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Abstract
Classical shape estimation techniques often have simplified but unrealistic assump-

tions, such as light interacting with the scene with only single-bounce light paths and
the scene being Lambertian. However, a real scene often interacts with light in sig-
nificantly more complex ways; multi-bounce light paths are ubiquitous and real-world
materials are typically non-Lambertian. In such cases, shape estimation is not just
challenging, but also beyond the reach of commonly used techniques.

We propose a shape estimation framework that deals with multi-bounce light paths.
The proposed framework uses light paths, as opposed to images, as the primitive for
shape estimation. The core of our idea is that we can trace the optical journey of a
collection of photons as light paths with multiple bounces, where each bounce is an
instance of a light-object interaction. These interactions can often be explained by
simple physical laws that govern how properties of light rays change; for example, a
mirror simply changes the orientation of light rays while preserving their radiance; a
diffuse wall scatters light in all directions and changes the light ray’s radiance. Shape
estimation problem now reduces to identifying underlying physical phenomena related
to each bounce in the light path.

Our proposed shape recovery framework is particularly effective for scenes that
interact with light in complex ways. We explore three such scenarios. First, we char-
acterize how information pertaining to the shape of a transparent object is encoded
in the deflection of light rays and use it to recover the shape of transparent objects.
Second, we characterize how the path length of two-bounce light paths are sufficient
for concave shape recovery. Finally, we show a specialized scenario where the object
of interest can only be imaged through multi-bounce light paths. In all three scenarios,
we show that by using physical properties related to each bounce of light paths, we can
find constraints on the geometry of the scene, this leads to accurate shape estimation
algorithms. The techniques developed in this thesis are applicable to a wide range of
research fields. The image formation discussed in this thesis shares a lot of similari-
ties in other fields, such as medical imaging, acoustic imaging, and wifi localization.
We hope this thesis can inspire more researchers to deal with multi-bounce effects in
different research fields.
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Chapter 1

Introduction

3D perception enables a wide spectrum of applications. From technologies of today, such as en-
tertainment systems, and surveillance, to those in the near future, including augmented reality, au-
tonomous driving, and 3D printing, shape estimation is inarguably a vital component of machine
perception.

Classical techniques for shape estimation make several undesirable assumptions; in particu-
lar, direct path and Lambertian reflectance assumption. These assumptions are the keys to enable
many classical computer vision techniques like multi-view geometry [47], shape from shading
[53], structure from motion [125], photometric stereo [143], and structured light [113, 148]. How-
ever, when we examine the two assumptions in more detail, we can see that many common sce-
narios violate the assumptions. First, when a camera only observes direct light paths, i.e., light
paths that only interact with the scene at a single location, different parts of the scene do not af-
fect the measurement of each other and this greatly simplifies shape recovery. This assumption,
however, omits many complex light-object interactions that are commonly seen in the real world,
such as interreflections and subsurface scattering (see Figure 1.1). In the presence of such indirect
light paths, each measurement made by the camera is linked to properties of multiple scene points.
Shape estimation techniques need to disentangle the contributions from different parts of the scene,
which is a hard problem. Second, when the objects in the scene exhibit Lambertian reflectance,
their appearance does not change across views. This assumption is key to form correspondences
across multiple camera views to estimate 3D geometry. However, real-world objects invariably vi-
olate the Lambertian reflectance assumption; for example, reflection on mirrors, caustics on a wine
glass, the shine on metallic objects, and numerous phenomena (Figure 1.2). Without the assump-
tion of Lambertian reflectance, shape estimation problem often becomes difficult since reflectance
is also a variable in the image formation model. Shape estimation method that relies on image
intensities will need to untangle the effect of geometry and reflectance.

In this thesis, we propose a new shape acquisition framework that particularly focuses on multi-
bounce light paths. Instead of viewing multi-bounce light paths as undesirable effects that need
to be eliminated during shape reconstruction, we turn them into a useful tool to understand scene
properties. Each "bounce" in the light path is related to an instance of light-object interaction and
it encodes rich information about the scene. The challenge is to find computationally tractable

1



Figure 1.1: Real-world examples of multi-bounce light paths. Light paths undergo at least two
changes of direction when interacting with a transparent object.1Interreflections are prevalent when
objects in the scene exist specular reflectance. Human skin is one common example of subsurface
scattering.

techniques to utilize the information embedded in these multi-bounce light paths.
At the core of this thesis, we argue that light paths are better suited for shape estimation com-

pared to images. Inspired from the work of Kutulakos and Steger [74], we use light paths as
primitive to estimate an object’s shape. Studying a single light path is akin to tracing the optical
journey of a single photon. Each "bounce" is an optical event that can be described using simple
physical laws; for example, mirrors alter the propagation direction of light at the surface, which
follows the law of reflection. Transparent objects, on the other hand, change a light path’s direction
twice, each following Snell’s law. Light transport is determined by the geometry and the BRDF of
the scene. Each bounce of light path encodes properties of surface location, surface normal, and
material properties at multiple scene points. By combining all different light paths, we gather rich
information regarding the scene of interest.

There are many research efforts in dealing with multi-bounce light paths and objects with
complex reflectance. We discuss these related works and show how some of them inspire us to use
light paths as the building block for shape estimation

1.1 Related work

There are many results that focus on extending shape reconstruction techniques to reconstruct
objects that exhibit interreflections or other complex material properties. We discuss two areas
of research that are most related to this thesis. The first area focuses on isolating one-bounce
light paths, also known as the direct global separation. The second deals with non-Lambertian
reflectance, or even more complex scenario of spatially varying BRDF for shape reconstruction.
We also briefly discuss time-of-flight imaging, which is one of the fundamental techniques that we
use in this thesis.

1Photo credit: Juinn-Kai Huang.
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Figure 1.2: Real-world objects with complex material properties. Most objects in the real world
have non-Lambertian reflectance. Glass, mirror, rubber, and metal all have drastically different
appearances. Some materials create an opaque surface, for example, rubber, metal, and mirror. On
the other hand, some materials are translucent, for example, a thin piece of paper and a glass of
tea.

Direct global separation and global suppression. Most 3D reconstruction methods rely on the
single-bounce light path assumption. Therefore, there are a lot of works that aim to extract the di-
rect component of light transport or to suppress the effect of global component (multi-bounce light)
so that the measurements are mainly from single-bounce light paths. Seitz et al. [115] show the
existence of interreflection cancellation operator and show how it can decompose an image into the
sum of n-bounce images. For a scene with Lambertian reflectance, the interreflection cancellation
operator can be computed from the light transport matrix, thus direct light can be computation-
ally recovered. Nayar et al. [91] propose a projector-camera system to illuminate the scene with
high-frequency patterns to separate the direct components of light from global components.

Most methods in this field find methods and scenarios where the global effect is minimized.
Gupta et al. [43] show that with an appropriate choice of spatial codes in structured light, the effects
of subsurface scattering and interreflections can be minimized, resulting to a robust shape recovery
for materials exhibiting moderate global light transport. O’Toole et al. [93] use the observation
that one-bounce light paths need to follow epipolar geometry, and build a hardware prototype that
only allows light travelling on epipolar plane. This imaging architecture decreases the impact of
the global component of light transport.

For continuous wave time-of-flight, the global effect will affect the phase estimation, thus

3



global light needs to be taken care to give an accurate time-of-flight estimation, this is also called
the multi-path interference problem. Gupta et al. [44] show that with the appropriate choice of
temporal modulation frequencies in a ToF sensor, the global light transport effects can be signifi-
cantly suppressed based on phasor analysis. Achar et al. [1] use the idea similar to [93] that direct
component will follow epipolar geometry and build a time-of-flight imaging prototype.

While these methods focus on reducing the impact of multi-bounce light paths for shape es-
timation, in this thesis, we show that multi-bounce light paths actually contain rich information.
Instead of treating multi-bounce light paths as noise, we explicitly study the geometric constraints
of these light paths and use them for shape estimation.

Dealing with non-Lambertian reflectance. Without the assumption of Lambertian reflectance,
finding the shape of an object through intensity measurements requires taking reflectance into
account. Earlier attempts to deal with non-Lambertian reflectance aim to recover the shape of
an object with homogeneous BRDF. A classical approach by Hertzmann and Seitz [52], called
"Example-based photometric stereo", uses the observation that an object with a known shape
made of similar material with the object of interest can provide information regarding how lighting
changes the appearance of the object. By placing an object with similar material into the scene,
the reflectance estimation problem can be avoided, thus solving the shape becomes simpler.

A special case of homogeneous BRDF is a mirrored object. We detail some works in this field
since these relate to our work closely. A fundamental ambiguity in specular surface reconstruction
is the so-called depth-normal ambiguity [63]. Given a light ray that is the reflection of a known
3D reference point on a mirror, the surface normal and the depth at which reflection occurs are
constrained. Specifically, for every possible depth along the light ray, there is a corresponding
normal leading to the same reference point. There are multiple approaches to resolve the depth-
normal ambiguity for specular surfaces. Methods in [80, 122, 141] overcome the depth-normal
ambiguity by using correspondences of a known reference target and by regularizing the depth
using smoothness priors. In [10], the shape of a mirror is recovered by obtaining images of a
planar target, thus the need for knowledge of the reference point is relaxed. Shape from specular
flow [2, 112] recovers the shape of a mirror from scene motion, requiring little effort in terms of
calibration. In this setting, it is even possible to obtain invariant signatures of the shape of the object
from multiple images [111]. Reconstructing the shape of a mirror object is greatly simplified when
thinking in terms of light paths instead of images. The problem for depth-normal ambiguity arises
because of the additional two degrees of freedom of light ray direction from the reference points.
Kutulakos and Steger [74] argue that light paths are more suitable for 3D reconstruction since
depth estimation can be simplified to a light path triangulation problem. For a mirrored object,
the surface of the object is exactly at the location of the "bounce" of the light path, which can be
found by intersecting the incoming and outgoing light rays and the surface normal can be found by
averaging the light ray directions. This simple yet powerful observation is central to many ideas in
this thesis.

A step toward a more realistic setup is to deal with objects with spatially-varying BRDF. One
approach to extend photometric stereo to deal with spatially-BRDF to solve a parametric BRDF
model [35, 41] or assume the BRDF to be a linear combination of exemplar BRDFs [3, 54]. An-
other approach is to find reflectance-invariant features by considering object and camera motions
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[16, 17, 18, 140]. Since photometric stereo methods rely on measured intensities, jointly solving
shape and reflectance or finding reflectance-invariant features are required to deal with objects with
complex materials.

The aforementioned methods only deal with opaque objects. Another type of complex re-
flectance is translucent materials, for example, a glass of milk, soap, human skin, etc. Scattering
effect needs to be taken into account and the light path of interest is typically a multi-bounce light
path. To help understanding translucent object properties, [39, 40, 89] measure material proper-
ties of objects with a known shape. Even though the object shape is known, estimating material
property is non-trivial and requires complex imaging setups or computational tools. To simul-
taneously recover material and shape requires simplification of the image formation model, for
example, assuming a one-bounce scattering light path [55], or using tomography for shape recov-
ery [42, 76, 116].

More related to our work is a simpler instance of translucent objects, namely, transparent ob-
jects. For transparent objects, the light path of interest is invariably multi-bounce but is typically
limited to two bounces. The main challenge of reconstructing a transparent object is then to recover
the two refractive events that happen at two distinct unknown locations. Most methods in this field
utilize that Snell’s law is the underlying physics that determine the appearance of a transparent
object. For thin objects, we can even approximate the light path with a single-bounce light path
[78, 142, 145] and recover its shape. Kutulakos and Steger [74] propose a theoretical analysis on
utilizing the geometric properties of light paths and show that if we have location and direction of
a light path before and after interacting with the transparent object, it is possible to reconstruct its
shape. This analysis of turning physical phenomena happening at each bounce of the light path to
geometric constraints of the object becomes the foundation of this thesis. This thesis can be viewed
as an extension of the analysis in [74] to a broader class of objects and with ToF information of the
light paths.

Time-of-flight imaging. Our proposed shape estimation framework builds on the fact that we
can measure different properties of light paths, such as position, direction, radiance, and time of
flight. Position, direction, and radiance can be acquired by typical cameras or light field cameras.
Time-of-flight imaging is a more recent technology that uses transient radiometric sensors [59] to
gather time-resolved intensity measurements. Since the speed of light is large (3× 108 m/s), the
associated time scales of travel times are invariably very small, typically picoseconds for the scale
of everyday objects. The time of flight provides the total path length the photon takes from the
light source to the scene and potentially bounces at multiple locations then back to the sensor. That
is, if we send a short pulse of light from the light source, we want to recover the radiance of each
light path returning to the sensor at different instants of time.

One of the most commonly seen time-of-flight technologies is LIDAR, which is widely used
for autonomous driving. LIDAR sends a short pulsed laser beam into the scene and measures the
time-of-flight of the returning light. The time of flight and the direction of the beam provide the
estimation of a single 3D point of the scene. By changing the direction of the laser beam, LIDAR
provides a dense 3D point cloud as scene representation. More recently, single photon avalanche
diodes (SPADs), which is the underlying technology of LIDAR, provides an alternative approach
to measure the time of flight of light paths. The SPAD is operated under infinite gain and saturates
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whenever a photon incidents on the sensor; the time-stamp of this event measures the ToF of the
photon. Buttafava et al. [15] show that, when illuminating the scene with an impulse train, the
histogram of photon arrivals is a good approximation to the light transient. O’Toole et al. [94]
further show an architecture using a line SPAD to acquire the transient image of the whole scene
more efficiently. Gariepy et al. [33] use a SPAD array to acquire the light in flight in a 2D field of
view. Sun et al. [121] further improve spatial resolution by using compressive sensing techniques.
To account for SPAD characteristics while imaging, Hernandez et al. [51] provide analysis and
simulation results that link the true light transients to the SPAD readouts. Unlike LIDAR that
provides only a single depth estimation of the light path, a SPAD sensor can be used to estimate the
light transient response. The time-resolved radiometric information provides new opportunities in
hard scenarios, such as non-line-of-sight imaging and scattering. Another popular hardware setup
to measure the light transient is a streak camera. A streak camera uses a time-varying electric
field to introduce a time-dependent spatial displacement to incoming photons. The time-of-flight
information of one scan line of the scene is acquired in one capture session. Velten et al. [136] use
this technology to image at time resolutions of tens of picoseconds.

An alternate approach to measure the light transient is to illuminate the scene with an ampli-
tude modulated source and measure the amplitude and phase shifts in the amplitude wave caused
by light propagation using a photonic mixer device (PMD) [48]. The PMD measurements can be
interpreted as the Fourier coefficients of the transient response at the frequency of the illumination;
hence, by illuminating the scene with different frequencies, the light transient can be acquired by
measuring and inverting the Fourier coefficients [104]. This approach, however, only provides
temporal resolution in nanoseconds due to the limited modulation frequency of the LED light
source (typically 10-100MHz). Also limited to the number of sampled frequency, the light tran-
sient appeared to be smoothed. By including more light sources and PMDs, Shrestha et al. [117]
show several applications that measure the interference of multiple light sources. Interference of
multiple light paths can be used to further increase the temporal resolution. [37, 60] utilize in-
terference of coherent wave to find the path length of light paths. In [37], they build a prototype
that uses the Michelson interferometer setup to find the depth of the object of interest. By using
a translation stage to control the reference light path length, the path length of the light path that
interacts with the object can be found by the interfering with the reference light path. However,
the acquisition time is very large since the resolution is controlled by the number of sampled depth
using the translation stage. More recently, Dynamic Heterodyne Interferometry [84] and Super-
heterodyne Interferometry [77] bridge the resolution gap between continuous-wave ToF (MHz)
and interferometry-based system (THz), achieving resolution that is GHz. The key is to have two
coherent light sources having slightly different wavelengths to superimpose with each other. The
superimposed light will create a synthetic frequency, roughly GHz, and can be measured with the
optical beat note measured at the sensor. Maeda et al. [84] further polarize the light source so that
four measurements can be simultaneously measured to estimate the phase shifts.
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Figure 1.3: Three applications in this thesis. We show shape reconstruction for transparent
objects, concave objects, and non-line-of-sight objects.

1.2 Contributions

The key hypothesis of this thesis is that shape estimation is significantly simplified if we study
attributes of light paths and explicitly utilize their properties, including position, direction, time
of flight, and radiance. In particular, by considering properties associated with a single light path,
we can link physical phenomenon on each instance of light-object interaction. We then can use
these physical phenomena to find geometric and physically accurate techniques for shape recov-
ery to deal with multi-bounce light paths interacting with objects with complex reflectance. The
techniques in this dissertation are most effective when dealing with some of the most challenging
problems in 3D estimations. We demonstrate the effectiveness of the hypothesis by three different
applications: transparent shape reconstruction, concave shape reconstruction, and non-line-of-sight
(NLOS) imaging (Figure 1.3). In these three cases, the light paths undergo at least two bounces
and the object for shape recovery can be non-Lambertian.

• Transparent object reconstruction with light ray correspondences. Glass is a material that
we commonly use in numerous applications in our daily lives. However, traditional 3D recon-
struction methods cannot handle glass objects well, since its appearance depends heavily on the
surrounding environment and the shape of the object. It is also difficult to use a laser to scan
a transparent object, since only a fraction of light will directly reflect back to the sensor. Most
light will undergo at least two changes of direction; once entering and once exiting the transpar-
ent object. A theoretical analysis made by Kutulakos and Steger [74] provides a systematic way
to study light interacting with mirrors or glasses. By explicitly exploiting the law of reflection
and the law of refraction, we can use the direction changes of light paths to form geometric con-
straints of the object of interest. We re-parameterize the proof shown in [74] and show two am-
biguities pertaining surface depth and normal for transparent objects. This re-parameterization
enables enforcing surface priors, such a locally planar, more directly. We show a single-view
shape recovery algorithm that assumes local planarity on one side of the transparent object.

• Concave object reconstruction with ToF of two-bounce light paths. For a concave object,
since several facets of the scene are directly visible to each other, interreflection happens fre-
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quently. For any shape-from-intensity method [53, 143], if interreflection is not taken into ac-
count in the image formation model, the estimation will be erroneous. An early work by Nayar
et al. [90] incorporated interreflection of a Lambertian surface into the forward model and pro-
posed an iterative solver to optimize the shape. However, this technique requires the assumption
of a Lambertian surface so that the image formation model can be simplified. In this work, we
explore an alternative method to deal with interreflections that do not rely on the Lambertian
assumption. We measure the ToF of two-bounce light paths, which provides many beneficial
properties; for instance, ToF is a quantity that relates to the geometry of the object. As long
as the light path is measurable, the ToF value is not affected by the material reflectance. We
can then use the ToF of two-bounce light paths to form geometric constraints. These geometric
constraints will relate the depth of two distinct scene points to a measured quantity. We show a
systematic analysis of these constraints to establish a unique shape recovery guarantee.

• Non-line-of-sight imaging with ToF and radiance of three-bounce light paths. The capacity
of multi-bounce light paths really shines when looking at a recently popular field, non-line-of-
sight imaging. NLOS imaging aims to recover properties of an object that is not in the observer’s
field of view using measurements gathered from within the field of view. The main challenge is
that the direct component of light transport contains no information regarding the hidden object
and only three- or higher-order- bounce light paths can potentially interact with the object of
interest. Typically, the measurement of three-bounce light paths is contributed by multiple light
paths of the same length. Finding the shape of the hidden object requires untangling contribu-
tions from different scene parts. We develop two simple and physically accurate methods to deal
with this complex imaging problem. First, we observe that a subset of the measurements, which
we called the first-returning photons, contains geometric properties that are useful for shape re-
covery. We derive a shape estimation method that is based on Fermat’s principle to recover the
3D points and their normals on the hidden object. Second, we revisit the image formation model
for three-bounce light paths. Unlike previous methods in this field that modify the image for-
mation model for computational tractability, we develop a surface optimization framework that
works with the physically accurate image formation model. We develop an inverse rendering
pipeline that relies on Monte Carlo rendering for both the forward model and its gradient with
respect to the surface.

We tackle some of the hardest problems in 3D reconstruction using computationally tractable
and physically accurate methods (see Figure 1.4). While we show three applications that involve
multi-bounce light paths under the visible lights bandwidth, there are a lot of similarities in all
types of wave propagation. The ideas presented in this dissertation are applicable to other disci-
plines, for example, acoustics [25], medical imaging (Magnetic Resonance Imaging, Computed
Tomography), and wifi localization, since they share similar underlying imaging principles as the
three applications mentioned in this dissertation.
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(a) (b) (c) (d)

Figure 1.4: Thesis contributions. We tackle some of the most complex shape estimation problems
that involve multi-bounce light paths. (a) Transparent objects change the propagation direction of
light at least two times. Estimating the shape of transparent objects requires simultaneously recover
the geometric properties at two locations. We utilize Snell’s law to create geometric constraints of
the light paths and subsequently, the location of the bounce can be found by incorporating surface
local planarity prior. (b) Interreflection is a common phenomenon in concave objects. The mea-
surements contain information about multiple scene points. By utilizing time-of-flight imaging,
light paths of different path lengths can be separated. The path length of a two-bounce light path
creates a geometric constraint of possible depth values. With multiple path-length information
regarding two-bounce light paths, we show a scene depth estimation method that makes inter-
reflection no longer an undesirable effect. (c) When an object is occluded from view, the only
light path that interacts with the object is at least three bounces. With time-of-flight imaging, we
utilize the geometric constraints of the shortest light path to find the spatial extent of the hidden
object. Note that shortest light paths will follow Fermat’s principle, thus additional geometric con-
straints can be formed for scene point localization. (d) Similar to (c), we study another setup of
non-line-of-sight imaging. We show the physically accurate rendering equation for time-resolved
radiometric measurements. We find the expression of the gradient of the rendering equation with
respect to the hidden surface and devise an inverse rendering pipeline. We use stochastic gradi-
ent descent method to optimize the hidden surface so that the rendered time-resolved radiometric
measurements become consistent with the measurements.
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Chapter 2

Transparent object reconstruction
— Shape from deflection of two-bounce
light paths

One of the most challenging objects for 3D reconstruction is transparent and specular objects,
which do not have their own appearance. We can only observe how the objects distort the sur-
rounding environment, that is, we can only capture how a light ray deflects after interacting with
the object of interest. A seminal result [74] suggests the use of correspondences of light rays to
infer the geometry of the object. They show that the object can be reconstructed, provided that the
direction of a light path does not change more than two times.

