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Thesis Statement: Develop robust methods to obtain the steady-state operating point of the 

transmission and distribution power grid independently or jointly using an equivalent circuit 

approach with circuit simulation methods  



 
v Abstract 

1. Abstract 

A robust framework for steady-state analysis (power flow and three-phase power flow 

problem) of the transmission as well as distribution networks is essential for operation and 

planning of the electric power grid.  The critical nature of this analysis has led to this problem 

being one of the most actively researched topics in the field of energy in the last few decades. This 

has produced significant advances in the related technologies; however, the present state-of-the-

art methods still lack the general robustness needed to securely and reliably operate as well as 

plan for the ever-changing power grid. The reasons for this are manifold, but the most important 

ones are: lack of general assurance toward convergence of power flow and three-phase power 

flow problems to the correct physical solution when a good initial state is not available; the use 

of disparate formulation and modeling frameworks for transmission and distribution steady-

state analyses that has led to the two analyses being modeled and simulated separately.  

This thesis addresses the existing limitations in steady-state analysis of power grids to enable 

a more secure and reliable environment for power grid operation and planning. To that effect, we 

develop a generic framework based on equivalent circuit formulation that can model both the 

positive sequence network of the transmission grid and the three-phase network of the 

distribution grid without loss of generality. Furthermore, we demonstrate that when combined 

with novel as well as adapted circuit simulation techniques, the framework can robustly solve for 

the steady-state solution for both these network models (positive sequence and three-phase) by 

constraining the developed models in their physical space, independent of the choice of initial 

conditions. Importantly, the developed framework treats the transmission grid no differently 

than the distribution grid and, therefore, allows for any further advances in the field to be directly 

applicable to the analysis of both. One of which is the ability to robustly simulate the “combined” 

positive sequence network of the transmission grid and three-phase network of the distribution 

grid.  
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To validate the applicability of the proposed equivalent circuit formulation to realistic industry 

sized systems as well to demonstrate the robustness of the developed methods, we simulate large 

positive-sequence and three-phase networks individually and jointly from arbitrary initial 

conditions and show convergence to correct physical solution. Examples for positive sequence 

transmission networks include 75k+ nodes test cases representing the U.S. Eastern 

Interconnection high-voltage grid and for three-phase networks include 8k+ nodes taxonomy 

feeders.  
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2. Contributions 

The primary contributions of this thesis are as follows: 

I. This thesis develops a generic framework based on an equivalent circuit formulation that can 

model the positive sequence transmission network and three-phase distribution network without 

loss of generality. 

II. Furthermore, it adapts and further develops novel circuit simulation methods for the field of power 

system analysis that can ensure robust convergence for positive-sequence power flow and three-

phase power flow problems from arbitrary initial conditions. 

III. Finally, the developed equivalent circuit framework with circuit simulation methods is extended 

to model the combined transmission and distribution networks while ensuring same robust 

convergence as in the case of power flow and three-phase power flow problems.  
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15 Introduction and Motivation 

3. Introduction and Motivation 

An interconnected electric grid is a network of synchronized power providers and consumers 

that are connected via transmission and distribution lines and operated by one of multiple entities. 

Secure and reliable operation of this electric grid is of utmost importance to a country’s economy 

and the well-being of its citizens. In the U.S., the electricity-based services are considered an 

essential service [1], a lack of which can result in significant societal chaos [2]. Since its early 

inception, the grid remained mostly unaltered and only began to experience changes in the last 

decade or so, some of which include [1]: (i) changing generation mix due to an electricity 

generation shift from a few large central plants, mostly fossil-fueled, to smaller and often variable 

renewable generators, (ii) changing demand loads in the retail electricity markets due to 

demographic and economic changes, (iii) integration of smart grid technologies, and (iv) 

increasing threats due to adversarial attacks or aging infrastructure. To navigate the grid through 

these changes while maintaining its reliability and security requires investment toward modern 

infrastructure, adequate policy and state-of-the-art simulation tools. The underlying work in this 

thesis is geared towards developing better power grid simulation tools and analysis methods.  

 At present, numerous methods exist for simulating and analyzing the electric grid. These can 

be broadly categorized into one of the following categories: (i) steady-state analysis in frequency 

domain (power flow, three phase power flow, and harmonic analyses), (ii) transient and steady-

state analysis in time domain, (iii) static state-estimation, (iv) analysis for optimal dispatch of 

resources, and v) other market dispatch-based analyses. Among these analyses, two that are 

primarily used for the day-to-day operation and planning of the grid are: the steady-state analysis 

in the frequency domain (power flow and three-phase power flow) to obtain the system 

frequency voltage and current phasors and the transient analysis in time domain to obtain time 

domain voltages and currents following a given event. Generally, for system operation and 

planning, power flow and three-phase power flow runs are first performed on all relevant cases 

followed by more computational heavy transient analysis for specific cases to gain more insight 

into the steady-state results. This pattern of analysis is generally driven by inconsistencies in 
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results between power flow and transient analysis, wherein steady-state solution obtained from 

transient analysis (as time tends to infinity) is considered more accurate than the solution 

obtained from the power flow. This inconsistency between the steady state solution obtained 

from the transient analysis and the steady-state solution obtained from the power flow analysis 

is a cause of concern and is conceptually addressed in Appendix B of this thesis. The focus of this 

thesis, however, is toward developing a steady-state solver for robust convergence of positive 

sequence and three-phase power flow problems independent of scale or complexity.    

The classical power grid has evolved over time to result in an invisible divide between the 

transmission network and distribution network. This in the past has allowed for the two networks 

to be studied separately resulting in disparate solution methods and modeling frameworks for 

analyzing the two. For instance, the steady-state solution of the transmission system is obtained 

via positive sequence or balanced alternating current (AC) power flow analysis, whereas the 

steady-state operating point for the distribution system is obtained via three-phase AC power 

flow analysis. The industry standard for solving the positive sequence power flow problem is the 

‘PQV’ formulation [3], wherein nonlinear power mismatch equations are solved for bus voltage 

magnitude and angle state variables that further define the steady-state operating point of the 

system. On the other hand, two distinct analysis methods: (i) backward-forward sweep method 

[4] and (ii) current injection method (CIM) [5] are primarily used interchangeably for obtaining 

the steady-state solution of the three-phase power flow problem. In the grid of tomorrow, 

however, this invisible divide between the transmission and distribution system is bound to 

disappear, thereby requiring solution methods and a modeling framework that can model and 

simulate both the transmission and distribution networks whether independently or jointly. The 

need for which was unequivocally highlighted by one of the speakers in an ARPA-E workshop 

to identify paths to large-scale deployment of renewable energy resources: “tools are not graceful 

in considering penetration levels at which much of the thermal fleet could get de-committed,” 

and that “studies do not co-simulate impact of renewable injection into receiving AC systems” 

[6]. This thesis will address these concerns by developing a generic circuit-theoretic framework 

for modeling both the transmission network and distribution network that can further simulate 
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them either separately (through power flow and three-phase power flow) or jointly (through 

combined transmission and distribution power flow). 

In general, all of the existing methods for solving the positive sequence power flow problem 

and the three-phase power flow problem suffer from lack of robustness [9]-[10] i.e. the analyzed 

cases often diverge [9] or converge to non-physical or unacceptable solutions [30]. The ‘PQV’ 

based formulation for the positive sequence power flow problem is known to diverge or converge 

to non-physical solutions for ill-conditioned [4] and large scale (>50k buses) systems. Similarly, 

the backward-forward sweep method that was proposed to solve the radial and weakly meshed 

distribution systems with high R/X ratios [4] has difficulties converging for heavily meshed test 

cases with more than a single source [11] in the network. On the other hand, the CIM method 

[12]-[13] based on Dommel’s work in 1970 [8] has challenges with incorporating multiple PV 

buses in the system.  

The factors in all existing solution methodologies that are the most fundamental toward 

making these problems challenging are: i) the use of non-physical macro-models for modeling 

the power grid components, and ii) in the case of ‘PQV’ formulation, the use of power mismatch 

equations with real and reactive power as system state variables to formulate the problem. The 

non-physical representations of the system equipment may not capture the true behavior of the 

model in the entire range of system operation. For example, an approximated macro-model for a 

generator that is represented via positive sequence or three-phase PV model can result in 

convergence to a low-voltage solution or divergence due to its quadratic voltage characteristics. 

Similarly, the inherent non-linearities in the ‘PQV’ formulation almost always cause divergence 

for large (>50k) and ill-conditioned test cases [35] when solved from an arbitrary set of initial 

conditions. This lack of a physics-based formulation, along with the methods that can constrain 

the non-physics abased models in their physical space, is what renders the existing power flow 

and three-phase power flow problem and solution approaches to be “non-robust.”   

To develop a robust solver for the steady-state solution of the power grid, it is imperative that 

the solver can efficiently and effectively navigate through these challenges while converging to a 

solution that is both meaningful and correct. Most importantly, as previously discussed, the 
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developed framework should be able to model both the transmission and distribution network 

without loss of generality. Intuitionally and physically, both the transmission and distribution 

electric grid correspond to an electric circuit. Therefore, our approach toward solving the power 

flow and three-phase power flow problem is to treat them as such and solve both analyses using 

circuit simulation fundamentals. To achieve this we propose a two pronged approach: (i) the use 

of equivalent circuit formulation with true state variables of currents and voltages [31]-[33] to 

model both the transmission and distribution power grid networks (Chapter 5), and (ii) the use 

of circuit simulation methods [34]-[35] to ensure robust convergence of these networks to correct 

physical solutions (Chapter 6). Furthermore, the ability to model both transmission and 

distribution power grids as equivalent circuits allows us to combine the two without loss of 

generality in order to jointly solve them (Chapter 7). In the appendices of this thesis, we explore 

the physics-based approach to modeling of aggregated load in the system and conceptually 

demonstrate that consistent results can be obtained between the steady-state solution obtained 

from transient analysis as well as steady-state solution obtained from power flow analysis for the 

same test network via unification of the two analyses. 
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LIST OF SYMBOLS 
 

𝒩 
Set of buses in the system. Each bus in three-phase power flow problem 

further consist of three distinct phases. 

𝒢 Set of generators in the system. 

ℒ Set of loads in the system. 

𝒯𝑋 Set of transmission lines in the system. 

𝑥𝑓𝑚𝑟𝑠 Set of transformers in the system. 

ϩ Set of slack buses in the system. 

𝑖, 𝑙 {1, 2, 3, . . , |𝒩|} 

𝐺 {1, 2, 3, . . , |𝒢|} 

𝐿 {1, 2, 3, . . , |ℒ|} 

𝐶 {𝑅, 𝐼} 

𝑅 Real part of the complex variable. 

𝐼 Imaginary part of the complex variable. 

𝑘 𝑘𝑡ℎ iteration of the Newton-Raphson. 

{A, a} Correspond to phase A. 

{B, b} Correspond to phase B. 

{C, c} Correspond to phase C. 

{N, n} Correspond to phase N. 

𝛺𝑠𝑒𝑡 {𝑎, 𝑏, 𝑐, 𝐴, 𝐵, 𝐶} 

𝛺, 𝑡 ∈  𝛺𝑠𝑒𝑡 

𝑃𝐺
𝑖 +  𝑗𝑄𝐺

𝑖  Connected complex power generation at bus 𝑖. 

𝑃𝐿
𝑖 +  𝑗𝑄𝐿

𝑖 Connected complex power demand at bus 𝑖. 
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𝐺𝑖𝑙
𝑌 + 𝑗𝐵𝑖𝑙

𝑌 Is the bus admittance between buses 𝑖 and 𝑙 in the positive sequence Y-matrix. 

𝑃𝐺
𝑚𝑎𝑥, 𝑃𝐺

𝑚𝑖𝑛 Maximum and minimum allowable real power generation for generator 𝐺. 

𝑄𝐺
𝑚𝑎𝑥, 𝑄𝐺

𝑚𝑖𝑛 
Maximum and minimum allowable reactive power generation for generator 

𝐺. 

𝜿 
Vector of participation factors for generators participating in AGC or droop 

control. 

𝜃𝑖𝑙 Is the voltage angle between buses 𝑖 and 𝑙. 

�̃�𝑖 Complex voltage at bus 𝑖. 

𝑉𝑅𝑖, 𝑉𝐼𝑖 Real and Imaginary part of the complex voltage at bus 𝑖. 

𝐼𝑅𝑖, 𝐼𝐼𝑖  
Real and Imaginary part of the complex current flowing in a branch 

connected to bus 𝑖. 

𝑉𝑅𝑖
𝛺 , 𝑉𝐼𝑖

𝛺 Real and Imaginary part of the complex voltage of the phase 𝛺 at bus 𝑖. 

𝒪 Node in the system with a voltage controlling devices connected to it. 

ℛ Remote node controlled by a voltage controlling device on node 𝒪. 

𝒲 Controlled node where 𝒲 ∈  {𝒪, ℛ}. 

(𝑃𝑖
𝑠𝑝

+ 𝑗 𝑄𝑖
𝑠𝑝

)
𝛺

 Specified active and reactive power at bus 𝑖 for the given phase 𝛺. 

𝑡𝑟 Transformer turns ratio. 

𝛩 Transformer phase shift. 

𝜑 Firing angle for the FACTS device. 

{𝑍𝑃
𝛺 , 𝐼𝑃

𝛺 , 𝑆𝑃
𝛺 , 

𝑍𝑄
𝛺 , 𝐼𝑄

𝛺 , 𝑆𝑄
𝛺} 

ZIP load parameters for the phase 𝛺. 

{𝐺𝐵𝐼𝐺 , 𝐵𝐵𝐼𝐺 , 𝛼𝑅
𝐵𝐼𝐺 , 𝛼𝐼

𝐵𝐼𝐺} BIG load model parameters. 

ℵ Represents a series element between buses 𝑖 and 𝑙. 

𝑠ℎ Represents a shunt element connected at node 𝑖. 

𝐺𝛺𝑡
ℵ + 𝑗𝐵𝛺𝑡

ℵ  Self and mutual admittance of the line between phases 𝑡 and 𝛺. 

𝐺𝑖
𝑠ℎ + 𝑗𝐵𝑖

𝑠ℎ Shunt admittance connected to node 𝑖. 
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𝜍 Variable limiting factor. 

𝜆 Homotopy factor for Tx Stepping Method. Lies in the closed set [0, 1]. 

𝛾 Scaling factor for Tx Stepping Method. 

{𝑉𝐶
0, 𝑉𝐶

1, 𝑉𝐶
2} Represents the zero, positive, and negative sequence voltages for the set 𝐶. 

{𝐼𝐶
0, 𝐼𝐶

1, 𝐼𝐶
2} Represents the zero, positive, and negative sequence currents for the set 𝐶. 

𝐽 Jacobian of the positive sequence or three-phase power flow solution matrix. 

𝑐 
Continuous curve for the homotopy methods in the domain of homotopy 

factor 𝜆. 

{𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡} Internal nodes real and imaginary voltages vector for the sub-circuit. 

{𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡} External nodes real and imaginary voltages vector for the sub-circuit. 

N-2 Loss of two equipment in the system. 

N-3 Loss of three equipment in the system. 

𝑇 Sub-circuit in the combined T&D system representing the transmission grid. 

𝐷𝑥 
Sub-circuit in the combined T&D system representing the distribution grid  
𝑥 amongst the set of distribution grids.  

ℱ𝑇 
System equations for the transmission grid within the combined T&D 

problem. 

ℱ𝐷𝑥 
System equations for the distribution grid 𝑥 within the combined T&D 

problem. 

ℱ𝐶 
System equations for the coupling network between the transmission and 

distribution grid in the combined T&D problem. 
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4. Background and Literature Review 

4.1 Positive Sequence and Three-Phase Power Flow Formulations 

A power grid in its simplest form can be represented by a set of buses 𝒩, where a set of 

generators  𝒢  and load demands ℒ are subsets of 𝒩, which are further connected by a set of line 

elements, 𝒯X  and a set of transformers,  xfmrs . Furthermore, there is a set of slack buses 

represented by ϩ. In addition to these, the power grid may contain other elements, such as shunts, 

flexible alternating current transmission system (FACTS), etc. The aim of steady-state analysis of 

the power grid is to model the fundamental frequency component of the power grid and further 

solve for the complex voltages at its buses. The high voltage transmission network of the grid 

generally operates under balanced conditions, and therefore, the steady-state solution of the 

transmission network is obtained via positive sequence power flow models and analysis. In 

contrast, the distribution network of the power grid can operate under unbalanced conditions, 

therefore, three-phase power flow models and analyses are used to obtain its steady-state solution. 

In the following sub-sections, we discuss the current state of the art methods used for steady-state 

analysis of transmission and distribution networks and highlight their limitations. 

4.1.1 ‘PQV’ based Formulation for Positive Sequence Power Flow Problem 

The ‘PQV’ based power flow formulation is the industry standard for solving for the steady-

state solution of the high voltage transmission network (i.e. power flow problem). In this 

formulation, a set of 2(|𝒩| − |ϩ|) − |𝒢| power mismatch equations are solved for unknown 

complex voltage magnitudes and angles of the system nodes using the Newton Raphson (NR) 

method. The set of power mismatch equations is defined [3] as follows: 

𝑃𝐺
𝑖 − 𝑃𝐿

𝑖 = |𝑉𝑖| ∑|𝑉𝑘|(𝐺𝑖𝑙
𝑌 cos 𝜃𝑖𝑙 + 𝐵𝑖𝑙

𝑌 sin 𝜃𝑖𝑙)

|𝒩|

𝑙=1

 (1) 

𝑄𝐺
𝑖 − 𝑄𝐿

𝑖 = |𝑉𝑖| ∑|𝑉𝑙|(𝐺𝑖𝑙
𝑌 sin𝜃𝑖𝑙 − 𝐵𝑖𝑙

𝑌 cos 𝜃𝑖𝑙)

|𝒩|

𝑙=1

 (2) 
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In order to solve for unknown complex voltages �̃�𝑖  in the system, the real and reactive power 

mismatch equations given by (1)-(2) are solved for the set of (|𝒩| − |ϩ| − |𝒢| ) buses in the system, 

whereas only real mismatch equations (1) are solved for the set of buses with generators 𝒢 

connected to it. 

The ‘PQV’ formulation is inherently non-linear, since the set of network constraints (given by 

power mismatch equations) that is used to model the power grid is always non-linear 

independent of the physics of the models used. For example, in the ‘PQV’ formulation, a linear 

network consisting of linear models for slack bus, transmission lines and shunts would 

correspond to a non-linear set of power mismatch equations, a feature that can result in 

convergence difficulties for systems even trivial in size. 

4.1.2 Current Injection Method for Three-Phase Power Flow Problem 

The current injection method (CIM) is one of the most commonly used formulation for three-

phase power flow problem [5]. It was proposed to address challenges in three-phase power flow 

problem while using the ‘PQV’ formulation and the backward-forward sweep method. In the 

CIM, the non-linear current mismatch equations for the system buses are solved via the NR 

method for all three phases with complex rectangular real and imaginary voltages as the 

unknown variables. The current mismatch equations for the three-phase power flow problem are 

defined as follows [5]: 

𝛥𝐼𝑅𝑖
𝛺 =

(𝑃𝑖
𝑠𝑝

)
𝛺
𝑉𝑅𝑖

𝛺 + (𝑄𝑖
𝑠𝑝

)
𝛺
𝑉𝐼𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 − ∑ ∑ (𝐺𝑖𝑙

𝛺𝑡𝑉𝑅𝑖
𝑡 − 𝐵𝑖𝑙

𝛺𝑡𝑉𝐼𝑖
𝑡)

𝑡𝜖𝛺𝑠𝑒𝑡

|𝒩|

𝑙=1

 (3) 

𝛥𝐼𝐼𝑖
𝛺 =

(𝑃𝑖
𝑠𝑝

)
𝛺
𝑉𝐼𝑖

𝛺 − (𝑄𝑖
𝑠𝑝

)
𝛺
𝑉𝑅𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 − ∑ ∑ (𝐺𝑖𝑙

𝛺𝑡𝑉𝐼𝑖
𝑡 + 𝐵𝑖𝑙

𝛺𝑡𝑉𝑅𝑖
𝑡 )

𝑡𝜖𝛺𝑠𝑒𝑡

|𝒩|

𝑙=1

 (4) 

Although, CIM is known to improve the convergence properties for the heavily and weakly 

meshed three-phase radial distribution systems with high R/X ratio, the method is known to 

diverge for test-cases with high penetration of PV buses [12]. Traditionally, this was not a problem 

as the number of PV buses in the distribution system were limited to a small number; however, 

with the advent of large-scale installation of distributed energy resources (DERs) and voltage 
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control devices in the distribution system, this is no longer true. Therefore, it is essential that a 

standard three-phase power flow formulation can robustly handle high penetration of PV buses 

(any bus with voltage control) in the system. 

4.1.3 Backward-Forward Sweep Method 

The backward-forward sweep method was initially introduced in [4] to overcome the 

drawbacks of ‘PQV’ formulation-based NR method for three-phase radial systems with wide 

ranging line resistances and reactances. This method starts by breaking the interconnected 

meshed grid network into a radial grid network by introducing breakpoints. The reduced radial 

network in this method is then solved via Kirchhoff’s voltage and current laws. To compensate 

for the currents at the breakpoints, the method introduces current injections at the cut-set nodes. 

The magnitudes of these currents are calculated by iterative compensation methods [4], [18] that 

include a backward and a forward sweep step. Although, the method is known to work well with 

radial systems, it is prone to divergence for test cases that are highly meshed or have multiple 

sources [11].  

4.1.4 Holomorphic Embedding Load Flow Method 

Holomorphic embedding load flow (HELM) formulation [14] is a direct non-iterative method 

proposed to solve for positive-sequence power flow problem. The method works by embedding 

the non-analytic power mismatch equations into the larger set of analytic equations. The method 

is claimed to be robust as convergence for the problem is guaranteed [14] by application of 

continuation methods to the analytic set of equations. However, this method as originally 

presented in [14] lacks the ability to model PV buses and works exclusively for systems with PQ 

buses. Additional work toward extending the HELM formulation to incorporate PV buses is 

known to suffer from numerical issues [16]-[17].  Furthermore, during application of HELM 

method to practical large scale problems, singular solution matrix is often encountered, and no 

theoretical guarantees have yet been provided to counter this challenge, thereby making this 

solution method non-robust. 

https://en.wikipedia.org/wiki/Holomorphic_embedding_load_flow_method
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4.1.5 Continuation Power Flow Method 

The continuation power flow method is another approach for evaluating the steady-state 

operating point of the power grid [19]. This algorithm has been primarily used for assessing the 

voltage stability of the grid and to trace the maximum available transfer capability curve of the 

grid. The continuation power flow method involves iteratively evaluating the steady-state 

operating points of the grid using a two-step predictor and corrector algorithm until the critical 

operating point is obtained. The algorithm adds an additional state variable: the continuation 

factor and a corresponding equation to the formulation. In the beginning of this algorithm, 

conventional NR is used to obtain the base case solution for the analysis. The predictor step is 

then performed to obtain the new approximated solution for the complex voltages of the system 

and the continuation parameter variable. A modified NR is then performed to obtain the exact 

solution from the approximated solution in the corrector step. This iterative process is repeated 

until the critical point is found. The critical point is the solution state where the tangent vector for 

the continuation factor is zero, and it represents an infeasible or collapsed grid state [20]. The 

analysis methodology is quite useful in assessing the critical point of the electric grid and in 

general can solve for test grids operating close to the tip of the nose curve. However, the method 

requires a solved base case to start with, which itself can be quite challenging to solve for in case 

of hard-to-solve ill-conditioned and large test cases. 

4.2 Circuit Simulation Methods 

A standard circuit simulator tool (e.g. SPICE) models an integrated circuit using a set of linear 

and non-linear equations and generally employs the use of the damped Newton-Raphson (NR) 

method to find the solution of the corresponding equations. This iterative NR algorithm is 

guaranteed to have convergence with quadratic speed, if the following conditions are satisfied 

[21]: 

i. The functions represented by the set of non-linear equations, which in their real 

domain ℝ𝑛 must be continuous and smooth. 

ii. The solution for the set of non-linear equations from the iterative algorithm must be 

isolated. 
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iii. The initial guess for the NR algorithm must be “sufficiently close” to the final solution. 

For the purposes of circuit simulation, the first two are usually easily satisfied. Circuit models 

are generally created such that the underlying functions are continuous and smooth. To satisfy 

the second condition, non-isolated solutions must be avoided. The source of non-isolated 

solutions in the field of circuit simulation can be generally attributed to floating nodes or loops 

that are formed with components that act as short-circuits at DC condition (for example, voltage 

sources or inductors). All circuit simulator input files are usually sanitized or pre-processed to 

flag such network configurations, thereby eliminating the likelihood of non-isolated solutions. 

The real challenge then lies in finding an initial guess that is “sufficiently close” to the final 

solution. If the initial guess is not sufficiently close to the final solution, then a large step during 

a NR iteration could easily result in divergence or numerical overflow problems. Often with the 

use of the limiting methods in Section 4.2.1, some of these problems can be rectified, albeit at the 

cost of quadratic speed. However, for hard to solve highly non-linear circuit models, limiting 

methods by themselves are insufficient to ensure convergence. In such cases, homotopy methods 

such as those described in Section 4.2.2 are generally used to achieve convergence. With 

homotopy methods, an original problem is broken down into a sequence of sub-problems, 

wherein the solution to each prior sub-problem is used as the initial guess for subsequent sub-

problem. Importantly, the first sub-problem solved with the homotopy algorithm is expected to 

have an initial guess that is trivial and sufficiently close to the final solution of the modified 

problem thereby satisfying the third condition for convergence of NR algorithm. In the rest of 

this section, we will discuss some of the commonly used limiting and homotopy methods in state-

of-the-art circuit simulators. 

