load Modeling 

We use the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) 

feeder taxonomy (K. P. Schneider, et al. 2008) to capture some of the heterogeneity in US 

distribution networks. The PNNL feeder taxonomy is a set of 23 distribution network feeders 

selected through clustering for use as representative feeders for the United States.  They are 
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based on 575 real feeders from 17 separate investor owned, rural electric, and municipal utilities 

but with changes made by PNNL to remove proprietary information. A description of the feeder 

taxonomy is in Table 3-1. 

To create time-varying loads, the feeder taxonomy was populated with temperature and 

humidity dependent building models and made available to the public by Fuller, et al. (2012).  

Residential buildings parameters were based on the Energy Information Administration’s (EIA) 

Residential Energy Consumption Survey (EIA 2018). Non-weather-dependent load profiles were 

based on the Bonneville Power Administration’s End-Use Load and Consumer Assessment 

Program (Prat, et al. 1989), and show the characteristic morning and evening peak typical for 

most residential customers.  Commercial buildings were modeled using building codes and end-

use metering studies (Fuller, Kumar and Bonebrake 2012).  All commercial buildings were 

modeled as office buildings, big box stores, and strip malls.    

We also used two PECO feeders. PECO is the electric and gas utility for the 

Philadelphia area, and uses CYMDIST, a popular distribution powerflow solver, with static spot 

loads that do not vary with time. We converted the CYMDIST feeders to the GridLab-D format 

using the National Rural Electric Cooperative Association (NRECA)’s Open Modeling 

Framework (OMF) (NRECA 2018) and populated the spot loads with secondary systems and 

weather-dependent customer loads. Our objective was to ensure that both substation loading 

and simulated peak load hours were close to the values observed in SCADA readings.  

We used a genetic algorithm to adjust residential and commercial building parameters 

so that the simulated feeder load time-series matched hourly SCADA readings. Our objective 

function minimized the difference between the simulated and SCADA load profiles from May-

September 2016.  The decision variables were the air conditioning coefficient of performance, 

insulation R values, cooling set points, floor areas, scaling factors for predefined temperature 
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independent load profiles with constant power loads, the proportion of commercial buildings 

modeled as strip malls, office buildings, and big box stores, the percentage of residential homes 

with air conditioners, and the percentage of residential homes with hot water heaters.  Further 

details of our genetic algorithm implementation can be found in the Supplementary Materials 

(Section 3.7.1). 

Figure 3-1 compares our simulated load with SCADA loading in the year 2016 for both 

PECO feeders.  Simulated loads and SCADA readings are close on Feeder #1.  On Feeder #2, 

the simulated load underestimates the peak load, but the peak hour, which is important for 

estimating solar’s effective capacity, is still close to the observed hour.  Feeder #2 is an 

industrial feeder and the error is likely caused by exogenous effects, such as shifting factory 

production schedules.  These exogenous effects are difficult to include in GridLab-D’s weather-

dependent models.     
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Table 3-1: Taxonomy Feeder Descriptions.  Customer class types are abbreviated as R(Residential), C(Commercial), 
A(Agricultural), and I(Industrial).  Agricultural and industrial time-series loads are modeled with residential and 
commercial load models. The PECO feeders are not shown.  PECO Feeder #1 and Feeder #2 have peak loads of 
6MW and 17 MW, and peak hours at 5pm and 6pm, respectively.       

Climate Region Feeder 

ID 

Peak Development Customer Class Type Peak 

Hour 

Temperate 

California 

R1-12-1 7 MW suburban/rural 96% R,   2% C,   2% A 1   pm 

R1-12-2 3 MW suburban/rural 95% R,   5% C 4   pm 

R1-12-3 1 MW urban   5% R, 95% C 3   pm 

R1-12-4 5 MW suburban 95% R,   5% C 4   pm 

R1-25-1 2 MW rural 22% R, 18% C, 56% A, 4% I 3   pm 

Cold 

New York 

R2-12-1 6 MW urban 50% R, 49% C,   1% A 2   pm 

R2-12-2 6 MW suburban 95% R,   5% C 12 pm 

R2-12-3 1 MW suburban 91% R,   1% C,   8% A 12 pm 

R2-25-1 17 MW suburban 72% R, 18% C, 10% A 2   pm 

R2-35-1 9 MW rural 18% R,    1%C, 79% A 12 pm 

Hot/Arid 

Arizona 

R3-12-1 8 MW urban 87% R, 13% C 4   pm 

R3-12-2 4 MW urban              92% C,              8% I 4   pm 

R3-12-3 7 MW suburban 93% R,                7% A 12 pm 

Hot/Cold 

North Carolina 

R4-12-1 6 MW urban/rural 89% R, 11% C 12 pm 

R4-12-2 2 MW suburban/urban 88% R, 12% C 12 pm 

R4-25-3 1 MW rural 99% R,   1% C 12 pm 

Hot/Humid 

Texas 

R5-12-1 9 MW suburban/urban 85% R, 15% C 2   pm 

R5-12-2 4 MW suburban/urban 66% R, 34% C 2   pm 

R5-12-3 9 MW rural 94% R,   6% C 2   pm 

R5-12-4 7 MW suburban/urban 85% R, 15% C 2   pm 

R5-12-5 9 MW suburban/urban 93% R,   7% C 2   pm 

R5-25-1 12 MW suburban/urban 95% R,   5% C 2   pm 

R5-35-1 12 MW suburban/urban 88% R, 12% C 2   pm 
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Figure 3-1: Comparison of SCADA substation loading from eastern utility and modeled loading using GridLab-D.  
GridLab-D building models were tuned to capture the weather dependence of the feeder load.  The simulated peak 
hours closely matched SCADA readings. On Feeder #2, non-weather exogenous effects cause the simulated peak to 
underestimate several peaks.  
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3.3.2 Solar Modeling 

We used solar radiation and weather data from NREL’s National Solar Radiation 

Database, Physical Solar Model-Version 3 (PSM-V3) (NREL 2018). PSM-V3 estimates solar 

irradiance from satellite data from 1998-2016 with a geographic resolution of 4-km by 4-km and 

a 30-minute time resolution (Habte, Sengupta and Lopez 2017).  Compared to ground 

measurements, mean bias errors are approximately ±5% for GHI and ±10 % for DNI. RMS 

errors are as high as 20% for GHI and 40% for DNI. Our results also include 1 year of data from 

Vibrant Clean Energy, which provides 5-minute resolution solar irradiance data (Vibrant Clean 

Energy 2018).  Vibrant reports correlations with ground measurements of 93% for GHI and 82% 

for DNI. The Vibrant and PSM-V3 irradiance correlations range from 94-98% for each location 

studied.  

Developing good solar radiation datasets is an area of active research, and comparisons 

between these satellite models and ground-based measurements are imperfect.  For example, 

several authors have found typical uncertainties of 3-5% even in well-maintained ground-based 

radiometers (Reda 2011) (Myers, et al. 2001) (Habte, et al. 2014). 

Solar generation was modeled using GridLab-D’s solar panel and inverter objects (PNNL 

2018). GridLab-D uses the same solar modeling as NREL’s System Advisory Model (SAM) 

(Tuffner, Hammerstrom and Singh 2012), a widely used engineering-economic tool (NREL 

2018). For all solar panels and locations, we assumed a solar panel tilt of 30 degrees, a solar 

multiplier of 1.20, an inverter efficiency of 96%, a panel efficiency of 17% and a constant power 

factor of 1.0.  A south facing panel orientation was used for all feeders. West facing panels were 

also used for the two evening peaking Pennsylvania feeders. Solar AC capacity factors were 

18-20%. 

3.3.3 Distribution-Effective Load Carrying Capability Definition 

We define the Distribution-Effective Load Carrying Capability generally as the change in 
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substation peak demand relative to the total solar system AC capacity. We report the average 

D-ELCC in the main body of the chapter; the marginal D-ELCC (the additional D-ELCC when an 

additional increment of PV is added) is provided in the Supplementary Materials (Section 3.7.6).  

3.3.3.1 Worst Case D-ELCC 

We use two metrics to estimate the D-ELCC with 19 years of available data. We define 

the worst-case D-ELCC at solar penetration p as 

𝐷 − 𝐸𝐿𝐶𝐶(𝑝)𝑤𝑜𝑟𝑠𝑡 =
𝑀𝑎𝑥 𝑃𝑒𝑎𝑘(𝑎𝑡 𝑝 = 0) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑦𝑒𝑎𝑟𝑠 − 𝑀𝑎𝑥 𝑃𝑒𝑎𝑘(𝑎𝑡 𝑝) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑦𝑒𝑎𝑟𝑠 

𝑅𝑜𝑜𝑓𝑡𝑜𝑝 𝑆𝑜𝑙𝑎𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑝
 

 

(3-1) 

The penetration, p, is defined as the AC solar capacity relative to the peak feeder load. 

This metric describes how much solar can reduce the largest net peak load over all 19 

years for each penetration. A low D-ELCC occurs if solar performs very poorly (e.g. due to 

cloudy conditions) on the largest peak over all years for each penetration. In contrast, this metric 

ignores the D-ELCC in any year when solar is performing poorly if the peak load in that year is 

relatively low.  Thus, D-ELCCworst should reflect any positive correlation between solar 

performance and larger peaks due to hot weather. In our results, we also show the D-ELCC for 

individual years. 

3.3.3.2 Transformer Aging D-ELCC 

Often, transformers are the main capacity constraint in capacity expansion projects. We 

calculate the transformer aging D-ELCC (D-ELCCage) using PJM weather normalization and 

both IEEE and IEC transforming aging estimating procedures. D-ELCCage allows overloading 

associated with solar, but the aggregate deterioration of the transformer insulation condition 

(commonly referred to as transformer aging) cannot exceed the deterioration caused by weather 

normalization without solar.  

The PJM weather normalization procedure, described in PJM Manual 19 (2017), 
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performs ordinary least squares regression with summertime peak daily loads as the dependent 

variable and weighted temperature humidity indices (WTHI) as the independent variable. It then 

solves the regression equation at a weather standard associated with extreme weather. The 

WTHI is based on the dry bulb temperature and humidity with a 20% weight based on previous 

days to account for the thermal inertia of buildings.  PJM defines the weather standard as the 

50th percentile of past yearly peak WTHI’s.  Details of PJM’s weather normalization procedure 

are in the Supplementary Materials (Section 3.7.2).          

A problem with weather normalization is that it does not guarantee similar levels of 

overloading at different solar penetrations.  So, we modify PJM’s weather normalization 

procedure in our estimate of the D-ELCCage. Our modification is summarized by Equation 3-2 

and Figure 3-2.  First, we define overloading as transformer aging. While overloading could be 

expressed in terms of the maximum overload (kW) or the total overload (kWh), we use 

transformer aging because it can estimate how both high loading from a loss of solar output on 

a cloudy day and low loading from solar on typical days affect transformer insulation condition.  

To correct for increased or decreased transformer aging, we use quantile regression and 

iteratively search for the quantile (q*) resulting in the same aging as the 50th percentile quantile 

regression without solar.  We use the IEC Standard 60076-7 (2005)  “exponential model” to 

estimate the increased aging of transformers caused by overloading.  Our estimates are based 

on a medium power transformer (2.5-100MVA) with ONAF cooling (Oil Natural Air Forced, i.e. 

the oil circulates naturally but air is forced over the cooling fins) and non-thermally upgraded 

paper insulation. Additionally, we follow the IEEE Standard C57.91™ (2012) normal life 

expectancy loading which limits the transformer hotspot temperature to a 130°C.  Details of our 

transformer aging procedure can be found in the Supplementary Materials (Section 3.7.3). 

Figure 3-7 in the Supplementary Materials shows how a 50% penetration of solar affects 
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transformer loading and hotspot temperatures over time.   

𝐷 − 𝐸𝐿𝐶𝐶(𝑝)𝑎𝑔𝑒 =
𝑊/𝑁 𝑃𝑒𝑎𝑘(𝑎𝑡 𝑝 = 0, 𝑞 = 50%) −𝑊/𝑁 𝑃𝑒𝑎𝑘(𝑎𝑡 𝑝, 𝑞 = 𝑞∗)  

𝑅𝑜𝑜𝑓𝑡𝑜𝑝 𝑆𝑜𝑙𝑎𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑝
 

 

(3-2) 
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1. The  Weather Standard  is set based on a 
typical hot day

2. Without solar, the capacity requirement is 
based on the 50th percentile quantile regression 
intersection with the weather standard.

3. With solar, the capacity requirement is again 
based on the quantile regression intersection 
with the weather standard.  The quantile 
percentile is chosen to maintain constant 
transformer aging.

Derivation of D-ELCC with Weather Normalization and 
Constant Transformer Aging

PeakNo Solar – PeakSolarDELCCage = 
Nominal Solar Capacity

weather 
standard

 
Figure 3-2: Method for estimating the D-ELCC with Weather Normalization (D-ELCCage) and maintaining transformer 
condition.  D-ELCCage allows allow overloading associated with solar but the aggregate deterioration of the 
transformer insulation condition (commonly referred to as transformer aging) cannot exceed the deterioration caused 
by weather normalization without solar. Peak loads with solar are shown in red.  Peak loads without solar are shown 
in black.   

3.4 Results 

Figure 3-3 demonstrates how solar performs on peak loading days at very low PV 

penetrations for the PG&E and PECO service territories.  Real loading data are used for all 

scatterplots and real solar generation data from SoCore Energy (2016) is used for the California 

scatterplots. Each point shows a daily peak event as a fraction of the maximum peak and the 

solar output at the hour of the daily load peak as a fraction of maximum solar output.  

There are two important features of the plots in Figure 3-3. First, we never observed a 

complete loss of solar generation during a peak loading event. Second, there is a trend towards 

greater solar output as loads increase.  This trend is caused by the high correlation between 



 

 

98 

 

temperature and load and between temperature and solar insolation. Solar output is worst on 

peak events on the two Pennsylvania feeders that peak in the evening.  When west facing 

panels are used, solar output during the peak load events is higher, as discussed below.  An 

exhaustive set of solar performance scatterplots is shown in the Supplementary Materials 

(Section 3.7.7) for all taxonomy feeders and the two PECO feeders using every year of 

simulated loading.  

 



 

 

99 

 

 
Figure 3-3: Solar performance is higher during peak loading times in California and eastern Pennsylvania.  Solar 
performance for PECO and PG&E service territories are shown on the left.  Solar performance for feeders is shown 
on the right. PG&E service territory (top left): the solar profile is based on a solar installation near Sacramento and 
the load is taken from CAISO market data.  Prototype California feeder (top right): the solar profile is based on the 
Sacramento installation and the load is simulated using feeder R1-12.47-1. PECO Service Territory (bottom left): the 
solar profile is simulated using GridLab-D and NREL’s Physical Solar Model, and the load is taken from PJM data. 
PECO Feeders (bottom right): solar profiles are simulated for summer months using GridLab-D and NREL’s Physical 
Solar model with south facing panels, and the summer load profiles are from 2016 SCADA readings.   

 

Figure 3-4 shows the average D-ELCC for both feeders in eastern Pennsylvania for 

south facing and west facing orientations. Figure 3-5 shows the average D-ELCC for five 

locations and sixteen of the PNNL taxonomy feeders.  Each figure includes the yearly D-ELCC, 

D-ELCCworst, D-ELCCage, and the D-ELCC using a 5-minute time resolution with the 2014 
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Vibrant Clean Energy weather data. A worst-case D-ELCC based on SCADA measurements 

and simulated solar is also shown for the year 2016 for the PECO feeders. The marginal D-

ELCC values are shown in the Supplementary Materials (Figure 3-9, Figure 3-11, Figure 3-12). 

Features of these results are discussed below. 

D-ELCC estimates are strongly affected by the peak hour. In Table 3-3 of the 

Supplementary Materials (Section 3.7.5), the peak hour for each feeder is shown.  Both PECO 

feeders peak in the evening and exhibit a lower effective capacity than most of the taxonomy 

feeders which peak in the afternoon. The evening peaking feeders benefit from the west facing 

solar panel orientation. 