Establishing light ray correspondences is a direct result of tracing a light path. We can illumi-
nate the scene with a single light ray, and then capture the light ray after interacting the scene. This
way, we capture how the object changes the light path’s propagation direction. In practice, this
process can be achieved by a camera-projector system such as the setup used in [74] or a light-field
probe [142] that encodes directional information in the color of the light ray.

While considering light ray in space, every optical event with a mirror or a transparent object
will follow the physical laws of reflection and refraction. There are three keys to shape recovery
for transparent objects:
• Light paths are connected. If a scene point is observable by the camera, there exists at least

one light path that originates from the light source and ends up in the camera.
• Helmholtz reciprocity principle. The reverse of the light path encounters the same optical

events as of the forward light path.
• Fermat’s principle. The path between two points taken by light is the one with the smallest

propagation time. In particular, Fermat’s principle explains the law of reflection and Snell’s law.
We show that these three simple physical laws can lead to geometric constraints of light paths

and subsequently lead to a shape estimation algorithm [129]. We address the following problem
in refractive shape estimation: given a single light-ray correspondence, what shape information of
the transparent object is revealed along the path of the light ray, assuming that the light ray refracts
twice (see Figure 2.1). We characterize the shape estimation by studying the ambiguities in the
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Figure 2.1: Shape estimation of a transparent object. The light path of interest originates from
c with orientation i1, after interacting with the object (refracting twice), ends up being a light ray
crossing q with orientation o2. From this information of the two-bounce light path, we seek to
understand the shape constraints of the transparent object. The variables labeled in blue are known
and form the inputs to the problem.

depth and surface normal along a single light path.

2.1 Problem statement
Notation. We denote vectors in bold. Light rays in 3D are denoted by a pair of vectors, {o, p},
where o ∈ R3 is a unit-norm vector that denotes the orientation of the ray and p ∈ R3 is a point
in 3D space that the ray passes through. For λ ∈ R, {o, p} and {o, p + λo} are identical.

Suppose that a ray {i1, c} is incident on a transparent object and after refracting twice, once
each upon entering and exiting the object, becomes the ray {o2, q} (see Figure 2.1). Given knowl-
edge of the rays {i1, c} and {o2, q}, the relative refractive indices of the medium µ1 and the object
µ2 and their ratio ρ = µ2/µ1, what can we infer about the shape of the object as encoded in the
locations of the refraction events, v1 and v2, and the surface normals, n1 and n2?

2.2 Shape from light-ray correspondences
We answer this question by first finding the physical laws associated with the light path being re-
fracted twice. We conclude the geometric constraints in terms of the following three observations:
Observation 1. Since the refraction events occur on the light rays, we can identify two depth
values d1 and d2 such that v1 = c + d1i1 and v2 = q − d2o2. The problem is equivalent to
estimating d1, d2, n1, and n2.
Observation 2. The light path is fully determined from the depth and surface normals at v1 (or
equivalently, v2). Given d1 and n1, the outgoing ray o1 is fully specified from the laws of refraction.
The intersection of this ray with {o2, q} provides both the surface normal n2 and the 3D point v2.
Observation 3. Any constraint that we derive on the shape at v1, the first refraction point, translates
to a similar constraint on the shape at v2. This is simply a consequence of Helmholtz reciprocity.

Our main results are in the form of ambiguities in the values of the depth d1 given knowledge
of the surface normal n1, and vice versa. These can be succinctly summarized in the following
statements.
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Figure 2.2: Illustration of Theorem 1. Given normal n1, o1 is fully determined. By finding the
intersection of the light ray {o2, q} and the plane formed by all possible v1 and o1, we can find the
corresponding depth d(3)1 .

Theorem 1 (Depth ambiguity given normal). Given the surface normal n1, the depth d1 at which
the refraction occurs is unique, provided the light path does not entirely lie in a plane.

Proof. By Snell’s law, the refracted ray o1 is uniquely determined given both the incident ray i1
and the normal n1 by

o1 =
i1
ρ
−
(
〈i1, n1〉+

√(
〈i1, n1〉2 − (1− ρ2)

)) n1

ρ
. (2.1)

Since a light path is connected, the relationship between d1 and d2 can be characterized as

c + d1i1 + ∆o1 + d2o2 = q.

This can be further simplified to

d1 〈i1 × o2, o1〉 = 〈(q− c)× o2, o1〉 .

When 〈i1 × o2, o1〉 6= 0,

d1 =
〈(q− c)× o2, o1〉
〈i1 × o2, o1〉

. (2.2)

In (2.2), i1, o2, c and q are known. Further, the value of o1 is fully-determined from (2.1) when
n1 is given. Therefore, provided 〈i1 × o2, o1〉 6= 0, d1 is uniquely determined when the surface
normal n1 is known. Finally, 〈i1 × o2, o1〉 = 0 if and only if o1 lies in the plane spanned by i1 and
o2 or, equivalently, the entire light path lies in a plane.

We provide a geometric interpretation of Theorem 1 in Figure 2.2. Given i1 and n1, o1 is
determined. All possible rays after the first refraction will form a plane. The light ray {o2, q} will
intersect the plane at one point. Therefore, we can find a unique depth d1.
Corollary 1 (Planar light path). If the vectors i1, o2 and (q− c) are co-planar, then specifying n1
does not constrain d1.
Theorem 2 (Normal ambiguity given depth). Given the depth d1, the surface normal n1 is con-
strained to lie on a 1D curve, which is the intersection of an oblique cone with a unit sphere.
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Proof. Recall that the first refraction happens at v1, which is d1 units away from the camera center,

v1 = c + d1i1.

The second refraction occurs at v2 which lies on the line defined by a point q and the vector o2,

v2 ∈ {q− λo2, λ ∈ R, λ ≥ 0}.

From Figure 2.3, we observe that o1 belongs to the plane that q− v1 and o2 are on. Therefore, we
can represent o1 by:

o1 = B(d1)

[
cos(ψ)
sin(ψ)

]
, ψ ∈ [0, 2π),

where B(d1) is an orthonormal basis for the column span of q− v1 and o2. 1 Since c, i1, o2 and q
are known and v1 = c + d1i1, B is dependent only on d1.

We define n⊥ as a unit-norm vector, co-planar to i1 and n1, and orthogonal to n1. From Snell’s
law, we know µ1 sin θ1 = µ2 sin θ2, where θ1 and θ2 are the angles formed by i1 and o1, respec-
tively, to n1.

µ1 〈i1, n⊥〉 = µ2 〈o1, n⊥〉

µ1

〈
i1 −

µ2

µ1
o1, n⊥

〉
= 0

〈i1 − ρo1, n⊥〉 = 0

Recall that n1 is co-planar to i1 and o1 and, by definition, 〈n1, n⊥〉 = 0. Hence, we can conclude
that n1 is parallel to i1 − ρo1.

n1 ∝ i1 − ρB(d1)

[
cos(ψ)
sin(ψ)

]
, ψ ∈ [0, 2π). (2.3)

The RHS of (2.3) traces a circle in R3 as ψ varies. Since ‖n1‖ = 1, we can recover n1 by
computing the intersection of an oblique cone and a unit sphere. Therefore, normal n1 lies on a
closed 1D curve on a 2D unit sphere.

Corollary 2 (Proposition 1a of [74]). To uniquely identify the surface normal at a point, we need
at least three light-ray correspondences.

Proof. Given the point under consideration, we know the value of d1 for each ray correspondence.
From Theorem 2, each light-ray correspondence restricts the surface normal to lie on a closed 1D
curve. However, any two arbitrary 1D curves on the unit-sphere can potentially intersect. Hence,
we need a third correspondence to verify the intersection produced by the first two correspondences
(see Figure 2.4).

1Another way to parameterize is o1 = q−λo2−v1
‖q−λo2−v1‖ , where λ > 0. While this constraints the surface normal to a

smaller set, the resulting expressions are harder to analysis due to their complex dependence on λ.
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Figure 2.3: Illustration of Theorem 2. The refracted ray o1 lies in the plane spanned by q− v1
and o2. By choosing different v2 locations, we will have different corresponding o1 and n1. In this
figure, we show the normal n(i)

1 and o(i)1 corresponding to different v(i)2 locations.

(a) (b)
Figure 2.4: Illustration of Corollary 2. (a) Any two 1D curves on the sphere can intersect. (b)
We need a third curve to validate if the intersect is indeed correct.

Remark. The depth-normal ambiguities described in Theorems 1 and 2 are fundamental to
studying the shape of transparent objects, where we can expect a majority of light-ray corre-
spondences to be from double-refraction events. These are similar in spirit to two well-known
ambiguities in computer vision: the depth-normal ambiguity for mirror object, and the bas-relief
ambiguity in Lambertian shape-from-shading. An understanding of these fundamental ambiguities
is important to the design of techniques for shape estimation.

Relationship to [74]. In Kutulakos and Steger [74], the algorithmic development, as well as
analysis, is performed using d1 and d2 — variables pertaining to two distinct points, v1 and v2. In
contrast, we only use d1 and n1, which are local to v1. This leads to a simpler explanation of the
underlying ambiguities that we state in Theorems 1 and 2.
Algorithm 1 (Single-view reconstruction algorithm using surface prior).

If the first refraction happens on a plane, n1 is the same for all the light-path correspondences.
Thus, from Theorem 1, for every candidate n1, we can calculate d1 of m light-ray correspondences.
Since we impose a planar model on the collection of v1, we use the variance of

[〈n1, v(1)1 〉, 〈n1, v(2)1 〉, ..., 〈n1, v(m)
1 〉]

to determine the goodness the candidate n1. The normal that gives the smallest variance is the
normal estimation. Once the normal is recovered, both v1 and v2 are determined.
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View number
 1
 2
 3
 4
 5
 6
 7

Elevation (°) 84.0
 84.0
 82.6
 79.4
 83.5
 84.2
 83.5

Azimuth (°) 82.7
 82.9
 92.5
 68.9
 63.2
 69.8
 61.4

Standard 
deviation (°)
 3.9
 0.7
 1.9
 1.9
 3.8
 0.9
 6.3


Table 2.1: Normal estimation using different camera views. We randomly select 50 light-ray
correspondences to estimate each normal. Shown are average normal estimates in terms of azimuth
and elevation angles as well as standard deviation across 50 trials.

2.3 Experiments
Simulated results. The acquisition for the ground truth of depth and normal of transparent objects
is difficult. We use synthetic data and add different levels of noise to evaluate the effectiveness and
robustness of our proposed single-view algorithm.

In our experiment, we set the first surface as a plane and the second surface some arbitrary
shapes (see Figure 2.5). The refractive index is set to 1.2. We only collect light-ray correspon-
dences that have double refraction and neglect light rays corresponding to total internal reflection.
As shown in Figure 2.5 (b)-(e), by enforcing the planar model on one side, we can recover a
complex object with low error.

To evaluate the robustness of the algorithm, we perturb i1 and o2 with different SNR values.
We repeat the experiment five times and average the reconstruction error. Results in Figure 2.5
show that even with the presence of noise, our method still gives a small error.

Real scene. We use the real-world dataset from [74] to verify our single-view reconstruction
algorithms. The data is collected by placing the object of interest between a camera and a movable
LCD, as shown in Figure 2.6 (a). Image pixel to LCD pixel correspondences are collected at two
LCD positions to give light-ray correspondences.

We observe that the back of the diamond scene is planar, therefore, we impose a planar model
on the back of the diamond. The refractive index is set to 1.55. As shown in Figure 2.6 (b),
by enforcing the planar model on one side, we can recover a complex object. Without enforcing
the additional constraint, different facets of the diamond meet at the same position in space. To
evaluate the correctness of the normal estimation, we use different camera views. The normal
estimation should be consistent in all views. The results are shown in Table 2.1.

2.4 Conclusion
We demonstrate how to use light-ray correspondences of transparent objects for shape recovery.
By capturing how a light ray changes its direction in space, the refraction events are linked to
geometric constraints of the shape. From Snell’s law, two novel depth-normal ambiguities for
transparent objects are found, which is similar in the spirit of Bas relief [7] in Lambertian objects
and depth normal ambiguity [63] in mirrored objects. We further studied how simple surface
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priors, such as a planar model, can be incorporated into a single-view shape estimation algorithm
for transparent objects.

16



40 60 80 100 120
10

−10

10
−5

10
0

10
5

SNR

e
rr

o
r 

in
 d

e
g
re

e

 

 

n
1

n
2

40 60 80 100 120
10

−4

10
−2

10
0

10
2

10
4

SNR

M
S

E
 o

f 
re

c
o
n
s
tr

u
c
ti
o

n

 

 

v
1

v
2

(f) Depth error with noise (g) Normal error with noise

c

planar

v1
v2 q
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(b) Ground truth depth map (c) Estimated depth map
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Figure 2.5: Synthetic experiment setup and results. (a) The object that we used in this experi-
ment is planar on one side and a complex surface (bunny) on the other side. In (b)-(e), we show
the performance of our method on the complex side. The light-ray correspondences are generated
with ground truth then perturbed by SNR=80. In (f) and (g), we show the error with respect to
different SNR values.
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(a) Experiment setup

(b) Estimated point cloud and surface

Figure 2.6: Real experiment setup and results. (a) The dataset is courtesy of Kutulakos and
Steger [74]. (b) We exploited the planarity of the “back” of the diamond to recover its shape from
light rays observed at a single camera. Specifically, we randomly chose 40 light rays (out of a
total of 33,737) entering the camera to estimate the normal and intercept of the plane. Given the
parameters of the plane, we can now estimate densely both the front surface (shown in blue) and
the back (shown in cyan). We also show the front side mesh visualization.
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Chapter 3

Concave object reconstruction
— Shape from time-of-flight of two-bounce
light paths

Mirrored and transparent objects are two classes of non-Lambertian objects that have concise phys-
ical models on how they interact with light rays. By using light-ray correspondences and the as-
sociated physical laws, the shape of the object can be recovered. However, we cannot directly
apply Fermat’s principle to find geometric constraints of objects with arbitrary reflectance, since
the light transport of non-Lambertian objects is a function of both the shape and the reflectance
of the composition materials. Therefore, we need to estimate shape and reflectance function at
the same time, which is extremely challenging, in particular, due to two properties: 1) reflectance
affects the image formation; 2) both shape and reflectance functions are high-dimensional.

We solve this problem by incorporating additional information about light paths – the time
taken by a photon to traverse the light path. The time of flight of a photon is valuable informa-
tion since the path length is a function of the geometry of the scene; we can avoid the need for
jointly estimating geometry and reflectance functions. That is, a technique that requires only the
path length information can work for scenes with arbitrary reflectance functions including mirrors,
spatially-varying BRDF and transparent objects.

We show how to recover shape from light paths that undergo two changes of direction [130].
Unlike the approaches of existing active depth sensing techniques (LIDAR, ToF, radar) that rely
on single-bounce light paths, we harness information of shape from two-bounce light paths. In
this chapter, we show that two-bounce light paths can be sufficient for shape reconstruction. Also,
there exist many advantages of two-bounce light paths:
• The number of two-bounce light paths. If there are N scene patches, there are at most N direct

light paths, but the scene can potentially create (N
2 ) two-bounce light paths. By considering

two-bounce light paths, we create an over-determined system that is more robust to invert.
• Generalization to arbitrary material and shape. Specular and shiny materials (metals, liquids,

glass) – in general, reflective surfaces – concentrate light along certain directions. This often
results in the absence of single-bounce light paths. Here, the use of two and higher-order bounces

19



can alleviate the lack of information in the single-bounce light paths. Also, for a concave object,
most of the light paths will interact with the object at multiple locations, therefore, it is hard
to observe a single-bounce light path. Most of the observable light paths will be beyond two
bounces.

• Alternative imaging setup. The results shown in this chapter indicate that we can uniquely
recover shape from two-bounce light paths. This brings a new imaging strategy. We can image
the scene multiple times with only one point of the scene being illuminated. We repeat this
process by redirecting the illumination beam to another scene point until the sufficient condition
of unique surface recovery is satisfied. Finally, we can use the algorithm developed in this
chapter to recover the shape of the whole scene.

We establish theoretical and algorithmic foundations for shape estimation from two-bounce
light paths [130], i.e., light paths where photons from a light source interact with the scene exactly
twice before reaching the sensor.

3.1 Related work
There has been very little prior work in understanding the relationship between scene shape and
the associated multi-bounce light paths. Most related to ours are two works that study the inter-
reflections. An earlier approach by Nayar et al. [90] notice the presence of interreflection degrades
the results from photometric-based methods. They estimate the shape of a concave object iter-
atively while progressively accounting for interreflections. Liu et al. [81] recover the shape of a
Lambertian scene from the form factor of two-bounce light paths. By using local planarity and
common elements in different two-bounce light paths, the scene geometry can be recovered with-
out scaling ambiguity. A major problem in the two works is that the scene reflectance is assumed
to be Lambertian so that the image formation model will only be a function of the geometry of the
object. This simplifies the shape estimation problem but is generally not an accurate description of
real-world objects. We develop a new shape estimation framework that deals with interreflections
and can be used on objects with more general reflectance function.

3.2 Problem statement
Given a scene, we first discretize the scene into N points with 3D locations denoted as {v1, . . . , vN},
in a right-handed camera-centric coordinate system. The principal point of the camera is at the ori-
gin and its optical axis is aligned to the positive z-axis. The 3D location of each scene point can,
hence, be expressed as vk = dkik, where dk ≥ 0 is the depth of the scene point and ik is the
unit-norm vector that provides the orientation of the scene point from the viewpoint of the camera.

We can measure the path lengths associated with two-bounce light paths. This information can
be captured with a collocated projector-camera system with the transient response observed at a
pixel p when a different pixel k is illuminated (with a temporal Dirac), the first peak of the received
time profile corresponds to a two-bounce path provided that the two scene points are visible to each
other. This is because the two-bounce path is the shortest path linking the patch illuminated by pixel
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Figure 3.1: Shape estimation using two-bounce time-of-flight information. A light path origi-
nates from a point q first bounces off a scene point vp then traverses to another scene point vk and
enters the sensor at q. The variables labeled in blue are known and form the inputs to the shape
estimation problem.

p, and the patch observed by pixel k. Specifically, we measure the time τpk, p, k ∈ {1, . . . , N}
taken to traverse the two-bounce light path from the origin to scene point p to scene point k and
back to the origin (see Figure 3.1). Note that, by Helmholtz’s reciprocity, τpk = τkp. Further, the
length associated with these paths is simply given as cτpk, where c is the speed of light.

The same approach works for non-collocated systems as well. However, the first peak could be
from either a single or two-bounce. Single-bounce paths can be identified using: (i) projector pixel
p and camera pixel k have to lie on epipolar lines, (ii) the distance measured by triangulation should
be consistent with the time-of-flight for the first peak. If these two are simultaneously satisfied,
then that corresponds to a single-bounce path between p and k; otherwise, it is most likely to be a
two-bounce light path.

Given the path lengths associated with a collection of two-bounce light paths, our goal is to
estimate the scene depths {d1, . . . , dN}. The main advantage of using the path length information
is that we only need to consider geometric constraints. The shape estimation problem can be free
from estimating the complicated material reflectance function.

3.3 Unique shape recovery analysis with two-bounce light paths

To better describe the depth estimation problem, we characterize all the information available using
a graph, called the two-bounce light-path graph. For simplicity, all light paths discussed in this
chapter are two bounces. We use the light-path graph as shorthand for the two-bounce light-path
graph.
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two-bounce 
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light-path graph

(a) U shape (b) V shape (c) Convex object (d) Complex shape

Figure 3.2: Sample light-path graph for different geometry. Top row: observable two-bounce
light paths of different objects. Bottom row: observable light paths can be represented by a light-
path graph.

Light-path graph. We construct a graph G = (V, E), where the vertex set V = {1, . . . , N}
corresponds to the scene points. An edge (p, k) suggests that the path length associated with the
two-bounce light path involving p and k can be observed. Note that, by Helmholtz reciprocity, the
graph is non-directional, i.e., the observations associated with the edge (a, b) are identical to that
of (b, a). We refer to the graph G as the light-path graph. It is illustrative to consider the topology
of light-path graphs associated with a few classes of scenes (see Figure 3.2).

• Convex objects. Convex objects have no two-bounce light paths. Hence, the graph G is simply
a collection of vertices with no edges (see Figure 3.2 (c)).

• Concave objects. For a generic concave shape — for example, a cup — a two-bounce light
path can exist between any two scene points. Hence, in the general setting, the graph is fully-
connected or a clique (see Figure 3.2 (a)). However, in practice, in addition to the shape, the
reflectance of the scene also plays an important role in determining the topology. For example,
for a concave shape with mirror reflectance, the topology of G reduces to isolated edges, i.e., if
an edge (p, k) exists, then there are no other edges involving the vertices p and k.

• V-grooves. For a generic V-groove, two-bounce light paths can only exist between scene points
that belong to opposite sides of the groove. Hence, we can divide the vertex set V into two
non-intersecting sub-sets V1 and V2 such that edges can only occur between a vertex in V1 and a
vertex in V2. Thus V-grooves result in bipartite light-path graphs (see Figure 3.2 (b)).

The light-path graph provides a succinct characterization of all available inputs and its topology
is central to the uniqueness of shape recovery.

Uniqueness of shape recovery. Given a light-path graph (or equivalently, a collection of two-
bounce light paths and their lengths), can there be multiple shapes that satisfy the path length
constraints? The following theorem provides a sufficient condition for uniqueness of shape given
a light-path graph.
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Theorem 3. If each connected component1 of the light-path graph G contains either a cycle with
an odd number of vertices or two cycles with an even number of vertices, then the depth of all
vertices can be determined uniquely from the available ToF of two-bounce light paths.

