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Abstract

Due to resource constraints and global climate change, there is an

increased need for technological solutions to improve the efficiency and

reduce waste of our energy systems. Many of these technological solu-

tions are computationally daunting and therefore require approximate ap-

proaches. In this work, we focus on problems on both the demand and

generation side of the electrical power system. On the demand side, we

investigate the problem of inferring the power consumption of individual

loads in a building from aggregate electrical measurements. This prob-

lem, also known as Non-Intrusive Load Monitoring or energy disaggrega-

tion, involves inference of a latent variable depicting the operational state

of individual devices given a set of aggregate observations and so far the

existing solutions either require supervised training or make assumptions

that limit their applicability and performance in real conditions. On the

generation side, we investigate the problem of finding optimal configura-

tions of power generators in a network, also known as the AC-Optimal

Power Flow problem. In this setting, because existing solutions usually

cast the problem as constrained optimization, non-linear and non-convex

constraints that solutions need to adhere to, cause computational difficul-

ties which results in most solvers lacking robustness and speed. What

both problems share is the computational difficulty of inferring an optimal

binary vector that describes appliance states or generator configurations,

respectively. In order to alleviate the computational cost of this inference

step that is otherwise NP-hard, we make use of an approximate technique



called Variational Inference which translates statistical inference into an

optimization problem by minimizing a divergence measure between the

true and an auxiliary but tractable distribution. Because the choice of the

auxiliary distribution determines the goodness of the approximation and

considering that for both problems the vector of interest is binary, in this

thesis, we introduce an auxiliary distribution that can theoretically approx-

imate any distribution over binary states arbitrarily well. Furthermore, in

the case of Non-Intrusive Load Monitoring, because the problem requires

tracking appliance states over time and modeling temporal dependencies

causes the joint distribution required for Variational Inference to become

intractable, computationally efficient strategies to approximate this joint

distribution are introduced. We ultimately derive an, under some con-

ditions, asymptotically unbiased algorithm for learning and inference in

dynamical systems with binary latent states and cast unsupervised Non-

Intrusive Load Monitoring as such a problem. The algorithm shows perfor-

mance comparable to state-of-the-art competitors but overcomes many of

their problems because it is truly unsupervised. In the case of AC-Optimal

Power Flow, we reformulate the problem as a learning problem. Specifi-

cally, we task an agent to produce optimized generator configurations as a

function of a demand assignment to the nodes in the network. The appli-

cation of Variational Inference allows us to efficiently deal with non-convex

generator configurations and to ultimately arrive at an algorithm that pro-

duces feasible solutions reliably and fast, i.e. it overcomes the robustness

and speed issues of existing algorithms, but at the cost of sub-optimality.
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Chapter 1

Introduction

According to the Environmental Protection Agency (EPA), in 2014, carbon dioxide

(CO2) made up 81% of all green house gases emitted in the United States [1]. Fur-

thermore, it is reported that “the combustion of fossil fuels to generate electricity was

the largest single source of CO2 emissions in the nation, accounting for about 35 per-

cent of total U.S. CO2 emissions and 29 percent of total U.S. greenhouse gas emis-

sions" [1] making electricity generation the single largest contributor to green house

gas emissions overall. See Figures 1.1 and 1.2 for a breakdown of CO2 emissions by

source and the makeup of green house gas emissions.

Green house gas emissions in turn are the primary driver of climate change [2]

and according to the EPA, climate change impacts society in many different ways. For

example, climate change can influence rainfall and crop yields, affect human health,

and impact forests and other ecosystems, as well as have adverse affects on the

supply-side of the electrical grid [1].

Apart from these non-monetary costs, energy production also incurs substantial mon-

etary expenditures: The Federal Energy Regulations Commission (FERC) estimates

1



Chapter 1. Introduction

Figure 1.1: Total share of green house gas emissions by sector [1].

Figure 1.2: Make up of green house gases emitted [1].

the total energy generation cost for the U.S. to be 112B USD annually [3], thus mak-

ing minuscule improvements in energy efficiency often financially viable. However,

considering the fact that renewable energy sources have become or are on the verge

of becoming cheaper than fossil fuels [4] and cost adverse consumers try to mini-

mize energy consumption anyways, i.e. reducing energy consumption or increasing

energy efficiency seems to be in everyones interest, it is pertinent to ask why sus-

2



1.0.

tainable energy sources have not yet found widespread adoption. The American

Energy Innovation Council identifies two reasons: apart from politicism, they opine

that technological advancements are required to reduce green house gas emissions

associated with electricity generation and consumption [5].

There are numerous ways in which technological advancements can directly or indi-

rectly reduce CO2 emissions associated with electricity generation and consumption:

for example, advancements in battery technology can allow for more non-dispatchable

energy sources like solar and wind to be incorporated into the energy mix whereas

carbon neutral bio fuels can allow for displacing fossil fuels. Advancements in dif-

ferent technological fields requires different skill sets and in this work, two computa-

tional problems involving energy efficiency are identified and solutions are proposed

whose adoption can lead to improvements to energy efficiency and energy conser-

vation. They encompass inference and control problems on both the demand- and

generation-side of the electrical grid and, as we will show later, the reason why these

problems are challenging are due to computational issues, i.e. computing the exact

solution to these problems is intractable because the computational cost oftentimes

grows exponentially with the problem size. Thus, our inability to find good approx-

imate solutions to these otherwise NP-hard problems impedes the performance of

our energy systems and, as we will show later, these problems share that the in-

tractability stems from the difficulty of computing posterior distributions over binary

configurations. The intractability of posterior distributions in turn usually stems from

the difficulty of computing the Bayesian inversion:

p(z|x) =
p(x, z)∑

z′∈Z p(x, z
′)

(1.1)

3



Chapter 1. Introduction

where z and Z denote the latent variable and its domain respectively and x specifies

some measured quantity. Note that for most latent domains of interest, computing

the sum in the denominator (or integral when the latent variable is continuous) is

computationally very hard. For the problems at hand, because the latent variable

is multi-dimensional and binary, the computational complexity is in O(2N ) where N

denotes the dimensionality of the latent variable z. Furthermore, note that for many

distributions that model temporal dependencies even computing the joint distribution

can often be intractable [6]. This intractability usually stems from the computational

difficulty of computing the forward probabilities:

p(xt, zt|x1:t−1) = p(xt|zt)
∑
z′∈Z

p(zt|z′)p(z′|x1:t−1) (1.2)

Note that similarly to (1.1), evaluating (1.2) requires a summation over the latent do-

main Z which, again, can be computationally expensive if Z is large.

When discussing these problems in more depth, we will show that current solutions

make use of approximations and often-times greedy simplifying assumptions and

heuristics in order to circumvent these computational costs. In this work, improve-

ments to these approximations are sought. Specifically, we will make use of recent

technological advancement in the field of Machine Learning for posterior inference

that, in principle and under some conditions, allow for asymptotically exact solutions.

As we will show later, we will make use of Variational Inference which circumvents the

need to compute the Bayesian inversion in (1.1) by minimizing a divergence measure

between the true posterior p(z|x) and an approximate posterior.

4



1.1. Problem descriptions

1.1 Problem descriptions

We focus on two specific problems in this thesis whose solutions require obtaining an

optimal binary vector, which in turn entails that Z = {0, 1}N . These problems consti-

tute Non-Intrusive Load Monitoring and Alternating Current Optimal Power Flow. The

semantics of this optimal vector is different depending on the problem: In the case

of Non-Intrusive Load Monitoring the optimal vector describes the most likely state

of appliances in a building, whereas for Alternating Current Optimal Power Flow this

optimal vector describes which generators are on or off in the most cost efficient con-

figuration of generators. In the following section, brief descriptions of these problems

are given.

1.1.1 Demand-side sensing: Non-Intrusive Load Monitoring

Buildings account for 73% of the energy and 40% of the electricity consumption in

the United States [7]. However, knowledge about how buildings consume energy is

scarce, i.e. end-users are typically faced with a monthly aggregate electricity bill.

Even though, as discussed earlier, it is in the end-users interest to save energy, more

fine-grained information about how much and when individual appliances consume

electricity is often required to actually achieve this. According to a 2013 study [8],

providing feedback about the power consumption of individual appliances can lead to

savings between 12-15% of the energy consumed. On top of that, appliance-level

energy consumption information can have secondary use-cases such as e.g. for

demand response [9], geriatric care [10], fault detection [11] and so on. However,

obtaining this information can be costly, i.e. installing a single meter for individual

appliances can be prohibitively expensive, because potential energy savings do not

5



Chapter 1. Introduction

justify installation and maintenance costs of electricity meters for every appliance.

Non-Intrusive Load Monitoring (NILM) could potentially alleviate this problem [12].

For recent reviews of the technique, the reader is referred to [13, 14, 15]. NILM,

also called energy disaggregation, is a class of source separation algorithms whose

goal it is to infer the energy consumption of individual appliances algorithmically given

measurements collected at a limited number of sensing points in a building. Specif-

ically, because power as well as current are additive, a small number of sensors is

usually installed at the main distribution panel where the sum of the power draws of

appliances is measured. NILM then tries to break down this sum into its summands.

In this context, the optimal binary vector of interest constitutes the operational state

of appliances. Because appliances states are modeled by binary variables, arguably

one of the reasons why decades of NILM research has not produced acceptable solu-

tions is in part due to the computational difficulties associated with the problem: When

inferring the operational states of appliances is cast as a posterior inference problem,

the associated posterior distributions are usually intractable.

1.1.2 Generation-side control: AC Optimal Power Flow

Alternating current optimal power flow (ACOPF) is the scholarly term for the decades

old problem of finding the optimal configuration of power generators such that de-

mands are met throughout an alternating current transmission network, where op-

timality is usually defined in terms of generation cost. Because generators can be

shut down entirely, in the context of ACOPF, the optimal binary vector of interest con-

stitutes the optimal on/off configuration of generators. For a review of ACOPF and

modern techniques to tackle the problem, the reader is referred to [3, 16]. Note that

6



1.2. Non-Intrusive Load Monitoring

suboptimal configurations can lead to unnecessary waste due to transmission losses

and unnecessary costs due to not fully utilizing cheap generation sources. However,

the potential payoff of improvements to existing solutions is big: The FERC estimates

that the introduction of mixed-integer programming approaches has already saved

over one-half billion dollars yearly and projects that a 5% increase in optimality could

save consumers another 6 billion dollars annually [3].

However, despite the size of potential payoffs, the FERC opines that algorithms that

produce robust, fast and optimal solutions do not exist even decades after the incep-

tion of the problem [3]. This is arguably also due to the complexity of the problem:

When ACOPF is cast as a constrained optimization problem, the constraints pose

computational challenges. Some of the constraints are non-linear whereas others are

non-convex. As we will show later, compliance with the non-convex constraints can

be achieved by turning the problem into a posterior inference problem, though, this

posterior distribution is, again, intractable.

In the following section, for both problems, existing approaches are summarized and

knowledge gaps are identified. Then, research questions are posed that close some

of the existing gaps.

1.2 Non-Intrusive Load Monitoring

As described earlier, Non-Intrusive Load Monitoring is the problem of inferring the

power consumption of individual appliances given measurements obtained at a lim-

ited number of sensing points, specifically often measurements collected at the main

electrical feed of a building. The problem was first described in the seminal paper by

George Hart in 1992 [12].
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Figure 1.3: A graphical depiction of the NILM process taken from the seminal paper by Hart
1992. Taken from [12]

Figure 1.4: Schematic of the data flow of generic event-based NILM algorithms. Taken
from [17].

1.2.1 State of current research

Event-Based approaches

Figures 1.3 and 1.4 show graphically how early approaches operated, i.e. they tack-

led the problem by detecting sudden changes [17], so called events, in the aggregate

power followed by a feature extraction phase [18], i.e. signatures of the detected

events are extracted in the hopes that classification algorithms can associate appli-

ances with the extracted event features [19]. After a sequence of labeled events is

extracted, this discrete time series is then in turn transformed into a power trace for

each appliance.

8
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Even though this approach was refined in numerous ways by e.g. using transient and

high frequency information as features for classification [20], improving the energy

estimation phase [21] or post processing of the extracted event sequence [22], gen-

eralizable and accurate power estimates could not be achieved. One of the reason

why these event-based approaches struggle is the fact that the individual algorith-

mic stages make independent and local decisions which leads to errors propagating

through the different algorithmic steps, i.e. the classification stage could result in a

nonsensical sequence of appliance switches, i.e. it could e.g. result in a sequence

where an appliance is assumed of having turned off at time point t even though it

already was assumed to be off at time point t − 1. The energy estimation stage of

the algorithmic chain is then tasked to achieve something impossible, i.e. transform a

nonsensical event sequence into power estimates of individual appliances.

Temporal Motif Mining

One approach to overcome the problem of errors propagating through the stages

of event-based approaches is Temporal Motif Mining (TMM) [23]. Specifically, the

approach tries to tackle potentially nonsensical event sequences. TMM in a sense,

merges the classification and energy estimation phase, i.e. it tries to solve both prob-

lems jointly, specifically, by trying to match events such that

1. The sum of power changes of an event sequence is nearly 0.

2. Every prefix sum of event sequences is positive.

3. Power changes cannot be smaller than a certain percentage of the biggest tran-

sition in an episode.

9
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However, since the learning objective of TMM is combinatorial, simplifying assump-

tions over possible event sequences were made, such that no more than x events can

lie between events of the same appliance. Even though these approaches avoided

the problem of nonsensical event sequences successfully, the assumption that an ap-

pliance episode is zerosum is often overly simple because appliances often exhibit

transient behaviors and furthermore, the approach suffers from the reliance on a per-

fect event detector, i.e. if an event was missed, TMM struggles. Thus, even though the

problem of error propagation from the classification into the energy estimation phase

is mitigated by TMM, errors can still flow from the event detection into the energy

classification stage.

State-based approaches

In order to overcome the problem of error propagation through the algorithmic stages,

ideally, energy disaggregation is performed in an end-to-end manner, i.e. by a sin-

gle unified model that tells the generative story of the aggregate power measured at

the main distribution. Because the states of several appliances evolve, at least to

some degree, independently in parallel and the aggregate observation is a function

of all hidden states, Factorial Hidden Markov Models lend themselves as a mod-

eling choice [6]. Factorial Hidden Markov Models are a generalization of Hidden

Markov Models where multiple hidden chains evolve marginally independent and the

aggregate observation xt ∈ RS at time point t, is a function of all hidden states

zt ∈ {0, 1, ...,K}N , with S being the observation dimensionality, K being the num-

ber of states each hidden chain can take and N being the number of latent chains.

See Figure 1.5 for a representation of the associated graphical model. Let Θ be model
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1.2. Non-Intrusive Load Monitoring

Figure 1.5: The graphical model corresponding to Factorial Hidden Markov Models. Multiple
hidden chains evolve independently in parallel whereas the observation at time point t, xt is a
function of all hidden. Graphic taken from [24]

parameters. The joint distribution is defined as the following:

p(x1:T , z1:T |Θ) =

T∏
t

p(xt|zt,Θ)

N∏
i

p(zt,i|zt−1,i,Θ)p(z0,i|Θ) (1.3)

Each appliance is then modeled by a single HMM chain and the aggregate ob-

servation constitute the measurements collected at the main electrical feed of the

building. Supervised energy disaggregation can then be posed as inference in the

associated probabilistic model, i.e. inferring z∗ = arg maxz p(z1:T |x1:T ,Θ), whereas

unsupervised energy disaggregation can be posed as the learning problem, i.e. in-

ferring model parameters Θ that maximize p(Θ|x1:T ). Note that inference is computa-

tionally intractable mainly because of the fact that the individual latent chains become

dependent conditioned on the observation and fact that the number of possible states

grows exponentially with the number of hidden chains. This also entails that unsu-

pervised energy disaggregation is computationally intractable, because inference is

usually required for learning.

Iterative Viterbi The problem of computational intractability of learning and inference
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in FHMMs has been tackled in a number of ways. In [24], the problem is tackled

by iteratively applying the Viterbi algorithm to a single latent chain. Specifically,

parameterized general models of appliance types were specified and then iter-

atively, the parameters were fit to the observation and the Viterbi algorithm was

used to compute the most likely state sequence for an appliance type. Then,

this appliances contribution to the aggregate was removed and the process was

repeated. Even though, this procedure allows for inference as well as limited

learning, it is not invariant to the order in which appliances are processed, i.e.

processing appliances in different orders will lead to different results.

Optimization In comparison, the AFAMAP algorithm poses inference as an optimiza-

tion, concretely an integer programming problem [25, 26]. By introducing the

one-at-a-time constraint postulating that only a single HMM chain can change

states at any given point in time, posterior inference is converted into a convex

quadratic programming problem by relaxing the integer constraints associated

with the integer program that results from translating posterior inference into

such a problem. Additionally, a robust mixture model is introduced that ab-

sorbs power associated with appliances for which no ground truth is provided

and the difference signal is modeled to improve accuracy. Even though the in-

ference engine seems powerful and could in principle be extended to perform

exact inference of the mode of the posterior by e.g. employing branch-and-

bound [27], this approach has drawbacks. The inference technique needs to be

provided with ground truth and will only produce power estimates for appliances

for which ground truth is provided. In the paper, the authors describe an unsu-

pervised strategy for obtaining ground truth, however this approach seems to
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not generalize well to other datasets. On top of that, extending the algorithm to

handle the learning problem is challenging since solving the convex quadratic

program only yields the mode of the distribution, therefore making the applica-

tion of EM-like algorithms difficult. Only hard-EM schemes like Viterbi learning

could in principle be employed though they often underfit considerably [28]. Fur-

thermore, a naïve implementation of such an EM-scheme would only improve

the model parameters for the appliances for which ground truth estimates are

available. Moreover, strategies that try to extract ground truth for all appliances

by iteratively subtracting appliance power traces for which estimates are avail-

able struggle with subtraction artifacts, i.e. because appliance estimates are

imperfect, subtraction will effectively result in the addition of residuals that de-

pending on the amplitude can easily confuse the ground-truth extraction module

of the algorithm.

Markov Chain Monte Carlo On the other hand, Markov Chain Monte Carlo (MCMC)

techniques were employed in order to deal with the intractable posterior distribu-

tions of the FHMM distribution [29, 30, 31, 32]. In [29], Factorial Hidden Markov

Models were additionally extended to handle semi-Markovian state transitions

trying to overcome the implicit assumption introduced by the Markov property of

Hidden Markov Models, namely that the distribution of state durations, i.e. the

time each Markov chain spends in a single state, is geometric. In the context

of energy disaggregation, assuming geometrically distributed state durations is

usually not valid.

The general idea of MCMC algorithms is to construct a Markov Chain whose

equilibrium distribution provides a sample of the intractable posterior distribu-
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tion. It can be shown that Gibbs sampling [33], i.e. repetitively sampling from

the conditional posterior distribution, constitutes a Markov Chain whose equilib-

rium distribution can provide a sample from the posterior distribution and that

the quality of the sample improves with the length of the Markov Chain [34].

However, Gibbs-based MCMC techniques in the context of energy disaggrega-

tion have drawbacks. Because posterior distributions in the context of energy

disaggregation often exhibit multi-modality, Gibbs samplers are often subject to

very slow mixing of the posterior and therefore require prohibitively long Markov

chains in order to acquire a high-quality sample. The multi-modality of the pos-

terior distribution encountered in the context of energy disaggregation can be

explained by the fact that multiple appliances often exhibit a similar power draw,

thus more than one combination of appliances might be able to explain away

the aggregate consumption. For illustration, consider a scenario with 2 two-

state appliances with comparable power draw and an aggregate observation

x′ that is similar to the power consumption of each appliances. Thus we can

assume that for the posterior the following holds:

p(z|x′) =

(
0 0.5 0.5 0

)
with z =

(
0, 0 0, 1 1, 0 1, 1

)

A Gibbs sampler that resamples a single latent variable will ‘get stuck’ in either

of the modes (z = (0, 1) or z = (1, 0)), i.e. in this contrived example the modes

constitute probability islands which the sampler will never escape. In more real-

istic scenarios, when all probabilities are strictly greater than 0, even though the
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sampler will escape modes eventually, this process can be prohibitively slow.

Ideally inference takes a functional form that incurs little computational costs.

Function Learning Recently, approaches emerged that directly try to learn a func-

tion that maps aggregate observations to single appliance power traces or en-

ergy estimates [35]. These approaches usually assume knowledge of single

appliance episodes and training is facilitated by creating synthetic aggregate

observations by randomly summing up these episodes. Function approximators

are then trained to infer the power or energy consumption of single appliances.

These approaches make the implicit assumption that when inferring the power

consumption of one appliance, patterns introduced by other appliances can be

considered noise and will be ignored by the function approximator. However,

that assumption is in the opinion of the author not valid because these pat-

terns are often highly structured and will often confuse function approximators.

Furthermore, apart from being inherently supervised, these approaches strug-

gle with shifts in the data distribution, thus making even a simple shift in the

baseload potentially a problem. However, these approaches might find appli-

cation in niche scenarios where the load composition is known and static. For

other approaches based on this idea, see [36, 37, 38, 39, 40]

1.2.2 Knowledge Gaps

For state-based NILM algorithms, one of the biggest challenges seems to be the

computational burden associated with the learning problem in graphical models ap-

propriate for NILM. This problem seems to not have been solved sufficiently: some

algorithms circumvent learning altogether by applying heuristics to acquire ground
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truth, other algorithms avoid the combinatorial nature of the problem by performing

learning one-appliance-at-a-time whereas other approaches rely on computationally

expensive and typically slow approaches for learning. Thus, existing algorithm either

introduce considerable bias or are too expensive for real-world applications. Note that

because exactly solving the learning problem is known to be a NP-hard problem, any

successful algorithm performs some kind of approximation. Ideally, such an approxi-

mate algorithm is (asymptotically) unbiased and incorporates a parameter that allows

to trade off computational time for accuracy. An approximate but asymptotically unbi-

ased algorithm that allows trading computational burden for accuracy is still missing.

Furthermore, so far, even though many publicly available data sets contain high fre-

quency information, most algorithms typically only make use of information at a much

lower sampling frequencies. Although event-based algorithms sometimes employ

features extracted from high frequency measurements, for state-based algorithms,

high sampling rates are oftentimes solely used to compute accurate active and reac-

tive power measurements. Thus, state-based algorithms, so far, discard a potentially

helpful source of information.
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1.2.3 Research Questions

Research Question 1.1

Because state-based algorithms do not make sufficient use of high frequency infor-

mation, the following research questions arise:

1. How can we leverage high frequency information from voltage and current mea-

surements in a computationally efficient manner to obtain appliance state esti-

mates?

2. What is the performance of the resulting algorithm in terms of disaggregation

error in an unsupervised and supervised setting?

The publication in chapter 3 answers these research questions. The resulting

paper was published in the Proceedings of the 3rd ACM International Conference on

Systems for Energy-Efficient Built Environments.
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Research Question 1.2

The algorithm resulting from answering research question 1.1 has shown promising

results. However, it has some fundamental drawbacks. Because only micro-temporal

dependencies are exploited, i.e. temporal dependencies within a single voltage-cycle,

some degree of supervision is required to achieve acceptable disaggregation results.

However, for a NILM algorithm to be commercially viable, disaggregating energy in an

unsupervised fashion is paramount. When introducing temporal dependencies into

the model, a computationally efficient strategy to approximate the forward probabilities

defined in (1.2) is required. Because of this, the following research questions arise:

1. How can a computationally efficient approximation of the filtering recursion be

obtained that allows for temporal regularization?

2. What is the performance of the resulting algorithm in an unsupervised setting?

The publication in chapter 4 answers the research questions above. The resulting

paper was published in the Proceedings of the 2018 AAAI Conference on Artificial

Intelligence.
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Research Question 1.3

The algorithm introduced by answering Research Question 1.2 makes use of a fac-

tored multi-variate Bernoulli distribution. In order to avoid a parameterization that

grows exponentially with the number of appliances, this distribution makes an unnec-

essary independence assumption, specifically, that states of appliances are indepen-

dent given previous observations. As will be shown later, this independence assump-

tion makes it difficult to learn either-or relationships. Because of this, the following

question arises:

1. How can a distribution as flexible as a mutli-variate Bernoulli be constructed

such that its parameterization does not grow exponentially?

This research question is answered in the publication in chapter 5. It was pub-

lished in the Proceedings of the 4th International Workshop on Non-Intrusive Load

Monitoring. 2018.
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Research Question 1.4

The time-complexity of the algorithm introduced by answering Research Question 1.2

was mainly reduced by making an application-specific sparsity assumption as well

as exploiting the structure of a factorized posterior distribution in conjunction with

the factorization inherent to FHMMs. However, as stated earlier, using this factored

posterior limits the accuracy of the inference technique and, on top of that, despite

the sparsity assumption, the scalability of the algorithm is limited. The question arises

whether we can abolish these simplifying assumptions that were required to ensure

computational efficiency but still be computational efficient. Note that because such

an approach does not exploit structure unique to NILM, i.e. it is a generic algorithm

for inference and learning in dynamical systems with binary latent states, the following

question arises:

1. What is an asymptotically unbiased algorithm for inference and learning in non-

linear stochastic dynamical systems with binary latent states?

2. How sample-efficient is the resulting algorithm?

The publication in chapter 6 answer this research question. It was published in the

Proceedings of the 44th International Conference on Acoustics, Speech, and Signal

Processing.
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1.3 Problem Statement: AC Optimal Power Flow

As stated earlier, Alternating Current Optimal Power Flow (ACOPF) tries to answer the

question of how to configure generators in an alternating current transmission network

optimally such that generation meets demand. Generation meets demand when a set

of non-linear constraints, the so called power flow equations, are satisfied. Optimality

is defined by reaching the minimum of an objective function. ACOPF should not

be confused with two similar and related problems, i.e. the load flow problem and

economic dispatch [41]. The former problem deals with inferring the system state

given partial knowledge, i.e. solving the power flow equations, whereas the latter is

concerned with optimally dispatching power whilst ensuring a power reserve but by

simplifying or completely ignoring the power flow equations.

1.3.1 State of current research

Early approaches to optimally operate alternating current transmission networks re-

lied on “experienced engineers and operators using judgment, rules of thumb, and

primitive tools" [42]. However, soon computational tools were introduced. In as early

as 1929, analog network analyzers that model the transmission network were used

to solve the power flow equations [42]. Then, in 1956, Ward and Hale introduced the

first automated and digital power flow solver [43]. In 1962, Carpentier introduced the

optimality conditions for the ACOPF problem based on Karush-Kuhn-Tucker condi-

tions which is considered today to be the first formulation of the ACOPF problem [44].

