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Abstract—We developed a classifier for back stretching body
poses used in therapy. Joint coordinates were collected and
normalized to adjust for different body proportions and speeds.
Initial classification on the entire normalized data set established
a baseline of 25% accuracy, relative to 17% for chance. A second-
stage classifier was developed to use inter-frame movement
kinematics to isolate the core frames where the final static pose
was achieved. Combined with higher-order features from inter-
joint dependencies, the modifications produced an accuracy of
63%.

Index Terms—Machine Vision,Activity Recognition, Machine
Learning, Neural Networks, Signal Processing Algorithms

I. INTRODUCTION

Human action recognition (HAR) is a challenge for today’s
computing systems, especially in comparison to the capability
of the human brain. Given a video or frame of a single
human action, computers are challenged to perform a clas-
sification that is rapidly accomplished by human perceptual
systems. HAR requires a flexible system capable of adapting
to individual stature and movement variations, dynamic action
definitions, and many other variables. Although HAR poses
many challenges, its applications in computer human interac-
tion, surveillance, and many other fields make it an intriguing
research goal.

With the commercialization of depth camera technologies
(e.g., Microsoft Kinect) the health industry has access to
motion analysis and remote viewing devices. This new tech-
nology, when combined with HAR, has potential to reduce
therapist workloads and improve patient motivation [1], [2].
In addition, disease or condition-specific applications have
shown promise for event and symptom detection [3]. Despite
the success of these approaches, the Kinect has shortcomings.
Kaewplee et al.’s study of Muay Thai [4] showed that in full
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body movements the Kinect’s limited accuracy results in jitter,
dead limbs, and joint swapping. In this study we propose a new
approach to improve the accuracy of different Kinect models
with potential applications in other HAR systems.

Within the field of HAR, there exist different approaches.
Zhu. et al. [5] identifies segmented human action recognition
(SHAR) and continuous human action recognition (CHAR).
SHAR approaches work on datasets composed of single
subject and single action, where the primary objective is to
classify the action. Examples of common SHAR approaches
are codebook [6], [7], histogram [8]–[10], and relative joint
location [11], [12]. In this study, we focus on SHAR in total
body exercises for use in rehabilitation and therapy.

In CHAR, researchers focus on detecting when an action is
taking place rather than which specific action is occurring. The
most prominent CHAR approach involves the use of sliding
windows to select action periods. Multiple variations of this
approach exist, each proposing unique ways of identifying
window start and end points [13]–[15].

Drawing from this research, our approach combines contin-
uous and segmented HAR algorithms. Using a sliding window
approach common in CHAR, we isolate the frames of the
final static pose contained in a single subject, single exercise
dataset. Due to the lack of appropriate datasets, a portion of the
study is devoted to the creation of a full body exercise dataset.
Similar to [15], our window is based on periods of activity.
Here, we use velocity data from near-contemporaneous frames
to detect static hold periods. After the application of the
sliding window approach, we use a more conventional SHAR
algorithm to classify each action.

In the next part of the paper, we describe our approach
to achieving classification of the exercise sequences. Data
were collected from the Kinect as joint coordinates and then
normalized to adjust for variations in individuals’ stature and
movement. An initial neural-net model was then used to
select hyperparameters appropriate to the data set; this also



established the baseline level of performance possible when all
frames from the data set were randomly intermixed. Finally,
movement kinematics were used to isolate the core frames
from the data set in which the exercise was achieved. Higher-
order features extracted from those frames were used as a basis
for a final classifier, using the hyperparameters identified by
the baseline model.

Fig. 1. Stretches included in Dataset

Fig. 2. Sites Recorded in Data Collection; not visible are individual thumb
joints