D-ELCCworst, shown in black, is strongly affected by regional climate.  In California, 

Arizona, and Texas, the D-ELCCworst is always over 40% at low penetrations.  Even in climates 

with a weaker solar resource, effective capacity estimates were typically above 40% at low 

penetrations. Every Minnesota feeder (see Figure 4 of the Supplementary Materials) had a D-

ELCCworst greater than 40% at low penetrations. However, several exceptions exist where solar 

performs poorly. On feeder R4-25.00-1 in North Carolina, an abnormally high morning peak in 

the late winter causes the effective capacity of solar to be very low.  Additionally, two feeders in 

New York (R2-12.47-3 and R2-25.00-1) are dominated by cloud events and have a low D-

ELCCworst. The Texas feeders, with D-ELCCworst values around 40%, are lower than expected for 

a region with a high solar resource and remain very flat at higher penetrations.  Details can be 

found in Figure 3-14 of the Supplementary Materials, which shows the loading and solar profile 

on the peak load days that are used in the estimate for D-ELCCworst. 

The transformer aging D-ELCC with an allowance for “planned loading beyond 

nameplate capacity”, as described by IEEE C57.91™ (2012) is shown with black dashed lines.  

The D-ELCCage maintains a constant level of transformer aging but by allowing occasional 
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overload events, solar on each feeder achieves a capacity value of 60% at low penetrations.  

The decline in D-ELCCage is relatively small as the solar penetration increases.   

On all feeders, small amounts of energy storage used with solar can achieve high 

effective capacities without any overloading events. To find the energy storage requirement, we 

assume a target D-ELCC, and size the energy storage to the maximum overload event. Figure 

3-6 shows the full set of energy storage capacity requirements and duration for each feeder.  

Energy capacity requirements are provided relative to peak feeder load in %-hour units for 

conversion to kWh.  For all feeders, a one hour energy storage duration rated at 5% of the 

feeder peak loads could achieve an effective capacity of 50% when the peak load penetration of 

solar is below 20%. The storage duration with solar is shorter than deferral projects using only 

storage.  For example, Lazard (2017) assumes a 6 hour duration and Hledik et al. (2018) use a 

4 hour duration for their energy storage capacity deferral scenarios.  
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Figure 3-4: Distribution Effective Load Carrying Capability (D-ELCC) for two evening peaking feeders in the PECO 
service territory. 
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Figure 3-5: Distribution-Effective Load Carrying Capability (D-ELCC) for representative feeders in major US climate regions. Columns show the taxonomy feeders 
in order from left to right. California Feeders: R1-12.47-1, R1-12.47-2, R1-12.47-3, R1-12.47-4, R1-25.00-1. New York Feeders: R2-12.47-1, R2-12.47-2, R2-
12.47-3, R2-25.00-1, R2-35.00-1. Arizona: R3-12.47-1, R3-12.47-2, R3-12.47-3. North Carolina Feeders: R4-12.47-1, R4-12.47-2, R4-25.00-1. Texas feeders: R5-
12.47-1, R5-12.47-2, R5-12.47-3, R5-12.47-4, R5-12.47-5.     
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Figure 3-6: Energy storage capacity and duration requirements for a 50% D-ELCC when used with solar.  Storage 
capacity units are in %-hour of feeder peak (kW) allowing for the conversion to storage capacity units of kWh. For all 
feeders, a one hour energy storage duration rated at 5% of the feeder peak loads could achieve an effective capacity 

of 50% when the peak load penetration of solar is below 20%. 
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3.5 Conclusion 

We have performed feeder-level analysis based on 19 years of loading and solar 

profiles. Correlations between solar output and peak loads, flexibility in transformer overloading, 

and the relatively small amounts of energy storage needed to achieve high D-ELCCs all suggest 

that solar could act as a valuable capacity resource. As a point of comparison, we found that 

New York Feeder R2-12.47-3 at a 20% solar peak penetration of its 1 MW peak, had a worst-

case D-ELCC of only 10%, due to cloudy conditions in the region, but had a transformer aging 

D-ELCC of 56% because some overloading was allowed, and could achieve a 50% D-ELCC 

without any overloading with 50 kWh of energy storage.   

Utility managers and public utility commissions (PUCs) should consider strategies to 

take advantage of the effective capacity of solar.  In afternoon peaking feeders in regions with a 

strong solar resource, solar is sufficient by itself to reduce loading on substations and defer 

investments.  In regions with a weaker solar resource, large gains in the effective capacity of 

solar with small amounts of energy storage may make solar and energy storage an economic 

option for capacity deferral projects.  The capacity value of solar may be lost if energy storage 

systems are oversized and overcompensate for the risks associated with solar.  Figure 3-6 

offers guidance on appropriate energy storage capacity when used with different penetrations of 

solar.  In Chapters 4 and 5 we examine the economic tradeoff between the increased deferral 

value created by solar with storage and typical installed battery costs. 

The greatest opportunity for value creation with solar is in capacity expansion projects 

where transformers are the primary capacity constraint. In our D-ELCCage method we allow 

occasional “planned loading beyond nameplate capacity” as described by IEEE C57.91™.  

Relying on this inherent flexibility of transformers, rather than costly energy storage, will 

increase the value of solar. In Chapters 4 and 5, we examine the additional value created from 

deferral opportunities in the PECO service territory when solar is credited with the transformer 
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aging D-ELCC.   
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3.7 Supporting Materials 

3.7.1 Genetic Algorithm for Substation Load Matching 

We used a genetic algorithm to find a global set of building parameters that created a 

reasonable match between simulated loading and actual SCADA measurements.  The decision 

variables were the air conditioning coefficient of performance, insulation R values, cooling set 

points, floor areas, scaling factors for predefined temperature independent ZIP load profiles, the 

proportion of commercial buildings modeled as strip malls, office buildings, and big box stores, 

the percentage of residential homes with air conditioners, and the percentage of residential 

homes with hot water heaters.   

We used a population of 400 and a parent size of 100. The computation time for a single 

time-series powerflow run are typically over one hour, so it was important to parallelize all 

simulation trials and to use good initial conditions with a narrow search space.  To determine 

these parameters, we started with estimates for the northern United States (region 2 of the 

GridLab-D feeder taxonomy) (K. P. Schneider, et al. 2008).  It was necessary to first perform 

several trials of the genetic algorithm with a wide search space. Altogether, this was a time-

consuming process that could benefit from further research.    

Unlike typical genetic algorithm implementations, we used real (not integer) decision 

variables. During each iteration, a new population of 400 was created based on the top 100 best 

solutions.  The top 100 solutions were carried over without change (i.e. Elitism).  The remaining 

300 were a crossover of the top 100, with mutations.  We used an adaptive mutation. A 5% 

variation was added to a trait if the mutation occurred, but the probability of mutation decreased 

as the objective function improved.  The traits for each crossover child were selected from all 

the solutions (i.e. k-point crossover). 
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3.7.2 Weather Normalization Procedure 

We used PJM’s weather normalization described in PJM Manual 19 (2017). Weather 

normalization requires several steps. First, each daily peak in the summer is associated with a 

weighted temperature humidity index (WTHI). The temperature humidity index is defined as: 

𝐼𝑓 𝐷𝐵 ≥ 58, 

𝑇𝐻𝐸𝑁 𝑇𝐻𝐼 =  𝐷𝐵 − 0.55 ∗ (1 − 𝐻𝑈𝑀) ∗ (𝐷𝐵 − 58) 

𝐸𝐿𝑆𝐸 𝑇𝐻𝐼 = 𝐷𝐵 

Where, THI = Temperature Humidity Index, DB = Dry Bulb Temperature (°F), HUM = Relative 

Humidity 

An 80/20% weight is applied using the current and previous day. Months including 

March through September are used, but the WTHI must be at least 74 to be included in the 

regression. The weather normalization regression is fit to all WTHIs and Peak Days (MWs) and 

solved at the weather standard to find the weather normalized peak. PJM defines the weather 

standards as the average of the peak WTHIs over the last 20 years. We used the 90th percentile 

of the peak WTHI’s to ensure that we were not overestimating the risk associated with using 

weather normalization.   

 

3.7.3 Transformer Aging 

We use the IEC Standard 60076-7 (2005)  “exponential model” to estimate the increased 

aging of transformers caused by overloading. Transformers that are frequently loaded above 

nameplate capacity experience high internal temperatures, and their paper insulation 

deteriorates more quickly. These internal temperatures are modeled as a heat transfer problem 

based on the “hotspot” (i.e. the hottest temperature in the transformer windings), “top oil” (i.e. 

the temperature at the top of the oil tank), and ambient temperature.  The deterioration of the 

paper insulation and transformer age is modeled empirically using the Arrhenius equation and 
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the hotspot temperature. Additionally, various transformer cooling parameters and the cooling 

system are important. Our estimates are based on ONAF cooling (Oil Natural Air Forced, i.e. the 

oil circulates naturally but air is forced over the cooling fins), non-thermally upgraded insulation 

paper and parameters for a typical “medium power” transformers, shown in Table 3-2. Medium 

power transformers are defined by the IEC as ranging from 2.5-100MVA.   

The IEEE Standard C57.91™ (2012) describes several typical “load cycles” for sizing 

transformers: normal life expectancy loading, planned loading beyond nameplate rating, long-

time emergency loading and short-time emergency loading.  We use the ratings defined by 

“planned loading beyond nameplate capacity”, which is limited to a 130°C hotspot but can 

withstand frequent overload occurrences.  In contrast, short-time emergency overloading 

condition can occur infrequently, but the hotspot temperature can be as high as 180°C. Figure  

shows the transformer load factor for California feeder R1-12.47-1.  A quantile was chosen that 

allows frequent overloads but limits the hotspot temperature to 130°C and results in the same 

transformer aging with and without solar.   

Table 3-2: IEC Standard 60076-7 transformer aging model parameters. 

Transformer Aging Parameters Value 

Cooling System ONAF 

Paper Insulation Not thermally upgraded 

Load Cycle “Planned loading beyond nameplate rating” 

Maximum Top Oil Temperature 110°C 

Maximum Hot Spot Temperature  130°C 

Oil exponent 0.8 

Winding exponent 1.3 

Loss ratio 6 

Hot-spot factor 1.3 

Oil time constant 150 

Winding time constant 7 

Hot-spot to top-oil gradient 26 

K11 0.5 

K21 2.0 

K22 2.0 

 



 

111 

 

 

Figure 3-7: Transformer load factor and hotspot on New York Feeder R2-12.47-3.  High penetrations of solar result 
in frequent overloads but overall, transformer aging caused by high hotspot temperatures is the same with and 
without solar.  
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3.7.4 Weather Normalization Results 
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Figure 3-8: Weather Normalization of feeder taxonomy loads.  Weather normalization regresses peak load events on 
weather indices and solves the resulting equation at an extreme weather event to estimate capacity requirements.  
The amount of overloading risk is quantified by the points that fall above the intersection of the regression line and 
the weather standard. 
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3.7.5 Peak Hour by Location, Feeder, and penetration 

Table 3-3: Peak Hour for each location, feeder and penetration.  The peak hour is not strongly related to the 

penetration. 

Location Penetration 

  0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

California, Sacramento: R1-12.47-1 13 13 13 13 13 16 16 11 

California, Sacramento: R1-12.47-2 13 13 13 13 11 11 11 11 

California, Sacramento: R1-12.47-3 13 13 15 15 15 16 16 16 

California, Sacramento: R1-12.47-4 13 13 13 13 16 16 17 17 

California, Sacramento: R1-25.00-1 14 14 14 14 14 16 16 16 

Minnesota, Saint Paul: R2-12.47-1 15 15 15 15 14 15 15 15 

Minnesota, Saint Paul: R2-12.47-2 13 13 13 16 16 14 14 14 

Minnesota, Saint Paul: R2-12.47-3 14 14 14 14 17 17 14 14 

Minnesota, Saint Paul: R2-25.00-1 14 14 14 17 17 17 17 18 

Minnesota, Saint Paul: R2-35.00-1 13 13 13 13 14 14 14 14 

New York, Albany: R2-12.47-1 12 12 12 12 15 11 11 11 

New York, Albany: R2-12.47-2 14 14 11 11 11 11 11 11 

New York, Albany: R2-12.47-3 11 11 11 11 11 11 11 11 

New York, Albany: R2-25.00-1 14 11 11 11 11 11 11 11 

New York, Albany: R2-35.00-1 11 13 11 11 11 11 11 11 

Arizona, Phoenix: R3-12.47-1 14 14 16 16 16 16 16 16 

Arizona, Phoenix: R3-12.47-2 14 14 14 14 14 15 15 15 

Arizona, Phoenix: R3-12.47-3 14 14 14 20 20 20 20 20 

North Carolina, Raleigh: R4-12.47-1 12 12 12 14 14 14 14 18 

North Carolina, Raleigh: R4-12.47-2 12 12 12 12 12 14 14 15 

North Carolina, Raleigh: R4-25.00-1 6 6 6 6 6 6 6 6 

Texas, Austin: R5-12.47-1 14 14 14 14 14 14 14 16 

Texas, Austin: R5-12.47-2 14 14 14 14 14 14 14 16 

Texas, Austin: R5-12.47-3 14 14 14 14 14 14 14 14 

Texas, Austin: R5-12.47-4 14 14 14 14 14 14 14 14 

Texas, Austin: R5-12.47-5 13 13 14 14 14 14 14 14 

Texas, Austin: R5-25.00-1 14 14 14 14 14 14 14 14 

Texas, Austin: R5-35.00-1 14 14 14 14 14 14 14 14 

Pennsylvania Feeder #1 17 17 17 17 17 17 17 17 

Pennsylvania Feeder #1 18 18 18 18 18 19 19 19 
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3.7.6 Supplementary D-ELCC Results 

3.7.6.1 Marginal Distribution-Effective Load Carrying Capability 
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Figure 3-9: Marginal Distribution-Effective Load Carrying Capability for the PNNL Feeder Taxonomy. Columns show the taxonomy feeders in order from left to 
right. California Feeders: R1-12.47-1, R1-12.47-2, R1-12.47-3, R1-12.47-4, R1-25.00-1. New York Feeders: R2-12.47-1, R2-12.47-2, R2-12.47-3, R2-25.00-1, R2-
35.00-1. Arizona: R3-12.47-1, R3-12.47-2, R3-12.47-3. North Carolina Feeders: R4-12.47-1, R4-12.47-2, R4-25.00-1. Texas feeders: R5-12.47-1, R5-12.47-2, R5-
12.47-3, R5-12.47-4, R5-12.47-5.                      
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3.7.6.2 Average and Marginal D-ELCC for Texas and Minnesota 

The following D-ELCC plots were not in the main body of the chapter due to space constraints.   

 

 

Figure 3-10: Average Distribution Effective Loading Capability (additional feeders). Columns show the taxonomy feeders in order from left to right. Minnesota 
Feeders: R2-12.47-1, R2-12.47-2, R2-12.47-3, R2-25.00-1, R2-35.00-1. Texas Feeders: R5-25.00-1, R5-35.00-1 
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Figure 3-11: Marginal Distribution Effective Loading Capability (additional feeders). Columns show the taxonomy feeders in order from left to right. Minnesota 
Feeders: R2-12.47-1, R2-12.47-2, R2-12.47-3, R2-25.00-1, R2-35.00-1. Texas Feeders: R5-25.00-1, R5-35.00-1 
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Figure 3-12: Marginal Distribution Effective Load Carrying Capability for Pennsylvania Feeders.  
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3.7.7 Solar Performance Scatterplot 
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PA Feeder #1 (South) PA Feeder #2 (South) 
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Figure 3-13: Solar Performance Scatterplot.  The solar performance scatterplots show a trend towards greater solar output during peak load events.   