Even though there are many different ACOPF formulations with different objectives,
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most ACOPF formulations can be represented by the following standard form:

minxf(x)

s.t. g(x) = 0

h(x) ≤ 0

where f is the objective function to minimize, usually the generation cost, and h and

g are constraint functions that describe the power flow equations, system constraints

and control limits. As stated earlier, in order to ensure that the system is in a physical

state and that generation meets demand considering the transmission losses, the

power flow equations need to be satisfied. There are multiple equivalent formulations

of the power flow equations. However, the most commonly used are in polar form [45]:

0 = −Pi +
N∑
k=1

|Vi||Vk|(Gik cos θik +Bik sin θik) = gi

0 = −Qi +
N∑
k=1

|Vi||Vk|(Gik sin θik −Bik cos θik) = gi+N

Thus, the power flow equations describe the non-linear relationship between nodal

voltages Vi and active and reactive power (Pi and Qi) in the transmission network

specified by the admittance matrix Yik = Gik+jBik. Note that N specifies the number

of buses and θik the difference in voltage angle between bus i and k. Although equiva-

lent, the power flow equations can also be expressed in matrix form with Si = Pi+jQi,

S ∈ CN , V ∈ CN and Y ∈ CN×N ,

0 = S − diag(V )(Y V )∗ = g
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Note that in many instantiations of the ACOPF problem, the inequality constraints

specify control limits of the nodal voltages and active and reactive power generation.

Note that power generation constraints are often non-convex, i.e.

hi = Pi − Pmaxi oi ≤ 0

hi = Pmini oi − Pi ≤ 0

with oi ∈ {0, 1} specifying whether a generator is online.

Even though the cost function f is often well-behaved and usually convex, constraints

are usually non-convex and non-linear.

Because the non-convexities encountered in the ACOPF constraint set can usually

be represented by integer constraints, mixed integer program solvers based on e.g.

branch-and-bound [27] can be employed to deal with the non-convexities. However,

because multiple, and in the worst case exponentially-many, linearly relaxed problems

need to be solved, these approaches incur substantial computational cost and require

a robust1 solver for the relaxed sub-problems.

Furthermore, the non-linearities encountered in the ACOPF problem pose addi-

tional challenges. Because of their non-linear nature, the power flow constraints do

not exclude all non-physical solutions. It can be shown that for the much simpler load

flow problem, a transmission system consisting of N buses can have up to 2N solu-

tions even though there is only one single physical solution [46, 47]. This entails that

the load flow problem is underspecified, i.e. the power flow equations are solely a

1Robust in this context means that convergence to the physical solution can be guaranteed.
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necessary but not sufficient condition for a solution to be physical.

Decoupled-OPF

In order to overcome the problem of under-specificity of the ACOPF formulation, ap-

proaches were developed that linearize the power flow equations [48]. Specifically, by

making two assumptions a bilinear approximation of the power flow equations can be

obtained.

1. The imaginative part of the admittance matrix dominates the real part, thus as-

suming that Yik = jBik is a valid approximation

2. Because voltage angles are small, cos(θik) ≈ 1 and sin(θik) ≈ θik

which results in the equations:

0 = Pi −
N∑
k=1

|Vi||Vk|Bikθik = gi

0 = Qi −
N∑
k=1

−|Vi||Vk|Bikθik = gi+N

If furthermore it is assumed that voltage magnitudes are approximately unit, the power

flow equations can be reduced to:

0 = Pi −
N∑
k=1

Bikθik = gi

Note that if the constraints are linear, introducing these simplifying assumptions re-

sults in a linear program that can be solved efficiently by e.g. the Simplex algorithm

or Interior Point methods [49].

Even though this formulation effectively disregards all network transmission losses,
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it is used in many commercial and industrial applications as a de facto standard but

according to [50], the formulation introduces unacceptable errors in large systems.

Full ACOPF solvers

To avoid these errors for large systems, many different ACOPF solvers that operate

directly on the non-linear power flow equations were proposed.

Sequential Linear Programming One such algorithm to solve the ACOPF problem

is Sequential Linear Programming (SLP) [51]. SLP tries to solve non-linear

programs by a series of linear approximations, i.e. SLP is an iterative procedure

that solves a linear program at every iteration. Specifically, given a guess about

the solution x0, a linear program (LP) relaxation around x0 is performed and the

resulting LP is solved by an LP solver, typically either by variants of the Simplex

Method or an Interior Point solver, in order to obtain a better guess xi+1. The

linear program relaxation is obtained by a first order Taylor series expansion and

every iteration is proved to improve the objective, therefore guaranteed to find a

local optimum.

Sequential Quadratic Programming Similarly to SLP, the use of Sequential Quadratic

Programming (SQP) was proposed which is an another iterative process that

solves an optimization problem at every iteration [52]. However, instead of per-

forming a first order Taylor expansion, a second order expansion is performed

resulting in a quadratic program to solve at every iteration. Because second

order information are leveraged, SQP usually converges faster than SLP. Note

that when the program is unconstrained, SQL will reduce to performing Newton-
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Raphson.

These approaches implicitly assume that applicable functions display “suitable

convexity” [44], i.e. implicitly it is assumed that gradient-based approaches will

find physical solutions despite the non-convexity of e.g. the power flow con-

straints. This becomes abundantly clear when realizing that all of the introduced

solvers rely on an initial guess of the optimal solution x0, also called the seed

or initial point, and follow some kind of gradient that results from either solving

an LP or QP or some program involving barrier or penalty functions. Ultimately,

these solvers perform projected gradient steps. The authors of [53, 54] argue

that given the structure of the power flow equations, the assumption of “suitable

convexity" may be a big assumption.

The fact that “suitable convexity" might be an invalid assumption is further sup-

ported by research that investigates the convergence properties of solvers for

the power flow equations. It can be shown that Newton-Raphson based solvers

exhibit a property commonly referred to as Newton fractals [55, 46], i.e. conver-

gence to the true solution can only be guaranteed if the seed point x0 is “close

enough" to the true solution because “the boundaries between basins of attrac-

tion under the iterative scheme are fractal. As two or more solutions get closer,

their basins become more and more intertwined, so that, the neighborhood of

any given solution becomes peppered by points attracted to different ones" [56].

Figure 1.6 shows a graphica example of Newton fractals.
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Figure 1.6: “Fractal basins of attraction for the two-bus load flow problem, under the FDLF
(Decoupled-PF) method. Initial seeds that lead to the correct solution are shown in green; to
the spurious solution in red; and non-convergence in black." [56]

Because of Newton fractals, these approaches are in danger of not finding any

physical solution at all because as described earlier and shown in Figure 1.6,

the power flow equations have solutions which are not physical, i.e. there are

assignments to the complex nodal voltages and complex power such that the

power flow equations are fulfilled that can however not be realized physically.

These spurious solutions act as attractors, i.e. the power flow solvers intro-

duced earlier, because solutions are obtained by projected gradient steps, might

be attracted to these false solutions, in order to reach their goal of satisfying the

power flow equations.

Note that because these solvers are deterministic, the solution depends cru-

cially on the guess of the initial solution x0. That is why researchers have tried
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to alleviate these convergence issues by initializing x0 in a way that encourages

convergence to the true solution, i.e. by initializing x0 with the solution to a sim-

pler problem such as the solution to decoupled-OPF [57, 58, 59].

Continuation Another strategy is to the employ the continuation method, in the con-

text of ACOPF also called power stepping, by iteratively solving problems by

scaling demand by a factor λ and using the solution obtained for small λ as the

initial guess for a solution at a bigger λ starting at λ = 0 until the original problem

is recovered at λ = 1 [60]. Especially for problems whose solution is close to

the feasibility boundary where convergence issues are predominant, it is easier

to obtain solutions further away from the feasibility boundary and then follow the

solution paths to λ = 1.

Homotopy A similar strategy is the Homotopy method whose general idea is the

following: similarly to the continuation method a scaling factor λ is introduced,

however for the Homotopy method, λ interpolates between two functions [61,

62]. Specifically, if one tries to infer complex voltages v, the Homotopic function

H can be defined as:

H(v, λ) = λg(v) + (1− λ)ĝ(v)

In this case ĝ is some function and g denotes the power flow equations. Varying

λ and following the solution path can allow for finding solutions for ill-conditioned

problems, i.e. for problems that do not converge when the initial guess is flat (all

load voltage magnitudes equal to 1 and all bus voltage angles equal to 0).
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However, both the Continuation and Homotopy methods incur substantial com-

putational cost because numerous ACOPF problems need to be solved for vary-

ing λ. Note that these costs multiply when integer constraints are handled by

branch-and-bound algorithms. For every branch, a relaxed optimization problem

needs to be solved and if this relaxed problem is in turn solved by the Continua-

tion and Homotopy method which requires solving multiple problems for varying

λ, the number of required solutions oftentimes explodes.

Holomorphic Embedded Load Flow Method In the context of the load flow prob-

lem, these issues were recently addressed by the introduction of a solver called

Holomorphic Embedded Load Flow Method (HELM) [56, 63]. Specifically, HELM

overcomes the problem of multiple solutions by performing analytic continuation

of a function at a solution known to be physical [64]. Note that analytic contin-

uation yields a unique solution if the function to continue is holomorphic [65].

Which solution is found depends on the point from which continuation is per-

formed and the authors of HELM argue that holomorphic continuation from a

known physical solution “guarantees that the solution always corresponds to

the correct operative solution, when it exists; and it signals the non-existence of

the solution when the conditions are such that there is no solution" [56]. How-

ever, so far, HELM has only found applications in the realm of power flow as

opposed to optimal power flow.
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1.3.2 Knowledge Gaps

As described earlier, because of the non-linearity of the power flow equations, exist-

ing optimal power flow solvers lack robustness because convergence to non-physical

solutions that nevertheless satisfy the power flow equations cannot be ruled out. Fur-

thermore, because of non-convex, concretely integer constraints, these approaches

incur substantial computational cost. To put it into the words of the FERC, “even 50

years after the problem was first formulated, we still lack a fast and robust solution

technique for the full ACOPF problem" [42].

Furthermore, as stated earlier, HELM overcomes some of the convergence issues of

traditional load flow solvers by embedding the power flow equations into holomorphic

functions. Even though this strategy seems to alleviate the problem of the ambiguity

of the power flow equations, there is no straight-forward way for HELM to be used in

optimal power flow applications.
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1.3.3 Research Questions

Existing approaches for ACOPF seem to predominately be based on optimization

strategies and the question arises whether a learning-based approach can overcome

some of the problems introduced earlier. Specifically, can a function be learned that

produces optimal and feasible generator configurations given demand assignments

reliably and fast? Note that because ACOPF solutions need to comply with numerous

safety constraints, it is paramount that this function produces outputs that comply

with these constraints. Furthermore note that, because generators can be shutdown

completely, the action-space of such a learning based approach is non-convex. The

following questions arise:

1. How can the ACOPF problem be formulated as a learning problem?

2. Given a learning-based formulation:

• How can a learning signal be obtained?

• How can safety constraints like e.g. voltage magnitude constraints be en-

forced?

• What is a computationally efficient strategy to deal with non-convex action

spaces?
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Chapter 2

Variational Inference

In order to tackle computational aspects of the research question, an approximate

statistical inference technique will be employed. This chapter gives a brief overview

of recent advancements in the field of Variational Inference and the reader is referred

to [66, 67] for recent reviews of the technique. Note that, as stated earlier, success-

ful solutions to the problems tackled introduced earlier have one thing in common:

They allow to obtain an optimal binary vector. This process can be posed as statisti-

cal posterior inference in distributions over binary configurations. However, because

the normalizing constant of these distributions usually involves enumerating all bi-

nary states, posterior inference is oftentimes computationally intractable because the

number of possible binary configurations grows exponentially with the dimensionality

of this vector, therefore requiring approximate inference techniques. For example, in

the case of ACOPF, every generator is associated with a binary variable and even

moderately sized problems can have up to 50 generators. Thus, naïve inference on

posterior distributions of that size would require evaluating 250 ≈ 1015 generator con-

figurations, therefore requiring approximate techniques.
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There seem to be a dichotomy in approximate approaches to deal with intractable

posterior distributions. On one hand, there are Markov Chain Monte Carlo techniques

which are a collection of tools to draw samples from the desired posterior. Specifi-

cally, a Markov chain is introduced whose equilibrium distribution converges to a sam-

ple from the posterior [34]. It is well known that the quality of the sample increases

with the length of the Markov Chain, however, this process is often too slow when the

probability surface is multi-modal, i.e. the Markov Chain can ‘get stuck’ in modes of

the posterior which leads to prohibitively slow mixing [68].

On the other hand, Variational Inference [69] techniques have emerged as an

alternative tool to deal with intractable posterior distributions. Variational Inference

turns stastistical inference into an optimization problem by optimizing parameters of

an auxiliary distribution Q such that Q best approximates P . Because the true poste-

rior is approximated by an auxiliary distribution, unless Q = P , VI is an approximate

inference technique, whereas MCMC is asymptotically exact albeit being slow. Re-

cent advances have greatly improved the scalability, applicability, speed and accuracy

of VI based approaches. Because of these advances, especially in terms of speed,

modern VI approaches seem to be a prime candidate to control and observe physical

systems in real time.

The main idea behind VI is the following: Given a distribution P for which posterior

inference is intractable, posterior inference is translated into an optimization problem.

Specifically, a tractable distribution Qψ parameterized by the variational parameters

ψ is introduced and the parameters ψ are optimized in such a way that Qψ best ap-

proximates P as measured by some divergence criterion. Then, in order to perform

inference on P , because Qψ is maximally similar to P but tractable, inference is per-
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formed on Qψ instead.

Because evaluating p(z|x) is intractable, directly minimizing D(q(z|x)||p(z|x)) with D

being some divergence measure is usually intractable. In order to overcome this prob-

lem, a surrogate loss is minimized. By making use of Jensen’s inequality [70], it can

be shown that:

log p(x) =
∑
z

log p(x|z)p(z) (2.1)

=
∑
z

q(z|x)

q(z|x)
log p(x|z)p(z) (2.2)

≥ DKL[q(z|x)||p(z)] + Eq(z|x)[log p(x|z)] (2.3)

= log p(x)−DKL(q(z|x)||p(z|x)) (2.4)

with DKL being the Kullback-Leibner divergence (KL-divergence), i.e.

DKL(q(z|x)||p(z|x)) =
∑
z

q(z|x) log
q(z|x)

p(z|x)

For learning, i.e. when some parameters of P are free, maximizing equation (2.3)

is equivalent to maximizing a lower bound of the data log-evidence log p(x). Hence,

equation (2.3) is called the Evidence Lower Bound (ELBO). Specifically, one can see

that when inspecting equation (2.4), the bound is tight when DKL(q(z|x)||p(z|x)) = 0.

Thus, maximizing the ELBO defined in equation (2.3) results in jointly maximizing the

data log-likelihood as well as minimizing the backward KL divergence, i.e. tightening

the bound. Note that maximizing equation (2.3) does not require knowledge of the

true posterior p(z|x). This is paramount because, in the cases we are interested in,

the true posterior p(z|x) is computationally intractable.
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2.1 Mean Field

Different choices of the auxiliary distribution Q lead to different instantiations of VI.

One prominent instantiation is Mean Field approximation where Qψ is assumed to be

fully factored [6, 71]. However, Mean Field approximation has drawbacks: Ultimately,

when solved by coordinate ascent, Mean Field results in a recursive learning objec-

tive that is similarly susceptible to local optima resulting from the multi-modality of the

true posterior much in the same way as MCMC techniques. Furthermore, because

the auxiliary distribution is not a conditional distribution, i.e. the auxiliary distribution

specifies qψ(z) instead of qψ(z|x) and the dependency on x is introduced by minimiz-

ing the divergence to p(z|x), inference cannot be amortized easily, i.e. the relationship

between x and p(z|x) is not learned explicitly and therefore inference once new data

is collected, requires running a rather expensive learning algorithm again.

2.2 Speed: Amortizing VI

Modern VI approaches amortize inference through the use of recognition distributions

by parameterizing qψ(z|x) with a neural network [72, 73]. Specifically, qψ(z|x) is as-

sumed to be some function f that takes x as input, i.e. qψ(z|x) = fzψ(x) and because

of recent successes of neural networks for non-linear optimization, fzψ is often chosen

to be a neural network which in turn entails that the variational parameters consti-

tute its weights. If this is the case, because the neural network links x and p(z|x),

after training, posterior inference is as simple as a forward pass through a neural

network and can therefore be carried with a much lower computational complexity.

Such a neural network is often called ‘recognition network’ and the associated aux-
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iliary distribution is then called ‘recognition distribution’ [72]. Thus, in such a setting,

VI teaches a neural network to perform posterior inference and because evaluating

a neural network is usually computationally cheap, posterior inference compared to

other approaches is extremely fast.

2.3 Applicability: Black Box VI

Evaluating the ELBO introduced in equation (2.3) poses challenges: For most distri-

butions that model physical systems, because the auxiliary and true distribution do

not form conjugate pairs, the expectation in equation (2.3) does not have a closed

form solution. This complicates computing the gradient of equation (2.3) with respect

to ψ which in turn limits the applicability of Variational Inference techniques consid-

erably. This problem has recently been alleviated by the introduction of Black-Box

VI [74]. To paraphrase the main idea of Black-Box VI: In order to circumvent having to

compute the exact gradient of the expectation with respect to ψ, an unbiased estimate

of the gradient is computed by sampling from the auxiliary distribution. The introduc-

tion of Black-Box VI results in a generic framework that allows using, in principle, any

auxiliary distribution to perform inference on any intractable posterior as long as both

distributions share the same support. However, because the gradient is estimated by

sampling from the auxiliary distribution, the auxiliary distribution is required to take a

functional form that allows for efficient sampling. As we will see in chapter 5, finding a

parameterization of the auxiliary distribution that allows this is sometimes not trivial.

36



2.5. Scalability: Stochastic VI

2.4 Scalability: Stochastic VI

The amount of data collected of energy systems, such as e.g. the data collected

at the main distribution panel of a building or voltage phasors in a distribution net-

work, has increased substantially over the recent years. This in turn poses additional

challenges for inference techniques: they need to scale gracefully with the amount of

available data points. This problem has recently been addressed by the introduction

of Stochastic VI [75]. Because the data log likelihood can be expressed as a sum over

the entire data set, computing model updates scales unfavorably to large data sets,

i.e. the computational cost associated with a single iteration grows with the size of the

data set. The main idea of Stochastic VI to alleviate this problem is to randomly select

mini-batches of the available data points and optimize the variational objective for this

mini-batch similarly to how stochastic gradient descent performs gradient descent on

randomly sampled points of the training set [76, 77].

2.5 Accuracy: Flows

As stated earlier, in general, unless Q can approximate P perfectly, VI performs ap-

proximate inference, i.e. the KL-divergence between the auxiliary and true posterior

does not reach 0. When choosing the functional form of the auxiliary distribution, an

implicit assumption about the shape of the true posterior is introduced. Furthermore,

because efficient sampling from the auxiliary posterior is required for Black-Box VI, the

auxiliary distribution is often chosen from a family of fairly simple distributions such

as multi-variate Gaussian for continuous latent variables [72]. However, such an as-

sumption is overly simple in most cases resulting in unnecessarily high KL-divergence
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after training, i.e. the auxiliary distribution underfits to the true posterior. In order to

overcome this problem for continuous latent variables, flows that reshape the auxil-

iary posterior distribution have been proposed [78, 79]. The general idea is to apply

parameterized, invertible and mass-preserving functions, also called flow-operators

to the latent variable. Recently, flow operators with the universal approximator prop-

erty have been proposed [80, 81] allowing for, in principle, arbitrary reshaping of the

auxiliary distribution in order to achieve tighter fits to the true posterior and therefore

improving the accuracy of VI approaches. Note that this area of research is still rapidly

evolving.

2.6 Intuition

Modern VI approaches combine the ideas introduced earlier to ultimately arrive at

an accurate, scalable, fast and general technique for posterior inference. Note that

these advancement have been made fairly recently, i.e. the algorithmic tool chain that

has become modern Variational Inference has only been at our disposal for a short

amount of time and is still being developed. It might not be intuitive why and how

such a modern VI approach speeds up inference and learning. The general intuition

can be explained by means of analogy: Posterior inference is usually intractable be-

cause evaluating a sum in the case of discrete distributions or an integral in the case

of continuous distributions is hard to compute. Thus, posterior inference is intractable

because enumerating the latent space is intractable. However, the probability distri-

butions of interest are often highly structured which in turn entails that most of the

probability mass is located within smaller subregions of the latent space. Thus, in-

stead of enumerating all of the latent space, it is usually sufficient to investigate the
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regions of high probability density. This however poses a challenge: How can we

identify regions with high probability mass? Because sampling from the posterior is

computationally difficult, we cannot consult the true posterior to identify high density

regions. Instead, the auxiliary distribution is used to guide the ‘search for probability

mass’. For learning, i.e. when parameters of P are unknown, every iteration tries to

lift the probability surface at those regions identified by the auxiliary distribution whilst

at the same time improving the auxiliary distribution at identifying high probability re-

gions. Then, after learning, the auxiliary distribution has become sufficiently good at

identifying these regions and can therefore be used for inference.
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Chapter 3

BOLT: Binary Online Matrix

Factorization

As discussed earlier, the following publication tries to answer the question of how to

incorporate high frequency information into state-based NILM algorithms and what a

computationally efficient algorithm for inference of appliance states is. Furthermore,

it poses the question how well an algorithm that solely makes use of single-cycle in-

formation can disaggregate energy in a supervised and unsupervised way.

Lange, Henning, and Mario Bergés. "BOLT: Energy disaggregation by online

binary matrix factorization of current waveforms." Proceedings of the 3rd ACM

International Conference on Systems for Energy-Efficient Built Environments.

ACM, 2016.
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3.2. Abstract

3.1 Abstract

In this paper we introduce BOLT, a novel approach for the problem of energy dis-

aggregation that performs online binary matrix factorization on a sequence of high

frequency current cycles collected in a building to infer additive subcomponents of

the current signal. The system learns these constituent current waveforms in an un-

supervised fashion and, in a subsequent step, seeks to find combinations of these

subcomponents that constitute appliances. By doing so, points in time when appli-

ances are active and, to some degree, their power consumption can be estimated

by BOLT. Our system treats energy disaggregation as a binary matrix factorization

problem and uses a neural network, with binary activations in the one but last layer

and a linear output layer, to solve it. The algorithmic performance of the proposed

method is evaluated on a publicly available dataset. Furthermore, we show that, once

the model is trained, the algorithm can perform inference in real-time on inexpensive

off-the-shelf and general purpose hardware which allows leveraging high-frequency

information without having to explicitly transmit and store large amounts of data to a

centralized repository.

3.2 Introduction

Energy disaggregation, the problem of inferring the power consumption of appliances

given voltage and current measurements at a limited number of sensing points in a

building, has received increasing attention in recent years [14, 13]. The problem was

first described in the seminal paper by Hart in 1982 [82]. However, despite decades

of research into this problem, many technical and scientific challenges remain un-
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solved. Real-time inference of appliance power usage, for instance, has remained an

elusive goal as the proposed solutions thus far are either computationally very expen-

sive, or are very sensitive to changes in the hand-crafted features used to recognize

appliances ultimately leading to poor performance over time or across homes.

In this paper we present BOLT: the Binary OnLine facTorization engine, as a step

towards both solving the computational complexity of real-time inference and doing

away with the fine-tuning of discriminative features for identifying appliances. BOLT is

inspired by recent advances in deep learning and casts the problem of disaggregation

as a binary matrix factorization problem. Specifically, a non-linear transformation of

a single period of a phase-aligned current waveform is learned by a neural network.

This non-linear mapping is constrained in such a way that the network learns sub-

component waveforms that, when added together, best explain the aggregate current.

To describe this idea in more detail, in the first part of the paper we review existing

approaches through the lense of matrix factorization, then provide a brief introduction

to neural networks, and finally describe BOLT’s neural binary matrix factorization ap-

proach.

In AC circuits, loads (appliances) can be characterized by their respective real and

reactive power consumption. Early approaches identified sudden changes in the

power time series (also called events) and extracted features of these events, which

were subsequently clustered in the hopes that the clusters would characterize the on-

transitions or off -transitions of appliances. In order to infer power traces of individual

appliances, on-transition clusters were matched with off -transition clusters. These

approaches, however, sometimes do not perform well because temporal patterns of

state transition sequences cannot be directly modeled.
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Variants of Factorial Hidden Markov Models (FHMMs) were soon employed to over-

come some of the weaknesses [83, 29, 84, 85]. FHMMs [86] are a generalization of

Hidden Markov Models (HMMs) where a number of latent variables evolve in parallel.

The observation y(t) ∈ Rk is a function of all hidden states x(t) ∈ Nd. Let X and

Y be the concatenation of x(t) and y(t) into matrices, respectively. Typically, FHMM

approaches disaggregate active and reactive power, i.e. k = 2. Each appliance

(1, ..., d) is represented by one HMM chain. Since the hidden states become condi-

tionally dependent given the observation, inference of the posterior P (X|Y ) becomes

computationally intractable. Numerous approximate inference techniques have been

proposed: Kolter et al. reformulated inference as an integer programming problem

[84], the authors of this paper showed how a modified Viterbi algorithm can be used

for inference with a number of simplifying assumptions [87] and Jia et al. used Markov

Chain Monte Carlo (MCMC) sampling techniques to approximate the posterior [83].

For energy disaggregation, FHMMs usually model the deviation of the sum of

the individual HMM chains from the observed aggregate observation (or its first dif-

ference) using a Laplace distribution [84, 85]. For every point in time t and latent

variable i, MCMC sampling techniques iteratively sample from the conditional poste-

rior P (x(t)i|X\t,i, Y ) with X\t,i being X without x(t)i. However, as we showed in [85],

at any given time t the probability of FHMM paths drops exponentially, which in turn

leads the conditional posterior to exhibit very low entropy (i.e. the probability of one

value the state can take is close to 1), thus turning MCMC sampling into a greedy

algorithm that explains away local deviations between the aggregate and the sum of

estimates.

Furthermore, multi-state appliances pose an additional challenge for energy disag-
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gregation systems. To overcome this, some authors decompose electrical appliances

with n-states into n 2-state appliances (X ∈ {0, 1}T×c with c being the total number

of states of all appliances) and later re-aggregate the inferred components into appli-

ances [83]. Let G ∈ Rc×k be the emission matrix, i.e. if active and reactive power are

being disaggregated (k = 2), a matrix whose ith row contains the active and reactive

power of component i.