II. METHODS

A. Data Collection

Pre-existing libraries, specifically the KinectPV2 library,
were used to build an efficient platform for data collection
and processing [16]. The six full body stretching exercises
shown in Figure 1 were used to create a dataset composed of
exercise frame sequences. Each of these stretches consists of
a movement period, a hold in place, then a return to a neutral
position. The stretches all incorporated placement of the legs
and feet, followed by movement of the upper body intended to
stretch the back, but in ways that distinguished each exercise
[17]. For example, only Sumo has abducted legs with bent
knee and a torsional twist around the waist. Nine young adults
(age 18-21, four females and five males) volunteered, without
remuneration, to perform the stretches to establish the data
set. Each stretch began with a short instructional video, after
which the experimenter signaled the participant to perform 10
repetitions of that stretch, returning to a neutral pose between
each. Upon completion of the repetitions for one stretch, the
video for the next was shown. Participants were permitted to
ask clarifying questions at any time. The Microsoft Kinect v2
camera collected the 3D position of 25 of the subject’s joints

or fixed body locations, shown in Figure 2, at approximately
30 frames per sec. Further details on the data set can be found
in Table 1. The data set is mounted at XXXXXXXXXXXX

TABLE I
DATASET SIZE

Measure Number
Total Frames Collected 119,999

Total Joint Positions Collected 2.99x106

Average Frames per Exercise Repetition 221.81

B. Data Normalization

Participants vary considerably in stature and build and move
at different speeds. Thus there is the need to adjust for individ-
ual variations. The raw three-dimensional position data were
normalized by three calculations described in Table 2. The
position coordinates, originally in a reference frame defined
by the camera, were re-calculated relative to a framework
centered on the subject’s chest, to allow for comparisons
of individuals of different stature. Then velocity for each
coordinate was computed to use as a variable in the classifier,
under the assumption that it would be critical to differentiating
the exercise set. Both variables were converted to within-
participant z-scores, allowing comparison across individuals
with different movement rates and distances.

III. BASELINE NEURAL NETWORK PARAMETERIZATION

An initial neural-net model was constructed in order to
select model parameters and establish a baseline level of
classification on the entire data set of normalized coordinates.
Candidate parameterizations were implemented in Python us-
ing Tensorflow, Google’s machine learning library. A model
was constructed by fixing a set of hyperparameters constituting
values of the following model training variables: network
architecture (4), activation function (4 candidates), learning
rate (4), and training epochs (3). The specific values tested
were selected to survey the parameter space. To select final
hyperparameter values, model training runs were used to
evaluate performance.

TABLE II
NORMALIZATION CALCULATIONS

Name Transformation Description

Position
Coordinate
Normalization

XNormal = X −XChest
YNormal = Y − YChest
ZNormal = Z − ZChest

Linearly scaled the Kinect’s
coordinate system to
reflect an origin at the
subject’s chest

Velocity
Calculation v[n] =

x[n]−x[n−5]
5

Computed velocity as
the change in position
across 5 frames

Velocity and Position
Standardized (z)
Score (computed
for each joint
of each individual
within each exercise)

z = x−µ
σ

Converted the position
and velocity data to
z-scores, pooling the
observations across all
frames of a single exercise
(10 repetitions). This
standardization is computed
separately for each
combination of participant,
joint and exercise.



For purposes of development, a sample of 60 fully executed
exercises (repetitions) was constructed by randomly sampling
10 repetitions of each exercise type. Because a repetition is the
collection of frames that were captured for one fully executed
exercise, the number of frames in each repetition is variable.
No other specifications of the data besides exercise type were
considered when taking the subsample (e.g., number of frames,
noise levels, subject, time of data collection, etc.). Once the
subsample was constructed, the 60 repetitions were further
divided into two categories, used for training and testing
candidate neural nets that would classify exercises from single
frames. Independently for each test of a candidate model, the
procedure was as follows: (i) Initially, 70%, or 42 full exercise
repetitions from the subsample, were randomly chosen for
use as training data. The remaining 30%, or full 18 exercise
repetitions, constituted the testing data and were withheld
from the model until completion of training. (ii) Within the
training repetitions, the individual frames were ungrouped and
randomized as to order. The input associated with each frame
comprised the raw coordinates of each of the 25 body parts,
constituting 75 data points per frame. (iii) The model was
trained 10 times and its average accuracy computed.

The hyperparameters that yielded the best accuracy across
the 10 training runs for the given model were an architecture
of 4 fully connected layers of 30 nodes with an output
layer of Softmax and an Adam optimization algorithm, ReLU
activation, a learning rate of .001, and 1000 training epochs.