The rest of this section is devoted to the proof of Theorem 3. Note that this result is for the
noiseless case where the two-bounce light path lengths are known exactly.

Encoding of depths in two-bounce path length. We now derive the relationships between the
depths of scene points and the length of a two-bounce light path. Consider the two-bounce light
path associated with two scene points vp and vk with unknown depths dp and dk, and known
directions ip and ik, respectively (see Figure 3.1). From the law of cosines, the total light-path
length is given as

cτpk = dp + dk +
√

d2
p + d2

k − 2dpdk cos θpk. (3.1)

Squaring and rearranging (3.1), we can find the following constraint on dp and dk:

2dpdk(− cos θpk − 1) + 2cτpk(dp + dk) = c2τ2
pk. (3.2)

Therefore, dk can be expressed as a function of dp as

dk =
c2τ2

pk − 2cτpkdp

2dp(− cos θpk − 1) + 2cτpk
= fpk(dp), (3.3)

dk =
cτpk(cτpk − 2dp)

2(cτpk − dp(1 + cos θpk))
.

Since the light path of interest undergoes two bounces, the total path length cτpk will be larger than
2dp or 2dk. That is, we can bound dp using

dp <
c mink 6=p(τpk)

2
. (3.4)

From (3.4), both the numerator and the denominator of the right-hand side of the expression in
(3.3) is positive, so dk is guaranteed to be positive. Also, the first derivative of fpk(dp) defined in
(3.3) is:

f ′pk(dp) =
2c2τ2

pk(cos θpk − 1)
[
2τpk − 2dp(1 + cos θpk)

]2 .

Since we only consider two-bounce light path, where p 6= k, and cos θpk 6= 1, we can conclude
that

f ′pk(dp) < 0. (3.5)

Thus fpk(·) is a strictly decreasing function for all feasible dp.
There are three important consequences to the derivation above. First, given dp, the value

of dk is uniquely known. Second, fpk is a fractional linear transformation (FLT). Note that the

1A connected component of a graph is defined as a maximally connected sub-graph.
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composition of multiple FLTs remains fractional linear. Third, there are infinite pairs of (dk, dp)
that satisfy the constraint in (3.3) that relates the two-bounce path length of two individual points.
Hence, we cannot solve the depths of two scene points by considering a single two-bounce light
path connecting them. Further, it can be shown that the ambiguity inherent in (3.3) cannot be
resolved if we consider a light-path graph whose topology is a tree since the relationship between
depths is an FLT. This motivates us to explicitly consider light-path graph topologies that include
cycles, with the hope that cycles in the graph will help resolve these shape ambiguities. The
following Lemma provides a concrete result along this direction.
Lemma 1. There are at most two solutions for a connected light-path graph whose topology is a
single cycle.

Proof. Since the light-path graph is connected and has a single cycle, all vertices must be part
of the cycle. We assume that the cycle in consideration is given by the following edges: (q1, q2),
(q2, q3), . . ., (qN−1, qN), and (qN, q1). By applying (3.3) to the edges in succession, we can obtain
the following relationship:

dq1 = fqNq1(· · · fq2,q3( fq1q2(dq1))) = T(dq1). (3.6)

Given that each fqiqj is an FLT, the RHS of (3.6) is also an FLT of the form

dq1 =
C1 + C2dq1

C3 + C4dq1

, (3.7)

where C1, C2, C3, and C4 are dependent on the individual two-bounce path lengths. We can rear-
range (3.7) to obtain a second-order polynomial equation in dq1 , which has two roots and hence,
two potential solutions for dq1 . For each solution, we can estimate the depths of all other vertices
uniquely via (3.3).

The implications of Lemma 1 are promising since it restricts the solution space associated with
a cycle. Further, while there are two potential solutions, it is entirely possible that one of them is
infeasible or both solutions are exactly the same. We show that this is indeed the case for cycles
with an odd number of vertices.
Proposition 1. There is exactly one solution for a light-path graph whose topology is a single
cycle with odd number of vertices.

Proof. We prove the uniqueness of the solution by contradiction. Suppose there are two feasible
solutions for dq1 from (3.7), d(1) and d(2) with d(1) < d(2). That is,

T
(

d(1)
)
= d(1), T

(
d(2)

)
= d(2). (3.8)

By chain rule, the first derivative of T(·) is

T′(d) = f ′qNq1
(· · · fq2q3( fq1q2(d))) · · · f ′q1q2

(d).
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Since the cycle contains an odd number of edges and f ′(d) < 0 from (3.5), T′(d) < 0. Hence,
T(dp) is a strictly decreasing function. Recall that we assumed d(1) < d(2), thus,

T(d(2)) < T(d(1)) = d(1)p < d(2)p . (3.9)

We see a contradiction in (3.8) and (3.9). Therefore, d(1) = d(2) and hence, there is only one
feasible solution.

Proposition 2. For a connected light-path graph consisting of two intersecting cycles, each with
an even number of vertices, then the depth of all vertices can be uniquely recovered.

Proof. From Lemma 1, we can find the two potential depths for each of the vertices on the first
cycle. Similarly, we can obtain two potential depths for each of the vertices for the second cycle.
Since the cycles are intersecting, we can intersect the solutions at a vertex that belongs to both
cycles and resolve the ambiguity.

As an example, consider the graph in Figure 3.3, the depth of all scene patches can be uniquely
recovered. We can first find the two solutions of v3, {a3

1, b3
1} by considering cycle {v1, v2, v3, v4}.

Similarly, from cycle {v3, v5, v6, v7}, we find {a3
2, b3

2}. One element from each set will be consis-
tent, which is the depth estimation for v3. After finding d3, we can propagate the depth estimation
to all vertices in the graph.

Proof of Theorem 3. We now have all the components for the proof of Theorem 3. From Lemma
1, the presence of a cycle in the light-path graph limits the solution space to two. We further prove
in Proposition 1 that for a cycle with an odd number of vertices, only one of the solution is feasible.
In Proposition 2, when considering multiple cycles, even though each cycle gives two solutions,
we can find the unique solution by intersecting the solution across cycles. Therefore, Theorem 3
provides sufficient conditions for shape recovery from light-path graph topology.

Implications of Theorem 3. The sufficient conditions in Theorem 3 only depend on the topology
of the light-path graph but not the actual light-path lengths. The topology of the light-path graph
depends only on the existence of two-bounce light paths between surface patches, which is com-
pletely determined by the geometry of the scene. Hence, Theorem 3 infers uniqueness of shape
estimates for a broad class of scenes.

We introduce an algorithm to recover shape from two-bounce light paths. Our goal is in lever-
aging information over the entire light-path graph to robustly estimate the depth of the scene in the
presence of noise corrupting the measured path lengths.
Algorithm 2 (Multi-cycle clustering algorithm.).

One of the main results is that there are at most two depth estimates associated with a cycle in
the light-path graph. With the presence of noise, the depth estimation from different sub-graphs
will be different. Therefore, we proposed a clustering method to find a solution that is most con-
sistent across different cycles.

We randomly select Q cycles from the light-path graph. By Lemma 1, each cycle provides us
with two candidate depths for each of its vertices. We denote the candidate depths for vertex k from
cycle q as ak

q and bk
q. Repeating this process for each of the selected cycles, we have 2Q estimates
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Figure 3.3: Sample light-path graph to explain Proposition 2. We form one set of estimation
from cycle {v1, v2, v3, v4} and the other set from cycle {v3, v5, v6, v7}. There will only be one
common estimate for d3, which is the true depth of vertex v3.

for each vertex. In the absence of noise, Q out of these 2Q solutions (one out of 2 solutions from
each cycle containing the vertex) would be identical and that would indicate the correct solution
for the depth of that vertex. In the presence of noise, the 2Q solutions are all potentially different
and hence, we need an alternative technique to identify the correct solution.

Let x = [x1, . . . , xQ] be a Q-dimensional indicator vector, where xq = 1 implies that, in cycle
q, the candidates in {ak

q} are selected as the estimate and xq = −1 implies that the candidates
{bk

q} are selected. Therefore, the depth estimate for vertex k provided by cycle q is

dk
q =

1 + xq

2
ak

q +
1− xq

2
bk

q.

We now minimize the variance of the depth estimates:

min
x∈{−1,1}Q

N

∑
k=1


 1

Q

Q

∑
q=1

(dk
q)

2 −
(

1
Q

Q

∑
q=1

dk
q

)2



This is a combinatorial problem due to the feasible set being x ∈ {−1, 1}Q. If we relax this
constraint to let x take real values, and observing that the objective is quadratic in x, we can
obtain a closed form solution for x. By thresholding this solution at zero, we get our estimator of
the indicator vector x̂. We use the mean of candidate depths at each vertex selected by x̂ as our
estimate.

3.4 Experiments
Synthetic experiment – Gaussian noise. In Figure 3.4, we show the recovery results on a 1D
slice of an object for varying amount of additive Gaussian noise on the measured path lengths. We
compare single-bounce estimates and the multi-cycle clustering. We use Q = 100 cycles for the
multi-cycle method. We can see that multi-cycle clustering outperforms single-bounce technique
by a large margin, in part, due to the availability of a larger number of light paths.
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Figure 3.4: 2D shape recovery results. We perturbed the input using different levels of noise. The
blue line shows our reconstructed surface and the red dotted line is the ground truth.

Synthetic experiment – Physically accurate rendering. While we explain how a light-path graph
is constructed, we mention that the reflectance of the object will impact where a two-bounce light
path is observable or not. We use a time-of-flight extension [103] of physically accurate rendering
software, Mitsuba [56], to render the light transients. We illuminate the scene with collimated
beam emitter at 144 points on a regular grid. We set the camera to have a spatial resolution of
128× 128. We use the first peak above a set threshold in the light transient in each pixel as the
two-bounce light path. We use 25 cycles for the multi-cycle clustering algorithm.

As shown in Figure 3.5, we test the proposed algorithm using 5 concave objects with 5 re-
flectance. Four of the reflectance are from the MERL BRDF database [86] and rendered using the
Mitsuba plugin developed by Dupuy [26]. An example of the rendered transient is shown in Figure
3.6. Notice that the rendered transients consist of one-bounce, two-bounce, and also higher-order
bounce light paths. During the reconstruction, we do not retain the bounce information. We block
the one-bounce light by placing a mask on the neighborhood pixels of the illuminated direction.
For the light path that is higher-order bounce and its intensity being above a threshold, we assume
it to be measurable and they are a source of noise in the light-path graph.

We visualize the recovered results of our proposed multi-cycle clustering algorithm in Figure
3.7. We can see that the algorithm works well with different shapes and reflectances.

We test the algorithm by altering the threshold to determine the shortest light path. Exp 1 - 4
corresponds to a threshold of 10−5, 2× 10−5, 5× 10−5, and 10× 10−5, respectively. We show
two metrics to determine the quality of the reconstruction. First, the root mean squared error

(rmse),
√

1
N ∑(di − dgt

i )
2. Another metric is coverage. Since we only illuminate on sparse points

sequentially, there are some parts of the scene that never receive interreflected light. We cannot
possibly recover the depth of these parts from two-bounce light paths. We show the ratio of the
number of recovered points and the number of ground truth points.

As expected, when increasing the threshold, the number of observable light path decreases (see
Figure 3.8). The spatial extent of interreflection decreases. Therefore, the coverage of recovered
points decreases. We visualize the light-path graph of the corner scene in Figure 3.9. We use the
adjacency matrix to visualize the light-path graph. When the threshold is large, fewer light paths
are observable. We can see that less node in the light-path graph is connected. When the threshold
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Figure 3.5: Visualization of scene shapes and materials. We test 5 object shapes and 5 different
materials. We illuminate the scene with an environment map to help visualization.

is large, the sufficient condition may be broken, thus no shape can be recovered.

3.5 Conclusion

While there is a rich body of work associated with all aspects of shape and reflectance estimation
from single-bounce light paths, little is known in terms of the capabilities and limitations of two-
bounce light paths. Our specific contributions are as follows.

• Two-bounce shape estimation. We propose a formulation for the systematic study of shape
estimation from two-bounce light paths and develop a graph-based framework to represent the
information in such light paths.

• The uniqueness of shape estimation. We establish sufficient conditions for uniqueness of shape
estimation given only second-bounce light paths. Our sufficient conditions are intricately tied to
the topology of the graph that characterizes the available second-bounce light paths.
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Figure 3.6: Example of rendered transients for light-path graph determination. We show
several time instants of the rendered light transient. The scene is a corner with diffuse reflectance.
Each image is normalized to have a maximum intensity equal to one for clearer visualization.
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Figure 3.7: Experiment results for shape from two-bounce light paths. We show the recovered
depth map and the relative error. The threshold is 10−5, corresponding to exp1 in Table 3.1.

• Algorithms for shape estimation. We provide novel algorithms that estimate shape given lengths
of two-bounce light paths.

By understanding the capacity of two-bounce light paths, we provide a roadmap for holistic
methods that exploit the single- as well as multi-bounce light paths.
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material shape exp1 exp2 exp3 exp4
rmse coverage rmse coverage rmse coverage rmse coverage

diffuse

V-groove 5.1240 0.9837 3.2300 0.9734 3.4546 0.9342 4.3712 0.8501
corner 3.6318 0.9792 3.7998 0.9632 4.1487 0.9023 4.3174 0.8533
sphere 5.1934 0.9840 6.3812 0.9631 5.3332 0.9303 5.1421 0.8978
complex 1 3.7053 0.9977 3.6787 0.9860 3.2650 0.9648 3.6822 0.9464
complex 2 6.0555 0.9586 6.4231 0.9215 7.0077 0.8452 6.9327 0.7834

alum-
bronze

V-groove 2.3667 0.8524 11.3908 0.7257 1.8475 0.5349 10.6206 0.4092
corner 6.6491 0.8792 5.2783 0.8272 4.6143 0.7299 4.7870 0.6247
sphere 6.6868 0.9314 6.1487 0.9001 5.9385 0.8404 5.7151 0.7294
complex 1 3.3316 0.9560 3.4467 0.9292 3.1290 0.8525 3.9681 0.7181
complex 2 6.5582 0.7756 8.4432 0.6926 8.5096 0.5554 N/A N/A

blue-
metallic-
paint

V-groove 3.5384 0.8475 3.4125 0.7523 3.6335 0.6012 13.8015 0.4556
corner 4.3212 0.8610 4.3815 0.8039 7.4340 0.6941 5.4802 0.5719
sphere 4.7653 0.9096 3.9462 0.8190 2.0299 0.6827 1.5973 0.5806
complex 1 3.4295 0.9554 3.2168 0.9286 2.9964 0.8250 3.3878 0.6566
complex 2 6.1369 0.7726 6.2817 0.6816 6.0146 0.5249 N/A N/A

pink-
fabric2

V-groove 2.5101 0.8786 1.5797 0.7559 9.1745 0.4929 5.0909 0.2763
corner 4.2419 0.8799 4.7506 0.8252 5.0603 0.7357 8.7573 0.4678
sphere 5.2816 0.9110 5.7094 0.8742 9.5981 0.3904 16.4886 0.0191
complex 1 3.6694 0.9580 4.2341 0.9303 4.4055 0.7749 N/A N/A
complex 2 8.9125 0.8299 7.3735 0.7474 8.1305 0.5800 N/A N/A

yellow-
phenolic

V-groove 8.9353 0.9346 6.3941 0.8228 2.8697 0.6481 4.3922 0.4282
corner 3.9170 0.9096 3.9803 0.8554 4.5516 0.7704 6.8140 0.6759
sphere 6.3892 0.9381 5.6554 0.9061 6.7991 0.8554 6.1285 0.7709
complex 1 3.6254 0.9690 4.6277 0.9488 3.6384 0.9018 3.4216 0.8212
complex 2 7.4725 0.8544 6.5767 0.7762 10.0326 0.6609 8.1453 0.5233

Table 3.1: Alternating image intensity threshold used for measuring two-bounce light paths.
We alter the threshold used to determine whether a two-bounce light path is observable. Exp 1
corresponds to the smallest threshold and Exp 4 corresponds to the largest threshold.
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Figure 3.8: Observable light paths. We show examples of the observable light paths. The scene
is the corner and we illuminate a spot on the scene. The interreflections on the two other walls will
be used for shape estimation. Since the threshold used in exp4 is largest, the number of observable
two-bounce light paths is smaller.
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Figure 3.9: Light path graph visualization. We show the light-path graph used in the experi-
ments. The scene is the corner. We visualize the light-path graph using adjacency matrices where
the (i-j) entry represents the connectivity of vertex i to vertex j.
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Chapter 4

Non-line-of-sight imaging
— Shape from shortest three-bounce light
paths

In Chapter 3, we show how two-bounce light paths are valuable for shape estimation. We can
directly utilize the embedded information in the light paths and not just treat multi-bounce light
paths as undesirable noises. However, we argue that multi-bounce light paths are not just something
that we need to design special algorithms to work around, they actually provide unprecedented
potentials for imaging. Non-line-of-sight (NLOS) imaging [69, 135] (see Figure 4.1) is one of
the best examples for the use of multi-bounce light paths. NLOS imaging refers to estimation of
the shape, texture, and reflectance of scene points that lie beyond the field of view of an imaging
system. The object of interest is never observed with direct light paths since it is not in the field
of view from the observer. The information of the object is only contained in multi-bounce light
paths.

There are numerous approaches for estimating the shape of the scene within the field of view
of the imaging system. In contrast, NLOS shape estimation is a challenging task requiring cap-
ture and analysis of photons that have traveled beyond the line of sight (LOS). This is typically
achieved by measuring the so-called 5D light transient transport tensor [95, 110] which captures
light propagation — from the LOS scene onto the NLOS scene and back — at ultra-high temporal
resolutions (typically, in picoseconds).

We use a pulsed source l0 and a transient detector s0 to image a scene that consists of two
distinct sets of surfaces: surfaces SLOS that are visible to both the source and detector, and surfaces
SNLOS that are occluded from both of them. We assume that there are no surfaces that are neither
in SLOS nor in SNLOS. We additionally assume that the visible surface SLOS has Lambertian
reflectance.

We use the source to illuminate a point l on the visible surface SLOS. Likewise, we use the
detector to image a point s on SLOS. We call the points l and s the virtual source and virtual
detector, respectively. This terminology stems from the fact that these points effectively act as an
isotropic source and detector directly attached to SLOS, as they redirect light, through a diffuse
reflection, from the source to the NLOS scene, and from the NLOS scene to the detector.
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Figure 4.1: Non-line-of-sight imaging setup. NLOS imaging uses properties measured in LOS
SLOS to infer the properties of the NLOS scene SNLOS. We use the first-returning photon associated
with illuminating point l and sensing point s to infer the shape of the NLOS scene.

We define I(t; l, s) as the light transport at time t when observing at s and illuminating l with
an impulse at t = 0. We refer to

{I(t; l, s) | ∀ l, s ∈ SLOS}

as the 5D light transient tensor since it encodes one degree of freedom along time and two spatial
degrees, each, for both illumination and sensing points.

For simplicity of explanation, let’s assume that the LOS scene SLOS is convex; hence no in-
terreflections of photons within LOS. When l 6= s, the convexity of SLOS implies that there are
no single- or two-bounce light paths from the laser to the camera; in fact, there are no light paths
from the laser to the camera that involve only LOS scene points. Hence, a non-zero intensity in the
light transient L(t; l, s) encodes properties associated with three- and higher-bounce light paths
that include LOS as well as NLOS scene points. This forms the basis of NLOS imaging.

We focus solely on three-bounce light paths from the laser to the camera. We assume that the
locations of all LOS scene points are known and, for simplicity, that the laser and camera are co-
located at the origin. Given this, a non-zero intensity in L(t; l, s) at t = t0, indicates the presence
of three-bounce light path(s) whose length is t0

1 and implies the presence of NLOS scene point(s)
x that satisfy

τ(x) = ‖x− l‖+ ‖x− s‖ = t0 − ‖l‖ − ‖s‖, (4.1)

1We treat geometric pathlength and time of flight as equivalent, with the understanding that they relate to each
other through the speed of light.
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where x ∈ R3. This constrains x to lie on an ellipsoid whose foci are at l and s [15, 135].
Moreover, the intensity L(t0; l, s) is an integral that encodes both the shape and the reflectance
of all NLOS scene points on the ellipsoid defined in (4.1). To further simplify, it is common
to assume that the NLOS scene is Lambertian so that the BRDF is represented by a spatially-
varying scalar albedo pattern. By parsing through all entries in the entire 5D transient, namely
different illumination and sensing points as well as time instants, we can produce a large number
of ellipsoidal integral constraints on the NLOS albedo. The albedo is subsequently recovered by
solving a complex inverse problem [135].

First-returning photons. By considering how photons traverse the scene, we find out some pho-
tons carry more information than others. They are the first-returning photons, which correspond
to the shortest light paths. We provide a new formulation for NLOS shape recovery that avoids
solving an inverse problem altogether. Specifically, instead of considering all NLOS light paths,
we only focus on the path length associated with the first-returning photon, defined as follows:

Definition. The first-returning photon at an LOS point s, when we illuminate l, is the photon
that traverses the shortest three-bounce light path through l and s, i.e., it is the first photon that we
observe at s while illuminating l.

The time of flight (ToF) of the first-returning photon is the smallest time instant t0 such that
L(t0; l, s) is non-zero. Its path length, δ(l, s) = t0, is given as

δ(l, s) = ‖l‖+ ‖s‖+ min
x∈SNLOS

‖x− l‖+ ‖x− s‖. (4.2)

A key observation is that the shortest path is often unique and determined by the position of a
single NLOS scene point. This greatly simplifies the shape estimation problem, since we do not
need to unmix the contributions of many NLOS scene points. Also, we explore the geometric
constraints of first-returning photons. By using only a fraction of the information from the 5D
transient, i.e., the first-returning photons, we developed simple algorithms to locate hidden points
and their associated normals. Instead of solving an ellipsoidal tomography problem to recover the
albedo, we use the shortest light-path property of first-returning photons to recover the 3D points
on the hidden object.