Inference then effectively approximates

minimize
X,G

||XG− Y ||+ f(X)

with f(X) incorporating the temporal regularization that is governed by the state-

transition probability matrices of the individual HMM chains. When decomposing n-

state appliances into n 2-state appliances, the state transition probabilities loose most

of their representation power: the matrices cannot capture the successor state of an

appliance properly anymore and it can be argued that, under these conditions, f(X)

has little influence on the optimization problem and can therefore be ignored.1 Under

this view, FHMM approaches are effectively approximating the solution to a Binary

Matrix Factorization problem.

Binary Matrix Factorization has received some attention from the research com-

munity but mainly in the context of hashing [88]. In Information Retrieval, a hashing

function that can map items to a binary representation is frequently desired, given that

it provides two important advantages: big datasets containing the representation of

1Comment: Note that the argument that f(X) has little influence on the optimization problem was
made under specific conditions, namely that multi-state appliances are decomposed and decomposed
states are independent. When these conditions are not met, incorporating f(X) can be a powerful tool
for regularization and ironically, most of the other research in this thesis on NILM deals with computa-
tionally efficient ways to include f(X) into the optimization problem.
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millions of items can easily fit into memory, and computing similarity scores becomes

computationally inexpensive (simple bit manipulation).

Non-Binary Matrix Factorization techniques of the type

minimize
A,B

||AB − Y ||

usually initialize either A or B randomly and then alternate between optimizing A or B

while keeping the other matrix fixed [89]. This technique becomes intractable under

the constraint that either of the matrices is binary since exact inference of the binary

matrix is known to be NP-complete [88].

Despite these difficulties, approximate solutions to the binary matrix factorization

problem can be found especially if one uses a flexible-enough model. BOLT lever-

ages these insights and employs a neural network architecture especially designed

for this. Specifically, the one-but-last layer of the network contains binary hidden

units representing an additive subcomponent each, whereas the last layer contains

linear activations. Let x(t) ∈ {0, 1}c denote the binary activations at time t and G

be the weights coming into the output layer. Because of the linearity of the output

units, the output of the network is x(t)G. If the network is trained to produce out-

put y(t), applying standard learning algorithms will solve minimize
x,G

||x(t)G − y(t)|| or

minimize
X,G

||XG − Y || if the hidden states and desired outputs are concatenated into

matrices X and Y .

Neural networks have becom a prominent approach to tackle NILM, see e.g. [35,

36, 37, 38]. These approaches often disaggregate energy by directly predicting the

power consumption of individual appliances in a sliding window given the aggregate

power trace. Similarly, matrix factorization techniques have also been employed pre-
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viously for this problem (e.g., [89, 90]). However, whereas existing techniques extract

temporal patterns over periods of a few minutes, a day or a week, BOLT extracts

temporal patterns in single current cycles. Extracting long temporal patterns implic-

itly assumes that these patterns re-occur with some regularity and few modifications.

Instead, BOLT only assumes that single-cycle current waveforms of an appliance are

consistent across time.

As we will show later, this approach allows BOLT to leverage high-frequency informa-

tion while avoiding data transmission and storage problems common in other high-

frequency energy disaggregation systems. The information needed to infer appliance

states is contained in the binary matrix X and since X is binary, transmitting and

storing X is cheap. Furthermore, because X is inferred by a neural network and in-

ference (as opposed to training) for neural networks is computationally rather cheap,

rows of X can be inferred on the fly by low-cost off-the-shelf embedded hardware.

3.3 Neural Networks

With the advent of big datasets and advances in computing hardware, neural net-

works have seen a resurgence in recent years and have shown human-competitive or

even super-human performances in various machine learning fields including vision

and speech. In their most general sense, neural networks are mathematical models

to approximate any continuous function from samples of known input and output ex-

amples. Here we provide only a brief introduction to neural networks but for a more

thorough explanation we refer the reader to [91].

A feed-forward neural network consists of nodes (neurons) that are organized in lay-

ers. Each layer of neurons is associated with a weight matrix Wi and receives inputs
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from neurons in the preceding layer. In order to obtain the output of a layer, the matrix-

vector product of the inputs received from the preceding layer and the weight matrix is

computed and an element-wise non-linearity is applied to the resulting vector. Given

a training set of known function points, i.e. pairs of inputs and desired outputs, train-

ing a neural network consists of finding the optimal weight matrices Wi such that the

error over all known functions points in the training set is minimized. This is usually

achieved by gradient descent, which, in turn, requires that the non-linearities of the

layers be differentiable.

In order to train a neural network to identify cats in images, for example, the network

needs to be presented with a set of input vectors representing the images and the

information about which of the images contain cats and which ones do not, usually

encoded by a 0 or 1. In this example, the images serve as inputs whereas the bit

encoding whether or not the image contains a cat is the desired output. A special

case of neural networks called autoencoders are trained to reconstruct the inputs, i.e.

the desired output is equal to the input [92]. Autoencoders have been used to find

a compressed representation of the inputs: consider a 3-layer neural network whose

hidden layer dimensionality (number of neurons) is smaller compared to the input and

output layer dimensionality2. Once the network is trained, the outputs of the inter-

mediate layer given some inputs can be viewed as a compressed representation of

the input. Autoencoders are closely linked to source-separation/matrix decomposition

algorithms like Principal or Independent Component Analysis [93, 94].
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Figure 3.1: A graphical representation of the neural network used to identify binary additive
subcomponents. xi(t) denote nodes with binary outputs. The activation functions used in the
network body are unconstrained.

3.4 Neural Binary Matrix Factorization

Unlike existing energy disaggregation approaches that try to disaggregate power, the

approach introduced here tries to disaggregate current waveforms. Like power, cur-

rent is an additive quantity and appliances often exhibit very distinct waveforms. If

two appliances are turned on at the same time, the superposition of both appliance

waveforms will be measured. In this paper, we show how to recover building blocks

of the aggregate current waveforms that contain appliance information using Binary

Matrix Factorization as solved by the neural network described above. Every building

block or component i is associated with a binary time series (ith row of X, when) and

a waveform or loading (ith column of G, what).

The neural network that decomposes the aggregate current waveforms into compo-

nents is trained like an autoencoder, i.e. the desired output is equal to the input but in

principle additional information could be incorporated in the input layer that might aide
2For autoencoders, the number of input neurons is equal to the number of output neurons
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energy disaggregation (e.g., time of the day or outside temperature3). The topology of

the network is constrained in such a way that the network has to piece the aggregate

current waveforms together using a limited number of additive components. This is

achieved by using a linear activation in the output layer and a binary activation in the

one but last layer. Figure 3.1 shows a graphical depiction of such a network.

The stream of current measurements is sliced according to zero-crossings detected

in the voltage signal. This results in a matrix Y ∈ RN×T with T being the number

of detected cycles and N the number of samples within one cycle (i.e. 200 for a

sampling rate of 12kHz and a line frequency of 60Hz). Let y(t) with t ∈ [0, T ] be the

current measured within cycle t (i.e., the t-th column of Y ). Let x(t) ∈ {0, 1}c be the

activation of the binary layer given the input y(t) ∈ RN and G ∈ Rc×N be the weights

connecting the binary and output layer.

The network is fed the aggregate current waveforms as a vector of size N contain-

ing both the real and imaginary parts of the Fast Fourier Transform (FFT) of y(t).

Since the active power consumed by an appliance cannot be negative and most of

the power is consumed at line frequency, G is constrained in such a way that the col-

umn representing the line frequency (60Hz in the U.S. and 50Hz in Europe) must be

non-negative. Note that enforcing this constraint in time-domain is non-trivial.

The model is trained in a fully unsupervised way: given the aggregate waveforms,

the network is trained to reconstruct them using a limited number of additive building

blocks which are assumed to constitute (sub-)appliance waveforms.

In order to minimize its training error, the network is forced to activate some of its bi-

nary units and adjust the binary-linear weights in such a way that it can capture most

3A coffee machine is more likely to be turned on in the morning, a heater is more likely to be turned
on when it is cold outside.
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of the variability of the aggregate signal. That means, the network must find a set of

reoccurring patterns in the aggregate waveforms and for every aggregate waveform,

the network must activate a subset of these patterns whose sum best explains the

aggregate waveform. In other words, the network finds appropriate values for X and

G, which minimize ||XG− Y ||.

The binary units in the one-but-last layer cause the network’s output to be non-

smooth, i.e. if the input is slightly perturbed, an additional binary unit might become

active or deactivate, thus causing a sudden jump or drop in the output. This is actually

a desirable characteristic of the network since the aggregate power trace is also highly

non-smooth, i.e. if an appliance is turned on or off, the aggregate power will also jump

or drop according to the power consumption of the appliance. The non-smoothness

however causes gradients to be ill-defined.

The activation of the binary units is defined as:

fb(x) =


1 if x > 0

0 else

The derivative of fb is always 0 except for x = 0 where it is not defined. The binary

activation can also be understood as

fb(x) = lim
a→∞

1

1 + e−ax

Let s(x) = (1 + e−ax)−1. The derivative of s(x) asymptotically tends to 0 for limx→±∞

and the bigger a, the faster s(x) becomes practically 0 for digital computing purposes.
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In order to avoid vanishing gradients, the gradient of fb(x) is set to ds(x)
dx with a = 1.

This is similar to rounding the outputs in the forward pass and using the actual values

for backpropagation.

The activations of the hidden units in layers lower than the one-but-last are uncon-

strained. In principle any activation can be used but, in this work, a leaky rectifying

linear unit is employed whose activation is: fr(x) = max(ax, x). The body of the net-

work (all layers up until the binary layer) has to approximate an NP-complete problem,

whereas the linear output units perform a simple linear regression. That means that

we choose a computationally powerful body, i.e. many layers and units4.

3.5 Subcomponent identification

The neural network described was used to identify additive subcomponents in the

BLUED [95] dataset. BLUED was collected at a residential building in Pittsburgh, PA,

USA during October 2011 with a sampling frequency of 12kHz. In order to preserve

phase information of the current signal, zero-crossing which signify the beginning and

end of cycles were detected in the voltage signal. Voltage-aligned current measure-

ments spanning 60 consecutive cycles (˜1 second) were extracted, i.e. sequences of

12000 data points aligned with the detected zero-crossing. The real and imaginary

parts of the first 2400 values of the FFT of the 12000 data points were concatenated

into a matrix Y ∈ RT×4800 resulting in an effective sampling rate of 4.8kHz with T being

the length of the dataset in seconds (in this case 440000). A 3-layer neural network

created with keras5 was used to perform the binary matrix factorization described

4To illustrate this point, in our experiments we noticed that adding a single non-linear layer before the
binary layer decreases the training error 5-fold.

5http://keras.io
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earlier. The input layer consists of 3000 leaky rectifying units (a = 0.5) that project

the input down onto a layer with 2000 leaky rectifying units, which in turn output onto

100 binary hidden units. Thus, the aggregate current waveforms are assumed to be

composed of 100 additive building blocks.
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Figure 3.2: Four out of the 100 inferred subcomponents in the aggregate signal: (a) waveform
of a power supply for a computer, (b) an almost purely resistive load, (c) highly reactive load,
and (d) superposition of appliances

The weights between a binary unit and the linear output units (i.e., the columns of

G) incorporate the information about the waveform of the corresponding component.

Figure 3.2 shows some of the inferred subcomponents identified in the aggregate sig-

nal after transforming them back into time-domain. Figure 3.2 a) shows a waveform

whose temporal activity is highly correlated with the activity of a computer. Computers
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like many other electronics are powered by a power supply unit (PSU) which trans-

forms AC to DC current by rectification. The inferred waveform shows how the rectifier

consumes power when the voltage peaks. We can also infer that the computer’s PSU

performs full-wave rectification as opposed to half-wave rectification in which case

only a single peak would be shown.

Figure 3.2b shows a generic sinusoidal waveform. Unfortunately, this waveform

cannot easily be attributed to any specific appliance. In the experiment conducted on

the BLUED dataset, the network infers 12 highly sinusoidal components, and for none

of these their corresponding X row correlates highly with any single appliance ground

truth. This is most likely due to the fact that the network can use purely sinusoidal

components as building blocks for purely resistive loads. For example, if there are

two purely resistive loads consuming 200W and 250W respectively, the network has

multiple equally valid solutions for decomposing their waveforms. In a perfect world,

the network would allot one component to be a 200W sinusoidal and the other to be

a 250W sinusoidal. This would readily disaggregate the energy of both appliances.

However, the network could also explain the aggregate waveform by inferring one

200W sinusoidal and another 50W sinusoidal in which case non-linear re-aggregation

of the inferred subcomponents is required to disaggregate the appliances.

Figure 3.2 c) shows a component consuming solely reactive power. With very few

exceptions, this component is almost always active during the whole duration of the

dataset. The component does not consume any active power.
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Figure 3.3: The sum of a seemingly noisy and a sinusoidal component.

Figure 3.2 d) shows a component with two peaks. The inferred component shows

similarly high temporal correlation with the laptop and the desk lamp which suggests

that the inferred component might be the superposition of those two appliances. The

algorithm does not guarantee that the waveform of every inferred subcomponent is

caused by a single appliance.

Figure 3.3 shows a seemingly noisy component. Even though the network is con-

strained in such a way that the power at line frequency must be greater than zero, the

component exhibits negative power overall (assuming stable voltage at 110V), i.e. the

component alone cannot represent an appliance. However, if this component is added

to a sinusoid, the resulting component shows much structure and is similar to other

inferred components. The seemingly noisy component can modify other components

whose structure it can partially hijack.

To sum up, the inferred subcomponents seem to be either: (a) the waveform of

a specific appliance, (b) the superposition of the waveforms of multiple appliances,

(c) modifier that requires the presence of another subcomponent, (d) a sinusoidal

building block; or (e) a duplicate of another subcomponent.

3.6 Combining Binary Components

Following the intuition gained about the nature of the inferred subcomponents, super-

vised and unsupervised approaches for inferring appliance activity given the activities
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of inferred subcomponents will be discussed.

Let the matrix containing the activations of the inferred subcomponents be X ∈

(0, 1)d×T , with d being the number of components and T the number of current and

voltage cycles. The tth row of X denotes the hidden states of the network x(t) given

input y(t).

Supervised Re-Aggregation In the supervised case, we also assume knowledge of

a matrix containing ground truth of whether or not a specific appliance is turned

on or off at any given voltage cycle. Let G ∈ (0, 1)T×A denote this matrix with A

being the number of appliances.

Logistic Regression An algorithm is sought that can model a binary response given

predictors. Logistic regression can be used to predict the probability of binary

probabilistic outcomes. We are interested in modeling P (gi(t) = 1|x(t)). Using

logistic regression to model this distribution assumes that P (gi(t) = 1|x(t)) is a

Bernoulli distribution with

P (gi(t) = 1|x(t)) =
1

1 + exp[wTi x(t)]

The model parameter wi can be obtained using a maximum likelihood estimate.

Boolean Re-Aggregation Logistic Regression learns a complex non-linear function

but scenarios in which Logistic Regression can be applied without access to

ground truth seem unlikely. Collecting ground truth requires sub-metering of

appliances and is often prohibitively expensive. An unsupervised approach to

re-aggregation will most likely analyze the temporal activity and the shape of the

waveform of the inferred subcomponents and then combine subcomponents into
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appliances.

The temporal activity of a subcomponent, i.e. xj ∈ {0, 1}T (the columns of X),

can be viewed as a sequence of truth values indicating if the respective compo-

nent is active. Let ∨ be the element-wise or-operator such that xj ∨xi ∈ {0, 1}T .

Since the network might infer the same component (according to its waveform)

multiple times, a successful re-aggregation strategy would need to identify com-

ponents with similar waveforms and connect them via the ∨-function.

Furthermore, imagine a scenario with two purely resistive appliances consuming

200W and 250W. As described earlier, the network could explain the aggregate

waveforms by allocating one 200W sinusoid and one 50W sinusoid. Let x1 and

x2 be the subcomponents constituting the inferred sinusoidal building blocks re-

spectively. For the temporal activity pattern of the appliance consuming 250W,

the following needs to be true: x1 ∧ x2, whereas for the appliance consuming

200W, we need to have x1 ∧ ¬x2.

In order to provide an upper bound for an unsupervised algorithm that finds a

boolean function connecting subcomponents, an algorithm is introduced that

performs a greedy search over boolean functions in a supervised way: A func-

tion f(xj , ..., xk) is sought that maximizes the similarity between gi (the temporal

activity of appliance i) and the output of that function on a subset of binary com-

ponents xj , ..., xk. We furthermore assume that f solely contains the operators

∨,∧ and ¬∧. As a similarity measure the F1 score is used.

The greedy algorithm iteratively adds one component to the function. The al-

gorithm is initialized believing that gi is always turned on, i.e. f0 = (1)T . Then

it iterates over all xi and computes the F1 score that would result in either ap-
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pending ∧xi, ∨xi or ∧¬xi to f . After one sweep, the component that resulted in

a maximal increase in F1 score is selected and appended to f . This is repeated

until the F1 score cannot be improved further.

3.7 Unsupervised Re-Aggregation

3.7.1 Lower bound on unsupervised Re-Aggregation

The assumption that every inferred subcomponent readily constitutes an appliance

is a far-fetched assumption but can serve as a lower bound for unsupervised re-

aggregation strategies. For each appliance, the component resulting in the highest

F1 score compared to the ground truth is selected. This assumes that it is possible to

classify subcomponent waveforms and their temporal activity patterns in order to infer

appliances or receive this information from a user.

3.7.2 Naïve Re-Aggregation

When applying the supervised boolean re-aggregation described earlier, the algo-

rithm seems to favor connecting subcomponents using the ∧-operator. Following

this intuition, a naïve re-aggregation strategy is introduced: two similarity metrics are

defined: dw and da. The purpose of dw is to measure the similarity between the

waveforms of two subcomponents, whereas da measures the similarity between the

temporal activity patterns of two subcomponents. We assume knowledge of a seed-

component which in this case is the component resulting in the highest F1 score when

comparing components to the ground truth. So ultimately, the goal is to improve the

lower bound on unsupervised re-aggregation introduced earlier.
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For every appliance the seed-component is found using the ground truth. Let xa,s be

the seed-component of appliances a. Then, for every component, a weighted sum

of the similarity scores is computed: d(xa,s, xi) = λdw(xa,s, xi) + (1 − λ)da(xa,s, xi).

Let Xd be the set of components for which this similarity is bigger than a threshold ε,

i.e. Xd(a) = {xi|d(xa,s, xi) > ε}. All components in Xd(a) are connected using the

∧-operator, i.e. ĝa =
∧
xi∈Xd(a) xi.

3.8 Results

3.8.1 Supervised

In the supervised scenario, the power trace of the individual appliances can be esti-

mated in a straight forward way if we assume that the on and off consumptions of

appliances are known. Let ĝa be the boolean time series representing the estimate

for appliance a, then p̂ = ponĝa + poff (1− ĝa). As a measurement of the goodness of

the inferred power trace, the mean deviation error is employed:

E(p, p̂) =
∑
i,t

|pi(t)− p̂i(t)|
pi(t)

BOLT poses energy disaggregation as a waveform classification problem. Cur-

rent waveforms are highly non-iid (independently and identically distributed), which

poses a challenge for properly evaluating the performance. Thus, we evaluate the

performance in two ways: first, we assume the current readings are iid and therefore

randomly split matrix X into a training and test set (50/50 split) for the logistic regres-

sion. This might, however, overestimate the performance in some cases but allows

us to obtain disaggregation results for every appliance. Second, we perform snippet
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cross-validation. For this, the ground truth is sliced into non-overlapping snippets that

contain a single run-cycle of an appliance, i.e. the data is separated between an off

and an on-transition such that every snippet contains a run-cycle and some examples

where the appliance is off to ensure that no data is lost. The logistic regression is then

trained on all but one snippet and evaluated on the snippet that it was not trained on.

Note that such an evaluation is not possible for all appliances (e.g. those appliances

that only contain a single run-cycle). Table 3.1 shows the results on the individual

appliances for which ground truth data was available. The column “active” shows

the proportion of time the appliance was active. Since the energy was estimated as-

suming 2-state appliances, mean disaggregation error captures the variance of the

appliances to some degree. A perfect 2-state prediction of an appliance with higher

variance will always lead to a higher mean disaggregation error, even though the en-

ergy in sliding windows (or power at a lower temporal resolution) would be predicted

perfectly. The lower bound for assuming 2-state appliances and a perfect prediction

is shown in the column E(p). E(p̂) and ES(p̂) shows the mean disaggregation error

using iid- and snippet-evaluation, respectively.

Whether or not the algorithm can detect if an appliance is turned on or off was mea-

sured using the F1 score (0 - worst, 1 - best). As expected, for iid-evaluation, combin-

ing binary subcomponents using logistic regression (F1L) outperforms the approach

based on greedy search (F1B). F1S shows the performance using snippet evalua-

tion.

The Boolean Re-Aggregation allows the recovery of the components which con-

tributed most to the disaggregation of the appliances. Table 3.2 shows the three most
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Appliance Active F1B F1L E(p̂) E(p) F1S Es(p̂)

A/V LR 60% 0.89 0.98 0.04 0.009 - -
Computer 1 27.3% 0.88 0.99 0.05 0.042 0.96 0.10
Desk Lamp 21.4% 0.84 0.95 0.06 0.013 0.81 0.38
DVR 20.7% 0.94 0.99 0.006 0.005 0.89 0.05
Socket LR > 0.1% 0.96 0.92 0.09 0.089 - -
Garage Door 0.4 % 0.49 0.89 0.07 0.063 - -
Iron 0.1 % 0.74 0.92 0.12 0.115 - -
Laptop 1 33.3% 0.75 0.92 0.34 0.272 - -
LCD Monitor 16.2% 0.73 0.94 0.12 0.029 0.79 0.38
Monitor 2 17.3% 0.80 0.92 0.20 0.089 - -
Printer 0.1% 0.45 0.70 0.05 0.045 - -
Tall Desk Lamp 21.4% 0.84 0.95 0.06 0.008 0.80 0.38
TV Basement 20.7% 0.94 0.99 0.05 0.029 0.88 0.26
Random 30% 0 0 - - 0 -
Overall 0.058 0.037 - 0.18

Table 3.1: “Active” denotes the proportion during which the appliance was active, F1B and
F1L show the performance of the Boolean Search and logistic regression in the iid-evaluation
setting whereas F1S shows the performance of the logistic regression using snippet cross-
validation, E(p̂) and E(p) show mean disaggregation error of the inferred power trace (Logit)
and the lower bound assuming 2-state appliances. ES(p̂) shows the same error using snippet
crossvalidation.

influential components for some of the appliances excluding components that are con-

nected by ¬∧, i.e. only appliances that have a positive influence on disaggregation.

What is surprising is that, for example, the first waveform inferred for AV-LR seems to

be more similar to the waveforms of the Computer than to its other waveforms. Since

ground truth of the waveforms of the appliances is not available, it is unclear why

this is the case. One possible explanation is that the algorithm exploited appliance

co-variance information, i.e. if an appliance is only active when another appliance is

active, the algorithm might learn the waveform of that other appliance.

3.8.2 Unsupervised

Table 3.3 shows the results of the unsupervised approaches. The dataset is heavily

biased towards some appliances, i.e. some appliances are active for just a fraction of
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AV-LR

Computer 1

DVR

Laptop 1

LCD Monitor

Monitor 2

Table 3.2: The components that contributed most to the disaggregation of the respective
appliances.

the dataset. This bias seems to be reflected in the performance of the unsupervised

disaggregation: only appliances that were active for at least 15% achieved an F1

score of over 0.6. Even though the performance dropped substantially in comparison

to the supervised case, it still seems to perform well in comparison to existing energy

disaggregation algorithms. It is hard to compare different NILM systems since differ-

ent algorithms are evaluated on different datasets. But to give an intuition on how well

BOLT performs in comparison to other systems, we compared BOLT to the algorithm

proposed in [83]. In [83] a disaggregation system based on non-parametric FHMMs

is introduced and evaluated on the REDD [96] dataset. REDD is of comparable com-
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Appliance Active Lower Bound F1 Naïve F1
A/V LR 60% 0.85 0.85
Computer 1 27.3% 0.67 0.74
Desk Lamp 21.4% 0.70 0.70
DVR 20.7% 0.85 0.85
Socket LR > 0.1% 0.0 0.0
Garage Door 0.4 % 0.24 0.3
Iron 0.1 % 0.09 0.30
Laptop 1 33.3% 0.71 0.71
LCD Monitor 16.2% 0.63 0.63
Monitor 2 17.3% 0.67 0.70
Printer 0.1% 0.07 0.07
Tall Desk Lamp 21.4% 0.70 0.70
TV Basement 20.7% 0.85 0.85

Table 3.3: “Lower Bound F1” and “Naïve F1” show the performance using different unsuper-
vised reaggregation techniques.

plexity but the high-frequency portion of the dataset is compressed in a lossy way

which might have a detrimental effect on the performance of BOLT. Their proposed

method based on NFHMM achieves a score of 0.25 (GSPA, 0 worst, 1 best) on the

REDD dataset in comparison to 0.61 unsupervised BOLT on the BLUED dataset.

For the naïve unsupervised re-aggregation, the optimal parameters λ and ε were

obtained for every appliance using cross-validation. The naïve unsupervised re-

aggregation was only able to slightly improve the performance on a small subset

of the appliances but it shows that it seems to be possible to further improve the

unsupervised approach.
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3.9 Hardware Implementation

Figure 3.4: 1.) Voltage Input, 2.) Power Supply, 3.) Current Transformer 4.) OpenEnergyMon-
itor 5.) Metered Power Strip

NILM systems that rely on high sampling rates of the current or voltage signal

quickly run into data transmission and storage problems. For example, a system

which carries out inference on a centralized server and that requires a sampling rate

of 12kHz would need to transmit and store approximately 4GB per sensor day assum-

ing a sensor resolution of 16bits per sample. Such a system would not scale well to

many sensors (or buildings). BOLT, however, can infer the states of the subcompo-

nents directly and then only transmit these states. Since the states of the subcompo-

nents can be encoded by a single bit per subcomponent, inferring the subcomponents

can be viewed as very strong compression and, as we have shown earlier, this com-

pression preserves the information of appliance activities. By doing so, the data that

needs to be transmitted can be reduced to 8.5MB per sensor/day, resulting in a 500

fold reduction.