4.2.1 Limiting methods  

Limiting methods were first developed in [23]-[24] for simulation of diodes in the early 1970s. 

The purpose of these methods was to ensure that a large NR step does not lead to numerical 

overflow problems in the simulator due to the exponential nature of the diode IV curve. The 

“limiting” was performed on the diode state variables between the (𝑘 + 1)𝑡ℎ and 𝑘𝑡ℎ iteration of 

NR to prevent overflow problems. In its simplest form, the implemented logic limited the diode 
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voltage for the (𝑘 + 1)𝑡ℎ NR iteration to �̂�𝑘+1 via expressions developed as a function of thermal 

voltage (𝑉𝑡). The choice of limiting factors of 2𝑉𝑡 and 10𝑉𝑡 in the original SPICE tool was made 

from empirical observations [24], and is shown below: 

Condition Action 

|𝑉𝑘+1 − 𝑉𝑘| ≤  2𝑉𝑡 �̂�𝑘+1 = 𝑉𝑘+1 

𝑉𝑘+1 > 𝑉𝐶𝑅𝐼𝑇 �̂�𝑘+1 = 𝑉𝑘+1 

𝑉𝑘+1 < 𝑉𝑘  & 10𝑉𝑡 < 𝑉𝑘 �̂�𝑘+1 = 𝑉𝑘+1 − 2𝑉𝑡 

𝑉𝑘 < 𝑉𝑘+1 & 10𝑉𝑡 < 𝑉𝑘+1 �̂�𝑘+1 = max(10𝑉𝑡,  𝑉𝑘 + 2𝑉𝑡) 

Another limiting technique used in NR algorithms for diodes is based upon alternating bases 

and was proposed by Colon and implemented by Kao [22]. This algorithm was further modified 

by Nagel. In this algorithm, a NR iteration based on current variables in performed instead of 

voltage variables if the diode conductance for the new iterate has a slope magnitude greater than 

a pre-specified value. The slope itself is directly related to the voltage across the diode, and 

therefore a critical voltage (𝑉𝐶𝑅𝐼𝑇) can be pre-defined and used as a boundary condition. Nagel 

[24] found that a near optimal value of 𝑉𝐶𝑅𝐼𝑇 is obtained when the voltage has minimum radius 

of convergence, given as: 

𝑉𝐶𝑅𝐼𝑇 = 𝑉𝑡 𝑙𝑛 (
𝑉𝑡

√2𝐼𝑠
) (5) 

where 𝐼𝑠 is the diode saturation current. This algorithm has the following logic [22]: 

Condition Action 

𝑉𝑘+1 ≤ 𝑉𝐶𝑅𝐼𝑇 �̂�𝑘+1 = 𝑉𝑘+1 

𝑉𝑘+1 > 𝑉𝐶𝑅𝐼𝑇 �̂�𝑘+1 = 𝑉𝑘+1 + 𝑉𝑡 ln (
𝑉𝑘+1 − 𝑉𝑘

𝑉𝑡
+ 1.0) 



 
28 Background and Literature Review 

4.2.2 Homotopy Methods 

Homotopy methods are generally applied when limiting methods fail to ensure convergence. 

Many such homotopy methods are included in the state-of-the-art circuit simulators, amongst 

which, the two that are most commonly used are described below. 

4.2.2.1 Gmin stepping 

Gmin stepping is a combined algorithm whose implementation itself comes from a combined 

logic of multiple sources [28]. The method requires addition of variable conductances to each 

node in the system and is explain in detail by following sequence of steps: 

i. To solve for the DC solution of an integrated circuit, first a large conductance (Gmin) 

is connected from every node in the system to ground. This essentially “swamps” any 

larger resistances in the system and ensures that the circuit solution at 0𝑡ℎ iteration 

has circuit node voltages very close to the value of zero. The solution to this modified 

system is trivial and can be found by solving the NR loop with initial system voltages 

set to 0. 

ii. The value of Gmin is then gradually stepped down in subsequent sub-problems until 

a value close to zero for Gmin is achieved. The initial condition for subsequent sub-

problem is obtained from the final solution of the prior sub-problem thereby resulting 

in an “ever-so slight change” in the solutions between subsequent sub-problems. 

iii. The final solution obtained at Gmin value of zero is the DC solution of the original 

circuit. 

4.2.2.2 Source Stepping 

An alternate homotopy technique that can be applied to circuits that have independent sources 

is called source stepping. The algorithm for source stepping is described in the following steps: 

i. Initially all the independent sources in the systems are turned off, thereby resulting in 

a trivial solution for the modified problem, wherein all the system voltage and current 

magnitudes are zero. 

ii. The independent sources are then gradually turned back on to their original values in 

small incremental steps resulting in a sequence of sub-problems. As in the case of 
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Gmin stepping, the initial condition for each subsequent sub-problem is obtained from 

the final solution of the prior sub-problem. 

iii. The final solution, which is the DC solution for the circuit, is obtained when all 

independent sources in the system are scaled all the way up to their original value. 

Unfortunately, this method is only suited for certain types of circuit simulation problems. 

Simulation of a digital circuit is an example for which source stepping is not suited. During 

simulation of such a circuit, the turn-on of a digital transistor circuit due to a small change in 

voltage can cause a sudden change in circuit state, thereby resulting in convergence issues [28] 

while using this homotopy technique. 

Other heuristics used to ensure robust convergence of circuit simulations are well documented 

in [21]-[27]. 
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5. Equivalent Circuit Approach 

We proposed the equivalent circuit approach [31]-[35] for steady-state analysis of the power 

grid to address challenges exhibited by the existing formulations. This approach for generalized 

modeling of the power system in steady-state (i.e. power flow and three-phase power flow) 

represents both the transmission and distribution power grid in terms of equivalent circuit 

elements without loss of generality. It was shown that each of the power system components 

(including constant power models, i.e. PQ and PV buses) can be directly mapped to an equivalent 

circuit model based on the underlying relationship between current and voltage state variables. 

Importantly, this formulation can represent any physics based model or measurement based 

semi-empirical model as a sub-circuit, as shown in [50]-[53], and these models can be combined 

hierarchically with other circuit abstractions to build larger aggregated models. In addition, by 

modeling both the transmission and distribution system equivalently using circuit fundamentals, 

the equivalent circuit approach allows for the combined simulation of transmission and 

distribution systems, a framework intractable with existing solution methods due to the use of 

disparate formulations and models for analysis of transmission as well as distribution systems. 

In the following sub-sections, we derive the equivalent circuit models for the most common 

network elements used in the positive sequence power flow and the three-phase power flow 

problems. Then, in Section 5.5, we demonstrate, with three-phase induction motor (IM) as an 

example, the development of an equivalent circuit model from the physics based first principles 

behavior. Appendix A introduces a new empirical load model for aggregated load in the grid that 

can capture the true sensitivity of the modeled load and can be fitted with available measurement 

data. 

5.1 Split-Circuit Formulation  

In the equivalent circuit approach, we represent the equivalent circuit models for different 

power grid components in the network using the current and voltage state variables. For positive 
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sequence power flow and three-phase power flow analyses this translates to linear and non-linear 

functions of complex voltage and complex current state variables. 

The grid components that are represented by linear functions of complex voltages and 

complex currents are directly mapped into an equivalent circuit using basic circuit elements such 

as the conductance, susceptance, independent and controlled sources. However, in case of non-

linear representations of grid components, the equivalent circuit models are constructed by first 

linearizing the set of non-linear equations using Taylor’s expansion and then representing them 

using a fundamental set of circuit elements. Importantly, Taylor expansion of these non-linear 

representations require the computation of their first-order derivative. This is not possible for 

complex terms with conjugate operator, such as the ones observed in PV and PQ node 

fundamental constraints. This is due to the non-analyticity of these terms, because of which, they 

are non-differentiable. Therefore, to circumvent this challenge of non-analyticity, the derived 

equivalent circuit models for power flow and three-phase power flow problem are split into two 

coupled circuits: one real, and one imaginary [31], both of which are analytic and differentiable. 

 

Figure 5-1: Simple three-bus power flow network and its corresponding equivalent circuit. 

For example, consider a simple three-bus power flow network given in the left of the Figure 

5-1. To represent the equivalent circuit model for this network, we derive the corresponding real 

and imaginary equivalent circuits, as shown in the right hand of Figure 5-1. In the following 

subsections, we will derive the real and imaginary equivalent circuit models for the most common 

power flow and three-phase power flow models, a methodology that can be easily extended to 

derive an equivalent circuit for any future grid component. 
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5.2 Equivalent Circuit Models for the Positive Sequence Power Flow Problem 

5.2.1 PV Bus 

The PV bus model in the positive sequence power flow problem is used to represent the 

aggregated characteristics of a generator that is required to hold its real power and voltage 

magnitude constant, as described here in terms of rectangular current-voltage state variables: 

𝑃𝐺 = 𝑉𝑅𝐺𝐼𝑅𝐺 + 𝑉𝐼𝐺𝐼𝐼𝐺  (6) 

|𝑉𝐺|2 = 𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (7) 

In order to derive the equivalent circuit model for the PV bus behavior described by (6)-(7), 

we have a choice to model the PV node as a complex voltage source (as functions of complex 

current) [31] or a complex current source (as functions of complex voltage) [33]. The equations 

that represent the generator PV bus as a set of complex voltages sources are given by: 

𝑉𝑅𝐺 =
𝑃𝐺𝐼𝑅𝐺 ± 𝐼𝐼𝐺√𝑉𝐺

2(𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2 ) − 𝑃𝐺
2

𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2  
(8) 

𝑉𝐼𝐺 =
𝑃𝐺𝐼𝐼𝐺 ± 𝐼𝑅𝐺√𝑉𝐺

2(𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2 ) − 𝑃𝐺
2

𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2  
(9) 

This model for PV nodes is known to have convergence issues [33] due to the existence of the 

square root term in equations (8)-(9) that can result in non-real values for derived complex voltage 

sources, if a negative term within the square root term is encountered. To address this problem, 

we instead model the PV node as complex current sources to mimic the characteristic behavior of 

equations (6)-(7). This offers superior convergence when applying NR iterations to the resulting 

equation system [33].  

The split real and imaginary equations for complex current sources for a PV node are given 

by: 

𝐼𝑅𝐺 =
𝑃𝐺𝑉𝑅𝐺 + 𝑄𝐺𝑉𝐼𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (10) 
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𝐼𝐼𝐺 =
𝑃𝐺𝑉𝐼𝐺 − 𝑄𝐺𝑉𝑅𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (11) 

In addition to producing real power constrained generator currents, the PV node also controls 

the voltage magnitude either at its own node or any other remote node in the system given its 

reactive power output is within the limits. We represent this constraint by a control circuit, as 

shown in the following subsection. The reactive power  𝑄𝐺  of the generator is controllable and 

acts as the additional unknown variable for the additional constraint that is introduced due to 

voltage control. 

To derive the equivalent circuit of the PV node, the first order terms of the Taylor expansions 

for (10)-(11) are used to linearize the functions, as shown in Figure 5-2. Linearization of the real 

generator current results in the following terms: 

𝐼𝑅𝐺
𝑘+1 =

𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘+1) +  

𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘+1) +

𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘+1) + 𝐼𝑅𝐺

𝑘  

 −  
𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘) −  

𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘 ) −

𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘 ) 

(12) 

Similarly, linearization by Taylor’s expansion for imaginary current terms results in:  

𝐼𝐼𝐺
𝑘+1 =

𝜕𝐼𝐼𝐺
𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘+1) +  

𝜕𝐼𝐼𝐺
𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘+1) +

𝜕𝐼𝐼𝐺
𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘+1) + 𝐼𝐼𝐺

𝑘  

 −  
𝜕𝐼𝐼𝐺
𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘) −  

𝜕𝐼𝐼𝐺
𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘 ) −

𝜕𝐼𝐼𝐺
𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘 ) 

(13) 

The terms in (12) represent the basic elements of the real circuit of PV node. The first term in (12) 

represents a current source that is a function of the reactive power; the second term represents a 

conductance, since the real current is proportional to the real voltage; the third term represents a 

voltage-controlled current source, since the real current is proportional to the imaginary voltage. 

The remaining terms are all dependent on known values from the previous iteration, so they can 

be lumped together and represented as an independent current source.   

Similarly, the terms in (13) represent the basic circuit elements for the imaginary circuit of the 

PV node. The first term in (13) represents a current source that is a function of reactive power; the 

second term represents a voltage-controlled current source, since the imaginary current is 

proportional to the real voltage; the third term represents a conductance, since the imaginary 
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current is proportional to the imaginary voltage. The remaining terms are all dependent on 

known values from the previous iteration, so they can be lumped together and be represented as 

an independent current source as in the case of real circuit. 

Figure 5-2 represents the derived real and imaginary circuits for a complex current source that 

represents the behavior of a PV node. 

 

Figure 5-2: Equivalent circuit model for PV 

generator model. 

 

Figure 5-3: Voltage magnitude constraint 

control equivalent circuit. 

5.2.2 Voltage Regulation of the Bus 

Numerous power grid elements such as generators, FACTS devices, transformers, shunts, etc., 

can control a voltage magnitude at a given node in the system. Moreover, they can control the 

voltage magnitude at either their own node (𝒪) or a remote node (ℛ) in the system. In the 

equivalent circuit formulation, the control of the voltage magnitude is achieved through a control 

circuit (Figure 5-3) with following mathematical behavior:  

𝐹𝒲 ≡ 𝑉𝑠𝑒𝑡
2 − 𝑉𝑅𝒲 

2 − 𝑉𝐼𝒲 
2 = 0, where 𝒲 ∈ 𝒪, ℛ (14) 

The circuit in Figure 5-3 is derived from the linearized version of (14). It is stamped into the 

matrix equations for each node 𝒲  in the system whose voltage is being controlled such that there 

exists at least one path (whose vertices do not consist of a voltage-controlled node) between the 

node 𝒲 and the equipment’s node 𝒪 that is controlling it. The additional unknown variable for 

this additional constraint is dependent on the power system device that is controlling the voltage 

magnitude. For example, the additional unknown variable for a generator is its reactive power 𝑄𝐺 , 

whereas in the case of transformers, it is the transformer turns ratio 𝑡𝑟, and for FACTS devices it 

Real Circuit 

+

_

𝑉𝑅𝐺
𝑘+1

𝐼𝑅𝐺
𝑘+1

Imaginary Circuit 

+

_

𝑉𝐼𝐺
𝑘+1

𝐼𝐼𝐺
𝑘+1
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is the firing angle 𝜑. The previous section showed how the additional unknown variable for PV 

buses is integrated in its respective equivalent circuit. 

5.2.2.1 Reactive power limits of a PV generator model 

The PV model for the generator derived in Section 5.2.1 does not account for reactive power 

limits. However, all practical power flow solvers must enforce these limits to conserve the physics 

of the devices. Majority of the existing commercial tools enforce the generator reactive power 

limits via the use of discontinuous piecewise linear models (PV-PQ switching). Other approaches 

that do not use discontinuous piecewise models for enforcing the limits have also been researched 

extensively in academia. Of these, the most promising ones [36]-[39] use mixed complementarity 

constraints to represent the generator behavior with limits. This approach in general requires an 

optimization framework to enforce generator limits. This significantly increases the size as well 

as the complexity of the power flow problem thereby making the problem more prone to 

divergence. Modifications to this approach [38] have incorporated the complementarity 

constraints within the existing power flow framework; however, the approach has observed poor 

convergence, with the latest papers [38] on the approach limited to solving system sizes of less 

than a thousand nodes.  

Here we further discuss discontinuous piecewise model for generator as it is the state-of-the-

art in commercial tools. In this model, the generator has two discrete modes of operation: (i) 

voltage control mode – in this mode the reactive power of the voltage equipment is within its 

limits and the active set of equations include (14) (ii) set reactive power mode – in this mode the 

reactive power is either set to its maximum or minimum limit and the active set of constraints 

include (15) or (16).  

if �̂�𝐺 > 𝑄𝑀𝐴𝑋 then, 𝑄𝐺 = 𝑄𝑀𝐴𝑋 (15) 

if  �̂�𝐺 < 𝑄𝑀𝐼𝑁  then,𝑄𝐺 = 𝑄𝑀𝐼𝑁 (16) 

To enforce reactive power limits for the PV model in the power flow analyses via the use of 

discontinuous models, the PV node model is switched between the voltage control mode and the 

set reactive power mode in the outer loop of the NR solver depending on the obtained value of 
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reactive power (�̂�𝐺) in the inner loop of the NR solver. This methodology generally tends to work 

well for small cases but is known to suffer from convergence issues for larger problems. 

A necessary condition for guaranteed convergence of a system with discontinuous piecewise 

models requires that only one element/model at a time is switched to a different piecewise linear 

segment per single NR iteration [45]-[46], an intractable approach while solving a larger system 

wherein a significant number of generator violate their limits. Therefore, due to this practical 

consideration, the existing state-of-the-art tools limit a larger number of generators at once. This 

approach can result in oscillations during NR that could further prevent convergence of the 

overall system. The following example demonstrates this behavior. 

In this example, positive-sequence power flow simulation is run for a network case that 

represents a real electric grid network in Africa [47]. During simulation of this network, several 

generators violate their limits once the inner loop of the NR loop converges. Upon applying PV-

PQ switching in the outer loop, oscillatory behavior is observed as seen in the Figure 5-4. The 

vertical axis of the figure shows the number of generators that are limited in the outer loop of NR 

iterations, and the horizontal axis represents the outer loop count for the power flow analyses. 

As seen in the figure, due to the observed oscillatory behavior, overall convergence for the test 

case is not achieved. 

 

Figure 5-4: Oscillations observed during PV-PQ switching in the outer loop of NR. 
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To address this limitation wherein oscillatory behavior is observed during PV-PQ switching, 

we explore two distinct approaches: 

i. Setting a pre-determined parameter that is the maximum allowable count of generator 

switching between PV and PQ modes, a number that if any generator exceeds results 

in reactive power output  𝑄𝐺 of that generator to be permanently set to its last 

encountered limit value. 

ii. The use of a continuous and twice differentiable model for the generator voltage 

control. 

The first approach is briefly discussed prior to introducing the continuous twice differentiable 

generator model. In this approach, a fixed pre-determined parameter (integer number) is 

inputted by the user that is applied in the algorithm to prevent the generator oscillations between 

different discontinuous piecewise segments. The algorithm is implemented to count the number 

of occurrences of generator back-offs during the simulation. In case this number exceeds the 

specified parameter, the generator is no longer allowed to back-off and its reactive power 𝑄𝐺 is 

limited to either 𝑄𝑀𝐴𝑋 or 𝑄𝑀𝐼𝑁 for rest of the simulation, hence preventing any further oscillations 

between different segments. Even though this approach has been shown to prevent oscillations 

in many test instances, convergence is not always guaranteed [40]-[41]. This is primarily due to 

the shrinking of the solution space once the generator reactive power is permanently limited, 

which can lead to divergence due to the lack of solution in the reduced solution space. 

Furthermore, this can result in convergence for the generator model in an unstable state: 

i. A generator’s reactive power 𝑄𝐺 is set to its lower reactive power limit (𝑄𝑀𝐼𝑁) while 

the magnitude of voltage at the controlled node is lower than the set voltage, or 

ii. A generator’s reactive power 𝑄𝐺 is set to its higher reactive power limit (𝑄𝑀𝐴𝑋) while 

the magnitude of the voltage at the controlled node is higher than the set voltage.  

Hence, to prevent the generator oscillations during PV-PQ switching while ensuring that the 

generator model converges to a stable operating point, we propose the use of the following 

continuous generator model. Continuous models have been previously proposed for use within 

power flow problem [42]-[43] . However, most of these methods were unable to solve cases larger 
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than a few hundred nodes and were further unable to account for the remote generator buses. In 

the following section, we discuss a holistic approach for use of continuous models within the 

equivalent circuit approach that when combined with homotopy methods can ensure robust 

convergence for large scale realistic systems. 

5.2.3 Continuous Model for a Generator/PV Bus 

5.2.3.1 General Introduction 

To address the limitations of the discontinuous piecewise generator model, we utilize a 

continuous and twice differentiable generator model [44]. In this model, we model the generator 

voltage constraint using a non-linear sigmoid function that can control the voltage of the 

controlled node when the reactive power of the generator is within its limits and can limit the 

generator reactive power when one of its limits are violated. Importantly this model is continuous 

and twice differentiable and does not require discontinuous switching between piecewise 

sections thereby preventing oscillations that otherwise can be detrimental for system convergence. 

Furthermore, the continuous model allows for the application of robust methods such as 

homotopy methods to achieve convergence during NR. Methods such as these often require that 

the set of network models to be continuous, which was not the case with discontinuous piecewise 

models. 

5.2.3.2 Description of Models 

The continuous model for the PV node models the generator currents as a function of complex 

voltages, as was in the case of the discontinuous piecewise model as shown in (10)-(11). However, 

this model replaces the voltage constraint given by (14) with a sigmoid function given in (17). 

Importantly, the model equations for this model are both continuous and twice differentiable and 

include the reactive power limits for the generator inherently. 

𝑄𝐺 =
𝑄𝑀𝐴𝑋 −  𝑄𝑀𝐼𝑁

1 + exp (λ𝑆 [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝑄𝑀𝐼𝑁 
(17) 

The sigmoid function in (17) mimics the behavior of the PV node during both the “voltage 

control mode” and “set reactive power mode”. In case, the reactive power needed to control the 
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voltage of the controlled node is within its limits, the model operates in the steep slope part of 

the curve in Figure 5-5 thereby maintaining the controlled node voltage to its set value. In case, 

the reactive power needed to control the controlled node’s voltage exceeds its limits, the model 

saturates the reactive power output thereby no longer controlling the controlled node’s voltage.  

Importantly, the smoothing parameter (λ𝑆 ) in (17) controls the slope of the generator model 

voltage characteristics as shown in Figure 5-5. A higher value for this parameter tends to better 

mimic the behavior of the piecewise discontinuous generator model at the cost of more rigid non-

linear behavior. In contrast, reducing the magnitude of this parameter relaxes the function non-

linearities while approximating the voltage control behavior of the existing generator model. Due 

to the highly non-linear nature of this sigmoid model, convergence difficulties are observed for 

large as well as ill-conditioned systems. Therefore, in the following section we develop techniques 

to achieve robust convergence for the network equations while using this continuous generator 

model. 

 

Figure 5-5: Voltage constraint behavior for continuous generator model. 

5.2.3.3 Aid to Convergence 

We propose two homotopy based approaches to achieve robust convergence for power flow 

test cases that include continuous models to represent generator behavior. Homotopy methods 

for general application to power flow and three-phase power flow analyses are discussed in depth 

in Section 6.2. However, due to the applicability of these methods to continuous generator model 

convergence, they are briefly discussed here. 
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5.2.3.3.1 Relaxation of generator convergence parameter to enable robust convergence 

To ensure the robust convergence for the continuous generator model, in the first approach, 

we embed a generator convergence parameter 𝜆𝐺 in the continuous generator model:  

𝑄𝐺 =
𝜆𝐺(𝑄𝑀𝐴𝑋 −  𝑄𝑀𝐼𝑁)

1 + 𝑒𝑥𝑝 (λ𝑆 [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝜆𝐺𝑄𝑀𝐼𝑁 
(18) 

To use the properties of homotopy methods to achieve robust convergence, we first need to 

obtain the value of 𝜆𝐺  that will result in a trivial solution for the generator continuous model. This 

is achieved by calculating the initial value of generator convergence parameter 𝜆 𝐺
𝑖𝑛𝑖𝑡  via solving 

the inner loop of the power flow problem with generator models that have unbounded reactive 

power limits and choosing its value such that: 

 𝜆 𝐺
𝑖𝑛𝑖𝑡 = 

{
 

 
𝑄𝐺

𝑄𝑀𝐴𝑋
,  if 𝑄𝐺 > 𝑄𝑀𝐴𝑋  

𝑄𝐺

𝑄𝑀𝐼𝑁
,  if 𝑄𝐺 < 𝑄𝑀𝐼𝑁  

1,  otherwise

 (19) 

 

Algorithm 5-1: Flowchart for dynamic handling of generator convergence parameter for 

better convergence. 
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Once we have obtained an initial value (𝜆 𝐺
𝑖𝑛𝑖𝑡) for the parameter that results in a trivial solution 

for the continuous generator model, we vary the parameter in small increments until the original 

problem is solved. As always is the case with the use of homotopy methods, the final solution of 

the previous sub-problem is chosen as the initial guess for subsequent sub-problem.  

Algorithm 5-1 describes the general flow of this homotopy method. First, for all generators in 

the network, generator convergence parameter 𝜆 𝐺
𝑖𝑛𝑖𝑡  is initialized via (19). Following which, for 

each successful convergence of the inner loop of NR, the generator convergence parameter is 

incrementally varied until the value of unity is achieved for all   . The range of generator 

convergence parameter 𝜆𝐺  is given by [1,  ) . Figure 5-6 graphically demonstrates how the 

continuous PV model evolves along the homotopy path. 

 

Figure 5-6: Generator characteristics as a function of generator convergence parameter. 

5.2.3.3.2 Relaxation of generator smoothing parameter for achieving robust convergence 

In this approach, generator smoothness parameter (λ𝑆) in (17) is adjusted if convergence 

difficulties are encountered due to the rigid non-linearities in the continuous model. The highly 

non-linear nature of the continuous generator model voltage constraint in the region around 

𝑄𝑀𝐴𝑋 and 𝑄𝑀𝐼𝑁 is due to the steep change in the gradient of the function. To relax these non-

linearities to enable smoother convergence requires adjustment of the generator smoothness 

factor, as shown in Figure 5-7. 
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Figure 5-7: Generator characteristics as a function of generator smoothness parameter. 