In this chapter, we show our shape recovery technique based on shortest light paths [126, 127].

4.1 Related work
We discuss some works in non-line-of-sight imaging. NLOS imaging refers to the broad problem
of reconstructing properties of scenes that are normally occluded from a sensor. Even though
interest in this problem dates back several decades [31], it has recently attracted increased attention
within computer vision and graphics, following two seminal papers [69, 135] demonstrating the
ability to reconstruct shape in the looking around the corner setting (Figure 4.1). Ever since,
many efforts have been made in this field. Related literature roughly falls into two categories.
First, algorithms that make use of time-resolved measurements to form constraints of the NLOS
objects [59]. Second, algorithms that use image or video intensities to reason the NLOS scene. An
overview of the literature is in Table 4.1.
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Measurement Methods Reference

Time resolved

linear systems Heide et al. [50], Heide et al. [49]

backprojection
Velten et al. [135], Buttafava et al. [15],
Manna et al. [75], Arellano et al. [5]

surface prior
Kadambi et al. [61], Gariepy et al. [34],
Pediredla et al. [102]

closed-form solution O’Toole et al. [96]
first-returning photon Chapter 4 [126, 127]
surface optimization Chapter 5 [128]

Intensities

NLOS object prior
Klein et al. [71], Thrampoulidis et al. [124],
Xu et al. [144]

video sequence Bouman et al. [12]

speckle
Katz et al. [66], Katz et al. [65] ,Smith et al. [118],
Bertolotti et al. [8], Boger-Lombard and Katz [9]

Table 4.1: NLOS scene recovery related works.

Time-resolved measurements provide ellipsoidal constraints on the albedo of the NLOS object
[15, 135]. The forward model for the 5D light transport tensor is linear with respect to the albedo
and geometry of the hidden object. By neglecting the effect of the surface normal and voxelizing
the space, the spatial-varying albedo can be recovered. Based on this image formation model,
researchers focus on the following four directions: solving a linear inverse problem, speeding up
backprojection, introducing NLOS models, and finding a closed-form solution for the linear in-
verse problem. Heide et al. [50] demonstrate NLOS shape reconstruction directly from a PMD’s
readout by relating the measurement to linear systems. More recently, Heide et al. [49] take into
account of visibility issues and improve the formation model. However, depending on the number
of voxels and the number of available measurements, the computation time for the inverse problem
can be high. One way to avoid directly solving the inverse system is to use backprojection to find
voxels that are most related to the measurements. Manna et al. [75] propose an iterative solution
that further updates the result of backprojection. By rendering the light transient of the estimated
hidden surface and compare against the measurement, they use the difference to further refine the
estimation. Arellano et al. [5] speed up backprojection by only considering voxels where multiple
ellipsoids intersect, this decreases the computation needs. However, the resolution of the recovered
scene depends on the number of ellipsoidal constraints. Another common approach to decrease the
complexity of solving the inverse problem is to introduce surface priors. Kadambi et al. [61] use
signal sparsity to recover distinct scene points. Gariepy et al. [34] approximate the hidden scene
with isolated scene points. Each scene point becomes a light source generating a spherical wave-
front. The source can be located by intersecting multiple ToF measurements. Pediredla et al. [102]
estimate planar scenes by comparing SPAD readout with rendered results. More recently, O’Toole
et al. [96] show the transient measurements can be interpreted as 3D convolution by change of
variable in the image formation model and provide a closed-form solution for the albedo of each
voxel.
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In this chapter, contrary to all methods based on time-resolved measurement, we propose us-
ing first-returning photons and derive geometric constraints based on shortest paths. We provide
algorithms that only require the ToF of first-returning photons. In the next chapter, we discuss how
most methods are making physically inaccurate simplification for the image formation model and
show a surface optimization framework using time-resolved measurements to estimate shape or
refine the results we gathered from algorithms discussed in this chapter.

NLOS imaging can be achieved without time-resolved measurement. Klein et al. [71] per-
form NLOS pose estimation using just image intensities. In this case, the number of unknowns is
smaller and image intensities are sufficient for estimating the hidden object. By adding additional
known occluder in the NLOS scene, Thrampoulidis et al. [124] and Xu et al. [144] show that im-
age formation model is easier to invert since the measurement only contains the contribution from
a subset of the unknown scene. Bouman et al. [12] use the fact that visible parts around the corner
can see different portions of the NLOS objects and recover the motion of hidden objects by taking
a series of videos and finding intensity variation across time. Katz et al. [65] utilize the fact that
the autocorrelation of the image with and without scattering is the same. The hidden object can be
recovered with the acquired autocorrelation image. Smith et al. [118] use the fact that the motion
of hidden objects will reflect on speckle pattern motion to track the object’s movement. By as-
suming the hidden source is a light source emitting continuous broadband noise, Boger-Lombard
and Katz [9] propose a passive optical architecture to localize the hidden source. By using a two-
aperture mask, a pixel of the camera can measure the temporal cross-correlation via interferometry
of two parts of the LOS wall. Based on the acquired cross-correlation, the hidden source can be
subsequently localized.

4.2 Problem statement

We assume an imaging system consisting of a pulsed laser and a ToF camera. We image the NLOS
object through a diffuse LOS scene. Given two LOS scene points l, s ∈ SLOS, we assume that
the setup can measure the path length associated with the first-returning photon at s when we
illuminate l with an impulse. Here we only consider first-returning photons from three-bounce
light paths.

Since the first-returning photon traverses the shortest three-bounce light path involving l and
s, its path length δ(l, s) is given in (4.2). Given a known LOS scene, we can deduct from δ(l, s)
the distance of the laser and camera to illumination point l and sensing point s, respectively. This
provides us with the length of the shortest path from l to s via the NLOS scene,

d(l, s) = min
x∈SNLOS

‖x− l‖+ ‖x− s‖. (4.3)

Our goal is to identify points belonging to the NLOS scene SNLOS given a collection of shortest
path lengths:

{d(l, s) | l, s ∈ SLOS}.
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4.3 Acquisition of first-returning photons

In this section, we first detail how first-returning photons are acquired with a SPAD system and
provide a theoretical analysis of the estimation of the first-returning photon through this process.
Finally, we highlight the advantages of a shape recovery framework that uses first-returning pho-
tons. We show both theoretical analysis and realistic experimental results to support the benefits
of the first-returning photons.

Light transient estimation using a SPAD. Here we outline the process to estimate the light tran-
sient using a SPAD. We only highlight SPAD operations that are related to our analysis and defer
to [15] for a more comprehensive description of acquiring light transients with a SPAD.

The probability of receiving a photon at a given time instant is determined by the intensity of
the light transient at the time instant. For NLOS imaging, the light path undergoes three scattering
events and, as a consequence, the probability of receiving a photon is low. When a photon is
incident, the SPAD saturates and records the time-stamp of the event. We can repeat this process
multiple times by sending an impulse train from the laser. By counting the number of photons
arriving in each time bin, we measure a photon distribution that is determined by the light transient.
A larger integration time means repeating the photon collection process for a longer time; thus
more photons are collected for the estimation of photon distribution.

It is worth noting that the photon distribution is not directly proportional to the light transient,
since there are nonlinear processes in the SPAD image formation model that includes time jit-
ter, pile-up, dead time, internal noise, ambient noise, and other operational effects [19, 51]. For
simplicity of analysis, we ignore these non-linearities in the SPAD operation and approximate the
photon distribution collected by SPAD to be proportional to the light transient. After the light tran-
sient is measured, we extract the first-returning photons as the first time instant when the photon
count increases drastically.

Acquisition advantages of the first-returning photon. In the following, we provide both theo-
retical analysis and experimental validation of the advantages of first-returning photons.

First, we consider a simplified SPAD image formation model to analyze the statistical charac-
teristic of the ToF of the first-returning photons. We disregard any noise and use the first non-zero
time instant in the light transient as the ToF of the first-returning photon. Let the arrival time of
the first N recorded photon, T1, T2, · · · , TN, be independent and identically distributed random
variables with probability density function (PDF), f (t) = g(t)u(t− tfp). Here, we form f (t) as
the product of two functions to highlight that the ToF of the true first-returning photon to be tfp,
and that we don’t receive photons before tfp.

An estimate of the ToF of first-returning photon is given as

T̂fp = min{T1, T2, · · · , TN}.
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The cumulative distribution function (CDF) of T̂fp is given as

FT̂fp
(t) = P(T̂fp ≤ t)

= P(min{T1, T2, · · · , TN} ≤ t)
= 1− P(T1 > t)P(T2 > t) · · · P(TN > t)

= 1− [1− P(T1 ≤ t)]N.

Hence, the PDF of the ToF of the first-returning photon is

pT̂fp
(t) =

d
dt

FT̂fp
(t)

=
d
dt
{1− [1− P(T1 ≤ t)]N}

= N[1− P(T1 ≤ t)]N−1 f (t).

We can show the number of photons needed to decrease the probability of the first-returning photon
being ε away from the true first-returning photon:

P(T̂fp > tfp + ε) = 1− P(T̂fp ≤ tfp+ε)

= [1− P(T1 ≤ tfp + ε)]N (4.4)

Even though the exact probability is dependent on the specific PDF of the arrival time of each
photon, an important implication of (4.4) is that the probability exponentially decays with respect
to the number of received photon N. To give a rough idea of the number of photons needed, we
use a sample scene that consists of a planar patch and render the light transient to show related
quantities (see Figure 4.2).

P(T̂fp > tfp + 33.3) = 0.05 ≥ [1− P(T1 ≤ tfp + 33.3)]N

With only N = 103 photons, the probability of getting an estimate of first-returning photon being
33.3 picoseconds away from ground truth is less than 0.05.

From several realistic light transients collected by SPAD, we observe that light transient can
be approximated with an exponential function. We discuss this special case of PDF being an ex-
ponential distribution, f (t) = ae−a(t−tfp)u(t− tfp), where tfp is the true ToF of the first-returning
photon. The CDF of first-returning photon estimate becomes:

FT̂fp
(t) = [1− e−aN(t−tfp)]u(t− tfp)

Hence,
P(T̂fp > tfp + ε) = e−aNε.

The probability of the estimator being ε away from the true value exponentially decreases with N.
The probability is highly concentrated at ε = 0.
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Figure 4.2: Sample scene and rendered light transient. To demonstrate the number of photons
needed for the estimation of the first-returning photon to be close to the true first-returning photon,
we synthesize the light transient of a planar NLOS object by ray tracing 108 photons.

We now show several realistic results to demonstrate how first-returning photons are easy to
acquire. Most of the previous works in NLOS use the full 5D light transient to solve the inverse
ellipsoid tomography problem. This requires a high-quality estimation of the light transient. For
SPAD systems, higher SNR can be achieved by a longer integration time (see Figure 4.3). For
shorter integration time, the number of photons arriving at each bin varies drastically. However, the
ToF of the first-returning photon remains stable even for a short integration time (see Figure 4.4).
We further repeat the experiment of estimating the position of the first-returning photon in each
peak in the transient multiple times to gather the statistical behavior of the estimation (see Figure
4.5). As shown in Figure 4.3, the SNR of the first-returning photon estimation is significantly
better compared to the SNR of the whole transient. That is, the ToF of the first-returning photon
can be estimated reliably with short exposure time. This is also consistent with our theoretical
derivation in (4.4). Hence, shape reconstruction techniques that rely on first-returning photons will
have a significant advantage at data acquisition.

Robustness to material reflectance. In addition to acquisition advantages of the first-returning
photon, a shape estimation framework based on first-returning photon is useful to deal with un-
known NLOS material reflectance. The ToF of a light path is a function of the geometry of the
NLOS object. As shown in Figure 4.6, even though the transient response changes with respect to
the reflectance, the ToF of the first-returning photon remains the same.

4.4 Geometry of first-returning photons
In the previous section, we derive the advantages of first-returning photons for NLOS imaging. In
the following, we will derive geometric constraints on the NLOS scene given the path length of
the first-returning photon when illuminating l and sensing at s. These geometric properties are the
keys that enable NLOS shape recovery.

Ellipsoidal constraint. Given d(l, s), as in (4.3), we can deduce that there is at least one NLOS
scene point lying on an ellipsoid E(l, s) given as:
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Figure 4.3: The SNR of acquired transient and first-photon estimation with respect to the
integration time. We use the longest integration time (100 seconds) as the noiseless signal, and
compare it with all other shorter integration time signals. We also normalize the height of the
transient response so that the total number of laser pulses is the same.
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Figure 4.4: First-returning photon estimation is stable even with short integration time. The
scene contains two planar objects, creating two main peaks in the transient response. Here we
show the captured raw data in (a), and the processed data, estimated positions for the first-returning
photons and the peak positions in the transient in (b).
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Figure 4.5: Mean and standard deviation of estimated first-photon and peak positions. We
collected 10000 SPAD readout of 0.01s integration time. We combine different numbers of readout
and estimate the first-returning photon and the peak positions of the two planes. We show the
average and standard deviation of the estimation with respect to the integration time.
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Figure 4.6: First-returning photon estimation is invariant with respect to reflectance. For
fixed lighting and sensing positions, when imaging the same planar object with different material
reflectance, the transient responses appear differently. However, the time-of-flight of the first-
returning photon remains the same.
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Figure 4.7: Proof for Observation 1. (a) There exists a visible point that creates a shorter light
path, which leads to a violation of the definition of the first-returning photon. (b) Specialized case
that needs to be excluded.

E(l, s) = {x | ‖x− l‖+ ‖x− s‖ = d(l, s)}.
Since the first-returning photon traverses the shortest path associated with l and s, this creates

spatial constraint on occupancy of the NLOS object, which can be explained in the following
observation.

Observation 1. There are no NLOS scene points in the interior of the ellipsoid E(l, s).

Proof. Suppose that there exists a NLOS scene point x̂ inside the ellipsoid E(l, s). If x̂ is visible
to both l and s, then a three-bounce light path from l to x̂ to s will create a shorter light path, which
contradicts the definition of the first-returning photon.

Suppose that x̂ is not visible to l. Then there exists an occluder x̂1 that blocks x̂ from l; the
occluder x̂1 lies on the line joining x̂ and lk and is visible to l (see Figure 4.7(a)). If x̂1 is not visible
to s, then we repeat the process to find a point x̂2 that is visible to s, and so on. We define the path
length caused by the occluder x̂i to be

‖x̂i − l‖+ ‖x̂i − s‖ = τ(x̂i) = τi.

We observe that τ1 > τ2 > τ3 > · · · , that is, the path length decreases each time instant. Given
that {τi} is bounded from below by ‖l − s‖, and is decreasing, it will converge via the monotone
convergence theorem.

Let τ∗ = limi→∞τi be the converged value. When τ∗ > ‖l − s‖, it is easily shown that x̂i
also converges and the converged point will necessarily be visible to both l and s (if not, we repeat
the process above and the path length decreases). We can hence find a point visible to both l and s
with a shorter light path than the first-returning photon, which is a contradiction.

If τ∗ = ‖l − s‖, then x̂i lies on the line connecting l and s, and can potentially oscillate —
this only happens in the scenario of Figure 4.7 (b) when l and s are occluded from each other.
This scenario is avoided by assuming that the points are visible to each other — a scenario that is
entirely consistent with our envisioned operating conditions.
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Figure 4.8: No NLOS scene within the ellipsoid. The ToF of the first-returning photon at each
illumination and sensing pair creates an ellipsoidal constraint. Since we measure the shortest path
between l and s, there should be no other NLOS scene with a shorter light path, and thus we carve
out space inside the ellipsoid.

Defining the interior of E(l, s) as

χ(l, s) = {x | ‖x− l‖+ ‖x− s‖ < d(l, s)}, (4.5)

we observe that
χ(l, s) ∩ SNLOS = φ.

This observation is visualized in Figure 4.8.
Observation 1 constrains space where the NLOS scene SNLOS can exist. We will build our

observation on how to use local smoothness assumption to estimate the NLOS scene. First, we
discuss the assumption that the shortest path is generated by a single NLOS point.

The uniqueness of the shortest path. Given l and s, the shortest three-bounce path between them
is assumed to be unique, i.e., we assume that there exists only one NLOS scene point x∗(l, s) such
that

d(l, s) = ‖x∗(l, s)− l‖+ ‖x∗(l, s)− s‖.
For simplicity, we will denote x∗(l, s) simply as x∗.

Recall that given (4.1), the NLOS scene point(s) that contribute to the three-bounce light tran-
sient I(t0; l, s) lie on an ellipsoid; further, when t0 is increased, the ellipsoid increases in size.
Consider the point(s) of contact between the NLOS scene and the ellipsoid when t0 is gradually
increased; the shortest path between l and s is unique only when the contact is at a single location
(see Figure 4.9). This is always the case when the NLOS scene is a convex shape.

There are instances of non-convex NLOS scenes that violate this uniqueness assumption. In
fact, given l and s, it is not hard to construct a NLOS scene such that there are multiple points
of contact to the ellipsoid. However, this is not a generic condition in that it requires very careful
design of the NLOS scene for a given LOS scene pair; hence, if we perturb l and s, the symmetry
of the scene is invariably broken and we recover uniqueness of the shortest path. In practice, this
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Figure 4.9: A single scene point contributes to the first-returning photon. The time-of-flight
of the first-returning photon corresponds to the smallest ellipsoid that intersects with the NLOS
scene. For a convex NLOS scene, the intersection will only contain one point.

implies that non-unique shortest path scenarios occur, at best, for a tiny subset of LOS scene pairs
and can be handled as outliers. An example of non-unique shortest light paths is shown in Fig.
4.10(a). However, when we move the illumination and sensing points — even slightly — the
shortest light path becomes unique (see Figure 4.10(b)).

By using additional local smoothness assumption regarding the local neighborhood of the
unique scene point x∗, we find additional geometric constraints.

Observation 2. Suppose that NLOS scene is locally smooth at x∗. Then, the (unique) sup-
porting plane at x∗ is tangential to the ellipsoid E(l, s).

Proof. Suppose that the supporting plane to the NLOS scene at x∗ is not tangential to the ellipsoid
E(l, s). Then, given local smoothness, we can show that there are NLOS scene points in an in-
finitesimal neighborhood of x∗ that belong to the interior of the ellipsoid, χ(l, s). This contradicts
Observation 1.

We visualize this scenario in Figure 4.11. It is also worth noting that when local smoothness is
violated — for example, at corners — the supporting plane to the NLOS object is not unique.
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where there are multiple scene points contributing to the shortest path. That is, the NLOS scene
intersects with the ellipsoidal constraint E(lk, s1) at multiple points. Even though this means that
the shortest path between l and s1 is not unique, when we move the illumination or the sensing
point, this is no longer the case. (b) When we move the sensing to s2, now the NLOS scene only
intersect with the ellipsoidal constraint at one location.
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Figure 4.11: When Observation 2 is violated, there exist NLOS scene points violating Obser-
vation 1. If the supporting plane at x∗ is not tangential to the ellipsoid E(l, s), there will exist
NLOS scene points belonging to the interior of the ellipsoid.

Observation 2 also implies that the supporting planes at x∗ to both the NLOS scene and the
ellipsoid are identical. This provides us with an explicit expression for the surface normal of the
NLOS object at x∗.
Observation 3. Under the local smoothness assumption of the NLOS scene at x∗, the surface
normal n(x∗) is the angular bisector of the vectors from x∗ to the illumination spot l and
sensing spot s, respectively; that is,

n(x∗) ∝
l − x∗

‖l − x∗‖ +
s− x∗

‖s− x∗‖ . (4.6)

Observation 3 is directly following the property of ellipsoids. Also, since the light path of
interest corresponds to first-returning photon, it is the shortest light path, which follows Fermat’s
principle. Therefore, locally, the path will follow a mirror reflection.
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Figure 4.12: Geometric interpretation of the normal being the angle bisector. l′ is the mirror
image of l w.r.t H. Then, θ1 = θ2 and the distance from any point on H to l is the same as the
distance to l′. Since the shortest path from l′ to s is the straight line connecting them, x∗ lies on
this straight line; otherwise, there exists an alternate path that is shorter. Therefore, θ3 = θ1. We
can conclude that θ4 = π/2− θ2 = π/2− θ1 = π/2− θ3 = θ5. The normal n(x∗) is the
angular bisector.

The following geometric interpretation of Observation 3 is useful for the shape recovery al-
gorithms in Section 4.5. Given the supporting plane H at x∗, we find the mirror image of the
illumination point l with respect to H; we denote the mirror image as l′. When the surface normal
n satisfies (4.6), then it can be shown that the straight line joining the mirror image l′ to s passes
through x∗. A brief proof of this is presented in Figure 4.12.

In the following, we provide the algebraic proof of Observation 3.

Proof. Recall that from the ellipsoid property, the surface normal of supporting plane of a ellipsoid
is the angular bisector. We now prove that the normal at x∗ is also the angle bisector and hence,
the supporting planes to the NLOS surface and the ellipsoid at x∗ are one and the same.

Consider the setup in Figure 4.13. Light emitted from a source at l bounces off an object and
reaches the point s. The shortest among all such paths passes through the point x∗ on the object.
Given this, we prove that the surface normal at x∗ — assuming that the object is locally smooth —
satisfies

n ∝
l − x∗

‖l − x∗‖ +
s− x∗

‖s− x∗‖ ,

or equivalently, the surface normal at x∗ is the angular bisector of the vectors to l and s, from x∗.
Since the NLOS object is locally smooth, therefore, points in an infinitesimal local neighbor-

hood of the discovered x∗ can be represented as

x′ = x∗ + αn1 + βn2, (4.7)

where n1 and n2 are the basis spanning the local planar approximation. That is, 〈n, n1〉 = 0,
〈n, n2〉 = 0, and 〈n1, n2〉 = 0, where n is the surface normal. We can now compute the distance
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Figure 4.13: Normal estimation of the recovered NLOS scene point. The normal of the scene
patch corresponding to the first photon is the angle bisector. For all other points x′ in the neigh-
boring area, the time of flight will be larger compared to x∗.

from l to s via points on the local planar patch at x′.