PA Feeder #1 (West) PA Feeder #2 (West) 
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3.7.8 Net Load on Peak Days 
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Figure 3-14: Feeder Net Load on Peak Days.  Feeder loads are shown without solar (0% penetration) and for varying 
amounts of solar.  Plots include every day where a peak load event occurred over all penetrations.  For example, 
Pennsylvania feeder #2 experiences a 14 MW peak on July 22nd 2011, July 5th 1999 and July 6th 1999.  Solar reduces 
the load on each of these days.  On Feeder #1, cloud events reduce solar’s performance on July 7 th 2012. 



 

149 

 

 

 

 

 

 

 

 

References 

IEC. 2005. "Power transformers-Part7: Loading guide for oil-immersed power transformers 
(60076-7:2005)." https://webstore.iec.ch/publication/605. 

 
IEEE. 2012. "IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage 

Regulators (IEEE Std C57.91™-2011)." March 7. 
https://ieeexplore.ieee.org/document/6197686. 

 
PJM. 2017. "PJM Manual 19: Load Forecasting and Analysis, Revision 32." 

https://www.pjm.com/~/media/documents/manuals/m19.ashx. 

Schneider, K P, Y Chen, D Chassin, Dave E, and S Thompson. 2008. Modern Grid Initiative 
Distribution Taxonomy Final Report. Pacific Northwest National Laboratory. 
http://www.gridlabd.org/models/feeders/taxonomy_of_prototypical_feeders.pdf. 

 
  



 

150 

 

 

Chapter 4:  The value of solar for PECO and its ratepayers  

 

4.1 Abstract 

We have developed a utility financial model that describes how the average customer 

‘all-in-rate’ (i.e. the volumetric rate based on the total revenue requirement and kWh sales of all 

customer classes), will change for different energy penetrations10 of solar photovoltaic 

generation in the PECO (Philadelphia Electric Company) service territory if Pennsylvania 

continues offering net energy metering (NEM) rates. Under a NEM tariff, if the revenue 

reduction from solar exceeds avoided costs, customer rates will increase. We define the Value 

of Solar (VOS) as the avoided energy, generation capacity, transmission capacity, and 

distribution capacity costs associated with solar in avoided dollars per unit of solar generation 

($/kWh). 

We estimate the value of solar (VOS) in the PECO service territory to be 

$0.086±0.006/kWh for a 5% penetration of solar rolled out from 2020-2030 with random 

placement on distribution feeders.  This estimate for the VOS is below our estimate of 

$0.118/kWh for PECO’s all-in-rate; so, if Pennsylvania continues with net energy metering, lost 

revenue will exceed avoided costs and there will likely be a small, 0.9%, increase in rates.  The 

rate increase is relative to the pre-solar expected rates over a time horizon from 2020-2040 and 

a 5% discount rate. The uncertainty in our estimate arises from weather and load variation in the 

10 different historical years (2007-2016) used in the study.  Due to the declining value of solar 

with increasing solar penetration, a penetration of 10% is likely to increase the all-in-rate by 

                                                

10 In Chapter 4, we use solar energy penetration to describe how much solar energy is produced in Pennsylvania.  It 

is defined as the total solar energy relative to total energy consumption. 
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2.5%.  

We find that solar’s effect on PECO’s business is small. PECO’s ROE is insensitive to 

revenue erosion from solar because of the recent implementation of a Fully Projected Future 

Test Year (FPFTY).  Revenue per customer (RCP) decoupled rates is pending in Pennsylvania 

and will further protect PECO from volatility in the VOS caused by weather variation. Revenue 

erosion, however, would still affect PECO through disproportionate changes in the distribution 

and bulk grid section of customer bills.  While the expected increase in the all-in-rate is 0.9%, 

the distribution portion is expected to increase by 3.3% and the bulk grid portion to decrease by 

0.6%.     

In this chapter, we estimate avoided T&D capacity expenses assuming that solar is not 

targeted at overloaded sections of the T&D network. The combination of solar’s slow rollout, the 

rarity of overloaded networks, and the untargeted placement of solar results in a low T&D VOS, 

a small effect on rates, and minimal impact on PECO’s business model.  Solar plus utility owned 

storage can increase the total deferral value by more than a factor of 4 at 5% penetration, but 

the impact on rates is small. In Chapter 5, we assess the additional value created by targeting 

solar at overloaded distribution networks.   

By displacing fossil fuel generation and reducing criteria pollutant emissions, solar 

avoids health damages and premature loss of life.  These environmental benefits of solar are 

not included in our model because they do not affect rates, but from a societal perspective have 

a high value in Pennsylvania due to the state’s relatively high proportion of coal and natural gas 

fired power.  Perez et al. (2012) estimate the value of solar at $0.05-0.12/kWh in Pennsylvania. 

This report can be used by the Pennsylvania PUC to decide whether these large environmental 

benefits are worth the small rate impact caused by solar.   
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4.2 Model 

4.2.1 Overview 

In the year 2021, Pennsylvania will reach the Alternative Energy Portfolio Standard 

(AEPS) deadline, which includes a 0.5% solar energy penetration carveout. Several other states 

in the PJM footprint are targeting higher penetrations of solar (Figure 4-1). Recently, Governor 

Wolf signed an executive order to reduce greenhouse gas emissions 80% by 2050 in 

Pennsylvania (Wolf 2019) and the Department of Environmental Protection released a report 

with strategies to achieve 10% solar energy penetration in the state by 2030 (PA DEP 2019).  

We have developed a utility financial model that describes how the ‘all-in-rate’ (i.e. the 

volumetric rate based on the total revenue requirement and kWh sales of all customer classes) 

changes for different solar energy penetrations in the PECO service territory if Pennsylvania 

continues offering NEM rates. We define NEM rates as crediting all solar generation at the retail 

volumetric ($/kWh) rate and crediting reduced peak demand (kW) at the retail demand change 

($/kW). 

Due to its solar resource, PECO has the largest amount of residential and commercial 

solar PV installations in Pennsylvania and is a reasonable choice for a Pennsylvania VOS 

study.  In this study, we consider mandated solar energy penetrations in Pennsylvania that 

range from 1-30%. We assume that the solar is rolled out linearly from 2020-2030 and remains 

constant thereafter. In Chapter 5, we assess the targeted placement of solar and allow the 

penetration to be higher in some locations where reduced loading may defer large capital 

investments and create value. The benefit of solar plus utility owned storage is considered in 

both our targeted and untargeted capacity deferral modeling.     

The utility financial model estimates how the combination of avoided costs associated 

with solar and lost revenue associated with NEM ultimately affect rates. First, the model 

forecasts PECO’s revenue requirement (i.e. cost of service including debt and equity 
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payments), including pass-through costs and non-pass-through costs.  The model begins with 

PECO’s revenue requirement in the year 2016 and forecasts each revenue requirement 

component based on the relevant escalation factors.  Second, a forecast of volumetric sales, 

customer charges, and demand charges is used with the revenue requirement to baseline 

customer rates without solar by assuming a rate case every three years. Third, solar is 

associated with avoided costs (i.e. a lower revenue requirement) and reduced revenue from 

volumetric sales and demand charges that will affect PECO rates.      

 
Figure 4-1: Solar Renewable Portfolio Standards in PJM service territory. 

4.2.2 Metrics 

Throughout this chapter, we use three key metrics defined in Equations 4-1, 4-2, and 4-

3.  The all-in-rate is a volumetric rate based on the revenue requirement and sales for all 

customer classes. Figure 4-2 shows the all-in-rate categorized by spending category without 

any solar. Return on Equity (ROE) is a measure of financial performance showing utility 

earnings relative to shareholder equity.  Solar reduces the revenue requirement by avoiding 

energy costs, generation capacity costs, transmission costs, distribution costs, and taxes. The 

VOS is found by estimating the avoided costs and dividing the resulting revenue requirement 

reduction by all energy generated from solar. Additionally, to evaluate capacity deferral 

opportunities, we define ‘total deferral value’ as the numerator of Equation 4-3 when applied to 

avoided distribution costs.  It is the net present value of all capital expense (capex) deferrals 
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created by solar. The size of the total deferral value is useful for determining which policies are 

appropriate for managing and encouraging capacity deferral opportunities.   

𝐴𝑙𝑙 − 𝑖𝑛 − 𝑅𝑎𝑡𝑒[
$

𝑘𝑊ℎ
] =

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑅𝑒𝑣𝑒𝑛𝑢𝑒   [$]

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑎𝑙𝑒𝑠 [𝑘𝑊ℎ]
 

(4-1) 

 

𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑜𝑛 − 𝐸𝑞𝑢𝑖𝑡𝑦[%] =
𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 [$]   − 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑠𝑡𝑠[$]

𝑅𝑎𝑡𝑒𝑏𝑎𝑠𝑒 𝐸𝑞𝑢𝑖𝑡𝑦[$]
 

(4-2) 

 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑜𝑙𝑎𝑟 [
$

𝑘𝑊ℎ
] =

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐶𝑜𝑠𝑡𝑠[$]

𝑆𝑜𝑙𝑎𝑟 [𝑘𝑊ℎ𝑠]
 

(4-3) 

  

 
Figure 4-2: All-in-Rate by spending category (stacked). Spending category components are deescalated equally from 
2016-2020 to reflect falling bilateral contract and natural gas prices.  Spending category components are escalated 
separately, resulting in a 1.2% cumulative average growth rate for the all-in-rate from 2020-2040.  The all-in-rate is a 
volumetric rate based on the revenue and sales for all customer classes. Energy is the largest percentage of the all-
in-rate and includes the load-weighted locational marginal price (LMP), ancillary services, alternative energy credits 
(AECs), and the risk premium associated with bilateral contracts.  Generation and Transmission (G&T) capacity is the 
next largest component, followed by distribution O&M and distribution capacity.  The distribution system improvement 
charge (DSIC), a recent Pennsylvania policy aimed at improving resiliency and taxes are a very small percentage of 
the total rate.   

 

4.2.3 Utility Financial Model 

Figure 4-2 shows the all-in-rate forecasted by the utility financial model without solar. 

Spending category components (Energy, generation capacity, O&M etc.) are escalated equally 
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from 2016-2020 to reflect falling bilateral contract and natural gas prices, and separately from 

2020-2040 based on Bureau of Labor and Statistics (BLS), PJM Market Data, and EIA 

Reference Forecasts.  Altogether, we forecast a 1.2% cumulative average growth in the all-in-

rate from 2020-2040.  Figure 4-3 and Figure 4-4 summarize the utility financial model that we 

use to estimate the metrics defined by Equation 4-1 (all-in-rate), equation 4-2 (return-on-equity), 

and equation 4-3 (value of solar). First, the utility’s revenue requirement and actual revenue 

from customer charges, volumetric rates, and demand charges are forecast.  These billing 

components are allocated in different proportions to pay for each spending category of the 

revenue requirement.  Details of this allocation can be found in the Supporting Materials 

(Section 4.6.2).  Next, in rate-case years, rates are increased to ensure that the utility earns its 

full revenue requirement, including a 10% ROE.   In non-rate case years, unequal changes in 

actual revenues and costs lead to changes in the ROE. Typically, if costs increase and 

decreased sales prevent the utility from achieving the revenue requirement, the actual utility 

ROE will be less than the target ROE.  Pennsylvania utilities may be protected from this effect 

with a Fully Projected Future Test Year (FPFTY) and revenue per customer decoupling.  

Modeling details of these policies can be found in the Supporting Materials (Section 4.6.5).   

Rooftop solar customers are sometimes criticized for creating a disproportionate loss in 

revenue relative to the avoided costs associated with solar (EEI 2016). If the revenue reduction 

is greater than the avoided costs, the utility ROE will decrease, and customer rates will 

increase.  Stated in another way, if the VOS is greater than the all-in-rate, rates will decrease, 

and if the VOS is less than the all-in-rate, rates will decrease.  

The utility financial model was adapted from a spreadsheet model developed by Energy 

and Environmental Economics (E3) for the National Action Plan for Energy Efficiency (NAPEE 

2007) and later work by Satchwell et al. (2014), which focused on solar’s effect on a prototypical 

deregulated northeast utility and southwest vertically integrated utility.  Details of changes that 
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we made can be found in Section 4.6.4 of the Supporting Materials.   

 

 
Figure 4-3:  The rate base, utility costs, and revenue change on a yearly basis.  In 2020 –an off rate-case year- rates 
stay the same, but the misalignment between revenue and costs are likely to decrease the ROE. 

 

 
Figure 4-4: The rate base, utility costs, and revenue change on a yearly basis.  In 2022 –a Rate case year- rates are 

increased to ensure that the utility ROE is ‘just and reasonable’.   

 

 

4.2.4 Avoided Costs 

Figure 4-2 shows each component of PECO’s revenue requirement.  Solar can avoid 

costs and therefore reduce the revenue requirements for four of these components: distribution 
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capacity, transmission capacity, generation capacity, and energy costs. These costs are 

escalated yearly using historical data and forecasts from the Bureau of Labor and Statistics 

(BLS), PJM Market Data, and EIA Reference Forecasts.  We describe each avoided cost 

component below.   

4.2.4.1 Avoided Energy Costs 

Avoided energy costs make up the largest component of the value of solar. Most of the 

avoided energy costs are based on solar’s hourly coincidence with PECO’s Locational Marginal 

Prices (LMPs). We add the cost of alternative energy credits, the Demand Reduction Induced 

Price Effect (DRIPE), ancillary services and the risk premium associated with PECO’s bilateral 

contracts to the avoided energy cost. These avoided costs also include average line losses of 

6.4%. The cost of alternative energy credits is small, and details can be found in Section 4.6.6 

of the Supporting Materials.  

As solar decreases PJM’s net load, LMPs will also decrease and reduce PECO’s energy 

revenue requirement.  The reduction in the energy revenue requirement is often treated as a 

value of solar component and referred to as the market price response or the Demand 

Reduction Induced Price Effected (DRIPE).  We have constructed daily PJM supply curves from 

public PJM bid data (PJM 2018) to estimate the DRIPE associated with different penetrations of 

solar.  This required several steps.  We began with historical hourly LMPs in the PECO Zone 

(PJM 2018). We next used PJM supply curves (PJM 2018) and PJM hourly loads (PJM 2018) 

from historical reference years to estimate a PJM wide hourly marginal price.  The supply 

curves were constructed from public bidding data, assuming each generator operates at 

maximum output.  Solar’s hourly output for each reference year and energy penetration were 

calculated using GridLab-D (PNNL 2018) with weather data from the National Renewable 

Energy Laboratory (NREL)’s Physical Solar Model (NREL 2018).  An example of solar's effect 

on PECO's LMPs are shown in Figure 4-6 for several weeks in July 2016. Further details of the 
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solar profile that we use and the DRIPE can be found in the avoided energy cost section of the 

Supporting Materials (Section 4.6.6). 

The combined avoided cost of ancillary services and the risk premium are assumed to 

be the remainder of PECO’s bilateral contracts after subtracting the load-weighted LMP, 

generation capacity costs, and cost of Alternative Energy Credits (AEC).  The average bilateral 

contract costs were estimated from the “Purchased Power” page in FERC Form 1 (FERC 2016) 

and PECO’s default service supply procurement website (2019).  These are “Fixed Price Full 

Requirement” bilateral contracts that covers all generation aspects (excluding transmission 

costs) of serving a portion of load during a fixed period of time. Spot market purchases are only 

about 1% of PECO’s energy costs in. Figure 4-5 shows the cost components of the bilateral 

contract. Ancillary services and the risk premium are estimated to be $16/MWH in 2016.   