Ultimately, the data that needs to be transmitted is independent of the internal sam-

pling frequency and only depends on the number of subcomponents. This means that
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theoretically, megahertz sampling frequencies could be leveraged while still keeping

the data transmission and storage costs low. However practically, with increasing in-

ternal sampling frequency, the computational burden increases which in turn requires

computationally more powerful smart-metering hardware.

We conducted an experiment to show the maximum sampling rates achievable with

a Raspberry Pi 26. Figure 3.4 shows a picture of the experimental setup. The Rasp-

berry Pi is a ubiquitous, low-cost (US $35) embedded computing platform powered by

a 900MHz quad-core ARM Cortex-A7. The open source Open Energy Monitor7 was

used for our experiments. The Raspberry Pi built into the Open Energy Monitor is in-

ternally connected to a micro-controller powered by an ATMega328p with an internal

clock rate of 16MHz which serves as a sensing relay.

The computational cost of inferring the states of the subcomponents is a function

of the number of computational nodes in the network and by increasing the sampling

frequency, at the very least, the number of the computational nodes in the input layer

increases. In order to investigate the limits of real-time inference as a function of the

sampling rate two sets of experiments were conducted. In the first experiment a fixed

topology of the network is assumed: Let f be the sampling rate. The topology of

the network is in the first experiment: f → 500 → 100 → f , i.e. there are f input

neurons that project the input onto a hidden layer consisting of 500 neurons which

in turn projects the input down onto 100 binary units. The states of the binary units

in turn are used to recreate the input, i.e. the output dimensionality is also f . In the

second experiment, we considered a network whose topology grows linearly with the

sampling rate. Data with a higher sampling rate might contain more structure and in

6http://raspberrypi.org
7http://openenergymonitor.org
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Figure 3.5: The computational time as a function of the sampling rate. The top figure assumes
a simple numpy implementation whereas the bottom figure uses numpy and BLAS. The black
horizontal line marks up until when real time inference is possible.

turn require more flexibility of the network to disaggregate the waveforms. The topol-

ogy of the ‘relative network’ is set to: f → f/10 → 100 → f . Inference is carried out

with an implementation using the Python package numpy. Since inference in neural

networks can be implemented by a succession of matrix-multiplications followed by

the application of a non-linearity, the potential speed-up by using BLAS (Basic Linear
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Algebra Subprograms8) is also investigated.

Note that with a simple trick, the costs of having to transform the inputs into frequency

domain during inference, i.e. the costs of the FFT can be avoided by exploiting the

linearity of the matrix-multiplications and FFT. Let y(t) be the input at time t and w be

the first column of the weights coming into the first layer. Let F denote the Fourier

transform, i.e. F(y(t))k =
∑N

j=0 exp(−2πjk/N)y(t)j . For the activation of the first

neuron in the first layer before applying the non-linearity the following holds:

F(y(t))Tw =
N∑
k=0

wk

N∑
j=0

exp(−2πjk/N)y(t)j

=
N∑
k=0

y(t)k

N∑
j=0

exp(−2πjk/N)wj = F(w)T y(t)

This ultimately means that instead of computing the Fourier Transform of every input,

instead the Fourier transform of the weight-matrix can be computed once leading to a

substantial decrease in computational cost. Training the network in frequency-domain

and doing inference in time-domain allows for enforcing frequency-constraints while

at the same time keeping the computational time needed for inference low.

Figure 3.5 shows the increase in computational time as a function of the sampling

rate for the topologies described above. The top figure shows the inference time

using a simple numpy implementation whereas the bottom figure shows a numpy

implementation using BLAS. The sampling frequency describes the data collected

within 1 second and as long as the data collected can be processed in less than 1s,

real time inference is possible on the smart meter. It can be seen that when using a

fixed topology, real-time inference using BLAS is possible up until sampling rates of

8http://www.netlib.org/blas/
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55kHz. But as we have shown earlier, even a sampling rate of only 4.8kHz suffices to

infer appliance states with high precision.

3.10 Conclusion

The approach introduced in this paper seems to be the first approach that acknowl-

edges the fact that loads are not necessarily linear, i.e. not all loads are phase-shifted

sinusoids. Most approaches simply use active and reactive power as features and

neglect the fact that some appliances have very distinct waveforms which cannot

be characterized in the traditional resistive, inductive and capacitive load trichotomy.

Applying Binary Matrix Factorization in order to infer reoccurring additive subcompo-

nents in the current signal allows to decompose the current signal and extract a very

rich set of features: component waveforms. Combining the inferred components to

ultimately infer whether or not an appliance is active has shown great potential. The

supervised case approaches what is theoretically possible under the assumption of

2-state appliances but requires the availability of training data whereas the results of

unsupervised approaches indicate the possibility of re-aggregating appliances in an

unsupervised way.

The approach introduced in this paper also shows advantages from a computation

point of view: the hidden state given some input can be viewed as a drastically com-

pressed representation of the input that preserves information about which appliances

are active and, since inference of the hidden states using the neural network is com-

putationally cheap, only the hidden states (component states) need to be transmitted,

which in turn reduces the data storage and transmission burden while still leveraging

high-frequency information. For instance, an approach that requires remote inference
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and a sampling frequency of 12kHz would need to send out 96kb/s as opposed to

16byte/s (100bits per component + 32bits for the aggregate signal) using this ap-

proach. Additionally, inferring which appliances are active at any given time requires

only a 1 second slice of current, which in turn implies that inference can be carried out

without the need of a warm-up phase such as those required by approaches based

on FHMM.

3.11 Future work

Some machine learning systems such as, for example, a system that predicts the

future value of a random variable can continuously learn from its mistakes. In or-

der to obtain the information of whether or not a past prediction was right or wrong,

simply time needs to pass and the correct value can be observed. In this respect,

NILM systems face an additional difficulty: a purely non-intrusive system can never

learn from its mistakes because it cannot observe the true state of appliances. This

characteristic is detrimental for supervised approaches that assume snapshot knowl-

edge of appliances because, implicitly, these approaches also assume that loads do

not change over time. For unsupervised approaches, this means that the entire NILM

system can only be evaluated on a minuscule subset of homes which are submetered

and buildings for which the systems performs suboptimally can at most only tried to

be identified by indirect metrics. Because of the unsupervised nature of the subcom-

ponent identification step of the system introduced in this paper, continuous retraining

of the system is possible. However, combining the subcomponents into appliances

still requires training to allow for high precision disaggregation. The requirement for

training can, nonetheless, be alleviated. Two strategies that might alleviate the need

68



3.11. Future work

for ground truth will be discussed here in more detail.

Sparse Coding and Waveform Library As we have discussed earlier, especially in

the unsupervised case, the proposed system struggles with purely resistive

loads as they lack discriminative features. The algorithm can always stitch to-

gether and re-use sinusoids. This problem could however be alleviated by en-

forcing sparsity of the binary hidden layer of the neural network. If the algorithm

stitches sinusoids together, more subcomponents are active in comparison to a

scenario in which each subcomponent represents an appliance. This is why the

effect of enforcing sparsity in the hidden layer of the neural network might be

worth investigating.

Enforcing sparsity in the hidden layer is closely linked with infusing prior knowl-

edge into the system. If knowledge about the appliances present in a building is

assumed, this knowledge could be used to alleviate the need for ground truth.

In case the waveforms of the appliance are known, i.e. the algorithm can access

a waveform library that contains the waveforms of individual appliances, a prior

distribution over the weights coming into the output layer (the component wave-

forms) could be imposed in order to enforce that the component waveforms are

similar to the elements in the waveform library.

Distributed Sensing Another way to alleviate the need for ground truth is to build a

hybrid approach. For some chain franchises like e.g. fast food restaurants, gas

stations, supermarkets, etc. the assumption that loads are similar across differ-

ent buildings might be valid. This could be leveraged by submetering a subset

of the franchise locations and broadcasting the appliance specifics knowledge

from the submetered to the non-submetered locations. BOLT seems to be a
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prime candidate for such a strategy since the subcomponent identification por-

tion of the algorithm is unsupervised. This allows to fuse the data collected at

all franchise locations into a single stream of data. This stream of data can then

in turn be used to train the unsupervised neural network model. In order to in-

fer appliance states of non-submetered locations, the data at the submetered

locations can be leveraged to create a supervised model which is then shared

with the non-submetered locations. Such a strategy has many advantages over

traditional NILM systems:

• Continuous re-training allows handling of load patterns that might change

over time

• Potentially high precision NILM while still bringing down the costs substan-

tially - only a small subset locations would need to be submetered

• Training a joint unsupervised model of all franchise locations allows to in-

corporate information of non-submetered locations into the modeling pro-

cess which might make the overall system very robust

• Deep Learning seems to thrive on big datasets and in such a scenario

BOLT could in principle leverage the information of an infinite data stream

Such a distributed NILM system however creates new challenges. For example,

the system needs to communicate information between different smart meters

extensively. Whether BOLT can be used to reduce the data transmission re-

quirements is an interesting future research direction, especially as technolo-

gies like Low Power Wide Area Networks (LP-WAN) become more widespread.
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3.12 Postamble

This publication introduces an algorithm to obtain appliance state estimates solely

based on information present within a single cycle of current. The algorithm approx-

imates an otherwise NP-hard problem by estimating the gradient through the Heavi-

side non-linearity. The publication answers Research Question 1.1.1, because infer-

ence requires only a forward pass through a neural network and can be carried out

in real-time on embedded hardware, therefore fulfilling the additional requirement of

computational efficiency. Furthermore, Research Question 1.1.2 is answered by eval-

uating the performance in a supervised and unsupervised fashion. In a supervised

setting, the algorithm shows competitive performance in terms of disaggregation error.

However, note that the performance drops considerably in an unsupervised setting.

In order to achieve computational efficiency, any temporal regularization that is usually

present in state-based NILM approaches is ignored. Because of this BOLT seems to

overfit, i.e. the algorithm finds solutions that are not constrained enough. Specifically,

when a single appliance changes its state, the state of multiple components switch.

Note that enforcing temporal regularization is computationally expensive because it

requires an approximation of the filtering recursion. In the next chapter, an algorithm

is presented that makes use of Variational Inference to achieve this.
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VarBOLT: Approximate Learning in

Factorial HMMs

The following publication can be viewed as an extension of BOLT. Specifically, it tries

to overcome the problem that BOLT requires supervision in order to achieve competi-

tive disaggregation results. In order to achieve this, temporal dependencies between

appliance states are modeled which in turn requires an approximation of the filtering

recursion, i.e. the publication tries to answers the question what a computationally ef-

ficient algorithm to approximate the filtering distribution to ultimately achieve temporal

regularization is. Furthermore, the performance of the resulting algorithm is evaluated

in an unsupervised fashion.

Lange, Henning, and Mario Berges. "Variational BOLT: Approximate Learning

in Factorial Hidden Markov Models with Application to Energy Disaggregation."

Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
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4.2. Abstract

4.1 Abstract

The learning problem for Factorial Hidden Markov Models with discrete and multi-

variate latent variables remains a challenge. Inference of the latent variables required

for the E-step of Expectation Minimization algorithms is usually computationally in-

tractable. In this paper we propose a variational learning approach mimicking the

Baum-Welch algorithm. By approximating the filtering distribution with a variational

distribution parameterized by a recurrent neural network, the computational complex-

ity of the learning problem as a function of the number of hidden states can be re-

duced to quasilinear instead of quadratic time as required by traditional algorithms

such as Baum-Welch whilst making minimal independence assumptions. We evalu-

ate the performance of the resulting algorithm, which we call Variational BOLT, in the

context of unsupervised end-to-end energy disaggregation. Specifically, we conduct

experiments on the publicly available REDD dataset and show competitive results

when compared with a supervised inference approach and state-of-the-art results in

an unsupervised setting.

4.2 Introduction

Because of its potential to discover and unlock energy saving opportunities in build-

ings, the problem of energy disaggregation [82] has received increased interest from

various academic communities. The objective of this single-channel source separa-

tion problem, also known as non-intrusive load monitoring (NILM), is to infer appliance-

level power consumption information given data from only a single sensing point at the

main electrical panel of a building. The observed aggregate power measured at the
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main panel constitutes the sum of the power of the individual appliances. Since, appli-

ance states (e.g., on, off) can be assumed to evolve independently and the aggregate

observation is dependent on the joint state of all appliances, Factorial Hidden Markov

Models (FHMM) [86] have emerged as a prominent model for the generative process

of the aggregate observations. However, because latent states become conditionally

dependent given the observations, exact inference of the posterior, i.e. the distribu-

tion of appliance states given the aggregate observation, is assumed to be intractable.

Numerous approximate inference techniques have been proposed and employed in

the past to tackle this problem. Authors in [84] introduced the one-at-a-time constraint

that postulates that only a single appliance can change its state at any given time.

This constraint allows for posterior inference by either posing the problem as an in-

teger programming problem [84] or by truncating the Viterbi algorithm [87]. However,

these approaches were focused on the decoding rather than the learning problem.

On the other hand, [30] proposed a solution to the learning problem based on MCMC

sampling but this approach seems to struggle with slow mixing of the posterior.

The model introduced in this paper makes use of a highly tractable auxiliary distri-

bution that approximates the true filtering distribution. This tractable distribution is

parameterized by a deep recurrent neural network, specifically stacked LSTMs [97].

We build on recent results showing how neural networks in conjunction with Varia-

tional Inference can be used as a powerful tool for statistical inference [72]. This

combination is favorable because Variational Inference allows one to pose statistical

inference as a (non-linear) optimization problem and neural networks have become a

dominant approach for non-linear optimization.

Because we assume the latent variables to be binary (i.e. a Bernoulli auxiliary dis-
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tribution) we face the additional difficulty of dealing with non-conjugate discrete dis-

tributions, which pose significant challenges in the context of neural networks and

variational inference [72]. As we will show later, this problem is circumvented by di-

rectly approximating the expectation of the true filtering distribution and introducing

a loss function that directly penalizes the neural network outputs for deviating from

that approximation. By making use of a tractable auxiliary distribution and making

minimal independence assumptions (i.e. only posterior independence of the latent

variables at a single time point) computations required for the filtering distribution that

are typically quadratic in the number of hidden states can be reduced to quasilinear

time. This ultimately allows modeling rich temporal dependencies between latent vari-

ables whilst keeping computational costs low. Although we focus on the application of

energy disaggregation in this paper, our proposed method could find applications in

other fields where FHMMs with binary latent states are employed such as in certain

Bioinformatics problems, e.g., [98, 99].

The decreased computational costs for inference afford our solution with the additional

advantage of addressing security and privacy concerns associated with energy dis-

aggregation solutions. In other words, disaggregation can, in principle, be carried out

in real-time on cheap off-the-shelf embedded hardware located within the premises.

In the next section, we introduce Factorial Hidden Markov Models and explain the

need for variational approximation of the filtering distribution. The section that follows

shows how variational estimates of the filtering distribution can be obtained efficiently.

The next section highlights the importance of modeling temporal dependencies and

shows how this can be achieved by additionally modeling the difference signal of the

aggregate observations. We then present experiments/results on the REDD dataset
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and conclusions.

4.3 Factorial Hidden Markov Models and Variational Infer-

ence
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Figure 4.1: (a): Matrix X containing aggregate instantaneous power waveforms alongside the
aggregate power. (b): Matrix W containing candidate component waveforms. (c): Represen-
tation of a Factorial Hidden Markov model

FHMMs are a generalization of Hidden Markov Models in which multiple hidden

states evolve independently in parallel [6]. See Figure 4.1c for a representation of the

associated graphical model. When the parameters of the individual HMM chains are

known, energy disaggregation can be posed as the decoding problem for FHMMs.

However, obtaining these paramaters is usually prohibitively expensive. On the other

hand, unsupervised energy disaggregation can be posed as the learning problem on
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4.3. Factorial Hidden Markov Models and Variational Inference

this graphical model.

Because of its factorial nature, the probability of the observation at time t, xt, is a

function of the joint hidden state zt, with t ∈ {1, ..., T}. In general, the latent variables

of FHMMs are modeled as categorical variables, which could lead to computationally

tractable solutions (e.g., [100]). In our case we restrict zt to be binary, specifically

Bernoulli distributed. Assuming binary hidden states removes some of the ambiguity

inherent to the learning problem: every latent representation with categorical variables

can be decomposed into a representation with binary variables, i.e. by assigning

a binary variable for each categorical state. This binary decomposition is unique

and in a sense maximal. However, binary decompositions can be aggregated into

exponentially-many categorical decompositions, i.e. any combination of binary latent

variables can be joined into one categorical variable. In order to avoid this ambiguity,

we restrict the latent variables to be binary.

Since hidden states are assumed to be binary and multiple hidden states evolve in

parallel, zt ∈ Z = {0, 1}C with C being the number of parallel hidden chains. Thus,

the joint likelihood can be expressed as:

p(x1:T , z1:T ) =
T∏
t

p(xt|zt)
C∏
i

p(zt,i|zt−1,i)p(z0,i) (4.1)

For the application of energy disaggregation, we choose a representation of the

aggregate observation similar to our prior work [101], i.e. the observation xt con-

stitutes the aggregate instantaneous power waveform aligned by zero-crossings de-

tected in the voltage line, thus xt ∈ RN with N being the number of samples per

voltage cycle. Figure 4.1a shows aggregate instantaneous power waveforms along-

side the observed aggregate active power over time. Since instantaneous power is
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additive, we model p(xt|zt) to be a Gaussian distribution with p(xt|zt) = N (xt|Wzt, αI)

where α is a variance parameter, W ∈ RN×C is a matrix containing the power wave-

forms of the inferred components and is not assumed to be known. Figure 4.1b shows

an example of inferred power waveforms.

Baum-Welch, an Expectaction-Maximization algorithm, is a prominent algorithm for

the learning problem in Hidden Markov Models. Baum-Welch makes model updates

based on the expected time spent in states, the expected number of state transitions

and the expected number of times a state emits an observation. An efficient algo-

rithm to compute these quantities is the forward-backward algorithm. The forward-

probabilities (4.2) can be computed recursively. Given the forward probabilities, the

filtering distribution can be computed according to (4.3).

p(x1:t, zt) = p(xt|zt)
∑
z′∈Z

p(zt|z′)p(zt−1, x1:t−1) (4.2)

p(zt|x1:t) =
p(x1:t, zt)∑
z′∈Z p(x1:t, z′)

(4.3)

Because the number of possible latent states z grows exponentially with the num-

ber of components, evaluating (4.2) is intractable for FHMMs. However, as we will

show later, ideas from Variational Inference can be used to approximate forward-

probabilities.

Variational Inference is a tool to deal with intractable posterior distributions and re-

lies on an auxiliary or variational distribution Q governed by the variational parameter

Θ. Posterior inference in Q is required to be tractable, which is usually achieved

by making independence assumptions. To paraphrase the main idea behind Vari-

ational Inference: in order to perform inference on a distribution P with intractable
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posterior, variational parameters Θ are chosen in such a way that Q best approxi-

mates P and then inference is performed on Q instead of P . For our application, P

is the filtering distribution, i.e. (4.3), and we choose Q to be an independent multi-

variate Bernoulli distribution with density qσ(zt) =
∏C
i σ

zt,i
i (1 − σi)

1−zt,i and with σi

being the coin-flip probabilities of the latent variables. For the conditional qσ(zt|xt),

we assume the coin-flip probabilities to be functions of the conditioning variable xt,

i.e. qσ(zt = ~1|xt) = σt = fΘ(xt). Because we want Q to capture the temporal depen-

dencies present in P , we chose f to be a recurrent deep neural network governed by

the variational parameters Θ (which in this case constitute the weights of the neural

network). This in turn means that σt = fΘ(x1:t) is a function of all previous obser-

vations x1:t, i.e. Q is also a filtering distribution: q(zt|x1:t). Note that this implies

that the auxiliary distribution does not assume temporal independence between la-

tent variables but assumes independence between elements of the latent variable at

any given time.

The evidence lower bound (ELBO) as a variational objective can be derived as fol-

lows [67]1:

L = log p(x1:t)−DKL(q(zt|x1:t)||p(zt|x1:t)) (4.4)

= EQ[log p(x1:t, zt)]− EQ[log q(zt)] (4.5)

Note that because of the equivalence of (4.4) and (4.5), maximizing (4.5) is equiva-

lent to maximizing (4.4). This means that optimizing the parameters of P and Q with

respect to to (4.5) leads to maximization of the log-likelihood of the data as well as

1Comment: In retrospect, this is an odd way of maximizing the data likelihood because the data
likelihood is maximized up to time point t. This has little influence on the resulting algorithm, however, in
chapter 6, a more elegant solution, namely to maximize the chain-rule factorization of the data likelihood,
is presented.
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minimization of the posterior divergence. Although the second expectation of (4.5)

usually has an analytical solution, evaluating the first expectation is usually achieved

by sampling from Q [74]. However, approximating the expression by sampling dis-

connects the optimization problem from the variational parameters Θ, i.e. Q vanishes

from the optimization problem.2 For some continuous non-conjugate distributions, this

problem can be avoided by the re-parameterization trick [102], i.e. by finding a de-

terministic and differentiable function that provides samples of Q given the variational

parameters Θ and some random noise. For binary non-conjugate distributions such

as the Bernoulli such a function does not seem to exist [72].

We circumvent this problem by approximating the true filtering distribution, i.e. es-

timate p̂(zt|x1:t) with the help of Q. Given estimates p̂(zt|x1:t), the σ∗ as a func-

tion of Θ resulting in the lowest forward KL-divergence can be obtained, i.e. σ∗ =

arg minσ
∑

tDKL(p̂(zt|x1:t)||qσ(zt|x1:t)). Given σ∗, the binary cross-entropy loss be-

tween σ and σ∗ (H(σt, σ
∗
t )) is then minimized in order to minimize the forward KL-

divergence of the posterior.

Minimizing the binary cross-entropy loss between σ and σ∗ minimizes the posterior

divergence but since the parameters of P (the component waveforms W ) are not

known, the model needs to be forced to explain the aggregate signal explicitly. Oth-

erwise the free parameter W will be abused to minimize the divergence without ex-

plaining the data. Thus, we additionally maximize EQ[log p̂(zt, x1:t)] in order to explain

2Note that this does not mean that gradient w.r.t. Θ cannot be computed.
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the aggregate waveforms. Hence, the objective function becomes:

L(σ,W ) =
∑
t

EQ[p̂(zt, x1:t)]−H(σt, σ
∗
t )

with: σ∗t = min
σ
DKL(p̂(zt|x1:t)||q(zt|x1:t))

= Ep̂(zt|x1:t)[z]

and: −H(σt, σ
∗
t ) = σ∗t log(σt) + (1− σ∗t ) log(1− σt)

To sum up the main ideas of this paper:

• Computing the filtering recursion required for the E-step of Baum-Welch is pro-

hibitively expensive since it requires a summation over exponentially-many la-

tent configurations.

• An auxiliary distribution q(zt|x1:t) that assumes independence between elements

in zt is introduced, which allows for approximating p̂(zt|x1:t). Note that q does

not assume independence over time steps. The independence structure of the

auxiliary distribution is then exploited to approximate the filtering recursion effi-

ciently circumventing summation of exponentially-many latent configurations.

• In order to optimize the parameters of the auxiliary distribution, the variational

parameters minimizing the KL-divergence between P and Q, i.e. σ∗, are esti-

mated and the binary cross-entropy loss between the predicted parameters σ

and the optimal σ∗ is minimized. As we will show later, this is equivalent to

minimizing the KL-divergence but circumvents the re-parameterization trick and

allows for a compact representation of the problem.
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Note that we interchangeably call σ and Θ variational parameters. However, in reality,

σ is a function of the true variational parameters, i.e. the neural network weights Θ,

and when a loss is defined with respect to σ then gradients with respect to Θ can be

obtained by application of the chain rule.

In the next section, we will discuss how to obtain estimates of the filtering distribution

probabilities, i.e. p̂(zt|x1:t).

4.4 Estimating filter distribution probabilities

When using the forward-algorithm to obtain the filtering distribution p(zt|x1:t) for FH-

MMs, the computational complexity is in O(22CT ′) with C being the number of com-

ponents and T ′ being the number of discrete time steps. In this work, we propose

a learning algorithm that operates in O(Cε+1T ) with Cε being the number of candi-

date latent state configurations being considered and T � T ′ (by reducing decision

variables) and ε < C (by enforcing sparsity).

4.4.1 Reducing decision variables

For the problem of energy disaggregation, the aggregate observation is highly non-iid,

i.e. instantaneous power waveforms tend to repeat themselves over time since they

are associated with the operational state of appliances (and these do not change very

often). This implies that, as long as the aggregate observations have not changed

significantly, the latent states will not have changed and no new decision needs to

be made. Thus, by employing a simple change-point detector that extracts points

in time, also called events, where a significant change in the aggregate power was

observed, the number of decision variables can be reduced significantly. Let the
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number of detected events be T . Reducing the number of decision variables reduces

the complexity to O(22CT ). Depending on the change point detector, T is often three

orders of magnitudes smaller than T ′ [103].

4.4.2 Enforcing sparsity

A portion of the latent space can be excluded by enforcing sparsity of the latent vari-

ables. Usually only a small number of appliances are active at any given time. Thus

latent configurations where more than ε components are active can be excluded. Let

Z = {z ∈ {0, 1}C |
∑

i zi < ε} be the set of sparse candidate latent configurations. We

assume that p(x1:t, zt = zi) = 0 for all zi /∈ Z. This assumption allows us to eval-

uate p(zt|x1:t), since the denominator of equation (4.3) has become tractable. This

assumption reduces the complexity to O(C2εT ) with |Z| ∈ O(Cε).

4.4.3 Variational approximation of p(zt|x1:t)

For many problems modeled with FHMMs, such as energy disaggregation, p(zt|xt)

and therefore p(zt|x1:t) are highly multi-modal distributions. However, since the aux-

iliary conditional distribution Q assumes independence between elements of z, Q

is unable to learn the multi-modality of p(z|x). However, Q is able to either learn

arg maxz p(z|x) or Ep(z|x)[z]. These two modeling choices are reflected in either min-

imizing the forward DKL(P ||Q) or reverse DKL(Q||P ), respectively. It can be shown

that:

arg min
σ
DKL(P ||Qσ) = Ep(z|x)[z]

arg min
σ
DKL(Qσ||P ) = arg max

z
p(z|x)
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Viterbi learning was proposed as a faster alternative to Baum-Welch. For Viterbi

learning the model parameters are updated based on the most probable path z∗1:T =

arg maxz1:T p(z1:T |x1:T ).