Run with a confidence criterion of .20, the accuracy from
the model parameterized as above reached only 25%. It should
be noted, however, that the evaluation uses a data stream that
mixes frames from all the exercises in random order. This test
ignores the fact that the data source is a sequence of frames in
a single exercise and hence does not capitalize on inter-frame
dependencies. In Section 4, we used the inter-dependence of
frames within an exercise to refine the problem and improve
classification accuracy.

IV. ISOLATING STATIC HOLDS FROM INTER-FRAME
KINEMATICS

A single stretch exercise consists of moving into a static
pose, holding the pose, and releasing. The distinctive features
of the exercise are mainly to be found in the static hold. To
isolate the period of the static hold, it is necessary to identify
and remove the periods of transition in which the stretch
was entered and exited. Removing transitions should improve
the model not only by isolating the defining features of the
stretch, but because the Kinect v2 camera, as with motion
tracking systems in general, has the least precision when the
observed person is in motion [4]. Thus eliminating periods
of movement also removes the highest error rates in position
measurement, and ultimately, reduces the noise in the data
entered for classification by the model.

To determine an algorithm for isolating transitions, we
examined the standardized velocity data of each joint at each
frame in a particular exercise, pooling data across the 10
repetitions for all participants. This calculation also pooled the

Fig. 3. Plot of the Total Standardized Velocity Across all Axes for Mermaid
and Sumo Exercises at the Head

Fig. 4. Selection Algorithm Applied to the Velocity Histogram for Y

standardized velocity data across each axis, creating a metric
representing the absolute magnitude of 3D movement from
the participant’s joint. The new data from this phase was used
in all model training and evaluation phases in place of the
unfiltered data. Note that standardization controls for different
movement speeds of participants. Figure 3 shows the total
standardized velocity across all axes for the head/neck joint,
by frame within the movement, for the Sumo and Mermaid
stretches. It can clearly be seen that periods of high velocity,
presumably transitions, occur between static pose periods with
lower velocity. This suggests that thresholding the data by
velocity could be used to isolate the transitions. Accordingly,
the histogram of the standardized velocity data of a single
joint at each frame in a particular exercise was computed,
pooling data across axes, as seen in Figure 3. Examination of
the data suggested that a threshold where the total standardized
velocity across all axes must exceed a combined score of 3.0
would identify the high velocities corresponding to movement
of the joint as a transition occurred between stretch poses.
The selected threshold used by the algorithm is also shown in



Figure 3.
The static holds in the stretches were identified as the inter-

val between the velocity spikes indicating transition periods.
The specific frames at which the static hold began and ended
were identified by a rule that set a number of consecutive
frames required to be below the total standardized velocity
threshold of 3.0. Any values lower would detect nonexistent
transitions, while higher values fail to detect any transitions.
Detailed examination of the data under different values for
this number of frames indicated that for reliable identification
of the hold period, four consecutive frames below threshold
should be used to identify the start and three frames to identify
the end. These numbers differ, because in the data, the release
from a stretch tends to occur more quickly than the movement
into the holding posture. The application of the rule to a single
instance of the head joint during the Y stretch can be seen
in Figure 4, where the green highlighted area represents the
selected data.

V. SYNTHESIZED FEATURE EXTRACTION

Once the period of static hold was identified, the multi-
joint, 3D position data from frames in this period were used
to extract features in the form of vector or scalar values
determined by multiple joint locations (cf. on Gabel et al.
[18]). Although raw 3D coordinates capture all the information
in a movement, models trained with synthesized features
yield higher accuracies [19]. As described in Table 3, eight
synthetized features were computed, under the dual constraints
of identifying informative elements of one or more poses,
while discriminating between the different poses in the set
of six targets. The full set of features was extracted from each
individual frame that had been identified as static hold.

VI. NEURAL NETWORK EVALUATION ON SYNTHETIC
FEATURES

With the neural-net hyperparameters specified as described
in Section 5, a classifier was constructed where the input to
the model was now the synthesized features for each of the
frames. To equate the contribution of the features, the values
were normalized as z-scores across all the frames, pooling
subjects and stretch categories. Frame content from the 60
exercise samples used previously was reduced by isolating
only those frames that passed the threshold for normalized
velocity associated with static holds. As before, for each
run of the model, the 60 repetitions were divided into 42
used for training and 18 used for testing. The model was
trained 20 times and its accuracies averaged to create the
final performance metric. Figure 5 summarizes the entire data
analysis flow to this point.