Sensitivity 

PECO’s average bilateral contract costs have been decreasing in recent years (Figure 

4-7). We assume all components of PECO’s bilateral contract are deescalated to match our 

base case estimate of PECO’s average bilateral contract cost in 2020 ($55/MWH). $50/MWH 

and $60/MWH are considered in the sensitivity analysis. Beyond 2020, we escalate all cost 

categories separately. In our base case scenario, LMPs are escalated based on a weighted 

combination of the EIA reference natural gas and coal forecasts (EIA 2018).  The weights for 

natural gas and coal are 65% and 35%, respectively and are based on the percentage of time 

that each fuel type is on the margin.  Marginal fuel usage was taken from Monitoring Analytics 

Marginal Fuel Posting in PJM’s real-time energy market (2018). In our high and low energy 

escalation scenarios, we use the EIA forecast for high and low oil prices.   
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Figure 4-5: The average bilateral contract cost in 2016 and its components. The load-weighted locational marginal 
price (LMP), generation capacity and alternative energy credit costs are subtracted from the average bilateral 
contract cost to estimate the cost of ancillary services and the risk premium.  Our energy value of solar estimate 
includes all components of the bilateral contract except the generation capacity cost.  The demand reduction induced 
price effect (DRIPE) is also included in the energy cost but not included in this figure. The average bilateral contract 
cost has been declining in recent years and is forecasted to be $55/MWH in 2020. All components are deescalated 
equally from 2016 to 2020 to match this forecast.       

  
Figure 4-6:  PJM market prices decrease when solar reduces demand during the day. PECO LMPs from 2016 are 

shown for several weeks in July.      
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Figure 4-7: PECO’s average bilateral contract has been decreasing in recent years as fuel prices have fallen, and 
the average bilateral contract price in the year 2020 is uncertain (shaded red region). A bilateral contract of $55/MWH 
is used in 2020 (the start of the solar rollout).  After 2020, the locational marginal price (LMP) component of the 
bilateral contract is escalated based on the EIA reference forecast for natural gas and coal.   

 

4.2.4.2 Avoided Generation Capacity Costs 

When solar reduces PECO’s load on peak loading days, PECO’s capacity obligation in 

PJM’s capacity market (i.e. the reliability pricing model or RPM) is reduced. The avoided 

generation capacity cost is the product of the generation capacity credit, the RPM capacity 

price, and reserve margin.  We use $164/MW-day for the capacity price and a reserve margin of 

20.5%, all based on PJM’s base residual auction (PJM 2018).   

The generation capacity credit is based on solar’s ability to reduce PJM’s weather 

normalized forecast, which is a key input for calculating PECO’s capacity obligation and is 

described in PJM’s Manual 19 (2017). In Figure 4-8, we show our estimate of the generation 

capacity credit.  The generation capacity credit is defined in Equation 4-4.  

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶𝑟𝑒𝑑𝑖𝑡 = 

𝐷𝑖𝑣. 𝐹𝑎𝑐𝑡𝑜𝑟 ∗ (𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑𝑊𝑁(𝑝 = 0) − 𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑𝑊𝑁(𝑝))

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑆𝑜𝑙𝑎𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(4-4) 

The diversity factor is defined by PJM as PECO’s coincident peak divided by PECO’s 
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noncoincident peak (Reynolds 2017). We use a diversity factor of 0.97, which is an average 

over all 10 reference years.  The weather normalized peak (Peak LoadWN) is based on a 

statistical regression using 3 years of weather and demand data (2014-2016).  In Figure 4-9, we 

show a scatter plot of weather, expressed as Weighted Temperature Humidity Indexes (WTHI’s) 

and demands. The demand values are regressed on the WTHIs and solved at the weather 

standard (an average of WTHIs on peak load days) to find the weather normalized load. High 

solar penetrations decrease the demand.  Finally, the weather normalized load is scaled by 

PJM’s zonal load forecast and reserve margin, found in PJM’s yearly base residual auction.   

Sensitivity 

The cost of generation capacity has been very volatile and has not shown a clear trend 

since the beginning of PJM’s RPM auction. We use the average capacity market clearing price 

over the 2015-2016 and 2016-2017 delivery years for the PECO zone for our best estimate 

($164/MW-day) in 2016.  We reduce the price by one standard deviation for our low estimate 

($124/MW-day) and increase it by one standard deviation for our high estimate ($203/MW-day).   

For our best estimate of the generation capacity escalation rate, we assume 0% 

escalation. For our low estimate, we assume -2%, the escalation rate reported by the BLS 

(2018) for “non-utility” owned generation. For our high estimate, we assume +2%, an escalation 

rate more typical of escalation rates in the rest of the power sector. 

We define the reserve margin as the excess capacity in PECO’s 2018 capacity 

obligation relative to their actual 2018 peak load. Using market data from the base residual 

auction (PJM 2018), our best estimate of PECO’s reserve margin is 20.5%.  We use 16% for the 

low estimate, which is PJM’s required reserve margin (PJM 2018). We use 28% for our high 

estimate, which is the most recent reserve margin for PJM’s entire service territory (PJM 2018).   



 

162 

 

 
Figure 4-8: Generation Capacity Credit using 2016 load data.  The ability of solar to reduce PECO’s coincident 
weather normalized peak and PJM capacity market obligation diminishes with penetration.   

 

   
Figure 4-9: The weather normalized demand is found by regressing PECO’s demand on corresponding Weighted 
Temperature Humidity Indexes and solving at the Weather Standard.  The weather normalized demand is lower 
under the 10% solar penetration scenario.   

 

4.2.4.3 Avoided Distribution Capacity Costs 

The distribution capacity deferral value of solar is the value that solar creates by 

reducing overloaded equipment and deferring capital investments to later years. The investment 

deferral avoids costs in the form of debt and equity payments.  We assume that solar is 
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randomly placed throughout PECO’s service territory and estimate the deferral value created by 

the solar that accumulates on overloaded feeders.   

We model constant yearly capacity investments caused by overloading, reflecting the 

relatively constant yearly pipeline of projects experienced by most utilities.  Solar is rolled out 

linearly from 2020-2030 and enough solar must accumulate by the year of the planned capacity 

project for the deferral to take place. If a project is deferred to a later year, solar can accumulate 

more and defer the project again.  Frequently, at low solar energy penetration targets and for 

projects planned for earlier years, enough solar has not accumulated to defer the project by at 

least one year. It is possible that these capacity projects could have been deferred if solar was 

targeted at the capacity project locations. In Chapter 5, we consider targeted placement of solar 

and the additional value it can create.   

The distribution capacity deferral value of solar is very sensitive to the cost of replacing 

or augmenting overloaded capacity, the ability of solar to reduce peak loading, and the growth 

rate in locations with overloaded capacity. We use the marginal cost of service (MCOS) to 

estimate the cost of replacing or augmenting overloaded capacity. We estimate PECO’s MCOS 

to be $600/kW, based on 4 growth related projects planned for the next five years (PECO 

2018). This estimate is close to other distribution capacity cost estimates in California (E3 2018) 

and New York (NYSERDA 2015). 

If the load growth is very low, the deferral will be longer.  At typical utility costs of capital, 

a few additional deferral years can create a lot of value. We estimate that the average load 

growth is 1%, based on four PECO growth-related projects planned for the next 5 years.  

We call the ability of solar to reduce peak loads the distribution-effective load carrying 

capability (D-ELCC).   This metric is described in detail in Chapter 3.  We use two estimates of 

the D-ELCC, shown in Figure 4-10.  Both are based on 19 years of solar and loading profiles, 

and the average of two PECO feeders. D-ELCCworst describes how much solar can reduce the 
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largest net peak load over 19 years for each penetration.  It does not allow any overloading.   

For capacity deferral projects where transformer overloading is the main constraint, 

relying on the inherent overloading flexibility of transformers, rather than currently costly energy 

storage, can also increase the D-ELCC.  Our D-ELCCage allows occasional overloading but 

limits the total transformer aging (i.e. deterioration of insulation) to the aging incurred during 

typical weather normalization planning processes. D-ELCCworst is low because it is based on 

evening peaking feeders.  As a first order approximation, D-ELCCage can be viewed as the D-

ELCCworst on afternoon peaking feeders in regions with a good solar resource (see Figure 3-5 in 

Chapter 3).   

In Figure 4-10, we show the amount of energy storage required at varying penetrations 

to ensure a D-ELCC of 50%. Below 10% penetration, the energy storage requirements are very 

low because the energy storage is compensating only for solar variability and does not require 

peak shifting. Storage creates more deferral value by increasing solar’s effective capacity, but it 

also has a cost. We use installed battery costs reported by the EIA (2018).  Storage with 

durations less than 0.5 hours costs $2600/kWh, between 0.5-2 hours costs $1400/kWh, and 

storage greater than 2 hours costs $400/kWh. We describe our method for estimating the 

energy storage duration and size in Chapter 3.  Estimates of the energy storage and duration 

are shown in Chapter 3, Figure 3-6. All estimates of the value of solar and total deferral value in 

this chapter include these storage costs.     
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Figure 4-10: Distribution Effective Load Carrying Capability (D-ELCC). The worst-case D-ELCC does not allow any 
overloading over the 19 years.  The worst-case D-ELCC is shown for South and West facing panels.  The energy 
storage requirement to achieve a 50% worst-case D-ELCC over all penetrations is shown. The transformer aging D-
ELCC allows occasional overloading but limits the total transformer aging (i.e. deterioration of insulation) to the aging 
incurred during typical weather normalization planning processes. 

4.2.4.4 Avoided Transmission Capacity Costs 

PECO’s revenue requirement includes two kinds of transmission costs: non-pass-

through PECO owned transmission capacity that is included in PECO’s rate base and pass-

through regional transmission with costs allocated to multiple load serving entities as dictated by 

PJM’s regional transmission expansion plan (RTEP) and schedule 12 of the Open Access 

Transmission Tariff (OATT) (PJM 2019).  To estimate the avoided transmission costs, we use a 

method similar to that in the “avoided cost calculator” designed by E3 and used by the California 

PUC (E3 2018). We first multiply yearly growth-related capex by the reduction in growth caused 

by solar.  While E3 uses the Peak Capacity Allocation Factor (PCAF), we estimate the reduction 

in growth from the transmission effective load carrying capability. The PCAF and ELCC method 

are compared in Chapter 3, and the differences should not affect the results in this chapter. In 

Figure 4-11, we show the effective load carrying capability that defines the peak load reduction 

caused by varying penetrations of solar.  It is based on the worst-case loading associated with 

10 years of historical and solar and loading in the PECO service territory. 
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We apply a deferral saving factor that accounts for the net present value savings of a 

deferred capital investment.  Based on a 5 year deferral and a 7% discount rate, we use a 

savings factor of 30%. We estimate PECO and PJM’s growth-related capex from project 

descriptions in PJM’s Transmission Cost Information Center (PJM 2019).  A description of our 

criteria for estimating transmission growth-related capex is in the Avoided Transmission Costs 

Section 4.6.6 of the Supporting Materials.   

Sensitivity 

Transmission costs have been increasing rapidly. Our best estimate of the transmission 

escalation rate is 4.3% based on the average Bureau of Labor and Statistics (BLS) Power 

Purchasing Index (PPI) growth over the last 10 years (Bureau of Labor Statistics 2018). Our low 

estimate is 2% which is approximately one standard deviation below the BLS average and more 

typical of escalation rates for distribution. Our high estimate is 6.6%, which is one standard 

deviation above the BLS average. 

 
Figure 4-11: Transmission capacity credit for PECO using 2016 load data.  The ability of solar to reduce PECO’s 
coincident peak (with PJM) and transmission demand charge diminishes with penetration.   
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4.2.5 Solar Integration Costs 

PECO charges application and interconnection fees to solar owners to cover 

administrative and integrations costs. Because costs associated with these fees are paid for by 

solar owners, they will not affect the rates for other customers and are omitted from this study. 

We assessed when high penetrations may cause additional distribution interconnection costs 

that could be passed to other customers. 

In 2012, Southern California Edison studied integration costs on four feeders in 

response to a state policy to install 4,800 MW of renewable DER in the service territory by 2020 

(Southern California Edison 2012).  The study found that the cost of integrating renewable DER 

would be approximately $4.5 Billion but could be reduced to $2.1 Billion if the DER were 

“guided” towards stronger grid locations that are less affected by DER.  Specifically, the study 

cites long rural feeders and low voltage feeders (e.g. 4 kV) that are particularly prone to high 

integration costs. Assuming an 18% AC solar capacity factor, these costs equate to 

approximately $0.007-0.04/kWh-solar depending on whether solar was placed predominantly in 

urban or rural feeders. Notably, the study focused on large solar installations in the 1 to 3 MW 

range, which are common in rural California where land is cheaper, and the solar resource is 

stronger.  The integration costs include distribution upgrades, transmission upgrades and 

interconnection facility costs. 

We examined four PECO feeders and found that the number of voltage violations on 

these feeders are low at low solar energy penetrations.  Depending on the feeder, the number 

of voltage violations begins to increase rapidly when energy penetrations reach 10%.  We did 

not find distribution system reconductoring to be very effective at reducing voltage violations.  

Volt/Var smart inverters with reactive power priority was the most effective and we found the 

costs of real power curtailment associated with this inverter to be negligible (less than a 0.01 

₵/kWh).  Beyond penetrations of 5-10%, more expensive interconnection costs, such as those 
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described by Southern California Edison, may be incurred.  Modeling details of this study are 

described in the Section 4.6.7 of the Supporting Materials.   

 

 
Figure 4-12: The number of voltage violations are small below 5% energy penetration but begin to increase quickly 
for penetrations ranging from 5-10%.   Volt/Var is a smart inverter with reactive power priority.  We found Volt/Var 
smart inverters to be most effective and the least-cost method for mitigating voltage violations.   

 

4.2.6 Base-Case Input Assumptions 

Table 4-1 summarizes our base-case assumptions. The data comes primarily from PJM market 

data, PECO’s 2015 rate case, Pennsylvania’s Alternative Energy Portfolio reports, FERC Form 

1, Pennsylvania Electric Power Outlook Reports, and internal PECO data. The utility financial 

model uses hourly historical PJM loads, PECO loads, solar insolation, and PECO zone LMPs. 

To account for yearly variability in the VOS caused by these hourly values, we do sensitivity 
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analysis on the years 2007-2016. Further details on these historical reference years can be 

found in Section 4.6.1 of the Supporting Materials.   

Table 4-1: Base case assumptions for utility financial model.  Solar is installed randomly throughout the service 
territory and solar owners are compensated at the retail rate (i.e. with Net Energy Metering).  

Input PECO Input 

Study Period 2016-2040.  Solar deployed 2020-2030 

Solar PV Compensation Net Energy Metering (NEM) 

Peak Load, Growth 8,364 MW, 0.7% 

Load Factor 48.6% 

Forecast Sales Growth 0.6% 

Customer Count, Growth 1.6 Million, 0.52% 

Customer Growth 0.52% 

Average, Peak Losses 6.4%, 8% 

Rate Base Assets $4,100 MM 

Avg. Asset Book Depreciation 30 years 

Capex, Escalation $398MM at 2% escalation 

LTIIP Capex $55 Million 

O&M, Escalation $829MM at 0.5% escalation 

Rate Case Trigger Every three years 

Test year “Fully Projected Future Test Year” (2 years) 

Regulatory Lag 1 year 

Target Return on Equity 10% 

Debt Cost, percentage 5.04%, 46.64% 

Weighted Average Cost of Capital 7.4% 

Federal Tax Rate 20% 

State Tax Rate 9.99% 

Average Bilateral Contract $45/MWh in 2020 (includes load-weighted LMP, 
capacity market, ancillary services, AEPS costs, and 
the risk premium) 

Energy Escalation Rate Indexed to EIA reference forecasts for coal and natural 
gas 

Generation Capacity, Escalation 164/MW-day, 0% 

Reserve Margin 20.5% 

PJM Transmission Unit Cost, 
Escalation 

$27.3/kW-year, 4.3% 

PJM Transmission Growth Capex $46MM/year 

PECO Transmission Growth 
Capex 

$6MM/year 

REC Price $8/MWH 

Growth Related Capex  1% of distribution capex or $3MM per year 

Distribution Marginal Cost of 
Service 

$600/kW 

D-ELCC Based on worst case loading over 19 years and two 
PECO feeders.  See Figure 4-10. 