τ(x′) = ‖x′ − l‖+ ‖x′ − s‖
= ‖x∗ + αn1 + βn2 − l‖+ ‖x∗ + αn1 + βn2 − s‖

Since the shortest path in this local neighborhood happens for x′ = x∗, the derivative of τ(·)
with respect to α and β is zero at x∗ = x′, or equivalently, when α = β = 0.

∂τ(x′)
∂α

=
nT

1 (x∗ + αn1 + βn2 − l)
‖x∗ + αn1 + βn2 − l‖ +

nT
1 (x∗ + αn1 + βn2 − s)
‖x∗ + αn1 + βn2 − s‖

∂τ(x′)
∂β

=
nT

2 (x∗ + αn1 + βn2 − l)
‖x∗ + αn1 + βn2 − l‖ +

nT
2 (x∗ + αn1 + βn2 − s)
‖x∗ + αn1 + βn2 − s‖

The minimum is reached when x′ = x∗. That is, the derivative reaches 0 when α = 0 and
β = 0.

∂τ(x′)
∂α
|α=0,β=0 = nT

1

(
x∗ − l
‖x∗ − l‖ +

x∗ − s
‖x∗ − s‖

)
= 0

∂τ(x′)
∂α
|α=0,β=0 = nT

2

(
x∗ − l
‖x∗ − l‖ +

x∗ − s
‖x∗ − s‖

)
= 0
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Figure 4.14: Space carving for NLOS imaging. From Observation 1, we carve out space inside
each ellipsoid. The space carved region will contain no NLOS scene points.

The relationships above suggest that the vector
(

x∗−l
‖x∗−l‖ +

x∗−s
‖x∗−s‖

)
is perpendicular to both n1 and

n2 and hence, it must be aligned along the surface normal since the surface normal is perpendicular
to both n1 and n2. Therefore,

n ∝
x∗ − l
‖x∗ − l‖ +

x∗ − s
‖x∗ − s‖ (4.8)

Here we show that the normal at x∗ is equal to the angle bisector, which is also the normal
of the supporting plane of the ellipsoid at x∗. Therefore, the supporting plane is tangential to the
ellipsoid.

4.5 Shape from first-returning photons
We propose three algorithms utilizing the finding in the three observations in Section 4.4 — the
first for carving out the space the NLOS object cannot occupy and the latter for recovering the
location and surface normals of NLOS scene points that generate the first-returning photons.
Algorithm 3 (Space carving for NLOS imaging).

We extend Observation 1 by incorporating space carving constraints from all pairs of illumi-
nation and sensor points. Specifically, the NLOS scene SNLOS cannot lie within the union of the
individual ellipsoids, i.e.,

∪
l,s∈SLOS

χ(l, s) ∩ SNLOS = φ,

where χ(l, s) is defined in (4.5). We illustrate space carving from multiple first-returning photons
in Figure 4.14, when illuminating a single LOS spot.
Algorithm 4 (NLOS shape recovery under the local planarity assumption).

We assume that a small neighborhood of LOS sensing spots {s ∈ Ω} receive first-returning
photons from a locally-planar NLOS scene patch when illuminating the LOS wall at l. Therefore,
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Figure 4.15: NLOS shape and normal under the local planarity assumption. If we assume
the first-returning photons from neighboring sensors are from the same local planar patch, then
they share the same mirrored light source location l′. Thus, finding l′ can subsequently lead to the
recovery of NLOS scene point and surface normal.

we can combine the measured ToFs to infer the location and orientation of the locally-planar patch.
We achieve this by estimating the location of the mirror image of the illumination point (see Figure
4.15).

Recall that the length of the shortest path from l to s is equal to the distance between the mirror
image l′ and s, ‖l′ − s‖; hence, d(l, s) = ‖l′ − s‖. Given the collection {d(l, s) | s ∈ Ω}, we
can solve for the location of the mirrored image as

min
p ∑

s∈Ω
(d(l, s)− ‖p− s‖)2 . (4.9)

The optimization problem is non-convex; we solve it using gradient descent techniques and, thus,
the result depends heavily on the initialization. We initialize with the algebraic minimizer of the
objective function. Without loss of generosity, we assume the sensors are all on the same plane
z = 0. That is, sj = (sx

j , sy
j , 0). We seek to find the location for the mirrored light source

l′ = (lx, ly, lz).
By squaring the path length, we get

d2(l, sj) = (lx − sx
j )

2 + (ly − sy
j )

2 + (lz − 0)2 (4.10)

For simplicity, we will denote d(l, sj) as dj.
We use another sensor location si that belongs to the same local neighborhood to jointly esti-

mate (lx, ly, lz).

d2
i = (lx − sx

i )
2 + (ly − sy

i )
2 + (lz − 0)2 (4.11)

(4.11) - (4.10), we get
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j )
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2
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[
(sy

j )
2 − (sy

i )
2
]

We can see that the relationship is linear in lx and ly. Therefore, we can construct a linear system.
Here, for ease for interpretation, we use s1, s2, · · · , sm to represent sensors in the local neighbor-
hood.

2
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(lx, ly) can be solved using pseudo inverse. Finally, the mirrored light source location can be
solved

lz =
√

d2
j − (lx − sx

j )
2 − (ly − sy

j )
2

Once we have an estimate for the mirror image p̂, the estimate of the surface normal to the
planar patch is given as

n̂Ω =
(l − p̂)
‖l − p̂‖ .

We can also identify (l + p̂)/2 as a point on the supporting plane H, which gives us the equation
of the planar patch. We now identify points on the plane that produce the first-returning photons
by intersecting this plane with the straight lines from p̂ to each of the points s ∈ Ω.

An assumption of Algorithm 4 is that local sensing points receive first-returning photons from
the same local patch. However, as shown in Figure 4.16(b), when there are multiple objects in the
scene, neighboring sensor locations receive first-returning photons from different sources. This
causes an error in the shape recovery. The solution is to distinguish the sources that generate first-
returning photon. Separating source of first-returning photons is possible since the ToF and the
sensor locations have a quadratic-like structure (Figure 4.16(b)). Based on this observation, we
find the ToF model of first-returning photons and propose Algorithm 5.
Algorithm 5 (NLOS shape recovery using the union of quadratic models).

The assumption of local planarity uses neighboring measurements to jointly estimate the lo-
cation of the mirrored illumination. The results will be affected by the choice of neighborhood
size; a small neighborhood size has a noisy estimate, whereas a large neighborhood size provides
a more accurate estimate but may suffer from model mismatch. It would be most beneficial to
automatically cluster as many measurements as possible while making sure the model is still the
same.

We make the following two observations about the ToF measurements generated by two mod-
els:
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Figure 4.16: Failure case for Algorithm 4. (a) A sample scene to illustrate when Algorithm 4
will fail. The scene consists of two planar patches. In (b) x and y axes correspond to the sensor
locations and the z axis corresponds to the ToF of the first-returning photon with color indicating
the source of the first-returning photon. There exist some local neighboring sensing locations that
receive first-returning photons from different planar patches causing assumption of Alg 4 to fail.

• Plane. If the first-returning photons arriving at different sensing points are generated from the
same plane, the unknown to be estimated will be the mirrored position of the illumination point
pplane = [xplane, yplane, zplane] (see Figure 4.17 (a)).

d(l, s) = ‖pplane − s‖

d2(l, s) =
(

xplane − s(x)
)2

+
(

yplane − s(y)
)2

+
(

zplane − s(z)
)2

.

The unknowns, x, y, and z, are quadratic with respect to the measured time-of-flight and the
location of the sensing spot.

• Point. If the first-returning photons arriving at different points are generated from the same point,
the unknown to be estimated will be the point itself.

d(l, s) = ‖ppoint − l‖+ ‖ppoint − s‖

Without loss of generality, we can shift the whole system so that l is at the origin. By introducing
an additional variable, R = ‖ppoint‖:

[d(l, s)− R]2 =
(

xpoint − s(x)
)2

+
(

ypoint − s(y)
)2

+
(

zpoint − s(z)
)2

.

54



s1 s2s3 s1 s2s3

R

(a) plane (b) point

−1
0

1 −1

0

10

0.5

1

1.5

y (m)
x (m)

To
F 

(m
)

(c) ToF is quadratic with respect to the sensing 
point location

SLOS

SNLOS

l

SNLOS

SLOS

l

pplane ppoint

Figure 4.17: Quadratic models for NLOS imaging. (a) If the NLOS object is a plane, the ToF of
the first-returning photon coming from this plane is the distance from the mirrored illumination to
the sensing point. (b) If the NLOS object is a point, the ToF of the first-retuning photon coming
from this point is the distance from the point to the sensing position plus a constant R. (c) We
plot the x,y coordinate of the sensing point and the ToF of the received first-returning photon in z
coordinate.

The unknown, xpoint, ypoint, zpoint, and R, are quadratic with respect to the known quantities.
Here we treat R as a variable; however, it is related to ppoint (see Figure 4.17 (b)).

For the two sources, we can use 4 measurements to form an initial estimate. We first randomly
select a point, then randomly select 3 points in proximity to it since for most cases, neighboring
sensing positions receive first-returning photons from the same source. We use these 4 points to
form an initial estimate and find other inliers to jointly form a model candidate for RANSAC.
We use the average error between the measured ToF and the ToF from the estimated models to
determine the best-fitted model. By using RANSAC we can find the measurements of different
sensing points to be used together. This can also help to handle outliers since we can reject samples
based on how well the model explains the data. Between the two models (plane and point), we
choose the one that generates a smaller average distance between the ToF of first-returning photons
and the ToF of the recovered points.

In a real scene, there will exist more than planes and points. For any smooth surface, we
approximate a local curved patch as a local planar patch.
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4.6 Experiments

We demonstrate the effectiveness of our proposed algorithms through both synthetic data and re-
alistic setup. We show how space carving can help reduce the free space where the NLOS object
resides. Also, we use local planarity to localize scene points and estimate the surface normal. Fi-
nally, we verify our method based on RANSAC to fit local planar patches and corner points that
generate first-returning photons. Unless otherwise noted, the NLOS scene is Lambertian.

4.6.1 Simulation results

Rendering setup. We used the code from [58] to render the light transient. Rendering three-
bounce light paths is a time-consuming process, therefore, to improve the efficiency of rendering,
we modify the imaging setup by placing an omni-directional light source and an omni-directional
sensor on the LOS scene and rendering single-bounce light paths. This setup is equivalent to NLOS
imaging.

Space carving for NLOS imaging. We demonstrate NLOS space carving for the scene, shown
in Figure 4.18, consisting of a bunny in a room occluded from the laser/camera location. We
randomly select 100 pairs of illumination and sensing points that are visible to the laser and camera
center. We also make sure that the illumination and sensing points are visible to each other to avoid
scenario described in Figure 4.7(b).

The result of the space carving is visualized in Figure 4.19 with two different number of mea-
surement used. We observe that the bunny is outside the carved region. Further, the volume of the
entire NLOS scene is 5.56 cubic meters. With space carving, we identify free space in the NLOS
scene and hence, the resulting NLOS scene volume with 100 pairs of illumination and sensing
points is reduced to 0.44 cubic meters, which is only 7.86% of the original space. The volume that
the bunny occupies is 0.20 cubic meters. Our method successfully decreases the space of possible
NLOS scene. However, due to the complex shape of the bunny, some space will not be carved out.

Space recovery with different reflectances. The ToF is solely a function of the geometry of the
NLOS scene. Thus, our proposed method can work for NLOS scene with unknown reflectance as
oppose to prior works that rely on the assumption of the NLOS scene being Lambertian. As shown
in Figure 4.6, the ToF of first-returning photons of an object with different reflectance remains the
same.

We further verify this claim by rendering the light transient of the NLOS scene with different
reflectances, from purely Lambertian to highly specular reflectance. We control the reflectance via
the parameters of the Blinn-Phong model. The scene setup is shown in Figure 4.20. The NLOS
object is a sphere and we illuminate one point and sense at 957 points. As shown in Figure 4.21,
the rendered ToF and hence, the recovered points, are largely invariant to the reflectances of the
NLOS object.

Shape recovery with different noise levels. The scene contains a sphere where the location of
the center o and the radius r are known. We compute the recovery error by finding the average
distance between the recovered point to the surface of the sphere.
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Figure 4.18: Scene setup for demonstrating the space carving algorithm. We place a bunny
behind an occluder and orient the laser and SPAD toward different points on all the walls to image
the NLOS bunny. For ease of visualization, we do not show the top wall.

Ex =
1
m

m

∑
i=1
|‖xi − o‖ − r|,

where xi is the i-th recovered point. As for the normal recovery error, we find the average angular
error between the recovered normal and the normal of the projected point on the sphere.

En =
1
m

m

∑
i=1

cos−1
(

n>i
xi − o
‖xi − o‖

)
,

where ni corresponds to the normal estimation of recovered point xi.
As shown in Figure 4.22(a), we observe that the reconstruction error is roughly linear to the

noise level. We show the recovered shapes in Figure 4.22(b) for visualization. We also show
recovered normals in Figure 4.22(c) with color-coded normal.

Shape recovery with different neighborhood sizes. In (4.9), we use a local neighborhood to solve
the mirrored light source location. By choosing a larger area, we include more measurements, thus
the effect of noise can be alleviated. However, for very large neighborhoods, the locally planar
assumption can be violated, causing large model misfit errors. We use the setup in Figure 4.20
and compare the reconstruction results with respect to different neighborhood sizes. We observe
in Figure 4.22 that the error first reduces with increasing neighborhood size and subsequently,
increases due to the violation of the local planarity assumption.

Shape recovery with the union of quadratic models. We can use Algorithm 5 to fit quadratic
models to the time-of-flight measurements of the first-returning photon. We repeat this process
until there is no more measurement that fits any models. The advantage of using Algorithm 5 is
that we do not need to tune the neighborhood size parameter as required in Algorithm 4. However,
for a scene that violates the assumption that first-returning photons are generated by local planes
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Figure 4.19: Space carving algorithm results. We present the space carving results alongside
with the ground truth in four views. (a) We show the space carving result using 25 pairs of illu-
mination and sensing spots. (b) Space carving result using 100 pairs of illumination and sensing
spots. (c) Ground truth.

or a single point, we can see that the Algorithm can only pick up even fewer parts of the scene (see
Figure 4.22 [iii,iv]). Still, Algorithm 5 has a great advantage when the scene is truly composed of
multiple distinct planar objects. We demonstrate this with real-world examples.

4.6.2 Real scene

In the following experiments, we used four data sources that use a pulsed laser and a SPAD to
gather the light transient of a NLOS scene:

• Dataset 1. Buttafava et al. [15] collect three-bounce light paths using 185 illumination points
and sensing at a single spot on the wall (see Figure 4.23). There are three NLOS objects, a T
shape, a larger square behind the T shape, and a smaller square. There is an additional surface
due to the optical setup.

• Dataset 2. Pediredla et al. [102] measure the NLOS scene by placing planes at different loca-
tions and orientations. They focus the SPAD to a single location and use a galvo mirror to direct
the laser to 48 locations.

• Dataset 3. We use the setup described in [102] and collect the NLOS scene with more varieties.
We focus the SPAD at a single location and illuminate the scene at 168 lighting locations. In this
dataset, we explore different aspects of NLOS imaging. This includes changing the integration
time, planar NLOS objects, curved NLOS objects, and multiple NLOS objects.

• Dataset 4. We collect this dataset to explore the trade-off between integration time and tracking.
The acquisition setup is described in [102]. The SPAD is focused at a single location and we
illuminate 20 points on the wall with a laser. The NLOS object is a plane mounted on a mechan-
ical translation and rotation stage. We collect data with three kinds of movement, 2 translations
and 1 rotation.
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Figure 4.20: Shape recovery scene setup. Here we show the side view of the setup. The NLOS
scene consists of a sphere. We image the sphere through 1 illumination point and 957 sensing
points.

We collect nine integration times, which are 1, 2, 5, 10, 20, 50, 100, 200, 500 ms. We raster scan
the 20 illumination points, each with the desired integration time. And we repeat this process
for 30 seconds for translation movements and 60 seconds for rotation movement. During the
acquisition, the NLOS object is constantly moving, controlled by the mechanical stage.

From the 5D light transient, we find the ToF of the first-returning photon by finding the first
time instant that photon count increases significantly. In all these datasets, a single-pixel SPAD is
used, thus the sensing spot is fixed. With a galvo mirror, laser light is directed to different parts of
the wall, creating different illumination points. Because of Helmholtz reciprocity, we can switch
the role of illumination and sensing, then apply the shape recovery algorithm. That is, instead of
finding the mirrored illumination point, we find the mirrored sensing point.

Shape recovery with different integration time. We verify our claim that methods based on first-
returning photon is robust to short acquisition time. In Figure 4.24, we show the result of three
different integration time for each illumination spot. We can see that the estimated first-returning
photons are invariant with integration time. As expected, the ToF of extremely short integration
time, 1 ms, is noisier. Along with a robust algorithm (Algorithm 5), we can still recover an accurate
point cloud estimation of the hidden object.

Shape recovery with planes. We quantify the recovered results by computing error in position
and normal estimation. We can compute the theoretical source of scene points that contribute to
first-return photons from the ground truth scene description. The scene labeled with ∗ means that
the points are truly coming from a plane. For all other scenes, the scene points contributing to
first-returning photon corresponds to edges of the scene. We test our ability to recover points on
planes using two datasets, as shown in Table 4.2 and Table 4.3. We can see that even if we do
not explicitly model edges in our algorithm, the algorithm does not completely fail. The recovered
points will still lie closely to the plane; however, as is to be expected, the normal estimation will
be more inaccurate.
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Figure 4.21: Shape reconstruction under varying NLOS scene reflectance. Here we show the
results of 3 different material reflectances. (a) Reflectance visualization, shown by illuminating the
sphere with a point light source. (b) The rendered ToF at each sensing location. (c) The recovered
NLOS scene points.

Shape recovery with curved objects. We collect four scenes with the setup similar to Figure 4.20.
Scene 1-3 are a yoga ball from close to the wall to far. Scene 4 is a small ball. As shown in Table
4.4, our recovered results can indicate well where the NLOS object is. We notice that the local
planarity assumption fails in scene 4 because the radius of the ball is comparably smaller. We can
see the normal estimation fail much worse in this case.

Shape recovery with multiple objects. Buttafava et al. [15] collect a setup containing multiple
planar objects in the NLOS scene. This setup perfectly fits our model assumption of local planarity.
We use a neighborhood size of 5 for shape recovery (Alg. 4) and filter out points based on the space
carving constraint (Alg. 3). The recovered result is shown in Figure 4.25(a). Notice that we can
only recover the two parts closest to the wall since the square behind the T shape cannot create
first-returning photon observations.
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By observing the 5D light transient (see Figure 4.23(b)), we can clearly see multiple peaks in
the light transient. Those are first-returning photons generated by other surfaces that are farther
from the wall, thus they will not be picked out by finding the first time instant when the photon
count exceeds the threshold. Therefore, we use a signal processing method to find the peaks in the
light transient then assign labels by clustering measurements of similar distance. As seen in Figure
4.25(b), we are able to recover more scene points.

As we can see in the color label auto-generated in Figure 4.25(b), there are instances where
first-returning photons from different scene patches are clustered together incorrectly. From Alg.
5, we know that the structure of ToF coming from the same source will be quadratic, therefore,
we can use RANSAC to pick up measurements that are from the same source automatically. This
avoids the process of label assignment. As seen in Figure 4.25(c), we can recover scene points
and identify different scene better. By considering the structure of the measurement, we adaptively
cluster measurements and produce better results.

Notice that we recover each scene point independently. The recovered scene points lie on
different planar scene objects, which are consistent to the setup described in [15]. Also, the recov-
ered normals (see Figure 4.25) are roughly perpendicular to the point collection, which means our
normal estimation is meaningful.

Shape recovery with multiple objects with ground truth scene description. To help evaluating
the results of multiple algorithms, we collect a dataset that contains scenes with multiple objects
along with the scene ground truth description. To evaluate the recovered results, we show the
average distance to ground truth scene and the average normal estimation error. Since there are
multiple objects in the scene, we use the closest ground truth object as ground truth for each
recovered point.

As shown in Table 4.5, for most cases Alg 4 and 5 behave similarly. In scene 3 and 4, the major
difference happens when hidden objects are closely placed. Labeling based on clustering will fail
in this case and there will be some artifact between recovered points.

Tracking NLOS objects. We create a dataset that contains 3 different object movements: linear
movement parallel to the wall, linear movement perpendicular to the wall, and rotating the NLOS
object. The object is mounted on a mechanical stage that continuously moves during the acquisition
time.

We fix the sensing position and raster scan the wall at 20 illumination points. We use Alg 5 to
reconstruct parameter of a plane from the first-returning photon of the 20 positions. We show in
Figure 4.26 the result of tracking the NLOS object. For visualization, we only show the intercept
and the angle between the wall. We can qualitatively see that the recovered position of the plane is
consistent with the movement of the stage. By plotting the estimation with respect to time, we see
the frequency of the recovered motion is consistent across different acquisition times. However, as
shown in forth row in Figure 4.26, for large acquisition time, since the object moves a lot during
the data acquisition, there is no consistent estimation of the NLOS object.
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4.7 Discussion

In this chapter, we show the acquisition advantages and geometric properties of first-returning
photons in NLOS imaging. We provide both theoretical and experimental justification regarding
the statistical behavior of first-returning photon estimates. We also identify novel constraints that
arise from the study of shortest paths and design shape recovery algorithms that are simple and
lightweight. To our knowledge, ours is the first technique that directly resolves NLOS shape and
normals without solving complex inverse problems. We also create a dataset along with the ground
truth scene description, which we believe will facilitate research in this field. In the following, we
discuss several aspects of our proposed methods:

The sampling of the NLOS scene points. A drawback of using first-returning photon is that the
NLOS scene points that produce the first-returning photon is a function of the scene geometry,
i.e., we have limited control over the points that end up generating the first-returning photons.
As a consequence, it is entirely possible that some scene points will never create first-returning
photons. One such example is the surface on the top right corner of Figure 4.25. Only if we use
signal processing techniques to extract more first-returning photons from the light transient can we
recover the shape.