Reducing the magnitude of the generator smoothness parameter relaxes the non-linearities in 

generator model, whereas increasing the magnitude mimics the piecewise behavior of 

conventional generator model. Therefore, if convergence difficulties are encountered in the inner 

loop of NR, then the generator smoothness parameter is first relaxed until convergence for the 

continuous model is achieved (representing the trivial problem within the homotopy method). 

The parameter is then gradually scaled back up until the original model is solved as in the case 

of any homotopy method. The Algorithm 5-2 depicts the flow of this approach. 

 

Algorithm 5-2: Flowchart for dynamic handling of generator smoothness parameter for better 

convergence. 
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5.2.3.4 Results for the Continuous Generator 

5.2.3.4.1 Experiment 1 

The purpose of this experiment is to demonstrate that the use of the continuous generator 

model with proposed homotopy methods can eliminate the limitations of the piecewise 

discontinuous generator model as shown in Section 5.2.2.1. In this experiment, we consider the 

test network case for the grid in Africa that was previously discussed in Section 5.2.2.1. This case 

when solved with the discontinuous piecewise generator model resulted in oscillations during 

PV-PQ switching in the outer loop of the power flow solver as shown in Figure 5-4 and hence, 

the solution for the test case could not be obtained. 

However, when solved with the use of continuous generator model along with methods that 

aids its convergence, oscillations were easily prevented with successful convergence for the 

example test case. 

5.2.4 Slack Bus 

Slack bus model is used in power flow analysis primarily for two purposes. First, it provides 

the reference angle for the power grid circuit and second, it absorbs or produces any slack (power 

losses and load-generation mismatch in the system) in the system. In its most basic form, the 

model is the easiest bus type to model. In the real circuit, it appears as an independent voltage 

source of value |𝑉𝑖| 𝑐𝑜𝑠 𝜃𝑖, and in the imaginary circuit it appears as a voltage source of value 

|𝑉𝑖| 𝑠𝑖𝑛 𝜃𝑖. When the phase 𝜃 is 0° the imaginary component appears as a short to ground. 

In real life, however, no single generator covers the complete slack in the system. Generally, all 

the generators change their real-power set-points based on the primary droop control and 

furthermore a subset of them adjust their set-points based on the secondary control i.e. automatic 

generation control (AGC) signal. Therefore, it is important that the steady-state analysis, which 

is trying to mimic the true behavior of the grid during normal or contingency operation, is able 

to model the distributed slack behavior of the grid. We incorporate this approach within our 

formulation using continuous analytical models for droop control as well as for AGC [44]. 

Although, droop control and AGC represent two distinct phenomena within the grid operation, 

their models for power flow problem can be achieved via same set of equations. We achieve this 
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by adding an additional variable delta P (Δ𝑃𝐺) to generators that are participating in either droop 

control or AGC. These variables in turn share the slack in the grid based on the pre-defined vector 

of participation factors 𝜿, which in turn can be pre-calculated based on either the size of the 

generator or the inertia of the machine. The equations for the distributed slack operation are as 

follows: 

𝑃𝑠𝑙𝑎𝑐𝑘 + Δ𝑃𝑠𝑙𝑎𝑐𝑘 = 𝑉𝑠𝑙𝑎𝑐𝑘
𝑅 𝐼𝑠𝑙𝑎𝑐𝑘

𝑅 + 𝑉𝑠𝑙𝑎𝑐𝑘
𝐼 𝐼𝑠𝑙𝑎𝑐𝑘

𝐼  (20) 

𝚫𝑷 = 𝜿𝑻𝚫𝑷𝒔𝒍𝒂𝒄𝒌   ∈ {AGC/droop}  (21) 

𝑷 
𝑴𝑰𝑵 < 𝑷 + 𝚫𝑷 < 𝑷 

𝑴𝑨𝑿 (22) 

where 𝚫𝑷𝒔𝒍𝒂𝒄𝒌  is a diagonal matrix with each element as Δ𝑃𝑠𝑙𝑎𝑐𝑘  and 𝚫𝑷  is the vector of 

additional power produced by the generators participating in AGC or droop control.  

 

Figure 5-8: Continuous analytical model for modeling the AGC and droop control of the 

generator based on participation factor. 

For modeling AGC as well as droop control, we represent the constraints given by (21) and 

(22) through the use of continuous analytical model whose behavior is seen in Figure 5-8. The 

model adjusts the real power output (𝑃𝐺) of the generator based on pre-defined participation 

factor as well as slack in the system until it exceeds its limits. The model consists of a set of 

functions that together include three linear segments (Region 1, 3, and 5 in the Figure 5-8) patched 

with two quadratic segments (Region 2 and 4 in the Figure 5-8) to produce a net continuous 
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differentiable function [44]. With the use of this model, all or selected sub-set of the participating 

generators contribute toward the slack in the system until they hit their minimum or maximum 

limit. Importantly, the model is differentiable and continuous and hence can be directly included 

implicitly within the inner loop of NR solver thus utilizing all the circuit heuristics developed 

within this thesis to ensure robust convergence. This is a significant improvement over the 

existing methodologies for AGC and droop in commercial power flow tools that implement this 

feature using outer loop around the NR solver with discontinuous piecewise models.  

To demonstrate our approach for AGC and droop control we run an experiment on a sample 

23-node (savnw) system. We first run the base case (pre-contingency) without enabling AGC or 

droop control and note the real power generation for different generators. We then perform a N-1 

contingency on the base case by taking the generator on bus 211 off-line and further noting the 

updated real power generation for different generators: i) with AGC and droop control enabled 

ii) with AGC and droop control disabled. As tabulated in Table 5-1, when the generator 

contingency is performed with AGC disabled, the slack generator picks up all the real power 

generation mismatch due to the loss of generator on bus 211. However, in the case with AGC 

enabled, the real power generation is distributed amongst different generators (in AGC) based 

on the participation factors until they hit their limits, upon which the participating factors are re-

distributed automatically, and remaining generators share the remaining slack. 

TABLE 5-1: RESULTS TO DEMONSTRATE AGC FUNCTIONALITY USING CONTINUOUS ANALYTICAL MODEL. 

Generator 

ID 

𝑃𝐺
𝑀𝐴𝑋 𝑃𝐺

𝑀𝐼𝑁 

𝜅 

Real Power Generation [MW] 

[MW] [MW] 
Pre-contingency Post-contingency 

AGC-Disabled AGC-Enabled AGC-Disabled 

101 810 0 0.23 750 810 750 

102 810 0 0.23 750 810 750 

206 900 0 0.25 800 900 800 

211* 616 0 0.18 600 0* 0* 

3011 900 0 0.08 257.74 635.22 864.39 

3018 117 0 0.03 100 117 100 
*Generator taken off-line during a contingency 
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5.2.5 PQ Bus  

Like the PV bus, the constant power node (PQ bus) is also represented as an equivalent circuit 

via either a complex voltage source or a complex current source. It has been empirically 

determined that superior convergence is observed when the load bus is modeled as a complex 

current source. The two fundamental equations that represent the behavior of the PQ load model, 

are given by: 

𝑃𝐿 = 𝑉𝑅𝐿𝐼𝑅𝐿 + 𝑉𝐼𝐿𝐼𝐼𝐿 (23) 

𝑄𝐿 = 𝑉𝑅𝐿𝐼𝐼𝐿 − 𝑉𝐼𝐿𝐼𝑅𝐿 (24) 

The terms in equation (23)-(24) are re-arranged to derive the complex current sources of the 

PQ node as a function of complex voltage state variables:  

𝐼𝑅𝐿 =
𝑃𝐿𝑉𝑅𝐿 + 𝑄𝐿𝑉𝐼𝐿

𝑉𝑅𝐿
2 + 𝑉𝐼𝐿

2  (25) 

𝐼𝐼𝐿 =
𝑃𝐿𝑉𝐼𝐿 − 𝑄𝐿𝑉𝑅𝐿

𝑉𝑅𝐿
2 + 𝑉𝐼𝐿

2  (26) 

Linearizing the load model in (25) and (26) as shown in (27)-(28) via Taylor expansion results in 

three elements in parallel for both the real and imaginary circuits: a conductance, a voltage-

controlled current source, and an independent current source. 

𝐼𝑅𝐿
𝑘+1 =  

𝜕𝐼𝑅𝐿

𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘+1) +

𝜕𝐼𝑅𝐿

𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘+1) + 𝐼𝑅𝐿

𝑘 −  
𝜕𝐼𝑅𝐿

𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘 )

−
𝜕𝐼𝑅𝐿

𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘) 

(27) 

𝐼𝐼𝐿
𝑘+1 =  

𝜕𝐼𝐼𝐿
𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘+1) +

𝜕𝐼𝐼𝐿
𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘+1) + 𝐼𝐼𝐿

𝑘  −  
𝜕𝐼𝐼𝐿
𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘 )

−
𝜕𝐼𝐼𝐿
𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘) 

(28) 

The linearized elements in (27)-(28) are represented in Figure 5-9 to represent the split equivalent 

circuit for the PQ load model. 
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Figure 5-9: Equivalent split-circuit PQ load model. 

5.2.6 ZIP Model 

The currents consumed by the PQ load model are insensitive to voltage magnitude at its 

terminal. This can result in inaccurate results for the power flow analysis for cases where the 

system solution has either visibly high or low voltages. Therefore, a more comprehensive load 

model such as the ZIP load model is needed to capture the voltage sensitive nature of the 

aggregated load. The ZIP load model models the aggregated load in the system as a mix of 

constant impedance, constant current, and constant power load models that can be 

mathematically represented as follows: 

𝑃𝑖
𝑍𝐼𝑃 =  𝑍𝑃(|𝑉𝑖|) 

2 +  𝐼𝑃(|𝑉𝑖|) + 𝑆𝑃 (29) 

𝑄𝑖
𝑍𝐼𝑃 =  𝑍𝑄(|𝑉𝑖|) 

2 + 𝐼𝑄(|𝑉𝑖|) + 𝑆𝑄 (30) 

In the equivalent circuit approach, the equations for the ZIP load model can be re-written as: 

𝐼𝑅𝑖
𝑍𝐼𝑃 = 𝑍𝑃𝑉𝑅𝑖 − 𝑍𝑄𝑉𝐼𝑖 +

𝑆𝑃𝑉𝑅𝑖 + 𝑆𝑄𝑉𝐼𝑖

(𝑉𝑅𝑖)
2 + (𝑉𝐼𝑖)

2
+ (√𝐼𝑃

2 + 𝐼𝑄
2) . cos(𝐼𝑝𝑓 + 𝑖) (31) 

𝐼𝐼𝑖
𝑍𝐼𝑃 = 𝑍𝑃𝑉𝐼𝑖 + 𝑍𝑄𝑉𝑅𝑖 +

𝑆𝑃𝑉𝐼𝑖 − 𝑆𝑄𝑉𝑅𝑖

(𝑉𝑅𝑖)
2 + (𝑉𝐼𝑖)

2
+ (√𝐼𝑃

2 + 𝐼𝑄
2) . sin(𝐼𝑝𝑓 + 𝑖) (32) 

where: 

𝐼𝑝𝑓 =  tan-1 (
𝐼𝑄

𝐼𝑃
) (33) 

𝑖 =  tan-1 (
𝑉𝐼𝑖

𝑉𝑅𝑖
) (34) 

+

_

+

_

𝐼𝑅𝐿
𝑘+1

𝑉𝑅𝐿
𝑘+1

𝐼𝐼𝐿
𝑘+1

𝑉𝐼𝐿
𝑘+1

Real Circuit Imaginary Circuit 
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For the load model given in (31) through (34), the constant impedance part of the load is linear, 

whereas the constant current and constant power part of the aggregated load is nonlinear. 

Linearizing the set of equations using Taylor expansion results in the following expressions: 

𝐼𝑅𝑖
𝑍𝐼𝑃𝑘+1

= 𝐼𝑅𝑖
𝑍𝐼𝑃𝑘

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝑅𝑖
𝑘+1 − 𝑉𝑅𝑖

𝑘) + (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝐼𝑖
𝑘+1 − 𝑉𝐼𝑖

𝑘) (35) 

𝐼𝐼𝑖
𝑍𝐼𝑃𝑘+1

= 𝐼𝐼𝑖
𝑍𝐼𝑃𝑘

+ (
𝜕𝐼𝐼𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝑅𝑖
𝑘+1 − 𝑉𝑅𝑖

𝑘) + (
𝜕𝐼𝐼𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝐼𝑖
𝑘+1 − 𝑉𝐼𝑖

𝑘) (36) 

 

Figure 5-10: Real and imaginary equivalent circuit for the ZIP load model. 

The linearized set of equations can then be mapped into the equivalent circuit for ZIP load model 

that is shown in Figure 5-10.  

5.2.7 BIG Model 

The BIG aggregated load model introduced in [52]-[54] (Figure 5-11) more accurately captures 

the true behavior of the aggregated load when compared against the traditional non-linear PQ 

load model, and is comparable in accuracy to the more comprehensive non-linear ZIP load model. 

Importantly, the BIG load model can be easily fitted with real-time measurement data and is 

linear while it also captures the true sensitivities of the aggregated load. As the network 

constraints (for lines and transformers etc.) are linear in equivalent circuit approach with non-

linearities limited to PV and PQ models, the linear BIG load model results in linear equality 

constraints for the load nodes.  

The BIG model is defined by a combination of constant current source (𝛼𝑅
𝐵𝐼𝐺 + 𝑗𝛼𝐼

𝐵𝐼𝐺 ), a 

conductance (𝐺𝐵𝐼𝐺) and a susceptance (𝐵𝐵𝐼𝐺) whose real and imaginary currents are given by: 

+

_

+

_

𝐼𝑅
𝑍𝐼𝑃𝑘+1

Real Circuit Imaginary Circuit 
𝐼𝐼
𝑍𝐼𝑃𝑘+1

𝑉𝑅
𝑍𝐼𝑃𝑘+1 𝑉𝐼

𝑍𝐼𝑃𝑘+1
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𝐼𝑅
𝐵𝐼𝐺 + 𝑗𝐼𝐼

𝐵𝐼𝐺 = 𝛼𝑅
𝐵𝐼𝐺 + 𝑗𝛼𝐼

𝐵𝐼𝐺 + (𝑉𝑅
𝐵𝐼𝐺 + 𝑗𝑉𝐼

𝐵𝐼𝐺)(𝐺𝐵𝐼𝐺 + 𝐵𝐵𝐼𝐺) (37) 

 

Figure 5-11: Equivalent circuit of a BIG load model. 

The appendix A of this thesis delves deeper into the proposed BIG load model and discusses 

its advantages over other existing aggregated load models in detail. It also refers to machine 

learning methods that have been developed within our group to fit the BIG load model to capture 

the true sensitivities of the load currents. 

5.2.8 Transformer 

Transformers are an integral part of the electric grid and are used to step-up or step-down the 

grid voltages. In addition, some transformers contain a built-in phase shifter and have a capability 

to introduce phase shifts between the buses to which they are connected. We derive the 

equivalent circuit of the transformer with the transformer impedance modeled on the secondary 

of the transformer as shown in Figure 5-12.  

  

Figure 5-12: Equivalent circuit for a transformer. 

To derive the split circuit equivalent model of the transformer, we begin by relating the 

primary and secondary voltages (�̃�𝑖 and �̃�𝑙) by the turns ratio 𝑡𝑟 and the phase angle 𝛩: 

Real Circuit 

+

_

𝑉𝑅
𝐵𝐼𝐺

𝐼𝑅
𝐵𝐼𝐺

𝐺𝐵𝐼𝐺 −𝐵𝐵𝐼𝐺 𝛼𝑅
𝐵𝐼𝐺

Imaginary Circuit 

+

_

𝑉𝐼
𝐵𝐼𝐺

𝐼𝐼
𝐵𝐼𝐺

𝐺𝐵𝐼𝐺 𝐵𝐵𝐼𝐺 𝛼𝐼
𝐵𝐼𝐺

𝑅𝑖𝑙 + 𝑗 𝑖𝑙𝑖 𝑙 

−𝑡𝑟. 𝑒  𝐼 𝑖𝑡𝑟. 𝑒  �̃�𝑙

𝐼 𝑖 �̃�𝑙𝑙
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�̃�𝑖

�̃�𝑙

= 𝑡𝑟. 𝑒 𝛩  
𝑉𝑅

𝑖 + 𝑗𝑉𝐼
𝑖

𝑉𝑅
𝑙 + 𝑗𝑉𝐼

𝑙 = 𝑡𝑟(cos𝛩 + 𝑗 sin𝛩) (38) 

Representing the primary transformer voltages as functions of secondary transformer voltages 

by splitting them into real and imaginary parts results in: 

𝑉𝑅
𝑖 = 𝑡𝑟(𝑉𝑅

𝑙 cos𝛩 − 𝑉𝐼
𝑙 sin𝛩) (39) 

𝑉𝐼
𝑖 = 𝑡𝑟(𝑉𝐼

𝑙 cos𝛩 + 𝑉𝑅
𝑙 sin𝛩) (40) 

The first term of (39) represents a voltage-controlled voltage source, where the controlling 

voltage is the secondary side voltage in the real circuit. The second term is a voltage-controlled 

voltage source, but here the controlling voltage is the secondary side voltage in the imaginary 

circuit. The equation (40) represents similar terms. These terms can be used to represent the 

primary side of transformer equivalent circuit as shown in Figure 5-13. 

Similarly, the real and imaginary equivalent circuits for the secondary of the transformer can 

be developed by the primary and secondary current relationship. The relationship between 

primary and secondary complex currents (𝐼 𝑖 and 𝐼 𝑙) in terms of the turns ratio is given by: 

𝐼 𝑙

𝐼 𝑖
= −𝑡𝑟. 𝑒− 𝜃  

𝐼𝑅
𝑙 + 𝑗𝐼𝐼

𝑙

𝐼𝑅
𝑖 + 𝑗𝐼𝐼

𝑖
= −𝑡𝑟(cos𝛩 − 𝑗 sin𝛩) (41) 

We derive the currents for the secondary side of the transformer as a function of primary side 

currents and split them into respective real and imaginary terms: 

𝐼𝑅
𝑙 = −𝑡𝑟(𝐼𝑅

𝑖 cos𝛩 + 𝐼𝐼
𝑖 sin𝛩) (42) 

𝐼𝐼
𝑙 = −𝑡𝑟(𝐼𝐼

𝑖 cos𝛩 − 𝐼𝑅
𝑖 sin 𝛩) (43) 

The first term of (42) represents a current-controlled current source, where the controlling current 

is the current which flows through the primary side in the real circuit. The second term represents 

a current-controlled current source, but here the controlling current is the current which flows 

through the primary side in the imaginary circuit. The equation (43) represents similar terms. 

These terms can be used to represent the secondary side of transformer equivalent circuit as 

shown in Figure 5-13 for the phase shifter value of 0. 
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The leakage term of the transformer 𝑍𝑖𝑙 = 𝑅𝑖𝑙 + 𝑗 𝑖𝑙  is modeled on the secondary side. We 

model it using same approach as that of the transmission line given in Section 5.2.9 resulting in 

the following real and imaginary terms:  

𝐼𝑅
𝑙 = 𝑉𝑅

𝑙′𝑙𝐺𝑖𝑙 − 𝑉𝐼
𝑙′𝑙𝐵𝑖𝑙 (44) 

𝐼𝐼
𝑙 = 𝑉𝐼

𝑙′𝑙𝐺𝑖𝑙 + 𝑉𝑅
𝑙′𝑙𝐵𝑖𝑙 (45) 

The first term of (44) is a conductance and the second term is a voltage-controlled current source; 

likewise for equation (45). A full equivalent circuit model for the transformer for phase shifter 

magnitude of 0° is shown in Figure 5-13. 

 

Figure 5-13: Real and imaginary circuit for a transformer model. 

5.2.8.1 Control of transformer taps 

Transformers with controllable taps can control the voltage at either its own node or another 

node in the system given by 𝒲. In the existing methodology, transformers taps are generally 

adjusted in the outer loop of the solver based on the system voltages obtained in the inner loop 

NR solution. However, this technique suffers from oscillations and convergence to non-physical 

solutions as described in the case of generators in Section 5.2.2.1. Therefore, to overcome these 

challenges, we propose the use of a continuous transformer model for the control of transformer 

taps in the system.  

𝑉𝐼
𝑖

𝑉𝐼
𝑙′𝑉𝐼

𝑙

𝐵𝑖𝑙

𝐺𝑖𝑙

𝐼𝐼
𝑖 𝐼𝐼

𝑙

−𝑡𝑟. 𝐼𝐼
𝑖𝑡𝑟. 𝑉𝐼

𝑙

Imaginary Circuit

𝑉𝑅
𝑖 𝑉𝑅

𝑙′𝑉𝑅
𝑙

−𝐵𝑖𝑙

𝐺𝑖𝑙

𝐼𝑅
𝑖 𝐼𝑅

𝑙

−𝑡𝑟. 𝐼𝑅
𝑖𝑡𝑟. 𝑉𝑅

𝑙

Real Circuit
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In this continuous twice differential transformer model, a sigmoid curve is used to describe 

the relationship between the transformer turns ratio and the voltage at the controlled node. 

Within its limits, the transformer taps adjust its value to control the controlled node’s voltage.  

However, if the transformer taps ratio exceeds its limit, the turns ratio value saturates and no 

longer controls the voltage of the controlled node.  

 

Figure 5-14: Continuous transformer tap control schematic. 

Unlike the generator continuous model in Section 5.2.3, in the transformer continuous model 

a set of sigmoid curves is used to control the voltage of the controlled node 𝒲 as a function of 

turns ratio. The choice of the sigmoid curve depends on the relative location of the controlled bus 

as shown in Figure 5-14. For instance, consider a bus connected to the primary side of the 

transformer whose voltage is being controlled. If the observed voltages on the controlled bus are 

lower than the set voltage, then the primary taps are increased to adjust the voltage toward the 

set voltage whereas if the observed voltages are higher than the set value then the primary taps 

are reduced to adjust the voltage. On the other hand, if the controlled bus 𝒲 is on the secondary 

side of the transformer, then the primary taps are reduced to increase the voltage of the controlled 

bus 𝒲 and increased to the reduce the voltage of the controlled bus on the secondary side. The 

voltage constraint characteristics for the controlled node 𝒲  whose relative location is on the 

primary side of the transformer is: 
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𝑡𝑟 =
𝑡𝑟𝑀𝐴𝑋 −  𝑡𝑟𝑀𝐼𝑁

1 + exp (𝜆𝑆 ∗ [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝑡𝑟𝑀𝐼𝑁 
(46) 

In case the controlled node 𝒲′s relative location is on the secondary side of the transformer, then 

the voltage constraint characteristics are given by: 

𝑡𝑟 =
𝑡𝑟𝑀𝐼𝑁  −  𝑡𝑟𝑀𝐴𝑋

1 + exp (𝜆𝑆 ∗ [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝑡𝑟𝑀𝐴𝑋 
(47) 

In the continuous model for the transformer voltage control, the turns ratio parameter (𝑡𝑟) is 

an unknown variable (with continuous range) and requires additional stamps in the system 

Jacobian for incorporating the sensitivities of transformer currents to transformer turns ratio. 

Importantly, the voltage and current equations are no longer linear functions of unknown 

variables, and therefore, are linearized prior to being stamped in the Jacobian matrix. 

Importantly, the actual tap adjustment in the transformer is discrete, therefore, once the inner 

loop of NR is completed with the continuous model, the taps are snapped to their closest discrete 

value to obtain the final solution. In practice, it is rare that the snapping back action could result 

in system to diverge. However, theoretically it is possible due to two reasons: 

i. The modified system state due to the change in transformer tap magnitude from its 

continuous to discrete value could result in an infeasible network. 

ii. The set of non-linear equations representing the modified system state may diverge 

with prior solution as the initial condition. 

In our solver, we make use of continuation (like methodology in Section 5.2.3.3.1) and 

optimization-based methods [71] to address these concerns. In case the system is infeasible due 

to the change in transformer tap magnitude from its continuous to discrete value, the 

optimization-based methods [71]  can identify the system infeasibility and accordingly adjust the 

discrete elements values such that the system is feasible. In case, the divergence is due to the lack 

of good initial conditions for the snapped system state, continuation methods can be used to 
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gradually modify the discrete elements parameters from their continuous value to the closest 

discrete value until convergence is achieved. 

5.2.9 Transmission Line 

Positive-sequence power flow analysis mainly uses a simplified pi-model for the transmission 

line. The model is shown in Figure 5-15. In this model, both the series and the shunt impedances 

are approximated by an equivalent lumped pi-model, which is a linear model with branch 

currents as linear functions of from and to node voltages. We trivially derive the split circuits for 

this model using Kirchhoff’s current law. In this derivation, for the sake of simplicity, the real and 

imaginary series and the shunt current terms for the transmission line are derived separately and 

then later combined to represent the whole model.  

  

Figure 5-15: Equivalent circuit of a pi-model of the transmission line. 

The series complex current for the transmission line between nodes 𝑖 and 𝑙 can be calculated from 

Ohm’s law: 

𝐼𝑅
𝑠 + 𝑗𝐼𝐼

𝑠 =
𝑉𝑅

𝑖𝑙 + 𝑗𝑉𝐼
𝑖𝑙

𝑅𝑖𝑙 + 𝑗 𝑖𝑙
 (48) 

The real and imaginary terms of (48) can be split into their respective equations: 

𝐼𝑅
𝑠 = 𝑉𝑅

𝑖𝑙
𝑅𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 + 𝑉𝐼
𝑖𝑙

 𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 (49) 

𝐼𝐼
𝑠 = 𝑉𝐼

𝑖𝑙
𝑅𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 − 𝑉𝑅
𝑖𝑙

 𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 (50) 

Finally, the conductance (𝐺𝑖𝑙) and susceptance (𝐵𝑖𝑙) values can be used to simplify the derived 

terms, which can then be mapped into the equivalent circuit. 