Since minimizing the reverse KL-divergence forcesQ to learn the most probable mode

of P , minimizing the reverse KL-divergence approximates Viterbi learning but tends

to underfit considerably. On the other hand, minimizing the forward KL-divergence

seems to preserve more information about state posterior probabilities. However,

as we will show later, our proposed method does not correspond fully to learning

like Baum-Welch, i.e. updating the model based on p(zt|x1:T ), but rather updating

based on p(zt|x1:t), that is, making model updates based on forward-probabilities

alone whilst ignoring backward-probabilities.

As discussed earlier, the Baum-Welch algorithm as well as Viterbi learning require

computations that are quadratic in the numbers of hidden states. Even with the

domain-specific sparsity assumptions introduced earlier, computations that are quadratic

in the number of latent configurations are still prohibitively expensive. The key insight

into circumventing these computations is the fact that the filtering distribution at time t,

i.e. p(zt|x1:t) can be approximated by exploiting the independence structure of Q, i.e.

the fact that the auxiliary distribution assumes independence between components at
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any single point in time. Starting with equation (4.2):

p(x1:t, zt)

= p(xt|zt)
∑
z′∈Z

p(zt|z′)p(zt−1 = z′, x1:t−1)

≈ p(xt|zt)
∑
z′∈Z

p(zt|z′)q(zt−1 = z′|x1:t−1)p(x1:t−1)

= p(xt|zt)
∑
z′∈Z

p(zt|z′)
∏
i

σ
z′i
t−1,i(1− σt−1,i)

1−z′ip(x1:t−1)

Note that FHMMs components switch independently, i.e. p(z|z′) =
∏
i p(zi|z′i) and

let π(m,n) be the state-transition probabilities. Because q(zt|x1:t) assumes indepen-

dence between elements of zt, we can simplify the expression by recursively pulling

out elements of q(zt|x1:t), ultimately allowing us to rewrite a sum over all possible z

into a sum over the number of components, i.e. circumventing computations that grow

exponential with the number of parallel latent states:

p(x1:t, zt) ≈ p(xt|zt)p(x1:t−1)
∑
z′∈Z

∏
i

p(zt,i = zi|zt−1,i = z′i)σ
z′i
t−1,i(1− σt−1,i)

1−z′i

= p(xt|zt)p(x1:t−1)
∑
z′∈Z

∏
i

(ziπ(1, z′i) + (1− zi)π(0, z′i))σ
z′i
t−1,i(1− σt−1,i)

1−z′i

= p(xt|zt)p(x1:t−1)
∑
i

ziσt−1,iπ(1, 1) + zi(1− σt−1,i)π(1, 0)

+ (1− zi)σt−1,iπ(0, 1) + (1− zi)(1− σt−1,i)π(0, 0)

= p̂(x1:t, zt)

This allows us to approximate the forward probabilities p(zt, x1:t) based on σt−1 as

provided by Q and W as a parameter of P . Since we can compute p̂(zt, x1:t) for

all sparse z ∈ Z, we can approximate the filtering distribution p̂(zt|x1:t) according
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to equation (4.3). Note that, since we are only interested in the filtering distribution,

p(x1:t−1) does not need to be modeled because it cancels out.

Let σ∗ = Ep̂(zt=z|x1:t)[z]. Even though σ∗ is a function of W , we treat σ∗ as a constant

and do not allow the gradient of W to flow into σ∗. This avoids W being exploited to

minimize the posterior divergence instead of explaining the aggregate data. Note that,

when allowing the gradient of W to flow into σ∗, the algorithm will infer nonsensical

component waveforms, i.e. waveforms that draw significant power when the voltage

is 0. Based on the same reasoning, we do not allow the gradient of σ to flow into

EQ[p̂(zt, x1:t)].

Thus by exploiting the independence assumption of the auxiliary distribution, the com-

putational complexity estimating the filtering distribution can be reduced to O(Cε+1T ).

There is at least one example in the literature showing an application of variational in-

ference for learning in FHMMs: in [104] Gaussian copulas are paired with variational

inference to minimize an objective including the reverse KL-divergence, thus circum-

venting the problem of having to approximate the filtering distribution. Furthermore,

although not applied to sequential data and therefore not modeling temporal depen-

dencies between latent variables, previous work has proposed approaches for the

subproblem of estimating the gradient through binary stochastic units, e.g. [105, 106].

When temporal dependencies are removed, authors in [107] arrive at a similar so-

lution to ours. Their respective loss is derived as: LT&S =
∑

mw
(m)[log p(x|z(m)) +

log pσ(z(m)|x)] with w(m) being normalized importance weights of configuration z(m).

Note that, if the sparsity constraints introduced here were to be applied, the impor-

tance weights would approximate p(z|x). Also note that in that case, even though

motivated differently, the gradient updates with respect to the component activation
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probabilities σ are equivalent when temporal dependencies are not modeled. This jus-

tifies the seemingly arbitrary choice of minimizing the cross-entropy loss, i.e. H(σ, σ∗)

(instead of e.g. (σ − σ∗)2).

It can be shown that:

∂LT&S

∂σi
=

1

−(1− σi)
[1− σ∗i ] +

1

σ1
[σ∗i ]

=
∂(1− σ∗i ) log(1− σi) + σ∗i log(σi)

∂σi

=
∂H(σ, σ∗)

∂σi

4.5 Modeling temporal dependencies

Building on experience from previous work [101], the main objective of modeling the

temporal dependencies between latent states is temporal regularization. Specifically

for the problem of energy disaggregation, this means that when a single appliance

changes its state, only one and not multiple components change state. Without mod-

eling the temporal dependencies, models tend to ‘stitch’, i.e. when a single appliance

turns on, multiple model components switch states. Also without modeling temporal

dependencies, the model ‘recycles’ components, e.g. appliance a might be explained

by components 1 and 2, then appliance b is explained by components 2 and 3 and

appliance c is explained by components 1 and 3. A linear mapping from components

to appliances then becomes impossible.

Furthermore, for energy disaggregation, introducing fixed state transition probabilities

is problematic because of vast differences in the power consumption of appliances.

When every component pays a fixed cost for switching (π(0, 1) or π(1, 0)), appliances
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Figure 4.2: Graphical Model when additionally modeling the difference signal δxt

with a high power consumption can still afford to be explained by multiple components

because the cost for under-estimating the aggregate is higher than multiple switching

costs. At the same time, appliances that consume little power will be ignored, since

when they turn on, the associated increase in aggregate loss does not outweigh the

switching cost.

To overcome this problem, we additionally model the difference signal δxt = xt−xt−1

similar to [84]. Note that although technically the graphical model changes (see Fig-

ure 4.2), π can also be viewed as a function of δxt, i.e. the switching probabilities

depend on how well each component explains δxt. We define switching probabilities

associated with each component turning on or off at time t. Additionally, we define a

switching probability associated with no component switching.

Let,

I(t, i) = exp[−β||Wi: − δxt||] (on-switch)

O(t, i) = exp[−β||Wi: + δxt||] (off-switch)

X (t) = exp[−β||δxt||] (no-switch)
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Following the intuition gained earlier, we estimate the filtering distribution as,

p̂(zt = z, x1:t) = p(xt|zt = z)p(x1:t−1)[
C∑
i

(σt−1,i(1− zi)O(t, i) + (1− σt−1,i)ziI(t, i))

+

C∏
i

(ziσt−1,i + (1− zi)(1− σt−1,i))X (t)]

(4.6)

Note that the model described in equation (4.6) models dependencies between com-

ponents to some degree. The product in the last line can be expanded into all com-

binations of component configurations where no component switches from t − 1 to

t. This factorization allows for a compact and differentiable representation of ‘no

component’-switches without having to enumerate an exponential number of configu-

rations, therefore modeling limited dependencies between components efficiently.

4.6 Resulting Algorithm: Variational BOLT

The resulting algorithm, which we call Variational BOLT, operates in temporal mini-

batches of a fixed time-horizon h, i.e. the data is sequentially fed into the neural

network and model parameters Θ and W are updated before a new mini-batch of

data is processed. This process is repeated until convergence. Algorithm 1 explains

the process in pseudo-code.

The resulting algorithm has similarities to Variational Autoencoders (VAE) as well

as Expectation Maximization, specifically the Baum-Welch algorithm. Like VAE, an

efficient auxiliary recognition distribution is trained to predict the parameters of the

latent distribution. However, the auxiliary distribution is solely used to speed up com-

putations of the filtering recursion. Unlike VAE and like EM, instead of approximating
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input : Dataset X of size T ×N
output: Trained model parameters W and Θ
Initialize W by clustering and Θ randomly;
while not converged do

t← 0;
σ0 ← ~0;
while t < T do

for t′ ∈ t : t+ h do
Neural Network forward pass;
σt′ = fΘ(X[1 : t′, :]);
for z ∈ Z do

Compute p̂(x1:t′ , z) based on (4.6);
end
for z ∈ Z do

Compute p̂(z|x1:t′) based on (4.3);
end
σ∗t′ ← Ep̂(z|x1:t′ )

[z];
end
Maximize

∑t+h
t′=tH(σt′ , σ

∗
t′) with respect to Θ;

Maximize
∑t+h

t′=t EQ[p̂(z, x1:t′)] with respect to W ;
t← t+ h;

end
end

Algorithm 1: Variational BOLT in pseudo-code

intractable expectations by sampling latent states from the recognition distribution,

updates are computed based on a fixed set of possible hidden states.

4.7 Experiments

Experiments were conducted on the publicly-available REDD [96] dataset. The dataset

contains current and voltage readings at the main distribution panel with a sampling

rate of 16kHz and breaker level power readings with a sampling frequency of 0.3Hz.

The neural network used to predict q(zt = ~1|x1:t) is a 4 layer recurrent neural network.

The bottom two layers constitute non-recurrent tanh layers with 200 output units each.

The top two layers are LSTM-layers with sigmoid-activations each with 100 and 10

output units respectively. This means that 10 components were extracted and max-
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Figure 4.3: Topology of the neural network

imally 6 out of these 10 inferred components were allowed to be active at any given

time (ε = 6). Figure 4.3 shows a graphical depiction of the neural network.

Change points of the aggregate power were detected by an event detection algorithm:

Let p(t) be the aggregate power at time t. The maximum value of the absolute dif-

ference in the power signal within a window of 5 time steps was extracted. Every

window then casts a vote for the highest absolute power difference. However, only

these timestamps for which |p(t) − p(t − 1)| > 50W holds can receive a vote. Every

time stamp that received more than 3 votes is considered an event. Then, in order to

reduce the number of decision variables, the mean instantaneous power waveforms

in between events was extracted, and these constitute the set of T values of xt.

The neural network was then fed xt and δxt = xt−xt−1 and tasked to explain xt+1 and

δxt. In order to speed up convergence, the appliance waveforms W were initialized

by the cluster centroids obtained by applying K-Means to the difference signal δxt.
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(a) AFAMAP VarBOLT
Circuit (supervised*) (unsupervised)
Microwave 97.5% / 66.1% 88.8% / 8.0%
Bath GFI 82.7% / 70.8% 71.9% / 40.2%
Electronics 41.6% / 0.8% 87.8% / 40.7%
Kitch. Out. 1 37.5% / 12.9% 8.6% / 32.8%
Furnace 91.7% / 70.8% 85.0% / 50.6%
Kitch. Out. 2 . 45.2% / 16.0% 5.3% / 70.1%
Washer/Dryer 98.8% / 73.6% 97.3% / 72.3%

(b) NFHMM VarBOLT
(unsupervised) (unsupervised)

Overall panel 0.25 0.63

Table 4.1: (a) Performance comparison to AFAMAP, a supervised inference technique paired
with an unsupervised strategy of obtaining ground truth. Performance is measured in Preci-
sion / Recall. (b) Performance comparison with NFHMM, another end-to-end unsupervised
approach, in GSPA.

In the experiments the hyper-parameters α and β, i.e. the variance of the difference

and aggregate model were kept at 1.3 The model was trained for 200 iterations. For

inference, the filtering distribution probabilities were simply binarized: z = σ > 0.5.

4.7.1 Results

Since appliances were sub-metered at the circuit level and some circuits contain mul-

tiple appliances, precision and recall are used as a metric. “Recall measures what

portion of a given circuit’s energy is correctly classified, while precision measures, of

the energy assigned to a circuit, how much truly belonged to that circuit” [84]. For

every pair of inferred component and circuit, precision and recall were computed and

the component resulting in the highest (prec+ recall)/2 was selected for this circuit.

Note that because we assume z to be binary, we implicitly assume appliances to be

2-state, i.e. they can either be on or off. However, appliances like e.g. a furnace

are composed of multiple sub-elements. In that case, the proposed model ‘over-
3Exploring the hyperparameter space as well as experimenting with different W initializations and

emission probability models could be a promising future research endeavor.
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Figure 4.4: Top: Inferred components as well as circuit level ground truth. Bottom: An
example of ‘over-disaggregation’ of the furnace.

disaggregates’, i.e. it assigns a component for every sub-element. An example of

‘over-disaggregation’ can be seen in Figure 4.4. Furthermore, some appliances have

different power levels according to their operational state, i.e. a hair-dryer has differ-

ent heat settings. In this case, the proposed methods assigns different components
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for the same appliances. Note that supervised inference techniques usually do not

suffer from these problems. This is why we expect supervised inference algorithms

to outperform our approach. Table 4.1(a) shows a comparison with AFAMAP [84].

AFAMAP is a supervised inference algorithm paired with an unsupervised strategy

of obtaining model parameters for the individual HMM chains. We also compare

the performance to a fully unsupervised method based on Non-parametric FHMMs

(NFHMM) proposed in [30] (4.1(b)). As a performance criterion, they propose GSPA

(worst 0 - 1 best). GSPA does not measure differences in power but rather differences

between activations, i.e. circuit power traces are binarized and then GSPA measures

a weighted ratio between the intersection and union between binarized ground thruth

and estimates.

4.8 Conclusion & Future Work

We proposed a variational learning algorithm for discrete Factorial Hidden Markov

Models and applied it to the problem of energy disaggregation. The algorithm com-

pares promisingly to a supervised inference algorithm that is paired with an unsu-

pervised approach of obtaining ground truth. When compared to another end-to-end

unsupervised approach, our proposed method significantly outperforms it. An im-

plementation in keras [108] can be found at: https://github.com/INFERLab/

varbolt. Once the auxiliary distribution is trained, the corresponding neural network

could in principle be deployed to sensing hardware located at the electrical panel for

on-premise real-time inference.

Furthermore, we believe that our proposed method opens many interesting research

paths as there is still much room for improvement. A possible research path is to com-
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bine our methods with ideas from [107]. By sampling candidate hidden configurations,

the sparsity constrains made in section 3 can, in principle, be relaxed. This may al-

low the model to scale up to more components while keeping computational cost low.

Furthermore, the current model for the difference signal uses the Euclidean distance

to judge the similarity between component waveforms and the difference signal, so

investigating other similarity measures could further refine the model since Euclidean

distances might overemphasize differences in power over differences in the shape of

the waveform.
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4.9 Postamble

This publication answers Research Question 1.2.1 by introducing an algorithm we call

VarBOLT that allows for an approximation of the filtering recursion in O(Cε+1) where

ε is the number of candidate latent states and C is the number of inferred appliances.

Note that this is mainly achieved by making a sparsity assumption and by exploiting

the structure of a factored auxiliary distribution. Note that the sparsity assumption

states that the number of appliances that are active at any given time is small which

reduces the number of candidate latent states. However, note that this assumption

limits the scalability of the resulting algorithm.

On top of that, as we will show in the next publication, the use of a factored auxil-

iary posterior distribution can limit the accuracy of the algorithm. Specifically, because

of the structure of the auxiliary distribution that is required to achieve the computa-

tional speed-up, it is hard for the algorithm to learn either-or relationships. Further-

more, because inference is performed solely by consulting the auxiliary distribution,

the algorithm does not allow to revise past decisions once new measurements have

been collected.
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Chapter 5

FactorNet: Multi-variate Bernoulli

without indepdence assumptions

The following publication investigates a crucial piece within Variational learning frame-

works, namely the choice of the auxiliary distribution. Traditionally, in order to ease

the computational burden, simple distributions that oftentimes lack flexibility are used.

Specifically in the context of binary latent states, usually factored Bernoulli distribu-

tions are employed. As we will show in the publication, using such a factored Bernoulli

distribution makes it difficult to learn either-or relationships between appliances. The

questions the following publication tries to answer is if it is possible to introduce an

auxiliary distribution that is as flexible as a non-factored multi-variate Bernoulli whilst

at the same time avoiding a parameterization that grows exponentially like a naïve

parameterization would.
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Lange, Henning, and Mario Bergés. "FactorNet: Learning to Factorize In-

tractable and Multi-Modal Posterior Distributions for Energy Disaggregation."

Proceedings of the 4th International Workshop on Non-Intrusive Load Monitor-

ing. 2018.

5.1 Abstract

Factorial Hidden Markov Models (FHMM) have emerged as a prominent modeling ap-

proach for energy disaggregation. However, because latent variables become depen-

dent conditioned on the observation, reasoning about the posterior which is required

for inference as well as learning is usually intractable. Recent approaches try to deal

with these intractable posterior distributions by applying Variational Inference with an

auxiliary distribution that assumes independence between latent states of the poste-

rior. However, because posterior distributions in the context of energy disaggregation

are often multi-modal, independent auxiliary distributions fail to capture either -or re-

lationships between appliance states. In this paper, we introduce an auxiliary distribu-

tion over posterior states that, in principle, can approximate any multivariate Bernoulli

distribution arbitrarily well, while at the same time offering a functional form that allows

obtaining independent samples as well as the mode required for inference in O(N)

where N is the number of parallel Hidden Markov chains. On top of that, training the

distribution requires solely samples of the joint distribution which are typically easy to

acquire. We conduct experiments in the context of waveform disaggregation illustrat-

ing the superior capacity of the proposed distribution in comparison to independent

auxiliary distributions trained on minimizing the forward or backward KL-divergence.
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5.2 Introduction

Factorial Hidden Markov Model [86] (FHMM) are a natural choice for modeling the

generative process of energy disaggregation [84, 109, 104, 82]. FHMM are a gener-

alization of Hidden Markov Models were multiple hidden chains evolve independently

in parallel. Usually, the state of a single appliance is modeled by a single HMM chain,

whereas the aggregate power measured at the main distribution panel is modeled

by the aggregate observation. Let z ∈ Z = {0, 1}N×T be the latent variable and

x ∈ RS×T be the aggregate observation with T number of time steps, N number of

parallel HMM chains and S being the observation dimensionality. The joint distribution

is defined as:

p(x1:T , z1:T ) =
T∏
t

p(xt|zt)
N∏
i

p(zt,i|zt−1,i)p(z0,i)

However, reasoning about the posterior of P is usually difficult because the latent

variables become conditionally dependent given the observation, specifically for the

forward and filtering distribution hold respectively:

p(x1:t, zt) = p(xt|zt)
∑
z′∈Z

p(zt|z′)p(zt−1, x1:t−1) (5.1)

p(zt|x1:t) =
p(x1:t, zt)∑
z′∈Z p(x1:t, z′)

(5.2)

Note that (5.1) and (5.2) both contain summations over Z and that the cardinality of

Z grows exponentially with N .

Without loss of generality, throughout this paper, for illustration, we will consider a

slightly simpler distribution that nevertheless faces the same difficulty but for which
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Figure 5.1: a) latent variables of the proposed distribution are marginally independent, how-
ever, become b) conditionally dependent given the observation

exact solutions can be obtained and visualized for small N . Consider the graphical

model that arises from removing the temporal dependencies between latent variables

(Figure 5.1a). Similar to FHMMs, latent variables become dependent conditioned on

the observation x (Figure 5.1b). In other words, for the joint density the following

holds:

p(x1:T , z1:T ) =
T∏
t

p(xt, zt) (5.3)

As for FHMMs, the posterior of (5.3) is intractable, i.e. the number of states grows ex-

ponentially with the latent dimensionality rendering the denominator of the posterior

intractable. However, previously, statistical tools such as Variational Inference [110]

have been applied to reason about intractable posterior distributions in the context of

energy disaggregation [104, 109]. The main idea of Variational Inference is to intro-
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duce a tractable auxiliary distribution Qψ parameterized by the variational parameters

ψ. Inference is then turned into an optimization problem, i.e. ψ is optimized in such a

way that Q best approximates P as measured by the KL-divergence. Then, in order

to perform inference on the intractable posterior P inference can be carried out on

Qψ instead. Since Qψ is required to be tractable, usually additional independence as-

sumption are made and specifically, in the context of energy disaggregation, in order

to deal with the difficulty of dependent latent variables, independence between latent

states in the posterior is assumed. Note that Qψ is usually required to be simpler than

P , i.e. to have less capacity than P .

However, because inference is carried out on a simpler distribution, Variational Infer-

ence maximizes a lower bound on the data likelihood p(x), i.e. it performs inference

up to a constant and it can be shown that this constant is the KL divergence between

P and Qψ [110]. Note also that because Q is required to be simpler than P , the KL

divergence usually never becomes 0.

Furthermore, if independence between latent states is assumed in Qψ, i.e. the poste-

rior is factored as:

qψ(zt|xt) =
∏
i

fψ(xt)
zi
i (1− fψ(xt)i)

1−zi (5.4)

with f being bounded by [0, 1], Qψ is often overly simple. It is easy to show that

depending on whether the forward or backward KL divergence is employed as a di-

vergence measure, the Q introduced in (5.4) either learns the mean or the mode of

P .1

Consider a scenario with 2 two-state appliances with comparable power draw and an
1Specifically, for energy disaggregation, such a unimodal Q is unable to learn either this appliance or

the other.
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aggregate observation x′ that is similar to the power consumption of each appliances.

Thus we can assume that for the posterior the following holds:

p(z|x′) =

(
0 0.5 0.5 0

)
with z =

(
0, 0 0, 1 1, 0 1, 1

)

Note that approaches that assume independence between latent states of the auxil-

iary distribution fail at capturing the either -or relationship between appliance states.

Let ψ∗f and ψ∗b be optimal variational parameters that minimize the forward and back-

ward KL-divergence between P and Q respectively. It can be shown that:

qψ∗f (z|x′) =

(
0.25 0.25 0.25 0.25

)
qψ∗b (z|x′) =

(
0 1 0 0

)
or qψ∗b (z|x′) =

(
0 0 1 0

)

It is easy to see that independent of the choice of divergence measurement, Q can-

not capture a significant proportion of the information present in P , specifically the

fact that one of the appliances is active but not both or none.

That is why we argue that previous approaches based on Variational Inference can

be improved by a better choice of the auxiliary distribution. Thus, in this paper, we

introduce a tractable auxiliary distribution g that despite being tractable can approx-

imate any discrete distribution arbitrarily well. To sum up, we propose an auxiliary

distribution that has the following characteristics:

1. No independence assumptions and therefore unlimited capacity, i.e. in general,

any multivariate Bernoulli distribution can be approximated arbitrarily well
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Figure 5.2: A graphical depiction of the cascaded neural networks that factorize the joint
probability distribution.

2. The posterior can be trained efficiently based on samples of the joint p(x, z)

3. Computing the mode and drawing independent samples can be achieved in

O(N)

In the next section we will provide a brief introduction into Variational Inference

and introduce FactorNet, the proposed auxiliary distribution. We then conduct exper-

iments in section 5.4 and conclude our findings.

5.3 Variational Inference and FactorNet

Variational Inference (VI) has experienced a recent surge in attention from various

academic communities [111, 72]. One of the key advantages of VI over its alterna-

tives such as Markov Chain Monte Carlo [112] (MCMC) is speed. Since, as stated

earlier, VI translates statistical inference into an optimization problem that produces

a tractable distribution that best approximates the true posterior, inference can be

amortized, i.e. time training the auxiliary distribution is spent once and, after training,

inference can be carried out extremely fast. This characteristic has direct implications

in the context of energy disaggregation: VI-based approaches allow for inference on

cheap hardware such as an electricity meter located in the premises whereas MCMC

would require remotely collecting, storing and processing data. However, even in the
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asymptotic regime, VI is an approximate inference technique whereas (albeit slowly)

MCMC is known to converge to the true posterior. The quality of the VI-based ap-

proximation crucially depends on the choice of the auxiliary distribution which can be

seen when investigating the commonly used Evidence Lower Bound as the variational

objective:

log p(x) =
∑
z

log p(x|z)p(z) (5.5)

=
∑
z

q(z|x)

q(z|x)
log p(x|z)p(z) (5.6)

≥ DKL[q(z|x)||p(z)] + Eq(z|x)[log p(x|z)] (5.7)

This inequality is tight if and only if p(z|x) = q(z|x), however, this cannot be achieved

when Q is simpler than P . Furthermore note, that (5.7) is typically evaluated by Monte

Carlo techniques, i.e. by evaluating the expectation by sampling from Q. Thus, in or-

der for a Variational approach to be successful, Q needs to be complex enough to be

fit to P tightly but simple enough to be sampled from efficiently.

For continuous distributions the problem of choosing a suitable posterior distribution

has recently been addressed by introducing normalizing flows[78], i.e. a succession

of invertible non-linear transformations of the random variable z. However, for discrete

random variables this approach does not seem to be possible since the flow-operators

are required to be differentiable but also to be mapping into the same domain (in this

case {0, 1}N ). Or in other words, the flow-operator cannot at the same time be map-

ping into the discrete domain whilst being smooth and differentiable.

Furthermore, another difficulty that arises for VI-based approaches is the fact that the

true posterior is usually not obtainable, thus all updates need to be made based on
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samples of the joint p(x, z). Typically, this is circumvented by maximizing the varia-

tional objective (5.7), however, in the experience of the authors (5.7) has suboptimal

convergence properties.