Failure of local planarity. The local planarity assumption is violated, often significantly, at depth
discontinuities — for example, at edges and corners. Here, Alg. 5 is a good way to deal with
such case that planar patches and corners can be identified and estimated separately. Since we can
model the ToF from these two sources easily, using a RANSAC process to iteratively pick up the
best-fitting model can help grouping correct subsets of measurements.

NLOS reflectances, smoothness, and convexity. From the Observation 3, the light path of the
first-returning photon follows the mirror direction. This means that specular BRDF is actually
most advantageous for smooth and convex objects, since all photons will be first-returning pho-
tons. Lambertian reflectance, on the contrary, creates light paths that belong to the tail of the light
transient. This makes determining the ToF of the first-returning photon harder.

Specular BRDF is not always favorable, especially for smooth non-convex objects, when there
exist inter-reflections on the NLOS object. This makes separating three-bounce light path from
higher-bounce light paths harder. However, in this case, for Lambertian reflectance, higher order
bounce light paths attenuate faster and it is easier to identify three-bounce light paths. Specular
BRDF is also not suitable for non-smooth object since some lighting/sensing pairs cannot receive
any photon.

A subset of available measurements. The ToF of first-returning photons is a subset of the mea-
surements encoded in the full 5D light transient. If the 5D light transient is available, all the
measurements should be used to provide additional robustness especially when imaging complex
scenes.
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4.8 Conclusion
Non-line-of-sight imaging uses properties measured in the field of view to infer the properties of
the invisible parts of the scene. This is done by considering the attributes of three-bounce light
paths. The time-of-flight corresponds to the path length constraints and the radiance corresponds
to the reflectance information of the NLOS scene. The main difficulty for estimating the shape of
non-line-of-sight imaging is that different parts of the object contribute to the measurements. This
means that to estimate the shape, we not only need to deal with the entanglement of geometry and
reflectance, but also need to unmix the contribution from different parts of the object.

By considering how light propagates the scene, we find the first-returning photons to carry
the geometric information of the hidden scene. Our finding is in terms of three observations that
includes what kind of scene cannot possibly generate the observed first-returning photons, which
leads to the space carving algorithm for NLOS imaging. Another important key is first-returning
photon follows Fermat’s principle. By assuming local planarity, we derive an algorithm to localize
NLOS scene points in 3D and estimate their surface normals. The proposed method proposed
is computationally lightweight, hence is suitable for initializing and accelerating more complex
methods that utilize the full light transient.

Contributions In particular, we make several contributions:
• Acquisition of first-returning photons. We provide theoretical and experimental justifications

regarding the ability to measure first-returning photons using a SPAD. We highlight how sensing
first-returning photons helps simplify acquisition, for instance, shortening the integration time
needed.

• Derivation of geometric properties of first-returning photons. We establish several geometric
properties of the light path traced by first-returning photons. One of the most important proper-
ties is that the ToF of the first-returning photon is a function of the geometry of the NLOS object.
This means that a shape estimation framework based on first-returning photon is invariant to the
NLOS object’s reflectance.

• Design of algorithms for NLOS shape recovery using first-returning photons. We derive con-
straints induced by the ToF of the first-returning photon and subsequently provide three algo-
rithms to recover the hidden object:

1. Space carving. The ToF of the first-returning photon implies that the closest NLOS points
are a specific distance away from the LOS scene points. Based on this observation, we derive
a space carving algorithm that restricts the spatial extent of the NLOS object.

2. Shape and normal from first-returning photons using local planarity constraints. We derive
constraints that relate the 3D positions of the NLOS scene points to the ToF of first-returning
photons. This enables a simple algorithm for estimating the 3D locations of the NLOS scene
points. Once the scene point is localized in space, we show that the surface normal can also
be recovered provided the NLOS scene is locally smooth. This derivation relies on Fermat’s
principle of shortest paths.

3. Shape and normal from first-returning photons using a source-separation technique. We
show that the ToF of first-returning photons from a planar object is a quadratic function of
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space. We use this observation to cluster first-returning photons from the same (locally)
planar object and to robustly recover its plane parameters.

• NLOS object tracking using first-returning photon. Since first-returning photons are easy to
acquire, we can track a moving NLOS object at a high frame rate by measuring a small number
of first-returning photons.

• Creation of an NLOS dataset. We create an NLOS imaging dataset collected with a SPAD
sensor along with the scene descriptions. This new dataset includes extensive real experiments
with ground truth information for a comparison of different algorithms.
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Figure 4.22: Shape recovery with different noise levels. We are able to vary the noise level by
varying the number of photons used in rendering. (a) The shape recovery error with respect to
different noise levels. [i] Recovery result of noise level at 0.0123 m with neighborhood size = 5
with Alg 4. [ii] Recovery result of noise level at 0.0034 m with neighborhood size = 15 with Alg
4. [iii] Recovery result of noise level at 0.0123 m with Alg 5. [iv] Recovery result of noise level at
0.0034 m with Alg 5.
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#
Alg 4 Alg 5

Ex(m) En(◦) Ex (m) En(◦)
1 0.120 71.619 0.148 73.165
2 0.024 15.222 0.009 19.496
3 0.019 13.919 0.002 8.966
4 0.016 2.544 0.021 0.507
5 0.009 2.147 0.014 0.652
6 0.012 3.594 0.006 14.192
7 0.087 40.291 0.013 19.288
8∗ 0.034 15.406 0.014 1.041
9∗ 0.030 6.279 0.027 3.122

Table 4.2: NLOS shape recovery results on dataset in [102].

# intercept (m) angle (◦) Alg 4 Alg 5
Ex(m) En(◦) Ex(m) En(◦)

1 1.09 15 0.047 34.887 0.020 31.992
2 1.09 30 0.016 16.973 0.016 22.153
3∗ 1.09 45 0.028 4.757 0.027 4.775
4∗ 1.09 60 0.043 6.921 0.040 5.007
5∗ 1.09 75 0.040 6.211 0.034 5.481
6 1.09 90 0.110 26.450 0.019 12.810
7 1.09 105 0.448 62.930 0.2608 48.643
8 0.30 60 0.038 3.166 0.039 3.213
9 0.46 60 0.090 7.072 0.088 6.558

10 0.66 60 0.049 3.514 0.051 3.102

Table 4.3: Recovery results with planes at different positions.

#
Alg 4 Alg 5

Ex(m) En(◦) Ex (m) En(◦)
1 0.037 11.409 0.041 14.530
2 0.024 14.253 0.028 16.809
3 0.047 13.913 0.051 15.997
4 0.067 43.834 0.047 37.930

Table 4.4: Recovery results on curved objects.
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Figure 4.25: NLOS shape estimation from first-returning photons collected by SPAD [15]. We
compare our proposed method using solely first-returning photons (red and other color dots) with
a elliptical tomography method using the full 5D light transient (grey dots). (a) First-returning
photons by finding where the photon count increases sharply in the light transient. We show that
we can recover points closer to the wall and the recovered points align with the result using a
elliptical tomography method. (b) We use signal processing to extract the first-returning photon
from different NLOS surfaces. For each surface, we repeat the process in (a). We can see that
by finding first-returning photons from different surfaces in the 5D light transient, we can recover
most of the NLOS scene. (c) We collect the first-returning photon by finding the peak in the light
transient and directly apply the union of quadratic models to automatically cluster measurements
that belong to the same surface. Note that this can help eliminating the artifact caused by clustering
wrong subsets of measurements.
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# scene
Alg 4 Alg 5

Ex(m) En(◦) Ex (m) En(◦)
1 2 planes 0.026 10.813 0.036 7.592
2 2 planes 0.014 10.900 0.011 7.115
3 3 planes 0.029 12.307 0.008 5.629
4 3 planes 0.029 12.676 0.017 10.649
5 1 plane, 1 ball 0.058 25.967 0.014 4.234
6 2 balls 0.104 52.065 0.060 41.343

Table 4.5: Recovery results on multi-object scene
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Figure 4.26: NLOS object tracking using a SPAD. Our proposed method of using first-returning
photon along with Alg. 5 that utilizes quadratic modeling of planes enable us to use few pairs of
illumination and sensing points and short integration time to find parameters of a plane. (a) We
show the result for tracking of 4 different integration time. We measure 20 pairs of illumination
and sensing points to estimate one plane. (b) The NLOS object moves back and forth along x
direction, which is parallel to the LOS wall. (c) The NLOS object moves back and forth along z
direction, which is perpendicular to the wall. (d) The NLOS object rotates from parallel to the wall
to perpendicular to the wall.
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Chapter 5

Non-line-of-sight imaging
— Shape from radiance of three-bounce
light paths

We showed in Chapter 4 that by identifying the physical laws governing subset of the measure-
ments of the 5D light transient, there exist some simple yet powerful tools to deal with the hard
shape estimation problem that involves three-bounce light paths. The three algorithms are com-
putationally lightweight and easy to implement. However, as mentioned in Section 4.7, since the
scene points that generate first-returning photons are completely determined by the shape of the ob-
ject and the imaging setup, we can only reconstruct partial information regarding the hidden scene.
Still, for algorithms mentioned in Chapter 4, we are only using the ToFs of the first-returning
photons. There is a lot more information since the imaging system typically collects the full 5D
light transient information. Therefore, in this chapter, we detail another technique that make use
of the whole available information and in conjunction with results from Chapter 4 creates a shape
estimation quality that is orders of magnitude better than the state-of-the-art in the NLOS imaging
field.

We revisit the image formation model of time-resolved measurements used by most existing
techniques in NLOS imaging field which is introduced by Velten et al. [135]. This model repre-
sents the NLOS scene as a so-called albedo volume, where each voxel acts as an isotropic reflector
with an associated albedo value. The volume representation allows approximately formulating
transient light transport in the NLOS scene with only linear algebraic operations. In turn, the un-
known albedo volume can be recovered from the transient measurements by solving a, potentially
regularized, linear least-squares system [5, 45, 49, 50, 96].

This mathematical tractability comes at the cost of physical accuracy. In NLOS scenes con-
sisting of opaque objects, light transport is the result of discrete light-surface interactions at the
object interfaces, rather than continuous light-volume interactions. Additionally, these interac-
tions include effects such as normal-dependent shading and non-Lambertian reflectance, which are
ignored by the albedo volume. On the other hand, instead of volumetric albedo, given a represen-
tation of the NLOS objects’ surface and reflectance, light transport can be modeled exactly using
the rendering equation [62]. However, unlike the albedo volume model, evaluating this equation is
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only possible through computationally expensive Monte Carlo rendering operations [27, 106, 131].
This increased computational complexity has so far hindered the adoption of the rendering equa-
tion in NLOS reconstruction techniques.

We first show expressions for the radiometric measurements captured as a function of properties
of the NLOS scene. To help navigate this section, we use the notation shown in Figure 5.1(a) to
write down expressions for the radiometric measurements captured under this setting as a function
the NLOS scene properties. The image formation model expressions are common-place in the
physics-based rendering literature (see, for instance, [27, 106, 131]), but we describe them in detail
as the necessary background for deriving the algorithm for shape recovery.

Image formation model. We restrict our attention to light effects from three-bounce paths of the
form l0 → l → x → s → s0 where x ∈ SNLOS; that is, paths that, between the virtual source l
and virtual detector s, have a single interaction with the NLOS surface at a point x ∈ SNLOS. We
make this simplification motivated from previous observations that photons following higher-order
paths are difficult to detect with existing sensors [102]. We additionally ignore light following
direct paths without interacting with the NLOS surface SNLOS, as this light component is typically
removed using time-gating mechanisms [15]. Additionally, for each pair of virtual points l and s,
we assume that we have calibrated our measurements so that we can neglect the radiometric and
pathlength terms for the connections l0 → l and s→ s0.

Under these assumptions, we can use the path integral formulation of light transport [131] to
write the intensity measured by the sensor s0 at time t as

I (t; l, s) =
∫

SNLOS

g(x,n̂(x))︷ ︸︸ ︷
W (x; t) f (x, n̂ (x))

·V (x, l)V (x, s) dA (x) , (5.1)

where A (x) is the area measure on SNLOS, n̂ is the normal of a surface at a specific point, and
W (x; t), f (x, n̂ (x)), V (x, s) will be discussed below. We note that, because of the three-bounce
assumption, the usual path integral reduces to a single surface integral over the NLOS surface
SNLOS.

The radiometric throughput f in Equation (5.1) is the radiance that flows through the path
l → x→ s,

f (x, n̂ (x)) = fs (n̂ (x) , ω̂l (x) , ω̂s (x))

· 〈−ω̂l (x) , n̂ (l)〉 〈ω̂l (x) , n̂ (x)〉
‖x− l‖2

· 〈−ω̂s (x) , n̂ (s)〉 〈ω̂s (x) , n̂ (x)〉
‖x− s‖2 , (5.2)

where fs is the BRDF of SNLOS at point x, ω̂l (x) is the normalized vector parallel to l − x, and
likewise for ω̂s (x).
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The temporal importance W models the mechanism by which the sensor selects paths of length
within some specific range for each measurement I (t; l, s)1,

W (x, t) = rect
(

τ (x)− t
T

)
,

where rect is the unit rectangular function, T is the sensor’s temporal resolution, and τ is the length
of path l → x→ s,

τ (x) = ‖x− l‖+ ‖x− s‖ .

Finally, the visibility function V is a binary indicator of occlusion between two points,

V (x, y) =

{
1, x, y are visible to each other,
0, otherwise.

Comparison to the albedo volume model. It is instructive to compare the surface integral for-
mulation of Equation (5.1) with the albedo volume model of Velten et al. [135]. This model
represents the NLOS scene as an albedo function ρ (x), defined on all points of a continuous
three-dimensional volume, x ∈ VNLOS. Then, transient measurements are expressed as a volume
integral,

I (t; l, s) =
∫

VNLOS

W (x; t) ρ (x)

‖x− l‖2 ‖x− s‖2 dV (x) , (5.3)

where V (x) is the standard measure on VNLOS. Compared to Equation (5.1), we note that the
integrand of Equation (5.3) constrains the reflectance function fs to be Lambertian and omits the
normal-related shading terms and the visibility terms V. Recent extensions incorporate normal
and visibility effects through additional volumetric functions defined everywhere on VNLOS [49].
However, the albedo, normal, and visibility volumetric functions are treated as independent of each
other, even though they are in fact intertwined as functions of the underlying NLOS surface.

Despite the lack of physical accuracy, the albedo volume model is attractive because of its
mathematical convenience: Through a straightfoward discretization of the volume integral of
Equation (5.3), forward evaluations of the model become simple matrix-vector multiplication op-
erations. Consequently, inverting the model to reconstruct the NLOS scene can be posed as a linear
least-squares problem. By contrast, forward evaluations of the surface integral of Equation (5.1)
rely on involved surface quadrature methods, or Monte Carlo rendering. This makes inverting the
model for NLOS reconstruction non-trivial.

In this chapter, we show a NLOS imaging method that directly deals with the physically ac-
curate image formation model [128]. We overcome the computational complexity and introduce
a pipeline that reconstructs NLOS object shape, in the form of a triangular mesh, and complex
reflectance, in the form of a microfacet BRDF, while accurately taking into account the underlying
light transport physics. The overview of the surface optimization pipeline is shown in Figure 5.1.

1We treat geometric pathlength and time of flight as equivalent, with the understanding that they relate to each
other through the speed of light.
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Figure 5.1: NLOS surface optimization pipeline. (a) 2D visualization and notation. (b) We
sample points x on the surface to compute the estimated transient and gradient with respect to
reflectance π and vertices v of the triangular mesh. (c) From the computed gradients, we update
the surface.

At the core of our pipeline is a differentiable formulation of the rendering equation in the NLOS
setting. This formulation enables the use of Monte Carlo rendering to efficiently estimate deriva-
tives of radiometric measurements with respect to shape and reflectance parameters. We combine
an optimized differentiable rendering implementation with stochastic optimization in an inverse
rendering framework [85], where we iteratively deform an NLOS surface so as to minimize the
difference between measured and rendered light transients. We augment this surface optimization
pipeline with geometric processing tools that help improve the quality of the resulting triangular
mesh. Through experiments on synthetic and measured data, we show that this pipeline can pro-
duce NLOS surface reconstructions at a level of detail comparable to what is achieved by albedo-
volume methods using two orders of magnitude more measurements, while additionally recovering
non-Lambertian reflectance.

5.1 Related work

In this chapter, we deal with the NLOS imaging problem with a new perspective. We discussed
prior works in NLOS imaging in Chapter 4. Here we discuss two additional fields that we rely on
for our surface optimization pipeline based on inverse rendering.

Surface optimization. Surface optimization is a classical approach for 3D reconstruction in com-
puter vision, where it is commonly applied for image-based reconstruction [4, 22, 23, 32, 73, 109,
114, 119, 146, 147]. In a related context, surface optimization techniques are used in mesh editing
applications for computer graphics [24, 29, 79, 87, 120]. At a high-level, both types of applications
operate by first defining an objective function (or energy) as an integral on a surface. Then, they
derive expressions for the derivatives of this surface integral with respect to some surface repre-
sentations. Finally, these derivatives are used to create a flow process that progressively deforms
some initial surface, until the objective function is minimized. The derivative expressions typically
relies on tools from differential geometry, and has been demonstrated for both implicit (e.g., level
sets [92]) and parametric (e.g., triangular meshes [23]) surface representations. Similar surface
integrals arise in the context of NLOS imaging through the rendering equation. Therefore, we take
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advantage of this mathematical machinery to perform surface optimization for NLOS reconstruc-
tion.

Differentiable rendering. Differentiable rendering has been introduced as a methodology for re-
covering physical unknowns from image measurements, which can include direct-only [83] and
global illumination effects (e.g., scattering [36, 38, 39, 67, 76, 149], or interreflections [82]). Typi-
cally, differentiable rendering is used to perform analysis-by-synthesis, also known as inverse ren-
dering [85, 100, 101], which refers to searching for values of physical parameters that, when used
to synthesize images, can reproduce input images accurately. To efficiently perform this search
through gradient-descent optimization, differentiable rendering is used to estimate derivatives of
images with respect to the unknown parameters. In our setting, we devise new differentiable ren-
dering algorithms that are compatible with the surface optimization problem, and that are tailored
to the NLOS image formation model for increased estimation efficiency.

5.2 Problem statement
We are given a set of calibrated transient measurements

{
Ĩm (t) , m = 1, . . . , M

}
, correspond-

ing to pairs of virtual points {(lm, sm) , m = 1, . . . , M}. We additionally adopt parametric forms
SNLOS [v] and fs [π] for the NLOS surface and reflectance, respectively.

The goal of this chapter is to search for the parameter values, v and π, that can be used
to simulate transients that best match our measurements. Formally, we minimize the following
energy function,

E (v, π) =
1
2 ∑

m,t

∥∥ Ĩm (t)− I [v, π] (t; lm, sm)
∥∥2 . (5.4)

We use the notation I [v, π] (t; l, s) to indicate that a rendered transient is a function, through
Equation (5.1), of the surface and reflectance parameters v and π.

5.3 Analysis by synthesis optimization
We aim to use gradient-descent optimization, in order to efficiently minimize the analysis-by-
synthesis objective and recover the NLOS surface and reflectance parameters. Differentiating the
loss function E (v, π) of Equation (5.4) with respect to surface and reflectance parameters, we
obtain

∂E
∂y

=−∑
m,t

(
Ĩm (t)− I (t; lm, sm)

)∂I (t; lm, sm)

∂y
, (5.5)

where y can be either v or π. Evaluating the derivatives requires computing not only the transients
I, but also their derivatives ∂I/∂π and ∂I/∂v with respect to reflectance and surface parameters.
This is challenging because I is not an analytical function of these parameters, but is only related
to them through the surface integral of Equation (5.1).
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We overcome this obstacle using an approach based on differentiable rendering. We prove that
the derivatives ∂I/∂π and ∂I/∂v can be expressed as surface integrals analogous to that of Equa-
tion (5.1). This allows us to derive efficient Monte Carlo rendering algorithms for stochastically
approximating the reflectance and surface derivatives. We can, then, combine these stochastic esti-
mates with stochastic gradient descent optimization [68] to minimize Equation (5.4). In the rest of
this section, we first describe our choices for NLOS suface and reflectance parameterization, then
provide an overview of our approach differentiable rendering approach.

5.3.1 Differentiating transients

Surface parameterization. We represent the NLOS surface SNLOS as a triangular mesh with
boundary, which we represent using two matrices: First, a 3× V geometry matrix V providing
the three-dimensional coordinates of its V vertices. Second, a 3× T topology matrix T providing
the integer vertex indices of its T triangles. We do not assign any normal or texture parameters
to the vertices, and at every point on the mesh, we assume that the surface normal is equal to the
corresponding triangle’s face normal. We use meshes instead of an implicit representation (e.g.,
level sets [92] or signed distance functions [21] to facilitate efficient Monte Carlo rendering (see
Section 5.3.2). On the other hand, this complicates optimization due to the need to handle the
discrete topology matrix T . As is common in mesh optimization, we use differentiable rendering
to minimize Equation (5.4) only with respect to mesh vertices. During this iterative minimization,
we use standard geometry processing tools to improve the mesh topology (Section 5.4).
Reflectance parameterization. We assume that the NLOS surface has a spatially-uniform BRDF,
which we represent using the widely-adopted GGX microfacet BRDF, as described by Walter et
al. [139]. We first define the surface normal n̂, incoming and outgoing directions ωi and ωo,
respectively, and the half-vector h = (ωi + ωo)/‖ωi + ωo‖. Then, the BRDF model can be
written as

fs [π] (n̂, ωi, ωo) = fGGX [α] (n̂, ωi, ωo)

=
FCook-Torrance(ωo, h) · DGGX(n̂, h) · GSmith(n̂, ωi, ωo)

4
, (5.6)

where

DGGX(n̂, h) =
α2

π
[
〈n̂, h〉2 (α2 − 1) + 1

]2 , (5.7)

GSmith(n̂, ωi, ωo) = G1(n̂, ωi) · G1(n̂, ωo), (5.8)

G1(n̂, ω) =
2

〈n̂, ω〉+
√

α2 + (1− α2) 〈n̂, ω〉2
, (5.9)

and FCook-Torrance(ωo, h) is the Fresnel reflection function for an ideal reflector, independent of α.
This results in a one-dimensional BRDF parameterization π = [α], where the parameter α ∈ [0, 1]
controls the roughness of the specular lobe.
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Derivatives as surface integrals. We now state the main technical result of this chapter, which
allows us to derive expressions for the derivatives of the image formation model (5.1) with respect
to surface geometry and reflectance.
Proposition 3. The derivatives of a transient I (t; l, s) with respect to reflectance and mesh vertices
can be written as:

∂I
∂v

=
∫

SNLOS

gs (x, n̂ (x))V (x, l)V (x, s) dA (x) , (5.10)

∂I
∂π

=
∫

SNLOS

gr (x, n̂ (x))V (x, l)V (x, s) dA (x) , (5.11)

for appropriate functions gs and gr.
In the following, we provide detailed expressions for gs and gr.