Solar Placement Strategy No placement strategy.  Solar is placed randomly. 
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4.3 Results 

4.3.1 Ratepayer Impact 

Figure 4-13 shows the revenue requirement by spending category without solar and with 

5% solar energy.  Reductions in the revenue requirement are concentrated among the 

generation capacity, PJM transmission capacity, and energy pass-through costs. Changes in 

PECO’s T&D capacity revenue requirements are small because few capacity deferral 

opportunities exist. 

 
Figure 4-13: PECO Revenue Requirement with 5% Solar energy in the base case scenario.  Generation and 
Transmission (G&T) and energy are pass through costs.  O&M and Distribution Capacity are non-pass through costs.  
The Long-Term Infrastructure Improvement Plan (LTIIP) refers to capex allowed in Pennsylvania to improve 
resiliency.  

In Figure 4-14, we show the combined VOS for the energy component, generation 

capacity, transmission and distribution capacity component. Altogether, the VOS averages 

$0.086±0.006/kWh at 5% penetration.  The uncertainty is caused by variations in the weather 

and load profiles during the 2007-2016 reference years.  Because our best estimate of the 

energy, generation, and transmission VOS is below the all-in-rate, we expect that NEM will very 

slightly increase customer rates.   
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Figure 4-14: Energy, generation capacity, and transmission value of solar.  The untargeted distribution capacity 
value of solar is very small.  The total value of solar falls below PECO’s all-in-rate, so rates are likely to increase.  

Figure 4-15 compares the all-in-rate (without solar) to the value of a 5% solar energy 

target over time and shows the resulting increase in the all-in-rate (with solar).  In 2020, the 

VOS is high because the penetration is very low resulting in a relatively high effective capacity 

of solar for generation and transmission capacity. As the penetration increases over time to 

meet the 5% solar energy target, the VOS decreases.  After 2030, the solar energy penetration 

remains constant and the VOS increases as generation, transmission, and distribution costs 

increase.  
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Figure 4-15: Value of 5% solar energy over the study period and its effect on rates.   There is a 0.9% increase in the 
all-in-rate with solar relative to the all-in-rate without solar.  In 2020, the VOS is high because the penetration is very 
low resulting in a relatively high effective capacity of solar for generation and transmission capacity. As the 
penetration increases over time, the VOS drops rapidly.  

 

In Figure 4-16, we perform sensitivity analysis on several key assumptions. In the “Base 

Case” scenario, we assume NEM rates for solar owners, a 5% solar energy penetration target 

by 2030, no solar targeting at overloaded feeders and the worst-case D-ELCC. Detailed base 

case assumptions are shown in Table 4-1 and sensitivity assumptions are shown in the table 

below the bar chart of Figure 4-16.  We find that a 5% solar energy penetration is most likely to 

cause a 0.9% increase in the all-in-rate (or a 0.2₵/kWh increase by the year 2040).  The all-in-

rate is very sensitive to the inclusion of the DRIPE, ancillary services, and the solar penetration. 

Overall, most of the sensitivity scenarios are consistent with 5% solar leading to a very small 

increase in rates.  
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Figure 4-16:  Estimated change in the all-in-rate from solar and sensitivity analysis.  In our base case, we estimate that a 5% solar penetration will increase the all-
in-rate by 0.9%. While the rate impact is sensitive to which components are included in the value of solar, the largest rate impact would be caused if Pennsylvania 
had a 10% solar energy penetration rather than a 5% solar energy penetration.   
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4.3.2 Utility Impact 

Although solar is likely to very slightly increase customer rates, current 

Pennsylvania regulations make PECO mostly financially indifferent to solar.  In Figure 

4-17, we show PECO’s ROE with and without solar, and under different test-year and 

decoupling scenarios.  As before, we assume the base case described in Table 4-1. 

Without decoupling or the FPFTY, solar causes a consistent reduction in PECO’s ROE. 

Assuming a historical test year, PECO’s average ROE from 2020-2040 would be 9.5% 

without solar but would drop to 9.3% with 5% solar.  With the FPFTY, PECO’s FPFTY 

remains at 10% with or without solar. Revenue decoupling further improves PECO’s ROE 

beyond the allowed 10%.  These overearnings may be limited by the PA PUC. 

Revenue erosion may indirectly affect PECO through disproportionate changes in 

the distribution and bulk grid section of customer bills.  Table 4-2 shows the 20 year 

average rate impact for distribution (non-pass-through) and bulk grid (pass-through) 

portions of customer bills by billing determinant and the all-in-rate for a 5% solar energy 

penetration and no solar. While the increase in the all-in-rate is just 0.9%, the distribution 

portion increases by 3.3% and the bulk grid portion decreases by 0.6%.     

 

 
Figure 4-17: PECO Return on Equity (ROE). With the Fully Projected Future Test Year (FPFTY), PECO’s 
ROE average 10% regardless of the solar penetration.  
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Table 4-2: 20 year average rate impact for distribution (non-pass-through) and bulk grid (pass-through) 
portions of customer bills by billing determinant and the all-in-rate for a 5% solar penetration and no solar 
targeting.  Solar avoids more costs on the bulk grid than on distribution networks and would cause a 
disproportionate increase in distribution network rates.   

  All-In-Rate (%) Volumetric (%) Customer (%) Demand (%) 

non-pass through 3.31% 3.31% -0.17% 2.19% 

pass through -0.58% -0.56% n/a -0.77% 

combined 0.89% 0.59% -0.18% 0.91% 

 

4.3.3 Distribution Capacity Deferral 

Figure 4-18 shows the value of solar for distribution capex deferrals and the total 

deferral value for both transmission and distribution. The value of solar is not high enough 

to significantly affect rates. Furthermore, the combined T&D deferral value at 5% solar 

energy penetration is $10-15MM from 10 years of solar deployment, and it probably does 

not justify large administrative efforts to capture that value.  The effective capacity of solar, 

MCOS, and growth rate all affect the value created by solar.  These results are also very 

sensitive to the total amount of deferrable capex, which is not well documented and may 

vary considerably between utilities.  Figure 4-19 show the rate impact, total deferrable 

value, and earnings reduction if 10% of PECO’s capex were deferrable each year. Under 

this higher deferrable capex scenario, more deferrable value is created. In Chapter 5 we 

revisit these estimates assuming that solar can be targeted at overloaded locations.  
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Figure 4-18: Distribution VOS, and the T&D total deferral value. Under the assumption of 1% growth related 
capex deferral opportunities, $3MM in distribution capex can be deferred each year. The T&D deferral value 

and T&D VOS are low.   

 

 
Figure 4-19: The all-in-rate change, total deferral value and earnings reduction assuming that 1% and 10% of 
PECO’s distribution capex is deferrable.  PECO’s best estimate is that 1% of distribution capex is deferrable 
($3MM per year).  The 1% deferrable capex scenario probably does not justify large administrative efforts to 
capture the deferral value.   

  

4.3.4 Comparison with Previous Value of Solar Research 

Our findings are consistent with other value of solar studies and rate impact tests. 

A study by Perez et al. (2012) prepared for the Mid-Atlantic Solar Energy Industries 

Association (MSEIA) estimated a $0.33/kWh value of solar for Philadelphia at a 7% 

energy penetration of solar. The MSEIA reported estimated the VOS from energy, 
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generation capacity, and T&D at $.081/kWh.  The MSEIA estimate for DRIPE added 

another $0.051/kWh, which is higher than our estimate and other estimates for the DRIPE 

that we have reviewed.  The remainder of the avoided costs is from environmental, 

security enhancement, long term societal, fuel price hedging, and economic development 

value. A thorough review of the value of solar findings in other states is provided by E3 in 

their report for the New York State Energy Research & Development Authority  (2015), 

and by the Rocky Mountain Institute (2013). A challenge of interpreting these studies is 

that VOS estimates cover more than an order of magnitude, from $0.03/kWh to 

$0.35/kWh. 

Unique features of our study include a rate impact assessment and detailed 

modeling of the distribution capacity deferral value of solar. Using an earlier version of the 

utility financial model applied to a typical Northeastern utility, Satchwell et al. (2014) of 

Lawrence Berkeley National Lab (LBNL) estimate that a 5% penetration of solar will 

increase rates by 0.7%.  This estimate is very close to our own estimate of a 0.9% 

increase in rates. Our estimate for the value of solar is lower than the LBNL report 

because energy costs have declined and because we estimate a lower distribution 

deferral value of solar.  

Our estimate of the T&D capacity deferral value of solar is most like Cohen et al. 

(Cohen, Kauzmann and Callaway 2016). They estimate a distribution deferral value of 

solar in California ranging from 0.05-0.20 ₵/kWh without targeting, which is higher than 

the estimates we provide in Figure 4-18. We use a similar method to estimate capacity 

deferral and our lower estimate may be caused by PECO’s low estimate for growth related 

capex deferral opportunities. Cohen et al. (2016) also estimate a targeted VOS at 0.25-1 

₵/kWh, but their targeting definition does not place more solar in overloaded networks.  

Solar is placed randomly on all networks and the deferral value is distributed only among 
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solar owners in overloaded networks. We assess the targeted placement of solar in 

Chapter 5. 

4.4 Conclusion 

We find that Pennsylvania can offer Net Energy Metering (NEM) rates up to 5% 

solar energy penetration with only a small (0.9%) increase in rates.  Our result is similar to 

a Lawrence Berkeley National Lab (LBNL) report estimating a 0.7% increase in rates for a 

5% penetration on a “typical Northeastern” utility (Satchwell, et al. 2014). Because of the 

recent implementation of the Fully Projected Future Test Year and pending 

implementation of revenue per customer decoupling, a 5% energy penetration of solar is 

unlikely to negatively affect Pennsylvania utilities. Additionally, solar has benefits that are 

not included in this rate impact test. By displacing fossil fuel generation and reducing 

criteria pollutant emissions, solar avoids health damages and premature loss of life.  A 

study by Perez et al. (2012) estimates this value of solar at $0.05-0.12/kWh. This chapter 

can be used by the Pennsylvania PUC to decide whether these large environmental 

benefits are worth the small rate impact caused by solar.   
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4.6 Supporting Materials 

4.6.1  Historical Reference Years 

The utility financial model uses hourly historical PJM loads, PECO loads, solar 

insolation, and the PECO zone LMPs. The years 2007-2016 are used for these inputs, 

and we refer to them as historical “reference years”.  The model is run for each reference 

year for the full duration of the model time span (2016-2040) and the results are averaged 

over all reference year results.  When there are discrepancies between reference year 

attributes and inputs from the year 2016, we multiplicatively scale the reference year.  For 

example, the 2008 load weighted LMP is $81/MWH while the entire 2016 bilateral contract 

cost is just $60/MWH, so we scale the 2008 hourly LMP downwards.  Similarly, PECO’s 

yearly loads do not perfectly match our input load factor for PECO and are scaled 

accordingly.  Our motivation for this treatment is to remove the effect of trends (e.g. load 

growth) over the reference years while still capturing the variation in load, solar, and LMP 

profiles that cause variation in the value of solar.  

4.6.2  Billing Determinants 

The utility earns revenue from three billing determinants: fixed charges ($/customer), 

demand charges ($/kW), and volumetric charges ($/kWh). The revenue earned from the 

billing determinants is allocated to several different spending categories, shown in Table 

4-3 and based on PECO’s accounts (PECO 2016). We assume this allocation stays 

constant for varying energy penetrations of solar.  If solar, for example, reduces the 

volume of sales without reducing peak demand and distribution capacity revenue 

requirements, there will be an increase only in customer volumetric rates.   A newer 

source of revenue in Pennsylvania comes from the LTIIP (Long Term Infrastructure 

Improvement Plan). The LTIIP allows utilities to recover investments in aging 

infrastructure through a Distribution System Improvement Charge (DSIC)-a volumetric rate 

that can change quarterly.  The LTIIP is unaffected by solar. 
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Table 4-3:  Revenue from the billing determinants are allocated to the major utility spending categories based 

on PECO’s accounts.   

 Billing Determinant 

Spending 

Category 

Fixed Charge 

(%) 

 Demand Charge 

(%) 

Volumetric Charge 

(%) 

O&M 16 21 63 

Distribution 16 21 63 

Generation  0 50 50 

Transmission 0 50 50 

Energy 0 0 100 

Taxes 16 21 63 

LTIIP 0 0 100 
 

4.6.3  Customer Class and Net Energy Metering Model 

Net Energy Metering (NEM) compensates solar owners at the retail rate.  In our model 

we aggregate all customer classes and expand the NEM definition to include both 

volumetric and demand charges. This was a necessary simplification to limit data 

requirements but does prevent us from estimating cross-subsidies between classes.  We 

do not think it will significantly change the metrics used in this chapter because solar 

capacity is distributed among the commercial and residential classes in PECO’s service 

territory similarly to PECO’s revenue from those same classes.  This assumption would be 

less tenable if solar was installed in one customer class.  For example, if PECO only had 

solar customers in the commercial class, the model would overpredict a loss in volumetric 

sales that may differ from revenue associated with a loss in demand charge revenue.   

 

4.6.4 Utility Financial Model: Version History 

The utility financial model was adapted from a NAPEE spreadsheet model (2007) and 

later work by Satchwell et al. (2014), which explored a variety of policy options to mitigate 

the negative effects of rooftop solar for a typical Northeast utility.  We replicated key 

results of this work in Analytica™ and have made several changes to better represent 

Pennsylvania and PECO.  Major changes include: 
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• Adapting the model to PJM rules and rates. 

• Adapting the model to Pennsylvania regulatory and ratemaking processes, such as 
the FPFTY and Revenue Per Customer (RPC) decoupling. 

• Hourly modeling of Locational Marginal Prices (LMPs), solar insolation, and loads 
to estimate avoided costs and the declining value of solar with increasing 
penetration. 

• 10 historical reference years to capture the changing value of solar with different 
weather, load, and market prices.   

• Explicit modeling of transmission and generation capacity credits, especially as a 
function of increasing solar and historical reference years. 

• Explicit modeling of the Demand Reduction Induced Price Effect (DRIPE), 
especially as a function of increasing solar and historical reference years. 

• Forecasts of solar in other PJM states based on RPS standards. 

• Detailed modeling of the distribution capacity deferral process.   

Figure 4-20 through Figure 4-23 show several key modules from our adaptation of the 

utility financial model in Analytica®.   
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Figure 4-20: Utility Financial Model: revenue requirement and value of solar module 
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Figure 4-21: Utility Financial Model: rate base module 
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Figure 4-22: Utility Financial Model: Billing determinants module 

 
Figure 4-23: Utility Financial Model: Return on equity module 

 

4.6.5  Rate Case Modeling 

Utilities are permitted to charge high enough rates to earn a reasonable return on 

equity (ROE), typically around 10%. In practice, changing costs and revenue between rate 

cases cause fluctuations in the ROE. Several factors complicate utility revenue collection 

and thus, their achieved return-on-equity. There is typically a delay between when rates 

are set and the year they take effect.  This is known as “regulatory lag”.  We use a 

regulatory lag of 1 year, which is typical for Pennsylvania and most utilities.  Furthermore, 

Public Utility Commissions, like the PA PUC, typically, do not set rates based on data in 

the rate case year.  Instead, they use data from a “historical test year”, usually one year 
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before the rate case. Together, regulatory lag and the use of a historical test year can 

significantly reduce a utility’s achieved ROE relative to the target ROE. This difference 

occurs when costs increase at a faster rate than revenue. Assuming a 1 year historical 

test year and a 1 year regulatory lag, there is an effective 2 year delay between the data 

used to set rates and the year rates go into effect.  During this time, increasing costs 

decrease the utility’s profit and therefore, decrease the return on equity. Solar and Net 

Energy Metering is often associated with a further reduction in utility revenue that is not 

fully counteracted by equivalent reductions in costs. Consequently, with increasing solar 

penetrations, under Net Energy Metering, historical test years, and regulatory lag, many 

utilities are concerned with large reductions in their return-on-equity. 