𝑙
𝑅𝑖𝑙 + 𝑗 𝑖𝑙𝑖 𝐼 𝑠

𝐼 𝑠ℎ
�̃�𝑙�̃�𝑖
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𝐼𝑅
𝑠 = 𝑉𝑅

𝑖𝑙𝐺𝑖𝑙 − 𝑉𝐼
𝑖𝑙𝐵𝑖𝑙 (51) 

𝐼𝐼
𝑠 = 𝑉𝐼

𝑖𝑙𝐺𝑖𝑙 + 𝑉𝑅
𝑖𝑙𝐵𝑖𝑙 (52) 

Like series terms, the shunt terms for the line model can be calculated via Ohm’s law, which 

can then be split into their real and imaginary terms as given in (54)-(55). The series and shunt 

terms can then be combined and mapped into their equivalent circuits as shown in Figure 5-16. 

  

Figure 5-16: Real and imaginary circuit for the pi-model of transmission line. 

𝐼𝑅
𝑠ℎ + 𝑗𝐼𝐼

𝑠ℎ = (𝑉𝑅
𝑖 + 𝑗𝑉𝐼

𝑖)𝑗
𝐵𝑠ℎ

2
 (53) 

𝐼𝑅
𝑠ℎ = −𝑉𝐼

𝑖
𝐵𝑠ℎ

2
 (54) 

𝐼𝐼
𝑠ℎ = 𝑉𝑅

𝑖
𝐵𝑠ℎ

2
 (55) 

5.2.10 Preliminary Results for Positive Sequence Power Flow  

The purpose of this experiment is to validate the equivalent circuit approach for positive 

sequence power flow. To do so we simulate multiple cases from the flat start and document the 

results in Table 5-2. We report the case as converged if the solution obtained from our framework 

can be plugged into a commercial solver to result in the same solution. Additionally, we also 

document the number of iterations it took for the given case to converge.  

𝐺𝑖𝑙

−𝐵𝑖𝑙

𝑉𝑅
𝑖

𝐺𝑖𝑙

𝐵𝑖𝑙

𝑉𝑅
𝑙 𝑉𝐼

𝑖 𝑉𝐼
𝑙

Real Circuit Imaginary Circuit
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TABLE 5-2: PRELIMINARY RESULTS FOR POSITIVE SEQUENCE POWER FLOW WITH EQUIVALENT CIRCUIT APPROACH 

Case Name Number of Nodes Reference Iteration Count Solution 

case14 14 IEEE 4 Converged 

case118 118 IEEE 5 Converged 

case145 145 IEEE 14 Converged 

SouthCarolina500 500 ACTIVSg500 4 Converged 

Texas2000_June2016 2000 ICSEG 5 Converged 

case1354pegase 1354 PEGASE 5 Converged 

Case13659pegase 13659 PEGASE xx Diverged 

bench 1648 PSSE benchmark 7 Converged 

bench2 7917 PSSE benchmark xx Diverged 

Results in Table 5-2 demonstrate that the equivalent circuit approach can solve the positive 

sequence power problem for most of the test cases from flat start. However, as expected some of 

the cases diverge when simulated from the flat start. Therefore, in the rest of this thesis, we will 

develop methods that can ensure convergence for hard-to-solve ill conditioned and large test 

cases from arbitrary initial conditions. First, however, we extend the equivalent circuit 

formulation framework described in this section for positive-sequence power grid models to 

three-phase power grid models. 

5.3 Equivalent Circuit Models for Three-Phase Power Flow Problem 

In this section, we develop equivalent circuit models for some of the most commonly used 

elements in the distribution grid for three-phase power flow analysis. 

5.3.1 Slack Bus 

In the distribution system analysis, the transmission edge of the grid is usually modeled as an 

infinite bus, which is represented via a substation or infinite bus that generally feeds into but 

rarely absorbs power from the distribution system. Each phase of the infinite or the slack bus can 

be represented in the real circuit as an independent voltage source of value |𝑉𝑖
𝛺| cos(𝜃𝑖

𝛺), and in 

the imaginary circuit (imaginary portion of the split circuit) as an independent voltage source of 

value |𝑉𝑖
𝛺| sin(𝜃𝑖

𝛺). It should be noted that if the slack bus is connected in a wye configuration, 

its magnitude represents the line-to-neutral voltage, whereas if connected in delta configuration, 

it will represent the line-to-line voltage. The complete split circuit model for a 3-phase slack bus 
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connected in grounded wye configuration is shown in Figure 5-17. Importantly, it should be 

noted that in future with presence of multiple large generation resources within the distributed 

grid, it is likely that the distribution grid will contribute control during primary and secondary 

control as in the case of transmission grid. This can be easily incorporated into our framework 

using distributed slack framework following the methodology stipulated in Section 5.2.4. 

  

Figure 5-17: Real and imaginary circuits for slack bus in three-phase power flow problem. 

5.3.2 ZIP Load Model 

Amongst all the existing aggregated load models in distribution system analysis, the ZIP load 

model is the most comprehensive. It models the aggregated load in the system as a mix of constant 

impedance, constant current, and constant power load models, which can be mathematically 

represented for each phase as follows: 

(𝑃𝑖
𝑍𝐼𝑃)

𝛺
=  𝑍𝑃

𝛺(|𝑉𝑖
𝛺|) 2 +  𝐼𝑃

𝛺(|𝑉𝑖
𝛺|) + 𝑆𝑃

𝛺 (56) 

(𝑄𝑖
𝑍𝐼𝑃)

𝛺
=  𝑍𝑄

𝛺(|𝑉𝑖
𝛺|) 2 + 𝐼𝑄

𝛺(|𝑉𝑖
𝛺|) + 𝑆𝑄

𝛺 (57) 

In the equivalent circuit approach, the equations for the ZIP load model can be re-written as: 

(𝐼𝑅𝑖
𝑍𝐼𝑃)

𝛺
= 𝑍𝑃

𝛺𝑉𝑅𝑖
𝛺 − 𝑍𝑄

𝛺𝑉𝐼𝑖
𝛺 +

𝑆𝑃
𝛺𝑉𝑅𝑖

𝛺 + 𝑆𝑄
𝛺𝑉𝐼𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 + (√𝐼𝑃

𝛺2
+ 𝐼𝑄

𝛺2
) . cos(𝐼𝑝𝑓

𝛺 + 𝛿𝑖
𝛺) (58) 

(𝐼𝐼𝑖
𝑍𝐼𝑃)

𝛺
= 𝑍𝑃

𝛺𝑉𝐼𝑖
𝛺 + 𝑍𝑄

𝛺𝑉𝑅𝑖
𝛺 +

𝑆𝑃
𝛺𝑉𝐼𝑖

𝛺 − 𝑆𝑄
𝛺𝑉𝑅𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 + (√𝐼𝑃

𝛺2
+ 𝐼𝑄

𝛺2
) . sin(𝐼𝑝𝑓

𝛺 + 𝛿𝑖
𝛺) (59) 

where: 

𝑉𝐴 cos (𝜃𝐴)

𝑉𝐵 cos (𝜃𝐵)

𝑉𝐶 cos (𝜃𝐶)

𝑉𝐴 sin (𝜃𝐴)

𝑉𝐵 sin (𝜃𝐵)

𝑉𝐶 sin (𝜃𝐶)

Real Circuit Imaginary Circuit 
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𝐼𝑝𝑓
𝛺 =  tan-1 (

𝐼𝑄
𝛺

𝐼𝑃
𝛺) (60) 

𝛿𝑖
𝛺 =  tan-1 (

𝑉𝐼𝑖
𝛺

𝑉𝑅𝑖
𝛺) (61) 

For the load model given in (58) through (61), the constant impedance part of the load is linear, 

whereas the constant current and constant power part of the aggregated load is nonlinear. 

Linearizing the set of equations using Taylor expansion results in the following expression for 

each phase 𝛺 in 𝛺𝑠𝑒𝑡: 

(𝐼𝑅𝑖
𝑍𝐼𝑃)

𝛺𝑘+1
= (𝐼𝑅𝑖

𝑍𝐼𝑃)
𝛺𝑘

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝑅𝑖
𝛺𝑘+1

− 𝑉𝑅𝑖
𝛺𝑘

)

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝐼𝑖
𝛺𝑘+1

− 𝑉𝐼𝑖
𝛺𝑘

) 

(62) 

(𝐼𝐼𝑖
𝑍𝐼𝑃)

𝛺𝑘+1
= (𝐼𝐼𝑖

𝑍𝐼𝑃)
𝛺𝑘

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝑅𝑖
𝛺𝑘+1

− 𝑉𝑅𝑖
𝛺𝑘

)

+ (
𝜕𝐼𝐼𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝐼𝑖
𝛺𝑘+1

− 𝑉𝐼𝑖
𝛺𝑘

) 

(63) 

The linearized set of equations can then be mapped into the equivalent three-phase model of the 

ZIP load either in wye (Y) or delta (D) formation, as shown in Figure 5-18.  

 

Figure 5-18: Real circuit for a) wye connected ZIP load model (on left) b) delta (D) connected 

ZIP load model (on right). 

+ _

+_
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It is important to note that the ZIP model results in non-linear network constraints for both the 

PQV and CIM formulations, which further adds to already existing non-linearities in the 

formulation. We propose to replace the non-linear ZIP model with a linear three-phase BIG model 

that provides comparable accuracy.  

5.3.3 Three-phase BIG load model 

The proposed linear positive sequence BIG load model in Section 5.2.7 is further extended to 

a linear three-phase aggregated load model that can be connected in either wye or delta 

connection as in the case of the ZIP load model. Refer to Appendix A for more detailed 

explanation of the BIG load model. 

5.3.4 Transmission Line 

The three main types of transmission lines in the distribution grid are the overhead line, 

underground cable, and the triplex cable. The overhead line generally consists of a 4-wire 

configuration with three phase conductors and one neutral conductor. The concentric 

underground cable, on the other hand, consists of a 7-wire configuration with three phase 

conductors, along with corresponding neutral conductors and an additional neutral conductor. 

The triplex cable consists of three wires with two hot conductors and one neutral conductor.  

The impedance matrix for the overhead, underground and triplex lines are of the order 4x4, 

7x7, and 3x3, respectively.  However, with the use of Kron’s reduction [32], we can eliminate 

neutral wires from the models resulting in 3x3, 3x3 and 2x2 impedance matrices for overhead 

lines, underground cables and triplex cables, respectively. Finally, admittance matrix ( ̃𝑙𝑖𝑛𝑒) for 

the line model can then be calculated by finding the inverse of the impedance matrix (𝑍𝑙𝑖𝑛𝑒): 

 ̃𝑙𝑖𝑛𝑒 = 𝑍𝑙𝑖𝑛𝑒
−1  (64) 

With the admittance matrix calculated, the transmission line branch currents can be represented 

by Ohm’s Law, where �̃�𝐴𝑎, �̃�𝐵𝑏 and �̃�𝐶𝑐 are the voltage drops across the lines: 

[

𝐼 𝐴
𝐼 𝐵
𝐼 𝐶

] =  [

 ̃𝑎𝑎  ̃𝑎𝑏  ̃𝑎𝑐

 ̃𝑏𝑎  ̃𝑏𝑏  ̃𝑏𝑐

 ̃𝑐𝑎  ̃𝑐𝑏  ̃𝑐𝑐

] [

�̃�𝐴𝑎

�̃�𝐵𝑏

�̃�𝐶𝑐

] (65) 
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Since the series admittances 𝐺𝑖𝑙
ℵ + 𝑗𝐵𝑖𝑙

ℵ  of the branches have both real and imaginary components, 

the system of equations from (65) can be split as: 

[
 
 
 
 
 
 
𝐼𝑅
𝐴

𝐼𝐼
𝐴

𝐼𝑅
𝐵

𝐼𝐼
𝐵

𝐼𝑅
𝐶

𝐼𝐼
𝐶]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝐺𝑎𝑎

ℵ −𝐵𝑎𝑎
ℵ 𝐺𝑎𝑏

ℵ

𝐵𝑎𝑎
ℵ 𝐺𝑎𝑎

ℵ 𝐵𝑎𝑏
ℵ

𝐺𝑏𝑎
ℵ −𝐵𝑏𝑎

ℵ 𝐺𝑏𝑏
ℵ

    

−𝐵𝑎𝑏
ℵ 𝐺𝑎𝑐

ℵ −𝐵𝑎𝑐
ℵ

𝐺𝑎𝑏
ℵ 𝐵𝑎𝑐

ℵ 𝐺𝑎𝑐
ℵ

−𝐵𝑏𝑏
ℵ 𝐺𝑏𝑐

ℵ −𝐵𝑏𝑐
ℵ

𝐵𝑏𝑎
ℵ 𝐺𝑏𝑎

ℵ 𝐵𝑏𝑏
ℵ

𝐺𝑐𝑎
ℵ −𝐵𝑐𝑎

ℵ 𝐺𝑐𝑏
ℵ

𝐵𝑐𝑎
ℵ 𝐺𝑐𝑎

ℵ 𝐵𝑐𝑏
ℵ

    

𝐺𝑏𝑏
ℵ 𝐵𝑏𝑐

ℵ 𝐺𝑏𝑐
ℵ

−𝐵𝑐𝑏
ℵ 𝐺𝑐𝑐

ℵ −𝐵𝑐𝑐
ℵ

𝐺𝑐𝑏
ℵ 𝐵𝑐𝑐

ℵ 𝐺𝑐𝑐
ℵ ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑉𝑅

𝐴𝑎

𝑉𝐼
𝐴𝑎

𝑉𝑅
𝐵𝑏

𝑉𝐼
𝐵𝑏

𝑉𝑅
𝐶𝑐

𝑉𝐼
𝐶𝑐 ]

 
 
 
 
 
 

 (66) 

Using the same approach, the transmission line shunt currents can be derived, where �̃�𝐴, �̃�𝐵 

and �̃�𝐶 are the line-to-ground nodal voltages. Since the admittance of the shunt elements in the 

pi-model is purely imaginary ( ̃𝑖
𝑠ℎ = 𝑗𝐵𝑖

𝑠ℎ), we derive the following set of equations from Ohm’s 

law: 

[
 
 
 
 
 
 
 
 𝐼𝑅

𝐴𝑠ℎ

𝐼𝐼
𝐴𝑠ℎ

𝐼𝑅
𝐵𝑠ℎ

𝐼𝐼
𝐵𝑠ℎ

𝐼𝑅
𝐶𝑠ℎ

𝐼𝐼
𝐶𝑠ℎ

]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 

0 −𝐵𝑎𝑎
𝑠ℎ 0

𝐵𝑎𝑎
𝑠ℎ 0 𝐵𝑎𝑏

𝑠ℎ

0 −𝐵𝑏𝑎
𝑠ℎ 0

    

−𝐵𝑎𝑏
𝑠ℎ 0 −𝐵𝑎𝑐

𝑠ℎ

0 𝐵𝑎𝑐
𝑠ℎ 0

−𝐵𝑏𝑏
𝑠ℎ 0 −𝐵𝑏𝑐

𝑠ℎ

𝐵𝑏𝑎
𝑠ℎ 0 𝐵𝑏𝑏

𝑠ℎ

0 −𝐵𝑐𝑎
𝑠ℎ 0

𝐵𝑐𝑎
𝑠ℎ 0 𝐵𝑐𝑏

𝑠ℎ

    

0 𝐵𝑏𝑐
𝑠ℎ 0

−𝐵𝑐𝑏
𝑠ℎ 0 −𝐵𝑐𝑐

𝑠ℎ

0 𝐵𝑐𝑐
𝑠ℎ 0 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑉𝑅

𝐴

𝑉𝐼
𝐴

𝑉𝑅
𝐵

𝑉𝐼
𝐵

𝑉𝑅
𝐶

𝑉𝐼
𝐶]
 
 
 
 
 
 

 (67) 

Equations (66) and (67) for the transmission line are then mapped into an equivalent circuit given 

by linear resistors and voltage-controlled current sources. Figure 5-19 shows the real sub-circuit 

for one of the phases of a transmission line. 

 

Figure 5-19: Real circuit of a transmission line (Phase A). 
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5.3.5 Three-Phase Transformers 

Three-phase distribution transformers are used to transform the voltages from transmission 

level to sub-transmission level and to isolate single-phase circuits from three-phase circuits. 

Various configurations for the three-phase transformers exist in the distribution system, some of 

which include: 

i. Grounded wye – grounded wye (grY – grY) 

ii. Delta – delta (D – D) 

iii. Wye – delta (wye – D) 

iv. Grounded wye – delta (grY – D) 

v. Delta – wye (D – wye) 

vi. Open wye – open delta 

In the next subsection we will derive the equivalent circuit model for the grounded wye – 

grounded wye three-phase transformer configuration. Following the same methodology, 

equivalent circuits for the other transformer configurations can also be derived. 

Grounded wye – grounded wye (grY – grY) Configuration 

In the grounded wye – grounded wye configuration of the three-phase transformer, the 

relationship between the primary and secondary currents (𝐼 𝑝𝑟𝑖
𝛺 , 𝐼 𝑠𝑒𝑐

𝛺 ) and voltages (�̃�𝑝𝑟𝑖
𝛺 , �̃�𝑠𝑒𝑐

𝛺 ) for 

each individual phase is given by: 

�̃�𝑝𝑟𝑖
𝛺 = 𝑡𝑟. �̃�𝑠𝑒𝑐

𝛺 𝑒 𝛩𝛺
 (68) 

𝐼 𝑠𝑒𝑐
𝛺 = −𝑡𝑟. 𝐼 𝑝𝑟𝑖

𝛺 𝑒− 𝛩𝛺
 (69) 

Splitting of these current and voltage equations into real and imaginary terms results in the 

following set of equations: 

𝑉𝑅
𝛺

𝑝𝑟𝑖
=  𝑡𝑟 (𝑉𝑅

𝛺
𝑠𝑒𝑐

cos𝛩𝛺 − 𝑉𝐼
𝛺

𝑠𝑒𝑐
sin𝛩𝛺) (70) 

𝑉𝐼
𝛺

𝑝𝑟𝑖
=  𝑡𝑟 (𝑉𝑅

𝛺
𝑠𝑒𝑐

sin𝛩𝛺 + 𝑉𝐼
𝛺

𝑠𝑒𝑐
cos𝛩𝛺) (71) 

𝐼𝑅
𝛺

𝑠𝑒𝑐
= −𝑡𝑟 (𝐼𝑅

𝛺
𝑝𝑟𝑖

cos𝛩𝛺 + 𝐼𝐼
𝛺

𝑠𝑒𝑐
sin𝛩𝛺) (72) 
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𝐼𝐼
𝛺

𝑠𝑒𝑐
= −𝑡𝑟 (−𝐼𝑅

𝛺
𝑝𝑟𝑖

sin𝛩𝛺 + 𝐼𝐼
𝛺

𝑠𝑒𝑐
cos𝛩𝛺) (73) 

These equations given by (70) through (73) are mapped into equivalent circuit model of the 

transformer by using controlled voltage and current sources. In addition, the transformer losses 

for each of the three-phases are modeled on the secondary of the transformer, represented by 

following loss admittance relationship: 

𝐼 𝑅
𝛺 = 𝐺𝑙𝑜𝑠𝑠�̃�𝑅

𝛺𝛺′
− 𝐵𝑙𝑜𝑠𝑠�̃�𝐼

𝛺𝛺′
 (74) 

𝐼 𝐼
𝛺 = 𝐺𝑙𝑜𝑠𝑠�̃�𝐼

𝛺𝛺′
+ 𝐵𝑙𝑜𝑠𝑠�̃�𝑅

𝛺𝛺′
 (75) 

Figure 5-20 shows the real circuit of the grounded wye – grounded wye transformer model with 

zero phase shift. 

 

Figure 5-20: Real circuit for the grounded wye – grounded wye transformer with no phase 

shift. 

Importantly, akin to positive-sequence transformer, the three-phase transformer can also 

control the phase voltages either at its primary or secondary side via the control of its turns ratio. 

In the solver, this control can either be modeled in the outer loop via the use of discontinuous 

piecewise model or be modeled implicitly through the use of continuous transformer tap model, 

which is extended from the positive-sequence model of the transformer shown in Section 5.2.8.1. 

5.4 Preliminary Results for Three-phase power flow  

In this section, we document preliminary three-phase power flow results for a standard 4-bus 

test case [29] in equivalent circuit approach.  
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Figure 5-21: Standard 4-bus test case system. 

The schematic of the standard 4-bus test case is shown in Figure 5-21. The results for this test 

case are shown for different transformer configurations in Table 5-3. The tabulated results 

represent the complex phase voltages at the load bus shown in Figure 5-21 and those compare 

well against the results obtained from the standard reference [29] for the same set of transformer 

configurations. 

TABLE 5-3: SUGAR THREE-PHASE RESULTS FOR 4-BUS TEST CASE 

Configuration Balanced Unbalanced 

SUGAR 3-Phase 

[V∠°] 

Results in [29] [V∠°] SUGAR 3-Phase [V∠°] Results in [29] [V∠°] 

Step-down grY-

grY 

VA:  

VB:  

VC:  

1918∠-9.1 

2061∠-128.3 

1981∠110.9 

VA:  

VB:  

VC:  

1918∠-9.1 

2061∠-128.3 

1981∠110.9 

VA:  

VB:  

VC:  

2175∠-4.1 

1930∠-126.8 

1833∠102.8 

VA:  

VB:  

VC:  

2175∠-4.1 

1930∠-126.8 

1833∠102.8 

Step-down D-D 

VAB:  

VBC:  

VCA:  

3442∠22.3 

3497∠-99.4 

3384∠140.7 

VAB:  

VBC:  

VCA:  

3442∠22.3 

3497∠-99.4 

3384∠140.7 

VAB:  

VBC:  

VCA:  

3431∠24.3 

3647∠-100.4 

3294∠138.6 

VAB:  

VBC:  

VCA:  

3431∠24.3 

3647∠-100.4 

3294∠138.6 

Step-down Y-D 

VAB:  

VBC:  

VCA: 

3437∠-7.8 

3497∠-129.3 

3388∠110.6 

VA:  

VB:  

VC:  

3437∠-7.8 

3497∠-129.3 

3388∠110.6 

VAB:  

VBC:  

VCA: 

3425∠-5.8 

3646∠-130.3 

3298∠108.6 

VA:  

VB:  

VC:  

3425∠-5.8 

3646∠-130.3 

3298∠108.6 

Step-up grY-grY 

VA:  

VB:  

VC: 

13630∠-3.5 
13681∠-123.5 

13665∠116.5 

VAB:  

VBC:  

VCA:  

13631∠-3.5 

13682∠-123.5 

13661∠116.5 

VA:  

VB:  

VC: 

13814∠-2.2 

13613∠-123.4 

13618∠114.9 

VAB:  

VBC:  

VCA:  

13815∠-2.2 

13614∠-123.4 

13615∠114.9 

Step-up D-D 

VAB:  

VBC:  

VCA:  

23658∠26.6 

23688∠-93.5 

23625∠146.5 

VAB:  

VBC:  

VCA:  

23657∠26.6 

23688∠-93.5 

23625∠146.5 

VAB:  

VBC:  

VCA:  

23611∠27.2 

24015∠-93.7 

23492∠145.9 

VAB:  

VBC:  

VCA:  

23610∠27.2 

24015∠-93.7 

23492∠145.9 

Step-up Y-D 

VAB:  

VBC:  

VCA: 

23682∠56.6 

23664∠-63.6 

23626∠176.5 

VAB:  

VBC:  

VCA: 

23681∠56.6 

23664∠-63.6 

23625∠176.5 

VAB:  

VBC:  

VCA: 

23638∠57.1 

23995∠-63.8 

23496∠175.9 

VAB:  

VBC:  

VCA: 

23637∠57.1 

23995∠-63.8 

23495∠175.9 

These results validate the equivalent circuit models for the three-phase power flow elements 

as was achieved in the case of positive-sequence power flow models in Section 5.2.10. However, 

SB

1

2 2

3

4

1: Slack Generator 2: Transmission Line 3: Transformer

4. Load
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in general, solely representing the grid elements as equivalent circuit models cannot ensure 

convergence for three-phase power flow test cases from arbitrary initial conditions and therefore, 

the following chapters in this thesis will develop models and techniques that can ensure robust 

convergence for any three-phase test case from arbitrary initial conditions. 

5.5 Physics Based Models 

We have previously shown in [50] that any physics-based device model can be directly 

mapped into an equivalent circuit to be used in both the steady-state analysis (discussed here) as 

well as the transient analysis (see Appendix B). In general, physics-based models developed from 

fundamental principles are used for time-domain transient analysis [58].  However, in both the 

power flow and the three-phase power flow analyses, simplified, aggregated models are often 

used, resulting in less accurate and inconsistent results. Understandably, it is often necessary to 

use simplified aggregated models for system load and generation due to the lack of data 

pertaining to individual grid elements. However, this is not always the case, and more accurate 

grid operating state with true voltage sensitivities can be obtained by using physics-based models 

in the power flow and three-phase power flow analyses.  