Reflectance derivatives. Differentiating the surface integral of Equation (5.1) with respect to
reflectance is straightforward. By observing that the integration measure is independent of the
reflectance parameters π, and under weak continuity conditions that are known to be satisfied for
radiometric integrals [6], we can simply exchange the order of differentiation and integration to
obtain

∂I (t; l, s)
∂π

∣∣∣∣
v,π

=
∫

SNLOS

gr(x,n̂(x))︷ ︸︸ ︷
W (x; t)

∂ f (x, n̂ (x))
∂π

∣∣∣∣
v,π

·V (x, l)V (x, s) dA (x) ,

where

∂ f (x, n̂ (x))
∂π

∣∣∣∣
v,π

=
∂ fs [π] (n̂ (x) , ω̂l (x) , ω̂s (x))

∂π

∣∣∣∣
v,π

· 〈−ω̂l (x) , n̂ (l)〉 〈ω̂l (x) , n̂ (x)〉
‖x− l‖2

· 〈−ω̂s (x) , n̂ (s)〉 〈ω̂s (x) , n̂ (x)〉
‖x− s‖2 ,

and the derivatives ∂ fs/∂π can be computed analytically from Equations (5.6)-(5.9),

∂ fs

∂α
=

∂ fGGX [α] (n̂, ωi, ωo)

∂α
.

We used symbolic differentiation to compute this derivative, and then implemented the resulting
expression in our rendering code.

Surface derivatives. In contrast to the reflectance case, differentiating the surface integral of
Equation (5.1) with respect to mesh vertices is complicated by the fact that the integration measure
A (x) is now a function of these same mesh vertices. We tackle this by using recent results on
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analytically expressing gradient flows from mesh functionals as surface integrals [28, 29]. These
results have also been used by Delaunoy and Prados [23] for surface optimization in line-of-sight
reconstruction problems (e.g., shape from shading).

An additional complicating factor is the presence of the binary and discontinuous visibility
terms V in the integrand. We can ameliorate the second problem by making the approximation
that the visibility terms are independent of the mesh geometry. This approximation is justified
by the fact that the visibility terms have non-zero derivatives only on a zero-measure part of the
surface (that is, on occluding contours [72]), and is common in computer vision and graphics
problems [4, 79, 114]. Delaunoy and Prados [23] showed that differentiation is possible even
without approximating the visibility terms V as constant. We can similarly extend Proposition 3 to
account for visibility. However, in practice we found that this complicates Monte Carlo rendering
without significantly improving the optimization results.

We derive Equation (5.10) with the approximation that the visibility terms are independent of
the mesh geometry.

∂I (t; l, s)
∂vi

∣∣∣∣
v,π

= ∑
k∈Ji

∫

Tk

gs(x,n̂(x);i,k)︷ ︸︸ ︷
[gs1 (x, n̂ (x) ; i, k) + gs2 (x, n̂ (x) ; i, k)]

·V (x, l)V (x, s) dA (x) ,

where

gs1 (x, n̂ (x) ; i, k) = ∇xg(x, n̂k)φi(x),

gs2 (x, n̂ (x) ; i, k) = − ek,i

2Ak
∧ [g(x, n̂k)n̂k + gn̂(x, n̂k)] .

Jk corresponds to the set of faces that contain vertex i. ∇x is the gradient of g with respect to x,
φi(x) is the linear interpolating basis function. ek,i is the opposite edge of vertex i in the face k
pointing counterclockwise. Operator ∧ denotes the cross product. Finally,

gn̂ = ∇n̂g(x, n̂k)− 〈∇n̂g(x, n̂k), n̂k〉 n̂k.

In the following, we detail some quantities that are used in the above expressions. For sim-
plicity, we show the expression for the case of confocal imaging (l = s). The derivation for the
non-confocal case is straightforward, only involves longer expressions. As defined in Equations
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(5.1) and (5.2),

g(x, n̂(x)) = W (x; t) f (x, n̂ (x))
= W (x; t) fs (n̂ (x) , ω̂l (x) , ω̂s (x))

· 〈−ω̂l (x) , n̂ (l)〉 〈ω̂l (x) , n̂ (x)〉
‖x− l‖2

· 〈−ω̂s (x) , n̂ (s)〉 〈ω̂s (x) , n̂ (x)〉
‖x− s‖2 ,

= W (x; t) fs (n̂ (x) , ω̂l (x) , ω̂s (x)) g0(x, n̂(x)))

The temporal importance W function is a unit rectangular function. This means that the
derivatation will only be non-zero on the boundary. To make g defferentiable, we substitute W
with a Gaussian that has full width at half max equal to the temporal resolution of the sensor.
Then,

W (x; t) =
1√

2πσ2
exp(− (τ(x)− t)2

2σ2 )

∂W (x; t)
∂x

=
1√

2πσ2
exp(− (τ(x)− t)2

2σ2 )
2[τ(x)− t]

σ2 ω̂l

∂W (x; t)
∂n̂

= 0

In addition, the terms ∇xg(x, n̂j) and ∇n̂g(x, n̂j) can be computed through chain rule, as
follows

g0(x, n̂) =
〈ω̂l(x), n̂〉2 〈ω̂l(x), n̂(l)〉2

‖x− l‖4

∂g0(x, n̂)
∂x

=
2 〈ω̂l(x), n̂(l)〉 〈ω̂l(x), n̂〉

‖x− l‖5

· [n̂(l) 〈ω̂l(x), n̂〉+ n̂ 〈ω̂l(x), n̂(l)〉
+4 〈ω̂l(x), n̂(l)〉 〈ω̂l(x), n̂〉 ω̂l(x)]

∂g0(x, n̂)
∂n̂

=
2 〈ω̂l(x), n̂(l)〉2 〈ω̂l(x), n̂〉

‖x− l‖4 ω̂l(x)

Finally, the reflectance function is also a function of x and n̂. Notice that ωi and ωo are
functions of x. We use symbolic differentiation to compute the derivative with respect to x and n̂,
respectively.
Accounting for visibility changes. Delaunoy and Prados [23] derived the gradient of a function
that contains visibility terms for the case of surfaces represented as triangular meshes. In particular,
they show how to differentiate energy functionals of the form,

E(S) =
∫

S
〈g(x, n̂(x)), n̂(x)〉V(x, s0)dA (x) , (5.12)
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where s0 is the camera center for the line-of-sight imaging case. The visibility function checks
whether a point is visible to the camera. Their derivative expression can be directly adapted to our
setting in the case of confocal imaging l = s. In that case, we observe that the image formation
model of Equation (5.1) simplifies to

I (t; l) =
∫

SNLOS

g (x, n̂ (x))V (x, l) dA (x) , (5.13)

where

g (x, n̂ (x)) = fs (n̂ (x) , ω̂l (x) , ω̂l (x))

· (〈−ω̂l (x) , n̂ (l)〉)2 (〈ω̂l (x) , n̂ (x)〉)2

‖x− l‖4 .

If we define

g (x, n̂ (x)) = fs (n̂ (x) , ω̂l (x) , ω̂l (x))

· (〈−ω̂l (x) , n̂ (l)〉)2 〈ω̂l (x) , n̂ (x)〉
‖x− l‖4 · ω̂l (x) ,

then we can rewrite Equation (5.13) as

I (t; l) =
∫

SNLOS

〈g (x, n̂ (x)) , n̂ (x)〉V (x, l) dA (x) ,

which now matches the form of Equation (5.12).
We describe the derivative expression by Delaunoy and Prados [23] for functionals of the form

of Equation (5.12). The derivative contains three terms, terms due to the variation of the normal,
term due to the tetrahedra of the visible adjacent triangles, and the term due to the movement of
the crepuscular cone. Please refer to [23] for the details.

∂E(S)
∂vi

= Gnorm
i + Gint

i + Ghoriz
i

Gnorm
i = − ∑

k∈Ji

ek,i

2Ak
∧
∫

Tk

Pn̂k(Dn̂kg(x, nk)
Tn̂k)V(x, s0)ds

Gint
i = ∑

k∈Ji

n̂k

∫

Tk

∇ · g(x, n̂k)φi(x)ds

Ghoriz
i = ∑

Hi,k

1
2

∫ 1

0
{[p(T(y(u)))− p(y(u))]

[
y(u)
‖y(u)‖4 ∧Hi,k

]
(1− u)

}
du
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n̂1
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n̂3

Figure 5.2: Normal smoothness. For surface smoothness regularization, we optimize vertices
around a face so that the normal is aligned with the weighted normal around the face.

Pn̂k(·) is the projection on the orthogonal plane to n̂k. Ak is the area of face k. Hi,k is the vector
such that [vi, vi + Hi,k] is the edge of triangle k generating the horizon. y corresponds to points
sampled on the edge Hi,k. T(x) corresponds to the point located behind x in the direction of the
viewpoint. g(x) = p(x) x

x3
z

Surface regularization. We note that, when optimizing geometry, we follow Delaunoy and Pra-
dos [23] and augment the loss function E (v, π) with a normal smoothing regularization term. We
can define the regularization energy as

R (v) = ∑
k

Ak

(
1− ĥk · n̂k

)
,

where Ak and n̂k are the area and face normal, respectively, of the k-th mesh triangle, and ĥk is the
weighted average of the face normals of all triangles in its neighborhood Nk,

ĥk =
∑i∈Nk

Ain̂i∥∥∑i∈Nt Ain̂i
∥∥ .

Its derivative with respect to mesh vertices is provided by Delaunoy and Prados [23].

5.3.2 Stochastic estimation and optimization
We now describe our computational tools for efficiently minimizing the loss function of Equa-
tion (5.4). We show an overview of our optimization pipeline in Figure 5.1 and Algorithm 6, and
discuss below the various components and strategies we use to make convergence faster and more
robust.

Monte Carlo rendering. The surface integrals of Equations (5.1), (5.11), (5.10) can be approx-
imated using Monte Carlo integration: We first use any probability distribution µ on SNLOS to
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(a) initial mesh (b) mesh after gradient descent (c) EL TOPO (d) isotropic remeshing

Figure 5.3: Geometry processing. We show an example of the effects of the geometric processing
operations we use during mesh optimization to improve mesh topology. (a) Initial mesh. (b) Mesh
after gradient descent steps. As shown in the inset, at several places the mesh is self-intersecting.
(c) Mesh evolution using El Topo, which helps reduce self-intersections. (d) Mesh after isotropic
remeshing, which increases mesh detail while decreasing high-frequency artifacts.

sample a set of points
{

xj ∈ SNLOS, j = 1, . . . , J
}

. Then, we can form the respective unbiased and
consistent estimates [30]:

〈I〉 =
J

∑
j=1

g
(
xj, n̂

(
xj
))

V
(
xj, l

)
V
(
xj, s

)

µ
(
xj
) , (5.14)

〈
∂I
∂π

〉
=

J

∑
j=1

gr
(
xj, n̂

(
xj
))

V
(
xj, l

)
V
(
xj, s

)

µ
(
xj
) ,

〈
∂I
∂v

〉
=

J

∑
j=1

gs
(
xj, n̂

(
xj
))

V
(
xj, l

)
V
(
xj, s

)

µ
(
xj
) .

Next, we describe a stratified area sampling procedure, which greatly accelerates rendering.

Monte Carlo rendering with stratified area sampling. We first discuss the rendering algorithm
we use to estimate transients I (t; l, s), and their derivatives with respect to the surface, ∂I

∂v , and
with respect to reflectance, ∂I

∂π (Equations (5.1), (5.10), and (5.11), respectively). We present the
algorithm in the context of estimating I (t; l, s), but the discussion applies exactly for the ∂I

∂v and
∂I
∂π cases. Algorithm 7 shows an overview of our rendering procedure.

We use Monte Carlo integration to approximate the surface integral of Equation (5.1): We first
use any probability distribution µ on SNLOS to sample a set of points

{
xj ∈ SNLOS, j = 1, . . . , J

}
.

Then, we form an estimate as in Equation (5.14). In the context of light transport simu-
lation, this is referred to as Monte Carlo rendering [27, 106, 131]. We note that Monte
Carlo integration by sampling points x on SNLOS is equivalent to the area sampling strat-
egy described by Veach and Guibas [133]. The fact that we use area sampling is also the
reason for the presence of the shading terms 〈−ω̂l (x) , n̂ (l)〉 〈ω̂l (x) , n̂ (x)〉 /‖x− l‖2 and
〈−ω̂s (x) , n̂ (s)〉 〈ω̂s (x) , n̂ (x)〉 /‖x− s‖2 in the estimate of Equation (5.14) (see Equation (9)
in Veach and Guibas [133]).

We note that standard path sampling algorithms (e.g., path tracing [62], bidirectional path
tracing [132], Metropolis light transport [134]) typically use directional sampling instead of area
sampling. However, area sampling is advantageous in our setting for two reasons: First, when
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the NLOS surface SNLOS is small compared to the LOS surface SLOS, directional sampling will
result in a large number of missed rays, greatly reducing rendering efficiency. This has also been
observed by Klein et al. [70], who report an order of magnitude efficiency improvement when
using area sampling instead of directional sampling.

Second, area sampling facilitates stratified sampling [30]. We start by noting that, when SNLOS
is a triangular mesh, Equation (5.1) can be decomposed into a sum of per-triangle integrals,

I =
K

∑
k=1

∫

Tk

g (x, n̂ (x))V (x, l)V (x, s) dA (x) , (5.15)

where Tk is the k-th mesh triangle, and SNLOS =
⋃K

k=1 Tk. We can then estimate I as

〈I〉 =
K

∑
k=1

dJ/Ke
∑
j=1

g
(

xk
j , n̂
(

xk
j

))
V
(

xk
j , l
)

V
(

xk
j , s
)

µ
(

xk
j

) , (5.16)

where for each k,
{

xk
j ∈ Tk, j = 1, . . . , dJ/Ke

}
. When µ is the uniform distribution, Equa-

tion (5.14) uses J points xj uniformly sampled from the entire mesh SNLOS. By contrast, Equa-
tion (5.16) splits the J points into K equal-sized sets, with points in the k-th set uniformly sampled
from a stratum corresponding to the triangle Tk. This stratification procedure can significantly
reduce the variance of 〈I〉 [88, 108], by up to a factor of 1/K if the integrand of Equation (5.15)
is approximately constant within each triangle—as is the case for meshes with very fine triangula-
tion. Empirically, we observed that stratified sampling reduces variance by an order of magnitude
compared to uniform sampling.

An additional advantage of stratified sampling becomes evident when we consider the visibility
terms V in Equations (5.14) and (5.16). For large meshes, visibility tests can account for the bulk of
the rendering computational cost. Therefore, it is critical that these tests be performed using highly-
optimized libraries specifically designed for this task [98, 138]. When using stratified sampling,
the ray bundles

{
s→ xk

j

}
and

{
l → xk

j

}
for all points of the same k can be treated as coherent ray

packets for the purposes of visibility testing [107, 137]. Empirically, we found that this results in a
fourfold rendering acceleration, highlighting another advantage of our triangle-based stratification
procedure.

We conclude this discussion by noting one important disadvantage of our area sampling pro-
cedure (either stratified or otherwise): When the reflectance fs of the underlying surface becomes
highly specular, then the estimate of Equation (5.14) becomes very inefficient. This is because,
when xj is sampled uniformly on SNLOS or a triangle Tk, the half-vector corresponding to the path
l → xj → s will deviate significantly from the normal n̂

(
xj
)

with high probability. As a result,
most of the sampled paths will have very low integrand values g

(
xj, n̂

(
xj
))

. The effect of this
can be observed in the experiment section, Figure 5.10, when optimizing for the NLOS case under
very specular BRDF (GGX with α = 0.1). This can be overcome by incorporating into our frame-
work area sampling techniques that can account for BRDF effects through half-vector importance
sampling [64] and we leave it for future work.
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Stochastic gradient descent. Using these Monte Carlo estimates, we can approximately com-
pute the derivatives of Equation (5.5). We can combine these stochastic derivative estimates with
stochastic gradient descent (SGD) algorithms to perform the analysis-by-synthesis optimization of
Equation (5.4). In particular, we use the Adam [68] variant of SGD, in order to take advantage
of the adaptive per-parameter learning-rate scheduling, to alternately optimize for reflectance and
surface.

When optimizing for surface vertices, Adam ordinarily would maintain 3 · V independent
learning rates, where V is the number of vertices, and each vertex is a three-dimensional vec-
tor. Empirically, we found it beneficial to constrain all 3 coordinates of the same vertex to have the
same learning rate, reducing the independent learning rates to V—one per 3D vertex vector. To
achieve this, we modified Adam to update the learning rate for each vertex using the total magni-
tude of the 3D gradient for that vertex’s coordinates. For the learning rate update rules, we refer to
the original Adam publication [68].

Continuation. Following common practice in regularized optimization [46], we adopt a contin-
uation scheme and gradually decrease the weight λ of the regularization term. We start with an
initial value λ0, and decrease λ by a factor of 1.25 every time we increase the surface resolution.
This gives more and more emphasis on the data term instead of the regularization.

E (v, π) + λR (v) .

Rendering sample budgeting. We follow the so-called increasing precision strategy proposed by
Pfeiffer and Sato [105]. As the optimization proceeds, we increase the number of samples J used
for rendering the gradients with respect to surface and reflectance. Intuitively, as the optimization
gets closer to a local minimum, and therefore the true gradient becomes smaller, the gradient-
descent procedure becomes more sensitive to variance in the gradient estimates; therefore, reducing
this variance by increasing the rendering samples can help convergence. In our implementation,
we use an initial number of J0 samples, and we increase this by a factor of 1.25 every time we
alternate between the surface and reflectance optimization.

Comparison with numerical differentiation. The performance of SGD optimization critically
depends on the ability to compute unbiased gradient estimates of low variance. To highlight the
importance of our differentiable rendering formulation in facilitating this optimization, we compare
rendered gradient estimates with estimates computed using a finite-difference approximation in
Figure 5.4. We observe that the numerical gradients have significantly higher variance; therefore,
using them with SGD would greatly slow down convergence. Alternatively, we could eliminate
variance in finite-difference estimation, by using a quadrature technique (e.g., finite elements) to
compute the forward integral (5.1). However, this could introduce strong bias, and therefore affect
the physical accuracy of the result.

5.4 Geometry processing operations
As discussed in Section 5.3.1, during our analysis-by-synthesis procedure, we use stochastic gra-
dient descent to only optimize for SNLOS mesh vertices and not topology. We describe our use
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Figure 5.4: Comparison of gradient estimation techniques. We estimate the derivative of a
transient with respect to one coordinate of one NLOS surface vertex. We plot two estimates, one
computed using the rendering algorithm of Section 5.3.2, and another using finite differences and
antithetic variates [30]. We observe that the numerical gradient is significantly noisier than the
rendered one, despite being computed using twice as many path samples.

of geometry processing tools, at various times during the analysis-by-synthesis optimization, to
improve the topology of the mesh SNLOS. Figure 5.3 shows example instances of these geometry
processing operations.

Robust surface evolution. As the mesh SNLOS evolves over multiple SGD iterations, triangle
quality typically degrades, and self-intersections occur. Motivated from other optimization-driven
surface editing algorithms [79], we instead evolve SNLOS using the pipeline proposed by Brochu
and Bridson [14], implemented in El Topo [13]. Given an initial set of vertices {vi, i = 1, . . . , V},
and associated displacement vectors {dvi, i = 1, . . . , V}, El Topo performs two types of opera-
tions: First, it alters the displacement vectors and mesh topology, to produce a non-intersecting
mesh. Second, it performs local topology operations to improve overall mesh quality. In our im-
plementation, we accumulate displacement vectors dvi over multiple gradient-descent iterations,
then use El Topo to evolve the mesh.

Progressive refinement and isotropic remeshing. As an additional means of regularization and
acceleration, we optimize the NLOS surface SNLOS in a coarse-to-fine fashion. We start with
a mesh of a relatively small number of vertices V and triangles T. Then, during the gradient-
descent optimization of SNLOS, we progressively increase the number of vertices and triangles.
We implement mesh refinement by first use El Topo [13] to create a non-intersecting version of the
evolved mesh, then perform isotropic remeshing [11] with an increased number of target vertices.

5.5 Experiments
Implementation. Our NLOS reconstruction framework has three major components, differen-
tiable rendering, geometry processing, and stochastic gradient descent. For rendering, we have
developed two C++ implementations: The first targets CPU execution and uses Embree [138] to
accelerate rendering. The second is GPU-based and relies on OptiX [98] for fast rendering. For
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geometry processing, our C++ implementation is built using the El Topo [13], CGAL [123] and
libigl [97] libraries. Finally, both the rendering and geometry processing components are inter-
faced with Pytorch [99], which we use for stochastic gradient descent optimization with the Adam
algorithm [68]. Our implementation can scale up to surface optimization problems on meshes with
more than 100, 000 vertices, using 4096 transient measurements of 1200 temporal bins each. We
will make our implementation publicly available. We will additionally release our synthetic and
real datasets.