 In recent years, Pennsylvania has implemented several policies effectively eliminating 

regulatory lag. These policies are the fully projected future test year (FPFTY), Distribution 

System Infrastructure Charge (DSIC) (PA PUC 2012) under docket number M-2012-

2293611, and the pending implementation of revenue per customer decoupled rates (PA 

PUC 2018).  

The FPFTY sets rates on projected revenue requirements, costs, and sales two years 

into the future. There is still one year of regulatory lag following the rate case, so one year 

after the rate case, the utility over collects.  Assuming costs are increasing, rates are set 

to allow more revenue in the first year than the expected revenue requirement. In the 

second year after the rate case, assuming cost projections were accurate, the utility earns 

the target return-on-equity.  In the third year after the rate case, increasing costs result in 

under-collection and a return-on-equity below the target. It is typical for the Pennsylvania 

PUC to allow rate cases every three years, so the utility can expect the cycle to repeat in 

the following year with over-collection.   Figure 4-24 illustrates how the utility ROE 

changes with a historical test year and with the FPFTY. 
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Figure 4-24:  Comparison of utility ROE with Fully Projected Future Test Year (FPFTY) and a historical test 
year. Regulator lag prevents utilities from earning the target return on equity (10%).  The FPFTY sets rates 
based on forecasted costs two years in advance, resulting in overcollection in the first year after the rate case.    

The purpose of the DSIC is to encourage utilities to invest in aging infrastructure 

and to improve resiliency, but it also decreases regulatory lag. Utilities are permitted to 

submit Long Term Infrastructure Investment Plans (LTIIP) for replacing aging 

infrastructure. If approved, utilities pass costs related to these investments through to 

customers on quarterly basis, effectively bypassing the rate case process and eliminating 

any regulatory lag. One exception to this rule is that Pennsylvania utilities cannot collect 

the DSIC if they have already collected more than the revenue requirement allowed under 

the FPFTY.    

Revenue decoupling takes a more direct approach to eliminating over and under 

collection. After estimating the revenue requirement in the rate case year, a projected 

revenue requirement is found for future years.  Different mechanisms exist to project the 

revenue requirement (RAP 2011). Based on discussions with the Pennsylvania PUC, we 

assume the projected revenue is based on customer growth, also known as revenue per 

customer (RPC) decoupling and only revenue from the volumetric billing determinant is 

considered. We model RPC decoupling as yearly changes in customer volumetric rates to 

allow the actual revenue to meet the projected revenue. That is, if the volumetric revenue 
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is below the projected revenue allowance, volumetric rates are adjusted to meet the 

allowed revenue. If revenue is above the projected revenue allowance, rates are 

decreased. In practice, decoupling is performed with balancing accounts to reduce 

frequent changes to customer rates.   

 

4.6.6  Avoided Costs 

Avoided Energy Costs 

Pennsylvania Alternative Energy Portfolio Standards 

Pennsylvania has an Alternative Energy Portfolio Standards (AEPS) composed of 

two tiers of energy products. Tier 1 is composed mostly of renewable energy resources 

such as wind, hydro, biomass and geothermal.  It includes a solar carve out that reaches 

0.5% in 2021 (PA Public Utility Commission 2016).  Tier 2 is composed of waste coal, 

municipal solid waste and other alternative energy resources.  (PA Public Utility 

Commission 2016). In 2016, the average AEC price of all tiers is $8/MWh, and the AEPS 

obligation is 13.7% of sales (PA Public Utility Commission 2016).  The AEPS grows 0.5 

percentage points per year until 2021 and we assume the AEC price stays constant. We 

do not model any effect of higher solar penetrations on the AEPS AEC price, although it is 

possible that AEPS targets could be one mechanism to achieve higher penetrations, or 

that higher solar penetrations could reduce AEPS REC prices.   

 

Demand Reduction Induce Price Effect (DRIPE) 

Figure 4-6 shows modeled price suppression of LMPs for several weeks in in the 

PECO Zone in the summer. Figure 4-25, below, shows the DRIPE for a full year. The 

reduction in price is small reflecting the relatively small portion of demand that 

Pennsylvania (~ 30 peak GW) is of the entire PJM service territory (~ 160 GW).  Initially, 
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reduced demand and the price suppression will avoid energy costs and contribute to a 

relatively high VOS. As the penetration increases and as the LMPs diminish during times 

of solar output, the energy VOS will also diminish.   

Strictly speaking, the DRIPE is not an avoided cost but rather a wealth transfer 

from producers to consumers.  The energy VOS, for example, includes avoided fuel costs 

and reflects a reduction in consumption. In contrast, the DRIPE does not reflect a 

reduction in fuel consumption. It only affects the price we pay for that fuel and will make 

generator operations less economic. PECO does not own generation, so from their 

perspective and from their ratepayers’ perspective, energy costs are reduced. In the long 

run, however, downward pressure on LMPs may result in higher capacity market prices or 

ancillary services. We do not model these market dynamics, but we do include scenarios 

without the DRIPE in our sensitivity analysis. 

A better approximation DRIPE would entail running optimal powerflow for different 

solar penetrations so that the PECO Zone LMP (and not the PJM wide marginal price) 

could be used to calculate the DRIPE.  This method is beyond the scope of the study. 

 
Figure 4-25:  Hourly Demand Reduction Induced Price Effect (DRIPE) after solar rollout is complete (in 2030) 
using 2016 loading and solar profiles.   
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Using NREL’s Physical Solar Model, a combination of several locations throughout 

Pennsylvania and PJM (Harrisburg International Airport, Pittsburgh International Airport, 

Philadelphia International Airport, Delaware, Maryland, New Jersey, and Washington DC) 

are averaged to find a representative PJM solar profile.  The PJM solar profile is used to 

estimate how solar will reduce PJM’s load profile.  The hourly marginal price is 

recalculated with the demand reduction caused by solar. We estimate the DRIPE as the 

fraction of PJM wide marginal price with solar and without solar. The DRIPE is calculated 

for several penetrations.  Interpolation is used to estimate the various yearly penetrations 

as solar is rolled out to meet the 2030 target.  Figure 4-25 shows the DRIPE at a 5% 

energy penetration of solar in Pennsylvania using weather and loading profiles from the 

year 2016.  

Avoided Transmission Costs 

Growth Related Transmission Capex 

We estimate yearly growth-related transmission capex from PJMs Transmission 

Cost Information Center (TCIC) spreadsheet (PJM 2019). To be considered as growth-

related, transmission projects must fall under the following project drivers: Baseline Load 

Growth Deliverability & Reliability, Generator Deactivation. Additionally, the project 

description must include a reference to adding new equipment or increasing the rating on 

equipment. We did not consider projects with other drivers: Congestion Relief Economic, 

Customer Service, Equipment Material Condition, Performance and Risk, Operational 

Performance, and Short Circuit. Although Congestion Relief Economic is related to 

growth, we assume that the transmission value associated with these projects is already 

embodied in PECO’s LMPs. Overall, we estimate that PECO has $6MM of growth-related 

projects per year that are included in its rate base and PECO pays PJM for an additional 

$46MM of growth-related projects per year (20% of annual transmission expenses).   
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Solar Profile 

The Transmission capacity credit describes the ability of solar to reduce PECO’s 

yearly non-coincident peak Using NREL’s Physical Solar Model, a combination of 

locations in PECO’s service territory (Peach Bottom, Doylestown, Philadelphia 

International Airport) are averaged to find a representative solar profile and to estimate 

how solar will reduce PECO’s load profile.  

 

4.6.7 Distribution Interconnection Model 

We modeled four PECO feeders with varying solar penetrations and different smart 

inverter options. Modeling PECO’s feeders required several steps. First, PECO selected 

four feeders that are representative of their service territory. Second, we converted 

PECO’s feeder models from CYMDIST, which performs only static powerflow analysis, to 

GridLab-D, which can also do sequential time-series powerflow analysis. Third, we 

populated the GridLab-D feeder models with representative secondary networks and 

weather dependent building models, ensuring that the total simulated substation load was 

similar to SCADA readings and that the maximum simulated spot loads were similar to the 

spot load values in PECO’s models. Fourth, we populated the GridLab-D feeder models 

with residential and commercial solar PV by drawing from a probability distribution of the 

nominal capacity (kWAC) of recent solar installations. Fifth, we simulated varying 

penetrations of solar on the models with different voltage excursion mitigation scenarios. 

In our reconductoring scenario, if a solar installation caused a voltage excursion, the 

capacity of the service drop conductor connecting the solar installations was increased by 

100 amps.  In our smart inverter scenario, we connected smart inverters to all solar 

installations.  These steps are described in more detail below.  
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4.6.7.1 Feeder Selection 

We used four feeders that are representative of the PECO service territory. 

Feeders were chosen with features common to the PECO service territory that may make 

it harder to integrate high penetrations of solar. Key features of the feeders are 

summarized in Table 4-4. 

Table 4-4:  Summary of PECO feeders used in analysis.   

Feeder 
Name 

Voltage 
Level 

Max 
Length 

Number of 
Nodes 

Peak 
Load 

Losses at 
Peak 

Feeder 1 13.2 kV 4.7 miles 473 6.2 MVA 9.4% 

Feeder 2 33 and 4 kV 14 miles 3400 17 MVA 10% 

Feeder 3 4kV 2.9 miles 200 2.1 MVA 8.6% 

Feeder 4 4 kV 5.4 800 2.3 MVA 6% 

 

4.6.7.2 Feeder Conversion 

We used the National Rural Electric Cooperative Association’s (NRECA)’s Open 

Modeling Framework (OMF), a suite of open source analysis tools for distribution 

networks to convert PECO’s CYMDIST models to an equivalent GridLab-D static 

powerflow snapshot.  Figure 4-26 shows a comparison of the cyme voltages with the 

converted GridLab-D voltages.  The maximum difference between the results is 

approximately 3%.   
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Figure 4-26: Comparison of GridLab-D and CYMDIST Results.   

4.6.7.3 Secondary Network Modeling 

Figure 4-27 shows the secondary network used in our analysis.  A distribution 

transformer feeds several customers.  In PECO’s CYMDIST model, all loads connected to 

the distribution transformer are modeled as a single non-time varying spot load. In our 

model, the customers are connected to the transformer in a daisy chain sequence with 

secondary conductors and service drops.  The secondary conductors are sized based on 

the spot load in PECO’s CYMDIST models.  The service drops are sized based on the 

peak building load. Table 4-5 shows the parameters used for the secondary and service 

drop conductors. The minimum secondary conductor rating is 299 amps and the minimum 

service drop conductor rating is 90 amps.   
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Figure 4-27: Representative Secondary Model 

Table 4-5: Secondary and service drop conductors.  The default secondary rating is 299 amps and is 150 feet.  
The default service drop rating is 90 amps and is 100 feet.  

Current 
Rating 

Size Stranding Material Diameter 
(in.) 

GMR 
(ft) 

Resistance 
(ohms/mile) 



 

195 

 

90 4 Class A AA 0.152 0.007 2.61 

202 1/0 Class A AA 0.368 0.0111 0.97 

299 4/0 Class A AA 0.422 0.0158 0.528 

420 3/0 12 STRD Copper 0.464 0.01559 0.382 

500 300,000 30/7 ACSR 0.7 0.0241 0.342 

750 605,000 54/7 ACSR 0.953 0.0321 0.1775 

1090 750,000 37 STRD AA 0.997 0.0319 0.0888 

 

To create time-varying loads, we populated the secondary networks with 

temperature and humidity dependent building models originally made available to the 

public by Fuller et al. (2012) as part of the PNNL feeder taxonomy.  Residential buildings 

parameters were based on the Energy Information Administration’s (EIA) Residential 

Energy Consumption Survey (EIA 2018). Parameters include: the percentage of homes 

with air conditioners, HVAC equipment fuel type, hot water heater fuel type, and building R 

values.  Non-weather-dependent load profiles were based on the Bonneville Power 

Administration’s End-Use Load and Consumer Assessment Program (Prat, et al. 1989), 

and show the characteristic morning and evening peak typical for most residential 

customers.  Commercial buildings were modeled off building codes and end-use metering 

studies (Fuller, Kumar and Bonebrake 2012).  All commercial buildings are modeled as 

office buildings, big box stores, and strip malls.    

To create time-varying loads, the feeder taxonomy was populated with 

temperature and humidity dependent building models and made available to the public by 

Fuller et al. (2012).  Residential buildings parameters were based on the Energy 

Information Administration’s (EIA) Residential Energy Consumption Survey (EIA 2018). 

Non-weather-dependent load profiles were based on the Bonneville Power 

Administration’s End-Use Load and Consumer Assessment Program (Prat, et al. 1989), 

and show the characteristic morning and evening peak typical for most residential 

customers.  Commercial buildings were modeled off building codes and end-use metering 

studies (Fuller, Kumar and Bonebrake 2012).  All commercial buildings are modeled as 
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office buildings, big box stores, and strip malls.    

We used a genetic algorithm to adjust residential and commercial building 

parameters so that the simulated feeder load time-series matched hourly SCADA 

readings. Our objective function minimized the difference between the simulated and 

SCADA load profiles from May-September 2016.  The decision variables were the air 

conditioning coefficient of performance, insulation R values, cooling set points, floor areas, 

scaling factors for predefined temperature independent ZIP load profiles, the proportion of 

commercial buildings modeled as strip malls, office buildings, and big box stores, the 

percentage of residential homes with air conditioners, and the percentage of residential 

homes with hot water heaters.  

Figure 3-1 compares our simulated load with SCADA load in the year 2016 for 

both feeders.  Simulated loads and SCADA readings are close on Feeder #1.  On Feeder 

#2, the simulated load profiles underestimate the peak load, but the peak simulated hour, 

which is important for estimating solar’s effective capacity, is still close to the observed 

hour using SCADA data.  Feeder #2 is an industrial feeder and the error is likely caused 

by exogenous effects, such as shifting factory production schedules.  These exogenous 

effects are difficult to include in GridLab-D’s weather-dependent models.     

We did not have hourly SCADA readings for Feeder #3 and Feeder #4, so the 

building parameters in these feeders were populated with the same parameters in Feeder 

#1 and Feeder #2. After matching the simulated substation load with the SCADA 

substation load, we scaled the floor area and ZIP load parameters so that the maximum 

time varying loads matched PECO’s spot loads.  Deviations in the floor area was limited to 

30%.   
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Figure 4-28: Comparison of CYMDIST non-time varying spot load with the maximum GridLab-D peak. 

 

4.6.7.4 Solar Modeling 

Each feeder was populated with solar panels to create peak solar penetrations 

(solar nominal AC capacity divided by the peak feeder load) ranging from 1% to 50%.  The 

nominal capacity(kWAC) of the solar installations were found by sampling from the capacity 

distribution of recent residential and solar installations. These distributions are shown in 

Figure 4-29.  We used the stats package in the Python™ SciPy11 library to fit each 

distribution. The distribution of residential installations is modeled with a lognormal 

distribution and the commercial installations is modeled with a gamma distribution. For the 

residential lognormal distribution, the shape, loc, and scale parameters are 0.43, -0.74 

and 6.9. For the commercial gamma distribution, the shape, loc, and scale parameters are 

0.58, 0, and 117. 96% of installations are on residential loads. 

                                                

11 https://www.scipy.org/ 
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Figure 4-29: Histogram and probability distributions for recent nominal solar capacity (kWAC) installations in 
the PECO service territory. For the residential lognormal distribution, the shape, loc, and scale parameters are 
0.43, -0.74 and 6.9. For the commercial gamma distribution, the shape, loc, and scale parameters are 0.58, 0, 

and 117.   