Existing frameworks for power flow and three-phase power flow are generally unable to 

directly incorporate physics-based models based on the current and voltage state variables into 

the problem formulation. In contrast, our equivalent circuit formulation can directly incorporate 

any physics-based model based on the current and voltage variables into the analysis framework 

without loss of generality. To demonstrate this further, using induction motor as an example, we 

derive an equivalent circuit model of the same from fundamental principles that is further used 

in power flow as well as three-phase power flow analyses. In Appendix B, we show that the same 

derived model can also be used for time-domain transient analysis to result in consistent solution 

with the ones obtained from power flow and three-phase power flow analyses. 

5.5.1 Physics Based Model for Induction Motor (IM) 

Electric motors comprise roughly 45% of the total global electricity consumption [59], the 

majority of which can be attributed to IMs. Importantly, modeling these IMs in detail based on 
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the true physics of the device can significantly improve the characterization of aggregated load 

in the grid. Often IMs are represented in the network model via PQ load or ZIP load models or 

are aggregated with other loads in the system that are further represented by the same. More 

advanced models for IMs that are based on the true physics of the device are sometimes used in 

three-phase power flow analysis [60]. However, these in-depth models tend to assume fixed 

speed operation (hence ignoring speed-flux non-linearities) thereby not capturing the true speed-

dependent characteristics of the IM. In this section, we develop a physics-based model for IM that 

can be used in both power flow and three-phase power flow analyses. To derive this model for 

IM, we first introduce DQ transformation. 

5.5.1.1 Direct-Quadrature (DQ) Transformation 

The flux generated by the three-phase IM in rotating ABC frame has time varying coefficients 

in its voltage terms due to the sinusoidal nature of the mutual inductance. This makes the analysis 

of three phase IM cumbersome in the ABC (i.e. three-phase rotating) reference frame. However, 

this undesirable feature can be eliminated by use of the DQ transformation. DQ transformation 

can be performed in one of the three reference frames: i) synchronous reference frame; ii) 

stationary reference frame; and iii) rotating reference frame. 

 

Figure 5-22: Superimposition of DQ-axis on 3-phase induction motor. 

The final response of the IM is independent of the chosen reference frame. However, each of 

the reference frames has its own advantages and disadvantages depending on the problem that 

is being investigated [61].  For the purposes of this derivation, we make use of the synchronously 

rotating reference frame where DQ transformation matrix 𝑃𝜃  for the stator variables is as follows: 

A axis

A axis

Q
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[𝑃𝜃] =
2

3
[

0.5 0.5 0.5
cos(𝜃) cos(𝜃 − 𝜆) cos(𝜃 + 𝜆)

sin(𝜃) sin(𝜃 − 𝜆) sin(𝜃 + 𝜆)
] (76) 

with, 

[𝐹0𝑑𝑞] = [𝑃𝜃]. [𝐹𝑎𝑏𝑐] (77) 

where function 𝐹 can represent either currents or voltages. 

For rotor variable transformation, θ is replaced with β in the equations above. For synchronous 

reference frame, the machine angle and speed variables are defined as follows: 

𝜔 = 𝑝𝜃 = 𝜔𝑠 (78) 

𝛽 = 𝜃 − 𝜃𝑟 = 𝜃𝑠 − 𝜃𝑟 (79) 

where  𝑝 is the differential operator. 𝜔𝑠 and  𝜔𝑟 are the synchronous and rotor speed of the motor, 

respectively, and 𝜃𝑠 and 𝜃𝑟 are the stator and rotor position, respectively.  

5.5.1.2 Motor Equations in Transient Domain 

As we have transformed the three-phase parameters of IM into the DQ-frame, we can further 

derive the model of IM. The set of electrical equations that define the true behavior of the IM in 

time-domain are as follows [58]: 

𝑣𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 + 𝑝𝜓𝑑𝑠 − 𝜓𝑞𝑠𝑝𝜃 (80) 

𝑣𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 + 𝑝𝜓𝑞𝑠 + 𝜓𝑑𝑠𝑝𝜃 (81) 

𝑣𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 + 𝑝𝜓𝑑𝑟 − 𝜓𝑞𝑟𝑝𝛽 (82) 

𝑣𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 + 𝑝𝜓𝑞𝑟 + 𝜓𝑑𝑟𝑝𝛽 (83) 

The flux linkages of the IM in the equations above are represented by the symbol 𝜓 and are 

calculated using the following formulas: 

𝜓𝑑𝑠 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑑𝑠 + 𝐿𝑚𝐼𝑑𝑟 (84) 

𝜓𝑑𝑟 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑑𝑟 + 𝐿𝑚𝐼𝑑𝑠 (85) 

𝜓𝑞𝑠 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑞𝑠 + 𝐿𝑚𝐼𝑞𝑟 (86) 



 
67 Equivalent Circuit Approach 

𝜓𝑞𝑟 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑞𝑟 + 𝐿𝑚𝐼𝑞𝑠 (87) 

where 𝐿𝑙𝑠 and 𝐿𝑙𝑟 represent the leakage-inductance of stator circuit and rotor circuit, respectively. 

𝐿𝑚 is the mutual inductance between the rotor and stator circuits.  𝑅𝑠 and 𝑅𝑟 are the stator and 

rotor resistance, respectively. The non-linearity in the electrical part of the IM is due to the speed 

voltage terms. 

In addition to the equations above, the mechanical part of the IM is defined by a single 

differential equation [58]: 

𝑝𝜔𝑟 =
(𝑇𝑒 − 𝑇𝐿 − 𝐷𝜔𝑟)

𝐽
 (88) 

where  

𝑇𝑒 =
3

4
𝐿𝑚poles(𝐼𝑑𝑟𝐼𝑞𝑠 − 𝐼𝑞𝑟𝐼𝑑𝑠) (89) 

and 𝑇𝑒  is the electrical torque of the IM in N.m and 𝐽 is the motor net inertia in kg.m2. poles  

represents the number of poles in the induction motor. The load torque (𝑇𝐿) is generally described 

with a polynomial function of rotor speed. 

 

Figure 5-23: Equivalent circuit for 3-phase induction motor: (i) Electrical circuit; and (ii) 

Mechanical Circuit. 

The equations derived above describe the time-domain behavior of a balanced three-phase 

+

+

+

s

+

s

where,
= +

= +
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squirrel cage IM and these can be directly mapped into an equivalent circuit following the steps 

detailed in [51], and is shown in Figure 5-23. 

5.5.2 Steady-State Fundamental Frequency Model 

To further use this model for positive sequence and three-phase power flow analysis, we zero 

out the time-derivative terms. Due to the use of the DQ-transformation, once the time-derivative 

terms are nulled, we obtain the steady-state model in source frequency. Furthermore, the model 

can be further extended to include zero sequence terms for unbalanced three-phase power flow 

analysis by adding an extra equation. If the motor were to have negative torque due to negative 

sequence terms, it would have to be separately calculated and added to (89). 

To validate this IM model for power flow analysis, we make use of a 20 hp, 460 volts three-

phase single squirrel cage induction motor. The motor data is given in Table 5-4. 

TABLE 5-4: THREE-PHASE SQUIRREL CAGE INDUCTION MOTOR PARAMETERS 

 

 

 

For the validation test, the IM model is connected to a slack bus via a transmission line. The 

IM is then simulated at mechanical load of 10 N.m at rated source voltage. The results are 

documented in Table 5-5 and are converted to SI units from pu to compare against the steady-

state results obtained from MATLAB SimscapePowerSystems toolbox for the same test case. The 

results are an exact match thereby validating the model. 

TABLE 5-5: IM RESULTS IN EQUIVALENT CIRCUIT FRAMEWORK FOR STEADY-STATE (POWER FLOW) AND TIME-

DOMAIN TRANSIENT ANALYSIS 

Parameter Unit 
Equivalent Circuit 

Framework 
SimScapePowerSystems 

Rotor Speed rad.s-1 375.01 375.01 

Electric Torque N.m 16.64 16.64 

Stator direct-axis current Amps -11.36 -11.36 

VLL (Volts) f (Hz) Rs (Ω) Rr (Ω) Lls and Llr (mH) 

460 0.2761 0.2761 0.1645 2.191 

Lm (mH) poles J (kg.m2) D (N.m.s) TL (N.m) 

76.14 2 0.1 0.01771 10 
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Parameter Unit 
Equivalent Circuit 

Framework 
SimScapePowerSystems 

Stator quadrature-axis 

current 
Amps 13.09 13.09 

Rotor direct-axis current Amps 11.56 11.56 

Rotor quadrature-axis 

current 
Amps -0.49 -0.49 
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6. Circuit Simulation Methods for Power 

System Analyses 

Decades of research in circuit simulation have demonstrated that circuit simulation methods 

can be applied for determining the DC state of highly non-linear circuits using NR. These 

techniques have been shown to make NR robust and practical for large-scale circuit problems [51], 

even those consisting of billions of nodes. Most notable is the ability to guarantee convergence to 

the correct physical solution (i.e. global convergence) and the capability of finding multiple 

operating points [56]. We propose analogous techniques for ensuring convergence to the correct 

physical solution for the power flow problem [34]-[35]. In this section, we provide a short 

overview of these techniques that can be applied to both positive sequence power flow and three-

phase power flow problems without loss of generality. Note that throughout this section, the 

symbol superscript 𝛺 in the mathematical expressions represents a phase from the set 𝛺𝑠𝑒𝑡  of 

three phases a, b and c for the three-phase problem and represents the positive sequence (p) value 

for the power flow problem. 

6.1 Limiting Methods 

Here we discuss some of the methods that we apply to the NR algorithm during positive 

sequence and three-phase power flow problems to prevent divergence. We refer to these methods 

as limiting methods and they all relax the Newton’s step during the iterations. Rather than 

relaxing the Newton’s step by damping the whole vector of the update, we utilize the unique 

physics of the individual models and independently relax their Newton step during iterations. 

6.1.1 Variable Limiting 

The solution space of the system node voltages in a power flow problem is well defined. While 

solving the power flow problem, a large NR step may step out of this solution space and result 

in either divergence or convergence to a non-physical solution. It is, therefore, important to limit 

the NR step before an invalid step out of the solution space is made. In [34] we proposed variable 
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limiting to achieve the postulated goal. In this technique, the state variables that are most sensitive 

to initial guesses are damped when the NR algorithm takes a large step out of the pre-defined 

solution space. Note, however, that not all of the system variables are damped for the variable 

limiting technique, as is done for traditional damped NR. Circuit simulation research has shown 

that damping most sensitive variables provides superior convergence compared to damped NR 

in general [51]. 

In the power flow and three-phase problem, the voltages on the PV node are highly sensitive 

to the reactive power (𝑄𝐺) value at that node. In the equivalent circuit formulation of the power 

flow and three-phase power flow problem each PV node augments the solution space by 

additional unknown variable 𝑄𝐺 for which initial guess must be assigned. However, unlike the 

node voltages, it is very hard to choose the appropriate initial guess for these 𝑄𝐺 variables, as they 

exhibit a large solution space. Therefore, with an arbitrary choice of these initial values, the power 

flow or three-phase power flow problem may diverge or converge to the wrong solution.  

To tackle this problem the voltages at the PV node are damped during the NR iterations 

whenever they make a large step out of the pre-defined solution space. Figure 6-1 can be used to 

demonstrate this graphically. The plot in Figure 6-1 shows results for a 2869 PEGASE bus test 

system and simulations were run on it for six different initial guesses for unspecified 𝑄𝐺. The 

maximum bus voltage from the solution of the power flow problem for each initial guess was 

then plotted for two scenarios: without and with variable limiting technique enabled. The plots 

in the figure show that when variable limiting is not enabled, the voltage solution diverges to 

very high magnitudes (up to 104) and may not converge even in 100 iterations. However, when 

the variable limiting option is enabled, divergence is not observed, and the bounded bus voltages 

result in fast convergence. 

To apply variable limiting in our prototype simulator, the mathematical expressions for the 

PV nodes in the system are modified as follows: 
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𝐼𝐶𝐺
𝛺 𝑘+1

=   𝜍
𝜕𝐼𝐶𝐺

𝛺

𝜕𝑉𝑅𝐺
𝛺 (𝑉𝑅𝐺

𝛺 𝑘+1
− 𝑉𝑅𝐺

𝛺 𝑘
)⏟          

∆𝑉𝑅𝐺
𝛺

+ 𝐼𝐶𝐺
𝛺 𝑘

 + + 𝜍
𝜕𝐼𝐶𝐺

𝛺

𝜕𝑉𝐼𝐺
𝛺 (𝑉𝐼𝐺

𝛺𝑘+1
− 𝑉𝐼𝐺

𝛺𝑘
)⏟          

 ∆𝑉𝐼𝐺
𝛺

+
𝜕𝐼𝐶𝐺

𝛺

𝜕𝑄𝐺
𝛺 (𝑄𝐺

𝛺𝑘+1
− 𝑄𝐺

𝛺𝑘
)   

(90) 

where, 0 ≤ ς ≤ 1 . The magnitude of  ς  is dynamically varied through heuristics such that 

convergence to the correct physical solution is achieved in the most efficient manner. The 

heuristics depend on the largest delta voltage (∆𝑉𝑅𝐺
𝛺 , ∆𝑉𝐼𝐺

𝛺 ) step during subsequent NR iterations. 

If during subsequent NR iterations, a large step (∆𝑉𝑅𝐺
𝛺 , ∆𝑉𝐼𝐺

𝛺 ) is encountered, then the factor ς is 

decreased. The factor ς  is scaled back up if consecutive NR steps result in monotonically 

decreasing absolute values for the largest error. 

 

Figure 6-1: Voltage profile for maximum bus voltage in 2869 bus system: a) w/o Variable 

limiting b) with Variable limiting. 

6.1.2 Voltage Limiting 

An equally simple, yet effective, technique is to limit the absolute value of the delta step that 

the real and imaginary voltage vectors can make during each NR iteration. This is analogous to 

the voltage limiting technique used for diodes in circuit simulation, wherein the maximum 

allowable voltage step during NR is limited to twice the thermal voltage of the diode [51]. 

Similarly, for the power flow and three-phase power flow analyses, a hard limit is enforced on 

the normalized real and imaginary voltages in the system. The mathematical implementation of 

voltage limiting in our formulation is as follows: 

z
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(𝑉𝐶
𝛺)

𝑘+1
= 𝑚𝑖𝑛

𝑉𝐶
𝑚𝑖𝑛

𝑚𝑎𝑥
𝑉𝐶

𝑚𝑎𝑥
((𝑉𝐶

𝛺)
𝑘

+ 𝛿𝑆 𝑚𝑖𝑛 (|∆(𝑉𝐶
𝛺)

𝑘
| , ∆𝑉𝐶

𝑚𝑎𝑥))   

(91) 

𝑚𝑖𝑛
𝑉𝐶

𝑚𝑖𝑛
𝑚𝑎𝑥
𝑉𝐶

𝑚𝑎𝑥
= {

𝑉𝑐
𝑚𝑎𝑥,  if 𝑥 >  𝑉𝑐

𝑚𝑎𝑥 

𝑉𝑐
𝑚𝑖𝑛,  if 𝑥 <  𝑉𝑐

𝑚𝑖𝑛 
𝑥,  otherwise

 

and 𝛿𝑆 = sign(∆(𝑉𝐶
Ω)

k
) and 𝐶 ∈ {𝑅, 𝐼} represents the placeholder for real and imaginary parts. 

6.1.3 Limiting Methods for other System Variables 

Similar to limiting of voltages during power flow and three-phase power flow problem, other 

system variables are also limited to constrain the behavior of the network components in their 

physical space. In general, a good limiting technique is one that can exploit knowledge of system 

physics to well-define a narrow normal operating range within which the variable can be 

constrained. However, this is not always possible. For instance, the generator reactive power 

variable 𝑄𝐺  can have a wide range for its operating setpoint depending on the size of the 

generator. In such scenarios, the variables are limited by first mapping them into another variable 

for which we can define a better operating range. In case of generators, reactive power 𝑄𝐺 

variables are limited by first mapping the 𝑄𝐺 ′ s into calculated currents 𝐼𝐶
Ω + ∆(𝐼𝐶

Ω)
k+1

 at  

(k+1)th NR step, and then finding the new 𝑄𝐺  𝑘+1  from the inverse function (𝑓−1) of limited 

currents (𝐼𝐶
Ω + ∆(𝐼𝐶

Ω)
k+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

). Similar approaches can also be used to limit other system variables in 

future. 

6.2 Homotopy Methods 

Limiting methods may fail to ensure convergence for certain ill-conditioned and large test 

systems when solved from an arbitrary set of initial guesses. To ensure convergence for these 

network models to the correct physical solutions independent of the choice of initial conditions, 

we propose the use of homotopy methods. 

6.2.1 Background  

Homotopy methods are not new to the field of power system simulation.  Homotopy methods 

in the past have been used to study the voltage collapse of a given network or to determine the 
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maximum available transfer capability [19]-[20]. They have also been researched for locating all 

solutions to a power flow problem [49], [63]. However, their use for enabling convergence for 

hard to solve positive sequence and three-phase power flow problems has been limited. Of the 

proposed methods for providing better convergence [9], [48] most have suffered from 

convergence to low voltage solutions or divergence. On the other hand, some of them have been 

developed for formulations that do not apply to both positive sequence as well as three-phase 

power flow [64] problems. Furthermore, none of the previously proposed homotopy methods are 

known to scale up to test systems that are of the size of the European or the US grids, and in 

general they are not extendable to the three-phase power flow problem.  

6.2.2 General Introduction 

In the homotopy approach, the original problem is replaced with a set of sub-problems that 

are sequentially solved. The set of sub-problems exhibit certain properties, namely, the first sub-

problem has a trivial solution and each subsequent sub-problem has a solution very close to the 

solution of the prior sub-problem. Mathematically this can be described via the following 

expression: 

ℋ(𝑥, 𝜆) = (1 − 𝜆)Ϝ(𝑥) +   𝜆𝒢(𝑥) (92) 

where 𝜆[0,1]. 

The method begins by replacing the original problem Ϝ(𝑥) = 0 with  ℋ(𝑥, 𝜆) = 0 . The 

equation set 𝒢(𝑥) is a representation of the system that has a trivial solution. The homotopy factor 

𝜆 has the value of 1 for the first sub-problem, and therefore, the initial solution for ℋ(𝑥, 𝜆) is 

equal to the trivial solution of  𝒢(𝑥). For the final sub-problem that corresponds to the original 

problem, the homotopy factor 𝜆 has the value of zero. To generate sequential sub-problems, the 

homotopy factor is dynamically decreased in small steps until it has reached the value of zero. 

In the following sections, we discuss two homotopy methods that are specifically developed 

for the power flow and three-phase power flow analyses i.e. Tx stepping and dynamic power 

stepping method. 
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6.2.3 Tx Stepping 

We propose a new homotopy approach, “Tx Stepping,” that is specifically invented for the 

non-linearities observed in the power flow and three-phase power flow problems. 

6.2.3.1 General Approach  

In Tx stepping method, the series elements in the system (transmission lines, transformers etc.) 

are first “virtually” shorted to solve the initial problem that has a trivial solution.  Specifically, a 

large conductance ( ≫ 𝐺𝑖𝑙 ) and a large susceptance ( ≫ 𝐵𝑖𝑙 ) are added in parallel to each 

transmission line and transformer model in the system. In case of three-phase power flow, a large 

self-impedance (≫  𝛺𝛺
𝑖𝑙 ) is added in parallel to each phase of the transmission line and transformer 

model. Furthermore, the shunts in the system, are open-circuited by modifying the original shunt 

conductance and susceptance values. Importantly, the solution to this initial problem results in 

high system voltages (magnitudes), as they are essentially driven by the slack bus complex 

voltages and the PV bus voltage magnitudes due to the low voltage drops in the lines and 

transformers (as expected with virtually shorted systems). Similarly, the solution for the bus 

voltage angles lies within an ϵ-small radius around the slack bus angle. Subsequently, like other 

continuation methods, the formulated system problem is then gradually relaxed to represent the 

original system by taking small increment steps of the homotopy factor (𝜆) until convergence to 

the solution of the original problem is achieved.  Mathematically, the line and transformer 

impedances during homotopy for the power flow is expressed by: 

𝑖𝑙 ∈  𝒯𝑋, 𝑥𝑓𝑚𝑟𝑠: 𝐺𝑖𝑙 + 𝑗�̂�𝑖𝑙 = (𝐺𝑖𝑙 + 𝑗𝐵𝑖𝑙)(1 + 𝜆𝛾) (93) 

and for the three-phase problem: 

[

 ̂𝑎𝑎
𝑖𝑙  ̂𝑎𝑏

𝑖𝑙  ̂𝑎𝑐
𝑖𝑙

 ̂𝑏𝑎
𝑖𝑙  ̂𝑏𝑏

𝑖𝑙  ̂𝑏𝑐
𝑖𝑙

 ̂𝑐𝑎
𝑖𝑙  ̂𝑐𝑏

𝑖𝑙  ̂𝑐𝑐
𝑖𝑙

] =  [

Y𝑎𝑎
𝑖𝑙 (1 + 𝛾𝜆) Y𝑎𝑏

𝑖𝑙 Y𝑎𝑐
𝑖𝑙

Y𝑏𝑎
𝑖𝑙 Y𝑏𝑏

𝑖𝑙 (1 + 𝛾𝜆) Y𝑏𝑐
𝑖𝑙

Y𝑐𝑎
𝑖𝑙 Y𝑐𝑏

𝑖𝑙 Y𝑐𝑐
𝑖𝑙 (1 + 𝛾𝜆)

] (94) 

where, 𝐺𝑖𝑙 ,  𝐵𝑖𝑙 , and  ΩΩ
𝑖𝑙  are the original system impedances and 𝐺𝑖𝑙 , �̂�𝑖𝑙 , and  ̂ΩΩ

𝑖𝑙
 are the system 

impedances used while iterating from the trivial problem to the original problem. The parameter 

𝛾 is used as a scaling factor for the conductances and susceptances.  If the homotopy factor (𝜆) 

takes the value of one, the system has a trivial solution and if it takes the value zero, the original 
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system is represented.   

Along with ensuring convergence for a challenging steady-state problem, Tx stepping can 

avoid the undesirable low voltage solutions for the positive sequence power flow and three-phase 

power flow problem since the initial sub-problem within the homotopy path results in a solution 

with high system voltages, and each subsequent step of the homotopy approach continues and 

deviates ever so slightly from this initial solution, thereby guaranteeing convergence to the high 

voltage solution for the original problem. 

6.2.3.2 Handling of Transformer Phase Shifters and Taps 

To “virtually short” a power system, we must also account for transformer taps 𝑡𝑟Ω and phase 

shifting angles 𝛩Ω. In a “virtually” shorted condition, all the nodes in the system must have 

complex voltages that are near the slack bus or PV bus complex voltages, which can be intuitively 

defined by a small epsilon norm ball around these voltages. Therefore, to achieve the following 

form, we must modify the transformer taps and phase shifter angles such that at  𝜆 = 1, their 

turns ratios and phase shift angles correspond to a magnitude of 1 pu  and 0° , respectively. 

Subsequently, the homotopy factor 𝜆 is varied such that the original problem is solved with 

original transformer tap and phase shifter settings. This can be mathematically expressed as 

follows: 

𝑖 ∈  𝑥𝑓𝑚𝑟𝑠 ∶ 𝑡�̂�𝑖
𝛺 = 𝑡𝑟𝑖

𝛺 + 𝜆(1 − 𝑡𝑟𝑖
𝛺) (95) 

𝑖 ∈  𝑥𝑓𝑚𝑟𝑠 ∶ �̂�𝑖
𝛺 = 𝛩𝑖

𝛺 − 𝜆𝛩𝑖
𝛺 (96) 

6.2.3.3 Handling of Voltage Control for Remote Buses 

To achieve a trivial solution during the first step of Tx stepping it is essential that we also 

handle remote voltage control appropriately. Remote voltage control refers to a device on node 𝒪 

in the system controlling the voltage of another node 𝒲 in the system. This behavior is highly 

non-linear and if not handled correctly can result in divergence or convergence to a low voltage 

solution. Existing commercial tools for power flow and three-phase power flow analyses have 

difficulties dealing with this problem and suffer from lack of robust convergence when modeling 

remote voltage control in general. With Tx stepping we can handle this problem efficiently and 

effectively. We first incorporate a “virtually short path” between the controlling node (𝒪) and the 
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controlled node (𝒲) at  𝜆 = 1, such that the device at the controlling node can easily supply the 

current needed for node 𝒲 to control its voltage. Then following the homotopy progression, we 

gradually relax the system such that the additional line connecting the controlling node (𝒪) and 

controlled node (𝒲) is open at 𝜆 = 0. 

6.2.3.4 Implementation of Tx Stepping in Equivalent Circuit Formulation 

Unlike traditional implementations of homotopy methods, in equivalent circuit formulation 

we do not directly modify the non-linear set of mathematical equations, but instead embed a 

homotopy factor in each of the equivalent circuit models for the power grid components. In doing 

so we allow for extension of Tx-stepping method to any power system model within the 

equivalent circuit formulation framework, without loss of generality. Furthermore, we ensure, 

that the physics of the system is preserved along the complete homotopy path. Figure 6-2 and 

Figure 6-3 demonstrates how the homotopy factor is embedded into the equivalent circuit of the 

transmission line and transformer, respectively. 

 

Figure 6-2: Homotopy factor embedded in transmission line equivalent circuit. 

 

Figure 6-3: Homotopy factor embedded in transformer equivalent circuit. 
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6.2.3.5 Notes on convergence 

The proposed Tx stepping method is within the subset of homotopy methods and to ensure 

convergence (i.e. be globally convergent) for any homotopy method the following conditions 

must be met [70]: 

i. Defined path for the homotopy method i.e. 𝑐(𝜆)  ∈  ℋ−1(0) with (𝑥, 𝜆) ∈ 𝑟𝑎𝑛𝑔𝑒(𝑐) 

must be smooth and should exist. 

ii. If a curve 𝑐 exists, then it should intersect the final solution at 𝜆 = 0. 