Scanning configuration. In all of our experiments, we use the confocal scanning procedure pro-
posed by O’Toole et al. [96], where measurements are captured by illuminating and sensing at the
same point on the visible surface (l = s). The scanning points on the wall are on a regular grid of
64× 64 points, at different spatial resolutions.

Initialization. We initialize our optimization using the volumetric reconstruction produced by the
method of O’Toole et al. [96], using the implementation provided by the authors. We convert
the volumetric representation into a surface by first computing the maximum albedo voxel along
the depth axis, pruning voxels with albedo below some threshold, and finally triangulating the
remaining points.

5.5.1 Simulation results
We use synthetic data to evaluate the ability of our method to reconstruct NLOS surface shape and
reflectance. In our synthetic experiments, NLOS objects are placed at a distance of 0.4 m from a
visible wall of size 0.5m× 0.5m. We use physically-accurate Monte Carlo rendering to synthesize
data, and use the model of [51] to add noise.

Shape reconstruction. Figure 5.5 shows reconstructions for a variety of NLOS shapes with a
known Lambertian reflectance. We observe that our method can reconstruct surface details that are
completely missing from the volumetric reconstruction used for initialization. A notable result is
the soap, where we can reconstruct the relief letters (depth 2 transient bins).

Different initialization method. The energy function (5.4) we seek to optimize is non-convex.
Therefore, the performance is heavily dependent on the initialization. We test the optimization
framework by initializing it with solution of space carving (Algorithm 3). As shown in Figure 5.6,
we can see that our proposed method can improve the surface estimation from a low resolution and
low surface detail spatial extend representation to something closer to ground truth. For the simpler
case in the last column, the soap scene, the optimized surface reveals the text relief. However, as
seen in the first column, the armadillo scene consist of consists of minute details and non-convex
surface geometry and hence initialization with space carving is significantly far away from ground
truth, resulting in a solution that converges further away.

Number of measurements. We compare reconstructions obtained by the technique of O’Toole et
al. [96] and our procedure, using measurements from confocal scans (l = s) at 5 different scanning
resolutions within the same scanning area on the visible wall SLOS. In particular, we consider
resolutions: 16× 16, 32× 32, 64× 64, 128× 128, and 256× 256 scan points. Figure 5.7 shows
the results. We note that, for the 128× 128 and 256× 256 cases, we found it beneficial to initialize
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our optimization procedure using a reconstruction obtained by applying the algorithm of O’Toole
et al. [96] on only 64× 64 measurements. Despite the loss in detail, this initialization provided
better coverage on the NLOS surface.

We observe that, even in the case of 16× 16 measured transients, our algorithm can recover
some of the detail on the surface of the ground-truth mesh (e.g., the texture on the bunny’s leg),
despite the fact that the initialization has no visible details. We also see that, with just 32× 32
measured transients, our algorithm can reconstruct more detail than what is possible using the
volumetric reconstruction from O’Toole et al. [96] with 256× 256 measured transients. That is, we
can obtain a more detailed reconstruction even though we are using 64 times fewer measurements.

Noise levels. In this experiment, we evaluate the performance of our method as a function of
the amount of noise contaminating our transient measurements. We use synthetic transients, and
simulate SPAD noise using the method of Hernandez et al. [51]. The simulated noise contains
three components, ambient noise, Poisson noise, and SPAD jitter.

Figure 5.8 shows reconstructions under three different noise levels, corresponding to different
number of laser pulses M. Even though performance deteriorates as noise increases, we see that
our proposed method can take SPAD jitter into account and is robust to ambient and Poisson noise.

We note that, as the noise level increases, the level of detail we can recover decreases. In
this case, continuing to increase the spatial resolution of the mesh can be counter-productive, as
the amount of noise means that gradient estimates have very high variance: We simply have not
measured enough photons in order for our measurements to sufficiently regularize the surface
SNLOS. This is shown in Figure 5.9, where we show the evolution of the mesh as we continue to
upsample it at higher spatial resolutions. In practice, this implies that, for higher noise levels, we
need to stop the optimization procedure at earlier resolution levels.

Simultaneous shape and reflectance reconstruction. Figure 5.10 shows simulated experiments
for reconstructing both shape and reflectance. We experiment with a range of GGX α values,
going from very smooth to very rough specular reflectance (Figure 5.10(b)-(c)). We observe that
our algorithm successfully reconstructs a rough estimate of both shape and reflectance in all cases,
but the reconstruction quality deteriorates as the surface becomes more specular.

5.5.2 Real scene

We additionally perform experiments using three datasets captured with SPAD-based transient
imaging systems for real NLOS scenes. The first dataset is the diffuse ’S’ shape object from [96].
As shown in Figure 5.11, our recovered shape closely resembles the ground truth and is overall
flatter, matching the ground truth geometry.

We additionally show reconstructions for two datasets captured with our own implementation
of the SPAD setup of [96], for two NLOS objects of greater surface complexity. The first object
is a diffuse horse bust with fine geometric details. As shown in Figure 5.11, our recovered result
reproduces the flat and curved surface areas better. The second object is a planar scene with a 6mm
tall (5 transient bins) relief in the shape of two digits. Our recovered result better differentiates the
digits from the background surface.

86



5.6 Discussion and conclusion

In this chapter, we introduce an analysis-by-synthesis framework that can reconstruct detailed
shape and complex reflectance of an NLOS object. Our framework deviates from prior work on
NLOS reconstruction, by directly optimizing for a surface representation of the NLOS object, in
place of commonly employed volumetric representation. Additionally, this optimization is per-
formed while accurately modeling the underlying light transport physics through the rendering
equation. At the core of our framework is a new rendering formulation that can be used to effi-
ciently compute derivatives of radiometric measurements, such as transients, with respect to NLOS
geometry and reflectance. By coupling this with stochastic optimization and geometry processing
techniques, we are able to reconstruct NLOS surface at a level of detail significantly exceeding
what is possible with previous volumetric reconstruction methods.

In the following, we discuss some improvements of our NLOS surface optimization framework
that can be incorporated in the future.

Dependency on initialization. We pose our reconstruction as an optimization problem with a
very non-linear energy function, therefore, our final reconstruction is strongly dependent on a good
initialization. Our experiments indicate that, if the initialization misses a large part of the NLOS
object, our optimization process will have difficulty recovering that part. We hope to address this
by exploring alternate initialization schemes, and by incorporating boundary evolution techniques
into our optimization pipeline.

Handling specular reflectance. The performance of our pipeline degrades as the reflectance of
the NLOS object becomes more specular. We believe this is primarily caused by the area sampling
procedure we use for rendering, which becomes very inefficient for highly-specular reflectance.
We can potentially improve performance in such cases by considering importance sampling tech-
niques for rendering.

Noise model. The energy function (5.4) we seek to minimize is equivalent to model Gaussian
noise. However, since we use a SPAD sensor to capture the light transient, using Poisson distribu-
tion to model noise will be more accurate.

In the following, we show relevant modifications to the optimization process that models Pois-
son process. We optimize the surface and reflectance parameters such that negative log likelihood
is minimized.

min
v,π
− log P( Ĩ|I [v, π])

≡ min
v,π
− log ∏

m,t

(
e−I[v,π](t;lm,sm) I [v, π] (t; lm, sm)

Ĩm(t)

Ĩm (t)!

)

≡ min
v,π
−∑

m,t
−I [v, π] (t; lm, sm) + Ĩm (t) log[I [v, π] (t; lm, sm)]− log[ Ĩm (t)!]

≡ min
v,π ∑

m,t
I [v, π] (t; lm, sm)− Ĩm (t) log[I [v, π] (t; lm, sm)]
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We define the new energy function as

EPois (v, π) = ∑
m,t

I [v, π] (t; lm, sm)− Ĩm (t) log[I [v, π] (t; lm, sm)] (5.17)

Same as how we optimize (5.4), we take the derivative of (5.17) with respect to v or π.

∂EPois (v, π)

∂y
= −∑

m,t

[
Ĩm (t)

I [v, π] (t; lm, sm)
− 1
]

∂I [v, π] (t; lm, sm)

∂y

where y can be either v or π.

Applicable to all types of radiometric measurements Our framework can be used to process not
only transients, but all types of radiometric measurements: steady-state, continuous-wave time-
of-flight, and so on, since the framework is based on the rendering equation. Therefore, we hope
it can serve as a platform for exploring NLOS scanning schemes that use alternative radiometric
sensors, or even fuse together measurements from multiple types of sensors.
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Algorithm 6 Surface and reflectance optimization pipeline.
Require: Initial NLOS vertices v0.
Require: Initial number of NLOS vertices V0.
Require: Initial NLOS triangles T0.
Require: Initial reflectance parameters π0.
Require: Initial learning rates ηs,0, ηr,0.
Require: Measured transient Ĩ.
Require: Virtual source l and detector s.
Require: Initial regularization weight λ0.
Require: Initial number of rendering samples J0.
Require: Number of iterations N.

Initialization.

1: v← v0.
2: V ← V0.
3: T ← T0.
4: π ← π0.
5: λ← λ0.
6: ηs ← ηs,0.
7: ηr ← ηr,0.
8: J ← J0.
9: while not converged do

Gradient-descent optimization.

10: SNLOS ← CreateMesh(v, T).
11: . Update reflectance.
12: π ← OptReflectance(π, ηr,SNLOS, Ĩ, l, s, N, J).
13: . Update surface.
14: v′ ← OptSurface(v, ηs, π, T , Ĩ, l, s, λ, N, J).

Geometry processing.

15: . Deform mesh.
16: (v, T)← ElTopo(v, v′, T).
17: . Increase mesh resolution.
18: V ← V · 1.25.
19: (v, T)← IsoRemesh(v, T , V).

Update parameters.

20: λ← λ/1.25. . Continuation.
21: J ← J · 1.25. . Increasing precision.
22: end while
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Algorithm 7 Monte Carlo rendering for estimating transient I, or its derivatives ∂I
∂v , ∂I

∂π .

Require: Integrand function G ∈ {g, gs, gr}.
Require: Mesh SNLOS =

⋃K
k=1 Tk.

Require: Reflectance parameters π.
Require: Virtual source l and detector s.
Require: Number of rendering samples J.

1: function RENDER(G,SNLOS, π, l, s, J)
2: 〈I〉 ← 0. . Initialize estimate.
3: for k ∈ {1, . . . , K} do . Select triangle Tk.
4: . Compute triangle quantities.
5: A← ComputeTriangleArea(Tk).
6: n̂← ComputeTriangleNormal(Tk).
7: for j ∈ {1, . . . , dJ/Ke} do
8: . Uniformly sample a point on the triangle.
9: x← SamplePointUniformly(Tk).

10: . Evaluate the function to be integrated.
11: y← EvaluateIntegrand(G; π, x, n̂, l, s).
12: . Perform visibility tests.
13: vl ← EvaluateVisibility(SNLOS, x, l).
14: vs ← EvaluateVisibility(SNLOS, x, s).
15: 〈I〉 ← 〈I〉+ y · vl · vs · A/ dJ/Ke.
16: end for
17: end for
18: return 〈I〉.
19: end function
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ground truth
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Figure 5.5: NLOS surface reconstruction results of multiple types of surface detail. Initializa-
tion results generated by codebase provided by O’Toole et al. [96]. Our procedure can reconstruct
shapes with different surface characteristics, including highly non-convex shape, large depth vari-
ations, and bas-relief text.
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Figure 5.6: NLOS surface reconstruction results with an alternative initialization method.
Initialization results generated by Algorithm 3. Our shape optimization framework can also work
with different initialization method.
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(b) 16 × 16 (c) 32 × 32(a) Ground truth

(e) 128 × 128 (f) 256 × 256(d) 64 × 64

Figure 5.7: Surface optimization using different numbers of measurements. We perform ex-
periments for different numbers of measured transients (i.e., scanned points on the LOS surface
SLOS). When the number of measurements is very small, the initialization does not recover any
discernible shape, whereas our surface optimization framework still recovers details of the ground-
truth mesh. As the number of measurements increases, the level of detail of both the initialization
and our reconstruction increases; in all cases, our method significantly improves the final surface
reconstruction.
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Figure 5.8: NLOS surface optimization with simulated SPAD Noise We simulate measurement
noise by including ambient light, Poisson noise, and SPAD jitter. (Top) Sample of the noisy tran-
sients. (Middle) Initialization (Bottom) Our recovered results.
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Figure 5.9: Surface progression of noise experiment. We show the progression of the surface
optimization for the case of the highest noise (M = 200). The number of mesh vertices increases
with iteration. As the spatial resolution of the surface increases, the effect of noise is to reduce
local surface quality, even if the global surface shape remains acceptable.

95



650 700 750 800 850 900
0

1

2

3

4 10 -3

0.1
0.2
0.3
0.4

(d) α = 0.1 (e) α = 0.2 (f) α = 0.3 (g) α = 0.4

R
en

de
re

d 
tra

ns
ie

nt

(a) Sample transient of different parameters

(bin)

(b) α = 0.1 (c) α = 0.4

𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟓

𝜶 = 𝟎. 𝟏𝟏𝟕𝟒 𝜶 = 𝟎. 𝟏𝟖𝟔𝟓 𝜶 = 𝟎. 𝟐𝟖𝟏𝟕 𝜶 = 𝟎. 𝟑𝟕𝟕𝟑

Figure 5.10: Recovering both shape and reflectance. (a) We compare transients rendered for
different α values to visualize the effect of reflectance on NLOS measurements. (b, c) We also
visualize the reflectance by using Mitsuba [56] to render the scene under ambient light. (d - g)
We show optimization results for different α values, with the initial shape and α at the top, and the
optimized results at the bottom.
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(a) scene (b) initialization (c) optimized shape

Figure 5.11: NLOS surface reconstruction using SPAD measurements. (Top) A diffuse object
from [96]. (Middle) A diffuse horse statue. (Bottom) Digit relief on a planar object. In our
experiment, we cover the digits with white paper, to increase SNR.
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Algorithm 8 Adam routines for optimizing NLOS mesh vertices.
Require: Initial NLOS vertices v0.
Require: Initial learning rates η0.
Require: Reflectance parameters π.
Require: NLOS triangles T .
Require: Measured transient Ĩ.
Require: Virtual source l and detector s.
Require: Regularization weight λ.
Require: Number of iterations N.
Require: Number of rendering samples J.

1: function OPTSURFACE(v0, η0, π, T , Ĩ, l, s, λ, N, J)
2: v← v0. . Initialize estimate.
3: η← η0. . Initialize learning rates.
4: for n ∈ {1, . . . , N} do
5: SNLOS ← CreateMesh(v, T).
6: . Render required quantities.
7: I ← Render(g;SNLOS, π, l, s, J).
8: Iv ← Render(gs;SNLOS, π, l, s, J).
9: Rv ← ComputeReguGradient(SNLOS).

10: . Compute gradient.
11: g ←

(
I − Ĩ

)
Iv + λRv

12: . Perform Adam updates.
13: v← AdamUpdateParameters(v, η, g)
14: η← AdamUpdateLearningRates(v, η, g)
15: end for
16: return v.
17: end function
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Algorithm 9 Adam routines for optimizing NLOS mesh reflectance.
Require: Initial reflectance parameters π0.
Require: Initial learning rates η0.
Require: NLOS mesh SNLOS.
Require: Measured transient Ĩ.
Require: Virtual source l and detector s.
Require: Number of iterations N.
Require: Number of rendering samples J.

1: function OPTREFLECTANCE(π0, η0,SNLOS, Ĩ, l, s, N, J)
2: π ← π0. . Initialize estimate.
3: η← η0. . Initialize learning rates.
4: for n ∈ {1, . . . , N} do
5: . Render required quantities.
6: I ← Render(g;SNLOS, π, l, s, J).
7: Iπ ← Render(gr;SNLOS, π, l, s, J).
8: . Compute gradient.
9: g ←

(
I − Ĩ

)
Iπ

10: . Perform Adam updates.
11: π ← AdamUpdateParameters(π, η, g)
12: η← AdamUpdateLearningRates(π, η, g)
13: end for
14: return π.
15: end function
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Chapter 6

Conclusions and Future Work

We seek to enable 3D estimation techniques for a large class of real-world objects. By leveraging
the fact that light propagation in a scene can be interpreted in terms of light paths, which is the
path traced by a photon from a light source to its eventual observation at a sensor pixel, we pro-
pose a shape estimation framework that utilizes multi-bounce light paths and deals with objects
with complex reflectance. We measure how a light ray changes its properties after interacting with
the scene and associate the changes to geometric and reflectance information of the scene. Our
framework provides great advantages since light propagation in a scene will follow physics law
which leads to simpler techniques for understanding scene properties. In particular, our contribu-
tions are summarized in Table 6.1.

Bounce Material Properties Physical laws Application
2 glass position,

direction
Snell’s law Shape estimation for transparent

objects [129]
2 opaque position,

direction,
ToF

cosine law Shape estimation for concave ob-
jects from two-bounce light paths
[130]

3 opaque position,
ToF

Fermat’s principle Non-line-of-sight imaging using
first-returning photons [126, 127]

3 opaque position,
ToF, radi-
ance

light transport Non-line-of-sight imaging using ra-
diance for surface optimization
[128]

Table 6.1: Contributions. We show in this thesis how using simple physics laws associated with
light-object interactions are useful in dealing with multi-bounce light paths and complex materi-
als. We show shape estimation techniques of different scenarios where classical computer vision
algorithms cannot handle.

Our research builds toward foundational theories of shape estimation of visually-complex
scenes by using light paths as the primitive. By explicitly using simple physical laws to constrain
light paths, we open new opportunities in shape estimation for complex scenes.
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6.1 Future work
〈N, K, M, T〉 analysis. In [74], Kutulakos and Steger show theoretical analysis on determining
the tractability of different imaging setup to capture the shape of specular and transparent objects.
The characterization involves the number of camera views N, number of bounces in the light path
K, and number of reference points M. In this thesis, we seek to expand this analysis to different
materials and with ToF measurements T, where T = 1 indicates the availability of ToF information
and T = 0 without.

Chapter 2 is reparameterization of a theory shown in [74], which corresponds to 〈3, 2, 2, 0〉.
We show that if the glass object of interest can be approximated with local planar patch, then we
can recover the object with a single view, 〈1, 2, 2, 0〉.

In Chapter 3, we establish the sufficient condition for unique shape recovery using two-bounce
light paths, this shows 〈1, 2, 2, 1〉 is tractable when the measurements satisfy the sufficient condi-
tions.

In Chapter 4, we use local planarity assumption to link ToF of first-returning photons to
estimate points and surface normal belonging to the hidden object, this is attempting to show
〈1, 3, 2, 1〉. However, as shown in Chapter 4, we can only reconstruct sparse points on the surface.
Also, the locations of these reconstructed points are determined by the geometry and imaging
setup. One possible future direction is to characterize the spatial extent of the reconstruction of the
proposed algorithm for simple shapes, such as convex objects.

In Chapter 5, we show another technique of using a surface optimization framework to recover
the hidden object, which corresponds to the 〈1, 3, 2, 1〉 setup. However, since our proposed frame-
work relies on a non-convex energy function, it is hard to establish a theoretical guarantee. Based
on empirical results, we notice when objects are more spiky, for example, the armadillo scene in
Figure 5.5, our optimization framework seems to not perform as good as other types of surface
geometry. Our method based on mesh gradient flow may contain fundamental drawbacks in such
scenarios.

Light transport aware sensing. In each chapter, we explain the hardware setup for the specific
application. However, our ability to efficiently capture information is still limited. In most cases,
we need to sweep through every possible pair of light rays and gather the associated properties of
light rays, which is time-consuming.

Scenes inherently exhibit some simple characteristics. Similar to the concept mentioned Chap-
ter 4, we use first-returning photons to recover hidden objects. A subset of information contains
a lot of information regarding the geometry of the scene, therefore, we don’t necessarily need the
information of all entries of the 5D light transient to recover the scene. As shown in Chapter 4, we
can achieve high SNR for sensing the first-returning photon with a low number of photons. These
type of analysis will be beneficial for the design for a more realistic imaging setup that works under
different imaging budget.

Surface optimization with geometric constraints. One of the major advantages of studying
light paths is that we can find geometric constraints regarding the scene as shown in Chapter 2 -
4. By studying the physical constraints, we are able to locate 3D points on a transparent object
(Chap. 2), 3D points on a concave shape object (Chap. 3), and 3D points belonging to the non-
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line-of-sight object (Chap. 4). However, most objects in the real world are not merely 3D points,
they are surfaces. This is exactly the problem that we attempt to solve in Chapter 5 to directly find
a surface that matches the measurements through surface optimizing. The measurements used are
the radiometric information from the 5D light transient. A good next step is to use a similar idea
of surface optimization on a broader class of measurements of light paths, for example, geometric
constraints.

Ideas presented in [20, 57] may lead a good direction in coming up the derivation for surface
gradients based on geometric clues. The light path of interest described in Chapter 2 - Chapter 4
are all shortest light paths. More specifically, in Chapter 2 and 4, the light paths are specular paths.
Therefore, we may be able to extend ideas of exploring specular paths to exploring a surface that
creates the specular paths that we measured.

Blind shape estimation from multi-bounce light paths. In this thesis, we show three scenarios
to recover shape from multi-bounce light paths. However, we heavily rely on the prior knowledge
of the scene; for instance, we know we are measuring a transparent object and not a concave
object. The method proposed in [129] will only work for transparent objects and need to treat
other physical phenomena involved, such as interreflection and total reflection, as noise.

A holistic framework to directly infer scene properties from multi-bounce light paths will be
more applicable in the real world. All scene properties, including geometry and reflectance, are
encoded in attributes of light paths. A broader future work for this thesis is to solve the more
general shape and reflectance estimation without prior knowledge of the scene.
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