Thus, in this paper, we follow a different strategy. We directly learn the conditional

factorization of the joint and show that once the joint is factorized, obtaining the pos-

terior can be done efficiently. First, we note that any joint probability distribution can

be factored according to the chain rule of probabilities:

p(zt, xt) = p(zt,1, xt)p(zt,2, xt|zt,1)...p(zt,N , xt|zt,N−1, ..., zt,1)

=
N∏
n

p(zt,n, xt|zt,1:n)

The goal now is to learn this factorization.2 This is achieved by approximating ev-

ery factor of the probability distribution by a neural network that takes the respective

condition as input and produces the conditional joint probability. Thus, let g be the

FactorNet distribution and fn and fn with 1 ≤ n ≤ N be the N neural networks

approximating the on and off factors of the joint distribution, i.e.:

fi(xt, z1, ..., zi−1) ≈ p(xt, zi = 1|z1, ..., zi−1)

f i(xt, z1, ..., zi−1) ≈ p(xt, zi = 0|z1, ..., zi−1)

2Note that this works well in the case that the latent domain is binary because the factors of a multi-
variate Bernoulli distribution are themselves uni-variate Bernoulli distributions. This technique does not
work as well for continuous distributions.
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therefore:

p(zi = 1|xt, z1, ..., zi−1)

≈ fi(xt, z1, ..., zi−1)

fi(xt, z1, ..., zi−1) + f i(xt, z1, ..., zi−1)

=f∗i (xt, z1, ..., zi−1)

For the FactorNet joint distribution the following then holds:

g(zt, xt) =

N∏
i

fi(xt, z1, ..., zi−1)zi

f i(xt, z1, ..., zi−1)(1−zi)

and for its posterior:

g(zt|xt) =
N∏
i

f∗i (xt, z1, ..., zi−1)zi

(1− f∗i (xt, z1, ..., zi−1))(1−zi)

Note that because the joint instead of the posterior probability is factorized, fi(xt, z1, ..., zi−1)+

f i(xt, z1, ..., zi−1) 6= 1 and that even though no independence assumption between la-

tent variables has been made, evaluating the joint as well as the posterior probability

is linear in the latent dimensionality as opposed to exponential for evaluating P . Fur-

thermore, we can take independent samples from the posterior of G efficiently, i.e.

linear time. That is, we do not have to resort to Markov Chain Monte Carlo tech-

niques for drawing samples from g, which would, in principle, allow for an efficient

Monte Carlo approximation of the expectation of (5.7) given the samples from Q. See
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Algorithm 2 for how to sample from g(z|x).

Result: Sample or Mode of g(z|xt)
z = {};
for n = 1, ..., N do

pn = fn(xt, z)/(fn(xt, z) + fn(xt, z));
if pn > threshold then

Append 1 to z
else

Append 0 to z;
end

end
Algorithm 2: Outputs either an independent sample or the mode of g(z|xt). If the
mode is desired, set threshold = 0.5 and to a sample from g(z|xt) set threshold ∼
U [0, 1], i.e. a sample from a uniform distribution.

However, as stated above, (5.7) has suboptimal convergence properties that can

be circumvented by exploiting the fact thatG allows to efficiently obtain the joint as well

as the posterior. That is why we propose a learning objective that directly minimizes

the KL-divergence between the joint distributions, i.e.:

L = −g(zt, xt) log
p(zt, xt)

g(zt, xt)

Note that we do not allow the gradients to flow into the fraction, i.e. we treat g(zt, xt)

in the denominator as a constant.

5.4 Experiments

The efficacy of FactorNet is evaluated on a synthetic experiment in the context of

supervised waveform disaggregation. Specifically, we choose 8 appliances from the

PLAID dataset[113] and extract a single steady-state current waveform for every ap-

pliance aligned by zero-crossing of the voltage line. PLAID is a publicly available

dataset containing high-frequency current and voltage measurements of single appli-
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Figure 5.3: The current waveforms used in the synthetic experiment taken from PLAID
datasets. Current waveforms were extracted by alignment to zero-crossings in the voltage
line.

ances. Since PLAID is collected at 30kHz, approximately 500 samples are collected

per voltage cycle. Thus a matrix W ∈ R500×8 was extracted from PLAID and Figure

5.3 shows the waveforms used in the experiments. The 8 appliance waveforms were

then mixed up, i.e. all 256 possible combinations of waveforms were created and cor-

rupted by Gaussian noise: X = {Wz +N (0, 0.1I)|z ∈ {0, 1}8}. The probability of the

aggregate observation was defined as:

p(xt|zt) = N (xt|Wzt, 0.1I)

with W being a matrix containing the appliance waveforms and I being the identity

matrix. For the posterior thus the following holds:

p(zt|xt) =
N (xt|Wzt, 0.1I)∑
zN (x|Wz, 0.1I)

For every combination of z ∈ {0, 1}8 and x ∈ X, log p(z|x) was computed and

stored. See Figure 5.4(a) for a plot of the resulting 256× 256 matrix.
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Figure 5.4: (a) The true posterior log p(z|x) (b) The FactorNet posterior log g(z|x) (c) The
posterior log q(z|x) minimizing the forward KL-divergence (d) The posterior log q(z|x) minimiz-
ing the backward KL-divergence. Note that all probabilities were clipped between 0.001 and
0.999 to avoid log(0)

Eight neural networks with a similar topology were created with an input dimension-

ality of 500 + (n− 1), two intermediate relu-layers with 512 hidden units and two-unit

sigmoid output-layer for f and f respectively. The network was trained by minimizing

L introduced earlier. The objective was minimized by drawing mini-batches of 144

samples uniformly from the joint distribution p(z, x). The training procedure did not

assume knowledge of the posterior p(z|x) and was solely presented with samples of

the joint. The performance of the algorithm is compared to distributions qψ∗f and qψ∗b

introduced earlier, i.e. distributions that assume independence between latent states

in the posterior and minimize the forward and backward KL-divergence respectively.

The parameters ψ∗f and ψ∗b were obtained with the knowledge of the true posterior
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Figure 5.5: The KL-divergence DKL(p(z|x)||f(z|x)) summed over all x. In this case f is
either the FactorNet distribution g or the qψ∗

f
minimizing the forward KL divergence. Note

that qψ∗
b

minimizing the backward KL divergence did not fit onto the plot with a divergence of
approximately 3800.

that usually is not available, thus we compare to distributions in their globally optimal

configuration.

Figure 5.4 shows a visual comparison of the different resulting posterior distribu-

tions. One can see that FactorNet G captures much more information present in

P compared to Q in both settings. Figure 5.5 emphasizes this fact as it shows the

KL-divergence over time. One can see that FactorNet reaches a KL-divergence of

practically 0 after approximately 100 iterations.

5.5 Conclusion

We introduced an auxiliary distribution capable of approximating any multivariate

Bernoulli distribution arbitrarily well whilst at the same time having a functional form

that is simple enough to allow for drawing samples as well as computing the mode of

the posterior efficiently. The joint as well as posterior distribution can be obtained in

linear time by approximating the chain rule factorization through a succession of neu-

ral networks, which allows for using a training objective that minimizes the divergence
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between the joint distributions directly circumventing the need for ELBO minimization.

Positive experimental results of the performance were obtained in the setting of su-

pervised waveform disaggregation.

However, experiments in which FactorNet incorporates temporal dependencies have

not yet been conducted. Note that FactorNet was conceived out of the realization

that auxiliary distributions that assume independence in the posterior are detrimen-

tal when modeling temporal dependencies, i.e. the posterior collapses onto a single

state and most of the uncertainty is falsely explained away. This prohibits temporal

models from reversing previous decisions like e.g. the Viterbi [114] algorithm would.

FactorNets performance with temporal dependencies needs yet to be determined.

5.6 Postamble

This publication answers Research Question 1.3 by showing that a parameteriza-

tion that grows linearly as opposed to exponentially can be achieved by learning the

chain-rule factorization of a multi-variate Bernoulli distribution. The algorithm we call

FactorNet exploits the fact that a conditional multi-variate Bernoulli distribution is a

uni-variate Bernoulli distribution. In the publication we show computationally efficient

algorithms to obtain the joint as well as posterior probabilities. Because the joint dis-

tribution can be obtained, in principle, joint-constrative Variational Inference could be

employed [115]. Note that the auxiliary distribution that was introduced was evalu-

ated on a toy problem in which no temporal dependencies were modeled. Making use

of FactorNet in a scenario with temporal dependencies is not trivial because the fil-

tering recursion would need to be approximated. The trick to ease the computational

burden of approximating the filtering recursion that stemmed from Research Question
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1.2 is not at our disposal anymore, because a non-factored posterior cannot be used

to collapse the sum over all latent states of within the filtering recursion. The next

publication will introduce an algorithm that makes use of FactorNet as its auxiliary

posterior whilst at the same time being computationally efficient.
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Chapter 6

NVIF: Neural Variational

Identification and Filtering

As stated earlier, VarBOLT eases the computational burden of approximating the fil-

tering recursion by exploiting the structure of a factored Bernoulli and by making an

application-specific sparsity assumption. Even though VarBOLT shows promising un-

supervised disaggregation results, it has a number of drawbacks. First, the algo-

rithm is biased because it exchanges the true posterior in the filtering recursion for

the auxiliary posterior without correcting for the bias. Second, the auxiliary poste-

rior is factored and has therefore limited capacity. Third, the sparsity assumption is

application-specific and it limits the scalability of the algorithm. In the following publi-

cation the question is posed how an algorithm can be constructed that is asymptoti-

cally unbiased and that makes use of the non-factored auxiliary distribution FactorNet

introduced in chapter 5. Note that the resulting algorithm is general in its nature and

could in principle be applied to any non-linear stochastic dynamical system with bi-

nary latent states. Furthermore, the sample efficiency of the resulting algorithm is
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probed.

Lange, Henning, Mario Bergés and Zico Kolter. "Neural Variational Identifica-

tion and Filtering for Stochastic Non-Linear Dynamical Systems with Applica-

tion to Non-Intrusive Load Monitoring." Proceedings of the 44th International

Conference on Acoustics, Speech, and Signal Processing. 2019.

6.1 Abstract

In this paper, an algorithm for performing System Identification and inference of the

filtering recursion for stochastic non-linear dynamical systems is introduced. Addi-

tionally, the algorithm allows for enforcing domain-constraints of the state variable.

The algorithm makes use of an approximate inference technique called Variational

Inference in conjunction with Deep Neural Networks as the optimization engine. Al-

though general in its nature, the algorithm is evaluated in the context of Non-Intrusive

Load Monitoring, the problem of inferring the operational state of individual appliances

given aggregate measurements collected in a home.

6.2 Introduction

System Identification and Inference for dynamical systems has a long history [116].

In this paper we consider systems of the following type:

zt ∼ p(zt|zt−1,Θ) xt ∼ p(xt|zt,Θ)
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where p is some distribution known up to parameters Θ, x and z constitutes the ob-

servation and unknown latent state respectively. For linear dynamical systems op-

timal solutions such as the Kalman filters [117] and subspace methods [118] exist.

However, when the system dynamics are assumed to be non-linear and stochastic

non-optimal techniques such as particle filters in conjunction with Expectation Maxi-

mization need to be resorted to. The bottleneck for these approaches is oftentimes

the computation of the filtering recursion p(zt|x1:t,Θ), which for many latent variable

models is computationally intractable. We propose a novel algorithm in which max-

imizing the data likelihood p(x1:T |Θ) is learned jointly with performing inference of

the intractable filtering recursion. The algorithm makes use of an approximate sta-

tistical inference technique called Variational Inference (VI). VI has recently received

increased attention from the Machine Learning community. Recent breakthroughs

have improved the applicability [74], scalability [111, 72] and accuracy [78, 119] of the

technique. See [66, 67] for reviews of the approach. The algorithm will be showcased

in the context of Non-Intrusive Load Monitoring [12] (NILM) which is the problem of

inferring the operational state of appliances within a home given aggregate consump-

tion measurements collected at a single sensing point and was first introduced in the

seminal paper by Hart [12]. The application of VI to NILM is not new [120, 104], how-

ever, previous approaches relied on the assumption that the system dynamics can be

factorized, i.e. these approaches perform inference in a model called Factorial Hid-

den Markov Model [6]. Note that NILM is a challenging problem because the latent

variable is usually assumed to be binary, i.e. zt ∈ Z = {0, 1}C where C is the number

of components to be inferred. This integrality constraint is challenging for two rea-

sons. First, linearizing approaches like Extended Kalman filters [121] become hard to
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apply and enumerating the latent domain is computationally intractable because the

cardinality of Z grows exponentially with C. As we will show later, just like VI general-

izes Expectation Maximization to latent variable models with intractable posterior, the

main contribution of this paper is the generalization of VI to a class of latent variable

models with intractable joint distribution. Specifically, this class constitutes dynamical

systems.

6.3 Variational Inference

We begin by deriving Variational Inference from the Expectation Maximization (EM)

algorithm. The EM algorithm [122] is an algorithm to perform maximum likelihood

inference on unknown parameters Θ in a latent variable model governed by observa-

tions x and latent variables z, i.e. it maximizes
∑

z pΘ(x, z) w.r.t. Θ1. It can be shown

that EM performs coordinate ascent on a function F1 known as the Variational Free

Energy defined by:

F1(Θ, P̃ ) = EP̃ log pΘ(x, z)− EP̃ log p̃(z)

Specifically, maximizing F1 in the direction of P̃ (the E-step) results in P̃ = p(z|x)

whereas the maximization step in the direction of Θ (the M-step) improves p(x|Θ) [123].

Therefore, because the E-step requires computing the posterior, EM is only applica-

ble if computing the posterior p(z|x) is computationally tractable. However, for many

latent variable models, computing the posterior is computationally intractable because

the denominator of p(z|x) = p(z,x)∑
z∈Z p(z,x) is oftentimes hard to compute if the support

1For notational convenience, model parameters are moved to the subscript, i.e. p(x|Θ) = pΘ(x).
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of the latent variable is large. Variational Inference (VI) is a generalization of EM to

latent variable models with intractable posterior distributions [110].

The main idea behind Variational Inference is the introduction of a tractable auxiliary

distribution Qψ parameterized by the variational parameters ψ. Qψ is chosen from a

family of distributions such that ideally, there is a ψ such that qψ(z|x) = pΘ(z|x) and

because of recent successes of Neural Networks for non-linear optimization, Qψ is

often parameterized by Neural Networks. For VI, a function akin to F1 is maximized,

which substitutes P̃ for the auxiliary but tractable distribution Qψ.

F2(Θ, ψ) = Eqψ(z|x) log pΘ(x, z)− Eqψ(z|x) log qψ(z|x)

= log pΘ(x)−DKL(qψ(z|x)||pΘ(z|x))

Maximizing F2 w.r.t. Θ optimizes a lower bound of the evidence. This bound is tight

if qψ(z|x) = pΘ(z|x), i.e. DKL(q(z|x)||pΘ(z|x)) = 0. Furthermore, maximizing F2

w.r.t. ψ minimizes the KL-divergence, i.e. it tightens the bound. Note that, because

of these properties, VI also allows for performing posterior inference. After the opti-

mization procedure, because Qψ will be maximally similar to PΘ, in order to perform

posterior inference on the intractable PΘ, inference is performed on Qψ instead. How-

ever, note that although Variational Inference generalizes the EM algorithm to latent

variable problems with intractable posterior distributions, it still requires the joint dis-

tribution pΘ(x, z) to be tractable. However, for many latent variable models even the

joint distribution might be intractable. One such class of problems constitute temporal

models. In this paper, we generalize VI to this class of problems.
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6.4 Intractable Joint

The class of latent variable models of interest constitute dynamical systems in which

the latent state evolves over time according to dynamics adhering to the first-order

Markov assumption and the observation is some probabilistic function of the system

state. This entails that the joint distribution of the observation and system states can

be factored based on p(xt|zt) and p(zt|zt−1)2, i.e.:

p(x1:T , z0:T ) = p(z0)
T∏
t=1

p(xt|zt)p(zt|zt−1)

Let pt = p(zt|x1:t) and pt = p(zt|x1:t). For such a model, a lower bound of the

chain-rule factorization of the likelihood can be derived as:

F3(Θ, ψ, t) = Eqt log pΘ(xt, zt|x1:t−1)− Eqt log qt (6.1)

= log pΘ(xt|x1:t−1)−DKL(qt||pt) (6.2)

Note that summing F3 over time steps implies that a lower bound of the log-

evidence is maximized since:

T∑
t=0

F3(Θ, ψ, t) = log pΘ(x1:T )−
T∑
t=1

DKL(qt||pt)

However, evaluating the bound 6.1 is intractable for many latent variable models

of interest because the joint distribution is intractable as seen below:

p(xt, zt|x1:t−1) = p(xt|zt)
∑
z′∈Z

p(zt|z′)p(z′|x1:t−1) (6.3)

2For notational convenice, all dependencies on parameters Θ and ψ are omitted.
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First, the summation over the latent domain is usually intractable. Second, evaluating

equation (6.3) at time point t requires knowledge of the posterior at time t − 1 which

is intractable.

6.4.1 Monte Carlo Integration and Importance Sampling

In the following, we will show how an unbiased approximation can be obtained that

makes use of Monte Carlo Integration [124] in conjunction with Importance Sam-

pling [125].

Monte Carlo Integration (MC) is a numerical technique to approximate an expec-

tation of the type Ep(z)f(z) by sampling, i.e. N samples are drawn i.i.d. from p(z) and

Ep(z)f(z) ≈ 1
N

∑N
i=1 f(z(i)) with z(i) ∼ p(z).

Note that the intractable summation in equation (6.3) can be written as an expec-

tation of this type, i.e.

p(xt, zt|x1:t−1) = p(xt|zt)Ept−1p(zt|zt−1) (6.4)

However, drawing samples from p(zt−1|x1:t−1) is not trivial and would require time-

consuming advanced samplers. Instead, a technique to change the sampling distri-

bution called Importance Sampling is being employed.

Importance Sampling is usually used as a variance reduction technique. How-

ever, in this case, it will be used to ease the computational burden of approximating

equation (6.4). The general idea is the following: Sampling from p(zt−1|x1:t−1) is com-

putationally challenging, however, we have access to a distribution similar to P from

which sampling is, in comparison, computationally cheap: the auxiliary distribution Q.
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Thus, we can rewrite equation (6.4) in the following way:

p(xt, zt|x1:t−1) = p(xt|zt)Eqt−1

pt−1

qt−1
p(zt|zt−1) (6.5)

If qt = 0 entails pt = 0, then equation (6.5) is an unbiased estimator of equation

(6.3). However, in order to evaluate equation (6.5) knowledge of the true posterior

pt−1 = p(zt−1|x1:t−1) is required which was deemed intractable.

Note that p(zt|x1:t−1) = p(zt,xt|x1:t−1)
p(xt|x1:t−1) , thus if p(xt|x1:t−1) was provided, the joint dis-

tribution could be computed recursively. However, p(xt|x1:t−1) is computationally

intractable because it would require enumeration of the latent space. Instead, an

asymptotically unbiased estimation of p(xt|x1:t−1) is obtained by, again, making use

of MC Integration in conjunction with Importance Sampling:

p̂(xt|x1:t−1) = Eqt
p(xt, zt|x1:t−1)

qt

Plugging these findings together yields what is known as self-normalizing Importance

Sampling [125]. A density w is defined as follows:

wt−1 =
p(zt, xt|x1:t−1)

q(zt|x1:t)

1

p̂(xt|x1:t−1)
(6.6)

A tractable and asymptotically unbiased approximation of equation (6.3) can therefore

be obtained by evaluating:

pΘ(xt, zt|x1:t−1) = p(xt|zt)Eqt−1wt−1p(zt|zt−1) (6.7)

Note that by making use of the approximation described in equation (6.7), equa-
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tion (6.1) can be evaluated by Monte Carlo Integration and that F3 can be maximized

by obtaining gradient estimators with techniques introduced in [74]. However, even

though the gradient estimator is unbiased, it usually has high variance making learn-

ing difficult.

6.5 Variance Reduction

It is well known that Variational Inference struggles with high variance estimators [126]

and numerous techniques for variance reduction have been proposed based on e.g.

Rao-Blackwellization [127], control variates [128], reparameterization [72] as well as

quasi-Monte Carlo techniques [129]. Note that usually, the gradient estimator w.r.t. ψ,

i.e. the gradients of the auxiliary distribution (in this case the neural network weights)

are subject to high variance whereas gradients w.r.t. Θ are less problematic. In

the following two variance reduction techniques tailored to the problem at hand are

introduced.

6.5.1 Sampling without replacement

Because the system state is assumed to be discrete, a variance reduction technique

that has been studied for decades, namely sampling without replacement can be

applied. With the correct choice of the sampling scheme, the variance of the estima-

tor can be reduced considerably whilst not introducing a bias [130]. In addition to a

reduction in variance, sampling without replacement avoids the problem of mode col-

lapse [131]. When sampling with replacement, the system is at danger of erroneously

assigning all the probability mass to a single latent state z. If this is the case, the al-

gorithm has essentially stopped exploring the latent domain and ‘got stuck’. Note that
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sampling without replacement from Q is not trivial. However, there is considerable

body of pre-existing work [132, 133, 134]. We follow the scheme introduced in [135]

with some slight modifications. Instead of using the Pareto design as the underlying

sampler, in this work an elimination sampler introduced in [136] was employed. This

results in a slower but more accurate sampling design.

6.5.2 Control Variate

It can be shown that the gradient estimator of F3 w.r.t. the variational parameters ψ is

an unbiased estimator of the gradient of the KL-divergence [73], i.e. 3:

Eq(z|x)∇ψ log
p(z|x)

q(z|x)︸ ︷︷ ︸
KL-divergence

= Eq(z|x)∇ψ log
p(x, z)

q(z|x)︸ ︷︷ ︸
F3

= Eq(z|x)∇ψ log
p(x, z)

q(z|x)
− c︸ ︷︷ ︸

Control Variate

However, the variance of the gradient of F3 exhibits much more variance. This is why

control variates have been proposed. It can be shown that any constant c can be

subtracted from F3 without introducing a bias. The question then is which c to use.

Note that if c = log p(x), then an estimator with the variance of the KL-divergence

estimator is obtained and also note that in 6.4.1 a method to obtain an approximation

of p(x) was introduced. Using c = log p(x) is however not optimal but worked well in

our experiments. Using this control variate also simplifies the implementation, since if

3Note that, for notational convenience, temporal dependencies are omitted. In other words, this is
also true for F2
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ct = log p̂(xt|x1:t−1), then:

F4(Θ, ψ, t) = Eqψ(zt|x1:t) log
pΘ(xt, zt|x1:t−1)

log qψ(zt|x1:t)
− ct

= Eqψ(zt|x1:t) logwt

Thus, using c = log p(x) as a control variate reduces the algorithm to recursively com-

puting logwt = logw(zt|x1:t) as defined in equation (6.6). Note that for all optimization

steps, we treat c as a constant, i.e. even though c depends on Θ, we do not allow

gradients to flow into c.

Below, the algorithm we call Neural Variational Identification and Filtering (NVIF)

is described in pseudo-code. Note that the algorithm recycles samples: In order to

compute w(z(i)|x1:t) samples of w(zt−1|x1:t−1) are required. In order to avoid exces-

sive sampling, for all i ∈ [1 .. N ], the same set of samples from the previous time step

are used to compute w(z(i)|x1:t).

for t ∈ [1 .. T ] do
for i ∈ [1 .. N ] do

z(i) ∼ q(zt|x1:t) (Sample w/o replacement);
Compute p(xt, z(i)|x1:t−1) according to (6.7);

end
Compute p̂(xt|x1:t−1) based on all z(i);
Compute and store w(z(i)|x1:t) based on (6.6) for all i;
Gradient step to maximize F4 w.r.t. ψ and Θ;

end
Algorithm 3: Neural Variational Identification and Filtering
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6.6 Experiments

As stated earlier, experiments are conducted in the context of Non-Intrusive Load

Monitoring on the REDD dataset [96]. In the following, the dynamical system model

and choice of auxiliary distribution are described. Note that the goal of this paper is not

to design the optimal model for appliance behavior but to showcase a novel algorithm

for learning and inference in non-linear stochastic dynamical systems. However, as

we will show later, even though, the model of appliance behavior is not refined, the

model achieves results comparable to state of the art algorithms.

Observed Variable Like in [120], instantaneous power waveforms extracted between

zero-crossings constitute xt

Observation Because instantaneous power is an additive quantity, pΘ(xt|zt) = N (xt;Wzt, σI)

with W constituting unknown component waveforms.

Dynamics In order to suppress rapid switching of components, dynamics are chosen

that penalize the number of components that switch: p(zt|zt−1) = S(||zt−zt−1||)∑C
j=0 (Cj )S(j)

with S assigning a penalty to each number of potential switches. S is not learned

but kept fixed, thus our model only needs to learn W , i.e. Θ = {W}

Aux. distribution We make use of the auxiliary distribution introduced in [119]. Addi-

tionally, because temporal dependencies are modeled, a recurrent Neural Net-

work, in particular an LSTM, is employed.

6.6.1 Results

The algorithm was run for 300 epochs and 15 components (C = 15) were inferred.

For all appliances provided as ground truth, the component with the highest mean
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(a) NVIF VarBOLT
Circuit
Microwave 100% / 0.1% 88.8% / 8.0%
Bath GFI 78.5% / 65.3% 71.9% / 40.2%
Electronics 90.7% / 41.2% 87.8% / 40.7%
Kitch. Out. 1 99.5% / 1.9% 8.6% / 32.8%
Furnace 66.4% / 54.2% 85.0% / 50.6%
Kitch. Out. 2 . 5.8% / 46.7% 5.3% / 70.1%
Washer/Dryer 89.5% / 64.1% 97.3% / 72.3%

(b) NFHMM VarBOLT NVIF
Overall panel 0.25 0.63 0.59

Table 6.1: (a) Performance compared to VarBOLT as measured in Precision / Recall [25]. (b)
Performance comparison with NFHMM and VarBOLT in GSPA [30].

precision-recall was chosen [25]. NVIF is compared to VarBOLT, another VI-based

model for FHMMs that is considerably less scalable and makes application-specific

assumptions. Even though VarBOLT is hand-tailored to NILM, NVIF shows compara-

ble performance with N = 500 as shown in Table 6.1.

However, the more important evaluation criterion is the sample-efficiency, i.e. how

many samples (N ) are required to achieve results comparable to EM if it were com-

putationally tractable. Note that because samples are drawn without replacement, if

N approaches 2C , NVIF becomes the EM-algorithm. Increasing N is not expected to

increase performance beyond a given point and the question arises when this point is

reached.

Figure 6.1 shows F4 after convergence (300 epochs) for different numbers of sam-

ples N . One can see that the performance saturates quickly. The increase in perfor-

mance from 400 to 500 is miniscule. Thus, by only exploring only about 1− 2% of the

latent space, NVIF achieves promising results.
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Figure 6.1: Performance measured by F4 as a function of number of samples N after conver-
gence (300 epochs).

Figure 6.2: A comparison of the inferred components with ground truth appliances.

6.7 Conclusion

To sum up, in this paper, an unbiased (given an appropriate choice of auxiliary distri-

bution) algorithm for learning and inference in dynamical systems was introduced and

evaluated in the context Non-Intrusive Load Monitoring. The algorithm was shown

to be sample-efficient and even with a naïve model of NILM showed comparable re-

sults to existing algorithms. The introduced algorithm is general in nature and could

in principle be applied to any dynamical system.