The first condition can be met through implicit function theorem and requires that the Jacobian 

(ℋ (𝜆)) of the homotopy function is of full rank for all values of λ along the curve.  In the power 

flow or three-phase flow problem this corresponds to the Jacobian (𝐽) matrix of the network 

constraints that in the case of equivalent circuit formulation are the linearized Kirchhoff’s current 

laws at each node in the system. Based on domain knowledge of power systems, it is understood 

that the network Jacobian matrix is singular if the system is operating at its limits (tip of the nose 

curve) [57] or beyond (infeasible system). This is an unlikely case from the physics perspective 

for any well-conditioned system over the range of λ, and therefore, the Jacobian (𝐽) is generally 

full rank over the complete range of λ. In rare cases, the network Jacobian (ℋ  (𝜆)) defined for λ 

value on the curve (i.e. 𝑐(𝜆), 𝜆 ∈ [1, 0]) can be singular. This is either because the system is 

infeasible such that no further power transfer is possible or that the system is highly ill-

conditioned and is operating at the tip of the nose curve. For such infeasible or highly ill-

conditioned networks, it is possible that a rank deficient Jacobian may be encountered along the 

homotopy curve. To achieve robust convergence for such networks that are either infeasible or 

highly ill-conditioned, optimization-based methods [71] or techniques for structural 

perturbations are used [72]. An example of the optimization-based method is the addition of 

current sources to all system nodes during Tx-stepping while minimizing their value [71], 

whereas an example for structural perturbation includes adding and removing transmission lines 

to the network dynamically during the homotopy path. In the optimization-based method, the 

network is guaranteed to have a feasible solution for some value of complex current sources, 

thereby asserting the existence of a full rank Jacobian matrix. Similarly, a full rank Jacobian matrix 
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can also be ensured for ill-conditioned systems by structurally relaxing the weak part of the grid 

by adding more lines at the start and gradually removing them for the original problem. 

The second condition is more easily met and is linked to existence theorems in non-linear 

analyses [70]. If some boundary condition exists that prevents the curve from extending to infinity 

prior to intersecting the solution at 𝜆 = 0, then this condition is met. In our formulation, different 

limiting techniques ensure that the solution at any point on the curve 𝑐 does not diverge and 

extend to infinity. 

6.2.4 Dynamic Power Stepping 

Another homotopy technique that can ensure robust convergence for systems that have a low 

percentage of constant voltage nodes in the system is the dynamic power stepping method. 

Existing distribution systems and small transmission systems tend to belong to this class of 

systems and, therefore, dynamic power stepping can be applied to robustly obtain their steady-

solution by solving either the power flow or the three-phase power flow problem. This method 

has been described for the positive-sequence power flow and three-phase power flow problem in 

[34], [73] and is analogous to the source stepping and Gmin stepping approaches in standard 

circuit simulation solvers. 

In the dynamic power stepping method, the system loads and generation are scaled back by a 

factor of  𝛽 until the convergence is achieved. If these loads and generations are scaled down all 

the way to zero, then the constraints for the PQ buses in the system result in linear network 

constraints. Similarly, current source non-linearities of the PV buses that are due to the constant 

real power are also eliminated. Therefore, by applying the power stepping factor, the non-

linearities in the system are greatly eased and convergence is easily achieved. Upon convergence, 

the factor is gradually scaled back up to unity to solve the original problem. In this method, as in 

all continuation methods, the solution from the prior step is used as the initial condition for the 

next step. The mathematical representation of dynamic power stepping method for the three-

phase power flow and positive sequence power flow problem is as follows: 

𝐺 ∈  𝑃𝑉: �̂�𝐺
Ω = 𝛽𝑃𝐺

Ω (97) 
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𝐿 ∈  𝑃𝑄: �̂�𝐿
Ω = 𝛽𝑃𝐿

Ω and �̂�𝐿
Ω = 𝛽𝑄𝐿

Ω (98) 

where, PQ are all load nodes and PV are all generator nodes. 

6.3 Algorithm 

In this section, the Algorithm 6-1 shows the recipe for solving the positive-sequence as well as 

three-phase power flow problem in the equivalent circuit approach with the use of circuit 

simulation methods. This algorithm is implemented in our novel tool: SUGAR (Simulation with 

Unified Grid Analyses and Renewables) and can be used to solve any positive-sequence power 

flow problem or three-phase power flow problem without the loss of generality. 

 

Algorithm 6-1: SUGAR algorithm for solving positive sequence and three-phase power flow 

problems. 

Input Test Case

Initialize  𝑖𝑛𝑡 , 𝜆, 𝜍, 𝜆𝑆 & 𝛿

No

Re-stamp  𝑁𝐿

Stamp Linear  𝐿

Solve for  𝑖𝑛𝑡
𝑘+1( 𝑅)

NO

Is shunt and 

xfmr control 

possible ? YES

Inner Loop 

Complete?

Update: 

𝜆, 𝜍 and 𝛿

Re-stamp 

homotopy   

N
ew

 A
d

ju
stm

en
t

Change in 𝜆

No change in 𝜆

Build three-phase 

models

Find  ̂𝑖𝑛𝑡
𝑘+1

Apply Limiting

NO

 𝒢,        

𝜆𝑆

YES

Update gen.

param ?

YES

Stop

Input data

3-Phase?

Build pos-seq 

models

YESNO
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The developed solver begins with parsing the input file and gauging if the input data are for 

the positive sequence or three-phase power flow problem. Based on the type of data (i.e. power 

flow or three-phase power flow data), it starts with building the system models. An empty 

Jacobian matrix structure is initialized based on the size of the system and non-changing linear 

models ( 𝐿 , 𝐽𝐿)  are first stamped in it.  These stamps remain constant throughout the NR 

iterations. Input state variables and other continuation parameters ( 𝑥0, 𝛿, 𝜁, 𝜆,  𝜆𝑠 ) are then 

initialized following which the non-linear models are stamped ( 𝑁𝐿, 𝐽𝑁𝐿) and NR is applied with 

limiting methods enabled to calculate the next iterate for the voltages, the generator reactive 

powers and any other continuous control variables ( ̂𝑘+1). In the solver, from the practical point 

of view, the available initial conditions in the input file are first used as the solver’s initial 

conditions. Generally, with the use of proposed limiting methods, the system solves within 7 to 

10 iterations with these initial conditions. However, in cases where the system is ill-conditioned 

or lacking a good initial guess, the solver begins to gradually increase the homotopy factor (𝜆) 

until a trivial solution is found (this method does not require a good initial guess as homotopy 

methods have trivial solution for the first step). Once a trivial solution is obtained, homotopy 

factors and other continuation factors for generators are dynamically updated (in this case 

decreased), and homotopy models (  , 𝐽 ) are stamped or re-stamped in the Jacobian to ensure 

convergence to the correct physical solution for the original problem at ( 𝜆 = 0 ). Upon 

convergence of the inner loop, remaining controllable switched shunts and transformer taps are 

adjusted and the inner loop is repeated until the final solution is achieved. In cases, where 

continuous models are used for the control of discrete shunts and discrete transformer taps, a 

final loop is implemented to snap them to their closest discrete values. 

6.4 Results 

In this section, we will report the results obtained via the use of the equivalent circuit 

framework with the use of circuit simulation methods. To run the test cases and validate our 

approach, we integrated these methods into our tool SUGAR. The results from SUGAR will 

demonstrate the ability of our framework to solve ill-conditioned, large real-life, and in general 

hard-to-solve positive-sequence and three-phase power flow test cases from arbitrary initial 
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conditions. The following result section is divided into positive-sequence power flow results sub-

section and three-phase power flow results sub-section. 

6.4.1 Positive Sequence Power Flow Results 

The first few sub-sections discuss results for the positive sequence power flow analysis. The 

set of results include ill-conditioned and hard to solve test cases as well as large test cases. 

However, first we demonstrate the efficacy of the proposed circuit simulation methods. 

6.4.1.1 Efficacy of Circuit Simulation Methods 

We use the first set of results to demonstrate that the use of circuit simulation methods 

developed within this section can significantly improve the robustness of convergence within the 

equivalent circuit framework. The section shows how the results obtained in the equivalent 

circuit framework with the use of circuit simulation methods fare against those obtained in the 

equivalent circuit framework without the use of circuit simulation methods.  

6.4.1.1.1 Experiment 1 

 

Figure 6-4: Solution of bus 3 voltage for IEEE 14 bus test system with increasing loading 

factors with and without circuit simulation methods. 

In this experiment, positive-sequence power flow simulations are run on the IEEE 14 bus test 

system (from flat start) in steps of increasing loading factors (up to 4x) for the following four 
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scenarios: 1) both power stepping and variable limiting option disabled, 2) with power stepping 

option enabled and variable limiting disabled, 3) with variable limiting option enabled and power 

stepping disabled, and 4) both power stepping and variable limiting option enabled. The 

solutions for the bus 3 voltage magnitude at the end of each simulation are then plotted in Figure 

6-4. The plot shows that convergence to the correct physical solution is achieved for each 

simulation instance when either variable limiting, or power stepping option is enabled. However, 

without these options enabled in SUGAR, the solution in many simulation instances has either 

converged to the wrong solution or diverged altogether. 

6.4.1.1.2 Experiment 2 

In this experiment, power flow simulations are run on the 2869 PEGASE test system and 9241 

PEGASE test system for 20 different initial guesses of 𝑸  values that are uniformly distributed in 

the range of -10 pu and 10 pu. All 20 simulations are run for each of these solver settings under 

the same four scenarios as were used in the case for Experiment 1. The convergence results plotted 

in Figure 6-5 show that without the use of circuit simulation techniques, most of the test case 

instances either diverge or converge to the wrong solution. Convergence to the correct physical 

solution is only observed when both variable limiting and power stepping are enabled. 

 

Figure 6-5: Power flow results for 2869 bus and 9241 bus test systems with and without circuit 

simulation techniques. 
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6.4.1.1.3 Experiment 3 

To show the efficacy of circuit simulation methods in this experiment, contingencies were 

simulated on two hard to solve test-cases that represent different operating conditions for a real 

sub-network within the US power grid network models. The base cases for both test systems are 

first solved via the Tx-stepping method whose solutions are then used as initial conditions for the 

set of contingencies that were further run for two settings i) without the use of circuit simulation 

methods in SUGAR ii) with the use of circuit simulation methods in SUGAR. The contingencies 

in the contingency set include the loss of the largest 10% of the online generators and loss of 10% 

of the highest capacity lines and transformers taken off-line one at a time from the base case to 

create a single contingency instance within the contingency set.  

The results in the Table 6-1 validate that the use of circuit simulation methods when applied 

to equivalent circuit formulation can significantly increase the robustness of the power flow 

solver as in the case when circuit simulation methods were disabled, convergence to the correct 

physical solution was achieved for far fewer contingency instances. 

TABLE 6-1: COMPARISON OF SUGAR WITH AND WITHOUT CIRCUIT SIMULATION TECHNIQUES 

Case Id # Bus 
# Total 

Cases 

SUGAR w/o Circuit 

Simulation Methods 

SUGAR with Circuit 

Simulation Methods 

Converge 
Diverge 

/Infeasible 
Converge 

Diverge 

/Infeasible 

Case 1 5944 754 735 19 750 4* 

Case 2 7029 801 706 95 793 8* 
*These cases were confirmed to be infeasible following the methodology in [71]. 

6.4.1.2 Ill-Conditioned Test Cases 

In this sub-section, we demonstrate results of our approach when applied to ill-conditioned 

test cases. A large condition number for a given matrix indicates that the matrix and the system 

corresponding to that matrix are ill-conditioned. In the power flow problem, the matrix of interest 

is the Jacobian that is used to calculate the Newton step for each NR iteration. If the condition 

number of the Jacobian matrix is large at the solution point, then the system is assumed to be ill-

conditioned.  
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The following set of results are generated from SUGAR with circuit simulation methods 

enabled and are compared against those produced by the standard commercial tools used in the 

industry today. 

6.4.1.2.1 Experiment 1: Ill-conditioned test cases in literature  

The 11-bus, 13-bus, and 43-bus test cases from the power system literature [57] are considered 

to be ill-conditioned systems. However, it is systematically shown in [57] that out of these three 

systems, the 11-bus system is the only genuine ill-conditioned system with a maximum loading 

of 99.82 %.  The 13-bus system is not an ill-conditioned system and can easily be solved via any 

power flow method, and the 43-bus test case has a maximum loading of 58%, and the system is 

infeasible for base loading of 100%.  

Table 6-2 shows the comparison of the results for a modified 11 bus ill-conditioned test case at 

99.82% loading for different set of initial conditions. With standard commercial tools, for most 

initial conditions, the system converges to a low-voltage solution or diverges altogether. The 

commercial solver can only converge to the correct physical solution if the initial condition 

supplied is the solution itself. However, SUGAR can converge to the correct physical solution 

from arbitrary initial conditions when Tx Stepping is applied.  

TABLE 6-2: COMPARISON OF RESULTS FOR MODIFIED 11 BUS TEST CASE 

Initial Condition Ill Conditioned 11 Bus Test Case 

Vmag (pu) Vang (°) Standard Commercial Tool2 SUGAR1 

1 0 Low Voltage High Voltage 

0.76 23 Low Voltage High Voltage 

0.71 45 Low Voltage High Voltage 

High Voltage High Voltage High Voltage High Voltage 
1. Tx Stepping was enabled while running simulations in SUGAR 

2. Full Newton Raphson was the solver used in Standard Commercial Tool 

6.4.1.2.2 Experiment 2: A large ill-condition system at operating point 

Another notable example of a case with a higher condition number at the operating point is 

the 13659-bus system from the PEGASE test cases. At the solution point, the approximate 

condition number of the system Jacobian is 1.7e8. Figure 6-6 shows convergence results for this 
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test case from ten arbitrary initial conditions for a standard commercial tool and SUGAR. The ten 

initial conditions were chosen uniformly from the set of: 

𝑉𝑅 ∈ [0.6, 1.1 ], 𝑉𝐼   =  {𝑥 ∈  ℝ𝑛 | 𝑥 =  1 – 𝑉𝑟} 
(99) 

From the set of 10 initial conditions, the standard commercial tool converged to the correct 

physical solution once, diverged 8 times, and converged to the angular unstable solution one time. 

SUGAR, however, with variable limiting and voltage limiting enabled was able to converge to 

the correct physical solution for all ten initial guesses. 

  

Figure 6-6: Results for 13659 buses PEGASE system. 

6.4.1.3 Large Test Cases 

In this experiment we demonstrate that SUGAR can robustly solve any large test case from 

arbitrary initial conditions to result in correct physical solution. Figure 6-7 shows the results for 

six distinct test systems that represent the eastern interconnection network of the US power grid 

under different loading conditions (Summer/Winter) and time periods (2017, 2018, 2021, 2026 

etc.). The simulations were run on these systems from a set of different initial conditions that were 

uniformly chosen from the sets of: 
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𝑉𝑎𝑛𝑔 ∈  [−50, 50] , 𝑉𝑚𝑎𝑔 ∈  [0.6, 1] (100) 

The vertical and horizontal axes of the figure represent the set of initial conditions (𝑉𝑎𝑛𝑔, 𝑉𝑚𝑎𝑔) 

for a given case, respectively and the legend within each sub-graph represent the numbers of 

nodes in the test system. If the case converged to a correct physical solution, it is marked via a 

green mark; whereas if the case diverged then it is marked via a red mark. The figure indicates 

that SUGAR was able to converge to correct physical solution for all the six large eastern 

interconnection systems independent of the choice of initial conditions. The run-time per iteration 

for the eastern interconnection test cases in SUGAR is comparable to other available commercial 

tools (less than 0.4s per iteration). The total simulation time for the test cases was dependent on 

the choice of initial conditions. 

 

 

Figure 6-7: Convergence sweep of large cases that represent Eastern Interconnection from 

range of initial conditions (number of nodes for each test system given in the legend box). 

We also repeated the same experiment on the publicly available SythenticUSA and 

ACTIVgs70k test cases [74] and demonstrated the same robust convergence as in the case of 

Eastern Interconnection test cases, as shown in Figure 6-8. 
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Figure 6-8: Convergence plot for ACTIVgs70k (left) and SyntheticUSA (right) testcases. 

We performed a similar experiment to compare the robustness of SUGAR tool against a 

standard commercial tool. To conduct the experiment, we ran three real and two synthetic [74] 

eastern interconnection sized systems for 15 different initial conditions in both the SUGAR tool 

and the standard commercial tool. The set of initial conditions for this experiment for all buses 

were identical and were uniformly sampled from: 

𝑉𝑎𝑛𝑔  ∈  [−40, 40] , 𝑉𝑚𝑎𝑔  ∈  [0.9, 1.1]. (101) 

The results in Table 6-3 show that from any of the 15 different initial conditions, the standard 

commercial tool was unable to solve the system, whereas SUGAR with Tx stepping enabled was 

able to converge to the correct physical solution in all cases.   

TABLE 6-3: CONVERGENCE PERFORMANCE FOR LARGE EASTERN INTERCONNECTION TEST CASES 

Case Name # Nodes 
Standard Tool SUGAR 

# Converge # Diverge # Converge # Diverge 

Case 1 80778 0 15 15 0 

Case 2 76228 0 15 15 0 

Case 3 81904 0 15 15 0 

SyntheticUSA 82000 0 15 15 0 

ACTIVSg70k 70000 0 15 15 0 
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6.4.1.4 Contingency Analysis 

To further demonstrate the robustness of our approach, we consider a set of scenarios wherein 

we plan a realistic contingency on large test cases and other hard to solve test cases. We compare 

the obtained results from SUGAR tool against those produced by the standard commercial tool. 

6.4.1.4.1 Experiment 1: Contingency on Eastern Interconnection Test Cases 

In this first experiment, we run contingency analysis on test cases that represent different 

operating and loading conditions for the U.S. eastern interconnection network. The extreme 

contingencies in these cases are defined by loss of either two (N-2) or three (N-3) generators in 

the system. To obtain and further compare the results, we solve these contingency instances with 

both the standard commercial tool and the SUGAR tool. The initial conditions for all the cases 

during simulation are chosen to be the solution state prior to the contingency i.e. solution of the 

base case (thereby suggesting that the system initial conditions depict the pre-contingency 

operating state).  

TABLE 6-4: CONTINGENCY ANALYSIS FOR LARGE TEST CASES 

Case 
Contingency 

Type 

No. of 
Buses 

Standard 
Commercial Tool 

SUGAR 

Case 1 N-2 75456 Diverged Converged 

Case 2 N-2 78021 Diverged Converged 

Case 3 N-3 80293 Diverged Converged 

Case 4 N-3 81238 Diverged Converged 

The results in Table 6-4 demonstrate that while SUGAR was able to converge to the correct 

solution for all the contingency instances, the standard commercial tool diverged for all thereby 

further strengthening the argument for robustness of our framework. Importantly, robustness of 

our tool toward solving contingencies can be extremely vital to grid operation and planning 

engineers who are required by NERC to evaluate each failed N-1 contingency [75]. 

6.4.1.4.2 Experiment 2: Contingency of hard-to-solve real life test cases 

To further strengthen our argument for robust of SUGAR for contingency analysis, we run this 

experiment. In this example, we consider a yet another real-life test grid that represents a sub-set 

of the US grid. The case is known to be hard-to-solve and we perform N-1 contingency analysis 
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on it. The set of contingencies include loss of 10% of the highest capacity links (transformers and 

branches) and the loss of 10% of the largest online generators taken off-line one at a time from the 

base case configuration to create a single contingency instance. This results in total number of 774 

contingency instances within the contingency set. To run the contingency analysis, we first solve 

the base case with the use of the Tx-stepping method. With the solution of the base case as the 

initial condition, we simulate the contingency instances in SUGAR. The standard commercial tool 

was unable to solve the base case, and therefore, we were not able to simulate the contingency 

instances on those.  Table 6-5 results from SUGAR contingency runs show that SUGAR was able 

to solve the base case as well as all contingency instances robustly. 

TABLE 6-5: N-1 CONTINGENCY ANALYSIS ON SET OF CRITICAL EQUIPMENT. 

Solver Number of Contingencies 

System Convergence 

Converged  Infeasible 

SUGAR 774 774 0 

Standard Commercial Tool 774 NA NA 

6.4.1.5 N-1+1 Analysis (Contingency Analysis + Corrective Action) 

In this experiment we simulated yet another real-life test case that represents an electric grid 

network from Africa that it is pushed to its limits. For this experiment, we first perform N-1 

contingency analysis on the test case and based on the results we recommend a corrective action. 

We refer to this corrective methodology as N-1+1 analysis. In the set of contingencies for this 

analysis, we consider all the transformers, lines and generators dropped one at a time that 

resulted in a total of 717 contingency instances. Of these 717 contingency instances, 684 were 

found to be feasible whereas 33 instances were found to be infeasible. The 33 of them were 

confirmed to be infeasible based on the methodology documented in [71]. Furthermore, from the 

results gathered from the contingency analysis, it was found that akin to the base case, a 

significant number of simulation instances resulted in very high voltages as shown in Figure 6-9. 
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Figure 6-9: Maximum bus voltage range for contingency analysis. 

Therefore, as a corrective action to improve the voltages in this system, we propose N-1+1 

analysis. The algorithm for this analysis is as follows: 

N-1+1 Algorithm 

1. procedure: 

2. run  − 1 contingency 

3. identify all regions (𝑅𝑖𝑛𝑓) with abnormal bus voltages in the system 

4. for  𝑅𝑖𝑛𝑓: 

a. add reactive power compensating device to every bus in 𝑅𝑖𝑛𝑓 ( + 1 scenario) 

b. redo    − 1 , find number of infeasible cases ( 𝑖𝑛𝑓 ) and range of voltages 

(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) 

5. choose,  + 1 scenario, with fewest infeasible cases ( 𝑖𝑛𝑓) and lowest spread of system 

voltages. 

Based on the algorithm, we added a reactive power compensating device to the most sensitive 

bus in the system and were able to reduce the system voltages for the base case and the 

contingency cases while resulting in fewer infeasible cases. The maximum bus voltage range pre- 

and post- corrective action is shown in Figure 6-10. 
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Figure 6-10: System bus voltage pre and post corrective action. 

6.4.2 Three-Phase Power Flow Results 

In the following section, we discuss results for three-phase power flow analysis. Like positive 

sequence power flow analysis, we first demonstrate the efficacy of circuit simulation methods 

toward robust convergence of distribution grid three-phase test cases. 

6.4.2.1 Efficacy of Circuit Simulation Methods  

In this experiment, we demonstrate that the use of circuit simulation methods in three-phase 

power flow simulation can ensure convergence for hard-to-solve test cases that were otherwise 

found unsolvable without the use of these methods. To demonstrate one such example, we 

extended the standard 145 node positive-sequence transmission system model into a balanced 

three-phase network model. Figure 6-11 plots the convergence results for this test case with and 

without the use of the dynamic power stepping technique. It is shown that without the use of 

dynamic power stepping method, the test system did not converge to an acceptable solution 

within the maximum number of allowable iterations; however, with the use of dynamic power 

stepping method, the system robustly converged to the correct physical solution. 
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Figure 6-11: Convergence of 145 bus test case for three-phase power flow with (middle) and 

without (top) power stepping. For the power stepping case, the green dotted line represents 

the change in continuation factor λ whose evolution is shown in the bottom plot. 

6.4.2.2 Taxonomy Feeder Test Cases and other Large Test Cases 

Table 6-6 documents the results obtained from the SUGAR three-phase solver for standard 

taxonomy feeder cases and three large meshed test cases. The standard taxonomy feeder cases 

include both balanced and unbalanced three-phase test cases. The first two of the meshed test 

cases are high density urban meshed low voltage networks more commonly known as 342-Node 

Low Voltage Network Test Systems [76]. The third meshed test system is a high voltage 9241 

node PEGASE transmission system that was extended to a balanced three-phase model from the 

positive sequence model. All these cases were simulated in SUGAR three-phase solver to validate 

the solver accuracy by comparing the obtained results against those produced from standard 

distribution power flow tool GridLAB-D. Slight differences (less than 1e-2) in the results were 

observed for cases between SUGAR and GridLAB-D and can be attributed to the default values 

used for unspecified parameters (e.g. neutral conductor resistance) in GridLAB-D.  

TABLE 6-6: SUGAR THREE-PHASE RESULTS FOR TAXONOMY FEEDERS AND LARGE CASES 

Cases #Nodes Iter. Count 
Deviation from GridLAB-D 

Max. ΔVmag [pu] Max. ΔVang [°] 

GC-12.47-1 36 3 9.10E-06 6.6E-04 

R1-12.47-1 2455 5 8.73E-04 9.94E-03 

R2-12.47-3 2311 5 6.56E-04 1.32E-02 
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R3-12.47-3 7096 5 1.94E-03 3.89E-02 

R4-12.47-1 2157 5 6.81E-04 9.61E-03 

R5-12.47-5 2216 5 5.44E-05 4.20E-03 

Network Model 1 1420 3 3.38E-03 2.14E-03 

Network Model 2 1420 3 3.83E-03 6.00E-03 

case9241pegase* 12528 5 NA# NA# 
* 9241 bus PEGASE transmission test case was extended to three-phase model 
#The following case did not run in GridLAB-D 
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7.  Combined Transmission and 

Distribution Simulation 

There is a growing adoption of variable and intermittent sources of generation especially wind 

and solar in the power systems across the globe. This high levels of penetration of renewables 

will result in much narrower operational margin than what’s available today, thereby 

significantly affecting the reliability of the grid. In order to ensure that the reliability of the grid 

is not affected, interdependencies between the transmission grid and distribution grid (wherein 

a significant fraction of solar is likely to be installed) will have to be clearly understood while 

enabling control based on the knowledge of the operating state for both the transmission as well 

as the distribution grid. This was apparent when a transmission system operator in PJM 

coordinated with the Sturgis, Michigan distribution grid to avoid a blackout by utilizing 6 MW 

of distributed generation back in 2013 [77]. To securely and reliably enable control actions such 

as this, the operators and planners of the grid may require new simulation capabilities that will 

navigate through the invisible boundaries that exists today between the transmission and 

distribution grid analyses and solution methodologies. The existing simulation framework for 

power system analyses is incapable of capturing these interdependencies between the 

transmission and distribution grids. No standard tool exists in the industry today that can jointly 

model the transmission and distribution grids while ensuring robust steady-state solution for the 

same. This lack of simulation capability was highlighted in an ARPA-E workshop to identify 

paths to large-scale deployment of renewable energy resources, where one speaker noted that the 

“tools are not graceful in considering penetration levels at which much of the thermal fleet could 

get de-committed,” and that “studies do not co-simulate impact of renewable injection into 

receiving AC systems” [6]. Another speaker noted that the tools for simulating increasingly 

coupled transmission and distribution systems “are not well integrated” [7].  