VII. RESULTS

Table 4 shows the percentage of frames for each exercise
that were classified at the .20 threshold and the ratio of
responses with the given exercise name to the prevalence of
that stimulus in the set. Ideal percentages of 100% would
indicate that all frames that passed the threshold for static

TABLE III
FEATURES SYNTHESIZED FROM 3D POSITION DATA

Feature
(Vector Size)

Description Calculations

Center of Mass (3)
Average
position of
all coordinates

∑25
n=1Xcoord,Ycoord,Zcoord

25

Distance from
Ankles to Wrist (1)

Average
Euclidian
distance
between left
wrist to left
ankle and
right wrist to
right ankle

√
(Xw −Xa)2 + (Yw − Ya)2 + (Zw − Za)2

Distance from
Chest to Knee (1)

Euclidean
distance of
knee to chest
averaged over
left and right
knees

√
(Xk −Xc)2 + (Yk − Yc)2 + (Zk − Zc)2

Orientation of
Chest (1)

Stored as a 3D
vector computed
as the normal
vector of two
position vectors:
the vector from
the center of the
chest to the left
shoulder and the
vector from the
center of the chest
to the right shoulder

−−−−−→
V ector1 =

−−−→
Chest−

−−−−−−−−−−→
Shoulderright−−−−−→

V ector2 =
−−−→
Chest−

−−−−−−−−−→
Shoulderleft

−−−−−−−−−−−−−−→
OrientationV ector =

−−−−−−→
(V ector1)×

−−−−−−→
(V ector2)

Distance between
Feet (1)

Euclidean distance
from right ankle to
left ankle

√
(Xw −Xa)2 + (Yw − Ya)2 + (Zw − Za)2

Distance between
Hands (1)

Euclidean distance
from right wrist to
left wrist

√
(Xl −Xr)2 + (Yl − Yr)2 + (Zl − Zr)2

Ankle between
Feet (1)

Angle formed
between the center
of the hip, the right
ankle and left ankle

−−−−−→
V ector1 =

−−−−−−−→
Hipcenter −

−−−−−−−→
Ankleright−−−−−→

V ector2 =
−−−−−−−→
Hipcenter −

−−−−−−→
Ankleleft

Angle = arccos
−−−−−→
V ector1·

−−−−−→
V ector2

‖
−−−−−→
V ector1‖‖

−−−−−→
V ector2‖

Ankle between
Hands (1)

Angle formed between
the center of the hip,
the right ankle and
left ankle

−−−−−→
V ector1 =

−−−−−−−−→
Chestcenter −

−−−−−−−→
Wristright−−−−−→

V ector2 =
−−−−−−−−→
Chestcenter −

−−−−−−→
Wristleft

Angle = arccos
−−−−−→
V ector1·

−−−−−→
V ector2

‖
−−−−−→
V ector1‖‖

−−−−−→
V ector2‖

Fig. 5. Data Flowchart

hold were classifiable, and that there was no response bias, i.e.,
the use of an exercise label matched its relative frequency in
the data. The actual classification encompassed near or above
90% of the data. From the table, it can be seen that there was
an evident response bias toward classifying frames as towel
(relative to the ideal, +56%) and away from seated (-39%).

Table 5 presents the confusion matrix for the classification
of individual frames, by exercise. Only responses exceeding



TABLE IV
BY EXERCISE, % OF FRAMES PRESENTED THAT WERE CLASSIFIED AT THE
.20 THRESHOLD, AND THE RATIO OF RESPONSES WITH THE GIVEN NAME

TO ITS PREVALENCE IN THE DATA SET.