126



6.8. Postamble

6.8 Postamble

This publication introduced an algorithm we call NVIF that can, in principle, perform

inference and learning in any non-linear stochastic dynamical system with binary la-

tent states. It makes use of Importance Sampling and Monte Carlo Integration to

achieve asymptotic unbiasedness, therefore answering research question 1.4.1. Note

that NVIF allows to trade accuracy for computational time by choosing the number of

samples to approximate the filtering recursion. Furthermore note that the algorithm

becomes very similar to the Baum-Welch [137] algorithm when the entire latent space

is explored. The only difference between Baum-Welch and ’exact’ NVIF is how model

updates are performed. Baum-Welch analytically solves for the optimal model param-

eters Θ and computes the posterior whereas NVIF performs a gradient step towards

more probable model parameters and parameters of the auxiliary distribution. Note,

that in the publication related work was evaluated through the lens of post Mean Field

Variational Inference. However, Mean Field Bayesian filtering have been proposed

before like e.g. [138, 139]. Note that NVIF also has similarities to the Variational

Kalman smoother [140]. In [140], a variational Bayesian algorithm for time series data

was introduced. However, this algorithm assumes linear Gaussian dynamics and tries

to resolve uncertainty about model parameters, whereas NVIF allows for non-linear

non-Gaussian emission and transition distributions but performs a point estimate of

the model parameters. The resulting algorithm seems to exhibit promising sample ef-

ficiency: The bound of the data log-likelihood only increases marginally when increas-

ing the number of samples from 400 to 500 which indicates that exploring roughly 1%

of the latent suffices to achieve an approximation similar to Baum-Welch. In chapter

9 we explore possible future research paths of the proposed algorithm.
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Chapter 7

Towards Learning ACOPF

There seems to be a dichotomy in approaches to control: learning and optimzation.

However, most approaches to ACOPF are based on optimization strategies. Arguably,

one of the reasons why optimzation based approaches dominate is the difficulty for

learning based approaches to enforce security constraints that ACOPF solutions need

to adhere to. In the following publication, the question will be answered how ACOPF

can be reformulated as a learning problem. Furthermore, given a learning-based for-

mulation, the question on how to deal with security constraint and non-convex action

spaces is tackled. On top of that the question of how a learning signal can be obtained

is answered.

7.1 Abstract

For most control problems, there are two rivaling approaches that have their unique

advantages and disadvantages: control is usually either achieved by learning algo-

rithms or by optimization. However, for the Alternating Current Optimal Power Flow

problem, optimization approaches dominate, mostly because learning approaches
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struggle with enforcing the numerous constraints inherent to ACOPF. In this paper, we

propose a learning based approach to the ACOPF problem that allows for enforcing

non-convex integer constraints as well as convex security constraints by differentiat-

ing through the operations of a load flow solver. We perform experiments on a 200

bus system and show that, after training, the learned function produces (sub-)optimal

power flow solutions reliably and fast. Specifically, we report a 12x increase in speed

and a 40% increase in robustness compared to a traditional solver. We believe this

work serves as a first step and proof of concept for learning based ACOPF solvers.

7.2 Introduction

In the context of decision problems, i.e. when the goal is to find a value x ∈ X

that minimizes an objective function f , i.e. x∗ = arg maxx f(x, z) with z ∈ Z be-

ing a variable that specifies a problem instance, there seems to be a dichotomy in

approaches. On one hand, there are optimization based approaches such as e.g.

interior point solvers for non-sequential and model predictive control for sequential

decision problems [141]. Under some conditions, these approaches can be proven

to be optimal and usually handle constraints gracefully. However, these approaches

can be prohibitively slow and given e.g. non-linear equality constraints not robust be-

cause convergence to a local minimum or a spurious solution cannot be ruled out.

On top of that, integer constraints can exacerbate the computational burden of these

approaches [27].

On the other hand, there are are learning based approaches whose goal it is to train

a parameterized function gθ to produce optimal decisions as a function of the variable

that specifies the problem instance, i.e. gΘ : Z → X. These approaches usually
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require a learning phase where, given a collection of problem instances D ⊂ Z, an

objective of the type L(θ) =
∑

z∈D f(gθ(z), z) is minimized w.r.t. the function param-

eters θ. Note that for sequential decision problems, reinforcement learning [142] can

be considered such a learning based approach1. These approaches are typically fast

and can be robust, however, they typically cannot guarantee optimality and enforcing

constraints is oftentimes difficult.

According to the FERC, computational time and robustness are still bottlenecks for

Alternating Current Optimal Power Flow (ACOPF) algorithms especially when inte-

ger constraints are to be enforced [3]. Because of this, in this paper, we propose

a learning based approach for the ACOPF problem. Specifically, in the context of

ACOPF, decision variables constitute generator configurations whereas problem in-

stances constitutes a demand assignment to every node in the network. Note that,

in order to obtain a learning signal for the function gθ, one of the difficulties that arise

when translating ACOPF into a learning problem is the differentiability of the objective

function f as a function of the demand and generation. In this work, we show that

a learning signal can be obtained by differentiating through the operators of a power

flow solver. Additionally, this ’trick’ allows us to enforce convex security constraints

such as voltage magnitude constraints.

7.3 Proposed Learning Framework

As described earlier, alternating current optimal power flow is traditionally posed as

a constrained optimization problem, i.e. a cost function is minimized under network

constraints [44]. Let c(v) be the cost associated with the assignment of nodal voltages

1In that context, the problem instance is usually referred to as state and decision variable as action.
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v ∈ CN and N being the number of buses of the system. Here we define the cost in

terms of v for simplicity. However, numerous constraints need to be enforced, some of

which are non-linear and non-convex, i.e. the load flow problem is traditionally posed

as:

minimize w.r.t. v: c(v) (7.1)

subject to: S = Sg − Sd = diag(v)(Y v)∗ (7.2)

ki(v) ≤ 0 (7.3)

hi(v) = 0 (7.4)

with Sd ∈ CN = Z and Sg ∈ CN = X being a demand and generation assignment,

respectively, and Y ∈ CN×N being the bus admittance matrix. For different demand

assignments Sd, this optimization problem would be solved over and over again.

Note that this problem formulation faces numerous computational difficulties. First,

the non-linear equality constraint (7.2) poses a challenge. In reality, (7.2) is a nec-

essary but not sufficient condition for the system to be in a physical state. There are

assignments of nodal voltages v that fulfill the power flow equations that however not

constitute a physical state [47, 46]. Optimization algorithms based on some form of

projected gradient descent might be attracted to such a non-physical solution render-

ing them not robust. Advanced techniques like the Homotopy [61] or Continuation

[60] methods alleviate but not fully remedy this problem, but incur substantial compu-

tational costs. Furthermore, non-convex constraints create additional computational

issues. Algorithms such as branch-and-bound that are typically employed to deal with

integer constraints require solving multiple, and in the worst case exponentially many,
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linear-program relaxed problems [27].

Our proposed learning based formulation of the problem is as follows: First, we

note that the nodal voltages v are a function of Sd and Sg, i.e. v = v(Sd, Sg) with

v solving the power flow equations (7.2). Second, we introduce an function that is

tasked with producing optimal actions in the expected risk minimization setting, in this

case the actions are generation assignment S′g as a function of the state which in

this case is the demand Sd. Thus, S′g = gΘ(Sd) with Θ parameterizing the function g.

Third, unlike reinforcement learning setups where states are obtained by interacting

with the environment, we assume availability of a knowledge base D containing his-

toric demand assignments, i.e. a collection of possible states Sd ∈ D. Note that D

does not contain solved power flow problems but merely historical information about

past demand. The goal is to estimate the parameters of the function g, in this case Θ,

that produce optimal generation assignments as a function of the demand. Note that

given an appropriate choice of gΘ obtaining optimized power flow solutions can be

extremely fast, when evaluating gΘ is fast. As an optimization objective and a learning

signal for the function g, we propose the following:

minimize w.r.t. Θ:
∑
Sd∈D

c(v(Sd, gΘ(Sd))) = L (7.5)

subject to: ki(v) ≤ 0 (7.6)

hi(v) = 0 (7.7)

When compared to traditional optimization based approaches, this problem formula-

tion has a number of advantages:
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1. The non-linear power flow constraint (7.2) vanishes. This increases robustness

and avoids convergence to non-physical solutions given a differentiable and ro-

bust power flow solver.

2. As we will show later, optimization with non-convex constraints can be amor-

tized, i.e. time training the system is spent once and after training, inference is

extremely fast and solely requires a forward-pass through a neural network.

3. Because training g entails learning a function that transforms a demand into

an optimal generation assignment and therefore exploits covariances between

load flow problems, g produces robust optimized load flow solutions and could

generalize to unseen problems.

However, solving Θ w.r.t. (7.5) poses additional challenges: If gradient descent

is used for optimization, gradients need to be defined. The cost function c that maps

generator configurations to generation costs can usually assumed to be differentiable.

Furthermore, g can be assumed to be differentiable, i.e. g can be chosen from a fam-

ily of differentiable functions. However, the fact that computing the gradient through

a power flow solver, i.e. v, is possible, might not be obvious. In section 7.4, we will

show that computing the gradient through a specific type of power flow solver, namely

the Holomorphic Embedded Load Flow Method, is possible. Doing this allows us to

obtain ∂L
∂Θ .

Furthermore, the constraints i.e. (7.6) and (7.7) need to be enforced. In section 7.5,

we will show that an auxiliary function u can be used to enforce the Karush-Kuhn-

Tucker conditions ultimately allowing us to enforce arbitrary constraints.

In section 7.6, we will show that the proposed formulation can also be used to grace-

fully handle non-convex, e.g. binary constraints by optimizing a variational lower
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bound whilst introducing little computational overhead during inference.

We then conduct experiments on a 200 bus system. The experimental setup and re-

sults are described in section 5. In section 6, our findings are concluded and pathways

for future work are laid out.

7.4 Holomorphic Embedded Load Flow Method

The Holomorphic Embedded Load Flow method (HELM) was first proposed by Trias

[56, 63] and was later extended in [143, 144]. HELM addresses the problem of con-

vergence in Newton-Raphson based power flow solvers. These types of solvers may

not converge or converge to an unstable or low voltage solution [145]. Specifically,

HELM overcomes the ambiguity problem that traditional solvers face, namely that the

power flow equations have multiple roots and that initial conditions determine which

root is being found [146]. HELM deterministically always finds the same root. Mathe-

matically, this is achieved by performing analytical continuation which is unique when

the function at hand is holomorphic. HELM finds the solution that is on the same

branch-cut as the solution to a trivial load flow problem. Algorithmically, the general

idea is to treat the complex nodal voltages as holomorphic functions of a complex

scalar z. These functions are then evaluated at a point for which obtaining a solu-

tion is trivial (usually z = 0) and by exploiting holomorphicity, analytical continuation

is performed to obtain the solution at a desired point where the original power flow

equations are recovered (usually z = 1).

Let V(z) be a function of the complex scalar z. Equation (7.8) then describes such

a holomorphic embedding, i.e. obtaining a solution at z = 0 is trivial because no

power is flowing and the original power flow equations (7.2) are recovered at z = 1.
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See [144] for a proof that V(z) is indeed holomorphic.

Y V(z) =
zS∗

V∗(z∗)
(7.8)

In order to obtain the power series coefficients required for analytical continuation,

V(z) and its reciprocal are approximated by a power series expansion, i.e.:

V(z) =
∞∑
n=0

c[n]zn (7.9)

1

V(z)
=W(z) =

∞∑
n=0

d∗[n]zn (7.10)

Similar to traditional power flow solver such as Newton Raphson, in order to avoid

overspecification of the problem, a slack bus is introduced: Let Y r ∈ CN−1×N−1 be

the reduced Y matrix by removing the row and column of the slack bus and ys ∈ CN−1

be the slack-row of Y sans self-admittance. We assume that the voltage at the slack

generator is vs + 0j with vs ∈ R.

For the ith row of (7.8) the following then holds:

∑
k

Y r
ik

∞∑
n

ck[n]zn + (vs + 0j)ys = zS∗i

∞∑
n

d∗i [n]zn (7.11)

Setting z = 0:
∑
k

Y r
ikck[0] = −vsys (7.12)

Thus, solving the linear system in (7.12) yields a solution at z = 0. Higher order

power series coefficients can be obtained by equating coefficients of the same order
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and by making use of (
∑∞

n=0 c[n]zn)(
∑∞

n=0 d
∗[n]zn) = 1 which yields:

dk[0] =
1

ck[0]
(7.13)

∑
k

Y r
ikck[n] = S∗i di[n− 1] (7.14)

di[n] = −
∑n−1

m=0 ci[n−m]di[m]

ci[0]
(7.15)

After obtaining power series coefficients, analytic continuation is performed to obtain

a solution at z = 1. However, since the radius of convergence is usually smaller than

1, analytical continuation is performed using Padé approximants instead of evaluating

(7.9). Padé is a rational approximation of power series known to have the best conver-

gence properties [147]. Analytical continuation by Padé approximation is performed

as follows:

Vi(z) ≈ R(z) =

∑m
j=0 ai,jz

j

1 +
∑m

k=1 bi,kz
k

(7.16)

Approximants of order m, i.e. ai and bi can be obtained from the power series coeffi-

cients by solving a linear system of equations, specifically:

[
I M(ci)

]ai
bi

 = ci
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with: M(ci) =



0 . . . 0 0 0 0

−ci[1] 0 . . . 0 0 0

−ci[2] −ci[1] 0 . . . 0 0

−ci[2] −ci[2] −ci[1] 0 . . . 0

...
...

...
...

...
...

−ci[n] −ci[n− 1] −ci[n− 2] . . . −ci[m]


and I being the identity matrix. Because we perform analytical continuation to z =

1, plugging the obtained coefficients into (7.16) yields: Vi ≈
∑m

j=0 aj,i/(1 +
∑m

j=0 bj,i).

7.4.1 Differentiating through HELM

In the following we will view HELM as a function that maps complex nodal power

into complex nodal voltages, i.e. v = v(Sd, gΘ(Sd)). We will show that v is not holo-

morphic but R-differentiable in Θ ultimately allowing us to compute gradients into the

parameters of an function g. The strategy is to decompose HELM into a succession

of functions and show that each function is R-differentiable. Specifically, we decom-

pose HELM into its algorithmic steps, i.e. v(Sd, gΘ(Sd)) = fv ◦ fab ◦ fc,n(Sd − gΘ(Sd))

with fc,n computing power series coefficients, fab performing Padé approximation and

fv computing voltage phasors given Padé approximants. We then show that fab,fc,n

and fv are R-differentiable. Note that fc,n is a recursive function and that writing its

gradient out would be tedious but that gradients can be computed efficiently using the

backpropagation algorithm and implementation is trivial in frameworks with automatic

differentiation like Tensorflow [148], Torch [149] or theano [150].

As stated earlier, HELM first computes the power series coefficients followed by

Padé approximation. The power series coefficients c[n] and d[n] are obtained in al-
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ternating fashion, i.e.: Let fc,n and fd,n be the function that produces c[n] and d[n]

respectively. Note that fc,n requires knowledge of the previous d-coefficient and gΘ,

whereas fd is a function of all previous c- and d-coefficients:

corrs. to (7.14): fc,n(x) = (Y r)−1fd,n−1(x)x∗ (7.17)

corrs. to (7.15): fd,n(x) =

∑n−1
m=0 fc,n−m(x)fd,m(x)

fc,0(x)
(7.18)

Because of the complex conjugation in (7.17), v is not holomorphic in x, and Θ, if

x = Sd − gΘ(Sd). However, it is easy to see that, by induction, (7.17) and (7.18) are

R-differentiable when fc,0 and fd,0 are R-differentiable which is easy to see from (7.12)

and (7.13).

After obtaining the power series coefficients, Padé approximants a and b are calcu-

lated. Note that this also only includes solving a linear system of equations, i.e.

fab(x) =

a
b

 =

[
I M(x)

]−1

x

which is differentiable. Then fv includes only a summation and fraction, i.e:

fv(

a
b

) =

m∑
i=0

ai/(1 +

m∑
i=0

bi)

Therefore, v(x) = fv(fab(fc,n(x))) is also differentiable in its argument x and, when

applied to x = Sd − gΘ(Sd), it is differentiable in Θ.
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7.5 Enforcing Constraints

7.5.1 A priori constraints

As stated earlier, we treat the generation assignment Sg as the output of a param-

eterized function gΘ. Because of the reasoning laid out earlier, we require g to be

differentiable and because of recent successes of neural networks in non-linear opti-

mization, we choose g to be a neural network with a penultimate sigmoidal layer. We

incorporate the generation limits of the generators into the output layer of the neural

network and therefore enforce generation limits by construction. Let σ ∈ (0, 1)2Ng

be the penultimate layer with Ng being the number of generator buses. Thus, every

generator is associated with two neurons, i.e.:

gΘ(Sd)i = (Sg)i = (Pmaxi − Pmini )σi + Pmini

+ j(Qmaxi −Qmini )σi+Ng + jQmini

with Pmaxi ,Pmini ,Qmaxi and Qmini being the active and reactive generation limit respec-

tively. Because σ is bounded by (0, 1) non-slack generation limits cannot be violated.

However, other constraints such as e.g. voltage magnitude or thermal line limits can-

not seem to be enforced by construction. That is why, in the next section we show

how to enforce what we call a posteriori constraints, i.e. constraints whose violation

is only known after evaluating v.

7.5.2 A posteriori constraints

We adapt ideas from mathematical optimization to enforce arbitrary constraints on

v. In mathematical optimization, the Karush-Kuhn-Tucker conditions (KKT-conditions)

139



Chapter 7. Towards Learning ACOPF

are necessary conditions for a solution to be optimal [151]. Given the optimization

problem (7.1) expressed in terms of v, the KKT conditions state that a solution v′ is

locally optimal under some regularity conditions when there exist µi such that:

• ∀iµi ≥ 0 (Dual feasibility)

• ∀iµiki(v′) = 0 (Complementary slackness)

• ∀iki(v′) ≤ 0 (Primal feasibility)

• 0 = ∇f(v′) +
∑

i µi∇ki(v′) (Stationarity)

Note that, without loss of generality (because any equality constraint can be ex-

pressed as two inequality constraints) and for notational convenience, we restrict the

optimization problem to only have inequality constraints.

However, as stated earlier, we are not interested in the solution of a single con-

straint optimization problem but instead in solutions to all instances of a class of

optimization problem. In this case, Sd, i.e. the demand assignment, specifies the

instance of the optimization problem whereas the network topology, i.e. admittance

matrix Y , specifies the class. First, we note that the KKT-multipliers are dependent

on the instance of the optimization problem, thus instead of introducing a scalar µi,

we introduce a scalar-valued function uψ(Sd). In order to enforce dual feasibility by

construction, we choose u to be a neural network with soft-plus output parameterized

by ψ. Furthermore, let gSdΘ = v(Sd, gΘ(Sd)), (uSdψ )i = uψ(Sd)i the ith output of u and

k+
i (v) = max(ki(v), 0). We will now introduce a learning criterion and show that local

optima of this criterion fulfill the KKT-conditions for instances of the class contained in
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the training set. As a learning criterion we propose:

L(Sd) = c(gSdΘ ) +
∑
i

(uSdψ )ik
+
i (gSdΘ ) (7.19)

∀Sd∈D maximizeψ{minimizeΘ{L(Sd)}} (7.20)

We will now show that, after convergence, for all Sd ∈ D, v′ = gSdΘ is locally optimal

under some regularity constraints, i.e. it fulfills the KKT-conditions and furthermore,

that the KKT-multipliers for which the KKT-conditions hold are:

µi =


(uSdψ )i if ki(g

Sd
Θ ) = 0

0 else

(7.21)

• Dual feasibility: µi is dual feasible by construction: it is either 0 or greater than 0

because it is the output of a soft-plus neural network.

• Complementary slackness: Follows directly from (7.21)

• Primal Feasibility: Since (7.20) converged, we know that ∂L

∂(u
Sd
ψ )i

= 0 and since

∂L

∂(u
Sd
ψ )i

= k+
i (v′) = 0, v′ must be primal feasible. Or in other words: if v′ was

not primal feasible, k+
i (v′) > 0 but then the maximization step of (7.20) could

have increased L by increasing µi which is a contradiction to the assumption

that (7.20) has converged.

• Stationarity: Follows directly from the assumption that (7.20) has converged.

Note that substituting k+
i for ki does not have an influence because if ki(v) 6= 0

then the corresponding µi = 0 (complementary slackness) and when ki(v) = 0

then ∇ki(v) = ∇k+
i (v)
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Note that the detour of substituting ki(v) for k+
i (v) improves the performance sub-

stantially. Without the substitution, because more constraints are complied with ini-

tially, the neural network drives the outputs before the soft-plus non-linearity to −∞ in

order to make the corresponding µi equal to 0. The output units are then ‘dead’ and,

because the gradient of the output non-linearity is close to 0, will always stay 0.

7.5.3 Enforcing Physicality

So far, we have shown how to enforce ‘a priori’-constraints, i.e. constraints whose vio-

lation is known before inferring nodal voltages, by construction, as well as ‘a posteriori’-

constraints, i.e. constraints whose violation is known after inferring nodal voltages,

by introducing a learning objective that, after convergence, will enforce the KKT-

conditions. However, we have not yet shown how to keep the function g in the physical

regime, i.e. prevent g from producing a generation assignment Sg for some Sd such

that there is no v that fulfills the power flow equations (7.2). An extreme example of a

non-physical tuple (Sd, Sg), for any demand assignment Sd for which
∑

i real(Sd)i > 0

is Sg = ~0.

First, we note that HELM will always produce complex nodal voltages even for

non-physical tuples. However, for non-physical tuples the power flow equations (7.2)

will not hold, i.e. there is a mismatch between the RHS and LHS of (7.2). We quantify

this mismatch by defining:

ε(v) = ||Sg − Sd − diag(v)(Y v)∗||∞

The goal now is to enforce that ε(v) < ξ with ξ being some parameter which

specifies when a power flow solution is deemed physical. Note that because ε is a
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function of v, in principle, an additional inequality constraint could be introduced, i.e.

ki(v) = ε(v) − ξ ≤ 0 and one could try to enforce this constraint as an a posteriori

constraint as described earlier. However, in our experience this approach struggles,

i.e. the learning objective usually does not converge. Figure 7.1 gives an intuition

as to why this is the case. Figure 7.1 shows log(ε) as a function of α on a 200 bus

system. α scales the generation Sg of a physical tuple (Sd, Sg), i.e. the y-axis shows

log(ε(v(Sd, αSg))). Note that when α is either small or big (< 0.5 or > 3.5), ε is close

to flat and therefore the gradient of ε is close to 0. After randomly initializing the

the parameters of the function g, its guesses about optimal generation assignments

will naturally be bad which corresponds to scaling the optimal generation assignment

with a small or big α. However, the function cannot improve its guesses by gradient

descent because the gradient will be close to 0.

In order to overcome this problem, we propose to optimize a proxy of the actual

mismatch function ε. Note that an indicator of whether or not a solution is physical

is whether or not the power series coefficients ci[n] have converged to 0. Let c̄[n] be

the mean nth power series coefficient of all voltages, i.e. c̄[n] =
∑

i ci[n]/N . Figure

7.2 shows a scatter-plot of log c̄[n] and log ε. Empirically, one can see that small c̄[n]

is a sufficient condition for small ε, however not a necessary condition. That is, a

small c̄[n] implies small ε but not vice versa. Thus in order to enforce physicality,

c̄[n] can be minimized as a proxy for ε. However, one might think that optimizing

log c̄[n] is unnecessarily restrictive, i.e. it excludes solutions where the power series

coefficients did not converge to 0 but the corresponding v nevertheless fulfill the power

flow equations. But, as we will show later, imposing voltage magnitude constraints

naturally enforces physicality and minimizing log c̄[n] is only required after the function
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Figure 7.1: The log-mismatch ε as a function of α, i.e. ε(v(Sd, αSg)). α scales a physical
solution, i.e. when α = 1 the corresponding ε is small. The number of HELM iterations n is
color coded.

was first initialized in order to nudge the it into the physical regime.

7.6 Binary Constraints

Binary constraints naturally occur in optimal power flow when incorporating the possi-

bility of completely shutting down generators. Introducing this constraint makes gener-

ation limit constraints non-convex, i.e. 0 becomes a possible generation assignment,

even though points between 0 and Pmin are not valid. Typically, optimal power flow

solvers employ mixed integer programming techniques such as branch and bound

or branch and cut [27] algorithms to tackle this problem. However, these algorithms

can incur substantial computational cost, i.e. every branch requires solving an LP

relaxed optimal power flow problem and there are exponentially-many branches in a
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Figure 7.2: Small log c̄[n] is a sufficient condition for small log(ε). Specifically, when log c̄[n] >
−15 then −20 < log(ε) < −25. However, the opposite is not true, i.e. small log(ε) does not
bound log c̄[n].

worst-case scenario.

However, using the problem formulation introduced here, because the constraint

is a priori and can be enforced by construction, we can reduce the non-convex con-

straint into the problem of inferring the mode of a probability distribution P over binary

configurations. As we will show later, because inference in P is intractable, we op-

timize a variational bound, i.e. we introduce a variational distribution Qφ for which

posterior inference is tractable and choose the variational parameters φ in such a way

that Qφ best approximates P . Specifically, we built on recent advances in Bayesian

inference, specifically Variational Inference [69] and train a variational distribution Qφ

parameterized by a neural network. See [67, 66] for recent reviews of Variational
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Inference.

We begin by showing that computing the optimal binary configuration is equivalent

to computing the mode of a distribution P . Let b ∈ {0, 1}Ng be the vector describing

which generators are turned on or off and p(b, Sd) be an exponential distribution,

p(b|Sd) its posterior (Boltzmann distribution) and L be the loss as defined in (7.19),

i.e.

p(b, Sd) = λ exp−λL(b · Sd) (7.22)

p(b|Sd) =
exp−λL(b · Sd)∑

b′∈B exp−λL(b′ · Sd)
(7.23)

It is easy to see that computing the mode of (7.23), i.e. arg maxb p(b|Sd) is equiva-

lent to choosing the binary configuration that results in the smallest loss. However,

naïve evaluation of the mode is usually intractable, because of the intractable de-

nominator. Naively computing the mode of (7.23) is equivalent to brute-force search,

i.e. enumerating all possible latent configurations and picking the one with the small-

est error. However, we can ensure fast inference by adopting ideas from Variational

Inference [69].