In this chapter we demonstrate that our equivalent circuit framework can jointly model the 

transmission and distribution (T&D) grid without loss of generality and ensure robust 
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convergence for the same. Moreover, as shown in Section 6, the circuit simulation techniques 

developed within this thesis are directly applicable to both the power flow and the three-phase 

power flow problem and thereby allow us to extend the same to be used in the case of combined 

transmission and distribution analyses for robust convergence. 

7.1 Background 

The existing research literature in the field of combined transmission and distribution 

simulation is limited primarily due to the use of disparate methods for the transmission and 

distribution analyses formulation and algorithms [65]-[68]. Amongst these, the most common 

methodology for combined T&D simulation is to model the transmission network via positive 

sequence model and the distribution network via three-phase model and to couple the two. The 

assumption here is that the three-phases of the transmission network are balanced at the point of 

interconnection (POI). In general, most of these methods tend to couple the transmission and 

distribution systems via an interface and then solve the two via disparate methods [66]-[68]. For 

instance, [66] models the transmission grid via PowerWorld and the distribution grid via 

GridLab-D. The integrated simulation is then performed by running individual sub-circuits in 

their respective tools and then by exchanging variables via a communication port. Similar 

approaches are also used in [67]-[68]. Such approaches result in inheritance of legacy robustness 

issues from the positive sequence as well as the three-phase solvers, wherein a failure of either 

tool to solve a sub-circuit (transmission or distribution test case) results in complete breakdown 

of the framework. Moreover, due to the use of disparate tools/methods for solving the individual 

transmission and distribution test cases, it is difficult to develop methods that are generic and can 

guarantee convergence for both transmission and distribution systems. A more novel master-

slave approach toward solving the combined simulation is proposed in [65], wherein the 

combined problem is solved in a distributed way. In this method, the problem is split into a 

transmission power flow and several distribution power flow sub-problems that are then solved 

via separate algorithms to capture the different features of transmission and distribution 

grids.  However, the methodology has mostly been tested on unrealistically small sized systems 

with no claims of robust convergence for the individual sub-systems.  
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Another approach for combined simulation of transmission and distribution systems is to 

model the complete three-phase network of the transmission system and then to couple that with 

three-phase networks of the distribution systems [69]. This approach does have to assume that 

the transmission grid operation is balanced, and thus allows for simulation of unbalanced 

transmission grids. However, the primary limitations to this approach are the general lack of 

three-phase data for the transmission network, and the lack of research toward ensuring robust 

convergence of three-phase transmission networks. 

7.2 General Methodology 

To robustly solve for the combined transmission and distribution network, we propose the use 

of equivalent circuit approach that is previously discussed in Section 5. In this approach, we 

represent the coupled transmission and distribution grid as an aggregated equivalent circuit, and 

we use exact or relaxed NR methods to solve for the set of non-linear equations defined by that 

aggregated circuit. The aggregated equivalent circuit for the transmission system is the positive 

sequence network of the same and assumes balanced operation of the grid, whereas the 

equivalent circuit of the distribution system models each phase of the distribution grid 

individually, thereby allowing for analysis of unbalanced operation of the grid. In the equivalent 

circuit approach, we can couple the transmission grid model to the distribution grid model 

without modifications and solve them as such. As the entire grid can be thought of as a circuit, 

coupling of the two circuits for combined simulation is fundamental to the circuit analysis 

domain. To couple the two models, we model the positive sequence currents consumed by the 

distribution grid with current controlled current sources connected to the edge of the 

transmission system. Similarly, we model the three-phase voltages at the sub-station level of the 

distribution system by voltage-controlled voltage sources that are functions of the voltages at the 

transmission edge of the system. 

7.3 Coupling port for Combined Transmission and Distribution Circuit 

In this sub-section, we develop the port that is used to couple the transmission and distribution 

sub-circuits for combined transmission and distribution simulations. The positive sequence 
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transmission network and three-phase distribution network are coupled at the POI to run 

combined simulation via the circuit shown in Figure 7-1.  

  

Figure 7-1: Coupling port for combined transmission and distribution analysis. 

To derive the positive sequence currents (𝐼𝑅
𝑝
, 𝐼𝐼

𝑝
)  and three-phase voltages 

(𝑉𝑅
𝑎 , 𝑉𝐼

𝑎, 𝑉𝑅
𝑏 , 𝑉𝐼

𝑏 , 𝑉𝑅
𝑐 , 𝑉𝐼

𝑐) required to model the port we make use of symmetrical components [62]. 

The positive sequence power flow problem for the transmission grid is assumed to have balanced 

operation, and therefore, the zero (𝐼𝑅
𝑧, 𝐼𝐼

𝑧)   and negative sequence (𝐼𝑅
𝑛, 𝐼𝐼

𝑛)   components of 

voltages and currents are ignored in the calculation of distribution grid currents consumed by 

the transmission grid. To calculate the transmission grid currents (𝐼𝑅
𝑝
, 𝐼𝐼

𝑝
)  from three-phase 

distribution grid currents, (102) is used.  
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Similarly, the distribution end voltages as a function of positive sequence transmission POI 

voltages are calculated via: 

[
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 (103) 

Importantly, if unbalanced operation is expected at the high voltage transmission system level, 

then one must construct the three-phase equivalent circuit model of the transmission grid and 

couple it directly with the three-phase equivalent circuit model of the distribution grid at the POI. 

This can be done via an equivalent circuit approach via following the methodology set forth in 

this thesis and in [31]-[35]. However, the analysis of an unbalanced three-phase transmission 

network is beyond the scope of this thesis work. 

We explore two approaches for combined simulation of transmission and distribution (T&D) 

grids in this thesis: 

i. Combined T&D simulation on a single machine. 

ii. Combined T&D simulation on distributed cores with parallel computing. 

7.4 Combined T&D Simulation on a Single Core 

In this approach, we first derive the equivalent circuits for the individual transmission and 

distribution grid models. We then couple the two using the coupling port model given in Section 

7.3 to develop the aggregated equivalent circuit. Once we have developed the aggregated circuit 

for the combined T&D system, we stamp each element in the coupled network into the system 

matrix. This system matrix is like the one that we described for positive sequence power flow or 

three-phase power flow. Once the system matrix is created for the aggregated circuit, NR method 

is applied to find the solution of the aggregated circuit with stamps in the solution matrix being 

updated at each NR iteration. Figure 7-2 shows the coupled network for a combined transmission 

and distribution network. 
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Figure 7-2: General framework for performing combined transmission and distribution 

simulation using equivalent circuit approach. 

Here, we discuss results from the simulations of combined T&D networks on a single machine 

and demonstrate how our approach can overcome challenges faced by the existing methods. 

7.4.1.1 Experiment 1 

In the first experiment, the transmission grid is represented via a 9241 node PEGASE test 

system, which is then coupled to a distribution grid model that is further represented by a 

taxonomy feeder test case (R5-35.00-1) at the point of interconnection (POI). For the purposes of 

this experiment, the original distribution test case is modified to include distributed energy 

resources (DERs) in roughly 20% of the system nodes that contain electrical loads. The net 

capacity of DERs at each node is kept variable and is modified throughout the experiment. 

The goal of this experiment is two-fold: 

i. To demonstrate that higher capacity of distribution loads can be supplied with higher 

penetration of DERs. 

ii. To demonstrate that more resilient grid voltages can be obtained by higher 

penetration of DERs during normal as well as contingency operation. 
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Figure 7-3: POI voltages under normal and contingency operation with changing distribution 

load. 

To obtain the base maximum loading for the combined T&D system, we first develop the PV 

curve for the voltages at the POI by varying the loading factor of the distribution feeder, as shown 

in Figure 7-3. We repeat this analysis on the coupled system by taking a generator off-line (N-1 

contingency) on the transmission grid that is in close vicinity of the POI. As seen in the Figure 7-3, 

for the base case with no DERs, the voltages after the contingency has occurred have dipped 

below 0.75 pu for majority of the loading factors and the likelihood of a system collapse is higher 

with increasing loading of the distribution feeder. 

 

Figure 7-4: POI voltages under normal and contingency operation with changing distribution 

load and with DERs in the system. 
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To supply the full load in the distribution feeder such that the POI voltages remain above 0.75 

pu during all loading factors, we increase the penetration of DERs in the system. We simulate the 

contingency and normal cases with the increased DERs and show the results in Figure 7-4. With 

the increased penetration of DERs in the system, the voltages are above 0.75 pu during normal as 

well as contingency scenarios for all loading factors up to 1.4x while being able to supply greater 

than rated load of the distribution feeder without system collapse. 

7.4.1.2 Experiment 2 

A similar experiment is performed on a larger more realistic test case. In this experiment, the 

78k+ nodes Eastern Interconnection testcase of the U.S. transmission grid is modeled via positive 

sequence network. The 8000+ nodes taxonomy feeder three-phase test system is then coupled to 

a weak point of this transmission network where the voltages are highly sensitive to load currents. 

The primary goal of this experiment is to evaluate the minimum penetration of DERs required to 

supply the full load of the distributed grid while ensuring that the sub-station voltages at the POI 

remain above 0.75 pu. 

 

Figure 7-5: Voltage in pu at the point of interconnection with increasing loading factor of the 

distribution feeder. 

To first evaluate the maximum transfer capacity at the POI prior to voltage collapse, we 

gradually increase the loading factor of the distribution feeder until the system collapses. As seen 
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in Figure 7-5, the system can only supply a fraction of the rated capacity (0.7 loading factor) prior 

to voltage collapse without any penetration of DERs. 

As a remedial action, the penetration of DERs in the system is increased until the transmission 

grid can supply the full load of the distribution system while keeping the voltages at the POI 

above 0.75 pu. As in the prior experiment, the DERs in the system are added to roughly 20% of 

the total system nodes that contain electric loads. A scaling factor is used to increase the 

penetration of DERs in the simulation. Figure 7-6 shows that with 20% penetration of distribution 

generation in the distribution grid, the transmission network can supply the full load while 

maintaining grid voltages above 0.75 pu at the interconnection sub-station. 

 

Figure 7-6: Voltage in pu at the point of interconnection with increasing loading factor of the 

distribution feeder i) with DERs and ii) without DERs. 

7.4.1.3 Experiment 3 

In this experiment the combined T&D framework is used to demonstrate the flow of power 

from the distribution network into the transmission network; i.e., reverse flow of power. This 

reverse flow of power is demonstrated by gradually increasing the penetration of DERs in the 

distribution feeder until the power flow direction is reversed. The results for this experiment are 

shown in Figure 7-7. The left vertical axis in the figure shows the active power transfer across the 

POI whereas the horizontal axis shows the penetration of DERs in the system as a function of its 
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scaling factor. It is shown that as the net penetration of DERs increase in the distributed feeder, 

the net active power transfer across the POI decreases at first. At around >1.2 times the rated 

capacity of DERs, the direction of flow of power is reversed with power flowing from the 

distribution feeder into the transmission network. On the right vertical axis of the figure, the 

voltage in pu at the POI is shown as a function of the variable DERs in the distribution feeder. As 

expected, the net increase in DERs result in a voltage magnitude increase at the POI. Akin to prior 

experiments, DERs are added to roughly 20% of the distribution feeder nodes that carry electric 

load. 

 

Figure 7-7: Reverse power flow observed during increasing DERs in the distribution feeder. 

7.5 Combined T&D Simulation in Parallel with Distributed Cores 

The experiments in the prior sub-section detail the equivalent circuit approach for combined 

T&D analysis on a single machine. However, while solving large combined T&D systems with 

hundreds of distribution networks connected to a single transmission network, the 

computational capacity and the system memory of a single machine may be insufficient. 

Therefore, beyond a certain sized integrated system, the combined T&D simulation becomes 

computationally impractical on a single machine due to the large size of the solution matrix. 

Therefore, to address this limitation, we explore the use of a parallel simulation framework with 

the use of distributed cores or machines. In the proposed approach, the large integrated 
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equivalent circuit with multiple transmission and distribution networks are “torn” into multiple 

sub-circuits using the theory of diakoptics [78], first proposed by Kron. In the past, significant 

research has been carried out [79]-[81] for solving large circuits in parallel for solution matrices 

that have a special bordered block diagonal (BBD) structure.  Interestingly, the solution matrix of 

the combined T&D problem due to the hierarchical nature of the coupling between the various 

networks is inherently in BBD form, and therefore, the developed theory for parallel simulation 

in circuit simulation domain can be directly applied to our problem. One must note that the 

primary purpose of the following discussion within this section is not to develop parallel methods 

for power system simulation, but rather to introduce fundamental concepts and simple examples 

corresponding to the proposed equivalent circuit framework that in future may garner interest 

and further enable the available research in the field of parallel circuit simulation to be applied 

directly to this problem [82], [86] and [89].  

In the following sections, we discuss the “tearing” of large combined T&D system into 

multiple sub-circuits through domain-based decomposition [86]. We then briefly introduce the 

Gauss Seidel Newton (GSN) algorithm that can be used to solve a combined T&D problem in a 

parallel framework.  

Importantly, one of the key prerequisites for a robust parallel simulation framework of a large 

T&D circuit is the ability to solve each individual sub-circuit robustly. In our case, this relates to 

solving the power flow and three-power flow equivalent circuits robustly. In a large simulation 

problem wherein, we may have hundreds, or even thousands of distribution networks connected 

to a single transmission network, it is of utmost importance that we can ensure robust 

convergence to the correct physical solution for each of the individual networks. Otherwise, it 

may cause severe bottlenecks in the overall problem convergence leading to divergence or even 

convergence to erroneous results. Our equivalent circuit framework with circuit simulation 

methods can ensure robust convergence for both the power flow and three power flow circuits, 

thereby extending the same robust properties to the parallel simulation framework. 
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7.5.1 Background 

There has been extensive research towards the use of parallel simulation techniques for 

obtaining the DC and transient solution of very large integrated circuits [79]-[86]. The theory of 

diakoptics [78] and bordered block diagonal matrices [80] are integral to these solution 

methodologies and are developed within that work. We briefly discuss these key concepts in 

following sub-sections and demonstrate how they can be extended to solve combined T&D 

problems in the equivalent circuit framework. 

7.5.2 Diakoptics 

Diakoptics, or the “methods for tearing” [78], involves taking a large problem and dividing it 

into the set of sub problems, which can then be solved independently prior to being coupled 

together again to provide an exact solution for the problem. The aim of this technique is to tear 

the network either through domain-based decomposition [86] prior to the construction of the 

solution matrix or through the direct partitioning of the solution matrix with no prior domain 

knowledge. In the combined T&D problem, the distribution feeders are known to be weakly 

coupled to the transmission network often at a single point of interconnection. This allows for the 

application of domain-based decomposition to “tear” the integrated T&D network into a set of 

sub-networks with lines at POIs being the cut-set branches as shown in Figure 7-9. To numerically 

demonstrate the following, consider an aggregated T&D network with the following function 

form: 

ℱ(𝑽𝑅 , 𝑽𝐼) = 0 (104) 

This large T&D network is torn into 𝑚 independent sub-circuits that consist of the internal 

variables (𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡) that are only functions of circuit elements within the sub-circuit and the 

external variables (𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡) that are functions of circuit elements in the other sub-circuits [79]. 

The decomposed sub-circuits have the following function form: 

ℱ𝑖𝑛𝑡(𝑽𝑅
𝑖𝑛𝑡, 𝑽𝐼

𝑖𝑛𝑡, 𝑽𝑅
𝑒𝑥𝑡, 𝑽𝐼

𝑒𝑥𝑡) = 0 (105) 

ℱ𝑒𝑥𝑡(𝑽𝑅
1 , 𝑽𝐼

1, … , 𝑽𝑅
𝑚, 𝑽𝐼

𝑚, 𝑽𝑅
𝑒𝑥𝑡, 𝑽𝐼

𝑒𝑥𝑡) = 0 (106) 
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for 𝑖𝑛𝑡 = 1, … , 𝑚,  and {𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡} ∈ ℝ𝑛𝑖 are the internal nodal voltages of sub-circuits, and 

{𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡} ∈ ℝ𝑛𝑒 are the external nodal voltages. 

7.5.3 Bordered Block Diagonal (BBD) Matrix Structure 

In many fields of engineering and science, block bordered structured matrix-based problems 

arise. In the circuit simulation field, BBD matrix structure is common for representing the system 

matrix for the VLSI circuits, wherein partitioning (through node tearing or branch tearing) of the 

circuit was beneficial for parallel analyses.  The ability to represent these large circuit’s solution 

matrices in the BBD form enables the use of vastly researched parallel sparse solver techniques 

[86] to obtain the system solution. The hierarchically structured combined T&D network, wherein 

a limited number of transmission networks supply bulk power to numerous local distribution 

feeders, is inherently representable in BBD form. For instance, consider Figure 7-8 in which three 

distribution networks are connected to a large transmission network. There exists a natural weak 

coupling between the different networks in the figure shown via the flow of current. 

 

Figure 7-8: Weakly coupled transmission and distribution network. 

This integrated network can be divided into a set of sub-systems ( ) by the branch tearing 

technique at the coupling points between the transmission and distribution network, as shown 

in Figure 7-9. 

Transmission 
System

Distribution 
System - A

Distribution 
System - B

Distribution 
System - C
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Figure 7-9: “Torn” transmission and distribution sub-systems. 

 

Figure 7-10: Bordered Block Diagonal structure for combined transmission and distribution 

system. 

The decomposed network is further representable in BBD form, as shown in Figure 7-10. The 

block diagonal terms in the matrix (𝑇, 𝐷𝐴, 𝐷𝐵, 𝐷𝐶) represent the system Jacobian elements for the 

decomposed sub-circuits ( = {ℱ𝑇 , ℱ𝐷𝐴
, ℱ𝐷𝐵

, ℱ𝐷𝐶
} ) that are functions of sub-circuit’s internal 

parameters {𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡}  whereas off-diagonal terms in the vertical right of the matrix i.e. 

(𝑡𝑡′, 𝑡𝑑𝑎 , 𝑡𝑑𝑏 , 𝑡𝑑𝑐)  are system Jacobian elements that are functions of sub-circuit’s circuit external 

variables {𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡}. Remaining elements in the bottom of the matrix represent the Jacobian 

elements of the coupling sub-circuit (representing the port circuit equations) with respect to sub-

circuits internal and external variables. Mathematically, these elements are given by: 

𝑇 = {
𝜕ℱ𝑇

𝜕𝑽𝑅
𝑖,𝑖𝑛𝑡

,
𝜕ℱ𝑇

𝜕𝑽𝐼
𝑖,𝑖𝑛𝑡

} , 𝑖 = 1, … , dim(𝑇) (107) 
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𝑡𝑡′ = {
𝜕ℱ𝑇

𝜕𝑽𝑅
𝑖,𝑒𝑥𝑡

,
𝜕ℱ𝑇

𝜕𝑽𝐼
𝑖,𝑒𝑥𝑡

} , 𝑖 = 1, … ,dim(𝑇) (108) 

𝑇𝑇′ = {
𝜕ℱ𝐶

𝜕𝑽𝑅
𝑖,𝑒𝑥𝑡

,
𝜕ℱ𝐶

𝜕𝑽𝐼
𝑖,𝑒𝑥𝑡

} , 𝑖 = 1, … ,dim( 𝐶) (109) 

𝐷𝑥 = {
𝜕ℱ𝐷𝑥

𝜕𝑽𝑅
𝑖𝑛𝑡

,
𝜕ℱ𝐷𝑥

𝜕𝑽𝐼
𝑖𝑛𝑡

} , 𝑖 = 1,… , dim(𝐷𝑥) & 𝑥 = {𝐴, 𝐵, 𝐶} (110) 

𝑡𝑑𝑥 = {
𝜕ℱ𝐷𝑥

𝜕𝑽𝑅
𝑒𝑥𝑡 ,

𝜕ℱ𝐷𝑥

𝜕𝑽𝐼
𝑒𝑥𝑡} , 𝑖 = 1, … ,dim(𝐷𝑥)  & 𝑥 = {𝐴, 𝐵, 𝐶} (111) 

𝑇𝐷𝑥 = {
𝜕ℱ𝐶

𝜕𝑽𝑅
𝑖,𝑒𝑥𝑡

,
𝜕ℱ𝐶

𝜕𝑽𝐼
𝑖,𝑒𝑥𝑡

} , 𝑖 = 1, … ,dim( 𝐶) & 𝑥 = {𝐴, 𝐵, 𝐶} (112) 

where set {𝐴, 𝐵, 𝐶} represents different sub-circuits of the different phases of distribution system. 

In the following section, we discuss Gauss the Seidel Newton (GSN) method, that we use to solve 

the combined T&D parallel problem that is representable in this BBD form.  

7.5.4 Gauss-Seidel-Newton Approach 

We make use of the Gauss-Seidel-Newton (GSN) method [83], [88] to solve the set of sub-

systems given by decomposed combined T&D sub-circuits. The subsystems are chosen such that 

the number of internal nodes (𝒙𝑖𝑛𝑡) for each sub system are far less than the number of external 

coupling nodes (𝒙𝑒𝑥𝑡). The GSN algorithm is a two-step algorithm. Within the inner loop, the set 

of independent sub-systems ( ) are solved in parallel using block NR algorithm until convergence 

or for a limited number of iterations. In this inner loop, the external coupling variables (𝒙𝑒𝑥𝑡) are 

kept constant for each sub-circuit, whereas the internal variables (𝒙𝑖𝑛𝑡) are solved for iteratively. 

In the outer loop, the external coupling variables from each sub-system are distributed to other 

sub-systems via a Gauss step, and the inner loop of NRs are performed again. This iterative 

algorithm is then repeated until the error difference of external coupling variables communicated 

between the consecutive outer loops (epochs) are within a certain tolerance.  

While applying GSN to combined T&D simulation problem, solving of individual sub-systems 

within the inner loop equates to running independent instances of power flow and three-phase 

power flow in parallel. One necessary condition for convergence of the GSN algorithm is that 
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each of these independent power flows and three-phase power flows for the individual sub-

systems that are solved at every Gauss step produce a correct solution; absence of which could 

result in divergence or breakdown of the complete algorithm. We have previously demonstrated 

in earlier sections that the use of circuit simulation methods along with other adapted circuit 

theoretic methods can ensure convergence for any feasible or infeasible power flow or three-

phase power flow circuit, which makes these methods well suited for the proposed GSN 

algorithm. Algorithm 7-1  details the implementation of GSN algorithm for combined T&D 

algorithm. 

 

Algorithm 7-1: Parallel combined transmission and distribution simulation using Gauss-

Seidel-Newton method. 

7.5.5 Validation 

To validate the distributed parallel simulation framework for combined T&D problems, we 

compare the results obtained from the parallel algorithm using GSN on multiple cores against 
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those produced by direct NR algorithm on a single core as described in Section 7.4. To setup the 

comparison, we couple an ~8000-node taxonomy feeder distribution system [84] with a 9241 

PEGASE test case at the transmission node 2519. We then simulate the coupled system for 

different loading factors of the distribution network for the two frameworks: 

i. The coupled network solved at once on a single core using direct NR algorithm. 

ii. The coupled network decomposed and solved in parallel on multiple cores using GSN 

algorithm. 

Figure 7-11 shows that the results obtained for the steady-state analysis of the combined T&D 

system when run of a single machine using NR compare well with those obtained from the 

parallel simulation setup using GSN.  

 

Figure 7-11: Comparison of combined T&D simulation algorithms: i) Single machine setup 

using NR (in blue), ii) Parallel simulation on distributed cores using GSN (in red). 

7.5.6 Combined Transmission and Distribution Analysis on a Large System 

In order to simulate a very large combined T&D system, 50 distribution feeders, each 

representing roughly 8000 nodes, were coupled to a large realistic transmission network at 

different locations. The network representing the Eastern Interconnection of the U.S. with roughly 

85k+ nodes is used to model the transmission network, and the openly available taxonomy feeder 

test cases [84] are used to model the 50 distribution networks.  This problem represents a solution 
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matrix size of roughly 3 million rank with a total of ~3x4,00,000 distribution nodes and ~85000 

transmission nodes. We simulated this case using GSN until completion. 

The complete simulation took 11 Gauss steps wherein within each Gauss step, NR simulations 

run in parallel for each of the block sub-circuits took around 5-10 iterations. In the final solution, 

the POI voltages were all found to be within the acceptable range of 0.8-1.2 pu and the complete 

simulation took less than a couple of minutes to converge with Tx-stepping method enabled. The 

Figure 7-12 represents the evolution of the sub-station voltages at the POI during the Gauss-step 

in the outer loop of the parallel combined T&D simulation. 