 

Each solar installation was drawn from the probability distribution and placed on a 

building with the closest matching roof size.  Floor area was used to estimate total roof 

space using the method proposed by Butler (2018). The available roof space was found 

by scaling the total roof space by 40%. All panels are flat plate and monocrystalline with a 

30 degree tilt. Inverters have an efficiency of 96% and a sizing factor of 1.4 

We used solar radiation and weather data from NREL’s National Solar Radiation 

Database, Physical Solar Model-Version 3 (PSM-V3) (NREL 2018). PSM-V3 estimates 

solar irradiance from satellite data from 1998-2016 with a geographic resolution of 4-km 

by 4-km and a 30-minute time resolution (Habte, Sengupta and Lopez 2017).  Compared 

to ground measurements, mean bias errors are approximately ±5% for GHI and ±10% for 

DNI. RMS errors are as high as 20% for GHI and 40% for DNI.  

4.6.7.5 Voltage Violation Mitigation Strategies 

We tested several methods for mitigating voltage excursions. PECO currently 

reconductors service drops when solar installations cause high voltages. To model this 

practice, when a high voltage was detected we replaced the conductor with the conductor 
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with the next largest ampacity (shown in Table 4-5). In the smart inverter scenarios, we 

placed smart inverters on every solar installation. Volt/Var with real power priority, Volt/Var 

with reactive power priority, and Volt/Watt were considered.  Figure 4-30 shows the set 

points for both Volt/Var smart inverters and the Volt/Watt setting.   

Figure 4-31 and Figure 4-32 demonstrate the effectiveness of the smart inverters.  

In Figure 4-31 the solar profile is compared to the total number of voltage violations on a 

feeder. There are more voltage violations when the solar output is larger.  In Figure 4-32, 

a house is shown where both Volt/Var and Volt/Watt smart inverters eliminate a voltage 

violation caused by solar.  

 

 
Figure 4-30:  Volt/Var and Volt/Watt smart inverter settings.   
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Figure 4-31: Voltage violations on a PECO feeder in the summer.  There are more voltage violations when the 
solar output is greater.  Volt/Var and Volt/Watt smart inverters eliminate most of the violations.   

 

 
Figure 4-32: A house where a smart inverter eliminates the voltage violation at the interconnection point.   

 

 

 



 

201 

 

References 
 

Butler, Bill. 2018. How to Calculate the Roof Area Using the Building Square Footage & 

the Pitch of the Roof. December 17. https://homeguides.sfgate.com/calculate-roof-

area-using-building-square-footage-pitch-roof-60663.html. 

EIA. 2018. RESIDENTIAL ENERGY CONSUMPTION SURVEY (RECS). 

https://www.eia.gov/consumption/residential/. 

Fuller, J C, N Pakash Kumar, and C A Bonebrake. 2012. Evaluation of Representative 

Smart Grid Investment Grant Project Technologies: Demand Response. Richland: 

PNNL. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-

20772.pdf. 

Habte, Aron, Manajit Sengupta, and Anthony Lopez. 2017. Evaluation of the National 

Solar Radiation Database (NSRDB): 1998-2015. Golden: NREL. 

https://www.nrel.gov/docs/fy17osti/67722.pdf. 

NAPEE. 2007. "Aligning Utility Incentives." 

https://www.epa.gov/sites/production/files/2015-08/documents/incentives.pdf. 

NREL. 2018. NSRDB Data Viewer. https://maps.nrel.gov/nsrdb-viewer/. 

PA Public Utility Commission. 2016. 2016 Annual Report: Alternative Energy Portfolio 

Standards Act of 2004. Harrisburg: PA Public Utility Commission, PA Department 

of Environmental Protection. 

http://www.puc.state.pa.us/Electric/pdf/AEPS/AEPS_Ann_Rpt_2016.pdf. 

PA PUC. 2012. 

http://www.puc.state.pa.us/filing_resources/issues_laws_regulations/system_impro

vement_charges_act_11_.aspx. 

—. 2018. Alternative Ratemaking Methodologies. 

http://www.puc.state.pa.us/filing_resources/issues_laws_regulations/alt_ratemaking

_methodologies.aspx. 

PECO. 2016. "Revenue Sales Customer Report Dec 2016.xlsx." 

PJM. 2019. Cost Allocation. https://www.pjm.com/planning/rtep-upgrades-status/cost-

allocation-view.aspx. 

Prat, R G, C C Conner, E E Richman, K G Ritland, W F Sandusky, and M E Taylor. 1989. 

Description of Electric Energy Use in Single-Family Residences in the Pacific 

Northwest. Richland: Bonneville Power Administration. 

https://elcap.nwcouncil.org/Documents/Electric%20Energy%20Use%20Single%20

Family.pdf. 

RAP. 2011. "Revenue Regulation and Decoupling: A guide to Theory and Application." 

Montpelier. https://www.raponline.org/wp-content/uploads/2016/05/rap-

revenueregulationanddecoupling-2011-04.pdf. 



 

202 

 

Satchwell, Andrew, Andrew Mills, Galen Barbose, Ryan Wiser, Peter Cappers, and Naim 

Darghouth. 2014. Financial Impacts of Net-Metered PV on Utilities and 

Ratepayers: A scoping Study of Two Prototypical U.S. Utilities. Lawrence Berkeley 

National Laboratory. 

https://emp.lbl.gov/sites/all/files/LBNL%20PV%20Business%20Models%20Report

_no%20report%20number%20(Sept%2025%20revision).pdf. 

  



 

203 

 

Chapter 5: Rate impacts of capacity deferral using 
targeted solar deployment with energy storage in the 
PECO service territory  

 

Abstract 

We assess the ability of rooftop solar and storage to reduce peak loads and defer 

distribution capacity projects in the PECO service territory. We find that solar may 

modestly reduce rates and that the value of solar at 5% energy penetration12 can be 

increased up to fourfold if solar is targeted at overloaded locations. In Chapter 4, we 

estimate that a 5% solar energy penetration would increase rates by 0.9% over a 20-year 

horizon.  This estimate assumes untargeted placement of solar, a low effective capacity 

(i.e. the reduction in peak load relative to solar’s nominal capacity), a 1% growth rate, and 

based on a PECO engineering assessment, 1% of PECO’s distribution capex budget that 

is deferrable. Targeted placement of solar, a higher effective capacity using energy 

storage, a 30% hosting capacity13 and 10% growth-related capex could reduce the rate 

increase to 0.5% and generate $70-100MM of deferral value over the same 20-year time 

horizon.  We conclude that capacity deferral with solar should be included in PECO’s 

planning process but that large administrative efforts to manage deferral projects, such as 

markets, are probably not warranted.  

                                                

12 In Chapter 5, we use solar energy penetration to describe how much solar energy is produced in 

Pennsylvania.  It is defined as the total solar energy relative to total energy consumption.  

13 Distribution engineers often describe the amount of solar on a feeder using peak penetration, the nominal 

solar AC capacity relative to peak feeder load.  Hosting capacity is defined as the maximum peak penetration 

possible on a feeder before solar violates system limits, such as high voltages.   
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5.1 Introduction 

More than 30 states have grid modernization plans (Trabish 2017). New York and 

California are both developing frameworks that incorporate solar and other DER into their 

utilities’ planning processes. The New York Reforming Energy Vision (REV) foresees 

utilities as “distribution system platform providers” that oversee markets where third 

parties and DER compete to provide services on distribution networks. California’s 

Distribution Resources Plan (DRP) is also developing a framework to procure DER to 

provide distribution network services. Both the REV and DRP rely on EPRI’s “Integrated 

Grid Framework” (EPRI 2015). Key features of the “Integrated Grid” are hosting capacity 

maps and locational value maps that, respectively, show how much DER can be placed 

on the network without violating system constraints and show developers where DER may 

have value.  

The capacity deferral value of solar (VOS) is one benefit frequently cited in grid 

modernization plans. Examples include New York’s report from the Market Design and 

Platform Technology Working Group (New York DPS 2015) or the deferral framework 

developed for California’s Distribution Resource Plans (CPUC 2016).  Capacity deferral 

value is the value that solar creates by reducing overloaded equipment and deferring 

capital investments to later years. Although several studies have estimated the capacity 

deferral VOS, we are not aware of any study that evaluates how utility policies regarding 

solar placement affects the VOS and the total deferral value created. It is important to 

consider solar placement because most statewide solar penetration targets are often low 

and the solar is deployed over many years.  The result is small incremental solar additions 

to the locations that could benefit from capacity deferral, which may not be enough solar 

to defer investments by useful amounts of time.  

Throughout the literature review and our analysis, we use three planning 
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classifications. 

1.  No targeting:  Rooftop solar is placed without regard to locations with overloading 

and without overloading, and all rooftop solar owners are compensated for the 

value created by solar. 

2. Targeted Compensation:  Rooftop solar is placed without regard to location, but 

rooftop solar owners are compensated only if they are in a congested area. 

3. Targeted Placement: A fraction of rooftop solar is placed only in overloaded 

locations. The amount of rooftop solar placed in overloaded locations is limited by 

the hosting capacity.    

We define hosting capacity as the maximum nameplate solar AC capacity that can be 

added to a network relative to the network’s peak load. In the No Targeting scenario, no 

effort is made to place solar where it is needed.  Deferral value opportunities are missed, 

which decreases the VOS.  The Targeted Compensation VOS is sometimes estimated in 

studies.  It does not create any more total deferral value than the no targeting scenario but 

results in a higher VOS because it distributes capacity deferral value among a smaller 

number of solar owners. In contrast, Targeted Placement puts more solar in locations 

where it is needed, ensuring that deferral opportunities are not missed and creates longer 

deferral times.  The result is a higher VOS and a higher total deferral value.  

5.2 Comparison with Previous Research 

The present worth method for estimating the value of capacity deferral is used by 

academics and consultants (Woo, et al. 1994) (Willis 2000). In this method, solar or other 

DER causes a load reduction on an overloaded feeder and capital investments in that 

feeder are deferred to later years.  Net Present Value (NPV) calculations are used to 

estimate the deferral value. That value is divided by the total generated solar energy to 

find the value of solar.  The result is sensitive to the cost of the capacity deferral projects, 
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load growth on the feeder, and how solar’s nominal capacity is credited with reducing 

peak loads. 

In New York, Energy and Environmental Economics (E3) estimates the distribution 

deferral value of solar at ~0.5₵/kWh without targeting and ~2.5₵/kWh with targeted 

compensation (NYSERDA 2015). Cohen et al. (2016) estimate a distribution deferral value 

of solar in California ranging from 0.05-0.2₵/kWh without targeting and 0.25-1₵/kWh 

under targeted compensation. The ranges are based on varying rollout scenarios over 10 

years. Faster solar rollouts are able to create more total deferral value by deferring 

capacity projects with earlier start dates.  However, faster solar rollouts generate more 

solar energy years before some projects need to be deferred, resulting in a lower value of 

solar.  In the Supporting Materials, we discuss further how these rollout scenarios differ 

from targeted solar placement used in this study.  

The capacity deferral value of solar is very sensitive to the cost of replacing or 

augmenting overloaded equipment, which is often estimated with the marginal cost of 

service (MCOS). The MCOS is the average cost of growth-related capacity projects. 

Cohen et al. (2016) use a dataset that includes feeder level capacity expenditures and 

growth rates but do not disclose these data.  E3 has published MCOS values for each of 

the New York utilities ranging from $250/kW to $1000/kW and averaging $750/kW 

(NYSERDA 2015).  In E3’s avoided cost calculator (E3 2018), the MCOS is approximately 

$600/kW14. As discussed below, we also estimate PECO’s MCOS to be $600/kW, based 

on four growth related projects planned for the next five years.   

                                                

14 This is the average avoided capacity cost of all zones in PG&E’s service territory. E3 provides avoided 

capacity costs in $/kW-year, but we use $/kW in this chapter. We converted to $/kW assuming a 30 year 

lifetime and a 7% discount rate.   
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The capacity deferral value of solar is sensitive to feeder load growth. If the load 

growth is low, the deferral will be longer. Unfortunately, we are not aware of any value of 

solar studies that include feeder load growth assumptions. 

E3 uses the Peak Capacity Allocation Factor (PCAF) to assign a capacity credit to 

solar (Horii, et al. 2016). The PCAF method estimates the capacity credit based on solar’s 

contribution to peak load reduction during daily peak load events within one standard 

deviation of the largest yearly peak (Horii, et al. 2016). An advantage of the PCAF method 

is that it creates a temporal component to the distribution value of solar.  A disadvantage 

is that it does not describe the declining capacity value of solar with increasing 

penetrations.  Cohen et al. (2016) instead base the capacity credit only on peak loading 

days and do capture the declining value of solar with increasing penetration. They 

estimate roughly a 50% reduction in the capacity credit of solar at a 50% penetration. Our 

method for estimating the capacity credit is most similar to Cohen et al. (2016), but is 

based on 19 years of loading data.  Details are in Chapter 3 and the method section 

below.   

5.3 Method 

5.3.1 Utility Financial Model 

We have developed a utility financial model that serves as the foundation of our 

capacity deferral model and generates three key metrics: the all-in-rate, reduced earnings, 

and value of solar.  Details of these metrics are in the Metrics section of Chapter 4.  The 

utility financial model and capacity deferral modeling is done with Analytica®. 

The utility financial model estimates how the combination of avoided costs 

associated with solar and lost revenue associated with NEM ultimately affect rates. First, 

the model forecasts PECO’s revenue requirement (i.e. revenue needed to pay for the cost 

of service, utility debt, and equity), including pass-through costs and non-pass-through 
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costs.  The model begins with PECO’s revenue requirement in the year 2016 and 

forecasts each revenue requirement component based on the relevant escalation factors.  

The revenue requirement includes depreciation in PECO’s rate base. Second, a forecast 

of volumetric sales, customer charges, and demand charges are used with the revenue 

requirement to baseline customer rates without solar by performing a rate case every 

three years. Third, solar is associated with avoided costs (i.e. a lower revenue 

requirement) and reduced revenue from volumetric sales and demand charges that will 

affect PECO rates.      

The utility financial model was adapted from a spreadsheet model developed by 

E3 for the National Action Plan for Energy Efficiency (NAPEE 2007) and later work by 

Satchwell et al. (2014), which focused on solar’s effect on a prototypical deregulated 

northeast utility and southwest vertically integrated utility. When applied to a typical 

Northeastern utility, Satchwell et al. (2014) estimate that a 5% solar energy penetration 

will increase rates by 0.7%.  This estimate is very close to our own estimate of a 0.9% 

increase in rates (see Chapter 4). Our estimate for the value of solar is lower than the 

LBNL’s report value because energy costs have declined and because we estimate a 

lower distribution deferral value of solar.  

In Chapter 4, we find that the total deferral value created by solar is small when it 

is not targeted at overloaded networks. The purpose of this chapter is to determine how 

much targeted placement of solar on overloaded networks can increase the total deferral 

value and reduce the rate increase observed under a 5% solar energy penetration with 

untargeted solar.   

5.3.2 Capacity Deferral Model 

The capacity deferral model estimates savings caused when solar and energy 

storage reduce peak demands and defer investments to later years. Key parameters for 
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the entire utility financial model are summarized in Table 4-1.  Key parameters for the 

capacity deferral model are summarized in Table 5-1. 

Table 5-1: Input for Capacity Deferral Model 

Parameter Base case Source 

Battery Unit Cost 0.5 Hours: $2600/kWh 
0.5-2 Hours: $1400/kWh 
>2 Hours: $400/kWh 

(EIA 2018) 

Capex Cost Escalation 2% (Bureau of Labor 
Statistics 2018) 

Deferrable Capex  1-10% of PECO Distribution Capex 
Budget ($3-30 MM/year) 

(PECO 2018) 

Deferral Time Min 1 Year - 

Deferral Time Max 20 Years - 

Discount Rate (for 
estimating average rate 
change) 

5% - 

Energy Growth Rate 0.6% (PJM 2016) 
 

Feeder Load Profile for 
estimating D-ELCC 

Based on four feeders with mostly 
residential customers and weather 
driven load modeling 

(PECO 2018) 
Chapter 3 

Feeder Solar Profile Average of Peach Bottom, 
Doylestown, Philadelphia 
International Airport 

(NREL 2018) 

Hosting Capacity 5-100% Chapter 4 
Analysis 

Marginal Cost of Service $600/kW (PECO 2018) 

Peak Demand Growth 0.7 (PJM 2016) 

Solar Energy Penetration 5% Target, linear rollout from 2020-
2030 

- 

WACC (for discounting 
future capital expenses) 

7.7% Based on 10% 
Target ROE and 
5% Debt with a 
53/47% split. 