We introduce a variational distributionQφ whose posterior is tractable. Specifically,

we choose q(b|Sd) to be a multi-variate Bernoulli distribution and ensure tractability

with ideas introduced in [119]. Note that Qφ is parameterized with a neural network,

therefore ensuring that inference at test-time is fast. As a learning signal for the

parameters of the auxiliary posterior distribution φ, we choose the Evidence Lower

Bound defined by:
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LBO(φ) = Eqφ(b|Sd) log
p(b, Sd)

qφ(b|Sd)
(7.24)

= log p(Sd)−DKL(qφ(b|Sd)||p(b|Sd)) (7.25)

Note that optimizing (7.24) does not require knowledge of the intractable posterior

of P but nevertheless allows for minimizing a divergence measure between the true

(P ) and auxiliary posterior (Q). Thus, after training, in order to obtain an approxima-

tion of the mode of P , because P and Q will be maximally similar, posterior inference

is performed on Q instead. However, the price for this ‘trick’ is increased variance. It

can be shown that the stochastic gradient estimator of (7.24) w.r.t. φ is an unbiased

but higher variance estimator of the KL-divergence [73]. In order to combat variance,

a decades-old variance reduction technique is employed, namely sampling without

replacement. Sampling without replacement from Q is not trivial. However, there is

a considerable body of preexisting work that we make us of. The sampling scheme

introduced in [135] with slight modifications is employed. Specifically, instead of using

the Pareto sampler as the underlying sampling mechanism, a slightly slower but more

accurate elimination sampler introduced in [136] is used.

In order to obtain an approximation of the mode of the true posterior, because Q

allows for drawing samples efficiently, S-many samples are drawn from Q. Then, in

order to approximate the mode of P , out of the S-many binary configurations sampled

from Q, the one which results in the smallest loss is chosen. Note that the optimal

configuration of generators is dependent on the binary configuration, thus b should

additionally be fed into the function g. Figure 7.3 shows a graphical depiction of the
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Figure 7.3: A graphical depiction of the LOPF -pipeline. Neural networks b and g are fed
the complex demand Sd and tasked with producing the optimal binary activation vector and
generator configuration respectively. Because the voltages are a function of demand and gen-
eration, both are fed into the HELM based power flow solver v. The loss L is computed based
on the resulting voltages. In order to ensure that control and network inequality constraints
are satisfied, a third neural network is tasked with predicting Lagrange multipliers. Because
HELM is differentiable, the whole pipeline can be optimized jointly.

proposed data pipeline.

7.7 The LOPF -algorithm

In this section we summarize the resulting algorithm, we call Learning Optimal Power

Flow, or short LOPF. The algorithm iterates over batches of the dataset D making

updates to the three constituent neural networks g, b and u. It is described in pseudo-

code in Algorithm 4. For notational convenience, we define a function solve:

Sg = b · gΘ(Sd, b)

solve(Sd, b) =


ε(v(Sd, Sg))

c(v(Sd, Sg)) +
∑

i(uψ(Sd))ik
+
i (v(Sd, Sg))

N−1
∑

i(fc,n(Sd − Sg))i



T

Figure 7.4 shows a graphical depiction of the input/output relationships of the in-

dividual networks. Note that the network g not only produces active and reactive

generation assignments for non-slack generators but also the voltage at the slack

bus. Furthermore, the magnitude by which constraints are violated, denoted by k, are
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input : Dataset D
output: Trained model parameters Θ, φ and ψ
Initialize Θ, φ and ψ randomly;
while not converged do

for number of subsets of D do
select d ⊂ D;
for Sd ∈ d do

G = {};G = {}; ;
B ∼ q(b|Sd) (without replacement);
for b′ ∈ B do

ε, L, c← solve(Sd, b
′);

if ε < ξ then G← G ∪ {L};
else G← G ∪ {c};

end
Compute LBO based on (7.24);

end
Maximize LBO w.r.t. φ;
Maximize

∑
L∈G L w.r.t. ψ;

Minimize
∑

L∈G L w.r.t. Θ;
Minimize

∑
c∈G c w.r.t. Θ;

end
end

Algorithm 4: LOPF -Algorithm in pseudo-code

fed into the network u that produces a proxy of the Lagrange multipliers. Additionally

feeding k eases and speeds up learning considerably.

7.8 Experiments

Since this work introduces a learning based approach to the problem of ACOPF, the

performance of the algorithm is evaluated similar to how the performance of reinforce-

ment learning agents is evaluated, i.e. an empirical evaluation strategy is employed.

Specifically, given a held out test set of load flow problems that the system was not

presented with during training, the generation cost and the result of whether or not

the system was able to find a feasible solution are recorded. The requirements for

feasibility excluding those that are met by construction are the following:
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Active Power Generation Reactive Power Generation v

Sd Binary Configuarion
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Binary Configuration 1

Sd

b

b)
....

Binary Configuration S

c)

Sd k 

u
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Figure 7.4: The input and output relationships of the three constituent neural networks. a)
The neural network produces active and reactive power generation for non-slack generators
as well as the voltage at the slack bus given the demand Sd and binary configuration produced
by the b-network. b) The binary-network that parameterizes an auxiliary distribution. Note that
the network produces multiple binary configuration by sampling from the auxiliary distribution.
c) The Lagrange-network that produces a proxy of the Lagrange multipliers. Note that the
constraint-violation magnitude k is additionally fed into the network to ease learning.

• Log-mismatch between the RHS and LHS of the power flow equations (7.2), i.e.

ε, must be smaller than −10.

• Slack active and reactive generation are within limits

• Non-slack voltage magnitude constraints are met

The experiments were conducted on the 200 bus Illinois IEEE test case [152].

However, since the IEEE test cases only contain a single demand assignment, the

demand base case was superimposed by temporal patterns extracted from the RE

Europe dataset [153]. RE Europe dataset contains historical demand and their fore-

casts for 3 years at an hourly interval. Let Sd′ ∈ C200 be the base demand taken from

test case and xt ∈ R200×26280 be the temporal demand patterns taken from RE Europe
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LOPF MIPS
Feasible [%] 99.86 60.85
Mean Cost [USD] 33325.98 25817.55
Mean time per Instance [s] 1.2 14.4

Table 7.1: Comparison of LOPF in terms of robustness, optimality and speed on a held-out
test set in comparison to MIPS.

dataset. The temporal patterns were imposed such that the mean demand of every

node is equal to the demand in the test case and such that the ratio between mean

and standard deviation as seen in the RE Europe dataset is preserved. The dataset

was separated into training (20.280 data points) and test set (6000) when conducting

experiments.

The neural networks used in this experiments constitute standard fully connected

three-layer networks with intermediate tanh activations. All intermediate layers have

512 hidden units.
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Figure 7.5: Comparison of generation cost on the first 300 load flow problems of the test set.
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Figure 7.6: Left: The percentage of feasible solutions as a function of learning steps. Right:
The average log mismatch of the power flow equations (7.2) as a function of time.
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7.9 Results

As stated earlier, learning based approaches to control problems are usually not guar-

anteed to be optimal but can offer advantages in terms of computational time and

robustness. The performance of LOPF reinforces these expectations. Figure 7.6

(left) shows the percentage of load flow solutions produced by the system that vio-

late any requirement for feasibility as a function of learning steps. One learning step

encompasses 32 load flow problems. For all of the 32 load flow problems 50 candi-

date binary configurations are drawn from the auxiliary distribution. One can see that

the system quickly learns to produce feasible solutions. Initially the system produces

feasible solutions to no load flow problems. However, after just 30 steps close to all

solutions proposed by the system are feasible.

Figure 7.6 (right) shows the log-mismatch between the RHS and LHS of the power

flow equations (7.2), i.e. log ε. Note that initially, the proposed approach produces

generation assignments for which the HELM solver is unable to produce voltage pha-

sors that fulfill the power flow equations but by minimizing the power series coefficients

as described in section 7.5.3, the system is quickly nudged into a regime where the

proposed solutions fulfill the power flow equations. However, after approximately 75

learning steps, for a short period of time, the system produces generation assign-

ments that, again, do not fulfill the power flow equations. This can most likely be

explained by the fact that the system also tries to minimize cost. Thus, by trying to

find cheaper generation assignments, the system left the regime in which solutions

can be found by HELM but was then steered back into this regime.

Table 7.1 showcases the performance of our proposed algorithm in comparison to

the MIPS solver proposed in [154]. In order to deal with non-convex generation limit
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constraint, the MIPS solver was run with a unit-decommitment heuristic (runuopf ).

When obtaining the results for the MIPS solver, all initializations were unchanged and

only demand was varied in the way described earlier. Slightly varying the demand

reveals the weakness of traditional solvers: Convergence to a feasible solution can-

not be guaranteed. In our experiments, the MIPS solver produced solution which

comply with all constraints and fulfill the power flow equations in only about 61% of

all problem instances (failure in 2349 out of 6000 instances). Our proposed solution

produces feasible solutions for 99.86% (failure in 8 out of 6000 cases) of the problem

instances.2

On top of that, our proposed learning based approach is considerably faster than

optimization based approaches: Because solutions can be obtained by feeding a de-

mand assignment through the Neural Networks and the forward pass through Neural

Nets is usually fast, obtaining the generation assignment proposed by the system is

fast. Note that when we report the time per instance for the MIPS solver, we report

the mean-time over all load flow problems. However, when the solver fails, it usually

fails quickly. If only the time per successful instance was reported, the mean time per

instance of the MIPS solver would be close to 30s per instance.

However, Table 7.1 and Figure 7.5 more clearly reveal the main weakness of our pro-

posed learning based approach. Even though solutions can be obtained robustly and

fast, the proposed learning system does not find solutions that are optimal in terms

of generation cost. On average, the solutions that the approach produces are ap-

proximately 29% more expensive than the solutions found by the MIPS solver. Note

that the average cost is reported for only those load flow problems for which both

approaches yielded feasible solutions.
2When LOPF fails, it slightly violates voltage magnitude constraints.
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7.10 Conclusion and future work

The main contribution of this paper is the introduction of a learning based framework

for the problem of ACOPF, i.e. we translate a problem that is traditionally tackled by

constrained optimization approaches into a learning problem. Specifically, we intro-

duce a learning based approach in which a function is tasked to produce feasible and

minimal cost generation assignments as a function of the demand. A learning sig-

nal for this function is obtained by differentiating through the operators of a load flow

solver. In our experiments, because it produces unambiguous and robust load flow

solutions, HELM was employed but, in principle, any differentiable load flow solver

could be used. Furthermore, we show how convex security constraints and non-

convex generation limit constraint can be enforced. The resulting system seems to

produce feasible solutions fast. However, these solutions are not optimal in terms of

generation cost.

An obvious future research path is to close the optimality gap. At this moment, be-

cause of the complexity of the resulting system, it is hard to understand why the

solutions are not optimal. But note that the proposed algorithm cannot be optimal by

design, because the slack generator cannot be decommitted and there is a natural

interpolation between load flow solutions. However, in the opinion of the authors, per-

formance gains in terms of optimality should be possible.

Another potentially interesting research question is whether or not the trained auxil-

iary distribution Q that learns the cost surface as a function of the binary generator

configuration allows for conditional sampling. Imagine a scenario where generators

have failed. In such a scenario, it is paramount to reconfigure the network in a feasible

state fast. If it is possible to sample from Q conditioned that the failed generators are
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off, then the proposed learning based approach could potentially find application in

emergency situations. Note that this seemingly easy problem is not trivial because of

the FactorNet [119] structure of the auxiliary distribution.

The second main contribution is the translation of the existing power flow solver HELM

into the realm of optimal power flow, specifically by showing that computing the gra-

dients through the operations of HELM is possible. Note that this contribution is to

a certain extent independent of the first contribution and in theory, any differentiable

power flow solver could be plugged into the learning framework discussed above. At

the same time, the findings of this work show that HELM could also be inserted into

traditional optimization based approaches because its operations are differentiable.

Note that when using HELM as the load flow solver for LOPF, LOPF is only as good

as HELM. In the experience of the authors, HELM can show impressive results for

some networks but then work poorly on others. An indicator for whether or not HELM

will work well on a specific network is how well-behaved the ‘trivial’ solution is about

which analytical continuation is performed. Numerous modifications have been pro-

posed to improve HELM to alleviate this problem but more research that addresses

these issues might be required. Furthermore, HELM struggles with large admittance

matrices. Even though admittance matrices are usually non-singular, solving large

admittance matrices as required for HELM oftentimes leads to numerical issues be-

cause they oftentimes become numerically singular. This problem could, in principle,

be overcome by introducing a regularization term that vanishes when performing an-

alytical continuation, i.e. by substituting Y with Y + (1 − z)I with I being the identity

matrix. Note that this ‘trick’ will not change the admittance matrix because at z = 1,

the regularization term will vanish.
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7.11 Postamble

This publication introduced a learning based formulation of the ACOPF problem. It

furthermore shows that a learning signal for the agent can be obtained by directly

differentiating through a robust power flow solver and introduces computationally effi-

cient strategies to deal with safety constraints and non-convex action spaces. Namely

by learning an auxiliary function that produces a proxy of the KKT multipliers and by

optimizing a Variational lower bound of the inverted cost function respectively. The

resulting algorithm is fast and robust, i.e. after training, the agent produces feasible

load flow solutions that adhere to safety constraints in a timely manner. However,

these load flow solutions are not optimal. In its current inception, the algorithm that

we call LOPF could find applications as the initial seed point for traditional solvers or

in safety critical scenarios where optimality plays less of a role.
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Conclusion

This thesis introduces applications of a modern approximate statistical inference tech-

nique called Variational Inference to engineering problems involving energy efficiency.

The engineering problems constitute Non-Intrusive Load Monitoring (NILM) and Alter-

nating Current Optimal Power Flow (ACOPF). Both problems share a common com-

putational difficulty: inferring an optimal binary vector. However, the semantics of this

optimal binary vector is different for both problem. For NILM, this vector constitutes

the most likely state of appliances, whereas for ACOPF this vector describes which

generators are entirely shut down. Because both problems share the same computa-

tional difficulty, the proposed solutions have a common core:

1. The computational problems associated with inferring an optimal binary vector

are alleviated by making use of Variational Inference

2. An auxiliary distribution we call FactorNet whose parameterization grows lin-

early with the length of this optimal vector that nevertheless has the same flexi-

bility as a non-factored multi-variate Bernoulli distribution is employed
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3. A decades old variance reduction technique, namely sampling without replace-

ment, is employed that additionally avoids mode-collapse

The combination of Variational Inference with FactorNet and sampling without re-

placement to some degree constitute the core contribution of this thesis. However, the

bulk of contributions are within the realm of the domains of the respective applications.

In the case of ACOPF, this thesis furthermore shows that the robustness of ACOPF

algorithms can be improved by differentiating through a load flow solver called Holo-

morphic Embedded Load Flow Method (HELM) and how, given a differentiable load

flow solver, convex voltage magnitude constraints can be enforced within a Neural

Network framework. Differentiating through a load flow solver and into a Neural Net-

work greatly improves the speed of the resulting learning-based algorithm. The re-

sulting algorithm is highly robust and fast but does not produce optimal generator

assignments. The algorithm, in a sense, provides quick and dirty solutions to an oth-

erwise computationally intensive problem and serves as an alternative to slow and

brittle solvers. In the opinion of the author, the impact of the proposed solution on

the research community will depend on the underlying load flow solver HELM and

whether or not the optimality gap can be closed in future research. HELM seems

to work very well on some load flow problems but than worse on others. If future

research into HELM proves to be a successful, the approach introduced in chapter

7 could lay the ground work for translating HELM from the power flow into the opti-

mal power flow realm. However, if future research into HELM proves unsuccessful,

the general and modular framework of LOPF could still find application, since HELM

could in principle be substituted by any differentiable load flow solver. Note that the
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approach to enforce convex constraints can be adopted in any Neural Network ar-

chitecture and might prove useful in other applications. However, the technique for

enforcing convex constraints is not yet well understood.

The application-specific contributions in the case of NILM are more general. Con-

tributions within this thesis generalize Variational Inference to a class of graphical

models with intractable joint distribution. This class encompasses dynamical sys-

tems with binary latent states. Note that the approach can be generalized to dynam-

ical systems with continuous latent states by exchanging FactorNet with a continu-

ous auxiliary distribution. If such a strategy is successful, the impact of the tech-

nology introduced in this thesis is potentially high: considering the technique could

replace the non-optimal extended Kalman filters for non-linear state estimation. Note

that non-linear state estimation algorithms have found widespread adoption in many

fields apart such as e.g. building climate control, automotive applications, microgrids,

networked control systems, operation research and finance, process control, robot

and vehicle path planning, telecommunication network control and wind turbine con-

trol [155].
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Future Work

In this chapter, we propose future research paths that build on the technology intro-

duced in this thesis.

9.1 NVIF: Modeling Non-Intrusive Load Monitoring

The core research contribution of NVIF is a general purpose algorithm for learning

and inference in dynamical systems with binary latent states. Less emphasis was put

on the question which model is most approrpriate for the problem of Non-Intrusive

Load Monitoring. The algorithm has much room for improvement by researching

which state transition probability function and which emission probability function re-

sult in the lowest disaggregation error. At the moment, the emission probabilities are

modeled by Gaussian distributions and the observations constitute aggregate instan-

taneous power waveforms. Note that in the experience of the author, a Gaussian

emission distribution, because it penalizes the squared difference between the sum

of inferred components and the aggregate observations, oftentimes puts too much

emphasis on differences in power as opposed to differences in waveform shapes.
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One possible research path is to substitute the Gaussian emission probability model

for another distribution that puts more emphasis on waveforms shapes. Such a dis-

tribution could, in principle, be based on the cosine-similarity of the sum of inferred

components and the aggregate.

Furthermore, the state transition probability model in the current inception of NVIF

simply penalizes the number of components that switch from one time step to the

next. Note that this distribution does not assume independence between appliance

states, therefore making use of the fact that NVIF as opposed to previous approaches

allows for non-factored state transition probability models, but nevertheless does most

likely not constitute the optimal temporal model for NILM. Future research could in-

vestigate other instantiations of the state transition probabilities that could e.g. model

the difference signal like in [25, 109] or knowledge of the premises, i.e. one could en-

vision a state transition probability model that encodes the knowledge that the kitchen

lights are more likely to be on when other kitchen appliances are on. Note that, be-

cause NVIF allows for non-factored state transition probabilities, the space of potential

model instantiations has increased dramatically. This space should be explored in fu-

ture research endeavors.

9.2 NVIF: Understanding the approximations

So far, NVIF has been evaluated from an Engineering perspective, i.e. the perfor-

mance of the algorithm was judged by how well it achieves a certain end-goal, in this

case, how well it can disaggregate energy. Considering the fact that NVIF is general

in nature and could in its current inception be applied as an approximate learning and

inference algorithm for any dynamical system with binary latent states, the question
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arises how well NVIF performs in terms of approximation error. When evaluating NVIF

in terms of disaggregation error, two errors compound, namely the error that arises

from the approximations needed to achieve computational efficiency and the ’error’

that results from choosing an instantiation of the emission- and state transition proba-

bility models. So far, the approximation error has not been studied in isolation. In order

to achieve this, one could generate synthetic data with a known model of emission-

and state transition functions and a tractable number of components and compare the

output of NVIF to ground truth and the output of the Baum-Welch algorithm.

9.3 Learning continuous non-linear and stochastic dynam-

ical systems

As discussed earlier, because NVIF makes use of FactorNet as its auxiliary distribu-

tion, the latent states of the dynamical system for which learning and inference is to

be performed are required to be binary. Future research could generalize the ideas

of NVIF to dynamical systems with continuous latent spaces. This would require

substituting FactorNet with continuous auxiliary distributions. Note that for continu-

ous distributions, finding a flexible enough but still computationally efficient auxiliary

distribution seems to be a much harder endeavor. This is still an ongoing research

topic [81] and the question arises if for continuous distributions a flexible and com-

putationally efficient general purpose solution can be found or if application specific

auxiliary distribution need to be crafted. An interesting potential application domain

for continuous NVIF could e.g. be computational fluid dynamics [156] where tradi-

tional approaches are known to break down. The question of whether continuous
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NVIF can overcome some of the problems inherent to previous approaches is yet to

be answered.

9.4 Variational Inference without the bound

In chapter 6, we claim that given an appropriate auxiliary distribution, NVIF is an

asymptotically unbiased algorithm for System Identification and Inference. This claim

is only true if the auxiliary distribution has the capacity to perfectly learn the true

distribution. Even though FactorNet has this ability, in reality, there will always be

some approximation error. At the same time, in chapter 6, ideas are introduced that

alleviate the burden on the auxiliary distribution to perfectly learn the true distribution,

namely self-normalizing Importance Sampling.

The question arises whether this idea can be pushed further. The idea is to not

treat VI as an inference technique but as means to train an auxiliary distribution that

approximates the true posterior. But then, given an auxiliary distribution, in order

to perform inference, self-normalizing Importance Sampling is employed. Note that

because we have access to a distribution similar to the true distribution P , Importance

Sampling will hopefully be low variance.

We can derive the log evidence as follows:

log p(x) = logEq(z|x)
p(z, x)

q(z|x)
(9.1)

First of all, note that equation 9.1 does not require knowledge of the true posterior.

Second, equation 9.1 does not describe a lower bound of the evidence but, by making

use of Monte Carlo Integration, an unbiased estimator of the evidence. Third, note
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that this equality holds for any distribution Q, i.e. it is unbiased independent Q. How-

ever, if equation 9.1 is approximated by the means of Monte Carlo integration, the

variance of the estimator crucially depends on Q.

The question now arises what Q to choose to reduce the variance of equation 9.1.

We can conjecture, even though most likely not optimal, that choosing Q = P will

have reasonable variance which in turn poses the question of how Q can be brought

to approximate P . Note that maximizing equation 9.1 with respect to the parameters

of Q will not minimize the KL-divergence like the ELBO (equation 2.3) would. Instead

one could directly minimize an unbiased estimator of the KL-divergence:

DKL = Eq(z|x) log q(z|x)− log p(z|x) (9.2)

= Eq(z|x) log q(z|x)− log p(z, x)− logEq(z|x)
p(z, x)

q(z|x)
(9.3)

One could envision a coordinate ascent-like algorithm that maximizes equation 9.1

and equation 9.3 in an alternating fashion.

9.5 Investigating gradients through HELM

When introducing the LOPF algorithm, a learning signal for the agent is obtained

by computing the gradient through the operators of a power flow solver, specifically

the Holomorphic Embedded Load Flow Method (HELM). At this point, little is known

about what this gradient actually does. Note that the load flow solver enforces a non-

linear equality constraint. Specifically, it enforces that the network is balanced. The

question arises how this is achieved. This question could e.g. be answered by inves-

tigating how the generator configuration of other generators changes as a function
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of the output of a single generator, i.e. by investigating the gradient of the output of

one generator with respect to the output of the others. In a sense, this answers the

question of how HELM rebalances the system if the output of one generator changes.

Note that because HELM makes use of a slack-bus the answer to this question is

not trivial. Does the gradient balance the network uniformly, i.e. do all generators

make up for the change in generation of one bus? Do generators that are close in

network topology make up for the change? Is most change absorbed by the slack

bus? How does the gradient change when different generators are associated with

different generation cost?

9.6 LOPF: Closing the optimality gap

In its current inception, the LOPF algorithm introduced in chapter 7 is fast and ro-

bust but not optimal. Note that LOPF cannot be optimal by design, mainly because

the slack generator cannot be turned off. However, it is unlikely that this is the only

cause of non-optimality and further closing the optimality gap is probably possible.

The question arises what other causes lead LOPF to not produce optimal genera-

tor configurations. In the following a non-exhaustive list of potential causes for the

optimality gap are discussed:

Neural Network topologies and/or hyperparameters So far, the Neural Networks

used in the experiments constitute standard feed-forward networks. Changes

to the hyperparameters or the topologies could, in principle, help close the opti-

mality gap.

Samples drawn from FactorNet At the moment, the number of binary configura-
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tions sampled from FactorNet is 50. Can increasing this number improve the

optimality of LOPF? Is the application of Variational Inference the main culprit

of non-optimality?

Gradient of HELM In the previous section the fact that little is known how the gra-

dient of HELM redistributes generation when the output of a single generator

changes. Investigating the gradient could provide crucial insight why LOPF pro-

duces non-optimal generator configurations.

9.7 Scaling HELM

In the experience of the author, HELM struggles with big admittance matrices, i.e.

it does not scale well with the number of buses. This might be the case because

when the number of buses grows, the reduced admittance matrix Y r becomes ‘quasi-

singular’. Note that as long as all buses are connected and there are no shunt ele-

ments in the network, the full admittance matrix Y is singular because the sum over all

rows is 0. By removing the slack row and column, i.e. obtaining Y r, usually a matrix is

obtained that is non-singular. However for large number of buses, solving this matrix

poses difficult, i.e. different solving techniques result in vastly different solutions. For

example, solving the IEEE300 bus matrix (Y rx = 0) with numpy [157], scipy [158]

and tensorflow [148] results in three different solutions, even though the respective

error is miniscule, i.e. ||Y rx− 0|| is in the order 10−18 for all solutions.

A strategy to overcome this problem could be the following: By changing the embed-

ding, specifically by adding a z-dependent term that vanishes at z = 1, the algorithm

is freed of the burden of having to solve the reduced admittance matrix. Instead, for
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all computations, Y r is replaced by (Y r + (1 − z)Iλ). Note that the solution will not

change, because for z = 1, the original problem is recovered.

∑
k

(Y r
ik + (1− z)λI)

∞∑
n

Vk[n]zn = zS∗i

∞∑
n

Wi[n]zn (9.4)

which can be rewritten as:

∑
k

(Y r
ik + (1− z)λI)

∞∑
n

Vk[n]zn = zS∗i

∞∑
n

Wi[n]zn (9.5)

∑
k

(Y r
ik + λI)

∞∑
n

Vk[n]zn − λz
∞∑
n

Vk[n]zn = zS∗i

∞∑
n

Wi[n]zn (9.6)

∑
k

(Y r
ik + λI)

∞∑
n

Vk[n]zn = S∗i

∞∑
n

Wi[n− 1]zn + λ

∞∑
n

Vk[n− 1]zn (9.7)

Equating coefficients of the same order yields:

∑
k

(Y r
ik + λI)Vk[n] = S∗iWi[n− 1] + λVk[n− 1] (9.8)

Thus adding the λ-term in such a way that it does not change the solution at z = 1

introduces a term dependent on the previous power series coefficient and removes

the requirement of having to solve the reduced admittance matrix but a regularized

admittance matrix instead. Since we iteratively solve for the power series coefficients

starting at n = 0, this only slightly changes the algorithm but might lead to stable

solutions for big admittance matrices.
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