 

Figure 7-12: Voltages at the POI in the outer loop of GSN. 

7.6 Notes on Convergence 

Suppose that the system of non-linear equations that represents the large combined 

interconnected transmission and distribution network is given by: 

𝐽𝑉 = 𝐼 (113) 
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where matrix 𝐽 has the form given in Figure 7-10. To further explore the convergence properties, 

this matrix 𝐽 can be split into two components given by: 

𝐽 = 𝑀 −   (114) 

In general, for the Gauss-Seidal-Newton (GSN) algorithm to guarantee convergence for the 

decomposed matrix 𝐽 the spectral radius of the iteration matrix (𝜌(𝑀−1 )) needs to be less than 

unity. However, a less strict condition that requires the solution matrix to be point-wise strictly 

diagonal dominant is often sufficient i.e. 

∑ |𝑎𝑖 |
𝑛

𝑖≠ 
≤ |𝑎𝑖𝑖|, for all 𝑖 (115) 

where 𝑎𝑖  is a value in the matrix for 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. 

Since the solution matrix 𝐽  is representable in BBDF form, a much milder condition can 

guarantee convergence for the partitioned system. If the combined system is represented as an 

aggregated equivalent circuit and is partitioned into sub-circuits at multiple “tearing” nodes, then 

the existence of a capacitance at a sub-set of these “tearing” nodes with a large enough value can 

guarantee convergence for the partitioned system via GSN algorithm [89]. This is a much milder 

sufficient condition for convergence when compared against the strict diagonal dominance 

condition for a general matrix that requires a large value capacitor from each node in the system 

to ground. However, modifications (adding a high value capacitance from the “tearing” node to 

ground) such as these are often unwarranted as they change the inherent structure of the problem, 

and therefore, other convergence techniques should be explored. 

One such method is presented in [90] and ensures convergence for the power flow network-

based problems via GSN by partitioning the matrix into BBDF such that the spectral radius of the 

iteration matrix corresponding to the partitioned system is ensured to be less than one. The work 

in [90] partitions the solution matrix 𝐽 into 𝑀 and   such that 𝐽 = 𝑀 −  , where 𝑀 is a block 

diagonal matrix capturing the interactions between the internal variables of each block sub-circuit 

and   is the off-diagonal matrix that captures the communication between the variables of other 
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sub-circuits. To ensure convergence by GSN, the method introduces a diagonal matrix �̅�, such 

that the matrices M and N are modified as follows: 

𝑀 = 𝐷 + 𝛼�̅� (116) 

 = 𝛼�̅� − 𝐸 (117) 

where, 𝐽 = 𝐷 + 𝐸. It is shown in [90] that by choosing the value of 𝛼 =
1

2
, the algorithm can ensure 

convergence for the partitioned system. 

Furthermore, it should be noted that other methods such as the use of distributed Schur’s 

complement [93] can also be used to extract the exact solution of the linearized matrix 𝐽𝑙  for 𝐽𝑙𝑉 =

𝐼𝐿 at each step of NR given that the linearized matrix  𝐽𝑙 is in BBDF. 
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8. Conclusions and Future Work 

The U.S. Department of Energy’s Quadrennial Technology Review [87] underscores the need 

for “high-fidelity planning models, tools, and simulators and a common framework for modeling, 

including databases” for the future grid of tomorrow. Towards the direction of the common goal 

set forth in that report, this thesis developed a generic framework for modeling both the 

transmission as well as the distribution grid including novel methods that can solve robustly for 

the steady-state operating point of these network models. This is a significant advancement over 

state-of-art tools used today that use disparate tools and methods for transmission and 

distribution grid analysis and often require a good initial guess for obtaining the steady-state 

operating point of the grid. Within the scope of this thesis, to demonstrate the efficacy of the 

proposed framework while also validating the methodology, we developed a power system 

analyses tool SUGAR (Simulation with Unified Grid Analyses and Renewables) that can solve for 

the steady-state operating point of any transmission or distribution network from arbitrary initial 

conditions.  

The different chapters of this thesis were devoted to different pieces of the complete puzzle; 

i.e., the robust steady-state analysis of the power grid. Chapter 5 introduced the concept of the 

equivalent circuit framework for power flow and three-phase power flow analyses. It developed 

models for some of the most common transmission as well as distribution network elements. 

Furthermore, it illustrated that any physics-based or measurement-based model derived in terms 

of current and voltage state variables can be directly incorporated into the equivalent circuit 

framework. Importantly, the developed framework treated the transmission grid positive-

sequence models no differently than the distribution grid three-phase models, and as such 

allowed for methods to be developed in the Chapter 6 that can ensure convergence for either of 

these network models to correct physical solutions. 

Chapter 6 extended and further developed new circuit simulation methods for the field of 

power system analyses, specifically for the power flow and the three-phase power flow analyses. 
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The first part of the chapter extended with modifications existing limiting methods used in the 

field of circuit simulation to power flow and three-phase power flow analyses. For hard-to-solve 

ill conditioned and large test cases, where these preliminary methods fail to ensure convergence 

to correct physical solutions, the chapter developed novel homotopy methods namely the Tx 

stepping method and dynamic power stepping method to ensure convergence to the correct 

physical solutions. The results section of this chapter combined the equivalent circuit framework 

with developed circuit simulation methods to solve ill-conditioned as well as large networks for 

both power flow and three-phase power flow problems independent of the choice of initial 

conditions. 

Chapter 7 addressed another key challenge within existing approaches for steady-state 

analysis of the power grid; i.e., a robust combined transmission and distribution (T&D) analysis 

framework. The existing use of disparate algorithms and solution methodologies for transmission 

power flow and distribution three-phase power flow problems has made it all but impossible to 

robustly solve the combined T&D system. As underscored previously, the proposed equivalent 

circuit approach in Chapter 5 treats the transmission grid equivalent circuits no different from 

the distribution grid equivalent circuits and as such can combine the two networks without loss 

of generality, while also broadly applying the developed circuit simulation methods to ensure 

robust convergence to correct physical solutions for the steady-state analysis of combined T&D 

system. Two approaches to solving the combined T&D problem were proposed in this chapter. 

The first approach combined the transmission grid equivalent circuit with the distribution grid 

equivalent circuit at the point of interconnection and solved the combined system on a single 

machine as one problem using NR. For larger combined T&D systems with hundreds of 

distribution networks connected to large realistic meshed transmission networks, we proposed 

another approach. In this approach, a parallel distributed simulation framework for solving the 

combined T&D problem was explored. In this approach, the bordered block diagonal structure 

of the combined T&D problem is exploited to apply previously developed parallel simulation 

methods in the circuit simulation field directly to this problem. To demonstrate the approach, the 

Gauss-Seidel-Newton method was used to solve a large combined T&D system with greater than 

a million nodes to ensure convergence to the correct physical solution. 
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Importantly, circuit simulation techniques for power system analysis that were developed and 

discussed within this thesis are by no means exhaustive. Future work toward extending these 

techniques will include application of these methods or some modifications of it to other power 

system analysis such as in the case of security constrained optimal power flow and probabilistic 

power flow analyses. In general, these homotopy and limiting methods work by capturing the 

physics of the power grid network equations to solve a complex problem. Therefore, in the future, 

any problem that requires to solve the power grid network equations within its framework can 

directly use these methods without loss of generality to ensure robust convergence. 

Given that these methods were primarily designed to ensure robust convergence, much less 

rigor was spent within the scope of this thesis on optimizing these methods for computational 

speed. While it has been demonstrated that SUGAR is comparable in terms of speed against other 

state-of-art tools used in the industry today, in the future we plan to adapt these methods to 

optimize for computational speed as well. This is pertinent to run computationally intensive 

simulations, such as the contingency analysis, security constrained optimal power flow analysis 

and probabilistic analysis, for time-critical operations of the power grid. 

In Chapter 7, this thesis briefly explored the use of parallel simulation methods for solving the 

combined T&D problem. In the future, we plan to build on this fundamental concept by further 

probing into the theoretical guarantees for convergence of different parallel simulation 

algorithms that are available for the BBDF structured problems. This will necessitate the 

exploration of other methods with our framework for the parallel combined T&D simulation such 

as the multi-level newton methods [79]-[85],. 

  



Appendix A.  BIG Model: Linear Model 

for Aggregated Load in the Power Grid 

A.1 Background 

In traditional power flow and three-phase power flow analyses, non-linear models are used to 

characterize the aggregated electric load behavior.  These models are often insensitive to system 

voltages (as in the case of PQ load model) and introduce strong non-linearities in the formulation 

(as in the case of PQ and ZIP load model). Interestingly, some of the challenges in terms of 

solution accuracy and convergence for both these analyses are often due to these models that are 

used to mimic the behavior of aggregated electric load in the system. For instance, consider the 

B.C. Hydro system wherein it was shown that decreasing the substation voltage by 1% decreased 

the active and reactive power demand by 1.5% and 3.4%, respectively [91]. PQ load models that 

make up the bulk of the aggregated load models today are purely based on constant power 

variables and are independent of the complex voltage magnitude or angle at the connected node 

and therefore cannot replicate this behavior. Improvements to the PQ load models (e.g. ZIP model, 

exponential) can better characterize the voltage sensitive load behavior by incorporating the 

voltage magnitude dependency; however, like in the case of the PQ load model, they introduce 

significant non-linearities in the formulation. Furthermore, ZIP and exponential load models 

cannot characterize load characteristics on a constant voltage node in the system (e.g. variable 

load connected to a generator node) as the load magnitudes for these load models are 

independent of the voltage angle information at the connected node. To address these drawbacks, 

we developed a linear load model [52]-[55] that can capture the true voltage sensitivities for the 

aggregated load in the system.  

To develop a load model that better characterizes the true physics of the grid, we began with 

understanding the electric load behavior for the Carnegie Mellon University (CMU) campus by 

observing the measurement data for a randomly chosen 48-hour period as shown in Figure A-1. 



 

We can infer from the figure that the load current variation (𝐼𝑅 and 𝐼𝐼) can be attributed to two 

factors: 1) system voltage variation and 2) variation in actual load demand (i.e. devices turning 

on and off).  

 

Figure A-1: CMU dataset - current (real and imaginary), and voltage over time (2 days). 

Therefore, to accurately capture the load behavior, the developed load model template needs 

to characterize the base load as well as the voltage sensitivities of the base load correctly. We 

developed a circuit theoretic model called BIG load model in [52]-[53] to achieve exactly that.  

Furthermore in [54]-[55], we demonstrated the use of machine learning algorithms for fitting this 

BIG load model template. In the following sub-section, we will discuss the development of this 

circuit theoretic load model, following which we explore the major advantages of the proposed 

BIG load model. 

A.2 Circuit Theoretic BIG Load Model 

A first-order impedance model can be used to represent any phase and magnitude relationship 

between current and voltage phasors at a single frequency as shown in Figure A-2. This first-

order load impedance can be represented as an equivalent circuit model via a conductance (𝐺) 

and susceptance (𝐵) in series or in parallel, and as such, would capture the load behavior wherein 

the current flowing into the load bus is directly proportional to the voltage across it. However, 

the aggregated loads can sometimes behave contrary to this behavior; for example, consider an 

aggregated load with a large percentage of induction motors that run to maintain a constant 

mechanical torque. Such loads are likely to exhibit a behavior wherein the current flowing into 

the load bus is inversely proportional to the applied voltage. This behavior is like that of a 



 

constant PQ load model, where the increase in voltage has no influence on the constant power P 

and would conceptually correspond to a decrease in current. 

 

Figure A-2: First-order load model. 

To begin from a circuit modeling perspective, we consider a load model for a generalized 

aggregated load in the system that could capture both positive and negative voltage sensitivities 

for the load current.  

First, we derive the circuit to capture negative sensitivities of load currents with respect to 

system voltages. To do so, let us consider the governing equation for the PQ load model, which 

has negative sensitivities of load currents with respect to system voltages: 

𝐼𝑅
𝑃𝑄 + 𝑗𝐼𝐼

𝑃𝑄 =
𝑃𝑉𝑅 + 𝑄𝑉𝐼

𝑉𝑅
2 + 𝑉𝐼

2 + 𝑗
𝑃𝑉𝐼 − 𝑄𝑉𝑅

𝑉𝑅
2 + 𝑉𝐼

2  (118) 

We can split the complex current function in (118) and linearize it to obtain the real and 

imaginary terms: 

𝐼𝑅
𝑃𝑄𝑘+1

= 2𝐼𝑅
𝑃𝑄𝑘

+
𝜕𝐼𝑅

𝑃𝑄

𝜕𝑉𝑅
𝑉𝑅

𝑘+1 +
𝜕𝐼𝑅

𝑃𝑄

𝜕𝑉𝐼
𝑉𝐼

𝑘+1 (119) 

𝐼𝐼
𝑃𝑄𝑘+1

= 2𝐼𝐼
𝑃𝑄𝑘

+
𝜕𝐼𝐼

𝑃𝑄

𝜕𝑉𝑅
𝑉𝑅

𝑘+1 +
𝜕𝐼𝐼

𝑃𝑄

𝜕𝑉𝐼
𝑉𝐼

𝑘+1 (120) 

where the constant terms represent the values of real and imaginary currents known from 𝑘𝑡ℎ 

iteration and are represented by a constant current source. Note that partial derivatives for which 

the real and imaginary currents are directly proportional to the voltages across the respective 

split circuit models, i.e. real and imaginary, are represented as a conductance (𝐺), while the partial 



 

derivatives for which real and imaginary currents are directly proportional to the voltages of 

other sub circuits are represented by a voltage controlled current source (𝐵).   

Furthermore, it can be shown that the respective partial derivatives defined in (119) and (120) 

have the following properties that further represent the negative sensitivities: 

𝜕𝐼𝑅
𝑃𝑄

𝜕𝑉𝑅
=

𝜕𝐼𝐼
𝑃𝑄

𝜕𝑉𝐼
≡ 𝐺 < 0 (121) 

|
𝜕𝐼𝑅

𝑃𝑄

𝜕𝑉𝐼
| = |

𝜕𝐼𝐼
𝑃𝑄

𝜕𝑉𝑅
| ≡ 𝐵 (122) 

From (119) and (120) we can observe that the governing equation of a PQ load model, i.e. (118), 

can be translated to an equivalent circuit corresponding to a constant current source (𝐼) in parallel 

with the susceptance (𝐵 ) and a negative conductance (𝐺 ) that compensates for the inverse 

relationship between the load current and voltage. With this model, as the voltage across the load 

increases, the current will decrease and vice versa. This model is now extended to even capture 

positive sensitivities of the load current to voltage change. 

To capture both load type sensitivities with respect to voltage, we consider the complex 

governing equation of the generalized load current that is given by: 

𝐼𝑅 + 𝑗𝐼𝐼 = 𝛼𝑅 + 𝑗𝛼𝐼 + (𝑉𝑅 + 𝑗𝑉𝐼)(𝐺 + 𝑗𝐵) (123) 

where the complex admittance (𝐺 + 𝑗𝐵) with positive 𝐺 captures the constant impedance load 

behavior and is directly proportional to the voltage across the load, and the combined 

impedances capture the voltage sensitivities. Specifically, a negative conductance in conjunction 

with complex current (𝛼𝑅 + 𝑗𝛼𝐼) will mimic the inverse current/voltage sensitivity relationship 

and positive conductance will represent the other. Both the positive and negative impedances 

capture the change in load due to the voltage variation with respect to the portion of the load that 

is parameterized by the current source. 

The complex equivalent circuit and the split-circuit of the proposed susceptance (𝐵), current 

source (𝐼), and conductance (𝐺) load model, BIG, defined by equations (124)-(125), is shown in 

Figure A-3. 



 

𝐼𝑅 = 𝛼𝑅 + 𝑉𝑅𝐺 − 𝑉𝐼𝐵 (124) 

𝐼𝐼 = 𝛼𝐼 + 𝑉𝐼𝐺 + 𝑉𝑅𝐵 (125) 

It is worth noting that the BIG model is equivalent to the ZIP load model with the real power 

coefficient set to zero and a different “fixed complex current” term. Most importantly, the BIG 

load model is linear in a current/voltage formulation, while the ZIP model is nonlinear in both 

current-voltage and traditional PQV formulations. In addition, the BIG model can capture 

dependency of the load current with respect to the voltage angle. 

 

Figure A-3: BIG load model. 

A.3 Contributions of BIG Load Model 

The BIG load model has many advantages over existing aggregated load models. Among these, 

the four that are most impactful are as follows: 

A.3.1 Linearity 

The BIG load model is a linear load model as shown in [52] and results in linear network 

constraints for the network in the equivalent circuit approach. This contrasts with non-linear PQ 

and ZIP load models. The use of the BIG load model significantly reduces the network non-

linearities in the proposed equivalent circuit framework thereby significantly reducing the 

probability of the solver to result in divergence or convergence to an erroneous solution. 

Importantly the BIG load model still results in non-linear network constraints for power flow and 
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three-phase power flow analyses with the use of the ‘PQV’ formulation and therefore does not 

extend the same benefits as it does in the case of the equivalent circuit framework. 

A.3.2 Captures Voltage Sensitivities 

The BIG load model when parameterized using real measurement data captures the true 

sensitivities of the load currents (as a function of system voltage) at the given operating point. 

This further enables the use of linearized equivalent circuits for any further analysis around the 

operating point. Accurate sensitivity analysis with a linearized system requires the system 

sensitivities to be accurately defined as is done via the BIG load model. Figure A-4 shows the 

measured real and imaginary currents for the Carnegie Mellon campus and the constructed 

currents using the BIG load model segments [55]. In the figure, the BIG model load model is 

shown to capture the true sensitivity of the measured load currents in the system. This contrasts 

with all existing aggregated load models in the literature. 

 

Figure A-4: BIG load model is shown to capture the voltage sensitivities if the measured 

CMU system load [92]. 

Another experiment that demonstrates the ability of the BIG load model to capture true voltage 

sensitivities is further discussed. In this experiment, a synthetic test grid is setup that includes 

physics-based load models for IMs, resistive heater load, and capacitors banks. Synthetic 

measurement data is then generated from this synthetic grid for a number of days with a range 

of voltage inputs. The BIG load model and PQ load model parameters are then fitted based on 

Captures 
variation of 
load with
voltage



 

the synthetic measurement data using the same methods as described in [54]-[55]. Now to 

evaluate and further validate the sensitivity of the fitted load model to the system voltages, the 

source voltages are decreased and increased by 5% respectively, and new synthetic 

measurements are produced from the test grid. As it is seen in Figure A-5, the previously fitted 

BIG load models can still capture the load characteristics accurately with perturbed voltages 

whereas the PQ load model results in erroneous currents. 

 

Figure A-5: Fitted BIG versus PQ load model with perturbed system voltages [92]. 

A.3.3 Captures Voltage Angle Information 

Unlike PQ and ZIP load models that are either fixed in magnitude or voltage magnitude 

dependent only, the BIG load models are sensitive to both the voltage magnitude and voltage 

angle. This allows for modeling of aggregated load that is sensitive to only voltage angle i.e. 

complex voltage dependent load connected to constant voltage magnitude (PV buses) nodes in 

the system. To illustrate further, as an example behavior of such an aggregated load is shown in 

Figure A-6. The figure illustrates complex voltage characteristics of a PV node in a power flow 

case study where the variable load connected to the PV node is varied from 100 MW to 650 MW. 

The figure shows that the real power absorbed by the PV node is independent of the voltage 

magnitude at a given node and can be represented as a function of voltage angle (with respect to 

the reference) only. Therefore, existing load models such constant PQ and voltage magnitude 



 

dependent ZIP model will fail to model this behavior, whereas the proposed BIG load model will 

be able to accurately model it. 

 

Figure A-6: Complex voltage profile on PV node with variable real power injection. 

A.3.4 Generic Model for both Power-flow and Transient Analyses 

Importantly, BIG load model unlike ZIP and PQ load model can be used for both time-domain 

transient analysis as well as frequency domain power flow and three-phase power flow analyses 

without any modification; hence further enabling the unification of the two analyses as discussed 

in Appendix B and in [50]. PQ and ZIP load models cannot be directly used for time-domain 

transient analysis due to the existence of time-average power terms. 

  



 

Appendix B. Unified Power System 

Analyses and Models 

B.1 Introduction 

One of the key underlying challenges in the existing power system analyses is the lack of 

consistent solutions between the steady-state analysis (power flow and three-phase power flow) 

and the steady state obtained from time-domain transient analysis. In general, the expectation is 

for the final steady state of the transient response to match exactly the balanced power flow 

solution or the three-phase power flow solution. However, this is generally not the case in the 

existing framework for power system analysis where the nonuse of standardized modeling and 

solution methods between the steady-state and the transient analyses results in inconsistent and 

often erroneous results. This contrasts with what’s observed in the field of circuit simulation [51], 

wherein standardization of models and algorithms guarantees consistent solutions between the 

steady state and time-domain transient analyses for electronic circuits with billion plus nodes. 

The most notable cause for discrepancy in solutions between the steady-state and the transient 

analyses is the use of disparate models for aggregated loads and generators in the two analyses. 

In steady-state power flow and three-phase power flow analyses, power variables with time 

average magnitudes and phasor relationships are used to model the aggregated loads as well as 

the generators (PV/PQ models). These models are inherently incompatible with time domain 

analysis, where instead physics-based models or some form of approximation of the constant 

power models (e.g. constant impedance/current) are used to represent the same; hence, resulting 

in inconsistent solutions between the two analyses. To enable consistent solutions between the 

two analyses requires that either the network models are derived from the true physics of the 

equipment or are aggregated such that they can be represented in terms of voltages and currents 

in both time-domain analysis (transient or dynamic analysis) as well as frequency-domain 

analysis (for power flow and three-power flow) without loss of generality. 



 

In the past, the use of real and reactive power variables to model the aggregated load and 

generation for positive sequence and three-phase power flow was necessary due to the inability 

of the exiting frameworks to include physics-based models directly and due to the lack of online 

measurement data for the power grid that could characterize the load behavior in terms of 

currents and voltages. However, real-time access to voltage and current measurements has 

significantly increased due to high penetration of Remote Terminal Units (RTUs) and Phasor 

Measurement Units (PMUs) in the grid. This has allowed for characterization of aggregated load 

using real measurement data with voltage and current as unknown variables as shown in the case 

of the BIG load model in the previous Appendix A. In this appendix as an alternative approach, 

we explore the use of physics-based models that can be generically used in both the power flow 

as well as the time-domain transient analyses. Importantly, both these approaches: i) 

measurement-based empirical modeling (in Appendix A) and physics-based modeling 

(discussed within this appendix) are generically applicable to both the steady-state as well as 

time-domain transient analyses and hence result in consistent solutions between the two. 

To demonstrate the use of physics-based models in the equivalent circuit approach for both 

the time-domain analysis and power flow analysis we consider a simple model of a three-phase 

squirrel cage induction motor (IM) developed in Section 5.5. This model is used to create a simple 

test network on which we run transient as well as power flow analyses. It is shown that in our 

approach, using physics-based models, consistent steady-state solution is obtained for both the 

analyses i.e. transient analysis as well as power flow analysis.  

B.2 Validation of IM model  

To first validate the physics-based model of the IM that is developed in Section 5.5, we run 

time-domain simulations on the test network, which simulates IM’s starting characteristics from 

stand still to rated speed.  We first run this on SUGAR transient analysis module and then 

compare the obtained results against those produced by the same test setup in MATLAB 

SimscapePowerSystems (SPS).  Figure B-1 shows the response of IM’s critical parameters during 

motor start-up and past that into the steady-state region for both the simulation tools.  The 

evolution of motor state variables over time exhibit similar form and shape when simulated with 



 

both the SimscapePowerSystems and the SUGAR thus validating the developed model for IM for 

both transient and stead-state operating region. 

 

Figure B-1: Electrical torque and rotor speed comparison between SimscapePowerSystems 

(SPS) and SUGAR with SUGAR restricted to maximum of one N-R iteration. 

B.3 Solution consistency between the steady-state and transient analysis 

Next, we demonstrate that the simulation of this test network model results in a consistent 

solution between the steady-state obtained from the transient analysis as well as the steady-state 

obtained from the power flow analysis. For steady-state power flow as well as transient analyses, 

the model of IM developed in Section 5.5 is used without modifications. In the test network, the 

IM model is connected to an infinite bus through a transmission line. To run power flow analysis, 

the source frequency of the test network is set to system frequency. The results from the SUGAR 

steady state solver are then compared against the ones obtained from the SUGAR transient solver 

for the same test network. The time-domain transient analysis is run from t=0 to an approximate 

steady state condition at t=1.5 seconds as shown in Figure B-1.  



 

TABLE B-1: IM RESULTS IN EQUIVALENT CIRCUIT FRAMEWORK FOR STEADY-STATE (POWER FLOW) AND TIME-

DOMAIN TRANSIENT ANALYSIS 

Parameter Unit Steady State Transient @ t=1.5 sec 

Rotor Speed rad.s-1 375.01 375.01 

Electric Torque N.m 16.64 16.64 

Stator direct-axis current Amps -11.36 -11.36 

Stator quadrature-axis current Amps 13.09 13.09 

Rotor direct-axis current Amps 11.56 11.56 

Rotor quadrature-axis current Amps -0.49 -0.49 

The comparison of results is documented in Table B-1 and are a perfect match between the 

two analyses to at least three significant digits. This as a concept demonstrates that equivalent 

circuit framework can be used in conjunction with physics based models or measurement based 

empirical models to result in consistent solutions between the steady-state analysis (power flow 

or three-phase power flow) and the time domain transient analysis. 
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