Exercise Name % Classified Response/Stimulus
Y 94.9% 107.5%
Sumo 95.8% 155.7%
Mermaid 91.3% 70.8%
Towel 87.1% 117.4%
Seated 90.9% 61.2%
Wall 98.9% 110.0%

TABLE V
ABOVE-THRESHOLD RESPONSE CLASSIFICATION FOR EACH STIMULUS AS

A PERCENTAGE OF THE FRAMES PRESENTED FOR THAT STIMULUS.
MARGINAL ENTRIES SHOW THE NUMBER OF ITEMS PRESENTED AND

TOTAL NUMBER OF RESPONSES BY EXERCISE. DIAGONALS ARE CORRECT
RESPONSES.

Response Exercise (>Threshold)Exercise
Presented Y Sumo Mermaid Towel Seated Wall Stimulus

N
Y 0.54 0.15 0.06 0.16 0.09 0.00 1351
Sumo 0.15 0.78 0.01 0.13 0.01 0.00 1288
Mermaid 0.20 0.09 0.52 0.14 0.05 0.02 1167
Towel 0.18 0.22 0.03 0.53 0.01 0.01 1212
Seated 0.00 0.21 0.04 0.12 0.50 0.01 1869
Wall 0.01 0.05 0.02 0.01 0.02 0.89 344
Response

N 1452 2005 826 1423 1143 382 7231

confidence of .20 are included. The diagonals, indicating
correct responses, ranged from .50 to .89, relative to a chance
level of .17. Clearly, the performance was better than chance
(the average of .63 was nearly a four-fold improvement) and
better than the baseline of .25 established when all frames
were classified on the measures from normalized camera
coordinates. At a confidence of 0.20, a measure of information
transmission in bits was .78 [20]. The maximum possible
information transmission for a 6 X 6 matrix is 2.58 bits;
however, a more appropriate benchmark would be human
classification of the same frames, for which further data would
be useful.

VIII. DISCUSSION

This paper describes development of a method of exercise
classification using data attained by a Kinect depth camera,
capitalizing on inter-frame and inter-joint dependencies. The
approach provides a classification accuracy that is well above
chance and far exceeds a network that attempts blind classifi-
cation without capitalizing on temporal or spatial relationships.
The essential steps are summarized in Figure 5.

There is reason to believe that the level of effectiveness
of the current classifier could be improved without altering
the approach. One limitation was the Kinect v2 camera used
in this study, which was released in 2014. Since then, more
powerful depth cameras have been developed that provide
clearer and more consistent data. Future work could also
benefit by capturing data from different perspectives to pro-
vide a multi-angle set. Current poses with the feet forward
were particularly disadvantaged by the camera perspective.
Multiple camera views could not only provide better position

resolution but could yield more effective synthetic features. In
addition, future work could explore different types of machine
learning algorithms and deep learning systems. Further studies
could use Keras or PyTorch to explore other deep learning
techniques. Neural network hyperparameters developed for the
final classifier, rather than the full-frame data set of joint
positions, could result in improved accuracy.

In this study, we used our CHAR approach in conjunction
with a synthetic feature SHAR model to improve single
subject, single exercise classification. However, there remain
numerous alternative applications in a conventional CHAR
system, or in conjunction with other preexisting SHAR ap-
proaches. These novel approaches have potential to signifi-
cantly impact model performance and warrant further research.
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[15] A. Chaaraoui and F. Flórez-Revuelta, “Continuous Human Action
Recognition in Ambient Assisted Living Scenarios”, Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 344-357, 2015.

[16] T. Sanchez Lengling, “Kinect v2 Processing library for
Windows”, Codigogenerativo.com, 2018. [Online]. Available:
http://codigogenerativo.com/kinectpv2/.

[17] “10 Stretches for Your Back”, Best Health Magazine Canada, 2018. [On-
line]. Available: https://www.besthealthmag.ca/best-you/stretching/10-
stretches-for-your-back/.

[18] M. Gabel, R. Gilad-Bachrach, E. Renshaw and A. Schuster, “Full body
gait analysis with Kinect”, 2012 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 2012.

[19] S. Maudsley-Barton, J. McPhee, A. Bukowski, D. Leightley and M.
Yap,“A comparative study of the clinical use of motion analysis from
Kinect skeleton data”, 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2017.

[20] H. Tan, N. Durlach, C. Reed, W. Rabinowitz, Information transmis-
sion with a multifinger tactual display, Attention, Perception & Psy-
chophysics, vol 61 (6), pp. 993-1008.