 

We worked with PECO engineers to determine which capital investments in their 5 

year spending plan could be deferred to later years.  Four projects were identified (PECO 

2018).  This “growth-related capex” is about 1% of PECO’s $300MM distribution capex 

budget. Based on a $600/kW MCOS, this is about 5MW of installed capacity. Thus, in our 

model we assume one 5MW capacity project per year that can deferred to later years.      

Adding solar to the service territory reduces the loading and defers some growth-
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related capex to later years. The length of time that the capacity investment is deferred 

depends on the reduction in load created by solar’s effective capacity and the feeder load 

growth, as described by Equation 5-1. 

𝐷𝑒𝑓𝑒𝑟𝑟𝑎𝑙 𝑇𝑖𝑚𝑒 =
ln (

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 − 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑜𝑙𝑎𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

)

ln(𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒)
 

(5-1) 

Occasionally, enough solar can accumulate on feeders during a deferral period to allow 

another deferral after the initial deferral period expires. We set the maximum deferral time 

to 20 years. 

We estimate the feeder load growth from the average growth rate of four PECO 

growth-related capacity projects over the last 5 years.  We find that the growth in these 

areas is low, averaging 0.3%.  This average excludes two large load increases of 100% 

and 50% that are likely one-time load changes from new customer connections.   

The reduction in load depends on the capacity credit assigned to solar, which in 

turn, depends on the yearly penetration of solar.  To be consistent with power systems 

standards, we call this capacity value the Distribution Effective Load Carrying Capability 

(D-ELCC), which we define as the net load reduction relative to solar system size.  Our 

estimates of the D-ELCC are shown in Figure 4-10 and are based on 19 years of solar 

and loading profiles from weather driven simulations. D-ELCCworst describes how much 

solar can reduce the largest net peak load over 19 years for each penetration.  It does not 

allow any overloading.  Most PECO feeders peak in the evening, so the D-ELCCworst is 

low.   

For capacity deferral projects where transformer overloading is the main 

constraint, relying on the inherent overloading flexibility of transformers rather than on 

costly energy storage can increase the D-ELCC.  D-ELCCage allows occasional 

overloading but limits the total transformer deterioration (i.e. transformer “aging”, 
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estimated using IEEE Standard C57.91™) to the amount incurred during typical weather 

normalization planning processes. Because solar reduces transformer loading more often 

than it increases transformer loading, D-ELCCage is higher than D-ELCCworst. 

To complement D-ELCCworst, Figure 4-10 also shows the amount of energy storage 

required at varying solar energy penetrations to ensure a D-ELCC of 50% and 100%. The 

energy storage requirement is based on the maximum energy overload (MWH) over 19 

years, assuming that solar has a D-ELCC of either 50% or 100%. The energy storage 

duration is the ratio of the peak and energy overload. Further details can be found in 

Chapter 3. Based on a recent study by the EIA (2018), we assume that storage with a 

duration less than 0.5 hours costs $2600/kWh, between 0.5 - 2 hours costs $1400/kWh, 

and storage greater than 2 hours costs $400/kWh. All estimates of the value of solar and 

total deferral value include these storage costs.     

The capacity deferral value associated with solar depends on how solar is 

deployed in congested areas.  We consider the ‘No Targeting’ and ‘Targeted Placement’ 

scenarios in our analysis.  In the ‘No Targeting’ scenario, solar is placed randomly 

throughout the service territory. The solar energy penetration on a deferrable project 

depends only on the target solar energy penetration over the solar rollout and the year of 

the rollout. In a given year, if the amount of solar in an overloaded location is very small 

there may not be enough solar to defer capex by at least a year, and the deferral 

opportunity will be missed.  Because the solar accumulates over time, there may be 

enough solar to defer investments in later years.  

In the ‘Targeted Placement’ scenario, solar is added to a capacity deferral project 

until the hosting capacity limit is reached. The total solar capacity installed on overloaded 

feeders cannot exceed the total incremental amount of solar capacity that becomes 

available each year. The relatively low number of capacity deferral projects means that 



 

212 

 

there is enough solar to reach high hosting capacity limits. This is true even in most years 

beyond 2030 when solar is being added to maintain a constant penetration as load grows. 

Although we do not include ‘Targeted Compensation’ in our analysis, we do estimate the 

value of solar under targeted placement if only solar owners are compensated. 

Figure 5-1 shows how yearly capacity investments change under these planning 

scenarios.  Solar is not very effective at deferring capacity investments in the ‘No 

targeting’ scenario.  There is not enough accumulated solar to defer a capacity project 

until the year 2025, and then, the deferral time is only one year. Capacity investments in 

the years following 2025 are also deferred by one year, so 2025 is the only year without 

any capacity investments.  

Targeted placement and energy storage are more effective at deferring capacity 

investments. Without energy storage, targeted placement is able to defer investments by 

three years, including at the beginning of the solar rollout. There is enough solar added 

after 2030 that projects can continue to be deferred after 2030.  Energy storage resulting 

in a 50% D-ELCC leads to 10-year deferral times.  Capacity projects deferred beyond 

2040 are discounted to the year 2040 using PECO’s 7.7% weighted average cost of 

capital (WACC). 

The capacity investments in Figure 5-1 are used with a $600/kW MCOS and 2% 

escalation rate to generate a yearly cashflow.  The cashflow is added to PECO’s ratebase 

and depreciated with straight-line depreciation to determine yearly rates.  Because 

deprecation will continue to take place beyond our study horizon (2016-2040), the net 

present value of solar and total deferral value-unlike rates-are instead calculated directly 

from the cashflow.  The differing time horizons result in small inconsistencies between the 

rate impact and total deferral value for some scenarios.     
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Figure 5-1: Capacity investments are deferred to later years when solar is added to PECO’s service territory. 
Without any solar, PECO installs approximately 5MW of capacity that could be deferred every year.  Without 
targeting, enough solar does not accumulate until the year 2025 to defer capacity projects and the deferral 
time is only 1 year.  Targeted solar without storage and targeted solar with enough storage for a 50% D-ELCC, 
defer projects by 3 years and 18 years, respectively.   

 

5.4 Results  

The ability of solar to create deferral value and reduce rates is strongly influenced 

by network characteristics and whether solar is targeted at overloaded networks. Hosting 

capacities below 30% and peak load growths greater than 1% in overloaded networks 

both reduce the deferral value. A low D-ELCC can also eliminate deferral value and is 

common on PECO’s evening peaking feeders, but options exist: energy storage can be 

used with solar, or if small amounts of overloading are allowed the D-ELCC increases 

rapidly. The largest source of uncertainty for capacity deferral value is the number of 

yearly projects that are deferrable.  

Figure 5-2 shows the total deferral value for targeted and untargeted solar 

placement. Assuming the worst-case D-ELCC and a 30% hosting capacity, targeted 

placement increases the total deferral value approximately fourfold. The total deferral 
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value increases further when the transformer aging D-ELCC or energy storage is used.  

This increase applies to both targeted and untargeted scenarios but the increase with 

targeted placement is larger. Justification for the 30% hosting capacity is found in Figure 

4-12, where we observe relatively few voltage violations below 10% energy penetration 

(approximately the same as a 30% hosting capacity) on four PECO feeders.   

  

Figure 5-2: Total deferral value generated by untargeted and targeted solar placement.  Assuming the Worst-
Case D-ELCC, targeted placement increases the total deferral value approximately fourfold. The greatest 
deferral value is created with the transformer aging D-ELCC, followed by energy storage scenario which 
includes battery costs.  A 2% load growth eliminates most savings because the deferral times are shorter.   

Figure 5-3 and Figure 5-4 show the customer rate impact and earnings impact. 

The rate impact and total deferral value generated is small if only 1% of PECO’s 

distribution capex is growth-related.  If 10% of PECO’s distribution capex is growth-related 

and energy storage or the transformer aging D-ELCC is applied to deferral projects, the 

rate increase from solar drops from 1.1% to 0.6%. However, a higher 2% growth rate 

would eliminate most of these savings. 
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Figure 5-3: All-in-Rate Change with targeted and untargeted solar placement.  Based on PECO’s estimate 
that only 1% of their distribution capex is deferrable, both targeted and untargeted solar placement have a 
small effect on rates.  If 10% of capex is deferrable, targeted placement is used, and storage or the 
transformer aging D-ELCC is applied, then there is a modest reduction in rates.   

 
Figure 5-4: PECO earnings decrease as more capital investments are deferred.   

While more challenging to monetize, longer deferral times in the targeted 

placement planning scenario are more manageable in the utility planning process.  

Without any planning in the ‘no targeting’ scenario, typical deferral times are just one year.  

In contrast, assuming the worst-case D-ELCC, targeted placement with only solar typically 

results in deferral times of 3 years at 30% hosting capacity. The transformer aging D-

ELCC can increase the typical deferral time to 13 years.  Energy storage targeting a 50% 

and 100% D-ELCC can increase the deferral time 18 and 20 years, respectively. 

Figure 5-5 shows how the value of solar and total deferral value change for 

different hosting capacities.  There is a rapid increase from 0-40% hosting capacity. The 
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sawtooth pattern in the energy storage scenarios is caused by step-function decreases in 

storage costs as the storage duration increases.  The deferral value created by storage 

decreases rapidly with high hosting capacities because storage size requirements 

increase rapidly with penetration (see Figure 4-10 or Figure 3-6).    

 

Figure 5-5: The value of solar and total deferral value increases rapidly from 0-40% hosting capacity.  Energy 
storage does not generate additional value beyond 30-50% hosting capacity because of rising costs 
associated larger storage requirements.  

The penetration of solar on most Pennsylvania feeders is very low. A challenge of 

targeted solar placement is finding enough customers interested in solar to meet the 

capacity deferral requirements. Utilities may be able to leverage their customer knowledge 

and work with third parties to achieve target solar penetrations. It is possible that financial 

incentives to encourage more solar installations will also be needed. Figure 5-6 shows the 

distribution deferral value of solar when only solar owners are compensated. The high 

VOS shows that there is enough value concentrated on individual feeders to encourage 

solar installations where they are needed. However, any incentives used to incentivize 

solar installations will reduce the ratepayer benefits of non-solar owners.   



 

217 

 

 
Figure 5-6: Targeted Distribution Deferral Value of Solar when allocated only to solar owners on overloaded 
networks. The value of solar is high enough to encourage new customers to install solar. High (2%) growth 
causes a steep reduction in the value of solar.   

5.5 Policy Recommendations 

Deferral opportunities created by rooftop solar may serve as a modest opportunity 

for reducing rates, but several obstacles exist. In the PECO service territory, PECO 

engineers have identified few deferral opportunities. We recommend that the 

Pennsylvania PUC and utilities include an analysis of growth-related deferral opportunities 

in the standard least-cost planning process, and we offer the same recommendation to 

other states investigating the value of solar for their utilities.  

In states with more deferrable growth-related projects, it is important to estimate 

the deferral value. States experiencing more deferrable opportunities may have higher 

load growth on their feeders, which can reduce the deferral time and the deferral value. 

Using solar as a capacity resource for overloaded networks is often met with 

skepticism among utility managers, but we find this challenge can be managed with either 

energy storage or a D-ELCC metric that allows occasional overloading. In the short term, 

due to its cost effectiveness and low risk, we recommend that utilities do capacity deferral 

pilots with solar and storage. In the long term, utilities should consider deploying solar 
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without storage as a capacity deferral solution.  In Chapter 3, we show that the D-ELCC is 

high in regions with a strong solar resource. On evening peaking feeders, like in the 

PECO service territory or in regions with weaker solar, allowing occasional overloading on 

transformers can increase the effective capacity of solar and generate more deferral 

value.  Transformers are designed to withstand loading beyond their nameplate capacity, 

and the effective capacity of solar can be set so that transforming aging does not increase 

with solar.     

Finally, we recommend targeted placement of solar.  Compared to untargeted 

placement, targeted placement can increase the total deferral value as much as fourfold.  

It also increases the total deferral time and will be more manageable within the utility 

planning process.  In the PECO service territory, however, we did not observe enough 

total deferral value to warrant managing deferral opportunities with overly complicated 

market or administrative processes.   

 

5.6 Discussion and Future Research 

To summarize, we find that solar may modestly increase rates and that the value 

of solar at 5% energy penetration can be increased up to fourfold if solar is targeted at 

overloaded locations. Based on Chapter 4, we estimate that a 5% solar energy 

penetration of solar would increase rates by 0.9% over a 20-year horizon.  This estimate 

assumes untargeted placement of solar, a low effective capacity (i.e. the reduction in peak 

load relative to solar’s nominal capacity), a 1% growth rate, and based on a PECO 

engineering assessment, 1% of PECO’s distribution capex budget that is deferrable. 

Targeted placement of solar, a higher effective capacity using energy storage, a 30% 

hosting capacity and 10% growth-related capex could reduce the rate increase to 0.4% 

and generate $50MM of deferral value over the same 20-year time horizon.  We conclude 
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that capacity deferral with solar should be included in PECO’s planning process but that 

large administrative efforts to manage deferral projects, such as markets, are probably not 

warranted. 

In our work, we were surprised at the low number of PECO capacity deferral 

opportunities.  As stated above, PECO engineers identified only $3MM per year of 

deferrable projects. In contrast, PECO plans to spend approximately $50MM per year on 

projects related to aging infrastructure and resiliency. This spending is partially related to 

Pennsylvania’s Long-Term Infrastructure Investment Plan (LTIIP) that encourages utility 

investment in aging infrastructure by bypassing the rate case process and allowing 

quarterly rate increases to cover capital investments.   

The high amount of LTIIP spending may be indirectly related to PECO’s low 

growth-related spending. PECO, like many utilities, makes capacity investments assuming 

worst-case loading scenarios. Consequently, it is more likely for distribution equipment to 

reach its age limit before it becomes overloaded, and the capacity deferral paradigm may 

not be the best way to value solar and other Distributed Energy Resources (DER).  

Utilities could make smaller capacity investments and deploy DER so that 

infrastructure reaches its age limit and loading limit at similar times.  Further research is 

needed to determine whether this more complicated planning process would create 

savings. Utility engineers often justify making larger capital investments by citing the low 

marginal cost of equipment with more capacity.  The low marginal cost of more capacity 

would need to be included in any assessment of using more DER. Research would also 

be needed to value the optionality of DER, which creates immediate savings through 

smaller capacity investments, but may never be deployed on a feeder.   
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5.8 Supporting Materials 

5.8.1 Planning with solar compared with rollout scenario analysis 

Cohen et al. (2016), do a sensitivity analysis on the VOS by varying the rollout 

speed of solar in the entire PG&E service territory.  This sensitivity analysis does not 

model the same effect as targeted placement. If utilities are planning with solar, then the 

VOS increases when solar is deployed as near as possible to the anticipated overload 

year. Otherwise, the utility must begin paying solar customers before they are producing 

any deferral value. The rollout scenarios used by Cohen et al. (2016) miss this opportunity 

because each scenario is applied to all feeders regardless of when each feeder likely to 

be overloaded. A fast rollout scenario applied to all feeders will create more deferral value 

because fewer deferral opportunities will be missed. It will also have to pay solar owners 

for solar generation years before a deferral occurs.  Additionally, under targeted 

placement, the total amount of solar capacity placed on the feeder is only limited by the 

hosting capacity, so deferral times can be longer.   
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